
F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 43–58, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Prediction of Software Quality Model Using Gene
Expression Programming

Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

University School of Information Technology, GGS Indraprastha University,
Delhi 110403, India

Ys66@rediffmail.com, arvinderkaurtakkar@yahoo.com,
ruchikamalhotra@yahoo.com

Abstract. There has been number of measurement techniques proposed in the
literature. These metrics can be used in assessing quality of software products,
thereby controlling costs and schedules. The empirical validation of object-
oriented (OO) metrics is essential to ensure their practical relevance in indus-
trial settings. In this paper, we empirically validate OO metrics given by
Chidamber and Kemerer for their ability to predict software quality in terms of
fault proneness. In order to analyze these metrics we use gene expression pro-
gramming (GEP). Here, we explore the ability of OO metrics using defect data
for open source software. Further, we develop a software quality metric and
suggest ways in which software professional may use this metric for process
improvement. We conclude that GEP can be used in detecting fault prone
classes. We also conclude that the proposed metric may be effectively used by
software managers tin predicting faulty classes in earlier phases of software
development.

Keywords: Metrics, Object-oriented, Software Quality, Empirical validation,
Fault prediction, Gene expression programming.

1 Introduction

Faulty software classes cause software failures, increase development time, mainte-
nance costs and decrease customer satisfaction. Effective prediction models can help
software developers focus quality assurance activities on fault-prone classes and thus
improve software quality by using testing resources more efficiently. Static metrics
and fault data collected at class level can be used to construct fault prediction models
in practice. There have been empirical studies evaluating the impact of these metrics
on software quality and constructing models that utilize them in predicting quality
attributes of the system, such as [1-21]. However, there is a need of data based studies
to empirically validate these metrics for predicting faulty classes. In this work, we
find the impact of OO metrics on fault proneness of a class using open source soft-
ware Jedit [22]. We also develop a software quality metric, which can be used to pre-
dict faulty classes.

44 Y. Singh, A. Kaur, and R. Malhotra

Genetic algorithms have been successfully applied to protein structure prediction [23],
defect prediction [24], and memory bound computations [25]. GEP is a type of GA as
it uses population of individuals, selected them according to fitness function, and intro-
duces genetic variation using various operators [26]. In GEP mutations insure that the
resultant expression is not mathematically incorrect. “Experiments have shown that
GEP is 100 to 60,000 times faster than older genetic algorithms” [27]. Thus, we build a
model to predict faulty classes using the GEP. In GEP an expression is computed in
order to predict faulty/non faulty classes. We analyze and validate this expression in
order to predict faulty/non-faulty classes. Finally, we propose this expression as a qual-
ity metric for predicted fault prone classes. The lower values of this metric will imply
higher build and release quality.

The main contributions of this study are summarized as follows: First, we empiri-
cally validated OO metrics using GEP. This method is being successfully applied in
various disciplines and there is a need to evaluate its performance in predicting soft-
ware quality models. Second, we used open source software system. These systems are
developed with different development methods than proprietary software. In previous
studies mostly proprietary software were analyzed. Third, we develop a software qual-
ity metric that can be used by software quality practitioner in earlier phases of software
development to predict faulty classes. The proposed metric may also be used as quality
benchmark to assess and compare software products. The results showed that the pro-
posed metric predict faulty classes with good accuracy. However, since our analysis is
based on only one data set, this study should be replicated on different data sets to gen-
eralize our findings.

The paper is organized as follows: Section 2 provides an overview of GEP. Section 3
summarizes the metrics studied, describes sources from which data is collected and
gives hypothesis to be tested in the study. Section 4 presents the research methodology
followed in this paper. The results of the study are given in section 5. Section 6 presents
the definition and validation of the developed metric. The application of the developed
software quality metric is presented in section 7. Finally, conclusions of the research are
presented in section 8.

2 An Overview of Gene Expression Programming

A genetic algorithm (GA) is a search procedure with a goal to find a solution in a
multidimensional space. GA is generally many times faster than exhaustive search
procedures. There is a problem in finding a way to efficiently mutate and cross-breed
symbolic expressions so that the resultant expressions have a valid mathematical
syntax.

