
Using Architecture Models to Support the Generation
and Operation of Component-Based Adaptive Systems�

Nelly Bencomo and Gordon Blair

Computing Department, InfoLab21,
Lancaster University, LA1 4WA, United Kingdom

Abstract. Modelling architectural information is particularly important because
of the acknowledged crucial role of software architecture in raising the level of
abstraction during development. In the MDE area, the level of abstraction of mod-
els has frequently been related to low-level design concepts. However, model-
driven techniques can be further exploited to model software artefacts that take
into account the architecture of the system and its changes according to vari-
ations of the environment. In this paper, we propose model-driven techniques
and dynamic variability as concepts useful for modelling the dynamic fluctua-
tion of the environment and its impact on the architecture. Using the mappings
from the models to implementation, generative techniques allow the (semi) au-
tomatic generation of artefacts making the process more efficient and promoting
software reuse. The automatic generation of configurations and reconfigurations
from models provides the basis for safer execution. The architectural perspective
offered by the models shift focus away from implementation details to the whole
view of the system and its runtime change promoting high-level analysis.

Keywords: software architecture, dynamic adaptation, model-driven engineer-
ing, middleware, dynamic variability.

1 Introduction

Adaptability is an increasingly important requirement for many applications, in par-
ticular those deployed in dynamically changing environments such as environmental
monitoring and disaster management [15, 29]. A well established approach to enable
adaptation is to use the support of middleware platforms [8, 9, 24]. Such configurable
and reconfigurable middleware platforms are ideally situated to monitor changes, and
manage individual adaptations. The primary role of middleware platforms is to ease
the development and operation of distributed applications. The approach allows the ap-
plication developers and domain experts to focus on the application logic, rather than
complex runtime, adaptation concerns that the middleware platforms deal with.

Making simpler the development of distributed applications by loading the middle-
ware platform with distribution and runtime concerns causes that development of these
platforms require highly technical knowledgable developers. Therefore, middleware de-
velopers need to work at very low levels of abstraction. Hence, the development of

� This work was partially funded by the Divergent Grid project, an ESPRC funded project and
the DiVA project (EU FP7 STREP).

B.H.C. Cheng et al. (Eds.): Self-Adaptive Systems, LNCS 5525, pp. 183–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

184 N. Bencomo and G. Blair

components and planning of configurations and reconfigurations involve a large num-
ber of variability decisions related to fluctuations of the environment. These decisions
are frequently implemented using programming environments and tools with low lev-
els of abstraction (i.e. using constructions offered by programming languages like C++
and Java). The above results in a gap between the way application developers, domain
experts and middleware developers operate. Furthermore, the development process fre-
quently uses repeated ad-hoc solutions that many times are carried out manually.

The above reveals the need for both new software development approaches and op-
erational paradigms. These approaches and paradigms should be able to (i) promote the
overall view of the system that domain experts and application developers need when
planning the adaptation logic, and at the same time (ii) deal with the levels of detailed
and technical knowledge required by middleware developers, (iii) bridge the gap in be-
tween the different levels of abstraction of (i) and (ii), and (iv) be more systematic and
efficient, exploiting software reuse whenever possible. The approach presented in this
paper is aiming to address these issues.

Modelling architectural information is particularly important in this context because
of the crucial role of software architecture in raising the level of abstraction during
development. Such a fundamental role is repeatedly emphasized by the numerous def-
initions of software architecture [2, 11, 17, 26, 27]. For example, according to Oreizy
et all [33] “a software architecture represents software system structure at a high level
of abstraction, and in a form that makes it amenable to analysis, refinement, and other
engineering concerns”. This definition is particularly relevant because it also highlights
the opportunities for high-level analysis provided by architectural descriptions [17].
The importance of architecture has been recently revisited in the Future of Software
Engineering session at ICSE 2007 [25, 38].

The authors argue that MDE and generative software development [13] help to pro-
duce new development paradigms to support the life cycle of flexible and dynamically
configurable middleware platforms. In the MDE area, research has focused mainly on
using models during the phases before execution (i.e. design, implementation and de-
ployment) with emphasis on the generation of software artefacts to be used in those
phases (e.g. source code or deployment descriptors) [1, 20]. Moreover, abstractions
used for model-based transformations have frequently been related to low level design
concepts. Abstractions can also be related to the support for dynamic management and
evolution of software [16]. In this sense, model-driven techniques can be used to model
software artefacts that take into account the architecture (i.e. high-level structural orga-
nization) of the system and its changes according to the fluctuation of the environment.

