
Using Filtered Cartesian Flattening and

Microrebooting to Build Enterprise Applications
with Self-adaptive Healing

J. White1, B. Dougherty1, H.D. Strowd2, and D.C. Schmidt1

1 Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA

{jules,briand,schmidt}@dre.vanderbilt.edu
2 Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

hstrowd@andrew.cmu.edu

Abstract. Building enterprise applications that can self-adapt to elimi-
nate component failures is hard. Existing approaches for building
adaptive applications exhibit significant limitations, such as requiring
developers to manually handle healing side-effects, such as lock release,
thread synchronization, and transaction cancellation. Moreover, these
techniques require developers to write the complex recovery logic needed
to self-adapt without exceeding resource constraints.

This paper provides two contributions to R&D on self-adaptive ap-
plications. First, it describes a microrebooting technique called Refresh
that uses (1) feature models and a heuristic algorithm to derive a new
and correct application configuration that meets resource constraints and
(2) an application’s component container to shutdown the failed subsys-
tems and reboot the subsystem with the new component configuration.
Second, we present results from experiments that evaluate how fast Re-
fresh can adapt an enterprise application to eliminate failed components.
These results show that Refresh can reconfigure and reboot failed appli-
cation subsystems in approximately 150ms. This level of performance
enables Refresh to significantly improve enterprise application recovery
time compared to standard system or application container rebooting.

1 Introduction

Current trends and challenges. Enterprise applications are large-scale software
systems that execute complex business processes, such as order placement and
inventory management. Since many enterprise applications receive considerable
client traffic, they are often hosted on multiple application servers distributed
across a local network. Most enterprise applications utilize component mid-
dleware, such as Enterprise Java Beans (EJB), to reduce the effort of devel-
oping the distributed communication infrastructure by managing the complex
distributed interactions between application components and ensuring data in-
tegrity through distributed transaction controls.

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 241–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

242 J. White et al.

The failure of an enterprise application can have considerable negative impact
(e.g., lost orders, customer irritation, etc.) on an organization. As a consequence,
high availability is important for most enterprise applications. Regardless of how
much testing and system validation is done, systems can and often do fail [10].
In these situations, speedy recovery of system functionality is critical.

Many organizations use manual processes to recover from failures of enterprise
applications [10]. For example, when an EJB application fails, system administra-
tors may restart a group of application servers to attempt to remedy the error. If
the error is not fixed by the restart, the administrators may begin collecting logs
from the application servers and scanning them for errors. These manual processes
are time consuming and error-prone and can leave an application offline for an ex-
tended period while the root cause of the failure is identified and remedied.

To address the limitations of human-based recovery of application failure,
self-adaptive capabilities are needed that can identify failed components and
perform self-adaptive healing to quickly recover. Rather than being off-line for
minutes or hours, self-adaptive systems should be able to heal in milliseconds
or seconds. Despite the potential payoff associated with self-adaptive healing
capabilities, enterprise applications are rarely developed using these techniques
since (1) developing the complex logic to determine how to fix a failure cleanly
is hard and (2) implementing healing actions requires handling a plethora of
challenging side-effects, such as the need to roll-back distributed transactions.

Rather than focusing on fine-grained self-adaptive healing systems, most orga-
nizations today leverage clustering and other redundancy mechanisms to ensure
availability. Although these macro-level approaches can improve availability, they
require additional hardware and complex system administration. Moreover, there
are many types of failures that macro-level approaches cannot fix. For example, if
a database or remote service that an enterprise application relies on becomes in-
accessible due to a network failure, an entire cluster of redundant application in-
stances will be brought down. In this situation, however, if the application could
self-heal by loading additional components to communicatewith an alternative but
not identically accessed database, it could continue to function.

Since software development projects already have low success rates and high
costs, building an application capable of healing is hard [20,3]. Moreover, building
adaptive mechanisms greatly increases application complexity and can be hard
to decouple from application code if the development of the adaptive mecha-
nism is not successful. In addition, most self-adaptive healing approaches are
not suitable for enterprise applications because they do not take into account
transaction state, clean release of resources, and other critical actions that must
be coordinated with an enterprise application server.

Solution approach → Microrebooting and Feature-based Reconfiguration. Our ap-
proach to reducing the complexity of developing self-adaptive healing enterprise
applications is called Refresh. Refresh uses a combination of feature models [15]
(which describe an application in terms of points of variability and their af-
fect on each other) and microrebooting [8] (which is a technique for rebooting
a small set of failed components rather than an entire application server) to

Using FCF and Microrebooting to Build Enterprise Applications 243

significantly reduce the complexity of implementing an application with self-
adaptive healing capabilities. When an application component fails, Refresh (1)
uses the application’s feature model to derive a new application configuration,
(2) uses the application server’s component container to shutdown the failed
component, and (3) reboots the component in the newly derived configuration.
Refresh relies on the ability to transform a feature model into a constraint sat-
isfaction problem (CSP) and use a constraint solver to autonomously derive a
new configuration.

Our previous work [25,23] showed how Refresh’s CSP-based healing could be
used to reduce the complexity of implementing self-adaptive healing applications.
When the self-adaptive healing mechanism needs to respect resource constraints,
such as bandwidth or memory limits, a CSP-based approach for deriving appli-
cation configurations from feature models becomes too slow for enterprise appli-
cations. Selecting a feature configuration that adheres to resource constraints is
an NP-Hard problem that is time-consuming to solve with a CSP-solver.