Candida Ferreira provided a solution to this problem [26]. Ferreira developed a
system for encoding expressions so that a wide variety of mutation and cross-
breeding techniques perform faster while guaranteeing that the resultant expression
will always be a valid mathematical syntax. This procedure is known as GEP. GEP
was presented as a new technique for the creation of computer programs. GEP uses
chromosomes composed of genes organized in a head and a tail. The chromosomes
are subjected to modification by means of mutation, inversion, transposition, and

 Prediction of Software Quality Model Using Gene Expression Programming 45

recombination. The technique performs with high efficiency that greatly surpasses
existing adaptive techniques.

2.1 Converting Expression Tree into k-Expression

GEP encodes the symbols in genes. This notation is called the karva language [26].
Expressions encoded using karva language are called k-expressions.

For example, the expression a+b*c can be encoded in the expression tree shown in
Figure 1.

Fig. 1. Expression Tree for a+b*c

To convert the expression tree using karva language, start at the left-most symbol
in top line, scan symbols from top to bottom, and left to right. The resultant k-
expression is *+cab.

The process of converting an expression tree into a k-expression and vice versa can
be done quickly by a computer.

2.2 Genes

The fixed number of symbols encoded in karva language constitutes a gene. A GEP
gene has a head and a tail. The head can contain functions, constants, and variables
whereas a tail can only contain variables and constants. The number of symbols in the
head of a gene is passed as an argument in the analysis. The number of symbols in the
tail is determined by the following equation

tail = head (Max-1) + 1 (1)

where tail is the number of symbols in the tail
head is the number of symbols in the head
Max is the maximum number of operands required by any function
The tail provides a store of terminal symbols consisting of variables and constants

that can be used as arguments for functions in the head. For example, head can be
+,*,/ and tail can be abde. The expression is shown in Figure 2.

*

+ c

a b

46 Y. Singh, A. Kaur, and R. Malhotra

Fig. 2. Expression for Head +,*, / and Tail abde

During mutation, symbols in the head can be replaced by terminal symbols or
functions whereas terminals (variables and constants) can replace symbols in the tail
(see Figure 3).

Fig. 3. Resultant Expression after Mutation

GEP ensures that the following rules are followed inorder to generate valid expres-
sion during mutation:

1. Symbols in the head are replaced with functions, constants, and variables.
2. Symbols in the tail are only replaced with variables and constants
3. The tail is of sufficient length (see equation (1))

2.3 Chromosomes

A chromosome consist of one or more than one genes of equal length. If there are
more then on chromosomes in the gene, then a linking function is used to join the
genes in the final function.

Consider the following example:

Gene 1: +ab
Gene 2: *cd

+

*

a b

/

d e

+

*

a b

e

 Prediction of Software Quality Model Using Gene Expression Programming 47

Fig. 4. Example of a 2-Gene Chromosome

The following steps are used in the training of a model using GEP:

1. Create an initial population of chromosomes.
2. Attempt to create chromosomes that model the data well.
3. Try to find a simpler function.

2.4 GEP Process

In order for a population to improve from generations to generations to predict the
target variable (fault proneness in our study), mutation, inversion, transportation, and
recombination are performed.

Mutation
Mutation can occur anywhere in the chromosomes but the structural organization of
the chromosomes should not be changed. Mutation replaces symbols in heads of genes
by function or variables and constants and symbols in tails are replaced only by vari-
ables and constants. Thus, the structural organization of chromosomes remains intact
and the correct programs are produced by the mutation in the form of new individuals.

Inversion
Inversion reverses the order of symbol in a gene section.

Transposition
Transposition selects a group of symbols and moves them to a different position in the
same gene.

Recombination
Two chromosomes are selected randomly and generic portion is exchanged between
them inorder to produce two new chromosomes. There are three types of recombina-
tions: one-point, two-point, and gene recombination.

3 Research Background

In this section, we present the summary of metrics studied in this paper (Section 3.1)
and empirical data collection (Section 3.2).