We propose an approach called Genie. Genie uses domain-specific modelling and
dynamic variability (i.e. variability that needs to be solved at runtime) as relevant con-
cepts for the construction of models of the dynamic fluctuation of the environment and
contexts, and their impact on the variation of the architecture of the middleware and
applications during execution. Genie offers management of dynamic variability dur-
ing development and allows the systematic generation of middleware related artefacts
from high level descriptions (models). To this end, two kinds of dynamic variability are
identified, namely structural variability and environment and context variability. Us-
ing the mappings from the models to implementation artefacts, generative techniques

Generation and Operation of Component-Based Adaptive Systems 185

will allow the (semi) automatic generation of implementation artefacts making the pro-
cess more efficient and promoting software reuse. The authors argue that generating
the code associated with configurations and reconfigurations directly from the models
provides the basis for defining safer execution by reducing coding errors. The architec-
tural view offered by the models improves high-level analysis shifting focus away from
implementation details to the whole view of the system and its runtime change.

The remainder of this paper concentrates on the conception, design, and application
of the approach proposed. Section 2 discusses the case of dynamic variability for adap-
tive systems. Section 3 describes the Genie approach in detail. Section 4 discusses the
application of the approach in a specific real case study, the development and operation
of an adaptive flood warning system. Finally, Sections 6 and 7 present some related
work and conclusions respectively.

2 Dynamic Variability

2.1 Overview

One of the reasons for software variability is to delay design decisions [37]. Instead
of deciding on what system to develop in advance, a set of components and a com-
mon system family (reference architecture) are specified and implemented during a
process called domain engineering [13]. Later on, during application engineering, spe-
cific systems are developed to satisfy the requirements reusing the components and
architecture. Variability is expressed in the form of variation points. A variation point
denotes a particular location in a software-based system where decisions are made to
express the selected variant [37]. Eventually, one of the variants should be chosen to be
achieved or implemented. The time when it is done is called binding time. Traditionally,
decisions have been deferred to architecture design, implementation, compilation, link-
ing, and deployment as shown in [7, 13, 28, 31, 37]. Currently the aim is to postpone
these decisions to even later points in time to allow dynamic variability at runtime. This
raises several research challenges, such as their impact in the ongoing architecture of
the system and the management of variabilities in dynamically adaptive systems. These
challenges are further discussed in the next section.

2.2 Dynamic Variability in Adaptive Systems

A dynamically adaptive system operates in an environment that imposes changing con-
texts and requirements. The challenge comes from the need to support adaptation or
customization of the system according to the needs of the fluctuating environment. The
conditions associated with the adaptations may not be completely known before instal-
lation of the system. These conditions are related to:

(i) Environment or context variability: the evolution of the environment often cannot
be completely predicted during development; therefore the total range of contexts and
requirements may be unknown before the system is installed to start execution.

(ii) Structural or architectural variability: this covers the variety of components and
the variety of their configurations (architecture). This is a consequence of the envi-
ronmental variability explained above. In order to satisfy the set of requirements for the

186 N. Bencomo and G. Blair

Fig. 1. Dynamic Variability Dimensions

new context, the running system may dynamically add new components or rearrange the
current structural configuration (architectural reorganization). Hence, solutions cannot
be restricted to a set of known-in-advance configurations and components. New sets of
components may be added during execution (see Figure 1).

The system should be prepared to deal with the two dimensions of variability de-
scribed above. Under new contexts, the system must be prepared to discover and include
new components to meet new requirements or simply to improve the current state of
the system when new components become available [36] and according to some quality
of service (QoS) properties. Solutions to manage the latter structural variability can-
not be just the traditional component replacements and/or specializations, but decisions
should involve more powerful mechanisms able to manage whole sets of components,
their connections and semantics (architecture). Moreover, the correct match between
the architectural changes and the environmental context should be maintained.

2.3 Architectural Reorganization Supported by Middleware Platforms

At Lancaster University, we have gained experience developing adaptive systems and
middleware platforms using component frameworks and reflective technologies [12].
We use of component frameworks and reflection as flexible mechanisms for support-
ing runtime variability of dynamically extensible systems. Component frameworks are
collections of components that address a specific area of concern and accept “plug-
in” components that add or extend behaviour [12]. Reflective capabilities support in-
trospection to observe and reason about the state of the system to make decisions on
architectural reconfigurations. Adaptive behavior is defined by sets of reconfiguration
policies. These policies are of the form on-event-do-actions and actions are architec-
tural changes using the component frameworks. During runtime, a context engine re-
ceives relevant environmental events that are employed to identify the reconfiguration
policy to be used. Crucially, component frameworks offer the medium to provide ar-
chitectural variability. Furthermore, reflective capabilities offer the potential to reason

Generation and Operation of Component-Based Adaptive Systems 187

about the possible variation points and their variants during execution. The support
offered by the middleware platforms provides the technique to implement variability
called infrastructure-centered architecture [37]. When using this technique, connec-
tions between components are treated as first-class entities. This means that required
interfaces of components are not hard-coded. Dynamic replacement of a component
in the architecture or indeed dynamic reorganization of the architecture is eased if the
architecture and the location where such modifications could be carried out is made
explicit. “Used correctly, this technique yields perhaps the most dynamic of all archi-
tectures” [37]. The next section elaborates how the middleware platforms act as the
reconfiguration framework and introduces the approach proposed. The approach lever-
ages the middleware platforms to guide the domain experts and developers during the
modelling and generation of software artefacts, and during the operation of middleware
platforms and applications. This is a key assumption that the underlying middleware
platform ensures consistency and integrity using change transactions [12].

