

Lecture Notes
in Business Information Processing 32

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Frank Bomarius Markku Oivo
Päivi Jaring Pekka Abrahamsson (Eds.)

Product-Focused
Software Process
Improvement

10th International Conference, PROFES 2009
Oulu, Finland, June 15-17, 2009
Proceedings

13

Volume Editors

Frank Bomarius
Fraunhofer IESE
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
E-mail: frank.bomarius@iese.fraunhofer.de

Markku Oivo
University of Oulu
Department of Information Processing Science
P.O.Box 3000, 90014 Oulu, Finland
E-mail: markku.oivo@oulu.fi

Päivi Jaring
VTT Technical Research Centre of Finland
Tietotie 3, 02150 Espoo, Finland
E-mail: paivi.jaring@vtt.fi

Pekka Abrahamsson
University of Helsinki
Department of Computer Science
P.O.Box 68, 00014 Helsinki, Finland
E-mail: Pekka.Abrahamsson@cs.helsinki.fi

Library of Congress Control Number: Applied for

ACM Computing Classification (1998): D.2, K.6

ISSN 1865-1348
ISBN-10 3-642-02151-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02151-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12693689 06/3180 5 4 3 2 1 0

Preface

On behalf of the PROFES Organizing Committee we are proud to present the proceed-
ings of the 10th International Conference on Product Focused Software Process Im-
provement (PROFES 2009), held in Oulu, Finland. Since the first conference in 1999,
the conference has established its place in the software engineering community as a
respected conference that brings together participants from academia and industry.

The roots of PROFES are in professional software process improvement motivated
by product and service quality needs. The conference addresses both the solutions
found in practice as well as relevant research results from academia. To ensure that
PROFES retains its high quality and focus on the most relevant research issues, the
conference has actively maintained close collaboration with industry and subse-
quently widened its scope to the research areas of collaborative and agile software
development. A special focus for 2009 was placed on software business to bridge
research and practice in the economics of software engineering. This enabled us to
cover software development in a more comprehensive manner and tackle one of the
most important current challenges identified by the software industry and software
research community – namely, the shift of focus from “products” to “services.” The
current global economic downturn emphasizes the need for new methods and solu-
tions for fast and business-oriented development of products and services in a glob-
ally distributed environment.

PROFES conferences have continuously attracted attendees from industry, re-
search, and academia. This confirms that the conference has provided topics that are
up-to-date, important, and interesting. PROFES 2009 offered a unique forum for
industry and academic professionals to discuss their needs and ideas especially from
the perspective of software as a business.

The conference included two top keynote speakers: (1) David G. Messerschmitt, who
is the Roger A. Strauch Professor Emeritus of Electrical Engineering and Computer
Sciences (EECS) at the University of California at Berkeley, and also a Visiting Profes-
sor in the Department of Computer Science and Engineering at the Helsinki University of
Technology (HUT) and (2) Steven Fraser, Director of Engineering from Cisco Research
in San Jose, California, where he is responsible for Cisco Research Center operations.

PROFES also hosted the workshop on “Learning Software Organizations”
(LSO2009), the workshop on “Smarter Investment by Aligning SPI Initiatives, Capa-
bilities and Stakeholder Values” and several pre-conference tutorials.

We wish to thank the VTT Technical Research Center of Finland, the University of
Oulu, and Fraunhofer IESE, for supporting the conference. We are also grateful to the
authors for the high-quality papers, the Program Committee for their hard work in
reviewing the papers, the Organizing Committee for making the event possible, and
all the numerous supporters who helped in organizing this conference.

April 2009 Frank Bomarius

Markku Oivo
Päivi Jaring

Pekka Abrahamsson

Organization

Profes 2009 was organized by the VTT Technical Research Centre of Finland,
University of Oulu, Fraunhofer IESE, Kaiserslautern, and University of Helsinki.

Organizing Committee

General Chair Pekka Abrahamsson (University of Helsinki, Finland)
Program Chairs Frank Bomarius (Fraunhofer IESE, Germany)

 Markku Oivo (University of Oulu, Finland)
Organizing Chairs Päivi Jaring (VTT Technical Research Centre of Finland)

 Kaarina Karppinen (VTT Technical Research
Centre of Finland)

Special Theme Chairs Nilay Oza (VTT Technical Research Centre of Finland)
 Timo Koivumäki (VTT Technical

Research Centre of Finland)

Program Committee

Zeiad Abdelnai
Garyounis

University IT College, Libya

Silvia Abrahão Universidad Politécnica de Valencia, Spain
Muhammad Ali Barbar University of Limerick, Ireland
Bente Anda Simula Research Laboratory, Norway
Teresa Baldassarre University of Bari, Italy
Andreas Birk SWPM - Software.Process.Management, Germany
Danilo Caivano University of Bari, Italy
Gerardo Canfora University of Sannio, Italy
Jeff Carver Alabama University, USA
Marcus Ciolkowski Fraunhofer Institute for Experimental

Software Engineering, Germany
Reidar Conradi Norwegian University of Science and

Technology, Norway
Beniamino Di Martino Second University of Naples, Italy
Torgeir Dingsøyr SINTEF, Norway
Tore Dybå SINTEF, Norway
Davide Falessi University of Rome "Tor Vergata", Italy
Raimund Feldmann Fraunhofer Center Maryland, USA
Jens Heidrich Fraunhofer Institute for Experimental Software

Engineering, Germany
Martin Höst Lund University, Sweden
Frank Houdek Daimler AG, Germany
Hajimu Iida NAIST, Japan
Katsuro Inoue Osaka University, Japan

Organization

VIII

Michel Jaring Fluxica, Finland
Andreas Jedlitschka Fraunhofer Institute for Experimental

Software Engineering, Germany
Erik Johansson Ericsson Mobile Platforms, Sweden
Natalia Juristo Universidad Politécnica de Madrid, Spain
Janne Järvinen F-Secure, Finland
Pasi Kuvaja University of Oulu, Finland
Kari Känsälä Nokia, Finland
Marek Leszak Alcatel-Lucent, Germany
Lech Madeyski Wroclaw University of Technology, Poland
Makoto Matsuhita Osaka University, Japan
Kenichi Matsumoto Nara Institute of Science and Technology, Japan
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF ICT, Norway
Maurizio Morisio Politecnico di Torino, Italy
Mark Müller Robert Bosch GmbH, Germany
Jürgen Münch Fraunhofer IESE, Germany
Annukka Mäntyniemi Nokia, Finland
Haruka Nakao Japan Manned Space Systems Corporation, Japan
Risto Nevalainen FiSMA ry, Finland
Mahmood Niazi Keele University, UK
Paolo Panaroni INTECS, Italy
Dietmar Pfahl Simula Research Laboratory and University of Oslo,

Norway
Minna Pikkarainen VTT, Finland
Teade Punter Embedded Systems Institute (ESI), The Netherlands
Austen Rainer University of Hertfordshire, UK
Karl Reed La Trobe University, Australia
Daniel Rodriguez University of Alcalá, Spain
Outi Salo Nokia, Finland
Kurt Schneider Leibniz Universität Hannover, Germany
Carolyn Seaman UMBC and Fraunhofer Center Maryland, USA
Darja Šmite University of Latvia, Latvia
Michael Stupperich Daimler AG, Germany
Guilherme Travassos COPPE/UFRJ, Brazil
Markku Tukiainen University of Joensuu, Finland
Mark van den Brand Eindhoven University of Technology, The Netherlands
Rini van Solingen Delft University of Technology, The Netherlands
Sira Vegas Universidad de Politecnica de Madrid, Spain
Matias Vierimaa VTT, Finland
Hironori Washizaki National Institute of Informatics, Japan
Claes Wohlin Blekinge Institute of Technology, Sweden
Bernhard Wong University of Technology, Sydney, Australia

Sponsoring Institutions

City of Oulu, VTT, IESE and University of Oulu

Table of Contents

Keynote Addresses

The Consumer Juggernaut: Web-Based and Mobile Applications as
Innovation Pioneer . 1

David G. Messerschmitt

Software “Best” Practices: Agile Deconstructed . 8
Steven Fraser

Evidence Based Software Engineering and Quality
Assurance

Key Questions in Building Defect Prediction Models in Practice 14
Rudolf Ramler, Klaus Wolfmaier, Erwin Stauder, Felix Kossak, and
Thomas Natschläger

Investigating the Impact of Software Requirements Specification
Quality on Project Success . 28

Eric Knauss, Christian El Boustani, and Thomas Flohr

Prediction of Software Quality Model Using Gene Expression
Programming . 43

Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

Method for Software Cost Estimating Using Scope Champions 59
Yegor Bugayenko

A Measurement Framework for Team Level Assessment of Innovation
Capability in Early Requirements Engineering . 71

Björn Regnell, Martin Höst, Fredrik Nilsson, and Henrik Bengtsson

Evidence Based Software Engineering

Why a CMMI Level 5 Company Fails to Meet the Deadlines? 87
Darja Smite and Cigdem Gencel

Towards Multi-Method Research Approach in Empirical Software
Engineering . 96

Vladimir Mandić, Jouni Markkula, and Markku Oivo

The Role of Empirical Evidence for Transferring a New Technology to
Industry . 111

Maria Teresa Baldassarre, Giovanni Bruno, Danilo Caivano, and
Giuseppe Visaggio

X Table of Contents

Agile Software Development

Towards a Framework for Using Agile Approaches in Global Software
Development . 126

Emam Hossain, Muhammad Ali Babar, and June Verner

Value Creation by Agile Projects: Methodology or Mystery? 141
Zornitza Racheva, Maya Daneva, and Klaas Sikkel

Decision Support for Iteration Scheduling in Agile Environments 156
Ákos Szőke

Some Findings Concerning Requirements in Agile Methodologies 171
Pilar Rodŕıguez, Agust́ın Yagüe, Pedro P. Alarcón, and
Juan Garbajosa

An Exploratory Investigation on Refactoring in Industrial Context 185
Yi Wang

Absorbing Software Testing into the Scrum Method 199
Janne Tuomikoski and Ilkka Tervonen

Process Models and SPI

Learning and Organizational Change in SPI Initiatives 216
Marikka Heikkilä

The Role of Different Approaches in Inspection Process Improvement . . . 231
Sami Kollanus

Scenario-Based Assessment of Process Pattern Languages 246
Antti Välimäki, Sari Vesiluoma, and Kai Koskimies

Towards a Systematic Metric Based Approach to Evaluate SCAMPI
Appraisals . 261

Simona Pricope and Horst Lichter

A New Way to Organize DFX in a Large Organization 275
Jarkko Hyysalo, Sanja Aaramaa, Jouni Similä, Samuli Saukkonen,
Pekka Belt, and Jari Lehto

The Tool Coverage of Software Process Improvement Frameworks for
Small and Medium Sized Enterprises . 290

Filiz Çelik Yeşildoruk, Banu Bozlu, and Onur Demirörs

Processes

Improving the Product Documentation Process of a Small Software
Company . 303

Anu Valtanen, Jarmo J. Ahonen, and Paula Savolainen

Table of Contents XI

Lessons Learnt from the Improvement of Customer Support Processes:
A Case Study on Incident Management . 317

Marko Jäntti

A Decision Model for Supporting Task Allocation Processes in Global
Software Development . 332

Ansgar Lamersdorf, Jürgen Münch, and Dieter Rombach

Software as a Business

Software Process Improvement: Supporting the Linking of the Software
and the Business Strategies . 347

Adriano Bessa Albuquerque, Ana Regina Rocha, and
Andreia Cavalcanti Lima

Integrating Value and Utility Concepts into a Value Decomposition
Model for Value-Based Software Engineering . 362

Mikko Rönkkö, Christian Frühwirth, and Stefan Biffl

On Business-Driven IT Security Management and Mismatches between
Security Requirements in Firms, Industry Standards and Research
Work . 375

Christian Frühwirth

Industrial Case Studies

The Waterfall Model in Large-Scale Development . 386
Kai Petersen, Claes Wohlin, and Dejan Baca

Towards a Better Understanding of CMMI and Agile Integration -
Multiple Case Study of Four Companies . 401

Minna Pikkarainen

ERP System Implementation: An Oil and Gas Exploration Sector
Perspective . 416

Alok Mishra and Deepti Mishra

Workshops

11th International Workshop on Learning Software Organizations (LSO
2009) New Media in Transfer and Innovation . 429

Andreas Jedlitschka and Sira Vegas

A Half-Day Workshop on “Smarter Investment by Aligning SPI
Initiatives, Capabilities and Stakeholder Values” . 433

Yana Selioukova and Christian Frühwirth

XII Table of Contents

Tutorials

Business Alignment: Measurement-Based Alignment of Software
Strategies and Business Goals . 435

Jürgen Münch, Jens Heidrich, and Vladimir Mandić

Customer Communication Challenges and Solutions in Globally
Distributed Agile Software Development . 437

Minna Pikkarainen and Mikko Korkala

Tutorial: Case Studies in Software Engineering . 441
Per Runeson and Martin Höst

Author Index . 443

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 1–7, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Consumer Juggernaut: Web-Based and Mobile
Applications as Innovation Pioneer

David G. Messerschmitt

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, USA

messer@eecs.berkeley.edu

Abstract. As happened previously in electronics, software targeted at consum-
ers is increasingly the focus of investment and innovation. Some of the areas
where it is leading is animated interfaces, treating users as a community, audio
and video information, software as a service, agile software development, and
the integration of business models with software design. As a risk-taking and
experimental market, and as a source of ideas, consumer software can benefit
other areas of applications software. The influence of consumer software can be
magnified by research into the internal organizations and processes of the inno-
vative firms at its foundation.

Keywords: Software applications, world-wide web, user interfaces, develop-
ment, business processes.

1 Introduction

Consumer software applications target individual members of our society, and pro-
vide them with productivity enhancements, fun and entertainment, and ways to inter-
act and collaborate with family, friends, and colleagues. Other distinctive categories
of software applications include those that serve organizations (businesses, education,
government, military, etc.) and commerce. Consumer software applications can be
(and frequently are) exploited in organizational contexts as well. With the advent of
the Internet and the Web, as well as new computing platforms such as the smart
phone, the space of consumer software applications has in recent years seen an explo-
sion in innovation. Consumer software applications are highly innovative and experi-
mental, and other categories of software can explicitly exploit or benefit from their
pioneering spirit.

2 The Opportunity

Although the vendor industries in information technology (IT) have increasingly
adopted an open innovation model [1], business and enterprise applications remain
largely inwardly focused in their innovation. Many large enterprises expend consider-
able resources for customized solutions designed to meet their special needs or provide

2 D.G. Messerschmitt

competitive advantage, while the number of vendors providing standardized custom-
izable solutions is small. The innovation model within a large company’s information
systems (IS) organizations falls in Pasteur’s quadrant [2], relying on internal experi-
ence and expertise to identify specific opportunities for improving efficiency and
effectiveness through information technology. Later as more generic needs spread
throughout the relevant industry and the competitive advantage of customized solu-
tions is undercut, it is typical to reduce cost and risk by adopting off-the shelf solutions
(such as replacing a home-grown accounting system by a commercial enterprise re-
source planning solution).

In the meantime, consumer software applications have become very dynamic, mov-
ing beyond personal productivity and automation of existing functions into pioneering
new territory. One characteristic of new technology development is uncertainty [3],
which is a anathema to the manager of a large organization but more acceptable to
entrepreneurs and early adopters among consumers. These applications are sometimes
directly useful in enterprises, but more commonly there are opportunities for capturing
innovation and value within enterprises inspired by these consumer technologies.

It is not unexpected that consumer markets would become a technology leader and
application driver in software. The extraordinarily large market opportunity, the high
competitive energy brought to bear, and the relatively large investments that are possi-
ble eventually overwhelm the greater focus of products aimed at specific organiza-
tional needs. This has happened previously in other areas of IT. For example, military
technology has historically created important spin-offs to civilian and commercial use,
the Internet being a premier example. Increasingly military applications have become
dependent on commercial technology [4], while specific military needs are increas-
ingly specialized and hence less likely to influence commercial markets. Another
example is the supercomputers used for the highest end and most specialized needs
imaginable, which today are most commonly built from large numbers of commodity
commercial processors [5], those processors at the high end in turn largely justified by
gaming and Web server applications. The supercomputer market could never justify
investments approaching those already targeted at the commercial market.

In application software for enterprises, for similar reasons it has always been true
that outside of specialized areas (such as enterprise resource planning, knowledge
management, and applications customized to individual company processes) compa-
nies rely on standard commercial solutions at both the application and infrastructure
levels. Both specialized solutions and commercial solutions should benefit from an
infusion of new ideas.

In what follows we discuss some opportunities for other areas of the application
software industry that arise from recent innovations in consumer applications.

3 The Cutting Edge of Consumer Software

It is useful to illustrate some areas where consumer software pioneered new innova-
tions by focusing on three major examples.

Gaming has spawned innovations in graphics processors, software graphics, and
programming tools. Embodied in gaming, in spite of its lighthearted motivations, is a
richness of interaction and user experience that has profound implications for other
application areas. Many areas of activity could benefit from such techniques and

 The Consumer Juggernaut: Web-Based and Mobile Applications 3

associated technology, suitably adapted and extended. This includes activities in the
“real world” with a game-like character [6] and knowledge exploration and training
and education [7]. SecondLife illustrates a game-like environment with a monetary
and market element, and could be a precursor to more blatantly commercial market-
places. Many other activities can benefit from interface elements like sensors and rich
animation.

Social networking applications such as Facebook have moved beyond the view of a
software application focused on the individual users. They treat their membership as a
collection of communities, in a model called community networked services [8]. Ear-
lier organizational applications focused on coordination of business processes such as
customer service have pioneered the service of groups of users, but social networking
is defining new ways to support (and more importantly expand) the informal and
social needs of its users. As with gaming, many of the activities supported in social
networking can be viewed as lighthearted or even trivial, but the general modalities
captured therein may be applicable to a variety of serious purposes.

Audio, video, speech recognition are increasingly integrated into applications and
help systems. A Google speech-recognition based search function has become popular
on the mobile platform, and the ability for all users to post videos for all to see has
stimulated a variety of new uses. The text to speech synthesis of the Kindle e-book
reader bridges the gap between audiobooks and textual interfaces. Increasingly tradi-
tional journalism, product reviews and help systems rely on video in place of traditional
textual interfaces.

The foregoing examples illustrate new functionality that has proven useful to con-
sumers. Innovation has occurred in non-functional areas as well. Although it is not yet
well documented, it appears that many of the new Web-based applications have a
close connection to their end users in guiding the ongoing evolution of the service, as
another concrete example of Pasteur’s quadrant innovation [2] driven by end users, as
has been common in many industries [10], [8]. As a driver for their business models,
new services have found ways for users to collectively co-create value through their
joint activities, and identified ways for the monetization of that value by the service
provider [8]. New applications and services are much more likely to be distributed by
software as a service (SaaS) [11] than the traditional software download and installa-
tion by the user. Mobile platforms, however, have illustrated the value of mixing the
download and SaaS models. In a related but different vein, the opportunities from
cloud computing [12] have been concretely illustrated by applications that allow con-
sumers to store or backup data and perform processing on remote servers.

4 Capturing Innovations in Functionality

Inevitably many of these consumer applications are used within organizations and
businesses, whether officially sanctioned and promulgated by an IS organization or
informally introduced by the staff. Like the backdoor entry of the personal computer
in an earlier era, this allows users to experiment and invent new uses while potentially
creating a number of problems such as security holes or data loss. Consumer applica-
tions are not designed with specific organizational needs in mind, and in many cases
neither do they directly meet compelling organizational needs. How, for example,
would many of the video games be compelling? The consumer market is not only

4 D.G. Messerschmitt

large, but less risk adverse and more appropriate for experimentation. It can serve as a
source of ideas and inspiration, and a place where features can mature and be quali-
fied. By their very nature, consumer applications have broad interest, and as such
many of their most useful features are arguably more likely to be incorporated into
vendor software than developed internally to organizations. The ideas incorporated
therein are particularly applicable to customer-facing systems, and less likely to be
incorporated into internal business processes. However, they should be valuable in the
extemporaneous and informal processes of an organization, and inter-organizational
interactions and collaborations [13] as well.

The three areas of innovation listed previously can illustrate this. New modalities
of informal communication identified in social networking applications can improve
the effectiveness of geography-spanning virtual teams [14], but an even bigger oppor-
tunity is to expand the informal lines of communication in an organization [15] that
were previously associated with self-limiting physical proximity. Ways in which
value can be co-created within a community [8] are clearly applicable to an organiza-
tional context. The use of media like audio and video can be dramatically expanded
beyond voicemail and formal training videos to enhance communication and reduce
some of the drudgery often associated with paperwork and documentation. It is a
reasonable hypothesis that these sorts of informal connections among users are more
effective than formal initiatives like knowledge management systems in capturing and
conveying the tacit knowledge that is a crucially important resource for any effective
organization [16]. Such informal networks may also help rejuvenate apprenticeship as
a supplement to formal training programs.

Clearly there are many unknowns here. Studying the modalities for enhancing
communication and collaboration in the consumer marketplace and their outcomes
and effectiveness can contribute to understanding of how to achieve similar benefits
in more formally structured organizations, and possibility how to restructure these
organizations for greater effectiveness as well.

5 Capturing Other Benefits

While consumer applications can provide inspiration on new functionality, there can
be other valuable spin-offs as well. A few examples will now be outlined.

One of the major challenges for applications software lies in the maturity of the in-
dustry. The earliest and easiest approach, the “low-hanging fruit” if you will, is the
automation of existing functions and processes. For example, in the consumer area the
earliest applications were word processing and email, functions that simply automated
previously manual processes. Gaming and the Web began to introduce functionality
not seen previously, and their success is evident. The greatest gains as measured by
efficacy (accomplishing what is intended), effectiveness (accomplishing it well), and
efficiency (accomplishing it with minimum resources) arise when new uses are found
for technology, new uses that take advantage of its special capabilities. There is con-
siderable historical evidence backing up this observation [17]. This process seems
more evident in consumer software applications, at least recently. As greater under-
standing is developed into the mindsets and processes behind this, consumer software
applications can serve as a model for speeding this process in other domains.

 The Consumer Juggernaut: Web-Based and Mobile Applications 5

There are increasing demands on the information systems organization to become
more business relevant, and the CIO to assume more of a role of a general business
manager [18] that participates in decision making at the executive level. The nature of
the business challenges facing a CIO are undoubtedly far different those faced by a
consumer application vendor. However, firms in the most innovative parts of the
consumer software marketplace require a tight coupling and dependence between
business decisions and software design [19]. It seems generally true that a small group
of managers, such as founders and early employees, serve as both technology vision-
aries and business managers. Studying the decision and consensus processes in such
organizations and how they relate to commercial success can bring insights useful in
larger software firms and end-user firms in a variety of industries in making their
software design decisions more business-relevant.

The idea of value co-creation within the user community of a consumer application
[8] remarkably parallels the type of value that arises in informal interactions and col-
laborations within an organization. For example, in both cases the individuals are
expected to spontaneously form networks, and generally there is no need or desire to
directly monetize any value that results. Rather, the benefits are indirect, manifested
by for example more usage and user loyalty in the consumer case and greater exploi-
tation of tacit knowledge and increased employee loyalty in the organizational case.
Studying the forms and origins of value in either case, as well as how those relate to
the design and features of the software, can bring valuable insights to the other.

The epitome of open innovation in software is open source [20], which has evolved
from individual programmers to a collaborative method of software development
among organizations. Both, but especially the individual contributions, are an exam-
ple of end-user innovation [21]. While there has been considerable adoption of open-
source solutions in enterprises, this has been mostly at the level of infrastructure (like
operating systems or web servers) rather than applications. It remains largely unex-
plored whether open source would be a valuable modality for enterprises to share
resources and expertise in application development [22]. Open source methodology
and its predecessors have a long history in consumer application areas, and as such
illustrate the potential.

Software development organizations have been adopting processes that are increas-
ingly agile, embracing changing requirements and involving the end user more inte-
grally in the design process [23], [24]. By all appearances many Web-based consumer
applications have evolved at an unusually high rate, and tracked and benefited from
user input and ideas to an unusual degree. It would be interesting to study their inter-
nal processes, which give the external appearance of agility. The extent to which
processes are actually agile, and appreciating the mechanisms by which they are made
agile, will require more empirical research. Clearly there is an opportunity to under-
stand and capture and repurpose the techniques that have evolved. As well, consumer
applications offer a good laboratory for experimenting with new ideas in development
methodology.

While software distribution using software as a service (SaaS) [25] appears in the
vendor enterprise market, particularly in applications that target small to midsize busi-
nesses, consumer applications have carried this trend to a greater extreme, and their
experience should be a valuable asset. In addition, IS organizations exploit SaaS-like
approaches for serving internal users, and can be both a source of ideas and inspiration

6 D.G. Messerschmitt

and a beneficiary of better practices in managing SaaS. For example, SaaS despite its
many advantages suffers potential security vulnerabilities and data security issues [26]
that must be overcome.

6 Conclusions

The consumer applications market offers a ripe opportunity for empirical research and
as a laboratory for experimentation and qualification of new ideas in business models,
user support, end-user innovation, and software development. This is particularly true
of the large number of emerging Web-based applications and emerging models for
software application distribution on mobile platforms. Since these areas are still
emerging and maturing, they are strongly influenced by innovative new ideas. This
can be a fruitful area for academic research within the management and software
engineering disciplines for some years to come.

References

1. Chesbrough, H.W., Vanhaverbeke, W., West, J.: Open innovation: Researching a new
paradigm. Oxford University Press, USA (2006)

2. Stokes, D.E.: Pasteur’s quadrant: Basic science and technological innovation. Brookings
Institution Press (1997)

3. Teece, D.J.: Firm Organization, Industrial Structure, and Technological Innovation. Jour-
nal of Economic Behavior and Organization 31, 193–224 (1996)

4. Alic, J.A., Branscomb, L.M., Brooks, H.: Beyond spinoff: Military and commercial tech-
nologies in a changing world. Harvard Business School Press, Boston (1992)

5. Graham, S.L., Snir, M., Patterson, C.A. (eds.): Getting up to speed: The future of super-
computing. National Academies Press, Washington (2005)

6. Magerkurth, C., Cheok, A.D., Mandryk, R.L., et al.: Pervasive Games: Bringing Computer
Entertainment Back to the Real World. Computers in Entertainment 3, 4 (2005)

7. Thomas, P., Macredie, R.: Games and the Design of Human-Computer Interfaces. Educa-
tional and Training Technology International 31, 134–142 (1994)

8. Messerschmitt, D.G., Peltonen, J., Laine, M.O.J., et al.: Community Networked Services:
Learning from Web 2.0 (2008), SSRN: http://ssrn.com/abstract=1320947

9. von Hippel, E.: Democratizing innovation. MIT Press, Cambridge (2005)
10. von Hippel, E.: The sources of innovation. Oxford University Press, New York (1988)
11. Turner, M., Budgen, D., Brereton, P.: Turning Software into a Service. IEEE Computer 36,

38–44 (2003)
12. Hayes, B.: Cloud Computing. Communications of the ACM 51 (2008)
13. Österle, H., Fleisch, E., Alt, R.: Business networking: Shaping collaboration between en-

terprises. Springer, Heidelberg (2001)
14. Maznevski, M.L., Chudoba, K.M.: Bridging Space Over Time: Global Virtual Team Dy-

namics and Effectiveness. Organization Science, 473–492 (2000)
15. Kraut, R.E., Fish, R.S., Root, R.W., et al.: Informal communication in organizations:

Form, function, and technology. In: Baecker (ed.) Readings in Groupware and Computer-
Supported Cooperative Work, pp. 145–199. Morgan Kaufman, San Francisco (1990)

16. Eraut, M.: Non-formal learning, implicit learning and tacit knowledge in professional
work. In: Anonymous: The Necessity of Informal Learning. Policy Press (2000)

 The Consumer Juggernaut: Web-Based and Mobile Applications 7

17. David, P.A.: The Dynamo and the Computer: An Historical Perspective on the Modern
Productivity Paradox. American Economic Review, 355–361 (1990)

18. Ross, J. W., Feeny, D. F.: The Evolving Role of the CIO. Sloan School of Management
Working paper 4089 (1999),

 http://web.mit.edu/cisr/working%20papers/cisrwp308.pdf
19. Peltonen, J., Messerschmitt, D., Laine, M.: Web Business and Development Opportunities:

Learning from Community Networked Services. In: Conference on Web Information Sys-
tems and Technologies (2009)

20. West, J., Gallagher, S.: Patterns of open innovation in open source software. Oxford Uni-
versity Press, Oxford (2006)

21. Hippel, E.: Innovation by User Communities: Learning from Open-Source Software. MIT
Sloan Management Review 42, 82 (2001)

22. Dreiling, A., Klaus, H., Rosemann, M., et al.: Open Source Enterprise Systems: Towards a
Viable Alternative. In: Hawaii International Conference on Systems Science, p. 227b
(2005)

23. Beck, K., Beedle, M., van Bennekum, A. et al.: Manifesto for Agile Software Develop-
ment, http://agilemanifesto.org/

24. Rajlich, V.: Changing the Paradigm of Software Engineering. Communications of the
ACM 49, 67–70 (2006)

25. Olsen, E.R.: Transitioning to Software as a Service: Realigning Software Engineering
Practices with the New Business Model. In: IEEE International Conference on Service
Operations and Logistics and Informatics, pp. 266–271 (2006)

26. Clark, D.L.: Enterprise security: The manager’s defense guide. Addison-Wesley Profes-
sional, Reading (2002)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 8–13, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software “Best” Practices: Agile Deconstructed

Steven Fraser

Cisco Research Center, USA
sdfraser@acm.org

Abstract. Software “best” practices depend entirely on context – in terms of the
problem domain, the system constructed, the software designers, and the “cus-
tomers” ultimately deriving value from the system. Agile practices no longer
have the luxury of “choosing” small non-mission critical projects with co-
located teams. Project stakeholders are selecting and adapting practices based
on a combination of interest, need and staffing. For example, growing product
portfolios through a merger or the acquisition of a company exposes legacy
systems to new staff, new software integration challenges, and new ideas. Inno-
vation in communications (tools and processes) to span the growth and contrac-
tion of both information and organizations, while managing the adoption of
changing software practices, is imperative for success. Traditional web-based
tools such as web pages, document libraries, and forums are not sufficient. A
blend of tweeting, blogs, wikis, instant messaging, web-based conferencing,
and telepresence creates a new dimension of communication “best” practices.

1 Introduction

Over the past 15 years the author organized a series of panel discussions ([1],[2] , [3],
[4], [5], [6], [7], [8], [9], [10], [11]) focused on the “soft” aspects of software devel-
opment. A recurring theme has been the observation that communication patterns are
often overlooked and that the software community continues to be challenged by
failing to leverage the work of the past. As Craig Larman surveyed in [12], iterative
and incremental processes pre-date the “Agile Software” movement by more than 30
years – or double that – depending on what is considered relevant. Fred Brooks
commented in 2007 [13] that “I know of no other field where people do less study of
other people’s work.” However, we’ve discovered that it is very difficult to achieve
consensus on approach, e.g. methodology – let alone vocabulary – when dealing with
software practices. Some authors [14] might even argue that there are no software
“best” practices.

“Agile Software Development” and “Extreme Programming” (XP) group together
individual practices in a manner similar to what Maxwell did for electromagnetics.
Consider the “agile” case as equivalent to the “homogeneous” case in electromagnetics
where the boundary conditions can greatly simplify the problem. In our experience,
Agile software development generally remains in the comfort zone of small, co-located
teams, building non-critical systems in the context of new “green field” development.
Here there is an excellent collective understanding of customer requirements – or at
least an opportunity to validate the understanding with a customer or customer proxy.

 Software “Best” Practices: Agile Deconstructed 9

2 The Practice of Software Engineering

The practice of “Software Engineering” was coined in the late 1960s – at the NATO
Workshop in Garmisch. Many of the challenges identified at the workshop remain to
this day – from page 122 of the [15] report highlighting the positions of David and
Fraser:

»The causes of this ‘software gap’ are many, but a basic one lies in the un-
fortunate telescoping of research, development and production of an opera-
tional version within a single project effort. This practice leads to slipped
schedules, extensive rewriting, much lost effort, large numbers of bugs, and
an inflexible and unwieldy product. It is unlikely that such a product can ever
be brought to a satisfactory state of reliability or that it can be maintained
and modified. Though this mixing of research, development, and production is
a root cause of the ‘software gap’, there are many other contributory factors,
from the lack of management talents to the employment of unqualified pro-
grammers and sheer incompetence in software design.«

The impact of the ‘software gap’ has increased as software has crept into almost every
aspect of our daily lives. Software engineering has been increasingly recognized as a
“wicked problem” as characterized by Rittel and Webber [16]:

• System requirements are often not understood until the emergence of a prototype;
• Stakeholders have wildly divergent understanding of requirements;
• Requirements, constraints, and resources change during development; and
• Requirements are never “perfectly” solved for all stakeholders over all time.

Software itself consists of many components beyond the essential ingredients of ex-
ecutable code. Configurations, build scripts, executables, documentation, assembly
processes, operating systems, libraries, requirements, use cases, and test cases are just
some of the flavors of software. Software “stakeholders” are many – including pro-
grammers (the usual suspects), integrators, analysts, managers, customers, users,
coaches, architects, testers, regulators, lawyers, channel sales, journalists, politicians,
etc. However, the majority of this cast remains essentially invisible to the end users of
software systems and only an inadvertent misstep might place an individual software
engineer into the light of public scrutiny.

3 “Best” Practices

Shull and Turner [6] describe a “best” practice as a: “repeatable activity, defined in
such a way that someone other than the definer can implement it with demonstrable
repeatability,” and “effectiveness is dependent on the context within which the
practice is applied”. While there are some, who suggest that “best practices” don’t
exist [14] – there are others (Steve McConnell), who facilitate discussion through a
forum on the topic of “software best practices” [17].

Steve McConnell [18] summarized a number of rarely used – but key software de-
velopment practices. He further suggested criteria to validate “new” practices as they

10 S. Fraser

mature, based on the work of Raghavan and Chand [19]: “Will the practice work in
the field? Are the claimed successes a result of the “practice” or the people? Are
there side effects, risks, misapplications, adoption, overheads – that hinder adoption
of the practice?”

Much has been written [20], [12], [21], [22], [23] indicating that the sources of the
practices encapsulated by “agile software development” are not really “new” –
suggesting that they have been grouped and hyped for the 21st century. One unfortu-
nate labeling was Barry Boehm and Richard Tuner’s book title [20] “Balancing
Agility and Discipline: A Guide for the Perplexed” which left readers with the unfor-
tunate impression (in this author’s opinion) that agile software development practices
were not disciplined. In fact, much discipline and tooling support is required by agile
practices which are generally far more prescriptive than traditional ad hoc devel-
opment practices.

Agile software development practices first became prevalent in the late 1990s. The
first book devoted to XP [24] was quickly followed by the first conference to specifi-
cally focus on XP and Agile software development practices which was held in
Cagliari Italy, June 21-23, 2000 (First International Conference on Extreme Pro-
gramming and Flexible Processes in Software Engineering - XP 2000). At that time –
it was clear that a certain degree of enthusiast zeal (“agilista exuberance”) had
emerged – something was new! Kent Beck was later to relate at OOPSLA [25] “In my
mind as we began XP as a physics experiment, where you remove all the variables
possible so what you're left with is repeatable. Some of the usual variables we elimi-
nated: Geographic separation; Multiple customers; Expensive deployment; Stupid
programmers; Growth-averse database technology; Computer-oriented programming
language; GUI-intense system; Impersonal (>15 person) team; Wildly changing
requirements (replacing a legacy system); [and] Disinterested business sponsors.”

• Architecture
• Coding standards
• Collaborative programming
• Collective ownership
• Continuous integration & tools
• Evolutionary & iterative design
• Data Hiding & abstraction
• Documentation
• Incremental releases
• Metaphor
• On-site customer
• Organizational learning
• Patterns

• Peopleware and sustainable pace
• Project planning
• Refactoring
• Requirements engineering
• Retrospectives
• Risk management
• Simple design
• Software economics & estimation
• Software metrics
• Software reuse
• Test-driven design
• Testing
• Use Cases & user stories

Fig. 1. Software “best” practices [from a distillation of this paper’s references]

Reviewing the literature ([24], [26] [21], [27], [20], [12], [22], [23]) we’ve observed
that “Agile” consists of a combination of the practices listed in Fig. 1. All of these
practices date back at least to the 90s and most to the 60s, 70s, or 80s – and some as
far back as the 50s. In the beginning, agile practitioners picked the projects to which
they would apply “agile practices.” Debates were quite frequent at conferences on
whether – for example, XP required all 12 practices to be adopted and applied – or if

 Software “Best” Practices: Agile Deconstructed 11

a subset could be applied. This debate abated somewhat with the appearance of [21]
which added to the practices of [24]. It also became evident that some developers
misapplied practices. For example, some developers claimed to be doing XP – by not
doing documentation! Several books have been published that question the tenants of
XP – and while [28] is recommended, [29] is not.

4 Learning – An Iterative Process

The goal of a “best” practice is to deliver value at the appropriate level of quality –
quickly and cost effectively. Unlike some of the “harder” engineering disciplines such
as those governed by physics or chemistry, software is much more dependent on the
human condition. Adoption and adaptation take time, as Pfleeger and Menezes [30]
suggest. Ultimately, we must remember that “learning” – within an industry context –
should be a journey of “applied value” for the stakeholders – rather than simply a
“destination” in itself (2007), i.e. learning for the sake of learning. Manns and Rising
[31] suggest a variety of patterns related to the introduction of change that should be
applied to the introduction of software practices. Complementing Manns and Rising’s
work [31] is Cialdini’s [32] patterns of influence.

Two different cost perspectives on process outcomes emerged in the 20th century
[33] – Frederick Taylor (1856-1915) and his “Scientific Management” was motivated
to optimize the cost-of-acquisition – this contrasts with the approach of William
Deming (1900-1993) whose “continuous improvement” approach optimized the cost-
of-ownership. The process of “continuous improvement” is one of both continuous
learning and communication. There has been a move away from strictly hierarchical
[34] teams with command-and-control organizational structures and co-located work
groups. Tapscott and Williams [35] identify ways of thinking differently – for exam-
ple: being open; peering; sharing; acting globally; building critical mass; supplying an
infrastructure for collaboration; abiding by community norms; and letting the process
evolve.

We believe that the emergence of collaboration tools including wikis, blogs, fo-
rums, instant messaging, tweeting, web-based meeting collaboration, and telepresence
fosters the increased adoption of practices - particularly across non-collocated com-
pany teams. For “large” organizations where team size is the order of hundreds or
thousands of engineering staff – “co-location” can become virtual. For example, in
organizations such as Nortel, Qualcomm, Google, and Cisco – it is not unusual for
virtual meeting attendees to outnumber in-room attendees – or for post-session
viewers of “Video-on-Demand” recordings to out-number the real-time attendees.

5 Observations

The application of software “best” practices depends on individuals and context.
Differences in culture, tooling, and legacy can create unforeseen challenges in adop-
tion between organizations. For example, hierarchical [34] teams may not easily blend
with teams where collaboration is the norm. While early in the 21st century, “Agile”
practices were limited to small projects (teams/code-bases) – now there are an in-
creasing number of organizations where “agile” practices have become main stream.

12 S. Fraser

For example, Kati Vilkki [36] reported at XP2008 in her conference keynote that a
product organization with approximately 500 staff at Nokia Siemens Networks now
applies agile practices.

Some organizations discover “agile” through mergers and acquisitions. Integration
challenges for both staff and software become evident when there are mismatches in
communication. Traditional web-based tools alone – such as web pages, document
libraries, and forums – are not sufficient for a successful transition. A blend of
tweeting, blogs, wikis, instant messaging, web-based conferencing, and telepresence
sustained by a mix of consulting and coaching have been reported as useful [11].
“Agile” demands that development team progress and communications become more
visible to all – leading to a reduction in risk for all stakeholders.

We chose the title “Software Best Practices: Agile Deconstructed” to suggest: that
the practices that constitute agile – predate agile; that “best” depends on context and
people; and to observe that inter/intra team communication is an intrinsic ingredient
of software production (agile or not). Going forward – there is much opportunity for
university curriculum development and research on how software practices can be
effectively applied in-the-large and in the growing context of legacy systems.

References

1. Fraser, S., Beck, K., Booch, G., Coleman, D., Coplien, J., Helm, R., Rubin, K.S.: How Do
Teams Shape Objects? - How Do Object Shape Teams? In: OOPSLA, pp. 468–473 (1994)

2. Fraser, S., Booch, G., Buschmann, F., Coplien, J., Jacobson, I., Kerth, N.L., Rosson, M.B.:
Patterns: Cult to Culture? In: OOPSLA, pp. 231–234 (1995)

3. Fraser, S., Cockburn, A., Brajkovich, L., Coplien, J., Constantine, L.L., West, D.: OO An-
thropology: Crossing the Chasm (Panel Session). In: OOPSLA, pp. 286–291 (1996)

4. Fraser, S., Beck, K., Booch, G., Coplien, J., Johnson, R.E., Opdyke, B.: Beyond the Hype:
Do Patterns and Frameworks Reduce Discovery Costs? In: OOPSLA, pp. 342–344 (1997)

5. Fraser, S., Astels, D., Beck, K., Boehm, B.W., McGregor, J.D., Newkirk, J., Poole, C.:
Discipline and Practices of TDD (Test Driven Development). In: OOPSLA Companion,
pp. 268–270 (2003)

6. Fraser, S., Beck, K., Booch, G., Constantine, L.L., Henderson-Sellers, B., McConnell, S.,
Wirfs-Brock, R., Yourdon, E.: Echoes? Structured Design and Modern Software Practices.
In: OOPSLA Companion, pp. 383–386 (2005)

7. Fraser, S., Boehm, B.W., Brooks Jr., F.P., DeMarco, T., Lister, T., Rising, L., Yourdon, E.:
Retrospectives on Peopleware. In: ICSE Companion, pp. 21–24 (2007)

8. Fraser, S., Brooks Jr., F.P., Fowler, M., Lopez, R., Namioka, A., Northrop, L.M., Parnas,
D.L., Thomas, D.A.: No silver bullet reloaded: retrospective on essence and accidents of
software engineering. In: OOPSLA Companion, pp. 1026–1030 (2007)

9. Fraser, S., Abrahamsson, P., Biddle, R., Eckstein, J., Kruchten, P., Mancl, D., Wild, W.:
Culture and Agile: Challenges and Synergies. In: Abrahamsson, P., et al. (eds.) XP 2008.
LNBIP, vol. 9, pp. 251–255. Springer, Heidelberg (2008)

10. Fraser, S., Lopez, R., Kathail, P., Schmidt, D.C., Shaw, M., Sullivan, K., Thomas, D.A.:
Collaboration and Communication: Growing and Sustaining Ultra Large Scale (ULS) Sys-
tems. In: OOPSLA Companion, pp. 797–800 (2008)

11. Fraser, S., Lundh, E., Davies, R., Eckstein, J., Larsen, D., Vilkki, K.: Perspectives on Agile
Coaching. In: Proceedings of XP 2009 - Agile Processes in Software Engineering and Ex-
treme Programming (2009) (to appear)

 Software “Best” Practices: Agile Deconstructed 13

12. Larman, C., Basili, V.R.: Iterative and Incremental Development: A Brief History. IEEE
Computer 36(6), 47–56 (2003)

13. Fraser, S., Mancl, D.: No Silver Bullet: Software Engineering Reloaded. IEEE Soft-
ware 25(1), 91–94 (2008)

14. Freeman, S.: There’s No Such Thing as Best Practice. In: Proceeding of the 9th Int. Conf.
on Agile Processes in Software Engineering and Extreme Programming, p. 250 (2008)

15. Naur, P., Randell, B. (eds.): Software Engineering: Report of a conference sponsored by
the NATO Science Committee, Garmisch, Germany, Brussels, Scientific Affairs Division,
NATO (October 1968)

16. Rittel, H.W.J., Webber, M.M.: Dilemmas in a General Theory of Planning in Policy Sci-
ences, vol. 4. Elsevier Scientific Publishing Company, Amsterdam (1973)

17. McConnell, S.: McConnell’s Construx Forum (2008),
 http://forums.construx.com

18. McConnell, S.: Closing the Gap. IEEE Software 19(1), 3–5 (2002)
19. Raghavan, S.A., Chand, D.R.: Diffusing Software-Engineering Methods. IEEE Soft-

ware 6(4), 81–90 (1989)
20. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.

Addison-Wesley Professional, Reading (2003)
21. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. XP

Series. Addison-Wesley Professional, Reading (2004)
22. Boehm, B.W.: A view of 20th and 21st Century Software Engineering. In: ICSE Proceed-

ings, pp. 12–29 (2006)
23. Boehm, B.: Making a Difference in the Software Century. IEEE Computer 41(3), 78–84

(2008)
24. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley Longman,

Amsterdam (2000)
25. Fraser, S., Reinitz, R., Beck, K., Jeffries, R., Lundh, E., Mee, R., Police, G., Pool, C.: To

Be Extreme, or Not to Be Extreme. In: OOSPLA (2002),
 http://www.oopsla.org/2002/fp/files/pan-5.html

26. West, D.: Metaphor, Architecture, and XP. In: West, D. (ed.) Proceedings of the Third
Interna-tional Conference on Extreme Programming and Agile Processes in Software En-
gineering, Alghero, Sardinia, Italy, May 26-29, pp. 101–104. University of Cagliari,
Cagliari (2002)

27. Nord, R.L., Tomayko, J.E., Wojcik, R.: Integrating Software-Architecture-Centric Meth-
ods into Extreme Programming (XP). CMU/SEI-2004-TN-036 (2004)

28. McBreen, P.: Questioning Extreme Programming. Pearson Education, London (2003)
29. Stephens, M., Rosenberg, D.: Extreme Programming Refactored: The Case Against XP.

Apress (2003)
30. Pfleeger, S.L., Menezes, W.: Marketing Technology to Software Practitioners. IEEE Soft-

ware 17(1) (2000)
31. Manns, M.L., Rising, L.: Fearless Change: Patterns for Introducing New Ideas. Addison-

Wesley, Reading (2004)
32. Cialdini, R.: Influence: Science and Practice, 5th edn. Allyn & Bacon (2008)
33. US General Accounting Office, Management Scoping Study. ACGOps-91-l (1990)
34. Constantine, L.L.: Work Organization: Paradigms for Project Management and Organiza-

tion. CACM 36(10), 34–43 (1993)
35. Tapscott, D., Williams, A.W.: How Mass Collaboration Changes Everything. Penguin

Books (2007)
36. Vilkki, K.: XP2008 Keynote: Juggling with the Paradoxes of Agile Transformation (2008),

http://www.lero.ie/xp2008/keynotesspeakers.html

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 14–27, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Key Questions in Building Defect Prediction Models
in Practice

Rudolf Ramler, Klaus Wolfmaier, Erwin Stauder, Felix Kossak,
and Thomas Natschläger

Software Competence Center Hagenberg
Softwarepark 21, A-4232 Hagenberg, Austria

{rudolf.ramler,klaus.wolfmaier,erwin.stauder,felix.kossak,
thomas.natschlaeger}@scch.at

Abstract. The information about which modules of a future version of a soft-
ware system are defect-prone is a valuable planning aid for quality managers
and testers. Defect prediction promises to indicate these defect-prone modules.
However, constructing effective defect prediction models in an industrial set-
ting involves a number of key questions. In this paper we discuss ten key ques-
tions identified in context of establishing defect prediction in a large software
development project. Seven consecutive versions of the software system have
been used to construct and validate defect prediction models for system test
planning. Furthermore, the paper presents initial empirical results from the stud-
ied project and, by this means, contributes answers to the identified questions.

Keywords: defect prediction, software test management, machine learning.

1 Introduction

Quality is considered a key issue in any software development project. However,
many projects face a tradeoff between cost and quality, as the time and effort for
applying software quality assurance measures is usually limited due to economic
constraints. In practice, quality managers and testers are in a daily struggle with criti-
cal bugs and shrinking budgets. Hence, they are eagerly looking for ways to make
quality assurance and testing more effective and efficient. Defect prediction promises
to indicate defect-prone modules in an upcoming version of a software system and,
thus, allows focusing the effort on those modules. “The net result should be systems
that are of higher quality, containing fewer faults, and projects that stay more closely
on schedule than would otherwise be possible.” [1].

This work is based on our experiences and initial empirical results from establish-
ing defect prediction at an international company in the field of mass-market con-
sumer products. In the studied project, defect prediction has been initiated to produce
information for planning system testing and for allocating testing resources.

A large number of empirical studies on various aspects of defect prediction are
available and several of these incorporate data from industrial projects (e.g., [1], [2],
[3], [4]). Yet, few studies actually provide insights on how defect prediction can be

 Key Questions in Building Defect Prediction Models in Practice 15

applied in an industrial setting, where defect prediction itself is subject to the afore-
mentioned tradeoff between cost and quality. Among these are the study from Li et al.
[5], who report experiences from initiating field defect prediction and product test
prioritization at ABB, and from Weyuker [6], illustrating the research path towards
making defect prediction usable for practitioners.

The objective of this paper is to identify and discuss the key questions that have to
be addressed when constructing defect prediction models in practice. In addition, the
paper presents our findings and insights from initiating defect prediction in a large
industrial project, and by this means the paper contributes some answers to the identi-
fied questions. The background of the project is described in Section 2 and the defect
prediction approach in Section 3. The identified key questions are discussed in Sec-
tion 4. Initial results from predicting defect-prone modules are presented in Section 5.
Section 6 summarizes the paper and outlines future work.

2 Project Background

Defect-prediction has been applied in context of a large software development project
conducted at an international company. The project concerns the development of an
embedded software system for multi-media devices. It is an integrated part of mass-
market consumer products such as mobile phones, handhelds and portable consoles.

In this domain, profit margins per product are often small and competition is fierce.
Economic success can only be achieved by selling high numbers of products with a
short time to market. Thus, software problems can have a devastating effect on the
profitability of a product when they cause shipping delays or increased costs due to
fixing defects found in the field. Once a product has been shipped, it is usually not
possible to update the integrated software without announcing an expensive product
callback. All critical defects have to be found and fixed before the product is released.
Therefore, standards for software quality are very high. At the same time, however,
any investment in quality assurance shrinks the already small profit margins and de-
lays the market release. Hence, the budget and time available for quality assurance is
constantly under pressure and occasionally testing has to be cut short to fit the release
in a narrow window of opportunity.

The software system consists of more than 700 KLOC C++ code in about 180 soft-
ware components. It has evolved to this size over several years of ongoing develop-
ment. In this study we investigate seven consecutive versions of the software system,
capturing the system’s evolution over about one year.

Software development proceeds in fixed-length iterations that end with the release
of a version. For a single version approximately 100 to 200 defects are reported and
about the same number of defects are resolved. The majority of the defects are re-
ported by the central testing department, which tests every released version and re-
ports back defects while development continues with the next version (Figure 1).

Over the years a number of repositories and databases have been introduced that
contain different aspects of the project’s history. Figure 2 provides an overview of the
development activities and the repositories and databases involved. For constructing
defect prediction models, data from following repositories and databases has been
made available [7]: (1) the issue management system containing reports on over 7,000

16 R. Ramler et al.

Development

Testing version n+1

 …

 …

version n version n+1

version n

Fig. 1. Synchronization of development and testing

Fig. 2. Activities and data stores involved in an iteration

defects and enhancements, (2) the release database documenting all planned, released,
and maintained versions of the software system, (3) the versioning system used for
storing development artifacts and for tracking the changes to the source code, (4) a
static analysis tool providing more than 200 metrics related to code, design and archi-
tecture, and (5) the release documentation for all released versions.

 Key Questions in Building Defect Prediction Models in Practice 17

In this setting, defect prediction has been proposed as an aid for planning the sys-
tem tests (activity 5 in Figure 2) after the build and integration phase. In particular,
defect prediction has been expected to provide (a) an early estimation of the number
of defect-prone modules to approximate the overall effort required for testing, and (b)
a classification of the modules as defective or non-defective to allocate testing re-
sources as not all modules can be tested by all testers and in all test environments.
Furthermore, the classification is also intended for a first, simple prioritization of the
modules for testing. Modules indicated as defect-prone will be tested first and with
higher intensity.

3 Defect Prediction Approach

Defect prediction in the studied project followed the framework proposed by Wa-
hyudin et al. [8]. This framework organizes the tasks for conducting defect prediction
in three phases. First the goals and the prediction approach are defined. The intention
of the first phase is to align practitioners’ expectations with what can realistically be
achieved by defect prediction within the specific project and organizational context.
In the second phase the prediction model is constructed by collecting the necessary
data, training the model using a learning algorithm, and validating the model’s per-
formance. Finally, in the third phase, the prediction model is applied on upcoming
versions and the reliability of the prediction results is analyzed to trigger a calibration
or reconstruction of the model. While the framework gives some guidance about how
defect prediction should be organized in general, this paper presents details on how a
prediction model should be constructed.

Software system

module 1

module n

module i

Module description

attribute a1,1

attribute a1,2

attribute a2,1

attribute a2,2

attribute aN,1

attribute aN,2

…

…

…

data
source 1

data
source N

attribute aD

…

Independent variables

Prediction model

Dependent variable (defectiveness)

…
…

…

Software system

module 1

module n

module i

Module description

attribute a1,1

attribute a1,2

attribute a2,1

attribute a2,2

attribute aN,1

attribute aN,2

…

…

…

data
source 1

data
source N

attribute aD

…

Independent variables

Prediction model

Dependent variable (defectiveness)

…
…

…

Fig. 3. Inputs and output of a defect prediction model

A prediction model incorporates various attributes of a software system and its mod-
ules as independent variables, which act as predictors for the dependent variables that
characterize the defect-proneness of a software system’s modules (see Figure 3).

Predictions – to be of practical use – have to be about the future, i.e., they have to
provide information about defect-proneness before this information becomes available

18 R. Ramler et al.

via other sources like inspection or testing. Thus, prediction models are usually con-
structed from historical data (using different data sources) such as code metrics and
reported defects from previous versions or related projects. A broad range of different
learning algorithms are available for constructing prediction models, each with specific
benefits and limitations. How well a prediction model performs depends on the initially
defined prediction objectives and the respective ways it is assessed.

Hence, many questions arise when defect prediction is introduced in a real-world
software project. In the studied project, an initial cycle throughout the framework has
been used to prototype the construction of the prediction model for gaining a better
understanding of the requirements and expectations, for assessing the available data
used to construct the model, and to evaluate the prediction performance that can be
achieved in the context of the project. The questions that were identified when con-
structing the initial model as well as the related answers are described and discussed
in the following section.

4 Discussion of Key Questions and Decisions

This section discusses the key questions that emerged throughout building and apply-
ing the first defect prediction model. It, furthermore, explains the decisions made in
the studied project and refers to related research results. Following questions have
been identified. Each will be addressed in a separate subsection.

Q1. What is the proper size of a module for defect prediction?
Q2. How can defective modules be identified?
Q3. How should defects be associated to versions?
Q4. How should the defectiveness of a module be defined?
Q5. What data sources can be used to extract attributes?
Q6. What attributes should be used as independent variables?
Q7. Will a combination of attributes from different data sources achieve better

prediction results?
Q8. What versions should be used for constructing and for validating the predic-

tion model?
Q9. What learning algorithm should be used to construct the prediction model?
Q10. How should the performance of the prediction model be measured?

Q1: What is the proper size of a module for defect prediction?

Defect prediction calculates the expected defectiveness of modules of a software
system. Many studies on defect prediction talk about “modules” as the entities carry-
ing the predicted attributes. However, the term module is vaguely defined in general
and the different interpretations of what constitutes a module range from program
functions or methods in an object-oriented system to classes (e.g. [4], [9]) and source
files (e.g., [1]). Other studies look at even coarser grained entities such as components
and sets of related files (e.g. [3], [10]) or smaller entities like distinct changes made to
a system (e.g., [11]).

 Key Questions in Building Defect Prediction Models in Practice 19

In the studied project, the entities stored in the analyzed repositories and databases
were of different levels of granularity. For example, changes were logged at the level
of source code lines in the versioning system and at the level of affected files in the
release database, while metrics for code and design analysis were calculated for
methods, classes and components. The level of granularity shared between the differ-
ent repositories and databases and, thus, suitable to link the data retrieved from these
different sources were files.

However, quality managers and testers understood and discussed the software sys-
tem in terms of its components. Components were, for example, used to plan QA
measures and to allocate testing resources. In the studied system, components were
defined as a set of related files implementing a specified functionality. Hence, we
decided to use components as modules in defect prediction.

By aggregating the attributes of files to components it turned out that components
were a good abstraction from technical details, such as the split of classes into C++
header files and implementation files. Furthermore, the aggregation to components is
in line with the findings of Koru et al. [12], who advise practitioners to “collect meas-
urement and defect data at a macro level, shifting the static measures and defect data
to a higher abstraction level” [12].

Q2: How can defective modules be identified?

Defect prediction aims to predict the values of dependent variables, which character-
ize the defectiveness of the software system’s modules. Which module contains a
defect is determined by debugging and is documented when the defect is resolved. In
many cases, several modules have to be changed in order to resolve a defect. It is a
common practice in scientific studies to count all modules as defective which are
affected by a fix (see, e.g. [13]).

In practice, a broad range of influencing factors has an impact on the number of re-
ported defects. First of all, what counts as defect is more often than not a subjective
decision. Although distinct definitions exist in theory as well as in process guidelines
of companies, we found several borderline cases and conflicting classification princi-
ples in the studied project. For example, the same modification to a component may
be classified as defect in the issue database while it is classified as enhancement in the
release database, and vice versa. Depending on the objective of the classification used
in a particular repository, different ways for counting are applied. Hence, in the stud-
ied project, we decided to rely on the defect counts retrieved from the issue database,
for which it had been confirmed that reports about defects most likely reflect actual
faults in the system.

Q3: How should defects be associated to versions?

The defectiveness of a module changes over time as existing defects are fixed and
new ones are introduced. Thus, defect numbers have to be related to the software
system’s versions. In general, a defect is associated to the version on which it has
been reported. However, the assumption that defects are only present in the reported
version is flawed, first, because a defect reported for a particular version may have
been introduced but missed in an earlier version and, second, because a defect may

20 R. Ramler et al.

not be fixed immediately in the next version. So the defect is actually present in all
versions from its introduction to the version before it has been fixed. Failing to cor-
rectly identify all versions containing the defect, results in a paradox situation. The
prediction model would be expected to classify a module as defective in one version
and as non-defective in the next version, although the module and all associated at-
tributes have not changed.

In the studied project, not all released versions were integrated in hardware de-
vices. When integration finally took place, several defects that were introduced but
missed in previous versions were revealed. Due to the short release cycles and con-
strained budgets, fixes were also scheduled for later versions and remained open in
the next version. A careful analysis of the overall product development strategy re-
vealed that in some cases the number of actually open defects of a version was more
than 60 percent higher than the number of defects reported for this version [14]. In
order to gain reliable measures for constructing defect prediction models, the number
of open defects per version had to be calculated by tracing defects to their introduc-
tion and fix versions as an additional step in data preparation.

Q4: How should the defectiveness of a module be defined?

For predicting defect-prone modules, the actual defects have to be linked to software
modules. Scientific studies commonly assume that the defectiveness of a module is
determined by the number of defects, which have been resolved in this module (see,
e.g., [13]). This single variable is used to expresses the defectiveness in different
ways. The number of defects per module can be used to build regression models (e.g.,
[13]), to classify the modules (e.g., in defective or non-defective [12]), or to calculate
a module’s defect density (e.g., [1]).

In the studied project, a prediction model based on a binary classification of the
modules (defective or non-defective) has been used as first step. This model has been
found adequate for meeting the initially defined objective of defect prediction. It di-
vides all modules in two sets, one of potentially defective modules and one of poten-
tially non-defective modules, which are used as input for test planning. The number of
predicted defects per module has not been considered for the beginning. Nevertheless,
the binary classification approach can be extended to a two-step prediction model as
proposed by Kutlubay et al. [15] later on, which combines a binary classification with
a regression analysis.

Q5: What data sources can be used to extract attributes?

Various attributes of a software module such as static code metrics (e.g., [13], [16]) or
process metrics and change metrics (e.g., [2], [16]) have been used as independent
variables in prediction models. The available studies demonstrate the applicability and
value of these properties for defect prediction.

In the studied project, the practical choice of attributes serving as independent vari-
ables for the initial prediction model has mainly been driven by the availability of
historical data. A number of different software repositories and corporate databases
have been identified as potential data sources. However, mining these repositories and
databases revealed that the effort for collecting data appropriate for defect prediction

 Key Questions in Building Defect Prediction Models in Practice 21

is very high [7]. The different repositories and databases were designed for a specific
purpose other than defect prediction. Hence, the data quality in terms of accuracy,
completeness, consistency, and timeliness has often been found inappropriate and the
integration of heterogeneous data sources was hampered by only partly matching data
sets and substantial semantic gaps. The release database, the versioning system, and a
static analysis tool were found suitable for extracting attributes for prediction.

Even when a repository has been identified as an appropriate data source, in practice
it remains a strategic decision to include the data from this repository for prediction.
The selected repositories have to be maintained as part of the project’s development
infrastructure also in future and workflows and tools have to be aligned with data qual-
ity requirements from defect prediction. So, for example, the company in the studied
project opted for the static analysis tool as main data source, which fitted into the com-
pany’s infrastructure plans, although the initial prediction results did not allow to
clearly favor static analysis over other sources.

Q6: What attributes should be used as independent variables?

The attributes used as independent variables in the initial prediction model have been
extracted from the selected data sources. After the indispensable step of preparing and
integrating the data sources in the studied project, a large number of attributes could
be retrieved or calculated from each source. For example, the static analysis tool pro-
vided about 200 code-, design-, and architecture-related metrics ready to use. Many
more metrics were calculated from the other repositories. From the versioning system,
for example, several metrics related the number of changes to different time ranges
like last week, last month, last six months, last year, and last release.

Depending on the capabilities of the learning algorithm used to construct the pre-
diction model, it may be necessary to preselect metrics with a significant influence on
the depending variables. For example, the performance of linear regression models
will suffer from irrelevant attributes whereas classification trees are more robust as
they select the most significant attributes as initial nodes (see [17]).

In the studied project, all metrics extracted from the different data sources were in-
corporated in constructing prediction models. A cross-correlation analysis confirmed
that the available metrics contributed unique information. A pre-selection of the at-
tributes has not been considered necessary since the applied learning algorithms were
able to select the most relevant attributes automatically.

Q7: Will a combination of attributes from different data sources achieve better
prediction results?

In general it is assumed that a combination of different attributes will produce best
prediction results. Furthermore, some researchers argue that defect prediction can
benefit from a combination of multiple partial defect indicators [9]. Turhan et al. [18],
for example, enhance static code metrics with architectural information with the aim
to construct more accurate prediction models.

However, preparing and mining data sources for attributes is an expensive activity.
Thus, although it would be desirable to build prediction models with attributes from a
multitude of different repositories and databases, in practice, the number of involved
data sources needs to be minimized to keep the costs for prediction reasonably low.

22 R. Ramler et al.

In the studied project, first predictions based on attributes extracted from the
versioning system and static analysis produced best overall results. A union of all
available attributes derived from the different analyzed data sources did not signifi-
cantly improve prediction results. This finding is in conformance with results from
other studies (e.g., [16]) and encourages continuing with static analysis as data source.

Q8. What versions should be used for constructing and for validating the
prediction model?

Predictions have to provide information about a future state of the modules, before
this information is acquired by testing, inspection or other means. Therefore, predic-
tion models are constructed from historical data, usually from previous versions [1] or
related projects [3], for which the attributes used as dependent and independent vari-
ables are available. The constructed models are then validated with the actual data
from the upcoming version. In contrast, scientific studies often use a hold-out strategy
to validate the constructed model, as Lessmann et al. [19] affirm: “Binary classifiers
are routinely assessed by counting the number of correctly predicted modules over
hold-out data.” This approach has been repeatedly criticized [5] and prediction results
not validated with actual future data tend to raise concerns of practitioners.

In the studied project, seven consecutive versions with a consistent set of metrics
were available. For six of these seven versions prediction models were constructed.
Thereby, for predicting the defective modules of a version n, the data from the previ-
ous version n-1 has been used. From the viewpoint of the constructed model, the
subsequent version was used for validation.

Using future versions for validation holds a potential threat to validity. A low
number of changed modules between the version used for construction and the ver-
sion used for validation means that large parts of the system remained untouched and
their attributes stayed the same. Learning algorithms with the ability to capture the
current state would thus achieve good prediction performance by just repeating what
is already known.

In the studied project, the change rates as well as the defect rates were generally
high. In addition, a repeated validation of defect prediction only for changed or new
modules produced equal results in terms of prediction performance.

Q9: What learning algorithm should be used to construct the prediction model?

Various types of learning algorithms have been applied for defect prediction, includ-
ing statistical methods, classification trees, neural networks, and analogy-based ap-
proaches (e.g., [1], [10], [13], [20]). Some studies assume that “sophisticated models
are preferable to simple linear regression and correlation models because the relation-
ship between defects (response variable) and static measures (predictor variables)
might not be a monotonous linear relationship.” [21] However, findings concerning
the superiority of one method over another do not seem to be conclusive. For exam-
ple, Lessmann et al. [19] report that “the importance of the classification model may
have been overestimated in the previous research ... Given that basic models, and
especially linear ones … give similar results to more sophisticated classifiers, it is

 Key Questions in Building Defect Prediction Models in Practice 23

evident that most data sets are fairly well linearly separable. In other words, simple
classifiers suffice to model the relationship between static code attributes and soft-
ware defect.” [19] Consequently, these authors came to the conclusion that “the as-
sessment and selection of a classification model should not be based on predictive
accuracy alone but should be comprised of several additional criteria like computa-
tional efficiency, ease of use, and especially comprehensibility.” [19] Furthermore, in
some other studies the choice of learning algorithms seems to be influenced by the
availability of tools for data mining, e.g., the open source framework WEKA [17].

In the studied project, an investigation of algorithms from the open source tool
WEKA and the commercial tool MLF showed the usefulness of decision tree learners
such as MLF’s FS-ID3 [22] as preferable. The criteria for selecting a learning algo-
rithm have been, first, prediction performance in combination with ease of use and,
second, the comprehensibility of the constructed model. When looking at the predic-
tive performance it has to be mentioned that most algorithms require some amount of
tuning the algorithm’s hyper-parameters in order to produce satisfying results. So ease
of use, i.e., the ease of tuning, had a significant impact on the prediction performance
and both criteria were considered together. In addition, quality managers and testers
preferred algorithms that provided insight into the relationship between metrics and
defects. Managers were able to interpret the classification trees produced by FS-ID3,
which considerably increased the trust in prediction results.

Q10: How should the performance of the prediction model be measured?

Typically the performance of a binary prediction model is summarized by the so
called confusion matrix, which consists of the following four counts: number of de-
fective modules predicted as defective (true positives, tp), number of non-defective
modules predicted as defective (false positives, fp), number of non-defective modules
predicted as non-defective (true negatives, tn) and number of defective modules pre-
dicted as non-defective (false negatives, fn). Basically one is looking for a prediction
model which has high numbers of tp and tn along with low numbers of fp and fn.
Many different performance measures like precision = tp/(tp+fp), recall = tp/(tp+fn)
or accuracy = (tp+tn) / (tp + fp + tn + fn) are computed from these basic numbers and
are used in the literature (see e.g., [9], [12]).

A cost function based on the defect prediction objective should be defined, which
assumes the lowest value for the optimal prediction model (see e.g., [20]). Neverthe-
less, most studies do not include a dedicated cost function as the particular objective
for doing defect prediction can only be defined in a real-world setting, most of the
available data mining tools report the confusion matrix and the performance measures
based on it, and last but not least many learning algorithms are based on optimizing a
specific performance measure derived from the confusion matrix.

In the studied project, the goal was to use defect prediction as planning aid for test
managers. In this application it has been interesting how much an optimized testing
strategy based on defect prediction gains in comparison to a random testing strategy.
We will exemplify this idea further in the next section.

24 R. Ramler et al.

5 Overview of Defect Prediction Results

This section gives an overview of our first results that have been achieved by predict-
ing defect-prone components in the studied project. We report results for six analyzed
versions of the considered software system, which together span about one year of
ongoing software development. Table 1 gives an overview of the analyzed versions.

Table 1. Overview of version analyzed in the studied project

Version 0 1 2 3 4 5 6 Avg.
Number of components 137 147 141 154 171 165 181 157
Number of new or changed comp. n.a. 141 134 142 135 156 138 141
Number of defective components 77 85 89 91 99 106 84 90
Percentage defective components 56% 58% 63% 59% 58% 64% 46% 58%
Total KLOC 539 605 565 647 682 711 723 639

The number of components per software version varies over time with an average
of 157 components per version. In each iteration, the majority of these components –
90 percent on average – are affected by development activities as the number of new
or changed components shows. It can also be seen that the number of defective com-
ponents is rather high and varies around 58 percent. It has been described under ques-
tions Q2 and Q3 how the defects are associated to components and versions.

For each version we constructed prediction models from the data of the previous
version. The models were then tested on the current version. Table 2 summarizes the
performance assessments for these prediction models. Four different models were
constructed, reflecting the different data sources available for extracting defect indica-
tors. Thus, results are shown for the models constructed from data from the release
management database, the versioning system, the static code analysis repository, and
the combination of these three sources. The results of the prediction were compared
with the actual data and the performance measures accuracy, precision and recall (de-
fined in the previous section under question Q10) were reported. Bold accuracy indi-
cates the best results for a version. The performance levels confirm the conclusion of
Menzies et al. [9] that defect prediction models are useful for classifying defect-prone
and defect-free modules and, hence, for guiding the assignment of testing resources.

Following hypothetical example demonstrates the efficiency improvement and,
thus, the usefulness of defect prediction for the studied project. The best prediction
result has been achieved for version 4. Focusing testing – as a rule of thumb – on the
93 modules classified as defect-prone (tp+fp) would already reveal defects from 77
truly defective modules (78 percent of all truly defective modules). A random testing
strategy, in contrast, would reveal defects from only 54 truly defective modules from
93 tested modules. Hence, in case testing has to be stopped early and some modules
have to be left untested, the effect from testing can be increased up to 43 percent if
test planning is based on the results from defect prediction. Even in the worst case
(version 1) the gain can be up to 29 percent over a random testing strategy.

 Key Questions in Building Defect Prediction Models in Practice 25

Table 2. Summary of defect prediction results obtained in the studied project

Version 1 2 3 4 5 6

Accuracy 0.67 0.60 0.64 0.64 0.64 0.71
Precision 0.81 0.90 0.77 0.79 0.75 0.78

Recall 0.55 0.42 0.55 0.53 0.63 0.54

Versioning system
Accuracy 0.61 0.74 0.71 0.75 0.68 0.75
Precision 0.81 0.84 0.84 0.83 0.92 0.77

Recall 0.41 0.72 0.63 0.73 0.53 0.64

Accuracy 0.66 0.76 0.73 0.54 0.67 0.73
Precision 0.73 0.81 0.70 0.92 0.86 0.74

Recall 0.65 0.77 0.93 0.22 0.57 0.67

Accuracy 0.67 0.68 0.71 0.78 0.68 0.73
Precision 0.75 0.92 0.75 0.83 0.92 0.69

Recall 0.64 0.54 0.77 0.78 0.53 0.77

Static code analysis

Combination of above

Release management

6 Summary and Further Work

In this paper we presented our preliminary findings from constructing defect prediction
models for a large industrial software system with the objective to support planning
and management of system testing. The prediction models have been constructed for
six subsequent versions of the system from data of their predecessor versions. In total,
these six versions reflect the history of about one year of ongoing software develop-
ment in the studied project. We identified ten questions that corresponded to key deci-
sions in constructing the prediction models. These questions concern aspects such as
the granularity level at which predictions should be made, the measure for a module’s
defectiveness, the sources of prediction data, and the choice of learning algorithms and
validation measures.

A number of studies exist that can be appreciated as examples for the various pos-
sible choices one has in answering each of the questions. Some studies even address a
particular question and conclude with a helpful advice. However, the appropriate
answer to each of the questions can only be given in the context of a particular predic-
tion objective and a specific project background. For each question we therefore dis-
cussed what influenced the decisions in the real-world project we studied. In addition,
we gave some references to the existing body of literature and contrasted common
approaches with contradictory observations from the studied project.

The questions led to the following setting for defect prediction. Components have
been used as prediction modules (Q1), which were classified as defective or non-
defective (Q4) based on the information retrieved from the issue repository (Q2). The
defects actually open in a version have been determined by tracing the reported de-
fects to all affected versions (Q3). The metrics computed from the release database,

26 R. Ramler et al.

the versioning system and a static analysis tool (Q5) constituted the prediction attrib-
utes (Q6), whereby the union of all metrics from the different data sources did not
show a substantial improvement over the metrics from the single best source (Q7).
The prediction models for a particular version n have been created from the data of
their predecessor version n-1 (Q8) using different learning algorithms. The FL-ID3
decision tree learner from MLF exhibited interpretable results in combination with
best overall prediction performance (Q9), which has been measured in terms of accu-
racy, precision and recall (Q10).

Taking the best results for each version, the highest accuracy (0.78) has been
achieved for version 4 and the lowest (0.67) for version 1. In both cases a testing
strategy based on the prediction results is clearly superior to a random approach.
Hence, the initial results from the studied project underline the applicability and use-
fulness of defect prediction for practice, especially as prediction performance may be
further improved by fine-tuning the applied learning algorithm.

The key questions provide valuable guidance for constructing defect prediction
models in a real-world setting and highlight areas for further research. For example,
we currently study the contribution of the different data sources to the overall predic-
tion performance in order to allow better choices on mining repositories and databases
for prediction attributes. Furthermore, we investigate industrial projects to define
relevant factors for cost functions that enable economically justifiable assessments of
prediction results.

References

1. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the Location and Number of Faults in
Large Software Systems. IEEE Trans. on Software Engineering 31(4), 340–355 (2005)

2. Nagappan, N., Ball, T.: Use of Relative Code Churn Measures to Predict System Defect
Density. In: 27th Int. Conf. on Software Engineering, St. Louis, MO, USA. ACM, New
York (2005)

3. Nagappan, N., Ball, T., Zeller, A.: Mining Metrics to Predict Component Failures. In: 28th
Int. Conf. on Software Engineering, Shanghai, China. ACM, New York (2006)

4. Subramanyam, R., Krishnan, M.: Empirical Analysis of CK Metrics for Object-Oriented
Design Complexity: Implications for Software Defects. IEEE Trans. on Software Engi-
neering 29(4), 297–310 (2003)

5. Li, P.L., Herbsleb, J., Shaw, M., Robinson, B.: Experiences and Results from Initiating
Field Defect Prediction and Product Test Prioritization Efforts at ABB Inc. In: 28th Int.
Conf. on Software Engineering, Shanghai, China. ACM, New York (2006)

6. Weyuker, E.J.: Software Engineering Research: From Cradle to Grave. In: 6th European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Dubrovnik, Croatia. ACM, New York (2007)

7. Ramler, R., Wolfmaier, K.: Issues and Effort in Integrating Data from Heterogeneous Soft-
ware Repositories and Corporate Databases. In: 2nd Int. Symposium on Empirical Software
Engineering and Measurement, Kaiserslautern, Germany. ACM, New York (2008)

8. Wahyudin, D., Ramler, R., Biffl, S.: A Framework for Defect Prediction in Specific Soft-
ware Project Contexts. In: 3rd IFIP TC2 Central and East European Conference on Soft-
ware Engineering Techniques, Brno, Slovakia. Springer, Heidelberg (2008)

9. Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Trans. on Software Engineering 33, 2–13 (2007)

 Key Questions in Building Defect Prediction Models in Practice 27

10. Khoshgoftaar, T.M., Seliya, N.: Analogy-Based Practical Classification Rules for Software
Quality Estimation. Empirical Software Engineering 8(4), 325–350 (2003)

11. Kim, S., Whitehead Jr., E.J.: Classifying Software Changes: Clean or Buggy? IEEE Trans.
on Software Engineering 34(2), 181–196 (2008)

12. Koru, A.G., Hongfang, L.: Building Defect Prediction Models in Practice. IEEE Soft-
ware 22, 23–29 (2005)

13. Denaro, G., Pezze, M.: An empirical evaluation of fault-proneness models. In: 24th Int.
Conf. on Software Engineering, Orlando, Florida. ACM, New York (2002)

14. Ramler, R.: The Impact of Product Development on the Lifecycle of Defects. In: Work-
shop on Defects in Large Software Systems, Seattle, WA, USA. ACM, New York (2008)

15. Kutlubay, O., Turhan, B., Bener, A.B.: A Two-Step Model for Defect Density Estimation.
In: 33rd Euromicro Conf. on Software Eng. and Advanced Applications, Lübeck, Germany.
IEEE, Los Alamitos (2007)

16. Moser, R., Pedrycz, W., Succi, G.: A Comparative Analysis of the Efficiency of Change
Metrics and Static Code Attributes for Defect Prediction. In: 30th Int. Conf. on Software
Engineering. ACM, New York (2008)

17. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,
2nd edn. Morgan Kaufmann, San Francisco (2005)

18. Turhan, B., Kocak, G., Bener, A.: Software Defect Prediction Using Call Graph Based
Ranking (CGBR) Framework. In: 34th Euromicro Conf. on Software Engineering and Ad-
vanced Applications. IEEE, Los Alamitos (2008)

19. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking Classification Models for
Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Trans. on
Software Engineering 34(11), 485–496 (2008)

20. Menzies, T., Di Stefano, J., Ammar, K., McGill, K., Callis, P., Chapman, R., Davis, J.:
When Can We Test Less? In: 9th Int. Symposium on Software Metrics, Sydney, Australia.
IEEE, Los Alamitos (2003)

21. Koru, A.G., Tian, J.: An Empirical Comparison and Characterization of High Defect and
High Complexity Modules. J. Systems and Software 67(3), 153–163 (2003)

22. Natschläger, T., Kossak, F., Drobics, M.: Extracting Knowledge and Computable Models
from Data - Needs, Expectations, and Experience. In: 13th Int. Conf. on Fuzzy Systems,
Budapest, Hungary. IEEE, Los Alamitos (2004)

Investigating the Impact
of Software Requirements Specification Quality

on Project Success

Eric Knauss, Christian El Boustani, and Thomas Flohr

FG Software Engineering, Leibniz Universität Hannover
Welfengarten 1, D-30167 Hannover, Germany

{knauss,el.boustani,flohr}@se.uni-hannover.de

Abstract. Different Software Requirements Specifications (SRS) are
hard to compare due to the uniqueness of the projects they were cre-
ated in. Without such comparison, it is difficult to objectively determine
if a project’s SRS is good enough to serve as a foundation for project
success. We define a quality model for SRS and derive required metrics
using the Goal-Question-Metric approach. These metrics were applied
in roughly 40 student’s software projects. Based on this we find a qual-
ity threshold for project success. This paper contributes in three areas:
Firstly, we present our quality model. It was derived from literature, and
contributes to the discussion of how to objectively measure requirements
quality. Secondly, we share our evaluation approach and our experiences
measuring SRS quality. Others could profit, when planning to measure
requirements quality. Finally, we present our findings and compare them
to related studies in literature.

Keywords: Quality of Requirements, Metrics for Requirements.

1 Introduction

One of the main difficulties faced by Quality Management during the require-
ments analysis in software projects is to decide, whether a software requirements
specification (SRS) is good enough. This is due to two major problems:

1. It is hard to measure how good a SRS is, i.e. determine the quality of a SRS
in a quantifiable way.

2. If the quality of a SRS is determined, it still remains an open question,
whether the value is good enough or not. The quality of the SRS has to be
compared to other projects.

Basically, our hypothesis is that the quality of a SRS strongly influences the
probability of its project success. In this paper we show that the quality can
be measured mainly based on formal and objective metrics. This is important,
because it allows to assess the chances of a project based on SRS quality inter-
nally. If quality is below a certain quality threshold, the project is more likely

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 28–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Investigating the Impact of SRS Quality on Project Success 29

to fail. In order to determine this threshold we investigated roughly 40 projects
based on the Goal-Question-Metric method. Based on our results we found two
specific thresholds:

A lower threshold: Projects that have a SRS’s quality below this value are
highly endangered.

A higher threshold: Projects that have a SRS’s quality above this value are
likely to succeed.

These results have been discussed in [1]. In this contribution, we focus on
the methodology and comparison of our results. We start with an overview of
literature dealing with quality of requirement in Sect. 2. Based on this literature
we decided what aspects to measure. We give examples of some promising and
more sophisticated metrics in literature and discuss why they are not appropriate
to our work.

The Goal-Question-Metric method basically demands for a top-down ap-
proach. Therefore, we start by stating our measurement-goal and our hypotheses.
We also define, when a hypothesis is supported and when it is falsified. This is
done in Sect. 3.

In Sect. 4 we explain how the measurement was done. We summarize our
findings and discuss them. Finally, we compare them to the results of other
empirical studies.

Next, we need to show how trustworthy our results are: We think that our
empirical results are valuable to others and want to make them comparable (and
hence transferable). Therefore, we discuss the validity of our results in Sect. 5.

We summarize our results in Sect. 6. We also give hints on how to enhance
the reliability of similar studies.

2 Requirements Quality in Literature

Quality aspects and metrics for requirements have been widely discussed in lit-
erature. The difficulties are well known and were often discussed (e.g. see [2]).
Obviously, it is very difficult to obtain objective data. For example, it is hard to
determine, whether a requirement specification is complete or not. Without the
original stakeholders it is impossible to decide if it contains all the requirements.

There are many textbooks [3,4,5,6] that describe how to write high-quality
requirements specifications. The quality gateway in [5] is a well known example:
Only good requirements can pass it. A good requirement fulfills several quality
criteria. For example, only requirements are allowed to pass the quality gateway
that state how to decide whether they are met. However, this process does not
help to compare the requirements specifications of different projects.

Rupp [6] gives a more analytical approach to requirement’s quality. Well-
known quality aspects, like completeness, are revisited. But where the Robert-
sons [5] defined completeness based on requirements templates, [6] shows how
to find incomplete requirements based on natural language. Both approaches

30 E. Knauss, C. El Boustani, and T. Flohr

help to enhance the quality of SRS, but do not help to quantifiable compare it.
Nevertheless, the quality aspects in these textbooks are the foundation of our
work.

Davis [3] gives some suggestions on how to quantify the quality of a require-
ments document: Findings are weighted according to their severity. Accordingly,
the overall quality of a document is the amount of findings multiplied by their
weight. We integrated this suggestion as well as the proposed weights into our
approach. In order to compare two SRS, we had to normalize the result by the
amount of their requirements.

Besides the rather basic quality-metrics for requirements discussed above,
many more sophisticated ones were suggested in science. For example, the clear-
ness of terms is discussed in the CLEAR-method [7]. Another example is the
discussion of the ambiguity of and respectively or in natural language [8]. Based
on our measurement goals we had to discard these promising metrics, because
they either constructively influenced the RE-process or were simply too difficult
to measure.

3 Study Goals

The GQM (Goal-Question-Metric) method suggests a top-down way of goal-
oriented measurement. The basic steps are defining measurement goals, describ-
ing the goals in a more detailed way using a table (the Abstraction Sheet), to
formulate questions, and to derive metrics from the Abstraction Sheet that help
to answer the questions in a quantifiable way (see [9]).

By filling out the Abstraction Sheets we formulated hypotheses about how
good the quality goals are reached at the moment. Those hypotheses are expected
measurements results. After the elicitation of data we are able to verify the
hypotheses and determine if they were correct or not. We only give a sketch of
our GQM-tree, examples of metrics, and our main hypotheses here.

Formal Req.
Quality Content-related Req. Quality

#C
rit

ic
al

 T
yp

os
G

ra
m

m
ar

R
ul

es
 o

f E
xp

re
ss

io
n

A
m

bi
gu

ou
s

te
rm

s
Ex

is
t.

Id
en

tif
ie

r
U

ne
xp

la
in

ed
 te

ch
. t

er
m

s
C

on
tr

ad
ic

to
rin

es
s

C
om

pl
et

en
es

s
Ve

rif
ia

bl
e

go
al

s
of

 re
q.

C
or

re
ct

ne
ss

R
ed

un
da

nc
y

Fe
as

ib
ili

ty
N

ec
es

sa
ry

C
on

tr
ad

ic
to

rin
es

s
(b

et
. r

eq
.)

Le
ga

lly
 c

la
ss

ifi
ed

A
ss

ig
ne

d
pr

io
rit

y
O

ut
 o

f d
at

e

R
eq

. w
ith

ou
t C

at
eg

or
y

#T
ec

hn
ic

al
 C

at
eg

or
ie

s

Ex
is

t.
U

I d
es

cr
ip

tio
n

Ex
is

t.
U

se
r p

ro
fil

e
I/O

-D
ev

ic
es

 d
es

cr
ip

tio
n

Ex
is

t.
Q

ua
lit

y
M

od
el

Sp
ec

ifi
ed

 Q
ua

lit
y

G
oa

ls
Ex

is
t.

m
et

ric
s

Fig. 1. Measurement goals and metrics for Requirements Quality

Investigating the Impact of SRS Quality on Project Success 31

Figure 1 gives an overview of goals and metrics in our study. We planned
to systematically measure the quality of Software Requirements Specifications
(SRS). We have two subgoals: the formal requirements quality and the content
related requirements quality. The main goal is to assess the quality of a SRS
and to draw a connection to project success. The term formal requirements
quality refers to verbalization rules as in [6] (e.g. completely specified process
words, avoidance of incomplete comparisons, etc.). In contrast, content related
requirements quality refers to goals that need interpretation to some extend. For
example to judge, whether the SRS contains a quality model or not, the assessor
has to search for quality aspects and decide, if they were sufficiently detailed.
Content related requirements quality is subdivided into general, technical, UI,
and quality aspects.

3.1 Project Settings

The objects of this study are software projects conducted in university teaching.
These software projects (SWP) are part of the curriculum of our bachelor in
computer science. All participants had basic courses in programming languages,
data structures and algorithms, as well as in software engineering and project
management. Participants with additional knowledge in one or more advanced
courses like databases, artificial intelligence, or requirements engineering were
evenly distributed among the project teams.

Each project team consists of five members. The students had to elect a
project manager among themselves for their course. The projects last one term
(four months) and students spent approximately 16 hours a week for their
project.