+

+

a b

*

c d

Linking Function

48 Y. Singh, A. Kaur, and R. Malhotra

3.1 Dependent and Independent Variables

The binary dependent variable in our study is fault proneness. The goal of our study is
to empirically explore the relationship between OO metrics and fault proneness at the
class level. Fault proneness is defined as the probability of fault detection in a class.
We use GEP to predict probability of fault proneness. Our dependent variable will be
predicted based on the faults found during software development. The software met-
rics [28-36] can be used in predicting these quality attributes. In this study, we em-
pirically validated metrics given Chidamber and Kemerer [32] (see Table 1). These
metrics are explained with practical applications in [28].

Table 1. Metrics Studied (Chidamber and Kemerer [32] suite)

Metric Definition
Coupling between
Objects (CBO)

CBO for a class is count of the number of other classes to which it is
coupled and vice versa.

Lack of Cohesion
(LCOM)

It measures the dissimilarity of methods in a class by looking at the instance
variable or attributes used by methods. Consider a class C1 with n methods
M1, M2…., Mn. Let (Ij) = set of all instance variables used by method Mi.
There are n such sets {I1},…….{In}. Let
P }0II |)II({(Q and }0II |)II{(ji j,ji j, ≠∩==∩= ii . If all n sets

)}.(I},........I{(n1 are 0 then P=0

otherwise 0

|Q| |P| if |,Q|-|P| LCOM

=

>=

Number of Children
(NOC)

The NOC is the number of immediate subclasses of a class in a hierarchy.

Depth of Inheritance
(DIT)

The depth of a class within the inheritance hierarchy is the maximum
number of steps from the class node to the root of the tree and is measured
by the number of ancestor classes.

Weighted Methods per
Class (WMC)

The WMC is a count of sum of complexities of all methods in a class.
Consider a class K1, with methods M1,…….. Mn that are defined in the
class. Let C1,……….Cn be the complexity of the methods.

=

=

n

1i

iCWMC

If all method complexities are considered to be unity, then WMC = n, the
number of methods in the class.

Response for a Class
(RFC)

The response set of a class (RFC) is defined as set of methods that can be
potentially executed in response to a message received by an object of that
class. It is given by
RFC=|RS|, where RS, the response set of the class, is given by

}{R M ijjalli ∪=RS

Number of Public
Methods (NPM)

It is the count of number of public methods in a class.

Lines Of Code (LOC) It is the count of lines in the text of the source code excluding comment
lines

To incorporate the correlation of independent variables, a correlation based feature

selection technique (CFS) is applied to select to select the best predictors out of inde-
pendent variables in the datasets [37]. The best combinations of independent variable
were searched through all possible combinations of variables. CFS evaluates the best
of a subset of variables (OO metrics in our case) by considering the individual predic-
tive ability of each feature along with the degree of redundancy between them.

 Prediction of Software Quality Model Using Gene Expression Programming 49

3.2 Empirical Data Collection

We used JEdit open source software in this study [38]. JEdit is a programmer’s text edi-
tor developed using Java language. JEdit combines the functionality of Window, Unix,
and MacOS text editors. It was released as free software and the source code is available
on www.sourceforge.net/projects/jedit. The LOC of JEdit is 169,107. The number of
developers involved in this project was 144. The project was started in 1999.

The metric data was computed using metric tool, Understand for Java [39]. The
metrics proposed by Chidamber and Kemerer [32] were computed using this tool. The
number of bugs was computed using SVC repositories. The release point for the pro-
ject was identified in 2002. The log data from that point to 2007 was collected. The
header files in C++ were excluded in data collection. The word bug or fixed was
counted. Details on bug collection process can be found in [40].

4 Research Methodology

In this section, the steps taken to analyze coupling, cohesion, inheritance and size
metrics for classes taken for analysis are described. The procedure used to analyze the
data collected for each measure is described in following stages (i) data statistics and
outlier analysis (ii) correlation among metrics (iii) performance measures.