3 The Genie Approach

3.1 Overview

The proposed approach is called Genie. Genie uses domain specific languages (DSLs)
for the construction of the models associated with both the structural (architectural) and
the environment variability. Using models and generative techniques, software artefacts
can be generated more efficiently. Supported by the middleware platforms, applications
can be dynamically reconfigured from one structural variant to another according to
changes in the context or environment. The system monitors specific properties of the
runtime environment and reacts to given changes while keeping a valid architecture.
The system is able to decide what kind of architectural reorganization (reconfiguration)
has to be performed, if any.

To model the adaptive behaviour described above it is necessary to define what adap-
tation means in terms of configurations (architecture) and conditions:

An adaptation is defined in the scope of this research as the process of having the
system transforming itself from a given configuration Ci to another configuration Cj
given the set of conditions Tk.

The set of conditions correspond to variants of the context and environment variabil-
ity and the configurations (components and connections) correspond to variants dictated
by the architectural and structural variability. The next section describes the proposed
approach.

3.2 Description of the Genie Approach

The Genie approach allows the use of DSLs to specify:

i. the structural variability. The DSL associated with the structural variability al-
lows the modelling of the component configurations to be expressed in terms of
the architecture dictated by component frameworks. The modelling elements to be
used are generic architectural elements such as components, required and offered
interfaces, and bindings.

188 N. Bencomo and G. Blair

ii. the environment and context variability. The transition diagram DSL is used to
specify the conditions that represent the dynamic nature of the environment and
context. Basically, this DSL is used to specify adaptations of the form described
above: from the configuration Ci and on the set of conditions Tk, go to configuration
Cj. These models are in essence transition diagrams.

Using generators capable of traversing the models created with the DSLs and their trace
relationships, different software artefacts can be generated:

iii. components and configurations of components associated with the component
frameworks are generated from the structural variability models. The constraints
specified by the component frameworks are captured in the models to allow vali-
dation of the configurations and ensure consistency of the resultant artefacts. The
middleware platforms allow the newly generated components and component con-
figurations to be added during the execution of the system.

iv. reconfiguration policies are generated from the transition models. As in (iii), val-
idation of the diagrams should be performed to avoid inconsistencies. The middle-
ware platforms allow the generated policies to be inserted during execution. The
newly added reconfiguration policies are used as long as the “new” component(s)
or component configuration(s) for the right match are also provided.

3.3 Levels of Abstraction

An overview of the different levels of abstraction promoted by Genie is given in
Figure 2. The figure shows the specific artefacts that populate the layers which cor-
respond to different levels of abstraction (abstraction levels are raised from bottom
to top).

(1) The first level at the bottom is populated by different software artefacts like source
code, XML configuration files describing the different configurations associated with
component frameworks, and the XML files of reconfiguration policies.

(2) The second level corresponds to the architectural models associated with struc-
tural variability, i.e. the models of component frameworks and their components and
configurations. These models offer visual representations of the component configura-
tions, their components and interfaces.

(3) The third level at the top corresponds to the environment and context variability.
Here the developer plans the adaptations based on transition diagrams. At this level the
developer reasons in terms of structural variants (associated with specific domains of
concern) and conditions of the environment that trigger the reconfigurations.

The first and second levels are similar to existing approaches using architecture de-
scription languages (ADLs) and offering tool chain support for the development of
component-based systems. Actually, the DSL associated with the structural variability
can be considered as an ADL with generative capabilities. The major contribution of
the Genie approach is the support to high level analysis and automation provided by
level 3 and its relationships with the other two levels.

Each node in the transition diagrams of level 3 is considered as a structural variant
of the system. Structural variants are “coarser grain” configurations than configurations

Generation and Operation of Component-Based Adaptive Systems 189

Fig. 2. Different levels of abstraction supported by Genie

associated with individual component frameworks in the sense that they are described by
a set (or n-tuple) of component frameworks. Structural variants can be seen as configura-
tions of component frameworks. The set of component frameworks are associated with
the problem domain. Thus, for example, if the problem domain identified requires archi-
tectural changes (in terms of reconfiguration) of the routing protocols and the topology
of nodes in a sensor network, the component frameworks to be used in each structural
variant should represent concepts associated with routing protocols and topologies of
nodes. The proposed approach aims then at partitioning each structural variant into a set
of specialized and focused domains of concern.

