
The Roles of Tetraspanins in HIV-1 Replication

Markus Thali

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2 Tetraspanins: Organizers of Membrane-Based Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.1 Structure and Subcellular Distribution of Tetraspanins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.2 Cellular Functions of Tetraspanins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Tetraspanins are Regulators of HIV-1 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1 Tetraspanins are present at viral exit sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Tetraspanins in HIV-1 Virions Inhibit Env-Induced Membrane Fusion . . . . . . . . . . . . . . 91

3.3 Tetraspanins Regulate HIV-1 Entry and the Transcription

of the Viral Genome in Newly Infected Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Tetraspanins Regulate Cell-to-Cell Transmission of HIV-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 How do Tetraspanins Regulate HIV-1 Entry, Viral Protein

Expression, and Env/Receptor-Mediated Fusion Processes? . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Conclusions – Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Abstract Tetraspanins are small integral membrane proteins that are known to

control a variety of cellular processes, including signaling, migration and cell–cell

fusion. Research over the past few years established that they are also regulators of

various steps in the HIV-1 replication cycle, but the mechanisms through which

these proteins either enhance or repress virus spread remain largely unknown.
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1 Introduction

Virus proteomics, i.e., the mapping of interactions that take place between cellu-

lar and viral proteins on a global, whole cell scale, or based on analyses of cellular

components incorporated into virions, has led to the identification of cellular

proteins, and indeed entire cellular pathways, that are critical for the propagation

of HIV-1 and other retroviruses (for recent overviews, e.g., Goff 2007, 2008). The

most straightforward approach leading to the identification of such proteins/path-

ways is the analysis of virion content. Fifteen years ago such an analysis hinted at the

possibility that tetraspanins play a role in the replication of this virus by revealing

that a member of the tetraspanin family is specifically incorporated into HIV-1

particles (Orentas and Hildreth 1993). Over the past 5 years, various investigators

have followed up on this early study, primarily by further characterizing the pres-

ence of tetraspanins at the viral budding site. However, of the two dozen reports

that now link tetraspanins with HIV-1 replication steps (see Table 1), so far only a

few document functional roles in virus propagation. Therefore, and as I will discuss

in this review, while we now know that tetraspanins have regulatory roles during

HIV-1 replication, we are only at the very beginning of understanding exactly how

these proteins function during transmission, and thus ultimately propagation and

pathogenesis, of HIV-1.

In the following, I will first briefly summarize what we know about cellular

tetraspanin functions. Subsequently, I will review the existing literature on the

interaction between tetraspanins and HIV-1. Finally, I will discuss potential mechan-

isms through which tetraspanins exert their functions and, though only very briefly, I

will also touch upon the role of tetraspanins in the replication cycles of other viruses.

Table 1 Tetraspanins at different stages of the HIV-1 replication cycle

Assembly

Orentas and Hildreth 1993

Ruiz-Mateos, Pelchen-Matthews et al. 2008

Gluschankof, Mondor et al. 1997

Grigorov, Attuil-Audenis et al. 2009

Meerloo, Sheikh et al. 1993

Raposo, Moore et al. 2002

Transmission to target cells & virus-cell

and cell-cell fusion

Nydegger, Foti et al. 2003

Pelchen-Matthews, Kramer et al. 2003

Gordon-Alonso, Yanez-Mo et al. 2006

Nydegger, Khurana et al. 2006

Sato, Aoki et al. 2007

Booth, Fang et al. 2006

Singethan, Muller et al. 2008

Weng, Krementsov et al. 2009

Krementsov, Weng et al. 2009Grigorov, Arcanger et al. 2006

Welsch, Keppler et al. 2007
Susceptibility of potential target cellsDeneka, Pelchen-Matthews et al. 2007
von Lindern, Rojo et al. 2003Jolly and Sattentau 2007
Ho, Martin et al. 2006Garcia, Nikolic et al. 2008
Yoshida, Kawano et al. 2008Turville, Aravantinou et al. 2008

Release
Viral gene expression in newly infected cells

Khurana, Krementsov et al. 2007
Tardif and Tremblay 2005

Chen, Dziuba et al. 2008
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2 Tetraspanins: Organizers of Membrane-Based Processes

Tetraspanins form a diverse family of small (20–30 kDa, not including mass

contributed by glycosylation) membrane proteins that compromises 33 members

in mammals (Hemler 2005). Consistent with their involvement in controlling

membrane-based processes such as signaling, adhesion and cell–cell fusion, tetra-

spanins have emerged at the transition from unicellular to multicellular organisms

and have since undergone intense evolution (Huang et al. 2005).