4.1 Descriptive Statistics and Outlier Analysis

The role of statistics is to function as a tool in analyzing research data and drawing
conclusions from it. The research data must be suitably reduced so that the same can be
read easily and can be used for further analysis. Descriptive statistics concern devel-
opment of certain indices or measures to summarize data. The important statistics
measures used for comparing different case studies include mean, median, and stan-
dard deviation. Data points, which are located in an empty part of the sample space, are
called outliers. Outlier analysis is done to find data points that are over influential and
removing them is essential. Univariate and multivariate outliers are found in our study.
To identify multivariate outliers, we calculate for each data point the Mahalanobis
Jackknife distance. Mahalanobis Jackknife is a measure of the distance in multidimen-
sional space of each observation from the mean center of the observations [1, 41].

The influence of univariate and multivariate outliers was tested. If by removing an
univariate outlier the significance (see Section 3.4) of metric changes i.e., the effect of
that metric on fault proneness changes then the outlier is to be removed. Similarly, if
the significance of one or more independent variables in the model depends on the
presence or absence of the outlier, then that outlier is to be removed. Details on outlier
analysis can be found in [42].

4.2 Correlation among Metrics

Correlation analysis studies the variation of two or more variables for determining the
amount of correlation between them. In order to analyze the relationship among de-
sign metrics we use Spearman's Rho coefficient of correlation. We preferred to use a
non-parametric technique (Spearman's Rho) for measuring relationship among OO
metrics as we usually observe the skewed distribution of the design measures.

50 Y. Singh, A. Kaur, and R. Malhotra

4.3 Evaluating the Performance of the Models

The performance of binary prediction models is typically evaluated using confusion
matrix (see Table 2). In this study, we used the commonly used evaluation measures.
These measures include Sensitivity, Precision, Specificity, and ROC analysis.

Table 2. Confusion matrix

Observed Predicted

 1.00 (Fault-Prone) 0.00 (Not Fault-Prone)
1.00 (Fault-Prone) True Fault Prone

(TFP)
False Not Fault Prone

(FNFP)
0.00 (Not Fault-Prone) False Fault Prone

(FFP)
True Not Fault Prone

(TNFP)

Precision
It is defined as the ratio of number of classes correctly predicted to the total number of
classes.

TNFPFFPFNFPTFP

TNFPTFP

+++
+=Precision (2)

Sensitivity
It is defined as the ratio of the number of classes correctly predicted as fault prone to
the total number of classes that are actually fault prone.

FNFPTFP

TFP

+
=ySensitivit (3)

Sensitivity
It is defined as the ratio of the number of classes correctly predicted as not fault prone
to the total number of classes that are actually not fault prone.

FNFPFFP

TNFP

+
=ySpecificit (4)

Completeness
It is defined as the number of faults in classes classified fault-prone, divided by the
total number of faults in the system.

Receiver Operating Characteristic (ROC) Analysis
ROC curve, which is defined as a plot of sensitivity on the y-coordinate versus its 1-
specificity on the x coordinate, is an effective method of evaluating the quality or per-
formance of predicted models [11]. While constructing ROC curves, one selects many
cutoff points between 0 and 1 in our case, and calculates sensitivity and specificity at
each cut off point. The optimal choice of cutoff point (that maximizes both sensitivity
and specificity) can be selected from the ROC curve [11, 43]. Hence, by using ROC
curve one can easily determine optimal cutoff point for an predicted model.

 Prediction of Software Quality Model Using Gene Expression Programming 51

Area Under the ROC Curve (AUC) is a combined measure of sensitivity and speci-
ficity. In order to compute the accuracy of the predicted models, we use the area un-
der ROC curve.

Cross Validation
In order to predict accuracy of model it should be applied on different data sets. We
therefore performed holdout validation of models [44]. The data set is randomly di-
vided into testing and validations data sets.

5 Analysis Results

This section presents the analysis results, following the procedure described in Sec-
tion 4. Descriptive statistics (Section 5.1), GEP results (Section 5.2).

5.1 Descriptive Statistics

Table 3 show "min", "max", "mean", "std dev", "75% quartile" and "25% quartile" for
all metrics considered in this study.