Figure 2 shows the trace relationships between the levels. At the top, each structural
variant has the references to both the related component frameworks in level 2 and the
files of reconfiguration policies in level 1. The component frameworks in level 2 make
reference to the files associated with the configuration files. In turn, the reconfiguration
files point to the executable code associated with the components. In the example of
Figure 2, each structural variant of the transition diagram is described in terms of two
component frameworks (the Spanning Tree component framework for routing protocols
and the Network component framework) that opportunistically correspond to the case
study described in the next section. From the initial architecture (configuration) the
system will evolve over time according to the conditions of the environment specified
in the arcs of the diagrams. The places where the architecture can be changed and the
consequences of the changes will be driven by the transition diagrams.

The use of DSLs in the approach described above promotes higher levels of abstrac-
tion beyond programming and code. The benefits from raising the levels of abstraction

190 N. Bencomo and G. Blair

using models is twofold. First, automation levels are improved as the models allow the
specification and application of repetitive patterns that are used in the generation of
software artefacts. As a result software reuse is encouraged. Second, the gap between
the way requirements engineers, domain experts, software architects and programmers
operate is reduced, thereby promoting their joint collaboration as shown in [21]. Fur-
thermore, the use of generative techniques increases the levels of efficiency and automa-
tion. The approach can be applied using different middleware platforms that work with
concepts of components and component frameworks like in the case of OpenCOM or
Fractal as reported in [3] and [30].

Next section discusses the application of the approach in the specific case of the
development and operation of an adaptive flood warning system [23]. The approach
has also been applied in the context of dynamic service discovery scenarios for mobile
applications with results reported in [3].

4 Case Study: A Wireless Sensor Network for Flood Management

4.1 Overview

The Genie tool is the implementation of the Genie approach for the case of the Open-
COM based middleware platforms at Lancaster University and is described in detail in
[3, 5]. The DSL associated with the structural variability is called the OpenCOM DSL
in the case of the Genie tool.

The use of the architectural models supported by Genie and its tool is explained
using the case study GridStix [23]. GridStix is a wireless sensor network for flood
management that has been deployed in prototype form on the flood plain of the River
Ribble in North Yorkshire, England. About 15 nodes have been deployed. Sensors route
the data collected in real-time using a spanning tree topology to one or more designated
root nodes. From these nodes, the data is forwarded (via General Packet Radio Service,
GPRS) to a prediction model that runs on a remote computational cluster. Each sensor
node includes a 400MHz XScale CPU, 64MB of RAM, 16MB of flash memory, and
Bluetooth and WiFi Networks. The designated root nodes are also equipped with GPRS.
Each GridStix is powered by a 4 watt solar array and a 12V 10Ah battery. Linux 2.6
and the Java virtual machine 1.4 are used in contrast to conventional sensor network
deployments, where sensors are simply responsible for transmitting sensor data off-
site. This deployment permits the use of local processing. Local processing supports
computation for the local prediction of future environmental conditions.

Level 3 of Figure 2 shows the transition diagram that guides the reconfiguration and
adaptation process of GridStix. Three possible states were identified: Normal, Alert, and
Emergency. Each state of the system has a specific structural (architectural) variant. The
problem domain identified requires structural changes (in terms of reconfiguration) of
the routing algorithms and the networks interfaces to be used in the sensor network.
The component frameworks to be used in each structural variant represent concepts
associated with the overlays component framework, specifically the Spanning Tree and
the Network framework.

The Spanning Tree component framework supports the routing algorithm that has
two possible variants: Shortest Path (SP) and Fewest Hop (FH). The Spanning Tree

Generation and Operation of Component-Based Adaptive Systems 191

Fig. 3. Overlays Pattern Architecture

component framework and its variants follow the overlay pattern architecture (control,
forward, and state). The overlays pattern is shown in Figure 3. This is part of a more
generic pattern that allows the overlay of individual plug-ins to be inserted into com-
ponent frameworks. As such, the reuse of architecture design is one of its main contri-
butions. The use of models to generate artefacts further exploits this contribution. The
second one, the Network component framework, describes the type of network to be
used and offers two possible variants: BlueTooth(BT) and WiFi.

The 2-tuples associated with the structural variants used in the case study are (SP,BT),
(SP,WiFi), and (FH,WiFi) and correspond with the three possible states identified above.
Figures 4 and 5 show the Shortest Path variant and WiFi variant models developed with
the Genie tool respectively.