We try to let our students experience a realistic software project. Therefore,
each project has a customer with real interest in the final software product. This
is important to determine project success. In addition, we limit the time our
students may spend to interview the customer. Time for technical questions or
advice is also limited.

Our students have to follow a strict waterfall development process. They start
with an analysis phase, go on to design phase, and finally implement the software
in the last phase, before the customer accepts (or sometimes even rejects) the
software in a final test.

We measure the quality of SRS at the end of the analysis phase. At this
point the requirements are frozen and the design phase builds upon them. Our
motivation for this work is to identify projects that are in trouble. We run up to
9 projects in parallel. All projects reach the end of the requirements analysis at
the same time. A typical SRS has more than 30 pages and contains more than
50 functional requirements. If we want to help, we need to find the project that
needs our sparse resources the most.

3.2 Hypotheses

In order to judge a project’s success we interviewed each customer and asked
him to rate the success based on the following scale:

32 E. Knauss, C. El Boustani, and T. Flohr

The project’s results (i.e. software) are used in the intended way.
The project’s results could be used in the intended way, but there are better

solutions available to reach the customer’s goals.
Projects in this category failed to reach some of the customer’s goals. The

customer believes that these goals are reachable within a month of rework.
This category consists of projects that failed to deliver working software.

These projects failed the acceptance tests and the customer does not believe
that it would pay off to continue the project.

Note that our definition of project success differs from [10]: Our projects
cannot overrun time and budget, because they are stopped at the end of term.
If they cannot deliver, they have failed (category). Only projects in category

are considered successful.
Concerning the relationship between SRS quality and project success we have

the following hypotheses:

Hypothesis 1. Projects with a high quality-score are more likely to succeed
(category).
Influencing factors: Relationship between formal quality aspects and quality
of the SRS’s content as reported in [11]. A high quality SRS might also be
a sign of well-organized teams, more likely to succeed in delivering valuable
software.
Hypothesis holds if we find an upper threshold with more than 75% of the
projects scoring above, fall in category or .

Hypothesis 2. Projects with very low quality-score are much more likely to
fail (category).
Influencing factors: A low-quality SRS is bad enough. But teams that pro-
duce a bad SRS might have additional problems. For example, team members
may work against each other or may have a bad time-managing. These dif-
ficulties may multiply as the project proceeds.
Hypothesis holds if a lower quality-threshold can be found, with more than
75% of projects scoring below, fail (or).

4 Conduction and Findings

This section describes, how our study was conducted. It gives an example of a
metric and shows our results. We also discuss the implications for our metrics
and compare our results to others.

4.1 Strategy of Measurement

Concerning the elicitation of the quantitative data we defined basic constraints.
Because we wanted to compare 40 SRS and because of our limited resources
we had to limit the time for the elicitation. We planned to spend less than 240
minutes per SRS.

Investigating the Impact of SRS Quality on Project Success 33

We were interested in the relationship between formal quality aspects and
project success. Therefore, we decided not to take the customers point of view
into account (i.e. we did not measure whether the requirements were complete
from the customer’s point of view).

To enhance the speed of measurement we introduced a software tool to support
the assessment of a SRS. The whole text of a SRS was copied and pasted into the
tool. The tool separated each sentence and asked the assessor to decide whether
it was a functional, technical, UI, or quality requirement. After that it presented
each requirement and asked the assessor to look for each metric. Figure 2 shows
the general process of assessing a SRS.

Select textparts from SRS

Determine category of req.
for each relevant sentence

Apply metrics for each
requirement in each category

Determine total quality score of SRS
based on weights

i.e. non-functional requ.

some metrics are applied to all req.
independently from its category
(i.e. redundancy)

Fig. 2. Activities of analyzing a SRS

For some metrics the tool included heuristic support. For example a full-text
search presented candidates for contradictory requirements. According to [12] a
metric should fulfil the following requirements:

Simplicity: Effort of interpretation should be adequate. Therefore, we give the
results in percentage or in numbers.

Validity: Reasonably correlation between metric and measured property. Met-
rics were created using the GQM-Method, the heuristic tool-support only
indicates possible flaws.

Stability: Stability of the metric against manipulation of lower subordinated
consideration. We consider this to be fulfilled because of using percentage
and numbers.

Timeliness: Elicitation must be early enough to be able to adjust the process.
This is met, because the measurement of the SRS takes place in the first
stage of the project.

34 E. Knauss, C. El Boustani, and T. Flohr

Analyzability: One should be able to put data of measurements in relation.
Our results are given in percentage or comparable numbers.

Repeatability: Objective measurement-criteria must exist. Subjective exertion
of influence must not be possible. This is only partly fulfilled because of the
subjective factors in some metrics (see section 5).

Table 1 gives an example of a metric.

Table 1. Example of a metric based on 1

Metric Formular

Verifiable goals of reqs.
∑

verifiable aspects of req.∑
allaspects of req.

Simplicity: Yes, because of percentage scale
Stability: Yes, because of percentage scale
Timeliness: Yes, because of measurement of the SRS in the first stage

of the project
Analysable: Yes, because percentage number can be easily compared
Repeatability: Partly, because the decision whether or not an aspect of

an requirement is verifiable, may differ from person to
person

4.2 Results and Discussion

Figure 3 show an excerpt from the data we obtained. This data covers the 16
projects conducted in the last two years. The colors of the bars reflect the part
of the goal-tree in figure 1:

Gray: Results of metrics that belong to the formal requirements quality mea-
surement goal.

Light gray: Results of general metrics that hold for all requirements and belong
to the general content related requirements quality measurement goal.

White: Content related requirements quality metrics that are specific for non-
functional requirements.

In order to compare SRS of different projects, we want to determine a total
score for a single SRS. To do so, we take a list from quality aspects for require-
ments, that is based on widespread standards [13] and pragmatic extensions [6].
For every aspect we add a weight, that indicates how important this quality
aspect is estimated to be according to Davis proposals [3].

Let mi(srs) be metric i applied to all requirements of the SRS and wi the
weight of a quality-aspect from the Tab. 2, that is associated with the metric i
as specified in our GQM-Model. The total score of a SRS with respect to quality
of requirements is:

f(srs) =
∑

i

wi ∗ mi(srs) (1)

Investigating the Impact of SRS Quality on Project Success 35

Table 2. Weights of quality-aspects of requirements

Quality-aspect Weight (w)
Correctness 10
Feasibility 10
Without contradiction 10
Up to date 9
Verifiable goal of req. 8
Comprehensibility 5
Quality of Necessary 3
Completeness 2
Unambiguousness 2
Assigned priority 1
Legally classified 1

60

50

40

30

20

10

0

-- -- ++ +-++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Failure predicted

60

50

40

30

20

10

0

---- ---- ++++ ++--++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++
Failure predicted Success predicted

Fig. 3. Quality scores of SRS for 16 projects

Low values (below 40) indicate low SRS quality, with a high risk for errors.
Values above 44 indicate high quality. Interestingly, these results generally sup-
ported each project advisor’s gut feeling.

Based on our hypotheses in Sect. 3 we investigate our software projects’ re-
quirement specifications. We are interested in the dependency of a project’s
quality score and its success. The results support our hypotheses:

Hypothesis 1 holds: All projects that scored more than 44 Points were suc-
cessful (category or). The results in Fig. 3 give even stronger support:
87% of the projects that score more than 44 on the quality-assessment fall
into category .

Hypothesis 2 holds: All projects that failed (category and) scored be-
low 40 points and we found only one project from category below this
threshold. Therefore, 80% of the projects below the lower threshold were not
satisfactory.

36 E. Knauss, C. El Boustani, and T. Flohr

Investigations of the remaining projects support this. In contradiction to the
results in Fig. 3 they also show that projects that score somewhere between the
upper and lower quality-threshold have a remaining risk of failure. Based on
these results we do not suppose that the upper threshold could be set lower.

4.3 Comparison to Related Studies

Forsberg [14] investigated the relationship between time spent for RE and project
success. Accordingly, it is advisable to spent about 20% of the time with require-
ments engineering. Our work cannot add to these results because our students
could not decide how much time to spend for RE. All projects spent roughly
20% of their time for requirements analysis. Because of this timeboxing, we are
able to draw a connection between SRS quality and project success.

In [15] So and Berry investigated how adjustments of the RE-process improved
requirements engineering. This work compared two releases of a large software
product. The encouraging result is that RE efforts pay-off. The evidence is based
on the decreased number of bug reports and change requests. Again, we cannot
directly add to these results, because our development process does not include
change management and we do not track bugs after release. Therefore, our def-
inition of project success differs too much. However we can add evidence that
good requirements engineering increases customer satisfaction.

Olsson et al. [16] investigated the relationship of functional requirements and
non-functional requirements (NFR) at Sony-Ericsson. Accordingly, about 40 %
of the requirements specified were non-functional. This result is very interest-
ing for our work: It shows a quantifiable (i.e. comparable) difference (despite
project size) between our students’ projects and high-quality industrial software
projects. Table 3 shows the relationship derived from our data. The difference
is much lower than expected. However, the non-functional requirements in our
projects were poorly specified (e.g. there were no testable quality requirements).

Table 3. Relationship of functional requirements and non-functional requirements

Percentage of technical requirements 10%
Percentage of UI requirements 2,8%
Percentage of quality requirements 17,2%
Percentage of non-functional requirements 30%

Kamata and Tamai [17] investigate the relationship between the quality of a
SRS and project success. In difference to our approach they rely upon data de-
rived from normal quality assurance activities. Quality Agents rate each section
of a SRS based on 100 criterions. Their approach of measuring requirements
quality seems to rely on subjective criterions and the Quality Agent’s experi-
ence. Based on the maturity of the organization, the evaluaton results can be
considered repeatable.

Investigating the Impact of SRS Quality on Project Success 37

The quality of a SRS is computed by mapping the ratings to requirement arti-
facts (i.e. subsections proposed for SRS in [13]). This allows Kamata and Tamai
to identify critical sections for project success. In addition, computing a SRS
quality profile based on a accepted SRS structure enhances the comparability
of their approach. In order to compare our results to the results of Kamata and
Tamai, we performed several steps:

1. Describe fundamental differences of the approaches. In contrast to [17], we
focused on mostly formal metrics. We tried to make our metrics as objec-
tive as possible instead of relying on experienced assessors. In addition, we
measured the quality as a whole. The main result is the same: Both our
work reports that a correlation between SRS quality and project success
exists. Table 4 shows how the different definitions of project success can be
compared.

2. Map our results to the proposed structure. In order to compare the results
we normalized the results of each metric to values between 0 and 1. Some
of our content-related metrics can be mapped to the proposed structure.
The others measure quality of the specification as a whole. So we filtered
each finding of such a metric by the section of our specification where it was
found. Then, we mapped the sections of our specification to the proposed
structure. Finally, we can give a rating between 0 and 5 for each section of
the proposed structure for our projects.

Based on this mapping, we can compare the profiles of our successful and
failed projects to the corresponding profiles reported in [17]. Our goal was to
investigate if we could identify critical sections in our projects, too. As shown in
Fig. 4 we did not achieve good results. One reason for this is that our metrics
do not measure quality in each section in a fair way:

Table 4. Comparing Definitions of
Project success

Over Time

In Time
In Costs Over Costs

Fig. 4. Quality of our SRS per section mapped
to IEEE template [13]

We have many metrics that apply to sections 1.3 and 3.2 but only our general
metrics for formal requirements quality apply to section 3.7. Based on our obser-
vations we would support Kamata and Tamai in that not all sections are equally
important for project success. However, our GQM-study cannot contribute to
these results, because it was focussed on other measurement goals.

38 E. Knauss, C. El Boustani, and T. Flohr

5 Evaluation of Validity

This section presents the threats to validity we identified during our work (ac-
cording to Wohlin et al. [18]) in order to let others decide if our work is relevant
for them.

5.1 Construction Validity

Construction Validity describes issues that are caused by the construction of the
empirical evaluation.

The construction of our study is influenced by the design of the practical
programming course we investigated. Apart from our study, students should
learn to accomplish a whole software project. Therefore, we were not allowed to
exchange the SRS between the groups investigated. This leads to the issue that
our model might measure the performance of the students groups instead of the
project success. Good students achieve good results (i.e. good SRS, good design,
and finally good projects). The investigation of this issue remains future work.

5.2 Conclusion Validity

Conclusion validity mainly concerns the possibility to draw statistically signifi-
cant conclusions from the empirical study.

The main problem we see here is the reliability of measures. Since some mea-
sures rely on human judgement to some degree a certain bias is probable. This
problem was mitigated by conducting the measurements by the same person. To
apply the measurements in a company (where measurements will be conducted
by different persons) we suggest to develop measurement guidelines over time to
reduce the influence of human judgement. We take a closer look on repeatability
in section 5.5.

A minor threat concerns the statistical power. 16 specifications were intensely
reviewed by one person. The considerable number of the remaining 24 specifica-
tions were reviewed by different persons. Our original measurement results seem
to hold for these 24 specifications, too.

5.3 Internal Validity

Internal validity concerns the influences on independent variables beyond the
knowledge of the reviewer.

Since all measurements were conducted by one single person measures could
be applied in a different way over time, because the person got more familiar
with the measurement process. The second problem concerns the fatigue. There
is a considerable probability that the person got tired over time, affecting mea-
surements in a untraceable way. This problem is considered to be low, because
only one SRS was measured per day.

In addition, other factors during the later phases of the projects might have
influenced the empirical results. This issue is moderated by the fact that all

Investigating the Impact of SRS Quality on Project Success 39

observed projects followed the same process. Furthermore, we carefully observed
the groups and did a post-mortem analysis, but could not observe any such
factors.

5.4 External Validity

External validity concerns the ability to draw conclusions beyond the scope of
our empirical study e.g. transfer our results to industry.

A rather superficial threat to external validity is that all investigated projects
were conducted in a university setting. Consequently, transferability of the re-
sults poses a problem. The fact that all our projects have a common background
setting helps to achieve a better result concerning data quality (which strength-
ens conclusion validity). Industry strength projects could be assessed in the same
way and compared to our findings, because the application of our metrics is not
limited in any way. We opted for conclusion validity instead of external validity
in order to gain more data points.

5.5 Discussion of Repeatability

A more severe threat concerns the repeatability: How do different assessors affect
the result? We let four different persons assess the same project. The results of
one person differed drastically from the others as shown in figure 5.

Fig. 5. Assessment of repeatability shows room for improvement

We analyzed each variably classified requirement. The main reasons for the
derivation were:

1. False positives, e.g. requirement was classified as passive voice but was for-
mulated in active voice.

2. Scope of interpretation, e.g. finding process words.
3. Generally subjective measures, e.g. understandability, redundancy, and tech-

nical terms

The effect of false positives and scope of interpretation can be reduced by more
extensive training, keyword-lists, and heuristic tools. Furthermore, these errors
are systematic: if one person assesses a project twice, the result will be more

40 E. Knauss, C. El Boustani, and T. Flohr

or less the same. Therefore, we expect that the ranking of the projects will be
more or less the same, despite different quality-scores. Bad projects will be rated
worse than good projects.

Another problem is the complexity and long duration of the assessment. An
assessment of a typical SRS took between 120 and 180 minutes. In addition, some
of the measurements are rather complex, like finding inconsistencies between
different requirements.

Based on these threats to validity there are also some issues concerning the
mapping between SRS quality and project success. Because of the different scores
the reference project got depended on the reviewer, there is no absolute threshold
for the quality-score. However, with all reviewers creating a consistent ranking
of the projects, we can give a relative quality thresholds.

Table 5 shows types of measurement faults we identified. The first column
gives the type and the second column a typical example. The third column
shows how we would address this problems in future work.

Table 5. Overview of Measurement Faults

Type Example Mitigation Strategy

1 False Positives found passive voice • training
but was active voice • keyword-lists

2 Scope of Interpretation identification of • heuristic tool
process words support

3 Generally subjective understandability • quantify and
measures limit the effects

6 Conclusion and Outlook

In this work we had two goals. On the one hand we wanted to measure the
quality of software requirements specifications. On the other hand we wanted to
depict project risk based on this quality.

In order to do this, we had to investigate a set of software projects. Based
on the GQM-method we could support our hypotheses that the quality of a
requirement specification influences the probability of project success. In our
setting we were even able to give a threshold: projects that are worse than this
value are very likely to fail.

With this assessment of the SRS’ quality we have a powerful instrument for
our software projects: Based on the results we can decide whether a project is
allowed to go on or whether its SRS needs major rework. Based on our assessment
we also observed that the overall quality of our projects’ SRS increased since
last year. Such observations are essential for software organizations that want to
improve themselves, because the effects of process improvements become visible.

As a side-effect we found out that even simple verbalization policies (e.g. the
requirement template [6] or the use case template [19]) strongly improved the
requirement quality. Such policies simply let fewer room for errors.

Investigating the Impact of SRS Quality on Project Success 41

However, our approach has some known limitations. Our assessment cannot
replace the validation of requirements. There is still the need of customer collab-
oration, e.g. aspects regarding the content cannot be quantified using the SRS
only. Nevertheless, our assessment helps finding hazardous points in the SRS,
that can be addressed during validation. Therefore, it helps increasing the effi-
ciency of Reviews. The main drawback of our work is the limited repeatability.
In section 5 we argued that this does not limit the validity of our results. How-
ever, this causes our specific threshold to be worthless for others, leaving each
organization with the need to find and calibrate their own threshold.

For this reason we plan to enhance the elicitation of our metrics. On the one
hand we will improve the preparation courses of our quality agents. In addition
we will provide them with more detailed instructions on how to interpret a given
metric. On the other hand we want to introduce more heuristic tool support.
With the reduced cognitive load of separating false positives from true ones, we
hope to enhance repeatability as well as elicitation speed.

Finally, we were able to compare our teaching projects to industry projects.
Despite being considerably smaller and at some points not as good as their real-
world siblings, we saw that our projects are highly comparable. Because of this
we expect others being able to build upon our results.

References

1. Knauss, E., El Boustani, C.: Assessing the Quality of Software Requirements Spec-
ifications. In: Proceedings of 16th International Requirements Engineering Confer-
ence, Barcelona, Spain, pp. 341–342 (2008)

2. Costello, R.J., Liu, D.B.: Metrics for requirements engineering. In: Selected pa-
pers of the sixth annual Oregon workshop on Software metrics, New York, USA,
pp. 39–63 (1995)

3. Davis, A.M.: Just Enough Requirements Management: Where Software Develop-
ment meets Marketing (2005)

4. Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality Before Design
(1989)

5. Robertson, S., Robertson, J.: Mastering the Requirements Process (1999)
6. Rupp, C.: Requirements-Engineering und -Management: professionelle, iterative

Anforderungsanalyse für die Praxis (2004)
7. Wasson, K.S.: A Case Study in Systematic Improvement of Language for Require-

ments. In: Proceedings of the 14th IEEE International Requirements Engineering
Conference, Minneapolis, USA, pp. 6–15 (2006)

8. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying Nocuous Am-
biguities in Natural Language Requirements. In: Proceedings of the 14th IEEE
International Requirements Engineering Conference, Minneapolis, USA, pp. 56–65
(2006)

9. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: a practical
guide for quality improvement of software development (1999)

10. The Standish Group: CHAOS Chronicles v3.0. Technical report (2003)
11. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement

specifications. In: ICSE 1997: Proceedings of the 19th international conference on
Software engineering, New York, USA, pp. 161–171 (1997)

42 E. Knauss, C. El Boustani, and T. Flohr

12. Liggesmeyer, P.: Software-Qualität. Testen, Analysieren und Verifizieren von Soft-
ware (2002)

13. IEEE: IEEE Recommended Practice for Software Requirements Specifications.
IEEE Std 830-1998 (1998)

14. Forsberg, K., Mooz, H.: System Engineering Overview. In: Thayer, R.H., Dorf-
man, M., Davis, A.M. (eds.) Software Requirements Engineering, Los Alamitos CA,
pp. 44–72 (1997)

15. So, J., Berry, D.M.: Experiences of Requirements Engineering for Two Consecu-
tive Versions of a Product at VLSC. In: RE 2006: Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE 2006), Washington, DC,
USA, pp. 216–221 (2006)

16. Olsson, T., Svensson, R.B., Regnell, B.: Non-functional requirements metrics in
practice - an empirical document analysis. In: Proceedings of Workshop on Mea-
suring Requirements for Project and Product Success, in conjunction with the
IWSM-Mensura Conference (2007)

17. Kamata, M.I., Tamai, T.: How Does Requirements Quality Relate to Project Suc-
cess or Failure? In: Proceedings of 15th International Requirements Engineering
Conference, Delhi, India, pp. 69–78 (2007)

18. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C.: Experimentation In Software
Engineering: An Introduction, 1st edn. (1999)

19. Cockburn, A.: Writing Effective Use Cases (2000)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 43–58, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Prediction of Software Quality Model Using Gene
Expression Programming

Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

University School of Information Technology, GGS Indraprastha University,
Delhi 110403, India

Ys66@rediffmail.com, arvinderkaurtakkar@yahoo.com,
ruchikamalhotra@yahoo.com

Abstract. There has been number of measurement techniques proposed in the
literature. These metrics can be used in assessing quality of software products,
thereby controlling costs and schedules. The empirical validation of object-
oriented (OO) metrics is essential to ensure their practical relevance in indus-
trial settings. In this paper, we empirically validate OO metrics given by
Chidamber and Kemerer for their ability to predict software quality in terms of
fault proneness. In order to analyze these metrics we use gene expression pro-
gramming (GEP). Here, we explore the ability of OO metrics using defect data
for open source software. Further, we develop a software quality metric and
suggest ways in which software professional may use this metric for process
improvement. We conclude that GEP can be used in detecting fault prone
classes. We also conclude that the proposed metric may be effectively used by
software managers tin predicting faulty classes in earlier phases of software
development.

Keywords: Metrics, Object-oriented, Software Quality, Empirical validation,
Fault prediction, Gene expression programming.

1 Introduction

Faulty software classes cause software failures, increase development time, mainte-
nance costs and decrease customer satisfaction. Effective prediction models can help
software developers focus quality assurance activities on fault-prone classes and thus
improve software quality by using testing resources more efficiently. Static metrics
and fault data collected at class level can be used to construct fault prediction models
in practice. There have been empirical studies evaluating the impact of these metrics
on software quality and constructing models that utilize them in predicting quality
attributes of the system, such as [1-21]. However, there is a need of data based studies
to empirically validate these metrics for predicting faulty classes. In this work, we
find the impact of OO metrics on fault proneness of a class using open source soft-
ware Jedit [22]. We also develop a software quality metric, which can be used to pre-
dict faulty classes.

44 Y. Singh, A. Kaur, and R. Malhotra

Genetic algorithms have been successfully applied to protein structure prediction [23],
defect prediction [24], and memory bound computations [25]. GEP is a type of GA as
it uses population of individuals, selected them according to fitness function, and intro-
duces genetic variation using various operators [26]. In GEP mutations insure that the
resultant expression is not mathematically incorrect. “Experiments have shown that
GEP is 100 to 60,000 times faster than older genetic algorithms” [27]. Thus, we build a
model to predict faulty classes using the GEP. In GEP an expression is computed in
order to predict faulty/non faulty classes. We analyze and validate this expression in
order to predict faulty/non-faulty classes. Finally, we propose this expression as a qual-
ity metric for predicted fault prone classes. The lower values of this metric will imply
higher build and release quality.

The main contributions of this study are summarized as follows: First, we empiri-
cally validated OO metrics using GEP. This method is being successfully applied in
various disciplines and there is a need to evaluate its performance in predicting soft-
ware quality models. Second, we used open source software system. These systems are
developed with different development methods than proprietary software. In previous
studies mostly proprietary software were analyzed. Third, we develop a software qual-
ity metric that can be used by software quality practitioner in earlier phases of software
development to predict faulty classes. The proposed metric may also be used as quality
benchmark to assess and compare software products. The results showed that the pro-
posed metric predict faulty classes with good accuracy. However, since our analysis is
based on only one data set, this study should be replicated on different data sets to gen-
eralize our findings.

The paper is organized as follows: Section 2 provides an overview of GEP. Section 3
summarizes the metrics studied, describes sources from which data is collected and
gives hypothesis to be tested in the study. Section 4 presents the research methodology
followed in this paper. The results of the study are given in section 5. Section 6 presents
the definition and validation of the developed metric. The application of the developed
software quality metric is presented in section 7. Finally, conclusions of the research are
presented in section 8.

2 An Overview of Gene Expression Programming

A genetic algorithm (GA) is a search procedure with a goal to find a solution in a
multidimensional space. GA is generally many times faster than exhaustive search
procedures. There is a problem in finding a way to efficiently mutate and cross-breed
symbolic expressions so that the resultant expressions have a valid mathematical
syntax.

Candida Ferreira provided a solution to this problem [26]. Ferreira developed a
system for encoding expressions so that a wide variety of mutation and cross-
breeding techniques perform faster while guaranteeing that the resultant expression
will always be a valid mathematical syntax. This procedure is known as GEP. GEP
was presented as a new technique for the creation of computer programs. GEP uses
chromosomes composed of genes organized in a head and a tail. The chromosomes
are subjected to modification by means of mutation, inversion, transposition, and

 Prediction of Software Quality Model Using Gene Expression Programming 45

recombination. The technique performs with high efficiency that greatly surpasses
existing adaptive techniques.

2.1 Converting Expression Tree into k-Expression

GEP encodes the symbols in genes. This notation is called the karva language [26].
Expressions encoded using karva language are called k-expressions.

For example, the expression a+b*c can be encoded in the expression tree shown in
Figure 1.

Fig. 1. Expression Tree for a+b*c

To convert the expression tree using karva language, start at the left-most symbol
in top line, scan symbols from top to bottom, and left to right. The resultant k-
expression is *+cab.

The process of converting an expression tree into a k-expression and vice versa can
be done quickly by a computer.

2.2 Genes

The fixed number of symbols encoded in karva language constitutes a gene. A GEP
gene has a head and a tail. The head can contain functions, constants, and variables
whereas a tail can only contain variables and constants. The number of symbols in the
head of a gene is passed as an argument in the analysis. The number of symbols in the
tail is determined by the following equation

tail = head (Max-1) + 1 (1)

where tail is the number of symbols in the tail
head is the number of symbols in the head
Max is the maximum number of operands required by any function
The tail provides a store of terminal symbols consisting of variables and constants

that can be used as arguments for functions in the head. For example, head can be
+,*,/ and tail can be abde. The expression is shown in Figure 2.

*

+ c

a b

46 Y. Singh, A. Kaur, and R. Malhotra

Fig. 2. Expression for Head +,*, / and Tail abde

During mutation, symbols in the head can be replaced by terminal symbols or
functions whereas terminals (variables and constants) can replace symbols in the tail
(see Figure 3).

Fig. 3. Resultant Expression after Mutation

GEP ensures that the following rules are followed inorder to generate valid expres-
sion during mutation:

1. Symbols in the head are replaced with functions, constants, and variables.
2. Symbols in the tail are only replaced with variables and constants
3. The tail is of sufficient length (see equation (1))

2.3 Chromosomes

A chromosome consist of one or more than one genes of equal length. If there are
more then on chromosomes in the gene, then a linking function is used to join the
genes in the final function.

Consider the following example:

Gene 1: +ab
Gene 2: *cd

+

*

a b

/

d e

+

*

a b

e

 Prediction of Software Quality Model Using Gene Expression Programming 47

Fig. 4. Example of a 2-Gene Chromosome

The following steps are used in the training of a model using GEP:

1. Create an initial population of chromosomes.
2. Attempt to create chromosomes that model the data well.
3. Try to find a simpler function.

2.4 GEP Process

In order for a population to improve from generations to generations to predict the
target variable (fault proneness in our study), mutation, inversion, transportation, and
recombination are performed.

Mutation
Mutation can occur anywhere in the chromosomes but the structural organization of
the chromosomes should not be changed. Mutation replaces symbols in heads of genes
by function or variables and constants and symbols in tails are replaced only by vari-
ables and constants. Thus, the structural organization of chromosomes remains intact
and the correct programs are produced by the mutation in the form of new individuals.

Inversion
Inversion reverses the order of symbol in a gene section.

Transposition
Transposition selects a group of symbols and moves them to a different position in the
same gene.

Recombination
Two chromosomes are selected randomly and generic portion is exchanged between
them inorder to produce two new chromosomes. There are three types of recombina-
tions: one-point, two-point, and gene recombination.

3 Research Background

In this section, we present the summary of metrics studied in this paper (Section 3.1)
and empirical data collection (Section 3.2).

+

+

a b

*

c d

Linking Function

48 Y. Singh, A. Kaur, and R. Malhotra

3.1 Dependent and Independent Variables

The binary dependent variable in our study is fault proneness. The goal of our study is
to empirically explore the relationship between OO metrics and fault proneness at the
class level. Fault proneness is defined as the probability of fault detection in a class.
We use GEP to predict probability of fault proneness. Our dependent variable will be
predicted based on the faults found during software development. The software met-
rics [28-36] can be used in predicting these quality attributes. In this study, we em-
pirically validated metrics given Chidamber and Kemerer [32] (see Table 1). These
metrics are explained with practical applications in [28].

Table 1. Metrics Studied (Chidamber and Kemerer [32] suite)

Metric Definition
Coupling between
Objects (CBO)

CBO for a class is count of the number of other classes to which it is
coupled and vice versa.

Lack of Cohesion
(LCOM)

It measures the dissimilarity of methods in a class by looking at the instance
variable or attributes used by methods. Consider a class C1 with n methods
M1, M2…., Mn. Let (Ij) = set of all instance variables used by method Mi.
There are n such sets {I1},…….{In}. Let
P }0II |)II({(Q and }0II |)II{(ji j,ji j, ≠∩==∩= ii . If all n sets

)}.(I},........I{(n1 are 0 then P=0

otherwise 0

|Q| |P| if |,Q|-|P| LCOM

=

>=

Number of Children
(NOC)

The NOC is the number of immediate subclasses of a class in a hierarchy.

Depth of Inheritance
(DIT)

The depth of a class within the inheritance hierarchy is the maximum
number of steps from the class node to the root of the tree and is measured
by the number of ancestor classes.

Weighted Methods per
Class (WMC)

The WMC is a count of sum of complexities of all methods in a class.
Consider a class K1, with methods M1,…….. Mn that are defined in the
class. Let C1,……….Cn be the complexity of the methods.

=

=

n

1i

iCWMC

If all method complexities are considered to be unity, then WMC = n, the
number of methods in the class.

Response for a Class
(RFC)

The response set of a class (RFC) is defined as set of methods that can be
potentially executed in response to a message received by an object of that
class. It is given by
RFC=|RS|, where RS, the response set of the class, is given by

}{R M ijjalli ∪=RS

Number of Public
Methods (NPM)

It is the count of number of public methods in a class.

Lines Of Code (LOC) It is the count of lines in the text of the source code excluding comment
lines

To incorporate the correlation of independent variables, a correlation based feature

selection technique (CFS) is applied to select to select the best predictors out of inde-
pendent variables in the datasets [37]. The best combinations of independent variable
were searched through all possible combinations of variables. CFS evaluates the best
of a subset of variables (OO metrics in our case) by considering the individual predic-
tive ability of each feature along with the degree of redundancy between them.

 Prediction of Software Quality Model Using Gene Expression Programming 49

3.2 Empirical Data Collection

We used JEdit open source software in this study [38]. JEdit is a programmer’s text edi-
tor developed using Java language. JEdit combines the functionality of Window, Unix,
and MacOS text editors. It was released as free software and the source code is available
on www.sourceforge.net/projects/jedit. The LOC of JEdit is 169,107. The number of
developers involved in this project was 144. The project was started in 1999.

The metric data was computed using metric tool, Understand for Java [39]. The
metrics proposed by Chidamber and Kemerer [32] were computed using this tool. The
number of bugs was computed using SVC repositories. The release point for the pro-
ject was identified in 2002. The log data from that point to 2007 was collected. The
header files in C++ were excluded in data collection. The word bug or fixed was
counted. Details on bug collection process can be found in [40].

4 Research Methodology

In this section, the steps taken to analyze coupling, cohesion, inheritance and size
metrics for classes taken for analysis are described. The procedure used to analyze the
data collected for each measure is described in following stages (i) data statistics and
outlier analysis (ii) correlation among metrics (iii) performance measures.

4.1 Descriptive Statistics and Outlier Analysis

The role of statistics is to function as a tool in analyzing research data and drawing
conclusions from it. The research data must be suitably reduced so that the same can be
read easily and can be used for further analysis. Descriptive statistics concern devel-
opment of certain indices or measures to summarize data. The important statistics
measures used for comparing different case studies include mean, median, and stan-
dard deviation. Data points, which are located in an empty part of the sample space, are
called outliers. Outlier analysis is done to find data points that are over influential and
removing them is essential. Univariate and multivariate outliers are found in our study.
To identify multivariate outliers, we calculate for each data point the Mahalanobis
Jackknife distance. Mahalanobis Jackknife is a measure of the distance in multidimen-
sional space of each observation from the mean center of the observations [1, 41].

The influence of univariate and multivariate outliers was tested. If by removing an
univariate outlier the significance (see Section 3.4) of metric changes i.e., the effect of
that metric on fault proneness changes then the outlier is to be removed. Similarly, if
the significance of one or more independent variables in the model depends on the
presence or absence of the outlier, then that outlier is to be removed. Details on outlier
analysis can be found in [42].

4.2 Correlation among Metrics

Correlation analysis studies the variation of two or more variables for determining the
amount of correlation between them. In order to analyze the relationship among de-
sign metrics we use Spearman's Rho coefficient of correlation. We preferred to use a
non-parametric technique (Spearman's Rho) for measuring relationship among OO
metrics as we usually observe the skewed distribution of the design measures.

50 Y. Singh, A. Kaur, and R. Malhotra

4.3 Evaluating the Performance of the Models

The performance of binary prediction models is typically evaluated using confusion
matrix (see Table 2). In this study, we used the commonly used evaluation measures.
These measures include Sensitivity, Precision, Specificity, and ROC analysis.

Table 2. Confusion matrix

Observed Predicted

 1.00 (Fault-Prone) 0.00 (Not Fault-Prone)
1.00 (Fault-Prone) True Fault Prone

(TFP)
False Not Fault Prone

(FNFP)
0.00 (Not Fault-Prone) False Fault Prone

(FFP)
True Not Fault Prone

(TNFP)

Precision
It is defined as the ratio of number of classes correctly predicted to the total number of
classes.

TNFPFFPFNFPTFP

TNFPTFP

+++
+=Precision (2)

Sensitivity
It is defined as the ratio of the number of classes correctly predicted as fault prone to
the total number of classes that are actually fault prone.

FNFPTFP

TFP

+
=ySensitivit (3)

Sensitivity
It is defined as the ratio of the number of classes correctly predicted as not fault prone
to the total number of classes that are actually not fault prone.

FNFPFFP

TNFP

+
=ySpecificit (4)

Completeness
It is defined as the number of faults in classes classified fault-prone, divided by the
total number of faults in the system.

Receiver Operating Characteristic (ROC) Analysis
ROC curve, which is defined as a plot of sensitivity on the y-coordinate versus its 1-
specificity on the x coordinate, is an effective method of evaluating the quality or per-
formance of predicted models [11]. While constructing ROC curves, one selects many
cutoff points between 0 and 1 in our case, and calculates sensitivity and specificity at
each cut off point. The optimal choice of cutoff point (that maximizes both sensitivity
and specificity) can be selected from the ROC curve [11, 43]. Hence, by using ROC
curve one can easily determine optimal cutoff point for an predicted model.

 Prediction of Software Quality Model Using Gene Expression Programming 51

Area Under the ROC Curve (AUC) is a combined measure of sensitivity and speci-
ficity. In order to compute the accuracy of the predicted models, we use the area un-
der ROC curve.

Cross Validation
In order to predict accuracy of model it should be applied on different data sets. We
therefore performed holdout validation of models [44]. The data set is randomly di-
vided into testing and validations data sets.

5 Analysis Results

This section presents the analysis results, following the procedure described in Sec-
tion 4. Descriptive statistics (Section 5.1), GEP results (Section 5.2).

5.1 Descriptive Statistics

Table 3 show "min", "max", "mean", "std dev", "75% quartile" and "25% quartile" for
all metrics considered in this study.

Table 3. Descriptive Statistics for OO metrics

Metric Min. Max. Mean Std. Dev. Percentile (25%) Percentile (75%)
WMC 0 407 11.72 31.201 3 10

DIT 0 7 2.496 1.976 1 3

NOC 0 35 0.715 3.100 0 0

CBO 0 105 12.64 14.13 4 17

RFC 0 843 174.97 269.5 20.75 84.25

LCOM 0 100 46.23 33.51 0 75

NPM 0 193 7.78 17.12 1 8

LOC 3 6191 206.21 529.66 32.75 171.75

The following observations are made from Table 3:

• The size of a class measured in terms of lines of source code ranges from 3-6191.
• The values of DIT and NOC are less, which shows that inheritance is not much used

in all the systems; similar results have also been shown by other studies [7, 9, 10].
• The LCOM measure, which counts the number of classes with no attribute

usage in common, has high values (upto 100).

We calculated the correlation among metrics as shown in Table 4 which is an im-
portant static quantity. Zhou and Leung (2006), Gyimothy, Forenc, and Siket [13] and
Basili et al. [4] calculated the correlation among metrics. WMC metric is correlated
with all the metrics except DIT, NOC and RFC. There is a correlation between DIT
and RFC metrics, between RFC and CBO metrics, LCOM and CBO and between
LCOM and NPM metrics. LOC metric is correlated with all the metrics except DIT
and NOC metrics. Therefore, it shows that these metrics are not totally independent
and represents redundant information.

52 Y. Singh, A. Kaur, and R. Malhotra

Table 4. Correlations among Metrics

Metric WMC DIT NOC CBO RFC LCOM NPM LOC

WMC 1

DIT -0.17 1

NOC -0.005 -0.363 1

CBO 0.53 0.314 -0.297 1
RFC 0.245 0.813 -0.336 0.619 1

LCOM 0.632 0.073 -0.105 0.531 0.340 1

NPM 0.822 -0.086 -0.032 0.447 0.281 0.570 1

LOC 0.698 0.154 -0.227 0.841 0.500 0.620 0.572 1

5.2 Gene Expression Programming (GEP) Results

In this section, we present the results of combined effect of OO metrics on fault
proneness (same as multivariate analysis). The subset of attributes was selected using
CFS method described in Section 3.1. NPM, CBO, RFC, DIT, and LOC were selected
from the set of eight metrics.

In Table 5, we summarize the parameters to and determined by GEP. 576 genera-
tions were used to train the model to predict faulty classes and an additional generation
to simplify the expression. We used 4 genes per chromosome and addition function to
link the genes.

Table 5. GEP Parameters

Population size 50
Gene per chromosome 4
Gene head length 8
Generations required to train the model 576
Generations required for simplification 1
Linking Function Addition
Fitness function Number of correct predictions with penalty

The fitness function measures the number of correct predictions and penalties the

situation where there is no correct predictions for some target categories of dependent
variable.

TNFPFFPFNFPTFP

TNFPTFP
Fitness

+++
+=

If there are some correctly classified fault prone and not fault prone classes the
fitness is the proportion of correctly predicted classes, but if there is no correct predic-
tion foe either faulty or non faulty classes then the fitness is 0.

The model was applied to 274 classes and Table 6 presents the results of correct-
ness of the fault proneness model predicted. As shown in Table 6, out of 134 classes,

 Prediction of Software Quality Model Using Gene Expression Programming 53

Table 6. Accuracy of Model Predicted using Training Data

Observed Predicted

 0.00 1.00
0.00 111 29
1.00 35 99

actually fault prone, 99 classes were predicted to be fault prone. The sensitivity of the
model is 73.8 percent. Similarly, 111 out of 140 classes were predicted not to be fault
prone. Thus, specificity of the model is 79.28 percent. Table 7 shows the sensitivity,
specificity, precision and AUC of model predicted using GEP method.

Table 7. Result of Model Training

GENE EXPRESSION
PROGRAMMING

Cutoff
Sensitivity
Specificity
Precision

AUC

0.5
73.5

79.28
76.64
0.77

6 Software Quality Metric Definition and Validation

Based on the results obtained from model prediction using GEP, we propose the gen-
erated expression as a software quality metric that can be used to predict faulty
classes. The metric is defined as follows:

Metric: Fault Factor (FF)

Definition: Consider a class C1, then the fault factor of the class is defined as follows:

)RFC LOC))-NPM * DIT) (((NPM

 NPM) * (2 LOC * 2 DIT)) (LOC * (2 CBONPM * NPM * 2 FF

++

++++++=
 (5)

0FF

 then 0,)RFC LOC))-NPM * DIT) (((NPM

 NPM) * (2 LOC * 2 DIT)) (LOC * (2 CBONPM * NPM * 2 if

=
<++

++++++

Where

NPM = Number of public methods in a class
CBO = Count of import and export coupling in a class
LOC = Lines of code in a class
DIT = Number of ancestors of a class
RFC = Number of external and internal methods in a class

54 Y. Singh, A. Kaur, and R. Malhotra

When we validated the above predicted model using FF metric on 74 classes, 25
out of 38 were correctly classified as non faulty and 27 out of 36.classes were pre-
dicted to be faulty (see Table 8). Thus, the sensitivity is 75% and specificity is
65.78%. The AUC of the model is 0.704. Table 9 shows the sensitivity, specificity,
precision, and AUC of model predicted using the developed metric..

Table 8. Accuracy of Model Predicted Using Validation Data

Observed Predicted

 0.00 1.00
0.00 25 13
1.00 9 27

Table 9. Result of Model Validation

GENE EXPRESSION
PROGRAMMING

Cutoff
Sensitivity
Specificity
Precision

AUC

0.5
75
65

69.3
0.704

7 Application of the FF Metric

Software developers can use the FF metric developed in the previous section in ear-
lier phases of software development to measure the quality of the systems. From the
design phase, one can make software measurements and then predict which classes
will need extra attention during the remainder of development. The classes with
higher values of FF metric will be predicted to be non faulty and the classes with less
value of FF metric will be predicted as faulty. This can help management focus re-
sources on those classes that cause most of the problems. Also, if required, develop-
ers can reconsider design and thus take corrective actions. In order to draw strong
conclusions, however, more studies should evaluate the effectiveness of the proposed
metric.

These design measurements can be used as quality benchmarks to assess and com-
pare products, after one calculated the value of FF metric. More such studies can pro-
vide quality benchmarks across organizations, whereas within an organization, quality
benchmarks can be set comparing metric values with the existing operational good
quality software. If deviation is found in the metric values further investigation to
know the cause of deviation could be done. Thus, corrective actions could be taken
before final delivery or future releases of the software. This is particularly important
when systems are maintained over a long period and new versions are released

 Prediction of Software Quality Model Using Gene Expression Programming 55

regularly. Based on our observation the classes with value of FF between 2 and 392
should be classified as non faulty and the classes with values less than 2 should be
classified as faulty.

Planning and resource allocating for inspection and testing is difficult. The FF met-
ric developed in the previous section could be of great help for planning and execut-
ing testing activities. The bar chart shown in Figure 5, shows that 15.6% of classes
(12 out of 134 faulty classes) misclassified as non faulty have only 1-3 number of
faults. Thus, the classes with high number of faults were mostly correctly classified to
be fault prone. Thus, for example, if one has the resources available to inspect 26 per-
cent of the code. From the values calculated by the FF metric one can tell that classes
with the lowest predicted metric values and total LOC upto 26% should only be
tested. If these classes are selected for testing one can expect maximum faults to be
covered.

0

2

4

6

8

10

12

1 2 3 6 11 15 16 20

Number of Faults

N
um

b
er

 o
f

C
la

ss
es

Fig. 5. Number of Faults Misclassified with Respect to Number of Classes

8 Conclusion

This paper empirically evaluates the performance of GEP algorithm in predicting
fault-prone classes. We developed a software quality metric using the expression gen-
erated from GEP. The faulty classes were predicted using OO metrics proposed by
Chidamber and Kemerer. The developed metric was validated using open source
software. The results indicate that that the performance of GEP is at least competitive.
This study confirms that construction of model using GEP is feasible, adaptable to
OO systems, and useful in predicting fault prone classes.

56 Y. Singh, A. Kaur, and R. Malhotra

The precision of developed metric FF is 69.3 percent, its accuracy in predicting
faulty classes is 75 percent, and specificity is 65 percent. While research continues,
practitioners and researchers may apply the proposed metric for predicting faulty
classes. The FF metric can help in improving software quality in the context of soft-
ware testing by reducing risks of faulty classes go undetected. As discussed, one im-
portant application of the proposed metric FF is to build quality benchmarks to assess
fault proneness of OO systems that are newly developed or under maintenance, for
example, in the case of software acquisition and outsourcing. Thus, one can conclude
that FF metric appears to be well suited to develop practical quality benchmarks.

The future work may include conducting similar type of studies with different data
sets to give generalized results across different organizations. We plan to replicate our
study to predict model based on genetic algorithms. We will also focus on cost benefit
analysis of models that will help to determine whether a given fault proneness model
would be economically viable.

References

1. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical Analysis for Investigating
the Effect of Object-Oriented Metrics on Fault Proneness: A Replicated Case Study. Soft-
ware Process Improvement and Practice 14(1), 39–62 (2008)

2. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Investigating the Effect of Coupling
Metrics on Fault Proneness in Object-Oriented Systems. Software Quality Profes-
sional 8(4), 4–16 (2006)

3. Barnett, V., Price, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1995)
4. Basili, V., Briand, L., Melo, W.: A Validation of Object-Oriented Design Metrics as Qual-

ity Indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)
5. Bieman, J., Kang, B.: Cohesion and reuse in an object-oriented system. In: Proceedings of

the ACM Symposium on Software Reusability, pp. 259–262 (1995)
6. Binkley, A., Schach, S.: Validation of the coupling dependency metric as a risk predictor.

In: Proceedings of the International Conference on Software Engineering, pp. 452–455
(1998)

7. Briand, L., Daly, W., Wust, J.: Exploring the relationships between design measures and
software quality. Journal of Systems and Software 5, 245–273 (2000)

8. Briand, L., Wüst, J., Lounis, H.: Replicated Case Studies for Investigating Quality Factors
in Object-Oriented Designs. Empirical Software Engineering: An International Jour-
nal 6(1), 11–58 (2001)

9. Cartwright, M., Shepperd, M.: An Empirical Investigation of an Object-Oriented Software
System. IEEE Transactions of Software Engineering 26(8), 786–796 (1999)

10. Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of Metrics for Object-Oriented
Software: An Exploratory Analysis. IEEE Transactions on Software Engineering 24(8),
629–639 (1998)

11. El Emam, K., Benlarbi, S., Goel, N., Rai, S.: A Validation of Object-Oriented Metrics,
Technical Report ERB-1063, NRC (1999)

12. El Emam, K., Benlarbi, S., Goel, N., Rai, S.: The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics. IEEE Transactions on Software Engineering 27(7),
630–650 (2001)

 Prediction of Software Quality Model Using Gene Expression Programming 57

13. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open
source software for fault prediction. IEEE Trans. Software Engineering 31(10), 897–910
(2005)

14. Harrison, R., Counsell, S.J., Nithi, R.V.: An Evaluation of MOOD set of Object-Oriented
Software Metrics. IEEE Trans. Software Engineering SE-24(6), 491–496 (1998)

15. Lee, Y., Liang, B., Wu, S., Wang, F.: Measuring the Coupling and Cohesion of an Object-
Oriented program based on Information flow (1995)

16. Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. Journal of Sys-
tems and Software 23(2), 111–122 (1993)

17. Olague, H., Etzkorn, L., Gholston, S., Quattlebaum, S.: Empirical Validation of Three
Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Developed
Using Highly Iterative or Agile Software Development Processes. IEEE Transactions on
software Engineering 33(8), 402–419 (2007)

18. Pai, G.: Empirical analysis of Software Fault Content and Fault Proneness Using Bayesian
Methods. IEEE Transactions on software Engineering 33(10), 675–686 (2007)

19. Tang, M.H., Kao, M.H., Chen, M.H.: An Empirical Study on Object-Oriented Metrics.
In: Proceedings of Metrics, pp. 242–249 (1999)

20. Tegarden, D., Sheetz, S., Monarchi, D.: A software complexity model of object-oriented
systems. Decision Support Systems 13(3-4), 241–262 (1995)

21. Zhou, Y., Leung, H.: Empirical analysis of Object-Oriented Design Metrics for predicting
high severity faults. IEEE Transactions on Software Engineering 32(10), 771–784 (2006)

22. promise, http://promisedata.org/repository/
23. Moreira, B.C., Fitzjohn, P.W., Offman, M., Smith, G.R., Bates, P.A.: Novel Use of a Ge-

netic Algorithm for Protein Structure Prediction: Searching Template and Sequence
Alignment Space. PROTEINS: Structure, Function, and Genetics 53, 424–429 (2003)

24. Sheta, A.F.: Estimation of the COCOMO Model Parameters Using Genetic Algorithms for
NASA Software Projects. Journal of Computer Science 2(2), 118–123 (2006)

25. Tikir, M., Carrington, L., Strohmaier, E., Snavely, A.: A Genetic Algorithms Approach to
Modeling the Performance of Memory-bound Computations. In: SC 2007, Reno, Nevada,
USA, November 10-16 (2007)

26. Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving
Problems. Complex Systems 13, 87–129 (2001)

27. Sherrod, P.: DTreg Predictive Modeling Software (2003)
28. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical study of object-oriented

metrics. Journal of Object Technology 5(8), 149–173 (2006)
29. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Software Reuse Metrics for Object-

Oriented Systems. In: Third ACIS Int’l Conference on Software Engineering Research,
Management and Applications (SERA 2005), pp. 48–55. IEEE Computer Society, Los
Alamitos (2005)

30. Briand, L., Daly, W., Wust, J.: Unified Framework for Cohesion Measurement in Object-
Oriented Systems. Empirical Software Engineering 3, 65–117 (1998)

31. Briand, L., Daly, W., Wust, J.: A Unified Framework for Coupling Measurement in Ob-
ject-Oriented Systems. IEEE Transactions on software Engineering 25, 91–121 (1999)

32. Chidamber, S., Kemerer, C.: A metrics Suite for Object-Oriented Design. IEEE Trans.
Software Engineering SE-20(6), 476–493 (1994)

33. Henderson-sellers, B.: Object-Oriented Metrics, Measures of Complexity. Prentice-Hall,
Englewood Cliffs (1996)

34. Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.
In: Proc. Int. Symposium on Applied Corporate Computing, Monterrey, Mexico (1995)

58 Y. Singh, A. Kaur, and R. Malhotra

35. Lake, A., Cook, C.: Use of factor analysis to develop OOP software complexity metrics.
In: Proceedings of the 6th Annual Oregon Workshop on Software Metrics, Silver Falls,
Oregon (1994)

36. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs
(1994)

37. Hall, M.: Correlation-based feature selection for discrete and numeric class machine learning.
In: Proceedings of the 17th International Conference on Machine Learning, pp. 359–366
(2000)

38. jedit, http://sourceforge.net/projects/jedit/
39. scitools, http://www.scitools.com/index.php
40. Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a Fault Prediction Model to Allow Inter

Language Reuse. In: PROMISE 2008, Leipzig, Germany, May 12–13 (2008)
41. Hair, J., Anderson, R., Tatham, W.: Black Multivariate Data Analysis. Pearson Education,

London (2000)
42. Belsley, D., Kuh, E., Welsch, R.: Regression Diagnostics: Identifying Influential Data and

Sources of Collinearity. John Wiley & Sons, Chichester (1980)
43. Hanley, J., McNeil, B.: The meaning and use of the area under a Receiver Operating Char-

acteristic ROC curve. Radiology 143, 29–36 (1982)
44. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Royal Stat.

Soc. 36, 111–147 (1974)

Method for Software Cost Estimating Using
Scope Champions

Yegor Bugayenko

TechnoPark Corp.
568 9th Street South 202

Naples, Florida 34102
egor@technoparkcorp.com

Abstract. There are many methods of software cost estimating
(COCOMO, function points analysis, three-point estimate, use case
points, class points, XP user stories, SLOC prediction and others), with
their advantages and drawbacks. One common problem with all methods
is the necessity to estimate the whole requirements specification, item by
item. At the end, either this process is expensive or the numbers are in-
accurate. This paper presents a method of software cost estimating using
a limited number of functional requirements, called Scope Champions.
Estimators produce more detailed and grounded numbers that are used
in a final estimation formula. The method reduces the costs of estimating
and increases accuracy.

Keywords: software cost estimating, size estimating, cost optimization,
requirements analysis.

1 Introduction and Problem Statement

Any project needs estimates (cost, time and resource) as key artifacts, which are
based on scope definition [1].

There are many well-established and proven methods of software size and
cost estimating, which are based on software specifications and organizational
assets, e.g. historical data. In a general case, any method includes a) requirements
analysis, b) numbers deriving and c) final calculation.

These three steps could be repeated several times iteratively, e.g. like in Wide-
band Delphi [2]. Each step may be completed manually or with a special tool
and/or algorithm, e.g. function point analysis [3], COCOMO [4], PERT [1], XP
user stories [5,6], SLOC prediction [7], by analogies [8], with use case points [9],
class points [10], neural networks, and others.

No matter what tools and algorithms are used, the whole process has two
significant disadvantages, which very often make it difficult to achieve optimal
results or even to finish the estimating in time.

First, even a mid-size software project may contain hundreds of functional
and non-functional requirements [11]. The time required by estimators for proper

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 59–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 Y. Bugayenko

understanding and analysis of requirements almost always is much bigger than
the budgeted time for the whole estimating process. The obvious outcome of this
situation is a limited understanding of requirements by estimators, which leads
to inaccuracy in the estimators’ judgement [12, pp. 33–54].

Second, estimators tend to approximate the numbers. With a big amount of
small estimates, this leads to a certain deviation in the final calculation (either
to the higher or to the lower boundary of the approximation). The deviation
grows much faster than the amount of the estimates does.

A good solution to the outlined problems could be a method that will decrease
the amount of efforts required for deriving numbers, at the same time improving
the accuracy of the estimate.

2 The Method of Scope Champions

The purpose of this method is to improve the accuracy of existing software esti-
mating methods by decreasing the amount of efforts required for the estimating
process and focusing on selected elements of the scope.

In properly managed software projects, product scope is defined by soft-
ware requirements specification (SRS) [11], that includes functional and non-
functional requirements to the product. A numbered list of requirements defines
the boundary of the product scope, while non-functional requirements supple-
ment them with quality attributes [13,6].

The method consists of three steps: a) select Scope Champions,b) estimate
Scope Champions, and c) calculate the product scope estimate.

Scope Champion is a selected functional requirement, the biggest and the
most complex element of scope, according to the estimators’ expert judgement.
Scope Champions are picked up from a complete set of requirements on the same
level of abstraction.

When Scope Champions are selected, isolated estimates for them are made
by estimators. Using the estimates and the formula, proposed as part of this
method, the final product scope estimate is calculated. The formula is:

Y ≈ 0.56 × n

m
×

m∑

i=1

Yi (1)

Where {Y1, Y2, . . . , Ym} are estimates of Scope Champions, m is a total
amount of Scope Champions, and n is the total amount of functional require-
ments in SRS. Y is a final product scope estimate.

Accuracy of the final estimate is improved because a) the estimators judge-
ment is based on more detailed analysis, and b) the final estimate is much easier
to validate and review.

The method can be used with other scope-defining artifacts, i.e. use case mod-
els [6], software architecture [14], design model [15], test plan [16], and others.
The results obtained should be applied together, which will give higher accuracy
for the total.

Method for Software Cost Estimating Using Scope Champions 61

3 Formal Proof of the Method

There is a simple mathematical explanation of the proposed method, which is
based on probability theory and Central Limit Theorem [17, pp. 317–323].

The product scope estimate X is a summary of all individual estimates Xi of
functional requirements (n):

X =
n∑

i

Xi (2)

It is assumed that the list of requirements consists of a complete set of elements
on the same level of abstraction. The set of requirements is complete if it covers
the whole product scope and it is impossible to add any more requirements to
it without changing the level of abstraction.

Thus, it is assumed that all requirements estimates satisfy the following cri-
teria:

min < Xi < max

min < Xi < min × R

R > 1
(3)

Where R is a ratio-constant, that indicates that there is certain difference
between maximum estimate and minimum estimate of requirements from the
list.

We also assume that all estimates Xi are unbiased estimates of the mean μ,
where μ equals to:

μ =
max + min

2
(4)

Figure 1 shows the graph of probability distribution. The horizontal axis is
an expected X , summary of all Xi. The vertical axis is a probability of given X .

Fig. 1. Function p(X) (vertical axis) is a probability of the event when the summary
of all individual estimates Xi is equal to X (horizontal axis). The distribution of p(X)
is normal.

62 Y. Bugayenko

According to central limit theorem, the sum of all Xi is an approximately nor-
mally distributed value, i.e. following a “normal” distribution [18, pp. 152-154].

Since the estimates are unbiased, the sum of them is distributed normally,
each estimate Xi is in the interval [min . . .max], and max depends on min as
defined in (3), we assume that the mean Y could be calculated like:

Y = μ × n =

=
max + max/R

2
× n =

= max × 1 + R

2R
× n =

= max × Z × n

(5)

Manually selecting a small number of functional requirements (which are the
most complex, according to expert judgement), we estimate them:
{Y1, Y2, . . . , Ym}.

Since we estimated the most complex requirements from the whole set, we may
assume that the average of them is “very close” to max. Using this assumption,
the product scope estimate equals to:

max =
1
m

×
m∑

i=1

Yi

Y = Z × n

m
×

m∑

i=1

Yi

(6)

Figure 2 illustrates the dependency between R from equation (3) and the con-
stant for equation (6). It is visually clear that the constant (Z) will be somewhere
in interval (1/2; 1] and will never reach 1/2.

Fig. 2. There is a dependency between R (horizontal axis) and Z (vertical axis), where
R is a difference multiplier between the biggest and the smallest estimates, and Z is
the multiplier used in final formula (6)

Method for Software Cost Estimating Using Scope Champions 63

It is assumed that R will be not only bigger than 1, but also bigger than
5. In other words, the most complex requirement will be at least 5 times more
complex than the smallest one. In most cases this is true and the value of 0.56
will be the best for any given software project.

Y ≈ 0.56 × n

m
×

m∑

i=1

Yi (7)

The constant 0.56 was found experimentally and could be changed, according
to the analysis of the requirements structure. Other positive numbers in interval
(1/2; 1] can be used, keeping it close to the lowest boundary (1/2).

4 Practical Example of the Method Application

The software we estimated was a scalable web platform for web-traffic track-
ing, billing and management, designed in SOA architecture, developed on J2EE
platform. There were 280 functional requirements in SRS.

Figure 3 illustrates a workflow of the method, starting from specified require-
ments and finishing with the estimated product cost.

Enter

A. Specify require-
ments on the same
level of abstraction

B. Re-group
requirements

C. Pickup Scope
Champions

D. Estimate
Scope Champions

E. Calculate
product cost

Exit

need regrouping

Fig. 3. Method flow chart, that illustrates key steps that should be performed in order
to obtain the project scope estimate with Scope Champions

64 Y. Bugayenko

Description
. . .

R4.1 Register new account for Advertiser
R4.1.1 Remind password with security check
R4.2 Get suggestions for best keywords
R4.3 Review history of XML API requests
R4.5 Configure IP filtering for XML API
R4.6 Register new campaign
R4.6.1 On-fly campaign parameters correction
R4.7 Create new ad and upload creatives
R4.7.1 Ad cloning from another campaign
R4.7.2 Add new creatives to the existing ad
R4.7.3 Delete existing creatives from the ad
R4.8 Request a status of manual approval process
R4.8.1 Re-initiate manual approval of the ad
R4.9 Clone campaign (copy existing one)
R4.10 Start campaign
R4.10.1 Schedule the moment of campaign start

. . .

Fig. 4. Sample list of functional requirements in the Software Requirements Specifica-
tion (SRS) document, actually a part of a much longer list

First, in step A, requirements are defined by system analyst and listed in a
SRS document [19,11]. We do not show the whole document here, just a number
of requirements, see figure 4.

We specified functional requirements in textual form with title and details. In
figure 4 there are just titles, which more or less effectively explain the sense of
each requirement.

All calculations and estimates were in staff-hours, related only to program-
ming efforts in the project. Requirements engineering, architecture, testing, de-
ployment, configuration management and other disciplines were not estimated.
We calculated the numbers using the estimate of programming effort.

In step B requirements should be refined and re-grouped in order to achieve
one level of abstraction allocation of all of them. The re-grouping should be per-
formed manually with expert judgement and may involve either decomposition
or aggregation of existing requirements. We assumed that requirements were
already on the same level of abstraction and didn’t do any re-grouping.

This assumption was made by our system analyst’s expert judgement. As ex-
plained before, functional requirements must be on one level of abstraction before
they could be used in the method. We do not know any formal method of such
“requirements normalization” [20,21] and use informal expert judgement [24].

If requirements are engineered and modeled with some formal logic-based
approach [21], normalization could be done according to some more or less strict
rules. Also, with formal requirements model, it’s possible to change the constant
from equation (6) to a more meaningful and specific number.

Method for Software Cost Estimating Using Scope Champions 65

In step C Scope Champions were picked up from the full list of requirements.
Scope Champions are the most complex and “expensive” requirements, accord-
ing to current expert judgement. Small amount of Scope Champions should be
selected, disregarding the size of the project and total amount of functional re-
quirements. We selected five Scope Champions: R4.7, R19, R47.5, R180, and
R289.

In step D we estimated Scope Champions with a three-point estimating
method [1]

We started with a preliminary UML [22,23] class diagram (figure 5) that helps
to undertstand key risks and assumptions in the solution domain. A software
architect, designer and programmer participated in the analysis. Class diagram
was used as the most valuable view of the technical domain in the given project.
Beside class diagram other approaches could be used by estimators, like dynamic
views (state-machine, activity or interaction diagrams).

User

Validate()

Advertiser

Campaign

Create()

Ad

Create()
Approve()

Creative

Create()
Validate()
Upload()

Validator

ValidateAll()

Controller

View

*

*

*

*

*

1

*

*

Fig. 5. Sample UML class diagram for one Scope Champion (requirement), created by
the estimator in order to understand the technical scope and provide more accurate
numbers for this individual requirement

66 Y. Bugayenko

Eight classes were identified as the best candidates for R4.7 requirement im-
plementation participants. Some classes will be used only for the implementation
of this particular requirement, but the majority of them will be used in other
requirements.

Then, we estimated the R4.7 requirement using the class diagram (figure 6)
and took into account all discovered risks and assumptions.

Class Method BC WC ML SLOC
Advertiser 1 6 2 50
Campaign - 4 1 30

::Create() 1 3 2 40
Ad - 6 3 40

::Create() 1 7 2 60
::Approve() 2 5 2 90

Creative 1 6 2 60
::Upload() 2 4 2 20
::Validate() 1 3 1 20
::Create() 1 3 2 25

Validator 3 9 6 120
Controller 1 3 1 15
View 2 8 3 50
Total 16 67 29 620
PERT Average 33.2

Fig. 6. A detailed estimation result of one Scope Champion, made by one estimator.
The estimation was made using PERT method (three-point estimate) and is based on
the UML diagram. In other words, the estimate is based on more thourough scope
understanding.

This estimation of R4.7 took two hours of work for three people (six staff-
hours total). Five requirements estimates costed us totally 34 staff-hours. For all
five functional requirements we received the numbers listed in figure 6.

Requirement Estimate Time spent,
staff-hours

R4.7 33.2 6
R19 29.0 5
R47.5 28.5 9
R180 34.0 5
R289 24.8 9
Total 149.5 34

Fig. 7. Estimates received from estimators for 5 Scope Champions and the total time
spent for each requirement estimation, in staff-hours

Method for Software Cost Estimating Using Scope Champions 67

Using the formula from equation (6) we calculated the product cost estimate,
which equals to 4700 staff-hours:

Y = 0.56 × 280
5

× (33.2 + 29 + 28.5 + 34 + 24.8) ≈
≈ 4700

(8)

The bottom line is that we had a SRS document with 280 functional require-
ments, we spent 34 staff-hours and created an estimate which was accurate and
self-explained. We performed technical analysis of the problem, found key techni-
cal risks and assumptions and produced a number of preliminary class diagrams.
We did all this for just 34 staff-hours, while the project size was close to five
thousand staff-hours (just programming).

5 Lessons Learned

The lessons learned in the estimating of the size of this project are:
“Transparency” The documents produced by this estimating method were

more than clear to all project participants. We easily presented them to the
project sponsor, executive management and programmers. No additional expla-
nation was required. Such transparency is a very rare outcome of traditional
estimating methods (if 34 staff-hours are spent for estimating).

“Speed of delivery” We spent 3 working days for project estimating, which is
three times less than we could spend if we estimate all 280 requirements, even
with less attention to details.

“Customer satisfaction” The project sponsor was satisfied with the level of
details and transparency of the estimate we prepared.

“Team motivation” By working with Scope Champions, the project team
was self-motivated. Mostly due to the limited and boxed scope of work (just 5
requirements). Before that, with traditional methods, we experienced difficulties
in team motivation, when it was necessary to work with 280 requirements.

6 Threats to Validity

There are a number of potential “what-if”-s, that may hamper the use of the
method in industrial projects. The most critical of them are:

“What if the assumption that all requirements are described at the same level
of abstraction is invalid?” Here we recall a fundamental assumption of iterative
software development — when system analyst baselines the requirements this
means that we are getting the best and the most thorough understanding of the
scope at this particular moment.

The estimate we get at this moment is the best estimate we can get according
to our current understanding of the scope. When architects and designers go
into technical analysis of the requirements and discover that some of them are
too small or too big (are not on the same level of abstraction) we get back to
the system analysis, refine requirements and re-estimate them again.

68 Y. Bugayenko

With any other well-known method we will do the same, but with scope
champions we spend less effort for such re-estimating session.

“What if the selected scope champions are not the most complex requirements
(in implementation)?” During estimation session estimators may be unsure what
requirements are the best candidates for Scope Champions. Such uncertainty is
an indicator of SRS defects, which shall be fixed by system analyst either before
estimate session or on the next iteration. The bigger the uncertainty the higher Z
constant in equation 6. Maximum value in interval (1/2; 1] means that estimators
are absolutely not sure in their selection of Scope Champions.

“What if the effort associated with the regrouping (normalization) of require-
ments is too big?” Requirements normalization, i.e. making all of them located at
the same level of abstraction, is an important task for project planning and track-
ing. Functional requirements as atomic scope components (valuable for project
customer) are the only objective earned value in the project. If they are not
normalized, project planning and tracking will be compromised.

7 Conclusion

This method has been successfully implemented and tested in TechnoPark Corp.,
since March 2007. The results obtained so far are accurate and precise, while
estimators are more focused and attentive while using this method. They were
not, when they worked with the three-point estimate approach, applied to all
functional requirements in SRS.

There is a still a space for research. First of all, the mechanism of requirements
normalization should be developed. So far, no formal approach to this task is
known [21,20].

Second, the constant that is used in the method (0.56) should get some cal-
culation method. Obviously, it should depend on some requirements metrics.

Third, the method may be applied not only to SRS and functional require-
ments, but to other scope-definition documents, like test plan [16], software archi-
tecture document [14], software design description [15], etc. Moreover, when the
method is applied to a number of documents, final result will be more grounded
and accurate.

References

1. Project Management Institute, Project Management Body of Knowledge
(PMBOK) Guide v.3, 3rd edn. PMI Press (2004)

2. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs
(1981)

3. International Organization for Standardization, ISO 20926, Software Engineer-
ing — IFPUG 4.1 Unadjusted functional size measurement method — Counting
practices manual (2003)

4. Boehm, B.: Software Cost Estimation with Cocomo II. Addison-Wesley, Reading
(2000)

Method for Software Cost Estimating Using Scope Champions 69

5. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Reading
(2000)

6. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2001)
7. Albrecht, A.J., Gaffney, J.E.: Software Function, Source Lines of Code, and De-

velopment Effort Prediction: A Software Science Validation. IEEE Transactions
on Software Engineering 9(6), 639–648 (1983)

8. Shepperd, M., Schofield, C.: Estimating software project effort using analogies.
IEEE Transactions on Software Engineering 23(11), 736–743 (1997)

9. Mohagheghi, P., Anda, B., Conradi, R.: Effort estimation of use cases for in-
cremental large-scale software development. In: ICSE 2005: Proceedings of the
27th international conference on Software engineering, St. Louis, MO, USA,
pp. 303–311. ACM, New York (2005)

10. Kanmani, S., Kathiravan, J., Kumar, S.S., Shanmugam, M.: Class point based
effort estimation of OO systems using fuzzy subtractive clustering and artificial
neural networks. In: ISEC 2008: Proceedings of the 1st conference on India soft-
ware engineering conference, Hyderabad, India, pp. 141–142. ACM, New York
(2008)

11. Software Engineering Standards Committee of the IEEE Computer Society, The
Institute of Electrical and Electronics Engineers, Inc., IEEE Recommended Prac-
tice for Software Requirements Specifications, IEEE Std 830-1998 (Revision of
IEEE Std 830-1993), NY, USA (1998)

12. McConnell, S.: Software Estimation, Demistifying the Black Art. Microsoft Press,
Redmond (2006)

13. Wiegers, K.: Software Requirements, Thorny Issues and Practical Advise, 2nd
edn. Microsoft Press, Redmond (2003)

14. Software Engineering Standards Committee of the IEEE Computer Society, The
Institute of Electrical and Electronics Engineers, Inc., Recommended Practice for
Architectural Description of Software-Intensive Systems, IEEE Std 1471-2000,
NY, USA (2000)

15. Software Engineering Standards Committee of the IEEE Computer Society, The
Institute of Electrical and Electronics Engineers, Inc., Recommended Practice for
Software Design Descriptions, IEEE Std 1016-1998, NY, USA (1998)

16. Software Engineering Standards Committee of the IEEE Computer Society, The
Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for Software
Test Documentation, IEEE Std 829-1998, NY, USA (1998)

17. Klenke, A.: Probability Theory, Comprehensive Course. Springer, London (2006)
18. Renyi, A.: Probability Theory. Dover Publications Inc., New York (2007)
19. IBM, Rational, Rational Unified Process in Rational Method Composer (2007)
20. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE

2000: Proceedings of the Conference on The Future of Software Engineering, Lim-
erick, Ireland, pp. 35–46. ACM, New York (2000)

21. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering.
In: FOSE 2007: 2007 Future of Software Engineering, pp. 285–303. IEEE Com-
puter Society, Los Alamitos (2007)

22. Podgorelec, V., Heričko, M.: Estimating software complexity from UML models.
SIGSOFT Software Engineering Notes 32(2), 1–5 (2007)

23. Object Management Group: Unified Modeling Language (UML), Superstructure,
Version 2.0 (2005)

24. Crow, J., Vito, B.D.: Formalizing space shuttle software requirements: four case
studies. ACM Transactions Software Engineering Methodologies 7(3), 296–332
(1998)

70 Y. Bugayenko

25. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language
requirements. ACM Transactions Software Engineering Methodologies 14(3),
277–330 (2005)

26. Jain, H., Vitharana, P., Zahedi, F.M.: An assessment model for requirements
identification in component-based software development. SIGMIS Database 34(4),
48–63 (2003)

27. Jeffords, R.D., Heitmeyer, C.L.: A strategy for efficiently verifying requirements.
SIGSOFT Software Engineering Notes 5(28), 28–37 (2003)

28. Kit, L.K., Man, C.K., Baniassad, E.: Isolating and relating concerns in require-
ments using latent semantic analysis. SIGPLAN Notes 10(41), 383–396 (2006)

29. Loconsole, A.: Empirical Studies on Requirement Management Measures.
In: ICSE 2004: Proceedings of the 26th International Conference on Software
Engineering, pp. 42–44. IEEE Computer Society, Washington (2004)

30. Maiden, N., Manning, S., Robertson, S., Greenwood, J.: Integrating creativity
workshops into structured requirements processes. In: DIS 2004: Proceedings of
the 5th conference on Designing interactive systems, pp. 113–122. ACM Press,
New York (2004)

31. Maiden, N., Gizikis, A., Robertson, S.: Provoking Creativity: Imagine What Your
Requirements Could Be Like. IEEE Software 21(5), 68–75 (2004)

32. Trendowicz, A., Heidrich, J., Münch, J., Ishigai, Y., Yokoyama, K., Kikuchi, N.:
Development of a hybrid cost estimation model in an iterative manner. In: ICSE
2006: Proceedings of the 28th international conference on Software engineering,
Shanghai, China, pp. 331–340. ACM, New York (2006)

33. Lee, S.W., Rine, D.C.: Missing requirements and relationship discovery through
proxy viewpoints model. In: SAC 2004: Proceedings of the 2004 ACM symposium
on Applied computing, pp. 1513–1518. ACM, New York (2004)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 71–86, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Measurement Framework for
Team Level Assessment of Innovation Capability in

Early Requirements Engineering

Björn Regnell1,2, Martin Höst1, Fredrik Nilsson3, and Henrik Bengtsson2

1 Dept. of Computer Science, Lund University, Sweden
http://www.cs.lth.se

2 Sony Ericsson, Lund, Sweden
http://www.sonyericsson.com

3 Dept. of Design Sciences, Lund University, Sweden
http://www.design.lth.se

{bjorn.regnell,martin.host}@cs.lth.se,
fredrik.nilsson@plog.lth.se

Abstract. When developing software-intensive products for a market-place it is
important for a development organisation to create innovative features for com-
ing releases in order to achieve advantage over competitors. This paper focuses
on assessment of innovation capability at team level in relation to the require-
ments engineering that is taking place before the actual product development
projects are decided, when new business models, technology opportunities and
intellectual property rights are created and investigated through e.g. prototyping
and concept development. The result is a measurement framework focusing on
four areas: innovation elicitation, selection, impact and ways-of-working. For
each area, candidate measurements were derived from interviews to be used as
inspiration in the development of a tailored measurement program. The frame-
work is based on interviews with participants of a software team with specific
innovation responsibilities and validated through cross-case analysis and feed-
back from practitioners.

Keywords: requirements engineering, measurement, metrics, innovation.

1 Introduction

How do we know that we are innovative? This question was asked by a manager for a
software team with explicit responsibility to create and analyze innovative product
features before actual product development projects are started. In early market-driven
requirements engineering [1, 2], it may be a long lead-time to feedback counted from
initial concept invention to response from market success (or failure). Still, managers
of teams that work with the conceptualisation of novel product ideas need to steer the
innovative work in the right direction before market feedback is given.

The above question of determining innovation capability in pre-development ac-
tivities was the starting-point for a research effort resulting in the framework for

72 B. Regnell et al.

measuring innovation capability in teams (MINT), presented in this paper. Our inter-
pretation of innovation here includes not only a creative, radical idea but also that the
idea is implemented in products and/or services and results in recognized, novel and
significant value for its users. In line with this interpretation we use the term (product)
innovation capability to imply the capacity of an organisational entity to create novel
product feature concepts that are successfully incorporated in product development
and (eventually) creating significant value for product stakeholders.

The question of how to know the innovative capability of a team leads to the follow-
up question: What are the aspects of innovation capability that can be measured? Inno-
vation capability is a multi-faceted phenomenon including individuals’ skills, team
work, organisational aspects as well as specific properties of the domain in which the
innovation is carried out. Several issues are “soft” and related to human judgement and
it can be assumed that an assessment of innovation capability needs inclusion of sub-
jective evaluation with not only quantitative data, but also qualitative data based on the
views of individuals. Subsequently, we thus use the term measurement in a broad
sense, also including qualitative data using nominal and ordinal scales in addition to
quantitative data on absolute and ratio scales.

We have conducted an investigation into aspects of innovation capability through a
qualitative analysis of semi-structured interviews with 5 members of a team with
specific responsibilities of software innovation for future products. The coding of the
interview transcriptions was input to a brainstorming session where innovation capa-
bility measurement candidates were defined and then grouped and structured into a
three level framework. The research approach is further elaborated in Section 2.

The main contribution of this paper is described in Section 3 and is comprised of the
empirically based three-level framework denoted MINT. The MINT framework is
aimed for organisations considering assessment of innovation capability on team level,
and the measurement areas, factors and candidates are supposed to be used as inspira-
tion material when developing a situated measurements program. The validation of the
framework is based on feedback from practitioners and a detailed cross-case analysis
with another case study of a team also with the responsibility to be innovative, but in a
different context [3].

The innovative aspects of requirements engineering have been recognized in e.g.
[4, 5, 6], however not specifically addressing innovation capability measurement. The
literature on general engineering management in relation to innovation is extensive,
however limited with respect to team level studies, see further Section 4 on related
work. Section 5 concludes the paper.

2 Research Approach

The general focus of the presented research is to develop support for continuous im-
provement of innovation capability through measurement in the innovation process at
team level. In market-driven software development [2], requirements engineering is
also needed at a strategic level before development projects are started [1]. These
early requirements are closely related to an organisation’s innovation capability, as
pre-development activities can pave the way for investments in radical development
rather than incremental refinement based on existing customers’ voices.

 A Measurement Framework for Team Level Assessment 73

Fig. 1. Conceptual model of research focus

Based on literature studies [7, 8, 9, 10], knowledge of the case company, and our pre-
understanding of innovative teams and contexts, a conceptual model was depicted that
guided our research design, see fig. 1. The innovative team represents an organisational
unit that has a specific focus to develop radically new products or features for future
markets that can enable the company to meet future competition rather than current
competition. The use of teams is something several authors accentuate [8, 9, 10] and
effective team work is put forward as a central activity for innovation. Other parts of the
company may have teams that work with normal product development targeting incre-
mental improvement of existing products, while the innovative team drives special
projects with higher risks and often longer time horizons. The innovative team operates
in an internal context representing the rest of the company. The internal context also
encompasses soft aspects such as company values, culture and history of the organisa-
tion. The internal context is by Davida et al [9] called the internal marketplace on which
organisational antibodies that may hamper innovation within the organisation may exist
as well as proponents for novelty. The innovative team is provided with input in the
form of goals and assignments, and also the input resources provided such as competent
engineers and accompanying budget to enable accomplishment of the goals. The output
can range from novel features of products to new ways of doing business i.e. novel
business models. Finally, the team acts in relation to an external context including mar-
kets, competitors, other industries and society, from which behaviours and trends can be
observed.

2.1 Case Company

The case company was chosen based on its participation in a long-term research
collaboration effort in software engineering, where the company has expressed inter-
est in innovation management issues. The case company is Sony Ericsson Mobile

Innovative
Team

Internal Context
External Contex

Market, customers, society

Organization, products, history

Input

Feedback

Output

74 B. Regnell et al.

Communications. The company mission is to establish Sony Ericsson as the most attrac-
tive and innovative global brand in the mobile handset industry. The company under-
takes world-wide product research, design and development, manufacturing, marketing,
sales, distribution and customer services. The company has several thousand employees
working with research and development in e.g. Sweden, UK, France, Netherlands, In-
dia, Japan, China and the US. The presented case study is conducted at the site in Lund,
Sweden, where a major part of the company's software assets are developed using a
product line engineering approach integrating sub-contracted software with in-house
software in an evolving application platform on which new products are configured.
The organization has several units and teams that focus on innovation in different tech-
nical areas and with different time frames. Based on management interest we chose one
specific team with special responsibility of coordinating the most long-term innovation
efforts with particular strategic value in mobile software applications. The team compo-
sition is dynamic but it includes more than 10 core members with a strong record in
software innovation.

2.2 Research Methodology

The case study is conducted in an exploratory, qualitative, action research mode [11],
where identified innovation metrics are grounded in interviews with five software
engineering practitioners. The research was conducted in the following steps:

1. Definition of interview instrument.
2. Conduct interviews.
3. Transcribe and divide into sentences, phrases or sections.
4. Identify a first version of metrics based on phrases.
5. Sort identified metrics into high level groups.
6. For each group, go through and join, reformulate etc to find more metrics.
7. Validate the results by (a) feedback from the innovative team, and (b) cross-case

analysis in a different organization.

Step 1. The interview instrument was defined based on the research questions and the
researchers' prior knowledge of the organization and the area in general. These ques-
tions were validated with the use of four external innovation researchers. This resulted
in a set of 36 interview questions, grouped into sub-topics such as characterization of
organization, innovation climate in the team, incentives for innovation, mission for
group, resources to the group, deliverables from the team, etc. Together with the in-
terview questions an interview guide with guidelines on how long time to spend on
each question, and a recommended order of questions, was developed. A summary of
the topic and sub-topics of the interview instrument is given in Table 1.

Step 2. Five persons were interviewed, and each interview lasted for about one and a
half hour. All interviews were recorded in audio format, and notes were taken. The
interviews were semi-structured [12, 11] where the interview guide acted as a check-
list in order to see to that all relevant topics were covered. The interviews were
conducted by two researchers interviewing one interviewee. According to [12], ad-
vantages of being two researchers are that a second researcher can focus on what is

 A Measurement Framework for Team Level Assessment 75

said and relate this to the interview guide while the other researcher can improvise
based on what is said, and that it is possible for the researcher to discuss what was
said afterwards and verify their interpretations. The selection of people to interview
was made based on discussions with the team manager.

Table 1. Overview of the interview instrument

Interview topics Sub-topics
Internal Context Management, colleagues, departments, organisation
External Context Market, customers, external stakeholders
Innovation Process
(at team level)

Characterization, Current situation, Innovation Climate, Incentives, Future,
Challenges

Input Assignment, Resources
Output Deliverables, Results, Effects
Feedback Goals achieved, External/internal feedback, Measurement, Assessment

Step 3. All interviews were transcribed into text. The transcripts were then processed
by dividing them into sentences to make it possible to treat every sentence individu-
ally. The sentences order was kept making it easy to see the sentences before and after
each sentence. The transcripts from the interviews ranged from about 5,000 words to
about 12,000 words. The transcripts are not presented in detail due to confidentiality
reasons.

Step 4. Almost 300 potential innovation metrics were identified through brainstorm-
ing sessions where innovation-related metrics were formulated based on the assumed
meaning or inferred implications of the transcribed sentences. The brainstorming
involved the creativity of the researchers in order to transform the statements of the
informants into measurement. This resulted in a first list of potential metrics, which in
Step 5 were grouped by the researchers. To some extent the groups were based on the
researchers' prior knowledge about the area, but care was taken to be open-minded,
and not to be too limited by prior knowledge. New groups emerged at two different
levels of abstraction. The highest level concerns main interfaces of the innovative
teams, and the more detailed level consists of sub-areas of the higher level groups
(eventually leading to the areas and factors in Fig. 2).

Step 6. The identified metrics of every sub-group were studied and refined. Some
metrics were very similar and could therefore be reformulated and combined into a
new metric, while others were kept apart as they were different. Based on this a final
set of examples of metrics were suggested for every sub-group.

Step 7. The results were improved through a cross-case comparison to a similar inter-
view study conducted in another organization. If the results in the two studies are
similar this may serve as an initial validation. The other organization, which the re-
sults are compared to, works with innovations in the healthcare sector. This team
focus mainly on product and service innovations but also on innovations related to
management processes. The result was also presented to the interviewed organization.
The final results were then adjusted based on the cross-case comparison.

76 B. Regnell et al.

2.3 Validity Discussion

The threats to validity for a case study can be classified into construct validity, inter-
nal validity, external validity, and reliability [13]. Construct validity concerns to what
extent the constructs that are studied really represent what the researcher have in
mind. In this study there is a potential threat that different people may interpret the
term "innovation" differently. However, much attention was given to discuss the
meaning of this during the interviews. For constructs related to the organization its
products, the risk is lower as the researchers have a long-term collaboration experi-
ence with the organization. The intention was also to control this threat by having two
interviewers at all interviews. Internal validity is concerned with threats to conclu-
sions about cause and effect relationships, which is not a major objective of this
study. External validity is concerned with generalization of the results from the cho-
sen population and the tasks that have been studied. This threat is partly addressed by
the validation step where the results are compared to another type of organization.
The people to interview were chosen with the objective to cover as many different
views and roles as possible within a given time frame. We believe that a good sample
of people from the team was made. Reliability is concerned with to what extent the
data and the analysis are dependent on the specific researchers. Hypothetically, if
another researcher later on conducted the same study, the result should be the same.
In this study all findings have been derived by at least two researchers, and then re-
viewed by the other researchers, which means that this threat has been made smaller.
The threat is also addressed by having a defined interview guide, and by being two
interviewers at every interview. To summarize, we believe that the validity threats of
our results are in control, although the identified metrics should not be seen as a final
list general to all organizations.

3 Results

The results of this study includes various findings from the interviews (Section 3.1)
and the three-level MINT framework (Section 3.2) that is proposed as inspiration and
guidance in the development of tailored measurements programs for innovation capa-
bility assessment and improvement. The MINT framework was developed in three
steps: (1) a first version was conceived based on interview data from the Sony Ericsson
case, (2) a new version with minor changes was developed based on validation within
the Sony Ericsson case, (3) a revised version including a limited restructuring based on
a validation with a parallel case from the healthcare domain. Section 3.3 and 3.4 de-
scribe initial efforts on internal and external validation respectively.

3.1 Discussion of Some General Findings from Interviews

We have selected four findings that stand out as salient issues in interviews:

1. the importance of spending effort on promoting the results of the innovative team
in the rest of the organization in order to enable innovation realization,

2. the application of a useful development process focused on prototyping and con-
cept development with little overhead and small increments,

 A Measurement Framework for Team Level Assessment 77

3. the increased focus on quality requirements when prototype development is trans-
formed to traditional product development, and

4. the expressed high demands on technical skills needed in order to be accepted as
a member of the innovative team.

The first finding addresses the expressed importance for the innovative team to
pave the way for their innovations within the organization. It is by no means certain
that the investigated innovations are included in developed products. There is a lim-
ited number of new features in new products and many ideas have been rejected by
prioritizing other features. In this case the team sees it as its responsibility to spend
significant effort to promote the ideas that they really believe in.

The development within the team is focused on software prototypes as executable
concept demonstrators. In some cases, also hardware prototypes are developed. The
development of prototypes is seen as a requirement for successful promotion of the
investigated innovations within the organization, as executable prototypes are more
convincing in demonstrating the potential value of a new concept compared to a non-
working paper product. An evaluation based only on e.g. market opinions and inter-
views is considered insufficient. This is expressed as "It is the main reason for us to
develop prototypes" by one of the team members.