2.1 Structure and Subcellular Distribution of Tetraspanins

Tetraspanins contain short cytoplasmic N- and C-termini and one short inner loop

that separates a small (SEL) from a large (LEL) extracellular loop. A recent cryoele-

ctron microscopic analysis together with molecular modeling studies revealed that

tetraspanins, due to close juxtapositioning of the four transmembrane segments,

span the lipid bilayer as compact, rod-shaped structures. Plasma membrane-based

tetraspanins are relatively “invisible” from the outside, as they protrude only

approximately 5 nms. This probably explains why only very few of them do serve

as receptors. However, as described elegantly by others, “with the lower half of the
bundle embedded in the lipid bilayer, the tetraspanins may serve as pilings in the
lipid sea, ideal for docking other transmembrane proteins” (Min et al. 2006).

Indeed, the consensus reached by researchers analyzing these proteins is that tetra-

spanins function primarily as scaffold proteins that laterally organize various mem-

brane-based cellular functions (e.g., Stipp et al. 2003; Hemler 2005; Levy and

Shoham 2005a, b). Biochemical analyses over the past 15 years have demonstrated

that they form homodimers and that they also tightly associate with other transmem-

brane proteins, including specific integrins and members of the immunoglobulin

superfamily. These associations link molecular events taking place within mem-

branes with membrane-peripheral signaling complexes and the cytoskeleton. Recent

high resolution ultrastructural (electron microscopy) and/or fluorescence microsco-

py studies performed in our lab as well as by others (Nydegger et al. 2006;

Unternaehrer et al. 2007), for the first time visualized these up to few hundred

nanometer-wide, tetraspanin-mediated assemblages of proteins (TEMs: tetraspa-

nin-enriched microdomains). Importantly, while these initial studies were per-

formed in fixed cells, using bivalent antibody-based detection (which can

exaggerate the discreteness of microdomains due to antibody-induced microcluster-

ing), two very recent analyses of tetraspanin distribution at the single molecule level

in live cells clearly confirmed that these proteins are locally concentrated, thus

forming submicron-sized “interaction platforms” (Barreiro et al. 2008; Espenel

et al. 2008). One of these latter studies (Espenel et al. 2008) also confirmed what

was previously reported by others (e.g., Yang et al. 2004), i.e., that TEMs are clearly

distinct from lipid rafts (now also called membrane rafts).
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2.2 Cellular Functions of Tetraspanins

Based on analyses of amino acid sequences of the LEL, the segment known to be

the primary binding site for tetraspanin-associated proteins, the 33 members of this

family can be subdivided into four subgroups (Seigneuret et al. 2001). Members of

the same subgroup apparently can partially fulfill each other’s role, in case a

specific tetraspanin is ablated (e.g., in mouse knockout systems), suggesting a

certain degree of redundancy. While such redundancy provides obvious benefits

to organisms, it complicates genetic analyses of functions for individual members

of a protein family, and thus not surprisingly, only in a few cases has the deletion

of a tetraspanin gene resulted in dramatic phenotypes, such as the loss of fertility in

CD9 knock-out mice, or retinal degeneration in peripherin (tetraspanin 22) knock-

out mice (reviewed, e.g., in Hemler 2005; see also Fradkin et al. 2002). Neverthe-

less, genetic studies clearly revealed that tetraspanins play regulatory roles in

numerous membrane-based processes and several recent reviews provide an over-

view of the various functions (Boucheix et al. 2001; Wright et al. 2004; Levy and

Shoham 2005a, b; Hemler 2008). Here, I will merely summarize what we know so

far about the involvement of two members of subgroup 1 (Seigneuret et al. 2001) of

the tetraspanin family, CD9 and CD81, in the regulation of membrane fusion,

because, as will be discussed later, these two members of the tetraspanin family,

and also CD63 (subgroup 2b), are co-regulators of HIV-1-induced virus–cell or

cell–cell fusion.