The system will evolve over time according to changes in the conditions of the en-
vironment specified in the arcs of the diagrams. The places where the architecture can
be changed and the consequences of the changes will be driven by the transition dia-
grams. How different variants of these component frameworks are chosen will depend
on the possible multiple variations of conditions in the environment and context. This
variation is specified using the triggers associated with the transitions in the diagram
(i.e. arcs). Triggers of reconfiguration policies are specified in the arcs between states.
The number of transitions in the transition diagrams will depend on how adaptable the
system should be or is conceived.

Fig. 4. Shortest Path Variant for the Spanning Three component framework

192 N. Bencomo and G. Blair

Fig. 5. WiFi Variant for the Network component framework

According to the transition diagram in Figure 6, if the application is operating as Nor-
mal, and the prediction model of GridStix predicts an imminent flood (i.e. the FloodPre-
dicted monitoring condition is true), the nodes adapt to the Emergency state bypassing
the Alert state. This adaptation is effected by reconfiguring the Network to use WiFi
instead of BlueTooth, and the Spanning Tree to a Fewest Hop topology.

One of the advantages of using transition diagram models is that they offer a com-
plete view of the reconfiguration opportunities of the system offered to the user. The
architectural perspective offered by these models shift focus away from the source
code of isolated policies to the whole view of the reconfiguration opportunities and

Fig. 6. The transition diagram of the case study and three generated reconfiguration policies

Generation and Operation of Component-Based Adaptive Systems 193

the component frameworks involved. Different stakeholders can abstract away irrele-
vant implementation-related details and focus on the big picture: the system structure
and its runtime change. It should be contrasted with the partial view when working
with individual policies using traditional approaches. Figure 6 shows 3 examples of the
reconfiguration policies that are invoked when the specified monitoring conditions are
met. From this specific example, a total of 8 reconfiguration policies can be generated.
For readability purposes, the transition diagram proposed is simple, as the number of
policies increases rapidly with the number of triggers considered.

4.2 Orthogonal Variability Models

To complement the approach described above, the orthogonal variability models pro-
posed by Klaus Pohl et all [34] are used. An orthogonal variability model (OVM) de-
fines the variability of a system family in a separate model. It relates the variability
specified to other software development models such as component models in our case.
Figure 7 shows the variability diagrams used to model the variants in the case study. The
three structural variants, Normal, Alert, and Emergency are associated with the varia-
tion point VP:Flood App marked by (a). Each state variant of the graph is described
using two component frameworks, i.e. the Spanning Tree and the Network component
framework as seen above. The Spanning Tree and the Network component frameworks
have variation points associated themselves, marked by (b) and (c).

The OVM has mainly been used by developers to document variability. However,
in our work these variability models have been useful not just to document variability.

Fig. 7. Variability and Transition Diagrams

194 N. Bencomo and G. Blair

Particularly, OVMs have proofed to be useful (i) when traversing the models to gener-
ate the reconfiguration policies, (ii) to keep links to adaptation requirements (using goal
models) [21], and (iii) when managing the traceability relations between the structural
variants of the transition diagrams (level 3) and the component frameworks configura-
tions (level 2).

4.3 Artefacts Generated by the Genie Tool

The developer designs models to specify the components, component frameworks and
configurations, structural variants and the transition diagrams using the DSLs provided
by the Genie tool. Using generators that traverse these models, different software arte-
facts of level 1 can be generated (see Figure 8).

From the models specified using the OpenCOM DSL the source code of compo-
nents and configurations of components associated with the component frameworks is
generated. Similarly, using the models associated with the transition diagrams, the re-
configuration policies are generated. To ensure consistency of the generated artefacts,
the constraints specified by the models are used to validate the configurations before
any generation is carried out. The middleware platforms enable extensibility and evo-
lution of the system allowing newly generated artefacts (e.g. components, component
configurations, and reconfiguration policies) to be added during the execution of the
system.

Fig. 8. Genie Models and Generated Artefacts

Generation and Operation of Component-Based Adaptive Systems 195

5 Discussion

In this section we discuss the novel contributions of our research and briefly describe
ongoing research that extends the Genie approach.

5.1 Contributions

Architectural changes take place according to environment variations and following the
adaptation policies. With Genie, new reconfiguration policies can be modeled and gen-
erated off-line while the system is running. Using the capabilities provided by the mid-
dleware platforms, the newly generated policies can also be added to the running system,
changing dynamically the behaviour of the system. The fact that these policies are ex-
plicitly modelled using the Genie approach improves the traceability during the software
development process. The overall view offered by the transition diagrams described
above contrasts with the partial text-based view offered by each reconfiguration policy.
Using only partial views makes it very probable that the developers ignore, or simply
lose sight of, important interdependency relationships. Overlooking dependencies can
cause failures and inconsistencies during execution. Identifying the source of the error
may require significant effort and time [3]. Genie promotes joint collaboration between
requirements engineers, domain experts, software architects, and developers [21]. Fur-
thermore, the proposed approach makes explicit the support the middleware platforms
provide in separating the system evolution and system adaptation as two simultaneous
processes in self-adaptive software [32]. System evolution ensures the consistent appli-
cation of change over time, and system adaptation focuses on “the cycle of detecting
changing circumstances and planning and deploying responsive modifications” [32].