The prototype software is not developed in the same way as normal product-grade
software. The requirements concerning code quality are not the same, and the devel-
opment process is different compared to when product-quality software is developed.

When a prototype has been developed, and a decision has been taken to introduce a
concept in products, the lead time is, as for all new features, of high priority. This
means that there is an interest to transfer as much knowledge and as much software as
possible, from the prototype projects to traditional product project. That is, there is a
clear shift in the organization with respect to the interest in a feature. From being a
long-term innovation which is investigated at a conceptual level, it is transformed to
a prioritized product feature with a relatively shorter time frame. This is expressed as
"If we have found an innovation to be promising we want to include it as soon as
possible" by one of the team members. The interviewees also express the challenge of
shifting from prototype code to product-grade quality code and the risk that the mem-
bers of the innovative team work too much on normal product development rather
than on radical innovation.

It was found that the typical requirements on the people in this type of team include
technical knowledge in combination with social skills, as well as being "innovative".
However, the technical skills, including knowledge of the product structure and skill in
software development is viewed as critical. It is also important to have general knowl-
edge of the whole product. One developer stated: "Other developers at [the company]
work in one module, while we work in the whole [product]. We have tried to include
people from different groups of the company in our team."

3.2 The MINT Framework

The main result of the interview study is the MINT framework that is intended to be
used as an inspiration and guidance when developing a situated measurements pro-
gram for assessing and improving innovation capability. The MINT framework is

78 B. Regnell et al.

comprised of three levels: measurement areas, measurement factors and measurement
inspiration, subsequently described in Fig. 2 and Tables 2-5.

Innovation Elicitation. This area consists of measurement inspiration related to ac-
tivities that are devoted to identification of ideas for innovation projects. The area is
divided into factor depending of if ideas are actively generated or collected from ex-
isting resources, as well as if the originate from internal or external stakeholders. The
ideas elicited are the basis for project proposals for the innovative team. Feedback to
on the proposals is important for stakeholders so that they can see that their proposals
are considered.

Fig 2. The first two levels of the MINT framework: areas and factors

Project Selection. The project proposals that are considered best are chosen and in-
novation projects are started for proof-of-concept and prototype development. Differ-
ent criteria can be used in project assessment, including e.g. risk, effort needed and
time horizon for when the market is estimated to be ready for the innovation. By
choosing a mix of projects with different characteristics with respect to such criteria, a
balanced project portfolio can be created that may give beneficial variation and in-
creased chances of success in innovation work.

Impact. In order to realize a great idea and make it an innovation, it needs to be
handed over to and taken care of by the normal product development organization,
where product-grade quality can be achieved through a systematic implementation

Innovative
team

Innovation
Elicitation

Ways of
Working

Project
Selection

Impact

Internal Generation
Internal Collection
External Generation
External Collection
Feedback

Timing, risk & size
Internal Stakeholders
External Stakeholders
Return on investment

Product Features
Interaction
Trust
Intellectual Property Rights
Standards & Practice

Process
Innovation Climate
Incentives
Competence
Organisation
Process Improvements

Areas

Factors

 A Measurement Framework for Team Level Assessment 79

and quality assurance. The innovative team acts as ambassador for its project results
and communicates their benefits in order to explain why further development efforts
should be allocated. The overall goal is to have a beneficial impact on and a renewal
of the whole organization and its business.

Ways-of-working. This factor concerns the ways-of-working of the innovative team,
including the process of innovation projects as well as organizational abilities related
to competence, the innovation climate in relation to the team's group dynamics, and
continuous process improvement.

Measurement Inspiration. The third level of the MINT framework is comprised of
selected examples of measurements intended as inspiration to definition of tailored
assessment of innovation capability. Tables 2-5 below include the empirically
grounded inspiration.

Table 2. Measurement inspiration related to the area of Innovation Elicitation

Innovation Elicitation
Factors Measurement inspiration

Number of incoming proposals from different sources
Number of analyzed patents in patent portfolio

Internal
collection

Number of and time between activities of collaboration with patent team.
Number of and time between collection activities focused on specific external
stakeholders (different types of users, customers, competitors, owners, public
authorities, etc.)
Number of visited events (conferences, convents, courses, etc.)
Number of investigation of other companies (potential threats, technology
providers, takeover, etc.)

External
collection

Number of patents or prototypes further developed based on existing patent
portfolio
Number of and time between activities of presenting the work of the innovative
team.
Longitudinal change of proposal (e.g. to see peaks after presentation activities)

Internal
generation

Number of and time between activities of systematic idea generation (e.g.
different types of brainstorming and elicitation workshops)
Number of observation studies of users.
Number of projects based on ideas from external stakeholders

External
generation

Number of workshops with customers on future needs
Number of submitted proposals from persons with rejected proposals (it is
important that people continue to give proposals even if not all ideas becomes
projects)
Elapsed time from proposal to feedback

Feedback

Effort spent to give feedback

3.3 Validation within the Case

It remains in future work to validate the MINT framework in other case organisations.
However, several actions were taken in order to validate the findings within the stud-
ied case. First, the interview transcripts were sent to interviewees who all (after some
minor corrections) found the transcripts a valid representation of their views of the

80 B. Regnell et al.

Table 3. Measurement inspiration related to the area of Project Selection

Project Selection
Factors Measurement inspiration

Estimated lead time to market launch of project results
Ratio of short-term and long-term projects

Timing

Estimated lead time to hand-over of projects results to internal stakeholders
Subjective assessment of project risk (feasibility, technical challenge, etc
Number of parallel tracks or options investigated (in case of technology uncertain-
ties)

Risk

Number of terminated/unsuccessful projects (a certain degree of risk-taking is good)
Estimated project effort Size
Distribution of project size (effort) in portfolio
Distribution of projects over different types of internal stakeholders
Number of projects that challenge current business models or paradigms

Internal
stakeholders

Number of projects that focus on incremental enhancement of existing product
features
Number of projects based on radical future scenarios
Number of projects with end-user relevance

External
stakeholders

Number of projects with future customer or new market relevance
Estimated Return on Investment
Potential loss (alternative cost) of not selecting a projects (worst case scenario).

Return on
Investment

Number of and time between of decision input from steering committee on which
projects to prioritize

topic. Second, an initial version of the MINT framework was then presented at a 2h
seminar with 16 team members present including all but one of the interviewees,
where discussions on how to apply the framework were initiated. The seminar partici-
pants had different views on which factors that are most important to start with when
implementing a measurement program, but the general opinion recognized the value
of having concrete example metrics for each factor as inspiration when formulating
metrics. No factors were found missing; instead it was stressed that the framework
was extensive and that it was necessary to focus the implementation of a measurement
program to only a few highly relevant metrics. Third, a future project was planned
where a set of factors from the MINT framework were chosen as input to the defini-
tion key performance indicators for the innovative team. Thus the MINT framework
was by the team and its management found useful as starting-point for innovation
capability assessment.

3.4 Comparison with Parallel Case

The same research focus of Fig. 1 and interview instrument of Table 1 were used in a
parallel study [3] of an innovative team in a public sector organization that delivers
health services within the regional government. The innovation focus of the external
parallel case is mainly product and service-oriented innovation in the health care and
medical technology domains, and only indirectly related to software, thus giving a
variation in term of both organisation and domain. The intention of this validation is to
address external validity of the results (c.f. Section 2.3). The analysis and coding of
interview transcriptions was done in the same way in both cases through brainstorming
sessions that generated a high number of potential metrics of innovation capabilities.

 A Measurement Framework for Team Level Assessment 81

Table 4. Measurement inspiration related to the Impact area

Impact
Factors Measurement inspiration

Number of released product features that have been impacted by the team's
work
Number of projects plans that have been impacted by the team's work
Number of change requests that originate from the team's work
Number of end users of released product features that from the team's work
Number of results from the team accepted by product planning (or other
stakeholders)

Product
features

Subjective assessment of the extent to which the team's results have had
positive (compared to neutral or negative) impact on released products
Number of persons in the team's contact network
Number of stakeholders that are covered by contact network
Share of project effort spent on internal marketing
Number of visitors at events where the teams work is presented (e.g. demo
shows)
Number of company employees outside the team that know about the team's
work
Number of collaboration activities with internal and external stakeholders
Effort spent on hand-over and integration of results into products

Interaction

Number of internal promotion meetings with relevant stakeholders
Number of invitations of team members to presentations, meetings, courses
etc.
Subjective assessment of the quality of the team's results by the receiving
stakeholders
Number of accesses in the document management system of the team's
project reports
Results of questionnaires on results quality by participants at presentation
events

Trust

Subjective assessment by internal stakeholders on the team's credibility in
various strategic technology areas
Number of patent proposals, number of patents applications, number of filed
patents, (per year, per person) etc.
Effort spent of patent proposals
The team's share of the company patent incentive program

Intellectual
property
rights

The team's share of company patents (proposed and filed)
Number of standardisation organisations and practice-shaping networks that
the team is participation in (actively contributing or passively monitoring)
Number of occasions where the team's work has impacted standards and
practice
Share of standardisation bodies that are impacted vs standardisation bodies
that would be relevant to impact
Subjective assessment of ability to impact standardisation and practice vs
competitors

Standards
and practice

Effort spent on driving standards and shaping practice

A cross-case comparison was then performed between the cases which resulted in
minor changes to the framework and the set-up of measures. The comparison of gener-
ated measurement candidates revealed that a majority were similar or related. The

82 B. Regnell et al.

changes to the framework involved inclusion of process measures and measures of
standards and practice. Also, more metrics found in the cross-case analysis related to
common team aspects such as the competence factor resulted in a restructuring of the
areas of the framework and the introduction of the ways-of-working area in Fig. 2,
which gave a more coherent grouping of related factors. In summary, the comparison
of the framework on the three levels supported our belief that the MINT framework
has some degree of general validity also outside the initial case study in which the first
version of the framework was conceived.

Table 5. Measurement inspiration related to the area of Ways-of-Working

Ways-of-Working
Factors Measurement inspiration

Subjective assessment of the efficiency of the team's ways of working
Share of total effort spent on creative work compared to e.g. administration
Subjective assessment of the effectiveness of innovation assessment meth-
odology
Number of projects that shifts from innovation to normal development
Estimated remaining investment needed to implement the innovation in real
products

Process

Share of prototype construction (e.g. lines of code) that can be reused di-
rectly in normal product development
Number of consecutive non-booked time slots in each team member's cal-
endar
Share of time that is devoted to each tem member's own proposals
Time between deadlines for each project member
Subjective assessment of the teams climate with respect to open, construc-
tive debates

Climate

Subjective assessment negative climate factors (personal conflicts, fear of
failing, overloading, etc.)
Monetary rewards for achieved personal and group goals
Monetary rewards for patent proposals

Incentives

Number of personal and group recognitions of achievements
Distribution of team member's background, experience, age, gender etc.
Number of competence area that are mastered within the team
Subjective assessment of how well strategic competence areas are covered
Number of job rotations per year

Competence

Number of projects that each team member has managed or participated in
Project resources (effort , budget, etc.)
Number of projects per year, number of involved persons per project
Lead time per project

Organization

Share of budget on outsourced projects
Number of process improvement proposals from team members
Number or process improvement proposals that are based on stakeholder
feedback on the team's results
Number of implemented process improvement proposals
Subjective assessment of number of process improvement proposals that
have had impact on the team's ways-of-working
Subjective assessment of the benefit of each process change

Process
improvement

Number of process changes that are considered significant improvements

 A Measurement Framework for Team Level Assessment 83

4 Related Work

The innovative aspects of requirements engineering have been recognized already in
1995 by Potts [6]. More recent work on innovation in requirements engineering includes
investigation of creativity in requirements elicitation workshops by Maiden and Robert-
son [4, 5]. In the literature on general engineering management, several studies on inno-
vation measurements can be found that relates to the presented framework. However,
while there has been much focus on innovation and innovation capabilities on organiza-
tional level, as well as on the individual level, less focus has been placed on the team
level. The same accounts for measurement and assessment methods of innovation and
innovation capabilities. Furthermore, a majority of innovation metrics focus on product
or process performance and are of a post-hoc character i.e. when products or processes
reach the market. Reported performance innovation metrics in industry are percent of
revenue from new products (NPs), percent of growths in NPs, overall profits generated
by NPs [14]. Other reported metrics include number of patents and number of ideas
generated in various suggestion facilities.

Measuring the climate for group innovation is addressed by Anderson and West [8].
This is the only reference, to the authors´ knowledge, that emphasizes measurement of
innovation at team level. They present a multidimensional measure of facet-specific
climate for innovation in group called Team Climate Inventory and pinpoint that “most
previous measures of [innovative] climate have evaluated organizations as a whole…”
[8, p.254]. They conclude that by focusing on specific aspect of climate and specific
group level outcomes the predictive accuracy is high.

Other sources provide different aspects and dimensions to innovation measurement
and assessment. One of the most comprehensive sources is the literature review by
Adams et al [7] on innovation management measurements. Based on their review a
framework of seven areas for measurement of innovation is provided. They point to the
need for both practitioners and academics to measure innovation and stress the absence
of frameworks for innovation management measurements as well as “the relatively
small number of empirical studies on measurement in practice” [7, p.389]. Griffin and
Page [15] argue that a company can assess failure or success of development projects
by using appropriate sets of measures with alignment to project and innovation strate-
gies. The framework presented by Griffin and Page is relevant when products are
placed on the market i.e. post hoc measures (e.g. customer acceptance, market share
goals, competitive advantage) and provides insights for innovation on the organiza-
tional (corporate) level. The same measurement focus can be found in Huang et al. [16]
i.e. on corporate level and on post-hoc measures. Based on their study on the meas-
urement of new product success in Australian small and medium sized enterprises, it is
concluded that firms should use multiple criteria when measuring new product success.
The most contributing factors to customer success were found to be customer satisfac-
tion and customer acceptance, i.e. post-hoc measures.

Davila et al. [9] present another view, based on a business model for innovation with
appropriate measures based on four phases; input, process, output, and outcome. For
each of these phases they present a plethora of measures. They also define three roles of
measurement systems: (1) plan, involving a design and monitoring strategy; (2) moni-
tor, including tracking of execution efforts and performance evaluation; and (3) learn, in
order to identify new opportunities. The framework they provide shows some similarity
with the MINT framework on the second level of measurement areas.

84 B. Regnell et al.

Chiesa et al. [17] present a framework for technical innovation audit. Their framework
consists of four core processes: 1) the identification of new product concepts – concept
generation; 2) taking the innovation from concept to launch – product development; 3)
the development of innovation in production – process innovation; and 4) the develop-
ment and management of technology per se. In addition they define three enabling proc-
esses: 1) recourses – the deployment of human and financial resources; 2) system and
tools – the effective use of appropriate systems and tools; and 3) leadership – providing
the top management leadership and direction. However, the focus in both Davial et al.
and Chiesa et al. is mostly on an organizational (corporate) level, hence team-level inno-
vation measurement on climate, processes and performance is not addressed explicitly.

Other literature on measurement of innovation extends the main stream focus on
product and technology by addressing other innovation areas such as service innova-
tion, aesthetic innovation and the measurement thereof. For example, Alcaide-Marzal,
and Tortajada-Esparza [18] approach innovation and its assessment in industries that
are not focused on technological innovation but instead on aesthetic innovation. In
their review of innovation surveys they investigate the occurrence of the following
aspects; goals of innovation, inputs to innovation, outputs of innovation, innovation
diffusion, and aesthetic design. Hipp and Grupp [19] focus on service innovations and
state that “Scientific research in measurement methods and indicator creation describ-
ing service innovations and their effects on the economic, technological, and social
environment has only just started” [19, p.531].

5 Conclusion

Innovation management is an important part of the business of software developing
companies in competitive industries, which makes it a central part of market-driven
requirements engineering. This work is often carried out by innovative teams that
develop prototypes in order to investigate the feasibility of new ideas. A major prob-
lem in this kind of work is that the time until feedback from the market is too long to
serve alone as a basis for assessment of on-going work.

The problem of assessing the capability of this type of management has been in-
vestigated, and a framework for measurement has been formulated based on inter-
views. The defined dimensions of the framework concern how innovation ideas are
identified, how investigation projects are defined and managed, how innovative teams
carry out their work, and what impact innovations have on the rest of the organization
and on the business. For each of these dimensions a number of sub-areas have been
defined, and for every sub-area a set of metrics have been defined.

The identified framework is related to other defined frameworks, e.g. [9], but spe-
cifically derived for innovative teams in software-intensive industries. The framework
includes a rich set of examples of metrics, and a sub-set of these can be selected or
modified when a metrics program is tailored for a specific organization. The intention
is not that all defined metrics should be used in every situation, but rather that they act
as inspiration. Further work includes case-studies where the framework is used for
this purpose, i.e., where metrics programs are planned and executed based on it.

 A Measurement Framework for Team Level Assessment 85

Acknowledgements. The Product Innovation Engineering program (www.piep.se), a
Swedish research and development program for increased innovation capability in
organizations, has contributed to this work together with the VINNOVA industrial
excellence centre in Embedded Application Software Engineering (EASE). Special
thanks to the anonymous interviewees for their dedicated participation in this study.
Thanks also to the following researchers for valuable input on the study design and
analysis: Dr Sofia Ritzén, Prof. Tobias Larsson, and Dr Erik Sundin.

References

1. Ebert, C.: Requirements BEFORE the Requirements: Understanding the Upstream Im-
pacts. In: Proceedings of the 2005 13th IEEE International Conference on Requirements
Engineering (RE 2005), Paris, France, pp. 117–124 (2005)

2. Karlsson, L., Dahlstedt, Å.G., Nattoch Dag, J., Regnell, B., Persson, A.: Challenges in
Market-Driven Requirements Engineering - an Industrial Interview Study. In: Proc. 8th Int.
Workshop on Requirements Engineering: Foundation for Software Quality (REFSQ 2002),
Essen Germany, pp. 37–49 (2002)

3. Nilsson, F., Regnell, B., Höst, M., Lindström, B.: Improving innovation capabilities in
public healthcare – the application of an innovation measurement framework. In: The
European Health Management Association Conference, Austria (2009) (in press)

4. Maiden, N., Robertson, S.: Integrating creativity into requirements processes: experiences
with an air traffic management system. In: Proceedings of the 2005 13th IEEE Interna-
tional Conference on Requirements Engineering (RE 2005), Paris, France, pp. 105–114
(2005)

5. Maiden, N., Gizikis, A., Robertson, S.: Provoking Creativity: Imagine What Your Re-
quirements Could Be Like. IEEE Software 21(5), 68–75 (2004)

6. Potts, C.: Invented requirements and imagined customers: requirements engineering for
off-the-shelf software. In: Proceedings of the Second IEEE International Symposium on
Requirements Engineering (RE 1995), NewYork, UK, pp. 128–130 (1995)

7. Adams, R., Bessant, J., Phelps, R.: Innovation management measurement: A review. Inter-
national Journal of Management Reviews 8, 21–47 (2006)

8. Anderson, N.R., West, M.A.: Measuring Climate for Work Group Innovation: Develop-
ment and Validation of the Team Climate Inventory. Journal of Organizational Behav-
ior 19, 235–258 (1998)

9. Davila, T., Epstein, M.J., Shelton, R.: Making innovation work: How to manage it, meas-
ure it, and profit from it. Wharton School Publishing (2006)

10. Tidd, J., Bessant, J.: Managing innovation - Integrating Technological, Market and Organ-
izational Change, 4th edn. John Wiley & Sons, Ltd., Chichester (2009)

11. Robson, C.: Real World Research, 2nd edn. Blackwell, Malden (2002)
12. Hove, S.E., Anda, B.: Experiences from Conducting Semi-Structured Interviews in Em-

pirical Software Engineering Research. In: 11th IEEE International Symposium on Soft-
ware Metrics (2005)

13. Yin, R.K.: Case Study Research Design and Methods, 3rd edn. Sage Publications, Thou-
sand Oaks (2003)

14. Cooper, R., Edgett, S., Kleinschmidt, E.: Benchmarking best NPD practices. Research
Technology Management 47, 31–43 (2004)

86 B. Regnell et al.

15. Griffin, A., Page, A.L.: PDMA Success measurement project: Recommended measures for
product development success and failure. Journal of product innovation management 13,
478–496 (1996)

16. Huang, X., Soutar, G.N., Brown, A.: Measuring new product success: an empirical inves-
tigation of Australian SMEs. Industrial marketing management 33, 117–123 (2004)

17. Chiesa, V., Coughlan, P., Voss, C.A.: Development of a technical innovation audit. Journal
of product innovation management 13, 105–136 (1996)

18. Alcaide-Marzal, J., Tortajada-Esparza, E.: Innovation assessment in traditional industries,
A proposal of aesthetic innovation indicators. Scientometrics 72, 33–57 (2007)

19. Hipp, C., Grupp, H.: Innovation in the service sector: The demand for service-specific in-
novation measurement concepts and typologies. Research Policy 34, 517–535 (2005)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 87–95, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Why a CMMI Level 5 Company Fails to Meet the
Deadlines?

Darja Smite and Cigdem Gencel

Blekinge Institute of Technology, Ronneby, Sweden
{Darja.Smite,Cigdem.Gencel}@bth.se

Abstract. Reliable effort and cost estimation remains to be a challenging issue
even for mature software organizations. Although, these organizations collect
historical data to base their future estimates, changes in circumstances (such as
application type, development platform, etc.) prevent their successful utiliza-
tion. As a result, companies often suffer from underestimated and unrealistic
schedules. Managing software projects that involve a large number of globally
distributed stakeholders makes estimation and planning even more challenging.
Related studies show that even knowledgeable project managers often underes-
timate hidden costs and sources of delay associated with distributed develop-
ment. Therefore, management activities such as estimation of development
effort, planning and control require special attention. In this paper we discuss
experiences gained from a highly distributed software project, which aimed at
development of a product based on a new platform and architectural solution.
The project was conducted in a CMMI Level 5 company and still failed to meet
initial plan constraints. We thus provide an overview of management decisions
in the light of their consequences, and discuss potential areas of improvement.

Keywords: Software Project Management, Effort Estimation, Distributed
Software Development, Global Software Engineering.

1 Introduction

Considerable effort has been put forth by the software engineering community to de-
fine and improve the software engineering process as well as its proper management.
Project management and software engineering frameworks such as [1], [2] accumu-
lated considerable amount of knowledge to facilitate project managers. As appreciated
by other engineering disciplines, the benefits of process improvement on projects suc-
cess have also started to be realized by the software engineering organizations.

Moreover, unique tools and techniques were developed to address challenges re-
lated to management of software development projects [3], [4], [5]. Many investments
have been especially directed to support project upfront planning activities, in particu-
lar to find reliable duration, effort and cost estimation models for project outcome
prediction. Unfortunately, although different models are reported to be successfully
used by different groups and for particular domains, they do not have unanimous
acceptance by the software community as being not performing well enough.

88 D. Smite and C. Gencel

Therefore, the mature and wise companies have started to collect historical data
and use it for future project predictions. However, when a team is introduced to new
tasks, technologies, engineering methods or settings, historical data can be of little
use. Moreover, diverse and changing nature of application types, which a company
develops, limits the usage of the collected historical data for reliable estimation.

Most of software nowadays is developed by global software teams. Effort estima-
tion is recognized as one of the top problems in globally distributed software projects
and two thirds of these projects were reported to suffer from faulty effort estimates [6].
Distributed work is relatively new and is recognized as considerably more complex
than even the most difficult collocated projects [7]. Thus many problems associated
with geographic, temporal and cultural distance take inexperienced project managers
by surprise. As a consequence, a large number of project failures plague the global
software industry [8].

In this paper we discuss a software engineering project that failed to meet the dead-
lines due to underestimated scope and unforeseen consequences of corrective actions.
The studied project team experienced new tasks, new technologies, new engineering
methods and new settings of a global highly distributed software project.

The paper is organized as follows. Section 2 provides case organization and project
description. In section 3, we illustrate measurements gathered during the project,
analyze project management challenges and actions taken by the software organiza-
tion, and discuss reasons of failure. Finally, section 4 concludes the study.

2 Case Study

2.1 Methodology

This study is a single-case study [9] and the object of our investigation is a recently
finished software development project that experienced huge problems with underes-
timated effort and duration. The study is based on multiple data sources: interviews
and project documentation and is exploratory in nature. This means that the research-
ers did not have a preconceived theory in mind, but rather focused on understanding
the reasons behind project events and their influence on the project performance, and
let conclusions evolve through data analysis.

During this study, we used multiple data sources in our analysis. We have had con-
tinues discussions with the team leader who was responsible for software develop-
ment that were held in person, through electronic means (Skype) and through email
communication. We have also had access to various sources of project information,
such as project plans, measures, and post-mortem analysis data. At the end, our con-
clusions were reviewed and approved by the project team leader and project manager
from the case organization.

In our case study, we have addressed the threats to construct validity by involving
two researchers in the data analysis. Internal validity was addressed by approving our
observations with the project managers from the studied company. A possible threat

 Why a CMMI Level 5 Company Fails to Meet the Deadlines? 89

to internal validity is the limited number of team members involved in the investiga-
tion. However, we believe that reliable project documentation was the key source of
information for our research questions. We thus generally believe that there is no
speculation or subjective judgment in our conclusions.

This study serves as an industrial experience report and lessons learned.

2.2 Case Organization Description

The context for this study is one of the top 100 IT services companies in the U.S. that
evolved through acquisition and is spread across several locations including software
development centers in Eastern and Northern Europe (for confidentiality reasons we
do not disclose the true name of the company). The studied company offers outsourc-
ing services for customers around the world and is marketed as a leader in distributed
agile development. While it extended its operation in global markets, quality certifica-
tion has been given a high priority and the processes have been both CMMI Level 5
and ISO-9001 certified for stability, efficiency and maturity. At the present time the
company has around 1500 employees and offers such services as global software
development, application and architecture reviews, component-based development,
enterprise application integration and migration, as well as maintenance.

2.3 Case Project Description

During this study we have investigated a project that was particularly interesting due
to a unique combination of new approaches applied. This was a distributed agile pro-
ject that delivered web-based software application for a call centre built on a new
technology platform and architectural solutions. For more detail see Table 1.

Table 1. Project description

Project Characteristic Description
Application type Web-based software application for a call centre
Application size 60,000 SLOC PHP & JavaScript; 1,000 SLOC Java;

57, 000 SLOC Java code including copied third part
code (SLOC includes comments and empty lines)

Technology platform Java, PHP, CSS, JavaScript
Development tools Eclipse IDE
Development methodology Incremental development with application of Scrum

The studied project at times was highly distributed across six offshore development

locations all subsidiaries of the studied company and involved a distributed customer
(Fig. 1). The project team consisted of a Project Management Team, a Business Ana-
lyst Team, a Quality Assurance Team and Development Teams that involved experts
from several locations.

90 D. Smite and C. Gencel

C D1 D3

D5

D4

D6

D2

Northern America North-Eastern
Europe

Eastern Europe

Customer Supplier

Expertise in the
Business Domain UI design

Coding

Coding

Expertise
 in reused

components

Fig. 1. Sites involved in the project

2.4 Project Management

As the studied company is CMMI Level 5 and ISO 9001:2000 certified, the studied
project initially followed a set of best practices. Project manager and a software de-
velopment team leader were involved in management activities. When the team
lacked experience with the development platform, architecture and programming
language experts from remote locations were involved at time to fill the gaps in the
necessary expertise. As a part of the strategy of delivering quick and qualitative solu-
tion, the software product was to be built on reusable components that were devel-
oped by the offshore locations of the company.

Since the company was branding itself as the leader in distributed agile develop-
ment, the project initially chose to follow Scrum practices for project management.
Project tasks and activities were scheduled in a project plan that was regularly up-
dated. In illustration, by the end of the project after 10 month of development, the

Table 2. Collected Measures for the Project

Collected Measures Values

Number of defects /number of features 10

Number of defects found by the Customer 87

Number of defects found by the Quality Assurance 299

Number of defects found by the Development team 279

Number of Test Plans 9

Number of Test Cases 479

 Why a CMMI Level 5 Company Fails to Meet the Deadlines? 91

plan was updated 35 times. Project management was supported by a variety of tools
that collect measures, e.g. status reports on task progress. The measures collected
during the project to ensure quality are given in Table 2.

The studied project failed to meet the initial deadlines and effort estimates, which
served as a motivation for our investigation. There were significant deviations in
effort and duration figures (see Table 3).

Table 3. Project Estimate Deviations

Measures Estimate Actual Deviation

Total estimated effort (person/months) 37,5 66,5 177%

Calendar duration estimate (days) 50 222 404%

The reasons why the studied company failed this project are elaborated in the fol-

lowing section.

3 Findings and Discussion

3.1 Effort Underestimation

Although XYZ has some historical data, which includes past productivity figures,
these could not be used to make a good estimate for this case because of the following
reasons:

• Development of a new application type with no prior experience;
• Application of a new development platform and architectural solution;
• Underestimated complexity of the product;
• Unforeseen limitations of the reusable components;
• Lack of experience with the chosen engineering methods.

First, the application to be developed was a new kind of application for the devel-
opment organization. They did not have any previous experience in developing such
applications.

Second, the development organization planned to use a new development platform,
for which the developers had no experience. The team also used a new software archi-
tectural solution. This decision was based on the necessity to gain first customer ref-
erence for the company’s future marketing activities.

Third, the product to be developed appeared to be more complex than expected.
Poorly described set of initial requirements (20 features - each described by a couple
of sentences) resulted in the lack of understanding of the customer needs. Consider-
able amount of time was spent in discussions between the quality assurance team and
the development team about interpretations of requirements. Business analysis, ini-
tially planned 15 working days, achieved actual duration of 165 working days. Simi-
larly, several initially unplanned development activities resulted in a huge delay for
the product delivery. E.g. an unplanned module to be implemented was planned to
require 19 working days, but actually took 96 working days; two other unplanned

92 D. Smite and C. Gencel

activities resulted in 167 and 191 working days respectively. In addition, the chosen
software components at the end did not match the expectations.

Fourth, a number of components that were developed in other geographically dis-
tributed locations of XYZ were assumed to be ready for reuse. Accordingly, no effort
was planned for any tailoring activities. However, these assumptions appeared to be
faulty and the team spent more than 5 person-months modifying them to fit the needs
of the customer.

Finally, the project team had no previous experience with the chosen software
engineering method. In particular, Scrum practices were relatively new for the devel-
opment team and the project management. Despite the potential benefits of the meth-
odology, deviations from the agile principles prevented early reaction to the project
challenges. The project was formally organized around 6 sprints with a demo meeting
at the end of each increment. The main emphasis in each sprint was put on the new
functionality; however the results were not delivered to the customer. Therefore, lim-
ited feedback was received. Thus, when the product was finally delivered, it led to
significant changes due to unmet needs of the customer. This is reflected in the new
versions of the project plan through new development activities.

The project team leader described the project by stating that it contained “buzzword-
oriented architecture, assumption-oriented design and excuse-oriented execution”. As a
result, the required effort and duration of the project increased dramatically. Poorly
planned activities further caused user acceptance testing to continue much longer than
estimated. It was planned to be 45 working days, whereas it actually took 121 working
days.

The management continued to be overly optimistic in planning and the project kept
failing to meet the new estimated deadlines. A set of corrective actions did not bring
expected results and additional rework was necessary, which resulted in almost expo-
nential growth of necessary time for completion of the project (see Fig. 2).

Fig. 2. Evolution of the Estimates with Respect to Plan Update Dates

 Why a CMMI Level 5 Company Fails to Meet the Deadlines? 93

3.2 Unforeseen Effects of the Corrective Actions

To overcome the underestimated problems such as failure to meet the deadlines and
the lack of on-site resources and expertise, the project management team made a deci-
sion to involve three other remote locations of XYZ, which actually caused the pro-
ject inevitably to become a failure.

Initial plan included the tasks to be distributed across three locations of the com-
pany. Different activities by type were to be conducted by the most experienced team
members. This means that one site had to work on integration of components; another
on business analysis and the main site performed the rest of the work. Though devel-
opment activities were not initially planned to be distributed, project problems forced
the project manager to distribute coding tasks across four locations in total. Similar to
the mistakes made by other companies discussed in related studies [10], the case pro-
ject underestimated the communication, coordination, trust and commitment chal-
lenges as well. Thus, poorly controlled dependencies resulted in late deliveries and
parts of remotely developed pieces of software had to be re-built. As a consequence,
once initiated for good reasons, collaboration with these remote locations was not
further prolonged.

Although empirical studies show that an agile delivery strategy is recognized to
have a positive influence on the scope, timelines and cost of the project [11] and at the
same time is found to be useful for reducing communication, coordination, and con-
trol problems that have been associated with global software development [12], the
project management failed to use these benefits due to deviations from the chosen
methodology. In particular, the project started as an agile project and intended to
follow Scrum practices, however failed to strictly maintain the practices throughout
the project. Close collaboration with the remote locations was challenged by temporal
and geographic distance. The project maintained product and sprint backlogs with
requirements and user stories. However, the team leader (Scrum master) individually
coordinated tasks for each developer. Lack of experience with Scrum and the pressure
of deadlines prevented establishment of a cohesive agile team and application of self-
management. In addition, coordination by mutual adjustment across locations was
challenged by a lack of previous experience of working together, lack of trust and
commitment, and "us versus them" attitude. Finally, daily Scrum meetings across
multiple locations were challenged by the limitations of computer-mediated commu-
nication and were thus often withdrawn.

Configuration management is another challenging task in globally distributed pro-
jects [13]. Due to unplanned involvement of remote team members into development
activities, the project infrastructure was not prepared to facilitate distributed software
development. Thus, the team experienced significant difficulties in relation to con-
figuration management and required additional effort for integration of the pieces
developed by remote locations. Accordingly, the configuration management activity
initially planned 5 working days appeared in the newer version of the plan to take 76
working-days and at the end took 154 working-days.

4 Conclusions

In this paper, we discussed a case project conducted in a CMMI Level 5 company
that failed to meet initial plan constraints. We elaborated the possible causes for a

94 D. Smite and C. Gencel

high-maturity level organization to fail a project and observed that no company is
immune to fail addressing unforeseen problems.

The basic reason for the project to become a candidate for a failure was initially
underestimated effort and unrealistic schedules. This was unavoidable since the com-
pany cannot utilize the historical data they collected in the past years. Moreover, un-
fortunately, there exists no effort estimation model, which is accepted to successfully
address all possible circumstances in software engineering projects, And especially, in
distributed work. Therefore, we emphasize a need to collect project related data in
benchmarking datasets that can be utilized by the organizations worldwide. Other-
wise, only with the local efforts put by the organizations, it seems that these failure
stories continue to be told. During the last 10 years, such effort has been put on form-
ing publicly available benchmarking datasets such as the one by the International
Software Benchmarking Standards Group (ISBSG) [14] to enable organizations share
and use the others’ experiences gained. However, without the commitment of the
software organizations to provide data to these datasets, improvement in effort esti-
mation area will stay minimal.

Global software development puts new challenges on project managers since geo-
graphic separation leads to more difficult effort estimations, project planning and
control [15]. Effort required for communication, coordination and integration of the
developed pieces of software in the studied case project was underestimated due to
over optimistic expectations. These can be explained by lacking experience of work-
ing together across locations involved in the project.

Our study also shows that task distribution to remote locations under the pressure
of deadlines drove the project to even deeper problems. In the studied case, project
management decided to share the pain and stress with remote colleagues. Nonethe-
less, lack of cohesiveness and commitment from remote colleagues caused failure.
However, it is worth mentioning that due to initially underestimated scope, schedule
and project staffing, managers are often left with little choice of corrective actions.
Therefore, the choice to distribute some of the effort to remote locations seemed natu-
ral. And this trend for distributed software development seems to increase as well.
Therefore, global software development requires urgent tools and methods that help
to overcome the difficulties and enable efficient distributed work.

Unfortunately, the case study does not allow evaluating the suitability and advan-
tages of agile approaches for globally distributed environment, since agile principles
and practices at the end were not complied. However, we can conclude, that a lack of
previous experience and familiarity with the chosen methodology along with the
changing members of the team prevented the project to experience potential benefits.
Software community requires more empirical evidence of specific methodologies,
such as agile approaches, applied in organizations practicing distributed development.

Acknowledgement

We would like to sincerely thank the team leader from the studied case project, who
provided all the data and spent his precious time in discussions that helped us to make
this study. This research is conducted within BESQ Research Centre at Blekinge
Institute of Technology.

 Why a CMMI Level 5 Company Fails to Meet the Deadlines? 95

References

[1] A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 3rd edn.
Project Management Institute (2004)

[2] A Guide to the Software Engineering Body of Knowledge (SWEBOK). IEEE Computer
Society (2004)

[3] Jones, T.C.: Estimating Software Costs. McGraw-Hill, New York (1998)
[4] Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
[5] Thayer, H.R.: Software Engineering Project Management, 2nd edn. IEEE CS Press, Los

Alamitos (2001)
[6] Smite, D.: Project Outcome Predictions: Risk Barometer Based on Historical Data.

In: Proc. of the ICGSE conference, Germany, August 2007, pp. 103–112. IEEE Com-
puter Society, Los Alamitos (2007)

[7] Karolak, D.W.: Global Software Development: Managing Virtual Teams and Environ-
ments. IEEE Computer Society, Los Alamitos (1998)

[8] Prikladnicki, R., Audy, J.L.N., Evaristo, R.: A Reference Model for Global Software De-
velopment: Findings from a Case Study. In: Proc. of IEEE Int. Conf. on Global Software
Engineering (ICGSE 2006), Florianópolis, Brazil, pp. 18–25. IEEE Computer Society
Press, Los Alamitos (2006)

[9] Yin, R.K.: Case Study Research: design and methods, 2nd edn., vol. 5. Sage Publications,
Newbury Park (1994)

[10] Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can Distributed Software Development Be Ag-
ile? Communications of ACM 49(10), 41–46 (2006)

[11] Chow, T., Cao, D.-B.: A Survey Study of Critical Success Factors in Agile Software Pro-
jects. The Journal of Systems and Software 81, 961–971 (2008)

[12] Holmström, H., Fitzgerald, B., Ågerfalk, P.J., Conchúir, E.Ó.: Agile Practices Reduce
Distance in Global Software Development. Information System Management 23(3), 7–18
(2006)

[13] Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging resources in global
software development. IEEE Software 18(2), 70–77 (2001)

[14] ISBSG Dataset 10 (2007), http://www.isbsg.org
[15] Taxén, L.: An integration centric approach for the coordination of distributed software

development projects. Information and Software Technology 48, 767–780 (2006)

Towards Multi-Method Research Approach in
Empirical Software Engineering

Vladimir Mandić, Jouni Markkula, and Markku Oivo

University of Oulu, Department of Information Processing Science, Rakentajantie 3,
90014 University of Oulu, Finland

vladimir.mandic@tol.oulu.fi, Jouni.Markkula@oulu.fi, Markku.Oivo@oulu.fi

Abstract. This paper presents results of a literature analysis on Em-
pirical Research Approaches in Software Engineering (SE). The analysis
explores reasons why traditional methods, such as statistical hypothesis
testing and experiment replication are weakly utilized in the field of SE.
It appears that basic assumptions and preconditions of the traditional
methods are contradicting the actual situation in the SE. Furthermore,
we have identified main issues that should be considered by the researcher
when selecting the research approach. In virtue of reasons for weak uti-
lization of traditional methods we propose stronger use of Multi-Method
approach with Pragmatism as the philosophical standpoint.

Keywords: Empirical Methods, Experimentation in Software Engineer-
ing, ESE, Multi-Method Research, Reporting Experiments.

1 Introduction

Researchers in the field of software engineering (SE) are facing dilemma: which
empirical research approach should be taken? As Shaw [1] has pointed out that
there is no shared understanding of preferred research approaches inside SE com-
munity, and therefore there is no clear response to the question. This encourages
us to revisit the issue.

Researchers are usually confronted by following questions: Can the traditional
scientific approach1 of experimentation be effectively utilized for SE setting?
What is an alternative? What should be taken in account while considering
alternative approaches? Questions stated here resemble first decisions that a
researcher has to make.

The objective of our research was to explore the current literature in order
to seek sufficient sources regarding problems of utilizing quantitative methods
like experimentation, statistical hypothesis testing, and experiment replications.
Based on our literature study and analysis, we are able to suggest some alterna-
tive approaches. The results of the our analysis are packed in a simple decision
making process. This process can help the researchers in their decisions regard
the selection of research approaches and appropriate methods.
1 Examples of traditional research concepts are statistical hypothesis testing and ex-

periment replications.

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 96–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Multi-Method Research Approach in Empirical SE 97

This paper is result of the literature analysis. Literature review process was
not systematic in terms as Kitchenham [2] suggests. The process started by re-
viewing two book classics on experimentation in SE [3,4]. After that, the review
was complemented and deepened with additional references on specific issues,
such as statistical hypothesis testing, experiment replications, and experiment
reporting. Also the method of following bibliographical trails [5] was used. The
following resources were used for the analysis: Google Scholar, IEEE Xplore,
SpringerLink, Wiley InterScience, ACM, and reference databases available in
University of Oulu Library. From the large number of potential references we se-
lected 46 most relevant references for further analyzis. The structure of analyzed
references is given in Table 1.

Table 1. Reference structure

Ref. Type Journal Book Ed. Book Conference
Percentage of total 54% 15% 20% 11%

The references were categorized using the following criteria:

1. Meta-studies: meta-studies on the topic of empirical and experimental
methods in software engineering. Number of references: 7.

2. Reporting experiments: papers that report some empirical studies. Num-
ber of references: 7.

3. Empirical methods: papers that define methods and techniques for em-
pirical research or comment on utilization of the methods in SE. Number of
references: 26.

4. Other: References which were not categorized by first three criteria. Number
of references: 6.

By reviewing the literature we found that researchers in the field of software
engineering still seems to base their findings more on experiences and personal
feelings then on empirical evidences (section 2). One of the most powerful sci-
entific methods, experimentation, was introduced to SE research as one possible
solution to the problem (section 3). However, due to the strong dependence of the
objects under investigation upon context and the field immaturity, adaptation of
the experimentation is lacking sufficient level of statistical significance (as shown
in section 4). A concept of corroboration and/or refutation of findings through
replications of the experiments is important for justifying results and knowledge
creation process. Reported studies on experimentation in SE settings revealed us
that external replications are not easily applicable (section 5). Besides reporting
quantitative result, a structured qualitative analysis is needed to overcome con-
textual dependences and to explain design of experiment at such level of details
to enable external replications (section 6). Multi-method approach advocates
use of other methods in combination with purpose of achieving more creditable
results (section 7). At the end we discuss how the approach can produce a near-
close effect as the concept of experiment replications (section 8).

98 V. Mandić, J. Markkula, and M. Oivo

2 Motivation for the Use of Empirical Methods in
Software Engineering

In the field of software engineering so called ”advocacy research”, has often been
used in last decades [6,7,8,9]. Shortly we can illustrate this approach with a
following scenario [6, p. 87]:

Authors describe a new concept in considerable detail; recommend the concept
to be transferred to practice. Time passes, and other researchers derive similar
conclusions. Eventually the consensus among researchers is that the concept has
clear benefits. Yet practitioners often seem unenthused. Researchers, satisfied
that their communal analysis is correct, become frustrated. Heated discussion
and finger-pointing ensues.

Given scenario is lacking empirical proofs that the proposed new concept
is beneficial. Such empirical proofs can dramatically change the scenario. All
communal analysis will shift from a personal, subjective, judgment regarding
substance to objective reasoning based on the empirical evidence.

One of the roles of the experimentation is to enable researchers in the field of
software engineering to derive conclusions based on empirically made
observations.

The main concern of the researchers is with what degree of certainty it is
possible to claim that a hypothesis is true or false [7, p. 457].

Basili [10] describes analogies with other fields of research. Separation on
two groups of people and existence of strong feedback loop among them is the
common element in all those analogical models. The basic idea is to have a clear
separation on two groups: researchers and practitioners. In this tentative model
we can identify three loops:

Loop 1. Describes activity of the researcher. A researcher relies on the global
body of knowledge, and entire process which is encapsulated by the loop 1,
has a basis in academic research and academic writing. The researcher’s role is
to understand the nature of processes and products, and relationships between
them [10, p. 443].

Loop 2. Describes activity of the practitioner. Practitioners use tools, methods
and techniques in daily work. The feedback of using tools, methods and tech-
niques always exists; the question is how well is it formulated and/or documented.

Loop 3. Is the feedback loop, which was the main reason to consider this kind
of model. According to Basili et al. [7,10] this kind of a loop has a significant
influence on knowledge creation process.

Unfortunately, the implementation of the proposed model is not straightfor-
ward, even worse it is questioned if it is feasible at all. Some problems that affect
communication paths between researchers and practitioners are [11]:

(1) Data sharing, this includes problems of work sharing and intellectual prop-
erty rights.

(2) Data Interpretation problem is illustrated with following questions made
by Basili [11]: When we find agreement how much can we generalize, how do

Towards Multi-Method Research Approach in Empirical SE 99

we incorporate the context variables in the interpretation, how do we assign the
degree of confidence in the interpretation? When we find disagreement do we
expand the model, identify two different contexts, or reject the model?

Vegas et al. [12] propose some possible mechanisms for dealing with those
issues like licensing, software support tools, and etc. General conclusion is that
each field has its own particular problems and issues and we have to tailor such
rules for the SE field [12, p. 116].

We will formulate another question regarding feasibility of the proposed ap-
proach in software engineering field. Has the global body of knowledge reached
”critical mass”, and became capable of supporting the separation on the re-
searchers and the practitioners?

Physics and medicine certainly fall in well-developed disciplines [13, p. 1145].
Well-developed disciplines have well defined a relationship structure within body
of knowledge.

Such established structures provide a comfortable environment for researchers,
and enables them to create new concepts, theories, with high degree of confi-
dence. Researchers in the field of software engineering are facing: human subjects
with large ability variations, ill-defined processes, products with poorly defined
characteristics, a limited number of facts, nothing that can be regarded as a uni-
versal constant,... [14, p. 188].

Can the lack of the structure in the software engineering body of knowledge
be compensated with strong, direct, feedback loop from the practice to the re-
searcher? Our response to the question: yes, it has to be.

3 Basic Terminology of the Software Engineering
Experimentation

First we will define the basic terminology adopted from Wohlin et al. [4], alter-
native terminology is commented and referenced.

In Figure 1 the basic elements of an experiment are illustrated. Figure is
adopted from [4, p. 34], with an addition of context. It is very important to
be aware of an existing context and its influence on experiment. Partially the

Process

E
xp

er
im

en
ta

l d
e

si
g

n

In
de

p
en

d
en

t
va

ri
ab

le
s

D
ep

en
d

en
t v

ar
ia

bl
e

Treatment

Ind. variables with
fixed values

Context

Experiment

Fig. 1. Illustration of the experimental process

100 V. Mandić, J. Markkula, and M. Oivo

influence of the context will be taken in account through experimental design.
It is not possible to model, take in account, all numerous variables existing
in the context. The objective of experimental design is to reduce the context
interference to the level of noise. Context plays important role in reporting and
sharing results of the experiments, therefore it is advisable to document it as
detail as possible [15,16]. Endres et al. [17] formulated Conjecture: Empirical
results are transferable only if abstracted and packaged with context. Kitchenham
et al. [18] proposed an entire set of guidelines for dealing with context during
experiment.

The variables that are in the focus of a study are called dependent or response
variables, all other variables are called independent.

Independent variables can have constant value during experiment and then
they are fixed variables.

Independent variables that change value (in controlled manner) during exper-
iment are called factors. One particular value of the factor is called treatment.
Alternative terminology for treatment is alternative or level [3, p. 60].

Subjects of the experiment are usually people that have to apply a treatment.
Object is any artifact of the process on which a treatment is applied. Objects
can be referred as experimental units [3, p. 57]. An experiment consists of a set
of tests or trials, where each test is a combination of treatment, subject and
object.

Cook et al. [19] define quasi-experiments as experiments that have treat-
ments, outcome measures, and experimental units, but do not use random as-
signment to create comparison from which treatment-cause change is inferred.

Experimental Design. Figure 1 illustrates the role of the experimental design
in an experiment. The goal of experimental design is to isolate variation of the
interest. Juristo et al. [3, p. 84] give an overview of the experimental designs
based on parameters like: number of factor, number of alternatives per factor,
and existence of the blocking variables. The basic experimental designs are: one-
factor design, block design, factorial design, nested design, fractional design, and
factorial block design.

Randomization in Experimental Designs. Randomized design means that the
factor alternatives are assigned to experimental units in absolutely random or-
der. Concerning SE, both the factor alternatives and the subjects have to be
randomized, as the subjects (people) have a critical impact on the value of de-
pendent variable [3]. The request for randomizing both subjects and factor alter-
natives might sound odd, unless the idea of randomizing subjects is a proposal
how to deal with a fact that in SE field subject characteristics vary a lot even
within same class (Example: productivity of the programmers with same num-
ber of years of experience). Still remains a question how well the randomization
of the subjects can effectively solve the problem. When the idea of randomiza-
tion was introduced into experiments, the goal was to ensure that errors were
independent. With new applications of the significance testing, a representative

Towards Multi-Method Research Approach in Empirical SE 101

sample has been added. Miller [14] observed that very often a mistake is made
by using randomization to “discard” representativeness.

More often feasibility of the random sampling in the field of software engineer-
ing is questioned. Miller et al. [20] define the sampling problem as: Regardless
of the characteristic under investigation, the software engineering field has no
defined sampling frame (i.e. description of the entire population) for its practi-
tioners, and hence we cannot know if the sample is truly representative of the
underlying population. However there are no universal sampling frameworks in
other fields as well, practice is that research setting determines sampling strat-
egy. But we can notice that other fields have some elementary, basic, knowledge
about population which is used for defining sampling strategy. That kind of basic
knowledge is lacking in the field of SE.

4 Quantitative Aspect of the Experimentation

Quantitative methods are maybe the only approach that can provide researchers
with concrete information about certainty of their conclusions. Other approaches
are also considered to be suitable for the field of software engineering at this
moment, like explorative studies and qualitative confirmatory analysis [9].

Experimental analysis is dependent on the characteristics of data that are col-
lected or measured during experiment. Depending on the nature of data several
measurement scales can be used: nominal, ordinal, interval, or ration. Informa-
tion about measurement scale is important because it determines which statisti-
cal methods can be and cannot be used for analyzing results. Generally methods
are divided in two groups: parametric and non-parametric methods [3,4]. Most
common methods are given in Table 2.

Table 2. Overview of parametric/non-parametric tests for different designs

Design Parametric Non-parametric

One factor, one treatment Chi-2
Binomial test

One factor, two treatments, t-test Mann-Whitney
completely randomized design F-test Chi-2
One factor, two treatments, Paired t-test Wilcoxon
paired comparison Sign test
One factor, ANOVA Kruskal-Wallis
more than two treatments Chi-2
More than one factor ANOVA

Statistical hypothesis testing. The Neyman-Pearson type of significance
testing is the form of testing a null hypothesis, where the null hypothesis is
formulated with the purpose if it is rejected to allow the researcher considering
an alternative hypothesis and conclude that an effect exists [20, p. 286]. Basic
steps of statistical hypothesis testing are [14, p. 183]:

102 V. Mandić, J. Markkula, and M. Oivo

1. The construction of a null hypothesis;
2. The collection of data;
3. A statistical test against the null hypothesis is undertaken;
4. The generated P−value2 is considered against the null hypothesis; and one

or more interpretations are made.

The probability of committing Type I error is statistical significance, denoted
by Greek letter α.

Test significance value, α is set in advanced, after having all data form exper-
iment the P−value is calculated and compared to α [14].

Statistical power analysis. As a part of statistical significance testing is statistical
power analysis. Power analyses involve three components [20]:

– The significance criterion (α).
– The sample size (n): the larger the number of samples, the smaller the

error, the greater accuracy.
– The effect size (γ): the degree to which the phenomenon under study is

present in the population (sample).

Methods how to calculate or estimate sample size are given in [3,20].The only
critical step in this process is estimate of the effect size. Coehn has established
a convention that small effect is not observable with bare eyes, medium effect is
observable with researcher’s eyes and large effect is high over an average.

In the study [21, p. 749] a systematic literature analysis has been performed
in order to conclude how Coehn’s convention maps to the field of software engi-
neering. The findings of the study showed that in SE effect size is for 50% smaller
for small effect size and about 25% to 20% for medium and large effects. This
decrease in effect size calls for larger sample size, which is very often difficult to
achieve in SE experiments.

5 Software Experiment Replication

The first experiment is usually referenced as an original, later experiments which
have the same null hypothesis as original are called replications. Replicated ex-
periments can be categorized in two groups [22]:

Exact replications or partial replications of the original, they have the
same alternative hypothesis as the original, usually in the form Hrep

1 : The results
of the replication will be in same direction as the first (original) experiment [23].

Replications with goal to improve on the original. This type of repli-
cated experiment will have different, improved formulation of the alternative
hypothesis.

2 The P−value can be viewed as the probability that results obtained due to chance,
therefore small values are taken to indicate that results where not just a chance.

Towards Multi-Method Research Approach in Empirical SE 103

First type of the replicated experiments is common for internal replications,
when the same researcher performance replicated experiment, while second type
would be expected in external replication.

Replication of the experiments is important for at least two reasons: (1) it
is the best way to validate experiment (experimental results and experimental
design) [22, p. 237] and (2) as the instrument of Popperian inference. General
statements (hypotheses) cannot be proved, but they can be disproved. This is
the basic idea of Popper’s conjuncture [24].

The statistical hypothesis testing is an instrument of Popperian inference;
or more correctly that statistical hypothesis testing was designed as an instru-
ment of the hypothetic-deductive scientific method and that this method and
Popperian inference are effectively equivalent approaches [14].

Following this philosophy, we can note that replication of the experiments
(test) is crucial for making a theory to become well-proved and trusted. How to
get that level of replications in software engineering?

Several studies have shown that experimentation is not utilized well enough
in software engineering at the level of the original experiment (first experiment)
[6,25,26], and the field is far away from performing replications. Brooks et al.
[27] noted that in cases when people are dominant factor, controlled experiments
are less effective. Miller [22] defined dimensions of the replication framework for
software engineering field. Those dimensions can be seen as major categories of
causes for the weak utilization of the replications in SE. We present those causes
in the cause-effect diagram Figure 2.

Experiment
replications in SE

Existential
Realism

Robustness of
the results

Impact of the
findings Resources

Subject or user
gaps

Task gaps

Artifact gaps

Situational gaps

No of issues

Type of experiment

No of Subjects

Degree of resolution

“Clinical significance”

Technology
“adoption” rate

Money

People

Best practices

“Labs”

Fig. 2. Major categories of the problems regarding experiment replications in the field
of software engineering

Existential realism. Software engineering experiment differs from the real
world. Numerous differing points are characterized as: subject gaps, task gaps,
artifact gaps, and situational gaps [22]. Factors affecting different types of gaps
are varying from socio-psychological up to mixed influence of socio-technological
factors.

104 V. Mandić, J. Markkula, and M. Oivo

Experimental results are robust when they produce relatively stable results
across a range of minor variations in experimental setting. High robustness can
be a motivation factor for replicating experiments. If experiment results are
robust, replicated experiments even if they reject original hypothesis they can
be used by researchers to generate new conclusions.

Impact of the findings is dealing with question: Will the finding convince
practitioners in real world setting to change, adapt or adopt new practices? This
issue is correlated with technology transfer and adaption rate of the technology.

Resources. Beside material resources an attention is raised on non-existing
experimental practices for software engineering. Basili [10] pointed out that
’laboratories’ exist only where practitioners build software systems. This fact
complicates entire experimental process and increases cost.

Analyzing results of the replicated experiments. Once, having results of
the replicated experiments, the method for analyzing the results should be se-
lected. Based on practices in the social sciences, two groups of analyzing methods
are identified [22]: (1) Meta-analytical procedures and (2) informal approach.

Meta-analysis provides a simple quantitative framework for comparing and
combining results of the experiments. Most common techniques used in soft-
ware engineering are: comparative and additive meta-analysis. Both methods
are usually done to compare results of two experiments.

6 Reporting Experiments

Communication between communities of the researchers and practitioners is very
important, especially when reporting results of the experiments in such way to
enable, encourage, others to replicate or conduct similar experiments. Therefore
a mutually accepted standard or form, of the reporting results is welcome. Ac-
cording to Miller [22] only three serious initiatives were proposed. First one is
Basili’s approach for classifying experiments. Originally this scheme was devel-
oped for a meta-study on experimentation in software engineering and later was
used as basis for experimental paradigm [28,16]. Main elements of the scheme
are: definition, planning, operation, and interpretation. Beside the original idea
for developing the scheme, it is possible to use it as a guideline for reporting
experiments.

Second scheme developed by Lott et al. [29] has many similarities with first
one, including the use of GQM to derive the subsequent scheme. The main el-
ements of this scheme are: (1) goals, hypothesis and theories, (2) Experimental
planning, (3) Experimental procedures, and (4) results. Third scheme, actually
entire package for experimentation, is developed by Kamsties and Lott. Unfor-
tunately it is least likely that entire package can be implemented in software
engineering.

Beside those three schemes, recently Jedlitschka et al. [30] proposed a new
scheme based on comparative study of existing schemes, mainly in software en-
gineering area. The scheme suggests following elements: structured abstract,

Towards Multi-Method Research Approach in Empirical SE 105

introduction, related work, experiment planning, execution, analysis, interpre-
tation, discussion and conclusions, future work, acknowledgements, references,
and appendices.

7 Multi-Method Research Approach

The multi-method or mixed-method approach originates from the social sciences
[31,32]. The basic idea of the approach is to investigate a phenomenon using a
combination of empirical research methods, with intention that the combination
of the methods complements each others. The combination may include quan-
titative and qualitative methods to collect, analyze, and interpret both types of
data [33]. This approach offers potential for more stable and generalizable results
in empirical software engineering research.

Discussions on utilizing multi-method approach for information systems re-
search started in late 80’s and early 90’s [34,35], continued in 2000’s [33,36,37].
Despite the agreement of the researchers in information systems that there are
benefits of utilizing multi-method approach, there is no such agreement among
researchers in the field of software engineering. Reported SE related studies using
multi-method are still very rare. One example is use of multi-method approach
to study collaboration of global virtual teams [38]. Wood et al. [23] used multi-
method to investigate object-oriented technology with particular focus on how
the inheritance levels affect maintainability of software.

The use of multi-method approach is shaded with philosophical discussions if
such methodological pluralism is acceptable [39,37,36]. Particular methods are
paired with paradigms or philosophical standpoints [37, p. 243], which raises the
question whether mixing of the methods would mean mixing of the paradigms.
The question evolved in debate over incompatibility vs. compatibility thesis.

Howe [39] points out that: The incompatibility thesis, like the drunkard’s
search3, permits the ”lights” to determine what is to be looked for and where.
Howe took bottom-up approach in proving his compatibility thesis [39]. He dis-
cussed what quantitative and qualitative means at levels of data, design and
analysis, and interpretation of results. The conclusion was that mixing of the
methods is acceptable if it provides additional evidences, and it does not imply
mixing of the paradigms. Conclusion made by Howe is known as compatibility
thesis.

Mingers [37] arguments that phenomena studied by researchers in the field of
information systems are extremely complex. Such complexity can be studied if
it is decomposed on dimensions of the multidimensional world. Therefore it is
less likely that one method can be successfully applied to all dimensions.

The multi-method approach is not limited to the combining qualitative and
quantitative methods. Also the combination of different quantitative methods is
3 Kaplan’s story illustrating the ”principle of the drunkard’s search.” There is a story

of a drunkard searching under a street lamp for his house key, which he had dropped
some distance away. Asked why he didn’t look where he had dropped it, he replied,
”It’s lighter here!” (Kaplan, 1964).

106 V. Mandić, J. Markkula, and M. Oivo

possible. When designing a multi-method research, the following strategies can
be used [23,32]:

Evolutionary or sequential is followed when there is little research conducted
on a particular phenomenon, or where research hypothesis require increased
focus.

Complementary or concurrent or triangulation aims to enhance the va-
lidity of research findings. Different research methods are used independently to
study phenomenon. An example how to structure a study which uses triangula-
tion as method is given in [40].

Transformative strategy, procedures which use theoretical lens or perspective
in qualitative research. Examples of the perspectives are: Feminist perspective,
Critical theory, and Racialized discourse [32].

Guidelines for categorizing mixed methods can be found in mixed method re-
search framework [33]. The classification matrix (Table 3) is based on purpose
dimension: triangulation, complementary, development, initiation, and expan-
sion. And approach dimension how the method is applied: sequential, parallel
and independent.

Table 3. Mixed method (Multi-method) research framework [33, p. 1]

Approach
Sequential Parallel Independent

P
u
r
p
o
se

Triangulation
Complementarity
Development
Initiation
Expansion

The following methods are usually combined: observational studies,
pre-experiment studies, quasi-experiments, controlled experiments, surveys. More
comprehensive list of the methods can be found in taxonomy of information sys-
tems research approaches [35, p. 96]. The taxonomy classifies methods by the
object of a study: (1) society, organization/group, (2) individual, (3) technol-
ogy, and (4) methodology. In studying technology or methodology objects, both
groups of approaches (qualitative and quantitative) can be utilized. In studying
socio-psychological phenomena qualitative approaches are suggested.

The main challenge of the multi-method design/planning is how to select a
good combination of methods. For that purpose Wood et al. [23] proposed a set
of criteria:

– Internal validity: The extent to which causal conclusions can be made
from the study.

– External validity: The extent to which results may be generalized to the
population under study and other settings.

Towards Multi-Method Research Approach in Empirical SE 107

Reaching a high validity is a balancing game because some validity types
are opposing each other [7, p. 457]: ...make it less likely that the validity types
can all be satisfied at the same time: e.g., making a study more realistic to
achieve a high external validity is in tension with the ability to manipulate
the context to get a high internal validity.

– Ease of replication: The ease with which the study can be repeated under
the same conditions.

– Potential for theory generation: The potential to generate new causal
theories.

– Potential for theory confirmation: The potential to test a theory pro-
viding robust conclusions.

– Cost per subject: The relative cost of the study.

Based on this characterization, Daly et al. [41] provide the following advice:

A Maximize internal validity, external validity, and ease of replication by se-
lecting a combination of the methods that jointly satisfy these criteria. For
example a controlled experiment (high internal validity) and a survey (high
external validity), both being relatively easy to replicate, provide good cov-
erage of the criteria [41].

B Since the cost of a multi-method approach is usually significant, combine
methods to minimize overall cost.

C Determine the need for theory generation and theory confirmation, consid-
ering whether the perspective of the approach is complimentary or evolu-
tionary. For example, if it is evolutionary, observational studies may be use
for theory generation combined with controlled experiments for theory con-
firmation.

In the context of the multi-method approach, observational studies may be
used to characterize, baseline, and/or identify relationships. They are also very
often seen in combination with other methods.

8 Conclusions

In order to avoid the habit of advocacy research, it is necessary to justify con-
clusions with empirical evidences. Empirical evidences have also a psychological
effect as a very strong element of persuading other researches and practition-
ers to trust the validity and usefulness of the results. Without this persuasion,
especially practitioners will not strive to use the result of the research. This phe-
nomenon is known as clinical significance and it is a major factor for not having
wide replications of software experiments within researcher’s community. Also,
the everyday use of methods and tools in practice can be considered as a form
of replication, unfortunately reported in a very free form of experience reports
or lessons learned.

The complexity of the phenomena under study in the field of SE sets a very
sophisticated conditions and constraints on performing software experiments

108 V. Mandić, J. Markkula, and M. Oivo

and replications. Existential realism argues that a gap between experimental
setting and real world situations is too large. Because of the lack of sufficient
body of knowledge which would allow researchers to bridge the gap. In such
kind of situations qualitative research approaches are much more applicable then
quantitative.

Robustness of results could be achieved with high statistical significance in
experimentation. Unfortunately, it is common to have low statistical significance
in SE experiments which is followed with less robust results. Use of different
methods with purpose of triangulation can significantly increase robustness of
the results, especially if the methods are applied independently.

The impact of the findings can be improved only if trust and confidence in
new theories and research findings is increased. That can be achieved by us-
ing multi-method approach. This approach is compatible with Pragmatism as
the philosophical standpoint. It is an effective tool for confirming results with
sufficient flexibility to cope with specifics of the software engineering research.

Our proposal is based on analysis of available literature and previous experi-
ences in the field of software engineering. The proposal is not a silver bullet, but
it is good starting point. The main advantage of the multi-method approach is
the possibility to balance method’s rigor for a given research setting. Probably
the biggest disadvantage is that it requires the researcher to be proficient in
several empirical methods instead of just one method.

This preliminary literature analysis will be a base for the future work. We plan
to expend literature review in more systematic way. Our further contributions
on this topic will be focused on exploring relationships between different philo-
sophical standpoints and empirical methods, and their applicability in software
engineering settings.

Acknowledgements. This article is based on the work carried out in the
VASPO project (Value-based Software Process Improvement and Organizational
Change Management) financed by the Finnish Funding Agency for Technology
and Innovation (Tekes).

References

1. Shaw, M.: What makes good research in software engineering? International Jour-
nal of Software Tools for Technology Transfer 4(1), 1–7 (2002)

2. Kitchenham, B.: Guidelines for performing systematic literature reviews in soft-
ware engineering. Technical report, TR-EBSE-2007-01, UK (2007)

3. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, Dordrecht (2003)

4. Wohlin, C., Runeson, P., Horst, M., Ohlsson, M., Regnell, B., Wesslen, A.: Ex-
perimentation in Software Engineering: An Introduction. Kluwer Academic Pub-
lishers, Dordrecht (2000)

5. Turabian, K.: A Manual for Writers of Research Papers, Theses, and Dissertations.
The University of Chicago Press, Chicago (2007)

6. Fenton, N., Pfleeger, S., Glass, R.: Science and substance: A challenge to software
engineers. IEEE Software 4(11), 86–95 (1994)

Towards Multi-Method Research Approach in Empirical SE 109

7. Basili, V., Shull, F., Lanubile, F.: Building knowledge through families of experi-
ments. IEEE Transactions on Software Engineering 25(4), 456–473 (1999)

8. Oivo, M.: New opportunities for empirical research. In: Basili, V.R., Rombach,
H.D., Schneider, K., Kitchenham, B., Pfahl, D., Selby, R.W. (eds.) Empirical
Software Engineering Issues. LNCS, vol. 4336, p. 22. Springer, Heidelberg (2007)

9. Oivo, M., Kuvaja, P., Pulli, P., Similä, J.: Software engineering research strategy:
Combining experimental and explorative research (eer). In: Bomarius, F., Iida, H.
(eds.) PROFES 2004. LNCS, vol. 3009, pp. 302–317. Springer, Heidelberg (2004)

10. Basili, V.: The role of experimentation in software engineering: Past, current, and
future. In: 18th International Conference on Software Engineering, pp. 442–449.
IEEE, Berlin (1996)

11. Basili, V.: Measurement and model building, introduction. In: Basili, V.R., Rom-
bach, H.D., Schneider, K., Kitchenham, B., Pfahl, D., Selby, R.W. (eds.) Empiri-
cal Software Engineering Issues. LNCS, vol. 4336, pp. 68–69. Springer, Heidelberg
(2007)

12. Vegas, S., Basili, V.: Measurement and model building, discussion and summary.
In: Basili, V.R., Rombach, H.D., Schneider, K., Kitchenham, B., Pfahl, D., Selby,
R.W. (eds.) Empirical Software Engineering Issues. LNCS, vol. 4336, pp. 115–120.
Springer, Heidelberg (2007)

13. Curtis, B.: Measurement and experimentation in software engineering. In: Pro-
ceedings of IEEE, pp. 1144–1157. IEEE, Los Alamitos (1980)

14. Miller, J.: Statistical significance testing – a panacea for software technology ex-
periments? Journal of Systems and Software 2(73), 183–192 (2004)

15. Zelkowitz, M., Wallance, D.: Experimental validation in software engineering.
Information and Software Technology 11(39), 735–743 (1997)

16. Basili, V., Selby, R., Hutchens, D.: Experimentation in software engineering. IEEE
Transactions on Software Engineering 12(7), 733–743 (1986)

17. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. Pearson Education, Harlow (2003)

18. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K.,
et al.: Preliminary guidelines for empirical research in software engineering. IEEE
Transactions on Software Engineering 8(28), 721–734 (2002)

19. Cook, T., Campbell, D.: Quasi-Experimentation: Design and Analysis Issues for
Field Settings. Houghton Mifflin Company, USA (1979)

20. Miller, J., Daly, J., Wood, M., Roper, M., Brooks, A.: Statistical power and its
subcomponents - missing and misunderstood concepts in empirical software engi-
neering research. Information and Software Technology 4(39), 285–295 (1997)

21. Dyb̊a, T., Kampenes, V., Sjøberg, D.: A systematic review of statistical power
in software engineering experiments. Information and Software Technology 8(48),
745–755 (2006)

22. Miller, J.: Replicating software engineering experiments: a poisoned chalice or the
holy grail. Information and Software Technology 4(47), 233–244 (2005)

23. Wood, M., Daly, J., Miller, J., Roper, M.: Multi-method research: An empirical in-
vestigation of object-oriented technology. Journal of Systems and Software 1(48),
13–26 (1999)

24. Popper, K.: The Logic of Scientific Discovery. Routledge Classics, New York
(1959)

25. Ramesh, V., Glass, R., Vessey, I.: Research in computer science: an empirical
study. Journal of systems and Software 2(70), 165–176 (2004)

110 V. Mandić, J. Markkula, and M. Oivo

26. Sjøberg, D., Hannay, J., Hansen, O., By Kampenes, V., Karahasanovic, A., Liborg,
N.K., et al.: A survey of controlled experiments in software engineering. IEEE
Transactions on Software Engineering 31(9), 733–753 (2005)

27. Brooks, A., Roper, M., Wood, M., Daly, J., Miller, J.: Replication’s role in software
engineering. In: Shull, F., et al. (eds.) Guide to Advanced Empirical Software
Engineering, pp. 365–379. Springer, London (2008)

28. Basili, V., Selby, R.: Paradigms for experimentation and empirical studies in soft-
ware engineering. Reliability Engineering and System Safety 1(32), 171–191 (1991)

29. Lott, C., Rombach, D.: Repeatable software engineering experiments for com-
paring defect-detection techniques. Empirical Software Engineering 1(3), 241–277
(1996)

30. Jedlitschka, A., Ciolkowski, M.: Reporting experiments in software engineering.
In: Shull, F., et al. (eds.) Guide to Advanced Empirical Software Engineering,
pp. 201–228. Springer, London (2007)

31. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods
for software engineering research. In: Shull, F., et al. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 285–311. Springer, London (2008)

32. Creswell, J.: Research Design: Qualitative, Quantitative, and Mixed Method Ap-
proaches. Sage Publications, Inc., London (2008)

33. Petter, S., Gallivan, M.: Toward a framework for classifying and guiding mixed
method research in information systems. In: The 37th Hawaii International Con-
ference on System Sciences, Big Island, HI, USA, pp. 1–10 (2004)

34. Nunamaker, J., Chen, M., Purdin, T.: Systems development in information sys-
tems research. Journal of Management Information Systems 7(3), 89–106 (1991)

35. Galliers, R.: Research issues in information systems. Journal of Information Tech-
nology 2(8), 92–98 (1993)

36. Sawyer, S.: Studying organizational computing infrastructures: Multi-method ap-
proaches. In: Baskerville, R., et al. (eds.) Organizational and Social Perspectives
on Information Technology, IFIP TC8 WG8.2 International Working Conference
on the Social and Organizational Perspective on Research and Practice in Infor-
mation Technology, pp. 213–232. Kluwer, Aalborg (2000)

37. Mingers, J.: Combining is research methods: Towards a pluralist methodology.
Information Systems Research 12(3), 240–259 (2001)

38. Steinfield, C., Huysman, M., David, K., Yang Jang, C., Poot, J., Huis in ’t Veld,
M., et al.: New methods for studying global virtual teams: Towards a multi-
faceted approach, Wailea Maui, Hawaii, USA. In: The 34th Hawaii International
Conference on System Sciences 2001, pp. 1–10 (2001)

39. Howe, K.: Against the quantitative-qualitative incompatibility thesis. Educational
Researcher 17(8), 10–16 (1998)

40. Bratthall, L., Jørgensen, M.: Can you trust a single data source exploratory soft-
ware engineering case study? Empirical Software Engineering 7(1), 9–26 (2002)

41. Daly, J., El Emam, K., Miller, J.: An empirical research methodology for software
process improvement. In: El Emam, K., et al. (eds.) Elements of Software Pro-
cess Assessment and Improvement. Wiley-IEEE Computer Society Press, London
(1998)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 111–125, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Role of Empirical Evidence for Transferring a New
Technology to Industry

Maria Teresa Baldassarre, Giovanni Bruno, Danilo Caivano,
and Giuseppe Visaggio

University of Bari – Dept. Informatics, Via Orabona 4, 70126 Bari, Italy
{baldassarre,bruno,caivano,visaggio}@di.uniba.it

Abstract. Technology transfer and innovation diffusion are key success factors
for an enterprise. The shift to a new software technology involves, on one hand,
inevitable changes to ingrained and familiar processes and, on the other, re-
quires training, changes in practices and commitment on behalf of technical
staff and management. Nevertheless, industry is often reluctant to innovation
due to the changes it determines. The process of innovation diffusion is easier if
the new technology is supported by empirical evidence. In this sense our con-
jecture is that Empirical Software Engineering (ESE) serves as means for vali-
dating and transferring a new technology within production processes. In this
paper, the authors report their experience of a method, Multiview Framework,
defined in the SERLAB research laboratory as support for designing and man-
aging a goal oriented measurement program that has been validated through
various empirical studies before being transferred to an Italian SME. Our dis-
cussion points out the important role of empirical evidence for obtaining man-
agement commitment and buy-in on behalf of technical staff, and for making
technological transfer possible.

Keywords: Technology transfer, innovation diffusion, empirical evidence.

1 Introduction

Diffusion is the process by which an innovation is communicated through certain
channels, over time, among the members of a social system. As so, an innovation is
an idea, practice or object perceived as new by the unit adopting it, either it be an
individual or an entire organization. Nowadays it is quite evident that we are sur-
rounded by software in our every day life. Nevertheless, the transfer of new software
engineering techniques from research to practice still strives to succeed. It’s as if the
two worlds of research and practice are still quite distant, as if “the researcher builds
to study, the practitioner studies to build”. Consequently, methods and techniques
defined by researchers are often difficult to transfer into industry.

It is well known that technological innovation is a key factor for the competitiveness
of an enterprise. It can be introduced in the production cycles as process or product
innovation for improving effectiveness and efficiency of business goals and also for
adapting products to market needs. Innovation is not always well seen and accepted in

112 M.T. Baldassarre et al.

that it introduces a change of techniques and methods that are ingrained in the produc-
tion processes. Because of the changes required, technological innovation must take
into consideration both organizational and technical factors. The first refer to the level
of commitment of the organization wanting to introduce the innovation. The second
concerns who is going to use the technology. Both technical and organizational factors
“are important in setting the tone and culture in the organization and depend heavily on
the interest and support of managers” [1]. So, the organization in its whole plays an
important role in influencing innovation adoption and diffusion.

Given these premises the process of innovation diffusion can be made easier if the
new technology, defined by researchers, is supported by empirical evidence. To this
intent, in a previous work [2] authors have investigated the importance of Empirical
Software Engineering (ESE) as means for validating and transferring a new technol-
ogy within production processes. The importance of experimentation for introducing
new techniques and methods has been faced in [3] where the author proposes an ex-
perimentally-based technology transfer lifecycle as mechanism for driving the intro-
duction of software engineering technologies into industrial environments and as
means for eliciting co-operation between laboratory and industry.

In this sense, this paper represents a further investigation on the role of empirical
evidence for allowing technological transfer. The authors illustrate how the technology
transfer lifecycle has been adapted and applied for transferring a method (Multiview
Framework) developed in a laboratory context and validated through various types of
empirical studies before being transferred to industry, and how it was then transferred
to a local Italian SME.

The remaining part of the paper is organized as follows: the next section we com-
ment on issues concerning innovation diffusion in literature; section 3 illustrates the
experiment based technology transfer lifecycle, followed by details of our experience
carrying out the lifecycle (section 4). The description starts from the definition of the
method, proceeds with its validation through empirical studies and finally concludes
with its transfer and diffusion to industry. At last, conclusions are drawn.

2 Related Literature

A strategic aspect for any organization is to continuously innovate its production
processes in order to achieve improvements in business acquisition. Shifting to a new
software technology involves inevitable changes to ingrained and familiar processes,
and requires training, changes in practices and commitment on behalf of technical
staff and management. In [4] the authors conclude that “it takes on the order of 15 to
20 years to mature a technology to the point that it can be popularized and dissemi-
nated to the technical community at large”. Obviously, markets cannot wait so long,
especially considering time-to-market pressures. So, many organizations end up fal-
ling for new promising technologies before their declared benefits are actually sup-
ported by empirical evidence [1, 5].

In [6] Rogers studied technology transfer in different types of organizations and
identified various patterns in the way and time implied for adopting a new technol-
ogy. He distinguishes among: Innovators who launch a new idea in the system by
importing the innovation from outside of a system’s boundaries; Early adopters who

 The Role of Empirical Evidence for Transferring a New Technology to Industry 113

are a more integrated part of the organization’s culture. They decrease uncertainty
about a new innovation by adopting it and then socialize their subjective evaluation to
peers; Early majority: although they interact with their peers, they seldom hold posi-
tions of opinion leadership. Their attitude is more of a “follow the leader”. Late ma-
jority: innovations are approached with a skeptical an cautious air, and this category
of innovators usually will not adopt until most others in their organization have done
so. Their adoption is most likely the result of external pressures; Laggards, they will
join the crowd when they are sure that the innovation will not fail.

Berniker [7] and Zelkowitz [8] have also carried out similar studies and have iden-
tified models for transferring technologies in the first case and risk levels in the sec-
ond, that can be traced with Rogers’ categories. Basically, from these three studies it
arises that different adopters use different styles. So, for example, innovators are peo-
ple-movers and will accept a high level of risk in trying the new technology. Early
adopters use a communication model i.e. they let others go on first, and when they
read about the success of the technology on behalf of others they will introduce it in
their own organization. Early majority are even more cautious because the technology
must not only have been successfully adopted by others, but it has to have been ap-
propriately packaged (on-the-shelf model) so that adoption is easier and not effort
prone. Late majority conform to a vendor model of technology transfer in that they
use examples of other customers’ experiences as a way for committing to the innova-
tion and being sure of the low level of risk. Finally laggards adopt a technology only
when they are forced to. Rules imposed by the organization or by external parties. So,
as it can be seen, technology transfer is not only made up of a new idea but it also
requires an appropriate audience with a specific adoption style. Usually, as the level
of risk decreases because the body of knowledge and empirical evidences are more
convincing, practitioners tend to be less reluctant in adopting the technology. In par-
ticular the two main elements in the technology transfer process can be identified as
either promoters, those who accelerate technology adoption, or inhibitors, those who
interfere with or prevent technology adoption.

In [9] the author carried out a survey on the effectiveness of technology transfer
within Information Systems (IS) organizations. Results pointed out that the perceived
effectiveness of technology transfer on behalf of managers differed according to its level
of maturity. In other words, whether the technology was in its infancy, was being tried
for the first time or was mature enough to become an integrated part of the organiza-
tion’s production processes. So, the maturity of a technology acted as a promoter.

Clearly, a technology must answer business or technical issues, or specific re-
quirements experienced by an organization. In this sense basic research is called to
perceive such needs and provide solutions through new models and technologies
to transfer and apply in industry. Nevertheless, these two communities are often found
to be quite distant one from another. In [10] authors point out how researchers and
practitioners have different ideas on the criteria to use for evaluating the success of a
technology. In particular, the study surveyed 90 researchers and practitioners on their
perceptions of the most appropriate empirical methods for validating a new technol-
ogy. Results were discordant: practitioners attributed higher value to methods relevant
to their specific context, i.e. case studies, field studies, retrospective analysis, repli-
cated and controlled experiments on industrial cases; researchers expressed prefer-
ences in validation methods to be used in isolation in laboratory, i.e. theoretical proof,

114 M.T. Baldassarre et al.

static analysis, and simulation. So, the body of evidence provided by researchers and
practitioners seem to follow two parallel paths.

Furthermore, in [2] the authors overview ten years of experience in carrying out
empirical studies that range from surveys, case studies, and formal experiments to
assess which are more suitable for transferring a new technology from academia to an
industrial context.

Therefore, if we are to achieve successful technology transfer, it is important to
find ways for basic research results to be reported, understood, and convincing for
practitioners. This paper faces these issues and moves towards closing the gap be-
tween research and practice, academia and industry, basic research and applied re-
search, so that results achieved and collected evidence can serve as promoters for
obtaining management support, overcoming cultural inertia and assuring successful
technology transfer. In the next sections we express what is intended as technology
transfer process and in which terms it has been applied by our research group for
enacting innovation diffusion.

3 Technology Transfer Process

Resistance to innovation is not a novelty. Often new technologies are not accepted by
project staff because they are considered not appropriate to market needs and the
project managers are not convinced of benefits produced. Also, the risk of innovation
often slackens both project staff and management to buy-into the new idea [3]. Our
hypothesis is that introduction of a new technology can be facilitated if it is supported
by evidence on its efficacy and effectiveness.

As so, ESE can support providing such evidence, introducing and then diffusing
the innovation within the industrial environment. It is expected that introduction of a
new technology in some way improves processes, products and resources. In this
sense evidence should help determine if the new technology actually determines such
improvement by investigating the cause-effect relations between variables of interest.
According to Rogers [6] innovations supported by evidence that assess the previous
aspects will be adopted more rapidly than other ones.

Evidence alone is not enough for transferring a technology. Rather, once effective-
ness of a technology has been proven, specific models must support its transfer and
diffusion in industry. Such a process creates new knowledge as the innovation is ac-
quired and more evidence as it is adopted. In other words, knowledge and evidence
are both involved and play an important role in the technology transfer process.

3.1 Knowledge Creation and Flow

The diffusion of any innovation goes through all or at least part of the phases of what
is known as Knowledge Lifecycle [11] because it must first be acquired by single
individuals and then gradually transferred to the rest of the technical staff, up to the
entire organization. The original definition of this lifecycle has been considered and
interpreted in relation to introduction and transfer of a new technology, let it be a
process or product, within an industrial environment. We have defined it Knowledge
Lifecycle during Innovation (KLI). Figure 1 synthesizes our representation of the
model.

 The Role of Empirical Evidence for Transferring a New Technology to Industry 115

Fig. 1. Knowledge Lifecycle during Innovation (KLI)

At first the innovator internalizes the knowledge related to the new technology he
is willing to introduce (tacit knowledge and individual learning occurs); tacit knowl-
edge is then socialized between the innovator and other project team members, and
among them, during training sessions or team work (informal communication and
group learning occur); during externalization acquired knowledge is formalized and
made independent from the innovator. Tacit knowledge is made explicit to all stake-
holders of the organization (explicit knowledge and formal learning occur); once new
knowledge is acquired and formalized, each individual can combine it to previous
one. So, abstract knowledge models are extracted from explicit ones. An innovation is
completely acquired when it is integrated and combined with previous knowledge.

Summarizing, innovation diffusion transforms tacit knowledge, i.e. operational
skills that few stakeholders possess, including practical judgment capabilities, into
explicit knowledge, i.e. formalized knowledge through models, guidelines, processes
and so on. Moreover, transfer occurs through learning at both an individual and group
level, i.e. modification in stakeholders’ behavior according to experience and acquisi-
tion of new knowledge after adopting the new technology.

3.2 Importance of Evidence

Once basic research has defined a new technology, models that address key aspects of
technology diffusion are needed, i.e. “the process by which an innovation is commu-
nicated through certain channels over time among members of a social system” [6].
So, evidence alone is not enough for adopting a new technology, rather it must be
formalized, packaged and made transferable through specific models. Till now
knowledge on technology transfer models in software engineering is anecdotal.

The authors have referred to the experimentally based technology transfer process
commented in [3], and have tailored it to their experience. A graphical representation
is given in Figure 2. It can be seen as a state diagram where each node is a possible
state one can be in, and the arcs define how to pass from one state to another.

More precisely with refer to the figure, given a “current practice”, researchers iden-
tify the weaknesses of original techniques through observational studies, literature
review and experiences reported. These weaknesses motivate “creation of a new tech-
nology or a new methodology”. The proposed method needs experimental validation

116 M.T. Baldassarre et al.

Fig. 2. Experimentally based technology transfer lifecycle

to assess the improvement perceived. This is done at first through formal controlled
experiments and their replications in a laboratory context. It is a first step towards
collecting evidence on the benefits of the new technology and for motivating industry
in adopting the technique (Initial Industrial Trial). Following, the technology is trans-
ferred to industry through a case study on a typical industrially based project. Transfer
also involves training technical staff on the use of the techniques. Further, live trials
of the technique lead to adaptations and refinements of the proposed technique in
order to tailor it to the specific context through experience (Wider application and
Refinement).

The nature of software engineering suggests it be a laboratory science, in which the
researcher’s role is to understand processes, products and the relation among them.
On the other hand, the practitioner’s role is to design improved systems by using
available knowledge. Consequently, our technology transfer process combines the
characteristics of researchers and practitioners in the context of software engineering,
and achieves a symbiosis between research and practice so that practitioners are able
to benefit from research results.

With respect to the KLI, first of all the researcher, who by definition is an innova-
tor and promoter of innovation, comes up with a “new idea” following to observa-
tional studies. The idea at this point is still internalized as tacit knowledge. Next, the
idea is socialized to others before being formalized in a technology or methodology.
At this point the tacit knowledge becomes explicit knowledge and externalization
occurs. In other words the tacit idea is formally represented so that others can under-
stand, adopt it and perceive the strengths (and in some cases weaknesses) of the tech-
nology. As so, the technology is ready to be transferred to practice i.e. others can use
it and as they use it learning occurs, individuals acquire the new technology and com-
bine the derived knowledge with their own knowledge and experiences.

It is in this sense knowledge lifecycle and technology transfer process, research
and practice are combined in a synergic blend, two worlds that become one.