Importantly, like other scaffold proteins, tetraspanins can both enhance or

repress the activities of other cellular proteins. For example, the expression of

specific cell surface tetraspanins has been shown to either enhance or slow down

cell migration, depending on the conditions. Similarly, signaling cascades can

either be augmented or dampened by these proteins, and, as will be described in

the following, the same tetraspanins can also act as either positive or negative

regulators of cellular fusion processes. CD9 and CD81 were documented to pro-

mote myotube formation through their enhancement of muscle cell fusion

(Tachibana and Hemler 1999). As was already apparent at that time, these two

members of the tetraspanin family do not achieve this through binding to partner

proteins on adjacent cells and they do not themselves function as fusion proteins.

Rather, they regulate myotube formation through the organization in cis of asso-
ciated, so far still unidentified, cellular fusogens. Interestingly, 4 years after having

been recognized to be fusion promoters, the same two tetraspanins (CD9 and CD81)

were found to negatively regulate the fusion of another type of somatic cell:

Mekada and colleagues showed that the formation of multinuclear phagocytes

which ingest infectious microbes, cell fragments etc, is enhanced in CD9- and

CD81-null mice (Takeda et al. 2003). This was surprising because, by then, these

tetraspanins had also been implicated, besides enhancing myotube formation, in

promoting the fusion of germ line cells: CD9 knockout mice oocytes are unable to

fuse with sperm (Le Naour et al. 2000; Miyado et al. 2000), and overexpression of

CD81 in CD9 knockout mice can partially compensate for CD9’s fusion promoting
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function (Kaji et al. 2002). Importantly, comparable to the situation in muscle cells,

the expression of CD9 in oocytes is required not because tetraspanin acts as cellular

fusogen, but because this protein laterally organizes (a) cellular fusion protein(s)

(Ziyyat et al. 2006) that interacts in trans with sperm-based proteins, such as Izumo

(Inoue et al. 2005), possibly through interactions mediated by its LEL (e.g., Zhu

et al. 2002; Higginbottom et al. 2003). Finally, and most intriguingly (at least for

virologists), a very recent report demonstrates that CD9 fulfills its fusion control

function not through its presence at the oocyte surface but rather upon incorporation

into (exosome-like) vesicles that are shed from the oocytes (Miyado et al. 2008).

3 Tetraspanins are Regulators of HIV-1 Replication

3.1 Tetraspanins are present at viral exit sites

The analysis of virus lipid content (Aloia et al. 1993) guided subsequent studies

revealing that HIV-1 buds through membrane domains enriched in distinct lipids

(reviewed, e.g., in Ono and Freed 2005; see also Brugger et al. 2006). Similarly,

three early analyses of cellular proteins incorporated into HIV-1 which revealed the

incorporation of a tetraspanin, CD63, into viral particles (Meerloo et al. 1992, 1993;

Orentas and Hildreth 1993), foreshadowed what is now well established: HIV-1

exits at segments of cellular membrane that are enriched in tetraspanins. Import-

antly, one of these early studies, using a solid phase virus capture assay to identify

cellular proteins incorporated into HIV-1 particles, combined with flow cytometric

analysis of the host cell membrane, already documented that CD63 incorporation

into virions is a non-random process. As also shown for the major histocompati-

bility antigen HLA-DR, this tetraspanin is specifically incorporated into HIV-1

particles released from T lymphocytes. However, except for another study of host

cell protein incorporation into HIV-1 virions, which confirmed that CD63 is

enriched in infectious particles (Gluschankof et al. 1997), to the best of my

knowledge, nobody followed up on these early findings until about 5 years ago.

Tetraspanins were “re-identified” as potential players in HIV-1 replication when

different investigators started scrutinizing (primarily using fluorescence and elec-

tron microscopy) where exactly HIV-1 buds from cells and how this virus recruits

the cellular ESCRT machinery that mediates its release from cells (for reviews, e.g.,

Freed 2004; Morita and Sundquist 2004; Bieniasz 2006). Initially, it was shown that

HIV-1 (and also SIV) components, particularly the viral envelope glycoprotein,

Env, at least under certain physiological conditions and in certain cell types, can

traffic through sections of the cellular endocytic system (Hunter and Swanstrom

1990; Rowell et al. 1995; Sauter et al. 1996; Ohno et al. 1997; Boge et al. 1998;

reviewed in Marsh and Pelchen-Matthews 2000), where the tetraspanin CD63 was

known to primarily reside. Further support for the idea that HIV-1 exit sites may

share certain characteristics, may perhaps even be somehow related to endosomal
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membranes, came from the finding that TSG101, a component of the ESCRT I

complex which is required for the formation of intralumenal vesicles of late

endosomes/multivesicular bodies (LEs/MVBs), is critical for HIV–1 release.