This paper extends our previous work by showing how Filtered Cartesian
Flattening and multidimensional multiple-choice knapsack heuristic algorithms
can be used as the feature selection mechanism to drastically reduce feature
selection and consequently, self-adaptive healing time. We show how these algo-
rithms can be combined with microrebooting, component middleware container
hotswap capabilities, and feature models to create self-adaptive enterprise appli-
cations. We also present empirical results that show the increase in scalability
and speed provided by Filtered Cartesian Flattening (FCF) versus a CSP-based
reconfiguration approach. We provide empirical results comparing our original
Refresh + CSP technique to the new Refresh + FCF technique. Furthermore,
we provide an extensive comparison of the pros and cons of our Refresh + CSP
self-adaptive approach versus our new Refresh + FCF approach.

Paper organization. The remainder of this paper is organized as follows: Section 2
presents the e-commerce application we use as a case study throughout the pa-
per; Section 3 enumerates current challenges in applying existing MDE techniques
for building self-adaptive healing applications that must adhere to resource con-
straints; Section 4 describes Refresh’s approach to using feature models, microre-
booting, and Filtered Cartesian Flattening to reduce the complexity of modeling
and implementing an application that can heal; Section 5 analyzes empirical re-
sults obtained from applyingRefresh to our case study; Section 6 comparesRefresh
with related work; and Section 7 presents concluding remarks.

2 Case Study: ICred

Enterprise applications have a number of complex considerations thatmake it hard
to build an application capable of self-adaptive healing. To showcase these chal-
lenging aspects of enterprise applications, we present a case study based on an en-
terprise application that provides instant credit decisions for in-store purchases.
Throughout the paper, we refer to our case study application as ICred. The high-
level architecture of ICred is shown in Figure 1.

244 J. White et al.

Fig. 1. The ICred Instant Credit Enterprise Application

When a customer in a retail store wishes to purchase an expensive item, such
as a computer projector, the store clerk can offer the customer an instant line of
credit to make the purchase and pay later. If the customer is interested in obtaining
the line of credit, the store clerk keys in the customer’s information and a request
for credit is sent to the remote ICred server for approval. ICred must pull the cus-
tomer’s credit report and other needed information to make the credit decision.

ICred is used for a number of different retailers and each retailer has a specific set
of requirements for validating a credit application and issuing an approval. Stores
that sell less expensive and less durable items, such as computer equipment, may
require a simple validation of the customer’s residence information and bank ac-
counts. Vendors of more expensive items, such as car dealerships, require more
extensive sets of information, such as a full credit report and verification of a pre-
vious address. Each customer is supported by a custom configuration of ICred that
is not shared.

Instances of ICred are run and managed by an information supplier on behalf of
retail chains. Each piece of information needed for the credit decision can either be
obtained in-house or from another information supplier. Whenever ICred requests
a piece of information on a customer from another supplier, a small fee is paid to
the information vendor that services the request. Information can be purchased
from multiple vendors at varying prices based on volume.

An ICred configuration receives instant credit requests from thousands of retail
locations and must be continuously available. A failure to make a credit decision
could result in a customer not making a large purchase. When one of ICred’s in-
formation suppliers becomes unavailable, ICred can fail over to another supplier.
For example, Figure 2, shows the different sources of information that can be used
to obtain credit reports.

Figure 2 shows a feature model for an e-commerce application called
CreditReportProviderthat represents a service for obtaining credit reports. The
CreditReportProvider feature has different sub-features, such as different po-
tential vendors that can serve as the credit report provider service. If the Vendor 1
feature is chosen, it excludes the other potential providers’ services from being used

Using FCF and Microrebooting to Build Enterprise Applications 245

Java RMI

In-House CRP

SOAP Converter 1

Vendor 1

Hessian

Vendor 2

SOAP Converter 1 OpenID

Vendor 3

CreditReportProvider

In-House

Hessian

Vendor 2

SOAP

Vendor 3

AddressVerifProvider

Single In-House

JTA

Multiple

Datasources

ICred

Fig. 2. Feature Model of the Available Credit Report Providers

(it constrains the other features). If Vendor 1 service fails, a new feature selection
can be derived that does not include the failed service’s feature. When a compo-
nent failure occurs, Refresh uses an application’s feature model and a constraint
solver to derive an alternate but legal configuration of the application’s component
that eliminates the failed component implementation.

Failing over to another supplier involves a number of complex activities. Infor-
mation vendors represent the same information using slightly different formats and
leverage different request protocols. Depending on the vendor chosen, it may be
necessary to load various special converter and protocol handlers into the applica-
tion. Moreover, since ICred receives a high request volume, it must try to ensure
that the combination of protocols used by its current configuration of information
vendors will not saturate the network. Finally, since per request prices vary across
information vendors, ICred must also try to minimize the cost incurred by the
configuration of external information vendors.

To showcase the complexity of performing self-adaptive healing in an enterprise
application, we explore the difficulty of failing over between local and external
information services in ICred. Section 3 presents the complexities of developing
healing logic and adaptation actions. Section 4 shows how Filtered Cartesian Flat-
tening can be used to derive a new application configuration to eliminate a failure
and boot the configuration using the application’s component container.

3 Self-Adaptive Healing Challenges for Enterprise
Applications

This section describes the challenges associated with implementing a self-adaptive
healing enterprise application. First, we show that the need to adhere to resource
constraints, such as total available network bandwidth, makes finding a way of
healing an enterprise application an NP-Hard problem. Second, we discuss how
even if a way of healing the application can be found, numerous accidental com-
plexities, such as the need to properly handle in-process transactions, make it hard
to implement healing actions.

3.1 Challenge 1: Resource Constraints Make Adaptation Actions
Extremely Complex

When an application component fails and requires healing, adaptation actions
must be run to reach a new and valid state. We term the sequence of

246 J. White et al.

adaptation actions that are run to fix a failed application subsystem as a recovery
path. A chief complexity of implementing an application capable of self-adaptive
healing is building the logic to select a recovery path for a given application
failure.