 The Role of Empirical Evidence for Transferring a New Technology to Industry 117

4 Empirical Studies for Transferring Multiview Framework

Given the general considerations on the technology transfer process and on the
knowledge lifecycle that an innovation goes through, we now report our experience
on how the process in Figure 2 has been carried out for creating a new technology,
providing empirical evidence, and finally transferring it in an Italian SME by applying
the technology to an industrial project.

In the next paragraphs, we will illustrate the technology transfer process with refer
to Multiview Framework, defined in the SERLAB research laboratory as support for
designing and managing a goal oriented measurement programs.

4.1 From Current Practice to Technology/Methodology Creation

The technology transfer process has been applied in the context of goal oriented
measurement (Goal Question Metrics approach) [12] for achieving Software Process
Improvement, which represents one of the research areas of the authors.

Analysis of literature and experiences collected by the authors of the paper, have
pointed out the importance of measurement for assessing SPI. Quality is defined as
the set of desired characteristics that a software process or product must have in order
to satisfy its requirements. How it is measured inevitably depends on the context and
on the viewpoint from which measurement is being carried out. Software engineers
use goal oriented quality models, such as Goal Question Metrics (GQM) [12] for
measuring software quality because they adapt to business and project characteristics
better than other methods and can be combined and integrated with process and or-
ganization maturity models such as CMM and ISO [13]. In spite of evidence of suc-
cessful application of goal oriented measurement programs in industrial contexts such
as Motorola [14], HP[15], AT&T [16], Schlumberger RPS [17], SEL [18] there are
still many aspects that the conventional GQM methodology strives to overcome: in
real projects the dimensions of the quality model are not decided solely by the quality
manager, but also depend on project characteristics and business needs. Also, a large
quality model makes interpretation more complex, introduces dependencies among
goals, requires more effort to manage the entire measurement plan which may include
measurements related to process, product, project management and cost/benefit as-
pects as well as quality. GQM, as reported in the literature [12], is not enough to man-
age all these issues.

These first observational studies have motivated the researchers of this paper to de-
fine a new methodology, Multiview Framework, able to face the previously described
open issues. It is based on GQM and guides quality managers, through a set of well
formalized steps, to define, tailor, and manage a large goal-oriented quality model.

4.2 From Technology/Methodology Creation to Initial Industrial Trial

4.2.1 Multiview Framework in Pills
The Multiview Framework (MF) addresses the weaknesses in the conventional GQM
methodology such as dimensions, complexity and dependencies between goals of a
measurement plan. For clearness, we describe some details of the approach. This
is not a complete and exhaustive, however it is enough for understanding the basic

118 M.T. Baldassarre et al.

characteristics of the methodology. More details are in [19]. Multiview Framework
(MF) characterizes a software project being evaluated and provides a model for defin-
ing a goal oriented measurement program according to the project characterization. It
is made up of 4-step.

Step 1. Project Definition: In this first step the project must be defined in terms of
processes executed to obtain the final products requested; deliverables; project man-
agement activities to plan and control the project; activities for evaluating fitness of
investment.

Step 2. Goal Setting: The goals of the measurement plan must be defined, keeping in
mind the project definition. They are defined with the GQM-goal template.

Step 3. Cross-Validation: The measurement plan structure is validated by tracing the
goals in a Goal-View table to assure that there is one goal for each object of study.

Step 4. Interpretation Complexity: Decision tables [20, 21] are used to depict goal
interpretation. Every table column of the decision table indicates which actions should
(or should not) be executed for a specific combination of condition entries. The com-
plexity of the interpretation is equal to the total number of rules, or action entries that
make up the decision table.

4.2.2 Evidence through a Retrospective Analysis
Following to the description of the proposed model, we applied the MF to a meas-
urement plan that had been designed during the execution of an industrial project. The
goals were defined according to the original GQM approach. The four steps of the MF
were applied to the previous measurement plan [19]. This first validation was a retro-
spective analysis [22] and was based on analysis of how the structure of the meas-
urement plan would have been if the MF method had been used to design it.

The original measurement plan was identified with “NS-GQM” (non structured).
The measurement plan resulting from the application of the MF was referred to as
“S-GQM” (structured).

After applying the model, we analyzed and compared data related to the NS-GQM
and S-GQM. Overall results pointed out that the number of goals was greater in the
S-GQM (11 vs 8 in NS-GQM), the average interpretation complexity was less (18.45
vs 44.87 in NS-GQM). This was due to the lower number of metrics for each goal
(20.18 vs. 32.75 average in NS-GQM), achieved as a consequence to applying the
technique to the NS-GQM. More details are in [23].

4.2.3 Evidence through a Controlled and a Replicated Experiment
Further empirical evidence was achieved through a formally constructed experiment
in a non industrial context, i.e. a synthetic environment experiment [22] in an artificial
setting such as a university class room with graduate students.

The controlled experiment aimed at assessing comprehensibility and efficiency of a
quality model obtained by applying MF, compared to one using the conventional GQM
paradigm. To this end, the two different quality models (NS-GQM and S-GQM) de-
fined in the retrospective analysis were used. So, two research goals were investigated:

 The Role of Empirical Evidence for Transferring a New Technology to Industry 119

RG1: Analyze S-GQM obtained by applying MF
For the purpose of comparing it to NS-GQM
With respect to efficiency (effort)
From the point of view of a quality evaluator
In the context of a controlled experiment

RG2: Analyze S-GQM obtained by applying MF
For the purpose of comparing it to NS-GQM
With respect to comprehensibility (error proneness)
From the point of view of a quality evaluator
In the context of a controlled experiment

A two-treatment, two period (2X2) cross-over design [24] was used. More pre-
cisely, the experiment was organized in two experimental periods (RUN_1 and
RUN_2), and subjects were randomly assigned to either one of two groups (Group_A
and Group_B). Each group received the treatments according to two different se-
quences: S-GQM followed by NS-GQM for Group_A (Sequence1), and NS-GQM
followed by S-GQM for Group_B (Sequence2). In this way each subject is measured
twice, one for each treatment, i.e. each subject acts as his/her own control. This type
of design was most appropriate given the sample size. A graphical representation of
the experimental design is given in Figure 3.

GROUP B

GROUP A

RUN 2RUN 1Group/ Run

GROUP B

GROUP A

RUN 2RUN 1Group/ Run

S-GQM/
MT1
NS-GQM/
MT1

NS-GQM/
MT2
S-GQM/
MT2

GROUP B

GROUP A

RUN 2RUN 1Group/ Run

GROUP B

GROUP A

RUN 2RUN 1Group/ Run

S-GQM/
MT1
NS-GQM/
MT1

NS-GQM/
MT2
S-GQM/
MT2

Fig. 3. Experimental Design

The experiment was designed to emulate software project monitoring during two
periods in the project lifecycle. So, operationally, during each run, each subject was
asked to: analyze the measures of a selected subset of metrics (MT1 or MT2) related
to either of the treatments (S-GQM or NS-GQM), use decision tables, and interpret
each goal. The controlled experiment with university graduate students as subjects
was followed by a strict replication whose subjects (master degree students) were
more representative of practitioners in that they collaborated with industrial partners
for many project works. Both the controlled experiment and its replication were car-
ried out following guidelines in [25].

The replication aimed at validating that the results of the first controlled experi-
ment were repeatable. This replication was classified as “strict replication” [26] in
that it did not vary any of the research hypotheses and it reuses instrumentation of the
original experiment. It is important for increasing confidence in the validity of ex-
perimental results in that it confirms that results from the original experiment are
repeatable and have been appropriately documented by the original experimenters

120 M.T. Baldassarre et al.

[27]. Being this a replication with the intent of validating previously obtained results,
the research goal was defined as follows:

RG: Replicate a previous experiment
For the purpose of assessing the repeatability of the experiment
With respect to comparing MF-quality models with GQM-based quality
models
From the point of view of experimental rigour
In the context of an internal replication varying only the subjects

Data analysis for both studies was carried out after investigating the distribution of
collected data. We analyzed the differences between effort and error proneness ob-
tained from each group in using S-GQM and NS-GQM. For the hypotheses testing, an
α-value was fixed at 5%. The dependent variables, aiming at assessing effort and error
proneness of S-GQM compared to NS-GQM were tested to investigate if the differ-
ences in their values were statistically significant. For space reasons we cannot illus-
trate and comment all of the details and graphs on data analysis. However, more
details can be found in [23, 28]. Here we give conclusive and overall results.

First of all, both studies led to positive and analogous results: The cross-over
analysis carried out on the collected data identified significant differences in subject
responses for effort and error rates throughout the entire observation period. It pro-
vided evidence that less effort and lower error rates occurred for interpretation using
S-GQM plans compared to NS-GQM plans. These considerations are also supported
by meta-analysis effect size estimations used to compare the two independent studies.
Such results point out the validity of the treatment. In other words, the Multiview
Framework leads to a better structured quality model with lower complexity, fewer
dependencies and easier to manage during measurement activities.

Finally, we carried out meta-analysis as a means for comparing studies and combin-
ing results of the two experiments in order to determine if the two studies (controlled
experiment and its replication) produce significantly different results. In particular
effect size estimates were calculated [29]. For this aim, the Cohen’s d model was used
[30]. It is calculated as the difference between treatment means divided by the standard
deviation and has been calculated for dependent variables in both studies. Results are
summarized in Table 1.

Table 1. Effect sizes in each experiment

Cohen suggests that effect sizes be classified into three groups: Small (≈0.2),
Medium (≈0.4) and Large (≈0,8). This classification was intended to assist power
analysis. The results shown in Table 1 point out the consistency between the two
experiments examined and confirm a large effect size. Given an alpha value of 0.05,

 The Role of Empirical Evidence for Transferring a New Technology to Industry 121

the power of both experiments was better than 0.8. So, assuming that a similar ex-
periment is used, the experimental subjects can be considered as sufficient in any
future replications to detect the expected effect and achieve an adequate power.

4.3 From Initial Industrial Trial to Wider Application and Refinement

The third phase of the innovation process for transferring a technology sees active
involvement on behalf on industry. It is from this moment that the “new idea”, previ-
ously formalized in a methodology or technology and validated in a controlled con-
text is gradually introduced in industrial production processes and communicated to
the social system (in this case an Italian SME). This step is the link that joins research
and practice and brings together basic research with applied research.

In our specific case, the MF technology was presented to an Italian SME and inte-
grated during the execution of an industrial project. Moreover, the project was called
PH_ERP (Process Hiding of ERP Systems), aiming at developing an experience fac-
tory as support for developing SAP applications. It required definition of a measure-
ment program to adopt while monitoring project execution, for this reason we chose it
as candidate project for introducing and transferring our technology.

The organization did not adopt any specific framework for defining their meas-
urement plans. So, although they carried out measurement activities, from identifica-
tion of metrics, to collection and interpretation of measurement values, it was not
systematic. Moreover, collected data was analyzed and represented in charts, tables
and in reports. All stakeholders participated to feedback sessions and commented the
measurement results. The main weakness of these sessions was that there were no
guidelines on decision making when measurement values were below expected base-
lines and goals were not fulfilled, i.e. knowledge was not rigorously represented. So,
in spite of stakeholders’ experience, each time feedback sessions were convoked
different criteria were inevitably adopted in decision making, and previously acquired
knowledge could not be reused for interpreting new measurement values. Moreover,
lack of guidelines made the interpretation process not repeatable i.e. the same meas-
urement data given to two different stakeholders would have most likely led to differ-
ent conclusions.

Evidence collected on the MF technology served as promoter for management buy-
in. In particular, the results obtained in the retrospective analysis helped management
to acknowledge the improvements that could have been made if the technology had
been used. Following, although the controlled experiment was carried out in a syn-
thetic environment the results represented a first validation of comprehensibility and
efficiency of the model. It was possible to generalize these results through the replica-
tion of the study. The fact that experimental subjects were in some way representative
of practitioners, played an important role for overcoming resistance of management
and technical staff, i.e. benefits were perceived on behalf of industry.

To summarize, empirical evidence has pointed out to management how MF ad-
dresses several improvements compared to their current measurement activities.
Moreover:

122 M.T. Baldassarre et al.

- MF provides a systematic and operative support for defining a measurement
program and interpreting data;

- use of decision tables for interpretation keeps track of learning that occurs
during the feedback sessions. In this sense, content of each table can be up-
dated each time an improvement is assessed and therefore a baseline is
changed, or a metric is added to a goal. In this way they support experience
packaging;

- the interpretation process becomes repeatable and independent from the
stakeholders involved in the discussion of results because tacit stakeholder
knowledge is made explicit. So, if different people are present in different
moments, the same measurement data will lead to the same conclusions;

- decision-making concerning initiatives to carry out in order to improve qual-
ity characteristics measured in each goal is more straightforward.

- MF explicates the cause-effect relation between improvement actions to
carry out and metrics of a measurement goal that they impact on;

Once management perceived the possible improvements and accepted to introduce the
MF in the PH_ERP project, the next step was to obtain commitment of technical staff.
After all, they were the ones going to actually “use” the technology.

In many cases, technical staff are refrained by their cultural inertia and, are scarcely
inclined and skeptic to give up current and familiar technologies for a new one they
know nothing about and that must be learnt. Such a barrier can be overcome by point-
ing out how the innovation is able to improve working conditions, and how it allows
achieving the production goals assigned to the development teams.

It is therefore important to motivate those that act as innovators or early adopters
within the organization, so they can be followed by early majority, late majority and
laggards. In our case, this was achieved through training.

Operatively, two workshops were organized in conjunction with researchers (au-
thors of this paper) and 30 practitioners of the Italian SME. In the first workshop prac-
titioners were introduced to the general concepts of the MF methodology: systematic
approach for goal oriented measurement, decision tables as support to interpretation,
and finally the four step approach. These theoretical concepts were illustrated through
a sample case study, representative of the industrial context. Next, an assignment was
given: practitioners were asked to apply the concepts to the project they had previously
worked on.

Our choice, as researchers, of giving this assignment was twofold: first, give prac-
titioners a “hands on” approach to the MF methodology in a context they were famil-
iar to, i.e. the project they had worked on before PH_ERP; second, perceive strengths
and point out difficulties concerning MF. Being the previous projects concluded,
practitioners carried out a sort of retrospective analysis (although certainly less rigor-
ous) in which they acknowledged the improvements that could have been made if the
innovation had been available. This was possible because each of them had “lived”
through the previous projects. Some general topics of the projects used are reported in
Table 2.

 The Role of Empirical Evidence for Transferring a New Technology to Industry 123

Table 2. Project Topics

In the second workshop, assignments were presented and discussed. Although pro-

jects differed among practitioners conclusions were analogous: the systematic and
structured organization that the MF methodology attributed to measurement plan
definition and interpretation led to more rigorous measurement activities. Participa-
tion and interest was quite high on behalf of practitioners, i.e. 80% of the participants
handed in and presented their assignment.

Following to the survey, some important comments that 30 responding practitio-
ners conformed to were collected. They are briefly shown in Table 3.

Table 3. Comments from Survey

At the moment the MF is being adopted in the PH_ERP project. As it is adopted

we are confident that results and acquired experiences will be useful for tailoring and
improving the approach to what are practitioners’ needs and not researchers’
thoughts. In this way it can eventually be extended to all the organizations’ produc-
tion processes and development teams without being restricted to only those involved
in the project alone. The final phase (wider application and refinement) of the tech-
nology transfer process is still being assessed.

5 Conclusions

With this paper authors have suggested a technology transfer process that is an ap-
proach towards binding the gap between research and practice. It sees involvement of
both parts who must work together for transforming a “new idea” into a “new tech-
nology/methodology” able to improve industrial production processes and, produce a

124 M.T. Baldassarre et al.

body of evidence used for refining and adapting the technique, following to experi-
ence. Among various types of empirical studies, the ones that favor diffusion of tech-
nological innovations are the ones that actively involve developers and exploit their
skills and abilities. As so, when the improvement is perceived by management and
technical staff, the experimental results are good motivations for assimilating them
within the organization as a technological innovation. In these terms empirical evi-
dence can avoid to be left to itself and be appropriately integrated in the technology
transfer process. We have illustrated how the process has been successfully applied by
our research group for transferring the MF technology in an Italian SME.

Experimentation, applied properly, is therefore a powerful means for obtaining the
body of evidence necessary for introducing new software engineering technologies
into industrial environments. Only in this way can cooperation across laboratory and
industry be enacted.

References

1. Aaen, I., Siltanen, A., Sorensen, C., Tahvanainen, V.-P.: A Tale of Two Countries: CASE
Experiences and Expectations. In: IFIP Transactions, pp. 61–91 (1992)

2. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G.: Innovation Diffusion through
Empirical Studies. In: Proceedings of the 17th International conference on Software and
Knowledge Engineering (SEKE 2005), Taipei, China (July 2005)

3. Linkman, S., Rombach, H.D.: Esperimentation as a vehicle for software technology trans-
fer–A family of software reading techniques. Information and Software Technology 39,
777–780 (1997)

4. Redwine, S.T., Riddle, W.E.: Software Technology Maturation. In: Proceedings of 8th In-
ternational Conference on Software Engineering (ICSE 1985), pp. 189–200. IEEE Com-
puter Society Press, Los Alamitos (1985)

5. Aaen, I.: Problems in CASE Introduction: Experiences from User Organizations. Informa-
tion and Software Technology 36, 643–654 (1994)

6. Rogers, E.M.: Diffusion of Innovations, 4th edn. Free Press, New York (1995)
7. Berniker, E.: Models of technology transfer: a dialectical case study. In: Proceedings of the

IEEE Conference: the New International Language, pp. 499–502 (July 1999)
8. Zelkowitz, M.V.: Assessing software engineering technology transfer within NASA.

NASA technical report NASA-RPT-003095, National Aeronautics and Space Administra-
tion, Washington, DC (January 1995)

9. Rai, A.: External information source and channel effectiveness and the diffusion of CASE
innovations: an empirical study. European Journal of Inf. Syst. 4(2), 93–102 (1995)

10. Zelkowitz, M.V., Dolores, R., Binkley, D.: Understanding the culture clash in software en-
gineering technology transfer. University of Maryland technical report, June 2 (1998)

11. Nonaka, I., Takeuchi, H.: The Knowledge Creating Company. Oxford University Press,
Oxford (1995)

12. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia
of Software Engineering 1, 528–532 (1994)

13. Pulford, K., Kuntzmann-Combelles, A., Shirlaw, S.: A Quantitative Approach to Software
Management. Addison-Wesley, Reading (1995)

14. Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation
Experiences within Motorola. IEEE TSE 18(11), 998–1010 (1992)

 The Role of Empirical Evidence for Transferring a New Technology to Industry 125

15. Grady, R.B.: Practical Software Metrics for Project Management and Process Improve-
ment. Hewlett-Packard Professional Books (1992)

16. Barnard, L., Price, A.: Managing Code Inspection Information. IEEE Software 11(2),
59–69 (1994)

17. Solingen, R.V., Latum, F.V., Oivo, M., Berghout, E.W.: Application of Software Meas-
urement at Schlumberger RPS: towards enhancing GQM. In: Proceedings of the 6th Euro-
pean Software Control and Metrics Conference, The Netherlands, May 17-19 (1995)

18. Basili, V.R., Green, S.: Software Process Evolution at the SEL. IEEE Software 11(4),
58–66 (1994)

19. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G.: Multiview Framework for
Goal-Oriented Measurement Plan Design. In: Bomarius, F., Iida, H. (eds.) PROFES 2004.
LNCS, vol. 3009, pp. 159–173. Springer, Heidelberg (2004)

20. Pooch, U.W.: Translation of Decision Tables. Computing Surv. 6(2), 125–151 (1974)
21. http://www.econ.kuleuven.ac.be/tew/academic/infosys/

research/prologa /prologa.htm
22. Zelkowitz, M.V., Wallace, D.R.: Experimental Models for Validating Technology. IEEE

Computer, 23–31 (May 1998)
23. Ardimento, P., Baldassarre, M.T., Caivano, D., Visaggio, G.: Assessing Multiview

Framework (MF) comprehensibility and efficiency: a replicated experiment. In: Informa-
tion & Software Technology, April 2006. Kluwer Academic Press, Dordrecht (2006)

24. Senn, S.: Cross-Over Trials in Clinical Research, 2nd edn. John Wiley & Sons Ltd.,
Chichester (2002)

25. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslèn, A.: Experimenta-
tion in Software Engineering. Kluwer Academic Publishers, Dordrecht (2002)

26. Basili, V., et al.: Building knowledge through families of experiments. IEEE TSE 25(4),
456–473 (1999)

27. Cook, T.D., Campbell, D.T.: Quasi-Experimentation Design and Analysis Issues for Field
Settings. Houghton Mifflin Company (1979)

28. Baldassarre, M.T., Caivano, D., Visaggio, G.: Comprehensibility and Efficiency of Mul-
tiview Framework for Measurement Plan Design. In: Proceedings of the International
Symposium on Empirical Software Engineering, Rome, Italy, October 2003, pp. 89–99
(2003)

29. Kramer, S., Rosenthal, R.: Effect sizes and significance levels in small sample research.
In: Hoyle, R. (ed.) Statistical Strategies for Small Sample Research. Sage publications,
Beverly Hills (1999)

30. Cohen, J.: Statistical power analysis for the behavioural sciences. Academic Press, London
(1977)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 126–140, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Framework for Using Agile Approaches in
Global Software Development

Emam Hossain1,3, Muhammad Ali Babar2, and June Verner3

1 UNSW-NICTA, Australian Technology Park
Sydney, Australia

Emam.Hossain@nicta.com.au
2 Lero,University of Limerick
Castletroy, Limerick, Ireland
malibaba@lero.ie

3 School of Computer Science and Engineering,UNSW
Sydney, Australia

jverner@cse.unsw.edu.au

Abstract. As agile methods and Global Software Development (GSD) are be-
come increasingly popular, GSD project managers have been exploring the vi-
ability of using agile approaches in their development environments. Despite
the expected benefits of using an agile approach with a GSD project, the overall
combining mechanisms of the two approaches are not clearly understood. To
address this challenge, we propose a conceptual framework, based on the re-
search literature. This framework is expected to aid a project manager in decid-
ing what agile strategies are effective for a particular GSD project, taking into
account project context. We use an industry-based case study to explore the
components of our conceptual framework. Our case study is planned and con-
ducted according to specific published case study guidelines. We identify the
agile practices and agile supporting practices used by a GSD project manager in
our case study and conclude with future research directions.

Keywords: Agile approaches, Global Software Development, Case study.

1 Introduction

Agile Software Development (ASD) and Global Software Development (GSD) are
promoted as a means of reducing time to market, increasing productivity, improving
quality and gaining cost effectiveness and efficiency [1]. ASD has gained significant
popularity because of a promise to handle requirements volatility throughout the de-
velopment life cycle, promotion of extensive collaboration between customers and
developers, and support for early and frequent delivery of a product [2]. GSD is also
considered to be a cost effective software development paradigm driven by a number
of factors, such as time to market pressures, taking advantage of using distributed
resource pools, use of multiple time zones, shared best practices, and closer proximity
to customer [3].

 Towards a Framework for Using Agile Approaches in Global Software Development 127

GSD project managers have recently begun using agile practices in their develop-
ment environments [4, 5]. However, despite the expected benefits of using agile ap-
proaches with GSD, the overall combining mechanisms of the two approaches are yet
to be fully understood [6]. To address this problem, we propose a conceptual frame-
work that describes the use of various strategies to use agile approaches in GSD pro-
jects, based on the research literature. We also conducted an industry-based case
study to test our framework and to help us better understand the use of agile strategies
in a GSD project in a real life setting. We used a framework-based data collection
approach, adopted from [7], to record project context factors as we believe that GSD
project agility depends substantially on project context. In our case study, we identi-
fied the agile strategies used by the project manager to aid in a discussion of our
framework components.

In the next section we discuss the background to our research. Section 3 describes
our research problem in detail, while section 4 presents the proposed framework.
Section 5 discusses our research methodology and case study, and we conclude with
section 6, which discusses our future research directions.

2 Research Background

The fundamental concepts of an agile approach in software development are described
in the agile manifesto. This manifesto states that the agile community values individu-
als and interactions over process and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation, and responding to
change over following a plan [8]. The heart of an agile approach is in using agile prac-
tices that emanate from agile methods, such as XP and Scrum. On the other hand, GSD
is a contemporary form of software development where project stakeholders are dis-
persed in distributed locations where socio-cultural distances may be involved. Be-
cause of geographical, temporal and in some cases, socio-cultural differences, GSD
may suffer from a number of difficulties related to communication, coordination, con-
trol [12]. Thus, it is apparently difficult to apply many of the key agile concepts in
distributed developments as agile development promotes a close collaboration and
communication environment. However, despite the apparent difficulties in applying
agile approaches within distributed settings, a number of GSD projects are currently
using agile practices in their development environments [5, 9].

3 Our Research

As noted earlier, the combination of agile approaches with GSD is not fully under-
stood although such a combination is expected to be beneficial [6]. Because of geo-
graphically dispersed teams, it can be very difficult to apply some agile practices, for
example pair programming, daily stand up meetings, the planning game, and onsite
customer participation in distributed projects. Also project contextual factors (for ex-
ample, project size, collaboration modes, number of distributed sites, and team size)
may limit the use of agile practices. Hence using agile approaches in distributed

128 E. Hossain, M.A. Babar, and J. Verner

settings is not straightforward; rather practitioners need to fully understand what agile
strategies will be effective for their specific development environment.

To address this challenge, the broad objective of our research is to explore and un-
derstand effective strategies to help GSD project managers with agility. To this end
we develop and describe the components of our framework. As noted earlier, to un-
derstand, explain and explore agile strategies, we conduct an industry-based case
study in a real life setting. We use the case study findings to further understand the
components of our framework. We also investigate if there are any elements not pre-
sent in the framework that should be considered for inclusion in a revised framework.
Finally our research concludes with future research directions.

4 Conceptual Framework

This section defines, explains and describes the various elements of our proposed
framework.

4.1 Development Process

In order to support agile approaches in GSD, we have identified a number of compo-
nents from a literature survey that are included in our framework. The framework
includes components and factors that need to be taken into account when a project
manager considers using agile approaches for a GSD project. Our framework includes
an agility assessment process that covers both project contextual factors and an or-
ganization’s previous agile experience. The framework also includes agility support-
ing strategies that are categorized into five groups: plan, policy, people, process and
infrastructure. To develop our conceptual framework, we taken several carefully
planned steps, as described below:

• To identify framework components we studied existing frameworks and meth-
odologies that discuss agility issues in a number of development scenarios (e.g.
[10-11, 33]); and conducted an extensive survey of the GSD literature where ag-
ile approaches were used, as well as analyzing the heuristics of experienced
GSD researchers and practitioners (e.g. [14]).

• We identified and categorized factors that drive project managers towards choos-
ing agile strategies for their GSD projects (e.g. [14-27]).

• We investigated research papers (e.g. [7, 29]) that describe how project contex-
tual information is recorded. After reviewing these studies, we identified a num-
ber of key project contextual factors useful when assessing a possible degree of
project agility. Agility assessment is important; it is usually difficult for a GSD
project to be agile and a project manger needs to carefully balance agility with a
defined development process [6]. An organization’s past agile experience is also
considered to be part of the agility assessment.

• We reviewed reports describing agile approaches in GSD projects (e.g. [9, 12,
15-28]) and identified a number of agility supporting strategies used by GSD pro-
ject managers. We categorized these strategies as plan, policy, infrastructure,
process and people elements.

 Towards a Framework for Using Agile Approaches in Global Software Development 129

• Finally, we consolidated the components into a framework to aid a GSD project
manager in deciding what agile strategies could be used within a project.

Figure 1 presents GSD project managers with a framework to assist them in assessing
the degree of agility possible for a project. This framework also provides a basis for
the consideration of suitable agility supporting strategies in GSD projects.

Contextual
factors

People

Infrastructure

Plan

Policy

Process

Agility
assessment

Agility
drivers

Agility
supporting
strategies

Past agile
experience

Lessons
learned

Customer Competition

Opportunity Distribution
challenges

Fig. 1. Proposed conceptual framework for using agile approaches in GSD projects

4.2 Framework Usage

We do not claim that we have developed an exhaustive list of components that influ-
ence the agility of all GSD projects. Rather the proposed framework will help guide
the identification of effective agile strategies for such projects. The framework is eas-
ily modifiable and extensible, as is necessary in research that is still in its inception
stage. Our framework will also help to identify missing agile strategies in a GSD pro-
ject when an agile approach is being considered. To provide an initial validation for
our research, we conducted an industry-based case study of a project that uses some
agile practices and some GSD supporting practices. From the case study, we identi-
fied effective, poorly executed and missing agile strategies in a GSD project that

130 E. Hossain, M.A. Babar, and J. Verner

claimed agility. In future, a series of case studies will help to build up a body of
knowledge that will guide GSD project managers in choosing effective agile strate-
gies suitable for their particular development environment.

4.3 Framework Components

Framework components are classified as 1) agility drivers, 2) contextual factors, 3)
past agile experience, 4) agility assessment, 5) agility supporting strategies and 6)
lessons learned. We discuss each of these below.

Agility Drivers. Agility drivers are factors that influence GSD project managers to
use agile approaches. We found that agility drivers can be broadly categorized into
the following:

Competition. This category includes factors such as: increasing demand for project
quality, a rapidly changing market, cost savings, maximizing project productivity,
time, competitors, and the enhancement of technical capabilities, mergers and acquisi-
tions, and scalability [4, 14-16]. Other factors such as, leveraging the distributed
team’s expertise, facilitating knowledge transfer, and supporting the international na-
ture of a company, can also drive a GSD project manager toward using an agile ap-
proach [18].

Customer. The customer is one of the most important drivers in choosing an agile
approach for a GSD project [15, 20]. For example, a customer may want to develop
his product using XP [22]. Requirements volatility and rapid changes also drive GSD
customers toward choosing an agile approach [17, 21].

Distribution challenges. GSD project managers also choose agile approaches to mini-
mize various challenges related to communication, coordination and control [8, 12].
For example, to minimize delays in communication and to increase communication
quality, a GSD project manager may use some agile practices (e.g. pair programming)
[23].

Opportunity. Because an organization may wish to change its existing GSD develop-
ment processes, it may perceive an opportunity to choose an agile approach as the
most optimal method [15, 17, 21]. Previous project experience success also drives
GSD project managers to use agile approaches [15, 16, 24]. A GSD project manager
may also use some agile practices in a pilot project or in an experimental study in
order to investigate the risks and benefits of agile methodologies [18, 25, 28]. Earlier
development method failure (e.g. with the waterfall model), may drive GSD project
managers towards agile approaches [27, 26]. A GSD project manager may use an ag-
ile approach to: increase a project’s visibility, allow for early project estimation, or to
help provide client business security [4, 19, 27]. Agile approaches are also used as an
opportunity for distributed teams to standardize their processes and tools [19]. A
shortage of onshore expertise and a match with an outsourced partner’s development
methodology, as well as a desire to capture domain knowledge and expertise, may
also encourage a GSD project manager toward an agile approach [16].

 Towards a Framework for Using Agile Approaches in Global Software Development 131

Contextual Factors. Software projects can be influenced by as many as 250 different
contextual factors; although most projects are affected by 10-20 major factors (for
example project complexity, size, uncertainty, staff experience, contract nature etc.)
[29]. Project stakeholder distribution provides an additional contextual factor in GSD
projects and is related to geographical, temporal and socio-cultural distances [12].
Project contextual factors heavily influence the use of agile strategies and we consider
the following project contextual factors should be considered as a minimum [7, 30].

Software classification. The software to be developed can be classified as [12, 30]. 1.
System, 2. Commercial, 3. Information system, 4. Military, 5. End user/Private, 6.
Other.

Project specific. Factors that include development quality, schedule, and risk etc
should be considered. But initially we suggest: 1. Contract nature, 2. Project domain,
3. Requirements changes, 4. Staff months, 5. Budget, 6. Complexity, 7. Criticality.

Team characteristics. Specific distributed team information needs to be considered. 1.
Team size, 2. Team experience, 3. Project manager’s experience, 4. Team work culture.

Distance. The geographical, temporal and socio-cultural distances caused by project
stakeholder distribution in a particular GSD project will also be recorded.

1. Geographical distance: This distance is considered as a directional measure of
the effort required for one actor to visit another, at the latter’s home site [6].

2. Temporal distance: This is a directional measure of the dislocation in time ex-
perienced by two actors wishing to interact [12].

3. Socio-cultural distance: Any differences in organizational culture, national cul-
ture and language, politics, individual motivation, and work ethics, etc [3].

Technology. Technology required for developing the project also needs to be consid-
ered, e.g. graphical packages, specific programming languages etc.

Past Agile Experience. A project experience repository can provide lessons learned and
effectiveness ratings for agile approaches used in the past, as well as appropriate tools
and agility supporting distributed practices. At the start of a project, a GSD project team
with extensive prior project experience will have effective agility coping strategies [13].
Previous agile experience can also help to decide on the extent of agility, and need for
1) formal communication, 2) training, or 3) extensive documentation [20].

Agility Assessment. Agility assessment is an evaluation of a particular project’s de-
gree of agility based on several parameters. The project manager should make an
assessment of a project’s need for agility and the organization’s capabilities before
deciding to use an agile approach for the project [10]. Conboy and Fitzgerald [10] note
that an appropriate agile approach should be selected based on the project’s contextual
factors. Boehm and Turner’s [30] risk based model provides a good example of the
assessment of a project’s degree of agility; it determines required agility by analyzing a
project’s environmental risks, agile risk and plan-driven risk. We believe that a GSD
project manager can estimate the extent of a project’s possible agility by analyzing
both project contextual factors and past agile project experiences.

132 E. Hossain, M.A. Babar, and J. Verner

Agility Supporting Strategies. Based on an initial assessment of the extent of agility,
a GSD project manager needs to apply agility supporting strategies in an effective
way. In any development environment, the core of an agile approach is based on a
gradual evolution of effective processes, infrastructure, teams, plans, and policies
[11]. For the effective use of agile strategies a GSD project manager should ensure
appropriate plans are developed, effective teams formed, and provide the necessary
infrastructure, ensure appropriate policies and follow defined processes.

Plan. A GSD project manager should develop plans that will initially describe how the
project will be carried out. For example: a project manager can plan to distribute the
project work based on the nature of the work (for example, highly volatile work should
be co-located), form a team close to the business, provide agile training etc. [20].

People. The success of agility in a GSD project is very dependent on its people [16].
A number of research papers mention that in considering the use of agile approaches,
a GSD project manager should decide if he can build distributed teams that include
experienced agile developers [16-18].

Infrastructure. A GSD project manager should also ensure the necessary project in-
frastructure (hardware, software, licenses, tools etc.) to support the agile practices
used in the globally distributed project is available [16, 20]. A GSD project manager
should also carefully chose appropriate software tools relevant to communication,
collaboration, project management, testing, and metrics/measurement etc.

Policy. A project manager should maintain policies to tackle any GSD project chal-
lenges that emerge. For example: a project team member training policy (technical,
domain, process etc), a documentation maintenance policy or policies for using vari-
ous agility supporting distributed practices (e.g. cultural liaisons) [15-19].

Process. Balancing agility within defined processes is one of the major challenges for
GSD project managers [6]. A GSD project manager should ensure sufficient proc-
esses for the effective use of the agile approaches, and should also choose suitable
agile practices for the development environment. Like many other researchers, we
believe that not all agile practices are suitable for use in globally distributed projects.
Thus, a GSD project manager should carefully choose appropriate agile practices
suitable for their development environment. Although the agile manifesto suggests
less emphasis on process and tools, we found that a GSD project manager must define
processes for the use of agile practices in a GSD environment [6].

Lessons Learned. Both the degree of success achieved, and the challenges faced in a
project, while using specific agile approaches, should be monitored and stored in a
project experience repository [20]. Practices and tools which are proven to be effec-
tive for a particular project should be recorded and managed in the process repository.

5 Research Methodology and Case Study

In this section, we report on our industry-based exploratory case study. The case study
is considered as a robust research method with a range of data collection approaches

 Towards a Framework for Using Agile Approaches in Global Software Development 133

when a holistic in-depth investigation of a social phenomenon in its real life context is
required [31]. The research question we investigate is: how can GSD project manag-
ers decide what agile strategies will be effective in a particular project environment?
To make such a decision, a project manager needs an understanding of the everyday
mechanics of team processes, project characteristics, distance and technology in-
volved in existing GSD projects and the agile practices that are used effectively in
such projects. In this research, we do not provide formal hypothesis testing or draw
any general conclusions as GSD has many forms based on project contextual factors.
We use a case study to gain greater understanding of how specific agile strategies
were used within a particular GSD project context.

Our primary data collection method was the interview, supplemented by a review
of relevant project documentation, onsite demonstrations of the software and informal
conversations. We performed two face-to-face interviews (one with a project manager
and one with an actively involved customer); each interview lasted about two hours.
We provided a brief research plan to both participants before beginning the interview
sessions. We asked our respondents about the facts of the matter as well as gaining
their opinions about events that occurred. Project artifacts, such as documentation,
were also used as an important data source. System specifications, the project plans,
testing scripts and the completed software were made available to the researchers.
Documentary information was also used to corroborate and augment evidence found
from the interviews and discussion. A qualitative content analysis technique was used
to extract the framework component data from the interviews. Qualitative data analy-
sis was done by the lead author who coded both interviews, and developed separate
codes for addressing each of the framework components. In doing the data analysis,
our aim was to identify, describe and make sense of how the chosen strategies were
used to make a GSD project agile. To improve the quality of our interpretation, we
reported our initial findings back to both interviewees who provided us with valuable
feedback that rectified omissions and misunderstandings.

5.1 Case Description

AusBest is an Australian based software development company that develops a range
of software products. For some time the company has had developers in Australia and
Malaysia. We call the project we investigated the “AGI project”; it is a service-based
commercial software product developed by a team distributed in Australia and Malay-
sia. In a later section, we discuss our case in detail while describing elements of our
framework. We discuss our various case study findings, in particular how our case
GSD project’s agile strategies differ from our proposed conceptual framework. This
helps us to understand how a real life GSD project manager did or did not use agile
strategies effectively.

Agility Drivers. AusBest’s senior manager decided to go with an agile approach in
order to minimize project cost. He felt that this would enable his company to release
the product within the set time limits, to use their distributed resource pool effectively
and help with cost reduction. Thus we can argue that as cost is a component of com-
petition and that “Competition” was the key driver for the AGI project in its use of
agile strategies.

134 E. Hossain, M.A. Babar, and J. Verner

Contextual Factors. Project contextual factors were as follows.

Software classification. The “AGI project” software is a graphical software engineer-
ing tool developed for commercial use for external customers.

Project specific factors. Key project specific factors are as follows.

1. Contract nature: The developer’s contract specified that the project would be de-
veloped within a fixed price and schedule.

2. Project Domain: The project is a web based graphical service application.
3. Requirements change: There were a number of initial requirements changes but

after that the requirements were stable and clear to the development team.
4. Staff months: In terms of effort the AGI project required approximately 20 person

months and was developed over six months.
5. Budget: The project budget was slightly more than one hundred thousand Austra-

lian dollars.
6. Complexity: Although the project was small in size it was a complex graphical

application; this increased the development complexity.
7. Criticality: The software was critical to setting up a new business venture.

Team characteristics. The characteristics of the project teams included:

1. Number of distributed teams: There were two development teams, distributed in
Australia and Malaysia. The customer team was based in Australia.

2. Team size: The project manager was based in Sydney; the Sydney part of the team
consisted of the project manager, two full time developers and one part time test
engineer. The time involvement of Malaysian developers varied. They were
mostly involved in back end development work, and had around 25 developers
with one local development lead. The project work was assigned based on skills
and availability as the Malaysian developers were involved in several other pro-
jects at the same time.

3. Overall team experience: Both Australian and Malaysian team members had pre-
viously worked on several distributed projects and had also participated in agile
projects in the past. However, no team members had any prior experience of using
agile practices in distributed projects.

4. Project manager experience: Although the project manager was experienced in
project management he had no prior experience using agile approaches in a dis-
tributed project.

5. Team culture: The working culture of both sites tended toward informal. Later on
the project manager tried to impose more explicit processes to provide better pro-
ject visibility to the teams.

Distance. The project involved low geographical and temporal distance but had sig-
nificant socio-cultural distances.

1. Geographical distance: The development team was distributed between Malaysia
and Australia. Malaysia and Australia are relatively closely located and there are
convenient air links and regular flights between the two countries.

 Towards a Framework for Using Agile Approaches in Global Software Development 135

2. Temporal distance: There was a two hours time difference (three hours in sum-
mer) between Sydney and Malaysia; hence we can argue that the project had a low
temporal distance.

3. Socio-cultural: we used Hofstede’s study [32] to measure the cultural differences
between the Malaysian and Australian team. Hofstede’s study use five cultural
dimension (Power distance, Individualism, Masculinity, Uncertainty Avoidance,
Long term orientation) to describe national cultural differences between two coun-
tries. From that study’s indexes, we found there were significant differences in the
cultural dimensions, power distance, individualism and moderate differences in
masculinity, and uncertainty avoidance. Thus based on Hofstede’s study [32], we
can claim that there were significant socio-cultural distances between the Malay-
sian and Australian team members.

Technological. A variety of programming languages, methods and tools were used to
develop the complex graphical software engineering tool. Initially, the development
team members had a low level of expertise with the technologies used for the project.
The Sydney team members received training in the use of the new programming lan-
guages and tools.

Past Agile Experience. The project manager claimed that AusBest had considerable
previous agile project experience although applying agile practices in distributed pro-
jects was new for this company. The company’s previous agile project success en-
couraged them to use some agile practices in this distributed project.

Agility Assessment. The project manager did not follow any particular model or
method when assessing the possible degree of project agility during the initial stage of
the development; this was due to the lack of agile experience of the project manager
in distributed projects.

Agility Supporting Strategies. Although the project manager used a number of agile
supporting strategies, we believe that the lack of defined project processes, plans and
policies made project success difficult. The project manager had a number of difficul-
ties because some processes were ignored.

Plan: Poor project planning was identified as a major challenge and this caused a
number of difficulties. The project manager eventually developed a concrete plan for
the project which was agreed with the customers. For example: minimizing task in-
terdependence was an important focus in that plan.

People. The people were an important driver in this project’s success. Although the
project suffered from staff turnover the project manager utilized the company’s large
offshore resource pool effectively (a large part of the team was in off shore). The pro-
ject manager moved as much work as he could to Malaysia which had a number of
talented programmers and a team lead who was very committed to the project; the
leader of the Malaysian team played a key role in making the project a success.

Infrastructure. The project manager ensured sufficient infrastructure was available to
support the agile approaches used in the project. He also ensured that a number of
tools were available to the teams including communication tools such as: telephone,

136 E. Hossain, M.A. Babar, and J. Verner

VOIP (Skype), email, teleconferencing, video conferencing, IM. The project manager
used a wiki as a collaborative tool, and a tool called “Jira” as an issue tracker, bug
tracker and project management tool. For testing purposes, automated testing tools
(e.g. continuous integration tools) were also used.

Policies. The project manager maintained different policies for different agile strate-
gies. For example, a training policy for the Sydney based front-end developers. There
were also a number of policies for using agility supporting distributed practices, for
example, policies for maintaining “just enough documentation” in order to minimize
project misunderstanding and miscommunication. He frequently used the practice
“visits” for both development teams, and spent every second month in Malaysia. The
project manager also used other supporting practices such as multiple communication
modes (e.g., sufficient communication and collaborative tools), and synchronized
work hours to increase communication and reduce misunderstandings among distrib-
uted team members.

Process. Project management suffered due to a lack of defined processes; the project
manager appeared to have no control over the project at some stages. Later, to take
control, and to make project management visible to project stakeholders, the project
manager set up some standard work processes and took greater ownership with more
direct supervision. The project manager claimed that he used a number of agile prac-
tices including daily Scrum meetings, Scrum planning meetings, Scrum review meet-
ings, Retrospectives, continuous code integration, and test driven development within
their normal defined development process.

Lessons learned. Although the project manager did not maintain a formal project
experience repository, he documented what practices were effective and any problems
incurred while using the agile practices. He also documented effective agility support-
ing distributed practices and tools used in the project.

5.2 Discussion

The project was completed within time and budget and was considered a success by
the customers and vendors. Both the customer and project manager were happy with
the product developed. However, our framework-based analysis aids us in exploring a
number of issues in relation to the use of agile strategies in this project. We found that
this agile project contract was fixed price although this type of contract has not previ-
ously proven effective in an outsourcing environment [34]. The project manager also
did not use some agile practices effectively and did not properly consider the possible
extent of agility for the project during the initial stages of development. We believe
that this was due to the project manager’s inexperience in using agile methods in a
distributed environment. Plans and policies were also lacking for the effective use of
the agile strategies chosen. The customer maintained continuous pressure on the pro-
ject manager to properly define project processes and to use the agile practices in a
planned way. The customer actively participated in the project and had a very good
relationship with both the project manager and AusBest’s senior management. The
project contract specified that payment was to be made incrementally, and when the
customer was unsatisfied with the release, payments were not made. This meant that

 Towards a Framework for Using Agile Approaches in Global Software Development 137

senior management investigated what was going on, and this was one reason for im-
provement in the processes and for a successful project outcome.

Although the agile manifesto opposes a focus on processes and tools, these are
very important when using agile practices in distributed projects. Although poor pro-
ject management and staff turnover are common risks for any software development
project, our study reveals they are more challenging when using agile approaches in a
distributed project. Experienced agile developers are also a key requirement for the
successful use of agile approaches in distributed projects; our GSD project suffered
substantially when experienced agile developers left the project.

Improper use of agile practices creates problems. The project manager did not use
some agile practices effectively. The customer (who had extensive software develop-
ment experience and actively participated in the project development) commented
that some of the practices, including daily standup meetings, Scrum planning, and
Test Driven Development (TDD) were not used properly. For example, one of the
customers commented that the development team released code (working software)
too frequently (almost every day!) with a large number of errors. This made it very
difficult for the customer to perform acceptance testing. The customer complained
that the testing took an unreasonable amount of time, and that the releases should be
fewer, of higher quality, and with previously identified problems and bugs fixed be-
fore the next release. This led to a number of confrontational phone calls and visits to
the vendor by the customer although later the project manager was more careful with
the releases. This case study reinforces the importance of using teams of skilled de-
velopers for the effective use of agile approaches. Lack of developer language exper-
tise can also impact on the effective use agile practices.

Thus, in our case study project the GSD project manager struggled with the frame-
work components, “People”, “Plan” and “Process”. The project manager did not find
any major difficulties due to socio-cultural and time zone differences. He successfully
minimized project distribution challenges by ensuring a sufficient communication
environment by providing suitable communication tools and supporting practices, for
example, synchronized work hours, and frequent visits. The work culture of the Ma-
laysian site also made it relatively easy for the project manager, as the Malaysians
frequently started their work early to increase the number of overlapping hours with
Sydney team. The GSD project manager helped to build trust by establishing a feeling
of “teamness”, and increased project visibility, and reduced misunderstandings and
misinterpretations by using agile practices and appropriate supporting practices.

The project manager was also happy with the tools used in the project. The com-
munication tools: telephone, VOIP (Skype), email, teleconferencing, video conferenc-
ing, and Instant Messaging (IM) were found effective. The wiki used by the project
was also found effective for collaboration. The project manager effectively used an
integrated testing tool and was happy with the tool “Jira” which was used as an issue
tracker, bug tracker and also to support project management.

5.3 Case Study Limitations

The design of this case study is based upon the four criteria for judging the quality of
research design recommended by Yin [31]. Construct validity, which is involved with

138 E. Hossain, M.A. Babar, and J. Verner

establishing correct operational measures for the concepts being studied was not a
limitation in our study. We developed a sufficient operational set of measures for col-
lecting data. As our case study is exploratory in nature, not explanatory or causal, we
need not consider internal validity. Our study is also not concerned with external va-
lidity as our study findings are not generalized to other GSD projects. Our single case
study initiated an exploration of the use of various agile strategies in a GSD project.
In this case study, we must consider reliability; data was collected based on a frame-
work developed from the literature. However we cannot exclude bias on the part of
our interviewees who reported what they thought happened. However, we did use
multiple sources of evidence (documentation, discussion, interaction etc) to help us
ensure sufficient reliability.

6 Conclusions and Future Research

There is an increasing interest in using agile approaches for GSD projects. GSD takes
many forms, based on project contextual factors but process issues around using agile
approaches in GSD are not clearly understood. GSD practitioners need further research
to help them understand what agile strategies are likely to be effective for a particular
type of project. We propose a conceptual framework based on existing GSD literature
that describes the effective use of various agile strategies. Our goal is to introduce the
different elements of our framework and to provide an initial test of its effectiveness
with an industry-based case study. Various issues were identified, including the project
manager’s lack of experience, and failure to provide suitable processes, plans and poli-
cies. Such processes, plans and policies would help a GSD project manager to under-
stand how to achieve effective agility in a development environment. Our case study
reveals that the project manager did not assess project contextual factors for an appro-
priate degree of agility prior to starting this project.

A GSD project manager can reduce some project stakeholder distribution chal-
lenges by using appropriate agile practices; for example: we agree with the project
manager’s claim that distributed Scrum meetings, using video conferencing, reduces
GSD project communication and coordination overhead. On the other hand, our case
study has identified elements missing from our proposed conceptual framework as we
did not initially include some important project contextual factors, such as staff turn-
over, contract type, customer-project management/management relationship, technol-
ogy expertise, nature of the day to day work, and documentation practices.

In future, we will conduct a series of case studies to aid us in better understanding
the use of agile strategies in GSD projects. This will include appropriate agile prac-
tices, agility supporting distributed practices and tools within a defined GSD project
context. Thus, our research will contribute to answering a current GSD research ques-
tion: What agile strategies are effective and when?

Acknowledgments. M. Ali Babar’s research is partially supported by Science foun-
dation Ireland under grant number 03/CE2/I303-1.

 Towards a Framework for Using Agile Approaches in Global Software Development 139

References

1. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Communications of the ACM 49, 41–46 (2006)

2. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods
- Review and analysis. VTT Electronics (ed.). VTT Publications (2002)

3. Conchuir, E.O., Holmstrom, H., Agerfalk, P.J., Fitzgerald, B.: Exploring the Assumed
Benefits of Global Software Development. In: Proceedings of the Conference on ICGSE
2006, pp. 159–168. IEEE Press, New York (2006)

4. Nisar, M.F., Hameed, T.: Agile methods handling offshore software development issues.
In: Proceedings of the conference on INMIC 2004, pp. 417–422 (2004)

5. Taylor, P.S., Greer, D., Sage, P., Coleman, G., McDaid, K., Keenan, F.: Do agile GSD ex-
perience reports help the practitioner? In: Proceedings of the Conference on GSD 2006,
pp. 87–93 (2006)

6. Agerfalk, P., Fitzgerald, B.: Flexible and Distributed software processes: Old Petunias in
new bowls? Communications of the ACM 49, 41–46 (2006)

7. Williams, L., Kerbs, W., Layman, L., Anton, A.I., Abrahamsson, P.: Toward a Framework
for Evaluating Extreme Programming. In: Proceeding of the Conference on EASE 2004,
pp. 11–20 (2004)

8. Manifesto for Agile Software Development, http://www.agilemanifesto.org
9. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed Agile Development: Using

Scrum in a Large Project. In: Proceedings of the Conference on ICGSE 2008, pp. 87–95
(2008)

10. Conboy, K., Fitzgerald, B.: Toward a Conceptual Framework for Agile Methods. In: Zan-
nier, C., Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe 2004. LNCS, vol. 3134,
pp. 105–116. Springer, Heidelberg (2004)

11. Qumer, A., Hendersom-Sellers, B.: An evaluation of the degree of agility in six agile
methods and its applicability for method engineering. Information and Software Technol-
ogy 50, 280–295 (2008)

12. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile Practices Reduce Dis-
tance in Global Software Development. In: Information Systems Management, pp. 7–26
(summer 2006)

13. Lee, G., Delone, W., Espinosa, J.A.: Ambidextrous coping strategies in globally distrib-
uted software development projects. Communications of the ACM 49, 41–46 (2006)

14. Herbsleb, J.D.: Global Software Engineering: The Future of Socio- technical Coordination.
In: Proceeding of the Conference on Future of Software Engineering, FOSE, pp. 188–298
(2007)

15. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed Scrum: Agile Project
management with Outsourced Development Teams. In: Proceedings of the Conference on
HICSS’40 (2007)

16. Sutherland, J., Schoonheim, G., Rustenburg, E., Rijk, M.: Fully distributed Scrum: The se-
cret sauce for Hyperproductive Outsourced Development Teams. In: Proceedings of the
Conference on Agile 2008, pp. 339–343 (2008)

17. Berczuk, S.: Back to Basics: The Role of agile Principles in Success with a Distributed
Scrum Team. In: Proceedings of the Conference on Agile 2007, pp. 382–388 (2007)

18. Hogan, B.: Lessons Learned from an eXtremely Distributed project. In: Proceedings of the
conference on Agile 2006, pp. 321–326 (2006)

19. Yap, M.: Follow the Sun: Distributed Extreme Programming Development. In: Proceed-
ings of the Conference on ADC 2005, pp. 218–224 (2005)

140 E. Hossain, M.A. Babar, and J. Verner

20. Sureshchandra, K., Shrinivasavadhani, J.: Adopting Agile in Distributed Development.
In: Proceedings of the Conference on ICGSE 2008, pp. 217–221 (2008)

21. Farmer, M.: DecisionSpace Infrastructure: Agile Development in a Large, distributed
team. In: Proceedings of the Conference on Agile Development Conference (ADC 2004),
pp. 95–99 (2004)

22. Sison, R., Yang, T.: Use of Agile Methods and Practices in the Philippines. In: Proceed-
ings of the Conference on 14th APSEC 2007, pp. 462–469 (2007)

23. Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, S.R.: Extreme Programming in Global Soft-
ware Development. In: Proceedings of the Conference on CCECE - CCGEI 2004,
pp. 1845–1848 (2004)

24. Smits, H.: Implementing Scrum in a Distributed Software Development Organization.
In: Proceedings of the Conference on Agile 2007, pp. 371–375 (2007)

25. Urdangarin, R., Fernades, P., Avirtzer, A., Paulish, D.: Experiences with Agile Practices in
the global studio project. In: Proceedings of the Conference on ICGSE 2008, pp. 77–86
(2008)

26. Paasivaara, M., Lassenius, C.: Could Global Software Development Benefit from Agile
Method? In: Proceedings of the Conference on ICGSE 2006, pp. 109–113 (2006)

27. Cottmeyer, M.: The Good and Bad of Agile Offshore Development. In: Proceedings of the
Conference on Agile 2008, pp. 362–367 (2008)

28. Simon, M.: Internationally Agile. In: Inform IT 2002 (2002),
 http://www.informit.com/articles/article.aspx?p=25929

29. Jones, C.: Software Assessments Benchmarks and Best Practices. Addison Wesley, Boston
(2000)

30. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Ad-
dison Wesley, Boston (2003)

31. Yin, R.K.: Case Study Research. Sage publications, Thousand Oaks (1994)
32. Geert HofstedeTM Cultural Dimensions, http://www.geert-hofstede.com/
33. Sharifi, H., Zhang, Z.: A methodology for achieving agility in manufacturing organiza-

tions: An introduction. Production Economics 62, 7–22 (1999)
34. Martin, A., Biddle, R., Noble, J.: When XP met outsourcing. In: Eckstein, J., Baumeister,

H. (eds.) XP 2004. LNCS, vol. 3092, pp. 51–59. Springer, Heidelberg (2004)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 141–155, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Value Creation by Agile Projects: Methodology or
Mystery?

Zornitza Racheva, Maya Daneva, and Klaas Sikkel

University of Twente, Drienerlolaan 5, Enschede 7500,
The Netherlands

{z.racheva,m.daneva,k.sikkel}@utwente.nl

Abstract. Business value is a key concept in agile software development ap-
proaches. This paper presents results of a systematic review of literature on how
business value is created by agile projects. We found that with very few excep-
tions, most published studies take the concept of business value for granted and
do not state what it means in general as well as in the specific study context. We
could find no study which clearly indicates how exactly individual agile prac-
tices or groups of those create value and keep accumulating it over time. The
key implication for research is that we have an incentive to pursue the study of
value creation in agile project by deploying empirical research methods.

Keywords: business value, agile development, systematic review.

1 Introduction

In many organizations today, the IT departments undergo a cultural change through
which the once-dominating cost-centric view of IT is being replaced by a value-
centric view. For companies, to be able to support this transition in culture, they need
to provide senior management with an explicit means to show the link between the IT
solutions being adopted and the benefits resulting from them. This is particularly
necessary in the context of agile software development, as new agile methodologies
are being adopted and need to prove their merits. A key characteristic of any agile
approach is its explicit focus on business value [1]. Essentially, in agile software pro-
ject, the development process is a value creation process. Indeed, the agile community
established a common understanding [2] that (i) the main purpose of an agile project
is to deliver maximum business value for the client and that (ii) agile approaches
deliver business value fast and early in the project.

In this paper, we take a closer look into the ways in which agile software practices
create value in agile projects. We have set out to answer three research questions
(RQ): RQ1: What concepts of business value are used in agile context? RQ2: In
which way do agile projects create business value? RQ3: In which way do specific or
individual practices influence the creation of business value? We consider RQ3 to
represent a more concrete look into the process of creation of value and, thus, can be
considered as a refinement of RQ2. In the course of our research action, however, it
turned out that we could not answer RQ3. In spite of our efforts, based on the results

142 Z. Racheva, M. Daneva, and K. Sikkel

of the study we could not provide a complete answer to that question. The fact that we
could not find enough evidence is in itself surprising, and is one of the results of the
study. Nevertheless, as we have no enough evidence, in the course of the paper we
will not discuss further this question.

To answer our research questions, we have performed a systematic review [3] of
literature. In the next section, we provide background on agile software development
and business value as its central theme, and on our motivation for caring out this re-
search. Section 3 describes the details of our systematic review (SR) process and
Section 4 presents the results. Section 5 assesses our answers to the research questions
and discusses implications for researchers. Section 6 analyses the possible validity
threats, in section 7 we compare our results to previous studies, and Section 8 con-
cludes the paper.

2 Background and Motivation

2.1 Agile Software Development

This section is an introduction for readers who are less familiar with agile software
project contexts and agile software development and management approaches.

Agile approaches to software project delivery and to software product development
can be considered a paradigm, a project management philosophy, a culture, an attitude,
and a state of mind. All these rest on the ‘minimalist’ principle of organizing work in
the software development process, meaning a conscious choice in carrying out those
tasks which directly create value for clients and leaving out anything that is deemed
“waste” [4]. The latter refers to all work and work products not directly contributing to
the development of the desired software, for example spending time on implementing
features that are not specified by any user story or on producing an artifact not explic-
itly asked by the clients.The ‘minimalist’ principle is fundamental to the ability of the
agile approaches to cope with project uncertainties. In that sense, this principle can be
seen as a reaction to the ‘plan-based’ paradigm which assumes that problems are fully
specifiable and that predictable solutions exist for every problem [4]. Agile ap-
proaches, such as Extreme Programming (XP), SCRUM or CRYSTAL, for example
advocate requirements engineering (RE) through the software product development
cycle in small and informal stages. That is, instead of engineering the requirements
upfront, one lets requirements emerge during development. Agile software process
practitioners deem this approach particularly valuable for software producers in a con-
text that includes highly uncertain requirements, experimentation with new develop-
ment technology, and clients willing to explore the ways in which an evolving product
can help their business goals. If we compare agile RE and ‘plan-based RE’, one could
notice two important differences [1]: (i) (re)prioritization happens at inter-iteration
time, which means that the project team anticipates and plans as many reprioritization
sessions as the number of project iterations, and (ii) (re)prioritization is based mostly
on business value, that is, the highest priority features get implemented early so that
most business value gets realized.

 Value Creation by Agile Projects: Methodology or Mystery? 143

All agile software approaches share the same ‘minimalist’ principle, but, despite
that, not all of them are directly comparable in terms of scope and content. For exam-
ple, an important distinction exists between agile software development (ASD) and
agile project management (APM) approaches. While the first class of approaches are
defined as “evolutionary approaches which are collaborative and self-organizing in
nature, producing high-quality systems that meets the changing needs of stakeholders
in a cost effective and timely manner” [1], the APM approaches are defined as “the
work of energizing, empowering and enabling project teams to rapidly and reliably
deliver customer value by engaging customer and continuously learning and adapting
to their changing needs and environments”. We make the note, however, that in this
paper we treat ASD and APM practices in the same way. That is, when we use the
term ‘agile practice’ we mean a practice which can be part of either software develop-
ment or project management. In the next sub-section, we narrow down the discussion
to the concept of business value as business value is what motivates the adoption of
agile practices in the first place.

2.2 Related Work

Systematic reviews of empirical studies of ASD and APM practice have been con-
tributed by a few authors [1,4,5]. However, the research questions asked in these
studies are different from ours. The first review [5] dates from 2002 and answers the
question “What makes a development method an agile one?” This SR synthesizes
existing literature to characterize the state-of-the-art practice and compare agile meth-
ods by pinpointing out their similarities and differences. Furthermore, a comparative
analysis of nine agile methods was published in a report in 2002 [1]. We make the
note that these two publications [1,5] found scarce empirical support to exist for the
nine reviewed methods.

The second SR [4] dates from 2008 and its objective is to answer the questions of
“What’s currently known about the benefits and limitations of ASD?” and ”What is
the strength of the evidence in support of these findings?” These authors also investi-
gated what the implication of ASD studies are for the software practitioners and soft-
ware engineering researchers. This SR identified four categories of ASD publications:
(i) those pertaining to ADS adoption, (ii) to human and social factors, (iii) to customer
and developers perceptions and (iv) comparative studies of ASD processes and alter-
native ones. With respect to each category, the SR [4] indicated a number of reported
benefits and limitations of agile development. A key finding of this SR was that “the
strength of evidence is very low, which makes it difficult to offer a specific advice to
industry and that the research community “needs to increase both the number and the
quality of studies on ASD”.

Clearly, the research questions of our SR were not the objectives of the previously
published reviews. In this sense, the present study complements the existing research
by other SR authors. In Section 8, we will compare our findings with those previously
published and we will see points of convergence and divergence between us and other
SR authors.

144 Z. Racheva, M. Daneva, and K. Sikkel

2.3 The Concept of Business Value

The term BV is being used in management and financial economics as an informal
term that includes all forms of value that determine the health and well-being of the
firm in the long-run In the context of agile development the term Business Value
appears in the majority of publications at agile software development conferences (for
example, the annual AGILE conference series, e.g. www.agile2008.org). Typically, it
is used in phrases like ‘companies should focus on delivering business value’, or
‘agile methods help deliver business value’.

That this term is central to the agile community is not surprising, as one could see
from Section 2.1. What we found surprising, however, is that while studying the agile
software development literature for more than a year, we consistently made two con-
tradicting observations with respect to the concept of business value. On one side,
practitioners are occupied with how to measure the creation of business value through
the software development process by translating anything valuable into dollar value.
On the other side, intuition suggests that in agile projects it makes sense to interpret
business value as a multi-dimensional concept, just as it is in studies on business
value of IT in general.

These observations motivated us to look deeper and in a more structured way at ag-
ile literature and get to know what is the understanding of business value that is par-
ticular to the agile context and in which particular ways agile practices contribute to
the value creation process. Our goal is to uncover such knowledge, to identify the
different viewpoints presented in current agile software engineering literature and to
derive conceptual categories which are significant in developing a deeper understand-
ing of the phenomenon of creating business value in agile software projects. In this
paper, we talk about the term BV in general and as understood in the agile commu-
nity. As seen from the definition used in the economic sciences, it is not a well de-
fined concept. Still, if our purpose is to uncover how an ASM or an APM method
increases (or influences) it, we need an operationalizable definition of this concept. In
this sense our study can be considered as a firs step in this direction.

3 The Research Method

As per SR guidelines [3], we used the RQs for determining the content and structure
of the SR, for designing strategies for locating and selecting primary studies, for criti-
cally evaluating the studies, and for analyzing their results. We implemented the fol-
lowing SR process:

We used the following search strings: (1) business value AND iterative develop-
ment, (2) business value AND agile projects, (3) business value AND scrum, (4)
business value AND XP. These search strings are the result of a learning process, that
is, we experimented with a variety of combinations of these words in order to test
synonyms used in literature and to cover the variety of agile software development
and agile project management concepts. We want to underline that we performed
searches with alternative strings: feature driven development AND business value;
crystal clear AND business value; agile development AND benefits; lean develop-
ment AND business value. They didn’t return any papers. We considered it important
to proceed like this because no standardized, consistent terminology exists with re-
spect to the topic of our study.

 Value Creation by Agile Projects: Methodology or Mystery? 145

We used the Boolean “OR” operator to concatenate the four search terms: 1 OR 2
OR 3 OR 4. Our search strategy included six electronic databases, namely (i) ACM
Digital Library, (ii) IEEE Xplore, (iii) ISI Web of Science, (iv) Kluwer Online
ScienceDirect – Elsevier, (v) SpringerLink, (vi) Wiley InterScience, and (vii) Scopus,
ensuring our search was applied to journals, magazines, conference/workshop pro-
ceedings published since 2000. As the topic of business value in agile software devel-
opment is closely related to the practice, we decided our search strategy to include the
Agile Journal (www.agilejournal.com) which is the most popular practitioner-centric
online publication venue of the agile community. The Agile Journal publishes
monthly issues with articles on various subjects concerning ASD and APM. We make
the note that there is an overlap between Scopus and the other databases we used in
terms of citation data [6], e.g. the sources of IEEE and Springer are included in Sco-
pus. As indicated in SR methodologists [7], the role of deploying a multiple-database-
searching strategy is twofold: (1) to ensure a coverage including additional sources
(unique coverage) and (2) to take advantage of differences in indexing across data-
bases to increase the chances of retrieving relevant items that are in both databases
(incremental retrieval).

We performed the searches between Nov 1 and Nov 28, 2008, applying the search
query individually to each electronic database. We make the note that not all data-
bases, which we used, allow for queries composed of complex Boolean expressions.
For those ones, which did not process complex queries, we run separate searches and,
then, we used the union of the results obtained. We adopted this practice because the
second author used it in her earlier SR study [8] and found it to work well. We ap-
plied the search query to the titles, abstracts, conclusions, and keywords of the articles
in the identified databases and conference proceedings. We excluded editorials, pref-
aces, summaries of articles and tutorials, workshops, panels and poster sessions. We
also did not include PhD theses and technical reports. The published sources we re-
viewed were written in English only and included both qualitative and quantitative
research, from scientists and practitioners.

We were surprised to retrieve only a small number of papers from the scientific
electronic libraries. For example, there was 1 paper from Springer, 17 from Wiley, 19
from IEEE and 67 from Scopus. In the Agile Journal, the only search string we used
was “business value”, as we assumed that the publications would be relevant to the
agile software development topic. The result was 50 articles.

After identifying the potential sources, we have screened all titles, abstracts and
conclusions to extract the ones we consider relevant to our research effort. We consider
relevant those papers in which (i) there is an explicit description of what the authors
understand under the term ‘business value’, and/or (ii) there is some indications of the
ways in which business value is created, accumulated, measured and tracked through-
out the agile project. We highlighted all phrases that contain author’s understanding of
the nature of business value. We used this information threefold: first, to catalogue
existing definitions of business value in agile, second, to compare them and identify
areas where the definitions overlap, complement each other or diverge, and third, to
build conceptual categories which could serve researchers and practitioners to clearly
see what the current literature refers to, when using the term business value. In the next
sections, we first present our results and offer a discussion on them (in Section 4). We,
then form answers to our research questions in Section 5. We chose this lay-out in

146 Z. Racheva, M. Daneva, and K. Sikkel

presenting and analyzing our findings as we believe that this helps the readers under-
stand clearer how we derived the answers to our research questions.

4 Results

Our overall observation from reviewing the papers is that most of them turned out to
be irrelevant according to our inclusion criteria described above. A large number of
materials in fact did contain the terms business value and agile, but we found that
business value itself was not elaborated in either of the two senses mentioned above.

Our SR indicates that the authors of the papers we reviewed consider business
value a self-evident concept. It seems that business value concepts reflect condensed
meanings of general terms which the authors of the papers assume everyone shares.

We found no paper that provides a rigorous definition of business value in agile
context. With exception of five papers [9,10,11,12,13] in the literature we reviewed,
the understanding of business value was either implicit, or taken for granted.

In what follows, we first discuss the definitions we catalogued from our review,
and then we compare them to distil some characteristic features of the understanding
of business value in the agile literature. Last, we present the results of our application
of a coding process on the reading materials we deemed relevant. These results are
conceptual categories which we think help understand and reason about the business
value concept in agile project context.

4.1 Definitions of Business Value

The definitions we discovered are presented below in Table 1.

Table 1. Definitions and sources

Authors Definitions
Barnett [9] “…business value, as measured in business revenue, stock price,

market share, or other business metrics. Value is in the eyes of the
customer…”

Patton [10] “Business value is something that delivers profit to the organization
paying for the software in the form of an increase in revenue, an
avoidance of costs, or an improvement in service”.

Pettit [11] “Business value is a communication vehicle: we use business value to
communicate value, priorities, motivation””.

Rawsthorne [12] “Business value is what management is willing to pay for;
value can only be defined by the ultimate customer. And it's only
meaningful when expressed in terms of a specific product (a good or a
service, and often both at once), which meets the customer's needs at a
specific price at a specific time”.

Poole [14] “Might not be possible to define the business value of IT
independently of other activities. What is business value:

Business value = F(x) + F(y) + F(z) +
That is, a complex function where we must balance multiple things
...while they are changing!”

 Value Creation by Agile Projects: Methodology or Mystery? 147

An interesting observation is that all of them are from practitioners’ articles. We
explain this with the facts that (i) we could not find scientific publications, particu-
larly dedicated to explaining the notion of value in agile context, and (ii) we believe
that the authors assume that the concept of business value is self-evident because it is
extensively studied in economic sciences. (For more information on the topic of busi-
ness value of IT, we refer interested readers to the reference [15]).

For the sake of completeness, we also mention published works of other authors
who discuss ways of realizing value [16,17, 18]. We note that these works, however,
don’t provide any definition of value, which is the reason to leave them out of this
study.

In addition to the above definitions, we identified seven other publications
[13,19,20,21,22,23,24] which discuss the topic of business value without using ex-
plicitly the term “business value” itself but terms synonymous to it. We list these six
for the sake of completeness:

(i) three papers [19,20,24] use the concept Earned Value in agile settings. All
three base this concept on the earned value measure used in economic sci-
ences, in order to track progress or velocity of an agile project. According to
[19,20,24], Earned Value is a project management technique to measure, at a
specific date, the progress and performance of a project against the plan, and to
estimate future performance.

(ii) one paper [23] uses the term perceived business value. According to the au-
thors, this concept means the particular context of multiple projects and opti-
mizing value in this case.

(iii) one paper [13] proposes the concept of Earned business value (EBV). It de-
fines a measure, which can be used to track the value of the requirements being
delivered. The measure helps calculating the relative value of the work done
compared to the whole project. Agile earned business value is a ration calcu-
lated by using the formula:

 EBV = the-percent-of-value-delivered / the-percent-of-cost-consumed.

(iv) two published sources [21, 22] use the term Economic value interchangeably
with business value. The second source [22] defines the Economic Value
trough the net present value (NPV) in the formula:

 NPV = AssetValue / (1 + DiscountRate) DevTime − DevCost

We note that the term ‘Asset Value’ (meaning the dollar returns of a project) is nei-
ther defined, nor traced back to tangible project characteristics. Instead, it is taken as a
given in the calculations.

4.2 Comparison of the Concepts

Our comparison of the definitions presented in the previous section was done by ap-
plying the following steps: we first identified the original authors’ terms used in dis-
cussing business value and then, we compared them to see points of convergence and
divergence and to characterize these. This process of constant comparison is bor-
rowed from Grounded Theory research methodologists [25] who suggest it as a quali-
tative analysis technique for research settings like ours. In our comparison, we also

148 Z. Racheva, M. Daneva, and K. Sikkel

checked for each definition the context of its intended use. This analysis revealed the
following characterizing features of the business value concepts we found in existing
literature:

1. Business value in practice tends to be qualitative: Our observations from the re-
viewed sources do indicate that there are quantitative definitions of business value.
However, we found evidence suggesting that these definitions, when used in practice,
are applied at project level. We found no study suggesting that a quantitative defini-
tion of business value is used when authors attempt to see how much value is contrib-
uted by the deployment of an individual agile practice or by a group of practices. We
could also find no study which provides evidence that business value and its accumu-
lation over time has been tracked quantitatively throughout the project iterations.
Clearly, if one is to see how agile development creates business value, one needs “to
tie value back to some tangible gain for the business” [10]. For example, to “some-
thing that delivers profit to the organization paying for the software in the form of an
increase in revenue, an avoidance of costs, or an improvement in service” [10]. How-
ever, our review indicates that tying back business value to gain is problematic.

2. Business value tends to be subjective: Our observations from the literature sources
indicate hat often, the term “value” is used subjectively. Patton [10] illustrates clearly
this by his experiences witnessing agile project stakeholders expressing value in the
following ways: “I value something if it makes me feel good”, or “If I’m representing
the business, then I might view something that makes me feel good as a “business
value”.

3. The sources of business value drive requirements prioritization: Our observation is
that, more often than not, when agile projects refer to “customer”, they mean a multi-
stakeholder setting in a client organization. In such a setting, if requirements are pri-
oritized and re-prioritized from the perspective of the “customer” at inter-iteration
time, then the relative priority, which is given to each stakeholder group behind the
label “customer” is the actual driver for the prioritization process. Patton [10] illus-
trates this point drawing on the matter that “different people consider different things
valuable” and that “prioritizing work becomes a tug-of-war in those circumstances”.
(Patton [10] warns that “If we share a common idea of what’s valuable, then we
needn’t pull in opposite directions.”

4. Business value of the IT solution requires a degree of trust: There is a limit to the
confidence we can place in business value numbers. This means that business value is
not an absolute “dollar value” [11]

5. The business value an IT solution tends to be dependent on non-IT business proc-
esses. Our observations from the reviewed publications suggest that business value
might well be related to other aspects and processes of the business. Poole [14] even
warns that it might not be possible to define the business value of IT independently of
other activities.

4.3 Perspectives to Consider When Thinking of Business Value

We identified that the understanding of business value is traced back to the perspec-
tives of the two key groups of participants in the agile project and, in turn, their roles.

 Value Creation by Agile Projects: Methodology or Mystery? 149

Throughout our SR, two main groups of papers emerged: (i) those dealing with crea-
tion of business value for the client organization and (ii) those discussing how a devel-
opment organization can manage a portfolio of multiple and concurrent agile projects
being done for one or more client organizations [13]. The two groups of papers clearly
indicated that each perspective represented a unique understanding of what is of value
and how to achieve maximum value.

From the client’s perspective, the value is defined by the clients themselves. In-
deed, most of the literature sources we studied relate to business value as understood
from the client’s perspective.

Furthermore, from the perspective of an agile software development organization,
the management defines the relative business value of each project in the portfolio of
projects, which the organization is engaged in, as a software supplier. The manage-
ment team typically uses projects’ business value in the process of performing trade-
off analysis and balance between resource demands coming from different projects.
We make the note that in addition to the above, in case of a development team in a
client-supplier contractual relationship, the value for the team is to satisfy the client’s
needs, so that the client will eventually come back the next time, which has a direct
impact on the revenue of the developer [26]. This is different in the case of an IT-
department within a company, where the IT-team has (i) to make business manage-
ment happy, (ii) to help increase overall profit of the organization, and (iii) to balance
between new development and other IT operations and maintenance tasks.

We make the note that we have consciously excluded the role of the end user. This
is because, in the literature sources we reviewed, we could not find any evidence
suggesting a linkage between the end user and the decisions influencing business
value in agile projects. We believe that this is so because authors silently assume that
the “customer” will take into consideration what is valuable for the end users in the
client organization. Still, we think that this question is worth to be explored in detail
in a future work, as it is very relevant for the value perspective.

4.4 Conceptual Categories Helping Understand Business Value

Our process of making analytic sense of the reading materials by means of coding and
constant comparison brought us to five conceptual categories which we deem signifi-
cant in understanding business value and its creation in agile projects. A conceptual
category explicates ideas, event, or processes in our observations, which we collected
while running the SR. We call these categories ‘significant’ because we believe we
can use them to make an interpretative rendering that illuminates the studied phe-
nomenon, namely business value creation in agile projects. We think that other re-
searchers can use these categories to define what is happening in the project and begin
to grapple with what it means. The categories we discerned are these:

1. Vision. Multiple indications [9,19,21,27] from literature suggest the creation of
business value should be driven by the vision of the organization.

2. Business goals. Approximately half of the papers suggest that business value
must be established from business deliverables often requiring input from a
range of stakeholders[27, 26].

3. Product goals. The majority of the agile practitioners relate business value to
software product goals. For example, [20, 27] cite experiences in which product

150 Z. Racheva, M. Daneva, and K. Sikkel

goals were re-defined after the effect of the IT solution is known. Re-definition
of business objectives after change in the project context is also possible [27].
The authors mean, for example, change in the business environment, lows,
competition. Each of these events might trigger a change in the business goals
and consequently – in the defined objectives for the software.

4. Product features. Practitioners indicate that it would be of benefit if there is a
way to quantitatively assess the business value of each feature of the software
product. As Poole says [14], only by assigning business value, in hard currency,
to each IT deliverable and even every feature of a deliverable, can business
truly manage the relationship with IT effectively. More than ¾ of the publica-
tions are concerned with the question how to measure the part of the whole
business value (at project level) which is included (encapsulated) in each fea-
ture. For example, [13] assigns to the whole set of features the value of 100%,
and each separate feature is treated as a fragment of the whole functionality
and, in turn, is measured in its relation to the whole. However, we found no
study that describes a project in which this was done.

5. Agile practices. There seems to be a common agreement in the literature that
some practices help more the process of creating value than others [21,28].
Gurses [28] highlights the importance of knowing the value that the particular
agile practices create. However, we found no study which suggests how exactly
certain groups of practices add more value and even what “more value” means
in agile context.

To check whether we have grasped what is significant, we attempted to use these
categories on examples of real-life projects described by practitioners in the agile
literature. For the purpose of illustration, in this section we refer to the experiences
reported by Yahoo’s Advanced Products team [27]. At Yahoo!, this team develops
innovative product ideas before formally launching them into the Yahoo! Network.
The reported experiences [27] in using ASD and APM approaches date from 2006
and are about Mixd (http://mixd.yahoo.com), a group mobile messaging and media
sharing tool for people who want to organize and remember gettogethers. This t was,
built and launched by Yáhoo’s Advanced Products team in a nine month timeframe.
In what follows we show how the conceptual categories, described earlier in this
section, can be used to makes sense of the business value creation in Yahoo’s case.

As per Yahoo’s 2007 annual report1, Yahoo’s purpose is formulated as “powering
its communities of users, advertisers, publishers, and developers to create indispensa-
ble experience, built on trust”. The vision of the company is to have these communi-
ties provided with internet services that are essential and relevant. In line of their
vision, Yahoo set the business goal of the Mixd project ”to get to the target youth
market as quickly as possible, while still providing a compelling user experience, and
iterate on the product quickly”. The product goal was “to help communities of 18-25
year olds connect both online and offline, share ideas and information, and socialize
with each other using their personal cell phones”. Yahoo refers to the product goal as
to ‘core goals’. At the start of the agile process, as per the Yahoo’s Mixd experience
report [27], this goal was reformulated in a specific client-centric way as follows: “it’s
5pm on a Friday night and I want to hang out with my friends. What do I do?”. This

1 The report is publicly available in pdf-format at Yahoo’s web site.

 Value Creation by Agile Projects: Methodology or Mystery? 151

was to reflect the Yahoo Advanced Team’s assumptions that framed their actions at
the beginning of each agile process-iteration which followed. The experience report
indicates the translation of this product goal into the following key groups of product
features: to allow people (i) to create add-hoc groups, (ii) share mobile photos and
video and (iii) see it all on a website later. These product features - which support the
‘core goal’ as well, are called ‘core features’. The report does not provide details on
whether business value was quantified or not, it gives a detailed account on how the
team involved their clients into the agile development process in a way that helped
discover the ‘core features’ and ultimately develop a product with “more business
value” than it was thought possible at the formulation of the original product concept.
At the very first iteration, the Advanced Product Team started with a concept of a
product which was a web-based invitation application (for example, similar to Evite:
http://www.evite.com). Throughout the agile process and with consistently high user
involvement - by means of regular feedback at inter-iteration time, Mixd ended up as
a mobile social networking product. It was through these feedback points that Ya-
hoo’s team managed to change their course of action in a timely fashion so that it
tuned the functionality to their users’ wants and delivered in each iteration “new
chunks of functionality working without breaking what already worked”. At inter-
iteration time, the Yahoo team filtered most product decisions by using their product
goal and prioritized product features by asking if the feature was absolutely necessary
to help the user accomplish their goal of hanging out with friends. The team “brutally
cut features” which did not address the product goal. For example, one of the features
included in the initial Mixd solution proposal was a way for the Yahoo user to get
updates via email, instead of mobile phone. Yahoo’s Advanced Products team thought
“this was a terrific add-on for people who didn’t want to get updates or converse on
their mobile phone” [27]. They also found “This feature required a significant amount
of effort, but could be completed in time for our launch. We once again bought up the
core problem statement and realized that the feature diluted the key focus of the prod-
uct and that it added extra UI complexity where we didn’t need it. We cut the feature
and instead focused on strengthening the other features”.

5 Summary of Results and Implications

This study has addressed the questions of What concepts of business value are used in
agile context? (RQ1) and In which way do agile projects create business value?
(RQ2).

For RQ1, our findings are that (i) the majority of papers in agile software engineer-
ing literature do not define the concept of business value, (ii) the business value con-
cepts rest on a definition of Earned Value as used in economic sciences, and (iii)
authors rest on the premise that business value is translatable into dollar value. How-
ever, we found that this ‘translation’ is problematic.

For RQ2, we could not find sufficient evidence that allows us to formulate an an-
swer. The publications included in our review offer almost no evidence pertaining to
the specific ways in which agile practices create and keep accumulating business
value throughout the project.

152 Z. Racheva, M. Daneva, and K. Sikkel

However, the fact that RQ2 could not be answered by means of a systematic litera-
ture review is, in our view an important finding. The idea of focusing on business
value is pivotal in the agile paradigm, yet in which way this value is created seems to
evade precise description. Why? At this stage we can only speculate at this. Our intui-
tion says the fault isn’t in the agile practices, but in the very concept of business
value, which turns out to be rather more slippery and volatile than the most of the
authors of studied papers seem to assume implicitly. If business value often cannot be
given very accurately, it follows that it is hard to describe exactly how an agile project
contributes to it.

If we do want to further investigate the value of agile practices, a different type of
research is called for. The key distinguishing feature of the agile practice is re-
prioritization, based on an assessment of business value that appears to be uncertain
and changing over time. The idea that re-prioritization is driven by calculating a cost
function can be discarded as overly simplistic; it seems evident that some non-trivial
decision making is involved. The key question, then, is how this decision making
takes place. In order to gain a deeper insight in this process, we intend to empirically
investigate this in agile software projects.

6 Limitations

There are three main validity concerns pertinent to our SR: (i) our selection of publi-
cations to be included, (ii) our analysis of definitions, and (iii) potential bias by the
researchers.

The search step of our SR was executed separately by the first and the second au-
thors. The first author searched the ACM, Springer and IEEE and the second – Wiley,
Elsevier and ISI Web of Science. Each of these authors individually screened titles,
abstracts and conclusions and discarded the hits returned in the respective databases.
The authors worked in isolation from each other in two locations and met only after
this step was completed.

We make the note here that our access to ‘relevant’ sources depended on the ap-
propriateness of the search strings used. As we treated their composition as a learning
process [8], the list of search strings was adapted four times and the search was re-run
with the new terms. For some search strings, we applied synonyms like “business
impact” and “value oriented”. We also tentatively AND-combined the search strings
pair-wise and queried the databases. The resulting list of papers had reduced the num-
ber of items, which were less than 10% of the items resulting from using one search
string alone. In half of the cases with pair-wise combined strings, the resulting paper
list was empty or contained only one or two papers. This is a hint that our search
strings are only slightly redundant.

Furthermore, approximately half of the selected papers were reviewed by both re-
searchers. For these papers, we consistently observed a consensus. Whenever there
was disagreement, the points of disagreements were discussed until both researchers
arrived at a consensus.

We believe that the threat to validity due to researchers’ bias is minimal, because
no one of the authors (i) has published a study which is included in the SR or (ii) is in
a close research-collaboration relationship with the authors of included studies.

 Value Creation by Agile Projects: Methodology or Mystery? 153

7 Comparing Our Findings to Previously Published Related Work

When comparing our SR and the earlier published SRs [1,4,5], we consider that our
findings converge with the earlier published SRs in two respects: First, similarly to
the other authors, we found that the existing sources of definitions of business value
are practitioners’ reports. As Abrahamsson et al indicated in 2002 [5], back at the
time of their SR, the existing evidence consisted primarily of practitioners’ success
stories. Second, the key implication of out study is a strong incentive for carrying out
empirical research. This converges with the finding of Dyba et al [4], as stated above.

Last, we make the note that the SR by Dyba et al is concerned with the concept of
‘benefits’ of agile practices and that we thought that the concept of ‘benefits’ in [4]
could be related to the concept of business value. However, when we checked what
the authors mean, we found that the notion of benefits in [4] is different from what we
mean when referring to ‘business value creation’. As a matter of fact, we counted
automatically the occurrences of the word combination ‘business value’ in [4] and we
found only two of them.

8 Conclusions and Future Work

A systematic review on concepts of business value in agile software engineering lit-
erature yielded the following findings:

1. In the literature on agile software engineering there is no elaborated defini-
tion of business value.

2. Practitioners offer definitions which translate business value into dollar
value. However, we found that this ‘translation’ is problematic.

3. The notion of business value is slippery and highly volatile.

We acknowledge that at this point, the question “In which way business value is cre-
ated in agile projects” remains unanswered by our systematic review approach. We
only uncovered scarce indications about specific instances of value being brought by
means of specific agile practices [10,16,17]. However, because these instances stem
from anecdotic experiences, we could not deem them good enough for forming any
conclusion.