Further, an electron microscopy study by Raposo and colleagues suggested that

in macrophages HIV-1 buds into LEs/MVBs (Raposo et al. 2002). Promptly, two

studies published in 2003 documented that this virus acquires CD63 (and also

CD81 and CD82 if produced in macrophages), when it buds through either what

appeared at that time to be LE/MVB membranes of macrophages (Pelchen-Mat-

thews et al. 2003) or when it buds through the plasma membrane in HeLa cells

(Nydegger et al. 2003). The latter finding was puzzling because in HeLa cells CD63

has extremely low abundance at the plasma membrane. Nevertheless, based on

those data, we hypothesized that this tetraspanin, perhaps together with other

members of this family, accumulates at relatively discrete plasma membrane

microdomains, and in a subsequent study we indeed provided a first visualization

of TEMs, as mentioned above (Nydegger et al. 2006). This analysis, together with

biochemical, fluorescence microscopy and again electron microscopy analyses

by several other groups, unequivocally confirmed and extended the earlier studies

by showing that HIV-1 exits through membrane microdomains enriched in the

tetraspanins CD9, CD63, CD81 and CD82 in epithelial cells, T lymphocytes,

macrophages and dendritic cells (Booth et al. 2006; Grigorov et al. 2006; Nydegger

et al. 2006; Deneka et al. 2007; Jolly and Sattentau 2007; Welsch et al. 2007; Garcia

et al. 2008; Turville et al. 2008). Last, but certainly not least, a virion proteomics

study of cellular proteins incorporated into HIV-1 released from macrophages not

only again revealed the presence of these four tetraspanins, it also reported the

incorporation of two additional members of the family (CD53 and tetraspanin 14)

(Chertova et al. 2006). How TEMs form and exactly when and how HIV-1

components start interacting with tetraspanins remains to be elucidated. We origi-

nally speculated that CD63-containing TEMs at the plasma membrane derive from

TEMs that originate in LEs/MVBs and that the viral components perhaps even

associate with these domains while they are still part of these organelles (Nydegger

et al. 2003). Such a scenario would appear plausible, as it has been documented that

the limiting membrane of LE/MVB, upon movement of these organelles to the cell

surface, can be inserted as patches into the plasma membrane (Jaiswal et al. 2004).

This idea received support from the findings that Rab9 and AP3, cellular proteins

implicated in trafficking to and from LEs/MVBs, are necessary for efficient HIV-1

release (Dong et al. 2005; Murray et al. 2005). However, the fact that a very

considerable fraction of CD63 traffics to the cell surface before reaching its final

destination (LEs/MVBs) (Janvier and Bonifacino 2005), together with other evi-

dence, also makes it likely that the HIV-1 components start associating with

tetraspanins only at the plasma membrane, and not while these membrane proteins

are carried along vesicles. Indeed, data presented in a recent high resolution (TIRF)

microscopy analysis (Jouvenet et al. 2008) also support this idea. The investigators

of that study reported that, surprisingly, they did not detect any CD63 association

with budding virions at the plasma membrane, while they observed large amounts

of this tetraspanin in intracellular vesicles (sometimes containing Gag) moving near
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the sites of viral morphogenesis and release, but never fusing with the plasma

membrane. However, as previously documented (Nydegger et al. 2006), surface

CD63 cannot be detected in settings when total cellular CD63 is visualized (either

by GFP-tagging or by overall staining). Thus, the failure by Jouvenet et al. to detect

CD63 in viral budding structures (Jouvenet et al. 2008) can presumably be

explained technically: the strong fluorescence signal for CD63 that emanated

from membrane-proximal vesicles densely packed with this tetraspanin probably

prevented the detection of much fainter signals that emanate from the relatively low

amounts of CD63 associated with HIV-1 budding structures.