Recovery actions are used to perform two key types of activities: (1) perform-
ing resource cleanup and release from failed application components and (2) de-
termining what new application components can be loaded to heal a failure. The
difficulty in building recovery logic is that the second critical activity, selecting
the new components to load, requires finding a series of application components
that fit into the resource limits of the application. Selecting a series of compo-
nents that adheres to a resource limit is an instance of the NP-Hard knapsack
problem.

For example, consider the failure of the In-House CRP. ICred’s In-House CRP
can be swapped out to one of three remote services. When the local In-House CRP
fails, the recovery logic must determine the optimal subset of these remote ser-
vices to fail-over to in order to fix the error. Furthermore, the recovery logic must
attempt to minimize the cost of the information provider services that are used in
the new configuration.

Network bandwidth consumption must be accounted for in the healing process.
Each remote service uses a different protocol for communication and consumes
varying amounts of network bandwidth. The Java RMI service uses the efficient bi-
nary IIOP protocol. The SOAP service, however, sends comparatively large XML
messages over HTTP and consumes significantly more bandwidth. Depending on
what combination of services are currently being used by the application, the net-
work may or may not have sufficient bandwidth to fail over to the SOAP-based
service. Even if the Vendor 1 SOAP-based service is the cheapest to fail-over to, it
may not be possible due to network bandwidth limitations.

If the SOAP-based service is the only of the three alternate remote services that
is reachable after the failure, the healing logic may need to shutdown and swap
other parts of the application (e.g., AddressVerifProvider, etc.) to less bandwidth
consumptive remote services so that the SOAP service can be used. For example, if
the CreditReportProvider is using a SOAP-based remote service, it may need to
be swapped to Vendor 2’s Hessian-based service to allow the SOAP-based product
service to be used. Finding the right set of services to swap in and out of the appli-
cation is NP-Hard and difficult to do quickly at runtime. Performing simultaneous
cost optimization is even harder.

Designing this type of complex adaptive logic to choose a recovery path is hard.
For most enterprise application development projects, this type of complex adap-
tation logic is not feasible to develop from scratch. Moreover, with nearly 53% of
software development projects being completed over-budget and 18% of projects
canceled [26,17] adding this type of complex adaptive logic adds significant risk
to a project. In Section 4.2, we show how we use feature models and the Filtered
Cartesian Flattening algorithm to eliminate the need to write complex recovery
path selection logic.

Using FCF and Microrebooting to Build Enterprise Applications 247

3.2 Challenge 2: Accidental Complexity Makes Adaptation Actions
Hard to Develop

Enterprise applications are typically built on top of component middleware, such
as Enterprise Java Beans. Component middleware provides an application con-
tainer, which manages the intricate details of thread synchronization, distributed/
local transaction control, and object pooling. One key challenge of developing self-
adaptive healing mechanisms for enterprise applications is properly and cleanly
handling the nuanced considerations related to these aspects of the application.
For example, if a credit report provider fails, the application must ensure that any
distributed transactions associated with the provider are rolled back and cleanly
terminated before a new provider is swapped in. Figuring out the right way to
terminate transactions, release locks, terminate network connections, and release
other resources when healing occurs is hard.

When healing takes place, a further challenge of properly handling transactions
and other container managed services is that the application does not have direct
control over them. For example, EJBs are not allowed to perform thread synchro-
nization or manually obtain locks. If a failure occurs in a multi-threaded applica-
tion, therefore, it is hard for an EJB to ensure that data corruption does not occur
if it reconfigures the application’s internal structure.

An issue further complicating the healing process is that healing may require
changing the policies the container uses to manage these services. In ICred, for
example, if ICred is using all local data sources, it can use standard local transac-
tion management through the container. If ICred fails over to a remote datasource,
however, it must also force the container to reconfigure itself to use the Java Trans-
action API (JTA) to manage distributed transactions across both the local and re-
mote datasources. It is hard to perform these numerous complex reconfiguration
processes manually. Section 4describes how we use the application component con-
tainer’s standard lifecycle mechanisms to perform healing and eliminate the need
to write custom recovery actions.

4 Solution Approach→Combining Refresh and Filtered
Cartesian Flattening

The challenges in Sections 3.1-3.2 stem from two primary causes: (1) the need for
developers to implement complex recovery path selection logic that accounts for
resource constraints and (2) the need for developers to implement complex recov-
ery actions that correctly coordinate and handle the side-effects of healing, such
as graceful transaction failure. This section presents an overview of Refresh [25]
and shows how we extend it with the Filtered Cartesian Flattening algorithm to
address these challenges.

4.1 Overview of Refresh

Refresh uses feature models to capture the rules for what is a correct system state,
which when combined with the Filtered Cartesian Flattening feature selection al-
gorithm, can be used to automate the selection of a new configuration to reboot

248 J. White et al.

into. After a new and valid configuration is found, Refresh uses the application’s
container to swap out the failed components and boot the new alternate configura-
tion. Automating the reconfiguration process eliminates the need for developers to
design and implement the recovery path selection logic, which addresses Challenge
2 from Section 3.1.

Using the container’s normal lifecycle facilities to perform healing (e.g., reboot-
ing and hotswapping), eliminates the need for developers tomanage the side-effects
of healing since they are automatically managed by the container when lifecycle
management activities are performed. As shown in Section 5, using Filtered Carte-
sian Flattening and container rebooting to perform resource constrained healing
provides fast recovery at a significantly reduced development cost compared to
recovery action oriented techniques.

Refresh is designed for enterprise applications where 1) failing components can
safely be rebooted, 2) the application container’s ability to handle transaction and
other failures provides a sufficient guarantee of safety for the developers, and 3)
developers do notwant to implement custom fine-grainedhealing. The technique is
not suited for safety-critical applications outside the enterprise computing domain,
such as flight avionics. If the three conditions outlined above do not hold, Refresh
is not applicable.