We are really surprised that we couldn’t find a more profound answer. This raises
the question whether there is an existing representative body of knowledge on the
subject, which might have been uncovered by means of other research approaches. Or
is it time that researchers and practitioners look more closely at the phenomenon of
value creation? This gives us the incentive to do further empirical research on how
people make decisions in agile projects based on people’s concepts of value. For this
purpose we will apply another empirical method, following the recommendation in
[29]. At the time of writing this paper, we are planning case study research at three
agile software companies in the Netherlands.

154 Z. Racheva, M. Daneva, and K. Sikkel

Acknowledgements

This research has been funded by the Netherlands Research Foundation (NWO) under
the QUADREAD project and the CARES project. The authors would like to thank
Roel J. Wieringa, Siv Hilde Houmb, Erlend Engum, Luigi Buglione, Thijs Munster-
man and Eltjo Poort and all the members of the QUADREAD research team for shar-
ing ideas on the topic of business value. We are also indebted to the anonymous
reviewers for their comments which helped us to improve the quality of this paper.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Meth-
ods: Review and Analysis, VTT Technoical Report (2002)

2. Agile Manifesto, http://agilemanifesto.org/principles.html
3. Kitchenham, B.: Procedures for Undertaking Systematic Reviews, Joint Technical Report,

Computer Science Department, Keele University (TR/SE-0401) and National ICT Austra-
lia Ltd. (0400011T.1) (2004)

4. Dyba, T., Dingsoyr, T.: Empirical Studies of Agile Software Development: a Systematic
Review. Journal of Information and Software Technology 50, 833–859 (2008)

5. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New Directions on Agile
Methods: a Comparative Analysis. In: Proc. of ICSE. IEEE CS Press, Los Alamitos (2003)

6. Bosman, J., Mourik, I.v., Rasch, M., Sieverts, E., Verhoeff, H.: Scopus reviewed and com-
pared: The coverage and functionality of the citation database Scopus, including compari-
sons with Web of Science and Google Scholar, p. 63. Utrecht University Library, Utrecht
(2006)

7. McGowan, J., Sampson, M.: Systematic reviews need systematic searchers. Journal of
Medical Library Association 93(1), 74–80 (2005)

8. Herrmann, A., Daneva, M.: Requirements Prioritization Based on Benefit and Cost Predic-
tion: An Agenda for Future Research. In: Proc of the Int. Conference on Requirements En-
gineering (RE 2008), pp. 125–134. IEEE, Los Alamitos (2008)

9. Barnett, L.: Agile Projects Must Measure Business Value. Agile Journal (January 2007),
 http://www.agilejournal.com/content/view/211/76/

10. Patton, J.: Ambiguous Business Value Harms Software Products. IEEE Software 25(1)
(January/February 2008)

11. Pettit, R.: Business Value Applied: Aligning The Day To Day With Business Imperative.
Agile Journal (January 4, 2007),

 http://www.agilejournal.com/content/view/206/33/
12. Rawsthorne, D.: Managing the Work in an Agile Project,

 http://www.netobjectives.com/files/resources/downloads/
 ManagingTheWork.pdf

13. Rawsthorne, D.: Calculating Earned Business Value For An Agile Project. Agile Journal
(June 2006),

 http://www.agilejournal.com/articles/articles/
 calculating-earned-business-value-for-an-agile-project.html

14. Poole, M.: Business and IT – A Marriage Made in Heaven? Agile Journal (October 6,
2007), http://www.agilejournal.com/content/view/627/76/

15. Kraemer, K.L., Gurbaxani, V., Dunkle, D., Vitalari, N.: Business Value of Information
Technology (Eight Dimensions of Business Value)

 Value Creation by Agile Projects: Methodology or Mystery? 155

16. Favaro, J.M.: Managing Requirements for Business Value. IEEE Software 19(2), 15–17
17. Qumer, A.: Defining an Integrated Agile Governance for Large Agile Software Develop-

ment Environments. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007.
LNCS, vol. 4536, pp. 157–160. Springer, Heidelberg (2007)

18. Setia, P., Sambamurthym, B., Closs, D.: Realizing Business Value of Agile IT Applica-
tions: Antedecents in the Supply Chain Networks. Information technology Management
Journal 9, 5–19 (2008)

19. Alleman, G.B., Henderson, M., Seggelke, R.: Making Agile Development Work in a Gov-
ernment Contracting Environment Measuring Velocity with Earned Value. In: Proc. of the
Agile Development Conference, pp. 114–119 (2003)

20. Cabri, A., Griffiths, M.: Earned Value and Agile Reporting. In: Proc. of AGILE Conf., p. 6
(2006)

21. Favaro, J.M.: That Elusive Business Value: Some Lessons from the Top. In: Baumeister,
H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, p. 199. Springer,
Heidelberg (2005)

22. Muller, M., Padberg, F. (eds.): On the Economic Evaluation of XP Projects ACM SIG-
SOFT Software Engineering Notes, SESSION: Software process and workflow, Septem-
ber 2003, vol. 28, pp. 168–177 (2003)

23. Pinheiro, C., Maurer, F., Sillito, J.: Adopting Iterative Development: The Perceived Busi-
ness Value. In: Prod. of the 9th International Conference on XP, Agile Processes in Soft-
ware Engineering and Extreme Programming. Lecture Notes in Business Information
Processing (2008) ,

24. Sulaiman, T., Barton, B., Blackburn, T., Agile, E.V.M.: – Earned Value Management in
Scrum Projects. In: Proc. of AGILE Conf., p. 10 (2006)

25. Charmaz, K.: Constructing Grounded Theory: a Practical Guide Through Qualitative Re-
search. Sage, Thousand Oaks (2007)

26. Logue, K., McDaid, K.: Agile Release Planning: Dealing with Uncertainty in Development
Time and Business Value, Engineering of Computer Based Systems. In: Proc of 15th An-
nual IEEE International Conference and Workshop, pp. 437–442 (2008)

27. Gatz, S.A., Benefield, G.: Less, Never More: Launching a Product with Critical Features
and Nothing More. In: Proc. of AGILE Conf., pp. 324–327. IEEE CS, Los Alamitos
(2007)

28. Gurses, L.: Increasing Business Value by Adopting Agile Methods. Agile Journal (May 8,
2007), http://www.agilejournal.com/content/view/410/

29. Easterbrook, S., Singer, J., Storey, M.-A., Damian, D.: Selecting Empirical Methods for
Software Engineering Research. In: Guide to Advanced Empirical Software Engineering.
Springer, Heidelberg (2008); ISBN 978-1-84800-043-8 (Print) 978-1-84800-044-5
(Online)

Decision Support for Iteration Scheduling in
Agile Environments

Ákos Szőke

Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

aszoke@mit.bme.hu

Abstract. Today’s software business development projects often lay
claim to low-risk value to the customers in order to be financed. Emerg-
ing agile processes offer shorter investment periods, faster time-to-market
and better customer satisfaction. To date, however, in agile environments
there is no sound methodological schedule support contrary to the tra-
ditional plan-based approaches. To address this situation, we present
an agile iteration scheduling method whose usefulness is evaluated with
post-mortem simulation. It demonstrates that the method can signif-
icantly improve load balancing of resources (cca. 5×), produce higher
quality and lower-risk feasible schedule, and provide more informed and
established decisions by optimized schedule production. Finally, the pa-
per analyzes benefits and issues from the use of this method.

Keywords: agile planning, iteration planning, scheduling.

1 Introduction

Agile software development represents a major approach to software engineer-
ing. Recent surveys showed that in the last 10 years agile methods adoption
expanded to the ≈ 70%, which can be explained by the fact that agile teams
are generally more successful than traditional ones [1,2]. The most popular ag-
ile methods are Extreme Programming (XP) (58%), Scrum(23%), and Feature
Driven Development (FDD) (5%) [3]. Several studies pointed out that Extreme
programming provides ≈ 60% increase in productivity, quality and improved
stakeholder satisfaction, and ≈ 60% and ≈ 40% reduction in products pre-, and
post-release defect rates respectively [4].

Despite variety of methods all of them share the common principles specified
in the Agile Manifesto [5]. The Declaration of Interdependence (DOI) [6] defines
a set of management principles for agile methods [6]. The main practices respect
to agile project planning includes i) Continuous improvement ii) Iterative de-
velopment iii) Staged program delivery iv) Scenario-driven development, and v)
Business-driven project pipeline [5,6,7,8].

From the project management point of view, agile software development de-
livery process is made up of the following phases: 1) conceptualization to define
vision, high-level ranked deliverables and project roadmap, 2) release planning

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 156–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Decision Support for Iteration Scheduling in Agile Environments 157

to estimate deliverables and assign them into releases, 3) iteration planning to
break down selected deliverables into technical tasks, 4) iteration to discuss the
daily progress concerning writing tests, codes and fixing defects, 5) iteration re-
view to demonstrate product increments to stakeholders and conduct iteration
retrospective for the next iteration, and finally 6) release to package and deploy
software to customers [3,9] (see Fig. 1).

Fig. 1. Agile Software Development Delivery Process

Figure 1 points out that planning functions are generally described by a three-
level management hierarchy in agile environments: release (coarse-grained), it-
eration (fine-grained), and daily plans. Each planning level is responsible for
realizing the objectives of both the given and its superior level [3,9].

Problem Statement and Analysis. In 2008, an Agile Tools survey [10]
showed that many developers-focused tools were come out (including JUnit
testing, sub versioning, auto build, etc.) in the last decade, but most compa-
nies (> 52%) are still using old-fashioned project management tools like MS
Project [11] or generic tools like spreadsheets. Surprisingly 18% of the respon-
dents do not use any tool for project planning and tracking at all – although
many commercial (such as Rally [12]) and open source (e.g. XPlanner [13]) agile
project planning tools are available.

The lack of penetration of the modern agile planning tools can be explained
by the weak embedded support of traditionally important project scheduling
functions such as resource allocations and what-if analysis. Their implemented
methods provide ’quick and dirty’ scheduling solutions [12,13]: the team can dis-
tribute deliverables among releases and iterations in planning meetings – while
all explicit and implicit objectives and constraints are taken into account infor-
mally. Typical constraints and objectives are P1) precedences (to express tem-
poral precedences between realizations), P2) balancing resource workloads (to
avoid resources overloading), and P3) optimality (to choose the best one from
different plans). Informal approaches work well in smaller projects, however as
the size and complexity increases scheduling becomes a very complex process
and advocates tool support [14,15].

Related Work. Scheduling requirements for the upcoming version is complex
decision-centric process [15]. Its complexity emanates from increasing market
demand and extensive use of high technology while all explicit and implicit ob-
jectives and constraints must be taken into account. In order to deal with this
decision problem some method have been proposed. Compared to the extensive

158 Á. Szőke

research on requirements priorization [16], interdependencies [17,18], and estima-
tion [19], only few researches investigated the release planning problem. In the
early period, researchers focused on the method of assessing requirements value
and estimating cost to prioritize requirements [20,16]. Later, several optimiza-
tion methods were proposed to select requirements for the next release. In [17]
release planning was formulated as Integer Linear Programming (ILP) problem,
where requirement dependencies were treated as precedence constraints. The ILP
technique is extended with stakeholders’ opinions and some managerial steering
mechanism that enabled what-if analysis in [14,21]. The IFM method provides
insight into the impact of development decisions with an financially-informed
approach to maximize Net Present Value [22]. In [23] a case study showed that
integration of requirements and planning how significantly can accelerate UML-
based release planning.

All previous methods relate to requirements priorization and selection and
none of them bothers with the implementation aspect: how to realize the selected
requirements.

Objectives. Our proposed method intends to provide a sound decision sup-
port to the P1)-P3) by constructing an information model to specify data se-
mantics of agile planning, and an innovative heuristic scheduling algorithm for
wide-ranging agile iteration scheduling problems. This method not only supports
making delivery decisions even in complex situations but provides a ’quick and
clean’ solution for agile iteration scheduling.

Structure of the Paper. The rest of the paper arranged as follows: Sec. 2
presents the background information on agile planning; Sec. 3 details the infor-
mation model and the scheduling algorithm; Sec. 4 introduces simulation experi-
ment with our prototypic tools; Sec. 5 discusses our solution and findings; Sec. 6
offers a survey of related work; and finally Sec. 7 concludes the paper.

2 Background

In this section, first we introduce agile release, iteration and daily planning prac-
tices to provide the necessary background information for the proposed method.

2.1 Release Planning

Release planning is a fundamental part of any incremental software development
process (ISDP). It deals with assigning requirements to releases of evolving soft-
ware products. Two kinds of release planning are adhered to ISDP: predictive
and adaptive planning [24]. Predictive planning produces a detailed plan cover-
ing the whole software life cycle. On the contrary, adaptive planning includes two
plans: a coarse-grained long-time (release) and a fine-grained short-time (itera-
tion) plan. In the present perpetually changing environment the overall goal of
ISDP is to maximize stakeholders’ satisfaction in least time possible, so adaptive
planning is more suitable for ISDP [24,3,9].

Decision Support for Iteration Scheduling in Agile Environments 159

In agile methods a deliverable system is decomposed into units of customer-
valued functionalities, and they are defined as self-contained features [9]. A
proper release plan should satisfy customer needs while provide maximal busi-
ness value by selecting the right set of features (requirements and defect cor-
rections) into the next release(es). Feature selection considers the demands of
stakeholders – including users, managers, developers, or their representatives.
As a consequence, it is often not obvious which choice is better, because several
concurrent aspects must be taken into account. The simplest forms of release
planning are done informally and one of the most well known is the Planning
game [9,3]. Sophisticated methods include optimization-based priorization mech-
anism while considering different constraint (e.g. technological, resource, system)
and optimality criterions (e.g. value, urgency) [14,15].

2.2 Iteration and Daily Planning

Once the maximal customer-valued features are selected for the next release
the following step is to realize them. In agile approaches software is rolled out
in increments over time with iterative development approach (c.f. Sec.1 ii, iii)
to reduce overall risk of realization [9,3]. Therefore a release is made up several
iterations (from 1 to 4 and with duration 1 or 2 weeks) which deliver intermediate
features (i.e. technical tasks – c.f. Sec.1) to the customers, so they receive both
a sense of value and an opportunity to provide early feedback.

Iteration schedule is operational level support for realization of technical tasks,
it focuses on resource allocation to these tasks [9]. In traditional approaches
scheduling is usually carried out by a project planner software package (e.g. MS
Project [11]) that helps dealing with constraints (e.g. scarcity of resources and
precedences between features) and objectives (e.g minimal execution time) – but
it is constructed mainly manually and takes relatively long time (several hours).
However it is too heavyweight for agile approaches since they promise rapid
response to the given situation – even on a daily basis (c.f. Sec.1 i, ii, v). Instead,
without adequate tool support in agile methodologies, iteration scheduling is
based on intuitive human judgements whose inherent discrepancies are resolved
during team’s daily and iteration review meetings (see Fig. 1) [9,24].

3 Decision Support in Iteration Scheduling

In this section first, we construct an information model of agile planning by
representing concepts, relations, constraints to specify data semantics for agile
iteration scheduling (subset of agile planning). Then we point out that iteration
planning problems can be characterized as a special kind of resource-constrained
project scheduling problem (RCPSP). Finally, a prototypic tool, and the analysis
of our proposed solution is presented.

Iteration scheduling process made up of the following major steps: 1) features
are broken down into smaller parts i.e. technical tasks (each task is realized by
one developer); 2) durations of tasks are estimated and precedences among them

160 Á. Szőke

are identified (they affect the realization time and the sequencing of tasks); and
finally 3) resources allocation to tasks are performed. Output of this process is
an schedule: what task is realized by who and when (see Fig. 2).

Fig. 2. Iteration Scheduling Process Overview

3.1 Conceptual Model of Agile Planning

In order to formulate the iteration scheduling model, first, we have to identify the
main concepts of agile planning. These concepts are presented in the following
list and visualized with UML notation in Fig. 3 [25,9,26].

- Project: is a planned endeavor, usually with specific requirements and rolled
out in several deliverable stages i.e. releases.

- Release: produces (usually external) selected deliverable features for the
customer, contains 1-4 iterations with start/end date and an iteration count.

- Iteration: is a development timebox that delivers intermediate deliverables
with the realization of several technical tasks. It is characterized by available
resource capacity – often expressed by iteration velocity.

- Resource: is human manpower who accomplish the demanded feature for
the customer and they are allocated to releases.

- Feature: deliverables that the customer values. They can be classified two
kind of set of elements: i) (new/change) requirements (functional and non-
functional), and ii) defect repairs (fixed defects in former product variants).

- Technical task: fundamental working unit accomplished by one developer.
In most cases requirements mandates several realization steps that requires
cooperation of some developers. Proper coordination requires individually
realizable working units thus each requirement and defect repairs should be
broken down into several technical tasks. Technical tasks usually requires
some working hour (Wh) realization effort that is estimated by developers.

- Precedence: realization precedences between features. Precedences
emanate from the following sources (j′, j denotes technical tasks) [18,17]:
i) functional implication (j demands j′ to function),
ii) cost-based dependency (j′ influences the implementation cost of j, so

useful to realize j′ earlier),
iii) time-related dependency (expresses technological / organizational

demands).

These concepts not only help to identify the objects and the subject of the
optimization model but with the precise relationships it can also be used as
database schema definition for an agile planning and scheduling application.

Decision Support for Iteration Scheduling in Agile Environments 161

Fig. 3. Information Model of Agile Planning

3.2 Mapping Iteration Scheduling to RCPSP

In the following analogy between iteration planning and resource-constrained
project scheduling optimization problem (RCPSP) is presented [27]. Generally,
scheduling concerns the allocation of limited resources (manpower) to tasks over
time in order to fulfill the predefined scheduling objective. In fact, many different
objectives are possible – depending on the goals of the decision makers – but our
aim is to ‘maximize stakeholders’ satisfaction in least time possible‘ (Sec. 2.1),
thus the makespan minimization (i.e. finding the minimum execution time) is the
most adequate. As agile methods recommend collaborative teamwork – without
any development role (such as analyst, programmer, tester) – we only identify
one kind of resource: the developer. The complexity of scheduling arises from
the interaction between tasks by implicit and explicit dependencies. While the
previous is given by scarcity of resources, the latter is emerged from different
precedences (Sec. 3.1) between tasks that define the routing of the tasks [17].

To provide suitable scheduling method for wide-ranging iteration scheduling
situations, we extended the ordinary RCPS problem with i) pre-assignments (i.e.
assigning certain tasks to resources before scheduling) and ii) timeboxed iteration
duration control. On the one hand, defect corrections and onward development
of a formerly delivered functionalities legitimates pre-assignments, on the other
hand, timeboxed iteration execution mandates an upper boundary control in time
– which is not allowed to be exceeded otherwise schedule is treated infeasible.

3.3 Formulating RCPSP Model

Let R be the set of resources i and the following typical properties for scheduling
be interpreted on technical tasks to schedule them (i.e. j ∈ A) [27]:

Effort: dj – time estimation (in hours) is associated with each task. It is calcu-
lated by simple expert estimation (e.g. 2,4, or 8 working hour (Wh)).

Pre-assignment: aj – in some cases resource pre-assignment is applied before
scheduling. It is used by the scheduler algorithm during resource allocation.

Let the vector S = (S0, S1, ..., Sn+1) be start times for tasks’ realizations – where
Sj � 0 : j ∈ A and S0 = 0. The vector S is called a schedule of development.

162 Á. Szőke

In this definition the 0 and n + 1 are auxiliary elements to represent iteration
beginning and termination, respectively.

Temporal and Resource Constraints. Dependencies (temporal constraints
– c.f. Sec. 3.1) can be defined by precedence relations (Eq. 1):

Sj − Sj′ + dj′ � Pj′,j : j′, j ∈ A (1)

Let the Ri ∈ N is a set of capacities of resources that have been assigned to
the project. The effort estimation yields resource requirements rj,i ∈ � for each
task j and each resource i. Now let S be some schedule and let t be some point
in time. Then let A (S, t) � {j ∈ A |Sj � t � Sj + dj } be the active set of tasks
being in progress at time t. The corresponding requirement for resource i ∈ R
at time t is given by ri (S, t) �

∑
j∈A(S,t) rj,i. As a consequence, the resource

constraints can be treated as follows (Eq. 2):

ri (S, t) � Ri : i ∈ R (2)

Optimization Model. With the application of previous elements, RCPSP for
iteration scheduling can be formulated as follows:

Minimize z = Sn+1 (3a)
subject to

Sj − Sj′ + dj′ � Pj′,j : j, j′ ∈ A (3b)
ri (S, t) � Ri : i ∈ R (3c)
Sn+1 � c (3d)

where Eq. 3b, 3c are scheduling constraints (c.f. Eq. 1, 2), Eq. 3d is the timebox
duration, and Eq. 3a is the makespan minimization objective.

3.4 Solving Iteration Scheduling

For the previous optimization model we developed an innovative scheduling al-
gorithm. It is a constructive heuristic algorithm, which iteratively selects and
assigns technical tasks to resources. In the program listing (Algorithm 1) lower-
case/uppercase letters with indices denote vectors/matrices (e.g. ri,Pj,j′). While
bold-faced types show concise (without indices) forms (e.g. P).

In the require section the preconditions are given. The vector r indicates the
available resources (developers) in the iteration. Each dj is the planned effort
(duration) for technical task j – both development and defect correction. Ev-
ery element of vector aj contains a reference to a resource index (aj ∈ {1..|r|})
which indicates resource pre-assignment to task j. The aj = 0 means that task j
is not pre-assigned, thus the algorithm will find the best resource to its realiza-
tion. Precedences between tasks (c.f. Eq. 3b) can be represented by a precedence
matrix where Pj,j′ = 1 means that task j precedes task j′, otherwise Pj,j′ = 0.

Decision Support for Iteration Scheduling in Agile Environments 163

Algorithm 1. List scheduling algorithm with AF strategy
Require:

ri ∈ N, c ∈ N /* resources and iteration duration */
aj ∈ N : aj ∈ {1..|r|} , dj ∈ N /* pre-assignments and duration of tasks */
Pj,j′ ∈ 0, 1 ∧ Pj,j = 0 ∧ P is DAG /* precedences */

Ensure:
Si,j ∈ 0, 1 ∧ ∀j∃!i Si,j = 1

1: m ⇐ length(r), n ⇐ length(d) /* number of resources and tasks */
2: S ⇐ [0]m,n /* assignment matrix initialization */
3: rlist ⇐ ∅, slist ⇐ ∅ /* ’ready list’ and ’scheduled list’ initialization */
4: for fj = 0 to n do
5: pot ⇐ findNotPrecedentedTasks (P) /* find potentially tasks */
6: rlist ⇐ pot \ slist /* construct ready list */
7: if rlist == ∅ then
8: return ∅ /* No schedulable task */
9: end if

10: j ⇐ max {aj} : j ∈ rlist /* select a task using AF strategy */
11: if aj == 0 then
12: i ⇐ selectMinLoadedResource (S) /* without assignment */
13: else
14: i ⇐ aj /* with assignment */
15: end if
16: l ⇐ sum

(
Si,{1..n}

)
/* calculate load of resource i */

17: if (l + dj) > c then
18: return ∅ /* Overloaded iteration */
19: end if
20: p ⇐ findNextPos (S, i) /* index for next task */
21: Si,p ⇐ j /* assign task j to resource i at position p */
22: slist ⇐ slist ∪ {j} /* add task j to ’scheduled list’ */
23: P{1,...,n},j = 0 /* delete precedence related to scheduled task */
24: end for
25: return S

Both conditions Pj,j = 0 (no loop) and P is directed acyclic graph (DAG) ensures
that temporal constraints are not trivially unsatisfiable. Iteration timebox is
asserted by variable c. It it is used as an upperbound in resource allocation to
prevent resources overloading. The result of the algorithm is a schedule matrix
S, where rows represent resources, and columns give an order of task execution.
Thus Si,p = j means that task j is assigned to resource i at position p. The
ensure section prescribes the postcondition on the return value (S): every task
j has to be assigned to exactly one resource i.

During scheduling steps, first the initial values are set (line 1− 3). The itera-
tion value (n) is equal to the number of technical tasks (line 1). The algorithm
uses a ready list (rlist) and a scheduled list (slist) to keep track of schedulable

164 Á. Szőke

and scheduled tasks. Potentially schedulable tasks (pot) are unscheduled tasks
from which the algorithm can choose in the current control step without violating
any precedence constraint (line 5). Previously assigned tasks are subtracted from
pot to form the ready list (line 6). As long as the ready list contains schedulable
tasks, the algorithm chooses tasks from it – otherwise the schedule is infeasible
(line 7) and as a consequence the algorithm aborts (line 8).

To select the next task to schedule from concurrently schedulable tasks (i.e.
ready list) we constructed the custom ’Assigned First’ scheduling rule (line 10)
(c.f. Sec. 3.2). This rule chooses from the pre-assigned tasks (aj > 0) before the
unassigned ones (aj = 0). As the selection sequence is discretionary we applied
the max function to the choice. After selection the minimal loaded (min summa
duration) resource is allocated to the selected task unless the task is pre-assigned
to a given resource (line 11−15) (c.f. Sec. 3.2). If the load of the resource i exceeds
iteration timebox (c) then the schedule is treated infeasible (line 16 − 19).

The following step is to find the index of next task position (p) (right after
the previous task’s index) at resource i (line 20) for task j for assignment (line
21). Finally, scheduled list (slist), is updated with scheduled task (lines 22),
and no longer valid precedence relations are also deleted from P (lines 23).
Iteration proceeds until all items are assigned to iterations (line 4 − 24). After
termination, S contains the task assignments to resources and the makespan is
z ⇐ max

i=1..m

∑n
p=1 dSi,p – c.f. Eq. 3a).

Solution Analysis. This greedy strategy makes a series of local decisions, se-
lecting at each point the best step without backtracking or lookahead. Thus local
decisions miss the global optimal solution, but produce quick (time complexity
is clearly O(n + m)) and usually sufficient results for practical applications.

Figure 4 illustrates the application of the algorithm on real application devel-
opment data which was extracted from the backlog of IRIS at Multilogic [28].
The figure shows post-mortem scheduling result of an iteration – visualized by
resource aspect Gantt diagram – where tasks’ realizations plotted against time.
The diagram points out that 94 tasks (with 2, 4, and 8 working hours (Wh))
are allocated to 6 resources, and the makespan is 78.

Fig. 4. Generated Iteration Schedule

Decision Support for Iteration Scheduling in Agile Environments 165

3.5 Tool Support

Previously presented theoretical foundation is realized by our MS Sharepoint-
based website at Multilogic and our scheduling toolbox on the Matlab platform
[29,28,30]. Sharepoint is browser-based collaboration and a document-manage-
ment platform, and its capability includes creating different lists (as database
tables) – such as list of technical tasks and resources. The previously constructed
agile planning information model (see Fig. 3) were implemented as Sharepoint
lists. Thus, the portal was targeted as a collaborative workspace for developers,
and a tool for the management to collect all planning information. With this
web-based tool, developers can break-down requirements into technical tasks,
indicate precedences, set effort estimation, status of tasks/defect corrections and
they also can share these information to facilitate communication. Additionally,
we have implemented the presented algorithm in Matlab to support iteration
decisions based on data collected through the Sharepoint site.

4 Experiments

To evaluate our proposed scheduling method simulations were carried out. Ap-
plying the historical iteration planning data, as an input for the scheduling algo-
rithm, made it possible to compare them [31]. The four past data sets extracted
from the backlog of IRIS application that is developed by Multilogic Ltd [28].

In this section, first we set research questions, then present necessary back-
ground information, and finally we present and interpret our findings.

4.1 Research Questions

Our initial intend (see Sec. 1 P1-3) was to support decisions in agile itera-
tion scheduling in the following aspects: 1) dealing with precedences, 2) track-
ing workloads, and 3) providing optimal (makespan minimized) delivery plan.
To validate our proposed method the next questions were addressed: How does
optimization-based iteration scheduling compare with informal one in terms of
Q1) resource workload over time, Q2) quality and Q3) feasibility of the plans.

4.2 Context and Methodology

IRIS is a client risk management system (approx. 2 million SLOC) for credit
institutions for analyzing the non-payment risk of clients. It has been continual
evolution since its first release in the middle of 90s. The system was written in
Visual Basic and C# the applied methodology was a custom agile process.

The planning process were made up of the following steps. First, during release
planning, the requirements were selected (expressed in User stories [9]) from the
backlog – considering stakeholders’ demands. Then every User story was esti-
mated by the team and distributed into iterations taking resources, precedences
and iteration timebox into account. Second, during iteration planning, each User

166 Á. Szőke

Story was broken down into technical tasks and important defect corrections
were also selected to the next product increment. Finally, resource allocation
was determined intuitively by the team in intuitive way and the conflicts (prece-
dences, resource overload) were managed during daily meetings (see Fig. 1).

4.3 Data Collection and Results

Four data sets (four iterations (IA
1 , IA

2 , IB
1 , IB

2) of two releases (RA, RB)) were se-
lected to make a comparison between the algorithmic and the intuitive method.
All iterations had same project members (6 developers /Dev./), iteration length
(80 working hours (2 weeks) /IL/), domain, customer, and development method-
ology, but they were characterized by different number of technical tasks (de-
velopment /DT / and defect correction /CT / with 2, 4 and 8Wh), User Stories
/US/, precedences /Prec./, and pre-assignments /Ass./. Table 1 summarizes
state variables that were used to capture facts that were likely affect the find-
ings. These variables were collected from the SharePoint-based backlog.

Table 1. Iteration Planning Data

Dev. IL US DT CT TT = DT + CT Prec. Ass.

IA
1 6 80 Wh 28 91(25,34,32) 3(2,1,0) 94(27,35,32) 11 19

IA
2 6 80 Wh 35 89(16,46,27) 2(0,2,0) 91(16,48,27) 5 17

IB
1 6 80 Wh 33 84(29,24,31) 5(2,1,2) 89(31,25,33) 15 22

IB
2 6 80 Wh 34.5 79(13,31,35) 7(4,2,1) 86(17,33,36) 4 16

We constructed Task effort (TEi) response variables to test Q1. This simple
variable is computed by adding up estimated tasks’ efforts that were assigned to
resources i. Explanations of Q2,and Q3 were produced with the utilization of
the solution’s inherent properties.

4.4 Analysis

To answer to the questions Q1-3 simulations were performed on the previously
described input data to compare the characteristics of the two approaches. The
simulation output is summarized in Table 2.

On the left the four historical iteration schedules are presented (IA
1 , IA

2 , IB
1

and IB
2). In the table Dis denote resources (developers); 2, 4, and 8 values

are estimated effort (instead of indeces) of task realizations; and finally the
previously introduced response variable (TEi) can be seen. On the right column
simulation results (∗IA

1 , ∗IA
2 , ∗IB

1 , and ∗IB
2) are presented.

To compare the intuitive and the algorithmic cases quantitative (statistical)
analysis were performed on the two response variables (∗TEi and TEi). The
result is presented in Table 3 and summarized in boxplot (see Fig. 5).

From these, we conclude that optimized case i) did not exceed the time-
box limit (∗Max = 78Wh < 80Wh < Max = 102) which means lower level
scheduling risk; ii) has less dispersion in total task allocation (∗Std.dev = 3 vs.

Decision Support for Iteration Scheduling in Agile Environments 167

Table 2. Intuitive (left) and Optimized (right) Schedules

IA
1 TEi

D1 2 2 2 2 4 4 4 4 4 8 8 8 8 8 8 8 - - 84
D2 2 2 4 4 4 4 4 4 8 8 8 8 8 8 8 - - - 84
D3 2 2 2 2 2 2 2 4 4 4 4 8 8 - - - - - 46
D4 2 2 2 2 2 4 4 4 4 4 4 4 8 8 8 8 - - 70
D5 2 2 2 4 4 4 4 8 8 8 8 8 8 8 8 8 8 - 102
D6 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 8 8 - 64

IA
2 450

D1 2 2 2 2 2 2 4 4 4 4 4 8 8 8 8 - - - 64
D2 2 2 2 2 2 2 2 4 4 4 8 8 8 8 8 - - - 66
D3 2 2 2 2 2 2 4 4 4 4 8 8 8 - - - - - 52
D4 2 2 2 4 4 4 4 4 8 8 8 8 8 8 8 8 - - 90
D5 2 2 2 4 4 4 4 4 8 8 8 8 8 8 8 8 - - 90
D6 2 2 2 2 2 2 4 4 4 8 8 8 8 8 - - - - 64

IB
1 426

D1 2 2 2 4 4 4 4 4 4 4 8 8 8 8 - - - - 66
D2 2 2 2 2 4 4 4 4 4 4 8 8 8 8 - - - - 64
D3 4 4 4 4 4 4 4 4 4 4 4 8 8 8 - - - - 68
D4 2 2 2 4 4 4 4 4 4 4 8 8 8 8 8 8 - - 82
D5 2 2 4 4 4 4 4 4 8 8 8 8 8 8 8 - - - 84
D6 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 8 8 8 76

IB
2 440

D1 4 4 4 4 4 4 4 4 4 4 4 - - - - - - - 44
D2 2 2 2 2 2 4 4 8 8 8 8 8 8 8 - - - - 74
D3 2 2 2 4 4 8 8 8 8 8 8 8 8 - - - - - 78
D4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 - - - 88
D5 2 2 2 2 2 4 4 4 4 8 8 8 8 8 8 8 - - 82
D6 2 2 2 2 4 4 4 4 4 4 8 8 8 8 8 8 8 - 88

454

∗IA
1

∗TEi

D1 8 4 2 8 8 8 2 2 4 4 2 8 8 4 - - - - - 72
D2 2 4 4 4 8 8 2 2 4 8 8 8 8 4 - - - - - 74
D3 2 2 2 4 4 8 8 4 4 2 2 4 8 8 2 2 4 4 - 74
D4 2 2 2 4 8 4 8 2 2 4 2 4 4 8 8 2 4 4 - 74
D5 2 4 4 8 8 8 8 4 8 4 8 4 8 - - - - - - 78
D6 2 4 4 8 4 8 2 4 8 4 2 4 8 2 2 4 8 - - 78
∗IA

2 450

D1 2 4 4 4 8 8 8 2 8 4 4 8 8 - - - - - - 72
D2 2 4 4 4 8 8 8 2 2 4 8 4 2 2 4 8 - - - 74
D3 8 8 2 2 4 2 2 2 8 4 4 8 8 4 - - - - - 66
D4 4 8 8 8 8 2 4 4 2 8 8 8 - - - - - - - 72
D5 8 8 8 2 2 2 8 4 4 2 2 2 4 2 2 2 8 - - 70
D6 4 8 2 2 2 4 8 2 2 2 4 2 8 4 8 2 8 - - 72
∗IB

1 426

D1 2 4 4 4 8 4 8 4 2 4 8 4 8 4 4 - - - - 72
D2 4 2 2 4 4 8 2 4 4 4 2 4 8 4 8 4 8 - - 76
D3 4 4 4 4 2 4 4 4 4 8 4 8 8 2 4 8 - - - 76
D4 4 4 8 8 8 4 8 8 8 2 2 4 8 - - - - - - 76
D5 4 4 8 2 4 8 4 8 4 2 2 4 8 4 4 - - - - 70
D6 2 4 4 4 8 2 8 4 2 4 8 4 8 4 4 - - - - 70
∗IB

2 440

D1 4 4 4 8 2 4 8 8 8 4 8 2 4 4 - - - - - 72
D2 4 4 4 4 4 2 8 2 4 4 4 8 4 2 8 4 8 - - 78
D3 8 8 8 8 8 4 8 8 8 8 - - - - - - - - - 76
D4 4 4 4 8 2 8 2 8 4 8 8 8 8 - - - - - - 76
D5 2 2 4 4 4 4 2 8 2 8 4 2 2 2 4 8 2 4 8 76
D6 2 4 8 8 8 4 8 8 4 8 2 4 8 - - - - - - 76

454

Table 3. Comparison of Schedules

Mean Median Min Max Std.dev. cv

IA−B
1−2 75 73.7 44 102 14.6 0.1976

∗IA−B
1−2 74 73.7 66 78 3.0 0.0410

Std.dev = 14.6); iii) yields more balanced workload on resources – while the
means are similar (∗Mean = 74 ≈ Mean = 75). As a consequence, in terms of
coefficient variation (i.e. normalized measure of dispersion), the optimization-
based scheduling provides cv/

∗cv = Std.dev
Mean /

∗Std.dev
∗Mean = 0.1976

0.0410 ≈ 5 times more
balanced resource workload over time contrary to the intuitive method (c.f. Q1).

The algorithmic method easily resolves complex decision situation – as it
handles precedences between tasks and avoids resource workloads – contrary to
the intuitive case where these are managed intuitively during daily meeting. As
a consequence these two capabilities of the algorithmic method ensure higher
quality and lower-risk feasible plans in contrast to the intuitive case (c.f. Q2-3).

168 Á. Szőke

Fig. 5. Boxplots of Intuitive (above) and Optimized (below)

5 Discussion

First we constructed a general agile planning information model – including
both releases and iterations – that helped us to identify the objects and the
subject of our proposed optimization model. Its precise relationships can also
be used as database schema definition for an agile planning and scheduling ap-
plication such as our Sharepoint-based prototypic tool for collaborative data
collection.

Then we formulated iteration scheduling model as a special case of RCPS
problem to provide decision support in feature implementation sequencing. The
formulated model considers temporal constraints (Sec. 3.1, 3.3), team’s resources,
and defines makespan minimization scheduling objective. As a matter of fact
many different objectives are possible – depending on the goals of the decision
makers – but in our scheduling case (’maximize stakeholders’ satisfaction in
least time possible’) the makespan minimization is the most adequate. This in-
terpretation of iteration schedule makes it possible to adapt extremely successful
heuristic algorithms applied for solving RCPSP. To provide suitable scheduling
method for wide-ranging iteration scheduling situations we extended the or-
dinary RCPS problem with i) pre-assignments (i.e. assigning certain tasks to
resources before scheduling) and ii) timeboxed iteration duration control.

Generally, RCPS problems are combinatorial NP-hard problems and a va-
riety approximation algorithms are proposed. The most popular heuristics in
approximation algorithms are SPT or LTP (Shortest/Longest Processing Time
first) [27]. However, we constructed and applied our AF assigned task first
scheduling rule demanded by pre-assignments (defect corrections and onward
development of a formerly delivered functionalities). Our proposed combinato-
rial algorithm is capable to provide acceptable results with good time complexity
(O(n + m)) for practical applications.

This approach gives the business increased visibility, and it can also pro-
vide constantly up-to-date schedule decision support considering changes ne-
cessitated by shifting business priorities. Moreover, the decision maker can
accommodate quick what-if scenarios and replanning on-the-fly. However, as
our simulation carried out post mortem analysis, examination of the method is
recommended in real development cases in order to investigate it in dynamical
situations.

Decision Support for Iteration Scheduling in Agile Environments 169

6 Conclusions

The growing pressure to reduce costs, time-to-market and to improve quality
catalyzes transitions to more automated methods and tools in software engi-
neering to support release-centered decisions [15]. In agile environments, which
recommends small and iterative software releases, the decision is even more dif-
ficult due to the perpetual changes in requirements, constraints and objectives.
To address this situation, we have presented a method including an information
model to specify data semantics for agile planning, and an innovative heuristic
scheduling algorithm for wide-ranging agile iteration scheduling problems. To
evaluate our method four simulations were carried out that demonstrated how
the method could 1) significantly improve load balancing of resources (cca. 5×),
2) produce higher quality and lower-risk feasible schedule, and 3) provide more
informed and established decisions to agile teams.

We think that our proposed method is a plain combination of the present
theories and methods, thus it lead us to generalize our findings beyond the
result of the simulations.

Acknowledgements. The development is supported in part by the GVOP
grant (GVOP-3.3.3-05/1.-2005-05-0046/3.0) and realized by the Multilogic
Ltd [28].

References

1. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information & Software Technology 50, 833–859 (2008)

2. Ambler, S.W.: Survey says: Agile works in practice. Dr. Dobb’s Journal (2006),
http://www.ddj.com

3. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. Journal of System and Software 81, 961–971 (2008)

4. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an
agile case study. Journal of Systems Architecture 52, 654–667 (2006)

5. Manifesto for agile software development, http://www.agilemanifesto.org
6. Declaration of interdependence for agile software project management,

http://pmdoi.org

7. Scott, W., Ambler, P.K.: Lean development governance. Technical report, IBM
Rational Software (2007)

8. Qumer, A., Henderson-Sellers, B.: An evaluation of the degree of agility in six
agile methods and its applicability for method engineering. Information & Software
Technology 50, 280–295 (2008)

9. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, Upper Saddle River
(2005)

10. Dubakov, M., Stevens, P.: Agile Tools: The good, the bad, the ugly. Agile Journal
(2008), http://www.agilejournal.com

11. Microsoft office project, sdk (2003), http://msdn2.microsoft.com
12. Rally homepage, http://www.rallydev.com
13. Xplanner homepage, http://xplanner.codehaus.org

http://www.ddj.com
http://www.agilemanifesto.org
http://pmdoi.org
http://www.agilejournal.com
http://msdn2.microsoft.com
http://www.rallydev.com
http://xplanner.codehaus.org

170 Á. Szőke

14. Ruhe, G., Saliu, M.: The art and science of software release planning. IEEE Soft-
ware 22, 47–53 (2005)

15. Aurum, A., Wohlin, C.: The fundamental nature of requirements engineering activ-
ities as a decision-making process. Information & Software Technology 45, 945–954
(2003)

16. Karlsson, L., Thelin, T., Regnell, B., Berander, P., Wohlin, C.: Pair-wise compar-
isons versus planning game partitioning–experiments on requirements prioritisation
techniques. Empirical Software Engineering 12, 3–33 (2007)

17. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Dag, J.: An industrial survey
of requirements interdependencies in software product release planning. In: RE
2001: Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, pp. 84–93. IEEE Press, Los Alamitos (2001)

18. Li, C., van den Akker, J.M., Brinkkemper, S., Diepen, G.: Integrated requirement
selection and scheduling for the release planning of a software product. In: Sawyer,
P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 93–108.
Springer, Heidelberg (2007)

19. Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K., Steece, B.,
Brown, W.A., Chulani, S., Abts, C.: Software Cost Estimation with Cocomo II.
Prentice Hall PTR, Englewood Cliffs (2000)

20. Jung, H.W.: Optimizing value and cost in requirements analysis. IEEE Software 15,
74–78 (1998)

21. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software product
release planning through optimization and what-if analysis. Information & Software
Technology 50, 101–111 (2008)

22. Denne, M., Cleland-Huang, J.: The incremental funding method: Data-driven soft-
ware development. IEEE Software 21, 39–47 (2004)

23. Szoke, A.: A proposed method for release planning from use case-based require-
ments. In: Euromicro SEAA 2008: Proceedings of the 34th Euromicro Conference,
pp. 449–456. IEEE Press, Los Alamitos (2008)

24. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Pearson Edu-
cation, London (2003)

25. Ambler, S.W., Jeffries, R.: Agile modeling: effective practices for extreme program-
ming and the unified process. John Wiley & Sons Inc., New York (2002)

26. Unified modeling language version 2.0, http://www.uml.org
27. Schwindt, C.: Resource Allocation in Project Management. Springer, Heidelberg

(2005)
28. Multilogic homepage, http://www.multilogic.hu
29. Microsoft sharepoint (2007), http://www.microsoft.com/sharepoint/
30. Mathworks homepage, http://www.mathworks.com/
31. Kellner, M., Madachy, R., Raffo, D.: Software process simulation modeling: Why?

what? how? Journal of Systems and Software 46, 91–105 (1999)

http://www.uml.org
http://www.multilogic.hu
http://www.microsoft.com/sharepoint/
http://www.mathworks.com/

Some Findings Concerning Requirements in
Agile Methodologies

Pilar Rodŕıguez, Agust́ın Yagüe, Pedro P. Alarcón, and Juan Garbajosa

Technical University of Madrid (UPM)
SYST Research Group

E.U. Informatica. Ctra. Valencia Km. 7. E-28031 Madrid
prodriguez@syst.eui.upm.es, agustin.yague@upm.es,

{pedrop.alarcon,jgs}@eui.upm.es

Abstract. Agile methods have appeared as an attractive alternative to
conventional methodologies. These methods try to reduce the time to
market and, indirectly, the cost of the product through flexible devel-
opment and deep customer involvement. The processes related to re-
quirements have been extensively studied in literature, in most cases in
the frame of conventional methods. However, conclusions of conventional
methodologies could not be necessarily valid for Agile; in some issues,
conventional and Agile processes are radically different. As recent surveys
report, inadequate project requirements is one of the most conflictive is-
sues in agile approaches and better understanding about this is needed.
This paper describes some findings concerning requirements activities in
a project developed under an agile methodology. The project intended
to evolve an existing product and, therefore, some background informa-
tion was available. The major difficulties encountered were related to
non-functional needs and management of requirements dependencies.

1 Introduction

Software industry is facing the fact that time to market is progressively becoming
shorter. Agile approaches appeared as an attractive alternative to adapt the
development to the unavoidable market changes, characterized by a continuous
dynamism and variability [1]. Agile methods are suitable when the customer
needs are quickly emerging and changing [2,3]. Their popularity is growing as
they are able to better meet customer needs, improved quality software, faster
time to delivery and lower development cost [4]. Assessments of agile in relation
with other process models can be found in literature [5,6,7].

The experience that is being obtained from scaling up agile process models to
large industrial projects and organizations [8]1 is showing us a radical breach be-
tween agile and other more conventional or traditional approaches. Agile process
models, differently from more conventional software engineering process models,
are structured into values, principles and practices [9,10]. As reported in [8] one

1 This article develops Katti Vilki’s keynote presentation at Agile 2008 Conference.

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 171–184, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

172 P. Rodŕıguez et al.

of the reasons for this breach can be understood by the required application of
agile values and principles to large projects and organizations; and not so much
by the already well known practices such as continuous integration, integrated
testing, or incremental delivery.

As it is nowadays accepted, the product quality is particularly dependent on
how requirements engineering practices have been performed [11,12]. In [13,14]
the differences between requirements specification in conventional and agile ap-
proaches are analyzed. Conventional methodologies are focused on anticipation
abilities and can be termed as plan based [15,16] because these process models
are defined in such a way that the later an error is discovered, the more expensive
will be to correct it. They intend to identify a complete set of requirements in the
requirement phase, what is always difficult to achieve. Once requirement phase
is ended changes are always regarded as negative. Defining this complete set of
requirements is essential for the soundness of the project, and if the problem
domain is not well defined, this will affect negatively to the rest of the project
[17,18,19]. As opposed to this, agile methods perceive each change like a chance
to improve the system and increase the customer satisfaction. So, responding to
change over following a plan[9] is one of the agile values. Agile teams do not
try to avoid changes but try to understand what is behind them, seek to em-
brace them; the resulting set of requirements, after introducing a change, will
be evaluated and rated searching for those requirements that will deliver the
highest value to the customer. Therefore, change is considered as a normal and
characteristic condition of software development.

One of the main aims of agile methods is to reduce the cost caused by these
changes in requirements simplifying the requirements management and docu-
mentation tasks. Agile methods promote a fast and continuous communication
between customers and development team. Face to face communication and fre-
quent feedback are the most significant practices concerning to requirements
engineering in these approaches [20]. The definition of tasks related to require-
ments is very often kept informal in agile approaches. Therefore, although there
are evidences of the advantages that agile methodologies provide in small-scale
projects, it is still difficult to scale to large projects applying among others the
principle responding to change over following a plan.

Being Agile a relative young process model, there are few studies with rele-
vant results about the elicitation and management of requirements. However, a
recent survey [4] points out that inadequate project requirements and instability
of requirements are among the important limitations of agile methods currently.
Other papers, such as [20,13,21,22,23,24] report some problems in this area but
do not analyze them in depth. Some of the open issues in agile methodologies
concern elicitation of non-functional requirements and requirements documen-
tation tasks.

In practice there are not studies that compare empirical results of agile and
conventional projects referred to the same product. It is clear that it would be
expensive to have two teams developing the same product. However in our case
we had the opportunity to monitor the agile evolution of an existing product,

Some Findings Concerning Requirements in Agile Methodologies 173

TOPENprimer, developed initially following a conventional approach. The ex-
isting requirements specification had been performed in compliance with IEEE2

requirements specification standard 830-1998[25]. This was a good opportunity
to get a better understanding of how Agile manages customer needs. That is how
we were able to isolate specific requirements, understand the impact of missing
requirements that were not identified at the supposedly appropriate moment of
the agile development process. The study was performed considering the back-
ground on qualitative methods presented in [26].

The remainder of the paper is organized into four sections: Section 2 discusses
related work about requirements engineering in agile approaches. Section 3 de-
scribes the case study in which the work is based and the process used in the
development. Section 4, illustrates the identified issues with specific examples.
Section 5 provides a reflection on the implications of the identified issues and
possible correction mechanisms. Finally, Section 6 summarizes the findings and
elaborate on future work.

2 Background and Related Work

Although some authors assert that agile methodologies are just old wine in new
bottles 3, other studies show that product development in agile environments
is very different to that in conventional environments [11,13,14,28]. Several ex-
perience reports, such as [29,30,31,32], describe success stories of using agile
approaches. However, they do not usually provide enough context information
or are merely a lessons learned report based on expert opinions do not focused
on requirements. Others are designed to give recommendations and general rules
for the agile methodologies use [3,33,34]. Requirements Engineering (RE) activ-
ities are considered critical to any software development process. It has been
recognized that problems associated with the requirements area are among the
major reason for software project failures [35,4]. The effort to explore and refine
RE has grown up in the last years, as is pointed out by Nuseibeh in [11] and
Cheng and Atlee in [12] in their studies about the current and the future in
RE. However, there are still few studies about how real agile projects identify
and manage the customer needs, and some authors suggest that the key issue
is this [36]. Detractors argue that the quest for speed in software development
may have the undesirable effect of weakening principles of purposefulness, ap-
propriateness and truthfulness [37]. In contrast, current studies begin to identify
and give solutions to existing problems. For example, in [21] to make an explicit
requirements stage with customer is proposed or in [36] to add a conventional
requirements stage. Araujo proposes to incorporate aspect orientation concepts
in [38], in [39] it is proposed to deal with crosscutting requirements and in [40]
to establish traceability. Other studies such as [22] are focused on giving high-
level recommendations about identification and definition of customer needs in
2 IEEE: Institute of Electrical and Electronics Engineers, Inc.
3 Adapted from ”Is Extreme Programming Just Old Wine in New Bottles: A Com-

parison of Two Cases” [27].

174 P. Rodŕıguez et al.

agile. In [41] the result of an experiment about the application of Requirements
Interaction Management (RIM) process is showed. This study proposes changes
in the agile requirement process, particularly in eXtreme Programming. Other
publications, such as [20,13] identify some of the presented aspects in this paper
but without going into them and point out the need to explicitly consider non-
functional requirements management in Agile. However, none of these studies
had the opportunity of compare the result of an agile and a conventional project
referred to the same product as it is the case of this work. And finally, several
studies such as [42,41,43,44] have been focused on interaction requirements and
the conflicts related to this interaction. However, they are mostly focused on
conventional methodologies.

3 Case Study: From TOPENprimer to TOPENbiogas

In this section we will provide a description of the case study in which the
work is based. Subsection 3.1 describes the features of the product that has
been evolved. The objective is to describe the project scope. In subsection 3.2,
the used process is briefly described, focusing on the activities about customer
needs management. Finally, in subsection 3.3 a list of some features existing in
the initial product that were dropped in result product is presented; also a list
of new features is included.

3.1 The Evolution Product Description

The case study was focused on the evolution of TOPENprimer. TOPENprimer
was developed under a conventional methodology. It is based on the TOPEN
(Test Operation ENvironment) architecture [45], that defines a domain specific
environment for testing, monitoring and operating complex systems. TOPEN
architecture is made up of four distributed components: Topen Engine is the
kernel architecture. Mission Information Base(MIB) contains the database and
the business rules. Gateway is the element that interacts with the System Under
Test (SUT). And, finally, TOE is the user graphical interface. TOPEN follows a
software product line approach [45] and it is specially designed to be adaptable
to different application domains with a limited cost. For this reason, the evolu-
tion to a new domain implied, in general, a well-identified number of changes.
On the one hand, this limits the scope of the study but, on the other, makes the
study manageable. However taking advantage of the agile approach no feature
was taken for granted in advance. The project consisted in the required evolution
of TOPENprimer to support a new application domain. The target application
domain was a biogas power production plant that had to be tested and moni-
tored. TOPENbiogas was the result product in this project. In parallel, a biogas
power plant simulator was developed in order to validate TOPENbiogas before
its deployment in the real plant. More details about the evolution project are
available in [46]. Some features of the product scope are shown in table 1.

Some Findings Concerning Requirements in Agile Methodologies 175

Table 1. Characteristics of initial product TOPENprimer

Contextual Characteristic TOPENprimer
Factor Product

Structure Architecture Four distributed components
Size System Code Lines 30667

Number of classes 216
Code Lines MIB: 7779
by Component TopenEngine:8372

Gateway: 907
TOE: 13609

Number of classes MIB: 48
by component TopenEngine: 55

Gateway: 10
TOE: 103

Technical Programming Java
Factors Language

Communication Sockets, RMI

3.2 The Agile Development Process Description

The work reported here has been carried out within ITEA2 Flexi project [47].
Scrum [48] was used as the management methodology as it widely extended
and Flexi partners were familiar with it. The constant feedback loops constitute
the core element of the methodology. The development process is divided into
short iterations called sprints. Figure 1 shows the Scrum project cycle. The
sprint starts with a planning and finishes with review and retrospective stages.
Features to be implemented in the system are registered in an artifact called
Product Backlog (PB). In our case each feature was defined of a simple and clear
way in form of User Story [49], in business language and prioritized by business
value. At the beginning of each sprint, the Product Owner decides which PB

Fig. 1. Agile Development Model with SCRUM

176 P. Rodŕıguez et al.

items should be developed in that sprint. As can be seen in figure 1, there is not
a specific task to pick up requirements. Pre-game is the most approximate stage
because of its aims. In this stage, the scrum team, together with the customer,
prepares a list of needs that the system should have in form of user stories.

3.3 Some New and Dropped Features

Some of the original TOPENprimer functionalities were modified. Manager fa-
cility was removed. Managers would have implemented operation views of the
biogas plant; this feature is required to support cooperation of several stake-
holders, e.g. an operator and an engineer. This could have been useful but it
could be considered in a future upgraded version. A second issue was the Biogas
plant visualization. Though the graphical user interface was important, it was
agreed to postpone its implementation. A third issue was a Natural language
facility. In TOPENprimer test/operation procedures are translated into natural
language; the implementation of this feature was postponed. Finally, Opera-
tion Commands had some changes because some elements of the test/operation
language (i.e. wait, for, repeat until, while, createNE or deleteNE) were not
supported in the implemented version.

With respect to new features, a new kind of operation errors was considered
because the complexity of the plant and its level of criticality were higher than
that of slot machines. For instance, a gate cannot be close if it has not been
opened before is a very critical restriction. Second, some internal identifiers were
updated. This was transparent to the user, but implied a higher cost at MIB
database level. Finally, command validation was done both at the real plant
(simulator of real plant) and at TOPENbiogas. In TOPENprimer this validation
was only done in the TOPEN environment.

4 Identified Issues in the Case Study

The Scrum methodology was tailored according to the specific project needs and
the structure of the team. The project was developed in six sprints, fifteen days
long each. The scrum team was made out of eight members (some of them with
part-time). The customer provided the background documentation to define the
User Stories and took part in the process, though a proxy customer was also
used. This section describes some problems discovered during the study. Five
fundamental issues were identified related to requirements working with Scrum
methodology. In particular, the issues identified include requirements elicitation
tasks, crosscutting requirements, derived requirements, granularity requirements
and requirements documentation. These issues are not mutually exclusive.

4.1 Requirements Elicitation

Requirements elicitation activity intends to identify and understand customer
needs. In agile approaches development tasks are not centered in a complete and
well-defined set of requirements. User needs are incrementally elicited. In [14]

Some Findings Concerning Requirements in Agile Methodologies 177

this closed relation with the customer is reported as very successful. However,
we have found that it often happens that the customer is focused on issues on
what the system has to do, forgetting other aspects, that may be become critical,
such as the use of resources, maintenance, portability, safety, security or design.
Most of these could be classified as non-functional requirements4. This happens
because the customer usually does not have a vision of technical aspects. The
problem is not so much how to express these requirements but the impact that
may have on the product if they are not introduced at the right development
stage.

Fig. 2. System view from the team and customer

Actually it might be thought that most of the non-functional requirements
should be known in the first stages of the development [13]. Although agile
approaches contemplate an extensive use of refactoring techniques, the impact,
e.g. to re-design a client-server architecture from a centralized could be dramatic.
In our opinion, two main perspectives could be identified during the requirement
elicitation: the customer view and the team view. Figure 2 shows it graphically.
The customer perspective is functionality oriented leaving some product aspects
out of its visibility, such as technical ones. At the other side, the development
team perspective, depicted in the grid area, covers some requirements derived
from the customer needs and some others of which the customer might not
be aware of at all because of their nature. These include platform constraints,
technical issues, and even development methodologies issues. As it can be shown
in figure 2, there are some areas without any visibility. This is because at the
beginning of the project all the requirements are not available.
4 Within this paper, and referred to the experiment reported, non-functional includes

what are called quality requirements for some authors ”-ilities” and also design or
other kind of requirements outside of functional.

178 P. Rodŕıguez et al.

4.2 Crosscutting Requirements

One of the features that had a strong impact on the project was the transversal
nature of some requirements. This is the case of non-functional with respect
to functional requirements, but non-functional requirements do not have the
exclusivity of transversality. This is similar to the crosscutting concerns concept
[38,50]. That is, non-functional requirements may be associated to many user
stories. These crosscutting needs are difficult to break down into user stories
such as in the case of safety. There is also no explicit way to express user stories
interactions. A crosscut requirement is spread over several user stories, therefore,
some tasks like planning, effort estimation or testing are affected. In the study
case presented, this type of requirements has been managed under a new concept
called System Story and that will be presented in the subsection 4.5. A specific
example about this problem is shown in table 2. For example, if TOPENbiogas
has to get access to the biogas plant locally and remotely; then all commands
to be implemented have to consider this feature and planning, effort estimation
and validation tasks are concerned. If it is identified too late it could have very
serious implications on the product architecture what could delay unnecessarily
get to an acceptable product.

Table 2. Example of Crosscutting Requirement

Formal Requirement Definition

TOPEN environment can be accessed either locally or remotely
System Story

Id SS Who What Why

SS6 Test Engineer Access the environment
locally or remotely

Operate and monitor
Shredding Tank

4.3 Derived Requirements

Some required features could seem quite obvious and easy to obtain from the
customer view. However, they could have an impact in the development tasks
because some implicit related requirements are not still considered. In the study
case, this type of hidden needs was classified as derived requirements (referring to
those requirements that were derived from the analysis of other requirements).
The communication protocols that use the TOPENbiogas commands are an
example of this. These protocols are different if the environment works in local
or remote access. In local, TOPENbiogas can check the components status in
situ but not in remote. For this reason, the protocol has to be redefined to
support other additional information when TOPENbiogas is working in remote
access, as is shown in the table 2.

4.4 Granularity

Some user needs can be required at a lower level of detail. This happens not
only in agile, of course, but in not conventional approaches the impact can be

Some Findings Concerning Requirements in Agile Methodologies 179

lower as long as a long and detailed requirement process takes place. The issue in
agile is to minimize the impact in case a requirement has to be split into lower
granularity level ones. This is the case, for example, of the variables that are
used to monitor the Shredding Tank, one component of the biogas plant. In a
first iteration, the Shredding Tank was considered as the component to monitor.
However, as the project went on, lower granularity variables, that have to be
monitored too, appeared. The features of these variables affected the operation
commands format that originally was defined in a too simplistic way. The result
was to have to re-implement all the components. A lot of work was, probably
unnecessarily, lost.

4.5 Customer Needs Documentation in Form of Stories

Finally, we found an important problem when we tried to represent some cus-
tomer needs as user stories, which were already known in the initial product
TOPENprimer. Those TOPENprimer requirements classified as functional could
be written in user stories without problems. The problem appeared when we
tried to include some needs such as the required database management system
or the response time of TOPENbiogas. We found difficulties because the inclu-
sion of features classified by conventional methodologies as non-functional, in
the widest sense of this term, is not clearly defined in agile methodologies. We
tested different solutions along the development. One was that these needs were
included into user stories themselves. We considered this alternative because user
stories describe features required by user and, anyway, non-functional require-
ments are special user expectations. However, according to Kassab [51], non
functional requirements management is different to functional. Besides, many
non-functional requirements often concern multiple user stories. In our project
a new concept called System Story was used. System Stories have been defined
as ”an added element to Agile methodologies that is used to collect any feature
that customer/stakeholders want the system have related to non-functional re-
quirements that could not be allocated in user stories”

5 Discussion

The results achieved in the previous section show that, in agile methodologies,
customer requirements elicitation and management require further maturation
[39]. Therefore effectiveness can improve in the future. This section presents a
discussion and some analysis of the previous results.

5.1 User Stories Interaction

User stories represent product needs that are defined and implemented in re-
duced time slot. Agile teams manage a high number of user stories, that grows
up during the development duration, e.g. the Product Backlog in Scrum or the
analog element in other agile methods is a dynamic artifact. As consequence of

180 P. Rodŕıguez et al.

Fig. 3. Proposed life cicle for an Agile development

it, and from our own experience, the Product Backlog management is a com-
plex task in agile methodologies like SCRUM. To consider that each user stories
can be implemented independently of others is an error according to our ex-
perience. Several studies such as [42,41,43,44,17] have considered interaction of
requirements and the conflicts related to this interaction. Most of the problems
identified in section 4 are derived from these implicit requirement interactions
what implies an overload to Product Backlog management.Although communi-
cation of team members is one of the principles of the Agile manifesto, some
specific mechanisms to manage user stories dependencies should be advisable.

Table 3. Examples of User Story

User Story
Id US Who What Why

US31 Test Engineer To change the shred-
ding speed of the Tank

To operate Shredding
Tank

US40 Test Engineer To receive alert of Tank
over-temperature

To monitor Shredding
Tank

5.2 A Way to Review Stages

It seems reevaluation after each sprint should include not only well identified
needs, but also other requirements such as crosscutting or derived requirements.
Obviously the risk is loosing agility. In the case study we use the revaluation
and re-prioritization of requirements stage at the end of each sprint to evaluate
user stories that involve functional requirements from the perspective of poten-
tial non-functional requirements that are usually identified in a less obvious way.
Figure 3 shows the proposed process. An example in our case study was in the
Gateway component. It didnot appear in user stories because it is transparent
to the user but was discovered in a revaluation stage. This component had to be
completely redesigned and implemented to be adapted to the new communica-
tion protocol of the biogas plant.

Some Findings Concerning Requirements in Agile Methodologies 181

5.3 Managing Non-functional Needs

As it has been shown in the study case, non-functional requirements management
is one of the tasks that causes more problems in agile methodologies and it
have not been still found a right solution. There are two tendencies related to
this problem. On the one hand, an important agile methodologies sector thinks
that user stories are able to represent any system need, both functional and
non functional, and they do not consider a possible needs classification in agile
approaches. On the other hand, there is an increasingly number of studies that
find many difficulties to deal all requirements in the same way. They think that
all customer needs are not equal and, therefore, it is necessary to distinguish
some requirements be-cause their importance or management is different. For
example, Bostrom et al. in [52] make a differentiation with security requirements
suggesting Abuser Stories and Security-related User Stories to consider these
needs. In the case study presented, we have found numerous problems to deal
all needs equal, mainly management problems, and we have chosen to make
different between functional and non-functional needs appointing the concept to
System Story (see section 4.5)

6 Conclusions and Future Work

This paper presents some finding for requirements processes. These findings
might be currently limiting the success of agile approaches. Elicitation and man-
agement of customer needs, specially non-functional, is an issue that requires
further research; to get a better understanding of the inner relation between func-
tional and non functional may yield in improved Agile approaches. Requirements
dependencies is another important issue underlying many identified problems
in this work, such as the management of crosscutting or derived requirements.
These identified issues may be also relevant in conventional processes but this
paper is an attempt to stress that they may be more critical for Agile processes.
Read in other way, Agile processes may get a higher benefit if the research
community progresses within this direction. The work planned for the future
is dealing with gaining a better empirical knowledge combined with formal ap-
proaches. Another issue is studying how improved team cooperation can help in
situations in which the mentioned issues come up.

Acknowledgements

The work reported has been partially sponsored by the Spanish MEC and MI-
CYT under OVAL/PM TIC2006-14840 and FLEXI FIT-340005-2007-37 (ITEA2
6022). Besides, we would like to express public gratitude to BiogasFuelCell for
their help in the application domain and Answare-tech, a partner in FLEXI. We
are also grateful to the rest of the team: A. Espinoza, G. Rueda, J. Pérez, J.
Dı́az, A. Gómez and R. Cavero.

182 P. Rodŕıguez et al.

References

1. Boehm, B.: A view of 20th and 21st century software engineering. In: ICSE
2006: Proceedings of the 28th international conference on Software engineering,
pp. 12–29. ACM, New York (2006)

2. Lindvall, M., Basili, V.R., Boehm, B.W., Costa, P., Dangle, K., Shull, F., Tesoriero,
R., Williams, L.A., Zelkowitz, M.V.: Empirical findings in agile methods. In: Wells,
D., Williams, L. (eds.) XP 2002. LNCS, vol. 2418, pp. 197–207. Springer, Heidelberg
(2002)

3. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile method-
ologies. Commun. ACM 48(5), 72–78 (2005)

4. Vijayasarathy, L.R., Turk, D.: Agile software development: A survey of early
adopters. Journal of Information Technology Management 19(2) (2008)

5. Boehm, B.W., Turner, R.: Balancing agility and discipline: Evaluating and inte-
grating agile and plan-driven methods. In: ICSE, pp. 718–719. IEEE Computer
Society Press, Los Alamitos (2004)

6. Boehm, B.W., Turner, R.: Management challenges to implementing agile processes
in traditional development organizations. IEEE Software 22(5), 30–39 (2005)

7. Larman, C., Basili, V.R.: Iterative and incremental development: A brief history.
Computer 36(6), 47–56 (2003)

8. Vilki, K.: Juggling with the paradoxes of agile transformation. Flexi Newslet-
ter 2(1), 3–5 (2008)

9. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (2001)

10. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Reading (2004)

11. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: ICSE
2000: Proceedings of the Conference on The Future of Software Engineering,
pp. 35–46. ACM Press, New York (2000)

12. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering.
In: FOSE 2007: 2007 Future of Software Engineering, Washington, DC, USA,
pp. 285–303. IEEE Computer Society Press, Los Alamitos (2007)

13. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software
development. In: WETICE 2003: Proceedings of the Twelfth International Work-
shop on Enabling Technologies, Washington, DC, USA, p. 308. IEEE Computer
Society, Los Alamitos (2003)

14. Sillitti, A., Ceschi, M., Russo, B., Succi, G.: Managing uncertainty in requirements:
A survey in documentation-driven and agile companies. In: METRICS 2005: Pro-
ceedings of the 11th IEEE International Software Metrics Symposium, Washington,
DC, USA, p. 17. IEEE Computer Society, Los Alamitos (2005)

15. Miler, R.: Managing Software or Growth without fear, control, and the manufac-
turing mindset. Addison-Wesley Professional, Reading (2003)

16. Boehm, B.W.: Software Engineering Economics. Prentice-Hall Advances in Com-
puting Science & Technology Series. Prentice Hall PTR, Englewood Cliffs (1981)

17. Damian, D., Chisan, J.: An empirical study of the complex relationships be-
tween requirements engineering processes and other processes that lead to payoffs
in productivity, quality, and risk management. IEEE Trans. Softw. Eng. 32(7),
433–453 (2006)

Some Findings Concerning Requirements in Agile Methodologies 183

18. Damian, D., Chisan, J., Vaidyanathasamy, L., Pal, Y.: Requirements engineer-
ing and downstream software development: Findings from a case study. Empirical
Softw. Engg. 10(3), 255–283 (2005)

19. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons learned from
25 years of process improvement: the rise and fall of the nasa software engineering
laboratory. In: ICSE 2002: Proceedings of the 24th International Conference on
Software Engineering, pp. 69–79. ACM, New York (2002)

20. Cao, L., Ramesh, B.: Agile requirements engineering practices: An empirical study.
IEEE Software 25(1), 60–67 (2008)

21. Grünbacher, P., Hofer, C.: Complementing xp with requirements negotiation.
In: Proceedings 3rd Int. Conf. Extreme Programming and Agile Processes in Soft-
ware Engineering, pp. 105–108. Springer, Heidelberg (2002)

22. Eberlein, A., Leite, J.: Agile requirements definition: A view from requirements
engineering. In: International Workshop on Time-Constrained Requirements Engi-
neering, Essen, Germany (September 2002)

23. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

24. Neill, C.J., Laplante, P.A.: Requirements engineering: The state of the practice.
IEEE Softw. 20(6), 40–45 (2003)

25. IEEE: IEEE Std 830-1998: IEEE Recommended Practice for Software Require-
ments Specifications (1998)

26. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

27. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is extreme programming just old
wine in new bottles: A comparison of two cases. J. Database Manag. 16(4), 41–61
(2005)

28. Ceschi, M., Sillitti, A., Succi, G., De Panfilis, S.: Project management in planbased
and agile companies. IEEE Software 22(3), 21–27 (2005)

29. Sutherland, J.: Inventing and reinventing scrum in five companies (2001),
http://www.agilealliance.org/system/article/file/888/file.pdf

(accesed, May 2008)
30. Schwaber, K.: Agile Project Management With Scrum. Microsoft Press, Redmond

(2004)
31. Mann, C., Maurer, F.: A case study on the impact of scrum on overtime and

customer satisfaction. In: ADC 2005: Proceedings of the Agile Development Con-
ference, Washington, DC, USA, pp. 70–79. IEEE Computer Society, Los Alamitos
(2005)

32. Capiluppi, A., Fernandez-Ramil, J., Higman, J., Sharp, H.C., Smith, N.: An em-
pirical study of the evolution of an agile-developed software system. In: ICSE 2007:
Proceedings of the 29th international conference on Software Engineering, Wash-
ington, DC, USA, pp. 511–518. IEEE Computer Society, Los Alamitos (2007)

33. Baker, S.: Formalizing agility, part 2: how an agile organization embraced the cmmi.
In: Agile Conference, p. 8 (July 2006)

34. Baker, S.W., Thomas, J.C.: Agile principles as a leadership value system: How agile
memes survive and thrive in a corporate it culture. In: AGILE 2007: Proceedings
of the AGILE 2007, Washington, DC, USA, pp. 415–420. IEEE Computer Society,
Los Alamitos (2007)

35. Zowghi, D., Paryani, S.: Teaching requirements engineering through role playing:
lessons learnt. In: Zowghi, D., Paryani, S. (eds.) Proceedings. 11th IEEE Interna-
tional Conference on Requirements Engineering, pp. 233–241 (September 2003)

http://www.agilealliance.org/system/article/file/888/file.pdf

184 P. Rodŕıguez et al.

36. Nawrocki, J.R., Michal Jasi, n., Walter, B., Wojciechowski, A.: Extreme program-
ming modified: Embrace requirements engineering practices. In: RE 2002: Proceed-
ings of the 10th Anniversary IEEE Joint International Conference on Requirements
Engineering, Washington, DC, USA, pp. 303–310. IEEE Computer Society, Los
Alamitos (2002)

37. Pinheiro, F.A.C.: Viewpoints: Requirements honesty. Requir. Eng. 8(3), 183–192
(2003)

38. Araujo, J., Ribeiro, J.: Towards an aspect-oriented agile requirements approach.
In: Eighth International Workshop on Principles of Software Evolution, pp. 140–143
(September 2005)

39. Ribeiro, J.C., Araujo, J.: Asporas: A requirements agile approach based on sce-
narios and aspects. In: Second International Conference on Research Challenges in
Information Science. RCIS 2008, pp. 313–324 (June 2008)

40. Lee, M.: Just-in-time requirements analysisthe engine that drives the planning
game. In: Proc. 3rd Intl. Conf. Extreme Programming and Agile Processes in Soft-
ware Eng. (XP 2002), pp. 138–141 (2002)

41. Woit, D.M.: Requirements interaction management in an extreme programming
environment: a case study. In: ICSE 2005: Proceedings of the 27th international
conference on Software engineering, pp. 489–494. ACM, New York (2005)

42. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction man-
agement. ACM Comput. Surv. 35(2), 132–190 (2003)

43. Shehata, M., Eberlein, A., Fapojuwo, A.: Using semi-formal methods for detecting
interactions among smart homes policies. Sci. Comput. Program. 67(2-3), 125–161
(2007)

44. Kim, M., Park, S., Sugumaran, V., Yang, H.: Managing requirements conflicts
in software product lines: A goal and scenario based approach. Data Knowl.
Eng. 61(3), 417–432 (2007)

45. Magro, B., Garbajosa, J., Perez, J.: A software product line definition for valida-
tion environments. In: 12th International Conference on Software Product Line,
pp. 45–54 (September 2008)

46. Rodriguez, P., Yague, A., Alarcon, P., Garbajosa, J.: Metodologias agiles desde
la perspectiva de la especificacion de requisitos funcionales y no funcionales.
In: 13th Conference on Software Engineering and Databases, JISBD 2008 (2008)

47. The Flexi Research Project: Itea 2 flexi
48. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall

PTR, Upper Saddle River (2001)
49. Cohn, M.: User Stories Applied: For Agile Software Development. The Addison-

Wesley Signature Series. Addison-Wesley Professional, Reading (2004)
50. Murphy, G.C., Walker, R.J., Baniassad, E.L.A., Robillard, M.P., Lai, A., Kersten,

M.A.: Does aspect-oriented programming work? Commun. ACM 44(10), 75–77
(2001)

51. Kassab, M., Daneva, M., Ormandjieva, O.: Scope management of non-functional
requirements. In: 33rd EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 409–417 (August 2007)

52. Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., Kruchten, P.: Extending xp
practices to support security requirements engineering. In: SESS 2006: Proceedings
of the 2006 international workshop on Software engineering for secure systems,
pp. 11–18. ACM, New York (2006)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 185–198, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Exploratory Investigation on Refactoring in
Industrial Context

Yi Wang

Department of Information System
City University of Hong Kong, Kowloon, Hong Kong

ywang1@acm.org

Abstract. Refactoring, which is an efficient method to improve the quality of the
existing code, has been widely used in practical software development and main-
tenance activities. The current refactoring researches are more focus on the tech-
nical aspect of refactoring but pay little attention to its use in real software
development environment. However, software development and maintenance, in
their nature, are human-centric activities. The lack of systematic empirical stud-
ies has resulted in the gap between current refactoring researches and industrial
practices. To bridge this research gap, we conduct this exploratory study to learn
more about the actual use of refactoring in the industrial context. Using a series
of semi-controlled interviews as our major research method, we gathered first-
hand information on how the refactoring is used by practitioners. We built a
three-stage framework to describe the overall refactoring process. 19 basic fac-
tors are identified and categorized. We also identify the most important ones and
the factors that may trigger potential conflicts between developers and the man-
agers. Some related issues such as this study’s implications are also discussed.

Keywords: Refactoring, Industrial context, Human factors.

1 Introduction

Refactoring, as a software engineering method used to incrementally improve the de-
sign of existing code, is being increasingly adopted in industrial software development.
After its first presentation in last 80s [1], more and more software engineers already
use refactoring in their daily developments [2]. Mainstream software development
environments, such as Eclipse1 and Visual Studio. net2, now provide semi-automated
refactoring modules, and thus further facilitate the adoption of refactoring in industrial
software development environments. The value proposition of refactoring is its power
to reconstruct existing software according to well-defined mechanics and principles,
hence reversing the software decay process caused by traditional development methods
[3]. Refactoring is now also a baseline approach of agile software development meth-
odology [4]. All these developments suggest that refactoring becomes an important
aspect of software design, whose impact is going to grow in future.

1 http://www.eclipse.org
2 http://msdn.microsoft.com/en-us/vstudio/products/default.aspx

186 Y. Wang

However, much remains unknown about the factors that influence the refactoring
practices in real software development context. We know little about what motive the
programmers refactor the code, and what contribute to the success of the refactoring.
Specifically, most research on refactoring has focused on technical aspects but has
ignored human factors. Refactoring, as most other software development methods, is
human-centric in nature. Besides, as software artifacts are created by and for human
beings, human and organizational factors also play an important role in the success
use of a specific development approaches; the human dimension is at least as impor-
tant as the technical dimension [5]. Although several works (e.g. [6, 7, 8, 9] addressed
this point, empirical studies on refactoring are still often organized in an ad hoc way
and have not generated the needed empirical evidence. Therefore more and better
formalized empirical research is necessary to improve our understanding of refactor-
ing activities. Besides, identifying the factors influencing refactoring is a promising
way to bring benefits to future software development practices. This can help practi-
tioners to better deal with issues in refactoring and avoid potential failures.

In this paper, we present an empirical investigation to the refactoring usage in real
world software development. Based on the existing literatures, we conducted semi-
controlled interviews to the 10 software development practitioners to gather the in-
formation. In essence, our goal was to gain better and boarder understanding on the
refactoring activities in industrial context. Therefore, our research questions can be
specified as follows:

RQ1: What are the factors influence the refactoring in real software development?
RQ2: Can we build a framework for industrial refactoring activities with these factors?
RQ3: What are the theoretical and practical implications brought by the framework

and the factors?

The remainder of this paper is organized as follows. Section 2 presents a prelimi-
nary conceptual framework that guides the whole process of this research. Section 3
briefly introduces the research methodology we adopted. Section 4 provides our in-
terview results with the final framework, which is an improvement of the previous
one. Some related issues are discussed in section 5. Section 6 concludes the whole
paper and points out future research directions.

2 Preliminary Conceptual Framework

To frame our study, we make use of a three stages conceptual framework for the
refactoring, based on reviews of prior literatures and several informal interviews to
the software developers. The conceptual framework is shown as figure 1. The frame-
work contains three sequence stages, which are: (1) Decision for Refactoring, (2)
Refactoring Process, and (3) Refactoring Results. The three stages are sequential in
time. Each of them contains several factors. Detailed illustrations to each stage and
the factors will be described in the following three subsections.

 An Exploratory Investigation on Refactoring in Industrial Context 187

Fig. 1. The Preliminary Three Stages conceptual framework for the Refactoring in Real Soft-
ware Development/Maintenance Activities

2.1 Stage 1: Decision for Refactoring

Before the refactoring activities, refactoring decisions must be made firstly. Every
decision making process must to take some constrains into consideration. In another
word, the decision makers have some concerns to push them make the decision of
refactor their/others’ programs. We divided these concerns into two categories, which
are decision maker (subject who make the refactoring decision), and situation.

In the decision maker category, there are four items: (1) Skills, (2) Knowledge, (3)
Role/responsibility, (4) Resources. It is obviously the first two have some connec-
tions. Detailed introduction is as follows.

 Skills: Personal skills are needed in the refactoring process, for example, care-
fulness, patience, communication skill. It obvious that successful refactoring ask
for some specific personal skills [10, 11].

 Knowledge: “Knowledge” is also needed to ensure the success of refactoring.
Generally, it includes programming language knowledge, testing and debugging,
software engineering, etc [1].

 Role/Responsibility: The “Responsibility” of a specific vocational role influ-
ences the decision making of refactoring. From the view of programming ethnic
[12,13], Good programmers often holds the opinion that they are responsible for
their program’s quality, so they tend to use refactoring to keep improving their
existing code.

 Resources: “Resources” refers to the potential resources can be used in refactor-
ing process. The resources can be divided into two categories, personal resources

188 Y. Wang

and team resources. Personal resources often contain personal experiences, more
powerful tools, etc. Team resources refer to the resources can be used by the
team as a whole, for example, the support from the third party.

For the situation domain, two factors are emerged, which are “need” (refers to the
need from stakeholders), and “value promise”.

2.2 Stage 2: Refactoring Process

Due to the complexity and sophistication of the refactoring, the refactoring process is
not an “isolate” process. No process is operated without constrains. There are some
constraints that influence the Refactoring Process. These constraints are also the
refactoring participants’ major concerns in the refactoring process. Two types of con-
straints are identified as follows.

 Level: The refactoring can be divided into two categories: Low level and High
level [1, 14]. The low level (primitive) refactoring is fine-gained (under the class
or interface level), while the high level refactoring is operated on bigger granu-
larity (major design changes) and can be treated as the composition of low level
refactoring.

 Tools: Software engineers need to use some software tools to ease their tasks
(e.g. finding code need refactoring, [15]) during the refactoring process. Besides
some prototypes developed by researches, most frequently used IDEs, for exam-
ple, Microsoft Visual Studio .net, and Eclipse, has contained some basic refac-
toring functions, but most of these IDEs only support primitive refactoring.

2.3 Stage 3: Refactoring Results

The refactoring results can be divided into two dimensions. The first one is “Refactor-
ing Outcomes”, which refers to the factors which are easy to define and measure. The
other one is “Refactoring Values”, which refers to the more abstract factors with
value attributes of refactoring results.
The refactoring outcomes contain two factors:

 Function: Functions means the program’s functions should be neither added nor
reduced. The ideal refactoring keep the functions unchanged, this directly comes
from the definition of refactoring. However, in many occasions, it is impractical
to achieve this goal. To make all the original test cases pass is the common crite-
ria in most refactoring practices [16].

 Structure: Structure refers to the way of how the source code organized; it is
often an important indicator of the program quality. The refactoring is no doubt
an efficient way of improving the program structure [3, 17, 18].

The refactoring values contain three factors:

 Use Value: Use value is generated through refactoring. Refactoring makes the
programs are more easily to reuse, hence bring use value to the existing software
systems [19, 20, 21]. Some bugs are also fixed during the refactoring process.

 Personal Perception: Personal perception refers to the perception based on
the participant’s personal experience in refactoring. Personal perception often

 An Exploratory Investigation on Refactoring in Industrial Context 189

contains the personal experiences increasing, skill development, confidence,
happiness, satisfaction and so on.

 Team Perception: the perception from the team level. For example, it can be
other team members’ reorganizations, rewards, and so on.

3 Empirical Methodology

We adopt the semi-structured interview as our main data collection approach. The
data collection process is consisted of 10 interviews. The data collection procedure
contains two steps, the first step is subjects’ selection, and the second is interview.
Both of them are briefly introduced respectively as follows.

3.1 Who Can Be the Interview Subjects?

Software developers and the junior level managers in creditable software develop-
ment organizations are considered as target interviewees for this study. We selected
10 interviewees from 4 software companies (IBM: 4, Microsoft: 2, SAP 2, Wicrosoft
(a joint venture of Microsoft and Shanghai local government): 2, 8 males and 2 fe-
males). The interviewees contain six software developers, four program/project man-
agers. All interviewees are full-time employees. We do not enroll the senior level
manager in our interviews, because senior level managers often do not participate in
software development and maintenance activities directly. All these interviewees have
at least 1 year software development/maintenance experience (Avarage: 4.65, Stan-
dard Deviation: 3.786). All of them have obtained bachelor degree, and six of them
received post-graduate education. We try our best to ensure the diversity of the inter-
viewees to make this study more representative and sound. The detailed background
information of interviewees is shown in table 1.

The interviewees were all based in Shanghai and not selected randomly. Although we
made this selection mainly for the convenience, this was still a wise decision. Shanghai
has most high developed software industry in China. It is also a city with high diversity.
We also paid enough attentions to make our interviews be more representative.

3.2 Interviews

The interview processes are semi-controlled. This means we have an interview plan to
guide the interviews process. The interview plan contains a set of specific questions
(for detailed information, please refer the appendix 1), which derive from the concep-
tual framework, which would be revised continuously according the up-to-date infor-
mation gathered through the interviews. During the interview process, the interviewees
were asked to describe what motivate them to make the refactoring decisions, what
influence the refactoring process, and what the refactoring results are. Informants were
also asked to describe their personal perceptions about the refactoring. Some other
related questions are also asked. We also allow the interviewees to express themselves
freely; they can talk anything they want. And we do not interrupt them. Each interview
takes approximately 30 minutes. All interviews are taken detailed notes, and finally
formed 76 pages of hand-writing notes with 182 entries. The same interviewer, using
identical data collection protocols, conducted all the interviews for 10 interviewees.

190 Y. Wang

Table 1. The backgrounds of the Interviewees

Interviewee Org. Job Role Business Type Edu. (highest) Experience

No.1 Microsoft SDE Standard Dev. BSc in CS 2
No.2 Wicrosoft SDE Tailored Dev. (I) ME in CS 1.5
No.3 IBM PM Tailored Dev. (E) BSc in CS 14
No.4 Microsoft PM Standard Dev. MSc in CS 5
No.5 IBM IT Spec. Tailored Dev. (E) ME in CS 3
No.6 IBM SDE Standard Dev. BSc in Math. 6
No.7 Wicrosoft PM Tailored Dev. (E) ME in CS 7
No.8 SAP PM Standard Dev. BSc in CS 4
No.9 SAP SDE Standard Dev. ME in CS 2
No.10 IBM SDE Standard Dev. ME in SE 2

REMARKS. SDE: Software Development Engineer, IT Spec.: IT Specialist, PM:
Project/Program Managers. (I): Internal, (E) External.

4 Final Framework and Results

According to the interviews we conducted, we revised the conceptual framework that
presented in section 2 until it became stable (no new factors were identified). The
revision was through an incremental way till the eighth interview. Finally, some new
factors were added, and we made the categories of different factors more reasonable.
We also defined the major relationships in the final framework to make it more com-
plete and expressive. The revised framework is shown by figure 2. Detailed illustra-
tions will follow the figure. We use two parts to illustrate this final framework. We
first point out the differences between the preliminary framework and the final one,
and then explain the major relationships in this framework.

Fig. 2. The final framework which is revised from the conceptual one based on interviews

 An Exploratory Investigation on Refactoring in Industrial Context 191

4.1 Changes to the Preliminary Framework

Compared with the preliminary conceptual framework, new factors are added in every
stage. We also refine the categories of them. We introduce these changes according to
the three stages respectively. At the end of this subsection, we use table 2 to summa-
rize all changes between the preliminary framework and the final one.