Table 3. Descriptive Statistics for OO metrics

Metric Min. Max. Mean Std. Dev. Percentile (25%) Percentile (75%)
WMC 0 407 11.72 31.201 3 10

DIT 0 7 2.496 1.976 1 3

NOC 0 35 0.715 3.100 0 0

CBO 0 105 12.64 14.13 4 17

RFC 0 843 174.97 269.5 20.75 84.25

LCOM 0 100 46.23 33.51 0 75

NPM 0 193 7.78 17.12 1 8

LOC 3 6191 206.21 529.66 32.75 171.75

The following observations are made from Table 3:

• The size of a class measured in terms of lines of source code ranges from 3-6191.
• The values of DIT and NOC are less, which shows that inheritance is not much used

in all the systems; similar results have also been shown by other studies [7, 9, 10].
• The LCOM measure, which counts the number of classes with no attribute

usage in common, has high values (upto 100).

We calculated the correlation among metrics as shown in Table 4 which is an im-
portant static quantity. Zhou and Leung (2006), Gyimothy, Forenc, and Siket [13] and
Basili et al. [4] calculated the correlation among metrics. WMC metric is correlated
with all the metrics except DIT, NOC and RFC. There is a correlation between DIT
and RFC metrics, between RFC and CBO metrics, LCOM and CBO and between
LCOM and NPM metrics. LOC metric is correlated with all the metrics except DIT
and NOC metrics. Therefore, it shows that these metrics are not totally independent
and represents redundant information.

52 Y. Singh, A. Kaur, and R. Malhotra

Table 4. Correlations among Metrics

Metric WMC DIT NOC CBO RFC LCOM NPM LOC

WMC 1

DIT -0.17 1

NOC -0.005 -0.363 1

CBO 0.53 0.314 -0.297 1
RFC 0.245 0.813 -0.336 0.619 1

LCOM 0.632 0.073 -0.105 0.531 0.340 1

NPM 0.822 -0.086 -0.032 0.447 0.281 0.570 1

LOC 0.698 0.154 -0.227 0.841 0.500 0.620 0.572 1

5.2 Gene Expression Programming (GEP) Results

In this section, we present the results of combined effect of OO metrics on fault
proneness (same as multivariate analysis). The subset of attributes was selected using
CFS method described in Section 3.1. NPM, CBO, RFC, DIT, and LOC were selected
from the set of eight metrics.

In Table 5, we summarize the parameters to and determined by GEP. 576 genera-
tions were used to train the model to predict faulty classes and an additional generation
to simplify the expression. We used 4 genes per chromosome and addition function to
link the genes.

Table 5. GEP Parameters

Population size 50
Gene per chromosome 4
Gene head length 8
Generations required to train the model 576
Generations required for simplification 1
Linking Function Addition
Fitness function Number of correct predictions with penalty

The fitness function measures the number of correct predictions and penalties the

situation where there is no correct predictions for some target categories of dependent
variable.

TNFPFFPFNFPTFP

TNFPTFP
Fitness

+++
+=

If there are some correctly classified fault prone and not fault prone classes the
fitness is the proportion of correctly predicted classes, but if there is no correct predic-
tion foe either faulty or non faulty classes then the fitness is 0.

The model was applied to 274 classes and Table 6 presents the results of correct-
ness of the fault proneness model predicted. As shown in Table 6, out of 134 classes,

 Prediction of Software Quality Model Using Gene Expression Programming 53

Table 6. Accuracy of Model Predicted using Training Data

Observed Predicted

 0.00 1.00
0.00 111 29
1.00 35 99

actually fault prone, 99 classes were predicted to be fault prone. The sensitivity of the
model is 73.8 percent. Similarly, 111 out of 140 classes were predicted not to be fault
prone. Thus, specificity of the model is 79.28 percent. Table 7 shows the sensitivity,
specificity, precision and AUC of model predicted using GEP method.