Refresh is based on the concept of microrebooting [8]. When an error is observed
in the application, Refresh uses the application’s component container to shut-
down and reboot the application’s components. Using the application container
to shutdown the failed subsystem takes milliseconds as opposed to the seconds re-
quired for a full application server reboot. Since it is likely that rebooting in the
same configuration (e.g. referencing the same failed remote service) will not fix
the error, Refresh derives a new application configuration from the application’s
feature models that does not contain the failed features (e.g., remote services).

The application configuration dictates the remote services used by the applica-
tion. The application configuration determines any local component implementa-
tions, such a SOAP messaging classes, needed to communicate and interact
properly with the remote services. After deriving the new application configura-
tion and service composition, Refresh uses the application container to reboot the
application into the desired configuration. The overall Refresh healing process is
shown in Figure 3.Throughout the healing process, Refresh does not use any

Fig. 3. Refresh Healing Process

Using FCF and Microrebooting to Build Enterprise Applications 249

Fig. 4. Mapping Failures to Features

custom recovery actions. All error states are transitioned out of through a single
recovery path, shutting down the application components via the container, auto-
matically deriving a new and valid configuration/service composition, and restart-
ing the application components. No application-specific recovery action model-
ing or recovery application implementations are required. Refresh interacts di-
rectly with the application container, as shown in Figure 3. During the initial and
subsequent container booting processes, Refresh transparently inserts application
probes into the application to observe the application components. Observations
from the application components are sent back to an event stream processor that
runs queries against the application event data, such as exception events, to iden-
tify errors. An example event stream query and mapping to the feature model is
shown in Figure 4. Whenever an application’s configuration requires healing, en-
vironment probes are used to determine available remote services and global appli-
cation constraints, such as whether or not JTA is present.

4.2 Feature Model Configuration Healing

At the core of the Refresh approach is its ability to derive a new configuration for
the application that both eliminates any failed components and adheres to resource
limitations. Refresh uses a feature model of the application to capture the rules
for reconfiguration. When a failure occurs, the configuration space defined by the
feature model is searched for a new and valid configuration.

A feature model is used to define the configuration space of an enterprise
application by defining configuration rules, such as:

– What alternate implementations of components are available
– What dependencies (such as libraries, configuration files, etc.) must be used

with each component
– What combinations of components form a valid and complete application

composition
– Annotations describing how much RAM, Bandwidth, etc. is consumed by each

feature

Searching a feature model’s solution space for a valid configuration is an instance
of the NP-complete circuit satisfiability problem. The feature model can define an

250 J. White et al.

arbitrary boolean formula. Each boolean term represents the presence of a spe-
cific feature. The constraints in the feature model are the AND, OR, and NOT
constraints used to form the circuit satisfiability clauses. Numerous research ap-
proaches have applied techniques such as SAT solvers [4,18], Binary Decision Di-
agrams (BDDs) [9], and Constraint Satisfaction Problem (CSP) solvers [21,5], to
find valid feature model configurations.

Our initial implementation of Refresh used the CSP-based approach proposed
by Benavides [5] and extended by us to include resource constraints [24,22]. CSP-
based feature selection techniques work well when resource constraints are not
included. Through experiments that we performed [23], however, we observed sig-
nificant scalability problems for CSP-based feature derivation with resource
constraints, as shown in the results in Section 5.3. Other exponential exact deriva-
tion techniques, such as SAT solvers and BDDs, suffer from these same scalability
problems [23].

A number of heuristic techniques can be applied to improve the performance
of these exact solving techniques. For example, by choosing the correct variable
ordering, many BDD-based problems can be simplified significantly. Choosing the
best variable ordering, however, is an NP-Hard problem and must be performed on
a per-problem basis. Similar techniques can be applied to CSP-based configuration
derivation, but must also be performed on a per problem basis.

Since the goal of Refresh is to simplify the implementation process of applica-
tions capable of self-adaptive healing, it would not be reasonable to expect these
heuristic techniques to be learned and applied by normal developers. Moreover,
the application of these techniques requires significant skill. Just as good applica-
tion design is an art form, knowing which of these heuristics to apply and how to
apply them is also an art. We do not think is reasonable to expect developers are
willing and/or able to become experts in these techniques. We have therefore not
considered these techniques for Refresh.

4.3 Filtered Cartesian Flattening

To overcome the scalability issues associated with finding a new and valid feature
configuration, we incorporated the Filtered Cartesian Flattening feature selection
algorithm into Refresh. Filtered Cartesian Flattening is a polynomial-time algo-
rithmic technique that approximates a feature configurationproblemwith resource
constraints as a multidimensional multiple-choice knapsack problem (MMKP)
[23]. A standard knapsack problem attempts to find a subset of a series of items
that fits into a knapsack of limited size and maximizes the value of the items inside
the knapsack. An MMKP problem is a variant of a knapsack problem where the
items are subdivided into disjoint sets and exactly one item must be chosen from
each set to put into the knapsack. Both variants of the problem are NP-Hard [19].

The reason that Filtered Cartesian Flattening approximates the feature con-
figuration problem as a MMKP problem is that there are a number of excellent
polynomial-time heuristic algorithms that have been developed for MMKPs. For
example, the M-HEU and C-HEU heuristic MMKP algorithms can solve large
MMKPs in milliseconds with an average of over 95% optimality [19]. Once a fea-

Using FCF and Microrebooting to Build Enterprise Applications 251

ture configuration problem is represented as a MMKP, these heuristic algorithms
can be used to derive a feature selection. When a failure occurs, the speed of Fil-
tered Cartesian Flattening, which uses MMKP heuristic algorithms, is far more
important than its minor tradeoff in healing solution optimality.