Given their presence at HIV-1 exit sites, are tetraspanins gatekeepers, do they

facilitate or even promote particle release? Two recently published studies (Sato

et al. 2007; Ruiz-Mateos et al. 2008) in which one tetraspanin (CD63) was either

ablated or overexpressed, negatively answers this question for HIV-1 release from

macrophages and 293 T cells, and our own investigations of release from HeLa

cells and T lymphocytes lead to the same conclusion (Krementsov et al., Retrovi-

rology, in press), though one recent study reports that decreased CD63 expression

in macrophages results in reduced HIV-1 particle output (Chen et al. 2008), and an

even more recent study correlates reduced levels of CD81 with decreased virus

release fromMolt T cells (Grigorov et al. 2009). Again arguing against the idea that

tetraspanins act as general release factors, recent data from our laboratory demon-

strate that CD9 expression can be abrogated without consequences for the rate with

which HIV-1 is released from these cells (Krementsov et al., Retrovirology, in

press). Initially, this came as a surprise to us, because an incubation of cells

producing another lentivirus (feline immunodeficiency virus, FIV, see below)

with an anti-feline CD9 antibody (de Parseval et al. 1997), as well as the incubation

of HIV-1-producing HeLa cells with an anti-human CD9 antibody (K41) can

significantly reduce the rate with which HIV-1 is released from these cells (Khurana

et al. 2007). However, as we documented in that latter study, the treatment with K41

resulted in the aggregation of CD9 and other members of the tetraspanin family at

cell–cell junctions, thus possibly simply sterically blocking virus release. Altogeth-

er, currently available evidence suggests that tetraspanins do not generally act as

budding co-factors for HIV-1, though further studies will need to address the

question if some of them play a supportive role in certain cell types.

3.2 Tetraspanins in HIV-1 Virions Inhibit Env-Induced
Membrane Fusion

If tetraspanins do not act as budding co-factors, why did HIV-1 evolve to exit at

membrane segments enriched in these proteins? Given what we now know about

the crucial role that CD9 plays in the sperm–egg fusion process, it would

have appeared reasonable to hypothesize that tetraspanins, upon incorporation into

viral particles, enhance their fusogenicity, e.g., by laterally organizing viral Env.

The Roles of Tetraspanins in HIV-1 Replication 91



Indeed, to virologists the recent finding that CD9-bearing exosomes mediate fusion of

adjacent cells (sperm and egg, see above) is reminiscent of the phenomenon called

“fusion from without” (Bratt and Gallaher 1969); documented for HIV-1 in (Clavel

and Charneau 1994): virions that are added to cells in large numbers will act as

fusion-bridges, thus promoting the formation of syncytia. However, data recently

published by the Koyanagi laboratory (Sato et al. 2007) together with our unpub-

lished observations demonstrate that tetraspanins, if acquired by HIV-1 particles,

reduce the fusogenicity of the virions. Indeed, the incorporation of tetraspanins CD9,

CD63, CD81, CD82, and CD231 considerably diminishes the infectivity of HIV-1

particles, and these tetraspanins thus act as negative regulators of Env-induced

membrane fusion, comparable to how CD9 and CD81 negatively regulate the fusion

of monocyte-macrophages. Based on these data, it has been speculated (Sato et al.

2007) that such a fusion-suppressing activity of, e.g., CD63 explains why this

tetraspanin is specifically downregulated upon reactivation of chronically infected

T lymphocytes, once they increase their virus output (Sato et al. 2007). However, the

finding that tetraspanins, despite an overall downregulation from the surface of

infected cells (Krementsov et al. Retrovirology, in press), still accumulate at virus

release sites (e.g., Jolly and Sattentau 2007) and are still incorporated into virions, as

described above, suggests that tetraspanins do not merely act as restriction factors for

HIV-1. Rather, combined with the observation that some anti-tetraspanin antibodies

appear to negatively affect the alignment of HIV-1 producer and target cells (Jolly

and Sattentau 2007), this suggests that they can act as both promoters and inhibitors

of HIV-1 transmission. Indeed, as I will lay out below, the role played by tetraspanins

expressed at the surface of uninfected or of newly infected cells further supports the

idea that these proteins have pleiotropic effects on HIV-1 replication and that these

effects can be positive or negative.

3.3 Tetraspanins Regulate HIV-1 Entry and the Transcription
of the Viral Genome in Newly Infected Cells

While most of the papers on HIV-1 replication and tetraspanins suggest or describe

roles of these proteins during the assembly/release phase of the viral replication

cycle, recent reports clearly document that tetraspanins also affect virus replication

at the entry phase and upon integration of the viral genome into host chromosomes.