5.2 Ongoing Research

Towards the Use of Models@run.time

We are already extending and improving the Genie approach. As explained above and
as Figure 6 shows, the generated policies mainly specify the trigger events and which
reconfiguration scripts have to be loaded to adapt the system from one configuration
(state) to another. These scripts are currently hand-written using the support offered by
the underlying middleware platforms.

The reconfiguration scripts can also be generated from the DSL-based models during
design-time or even at runtime. In the case of the dynamic generation during runtime
and when adaptations (transitions) are triggered, the current configuration and the target
configuration are compared. The comparison results in the identification of the compo-
nents that should be added or deleted and allows the dynamic generation of the corre-
sponding reconfiguration script. This solution is possible as we are able to maintain a
reference model at the meta-level of the reflective middleware platform. The reference
model represents the current system and the possible modified model that is the result
of the required adaptation (both models are supplied by Genie). Partial results of such
ideas are already reported in [30]. This work opens some research questions as for ex-
ample: what is the correct order of the deletion and incorporation of components during

196 N. Bencomo and G. Blair

Fig. 9. Genie Models and Generated Artefacts

the reconfiguration process, or what is the impact on the performance of the application.
This research is being carried out in the scope of the STREP European project DiVA
[14] (work package diva@run.time) and the research topic Models@run.time [4].

Goal-Driven Requirements

Genie is complemented by the approach Levels of RE for Modeling (LoREM) [21].
LoREM is a goal-driven requirements approach that supports the formulation of the
requirements of dynamically adaptive systems helping the analyst to understand the
characteristics of the operational environment and the adaptation scenarios that the sys-
tem can go through. The goal models in LoREM are in a fourth abstraction level and
are used to derive the DSL-based models used in Genie. At the bottom, the middleware
platform underpins the reorganization of the ongoing architecture at runtime providing
support as the requirements imposed by the environment change, see Figure 9. Partial
results applied to GridStix can be found in [21].

6 Related Work

Research work by Floch et all [15] on the use of architecture models for runtime adapt-
ability, shares the basic principles of our approach as for example the use of component
frameworks to support variability. They also take into account the benefits of coarse-
grained variability mechanisms. However our approach is more general as their focus
is only on mobile computing applications. Sora et all [36] also use architecture-based
abstractions for what they call self-customizable system. They composable components

Generation and Operation of Component-Based Adaptive Systems 197

which are similar to our component frameworks. They apply recursive composition ac-
cording to external requirements using ADLs what can be to some extent equivalent to
our reconfiguration policies. However, they do not offer reflection capabilities, i.e their
systems cannot reason about the current state or configuration of the system. Reflec-
tion offers potential support to determine where the points for variation are, what the
possible set of variations are, or the state of the system at any point in time. However,
using reflection has some drawbacks as the effect on performance and integrity issues.
When developing reflective systems a trade-off between flexibility and performance
has to be studied and a rigorous system development has to be performed. Neither of
the solutions in [15] and [36] provides generative capabilities as we offer. In [21] we
explain how the policy mechanisms contribute to providing a clear trace from user re-
quirements to adaptation requirements [6] and their implementations. In this sense, the
research related to requirements-driven composition in [36] is similar to our research.

Many mechanisms for runtime variability management have been proposed. They are
mainly focused on exchange of runtime entities, parametrization, inheritance for spe-
cialization, and preprocessor directives [19, 35, 37]. Our approach proposes the model-
based architecture management for whole sets of components, their connections and
semantics (i.e. we offer a more coarse grained approach).