Filtered CartesianFlattening approximates a feature model as an MMKP prob-
lem by finding a series of independent subtrees in the feature model that can be
configured independently. Each of these subtrees is represented as an MMKP set.
The items within the MMKP sets represent the valid configurations of their respec-
tive subtrees. Because each MMKP set represents a subtree of the feature model,
by choosing a configuration from each MMKP set and composing them, a complete
feature model configuration will always be reached.

Since there may be an exponential number of possible configurations of each
subtree, Filtered Cartesian Flattening employs an approximation technique. As
Filtered Cartesian Flattening enumerates the possible configurations of each
feature model subtree, it bounds the MMKP set size and selectively filters which
configurations are propagated into the sets. Typically, a heuristic that selects
configurations with the best ratio of value/resource consumption is used as the
selection criteria.

To derive a configuration that omits the failed feature while still adhering to
resource constraints, Refresh utilizes Filtered Cartesian Flattening. During the
enumeration process, Filtered Cartesian Flattening disallows the inclusion of the
failed feature to any of the MMKP sets. Due to this exclusion, the feature can
not belong to any configuration that can be derived from the resulting MMKP
problem, thus disallowing the failed feature to be present in the new feature set.
After deriving the new feature configuration, the application container is used to
shutdown the old configuration and boot the new configuration.

5 Refresh and Filtered Cartesian Flattening Performance

This section presents results from experiments we performed to empirically evalu-
ate the performance of Refresh’s feature reconfiguration and container-based
healing. We used a reference implementation of an enterprise request processing
application, implemented on top of the Java Spring Framework [13], that could fail
over between a number of different remote and local data sources. The implemen-
tation was comprised of roughly 15,000 lines of code using a combination of Java,
Java Server Pages, XML, and SQL.

Our prior work [25] conducted experiments to measure the reduction in imple-
mentation complexity provided by Refresh. This paper extends our prior work by
evaluating the performance of feature model and container-based healing. More-
over, we analyze how automated feature selection techniques can be made more
scalable to handle resource constraints and optimization goals.

5.1 Hardware and Software Testbed Configuration

The experiments with the application were performed on a Pentium Core DUO
2.4ghz processor, with 3 gigabytes of RAM, running Windows XP. A Java Virtual

252 J. White et al.

Machine, version 1.6, was run in client mode for all tests. We used Apache Tomcat
6 as the web container for the application.

To test the performance of Refresh, we implemented a self-adaptive healing ver-
sion of the application and compared its performance to the conventional (non-
adaptive) implementation. The first set of experiments compared the performance
of the Refresh-based application to the conventional unmodified application to
measure the overhead of using a container-based healing approach. The second
set of experiments extended the Refresh application to adhere to a bandwidth con-
straint. We measured the configuration derivation times of both the Filtered Carte-
sian Flattening configuration derivation technique and the CSP-based technique
to compare scalability.

5.2 Refresh Performance

To create an initial performance baseline to compare against, we used Apache
JMeter to simulate the concurrent access of 30 different customers to the applica-
tion and the time required to complete 1,000 requests. Figure 5 shows the average
time required to complete various parts of the request process throughout the
experiment.

We also used Apache JMeter to simulate the concurrent access of 30 different
customers to the Refresh-enabled application and the time required to complete
1,000 requests. To measure Refresh’s worst case performance overhead, we used
the CSP-based configuration derivation technique for this experiment since it was
slower than the Filtered Cartesian Flattening technique. The performance results
were identical to the conventional application implementation. This result was ex-
pected since the time-consuming healing process is only invokedduring component
failures. Moreover, our Refresh application implementation used very lightweight
Spring interceptors to monitor components for exceptions. We saw no measurable
performance penalty for the use of these interceptors.

Fig. 5. Average Response Time for the Application

Using FCF and Microrebooting to Build Enterprise Applications 253

Fig. 6. Application Performance Before and After Healing

To determine how quickly the Refresh application could self-heal, we ran a fur-
ther trial of Apache JMeter tests to simulate an additional 1,000 requests. During
the experiment, we used fault injection to randomly simulate the failure of different
services. The faults were injected by adding code to the local services to throw Java
runtime exceptions that would force Refresh to heal the application by swapping
remote services for the failed local services. After the local services were swapped
to remote services, we randomly shutdown the remote services used by the appli-
cation to force the failover to alternate remote services or back to a local service
that had become available.

Over the tests, shutting down a failed subsystem and rebooting the container
into a new configuration averaged roughly 140ms. The CSP technique required an
average of an additional 10ms to find the new configuration to reboot into. When
this result is compared to Figures 5, it can be seen that the healing time is slightly
more than the average time to complete an order.

Figure 6 overlays the application’s worst case response time using a local infor-
mation provider, a remote information provider, and a remote information
provider that is swapped back to a local provider because of a failure.

The failure of the remote service is easily discernible on request 7. There is also
a visible slow down in the network but not a failure at request 25 of the remote
service.Before the failure occurs, the applicationhas the sameaverage performance
as the conventional application using a remote service. Once the failed service is
healed, the application again has the same averageperformance as the conventional
applicationwiththe local service.This result indicates thatcontainer-basedhealing
incurs little or no pre- or post- healing performance penalties.

5.3 Filtered Cartesian Flattening vs. CSP-Based Configuration
Derivation

The next set of experiments compared the scalability and speed of Filtered Carte-
sian Flattening versus a CSP-based configuration derivation technique. We

254 J. White et al.

Fig. 7. Filtered Cartesian Flattening vs. CSP-based Configuration Derivation Time for
the Application

extended the Refresh application’s healing configuration to attempt to respect a
bandwidth constraint while healing. Moreover,we directed the healing mechanism
to also attempt to minimize the total cost consumed by the new configuration’s
services. Our CSP-based configuration solver was based on the Java Choco open
source constraint solver [1].