Data presented in two studies showed that the treatment of macrophages with either

an anti-CD63 antibody (von Lindern et al. 2003) or with recombinant LELs of the

tetraspanins CD9, CD63, CD81, and CD151 (Ho et al. 2006) can inhibit HIV-1

entry, probably by blocking a post-binding step. While this suggests positive roles

for these tetraspanins in the infection process, CD63, but none of the other tetra-

spanins analyzed (CD9, CD81, and CD151) was also recently shown to divert the

co-receptor CXCR4 from its trafficking to the cell surface, thus reducing its

presence there and consequently reducing the susceptibility of cells to HIV-1
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(Yoshida et al. 2008). This later report, which suggested that tetraspanins, specifi-

cally CD63, negatively regulate HIV-1 replication, is counterbalanced by another

report, which documented a potential role for CD81 as a co-stimulatory molecule

that enhances the transcription of the newly integrated HIV-1 genome (Tardif and

Tremblay 2005). Finally, the authors of a fourth paper remain ambiguous about

whether the observed result of CD9 and CD81 downregulation from the surface of

potential target cells overall has positive or negative consequences for HIV-1

replication: Sanchez-Madrid and colleagues (Gordon-Alonso et al. 2006) demo-

nstrated that either siRNA-mediated reduction of tetraspanin levels, or antibody-

induced interference with normal tetraspanin function in T cells and in

CD4-positive target cells, leads to increased fusion of infected and uninfected

cells. As will be discussed below, such increased fusion could restrict virus spread,

and the presence of tetraspanins at the surface of potential target cells could thus be

beneficial for the virus. However, it is also possible that tetraspanins prevent HIV-1

infection because, as was also shown in that paper (Gordon-Alonso et al. 2006), the

elimination of tetraspanins from the surface of potential target cells makes these

cells more susceptible for HIV-1 infection.

3.4 Tetraspanins Regulate Cell-to-Cell Transmission of HIV-1

As reviewed elsewhere (e.g., Johnson and Huber 2002; Sattentau 2008), and indeed

as already proposed 15 years ago (Phillips 1994), HIV-1 apparently is most

efficiently transmitted from cell-to-cell, if it is released at cell-cell junctions, into

the cleft of what is now called the virological synapse (VS) (Igakura et al. 2003;

Jolly et al. 2004; for a review see Piguet and Sattentau 2004; see also Hope 2007).

Transmission via the VS may be particularly important in secondary lymphoid

organs, which are the major sites of virus replication and where cells can be densely

packed, (e.g., in the order of 109 cells/ml in lymph nodes, as compared to 105–106

cells in blood) (see also Sourisseau et al. 2007, for further citations). Evidence that

such synaptic transmission takes place in vivo comes from data that document

clusters of patient-derived spleen cells that have been infected by HIV-1 derived

from the same progeny virus (Cheynier et al. 1994; Hosmalin et al. 2001).

The VS shares certain characteristics with the so-called immunological synapse

(IS), which forms between antigen presenting cells and T cells (e.g., Friedl et al.

2005; see also Fackler et al. 2007). Like the IS, the VS represents a transient but

nevertheless well-organized functional entity. Comparable to the IS, (and also to

the neural synapse), the producer/effector cell, i.e., the presynaptic cell, does not

fuse with the target cell (the postsynaptic cell) upon synapse formation. While this

lack of fusion may seem normal in the case of the IS and the neural synapse, it

certainly comes as a surprise in the case of the VS: why do producer cells, which

express Env at their surface, typically not fuse with target cells which express CD4

and chemokine receptors? Why do they not form a syncytium, a multinucleated

cell? Adherence without fusion may be explained at least partially by the fact that
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unprocessed HIV-1 Gag represses Env fusion activity through an interaction with

the cytoplasmic tail of Env (EnvCT) (Murakami et al. 2004; Wyma et al. 2004;

Davis et al. 2006; Jiang and Aiken 2006, 2007; for a recent review, see Murakami

2008). Hence, if expressed as part of the virus, most Env becomes fusogenic only

when it leaves the producer cell as part of the budding virion, but it can already bind

to CD4 before that. One could thus envision a scenario in which a fraction of Env

located at the presynapse and still associated with precursor Gag, and thus not

fusogenic, triggers adherence of the producer to the target cell, thus allowing for the

formation of the synaptic cleft into which virions (with fusion-active Env) can be

shed. However, Env-mediated cell–cell fusion is also known to be regulated by

cellular proteins, e.g., integrins, present at the surface of producer and target cells