Table 7. Result of Model Training

GENE EXPRESSION
PROGRAMMING

Cutoff
Sensitivity
Specificity
Precision

AUC

0.5
73.5

79.28
76.64
0.77

6 Software Quality Metric Definition and Validation

Based on the results obtained from model prediction using GEP, we propose the gen-
erated expression as a software quality metric that can be used to predict faulty
classes. The metric is defined as follows:

Metric: Fault Factor (FF)

Definition: Consider a class C1, then the fault factor of the class is defined as follows:

)RFC LOC))-NPM * DIT) (((NPM

 NPM) * (2 LOC * 2 DIT)) (LOC * (2 CBONPM * NPM * 2 FF

++

++++++=
 (5)

0FF

 then 0,)RFC LOC))-NPM * DIT) (((NPM

 NPM) * (2 LOC * 2 DIT)) (LOC * (2 CBONPM * NPM * 2 if

=
<++

++++++

Where

NPM = Number of public methods in a class
CBO = Count of import and export coupling in a class
LOC = Lines of code in a class
DIT = Number of ancestors of a class
RFC = Number of external and internal methods in a class

54 Y. Singh, A. Kaur, and R. Malhotra

When we validated the above predicted model using FF metric on 74 classes, 25
out of 38 were correctly classified as non faulty and 27 out of 36.classes were pre-
dicted to be faulty (see Table 8). Thus, the sensitivity is 75% and specificity is
65.78%. The AUC of the model is 0.704. Table 9 shows the sensitivity, specificity,
precision, and AUC of model predicted using the developed metric..

Table 8. Accuracy of Model Predicted Using Validation Data

Observed Predicted

 0.00 1.00
0.00 25 13
1.00 9 27

Table 9. Result of Model Validation

GENE EXPRESSION
PROGRAMMING

Cutoff
Sensitivity
Specificity
Precision

AUC

0.5
75
65

69.3
0.704

7 Application of the FF Metric

Software developers can use the FF metric developed in the previous section in ear-
lier phases of software development to measure the quality of the systems. From the
design phase, one can make software measurements and then predict which classes
will need extra attention during the remainder of development. The classes with
higher values of FF metric will be predicted to be non faulty and the classes with less
value of FF metric will be predicted as faulty. This can help management focus re-
sources on those classes that cause most of the problems. Also, if required, develop-
ers can reconsider design and thus take corrective actions. In order to draw strong
conclusions, however, more studies should evaluate the effectiveness of the proposed
metric.

These design measurements can be used as quality benchmarks to assess and com-
pare products, after one calculated the value of FF metric. More such studies can pro-
vide quality benchmarks across organizations, whereas within an organization, quality
benchmarks can be set comparing metric values with the existing operational good
quality software. If deviation is found in the metric values further investigation to
know the cause of deviation could be done. Thus, corrective actions could be taken
before final delivery or future releases of the software. This is particularly important
when systems are maintained over a long period and new versions are released

 Prediction of Software Quality Model Using Gene Expression Programming 55

regularly. Based on our observation the classes with value of FF between 2 and 392
should be classified as non faulty and the classes with values less than 2 should be
classified as faulty.

Planning and resource allocating for inspection and testing is difficult. The FF met-
ric developed in the previous section could be of great help for planning and execut-
ing testing activities. The bar chart shown in Figure 5, shows that 15.6% of classes
(12 out of 134 faulty classes) misclassified as non faulty have only 1-3 number of
faults. Thus, the classes with high number of faults were mostly correctly classified to
be fault prone. Thus, for example, if one has the resources available to inspect 26 per-
cent of the code. From the values calculated by the FF metric one can tell that classes
with the lowest predicted metric values and total LOC upto 26% should only be
tested. If these classes are selected for testing one can expect maximum faults to be
covered.

0

2

4

6

8

10

12

1 2 3 6 11 15 16 20

Number of Faults

N
um

b
er

 o
f

C
la

ss
es

Fig. 5. Number of Faults Misclassified with Respect to Number of Classes

8 Conclusion

This paper empirically evaluates the performance of GEP algorithm in predicting
fault-prone classes. We developed a software quality metric using the expression gen-
erated from GEP. The faulty classes were predicted using OO metrics proposed by
Chidamber and Kemerer. The developed metric was validated using open source
software. The results indicate that that the performance of GEP is at least competitive.
This study confirms that construction of model using GEP is feasible, adaptable to
OO systems, and useful in predicting fault prone classes.