(1) In “Decision for Refactoring”
In this stage, two factors are added; the first one is “Task Assigned”, while the other
is “Barriers”. The “Task Assigned” describes such a situation that somebody is as-
signed to finish some refactoring tasks. The “Barriers” refers to the barriers that may
be encountered by the developers during the refactoring process, for example, time
limitation, lack of resources, etc. Meanwhile, three factors are substituted by new
factors (please refer to the table 2). These substitutions are trying to ensure the items
we adopt to describe these factors more precise and to avoid ambiguities.

Not only add the factors mentioned above, we also divide them into different catego-
ries. In the “Decision for Refactoring” stage, they fall into two categories, “Varying
Context” and “Value Promise”. As shown by its name, “Varying Context” contains the
changeable factors that vary in different development environment, while the “Value
Promise” of Refactoring is relatively identical for all refactoring practices. In the “Vary-
ing Context” category, there are two sub-categories: “Situation” and “Participant’s At-
tributes” and two independent factors (“Barriers” and “Resources”). The “Situation”
refers to the situations faced by the decision maker, while the “Participant’s Attributes”
refers to the personal attributes of the refactoring participants.

(2) In “Refactoring Process”
In this stage, three factors are added based on the interviews, they are: “Tasting and
Debugging”[22], “Support Activities”, and “Communication”. We also divided them
to two different categories, which are “Technical Issues” and “Non-Technical Issues”.
“Testing and Debugging” is really straightforward, so we do not make further expla-
nation here. Besides, even test code itself also can be refactored [23]. It is used to
describe the testing and debugging efforts aiming to ensure the correctness and reli-
ability of software. The most important change is that we add the two “Non-Technical
Issues” factors here. We also give the meaning of these two factors.

 Support Activities: “Support Activities” refers to the activities occurring in the
refactoring process which try to ensure the refactoring process runs smoothly.
Generally, these activities contain group meeting, workshops, and knowledge
sharing.

 Communication: “Communication” refers to the communication activities oc-
curring in the refactoring process. There are two kinds of communications. The
first one is internal communication, which occurs between team members. The
other one is external communication, which occurs between the refactoring team
and other stakeholders (e.g. senior level managers, clients, etc.).

(3) In “Refactoring Results”
As we have done in the first two stages, we also make some changes here. We add
one element named “Deliverables” in the “Refactoring Outcome” dimension. The
item “Deliverables” refers to the software after some kinds of refactoring. It is the
final deliverables to other stakeholders of refactoring activities.

192 Y. Wang

Table 2. The changes between the preliminary framework and the final one

Changes on Basic factors
Stage Original Changed Change Type

Need Business Need Substitute
Skill Soft Skill Substitute
Knowledge Hard Skill Substitute
N/A Barriers Add

Stage 1:
Decision for
Refactoring

N/A Task Assigned Add
N/A Testing and Debugging Add
N/A Communication Add

Stage 2:
Refactoring
Process N/A Support Activities Add

Function Behavior Preservation Substitute
Structure Program Quality Substitute

Stage 3:
Refactoring
Process N/A Deliverables Add
Changes on Categories
Stages Changes
Stage 1:
Decision for
Refactoring

“Varying Context” category is added. “Situation” downgrades to sub-
category, and the “Participants Attributes” is added as sub-category.
“Value Promise” becomes an independent element.

Stage 2: Refactoring
Process

Basic factors are divided into “Technical Issues” and “Non-Technical
Issues”.

Stage 3: Refactoring
Results

No major changes in this stage.

We also use the “Program Quality” to substitute the “Structure”. The “Program Qual-

ity” is more general than the “structure”. In the refactoring process, not only source code
structure improves but other aspects of program quality also do. For instance, refactor-
ing eliminates some duplicated code, makes the software is easier to test and maintain
[24]. The “Function” is also changed to “Behavior Preservation” [25, 26]. The latter one
is more precise to describe the important feature (the program’s external behaviors
should not be changed in refactoring) of refactoring.

4.2 Relationships in the Final Framework

There are a set of relationships defined in the final framework, ordered from R1 to
R8. The relationships set can be grouped into 5 subsets according their similarity:

{R1}, {R2}, {R3, R4}, {R5, R6}, {R7, R8}.

 R1: It means the “varying context” works together with “value promise” to in-
fluence the decision maker in stage 1.

 R2: It means the decision maker decides to start refactoring.
 R3 & R4: These two relationships belong to the sequential lockstep relationship.

The previous one leads to the occurrence of the latter one.
 R5 & R6: These two relationships are used to describe both the “Technical Is-

sues” and “Non-Technical Issues” affect the refactoring process.

 An Exploratory Investigation on Refactoring in Industrial Context 193

 R7 & R8: These two show the relationships of two different dimensions with
refactoring results respectively. These two are used show “Refactoring Outcomes”
and “Refactoring Value” are two different aspects of “Refactoring Results”.

4.3 The Importance of Each Factors

In figure 4, we provided the information on the importance of each factor. According
to the criteria we specify in the illustration section of figure 4, five (26.3%) factors are
the strong factors, six (31.6%) are neutral factors, and the left eight (42.1%) are weak
factors. The strong factors contain “Hard Skill”, “Level”, “Communication”, “Behav-
iour Preservation” and “Program Quality”. These are the most important factors in the
refactoring process. Both the developers and the managers should pay more attentions
to these points in their future refactoring activities.

S: Strong, N: Neutral W: Weak. These are used to describe the importance of the each element.
If a factor is mentioned as important factors by no more than 6 interviewees, it is “Weak”, if 7,
it is “Neutral”, and “Strong” for 8 and more.

Fig. 3. Interviewees’ attitudes towards each factor. If they think a factor is important, we mark
a “√”on responded cell.

Although the neutral and weak factors seem not as important as the five strong ones,
they also provide some important implications. From the last column of figure 3, we
can find that some factors are really important for some specific groups of practitioners
(managers and developers). There are five factors which are strong in managers, while
another five are strongly supported by the developers. The identifying of these factors
helps the specific practitioners to better deal with related issue. For example, the man-
agers maybe understand their subordinates better and identify their major tasks more
clearly.

194 Y. Wang

5 Disscussions

5.1 The Implications of the Factors’ Importance

5.1.1 Factors with High Importance
As we mentioned before, it is no deny that the five strong factors are the most impor-
tant ones. These high important factors can be divided into two categories. The first
one is the factors that influence the overall success of the refactoring. It contains four
factors, which are “Hard Skill”, “Level”, “Communication”, and “Behavior Preserva-
tion”. If they are ignored in the refactoring process, the refactoring activates will fail
in all likehood. For instance, if a refactoring participant does not have sufficient pro-
gramming skill, how can he/she finish a refactoring task?

Another category is the key indicators of the refactoring result. It contains two fac-
tors, “Behavior Preservation” and “Program Quality”. These two are the most impor-
tant criteria to judge whether a refactoring success or not.

From above discussion, we can find that, the element “Behavior Preservation” be-
longs to both categories. This because of it is not only a factor that need to be consid-
ered during the every primitive refactoring step, but also a key indicator to evaluate
the overall results of the refactoring process.

5.1.2 Factors with Potential Conflicts
Other factors need us pay more attentions are the neutral or weak factors that are
strong for specific group of people. The last column of the figure 2 summarize these
factors, these are 5 factors strong only for managers and another 5 for developers.

So, what are the implications showed by these factors? The answer for this question
is really straight-forward. These factors show that there are many differences between
managers and the developers. The differences span all three stages of the refactoring,
we have pointed out them in section 4.2. In decision for refactoring stage, there are
“Soft Skill” and “Role/Responsibility”, which are strongly supported by the develop-
ers, while, “Business Need” and “Value Promise” are highly regarded by the manag-
ers. In the refactoring process, the developers tend to pay more attentions to the techni-
cal issues (“Tools” and “Testing and Debugging”). The managers, more concern on the
“Support Activities”. When comes to the refactoring results, the “Deliverables” and
“Team Perception” are more preferred by the managers while “Personal Perception” is
most developers’ concern.

Base on above discussion, we can safely conclude that the differences between the
developers and managers would trigger some misunderstanding between them, and
lead to some potential conflicts directly or indirectly. For instance, if the managers do
not show any interest to the technical issues such as testing and debugging, the devel-
opers may think their managers are in the wrong directions and do not have technical
capability to lead them, hence, this misunderstanding may threat the success of the
refactoring. Therefore, both managers and developers should pay some attention to
these factors to avoid these conflicts in the refactoring practices.

5.1.3 Suggestions
After identifying these factors, we provided some suggestions to help the practitioners
to better deal with these factors. Our suggestions for each category are summarized in
following figure.

 An Exploratory Investigation on Refactoring in Industrial Context 195

Fig. 4. Suggestions for each identified factor

5.2 Are the Factors and Framework Fundamental?

It is difficult to ensure that our study has cover participants’ all concerns on the refac-
toring. For the limitation of our research, we can not claim that the final framework
describes all possible categories of issues on refactoring in the industrial context.
With more data or experience with this topic, other related issues may be apparent.
For now, we think it is more important to consider how well this framework supports
the future practices and researches of refactoring. In particular, does it help to:

1. Provide clearer vision of refactoring to its participants,
2. Provide useful implications to future refactoring practices,
3. Help the practitioners to better deal with issues in the refactoring practice.

This study has great potential in this regard. It identifies the critical factors for the
success of the refactoring practices, while providing some practical guidelines for
future practices.

5.3 Are the Factors and Framework General?

We conducted 10 interviews to form this study; the interviewees come from 4 compa-
nies with two major types of software development roles. In these four companies,

196 Y. Wang

three (exclude Wicrosoft) are multinational ultra-large software development organi-
zations. Although these interviewees work in these organizations’ China branches,
this is not a threat to the generality of this study. This because these organizations’
China branches adopt the same development processes, methodologies, tools, and
policies with other branches located in United States or India, etc. The employees are
also educated and trained in the similar way with the foreign employees. Besides, they
often engage in the global software development and collaborate with foreign col-
leagues. These all reduce the cultural influence to these individuals to the minimal
level and ensure the generality of this study.

5.4 Summary

From the discussions in above and this section, we can easily find that, the three re-
search questions specified in section 1.3 have been at least partly answered. We ex-
tracted the factors influence the real world refactoring activities, and build a stable
framework for describing the panorama of refactoring with these factors. And what’s
more, we identified the importance for each factors and summarized some useful
implications and suggestions for future refactoring practices based on the analysis to
the collected data. However, we still need to continue the data analysis process to
extract more useful facts and implications.

6 Concluding Remarks

This study focused on providing empirical investigation on the industrial refactoring
practices. Our results demonstrate the existence of important factors for refactoring
success. From a theoretical perspective, these findings add an important new dimension
to empirical software engineering research in that they provide a panorama of the refac-
toring practice in the real software development and maintenance environment, and
identify the key factors in different stages of the refactoring activity. From a practical
perspective, this study suggests that, rather than trying to pursuit advanced refactoring
techniques, software development teams should build a boarder view on the refactoring
activities, and try to build fully understanding between people with different job role.
This differs substantially from that found in most of the existing refactoring literatures,
which focus almost entirely on design new refactoring tools and techniques. Besides,
this study also brings some practical implications. For example, identifying the practi-
tioners’ concerns in the refactoring process and finding priority for these concerns could
help the refactoring teams and individuals to deal with some potential problems they
will encounter during the future refactoring activities.

Till now, this research is still in progress, we still need to provided deep analysis to
the data we gathered and to learn more about the real refactoring usage and perception
in the industrial context, for example, analyzing the interviewees opinions towards
existing tools. We hope our future work could bring us more useful theoretical and
practical implications. This study is need replicated in different contexts to increase
the confidence towards the findings in this paper

 An Exploratory Investigation on Refactoring in Industrial Context 197

References

1. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application Frameworks. Ph.D. thesis, University of Illinois at Urbana-Champaign (1992)

2. Xing, Z., Stroulia, E.: Refactoring Practice: How it is and how it should be supported - An
Eclipse Case Study. In: Proceedings of International Conference on Software Maintenance
(ICSM 2006), pp. 458–468 (2006)

3. Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-Wesley,
Reading (1999)

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, Reading
(2000)

5. Constantine, L.: Peopleware Papers: The notes on the human side of software. Prentice
Hall, Englewood Cliffs (2001)

6. Counsell, S., Swift, S.: Refactoring Steps, Java Refactorings and Empirical Evidence.
In: Proceedings of 32nd Annual IEEE International Computer Software and Applications
Conference (COMPSAC 2008), pp. 176–179. IEEE Computer Society, Los Alamitos
(2008)

7. Murphy-Hill, E., Black, A.P.: Refactoring Tools: Fitness for Purpose. IEEE Soft-
ware 25(5), 38–44 (2008)

8. Murphy-Hill, E., Black, A.P.: Breaking the Barriers to Successful Refactoring: Observa-
tions and Tools for Extract method. In: Proceedings of 30th International Conference on
Software Engineering, Leipzig, Germany, May 2008. IEEE Computer Society, Los Alami-
tos (2008)

9. Murphy, G.C., Kersten, M., Findlater, L.: How Are Java Software Developers Using the
Eclipse IDE? IEEE Software 23(4), 76–83 (2006)

10. Acuña, S.T., Juristo, N., Moreno, A.M.: Emphasizing Human Capabilities in software de-
velopment. IEEE Software (9), 94–101 (2006)

11. Wake, W.C.: Refactoring Workbook. Addison-Wesley, Reading (2003)
12. Gill, T.: Visual Basic 6: Error Coding and Layering. Prentice-Hall, Englewood Cliffs

(2000)
13. Gill, T.: Creating Blueprint-Quality Software Specifications. Prentice Hall, Englewood

Cliffs (2001)
14. Roberts, D.: Practical Analysis for Refactoring. Ph.D. thesis, University of Illinois at

Urbana-Champaign (1999)
15. Dudziak, T., Wloka, J.: Tool-supported Discovery and Refactoring of Structural Weak-

nesses in Code. M.S. thesis, Faculty of Computer Science, Technical University of Berlin
(2002)

16. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Transaction on Software
Engineering 30(2), 126–139 (2004)

17. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding Refactorings via Change Metrics. In: Pro-
ceedings of International Conference on Object Oriented Programming, System, Language
& Application (OOPSLA 2000). ACM SIGPLAN Notices, vol. 35(10), pp. 166–177 (2000)

18. Philipps, J., Rumpe, B.: Root of Refactoring. In: 10th OOPSLA Workshop on Behavioral
Semantics (2001)

19. Cai, Y., Sullivan, K.J.: A Value-oriented Theory of Modularity in Design. In: Proceedings
of the Seventh International Workshop on Economics-driven Software Engineering Re-
search (EDSER 2005), pp. 1–4. ACM, New York (2005)

20. Favaro, J., Favaro, K., Favaro, P.: Value Based Software Reuse Investment. Annals of
Software Engineering 5, 5–52 (1998)

198 Y. Wang

21. Poulin, J.S., Caruso, J.M., Hancock, D.R.: The Business Case for Software Reuse. IBM
System Journal 32(4), 567–586 (1993)

22. Dinh-Trong, T., Geppert, B., Li, J.J., Roessler, F.: Looking for More Confidence in Refac-
toring? How to Assess Adequacy of Your Refactoring Tests. In: Proceedings of the 8th In-
ternational Conference on Quality Software. IEEE Computer Society, Los Alamitos (2008)

23. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, Reading
(2007)

24. Ducasse, S., Rieger, M., Demeyer, S.: A Language Independent Approach for Detecting
Duplicated Code. In: Proceedings of 11th International Conference on Software Mainte-
nance (ICSM 1999), pp. 109–118. IEEE Computer Society, Los Alamitos (1999)

25. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program transfor-
mations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002.
LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002)

26. Mens, T.: A Formal Foundation for Object-Oriented Software Evolution. Ph.D. thesis, De-
partment of Computer Science, Vrije Universiteit Brussel, Belgium (September 1999)

Appendix: The Interview Outline3

Section 1. Background Information

1. Basic Information (experience, education, etc.).
2. The use of refactoring method (frequency, degree of familiarity, etc.).

Section 2. Refactoring Related Information

3. What factors influence your decision making on refactoring? If possible, please
specify the importance of them. (According to our conceptual model, the pre-
defined factors are used as the hints for the interviewees).

4. During the refactoring process, what factors contribute to the refactoring results?
Which is more important aspect (technical or non technical) in refactoring process?
What are the reasons for your viewpoints? What about the importance of each factor?

5. How to evaluate the results of refactoring? Is the perceived success keep accor-
dance with the improvements of the software artifacts?

6. What are your personal perceptions towards refactoring techniques?

Interviewee is free to provide any related information.

3 This is only the short outline of the interviews, for the detailed interview questions, please

contract the author via ywang1@acm.org. We also asked some specific questions according to
the information provided each interviewee.

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 199–215, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Absorbing Software Testing into the Scrum Method

Janne Tuomikoski1 and Ilkka Tervonen2

1 Ixonos Plc, Mobile Terminal & SW, Kiviharjunlenkki 1 B,
90220 Oulu, Finland

2 University of Oulu, Department of Information Processing Science, P.O. Box 3000,
90014 Oulun Yliopisto, Finland

janne.tuomikoski@ixonos.com, ilkka.tervonen@oulu.fi

Abstract. In this paper we study, how to absorb software testing into the Scrum
method. We conducted the research as an action research during the years 2007-
2008 with three iterations. The result showed that testing can and even should
be absorbed to the Scrum method. The testing team was merged into the Scrum
teams. The teams can now deliver better working software in a shorter time, be-
cause testing keeps track of the progress of the development. Also the team
spirit is higher, because the Scrum team members are committed to the same
goal. The biggest change from test manager’s point of view was the organized
Product Owner Team. Test manager don’t have testing team anymore, and in
the future all the testing tasks have to be assigned through the Product Backlog.

Keywords: Scrum method, team structure, exploratory testing, test manager.

1 Introduction

The variety of agile methods, nowadays, includes a number of specific techniques
(e.g. test-driven development) and practices (e.g. pair-programming) of software
development. Among the first and perhaps best known agile methods are Scrum and
XP. Scrum is aimed at providing an agile approach for managing software projects
while increasing the probability of successful development of software, whereas XP
focuses more on the project level activities of implementing software [1]. We use the
term Scrum method, although it is originally defined as a framework [2]. This means
that we provide some guidelines, how to merge testing tasks into development tasks –
although as a framework it would give only general principles to manage software
projects.

In this paper we focus on Scrum method and in particular, how to absorb software
testing into the Scrum method. We conducted the research as an action research and
during the research three iterations were done. Each iteration consisted of problem
diagnosing, action planning, action taking, analyzing and specifying learning phases.
The steps, presented in paper, started in the beginning of 2007 and ended by June
2008. It was mandatory to execute the transition in small steps, because the ongoing
work couldn’t be endangered. The transition started by changing development team

200 J. Tuomikoski and I. Tervonen

structures the Scrum teams alike. Piece by piece more Scrum methods like planning
sessions and daily meetings were introduced inside the teams and transition continued.

The result showed that testing can and even should be absorbed to the Scrum
method. Most important thing and power in the Scrum are self organizing teams,
which deliver an increment of working software after each sprint. To achieve this
situation, teams need expertise from different software development areas, in our case
from testing and coding. Test engineers and developers together form a Scrum team,
and each individual is able to commit totally on common goals of the team.

The biggest change from test manager point of view was the organized Product
Owner Team. With the Product Owner Team we could support our Product Owner in
building and maintaining the Product Backlog. The Product Owner Team could be
also answer to our problem that how to handle and complete all the testing tasks in a
way that does not mess up the work of test engineers and the Scrum teams. The test
manager could generate the testing tasks and introduce those to the Product Owner
Team to prioritize. Finally, those tasks would be placed at the Product Backlog as an
equal task with other requirements.

This paper is structured as follows: in Section 2, the research settings are intro-
duced; in Section 3, the steps for absorbing testing into the Scrum method are pre-
sented, and in Section 4, the conclusions are drawn.

2 Research Setting

The research was conducted in the company, which owns a long history in software
development. The research method was action research and during the research period
three iterations were done. The following sub-sections describe the research settings
in more detail.

2.1 The Company and Software Under Study

Company where this research was done has over 20 years experience in software
development. The software that Scrum teams are implementing has its roots back to
over 10 years. The development process in the company followed mainly the water-
fall process model, although some organizations in company had also experience
from agile methods. Due to the schedule pressures and different kind of configura-
tions and products the organization was forced to look at new ways of working in the
beginning of 2006.

Organization consist of 17 design engineers (designers and programmers), seven
test engineers, three architects, three UI designers, product manager, test manager,
two project managers, error manager and one technology manager, who is leading the
whole group, and is also responsible of financial issues. Developers and test engineers
have in average 8 years experience from software development field. Development
was based on object-oriented programming, and test driven development approach
was used in some projects, but not regularly.

 Absorbing Software Testing into the Scrum Method 201

Application that is under development is part of the larger main software, which is
mobile device operating system. This causes several interesting aspects to software
development process.

* Integration to main software can be done only in bi-weekly cycles.
* Main software releases have strict rules, which cannot be violated, and thus only

truly working software can be integrated into the main code line.
* Main software releases have own specified testing requirements which needs to

be met, and thus it is not enough that testing is done only at the Scrum team’s
own application level.

* Application that is under development has complicated dependencies to different
architecture levels, and thus testing and verification is not always possible to do
only at application level. Even if application is working in development envi-
ronment, testing and verification has to be done also in target main code line to
verify that integration has been successful, and that all the different layers are
working together on a way as required.

* From two to three different main releases are developed at the same time, so
unfortunately teams cannot focus totally only on one release. This emphasizes
especially in testing, where defect findings and corrections often needs to be
verified in every different main release.

* Testing resources are limited, which causes that test engineers sometimes have
to work over team and release boundaries to ensure that all testing work can be
done.

* Organization is big, and targets can change rapidly, which causes pressure to
software development.

* Offsite subcontracting is used, and sometimes subcontractors cannot test the
delivery thorough, because of technical limitations or lack of other parts of soft-
ware, which are accessible only for company’s internal development.

All of those characteristics caused own challenges when absorbing testing to
Scrum teams.

2.2 How the Research Was Conducted

Action research was selected as research method for this research. Susman and
Evered [3] present a cyclical model for action research. The model consists of five
phases that are diagnosing, action planning, action taking, evaluating and specifying
learning. The first phase, called diagnosing, involves determination of the problems
that require attention. The second phase is called action planning and it specifies the
actions that may be taken to solve the problems. Theoretical framework is set by the
researcher during the planning phase. Action taking is the third phase, during which
the planned actions are implemented. During the fourth phase, evaluation, actions that
were carried out are compared to intended objectives. The last phase, specifying
learning, specifies lessons that were learnt during the action cycle. The last phase may
also lead to the start of a new research cycle [3]. Because action research is a qualita-
tive method, research diary and interview notes were collected and recorded during
research.

202 J. Tuomikoski and I. Tervonen

Lot of different changes was done during research time, but in this paper we con-
centrate on the three major iterations. Fig. 1 depicts the schedule of these iterations in
period 2007-2008 (Q1 – Q4 refer to quarter periods).

Introducing exploratory testing

Looking for appropriate team structure

Coordinating testing tasks

Q3 Q4 Q1 Q2
2007 2008

Fig. 1. Timeline for absorbing steps

In the first iteration we introduce exploratory testing as an improvement idea,
which can be used to get immediate positive results of the Scrum methods usage for
software testing area. This activity started in August 2007 and many sessions have
been held after that. In the second iteration, which started in December 2007, we
looked for appropriate team structure, which would support both constructing and
testing activities. The third iteration started in January 2008 and it tells about testing
task coordination in Scum method.

3 Absorbing Software Testing into the Scrum Method

We defined earlier that we use the term Scrum method, and thus provide some guide-
lines, how to merge testing tasks into development tasks. In the following sub-
sections we briefly describe the Scrum method and introduce the three iterations,
completed during the research period.

3.1 Core Characteristics of the Scrum Method

The Scrum method is typically defined by issues and roles such as Product Backlog,
Product Owner, Sprint, Sprint Backlog, Scrum Master, Team, Daily Scrum, Sprint
Demo, and with the process description, which ties these issues and roles together, as
depicted in Fig. 2.

The three iterations, presented in this paper, focus on activities related to team or-
ganization in Sprint and Product ownership. Sprint planning is a core phase in the
Scrum method, and it ties together different items, as Schwaber [4] defines ”Sprint
planning meeting consist of two different parts. First part is spent with the Product

 Absorbing Software Testing into the Scrum Method 203

Fig. 2. The major issues and roles of the Scrum method

Owner, who is presenting the highest priority Backlog items to team. In this phase
team can ask more information about items, like purpose, meaning and content of
items. When the Team feels that they have enough information, they will select as much
items to Sprint Backlog, as they believe they can build to a working piece of software
during the one Sprint. After the selection is done, the Team commits for the Product
Owner, that they will do the best they can to finish all the items they have selected.
After commitment is given, the first part of Sprint planning meeting has ended”.

3.2 Starting Point

The Scrum had been taken into use progressively in the organization. The process
started in the beginning 2007, and the first pieces of Scrum were taken into use, when
one development team that consists only of developers started to work in 30 days
sprints. They held a kind of sprint planning meetings and estimated, how much work
they could finish within next 30 days. This list of activities (Sprint Backlog) was split
down in smaller tasks, which were further assigned to individual team members. Test-
ing was not a part of team, and project manager acted as a Scrum Master and at the
same time as a Product Owner. He was also the line manager for team members.

In the next phase all developers were split into two Scrum teams. The Product
Backlog was created and all the development work was assigned through the Product
Backlog. Teams continued planning their work in Sprints, but single tasks were not
anymore assigned to individuals in planning sessions. Testing team was still separated
from Scrum teams, but one to two test engineers were allocated so that they mainly

204 J. Tuomikoski and I. Tervonen

worked for Scrum teams. Their priority was still in testing team’s work. This team
structure was messy, and we wanted to simplify and clarify it.

3.3 First Iteration: Introducing Exploratory Testing

Bach [5] defines exploratory testing as simultaneous learning, test design and test exe-
cution. Black [6] further characterizes it as a testing method, which is almost opposite
to traditional test case based testing method. The effectiveness of exploratory testing is
strongly based on individual test engineer’s skills and ability to analyze system and it’s
behavior. Exploratory testing doesn’t fit for everyone, and really requires experienced
test engineers. As any other testing method, also exploratory testing has both advan-
tages and disadvantages. Advantages are effectiveness, robustness, efficiency, safety
and creativity. It’s a known fact, that test cases or scripts tend to loose their power,
when time goes, and those cases have been executed several times. But because ex-
ploratory testing is something that adopts in the situations, and tries to bring something
new all the time, it is more likely to find more new defects with exploratory testing
than with old and many times executed cases. As every process has its holes, explora-
tory testing gives a good change to extend coverage of predefined test cases. At the
same time this coverage issue is one of exploratory testing’s disadvantages. If only
exploratory testing is executed it’s really hard or even impossible to know what is
testing coverage, because exploratory testing sessions are typically poorly documented.

Diagnosing: In both of Scrum teams, test engineers do manual functional testing of
user interfaces. They have basic skills of code writing, and experience from software
development, but the main thing was that they weren’t doing the actual coding, mod-
ule testing nor participating into code reviews. Same thing applies to developers, but
vice versa. They all had a long history from coding, and of course they had done some
basic testing during implementation work, but none of them was professional in soft-
ware testing.

Action Planning: Couple of years ago the testing team participated in a course of
exploratory testing. In the first trials exploratory testing didn’t fulfil a promise given in
the course, but after few exploratory testing sessions the team started to find out its
power. Testing was quite fun, because we didn’t need to go through again those same
old test cases that has been executed hundreds of times and rarely revealed new de-
fects. It was also uplifting to notice how own exploratory testing skills rabidly devel-
oped. At that same time we noticed that exploratory testing was easy way to familiarize
oneself with new features and almost everyone could participate to exploratory testing
sessions.

Jonathan Kohl’s article [7] about exploratory testing in agile teams encouraged us:
“Recently exploratory testing has gained more exposure in the agile world. Some
proponents have focused on using it as an end-of-iteration ritual in which the whole
team and the customer are involved. This is a good idea, and I’ve used it much more
that this on agile projects. I have done exploratory testing throughout development,
from the first moment I have something to test, until we deliver software.”

 Absorbing Software Testing into the Scrum Method 205

We were very encouraged of this article and our own experiences from exploratory
testing justified our decision to try exploratory testing together with whole team. Ex-
ploratory testing could be meaningful approach to testing for everyone, and each
individual’s knowledge could be used without too much time consuming planning and
analyzing.

Action Taking: One of Scrum team’s test engineers arranged the first exploratory
testing session for the whole team. The session took place in the end phase of Sprint,
when team had complete piece of working software in their hands. Testing was done
already during the Sprint, and lot of defects was found and fixed, but still we were
quite confident, that some defects could be found during exploratory testing session.
Test engineer organized a meeting with coffee and cake, which relaxed the situation,
and even the most sceptic engineers gladly joined the session.

In the beginning of the session, test engineer gave a short introduction on explora-
tory testing ideology. Yellow post-it notes were available for defect reporting, so after
defect was found, everyone could quickly note down the steps to reproduce the defect.
Quite often the defect reporting tools are more or less slow to use, and because con-
tinuous learning and observing are the key factors in exploratory testing. It is impor-
tant that touch and the pace of testing is not lost because of slow defect reporting
processes.

At the end of the session, after few hours of defect hunting and coffee drinking,
session responsible test engineer collected defect reports, and team members had a
final discussion of software’s current state. After session, test engineer went through
all the notes, separated real defects, and usability related problems, ignored the dupli-
cate ones, created real defect reports, and recorder them to defect database.

Analyzing: Session went very well. Participants felt that session was a good alterna-
tion to normal daily routines. Session was also very open minded and free communi-
cation was allowed and even desirable. Thus session was good for team spirit, and
improved communication between team members. One team member commented the
organizing of exploratory testing session:

”The session was carried out different way than normal meetings. Coffee and cake
was served and in the beginning of session, the session moderator announced that the
team member who finds most defects will be given a small prize! Session was really
useful and pleasant alternation to our normal daily routines”.

The number of new revealed defects was unexpected in a good manner. Number of
found defects was almost doubled compared to previous sessions, and this wasn’t
only because of new feature and code under test. Developers had really good under-
standing of the weak spots in code, and they could easily focus their testing on those
spots. List of new defects wasn’t the only thing what we expected from session, and it
seemed that other results were also achieved. In exploratory testing session whole
team noticed that the code they had wrote during sprint, really wasn’t that perfect, and
a lot of defects were still hiding somewhere. After session most participants agreed
that they should concentrate more on testing and not to keep it only as a compulsory
phase of the development process. One team member commented exploratory testing
session’s spirit:

206 J. Tuomikoski and I. Tervonen

”There was really good and open spirit, which lasted through the session. Discus-
sion was open and information was shared freely. Even the members who usually
don’t speak a lot, started to praise the defects that they had found. Even the root
cause for some certain defects was solved during the exploratory testing session,
based on discussions between team members. That was something, which normally
doesn’t happen. Usually when team is correcting defects, each individual just takes
one defect and starts investigating the root cause, and asks help only after he is stuck
in investigations, and feels that cannot find the root cause.”

It was also interesting to notice that number of found defects per exploratory test-
ing sessions was about halved after each session. This was encouraging for team
members, because they clearly recognied effectiveness of the sessions.

Specifying learning: Theories and articles of exploratory testing proved themselves.
It is evident that exploratory testing is really powerful tool, and especially in agile
development, where new features are developed really fast, and team can benefit from
rapid feedback.

Session showed to everyone that each of team members can bring value for whole
team. Developers and test engineers found different kind of defects, and each individ-
ual could use his or her own skills to uncover defects. Exploratory testing sessions
also encouraged test engineers to use more adaptive ways in testing, rather than only
strictly writing test cases and doing a lot of planning before testing.

3.4 Second Iteration: Looking for Appropriate Team Structure

Organizing design and coding in a Scrum way doesn’t necessarily require much effort
when team consist only of developers. But to establish true Scrum teams, that can
handle all the software development activities from the design phase through the
coding and testing to released software increment can be a challenge.

Diagnosing: Setup in organization was transforming towards true Scrum setup. There
were two Scrum teams, which consist of developers only, and two former project man-
agers were Scrum Masters for those teams. All the test engineers belong to testing
team, but one or two test engineers were allocated to both Scrum teams. They partici-
pated in Scrum team’s planning meetings, daily meetings, and tested things that Scrum
teams developed. Test engineers were still sitting together with other test engineers.

Due to limited amount of resources, and test engineers that were allocated in
Scrum teams, executed also other testing activities, which were not directly related to
Scrum team’s work. This double role of test engineers, and the fact that they were not
a true members of Scrum teams caused a significant violation against Scrum’s ideol-
ogy. If Scrum teams should work together, they can benefit from enhanced communi-
cation, from rapid feedback loops, and teams can start self-organizing. If key team
members cannot commit to goal, and give their 100% contribution to work, the bene-
fits of teamwork will be lost.

In addition, our former project managers acted as Scrum Masters, and that was not
the best solution. Project managers were also line managers for team members, and
this caused that they had too much authority to team members, and teams weren’t
acting as freely as they should. We decided to to something for this issue.

 Absorbing Software Testing into the Scrum Method 207

Action Planning: There was a conflict between two objectives of test engineers, they
had important information required in the Scrum team, but there was a lack of testing
resources, which ment that if test engineers are merged into Scrum teams, there won’t
be enough testing resources to execute all the testing work that is not related to Scrum
teams work. So, all the work to Scrum teams should come through same channel.
Thus all the work can be planned and estimated in the Sprint planning, and team can
take only that amount of work that they can finish during Sprint. We wanted to
achieve a situation were we have fully committed true Scrum teams, which can do all
the design, coding and testing work as a team. The desired team structure is shown in
Fig. 3.

Fig. 3. Desired team structure

In this new structure a developer acts as Scrum Master in team 1 and test engineer
in teams 2. Two test engineers are left outside the Scrum teams. In the beginning their
function will be handling testing work that is not directly related to Scrum teams
work.

Action Taking: Action started by analyzing all the testing team’s work and trying to
find out which of those responsibilities they could surrender. Analysis revealed that
especially regression testing and bi-weekly executed basic acceptance testing con-
sumed a lot of testing team’s time.

Test engineers who were already participating to Scrum teams work, were taken
away from testing team and they joined the Scrum teams as true and equal team
members like all the developers already were. Scrum teams were sitting in an open-
plan office and test engineers were located in together with teams. There was a screen
between Scrum teams, but from the spot where test engineers were located, the screen
was removed. Now test engineers are sitting together with the Scrum teams members,
but they are still sitting close together so that communication, helping, and informa-
tion sharing was not cut off. Office sitting layout is illustrated in Fig. 4.

208 J. Tuomikoski and I. Tervonen

Fig. 4. Engineers’ sitting layout

Because test engineers are equal team members, there was a clear need that also
their work effort should be estimated in Sprint planning sessions. Earlier only devel-
opers work contribution was estimated and calculated in the Sprint planning sessions.

Analyzing: Now all the Scrum team members were located together in same sections,
information exchange inside teams started to improve. When everyone was sitting so
close to each other it was easier to ask also the smallest issues, which were normally
left unasked, because no one bothered to walk across the office to ask. Team members
also felt that they belong to same team and that everyone is working to achieve the
same goal. Of course test engineers still had some old work to finish from previous
setup, but progressively they could plan their work more closely together with team
and concentrate on test developer’s defect corrections and new features with fresh
daily builds. Now testing was done alongside Scrum team development pace, not in a
testing team’s pace. After five sprints, developers were interviewed. One developer
commented new structure:

“I think that this new team structure is working very well. Every morning we will
get feedback and information of yesterday’s defect fixes. If there exist some wishes or
needs, they come out spontaneously during daily Scrum meeting, which is kept every

 Absorbing Software Testing into the Scrum Method 209

morning. Now communication between testers and developers is really natural and
effective. Developers and testers are both committed to same goal, and other’s work
is supported very well. Everyone knows where we are at the moment, what each one
have under work, and if someone is facing problems, we can try to find out solution
together.”

Two test engineers who didn’t belong to neither of Scrum teams felt that they are a
little bit on the sidelines. Of course they had their own responsibilities and works, but
still they felt that they are missing information of all the new things that other guys
are testing and coding. This is definitely a negative effect of this change, and in the
future requires some corrective actions.

Now in Sprint planning test engineers workload was taken into account, which
caused that their work overload was decreased. If it seemed in Sprint planning that
test engineers cannot execute all the testing tasks that was related to development,
they either drop off work from Sprint Backlog or planned Sprint’s work so that some
other team member participated in testing so that team managed to get everything
done.

Specifying learning: Teams will get best results when they are working together as a
whole. Team spirit, communication and information sharing are also the most impor-
tant things in teamwork. When team members are located close to each other they can
communicate easier and when even not work related issues can be easily shared, it
tends to rise up team spirit.

Team’s goals are still quite heavily biased towards implementation, and in the fu-
ture this should be changed. Either there should be a new testing related goal, or the
goals should be adjusted in a way that also takes into account testing.

3.5 Third Iteration: Coordinating Testing Tasks

Handling task and assigning them to teams is one of the important responsibilities that
managers usually do in organizations. Well-run and organized project management
gives good basement for engineers to do their work according to plans. But if project
management fails, the whole project usually cannot be saved even with world’s best
engineers. This holds true also for team management in Scrum teams, although testing
task coordination makes the situation more challenging.

Diagnosing: After previous iteration of implementing Scrum the world of test man-
ager changed. Now when the test engineers are part of the Scrum team, test manager
cannot anymore assign task directly for test engineers. Also he’s role changed a little
bit, because most of the testing was now related directly to Scrum team’s work, and
test engineers naturally had the best knowledge of each day’s situation, and adjusted
their work according to that. So test manager didn’t anymore directly assign and con-
trol the execution of basic requirement testing.

After second iteration, there were changes to Scrum teams’ structure. Former pro-
ject managers acted as a Scrum Masters, which wasn’t the best possible situation.
They had to step away and new Scrum Masters had been nominated among the Team
members. One former Scrum Master took a role as a line manager for every Scrum
team member, so Scrum Masters didn’t have anymore unnecessary authority towards

210 J. Tuomikoski and I. Tervonen

team members. Now we had two project managers, one test manager, one error man-
ager, one line manager and one product manager, whose roles and ways of working
needed to be figured out.

Action Planning: The planning started with collecting ideas from different sources.
After tens of read stories and articles we started to be quite confident, that we will
definitely need one contact point for Scrum teams, which will be the Product Owner.
Of course we already had the Product Owner, but his role and responsibilities needed
some change, and thus we decided to rebuild the whole management setup.

To avoid conflicts it’s required that there is only one Product Owner visible for
team to whom they negotiate with. But in large scale projects this causes problems,
because it’s impossible to find out one individual who knows best every areas like
testing, product management, customer side etc. And because the Scrum teams are
also fixing defects, the Product Owner needs help from error management to prioritize
everything to best possible order.

There are, however, few problems with a single Product Owner. The Product
Owner should know technical issues so that he can understand and support the Scrum
teams in a best possible way. But at the same time he should also have understanding
of customer’s needs, of testing issues and of defects.

We concluded to shared responsibilities in the ownership problem, and suggested
as a solution the Product Owner Team. With the Product Owner Team we could sup-
port our Product Owner with building and maintaining the Product Backlog. The
Product Owner Team could be also answer to our problem, how to handle and com-
plete all the testing tasks in a way that it’s not messing up the work of test engineers
and Scrum teams. The test manager could generate testing tasks and introduce those
to the Product Owner Team. The Product Owner Team could prioritize them and
finally those tasks would be placed at the Product Backlog as equal tasks with other
requirements.

Action Taking: Building of the Product Owner Team started with selection of the
new Product Owner. Because we will have the whole team supporting new Product
Owner, she/he doesn’t need to be anymore product manager. To gain best possible
value and support for the Scrum teams, and more time for the product manager, we
decided that one of our project managers could be responsible for the Product
Owner’s role. The new Product Owner had strong background from coding, and he
also knew lot of module testing and regression testing.

Next step was to decide members of the upcoming Product Owner Team. After ana-
lysing alternative compositions, we concluded to the structure, as depicted in Fig. 5.
The Product Owner and the product manager were natural choices, and during plan-
ning phase we found that also the test manager’s place would be in a team. We decided
that it would be best if also the project manager and the error manager would join the
team. In addition to these also skills of line manager and the head of technology area
were appreciated and joined the team. This composition of skills would give the wide
range of knowledge and opinions to the team. It would help a lot in requirement han-
dling, preparation work and especially in prioritization. Another benefit would be that
when they are working as a team, the information might spread with a natural way
during normal daily work routines.

 Absorbing Software Testing into the Scrum Method 211

Fig. 5. New organization structure

The plan was that the test manager could assign and rise up testing tasks to the
Product Backlog in a same way as all the requirements and other tasks were raised.
Now we needed a meetings, were we could go through the new items on a Product
Backlog, and a meeting where the items in the Product Backlog are prioritized, and
where the new task candidates for the Scrum team’s Sprints are chosen. We decided
to start arranging weekly occurring meetings. First meeting was the Product Backlog
meeting, where the Product Owner Team went through the new items. In this particu-
lar meeting the test manager introduced new testing items that he had generated. Also
the architects and the user interface designers were participating to the meeting,
whenever their support or information was needed. The second meeting was called as
a backlog prioritization meeting. It was defined to be for arranging the backlog items
to correct prioritized order and to choose the most suitable and important items for
each Scrum team’s Sprint Backlog. To this prioritization meeting participated regu-
larly only the Product Owner, the product manager and the test manager. Some
special guests were invited when needed.

The Product Owner Team also started to keep informal daily meetings. Informal
because discussion wasn’t so strictly limited as it is in Scrum’s daily meetings, but the

212 J. Tuomikoski and I. Tervonen

basic idea was same. First everyone told what they have done after previous daily
meeting, and what they will do before next daily meeting. After round was over, there
were still few minutes left for current burning topics. The Product Owner Team also
started to keep retrospectives in bi-weekly cycle.

Into Sprint planning and review meetings participated always at least the Product
Manager and the line manager who was only observing the meeting. Sometimes also
product manager and test manager participated in meetings. In planning sessions test
manager was available for given more information for team about testing tasks and
test related issues in the Sprint backlog. In review meetings he’s role was the same.

Analyzing: Organizing of the Product Owner Team went surprisingly well. Most of
the members had a consensus of opinion that the Product Owner Team is the right
solution, and all the team members felt that their place should be in Product Owner
Team. One of the best things was that the Product Owner Team had quite free hands
when planning the team structure and working processes. This caused that team
members could influence almost as much as they wanted, and thus working processes
become pleasing. Team structure was commented to diary 11.1.2008 after first work-
shop:

“New structure seems to be good, now I have support from different parties in
management. Even same old testing team doesn’t exist anymore, I still have good
possibilities to influence to Scrum teams and especially to test engineers work
through the Product Backlog and through the Product Owner.”

The Product Owner Team’s daily meetings were good idea. In those meetings infor-
mation was shared flexibly, and each member had a basic knowledge of what is going
on, and what everyone is doing. Also the head of technology area participated in these
daily meetings. One team member commented his participation in daily meetings:

“It’s really good that he is participating in these meetings. He’s normally very
busy and quite often very hard reach. This is good moment to hear news form his
side; what is going on in upper organization, and if there is some new information
that can be shared, we will get it sooner because we have daily meetings.”

The Product Owner commented daily meetings:
“They are really good. It is good to know what everyone is doing and it’s almost

the only moment in a day when everyone is reachable at the same time. This daily
status information helps me in my own work and helps to make decisions because I
know daily what status in each area is.”

Product Backlog meetings went well. After a couple of meetings, the Product
Backlog started look as it should look from requirements point of view. But there still
were few challenges with testing tasks. Earlier the testing tasks had been generated
and executed in quite short and rapid cycles, because they were dependent on the
development and releasing schedules. It seems that even with good test plans, a lot of
testing work cannot be predicted well enough. A lot of testing tasks are generated
during the normal work and also come from different departments of the organization.
Because of this nature of testing, the Product Backlog will need constant updating
from test manager side, and testing items might be added and removed from backlog
quite rapidly, which might confuse someone who is following the Product Backlog
constantly.

 Absorbing Software Testing into the Scrum Method 213

Prioritization of the testing tasks went extremely well. The Product Owner had
strong background from software development and he fully understood the value of
testing for software development. This caused that testing tasks easily got high prior-
ity in Product Backlog and time for testing was allocated in Sprint planning sessions
with the support of Product Owner.

Assigning testing tasks through the Product Backlog seems to help test engineers’
work. During interview one test engineer commented new testing task handling proc-
ess:

“I feel that this new way of testing task assigning has gone well. Visibility for up-
coming work in the future is now much better. Workload is now in better balance,
because all the bigger tasks are split into smaller pieces, and upcoming workload is
estimated. Now the work overload is almost always avoided. “

The Product Owner Team started to work relatively well. Few issues have risen up,
and those could be investigated in the future. One of those issues is seating places. In
our first trials the Product Owner Team members were sitting in separate rooms,
which caused some communication problems. In the latest trials the Product Owner
Team members are located in the same room (except line manager, who sits in the
next room with door connection to tem’s room). This improved communication be-
tween team members.

Specifying learning: The Product Owner Team seems to be good solution especially
for large scale projects. It gives good change to use effectively each one’s expertise
and work is mainly handled in a controlled way with the Product Backlog. But to be
effective Product Owner Team, team members have to remember few things. First,
everyone needs to remember communicate and share information as much and as
often as possible. Second, everyone needs to respect the Product Owner and remem-
ber that he in the end makes decisions and stands behind those decisions. We also
recognized that Product Owner Team members should be located in the same room.

One issue has risen up, related to testing task handling. This iteration gave a good
starting point for testing task handling, but the solution doesn’t seem to be so simple.
Sprint’s tasks have to be very well defined, because without that teams cannot decide
their goals, and makes commitment difficult. Also the follow up of tasks has to be
done carefully that doesn’t break the Scrum’s rules. This test task handling process is
one that needs further planning and developing, especially from test manager side.

4 Discussion and Conclusions

During this research only three iterations were done, but two of those were quite time
consuming and changed daily routines of 40 people organization. Execution was quite
easy to do, because organization was already in the middle of change, and everyone
was open minded towards the Scrum. There was also strong support for Scrum from
upper management, which of course reduced the unwanted resistance. The iteration
where exploratory testing sessions started was the easiest one to execute, and its first
results were immediate. It has also longer term effects, because share of information
between team members tend to cause competence increase. But it takes time before
these kinds of effects are visible, and they can be really challenging ones to measure.

214 J. Tuomikoski and I. Tervonen

The exploratory testing sessions and the new, modified team structure where test
engineers are full team members strongly support each others. It’s easier to execute
exploratory testing sessions, when the team is working as a whole. First positive indi-
cations from team structure change came up already in the first retrospective after the
change. Almost every team member indicated that test engineers’ joining the Scrum
team was the most positive issue.

The biggest change from test manager point of view was the formed Product
Owner Team. Test manager didn’t have testing team anymore, and in the future all
the testing tasks needs to be assigned through the Product Backlog. This caused more
work for Product Backlog maintenance, but at the same time it gave better visibility
of overall workload. From Scrum team point of view this new way of testing task
assignment is a positive thing, because now there is better visibility to the future
work. But from the test manager point of view, this new process causes more work to
do and decreased flexibility in task management. After all, the change was successful,
because without the Product Owner Team the testing task handling would be in trou-
ble, the test engineers couldn’t be part of the Scrum teams.

After all, iterations worked very well together, supporting and completing each
others. But, did we reach the situation where we wanted to be in the beginning of the
research? We would say yes and no. After these iterations we had a controlled way to
handle all the work that organization had – the Product Backlog. All the testing and
development tasks were in the Product Backlog, where everyone could check the
status of tasks. The items in Product Backlog change all the time, but still it gives a
snapshot of the work status. The process where all work comes through the Product
Backlog also helps to keep workload in balance. Major change in the Scrum teams
was that they were rebuilt. The testing team was merged into the Scrum teams. The
teams can now deliver better working software in a shorter time, because testing
keeps track of the progress of development. Also the team spirit is higher, because the
Scrum team members are committed to the same goal.

The limitations of our work are equal to Scrum method in general. If we stay at
framework level, Scrum is not really going to tell exactly what to do. But, if we use it
as a method, guidelines and reports how to adapt it in a specific situation are valuable
for software practitioners. In this paper we aim to give valuable guidelines how to
merge testing tasks into development tasks when using Scrum method in real life
software development.

References

1. Salo, O., Abrahamsson, P.: Agile methods in European embedded softwaredevelopemnt
organisations: a survey on the actual use and usefullness of Extreme programming and
Scrum. IET Software 2(1), 58–64 (2008)

2. Kniberg, H.: and XP from the Trenches - How do we do Scrum (2006),
http://www.infoq.com/minibooks/scrum-xp-from-the-trenches

3. Susman, G.I., Evered, R.D.: An Assessment of the Scientific Merits of Action Research.
Administrative Science Quarterly 23, 582–603 (1978)

 Absorbing Software Testing into the Scrum Method 215

4. Schwaber, K.: Agile project management with Scrum. Microsoft Press, Redmond (2004)
5. Bach, J.: Exploratory Testing Explained (2003),

http://www.satisfice.com/articles/et-article.pdf
6. Black, R.: Pragmatic Software Testing: Becoming an Effective and Efficient Test Profes-

sional. J. Wiley Publishing, Inc., Chichester (2007)
7. Kohl, J.: Exploratory Testing on Agile Teams (2005),

http://www.kohl.ca/blog/archives/000152.html

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 216–230, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Learning and Organizational Change in SPI Initiatives

Marikka Heikkilä

University of Jyväskylä, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland
Marikka.Heikkila@jyu.fi

Abstract. Explaining how organizations chance has been a central and enduring
quest of management scholars and many other disciplines. In order to be suc-
cessful change requires not only a new process or technology but also the
engagement and participation of the people involved. In this vein the change
process results in new behavior and is routinized in practical daily business life
of the company. Change management provides a framework for managing the
human side of these changes. In this article we present a literature review on the
change management in the context of Software Process Improvement. The tra-
ditional view of learning, as a “lessons learned” or post-mortem reporting activ-
ity is often apparent in SPI literature. However, learning can also be viewed as a
continuous change process where specific learning cycle starts with creative
conflict and ends up in formal norms and systems. Since this perspective has
almost no visibility in SPI literature of past it could show a new direction to the
future development of change management in SPI.

Keywords: Organizational change, learning, SPI.

1 Introduction

Many software firms see Software Process Improvement (SPI) as a strategic matter and
are involved in organizational change initiatives to improve their software develop-
ment practices. The fundamental goal of the SPI is improvement - for instance in soft-
ware quality and reliability, employee and customer satisfaction, and profitability - by
changing the organizational practices of firms [1]. Various maturity models can steer
SPI initiatives since they offer different options for assessment and improvement, but
successful SPI requires effective change management irrespective of the model
adopted [2]. The challenge is that software developers must continue working produc-
tively while process changes are being implemented. Process improvement requires
organizational and behavioral changes - changes in the way people communicate and
collaborate as they do their work. Bringing about such changes requires management: a
proven strategy, careful planning, flexibility and creativity in executing plans, and
insight into issues surrounding organizational change. Thus organizational change
management can be described as a process where structured approaches and tools are
applied within organizations to enable its transition from a current state to a desired
future state.

The literature on the change management field comes from psychology and organ-
izational science. There are a multitude of approaches on change management and it

 Learning and Organizational Change in SPI Initiatives 217

is rather difficult to point out a common denominator. But obviously there is a tight
connection with the concept of learning organizations [3,1]. In the context of SPI,
change is the result from an organizational learning process that centers on the topic
of SPI initiatives. Only if organizations and individuals within organizations learn,
they will able to master a positive change.

In this paper we combine literature on organizational learning and management to
understand learning and change in organizational settings. We then apply these theo-
ries in analysis of SPI models, particularly CMM(I), SPICE and IDEAL. Thus we aim
at better understanding of organizational learning in SPI context. Our contributions
are consequently twofold. First, we review different theoretical perspectives on learn-
ing. Second, we utilize the literature to analyze SPI models to make suggestions how
learning can be supported, encouraged and facilitated.

The paper is organized as follows. First, as theoretical background, literature on
learning in organizations and change management is reviewed. Second, the recom-
mendations and findings from the above mentioned literature are applied in the analy-
sis of SPI models. The article ends with conclusions suggesting some amendments to
current SPI models promoting, in a coordinated manner, the innovativeness and capa-
bilities of the personnel.

2 Learning Organizations

Argyris and Schön [4] introduced a conceptualization of organizational learning. They
identified three levels of ‘learning loop’ within an organization: single-loop learning
is a simple behaviour adjustment in a mismatch or error situation, respecting the or-
ganization’s current principles and rules. At a higher level, i.e. double-loop learning,
the organization questions and modifies existing rules and procedures in response to
mismatch or error. In other words, the organization tries to make sense of what is
going on and what assumptions should be changed in order to achieve better results.
The highest organizational learning loop is deutero-learning. This loop refers to the
organizational problem solving capacity and capability to redesign policies, structures
and techniques in the situation of constantly changing assumptions about the self and
the environment. Deutero learning means understanding single-loop and double-loop
learning in order to increment them. Thus the challenge for an organization – or net-
work of organizations – is to provide its members with the necessary conditions for
developing its capacity to assimilate knowledge and to solve problems [5] between
the network partners [6,7].

Gattermann & Hoffmann [8] suggest that the success of deutero learning and the
restructuring of values and rules can be assessed by the level of acceptance of change
within organizations. Evidently, in order for that to take place, not only individuals
but also organizations and networks must be provided with the conditions necessary
for learning. Indeed, knowledge management literature suggests a variety of models
and methods for knowledge creation and sharing through interaction (tacit knowl-
edge) or through documents and information systems (explicit knowledge).

In line with the view of the firm as a ‘sense-making system’ [9,10] Nooteboom
[11] explains the need for shared insights and models by pointing out that information

218 M. Heikkilä

is useless if it is not new, but it is also useless if it is so new that it cannot be under-
stood. He argues that organizations should be able to reduce cognitive distance
between its members, i.e. to achieve a sufficient alignment of mental models, to un-
derstand each other and achieve a common goal [11]. He also indicates the trade-off
between need for cognitive distance for the sake of novelty and cognitive proximity
and for the sake of efficient absorption. This is precisely the same challenge that
Nonaka points out when he suggests that, one of the enabling elements for the process
of organizational knowledge creation are requisite variety and redundancy of informa-
tion. This need for variety and at the same time overlapping knowledge domains of
individuals is concerned with balancing cognitive distance and cognitive proximity, as
mentioned by Nooteboom [11].

2.1 Creativity and Chaos

Nonaka [12] proposes that new knowledge can be created by dialogue which brings
up conflicting views. Open discourse and reference models seem to emerge in particu-
lar as important enablers for organizational learning and even more vital in the con-
text of learning networks [12,13,14]. They are needed for members with differing
backgrounds and history to achieve a shared desired vision for the future. That is,
organizational learning occurs through shared insights, knowledge and mental mod-
els. Change is blocked unless all of the major decision makers learn together, come to
share beliefs and goals and are committed to take the actions to change. Second,
learning builds on past knowledge and experience, that is, on memory. Organizational
memory depends on institutional mechanisms (e.g. policies, strategies and explicit
models) used to retain knowledge.

Nonaka [12], referring to Brown and Duguid’s [15] evolving communities of prac-
tice, points out the significance of links between individuals that span boundaries. He
sees knowledge creation as a process that constantly makes extensive use of knowl-
edge in the environment, especially that of customers and suppliers [12]. Thus, select-
ing people with the right mix of knowledge and capabilities for the creation process is
critical [16]. Nonaka promotes the use of cross-departmental or even cross-
organizational teams for organizational knowledge creation: “Teams play a central
role in the knowledge-creating company because they provide a shared context where
individuals can interact with each other and engage in the constant dialogue on which
effective reflection depends. Team members create new points of view through dia-
logue and discussion. They pool their information and examine it from various angles.
Eventually, they integrate their diverse individual perspectives into a new collective
perspective. This dialogue can -- indeed, should -- involve considerable conflict and
disagreement. It is precisely such conflict that pushes employees to question existing
premises and make sense of their experience in a new way.” [13].

Also Zimmerman [17] building on Stacey [18] points out that organizational learn-
ing often takes place in a complex setting. He proposed a matrix about learning and
knowledge creation (in Fig. 1.). It has two dimensions: the degree of certainty and the
level of agreement.

Many simple business processes are situated at a level in which it is certain what
needs to be done and people involved agree on that. Here (area 1), traditional manage-
ment approaches, e.g. management by objectives apply and work well. Organizations

 Learning and Organizational Change in SPI Initiatives 219

use techniques which gather data from the past and use that to predict the future. How-
ever, when members of the organization do not agree, or show resistance to the
planned changes, the traditional methods fall short (area 2). Then politics become more
important. Coalition building, negotiation, and compromise are used to create the or-
ganization's agenda and direction. Third case is where managers find themselves and
their organizations in a situation characterized by a high agreement of stakeholders -
what Senge calls "shared vision", but a substantial degree of uncertainty (area 3). In
this region, the goal is to head towards an agreed upon future state even though the
specific paths cannot be predetermined. A strong sense of shared mission or vision
may substitute for a plan and comparisons are made not against plans but against the
mission. This is the area when scenario design and participatory approaches for defin-
ing strategies are valuable.

Fig. 1. Learning and knowledge creation

Situations where there are very high levels of uncertainty and the stakeholders are far

beyond any agreement (area 4) often result in a breakdown or anarchy. The traditional
methods of planning, visioning, and negotiation are insufficient in these contexts. Even
though many political leaders are operating in exactly such an environment, in an or-
ganization managers would do everything to escape that situation which complexity
scientists call "The Edge of Chaos". However, interestingly many contemporary man-
agement processes are situated in a field that fluctuates between the extremes that have
been delineated above (area 5.). Here change is regarded as the norm. It is the zone of
high creativity, innovation, and breaking with the past to create new modes of operating.
In such environments, the main task of management is to facilitate the co-creation of the
organization's future [17]. Methods proposed include several types of meetings and
conferences advancing innovative co-operative thinking, and brainstorming (e.g. Open
Space Technology, Appreciative Inquiry, World Café).

220 M. Heikkilä

2.2 The Change Process

The lesson learned from the above discussion is that in order to be innovative and
creative the companies should promote situations where members – or at least the
major decision makers - of the organizations are able to express their differing views,
share their information and eventually end up with a new collective perspective and
solution. However, this should be done in a coordinated manner, so that the company
does not end up in an anarchy and chaos. A change model [19] includes four steps:
unfreezing, learning, internalization, and refreezing. The unfreezing is a cathartic
process of increasing forces towards change and/or decreasing forces resisting
change. After moving to a new equilibrium state through learning and internalization,
the system is refrozen. In turn, Nonaka and Takeuchi [20] view on how the knowl-
edge is diffused into the organization (in Fig. 2.) They note that there are two types of
knowledge: tacit (subjective) knowledge and explicit (objective) knowledge. Tacit
knowledge is the knowledge built on experience. It includes insights and intuitions,
and is not easily visible and expressible. It is highly personal and is hard to formalize
and share with others. Explicit knowledge is formal, systematic and easily communi-
cated and shared in the form of hard data, formulae, codified procedures, or universal
principles.

Fig. 2. Knowledge Spriral

Nonaka and Takeuchi represent the knowledge transfer process as a spiral, starting

off with tacit knowledge that is externalized to someone else via dialogues. Then these
explicit ideas are connected to the existing body of knowledge, combining them and
internalizing them, making them tacit once again. The spiral points out that the process
starts with dialogue, continuing with linking explicit knowledge, to learning by doing
and finally to field building. Thus after the ‘conflict and creativity’ phase discussed
above the company should engage in more rigid phase of learning by combining
explicit information, followed by ‘learning by doing’ phase. Only when the new proc-
ess knowledge is adopted into real work, and included into its tacit knowledge, the

 Learning and Organizational Change in SPI Initiatives 221

organizations has achieved sustainable process improvement. Thus in this learning
process the approach starts with creative chaos, where mental models and brainstorm-
ing are applied to boost innovativeness in multi-departmental or multi-organizational
teams, and finally curbs down to ‘status quo’ coordinated by shared work practices and
formal rules (illustrated in Fig. 3.)

Fig. 3. The learning process

3 Organizations in Change

Whereas in the previous chapter we looked at organizational change from human
learning perspective, here we would like to take another stance – organization.

Organizations have each own history and background, which affect the future deci-
sions and actions. [21] defines organization’s culture as “the accumulated learning
that a given group has acquired during its history.” This definition emphasizes learn-
ing aspect and also notes that culture applies only to that portion of the accumulated
learning that is passed on to newcomers [21]. Huber [22] calls the learning related to
institutionalized knowledge as congenital learning. (cultural transmission from other
members). Other forms of learning identified by [22] were: experiential learning (via
planned experimentation, self appraisal, and learning curves), vicarious learning (e.g.,
benchmarking other organizations' process, systems, and results), grafting (e.g., ac-
quisitions and mergers, strategic alliances and partnering, and migration of top man-
agement), and Searching and Noticing (e.g. performance monitoring).

From organizational perspective, an organization consists of several variables, such
as structure, people, technology and management [e.g. 23, 3]. These variables are
highly independent, so that a change in one variable most often results in an intended
or unintended change in other variables as well, which in turn cause new changes in
the system. Dooley [19] points out that the magnitude of the change must be adjusted

Far from
agreement

Close to
agreement

Chaos and
creativity

Institutionalized
routines and

rules’

Close to
certainty

Far from
certainty

222 M. Heikkilä

to the specific organization context (and to cognitive distance and proximity): the
difference between the perceived organization state and the desired organizational
state creates a "state gap" [19]. The gap motivates or demotivates an individual's
readiness for change. If the gap is too big, change may be deemed impossible; if the
gap is too small, change may be viewed as being unnecessary.

34
1 2

Level of Focus

Intervention
seeks to modify

Informal
behavior

Formal
design

Unit level Individual or group level

Redefinition of
- roles
- responsibilities
- relationships

Compensation systems
Information systems
Organizational structure
Measurement system

Coaching/Counseling
Training
Process consultation
Team building

Replacement
Recruitment
Career pathing
Succession planning
Performance appraisal

34
1 2

Level of Focus

Intervention
seeks to modify

Informal
behavior

Formal
design

Unit level Individual or group level

Redefinition of
- roles
- responsibilities
- relationships

Compensation systems
Information systems
Organizational structure
Measurement system

Coaching/Counseling
Training
Process consultation
Team building

Replacement
Recruitment
Career pathing
Succession planning
Performance appraisal

Fig. 4. The order of changing activities in an organization (adopted from [24])

Beer et al.’s [24] described in their series of studies how to revitalize (i.e. to intro-
duce permanent improvement) to an existing company’s activities. The intentional
change (in Fig. 4. called ‘Intervention’) should start from modifying informal behav-
ior at the level of official social unit. This is to utilize the social coherence in order to
achieve real change in the roles, responsibilities and relationships of the people (struc-
ture and processes). After that we should start coaching, training, etc. at the individual
level and make sure that the momentum remains by creating vision of the roles of the
people in the near and long term future (people). It is also important to award good
performance (rewards). In the last stage – after the social organization is more-or-less
stable- is the time to introduce the formal systems (structure and processes).

Specifically in the context of quality improvement Spector and Beer [25] propose
the following steps.

1. Trigger change by combining external competitive pressure with clearly defined
direction from the organization’s leader.

2. Develop on the part of the top management team agreement on, and commitment
to, the belief that quality improvement is the key strategic task of the organization.

3. Form ad hoc teams around processes to be improved.
4. Create an organization-wide change oversight team which promotes learning and

systemic change and helps to overcome resistance.
5. Enable teams to analyze and take action through: the delegation of decision-

making authority; the provision of necessary team skills; and the information nec-
essary to understand, analyze, and re-engineer processes.

6. Align formal measurement and information systems with the cross-functional
process approach.

 Learning and Organizational Change in SPI Initiatives 223

Comparing this to the lessons learned from previous chapter, we can notice that
here the clear guidance from the organization’s leader is expected in the beginning to
show the direction for the learning and improvement (step 1). This should direct the
learning process towards agreement and certainty, not towards anarchy and break-
down. Then, during the ‘conflict and creativity’ phase the top management team is
expected to come up with commitment (step 2), and also expert, ad hock teams are
expected to come up with initiatives for process improvements (step 3). In these
teams – in line with suggestions of e.g. [12,13,14] – members engage in a dialogue
and create new points of view, pool their information and eventually integrate their
diverse individual views into a new collective perspective. The idea of self-
organization, instead of tight control, is operationalized in as "empowerment". Em-
powerment means not only giving teams the authority to make decisions, but also
making information concerning all aspects of the context readily available [19] (steps
4 and 5). As there are multiple improvement teams working at the same time it is
essential to establish also an organization-wide team to promote learning and systemic
change and to help to overcome resistance. Thus the task of this head team is con-
cerned with the highest organizational learning loop, deutero-learning [4], to facilitate
organizational problem solving capacity and capabilities to redesign processes. Only
as the final stage (step 6.) the company can establish formal information systems and
measures.

To sum up, when organizations are to be changed, the literature seems to point out
the importance of interactions between the organizational dimensions, multiple levels of
teams and top management commitment. The process should advance starting from
strategies to structures and processes (i.e. roles, responsibilities and relationships) to
individual training and recruiting (people) and rewards, finally to formalize the planned
structures and processes by systems, measures and controls. This process should start
with top management teams showing commitment. Then special cross-functional teams
after interaction and discussion end up with a solution for improvement. This multi-
level and multi-team learning process is facilitated by an organization-wide team.

4 Software Process Management in Changing Learning
Organizations

Continual process improvement is essential element of successful organizations. With
process improvement the organizations can increase their efficiency and improve the
quality of their products and services. For software companies, the software processes
improvement (SPI) is crucial for surviving in a present day highly challenging business
environment. Variety of quality and process improvement frameworks, normative
models and standards (such as CMMI, ISO 9001, ISO 15504 (SPICE) and Bootstrap)
are available for supporting process improvement. These norms contain maturity levels
indicating good software practices and are primarily used to identify the weak areas in
the existing software practice and to prioritize future improvements [26]. One of the
goals in SPI is to have common procedures in the organization. If the organization
wish to improve their maturity according to a normative model, then it is important that
the new processes are institutionalized in the daily norms and tacit knowledge of the
workers. This seems to be problematic, since for example in a survey [27] on CMM

224 M. Heikkilä

Initiatives two thirds of the respondents agreed with the statement, “We understood
what needed to be improved, but we needed more guidance about how to improve it.”
Indeed, one of the main concerns in SPI is how to create mechanisms to help the or-
ganization institutionalize continuous process improvement.

Currently the SPI literature focuses mainly on the aspects related to the norms for
classifying software organizations, and metrics (i.e. how to assess whether an organi-
zation is compliant with the specific norm) [28]. Evolutionary approach to SPI is
common: changes are implemented by a sequence (steps) of improvements over a
period of time. For instance, the ultimate idea behind CMM is to create an organiza-
tion at the highest maturity level that is able to continuously optimize its software
processes and its software processes are institutionalized via policies, standards and
organizational structures [29,30]. However, as [28] note, compliance to a norm does
not automatically lead to success, but also other relevant aspects such as context and
people should be considered [31]. Unfortunately, even though SPI is an organizational
change mechanism the literature is lacking organizational change theory, and is thin
in the area of organizational learning, and management of the SPI initiatives [28].

Next, using the organizational learning and change literature as a back drop, we as-
sess the CMM(I), SPICE and IDEAL models first from management, and then from
learning point of view.

4.1 Management

CMM(I) and ISO models can both be characterized as assessment-based models.
Assessment-based techniques typically list a set of goals and sub-goals to achieve,
provide a check-list to assess how much an organization achieves the goals, and may
suggest tools to attain the goals. For example, ISO 15504-7 model (part of the forth-
coming ISO 15504 standard) developed in a project called SPICE, approaches SPI
with the following eight steps: Examine organisation's needs, Initiate process im-
provement, Prepare and conduct process assessment, Analyse results and derive ac-
tion plan, Implement improvements, Confirm improvements, Sustain improvement
gains, Monitor performance.

Like IDEAL, the ISO 15504-7 model deals with the management as a special is-
sue, being something that is beyond the cycle itself. The management is seen as per-
haps the most crucial issues of sustaining long-term improvement and ensuring that
changes become permanent [32]. It includes organization, plan, measuring and re-
viewing tasks. SPI Literature is almost unique in recommending that improvement
initiatives should be assigned to dedicated organizational units [28]. One of the most
exact in this issue is perhaps IDEALsm 1, which defines several levels of groups con-
cerned with SPI and is recommended to be used in parallel with CMM. In large or-
ganizations, in addition to practical operative working groups, there are four layers of
management groups ensuring compliance to company’s vision, coordinating and
sharing of experiences (see Fig. 5.).

1 The IDEALSM model has been developed in Software Engineering Institute at Carnegie Mel-

lon University (SEI).

 Learning and Organizational Change in SPI Initiatives 225

TWGs. Additional names for these groups include process
action teams and process improvement teams., etc.
These working groups are created to address a particular
focus of the SPI program.

The software process improvement advisory
committee (SPIAC) serves as a forum where
each of the multiple
SEPGs are represented. Through this forum,
sharing of experiences,
lessons learned, and improvements
accomplished
will benefit the overall program.

Some of the duties of the MSG include
• demonstrating sponsorship for the SPI
program
• allocating resources for the improvement
activities
• monitoring the progress of the SPI program
• providing guidance and correction to the
improvement
activities as necessary

SEPG, sometimes called
the process group. The SEPG performs many functions for
the organization in its SPI programs. The SEPG
• helps to sustain support for the SPI program in an
environment of change
• builds and reinforces sponsorship
• nurtures and sustains the individual improvement
activities
• ensures coordination of these activities throughout the
organization

EC’s duty to provide broad guidance and
interpretation of the organisation's
vision and mission to ensure that the overall
improvement effort is in line with the
mission and supports the organisation to
achieve its vision

TWGs. Additional names for these groups include process
action teams and process improvement teams., etc.
These working groups are created to address a particular
focus of the SPI program.

The software process improvement advisory
committee (SPIAC) serves as a forum where
each of the multiple
SEPGs are represented. Through this forum,
sharing of experiences,
lessons learned, and improvements
accomplished
will benefit the overall program.

Some of the duties of the MSG include
• demonstrating sponsorship for the SPI
program
• allocating resources for the improvement
activities
• monitoring the progress of the SPI program
• providing guidance and correction to the
improvement
activities as necessary

SEPG, sometimes called
the process group. The SEPG performs many functions for
the organization in its SPI programs. The SEPG
• helps to sustain support for the SPI program in an
environment of change
• builds and reinforces sponsorship
• nurtures and sustains the individual improvement
activities
• ensures coordination of these activities throughout the
organization

EC’s duty to provide broad guidance and
interpretation of the organisation's
vision and mission to ensure that the overall
improvement effort is in line with the
mission and supports the organisation to
achieve its vision

Fig. 5. Ideal: Typical SPI infrastructure in a large organization [33,32]

This arrangement assures that all levels of organization are involved in the SPI ini-
tiative: from senior management of executive council to people, working in or being
customers to the process about to be changed, participating in TWG. As proposed in
the organizational literature, wide scale participation is to guarantee that the entire
organization is committed to follow the recommendations. “By involving practitio-
ners in identifying and improving their own problems, the improvements will become
situated in the proper context or practice, i.e. in their daily activities, making it far
more likely that the practitioners will be committed to change their practice. By in-
volving management, the SPI program will become linked to the organization’s vision
and appropriate resources to do improvements will be allocated and distributed.” [2].

The members of SEPG (process group) should be experienced, have good interper-
sonal skills and be respected by peers [27,33,34]. This is because their role is to act as
change agents and opinion leaders in the SPI initiative. Change agents initiate and
support the improvement projects. They are teams (or individuals) external to the
process that is to be improved. Opinion leaders, in turn, are competent individuals
responsible for initiating, guiding and supporting the improvement at a local level.
They also enjoy high respect in the social system that is to be changed [35].

The basic philosophy behind the IDEAL, as many other SPI models, is that the im-
provement or change is best done in project-like entities. The model itself is actually
an attempt to establish good project management and engineering practices to process
improvement program. Considering SPI initiatives as projects is one common way to
approach planning of the initiative. In projects resources are allocated specifically to
SPI initiatives, and their outcomes are specified as project deliverables. This improves
visibility of the initiative [36], helps to ensure appropriate resources, and participation
of experts from relevant parts of the organizations who can define working proce-
dures that fit the organization and the new strategy [28].

226 M. Heikkilä

The literature points out the need to obtain visible results backed up with data if
possible, to keep the effort in focus, and to motivate and sustain interest in the SPI
initiative [27]. Thus measurements that visualize the progress of the SPI effort are
seen valuable. Applegate [3] suggests that to measure progress, it is necessary to
benchmark initial performance and to conduct interval evaluations of process per-
formance, stakeholder satisfaction and results. Process benchmarking can be done
against leading firms in the industry or internally, or it can compare internally one
development process with another highly successful development process. The com-
pany can also use baseline measurements, where the measurements are evaluated
relative to a fixed norm, such as CMM [1]. The Goal Question [37], in turn, aims to
deduce measurement from business goals of the organizations, instead of using the
applied SPI model as a basis for measures.

Table 1. illustrates some aspects of organizational effectiveness that senior manag-
ers might want to measure [1,3].

Table 1. Organizational effectiveness measures [3]

4.2 Learning

Even though especially CMM is aimed at improving software processes with an ap-
proach that is incremental and learning oriented, the instrumental and abstract role of the
CMM organization is often forgotten. Instead the ideal model is taken as “self-evidently
describing the evolution of the software organization ‘as it is in itself’ “ [38,p. 20]. Thus,
the software specialists are induced to push their organization along the prescribed
learning curve and even in a learning oriented methodology - CMM - the abstract model
and the related measurements come to dictate behavior, up to the point that many admit
that CMM with its bias for ‘technologies of reason’ needs to be supplemented with
proper concern for experimentation and true organizational learning.

As the previous section hints, the general view of SPI on learning is mostly opera-
tionalized as measures in addition to explicit role definitions. If used in most limited
way, the metrics are used as a control mechanism. For instance, analysis by Ngwen-
yama & Axel Nielsen [39] reveals that even though the proponents advocate the idea
that CMM would lead to a dynamic, flexible learning organization, the paradigm’s
core assumptions are based on rational rule-governed organization structures that are
oriented toward stability, control, and productivity. The hierarchical structures of
CMM work processes with their explicitly defined role responsibilities and strict man-
agement control are contradictory to building trust upon which a developmental culture
thrives [39]. Indeed, one of the key challenges to SPI seems to be to simultaneously
balance the objectives of control and learning: “Take as an example the implementa-
tion of TQM. TQM is steeped in a paradigm of control [19]. Concepts like reduction of
variation, defined and standardized processes, management by fact, causal thinking,

 Learning and Organizational Change in SPI Initiatives 227

etc. all stem from the "Newtonian" paradigm of control and equilibrium, as manifested
in the principles and practices of scientific management. Yet, TQM also has a learning
component to it. Employee involvement, empowerment, and cross-functional coopera-
tion are an important part of TQM. TQM thus has both mechanistic (control) and or-
ganismic (adaptive learning) components. These learning components, in some ways,
are in direct competition with the control components”[40].

Often, the measures are recommended to form a basis for the next improvement
round. For instance, in IDEAL the last phase in process improvement cycle is Learning
phase, where the overall adoption or improvement experience is reviewed to determine
what was accomplished, whether the effort met the intended goals, and how the
organization can implement change more effectively or efficiently in the future. Re-
flecting this to learning models by Argyris and Schön [4] this view seems to support
douple-loop learning where the procedures are changed according to past experiences.

But, the company should facilitate organizational learning. When, for instance the
experiences, lessons learned etc. were stored in a data base [41], forming part of ac-
tively used organizational memory, the company is approaching more advanced ‘deu-
tero-level’ learning. The improvement initiatives can also be supported by providing
the groups with visualization tools, communication support, scheduling, reporting and
controlling tools [41]. Experience factory is an example of a construct which separates
practical problem solving and experience modeling. It aims to systematic reuse of
previous knowledge by packaging experience related material relevant to a real user.
This includes tailoring contents and format to a concrete anticipated usage situation.
Experience is only valuable when set in context. It also point out that “we must base
iteration, evolution, and learning on explicit information to form the seed for the next
cycle.” [42]. As a separate entity, an experience factory receives plans, status informa-
tion, and experiences from all participating projects. Incoming data is organized in
models, such as defect density models, Pareto charts of defect class baselines, algo-
rithms, and so forth [42]. These models provide projects with immediate feedback.

In regard to assimilating tacit knowledge a few SPI articles and practical report sug-
gests use of pilot projects, and mentoring [27]. Additionally, the multi level and cross-
departmental SPI groups should advance a context where individuals with conflicting
views can interact with each other and engage in dialogue. Otherwise, the means and
tools to support learning in the route from ‘creative chaos’ towards rules and tacit
knowledge is little discussed in the SPI literature. Maybe here the SPI literature could
benefit from ideas presented in organizational learning on methods for advancing
learning, such as in Fig. 1., and quality improvement steps proposed by [25].

5 Conclusions

This article provided a short presentation on literature on organizational learning and
organizational change. A traditional way is to view learning as the "detection and cor-
rection" of error [43], i.e. acting and learning due to conflict between what-is and what-
was-supposed. Argyris and Schön [4] distinquish between three levels of learning,
simple correction, changing procedures as a result of an error, and facilitating organiza-
tional learning. The traditional of learning, as a “lessons learned” or post-mortem re-
porting activity is often apparent in SPI literature [44]. The SPI paradigm seems to

228 M. Heikkilä

have adopted the views of Argyris and Schön [4] on learning where they aim at dou-
ble-loop learning, i.e to to question and modify existing rules and procedures in
response to mismatch or error. In this vein the organization plans to improve its proc-
esses gradually, that from learning point of view is generally regarded as being more
favorable than radical changes. In the highest level of CMM(I) maturity, the goal is
towards deutero-learning, where the double-loop learning is provided with proper
organizational support and capabilities. Similar perspectives are proposed also in Ex-
perience factory.

However, there is also an alternative approach to learning suggested by literature.
For instance Nonaka [12] proposes that new knowledge is created by dialogue which
brings up conflicting views. This leads to a view where organizational learning is
regarded as a continuous change process where specific learning cycle starts with
creative conflict and ends up in formal norms and systems. This view can be recog-
nized in the multi level organization structure of SPI groups. A few papers also ad-
vance use of mentoring and piloting in addition to formal training, but in general this
‘learning via conflict’ has almost no visibility in SPI literature.

Maybe, the SPI paradigm would benefit from taking a closer look on learning or-
ganization’s models promoting creativity: the approach starts with creative phase,
where mental models and brainstorming are applied to boost innovativeness in multi-
departmental or multi-organizational teams, and finally curbs down to ‘status quo’
coordinated by shared work practices and formal rules.

We suggest that the software process improvement initiatives should pay more at-
tention on how they facilitate learning and overcome the obstacles. Building on the
organizational learning and change literature we propose the following steps to be
considered more carefully in SPI models: First, the managers should communicate the
objectives and methods for learning and provide also adequate resources and time for
it. Second, innovation capability of people could be exploited more for instance by
forming border-crossing teams and allowing more creative atmosphere in defining the
objectives and means. Third, the management should commit and support personnel’s
learning and skill development. Fourth, learning and systemic change should be pro-
moted with an organization level team. And, the final step in the change process is the
adoption of formal metrics and systems.

References

1. Iversen, A., Ngwenyama, O.: Problems in measuring effectiveness in software process im-
provement: A longitudinal study of organizational change at Danske Data. International
Journal of Information Management 26, 30–43 (2006)

2. Mathiassen, L., Ngwenyama, O., Aaen, I.: Managing Change in Software Process Im-
provement. IEEE Software 22(6), 84–91 (2005)

3. Applegate, L.: Managing in an information age: Transforming the organization for the
1990s. In: Baskerville, R., Smithson, S., Ngwenyama, O., DeGross, J.I. (eds.) Transform-
ing organizations with information technology, pp. 15–94. Elsevier Science, Amsterdam
(1994)

4. Argyris, C., Schön, D.: Organizational learning: A theory of action perspective. Addison
Wesley, Reading (1978)

 Learning and Organizational Change in SPI Initiatives 229

5. Cohen, W., Levinthal, D.: Absorptive Capacity: A New Perspective on Learning and Inno-
vation. Administrative Science Quarterly 35, 128–152 (1990)

6. Doz, Y.L.: The evolution of cooperation in strategic alliances: initial conditions or learning
processes? Strategic Management Journal 17, 55–83 (1996)

7. Gemünden, H.G., Ritter, T., Heyedebreck, P.: Network configuration and innovation suc-
cess: An empirical analysis in German high-tech industries. International Journal of Re-
search in Marketing (1996)

8. Gatterman, P.M., Hoffmann, S.C.: The relationship between learning orientation and inno-
vation. In: 32nd EMAC Conference, Glasgow (2003)

9. Weick, K.E.: The social psychology of organizing, 2nd edn., p. 294. McGraw-Hill, Inc.,
New York (1979)

10. Weick, K.E.: Sensemaking in Organizations, 231 pages. Sage Publication Inc., Thousand
Oaks (1995)

11. Nooteboom, B.: Learning by Interaction: Absorptive Capacity, Cognitive Distance and
Governance. Journal of Management and Governance 4, 69–92 (2000)

12. Nonaka, I.: A Dynamic Theory of Organizational Knowledge Creation. Organization Sci-
ence 5(1), 14–37 (1994)

13. Nonaka, I.: The knowledge-creating Company. Harvard Business Review 69(6), 96–104
(1991)

14. Senge, P.M.: The Fifth Discipline The Art & practise of the learning organization. Cur-
rency Doubleday, New York (1994)

15. Brown, J.S., Duguid, P.: Organizational learning and communities-of-practice: Toward a
Unified View of working, learning and innovation. Organization Science 2(1) (February
1991)

16. Nonaka, I., Konno, N.: The Concept of BA: Building a foundation for knowledge creation.
California management review 40(3) (Spring 1998)

17. Zimmerman, B.: Ralph Stacey’s Agreement & Certainty Matrix (2001),
 http://www.plexusinstitute.org/edgeware/archive/think/
 main_aides3.html

18. Stacey, R.: Complexity and Creativity in Organizations. Berrett-Koehler Publishers (1996)
19. Dooley, K., Johnson, T.L.: TQM, Chaos and Complexity. Human Systems Manage-

ment 14, 287–302 (1995)
20. Nonaka, I., Takeuchi, H.: The knowledge creating company. Oxford University Press, Ox-

ford (1995)
21. Schein: Organizational culture, Sloan School of Management. MIT, Cambridge (1988)
22. Huber, G.: Organizational Learning: The Contributing Processes and the Literatures.

Organization Science 2(1); Special Issue: Organizational Learning: Papers in Honor of
(and by) James, G., pp. 88–115 (March 1991)

23. Galbraith, J.: Organizing to Deliver Solutions, Special Issue of Organizational Dynamics
(May 2002)

24. Beer, M., Eisenstat, R.A., Spector, B.: The Critical Path to Corporate Renewal. Harvard
Business School Press, Boston (1990)

25. Spector, B., Beer, M.: Beyond TQM Programmes. Journal of Organizational Change Man-
agement 7(2), 63–70 (1994)

26. Arent, J., Iversen, J., Andersen, C., Bang, S.: Project Assessments: Supporting Commit-
ment, Participation, and Learning in Software Process Improvement. In: Proceedings of the
33rd Hawaii International Conference on System Sciences (2000)

27. Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk, M.: Software quality and the
Capability Maturity Model. Communications of the ACM 40(6) (1997)

230 M. Heikkilä

28. Aaen, I., Arent, J., Mathiassen, L., Ngwenyama, O.: A Conceptual MAP of Software Proc-
ess Improvement. Scandinavian J. Information Systems 13, 123–146 (2001)

29. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model, version
1.1. Software, VOL 10(4), 18–27 (1993)

30. Paulk, M.C.: How ISO 9001 compares with the CMM. Software 12(1), 74–83 (1995)
31. Dybå, T.: Enabling Software Process Improvement: An Investigation of the Importance of

Organizational Issues. Empirical Software Engineering 7, 387–390 (2002)
32. Kinnula, A.: Software process engineering systems: models and industry cases, Oulun

yliopisto (2001)
33. McFeeley, R.: IDEALSM - A User’s Guide to Software Process Improvement. CMU/SEI-

96- HB-001, Software Engineering Institute (February 1996)
34. Hardgrave, B., Armstrong, D.: Software process improvement: it’s a journey, not a desti-

nation. Communications of the ACM 48(11) (2005)
35. Stelzer, D., Mellis, W.: Success factors of organizational change in software process im-

provement. Software Process: Improvement and Practice 4(4), 227–250 (2000)
36. Johansen, M.L.: Lessons Learned in a National SPI Effort. In: Proceedings of EuroSPI

1998, Gothenburg, Sweden, November 16-18, pp. 5–17 (1998)
37. Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented soft-

wareenvironments. Transactions on Software Engineering 14(6), 758–773 (1988)
38. Ciborra, C.: The labyrinths of Information: Challenging the Wisdom of Systems. Oxford

University Press, Oxford (2002)
39. Ngwenyama, O., Axel Nielsen, P.: Competing Values in Software Process Improvement:

An Assumption Analysis of CMM From an Organizational Culture Perspective. IEEE
Transactions on Engineering Management 50(1), 100–112 (2003)

40. Dooley, K.: A Complex Adaptive Systems Model of Organization Change. Nonlinear Dy-
namics, Psychology, and Life Sciences 1(1) (1999)

41. Sakamoto, K., Nakakoji, K., Takagi, Y., Niihara, N.: Toward computational support for
software process improvement activities. In: Proceedings of the 20th international confer-
ence on Software engineering, Kyoto, Japan, April 19-25, pp. 22–31 (1998)

42. Schneider, K., Jan-Peter von Hunnius, J.-P., Basili, V.: Experience in Implementing a
Learning Software Organization. IEEE Software (May/June 2002)

43. Senge, P.M.: Taking personal change seriously: The impact of Organizational Learning on
management practice. Academy of Management Executive 17(2) (May 2003)

44. Levine, L.: Integrating Knowledge and processes in a Learning Organization. Information
Systems Management 18(1) (Winter 2001)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 231–245, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Role of Different Approaches in Inspection Process
Improvement

Sami Kollanus

Department of Computer Science and Information Systems
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

sami.kollanus@jyu.fi

Abstract. There is a need to better understand improvement of software inspec-
tion practices. Typically process improvement is driven by different reference
models like CMMI. In the previous work we found that such model based ap-
proach alone didn’t provide sufficient support for inspection process improve-
ment. This paper outlines an overall picture of inspection process improvement
and four different approaches for it. These approaches are seen as complemen-
tary and the focus of the paper is on describing their role in the improvement
process.