First, we compared the time for Filtered Cartesian Flattening and the CSP-
based techniques to derive a new configuration for the standardpoints of variability
in the application. We then iteratively added 32 additional information providers
to consider in the configuration derivation process. Both techniques found solu-
tions for each size configuration problem. The results from this experiment are
shown in Figure 7.

Initially, the CSP technique requires 234ms to configure the conventional ap-
plication implementation with the additional resource constraints and bandwidth
minimization goal. In the experiments presented in Section 5.2, the CSP-based
technique was not required to adhere to a resource constraint. The new constraints
and optimization goal cause a significant increase in the solving time to 234ms. Fur-
thermore, by the time the 32 additional information providers were added into the
configuration, the CSP-based technique required over 30 minutes (1,835,406ms)
to derive a new configuration.

The speed at which a CSP solver can produce a solution is dependent on the
complexity of the constraints in each CSP instance. To illustrate the increase in
complexity of reconfiguring the application to find a valid solution versus reconfig-
uring to find an optimal solution that meets a resource constraint, we eliminated
the resource constraints and optimization goals. We then resolved the Pet Store
configuration problem with the simplified CSP that would produce a correct con-
figuration but not one that necessarily respected resource constraints. The results
are shown in Figure 8. Without the resource constraints and optimization, the 32
informationprovider problem instance that original took 1,835,406msto solve only
required 47ms. This result shows the significant increase in complexity that the re-

Using FCF and Microrebooting to Build Enterprise Applications 255

Fig. 8. CSP Solving Time without Resource Constraints & Optimization

Fig. 9. FCF Solution Increased Cost as a Percentage of CSP Solution Cost

source constraints and optimization goal add. FCF’s running time, in contrast, is
not affected by adding or removing the bandwidth constraint.

The time for Filtered Cartesian Flattening to derive a new configuration across
the different configuration sizes and incorporating resource constraints and opti-
mization is shown by the red line in the lower part of Figure 7. Initially, Filtered
Cartesian Flattening requires 15ms to derive a configuration, which is substan-
tially less than the CSP-based technique’s 234ms. Moreover, when the 32 addi-
tional providers are added, Filtered Cartesian Flattening is able to derive a
configuration in 31ms, which is faster than the CSP technique can solve the prob-
lem without resource constraints. Filtered Cartesian Flattening’s 31ms is many
orders of magnitude less than the ∼30mins for the CSP-based technique. This re-
sult shows that Filtered Cartesian Flattening is significantly more scalable than
the CSP-based technique for our case study application.

Another question that we sought to answer was how optimal the solutions pro-
duced by FCF were compared to the CSP-based solutions. We tracked the total
cost of the external information providers chosen by the two techniques. We used
both techniques to attempt to minimize the total cost of the information provider
configurations. Figure 9 shows the increase in solution cost of choosing the FCF

256 J. White et al.

technique over the CSP technique. As shown in Figure 9, the FCF technique pro-
duced solutions that ranged from roughly 2-3% more expensive. Thus, the dra-
matic reduction in solving time shown in Figure 7 came at a very low increase in
overall solution cost.

5.4 Results Analysis and Comparison of FCF and CSP
Reconfiguration

In this section, we provide an analysis of the pros and cons of our new Refresh
+ FCF approach versus the Refresh + CSP technique that we developed in prior
work [25,23]. There are a number of criteria to consider when selecting whether to
use CSP or FCF based reconfiguration with Refresh. We analyze the results of the
experiments and the capabilities of the techniques along a number of critical axes.
We evaluate the capabilities of each technique in terms of 1) scalability, 2) solution
optimality, 3) tractability guarantees, and 4) amenability to different constraint
types.

SolutionOptimality/Quality: Refresh + CSP provides guaranteed optimal re-
sults. Refresh + FCF, in contrast, is a heuristic algorithm that does not provide
guaranteed solution optimality. As we showed in the results depicted in Figure 9,
FCF can provide near optimal results. Furthermore, other research results [19]
have shown generally high optimalities of 90%+ optimal for the MMKP
heuristic algorithms that can be used by FCF.

A key tradeoff to consider when evaluating Refresh with CSP versus FCF is that
there is no hard guarantee on the optimality of the solutions generated by FCF.
Furthermore, we are not aware of any fast runtime algorithms for producing a good
estimate of the optimal solution value. Thus, there is no practicalway at runtime to
estimate the optimality of anFCF healing solution forRefresh. FCFdoes, however,
guarantee that resource constraints are respected. If the goal is to find a solution
that meets resource constraints with a ”best effort” on solution optimality, then
FCF can readily be applied.

Scalability: As shown in Figure 7, Refresh + FCF scales significantly better than
Refresh + CSP when resource constraints must be adhered to in the reconfigura-
tion process. As shown in Figure 8, if resource constraints are not included, Refresh
+ CSP can provide very fast configurationhealing times. If scalability and resource
constraints are a prime concern, Refresh + FCF should be used.

Whereas FCF does not provide a guarantee on solution optimality, it does pro-
vide a guarantee on scalability. FCF is a polynomial-time algorithm and hence will
scale accordingly. CSP solvers use algorithms with exponential worst-case time.
In some cases, as shown in Figure 8, these algorithms perform well. In other cases,
such as in Figure 7, the same algorithms can perform poorly. If guarantees on heal-
ing speed are more important than guarantees on solution optimality, the
unpredictability of CSP-based healing is not appropriate.

Tractability Guarantees: FCF does not guarantee that a configuration will be
found. If FCF cannot find a viable configuration, it is still possible that one exists

Using FCF and Microrebooting to Build Enterprise Applications 257

that eluded the FCF heuristics. Refresh + CSP does guarantee that a viable solu-
tion will be found if it exists. The down side is that, for large enough problems, the
CSP technique could take longer to find the solution than fixing the root cause of
the original failure.