(e.g., Ohta et al. 1994; Fais et al. 1996) and it thus seems most likely that viral and

cellular proteins, including tetraspanins, act in concert to promote efficient particle

transfer by regulating Env-induced membrane fusion. As already mentioned above,

CD9 and CD81 prevent syncytium formation through their presence at the virolog-

ical postsynapse, but they also act at the other side of the VS: our own data

demonstrate that the same tetraspanins (CD9 and CD81, and also CD63) prevent

HIV-1 Env-induced cell–cell fusion through their presence at the virological

presynapse (Weng et al. 2009). Quite likely, such repression of Env-induced fusion

by tetraspanins, unlike their fusion inhibitory function in virions (see above), is

beneficial for the virus but not for the host, because syncytia, while being able to

still produce HIV-1 particles (indeed lots of them; see, e.g., Sylwester et al. 1997),

have limited life span and thus cannot continue spreading the virus.

If fusion prevention by tetraspanins is positive for the virus, how can this be

reconciled with the finding that tetraspanin incorporation into budding HIV-1

particles reduces their infectivity and is thus detrimental to virus replication and

spread? It seems reasonable to assume that fusion regulation at the VS, as well as

other transmission related processes that take place at that site, depends on proper

spatio-temporal organization of the synapse. Spatial organization of the synapse is

now well documented for the IS (e.g., Kaizuka et al. 2007) which, at least in its

more stable form (Friedl et al. 2005), has a central zone known as the cSMAC

(central supramolecular activation complex) that contains the T cell receptor

(TCR), co-stimulatory molecules and signaling components, and an outer ring of

proteins known as the pSMAC (peripheral SMAC), comprised of adhesion mole-

cules such as the ICAM-1-LFA-1 pair. Interestingly, a similar localization of

ICAM-1 was reported for a VS-like structure that formed when CD4-positive T

cells adhered to coverslips coated with gp120 and ICAM-1, with ICAM-1 forming a

ring around gp120 that accumulated in the center (Vasiliver-Shamis et al. 2008).

A scenario that would reconcile the opposing effects of fusion repression by

tetraspanins (negative for the virus because it reduces its infectivity – positive

because it prevents syncytium formation) would see tetraspanins, like the adhesion

molecules, accumulating preferentially at the VS periphery, where their presence

would prevent Env molecules from initiating the fusion of pre- and postsynaptic

cells, while the center of the VS, where HIV-1 may bud preferentially, would be

relatively deserted by these proteins, thus allowing for the formation of particles
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with (relatively) few tetraspanins (see Fig. 1 for a scheme of the VS). Examinations

of the spatial organization of the VS will allow testing this hypothetical distribution.

An alternative, simpler explanation would envision that the virus downregulates

tetraspanins to an optimal level that enhances the infectivity of the virions but

which still prevents syncytia formation.

3.5 How do Tetraspanins Regulate HIV-1 Entry, Viral Protein
Expression, and Env/Receptor-Mediated Fusion Processes?

3.5.1 Tetraspanin Functions in Potential Target Cells and in Newly

Infected Cells

While CD63 has been shown to divert CXCR4 from reaching the cell surface, thus

preventing infection of cells by HIV-1, it remains to be analyzed if CD63 fulfills

this chaperoning function through direct interaction with CXCR4, and if so, where

it starts to interact with the coreceptor for HIV-1. Even less is known about the

mechanisms with which tetraspanins at the surface of target cells repress fusion of

the target cell membrane with the membrane of bound virions and/or bound

producer cells. While CD81 is known to associate with CD4 (Imai et al. 1995),

downregulation of this HIV-1 receptor apparently is not responsible for the obser-

ved fusion repressor function of CD9 and CD81 (Gordon-Alonso et al. 2006).

Comparably, receptor/co-receptors in potential target cells are not downregulated

upon incubation of these cells with LEL, which inhibits virus entry into macro-

phages. It seems plausible, however, that tetraspanin knockdowns in T lymphocytes

Fig. 1 Tetraspanin functions before, during and after transmission of HIV-1 particles. (A)

Formation of viral exit gateways. (B) Incorporation into virions and reduction of infectivity. (C)

Repression of Env-mediated virus-cell and cell-cell fusion through interactions with the receptor/

coreceptor complex. (D) Reduction of susceptibility to HIV-1 infection through interference with

CXCR4 transport to the cell surface. (E) Costimulation of HIV-1 gene expression. (F) Prevention

of syncytia formation through interactions with Env in producer cells (see text for details)
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or incubation of these cells with anti-tetraspanin antibodies, as well as LEL

treatment of macrophages, either prevent conformational changes that need to

take place for fusion to ensue, or that they alter the microenvironment of the

receptors/coreceptors. Such lateral reorganizations may also be at play when

CD81 acts as co-stimulator of HIV-1 gene transcription. Since CD81 is known to

associate with CD4, one could speculate that an engagement of CD4 by its counter

receptor (Env, either on virions or on producer cells) triggers local protein translo-

cations or conformational changes in target cell signaling complexes.