Keywords: software inspection, peer review, software process improvement.

1 Introduction

Software inspections were introduced more than 30 years ago [1] and several re-
searchers have reported great savings or improved effectiveness gained from using
inspections [2][3][4][5]. However, inspections are not so well applied in practice.
Johnson [6] and Ciolkowski et al. [7] have both found that inspections and reviews
are irregularly used in most of the software companies. In addition, our earlier work
[8] proposes that there may be serious weaknesses in the current inspection practices
even in the organizations, where inspections are well defined and regularly used.

It is reasonable to claim there is a need to better understand process improvement
aspect on software inspections. However, there is very little such research made on
the field. We conducted a comprehensive literature survey on inspection related re-
search [9]. Only few of the surveyed 133 articles are related to inspection process
improvement.

Software process improvement (SPI) has been strongly driven by reference models
like CMM [10], CMMI [11] and ISO 15504 [12]. Various similar kinds of models
have been suggested for specific process areas, for example testing [13], project man-
agement [14] and maintenance [15]. Our previous work [16][17] has focused on
developing a maturity model for software inspection called ICMM (Inspection Capa-
bility Maturity Model). It has been developed based on the literature and experiences
from eight case organizations. One of the key findings was that regardless of the posi-
tive experiences with ICMM, it didn’t alone provide sufficient support for inspection

232 S. Kollanus

process assessment and improvement. This kind of model based process improvement
has to be completed with some other aspects.

The goal of this paper is to sketch the overall picture of inspection process im-
provement and different approaches for it. Four different approaches and their role in
inspection process improvement are presented. The work is based on both literature
and the previous work with ICMM. The literature part is based on the previous litera-
ture survey [9] and completed with some relevant literature discussing SPI issues
generally.

The second section will discuss the issues related to improvement process gener-
ally. Then sections 3-6 introduce four different approaches for inspection process
improvement. The final conclusions are summarized in section 7.

2 Improvement Process

The previous inspection literature discusses very little about general organizational
issues in process improvement. There are only few references, which more or less
touch this viewpoint (ie. [18][19][20][21]). These few references don’t include an
overall picture of the improvement process in inspection context. It may be natural
that they focus more on the substance, because the organizational viewpoint includes
very few issues which are specific for inspections. And there is already a lot of re-
search conducted on the general issues in software process improvement. Some key
issues about the general SPI research are summarized in this section in order to create
an overall picture of process improvement.

IDEAL model [22] is possibly the most known presentation about software process
improvement as a process. The background of the model is based on the original Ca-
pability Maturity Model [10], which focused on the substance in various process ar-
eas, but doesn’t provide practical support for process improvement. IDEAL model
was developed to cover this need. It presents improvement process as 5 main phases,
which divide into 14 activities (Figure 1). The circular form of the model emphasizes
continuous nature of the improvement activities.

In the Initiating phase, the general objectives for the process improvement are de-
fined. The current state of the organization is identified and analyzed in the Diagnos-
ing phase. In the Establishing phase, long term strategies and concrete approaches for
SPI are defined. In the Acting phase, solutions to the defined improvement areas are
created, piloted, and deployed throughout the organization. The focus in the Learning
phase is on learning from the experience and improving ability to adopt new tech-
nologies in the future.

A general model, like IDEAL, may be useful also for inspection process improve-
ment. It may provide a good roadmap for the improvement activities on general level.
In addition to this kind of process aspect, it is good to be aware of the typical success
factors in process improvement. The following paragraphs include a short summary
of the results from few different studies.

 The Role of Different Approaches in Inspection Process Improvement 233

Set
Context

Build
Sponsorship

Charter
Infrastructure

Characterize
Current &
Desired States

Develop
Recommendations

Set
Priorities Develop

Approach

Plan
Actions

Create
Solution

Pilot/Test
Solution

Refine
Solution

Implement
Solution

Analyze
and
Validate

Propose
Future
Actions

Stimulus for Change

Initiating

Diagnosing

Establishing

Acting

Learning

Fig. 1. IDEAL model [22]

Dybå [23] has summarized the key factors in SPI success to the following six
items:

• Business orientation: SPI goals and actions are aligned with explicit and implicit
• business goals and strategies.
• Involved leadership: Leaders at all levels in the organization are genuinely com-

mitted to and actively participate in SPI.
• Employee Participation: Employees use their knowledge and experience to de-

cide, act, and take responsibility for SPI.
• Concern for Measurement: The software organization collects and utilizes qual-

ity data to guide and assess the effects of SPI activities.
• Exploitation of existing knowledge: Exploitation involves improving existing

capabilities by refining, standardizing, routinizing, and elaborating established
ideas, paradigms, technologies, strategies, and knowledge.

• Exploration of new knowledge: exploration involves learning through discovery
and experimenting with ideas, paradigms, technologies, strategies, and knowledge
in hope of finding new alternatives

The items listed by Dybå are based on a comprehensive literature review. He uses
them as hypotheses in his survey, which studied SPI success 120 organizations. He
concluded that all six factors remarkably affected SPI success. They together ex-
plained more than 50 % of variation in SPI success.

Also several other studies have been focused on SPI success factors. Table 1 in-
cludes a summary of the results from five studies, which are based on varying re-
search methods. There are clearly few common factors for the most of the results.

234 S. Kollanus

These are for example employee involvement, management commitment, measure-
ment, resource allocation and well defined goals. Additionally, there are a number of
various factors, which have been identified as remarkable at least in a single study.
Also the most important factors have varied between the studies. Based on the varia-
tion in the results, we can conclude that SPI success is a complex phenomenon that
includes a lot of different factors. Therefore, there is no model that gives complete
solutions for successful process improvement. The key issue is to know the organiza-
tion and to find a fitting approach.

Most of the research studying SPI success is focused on factors which may have a
positive effect on success. However, there are also some studies that have aimed to
find barriers for successful SPI. For example, Goldeson and Herbsleb [24] studied
both of the aspects in their survey. They found the following barriers for SPI success:

• excessive organizational politics
• “turf guarding”
• discouragement and cynicism from previous experience
• the feeling among the technical staff that process improvement gets in the way of

their “real” work
• appraisals’ recommendations too ambitious

Table 1. SPI success factors in five different studies

Success factor \ Study

Dybå
[23]

Goldenson
&

Herbsleb
[24]

Hall
ym.
[25]

Niazi
ym.
[26]

Stelzer
&

Mellis
[27]

Employee involvement x x x x x
Management commitment and
support

- - x x x

SPI monitoring and measurement x x x - -
Resource allocation - x x x -
Well defined and realistic goals - x x - x
Communication and co-operation - - x - x
Change agents and key persons - - x - x
Tailoring SPI approaches - - x - x
Providing enhanced understanding - - - x x
Leadership involvement x
Business orientation x
Exploitation of existing knowledge x
Exploration of existing knowledge x
Involved people are respected x
Well defined responsibilities x
Infrastructure for SPI x
Experienced staff x
Training x
Well defined SPI implementation
methodology

 x

Managing the improvement project x
Managing resistance to change x
Stabilizing changed process x

 The Role of Different Approaches in Inspection Process Improvement 235

The issues discussed in this subsection are general and common to any kind of
process improvement. They form a kind of framework in which also inspection proc-
ess improvement take place. The rest of this paper focuses on issues that are specific
in inspection context. The following subsections will describe different perspectives
on inspection process improvement.

3 Reference Models for Inspection Process Improvement

Reference models here mean maturity or capability models that are developed to
support inspection process improvement. These model types are based the approaches
in the original CMM [10] and in ISO 15504 [12] which is often called SPICE. CMM
is a maturity model which defines five stages for organizational maturity in software
engineering context. The defined process areas prioritized so that the low level proc-
ess areas are more critical to implement first. Based on this assumption, CMM is
supposed to assess organizational maturity. This approach enables comparison be-
tween different organizations.

The aim of ISO 15504 [12] is not focused on organizational maturity, but capabil-
ity of distinct process areas, which are assessed according to specific criteria. The
goal for this approach is to enable more flexible process improvement compared to a
maturity model like CMM. The comparison between ISO 15504 as a capability model
and CMM as a maturity model is not valid anymore. Since the first version of current
CMMI (updated CMM), the model has included also a capability model called con-
tinuous representation. And ISO (International Organization for Standardization) is
in the process of developing its own stage model based on ISO 15504.

ICMM [16] is a maturity model for inspection process improvement that is based
on our previous work. There are also few other related maturity models in the previ-
ous literature. CMMI [11] includes some requirements related to inspections, but they
are described only on very general level. Some maturity models for software testing
(i.e. [13][28]) include some ideas about inspections, but the descriptions are superfi-
cial. Earlier, Grady and Van Slack [4] have presented a maturity model for software
inspections. However, their model focuses more on describing the history of the com-
pany wide implementation of inspections in HewletPackard.

The structure of ICMM (Figure 2) includes five stages which follow the ideas in
CMMI. Inspection process areas are prioritized in the model based from the im-
provement point of view. It is a general assumption that for example the process areas
defined on the second level should be implemented before the third level. According
to our first experiences, ICMM worked well in identifying weaknesses in the current
inspection practices [17]. However, the case organizations didn’t have provide ex-
perience about the levels 4-5 or long term experience about using the model in inspec-
tion process improvement.

Tervonen et al. [29] have developed a capability model called i3GO that has later
been improved by Harjumaa et al. [30]. The model divides inspection process into 12
distinct activities that are assessed through 29 indicators. The assessment result is
a profile that describes how well each of the 12 activities is institutionalized in the
organization.

236 S. Kollanus

Fig. 2. ICMM model structure

Harjumaa et al. [30] report that i3GO has worked well in identifying weaknesses in
the current inspection practices. There is little empirical experience about the model,
which is common with ICMM. There are promising results about both of the models,
but further research is needed in order to evaluate them. It is impossible to compare
usefulness of the models due to very limited experiences. The basic structure is dif-
ferent in each model. ICMM as a stage model may provide more concrete support for
designing improvement steps. On the other hand, i3GO provides more flexibility and
more specific description about various inspection process areas. In any case, this
kind of reference model provides an external framework, which may help in identify-
ing weaknesses in the current practices.

4 Problem Based Approach

One of the key finding in our experiences with ICMM was that model based assess-
ment alone did not provide enough support for inspection process improvement [17].
It may help in identifying the weaknesses that are directly related to the defined prac-
tices. However, there are various other practical problems which may occur in inspec-
tion practices. Our earlier work [31] introduces this kind of problems based on litera-
ture and a couple of case organizations. A good example is preparation for inspection
meeting. Even an organization with well defined and regularly practiced inspections
may have serious problems with preparation.

We suggest in our earlier work that model based inspection process improvement
should be completed with a problem-based approach [31]. The article includes a sug-
gestion of such process, which is includes the following five phases (these are in
slightly improved form):

1. Assess inspection practices: The current state of inspection practices should be
assessed based on some reference model like ICMM [16] or i3GO [30]. If this has
not been done before, it can be undertaken at the same time with the problem

 The Role of Different Approaches in Inspection Process Improvement 237

analysis. The assessment may reveal some problems which would be hard to detect
otherwise.

2. Collect experiences: The second task is to collect experiences about possible
problems with interviews or questionnaires. For example, the list presented in [31]
can be used as a basis for this. The task is to find out what are the common prob-
lems in the organization.

3. Identify actual problems: The collected experiences probably do not directly
reveal all the significant issues, but they may include some hints about other possi-
ble problems. This identification of the real problems should, therefore, include a
more careful analysis by an expert with sufficient knowledge about inspections.
The focus in this task is to analyze the degree of effect that the identified problems
have on inspection effectiveness in the organization. All the suggested problems
are listed and the importance of each identified problem is estimated in scale from
1 to 5 (1 is most important).

4. Estimate required effort: The task in this phase is to estimate the effort required
to correct the problems. This is estimated in scale from 1 to 3. One in this scale
means issues which are pretty easy to fix with small changes in inspection prac-
tices. Three means the problems which take a lot of time to be dealt with, for ex-
ample changes in the whole organizational culture.

5. Prioritize problems: The final task is to prioritize the improvement actions to
handle the identified problems. The estimated values from the tasks 3 and 4 are
multiplied. The main rule is that the problems which get the lowest result values
are the most beneficial to be handled first.

We found in the case organizations that the terms related to inspections may be am-
biguous. Therefore interviews are possibly the best way to gather the data. Another
finding was that the answers were not consistent. The interviewees were asked to
estimate how common the suggested problems are in the organization (scale 1-5).
Some of them described density of the problems while the others rather tried to de-
scribe how remarkable the problems are. In our case, the interviewees were asked to
express the combination of these two dimensions with one score. Another option
would be to request two distinct estimates.

Also some other than the suggested problems may come up during the process. An
example in the case organizations was attitude towards inspections. Our question
assumed that the authors may not be eager to give their documents under inspection.
However, this was not experienced as a problem in any of the eight organizations, but
the problems the inspectors’ willingness to read others documents.

It good to realize that the problem based approach requires existing practices. It
can be used to complete the weaknesses in model based approach when the basic
practices are already deployed in the organization. The problem-based approach may
be a continuous practice that is regularly used in monitoring an inspection process.

The faced problems may be related to the maturity level in an organization.
Beecham et al. [32] made this kind of finding in their research that focused on software
process improvement generally. They found that organizations on higher CMM level
reported different problems from the others on lower CMM level. We got similar re-
sults related to inspection practices in the case organizations. Delay in inspection
schedule is a good example of this. Some organizations do not face this problem,

238 S. Kollanus

because they skip the whole inspection when the schedule gets tight. It may be a prob-
lem in an organization in which inspections are regular and institutionalized practice.

In the future, it could be possible to identify some common profiles which present
typical problems in different situations. The profiles would possibly enable more
effective identification of the problems. This kind of approach would be close to the
idea of inspection patterns, which is introduced in the next section.

5 Inspection Patterns

There has been active discussion about patterns on the software engineering field
during the recent years. Possibly the best known application are design patterns which
describe communicating objects and classes that are customized to solve a general
design in a particular context [33]. According to Gamma [33], a software pattern
includes

• problem description including context in which it can be applied,
• solution to the problem,
• description of the expected benefits and costs.

This same idea has also been applied to software process patterns [34]. Harjumaa
has applied the idea of process patterns specifically to software inspection improve-
ment [19] [35]. He has defined a set of patterns that present typical situations with
inspection practices in an organization. The key idea is to first identify the current
state in the organization and the most important improvement needs. Then inspection
patterns may help in defining a proper solution.

Harjumaa [19] defines the following 7 inspection patterns:

• Greed: Aims at finding more defects during inspections.
• Early bird: Aims at finding defects during earlier stages of development.
• Substance: Aims at finding more serious defects in inspections.
• Comfort: Aims at making the inspection process easier to run.
• Promotion: Aims at promoting the process so that it is carried out more often and

in a larger number of projects.
• Wisdom: Aims at a more understandable, transparent and effective inspection

process.
• Precision: Aims at making the process more rigorous, thus making it more effective.

Harjumaa [19] attach inspection patterns to model based assessment. First, existing
practices are assessed and the most critical improvement needs are defined. Then it is
possible to select the best fitting inspection pattern, which may help in defining con-
crete strategy for inspection process improvement. Inspection patterns are a kind of
problem solving approach, but their focus is on very general level compared to the
problem approach presented in the previous section.

Inspection patterns sound like a good idea for inspection process improvement.
Reference models may help in identifying the current state of the practices, but they
provide little support for designing concrete improvements. Well defined inspection
patterns could answer this need, but there is still need for further research on this area.

 The Role of Different Approaches in Inspection Process Improvement 239

Harjumaa gives only a superficial description of the patterns and would be hard to
apply them in practice based on that information [19] [35].

6 Effectiveness Factors

The knowledge on different effectiveness factors in inspection process is not directly
taken into account in the presented approaches. ICMM-model includes an assumption
that the lower level practices are more important than the practices on the higher lev-
els. Both problem based approach and inspection patterns includes some ideas about
improving inspection effectiveness. However, none of these approaches doesn’t pro-
vide improvement suggestions directly based on effectiveness factors. Therefore it
may be beneficial to make a distinct evaluation of improvement suggestions from this
point of view.

Effectiveness means here inspections’ capability to find defects. The previous re-
search includes several studies which discuss different effectiveness factors. The main
results are summarized in the following points with the most important references:

• The most important factor is individual performance of the inspectors. [36][37][38]
• Most of the defects are found during individual preparation. [18][39][40]
• Inspection meetings don’t have remarkable meaning in finding defects

([41][42][43]), but they may be important for some other purposes, i.e. training
([44][45]).

• An individual inspector has to use quite a lot of time in order to find major defects.
For example, typical suggestions for code inspections are 60-200 LOC/hour.
[3][18][46]

• Advanced reading techniques may help even experienced professional in finding
defects effectively. [47][48][49][50][51]

• Proper training may improve inspection effectiveness. [52][53]

It is notable that the studies are usually controlled experiments focused on number
of found defects and probably time used in inspection. Very few of them take eco-
nomical aspect into account, which may remarkably affect the conclusions. For ex-
ample, Porter et al. [54] and Biffl et al. [55] have both concluded that arranging two
inspection rounds, instead of typical one, increased very little the number of found
defects. The second round doesn’t appear to be beneficial, if we look only the used
time per found defect. However, Biffl et al. [55] also tried estimate the possible sav-
ings based on a sample data from industry and they found that the second round may
pay for itself.

The main conclusion is that the inspectors’ individual performance is the most im-
portant factor in inspection process. This phenomenon appears to be common to the
whole software engineering field. Already Boehm made this finding related to the
original COCOMO-model [56]. He studied different productivity factors in software
engineering and concluded that development team had clearly the biggest impact on
productivity. Some studies on software inspections ([36][38]) have found individual
skills and experiment as important factors. In our case studies ([8][31]), the inter-
viewees didn’t regard insufficient skills as a problem, but the most significant
problem in the inspection practices was motivation to read others’ documents..

240 S. Kollanus

In improving inspection practices, it may be useful to evaluate improvement sug-
gestions from the effectiveness point of view. Based on the conclusions presented
above, it is most beneficial to focus on the issues related to skills and motivation of
the inspectors. Different effectiveness factors should also be taken into account in
defining inspection process. For example, it is crucial to understand that most of the
defects are found in preparations phase.

The previous literature provides only a limited set of issues on inspection effective-
ness. They may be useful in improving inspection practices, but the whole improve-
ment can not be based on this knowledge. For example, there are several organizational
factors that affect inspection success, but they are not directly related to the effective-
ness point of view. In addition, effectiveness is generally very complex phenomenon
and only a part of the potential effectiveness factors has been systematically studied.
For example, some authors ([1][18]) suggest selecting independent inspectors outside
of the development team in order to enable objective view on the documents. In our
case organizations, the interviewees totally rejected this idea, because it often takes too
much time from an outsider to inspect especially a technical document. Sometimes
when applying a new technology, the author is the only one in the organization who is
familiar with the technology.

7 Conclusions

This paper has tried to outline different aspects and approaches for inspection process
improvement. Figure 3 summarizes the overall picture of inspection process improve-
ment and the role of the presented approaches. The role of each approach is presented
in relationship to the IDEAL model [22]. General understanding on software process
improvement is a basis for inspection process improvement. This understanding
includes organizational issues which are not specific for software inspections. The
specific approaches for inspection process are mostly related to the diagnosing, estab-
lishing, and acting phases of the IDEAL model.

The diagnosing phase includes identification of the state of the current inspection
practices. Reference models, like ICMM or i3GO, provide a framework which may
help in assessing current practices and identifying weaknesses in them. One of the key
finding in our case studies ([8][31]) was, that an organization with regular and well
defined inspections may have serious problems with inspections in practice. Therefore
the model based approach alone does not provide sufficient support for inspection
process improvement. It should be completed with a problem based approach which is
focused on identifying practical issues in inspection practices. The model based and
problem based approaches together may be useful defining concrete improvement
suggestions.

All the approaches presented in the paper are included in the establishing phase.
Reference models provide help in identifying the practices, which need to be im-
proved first. The problem analysis (section 4) may help in identifying practical prob-
lems in the current practices and in prioritizing improvement actions. After the initial
assessment, the inspection patterns (section 5) may be useful in designing a proper
improvement strategy. These different approaches are complementary and together

 The Role of Different Approaches in Inspection Process Improvement 241

Fig. 3. Overall picture of inspection process improvement and the role of different approached in
the improvement process (applied from IDEAL-model [22]). REF = Reference models, PBA =
Problem-based approach, PAT = Inspection patterns, EFE = Effectiveness factors in inspection
process.

they may be a useful toolset in defining the concrete action and strategy for inspection
process improvement. However, they may not sufficiently take all the effectiveness
issues into account. Therefore it is useful to make an additional analysis which is
based on general effectiveness factors in inspection process (see section 6).

The acting phase includes the actual implementation of the process improvements.
The problem analysis and the improvement patterns may help in this task. Well de-
fined inspection patterns may provide a complete solution or at least help to find the
right direction for improvement actions. Equally the problem analysis may lead to a
solution. There may be a known possible solution to many of the practical issues in
inspection practices (see [31]). Effectiveness factors in inspection process should also
be taken into account, when the concrete implementation is defined.

Finally, reference models may be useful in the learning phase. They include prac-
tices which are related to process data collection and inspection process improvement
generally.

Generally, organizational change management is possibly the most important issue
in inspection process improvement, like in SPI overall. Several studies have tried to
find out the most important success factors or the barriers in software process im-
provement. They have found a number of different factors which are not consistent

242 S. Kollanus

between the studies. It can be concluded that due to the complexity of organizational
change, there can’t be a model or method which would guarantee success in it. In-
stead, the key issue in success is to know and understand the organization.

Throughout the whole improvement process, it is good to understand the general
effectiveness factors in inspection process. The most important factor is always the
individual performance of the inspectors in finding defects. So, an organization is
probably successful with inspections if it is able get skilled enough employees to read
others’ documents with sufficient motivation. Even the best practices do not help
without proper individual skills and motivation.

This paper has discussed four different approaches for inspection process im-
provement. The background for the study in the finding that the model based ap-
proach alone doesn’t provide sufficient support for inspection process improvement.
This finding may be relevant for the whole field of software process improvement
which is strongly driven by different reference models. In the future work, it would be
worth of studying, if the ideas presented in this paper can be generalized for the
broader SPI field.

References

1. Fagan, M.: Design and code inspection to reduce errors in program development. IBM
Systems Journal 15(3), 182–211 (1976)

2. Doolan, E.: Experience with Fagan’s Inspection Method. Software - Practice and Experi-
ence 22(2), 173–182 (1992)

3. Fagan, M.: Advances in Software Inspections. IEEE Transactions on Software Engineer-
ing 12(7), 744–751 (1986)

4. Grady, R.B., Van Slack, T.: Key lessons in achieving widespread inspection use. IEEE
Software 11(4), 46–57 (1994)

5. Russell, G.: Experience with inspection in ultra large-scale developments. IEEE Soft-
ware 8(1), 25–31 (1991)

6. Johnson, P.M.: Reengineering Inspection. Communications of the ACM 41(2), 49–52
(1998)

7. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software reviews, the state of the practice.
IEEE Software 20(6), 46–51 (2003)

8. Kollanus, S., Koskinen, J.: Software inspections in practice: six case studies. In: Münch, J.,
Vierimaa, M. (eds.) PROFES 2006. LNCS, vol. 4034, pp. 377–382. Springer, Heidelberg
(2006)

9. Kollanus, S., Koskinen, J.: Survey of software inspection research: 1991-2005. Computer
Science and Information Systems Reports, Working Papers WP-40, Jyväskylä University
Printing House, Jyväskylä, Finland, 39 p (2007)

10. Paulk, M., Curtis, B., Averill, E., Bamberger, J., Kasse, T., Konrad, M., Perdue, J., Weber,
C., Withey, J.: Capability Maturity Model for Software. CMU/SEI-91-TR-24. Software
Engineering Institute. Carnegie Mellon University, Pittsburgh (1991)

11. SEI. Capability Maturity Model Integration version 1.2. Software Engineering Institute
(2006), http://www.sei.cmu.edu/cmmi/

12. ISO/IEC: ISO/IEC 15504 - Information Technology Process Assessment Parts 1-5
(2003-2006)

 The Role of Different Approaches in Inspection Process Improvement 243

13. Burnstein, I., Homeyen, A., Suwanassart, T., Saxena, G., Grom, R.: A testing maturity
model for software test process assessment and improvement. Software Quality Profes-
sional 1(4), 8–21 (1999)

14. Kerzner, H.: Strategic planning for project management using a project management ma-
turity model. John Wiley & Sons, Chichester (2002)

15. April, A., Abran, A., Dumke, R.: SMcmm model to evaluate and improve the quality of
the software maintenance process. In: 8th European Conference on Software Maintenance
and Re-Engineering, Tampere, Finland, pp. 243–248 (2004)

16. Kollanus, S.: ICMM – Inspection Capability Maturity Model. In: IASTED International
Conference on Software Engineering, pp. 372–377 (2005)

17. Kollanus, S.: Experiences from Using ICMM in Inspection Process Assessment. Software
Quality Journal 17(2), 177–187 (2009)

18. Gilb, T., Graham, D.: Software Inspection. McGraw-Hill, New York (1993)
19. Harjumaa, L.: A pattern approach to software inspection process improvement. Software

Process: Improvement and Practice 10(4), 455–465 (2005)
20. Jalote, P., Haragopal, M.: Overcoming the NAH syndrome for inspection deployment.

In: 20th International Conference on Software Engineering, pp. 371–378. IEEE Computer
Society, Washington (1998)

21. Wiegers, K.: Peer Reviews in Software: A Practical Guide. Addison-Wesley, Boston
(2002)

22. SEI: IDEAL: A User’s Guide for Software Process Improvement. CMU/SEI-96-HB-001.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh (1996)

23. Dybå, T.: An empirical investigation of the key factors for success in software process im-
provement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)

24. Goldenson, D., Herbsleb, J.: After the Appraisal: A Systematic Survey of Process Im-
provement, Its Benefits and Factors that Influence Success. SEI: CMU/SEI-95-TR-009.
Software Engineering Institute (1995)

25. Hall, T., Rainer, A., Baddoo, N.: Implementing software process improvement: an empiri-
cal study. Software Process Improvement and Practice 7(1), 3–15 (2002)

26. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software process improve-
ment implementation: an empirical study. Software Process Improvement and Prac-
tice 11(2), 193–211 (2006)

27. Stelzer, D., Mellis, W.: Success factors of organizational change in software process im-
provement. Software Process - Improvement and Practice 4(4), 227–250 (1998)

28. Ericson, T., Subotec, A., Ursing, S.: TIM – A test improvement model. Software Testing,
Verification and Reliability 7(4), 229–246 (1997)

29. Tervonen, I., Iisakka, J., Harjumaa, L.: Looking for inspection improvements through the
base practices. In: Workshop on Inspection in Software Engineering, Paris (2001)

30. Harjumaa, L., Tervonen, I., Vuorio, P.: Using software inspection as a catalyst for SPI in a
small company. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 62–75.
Springer, Heidelberg (2004)

31. Kollanus, S.: Issues in software inspection practices. In: Bomarius, F., Komi-Sirviö, S.
(eds.) PROFES 2005. LNCS, vol. 3547, pp. 429–442. Springer, Heidelberg (2005)

32. Beecham, S., Hall, T., Rainer, A.: Software process improvement problems in twelve
software companies: An Empirical Analysis. Empirical Software Engineering 8(1), 7–42
(2003)

33. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns –Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

244 S. Kollanus

34. Coplien, J.: A Generative Development-Process Pattern Language, Pattern Languages of
Program Design. Addison-Wesley, New York (1995)

35. Harjumaa, L.: Improving the Software Inspection Process with Patterns. Dissertation, Uni-
versity of Oulu, Finland (2005)

36. Knight, J.C., Myers, E.A.: An improved inspection technique. Communications of the
ACM 36(11), 51–61 (1993)

37. Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.: An experiment to assess the cost-
benefits of code inspections in large scale software development. IEEE Transactions on
Software Engineering 23(6), 329–346 (1997)

38. Sauer, C., Jeffery, D.R., Land, L., Yetton, P.: The effectiveness of software development
technical reviews: a behaviorally motivated program of research. IEEE Transactions on
Software Engineering 26(1), 1–14 (2000)

39. Christenson, D.A., Huang, S.T., Lamperez, A.J.: Statistical quality control applied to code
inspections. IEEE Journal of Selected Areas of Communication 8(2), 196–200 (1990)

40. Laitenberger, O., Beil, T., Schwinn, T.: An industrial case study to examine a non-
traditional inspection implementation for requirements specifications. Empirical Software
Engineering 7(4), 345–374 (2002)

41. Porter, A.A., Johnson, P.M.: Assessing software review meetings: results of a comparative
analysis of two experimental studies. IEEE Transactions on Software Engineering 23(3),
129–145 (1997)

42. Sabaliauskaite, G., Kusumoto, S., Inoue, K.: Assessing defect detection performance of in-
teracting teams in object-oriented design inspection. Information and Software Technol-
ogy 46(13), 875–886 (2004)

43. Votta, L.: Does every inspection need a meeting? ACM Software Engineering Notes 18(5),
107–114 (1993)

44. d’Astous, P., Robillard, P.N.: Characterizing implicit information during peer review meet-
ings. In: 22nd International Conference on Software Engineering, pp. 460–466. ACM
Press, New York (2000)

45. Johnson, P., Tjahjono, D.: Assessing software review meetings: A controlled experimental
study using CSRS. In: 19th International Conference on Software Engineering, pp. 118–127.
ACM Press, New York (1997)

46. Dunsmore, A., Roper, M., Wood, M.: The role of comprehension in software inspection.
Journal of Systems and Software 52(2-3), 121–129 (2000)

47. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Soerumgaard, S., Zelko-
witz, M.: The empirical investigation of perspective-based reading. Empirical Software
Engineering 1(2), 133–164 (1996)

48. Dunsmore, A., Roper, M., Wood, M.: The development and evaluation of three diverse
techniques for object-oriented code inspection. IEEE Transactions on Software Engineer-
ing 29(8), 677–686 (2003)

49. Laitenberger, O., Atkinson, C., Schlich, M., El Emam, K.: An experimental comparison of
reading techniques for defect detection in UML design documents. Journal of Systems and
Software 53(2), 183–204 (2000)

50. Porter, A., Votta, L.G.: An experiment to assess different defect detection methods for
software requirements inspections. In: 16th International Conference on Software Engi-
neering, pp. 103–112. IEEE Computer Society Press, Los Alamitos (1994)

51. Thelin, T., Runeson, P., Regnell, B.: Usage-based reading — an experiment to guide re-
viewers with use cases. Information and Software Technology 43(15), 925–938 (2001)

 The Role of Different Approaches in Inspection Process Improvement 245

52. Ebert, C., Parro, C.H., Suttels, R., Kolarczyk, H.: Improving validation activities in a
global software development. In: 23rd International Conference on Software Engineering,
pp. 545–554. IEEE Computer Society, Washington (2001)

53. Rifkin, S., Deimel, L.: Applying program comprehension techniques to improve software
inspections. In: 19th Annual NASA Software Engineering Workshop, pp. 115–126 (1994)

54. Porter, A., Siy, H., Mockus, A., Votta, L.: Understanding the sources of variation in software
inspections. ACM Transactions on Software Engineering and Methodology 7(1), 41–79
(1998)

55. Biffl, S., Freimut, B., Laitenberger, O.: Investigating the cost-effectiveness of reinspec-
tions in software development. In: 23rd International Conference on Software Engineering,
pp. 155–164. IEEE Computer Society, Washington (2001)

56. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 246–260, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Scenario-Based Assessment of Process Pattern Languages

Antti Välimäki1, Sari Vesiluoma2, and Kai Koskimies3

1 Metso Automation Inc, Finland
Antti.Valimaki@metso.com

2 Teleca AB, Finland
Sari.Vesiluoma@teleca.com

3 Tampere University of Technology, Finland
Kai.Koskimies@tut.fi

Abstract. Current standards and models for the quality of software develop-
ment processes lead to a coarse-grained quality model which is heavy and diffi-
cult to focus for specific purposes. We propose a more light-weight method for
assessing processes that can be expressed as process pattern languages. The me-
thod is based on imitating an existing software architecture evaluation method,
ATAM, in the context of processes. The main advantages of the method are
more fine-grained assessment in terms of quality attributes possibility to tune
the assessment for a certain purpose, and a more light-weight assessment pro-
cedure. We illustrate the method in the case of two process pattern languages.

Keywords: Assessment, Process, ATAM, Global software development,
Knowledge, Agile project management, Organization patterns, Process patterns.

1 Introduction

Process models, such as OMT++ [1], Unified Process (UP) [2] or Scrum [3], describe
the phases, tasks, roles, artifacts etc. involved in a software development project. A
process model can be defined as a strict, step-by-step procedure, or more loosely as a
set of principles, practices and guidelines to be applied in a concrete software devel-
opment process. Typically, the in-house process models of companies are relatively de-
tailed and strict (like OMT++), while general process frameworks like UP and Scrum
are more of the latter kind. A loose process model can also be given as a process pat-
tern language [4], that is, as an organized set of process patterns [5],[6],[7],[8],[9], pro-
ject patterns [10], or organizational patterns [5],[11],[12],[13]. The advantage of the
pattern language approach is that the process model need not cover the entire process,
but it can concentrate on a certain viewpoint of the software development process. For
example, such partial process models have been given as pattern languages for manag-
ing knowledge sharing [14] and global software development [15],[16],[17] in soft-
ware development.

Regardless of the way a process model is given, its main purpose is to improve the
quality of the software development work. Good quality can mean a flawless product,
timeliness, effectiveness, etc. Traditionally, process quality has been addressed by
general capability maturity models, such as SPICE (ISO 15504) [18] and Capability

 Scenario-Based Assessment of Process Pattern Languages 247

Maturity Models Integrated (CMMI) [19], defining criteria for a process to be classi-
fied according to few maturity levels. Each maturity level specifies certain practices
that are required for a process at that level. However, this approach has two major
shortcomings. First, it gives only a rough measure for the general quality of a process,
not answering questions like: what quality attributes are endangered if the process
cannot reach a particular level? These kinds of questions arise if we wish to make a
decision whether or not to adopt a process model that does not reach a particular
level. Second, assessing the maturity level of a process becomes an unnecessarily
heavy procedure in cases where only some particular aspect of quality is under scru-
tiny. For example, if a company is worried about the fault rate and wants to analyze
its process with respect to fault management, it makes no sense to perform a general
maturity level assessment. While general maturity models are suitable for holistic as-
sessment of processes, we need more focused and lightweight assessment methods
especially for viewpoint-specific processes and assessment motivations.

In many ways a process model can be compared to system architecture. The im-
plementation of a process model is a concrete process instance, in the same way as the
implementation of system architecture is the actual system. The system architecture
determines the major quality attributes of the system, and the process model deter-
mines the major quality attributes of its instances realized in software development
projects. The problem of determining the quality of a process model also resembles
the problem of determining the quality of software architecture: in both cases, there
are certain solutions supposedly contributing to some quality attributes, but the actual
effect of these solutions to the quality is unclear. A further similarity is that in both
cases, quality assessment is difficult on the basis of the general process or architecture
model only, without considering the actual concrete realization of these models.

In the context of system architecture, a popular technique to assess the quality of
software architecture is to apply scenario-based approaches, like ATAM (Architecture
Tradeoff Analysis Method) [20]. In ATAM, the quality requirements are first derived
from business goals and concretized using scenarios. That is, for each quality re-
quirement (say, UI portability), a concrete situation testing the quality requirement is
given, related to an imaginary implementation of the system (say, “the GUI of the
system is made browser-based in a month”). Such scenarios are then analyzed against
the solutions in the architecture, trying to identify those solutions which affect the re-
alization of the scenario. If the scenario is considered realizable, the solutions con-
tributing to this quality attribute are identified and marked as “safe”. If the scenario is
considered unrealizable, the solutions making the scenario difficult or impossible are
identified as “risks”. The general idea of ATAM is to create in this way links between
the quality attributes and solutions in the architecture. To focus the assessment on the
most important requirements, the scenarios are prioritized so that less essential sce-
narios can be ignored in the analysis.

We argue that a similar method can be applied for the quality assessment of software
development processes as well. That is, the practices in a software process model (solu-
tions) can be analyzed against concrete situations (scenarios) testing certain desired
quality attributes in an imaginary instance of the process model. In that way, we can
infer not only the overall quality level of a process model, but we also get a detailed ex-
planation about which quality attributes are weak or strong in the process model, and
why. We can also make observations on “safe” and “risky” practices in general: if a

248 A. Välimäki, S. Vesiluoma, and K. Koskimies

certain practice often appears as a “safe” solution, this practice is obviously beneficial, if
another practice is many times labelled “risky”, the value of the practice should be
clearly questioned. The assessment process can be adjusted according to chosen goals or
needs in a company, and carried out as lightly as possible.

A necessary prerequisite for this approach is that the individual practices of the proc-
ess model are clearly identified, described and named. This is often not the case, of
course. However, if a process is described as a pattern language, the solutions (patterns)
are readily available. Here we do not discuss the question of “patternizing” a process
model description, but assume that a process description is given as a pattern language,
making the individual practices explicit. This can be compared to the assessment of
software system architecture: the individual solutions of the architecture must be found
and identified before an ATAM-like analysis can be performed.

The main contribution of this paper is a scenario-based assessment method of
software development processes following the idea of ATAM, and its evaluation in
the context of two process pattern languages, one intended for managing knowledge
sharing in software development [14], and the other for global software development
[15],[16],[17]. The assessment method is called Q-PAM (Quality-oriented Process
Assessment Method).

We proceed as follows. First, we will briefly discuss the quality concept in the con-
text of software processes in Section 2. The Q-PAM method itself is described in
Section 3. In Section 4 we will discuss two case studies where we have applied the
method for two pattern languages. We conclude with a discussion on the expected
benefits and weaknesses of the method, and ideas for future work.

2 Quality in Software Engineering

In software engineering, the target is to produce results carrying an adequate level of
software quality [21]. Software quality refers to e.g. the degree of a system or process
to meet specific requirements and to the degree to meet customer needs and expecta-
tions [21]. The elements describing the quality of a piece of software have usually
been referred to as quality attributes. Different software quality models have intro-
duced selected sets of these quality attributes [22]. ISO 9126 standard [23] is one ex-
ample of these software quality models.

ISO 9126 includes three perspectives to software product quality. They are internal
quality, external quality and quality in use. Internal quality can be measured during
development of the product, and external quality can be measured when the product is
executed. Quality in use can be seen by the user while the product is applied in the in-
tended fashion. The quality attributes, or, as the standard calls, quality characteristics,
of external and internal quality are introduced in Fig 1. Quality in use includes the at-
tributes effectiveness, productivity, safety, and satisfaction.

Also ISO 9000 [24] and CMMI have been referred to as quality models. However,
their focus has been more on processes than on quality software results [22]. To
summarize, at a very general level the quality in software engineering can be divided
into the quality of the resulting software (product quality) and the quality of the proc-
esses (process quality) utilized to create the results.

 Scenario-Based Assessment of Process Pattern Languages 249

External and
Internal Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability
Accuracy
Inter-
operability
Security
Compliance

Maturity
Fault
tolerance
Recoverability
Compliance

Understand-
ability
Learnability
Operability
Attractiveness
Compliance

Time
behaviour
Resource
utilization
Compliance

Analyzability
Changeability
Stability
Testability
Compliance

Adaptability
Installability
Co-existence
Replaceability
Compliance

Fig. 1. ISO 9126 quality attributes

To ensure adequate software quality, different kinds of software quality assurance
activities are implemented and included into software engineering processes. Galin
[21] lists different elements of software quality assurance, e.g. reviews, testing, pro-
cedures and work instructions, measuring, and quality management standards. These
targets either to check reactively the quality (e.g. reviews, testing and measuring) or
to ensure proactively that certain procedures are used to avoid possible quality prob-
lems in the resulting software (procedures and work instructions, and quality man-
agement standards).

Quality management standards or alike, e.g. ISO 9000, CMMI or ISO 15504, include
all pre-selected sets of specific requirements for a software engineering organization to
reach a certain maturity or capability. These standards are important as utilizations of in-
ternational professional knowledge [21]. ISO 9000 is very general and targeted to assist
all types of organizations to implement and operate effectively quality management sys-
tems. CMMI and ISO 15504 have their origins in software engineering work and are
thus more software engineering specific quality models. All such process based quality
models include implicit assumptions of what good quality in software processes means.
Based on e.g. the quality management principles of ISO 9000 or the selection of process
areas in CMMI some assumptions might be made about the underlying process quality
attributes, but not much support has been given to really understand them.

In this work we will exploit ISO 9126 to derive quality attributes for processes, as
part of the construction of quality profiles discussed in Section 3.2. However, this is
only one possible technique of deriving process quality attributes, and the Q-PAM
method does not take a standpoint of the technique. Indeed, a company could come up
with the desired quality attributes as a result of an internal discussion on the goals of
the assessment.

3 The Q-PAM Method

In the following we will first outline the Q-PAM method as a whole, and then explain
the individual steps in more detail.

250 A. Välimäki, S. Vesiluoma, and K. Koskimies

3.1 Method Overview

The first step in Q-PAM is to create a quality profile for the process (here, a process
pattern language). The quality profile is a set of quality attributes considered essential
in the assessment of the process. The quality profile thus depends not only on the
quality requirements of the process, but also on the purpose of the assessment: the
same process may be assessed with different profiles. Quality profiles are assumed to
be obtained by extracting them from quality attribute lists available in standards. The
construction of the quality profile is discussed in more detail in Section 3.2.

When the quality profile has been constructed, each quality attribute is associated
with scenarios that serve as test cases for the quality attribute. A scenario is a con-
crete desired situation in an imaginary instance of the process where the existence or
non-existence of the required quality attribute can be verified. The construction of
the scenarios is discussed in Section 3.3. Scenarios can be prioritized for more fo-
cused processing, if needed.

The next step is the actual quality analysis. Each (possibly prioritized) scenario is
analyzed against the process patterns: which patterns (if any) support the realization
of the scenario, and which patterns counteract against the scenario (if any). A tag is
attached to the scenario, characterizing the extent to which the pattern language is
considered to pass the scenario test, on the basis of the analysis. The analysis step
is discussed in more detail in Section 3.4.

3.2 Creating Quality Profile

A quality profile is a (possibly hierarchically structured) set of quality attributes. The
term quality profile has been used here in a similar meaning as Bosch [25] has used it
in the context of software architectures. In both cases, a profile is a means to capture a
covering set of scenarios for a particular assessment purpose. A quality profile can be
created on the basis of the requirements of a software development process (if such
exist), a company’s business goals, the purpose of the assessment, and/or a common
quality framework. Here, we will use the quality attributes of ISO 9126 associated
with external and internal quality as a basic source of the quality profile, interpreting
and transforming the quality attributes for the context of processes. This is a straight-
forward technique that can be recommended in many cases, but we emphasize that
other techniques could be used as well.

Let us consider a sample quality attribute in ISO 9126, efficient time behavior (that
is, sub attribute of Time behavior under Efficiency). The standard defines this as “the
capability of the software product to provide appropriate response and processing
times and throughput rates when performing its function, under stated conditions”. If
we replace the words product and function with words process and task, respectively,
this definition can be applied for processes as well, resulting in: the capability of the
process to provide appropriate response and processing times and throughput rates
when performing its tasks, under stated conditions. This kind of adaption is possible
and reasonable to nearly all of the quality attributes in ISO 9126 regarding external
and internal quality.

A quality profile obtained from a general quality model can be refined according to
process specific characteristics or purpose of the assessment. For example, Efficiency

 Scenario-Based Assessment of Process Pattern Languages 251

could be refined as Project manager time usage, if the company is particularly inter-
ested in the efficient use of project manager resources. A more refined profile makes
it easier to find scenarios related to the quality attribute.

3.3 Constructing Scenarios

The general idea of a scenario is to serve as a test case that can be run against the
process patterns. For this purpose, a scenario should describe a concrete and measur-
able situation in an imaginary process instance (project). If the scenario represents a
typical situation, a succeeding test suggests that the process pattern language normally
supports the situation of the scenario. If the scenario represents a stress situation try-
ing the limits of the process, a succeeding test gives an upper bound for the capacity
of the process. A scenario can also test some specific part of the process that is of par-
ticular interest.

Each quality attribute in the quality profile should be associated with at least one
scenario. For example, assume that we are assessing a process pattern language for
requirements analysis, and the quality profile contains quality attribute Changeability
(as a sub attribute of Maintainability). This quality attribute could be further refined
as Organizational changeability. A scenario could be then given for this quality attrib-
ute as follows:

Company X buys our company and wants to make our development process com-
patible with theirs. The requirements analysis part of our process is made compati-
ble with X’s process within half a year using nine man-months.

Note that this kind of a change scenario requires exact time specifications to be ana-
lyzable. All the implications or assumptions need not be visible in the scenario, but
they must be reasonably inferable on the basis of the scenario. In the example, com-
pany X should refer to an actual company, with known process practices.

Scenarios are as valuable assets for processes as test cases are for systems, re-
cording important information related to the process. Thus, all scenarios given for a
quality profile should be documented and preserved. However, scenarios may have
different weight in an assessment project, and there may be limited resources to carry
out the assessment. To be able to concentrate on the essential ones among a large set
of scenarios, the scenarios can be prioritized according to their importance.

3.4 Analysis

During the analysis phase, each of the (highly prioritized) scenarios is considered, and
the involved process patterns are identified. The involved patterns are those patterns
that potentially have affect on the scenario. Essentially, the analysis means that the ef-
fect of these patterns on the scenario is studied. For each pattern involved in the sce-
nario, a positive conclusion is that the scenario situation is supported by the pattern,
so that the application of the pattern helps to realize the scenario. A negative conclu-
sion is that the pattern either does not provide support for handling a situation that it is
supposed to support, or it hinders or complicates the situation described by the sce-
nario. A rationale explaining either a positive or negative conclusion is associated
with the scenario. In the case studies we have marked positive and negative conclu-
sions with N (non-risk) or R (risk), respectively.

252 A. Välimäki, S. Vesiluoma, and K. Koskimies

Sometimes it may be difficult to conclusively argue that a scenario is realizable us-
ing the process patterns, but there are patterns that provide some assistance in the sce-
nario. Similarly, there may be patterns which do not prohibit a scenario, but may be to
some extent counteracting against it. In these cases, it would be sensible to use a more
fine-grained result than just a binary tag.

After each scenario has been analyzed and tagged, the assessment data is in princi-
ple available. However, if there are several quality attributes (with analyzed scenarios),
it may be difficult to present this data in a condensed, complete form. For this purpose,
the quality attributes can be grouped and each group can be characterized with a ratio
of succeeded and failed scenarios. In this way, it is possible to find larger “problem ar-
eas” in the process. For example, if many scenarios related to different sub attributes of
Efficiency fail, it seems reasonable to suggest that efficiency is a problem area in the
process. Summary of the analysis of scenarios can be presented also by a table which is
applied in the second case study.

4 Case Studies

We have applied the Q-PAM method to assess the quality of two pattern languages
([14], [15], [16], [17]). Both languages are motivated by practical needs and are made
in industrial context. These languages have been created to support software develop-
ment from two specific viewpoints, knowledge sharing and global software develop-
ment. The assessment of the former has been made a little earlier than the assessment
of latter. The implementation of the latter assessment has been somewhat influenced by
our experiences of the first assessment, but the main ideas of Q-PAM as presented in
this paper have been followed in both cases. The fact that these pattern languages have
been developed by the authors does not essentially affect this study, since the actual as-
sessment (and especially the creation of the scenarios) was carried out by an independ-
ent group. The role of the pattern language author in the assessment was similar to the
role of the software architect in the ATAM method.

In both cases the assessment was implemented in a workshop consisting of two
sessions. The first session included a brief introduction of the pattern language and of
the Q-PAM evaluation method. The author of the pattern language proposed a quality
profile that was refined together with the evaluators. The reminder of the first session
was used for defining the scenarios. In both cases authors were not involved in creat-
ing scenarios. After the first session the author made a first draft for the analysis. It
was examined in the second session scenario by scenario and corrected according to
the findings in the workshop. In the following we discuss the case studies. We will
briefly introduce the pattern languages, but for a more detailed account the reader is
referred to literature [14], [15], [16], [17]. The assessment process is described, and
the assessment technique is illustrated by presenting the analysis results of a represen-
tative scenario in both cases, explaining briefly the patterns involved in the analysis.
We conclude both case studies with a summary of the results of the assessment and
the experiences.

Here the focus is not in the actual implications of the assessments on these particu-
lar pattern languages, but rather we aim to illustrate the nature of the results and ob-
servations obtained in this kind of assessment based on the case studies.

 Scenario-Based Assessment of Process Pattern Languages 253

4.1 Assessing a Pattern Language for Knowledge Sharing in Software
Development

4.1.1 Target Pattern Language
The purpose of the Knowledge Sharing Pattern Language [14] is to enhance perform-
ance in software engineering work through improved knowledge sharing. This language
includes 28 knowledge sharing patterns structured according to two dimensions: knowl-
edge sharing interfaces and target knowledge types. The knowledge sharing interfaces
include knowledge sharing in a project team, in an organization (between projects or
projects and the base organization), and between the organization and other organiza-
tions. The target knowledge types include six types of knowledge areas: work status
type of knowledge, knowledge regarding to requirements of a project, work results
knowledge, work guidance, lessons learned type of knowledge, and competence.

These two dimensions are relevant because knowledge sharing takes place between
different human stakeholders and different types of knowledge have different targets.
The Knowledge Sharing Pattern Language is intended to be applied in a software de-
velopment process regardless of the basic process model, being equally well suitable
e.g. for traditional water-fall processes and agile processes.

4.1.2 Applying Q-PAM
Four faculty members from the Tampere University of Technology participated in the
evaluation workshop along with the author. Three of the participants did not have any
prior knowledge about the Knowledge Sharing Pattern Language. They were the main
actors in this workshop. All participants had prior experience using the ATAM
method in industrial context.

The author introduced a candidate quality profile in the first evaluation session. It
was accepted after some discussion. Only a small subset of quality attributes from
the ISO 9126 external and internal quality attributes was used. Reliability and main-
tainability related quality attributes (see Figure 1) were left out, because those are
not critical in the case of the Knowledge Sharing Pattern Language. Similarly com-
pliance (standards, conventions etc.) was left out of each quality attribute area. The
rest of the unselected quality attributes were left out because of their low importance
in this case.

The main part of the first workshop session was used for constructing the scenar-
ios. The scenarios were decided by the three participants who did not have prior
knowledge of the Knowledge Sharing Pattern Language. This way the independence
of the scenarios with respect to the Knowledge Sharing Pattern Language was en-
sured. Eventually, 31 scenarios were defined. Those were not prioritized, because the
evaluators anticipated that they will be able to analyze all during the second session.
The prioritization, however, would have raised the value of the evaluation. In particu-
lar, relating the importance of a scenario (as suggested by the prioritization) with the
information about the risk classification of the patterns involved in the scenario would
have been valuable for evaluating the overall relevance of the results.

254 A. Välimäki, S. Vesiluoma, and K. Koskimies

The results of the analysis of an exemplary scenario are presented in Table 1. For
each scenario we have given a scenario id (e.g. S20), the type of the scenario in paren-
thesis (meta-level or process-level), and the scenario itself divided into the actual sce-
nario and a response part. In this case study we found it useful to distinguish between
meta-level and process-level scenarios. Here meta-level refers to a scenario that con-
cerns the pattern language itself, while process-level refers to a scenario that concerns
the application of some of its patterns. Separating these viewpoints clarified the dis-
cussions and helped in the formulation of the scenarios.

Table 1. Example analysis of a scenario

Scenario S20 (process) The chief architect of a project leaves the company.
Response A new, properly-educated person can effectively take his/her place in a

month.
Quality Main Attribute Resource Utilization (Efficiency)

Pattern Analysis of Pattern Application R N
Followed
Progress

As a result of using this pattern the project is systematically following its
progress compared to the project plan letting the new architect quickly find out
the current situation in the project.

N

Managed
Versions

The pattern ensures identification and configuration management of the work
results aswell as finding those. The new architect can find current right
versions of project materials based on the rules for storing data.

N

Discovered
Lessons

Lessons learned have been registered in this project and can support the new
architect to learn based on earlier experiences in this project.

N

Work
Guidance

Guidance existing for the project based on the standard processes of the
company. The new architect has documentation about how the work is done
in this project at general level. Also, if the architect has been in other projects
in the same organization, the processes used are rather similar between
projects.

N

Shared
Understanding

Targets for the project have been set, requirements defined and documented
and deliverables and change management defined making it easy for the new
architect to understand the purpose and aims of this project.

N

The pattern language does not include very strong support for project memory
in one project. This means, for example, that the patterns do not support
definition of project folders, or what information should be stored and where.

R

Result
Some Support: Several elements in the pattern language support storing of knowledge and
sharing also in a discontinuity situation. There are, however, also some clear additional needs
to have more support how to create a project specific "memory".

The main quality attribute tells the quality attribute which is considered when de-

fining the scenario. In the parentheses is the group this quality attribute belongs to in
the ISO 9126 standard. The result part gives the overall conclusion regarding the sup-
port provided by the pattern language for this scenario: supporting, some support or
no support. The associated explanation gives the reasoning for the conclusion based
on the patterns. The columns R and N indicate whether or not the pattern includes a
risk (R) or non-risk (N) for the realization of the scenario. An empty pattern name in-
dicates a missing pattern, with an explanation of the (missing) required support for the
scenario.

The patterns referred to in Table 1 are briefly introduced in Table 2. The solution
part of the pattern is summarized with a short outline. For the actual pattern descrip-
tions, the reader is referred to [26].

 Scenario-Based Assessment of Process Pattern Languages 255

Table 2. Knowledge sharing patterns used in the example scenario

Name Problem Solution outline
Followed
Progress

A project manager not knowing
the project situation and progress
status well enough.

Follow project progress on task basis and
compare the realization to the project plan and
schedule identifying, noticing the risks
involved and changes required

Managed
Versions

Difficulties in sharing the
(intermediate) work results in the
project team.

Establish configuration management, system
integration practices and data management
guidance in a project to manage project data and
to have it available for relevant persons.

Discovered
Lessons

In a project many experiences are
gained but those are not
systematically collected and
understood.

Have a team exploring the relationship between
action and outcome and producing lessons
learned based on that.

Work Guidance An organization with a need to
establish or improve the
guidance of work in the
organization in order to allow for
more efficient team work.

Define common targets and common ways of
working and continuously improving them.

Shared
Understanding

The aimed results of a project are
not yet clear enough for all
parties, especially between the
customer and the supplier.

Instead of just starting to define requirements
for a project, decompose the project target into
different smaller parts. Negotiate these with the
customer to have a shared understanding.

Of the resulting 31 scenarios, 14 scenarios were classified as being supported by

the pattern language, 12 scenarios were classified as being partially supported (having
supporting non-risk elements but also some risks), and 5 scenarios were classified as
being not supported. At the process-level, 18 of the 23 scenarios get at least some
support from the knowledge sharing patterns. Nine of those are fully supported by the
knowledge sharing patterns and eight get some support. Five scenarios do not get any
support from the Knowledge Sharing Pattern Language. At the meta-level, five sce-
narios of eight were classified as fully supported and three as partially supported.
Based on this, the Knowledge Sharing Pattern Language as a whole seems to give
reasonable support to the scenarios.

During the workshop, several improvement possibilities to the knowledge sharing
patterns were found and the analysis resulted in better understanding of the limits of
the Knowledge Sharing Pattern Language. For example, the analysis resulted in a find-
ing that the Knowledge Sharing Pattern Language does not give very good support for
achieving the right quality level of documentation, and that the pattern language would
benefit of patterns giving better support for establishing a project memory, a systematic
approach for storing of project related information.

An observation regarding the assessment process itself was that, in contrast to
software architecture evaluation, typically a large portion of the solutions (patterns) is
involved in a scenario, and these patterns are difficult to identify straight away. Thus,
it was found useful to check the possible involvement of every pattern in the language
when analyzing a scenario. Also the risk assessment was in some cases less unambi-
guous, giving rise to different views in the assessment team.

256 A. Välimäki, S. Vesiluoma, and K. Koskimies

4.2 Assessing a Pattern Language for Global Software Development

4.2.1 Target Pattern Language
The purpose of the Global Software Development for Project Management (GSD)
Pattern Language [15],[16],[17] is to enhance performance of project management
work through improved global software project management practices. The GSD Pat-
tern Language includes 18 process patterns. The current version of GSD Pattern Lan-
guage includes process patterns supporting both traditional waterfall and agile project
management.

4.2.2 Applying Q-PAM
Three faculty members from the Tampere University of Technology, three employees
from Metso Automation and one employee from Teleca Inc. participated in the as-
sessment workshop along with the author. Three of seven participants did not have
any prior knowledge about the GSD Pattern Language and three of seven participants
did not have prior experience using the ATAM method in an industrial context.

The author introduced a candidate quality profile in the first evaluation session
based on ISO 9126. It was accepted with some changes after some discussion. At the
highest level, the chosen quality profile consisted of Functionality, Efficiency and
Adaptability. Functionality was refined as Suitability, Accuracy and Security. Effi-
ciency was refined as Time Behaviour and Resource Utilization.

The analysis of one of the resulting scenarios is introduced in Table 3. The same
notation is used as in Table 1. The patterns referred to in Table 3 are briefly intro-
duced in Table 4. The solution part of the pattern is summarized with a short outline.

Table 3. Example analysis of a scenario

Scenario S12 An offshore designer decides to decrease the contents of a feature by 50%. In
this way, he/she can get the feature to suit one iteration but the problem is
that he/she doesn't talk with the product manager. This problem should be
visible in two weeks.

Response A problem need to be solved in GSD as fast as in centralized development.

Quality Main Attribute Accuracy (Functionality), Time Behaviour (Efficiency)
Pattern Analysis of Pattern Application R N
Iteration Review The pattern ensures that the change can be found at the latest in the next

Iteration Review.
N

Multi-Level Daily
Meetings

As a result of using this pattern, a project manager might also notice the
change during daily meetings

N

Common
Repositories
and Tools

Common repositories and reports will improve visibility of a project between
different sites and from repositories it is possible to find task lists and reports
e.g about remaining work, in which it is possible to notice the change by this
pattern.

N

Communication
Tools

Communication tools make it easier to clarify change when it has been found. N

Common
Processes

With Common processes, there can be a risk if there isn't specific process
guidelines to make a decision about making changes and/or all project
members have not been trained well.

R

Result
Some Support: The implementation of the scenario S12 is supported through four patterns in
the language and one pattern can have a risk.

 Scenario-Based Assessment of Process Pattern Languages 257

Table 4. GSD Patterns used in the example scenario

Name Problem Solution outline
Iteration Re-
view

It’s difficult to know what the
status of a project is.

Check the project status by a demo and
present results to all relevant project members
and stakeholders from different sites. Gather
comments and change requests for further
measures.

Multi-Level
Daily Meetings

There are two or more sites
which work together and there
are problems to have a common
meeting with a whole group
every day.

Organize many daily meetings and
organize another daily or weekly meeting
between project managers from different sites
to change information about the results of
daily meetings. With foreigners, written logs
can be one solution to ensure that
communication messages are understood
correctly in every site.

Common Re-
positories and
Tools

Separate Excel files are difficult
to manage and project data is
difficult to find, manage and
synchronize between many sites.

Provide a common Application Lifecycle
(ALM) Management tools for all project
artefacts (documents, source code, bugs,
guidelines etc.)
ALM provides almost real-time traceability,
visualization and access to needed information
etc. for all users in different sites. It can be
implemented as a single tool set or it can be a
group of different tools which has been
integrated with each other

Communication
Tools

Lack of communication and
communication tools can vary
between sites which make
communication and co-operation
difficult and tedious.

Have reliable and common communication
methods and tools in every site. Use different
tools at the same time as net meeting to show
information, conference phones to have good
sound and chat tool to discuss in written form
if there are problems to understand e.g.
English used in other sites.

Common Proc-
esses

Different processes and templates
at different sites make
communication inefficient.

Choose common upper level processes and
allow local processes if they don’t cause
problems with upper level processes.

There were 57 different scenarios which have been prioritized by participants by vot-

ing, resulting in 10 prioritized scenarios to be analyzed. In this case we illustrate the re-
sults of the analysis with a scenario-pattern matrix (Table 5), where for each scenario
the involved patterns are marked as N (non-risk) or R (risk). In addition, we have com-
puted certain indicator values suggesting problematic scenarios or patterns. These indi-
cators are intended only as hints, the actual conclusions can be made only after studying
the seriousness of each risk separately. We have used the following indicators: IR
(involvement ratio) = (N+R)/S indicating the potential applicability scope of the pattern
with respect to this set of scenarios, RR (risk ratio) = R/(N+R) indicating the total de-
gree of risk of the pattern with respect to the scenario set, and SI (support index) =
(N-R)/P indicating the level of support the pattern language provides for a scenario.
Here N and R denote the number of N’s and R’s in a row/column, respectively, S de-
notes the number of scenarios and P the number of patterns. If IR is low, the pattern
seems to be less relevant for the scenario set, if RR is close to 1, the pattern may cause
more problems than benefits, if SI is negative the pattern language may counteract the

258 A. Välimäki, S. Vesiluoma, and K. Koskimies

Table 5. Summary of the analysis of scenarios for GSD patterns

S12 S3 S22 S16 S25 S31 S17 S19 S24 S28 IR RR

GSD01

GSD02 R 0,1 1,0

GSD03 R N N R N N 0,6 0,3

GSD04 N 0,1 0,0

GSD05 R R R R 0,4 1,0

GSD06 N N N N N N 0,6 0,0

GSD07 N N N R N N N 0,7 0,1

GSD08 R N N N 0,4 0,3

GSD09 N 0,1 0,0

GSD10

GSD11

GSD12 R N N N 0,4 0,3

GSD13 N N 0,2 0,0

GSD14 N N N N N N R 0,7 0,1

GSD15 N N N N 0,4 0,0

GSD16 R 0,1 1,0

GSD17 N N R N 0,4 0,3

GSD18 N N N N N N 0,6 0,0

SI 0,2 0,1 0,3 0,1 0,3 0,3 0 0,3 0,1 0,1

scenario. In this case we can conclude that although there are some suspicious patterns
(GSD02, GSD05 and GSD16), as a whole the pattern language provides reasonable
support for the scenarios.

During the workshop, several improvement possibilities to GSD patterns were
found and the analysis resulted in better understanding of the limits of the GSD Pat-
tern Language. For example, the analysis resulted in a finding that GSD patterns do
not include all needed practices in critical fault management or knowledge transfer
areas. GSD patterns also assume that the development environment is in a very good
shape and that the communication network is working at a reasonable level. Some
patterns originally intended for the beginning of a project were found useful also dur-
ing a project.

5 Concluding Remarks

The Q-PAM method has been introduced and applied for assessing two pattern lan-
guages with selected quality profiles. In both assessments clear improvement ideas
were gained as well as better understanding of the relationships of the languages to
the required quality profiles. This kind of assessment can be seen as a tool for sup-
porting the evolution of process pattern languages. A Q-PAM assessment, or a similar
activity, should be carried out especially when there is doubt that current process
practices are inappropriate in a changing environment, or when new practices are in-
troduced in an organization. The assessment is a relatively cheap method to test the
effect of the practices to the desired goals, and it can be easily tuned for particular
purposes and for the amount of resources available.

 Scenario-Based Assessment of Process Pattern Languages 259

Instead of Q-PAM, for example, the maturity models (e.g. CMMI or SPICE) could
be used. Those are based on defined reference model and capability levels not explic-
itly addressing quality attributes and goals. However, they are quite massive and dif-
ficult to focus on e.g. to specific business driven quality attributes. Another alternative
could be the method proposed by Martin et al. [10], starting from the goals and chal-
lenges of a company. The next step there is to create project patterns based on a com-
pany’s processes. After that the new project patterns will be compared to earlier
created ideal pattern library. The reference patterns guide the evaluation in the same
way as the maturity models. Our scenario-based method is more straightforward to
apply than [10] since it does not assume any reference models, but on the other hand
the results of the assessment may be more sensitive to the abilities and experience of
the assessment teams and to the selection of quality attributes.

The further development topics of the Q-PAM method include better ways to de-
fine the quality profile to be used in the evaluation. Here, the ISO 9126 based quality
attributes have been used, but a more process oriented quality framework would be
appropriate. Since the finding of scenarios is the key activity in these assessments, we
should have more systematic support for producing efficiently a covering set of sce-
narios. A possible approach is to devise a set of generic scenario templates that can be
customized for the process patterns is under study. We continue the work on Q-PAM
along these lines.

Acknowledgment

This work is being supported by the Academy of Finland under grant 130685.

References

1. Jaaksi, A., Aalto, J.-M., Aalto, A., And Vättö, K.: Tried & True Object Development.
In: Industry-Proven Approaches with UML. Cambridge University Press, Cambridge (1999)

2. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley,
Reading (2003)

3. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall Series
on Agile Software Development, Upper Saddle River (2002)

4. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York
(1977)

5. Coplien, J.: A Generative Development-Process Pattern Language. In: Coplien, J.,
Schmidt, D. (eds.) Pattern Language of Program Design, pp. 183–237. Addison-Wesley,
Reading (1995)

6. Ambler, S.: Process Patterns – Building Large-Scale Systems Using Object Technology.
Cambridge University Press/SIGS Books (1998)

7. Hajimu, I.: Pattern-Oriented Approach to Software Process Evolution. In: Proceedings of
IWPSE 1999 (1999)

8. Dittmann, T., Gruhn, V., Hagen, M.: Improved Support for the Description and Usage of
Process Patterns. In: 1st Workshop on Process Patterns, OOPSLA 2002, Seattle (2002)

260 A. Välimäki, S. Vesiluoma, and K. Koskimies

9. Bozheva, T., Gallo, M.E.: Framework of agile patterns. In: Richardson, I., Abrahamsson,
P., Messnarz, R. (eds.) EuroSPI 2005. LNCS, vol. 3792, pp. 4–15. Springer, Heidelberg
(2005)

10. Martin, D., Garcia, J., Amescua, A., Llorens, J.: Reusable Project Patterns to enhance
Software Process Improvement. In: EuroSPI 2007 Industrial Proceedings, pp. 3.25--3.34
(2007)

11. Harrison, N., Coplien, J.: Organizational Patterns of Agile Software Development (August
2004) (manuscript),

 http://www.easycomp.org/cgi-bin/OrgPatterns?BookOutline
12. Coplien, J.O., Harrison, N.B.: Organizational Patterns of Agile Software Development.

Pearson Prentice Hall, London (2005)
13. Biro, M., Messnarz, R., Ivanyos, J.: Managing Multi-Cultural and Multi-Social Projects in

SPI. In: Proceeding of EuroSPI 2006, Joensuu, Finland (2006)
14. Vesiluoma, S.: Knowledge Sharing Pattern Language. In: Proceedings of Software Quality

Management, SQM 2007, Tampere, Finland (2007)
15. Välimäki, A., Koskimies, K.: Mining best practices of project management as patterns in

distributed software development. In: EuroSPI 2006 Industrial Proceedings, EuroSPI 2006,
Finland, Joensuu, October 2006, pp.6.27–6.35 (2006)

16. Välimäki, A., Kääriäinen, J.: Product Managers’ Requirement Management Practices As
Patterns in Distributed Development. In: 8th International PROFES conference, Latvia,
July 2-4 (2007)

17. Välimäki, A., Kääriäinen, J.: Patterns for Distributed Scrum – a Case Study. In: Mertins,
K., Ruggaber, R., Popplewell, K., Xu, X. (eds.) International Conference on Interoperabil-
ity of Enterprise, Software and Applications, Enterprise Interoperability III - New Chal-
lenges and Industrial Approaches, March 25– 28. Springer, Heidelberg (2008)

18. ISO/IEC TR 15504-2:1998(E), Information technology - Software process assessment –
Reference Model (1998)

19. CMU/SEI-2006-TR-008, CMMI® for Development, Version 1.2, CMMI-DEV, V1.2
20. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and

Case Studies. SEI Series in Software Engineering. Addison-Wesley, Reading (2002)
21. Galin, D.: Software Quality Assurance: From theory to implementation. Pearson Education

Limited, Addison-Wesley (2004)
22. Miller, D.: Choice and Application of Software Quality Model. In: Daughtrey, T. (ed.)

Fundamental Concepts for the Software Quality Engineer. American Society for Quality
(2001)

23. International Organization for Standardization. Software engineering - Product quality -
Part 1: Quality model. ISO/IEC 9126-1:2001 (2001)

24. International Organization for Standardization. Quality management systems – Fundamen-
tals and vocabulary, ISO 9000:2000 (2000)

25. Bosch, J.: Design and use of software architectures. ACM Press, Addison-Wesley (2000)
26. Vesiluoma, S.: Understanding and Supporting Knowledge Sharing in Software Engineer-

ing. Ph.D thesis manuscript (2009)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 261–274, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Systematic Metric Based Approach to
Evaluate SCAMPI Appraisals

Simona Pricope1 and Horst Lichter2

1 KUGLER MAAG CIE GmbH, Leibnizstr. 11,
70806 Kornwestheim, Germany

2 RWTH Aachen University, Research Group Software Construction, Ahornstr. 55,
52074 Aachen, Germany

Simona.Pricope@kuglermaag.com, lichter@swc.rwth-aachen.de

Abstract. CMMI SCAMPI based appraisals are used worldwide to assess the
process quality of organizations. In this paper we introduce a metric-based ap-
proach to assess and improve CMMI SCAMPI appraisals. To have a sound
basis we at first present an appraisal meta model which defines all types of ap-
praisal elements and their relationships. This meta model can be instantiated to
get a concrete SCAMPI appraisal process, offering a precise roadmap for con-
ducting appraisals. Based on the meta model two appraisal quality metrics are
defined to systematically assess appraisal activities as well as phases and to
support the improvement of appraisals. We describe the definition of these me-
trics in detail and give some metric interpretation guidelines.

1 Introduction

Nowadays the software market is expanding and the clients are requesting software
products which are better, faster, and cheaper. That is why organizations are obligated
to identify, structure and improve their processes systematically1. Different maturity
models like CMMI, SPICE, Six Sigma or ISO 9000 are supporting software process
improvement.

The maturity model CMMI (Capability Maturity Model Integration, [1]) is used all
over the world and spans various classes of businesses. Between 2002 and 2007, SEI
(Software Engineering Institute) registered worldwide 19% growth of CMMI use.
Although giving guidelines for the development of software systems, CMMI does not
assist directly the development of systems but the improvement of the processes that
are applied for building these systems.

An additional support for software process improvement is the so-called appraisal.
An appraisal is a procedure for verifying the implementation of CMMI and the cur-
rent state of process improvement in the organization. By determining the current
state of the processes an appraisal is a central part of each software process improve-
ment project. SEI defines IDEAL [2], a SPICE2 conformant process improvement

1 “The quality of a software system depends on the quality of the process that is used for the

development and maintenance of this software system” (W. Humphrey).
2 Software Process Improvement and Capability Determination (ISO/IEC 15504).

262 S. Pricope and H. Lichter

model, consisting of the following five phases: Initiating, Diagnosing, Establishing,
Acting, and Learning. According to this model an appraisal is conducted in the Diag-
nosing phase. The appraisal result is a diagnosis over the organization’s maturity
(quality of definition, description, planning, implementation and controlling of the
software development processes). By means of an appraisal the strengths and weak-
nesses of an organization can be identified, recommendations can be developed and
priorities set. Furthermore, the software processes are accordingly changed, applied in
projects and analyzed. The lessons learned will be used further to improve the
processes. The steps of the IDEAL phases have to be conducted iteratively. Thereby
the processes of the organization will be improved continually and each improvement
will be examined in a subsequent appraisal.

To harmonize appraisals SEI defines three appraisal classes (called A, B, and C)
that are different concerning the amount of requirements an appraisal has to fulfill.
These requirements are listed in detail in the ARC (Analyze Requirements for CMMI)
document [3]. Since an appraisal is a complex procedure it is helpful or even neces-
sary to follow a method or procedure for conducting it. The standard method for an
appraisal is called SCAMPI (Standard CMMI Appraisal Method for Process Im-
provement, see [4], [5]). This method was developed by SEI and is applied by many
CMMI users worldwide (e.g. see [6]). Unfortunately the official SCAMPI reference
does not contain any activity-oriented graphical description of the appraisal process.
Instead it is described in natural language which can cause misinterpretations. Other
sources (e.g. [7]) are not detailed and precise enough. Furthermore the SCAMPI train-
ing courses offered by SEI provide only informal diagrams for a better understanding
of the complex appraisal process (and this information is not publicly available).
Hence it is near to impossible for an organization to conduct an appraisal without the
support of appraisal experts and/or extra training. Because organizations want to
adapt SCAMPI for their own use, a more formal and more detailed description of the
appraisal method would help. We try to overcome this problem by explicitly model-
ing the appraisal method and by introducing appraisal metrics.

Another question that is of central importance is whether an organization is con-
ducting an appraisal correctly (i.e. the intended way). This is crucial because the cor-
rectness and the validity of the appraisal result depend on the performed appraisal
process. If the appraisal is conducted superficially then the results will be superficially
too. A detailed inspection of the appraisal can identify weaknesses of the performed
appraisal process. By discovering these weaknesses an organization can directly ad-
dress the problems and solve them for future appraisals. In this way the organization
aims not only to improve the software processes using CMMI but also to improve the
appraisal process.

Therefore it is important to have a procedure to verify whether an organization has
implemented the appraisal process correctly and to have an approach for evaluating
the overall quality of the appraisal.

This paper is organized as follows. In Section 2 we introduce a meta model that al-
lows to define SCAMPI appraisal processes and we exemplarily show how to instan-
tiate the meta model. Based on the meta model we present in Section 3 two metrics to
measure the quality of an appraisal. By means of these metrics the strength and weak-
nesses of an appraisal process can be discovered. First experience and conclusions

 Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals 263

conclude this paper in the last section. The research results described herein have
been acquired in close cooperation with Generali Deutschland Informatik Services
GmbH, Aachen.

2 Modeling the Appraisal Process

SCAMPI, the standard method for conducting an appraisal is used in organizations all
over the world that aim for software process improvement with CMMI. One major
problem in applying SCAMPI is its imprecise description which often causes misin-
terpretations. Furthermore SCAMPI does not completely specify this sequence of the
activities that have to be performed. This can be a source for mistakes in conducting
an appraisal leading to non-optimal appraisal results (e.g. incorrect appraisal results,
appraisal failure, unmotivated teams). This is one of the reasons why organizations try
to structure and adapt SCAMPI and especially class B appraisals for internal use. To
support organizations we have developed a SCAMPI appraisal meta model. It can be
easily instantiated to meet the requirements of organizations. It is explained in the
following.

2.1 Appraisal Meta Model

In order to precisely define the elements of a SCAMPI appraisal process, we have
developed a meta model, depicted by a UML class diagram (see Figure 1). This meta
model is based on the SCAMPI appraisal description and on the appraisal method
requirements defined in the ARC document. The elements of the meta model are
explained in the following.

As the name already suggests OrderedElements are ordered concerning their ex-
ecution sequence by means of the relationship executed-before. A Phase is a special
ordered element and the top-level structural element of an appraisal; it has a defined
start and end date.

An Action represents an abstraction of ordered elements that are performed by
Roles. An action may have to regard associated Conditions and produces and/or
needs one or more results.

For each condition a weight is defined. Weights represent the importance and in-
fluence of appraisal elements on the conformance and quality of an appraisal. There
are three kinds of weight based on the source (and the importance) that introduces the
respective element: The weight ARC is attributed to those elements specified in the
ARC document, SCA to those elements defined in the SCAMPI reference document
and AON (add-on) to those elements that are introduced in the appraisal process based
on the experience of the organization or based on published experience reports and
books. For this purpose we have conducted an intensive literature review. Many les-
sons learned contributing to the meta model are presented at the NDIA CMMI Tech-
nology3 and at the annual SEPG conferences4. For some examples see [8], [9] and
[10]. Further sources especially for AON-elements are [11] as well as [12].

3 NDIA CMMI Conference Series, http://www.dtic.mil/ndia/
4 SEPG Conference Series, http://www.sei.cmu.edu/sepg

264 S. Pricope and H. Lichter

Fig. 1. SCAMPI appraisal meta model

Actions produce Results which are input for other actions or output of the whole
appraisal. We distinguish two types of result: documents and other results. If a Docu-
ment is accessible for everybody it is modeled as an ExternalDocument. In contrast,
InternalDocuments can only be accessed by the appraisal team and typically contain
confidential data. Results that cannot be represented as documents are called Other-
Result (e.g. trained person, rooms, etc.).

A Step, as a special action, is performed by roles, may have to regard conditions
and produces/needs results. Furthermore steps are ordered concerning their execution.
As conditions, steps have a weight too. Steps may depend on each other which means,
that if a result produced by a step must be updated all depending steps have to be
executed once more.

An Activity is a special action consisting of steps. Activities are grouped into phases
and must be finished at the end of the phase. This leads to a hierarchical aggregation
structure of phases, activities, and steps. An activity may also have executed-before
and depends-on relationships to steps. If an activity depends on a step then the activity
must be executed again if the results of the step have to be updated. The weight of an
activity is determined based on the weights of its steps and conditions.

Tools are means to support the execution of steps (e.g. software tools, spreadsheets
or templates for documents).

2.2 Instantiating the Meta Model

Based on the meta model we have instantiated a SCAMPI class B appraisal reference
process in the context of Generali Deutschland Informatik Services’ process improve-
ment project. It consists of the four standard phases: Initiation, Preparation, Execution,
and Termination, ordered in this sequence (see Figure 2). Each phase contains activi-
ties, e.g. the phase Execution contains the activity Generate Final Findings.

 Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals 265

Fig. 2. Model for the appraisal reference process (excerpt)

In the following we explain exemplarily the object diagram modeling the activity
Generate Final Findings (see Figure 3). The complete model of the SCAMPI class B
reference process consisting of 32 activities can be found in [13].

Fig. 3. Model of activity Generate Final Findings

The activity Generate Final Findings is performed by two roles (Appraisal Leader
and Appraisal Team) and needs as input one external document (Preliminary Find-
ings) produced in a preceding activity. It consists of four steps, three of them are de-
fined in the SCAMPI document, one is defined in the ARC document and one is
introduced by the organization (Document Lessons Learned). There are three condi-
tions that have to be regarded by step Summarize Results, all defined in the SCAMPI
reference document. The activity in general produces two external documents (Final
Findings is jointly produced by steps Summarize Results and Characterize Organiza-
tion; document Lessons Learned is produced by the respective step) and one internal
document (Practice Implementation Indicators). There are two templates (tools) sup-
porting the execution of the steps.

266 S. Pricope and H. Lichter

Together with detailed descriptions of the phases, activities, steps, results and con-
ditions the resulting appraisal model explicitly documents the appraisal process, sup-
ports the appraisal conduction and guides the participants that are involved in the
appraisal process.

3 Appraisal Quality Metrics

Until now a systematic evaluation means for CMMI appraisals is missing. There is an
evaluation form handed over by SEI certified lead appraisers to evaluate the appraisal
on a four-valued ordinary scale (very good, good, rather bad, bad). This kind of eval-
uation is very rough and not able to identify weaknesses and strengths of the appraisal
process. Hence, an organization cannot achieve appraisal improvements by only using
this kind of evaluation. In the following we describe a new metric-based evaluation
approach.

3.1 Metric Design

The design of the appraisal quality metric is based on the hierarchical structure of the
underlying meta model elements (see Figure 4): a phase consists of activities, an ac-
tivity consists of steps and has associated conditions.

Fig. 4. Overview of the appraisal quality metric

Thus, steps and conditions are the atomic elements for the metric definition. The
quality of steps and conditions must be rated subjectively. This can be done on a
three-valued ordinal scale (poorly handled or absent, partially handled, adequately
handled). Because this scale is very similar to the one used for evaluating CMMI
practices and process areas (red, yellow, green) the personal involved in the appraisal
should be familiar with this kind of rating. Another reason for choosing this scale is
that subjective evaluations are by their nature error-prone and thus a more fine-
grained scale would not improve the accuracy.

Since activities are the basic elements of the appraisal process, we have defined a
metric to determine the quality of activities (called) based on the ratings of their
steps and conditions. Furthermore we introduced a metric for appraisal phases (called

) which aggregates the results of the respective -values.

 Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals 267

3.2 Goals and Requirements

The overall goal of the proposed metrics is to evaluate appraisals (and their processes)
that were conducted conformant to an instantiation of the meta model presented in the
preceding section. Since the metrics qAct and qPhase deliver values for all activities
and all phases the metric results shall allow analyzing the appraisal in greater detail
and in a more precise way. In order to achieve this goal the metrics have to meet the
following requirements:

R1: The subjective rating of the considered basic appraisal elements (steps and con-
ditions) shall be considered appropriately. That means, the higher the amount of
low subjective ratings, the faster the metric result has to decrease.

R2: The weight (i.e. the importance) of the elements (activities, steps and conditions)
shall be considered appropriately. That means, the more important elements
should have a higher influence on the decreasing of the metric result then the
less important ones.

R3: The weight of the appraisal elements that were absent or poorly handled shall be
identified. This points out the importance of the mistakes that has been done.

R4: Less important elements shall not compensate more important elements that
were absent or poorly handled.

R5: The activities and phase results shall be comparable.

3.3 Quality Metric for Activities

As mentioned before steps and conditions are the atomic elements of activities. We
define to be the set containing all steps and conditions of activity . For each
element the function returns its rating value: 0, 0.5, 1,

Depending on the value of the weight-attribute (ARC, SCA, AON (see section 2.1
Appraisal Meta Model) defined for steps and conditions, we call the elements in the
following for sake of simplicity ARC-, SCA- and AON-elements respectively. Based
on this classification we introduce for each activity three sets, each containing its
ARC-, SCA- and AON-elements, as follows: | . where W is a weight

These sets are used to determine the corresponding sets of all ratings of the respec-
tive elements:

For determining the overall quality of an activity the metric has to regard all its steps
and conditions. Hence, there are five different cases that the metric has to handle
(see Table 1)5:

5 It is easy to define the cases formally by using the sets.

268 S. Pricope and H. Lichter

Table 1. Cases to be handled by metric qAct

 Activity a has … and …
 at least one ARC-element
C1 at least one SCA- and AON-element
C2 at least either one SCA- or one AON-element
C3 neither SCA- nor AON-elements
C4 at least one SCA- and one AON-element but no ARC-element
C5 only AON-elements

In the following we explain the metric for case C1. All other cases are de-

fined accordingly; we will only present the resulting metric definitions at the end of
this section.

To determine the quality of an activity, regard the ratings of its steps and condi-
tions grouped according to their weight have to be regarded. This can be simply done
by adding the so called calculated total ARC-, SCA- and AON-values () for all
elements of an activity .

To calculate the total ARC-, SCA- and AON-values a function is needed that does not
violate the requirements introduced at the beginning of this section (especially R1 and
R2). We investigated often applied functions like sum, product, minimum, median
and arithmetic mean. Because the sum and product functions both violate R5 and the
minimum and medium functions violate R1, we decided to choose the arithmetic
mean function () although it has the drawback that its result decreases not fast
enough if elements are not handled properly (and thus violating R1). To overcome
this effect we raise the -value by an appropriate exponent x. Since the -value has
to decrease faster if an ARC-element is absent or poorly handled than in case of a
SCA- or AON-element (R2), we choose the exponent 4 for ARC-elements and 2 for
SCA- and AON-elements respectively. We validated these exponents by a large num-
ber of experimental calculations to ensure that requirement R1 is always met. This
leads to the following definition:

 where W is a weight and 4, 2

But only using different exponents is not sufficient for expressing the different im-
portance and influence of ARC-, SCA- and AON-elements on the overall activity
quality value. This illustrates the following example: If two ARC-elements and four
AON-elements are rated each as 0.5 and are equal but the ARC-
elements are much more important than the AON-elements. For resolving this issue
we introduce for each kind of weight an influence factor () that is multiplied by
the respective -function value. 0.65, 0.21, 0.14

Based on the experimental calculations we selected the influence factors in a way that
ARC-elements represent 65% of the qAct-value (they are most important). The re-
mainder (35%) is partitioned in 60% for SCA- and 40% for AON-elements. Hence, if

 Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals 269

an element is rated to 0 or 0.5 the average will drop. Applying these influence factors
we yield the following metric definition: · · ·

According to requirement R4 the influence of SCA- and AON-elements () should not be greater than the influence of one single ARC-element. There-
fore a failure in at least one ARC-element (rated to 0 or 0.5) cannot be compensated
by well done SCA- and AON-elements. To regard this requirement we restrict the
influence of SCA- and AON-elements depending on the value of the ARC-elements.
This can be achieved by multiplying the adjusted -value of the ARC-elements by
the influence of the SCA- and AON-elements: · ·

where 3 · 4, 3 · 6

But again, the influence factors and the exponents of the -functions are alone not
sufficient to fulfill requirement R3 (the elements that were poorly handled or absent
shall be identified). We illustrate this again by giving an example: Let activity con-
tain ten ARC-elements, x SCA-elements and y AON-elements. If one of the ARC-
elements is rated to 0.5 and all SCA- and AON-elements to 1 the value of is
greater than 0.65. Hence, we need to define thresholds for the ARC- and SCA-
elements in a way that if the qAct-value of an activity is less than the thresholds we
will know that an ARC- respectively SCA-element was absent or poorly handled.
Therefore we introduce the following threshold functions :

Summing up the quality value of an activity having ARC-, SCA- and AON-
elements is calculated as follows:

) where

270 S. Pricope and H. Lichter

The remaining cases are defined analogously. In the following we only present the
respective metric definitions.