Although FCF does not guarantee a solution is found, its solving speed provides
a number of potential options to developers. If reconfiguration speed is critical,
developers can instruct Refresh to first search for a configuration using FCF and
then to fallback to CSP if no solution is found. As shown in Figure 7, FCF can
have runtimes in the tens of milliseconds. Thus, an initial attempt at finding a
reconfiguration solution using FCF should add minimal overhead to the healing
process.

Amenability to Different Constraint Types: FCF is designed to work with
feature models that primarily have a tree-like structure. As the number of cross-
tree constraints in a feature model increase, FCF typically becomes less and less
effective at finding solutions. That is, FCF is good when the resource constraints
are more restrictive than the cross-tree constraints.

CSP, in contrast, tends to operate better when the cross-tree constraints in a fea-
ture model are more restrictive than the resource constraints. A CSPs constraint
network and propagation algorithms can leverage cross-tree constraints to quickly
eliminates large portions of the solution space. Thus, for applications with feature
models including large numbers of cross-tree constraints that have a less tree-like
structure, Refresh + CSP is most appropriate.

6 Related Work

This section compares our work on Refresh and Filtered Cartesian Flattening with
other research work. First, we compare Refresh to the original technique of mi-
crorebooting. Next, we compare and contrast Refresh with other feature-based
self-adaptive healing techniques. Finally, we compare Refresh to other non-feature
based self-adaptive healing techniques.

Microrebooting Related Work. Refresh is based on the idea of Microreboot-
ing [8]. Microrebooting restarts individual components or collections of compo-
nents to fix an error. The number of components that are rebooted continues to
grow if successive reboots do not eliminate the error. Microrebooting can help to
eliminate some types of problems but may not fix all issues.

For example, if one of the information provider services fails, restarting the ap-
plication will not fix the error since it is in a remote component. Instead, the local
application must be rebooted in an alternate configuration to eliminate the error.
As we showed in Section 3.1 determining how to eliminate failed components is a
challenging problem. Refresh uses the Filtered Cartesian Flattening algorithm to
eliminate this problem by dynamically deriving a new application configuration
to reboot the failed subsystem into. This type of reconfiguration and rebooting
can eliminate both local errors and references to failed remote services, which
microrebooting alone cannot fix.

258 J. White et al.

Feature-Based HealingRelatedWork. Other approaches to application heal-
ing have been developed that leverage a combination of goal modeling and feature
models [16]. In the approach by Lapouchnian et al. feature models are used to find
points of variation in the application. The application adaptation is driven by Stat-
echarts. As we showed in Section 3.1, specifying the logic to solve the NP-Hard
problem of reconfiguring the application subject to resource constraints is hard to
implement in either Java, C++, or Statecharts.

The approach of using Statecharts to drive the adaptive healing of the appli-
cation burdens enterprise application developers with a extremely complex prob-
lem. Moreover, there can be an exponential number of states that may need to be
modeled to properly adapt in all resource availability scenarios. In contrast, Re-
fresh does not require an explicit adaptation plan but instead a model of how the
application can be reconfigured. Refresh then automates the complex problem of
deriving a new application configuration that fits the current available resources.

Self-Adaptive Healing Related Work. Other approaches also use the idea of
identifying error conditions and then planning adaptation actions that should be
triggered [7,14,11,6,2,16,12]. These approaches also require developers to handle
the complex problem of determining how to best adapt the application’s config-
uration while adhering to a resource constraint. Determining how to reconfigure
in the face of a resource constraint is an NP-Hard problem. In contrast, Refresh
automates this recovery logic by using the Filtered Cartesian Flattening approxi-
mation algorithm to derive a new application feature set that can be used to con-
tinue functioning.

7 Concluding Remarks

A common approach to simplifying the development of self-adaptive healing ap-
plications is to use a model of an application’s adaptation logic to generate self-
adaptive healing code or guide self-adaptive healing at runtime [7,14,11,6,2,16,12].
This approach to simplifying the development of self-adaptive healing applications
does not, however, eliminate the key complexity, which is the logic needed to de-
duce how to heal the application. Moreover, when resource constraints must be
considered in the adaptation process, determining how to adapt the application
without exceeding the resource limitations is an NP-Hard problem.

This paper showed how our Refresh technique—based on a combination of mi-
crorebooting and dynamic reconfiguration using feature models—can simplify the
development of self-adaptive healing applications.Rather than simply rebooting in
the same configuration (which could cause errors involving remote services to per-
sist), Refresh dynamically derives a new application configuration to reboot into
using the application’s feature model. Moreover, we showed that by using the FCF
algorithm to perform the derivation of the new feature selection, Refresh could
respect resource constraints and still find alternate feature configurations fast.

The following list presents the lessons we have learned from our experiences
building self-adaptive healing enterprise applications using Refresh:

Using FCF and Microrebooting to Build Enterprise Applications 259

– CSP-based reconfiguration techniques are sufficient if no resource
constraints are present. If resource constraints are not considered in the
reconfiguration process, CSP and other exact techniques, such as SAT solvers,
provide sufficient performance to derive new configurations. Only when
resource constraints are added is FCF needed.

– Container lifefcycle methods can managing accidental healing com-
plexities.Containers must be able to release resources, roll back transactions,
and perform other cleanup whenever an application container is shutdown.
By reusing this lifecycle mechanism to perform healing, significant accidental
complexity is managed by the container on the developer’s behalf.

– Optimization goals may not be easy to formalize. In many domains, re-
source constraints and optimization goals can be hard to formalize since it is
not clear how choosing one service over another affects cost and resource con-
sumption. Interactions between organizations, however, often do have a known
resource consumption and cost associated with them.