56 Y. Singh, A. Kaur, and R. Malhotra

The precision of developed metric FF is 69.3 percent, its accuracy in predicting
faulty classes is 75 percent, and specificity is 65 percent. While research continues,
practitioners and researchers may apply the proposed metric for predicting faulty
classes. The FF metric can help in improving software quality in the context of soft-
ware testing by reducing risks of faulty classes go undetected. As discussed, one im-
portant application of the proposed metric FF is to build quality benchmarks to assess
fault proneness of OO systems that are newly developed or under maintenance, for
example, in the case of software acquisition and outsourcing. Thus, one can conclude
that FF metric appears to be well suited to develop practical quality benchmarks.

The future work may include conducting similar type of studies with different data
sets to give generalized results across different organizations. We plan to replicate our
study to predict model based on genetic algorithms. We will also focus on cost benefit
analysis of models that will help to determine whether a given fault proneness model
would be economically viable.

References

1. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical Analysis for Investigating
the Effect of Object-Oriented Metrics on Fault Proneness: A Replicated Case Study. Soft-
ware Process Improvement and Practice 14(1), 39–62 (2008)

2. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Investigating the Effect of Coupling
Metrics on Fault Proneness in Object-Oriented Systems. Software Quality Profes-
sional 8(4), 4–16 (2006)

3. Barnett, V., Price, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1995)
4. Basili, V., Briand, L., Melo, W.: A Validation of Object-Oriented Design Metrics as Qual-

ity Indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)
5. Bieman, J., Kang, B.: Cohesion and reuse in an object-oriented system. In: Proceedings of

the ACM Symposium on Software Reusability, pp. 259–262 (1995)
6. Binkley, A., Schach, S.: Validation of the coupling dependency metric as a risk predictor.

In: Proceedings of the International Conference on Software Engineering, pp. 452–455
(1998)

7. Briand, L., Daly, W., Wust, J.: Exploring the relationships between design measures and
software quality. Journal of Systems and Software 5, 245–273 (2000)

8. Briand, L., Wüst, J., Lounis, H.: Replicated Case Studies for Investigating Quality Factors
in Object-Oriented Designs. Empirical Software Engineering: An International Jour-
nal 6(1), 11–58 (2001)

9. Cartwright, M., Shepperd, M.: An Empirical Investigation of an Object-Oriented Software
System. IEEE Transactions of Software Engineering 26(8), 786–796 (1999)

10. Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of Metrics for Object-Oriented
Software: An Exploratory Analysis. IEEE Transactions on Software Engineering 24(8),
629–639 (1998)

11. El Emam, K., Benlarbi, S., Goel, N., Rai, S.: A Validation of Object-Oriented Metrics,
Technical Report ERB-1063, NRC (1999)

12. El Emam, K., Benlarbi, S., Goel, N., Rai, S.: The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics. IEEE Transactions on Software Engineering 27(7),
630–650 (2001)

 Prediction of Software Quality Model Using Gene Expression Programming 57

13. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open
source software for fault prediction. IEEE Trans. Software Engineering 31(10), 897–910
(2005)

14. Harrison, R., Counsell, S.J., Nithi, R.V.: An Evaluation of MOOD set of Object-Oriented
Software Metrics. IEEE Trans. Software Engineering SE-24(6), 491–496 (1998)

15. Lee, Y., Liang, B., Wu, S., Wang, F.: Measuring the Coupling and Cohesion of an Object-
Oriented program based on Information flow (1995)

16. Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. Journal of Sys-
tems and Software 23(2), 111–122 (1993)

17. Olague, H., Etzkorn, L., Gholston, S., Quattlebaum, S.: Empirical Validation of Three
Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Developed
Using Highly Iterative or Agile Software Development Processes. IEEE Transactions on
software Engineering 33(8), 402–419 (2007)

18. Pai, G.: Empirical analysis of Software Fault Content and Fault Proneness Using Bayesian
Methods. IEEE Transactions on software Engineering 33(10), 675–686 (2007)

19. Tang, M.H., Kao, M.H., Chen, M.H.: An Empirical Study on Object-Oriented Metrics.
In: Proceedings of Metrics, pp. 242–249 (1999)

20. Tegarden, D., Sheetz, S., Monarchi, D.: A software complexity model of object-oriented
systems. Decision Support Systems 13(3-4), 241–262 (1995)