3.5.2 Repression of Fusion Triggered by Virion-Associated

or Producer Cell-Associated Env

As described above, we know very little about how tetraspanins regulate infection

and post-infection events in lymphocytes. We are even more ignorant about tetra-

spanin functions in HIV-1 producer cells and in virions. And while these cellular

membrane proteins have been established as important players in the replication

cycle of other viruses, e.g., in hepatitis C virus (HCV) entry, apparently we cannot

extrapolate to HIV-1 from that knowledge. CD81 serves as coreceptor for HCV

(e.g., Kapadia et al. 2007; Brazzoli et al. 2008), but the interaction of HCV’s

envelope glycoprotein E2 with CD81 so far is one of only two cases where a

tetraspanin directly interacts with a protein situated in trans, i.e., on the plasma

membrane of an adjacent cell (or on the viral membrane). Even the role that the

tetraspanin CD82 plays in the replication cycle of another retrovirus (HTLV-1) may

be distinct from how tetraspanins regulate HIV-1-induced fusion processes (both

virus- or cell-associated fusion processes): while a (probably direct) interaction

between HTLV-1 Gag and CD82 was reported to take place (Mazurov et al. 2007),

HTLV-1 Env-induced fusion repression by this tetraspanin, unlike what we see in

the case of HIV-1 (Weng et al. 2009), does not require coexpression of Gag (Pique

et al. 2000). At this point in time, while we do not know the mechanism of fusion

regulation by tetraspanins in producer cells, it would appear plausible that these

proteins do so by laterally interacting with HIV-1 Env, similar to how they are

thought to organize the viral receptors in the target cell.

4 Conclusions – Perspectives

As should be obvious from my remarks above, we are only at the very beginning of

understanding the mechanisms that allow tetraspanins to act at various HIV-1

replication steps. Further genetic, biochemical and cell biological analyses are

clearly warranted at this point in time. Analyses of how tetraspanins regulate

HIV-1 Env-triggered membrane fusion processes at the VS may also benefit from

emerging knowledge about the biochemistry and the physics of cellular fusion

processes. Clearly, two flat membranes opposed to each other will not
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spontaneously fuse. A curved membrane however, as it exists in vesicles or at the

tip of a microvillus, can get into closer contact with an opposed flat membrane

(because there will be less repulsive force between the two membranes) and this

will lower the energy barrier that needs to be overcome in order for membrane

fusion to take place. Interestingly, expression of the tetraspanin CD9 has recently

been documented to be a key requirement for the formation of proper microvilli

(Runge et al. 2007). Considering also the previously mentioned finding that extra-

cellular vesicles enriched in CD9 can trigger sperm-oocyte fusion process (Miyado

et al. 2008), one is then tempted to speculate that tetraspanins act as organizers of

fusion platforms not only by allowing (or not allowing) access of cellular and viral

fusogens to these membrane microsegments (e.g., Singethan et al. 2008), but also

by recruiting cellular proteins and lipids that promote curvature of the lipid bilayer.

In conclusion, because of their regulatory functions in fusion platforms that are

situated at both sides of the VS, as well as within virions, it will not be easy to

dissect exactly how tetraspanins regulate the HIV-1 transmission process. It should

also be pointed out that while virus transmission in lymph nodes takes place

primarily within a static setting of cells, we know very little about cell-to-cell

transmission process in other organs, e.g., in the gut-associate lymphoid system.

Quite likely, motile HIV-1-infected cells serve as source for the distribution of the

virus at some of those other sites. It will thus eventually become imperative to study

tetraspanin functions under conditions that reflect these physiological circum-

stances, all the more so given that tetraspanins such as CD63 (Mantegazza et al.

2004) or CD9 and CD81 (Takeda et al. 2008) also regulate cell motility, which in

turn will probably influence HIV-1 transmission to target cells and thus overall

virus dissemination in situ.
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