Refresh is available in open-source form as part of the GEMS Model Intelligence
project at www.sf.net/projects/gems.

References

1. Choco constraint programming system, http://choco.sourceforge.net/
2. Barbier, F.: MDE-based Design and Implementation of Autonomic Software Compo-

nents. In: 5th IEEE International Conference on Cognitive Informatics, 2006. ICCI
2006, vol. 1 (2006)

3. Barki, H., Rivard, S., Talbot, J.: Toward an assessment of software development risk.
Journal of Management Information Systems 10(2), 203–225 (1993)

4. Batory, D.: Feature Models, Grammars, and Prepositional Formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

5. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Mod-
els. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–
503. Springer, Heidelberg (2005)

6. Bhat, V., Parashar, M., Liu, H., Khandekar, M., Kandasamy, N., Abdelwahed, S.:
Enabling Self-Managing Applications using Model-based Online Control Strategies.
In: Proceedings of the 3rd IEEE International Conference on Autonomic Computing,
Dublin, Ireland (June 2006)

7. Calinescu, R.: Model-Driven Autonomic Architecture. In: Proceedings of the 4th
IEEE International Conference on Autonomic Computing, Jacksonville, Florida,
USA (June 2007)

8. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot-a tech-
nique for cheap recovery. In: Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation, pp. 31–44 (2004)

9. Czarnecki, K., Antkiewicz, M., Kim, C., Lau, S., Pietroszek, K.: FMP and
FMP2RSM: Eclipse Plug-ins for Modeling Features Using Model Templates. In:
Conference on Object Oriented Programming Systems Languages and Applications,
pp. 200–201 (October 2005)

10. Oppenheimer, D.P.D., Ganapathi, A.: Why do Internet Services Fail, and What can
be Done about It? In: Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (March 2003)

www.sf.net/projects/gems
http://choco.sourceforge.net/

260 J. White et al.

11. Denaro, G., Pezze, M., Tosi, D.: Designing Self-Adaptive Service-Oriented Appli-
cations. In: 4th IEEE International Conference on Autonomic Computing, Jack-
sonville, Florida (June 2007)

12. Elkorobarrutia, X., Izagirre, A., Sagardui, G.: A Self-Healing Mechanism for State
Machine Based Components. In: Proceedings of the 1st International Conference
on Ubiquitous Computing: Applications, Technology and Social Issues, Alcalá de
Henares, Madrid, Spain (June 2006)

13. Johnson, R., Hoeller, J.: Expert one-on-one J2EE development without EJB. Wrox
(2004)

14. Joshi, K., Sanders, W., Hiltunen, M., Schlichting, R.: Automatic Model-Driven Re-
covery in Distributed Systems. In: The 24th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS 2005), pp. 25–38 (2005)

15. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-; oriented
reuse method with domain-; specific reference architectures. Annals of Software En-
gineering 5, 143–168 (1998)

16. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards Requirements-driven
Autonomic Systems Design. In: Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, pp. 1–7 (2005)

17. Linberg, K.: Software developer perceptions about software project failure: a case
study. The Journal of Systems & Software 49(2-3), 177–192 (1999)

18. Mannion, M.: Using First-order Logic for Product Line Model Validation. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg
(2002)

19. Mostofa Akbar,M., Sohel Rahman, M., Kaykobad, M., Manning, E., Shoja, G.: Solv-
ing the Multidimensional Multiple-choice Knapsack Problem by constructing convex
hulls. Computers and Operations Research 33(5), 1259–1273 (2006)

20. Schach, S.: Object-oriented and classical software engineering. McGraw-Hill Higher
Education, Boston (2005)

21. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated error
analysis for the agilization of feature modeling. Journal of Systems and Software (in
press) (2007)

22. White, J., Czarnecki, K., Schmidt, D.C., Lenz, G., Wienands, C., Wuchner, E.,
Fiege, L.: Automated Model-based Configuration of Enterprise Java Applications.
In: EDOC 2007 (October 2007)

23. White, J., Dougherty, B., Schmidt, D.: Filtered Cartesian Flattening. In: Workshop
on Analysis of Software Product-Lines at the International Conference on Software
Product-lines (October 2008)

24. White, J., Nechypurenko, A., Wuchner, E., Schmidt, D.C.: Optimizing and Au-
tomating Product-Line Variant Selection for Mobile Devices. In: 11th International
Software Product Line Conference (September 2007)

25. White, J., Strowd, H., Schmidt, D.C.: Creating Self-healing Service Compositions
with Feature Modeling and Microrebooting. In: The International Journal of Busi-
ness Process Integration and Management (IJBPIM), Special issue on Model-Driven
Service-Oriented Architectures (2008)

26. Whittaker, B.: What went wrong? Unsuccessful information technology projects.
Information Management And Computer Security 7, 23–29 (1999)

	Using Filtered Cartesian Flattening and Microrebooting to Build Enterprise Applications with Self-adaptive Healing
	Introduction
	Case Study: ICred
	Self-Adaptive Healing Challenges for Enterprise Applications
	Challenge 1: Resource Constraints Make Adaptation Actions Extremely Complex
	Challenge 2: Accidental Complexity Makes Adaptation Actions Hard to Develop

	Solution ApproachCombining Refresh and Filtered Cartesian Flattening
	Overview of Refresh
	Feature Model Configuration Healing
	Filtered Cartesian Flattening

	Refresh and Filtered Cartesian Flattening Performance
	Hardware and Software Testbed Configuration
	Refresh Performance
	Filtered Cartesian Flattening vs. CSP-Based Configuration Derivation
	Results Analysis and Comparison of FCF and CSP Reconfiguration

	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