In [18], Garlan and Schmerl describe their research work on the use of system mon-
itoring and reflective capabilities using architectural models. Specifically, they describe
their approach to monitor the executing system to translate observed events to events
that construct and update an architectural model that reflects the actual running sys-
tem. The final goal is to compare the dynamically-determined model with the correct
architectural model. Garlan and Schmerl argument how inconsistencies found after the
comparison can be used to identify implementation errors, or, even possibly, to effect
runtime adaptations to correct certain type of faults. Different from Garlan and Schmerl,
we do not deal in this paper with the self-healing issues of adapted systems. Our focus
is first, to offer the overall view of the system that domain experts and developers need
when planning the adaptations and secondly, to bridge the gap in between the differ-
ent levels of abstraction used by domain experts and middleware developers. There are
different research projects on architecture-based dynamic adaptations that use ADLs
including the research by Garlan and Schmerl. As explained in Section 3.3, the DSL
associated with the structural variability in Genie can be considered as an ADL with
generative capabilities. A difference between our approach and other ADL-based ap-
proaches such as ArchWare, Rainbow, ArchStudio [17, 25, 38] is that our architectural
descriptions are always tied to a component framework. Component frameworks of-
fer the architectural principles and constrains that address a specific area of concern
(e.g. routing protocol or discovery service). Furthermore, in our case systems can be
assembled from component frameworks in a recursive way. A component plugged into
a component framework may be an atomic component, but it can also be a compound
component that is a component framework itself. The view provided by this recursivity
along with the domain oriented nature provided by component frameworks is different
from the often flat view offered by the research projects named above.

When performing dynamic reorganization of the architecture we ensure that updates
are completed atomically and do not impact the integrity of the network. To do this,

198 N. Bencomo and G. Blair

frameworks are placed in a quiescent state ensuring that the reconfiguration is complete
and correct. We are investigating the use of architectural patterns to drive the generation
of software artefacts related to safe reconfiguration at that level. In this sense the work
presented by Gomaa and Hussein [22] is relevant and complementary to our research.
Finally, we see potential use in combining our approach with the Fujaba project princi-
ples [10]. Fujaba supports gradual transitions from one configuration to another and the
specification of timing constraints. The principle of gradual transitions can improve the
prescriptive policies of our approach.

7 Conclusions and Future Work

This paper has presented an approach called Genie. The approach uses architecture
models to support the generation and operation of component-based adaptive systems.
We have identified two dimensions of dynamic variability namely architectural or
structural variability and environment and context variability. Genie supports the use
of domain-specific languages to specify and validate models based on abstractions of
the dynamic variability dimensions. Models describe the architecture of reconfigurable
applications and the conditions of the environment and context that trigger the recon-
figuration of the architecture. From the models, different software artefacts (e.g. com-
ponents configurations and reconfiguration policies) can be generated. These artifacts
can be dynamically added to the system during its execution using the middleware
platforms. Such artefacts support the dynamic architectural reorganization, runtime
decision-making and system adaptation mechanisms. Specifically, transition diagram
models allow the developer to work at higher levels of abstraction. An important con-
tribution of Genie is the overall view of the different problem domains and the whole
process of reconfiguration that the systems can undergo. The approach has been suc-
cessfully applied in two different case studies.

Substantial research remains to be done. For example, a concern is the combina-
torial explosion related to the number of reconfiguration paths in the reconfiguration
graphs and the number of adaptation policies). The number of reconfiguration paths in
the case study was manageable. However, it might not be the case for other domains.
Furthermore, even if the designer specifies the reconfiguration graphs at a high-level of
abstraction, the explosion of the number of configurations and transitions to be specified
is a potential problem. We are investigating how to dynamically generate the reconfig-
uration scripts and how to avoid the enumeration of all possible configurations. Partial
results are shown in [30].

References

1. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Developing ap-
plications using model-driven design environments. IEEE Computer, 33–40 (2006)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley Professional, Reading (2003)

3. Bencomo, N.: Supporting the Modelling and Generation of Reflective Middleware Families
and Applications using Dynamic Variability. PhD thesis, Lancaster University (2008)

Generation and Operation of Component-Based Adaptive Systems 199

4. Bencomo, N., France, R., Blair, G.: 2nd international workshop on models@run.time. In:
Giese, H. (ed.) MODELS 2007. LNCS, vol. 5002, pp. 206–211. Springer, Heidelberg (2008)

5. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the model
driven development of reflective, component-based adaptive systems. In: ICSE 2008 - For-
mal Research Demonstrations Track (2008)

6. Berry, D.M., Cheng, B.H.C., Zhang, P.J.: The four levels of requirements engineering for and
in dynamic adaptive systems. In: 11th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ 2005), Porto, Portugal (2005)

7. Beuche, D., Papajewski, H., Schröder-Preikschat, W.: Variability management with feature
models. Science of Computer Programming. Special issue: Software variability manage-
ment 53(3), 333–352 (2004)

8. Blair, G., Coulson, G., Robin, P., Papathomas, M.: An architecture for next generation mid-
dleware. In: Seitz, J., Davies, N.A.J., Raymond, K. (eds.) IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware 1998), The
Lake District, UK, pp. 91–206 (1998)

9. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal component
model and its support in java. Software: Practice and Experience 36(11), 1257–1284 (2006)

10. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The fujaba real-time tool suite:
model-driven development of safety-critical, real-time systems. In: ICSE (2005)