21. Zhou, Y., Leung, H.: Empirical analysis of Object-Oriented Design Metrics for predicting
high severity faults. IEEE Transactions on Software Engineering 32(10), 771–784 (2006)

22. promise, http://promisedata.org/repository/
23. Moreira, B.C., Fitzjohn, P.W., Offman, M., Smith, G.R., Bates, P.A.: Novel Use of a Ge-

netic Algorithm for Protein Structure Prediction: Searching Template and Sequence
Alignment Space. PROTEINS: Structure, Function, and Genetics 53, 424–429 (2003)

24. Sheta, A.F.: Estimation of the COCOMO Model Parameters Using Genetic Algorithms for
NASA Software Projects. Journal of Computer Science 2(2), 118–123 (2006)

25. Tikir, M., Carrington, L., Strohmaier, E., Snavely, A.: A Genetic Algorithms Approach to
Modeling the Performance of Memory-bound Computations. In: SC 2007, Reno, Nevada,
USA, November 10-16 (2007)

26. Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving
Problems. Complex Systems 13, 87–129 (2001)

27. Sherrod, P.: DTreg Predictive Modeling Software (2003)
28. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical study of object-oriented

metrics. Journal of Object Technology 5(8), 149–173 (2006)
29. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Software Reuse Metrics for Object-

Oriented Systems. In: Third ACIS Int’l Conference on Software Engineering Research,
Management and Applications (SERA 2005), pp. 48–55. IEEE Computer Society, Los
Alamitos (2005)

30. Briand, L., Daly, W., Wust, J.: Unified Framework for Cohesion Measurement in Object-
Oriented Systems. Empirical Software Engineering 3, 65–117 (1998)

31. Briand, L., Daly, W., Wust, J.: A Unified Framework for Coupling Measurement in Ob-
ject-Oriented Systems. IEEE Transactions on software Engineering 25, 91–121 (1999)

32. Chidamber, S., Kemerer, C.: A metrics Suite for Object-Oriented Design. IEEE Trans.
Software Engineering SE-20(6), 476–493 (1994)

33. Henderson-sellers, B.: Object-Oriented Metrics, Measures of Complexity. Prentice-Hall,
Englewood Cliffs (1996)

34. Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.
In: Proc. Int. Symposium on Applied Corporate Computing, Monterrey, Mexico (1995)

58 Y. Singh, A. Kaur, and R. Malhotra

35. Lake, A., Cook, C.: Use of factor analysis to develop OOP software complexity metrics.
In: Proceedings of the 6th Annual Oregon Workshop on Software Metrics, Silver Falls,
Oregon (1994)

36. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs
(1994)

37. Hall, M.: Correlation-based feature selection for discrete and numeric class machine learning.
In: Proceedings of the 17th International Conference on Machine Learning, pp. 359–366
(2000)

38. jedit, http://sourceforge.net/projects/jedit/
39. scitools, http://www.scitools.com/index.php
40. Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a Fault Prediction Model to Allow Inter

Language Reuse. In: PROMISE 2008, Leipzig, Germany, May 12–13 (2008)
41. Hair, J., Anderson, R., Tatham, W.: Black Multivariate Data Analysis. Pearson Education,

London (2000)
42. Belsley, D., Kuh, E., Welsch, R.: Regression Diagnostics: Identifying Influential Data and

Sources of Collinearity. John Wiley & Sons, Chichester (1980)
43. Hanley, J., McNeil, B.: The meaning and use of the area under a Receiver Operating Char-

acteristic ROC curve. Radiology 143, 29–36 (1982)
44. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Royal Stat.

Soc. 36, 111–147 (1974)

	Prediction of Software Quality Model Using Gene Expression Programming
	Introduction
	An Overview of Gene Expression Programming
	Converting Expression Tree into k-Expression
	Genes
	Chromosomes
	GEP Process

	Research Background
	Dependent and Independent Variables
	Empirical Data Collection

	Research Methodology
	Descriptive Statistics and Outlier Analysis
	Correlation among Metrics
	Evaluating the Performance of the Models

	Analysis Results
	Descriptive Statistics
	Gene Expression Programming (GEP) Results

	Software Quality Metric Definition and Validation
	Application of the FF Metric
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