11. Clements, P., Kogut, P.: The software architecture renaissance. Crosstalk - The Journal of
Defense Software Engineering 7(11) (1994)

12. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.: A generic
component model for building systems software. ACM Transactions on Computer Systems
(February 2008)

13. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and Applications.
Addison-Wesley, Reading (2000)

14. DiVA. Diva-dynamic variability in complex, adaptive systems (2008),
http://www.ict-diva.eu/

15. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using architecture
models for runtime adaptability. Software IEEE 23(2), 62–70 (2006)

16. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Briand, L., Wolf, A. (eds.) FoSE. IEEE-CS Press, Los Alamitos (2007)

17. Garlan, D.: Software Architecture: a Roadmap. ACM Press, New York (2000)
18. Garlan, D., Schmerl, B.: Using architectural models at runtime: Research challenges. In:

European Workshop on Software Architectures, St. Andrews, Scotland (2004)
19. Goedicke, M., Pohl, K., Zdun, U.: Domain-specific runtime variability in product line ar-

chitectures. In: 8th International Conference on Object-Oriented Information Systems, pp.
384–396 (2002)

20. Gokhale, A., Balasubramanian, K., Lu, T.: Cosmic: addressing crosscutting deployment and
configuration concerns of distributed real-time and embedded systems. In: OOPSLA 2004
Companion Book, NY, USA, pp. 218–219. ACM, New York (2004)

21. Goldsby, H.J., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.C.: Goal-based modeling
of dynamically adaptive system requirements. In: 15th Annual IEEE International Confer-
ence on the Engineering of Computer Based Systems (ECBS) (2008)

22. Gomaa, H., Hussein, M.: Model-based software design and adaptation. In: Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS 2007) (2007)

23. Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P., Beven, K.:
Gridstix: Supporting flood prediction using embedded hardware and next generation grid
middleware. In: 4th International Workshop on Mobile Distributed Computing (MDC 2006),
Niagara Falls, USA (2006)

http://www.ict-diva.eu/

200 N. Bencomo and G. Blair

24. Kon, F., Costa, F., Blair, G., Campbell, R.: The case for reflective middleware. Communica-
tions of the ACM 45(6), 33–38 (2002)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: FoSE 2007:
2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society, Los Alamitos
(2007)

26. Kruchten, P., Thompson, C.: An object-oriented, distributed architecture for large scale ada
systems. In: Tri-Ada 1994, Baltimore, Maryland (1994)

27. Lawson, H., Kirova, V., Rossak, W.: A refinement of the ecbs architecture constituent. In: In-
ternational Symposium and Workshop on Systems Engineering of Computer Based Systems,
Tucson, Arizona (1995)

28. Lee, J., Muthig, D.: Feature-oriented variability management in product line engineering.
Communications of the ACM 49(12) (2006)

29. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive software.
IEEE Computer 37(7), 56–64 (2004)

30. Morin, B., Fleurey, F., Bencomo, N., Jezequel, J.-M., Solberg, A., Dehlen, V., Blair, G.: An
aspect-oriented and model-driven approach for managing dynamic variability. In: MODELS
2008 Conference, France (2008)

31. van Ommering, R.: Building Product Populations with Software Components. PhD Thesis.
PhD thesis, Rijksuniversiteits Groningen (2004)

32. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems and Their Applications 14(3), 54–62 (1999)

33. Oreizy, P., Rosenblum, D.S., Taylor, R.N.: On the role of connectors in modeling and im-
plementing software architectures. Technical Report 98-04, University of California, Irvine
(1998)

34. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering- Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

35. Posnak, E., Lavender, G.: An adaptive framework for developing multimedia. Communica-
tions ACM 40(10), 43–47 (1997)

36. Sora, I., Cretu, V., Verbaeten, P., Berbers, Y.: Managing variability of self-customizable sys-
tems through composable components. Software Process: Improvement and Practice 10(1),
77–95 (2005)

37. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Software: Practice and Experience 35(8), 705–754 (2005)

38. Taylor, R.N., van der Hoek, A.: Software design and architecture the once and future focus
of software engineering. In: International Conference on Software Engineering, ICSE 2007
(FoSE 2007) (2007)

	Using Architecture Models to Support the Generation and Operation of Component-Based Adaptive Systems
	Introduction
	Dynamic Variability
	Overview
	Dynamic Variability in Adaptive Systems
	Architectural Reorganization Supported by Middleware Platforms

	The Genie Approach
	Overview
	Description of the Genie Approach
	Levels of Abstraction

	Case Study: A Wireless Sensor Network for Flood Management
	Overview
	Orthogonal Variability Models
	Artefacts Generated by the Genie Tool

	Discussion
	Contributions
	Ongoing Research

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