Case 2: Activity has ARC-elements and at least either one SCA- or at least one
AON-element. In the following it is supposed that it has at least one AON-element. · · · · ·
 1, | 1 0.7,

where 0.7, 0.3

Case 3: Activity has ARC-elements and neither SCA- nor AON-elements · where 1

Case 4: Activity has at least one SCA- and AON-element but no ARC-elements: · · ·

where 0.6, 0.4

The function is the same as in Case 1.

Case 5: Activity has only AON-elements: · where 1

When instantiating the meta model for a SCAMPI class B appraisal we did not discov-
er any activity that has only SCA-elements. Of course, if other instantiations define
activities containing only SCA-elements then the metric can be extended analogously.

3.4 Quality of Appraisal Phases

Based on the qAct-values for activities we now define the quality value of phases. For
a phase we define to be the set of all activities belonging to .

Again we classify activities depending on their weights. The weight attribute of ac-
tivities is derived and calculated according to the following function:

We call the activities in the following for sake of simplicity ARC-, SCA- and AON-
activities respectively. As for steps and conditions we define three sets of activities
depending on their weights: | . where W is the weight

 Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals 271

The sets containing all qAct-values of the activities with weight W for a phase are
defined as follows:

Based on these sets we define the quality metric for appraisal phases as follows; · · ·

This metric is designed in analogy to the qAct-metric for the same reasons. We define
as influence factors the values 0.65, 0.21 and 0.14 be-
cause the ARC- elements are more important than the SCA-elements, that are more
important than the AON-elements. The -function is again the arithmetic mean of the
ARC-, SCA- and AON-activities results.

3.5 Metric Interpretation

Since the values of the metric are on a rational scale between 0 and 1 the values of
both metrics, qAct and qPhase, are comparable. This permits to compare former ap-
praisals with the current one and allows discovering whether an improvement has
taken place or not. A metric value close to 1 means that the respective activity or
phase was adequately handled, while a value close to 0 is an indicator that the activity
or phase was absent or poorly handled. Based on the introduced thresholds we can
define the following overall rating results of the metrics:

An important characteristic of the metric is its ability to identify the type of the
element which was absent or poorly handled. This way the metric supports the organ-
ization to discover the strengths and weaknesses of the respective activity or phase.
The influence factors IF and the threshold functions tf contribute together to define
thresholds which can be used to analyze the obtained metric values. Table 3 shows the
threshold based interpretation of the metric value for qAct (only Case 1) and qPhase.

Table 2. Metric interpretations

Value Interpretation

0.00 – 0.64 poorly performed

0.65 – 0.85 satisfactory performed

0.86 – 1.00 Good

Table 3. Threshold based metric interpretation

Value Interpretation

< 0.86 • all AON-elements were rated to 0 OR
• at least one SCA-element was absent or poorly handled

< 0.65 • all AON- and SCA-elements are rated to 0 OR
• at least one ARC-element was absent or poorly handled

272 S. Pricope and H. Lichter

4 Experience and Validation

The meta model, the derived SCAMPI class B appraisal reference model as well as
the metrics were validated in cooperation with Generali Deutschland Informatik Ser-
vices GmbH, Aachen.

Concerning the reference model we got some improvements hints regarding the
granularity of some weak activity descriptions (for more details see Pricope, 2008).
However, the appraisal members in general assess the reference model very helpful,
“particularly the relationships, tasks, work results and responsibilities” (quotation of
an appraisal team member) which were clearly identified.

To validate the metric we focused to check the important metric plausibility cha-
racteristics of metrics [14]. Plausibility means that the subjective ratings given by
experts have to correspond closely to the metric results. To check the plausibility
property we performed the following steps:

1. We developed a simple spreadsheet-tool for calculating qAct and qPhase.
2. All steps and conditions of the appraisal were rated and then the metric values were

calculated.
3. We mapped the metric results to grades between 1 and 6 (German school grading

scheme, see Table 4) because the original metric scale between 0 and 1 is to fine
grained for a subjective assessment and could cause errors.

4. We asked appraisal-team members to assess all activities and phases of the ap-
praisal by giving each a grade (1 to 6).

5. We compared the results of the metrics to the subjective assessment.

Table 4. Mapping of metric values to grading scheme

Metric Grade Interpretation
0.000 – 0.160 6 Fail
0.161 – 0.330 5 Poor
0.331 – 0.500 4 Sufficient
0.501 – 0.660 3 Satisfactory
0.661 – 0.830 2 Good
0.831 – 1.000 1 very good

The average deviation between the metric results and the subjective assessment
was 0.448. This means that on average only every second metric result deviates by
more than one point from the given grade (which is acceptable).

Because it is much easier to evaluate fine-grained elements (like steps and condi-
tions) than whole activities or even phases, the metric is based on subjective evalua-
tions of those elements. It can be applied like a checklist guiding the user through the
evaluation process.

To summarize, we see the following benefits by applying a metric-based appraisal
evaluation:

1. By analyzing the metric results the weaknesses of an appraisal process can be iden-
tified as well as its strengths. If the result of a phase or activity is low, we are able

 Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals 273

to identify the weak elements (step or condition) by traversing the tree (see Fig 2)
from the root to the leaves. This way we can decide if the appraisal results were
negatively influenced and if they are still correct.

2. Experience and knowledge is quantified and can be reused for future appraisals.
3. The gained knowledge can support strategic decisions, e.g. whether the appraisal

process must be further improved and more important we know what to improve,
because we identified the weak appraisal elements.

5 Conclusions

In this paper we propose a systematic approach to improve SCAMPI appraisal
processes based on a meta model and quality metrics for appraisals. The appraisal
reference model, which is an instantiation of the meta model, supports and guides
organizations to conduct appraisals by defining all the elements that should be
present, conducted, produced and regarded.

The introduced appraisal quality metrics are able to evaluate the appraisal process
(i.e. the activities and phases) and to identify opportunities for improvement. Fur-
thermore, the application of the metrics leads to greater transparency of the appraisal
process, since those activities and phases that have been poorly performed become
visible. In contrast to a standard questionnaire the metrics take into consideration the
weight and importance of the appraisal elements.

The appraisal quality metrics can not only be used for post-appraisal analyzes, but
also for controlling the appraisal during the process. The results of the metrics can be
analyzed after each appraisal phase to identify weaknesses of that phase early and to
define appropriate counter measure for succeeding phases.

Until now we have made some first promising experience with the presented ap-
proach. But, it is obvious that the metrics have to be calibrated and adapted. For ex-
ample the role element of the meta model, which is not considered by the metrics so
far, should be integrated in the activity quality metric. We discovered that this ele-
ment is also important and its absence may lead to deviations between the subjective
evaluations of experts and the metric results.

To summarize we have developed a quality instrument that can be used to syste-
matically assess and improve SCAMPI appraisals.

Acknowledgements

We would like to thank the Engineering Process Group of Generali Deutschland In-
formatik Services GmbH, Aachen for supporting this research.

References

1. SEI, CMMI: CMMI for Development, Version 1.2. CMU/SEI-2006-TR-008, ESC-TR-
2006-008, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
(2006)

274 S. Pricope and H. Lichter

2. McFeeley, R.: IDEAL: A User’s Guide for Software Process Improvement. CMU/SEI-96-
HB-001, ADA 305472, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, (1996)

3. SEI, CMMI: Appraisal Requirements for CMMI. Version 1.2 (ARC, V1.2) Technical Re-
port, CMU/SEI-2006-TR-011, Software Engineering Institute, Carnegie Mellon Universi-
ty, Pittsburgh, PA (2006)

4. SEI, SCAMPI: Handbook for Conducting Standard CMMI Appraisal Method for Process
Improvement (SCAMPI) B and C Appraisals. Version 1.1, CMU/SEI-2005-HB-005,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2005)

5. SEI, SCAMPI: Standard CMMI Appraisal Method for Process Improvement (SCAMPI)
A. Version 1.2: Method Definition Document, CMU/SEI-2006-HB-002, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA (2006)

6. Ekdahl, F., Larsson, S.: Using Internal CMMI Appraisals to Institutionalize Software De-
velopment Performance Improvement. In: 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO 2006), pp. 216–223. IEEE Com-
puter Society, Cavtat (2006)

7. Ahern, D., Armstrong, J., Clouse, A., Ferguso, J.R., Hayes, W., Nidiffer, K.: CMMI
SCAMPI Distilled: Appraisals for Process Improvement. Addison-Wesley, Reading
(2005)

8. Courtney-Clark, J.: Performing Consistent Appraisals in a Global Organization. In: 5th
NDIA CMMI Technology Conference and User Group, Denver, Colorado, November
16-18 (2005),
http://www.dtic.mil/ndia/2005cmmi/2005cmmi.html

9. Jansma, T.: CMMI Implementation for Software at JPL. In: 3rd NDIA CMMI Technology
Conference and User Group, Denver, Colorado, November 18-20 (2003),
http://www.dtic.mil/ndia/2003CMMI/2003CMMI.html

10. Oppenheimer, H.L.: The 3Rs and 4As of PIIDs. In: SEPG National Conference, Nashville,
Tennessee, March 6-9 (2006),
http://www.secc.org.eg/SEPG2006/Ingredients/PDF_files/195.pdf

11. Bush, M., Dunaway, D.: CMMI Assessments - Motivating Positive Change. Addison-
Wesley Longman, Redwood City (2005)

12. Kasse, T.: Action Focused Assessment for Software Process Improvement. Artech House,
Norwood (2001) ISBN-13: 978-1580532860

13. Pricope, S.: Development of an ARC-conformant CMMI Class B Appraisal Method. Mas-
ter Thesis, RWTH Aachen University (2008) (in German)

14. Ludewig, J., Lichter, H.: Software Engineering – Grundlagen, Menschen, Prozesse, Tech-
niken, 2nd edn. dpunkt.verlag, Heidelberg (2007) ISBN 3-89864-268-2

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 275–289, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A New Way to Organize DFX in a Large Organization

Jarkko Hyysalo1, Sanja Aaramaa1, Jouni Similä1, Samuli Saukkonen1,
Pekka Belt2, and Jari Lehto3

1 University of Oulu, Department of Information Processing Science, M-Group,
P.O. Box 3000, FIN-90014 Oulu, Finland

{Jarkko.Hyysalo,Sanja.Aaramaa,Jouni.Simila,
Samuli.Saukkonen}@oulu.fi

2 University of Oulu, Department of Industrial Engineering and Management,
P.O. Box 4610, FIN-90014 Oulu, Finland

Pekka.Belt@oulu.fi
3 University of Oulu, Department of Information Processing Science,

P.O. Box 3000, FIN-90014 Oulu, Finland
Jari.A.Lehto@iki.fi

Abstract. Efficient requirements engineering and design is a demanding task.
Design for excellence (DFX) offers a way to bring together different views and
harmonizing practices. There are still impediments, for example, in having in-
ternal and external customers valued appropriately. The organizational imple-
mentation of DFX in itself is a debated question. We present a new way to
organize the DFX concept in a large organization. The results are based on ex-
periences of a large organization that operates in the area of ICT systems, and
has had a successful implementation of the DFX concept for several years. Con-
trary to the traditional way of managing the DFX within R&D it is beneficial to
organize it within also other parts of the operational subsystem, as this makes
the concept and its improvement more visible and widespread in the organiza-
tion. However, this requires seeing the concepts of problem domain and solu-
tion domain from a new angle.

Keywords: Design for excellence (DFX), DFX organizational implementation,
requirements engineering, industrial management.

1 Introduction

Industrial companies, especially in the area of information and communications tech-
nology (ICT), are facing several challenges in modern days. Organizations' processes
must be efficient and products have to yield high customer satisfaction. Customer
needs and requirements can be changing, increasingly complex, very customer spe-
cific or hard to predict. However, fulfilling customer needs is of paramount impor-
tance. On the other hand standardized processes and products contribute greatly to
efficiency and quality. A balance between standardization and customization must be
found.

At the same time development times are getting shorter and schedules become
tighter in order to bring products to the markets before competitors to gain a market

276 J. Hyysalo et al.

benefit. How to manage changing requirements and customer needs, while taking into
account constraints of the design process and still bring a desirable, quality product to
the markets? How to value and recognize internal and external customers appropri-
ately? Solid requirements engineering processes and a tight connection between the
organization’s operations and product development process is needed.

Operations is often defined to include the processes of transforming inputs into
final outputs. Together with production operations makes, assembles, and tests prod-
ucts, including components, systems and services. This includes organizations’ logis-
tics and distribution processes, and involves decision-making, coordination, and
communication mechanisms to transform resources into products and services. [1]

It is a demanding task for requirements engineering and design to bring all the nec-
essary views into the final product. Design For eXcellence (DFX) is one way to do
this. DFX is traditionally managed within the R&D function of the organization.
However, it can also be distributed to other parts of organization, as our industrial
case will present. This offers some remarkable benefits compared to the traditional
way.

Bralla [2] defines DFX as a knowledge-based approach that attempts to design
products maximizing all desirable characteristics in product design and at the same
time minimizing lifetime costs, including manufacturing costs. Desirable attributes
can be for example quality, environmental friendliness, serviceability and manufac-
turability. In order to achieve these objectives the product design process itself has to
be excellent. Therefore DFX’s letter ‘x’ stands for two different aspects; 1) all desir-
able factors that a product should have, and 2) excellence and completeness of design.

Bralla sees DFX as a means of improving product design and development proc-
esses and eventually final products. Tools, methods and ways of forming design
teams etc, which Bralla propose, all imply that DFX is a part of the company’s R&D
organization and thus managed also by designers. There is a limited number of pub-
lished experiences on how companies implement DFX. However, there are dozens of
open vacancy announcements in Web pages where companies seek for DFX manag-
ers or specialists.

There are attempts to improve the DFX concept, for example Sheu and Chen [3]
build a model that adds backward design emphasizing downstream knowledge man-
agement and lessons learned for proactive cross functional product design manage-
ment. They emphasize the meaning of other-than-design functions, and propose a
management system adding other-than-design considerations to R&D and making
them more recognized. This is in line with our model, however, Sheu and Chen still
have the DFX concept managed within R&D. Our aim is to take this even further, and
thus insert even stronger incentives to have all the stakeholders and disciplines con-
sidered as equally important.

The inherently cross-functional DFX process requires participation from various
functions from the organization, including marketing, engineering, financing, manu-
facturing and supply chain. It brings together different views and harmonizes prac-
tices. Other benefits are also advances of requirements engineering and design in a
coordinated way aiming for common goals.

The aim of this paper is to present a new effective way of organizing DFX in a
large organization, thus our research question is: How does a large system provider
successfully organize DFX contrary to the traditional way? As a subsequent research

 A New Way to Organize DFX in a Large Organization 277

question we contemplate: What benefits does the new way provide? In order to answer
the research questions we conducted a literature review on the subject how DFX can
be organized and managed. However, the available literature is scarce on organiza-
tional implications. We also carried out a case study in an industrial company, which
is a major systems provider, and has utilized the DFX concept for several years. The
industrial case provides insights that highlight the value of DFX and also the role of
the DFX management as a link between operations and the product development
process.

The results of the paper provide value for both academics and professionals, who
may utilize the results to learn how to manage and organize DFX in large organiza-
tions, and how DFX Management in Product Development (DMPD) process can be
utilized to connect operations and the product development process. The case com-
pany operates in the ICT area, providing systems and services, however, the results
can be used in several industrial areas in order to analyze and improve their require-
ments management and design processes.

2 Research Process

The goal for the study was to determine the DFX requirements flow and the visibility
of the DFX concept in the case company. To form a sound understanding of DFX
implementation, requirements and visibility, twenty interviews were executed in the
case company. DFX managers were considered to have the widest knowledge about
implementation of the DFX concept. Therefore 12 of the interviewees were DFX
managers, including also the head of the DFX managers. In order to have also a prac-
tical point of view some old-timer hands-on-experienced were interviewed. This arti-
cle is based on the analysis of the interviews, especially the interviews of the DFX
managers.

The research process is described in the Figure 1. It follows loosely the process of
building theory from case study research by Eisenhardt [4].

Fig. 1. The research process

In this study relevant research topics were identified and rough analyses were done
on themes. Gathered material was compared to literature and other sources. Other
important sources were company slides and presentations. In addition weekly meet-
ings were held between researchers and company representatives, where open issues
were discussed thoroughly. The meetings were also taped and transcriptions were
made available to the researchers. The importance of these meetings must be stressed,
as they were of paramount importance in order to gain full understanding of a large
company's organizational issues. Then it was possible to continue with deeper analy-
ses of original research themes and also start working on new interesting topics re-
vealed in this research.

278 J. Hyysalo et al.

Interviews were executed in one month. Duration of each interview was approxi-
mately one hour. The first version of the questionnaire was updated after the first four
interviews by changing a few words, adding some examples and two questions. The
questionnaire was delivered to each interviewee in advance so they could be prepared.
Each interview was managed by two or three interviewers. Most of the interviews
were face to face. All interviews were recorded and tapes were sent for transcription,
after that the researchers made short summaries from transcriptions. Within two
weeks from interview a full transcription and summaries were emailed to interviewees
and they were given one week to validate the information. Only a few interviewees
made minor corrections or added something to the summaries.

In the second step, validated information was analyzed to formulate general de-
scriptions of different DFX disciplines, lists of identified stakeholders, each disci-
pline's greatest challenges, possible solutions, and requirements flow. These analyses
were also reviewed by the interviewees. For cross-analyzing DFX disciplines the
interviewees were grouped by different functions, for example manufacturing, proc-
esses, services and R&D. Finally, all the information was wrapped up to identify
common challenges, especially in requirements flow and DFX visibility, and to find
best practices and solutions within all DFX disciplines. At this phase common issues
were compared to literature, and also an understanding of DFX implementation at the
case company was built based on interviews and company material.

As the literature on organizational implementation of the DFX concept is not
widely available, we used an alternative approach: a review of recruitment an-
nouncements published in the Internet. Recruitment announcements are part of the
external dissemination, which is often handled better than internal dissemination. This
way we were able to get enough data for our analysis. Web search was conducted
using search words ‘DFX manager jobs’, (all words), which returned 12 300 hits. To
narrow our search, the second search phrase was more exact, ‘“DFX manager” jobs’
and search was restricted to pages that were published within a year. This returned
105 hits and all announcements were read. The third search was ‘DFX manager jobs’
within past year. Found announcements were sorted to three classes based on within
which function the vacancy is managed: 1) similar to case company, 2) undefined
(as it was not possible to tell from the announcement), and 3) differs from case com-
pany. Several announcements were left out, as they did not actually indicate that the
DFX concept is implemented in the company. Most of the announcements only had
qualification requirement of DFX knowledge for applicant, however, this was not
enough for inclusion to our study. If responsibility included DFX, it was included.
This narrowed our research considerably. Based on a study of these announcements, it
is clearly evident that in most of companies DFX management is within R&D, as
predicted.

3 Requirements Engineering Flow

Requirements engineering process includes requirements development (elicitation,
analysis, specification and validation) and requirements management [5]. It is a sys-
tematic (engineering) approach to eliciting, organizing, and documenting the require-
ments of the system, and the process that establishes and maintains agreement between

 A New Way to Organize DFX in a Large Organization 279

the customer and the project team on the changing requirements of the system. [6]
Requirements engineering does not include design, implementation etc. activities of
systems engineering, which are systematically included in DFX. Kotonya and Som-
merville [7] define requirements management as the process of managing changes to
the requirements. Many authors go in line with this definition [5], [8], [9]. They all
characterize and define the tasks included in the management process, all stressing its
nature of change. Leffingwell and Widrig [6] instead, define requirements management
to include all the requirements engineering from elicitation to maintenance.

The concepts of problem domain and solution domain cf. [10], [11] are important
in requirements engineering. Problem domain refers to a bounded part of the reality,
which is the place where products make profits to the problem domain stakeholders.
Problem domain is the environment in which a problem is defined – usually a prob-
lem that is to be “solved” by the product and the by-products related to it [12]. All the
added-value used to pay the product is generated in the problem domain; no other
domain can decide what is right or wrong. Other domains can only define restrictions
for the problem domain. The problem domain includes and is composed of its stake-
holders’ concepts and relationships. A problem domain is simply looking at only the
topics its stakeholders are interested in. The language and semantics of the domain
originate also from its stakeholders only and may contain terminology conflicts, too.

Solution domain is an area, in which a solution of a problem is defined – the solu-
tion domain provides “solutions” to solve challenges of the problem domain. Solutions
are usually manifested in the design and implementation of a system. The solution
domain is usually understood by the developers of the system. [12] It is common that
problem and solution domains both have their own concepts and entities with unique
semantics.

Stakeholders are people who have a stake in a product. There are two main groups
of stakeholders: customers and developers [8]. Examples of customer type of stake-
holders are product users and product owners on the customer site. Hardware, soft-
ware, mechanical engineers, manufacturing specialists, sourcing specialists, etc. can
be named as examples in the developer category of stakeholders. Any person affected
by the product or who has influence on product development, manufacturing, delivery
etc. is a stakeholder.

By following the thoughts of Lauesen [9] the requirements can be categorized in
four levels:

- Goal-level requirements; there exist goal-level requirements both in problem
domain and solution domain.

- Problem Domain-level requirements.
- Solution Domain-level requirements.
- Design-level requirements.

The life-cycle of requirements discussed here starts from business goals and needs,
and ends in features and constraints. The product specifications are the output of fea-
ture screening and prioritization.

The logical view of the requirements engineering workflow is depicted in high
level in figure 2. The main logical structure is divided into three sets of tasks before
the results are going to the feature screening decision-making. Pure decision-making
activities are not presented in this figure as well as necessary feed-back loops, as they

280 J. Hyysalo et al.

Fig. 2. Overall structure of the requirements engineering workflow

are out of the scope of this study. The workflow is design from the view point of a
single actor. There are no role based conditions along the workflow. However, along
the logical flow separate tasks can be performed by separate actors as well as the
workflow can be parallelized.

The high-level workflow is valid for problem level requirements engineering
(customers’ requirements) and for solution domain requirements engineering.

3.1 Requirements Engineering Flow in the DFX Context

In this study we will describe the requirements engineering work in more detail in the
solution domain as the DFX is mainly a solution domain issue. This type of thinking
requires a paradigm shift, as it is fundamentally different than traditional problem
domain and solution domain thinking. The traditional view is that the problem domain
is the business environment of the customer companies to which solutions are pro-
vided by the product development organization of the systems provider company.

In our case the problem domain is the product development organization of the
systems provider company and the solution domain is the internal DFX management
organization which provides guidelines and instructions to the product development
organization. The original solution domain thus has become the problem domain. This
also shows that the problem domain – solution domain thinking may and in fact
should be applied recursively and iteratively when needed.

The DFX managers are one important category of stakeholders for a product pro-
gram. Identification of DFX representatives as stakeholders should be done before
starting a product program. Behind each DFX discipline, there is a platform of knowl-
edge and technology to be adapted to the programs. These platforms are knowledge
bases that include both product and the processes. Platform managers are responsible
for defining and maintaining the platforms. Operations’ platforms are Manufacturing
platform, Sourcing platform, and Delivery platform (see figure 3). Manufacturing
platform includes standard manufacturing processes and equipment to be used for
example in manufacturing testing, board assembly, final assembly and product pack-
aging. Sourcing platform consists of lists of recommended suppliers and recom-
mended components, for example. Delivery platforms define, among others, standard
distribution models. Service platforms develop and maintain standard services like
remote operability. R&D platforms are developing and maintaining basic solutions
and guidelines/instructions to be applied in product programs. The DFX capability
management organization is responsible for defining and maintaining DFX require-
ments and targets based on agreed platform specifications. The requirements flow
actually starts from the bottom of the figure, and requirements are defined at different
levels: Company level, business unit level, business line level or program level. DFX
capability management also develops competence of personnel implementing the
DFX in programs in the DMPD process.

 A New Way to Organize DFX in a Large Organization 281

Fig. 3. Requirements engineering inside the DFX capability management, simplified model

During Product process the DFX requirements will be defined, prioritized and re-
fined into product specifications during the early phases. During manufacturing the
DFX requirements will be implemented with defined targets in products and services.
During the maintenance and removal phases relevant DFX requirements especially
those related to DFS (Design for Service) will also be dealt with. The role of DFX
personnel (implementation managers) is to help the programs as well as to follow-up
the implementation of DFX issues. During and in the end of a program lessons
learned will be gathered and analyzed, too.

The left-hand part of the DMPD process is about the requirement negotiation and
prioritization, and then after that starts the implementation of the requirements in the
right-hand process. In the maintenance phase, you still keep implementing and fol-
lowing the requirement process. Organizational implications of this will be discussed
in the next chapter more thoroughly.

4 DFX Management in the Case Company

The DFX concept in general is a systematic and cross-functional design methodology –
including design principles, requirements, metrics and target values. DFX optimizes
usage of product, operations and service platforms and implements proactively the best
practices in sourcing, manufacturing, demand/supply chain, services, environmental
management, reliability and security in product process. The objective of DFX is to

282 J. Hyysalo et al.

ensure sustainable design, efficient and profitable delivery process and customer satis-
faction throughout the product life cycle.

In general the concept of operations includes the processes of transforming inputs
into final outputs. It includes company's own, sub-contracted or partnership based
sourcing, manufacture and supply. Product manufacturing and service delivery is
often relying upon the efficient use of stable operating routines. Both Operations and
production processes have to be managed effectively and predictably in order to
achieve efficiency. Their aim is to reduce unwanted variability and uncertainty in
product delivery and service and thus reduce defects and costs, while still maintaining
constant output and quality. [1] This matches with the aims of DFX, however, DFX
has a wider scope taking into account the whole life-cycle of the product and also
customers' costs. On the other hand, Dodgson et al. [1] continue that well managed
operations also deliver products and services at competitive price for the customer,
whilst providing returns for the company. In short, Operations provide means of turn-
ing designs into final products and services, including product distribution, and thus
facilitate product and process delivery.

At the case company the global responsibility for the processes, its existence, de-
velopment and implementation for DFX concept resides in Operations/DMPD organi-
zation. In general, we claim that the responsibility should reside with the internal
stakeholder where it most matters, for example who pays the costs of the develop-
ment. In the case of a service oriented organization the development and management
of DFX could be, for example, within service processes.

Large organizations are not born over night; they evolve from small basic func-
tions. When companies evolve to be large global organizations, these basic functions
affect the decision of which part of the organization takes the responsibility of DFX.
For historical reasons in the case company the full responsibility of DFX was natu-
rally located within Operations organization. In order to have on-going successful
business all companies have to focus also on constant development of their processes
and functions. In our case company the DFX principles have been executed success-
fully over a decade, nevertheless there is still a need for improvement work, and con-
tinuous discussions are held to find the optimal solution.

The aim of DFX is to optimize end-to-end cost from company and customer point
of view, and to build core competence that leads to competitive advantage over the
competitors. From the DFX point of view the following main organizational units are
relevant:

- Organization of Product Lines (OPL). OPL is divided into business units,
which are responsible for the development of products through product pro-
grams and which have the ownership of products. In addition the R&D unit
is divided into sub disciplines. Design for environment and quality are or-
ganizationally located here.

- Financial unit, which provides the financial figures for cost accounting, but
bears no other important direct relation to DFX.

- Operations, which is responsible for the delivery process, i.e. manufacturing
and suppliers, and delivery of products to the customer sites. The delivery
process includes also installation and related service activities. DMPD with its
three DFX disciplines (supply management, manufacturing and demand/supply

 A New Way to Organize DFX in a Large Organization 283

chain) is located in Operations. Manufacturing is further split into sub disci-
plines out of which the major part are in DMPD.

- Services. After the delivery of the products to the customer site Services
takes responsibility for them and starts the installation and maintenance ac-
tivities. Design for Services DFX discipline with its four sub disciplines is
located in Services.

In addition, there are other organizational units, however, they have no important
direct relation to the organizational implementation of DFX.

4.1 DMPD within Operations

Although in our industrial case DFX is managed within Operations, the DFX re-
quirements must be implemented into actual products as usually. Implementation
responsibility still lies on product designers’ shoulders. In order to have effective
DFX process concurrent engineering is needed [2]. This means that DFX require-
ments are implemented within cross-functional design teams. According to Bralla
cross-functional design teams’ members represent manufacturing engineering and
different DFX approaches such as service, quality and environment [2].

In our industrial case design teams are established basically in the same way as
Bralla suggests, but the significant difference is the representatives’, DFX managers’
organizational ‘home silo’. DFX managers are not a part of the R&D organization,
instead they are part of the organization that pays the costs – DFX/DMPD. It does not
make a difference to the individual who implements the DFX requirements which
organization has the management responsibility of DFX, but to the company it does.
This means that if product programs have responsibility of DFX they aim at their own
local success and they may as well achieve it. Nevertheless success in a few product
programs does not guarantee the success throughout the company. Placing responsi-
bility of DFX management and development in Operations organization, as in our
industrial case, leads more likely the company’s success as a whole.

The cooperation between the DFX disciplines from different organizational units is
organized through networking. Each DFX manager has the responsibility for his
process. DFX networking manager has the total responsibility for these activities.

For each business portfolio a business unit DFX team is formed in the case com-
pany. The DFX managers are responsible for the content and principles of the disci-
plines, the business unit DFX teams implement the principles, the practical matters
are solved within the teams. The teams function as the working channels to ensure the
fulfillment of the requirements in the product development programs. The business
unit DFX teams have an important role especially in the beginning phases of product
life cycle.

4.2 DMPD Organization

The main task of the DMPD organization is to formulate all the operations require-
ments into words and figures and present them to the product programs. This is how-
ever not totally sufficient. It is also very important to be able to state the reasons for
the requirements in a convincing way. Prioritizing the requirements and negotiating
about them with the product development persons is the most time-consuming activity

284 J. Hyysalo et al.

at least for the present. A general challenge is to make the product process more ef-
fective, and in general define requirements leading in work and cost reduction in
some other phases of the product process.

The customer of DMPD is the product program prioritizing and deciding on the re-
quirements to be implemented. In general, the decision making is based on the re-
quirements documents including a business case description and cost/benefit analysis.
The task of the DMPD organization is to make the program “buy” the requirements
and their content, to make the persons in the program see what is meant by the re-
quirements and their priorities. This seems to be a challenge for DFX requirements: it
is quite straightforward to justify requirements having a concrete relation to some
external customer needs compared to requirements arising from internal operations
needs. To solve the dilemma more attention should be paid on analyzing and value
based argumentation of DFX requirements, for example better cost/benefit analyses.
After the programs produce the product the DMPD must have the required delivery
capability, the required manufacturing capability and volume.

The DMPD process is a part of the Product Process. The main tasks of the DFX
capability planning phase at the portfolio management level and product life cycle
level are:

- Implementation of Operations’ strategies and requirements, including evalua-
tion of delivery capability requirements regarding purchasing, production,
demand/supply chain, and service.

- Feasibility analysis from Operations point of view.
- Cost and risk analysis.
- Target setting with respect to Operations DFX metrics.
- Resource planning for Operations part

Based on the results of DFX capability planning the required delivery capability is
created at the program level in the DFX capability implementation phase. This is then
maintained in the DFX capability maintenance phase and eventually removed in the
DFX capability removal phase. Major roles related to this in the case company in a
glance are:

- Portfolio manager, who manages and controls all Operations activities re-
garding an entire product portfolio, including analysis, DFX capability im-
plementation, maintenance and removal. He also leads all delivery, demand
and supply chain, and is the purchasing and production capability manager of
one portfolio. He is the Operations member in a business unit management
team.

- DFX capability manager, who manages and controls all operations related
activities regarding product capability planning, implementation, mainte-
nance, and removal. It is important to notice, that DFX capability manager is
a single Operations interface in programs – the link between a program and
the DMPD.

A generic example of DMPD participation to business unit decision-making; when
matters cannot be decided at the program level, the decision making is escalated step
by step to higher levels of the organization, as usual.

 A New Way to Organize DFX in a Large Organization 285

5 Discussion

DFX has been utilized for several years in the industry. Traditionally it has been man-
aged within R&D. The DFX concept provides common guidelines, instructions, and a
harmonized way to aim for the common goal, instead of each group or department
implementing its own plans. DFX aims to have all customers or stakeholders, internal
and external, valued and recognized appropriately; production process and design
taking into account the whole supply chain and visa versa.

The ICT business environment can be characterized by fierce price erosion that
forces the companies to continuous process of improving their internal efficiency
[13]. DFX can prove a functional means for addressing the strive for efficiency im-
provement and the needs of internal customers, as the case company experience
proves. DFX provides the means to achieve functional integration, when used as a
communication tool, and it is also a tangible way for managing requirements through-
out the product development chain. The case company has utilized DFX extensively,
especially Design for Manufacturing, for over a decade. The practices of the case
company prove that DFX is not a philosophy, in contrast to literature, but rather
works through principles and tools.

Several studies, see e.g., [14], [15], [16], [17] indicate that it is a common mistake
to have product development based on a line of individual separate products, or to
have different groups, function or companies in the supply chain basing their plans on
individual specific needs. Even with the shared common goal, they may end up with
contradicting plans. For example, if the products are developed based on the needs of
separate product lines, it leads product design decision to be driven basically based on
R&D requirements and direct cost optimization, and the outcome of this is ineffi-
ciency and poor customer service. Kaski [14] continues that often business process
activities relate to product architecture and sales volumes as well. That is why he
suggests total cost model instead of optimization of a single product. So, there is a
need to align operations with the product creation process and all the other functions,
especially if there are multiple development programs running simultaneously. How
can this be implemented in a large organization if the traditional way is not efficient
enough? This brings us to the research question 1.

A response to our research question 1, "How does a large system provider success-
fully organize DFX contrary to the traditional way?", and the main argument of our
study is that DFX can be organized in a different way than it is usually done. Having
DFX within Operations is certainly reasonable, and recommended. It can be organized
as chapter 4 suggests, systematically through the concept of DMPD with emphasis on
Operations, but also taking into account Services, R&D and Marketing operations.
This is different from the traditional view cf. [2], [18] where DFX is mainly seen from
the viewpoint of product development. Ensuring an adequate capability to deliver
products is vital for business. Continuous streamlining of internal processes to maxi-
mize delivery capability is going on in the case company. They coordinate the activi-
ties of different DFX's through DFX management organization.

286 J. Hyysalo et al.

The literature on organizational implementation of DFX is scarce, but it still shows
clearly that Bralla's view is the most dominant, in most cases the DFX disciplines are
implemented inside the product development organizations. The way of implementing
them through the organization that actually pays for the costs of it, is much more
reasonable, and it is a good way to implement the DFX within an organization.

This offers remarkable benefits over the traditional way, as our research has
shown. That will answer the research question 2, "What benefits does the new way
provide?" Similarly to traditional approach in the single program point of view, there
are cross-functional teams with experts, program manager sets up business unit teams,
each DFX discipline has guidelines etc., but the difference will be evident when there
are requirements that will concern multiple programs. These "global" requirements
will be more visible to all stakeholders, and they will be recognized more seriously.
However, this requires a serious "twist of mind"; the traditional solution domain be-
comes the new problem domain, and DFX becomes the new solution domain.

One of the problems in product development as Lee and Billington [19] suggest, is
that internal customers are not recognized or cared for as well as external customer.
External customers bring in revenue and they are more visible [19]. However, the way
of organizing DFX within operations stresses the importance of internal customers
also, so that they are on equal level with external customers.

The transition of problem domain and solution domain means that from the DFX
point of view, the solution domain is provided by the DFX management organization,
and the DFX disciplines within that, and the problem domain is actually the product
process.

A question "is DFX rather philosophical or rational approach" has been posed. We
see that DFX is not only a philosophy, it also has practical implications. It is a way to
organizing stakeholders inside the organization. DFX managers representing different
stakeholders formulate general guidelines for the DFX based on the information in the
corresponding platform. These guidelines are then implemented by the implementa-
tion manager in the product programs. As the requirements and solutions come from
the organization funding the manufacturing, they are taken into serious consideration.
The idea is to use DFX to make an effect to the product process, so that the DFX
requirements, guidelines, principles, are implemented in the product process.

The platform managers are where the knowledge of the DFX disciplines is codi-
fied, for example in the form of documents, databases, lists of recommended suppliers
etc., depending on the DFX. The main role of the discipline managers is to use that
knowledge from the platform and form guidelines and principles to implement those
requirements of that platform or general requirements. In addition, the responsibility
of the discipline managers is also to train people who will take part of the DMPD
process, which is part of the product process, and implement those guidelines and
principles in a singular product.

Further benefits are, for example, the responsibility for DFX improvement will be
distributed all over the organization. Thus, also other departments than R&D will be
participating in the DFX improvement work. Table 1 summarizes our answers to the
research questions.

 A New Way to Organize DFX in a Large Organization 287

Table 1. Summary table to answer the research questions

How does a large system provider
successfully organize DFX
contrary to the traditional way?

What benefits does the new way provide?

It can be organized systematically
through the concept of DFX
Management in Product Develop-
ment (DMPD) and DFX capability
management organization. In the
case company, the emphasis is on
Operations, but also taking into
account Services, R&D and
Marketing operations.

The responsibility for DFX improvement will be
distributed all over the organization, thus helping long
term planning and improvement.

The way of organizing DFX within operations stresses
the importance of internal customers also, so that they
are on equal level with external customers.

Coordination of the activities of
different DFX's through DFX
management organization is
required.

The DFX discipline managers train people who will
take part at the product process, thus aiding process
improvement and knowledge sharing.

The management, global
responsibility for the processes, its
existence, development and
implementation for DFX concept
resides with the internal stakeholder
where it most matters, usually it will
be the one who pays the costs.

DFX managers formulate general guidelines for the
DFX based on the information in the corresponding
platform. These guidelines are then implemented by the
implementation managers in the product programs. As
the requirements and solutions come from organization
funding the manufacturing, they are taken into serious
consideration, and they will be more likely
implemented in the product process.

The DFX management organization
formulates all the relevant DFX
requirements into words and
figures, and presents them to the
product programs. They should also
include the reasons for the
requirements. The argumentation
should be presented with similar
criteria as external customer
requirements.

Behind each DFX discipline, there is a platform of
knowledge and technology to be adapted to the
programs. These platforms are knowledge bases that
include both product and the processes. The discipline
managers use that knowledge from the platform and
form guidelines and principles to implement those
requirements of that platform or general requirements.

Requirements that will concern multiple programs,
product lines or families will be more visible to all
stakeholders.

6 Conclusions

The general value adding principles of DFX management organization can be formu-
lated in the following way based on the interviews and other research material:

- Manage delivery capability and DFX implementation and maintenance in all
case company products, solutions and platforms by efficient use of standard
operations platforms as well as operations resources.

- In order to ensure operations alignment with the product creation process, the
DFX management organization will participate in programs to ensure seam-
less delivery of products.

288 J. Hyysalo et al.

- Starting from early planning phase, DFX management organization will
make a strong contribution to business unit and R&D management structures
throughout the product life cycle, driving DFX requirements analysis and de-
cision-making in product proposals with end-to-end business case calculation
support.

- During the maintenance phase, DFX management organization will manage
delivery capability for all active products in the business units. DFX manage-
ment organization will drive product change management from an operations
point-of-view and, at the end of the product lifecycle, efficiently remove
products with optimized assets and minimum scrap.

- When the same organization is also responsible for implementation and
maintenance, the commitment is created more easily than in product pro-
grams, which are focusing on short term operations.

On the other hand, there are also advantages of managing and implementing DFX
within one organization/function. For example, reporting; line of reporting would
obviously be much shorter and straight forward, and another advantage would be
having uniform practices. Thus, continuous discussions are held in the case organiza-
tion concerning the most optimal way to manage DFX. This research is one concrete
example of this continuous improvement work.

However, there are still challenges to be solved. Based on the interviews for exam-
ple, converting requirements into costs or into a commensurable format to ease com-
municating and prioritizing requirements is challenging. The discipline managers of
DFX’s with a longer history have the benefit of being able to clearly describe the field
in question, compared to newer disciplines. Only a minority of DFX requirements can
be directly related to customers. This has been noticed annoying to many DFX disci-
pline managers as the “voice-of-the-customers” is a powerful tool when negotiating
with program managers about the importance of requirements. From the program’s
point of view, the company strategy and business target level requirements are not
always seen very important – the requirements directly relevant to the program at
hand go over the “abstract” requirements related to all programs. In general level the
main processes seem to have descriptions that are well defined and documented.
However, the utilization is a bit unclear because of the great amount of different sub
processes, at least on all organizational units.

Comparison of different and sometimes conflicting requirements is difficult in
practice, as they are lacking the common economic scale for comparison. For exam-
ple, the desire to minimize the number of product titles, conflicts with customer re-
quirements supporting increased number of these titles. End-to-end cost calculations
provide the basis for requirements prioritization attempts. However, there is often
skepticism concerning calculations made by other people. Currently requirements
prioritization is often based on the individual's capability to sell their viewpoint. It is a
fact that people are different and the processes still need standardization.

Identification of all important stakeholders is important, and it is a topic to be stud-
ied further; how to identify and manage the stakeholders and their needs. Another
topic for further studies is providing implementation guidelines for actual implemen-
tation of this process.

 A New Way to Organize DFX in a Large Organization 289

References

1. Dodgson, M., Gann, D., Salter, A.: The Management of Technological Innovation. Com-
pletely Revised and Updated. Oxford University Press, New York (2008)

2. Bralla, J.G.: Design for Excellence. McGraw-Hill, New York (1996)
3. Sheu, D.D., Chen, D.R.: Backward design and cross-functional design management sys-

tem. In: Proceedings of the 35th International Conference on Computers and Industrial
Engineering, Istanbul, Turkey, pp. 19–22 (2005)

4. Eisenhardt, K.M.: Building theories from case study research. Academy of Management
Review 14(4), 532–550 (1989)

5. Wiegers, K.: Software Requirements. Microsoft Press, Redmond (2003)
6. Leffingwell, D., Widrig, D.: Managing Software Requirements – A Use Case Approach.

Addison-Wesley, Boston (2003)
7. Kotonya, K., Sommerville, I.: Requirements Engineering – Processes and Techniques.

John-Wiley & Sons, Chichester (2003)
8. Maciaszek, L.: Requirements Analysis and System Design. Pearson Education, Harlow

(2005)
9. Lauesen, S.: Software Requirements – Styles and Techniques. Addison-Wesley, London

(2002)
10. Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., Rapanotti, L.: Relating Software Re-

quirements and Architectures using Problem Frames. In: IEEE Proceedings of RE 2002
(2002)

11. Cybulsky, J., Reed, K.: Requirements Classification and Reuse: Crossing Domains
Boundaries. In: Frakes, W.B. (ed.) ICSR 2000. LNCS, vol. 1844, pp. 190–210. Springer,
Heidelberg (2000)

12. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-
son-Wesley, Reading (1999)

13. Helo, P.: Managing agility and productivity in the electronics industry. Industrial Man-
agement & Data Systems 104(7), 567–577 (2004)

14. Kaski, T.: Product Structure Metrics as an Indicator of Demand-Supply Chain Efficiency:
Case Study in the Cellular Network Industry, Doctoral Dissertation, Acta Polytechnica
Scandinavica, Industrial Management and Business Administration Series, No. 13, Espoo
(2002)

15. Holmström, J., Korhonen, H., Laiho, A., Hartiala, H.: Managing product introductions
across the supply chain: findings from a development project. Supply Chain Management:
An International Journal 11(2), 121–130 (2006)

16. Helms, M.M., Ettkin, L.P., Chapman, S.: Supply Chain Forecasting – Collaborative Fore-
casting Supports Supply Chain Management. Business Process Management Journal 6(5),
392–407 (2000)

17. Mentzer, J.T., Moon, M.A., Kent, J.L., Smith, C.D.: The need for a forecasting champion.
Journal of Business Forecasting Methods & Systems 16(3), 3–8 (1997)

18. Meerkamm, H., Koch, M.: Design for X. In: Clarkson, J., Eckert, C. (eds.) Design Process
Improvement – A review of current practice, pp. 306–323. Springer, London (2005)

19. Lee, H.L., Billington, C.: Managing supply chain inventory: Pitfalls and opportunities.
Sloan Management Review 33(3), 65–73 (Spring 1992)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 290–302, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Tool Coverage of Software Process Improvement
Frameworks for Small and Medium Sized Enterprises

Filiz Çelik Yeşildoruk, Banu Bozlu, and Onur Demirörs

Middle East Technical University, Informatics Institute,
06531 Ankara, Turkey

filiz.celik@tcmb.gov.tr, {banu,demirors}@ii.metu.edu.tr

Abstract. Software Process Improvement (SPI) awareness is increasing among
Small and Medium Sized Enterprises (SMEs). Conventional SPI frameworks
are not appealing for SMEs since they are complex and costly. There are a
number of frameworks, which address the problems of SMEs for SPI. This pa-
per presents a comparative study of the most frequently referenced SPI frame-
works established for SMEs from a SPI Tool coverage perspective.

Keywords: software process improvement, small and medium sized enterprises.

1 Introduction

Software industry has embraced the paradigm of achieving quality by improving proc-
esses starting from early 90s [1]. Since then, a number of tools for SPI have been
evolved. Most of the current SPI studies focus on model-based improvement that aims
to improve processes with respect to a reference model. To support the worldview,
process improvement tools including process reference models, process assessment
methodologies, process improvement methodologies and process modeling approaches
are developed.

The software industry includes a considerable number of small and medium size
companies. In all European countries, over 97 percent of Computer and Related Ser-
vices enterprises have less than 50 employees and they account for over fifty percent
of employment in the private sector [2]. Small software companies usually provide
customer specific solutions targeted for businesses or specialized parts of larger sys-
tems. It is critical for these companies to produce quality software since it will deter-
mine the quality of the business or the quality of the whole system.

Although small companies are the majority and produce critical products, the soft-
ware quality movement, in its early days, mainly targeted large organizations. Small
enterprises were indifferent to the need in early days. However, pressures from ac-
quirers, widening awareness on quality movement and the need to grow stimulated
the need to establish quality infrastructures. During the last decade, specific needs of
the SMEs derived the need for establishing frameworks targeted specifically at SMEs.
Most of them can be considered as modified versions of process improvement frame-
works such as CMMI [3] and ISO 15504 [4], each providing different tools and hav-
ing different perspectives for process improvement requirements of SMEs.

 The Tool Coverage of Software Process Improvement Frameworks for SMEs 291

In this paper we present the results of a comparative study on SPI frameworks es-
tablished for SMEs. We defined the framework as a unifying approach that covers at
least three significant SPI Tools. In this paper, we use the term Tool - starting with the
capital letter - to cover notations, approach, techniques, methodologies and CASE
tools. We identified significant SPI Tools as those, which are frequently utilized in
model-based SPI initiatives. These Tools include process reference models, modeling
methodologies and notations, assessment methodologies, improvement methodologies
and automation environments, which are frequently utilized in model-based SPI
frameworks. In addition to the utilization of the Tools, we also identified how and to
what extent the Tool is utilized by each framework. In other words, we evaluate SME
specific SPI frameworks by considering the Tools they have utilized.

The rest of the paper is organized as follows. Section 2 gives brief information
about the previous research studies on SPI implementations in small settings. Section
3 includes the results of the comparative study. Finally, conclusions of the compari-
son are presented together with the future work planned.

2 Difficulties of SPI Implementation in Small Settings

Restrictions in applying conventional quality management tools in software domain,
such as the lack of significant statistical data and improvement guidelines, have led
practitioners to focus on development of model based improvement approaches. In
model-based improvement approaches, organizations’ processes are compared with
the process attributes defined in a reference model. Based on the identified gaps be-
tween existing processes and the reference process attributes, improvement plans are
established and executed [5]. As Sheard discusses, new standards or approaches for
this purpose evolve regularly [6], yet most of these models are based on CMM or ISO
15504. However, there are a number of research studies which demonstrates that
SMEs have difficulties in applying conventional model-based improvement frame-
works [7][8][9].

In order to find solutions to overcome these difficulties, several researchers have
focused on potential challenges facing small companies in process improvement ac-
tivities [9][10][11][12][13][14][15]. The problems frequently occur due to the mis-
match between utilized process improvement Tools and the organizational structure
of SMEs. Current generic SPI Tools do not address structural characteristics of SMEs.
Commonly used practices such as top down improvement approaches, lack of inte-
grated frameworks and lack of detailed process libraries result in prolonged improve-
ment cycles and complicate making timely process changes in response to the
changes in the environment. Other significant problems that prevent SMEs from im-
plementing SPI include high costs of improvement activities, and limited number of
qualified personnel, which is one of the reasons why SMEs do not have expertise to
choose and implement the improvement model [16].

Studies concentrating on specific requirements of SMEs resulted in development of
a number of process improvement frameworks focusing on different aspects and aim-
ing different goals. TOPS (Toward Organised Processes in SMEs) in Italy [17], SA-
TASPIN (Software Process Improvement Network in the Satakunta region) [18] in
Finland, INSPIRE in Estonia [19], SPIRE (Software Process Improvement in Regions

292 F.Ç. Yeşildoruk, B. Bozlu, and O. Demirörs

of Europe) [20] in Europe, MoProSoft in Mexico [21], MPS in Brazil [22], PRISMS
[23] in UK, MESOPYME [24] in Spain, TAPISTRY [16] in Europe, MARES [25] in
Brazil, RAPID [26] are examples of SPI approaches specific to SMEs.

There are several studies in which SPI frameworks for SMEs are compared consid-
ering their specific properties in order to identify strengths and weaknesses of these
frameworks. Such studies both help to reveal improvement opportunities for existing
frameworks and assist SMEs to select relevant framework for themselves. Laporte's
study introduces various centers and initiatives focusing on small enterprises in which
the tools to be compared were selected based on a survey. Common requirements of
SMEs are concluded as low cost solutions, staged approach and standardization of
vocabulary [27]. Pino et al has conducted an extensive review on SPI efforts in SMEs
by systematically reviewing published case studies on the topic. The focus is on usage
of CMM, CMMI and ISO 15504, as they are found to be the mostly utilized ap-
proaches in published case studies [28]. Despite this situation, it is also concluded that
these approaches are not suitable for SMEs since they have restrictive formal proce-
dures for SMEs to follow. Mishra et al have compared a self-diagnosis methodology
based on CMM, Software Process Matrix, ASPE-MSC, PRISMS and MESOPYME in
their study [29]. Mishra underlines the fact that each SPI tool has its own benefits and
limitations, which gives SMEs the burden of adapting and tailoring SPI tools accord-
ing to their organizational needs. Several other comparative studies also emphasize
that conventional standards are not appropriate and difficult to apply for SMEs
[8][27][28][30].

In this study, we have chosen six SPI frameworks for comparison. These frame-
works have different characteristics and offer guidance for SMEs in different SPI per-
spectives. SPIRE is one of the earliest projects to increase the awareness of best SPI
practices and benefits among the top management, share experience with others and
help SMEs maintain their improvement plans. It has been used widely with numerous
documented case studies and it is important in the sense that it forms a basis for other
improvement tools for SMEs. Although many countries or regions have software and
systems process improvement networks1, most of them are used to share ideas and
experiences. SATASPIN, which involves SMEs working totally customer oriented, is a
good example for the networked SPI efforts in the sense to demonstrate how these
ideas were organized into a structured methodology for a group of SPI implementors.
MoProSoft has been accepted as a national standard in Mexico, and also as an interna-
tional standard by ISO/IEC JTC1/ SC7/WG24 for very small enterprises [31]. MPS
offers a process centered software engineering environment to aid the SPI methodol-
ogy it recommends. PRISMS and MESOPYME are included in the study as most fre-
quently referenced CMM based SPI frameworks. PRISMS adapts CMM according to
its business goals defined by top managers and MESOPYME focuses on reducing time
and effort using action packages concept. It is observed that SME SPI frameworks are
predominantly based on ISO 15504 rather than CMM. Main reason for this is that,
ISO/IEC 15504 provides much flexibility than CMM because several processes can be
managed at different capability levels [32]. Von Wangenheim underlines the fact that
tailoring cost of CMM is more than the SMEs can bear [9]. Pino also states that usage

1 http://www.sei.cmu.edu/collaborating/spins/spins.intl.active.html

 The Tool Coverage of Software Process Improvement Frameworks for SMEs 293

of ISO/IEC 15504 is widening in SMEs due to the fact that it is a model which is easy
to understand, flexible and fits the needs of SMEs [28].

3 Discussion of SME-Specific SPI Frameworks

The explained SME-specific SPI frameworks have different focuses and are divergent
in characteristics. In model-based process improvement, reference models, process
modeling notations and methodologies, assessment methodologies and automation of
processes by means of CASE tools and workflow management systems are commonly
used Tools.

• Most organizations use reference models as a source of best practices, as well as
a means for improving education and communication. Furthermore, Holschke et
al demonstrates that the use of reference models provide a systematic approach to
planning, implementing and evaluating business process transformations [33].

• Assessment is a generic step in process improvement, it not only provides a base-
line for organization’s current status but also helps to check improvement pro-
gress as an audit tool [34][35].

• Software process improvement is a complicated activity which requires theory
and models, skilled technical and managerial professionals [35]. The improve-
ment methodologies enables organization’s to plan SPI activities in alignment
with strategic goals and customer expectations.

• Process modeling methodologies are useful in defining and studying existing
processes for a better understanding and analysis to discover current problems as
well as depicting the to be processes of the organizations. However, the dynamics
between process modeling and improvement has not been examined in the litera-
ture thoroughly.

• The idea of combining process improvement with process automation is pro-
moted, however, in its current state, many process improvement models are de-
signed to be executed by humans, new approaches which would enable them to
be interpreted by machines would be developed.

SMEs which operate on limited resources will preferably need SPI frameworks
which would cover al these aspects as an integrated whole. However, current frame-
works have structures, which concentrate on specific aspects rather than integrating
different views. Rational [36] for example is a very effective modeling tool, however
it does not offer a solution for process improvement. Similarly, Personal Software
Process [37] or Team Software Process [38] concentrates on process improvement but
they do not provide methodologies guiding organizations on implementation issues.
Workflow management systems may be used to automate the processes, however
continuity is not maintained (organizations do it once and leave as is since it is costly
to keep the models and the reality in sync), therefore improvement is not supported.
In this study, we have investigated the current SPI frameworks in terms of the extent
of support for these different aspects. The frameworks are compared in a tabular view
in Table 1, to highlight the improvement opportunities and significant similarities and
differences among them. The comparison is done in six major categories with differ-
ent characteristics to be investigated, which will be explained in this section.

294 F.Ç. Yeşildoruk, B. Bozlu, and O. Demirörs

3.1 General Properties

The characteristics in this category are generic to all frameworks. It includes historical
information about the frameworks as most of them are based on best practices of
previous SPI approaches and complement them with new properties to compensate the
SME related challenges of the base approach. This category also gives information
about the geographic scope of the methodology and for how long it has been in use.

The integrated Tools of the framework for process improvement are named in this
category. Process improvement may be performed utilizing different Tools; some of
which may be specifically intended for process improvement whereas others are util-
ized as supplementary aids. Complementary Tools such as process modeling and
process automation may increase the efficiency of process improvement, especially
when organizations have to react very quickly. Process modeling tools enable creat-
ing formal models by using visual representations, which can both be used in assess-
ment and automation of processes. The generic properties reveal that none of the
frameworks focus on modeling and automation tools, while they all have reference
models, assessment and improvement tools.

3.2 Reference Model

Reference models include descriptions of process attributes so that each organization
may use these descriptions to compare their processes with. Process attributes can be
described at different abstraction levels. Some of the models include detailed
descriptions such as best practices and implementation guidelines.

Tailoring guidelines may be used by organizations to adapt the reference model to
specific organizational needs and situations. Glazer et.al. report that one of the rea-
sons of failure in model-based improvement is the misuse of the model; most of the
time models are applied rather than being implemented [39]. Applying a model im-
poses certain activities; however implementing a model utilizes models as learning
and communication tools as well as media for organizing thoughts [39]. Implementa-
tion guidelines are also important for SMEs, as reference models are generic by defi-
nition; and SMEs can have difficulties in implementing those abstract definitions.

The process coverage is another issue that may differ among the reference models.
As more processes are covered by the model, its application in different organizations
is easier. Almost all of the existing models cover only the software life-cycle proc-
esses. SMEs on the other hand execute other processes such as service-desks and
finances. Models with wider coverage will be beneficial for SMEs as the need to learn
and execute multiple process models will decrease.

The dimension of a reference model describes the underlying structure and the re-
lationships among process areas and with capability levels. A staged architecture
includes process areas, which are associated with different organizational capability
levels. A continuous architecture defines capability levels for process areas. Address-
ing strategic competencies in the market and focusing improvement actions in strate-
gic process areas is especially important for SMEs; in which case a model with a
continuous dimension structure can be applied by SMEs more efficiently. On account
of this, all frameworks utilize a continuous architecture in which the selected proc-
esses that should be improved can be identified considering organizational goals and
context.

 The Tool Coverage of Software Process Improvement Frameworks for SMEs 295

T
ab

le
 1

.C
om

pa
ri

so
n

of
 S

P
I

F
ra

m
ew

or
ks

SP
IR

E

SA
T

A
SP

IN
P

R
IS

M
S

M
E

SO
P

Y
M

E

M
oP

ro
So

ft

M
P

S
G

eo
gr

ap
hi

c
O

ri
gi

n
E

ur
op

e
Fi

nl
an

d
 U

K

Sp
ai

n
M

ex
ic

o
B

ra
zi

l

M
os

tl
y

us
ed

 in

E
ur

op
e

Fi
nl

an
d

Sp

ai
n

 M
ex

ic
o

B
ra

zi
l

In
it

ia
te

d
in

19

98

 1
99

8
 2

00
0

19
97

 2

00
2

20
03

D
es

ig
ne

d
es

pe
ci

al
ly

 f
or

So

ft
w

ar
e

So
ft

w
ar

e

 S
of

tw
ar

e
So

ft
w

ar
e

 S
of

tw
ar

e
 S

of
tw

ar
e

In
te

nd
ed

 O
rg

an
iz

at
io

n
SM

E

 S
M

E

 S
M

E

SM
E

 S

M
E

 S

M
E

P
op

ul
ar

it
y

T
hr

ou
gh

ou
t E

ur
op

e
 In

 F
in

la
nd

In

 U
K

Sp

ai
n

C
ho

se
n

by

IS
O

/I
E

C
JT

C
1/

SC
7/

W
G

24

In
 B

ra
zi

l

B
as

ed
 o

n
IS

O
/I

E
C

 1
55

04

 IS
O

/I
E

C
 1

55
04

 T
R

 C

M
M

C

M
M

IS
O

/I
E

C
 1

22
07

IS

O
/I

E
C

 1
55

04

IS
O

 9
00

0:
20

00

C
M

M
I

IS
O

/I
E

C
 1

55
04

IS

O
/I

E
C

 1
22

07

General Properties

T
oo

ls
 U

ti
liz

ed

R
ef

er
en

ce
 M

od
el

M

od
el

in
g

A

ss
es

sm
en

t
Im

pr
ov

em
en

t
A

ut
om

at
io

n

√ X

√ √ X

√ X

√ √ X

√ X

√ √ X

√ X

√ √ X

√ X

√ √ X

 √ X

√ √ X

L

ev
el

 o
f

ab
st

ra
ct

io
n

D
et

ai
l o

f d
es

cr
ip

ti
on

s
E

xt
en

d
of

 c
ov

er
ag

e
G

en
er

ic

G
en

er
ic

D

et
ai

le
d

D
et

ai
le

d
G

en
er

ic

G
en

er
ic

A

va
ila

bi
lit

y
of

 t
ai

lo
ri

ng

gu
id

el
in

es

N
on

e
A

va
ila

bl
e

N
on

e

A
va

ila
bi

lit
y

of

im
pl

em
en

ta
ti

on
 g

ui
de

lin
es

N
on

e

IS
O

/I
E

C
 1

55
04

 T
R

B

as
ed

 o
n

C
M

M

A
va

ila
bl

e
A

va
ila

bl
e

Reference
Model

D
im

en
si

on

C
on

tin
uo

us

C
on

tin
uo

us

C

on
tin

uo
us

C

on
tin

uo
us

C

on
tin

uo
us

W

hy
 to

 m
od

el

P
re

sc
ri

pt
iv

e
D

es
cr

ip
ti

ve
N

ot
at

io
n

Modeli
ng

H
ow

 to
 m

od
el

N
/A

N

/A

N
/A

N

/A

N
/A

N

/A

296 F.Ç. Yeşildoruk, B. Bozlu, and O. Demirörs

T
oo

l S
up

po
rt

M
ea

su
re

Pr

oc
es

s
C

ap
ab

ili
ty

 L
ev

el
Pr

oc
es

s
C

ap
ab

ili
ty

 L
ev

el
Pr

oc
es

s
C

ap
ab

ili
ty

 L
ev

el

Pr
oc

es
s

C
ap

ab
ili

ty
 L

ev
el

Pr
oc

es
s

C
ap

ab
il

it
y

L
ev

el
Pr

oc
es

s
C

ap
ab

il
it

y
L

ev
el

A
pp

ra
is

al
 m

et
ho

d
SP

IC
E

IS

O
/I

E
C

 1
55

04
-2

C

M
M

as

se
ss

m
en

t
qu

es
tio

nn
ai

re

C
M

M
 b

as
ed

E

va
lP

ro
So

ft

IS
O

/I
E

C
 1

55
04

-2

A
ss

es
sm

en
t t

ea
m

Pr

of
es

si
on

al
s

In
te

rn
al

an

d
ex

te
rn

al

pr
of

es
si

on
al

s
Pr

oj
ec

t R
es

ea
rc

he
rs

D

om
ai

n
ex

pe
rt

s

A
ss

es
sm

en
t e

ff
or

t
H

ig
h

H
ig

h
H

ig
h

L
ow

L

ow

A
ss

es
sm

en
t c

os
t

H
ig

h
H

ig
h

H
ig

h
L

ow

L
ow

T
oo

l s
up

po
rt

 f
or

 s
el

f
as

se
ss

m
en

t
N

on
e

T
ai

lo
re

d
FI

SM
A

W

eb
- b

as
ed

to

ol

re
ce

nt
ly

de

ve
lo

pe
d

N
on

e

Assessment Methodology

T
oo

l s
up

po
rt

 f
or

 d
at

a
co

lle
ct

io
n

N
on

e
N

on
e

N
on

e
N

on
e

N
on

e
N

on
e

Im
pr

ov
em

en
t L

if
e-

cy
cl

e
W

at
er

fa
ll-

lik
e

In
cr

em
en

ta
l

W
at

er
fa

ll-
lik

e
In

cr
em

en
ta

l
A

gi
le

In

cr
em

en
ta

l

Improvement
Methodology

A
pp

lic
at

io
n

P
ar

ad
ig

m

T
op

-d
ow

n
T

op
-d

ow
n

T
op

-d
ow

n
T

op
-d

ow
n

T
op

-d
ow

n
T

op
-d

ow
n

P
C

E
 E

xi
st

en
ce

N
ot

at
io

n
F

un
ct

io
na

l
B

eh
av

io
ra

l
St

ru
ct

ur
al

Automation Support

T
oo

l s
up

po
rt

 f
or

P

ro
ce

ss
 D

ef
in

it
io

n
P

ro
ce

ss
 E

xe
cu

ti
on

P

ro
ce

ss
 F

ol
lo

w
-u

p

N
/A

N

/A

N
/A

N

/A

N
/A

N

/A

Ta
bl

e
1.

 (C
on

ti
nu

ed
)

 The Tool Coverage of Software Process Improvement Frameworks for SMEs 297

3.3 Modeling Approach

Process modeling is one of the most significant means for transferring process experi-
ence into process knowledge. It is also a requirement of reference models at certain
stages. It is frequently assumed that organizations may use any modeling approach.
However, using ‘any’ does not guarantee improvement and modeling approaches to
be in line with related tools. Why modeling is needed is important since different
approaches focus on different goals. Descriptive modeling approaches are used for
understanding the current processes. Prescriptive models on the other hand are gener-
ally used as guidelines or frameworks to organize and structure the desired process
[40]. SMEs can benefit from descriptive modeling by transforming processes into
tangible forms, which facilitate the understanding of current situations and provide a
concrete view to identify improvement opportunities. SMEs can utilize prescriptive
modeling by guiding and forcing the desired processes.

Tool support for modeling simplifies maintenance of the process descriptions, en-
ables automated analysis of the processes and decreases ambiguity [41]. Modeling
methodologies improve learning curve, increase reliability of the models and shorten
the required effort [41][42]. Lack of guidelines for modeling activities result in ad hoc
approaches, and most of the time a natural language based description of the process
is formed. The resultant process descriptions are error prone and difficult for numeri-
cal analyses. Tools support is crucial for SMEs not only for reducing effort but also
for reducing errors.

How to model processes is an important issue in the sense that it affects all the way
down the improvement implementation. Process modeling as part of a process im-
provement initiative is usually performed in a top-down fashion, that is, the overall
processes are identified primarily and then a process improvement team captures the
processes one by one by interviewing stakeholders of each process and then detailing
those processes by resolving inconsistencies. This approach requires a complete un-
derstanding of the context and therefore can create the problems that process model-
ing takes months and the contributions of actual performers remains minimal. The
bottom-up process modeling requires a deep knowledge and understanding of detailed
functions to combine into a single process. Modeling can also be performed using a
combination of these two approaches in which each process owner in an organization
models her activities and these partial models form the organization’s process-base,
which can be used to depict the process knowledge from different perspectives [43].
This style of process modeling may be of great value for SMEs since it does not re-
quire the effort of external modelers trying to understand the current processes, or
trying to catch-up with the latest version of the processes.

Usage of notation in process modeling is important to integrate separately modeled
processes easily and unambiguously. The notation is also important if models would
be used as input for process execution tools.

None of the frameworks we have investigated integrates a modeling approach and
its related Tools. Nevertheless, we have included the discussion to guide future stud-
ies on this specific Tool.

298 F.Ç. Yeşildoruk, B. Bozlu, and O. Demirörs

3.4 Assessment Methodology

In model-based improvement approaches, assessments are performed to identify the
gap between the as-is processes of the organization and the attributes of the processes
of the reference model and then improvement actions are planned to diminish the gap.
The results of the assessment, measurement attribute, are defined in terms of process
capability or organizational capability. As mentioned, SMEs tend to focus on strategic
processes rather than the overall structure of the organization, therefore the focus is
on process capability in SMEs rather than organizational capability. On account of
this, for all the listed frameworks, the measure for process capability is capability
level and in ordinal scale.

Appraisal is the systematic analysis conducted using a documented appraisal
method and a reference model as a base. Appraisal method is closely related with the
reference model and different appraisal methods are utilized by the frameworks. As-
sessment team is an important factor affecting the cost of the assessment. Although
assessment team may include external professionals, internal participants, domain
experts or researchers, generally external professionals conduct assessment, hence the
cost is high. Moreover, some methods require the involvement of external profession-
als as well as trained participants in the assessed organization, which increases duration
since not only the assessment team but also the participants within the organization
spend time and effort. In SMEs, it is important for a successful SPI implementation to
include the software development team members to reflect on the organizational con-
cerns as well as establishing individual commitment to processes. Tool support for
collecting data to be used in the assessment, as well as tool support for the assessment
itself are helpful both to decrease costs and increase reliability of the assessment
reports.

3.5 Improvement Methodology

The improvement methodology includes task definitions with sequence of tasks to be
performed to plan and implement improvement activities in SMEs. The improvement
methodologies in these model-based frameworks usually include similar activities,
but the life cycles differ from one another. Improvement activities may be organized
in waterfall-like, in incremental or agile styles. Traditional improvement methods use
a waterfall-like approach, which carries all the disadvantages of the waterfall life
cycle, most significant being the difficulty of managing change and establishing de-
layed outcomes. Contemporary SME specific SPI frameworks mostly prefer to use
lightweight tools, which are iterative and incremental, since these approaches step
forward as better responses to uncertainty and change, and enable short improvement
cycles.

The application paradigm refers to the initiation and implementation patterns of
SPI activities, which guides the organizations. Currently, top-down paradigm domi-
nates the SPI activities in which the context is firstly examined to be able to detail
into deeper levels later. The bottom-up paradigm requires a grass roots approach to
SPI to initiatives. Distributed approach is also mentioned in which SPI implementa-
tions are supported by the top-management but initiated in all levels at the same time
by process owners throughout the organization.

 The Tool Coverage of Software Process Improvement Frameworks for SMEs 299

3.6 Automation Support

Automation helps to manage process complexity levels, improve quality by reducing
errors and reduce time by delegating tasks [44]. Workflow management systems, busi-
ness process management systems and CASE tools can be used for these purposes.
Most of the time, process improvement frameworks suggest activities to explicitly
define the processes, but do not offer how to do it. Process centered environments
(PCE) provide solutions integrating the processes with the people, using the supporting
technology, with specific focus on how work flows through the organization [45][46].
PCE can be supported by CASE tools in different levels of the automation such as
defining, executing and controlling the processes. These environments require nota-
tions for functional, behavioral and structural views for defining the process in terms of
executable languages.

As is the case for the modeling approach, none of the frameworks we have investi-
gated integrates automation support approach and its related Tools. Nevertheless, we
have included the discussion to guide future studies on this specific Tool.

4 Conclusion

In this paper, we performed a situational analysis based on existing studies. We have
studied a selected set of SME-specific SPI frameworks and compared them to deter-
mine their coverage of software process improvement Tools. We have observed that
in its current state, SPI frameworks for SMEs have accomplishments as well as some
improvement opportunities.

All frameworks have well defined reference models, assessment and improvement
methodologies. MoProSoft framework is distinct in this sense that it benefits from a
wide class of process models and complements these models to be in line with SME
needs. It is also noteworthy that the reference model in this framework includes de-
tailed guidelines to facilitate process improvement in SMEs. Almost all frameworks
utilize a continuous approach which enables SMEs to focus on process areas they
want to improve.

MoProSoft is supported by EvalProSoft assessment methodology which is espe-
cially designed for assessment in small and medium enterprises however other
frameworks utilize generic assessment tools. Except MoProSoft and MPS, frame-
works require high effort and cost mostly because the required external know-how
and experience. SATASPIN and PRISMS have considered the benefit of tool support
for self-assessment and included supplementary tools in their framework.

It is notable that general trend in process improvement methodology is using in-
cremental – rather than waterfall-like- approaches which is more suitable for SMEs.
MoProSoft uses an agile SPI methodology which is formed after inspection of a wide
variety of improvement methodologies. In agile methodologies, management may
have the fear of loose of control [39], therefore to increase the management support in
improvement activities, blending approaches may enhance the improvement by reas-
suring both the management and the employees that their concerns will be taken into
consideration.

The major improvement opportunity is observed as integration of complementary
Tools for process modeling and process automation to the frameworks. A framework

300 F.Ç. Yeşildoruk, B. Bozlu, and O. Demirörs

utilizing all these Tools can act as an integrated solution, which would guide SMEs to
address and tackle their problems and solve them in a faster and more cost effective
way. Process models are assumed as the most significant means for transferring proc-
ess knowledge into process improvement. Therefore integrating process modeling
with process improvement activities can enhance the efficiency of SPI initiatives.
Tool support is essential for modeling processes separately, and then integrating them
identifying and resolving conflictions. Process automation is also not considered as an
aspect in improvement frameworks. Especially for SMEs, which require minimum
effort and expect maximum benefit, process automation support might help organiza-
tions to increase return on investment and ease process prescription. Process automa-
tion has a large potential of benefiting from process modeling. The quick change in
processes makes it nearly impossible to execute the processes with modeling-only
tools. However, modeling tools and notations which take subsequent steps of process
models in improvement activities into consideration and interface with process execu-
tion systems; may enhance the maintenance of continuity in improvement activities.

A restriction in this study was the difficulty of finding the most recent versions of
the documentation related to the frameworks, such as the reference models. This
could imply that these frameworks are not necessarily maintained to reflect the recent
developments in the field. It also means that we were not able to evaluate what ad-
vancements the models offer for different SPI Tools. In addition, there are not many
documented case studies reporting the results of these SPI efforts except the SPIRE
framework. Further work is required to implement these models and perform surveys
on companies who implemented these models.

References

1. Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.: The Capability Maturity Model:
Guidelines For Improving The Software Process. Addison-Wesley, Reading (1995)

2. OECD, Organisation for Economic Co-Operation and Development, SME and Entrepre-
neurship Outlook (2005)

3. SEI. CMMI for Systems Engineering, Software Engineering, Integrated Product and Proc-
ess Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1) Staged Represen-
tation. Technical Report CMU/SEI-2002-TR-012 ESC-TR-2002-012, Software Engineering
Institute (2002)

4. ISO, Software Process Assessment - Part 2: A reference model for processes and process
capability. Technical Report ISO/IEC 15504 TR2:1998, International Organization for
Standardization (1998)

5. Thomas, M., McGarry, F.: Top-down vs. bottom-up process improvement. IEEE Soft-
ware 11(4), 12–13 (1994)

6. Sheard, S.A.: Evolution of the frameworks quagmire. Software Productivity Consortium,
Herndon, VA. Computer 34(7) (2001)

7. El Emam, K.: An Overview of Process Improvement in Small Settings. In: Web Engineer-
ing, pp. 261–275 (2006)

8. Miluk, G.: Results of a Field Study of CMMI for Small Settings Using Rapid Applied Eth-
nography. In: Proceedings of the First International Research Workshop for Process Im-
provement in Small Settings (2005)

9. von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping Small Companies Assess
Software Processes. IEEE Software 23(1), 91–98 (2006)

 The Tool Coverage of Software Process Improvement Frameworks for SMEs 301

10. Alexandre, S., Renault, A., Habra, N.: OWPL: A Gradual Approach for Software Process
Improvement In SMEs. In: Proceedings of the 32nd EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications (2006)

11. Demirors, O., Demirors, E.: Software Process Improvement in a Small Organization. In:
Gruhn, V. (ed.) EWSPT 1998. LNCS, vol. 1487, pp. 1–12. Springer, Heidelberg (1998)

12. Dyba, T.: Factors of Software Process Improvement Success in Small and Large Organiza-
tions: An Empirical Study in the Scandinavian Context. In: Proceedings of the 9th Euro-
pean Software Engineering Conference, Helsinki, Finland, pp. 148–157 (2003)

13. Garcia, S.: Thoughts on Applying CMMI in Small Settings. Carnegie Mellon University
(2005),

 http://www.sei.cmu.edu/cmmi/adoption/pdf/garcia-thoughts.pdf
14. Garcia, S., Graettinger, C., Carmody, C., Penn, M.L.: Prototype for a Field Guide for Im-

proving Processes in Small Settings. SEI (2008),
 http://www.sei.cmu.edu/iprc/ipss-field-guide.pdf

15. Paulk, M.C.: Using the Software CMM in small Organizations. In: Paulk, M.C. (ed.) Joint
1998 Proc. Pacific Northwest Software Quality Conf. and the Eighth Int’l Conf. On Soft-
ware Quality, pp. 350–361 (1998)

16. Kuvaja, P., Palo, J., Bicego, A.: TAPISTRY- A Software Process Improvement Tailored
for Small Enterprises. Software Quality Journal 8, 149–156 (1999)

17. Bucci, G., Campanai, M., Cignoni, G.A.: Rapid Assessment to Solicit Process Improve-
ment in SMEs. In: Proc. 7th European Software Process Improvement Conf. (2000)

18. Mäkinen, T., Varkoi, T., Lepasaar, M.: A Detailed Process Assessment Method for Soft-
ware SMEs. In: Proc. 7th European Software Process Improvement Conf. (2000)

19. Kalja, A., Oruaas, J.: An overview of SPI activities in Estonia. In: Proceedings of the Eu-
roSPI 1999 conference: European Software Process Improvement (1999)

20. Sanders, M. (ed.): The SPIRE Handbook—Better, Faster, Cheaper: Software Development
in Small Organisations, Dublin City. Univ. Center for Software Eng. (1998)

21. Oktaba, H.: MoProSoft: A Software Process Model for small enterprises. In: Proceedings
of 1st International Research Workshop for Process Improvement in Small Settings (2005)

22. Weber, K.C., Araujo, E.R., Rocha, A.R., Machado, C., Scalet, D., Salviano, C.: Brazilian
Software Process Reference Model and Assessment Method. In: Yolum, p., Güngör, T.,
Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 402–411. Springer,
Heidelberg (2005) ISBN 3-540-29414-7

23. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an Approach to Software Process
Improvement for Small to Medium Enterprises. In: Proceedings of the Third International
Conference on Quality Software, Dallas (2003)

24. Calvo-Manzano, J.A., Agustin, G.C., Gilabert, T.S.F., Seco, A.D.A., Sanchez, L.Z., Cota,
M.P.: Experiences in the Application of Software Process Improvement in SMES. Soft-
ware Quality Journal 10, 261–273 (2002)

25. Anacleto, A., von Wangenheim, C.G., Salviano, C.F., Savi, R.: A Method for Process As-
sessment in Small Software Companies. In: Proc. 4th Int’l Software Process Improvement
and Capability Determination Conf., pp. 69–76 (2004)

26. Rout, T.P., Tuffley, A., Cahill, B., Hodgen, B.: The Rapid Assessment of Software Process
Capability in Software Process Improvement. In: Proc. of 1st Int’l SPICE Conf., Dublin
City Univ. Center for Software Eng., pp. 47–56 (2000)

27. Laporte, C.Y., Renault, A., Alexandre, S.: The Application of International Software Engi-
neering Standards in Very Small Enterprises. In: Oktaba, H., Piattini, M. (eds.) Software
Process Improvement for Small and Medium Enterprises: Techniques and Case Studies,
pp. 42–70 (2008)

302 F.Ç. Yeşildoruk, B. Bozlu, and O. Demirörs

28. Pino, F.J., Garcia, F., Piattini, M.: Software process improvement in small and medium
software enterprises: a systematic review. Software Quality Control 16(2), 237–261 (2008)

29. Mishra, D., Mishra, A.: Software Process Improvement Methodologies for Small and Me-
dium Enterprises. In: Jedlitschka, A., Salo, O. (eds.) PROFES 2008. LNCS, vol. 5089,
pp. 273–288. Springer, Heidelberg (2008)

30. Habra, N., Alexandre, S., Desharnais, J.M., Laporte, C.Y., Renault, A.: Initiating software
process improvement in very small enterprises: Experience with a light assessment tool.
In: Information and Software Technology (2007)

31. ISO. ISO/IEC JTC1/SC7[1] Working Group 24, Life Cycle Processes for Very Small
Enterprises,
http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html

32. Martins, P.V., da Silva, A.R.: A comparative study of SPI approaches with ProPAM. In:
Proceedings of the Sixth International Conference on the Quality of Information and
Communications Technology (2007)

33. Holschke, O., Gelpke, P., Offermann, P., Schröpfer, C.: Business Process Improvement by
Applying Reference Process Models in SOA - a Scenario-based Analysis. Multikonferenz
Wirtschaftsinformatik (2008)

34. Marciniak, J.J., Sadauskas, T.: Use of Questionnaire-Based Appraisals in Process Im-
provement Programs. In: Acquisition of Software-Intensive Systems Conference, Arling-
ton, Virginia (2003)

35. Wang, Y., King, G.: Philosophies and Approaches to Software Process Improvement.
In: Proceedings EUROSPI 1999 (1999)

36. IBM Rational Software, http://www-01.ibm.com/software/rational/
37. Humphrey, W.S.: PSP: A Self-Improvement Process for Software Engineers. Addison-

Wesley Professional, Reading (2005)
38. Humphrey, W.S.: TSP: Leading a Development Team. Addison-Wesley Professional,

Reading (2005)
39. Glazer, H., Dalton, J., Anderson, D., Konrad, M., Shrum, S.: CMMI or Agile: Why not

embrace both! Technical Note. CMU/SEI-2008-TN-003 (2008)
40. Scacchi, W.: Process Models in Software Engineering. In: Marciniak, J. (ed.) Encyclope-

dia of Software Engineering, 2nd edn. Wiley, Chichester (2002)
41. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM 35(9),

75–90 (1992)
42. Thörn, C., Gustafsson, T.: Uptake of Modeling Practices in SMEs. In: International Con-

ference on Software Engineering. Proceedings of the 2008 international workshop on
models in software engineering, pp. 21–26 (2008)

43. Turetken, O., Demirors, O.: Process Modeling By Process Owners: A Decentralized Ap-
proach. Software Process: Improvement and Practice 13(1), 75–87 (2008)

44. SEI. Software Process Automation: Experiences from the Trenches. Technical Report
CMU/SEI-96-TR-013 (1996)

45. Christie, A.M.: Software Process Automation: A technology Whose Time Has Come? The
Journal of Defense Software Engineering (1994),

 http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1994/
 07/ xt94d07e.asp

46. SEI. Software Process Automation: Interviews, Survey, and Workshop Results. Technical
Report CMU/SEI-97-TR-008 ESC-TR-97-008 Software Engineering Institute (1998)

Improving the Product Documentation Process
of a Small Software Company

Anu Valtanen, Jarmo J. Ahonen, and Paula Savolainen

University of Kuopio, Department of Computer Science
P.O.B 1627, FI-70211 Kuopio, Finland

{anu.valtanen,jarmo.ahonen,paula.savolainen}@uku.fi

http://www.cs.uku.fi

Abstract. Documentation is an important part of the software process,
even though it is often neglected in software companies. The eternal ques-
tion is how much documentation is enough. In this article, we present a
practical implementation of lightweight product documentation process
resulting from SPI efforts in a small company. Small companies’ finan-
cial and human resources are often limited. The documentation process
described here, offers a template for creating adequate documentation
consuming minimal amount of resources. The key element of the docu-
mentation process is an open source web-based bugtracking system that
was customized to be used as a documentation tool. The use of the tool
enables iterative and well structured documentation. The solution best
serves the needs of a small company with off-the-shelf software products
and striving for SPI.

Keywords: SPI, software product documentation.

1 Introduction

The importance of software process is well understood in the software industry,
and in many companies serious work is done to improve the process used to de-
velop software products. Software process is divided into many subprocesses and
one of them is documentation process. The documentation process is often ne-
glected [1] and the companies have problems keeping their documentation con-
sistent and up-to-date [2]. Documentation is seen as ”inevitable evil”, extra work
that does not bring concrete profit to the company, even though it should be seen
as an essential subprocess and treated accordingly in the context of SPI. Studies
show that important reasons for low software product quality and high develop-
ment and maintenance costs are due to poor and missing documentation [3] [4].

The majority of software companies are small [5]. For example in Finland,
the vast majority of companies operating in both data processing and software
engineering fields, employ less than 50 people1. In a low hierarchy working envi-
ronment, that small companies often have, every little thing does not necessarily
have to be put on paper. However, the earlier mentioned studies [3] [4] apply
1 http://www.stat.fi (2006)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 303–316, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.uku.fi

304 A. Valtanen, J.J. Ahonen, and P. Savolainen

also for smaller companies and some amount of documentation is necessary. It is
shown that documentation is an important tool for communication and should
always serve a purpose [6]. In small companies, the role of meaningful and rel-
evant documentation is emphasized. They often have limited resources, both
financial and human [5], and there is no time to create unnecessary documenta-
tion. Small companies do not have enough employees to perform complex tasks
secondary to their products [5].

The eternal question is how much documentation is enough. It is not easy
to determine what documents really are necessary to have a successful software
process, what is needed to support the documentation process, and what level
of precision documentation should have [7].

The companies should be able to decide what amount of documentation is
really needed and with what accuracy it should be written to support their
software processes in a way that documentation helps enhancing the software
product quality cost-effectively. This is a problematic issue for what there is
no simple answer. Different kinds of software process models, e.g. [8] [9] [10],
try to help solving this problem but they do not provide specific rules what to
document and how. A number of different kind of approaches for creating docu-
mentation are also planned out to help supporting the documentation process [1]
[11]. Additionally, there is an extensive amount of ready-made documentation
templates that can be applied. For example IEEE’s documentation standards
[12] [13], offer good template for creating consistent documentation. Nonethe-
less, fulfilling the requirements of the documentation standards usually requires
a lot of resources. Even without aiming at comprehensively fulfill the require-
ments, ready-made templates have to be adapted to best serve the needs of the
software process at hand. With small companies’ limited resources, adopting the
standards can be too challenging.

In the footsteps of CMM [14], there is a documentation process maturity
model[15] in order to help enhancing the maturity of documentation process.
However, the above mentioned problems that small software companies have
adapting the process models, apply also in adapting the process improvement
models in small companies. The limited resources make the usage of these models
and methods quite difficult.

Despite the fact that documentation has been quite a popular research sub-
ject in recent years [16], there is not that much research done considering small
companies’ documentation needs. Previous research does not answer to the
question: how small software companies should organize their documentation
in practice, while following their own process model. In this article practical
implementation of product documentation process suitable for small companies,
and software process related to it, are presented. The processes are results of pro-
cess improvement work done in the target company. The documentation process
is custom-build in the target company’s software process. The probleblematic
resource issues can and must be diminished when planning the documentation
process of a small software company.

Improving the Product Documentation Process 305

This time the problem was dealt with:

1. Adopting a structured documentation process.
2. Introducing a new documentation tool, a modified open source bugtracking

system.

The article is organized as follows. Section 2 describes the research problem
and research methods. In Section 3, the company for whom the documentation
process was planned is presented. Also the earlier modeled software process and
problems that triggered the documentation process improvement are described.
In Section 4, the improved documentation process is introduced. In Section 5,
the Discussion, the results of the improvement work and the potential ways of
applying the documentation process described here are analyzed. In conclusion
the results are summarized.

2 Research Problem

The research presented in this article attempts to answer to the question:

– How a small software company, committed to process improvement work,
should organize their documentation practices while following their own pro-
cess model?

The main goals, of the research presented here, were to fix the documentation
related problems detected earlier in SPI efforts [17] and to improve the documen-
tation process the way it is possible to pursue towards more mature processes
and better software quality.

Research method in this case was action research. Action research is ”an
iterative process involving researchers and practitioners acting together on a
particular cycle of activities, including problem diagnosis, action intervention,
and reflective learning” [18]. In this case the researchers and the target company
worked in a very tight cooperation. One of the authors took part in the whole
process of planning and implementing the improved documentation practices.

To introduce an efficient documentation process, following points had to be
taken into consideration:

– What amount of documentation is really needed?
– How the documentation produced can be easily available for all the stake-

holders?
– How to make sure that the documentation is kept up-to-date?

In a previous study contemplating the importance of documentation [19],
four main reasons why documentation policy and updates of documents are
necessary in software companies that aim at improving their software processes
was proposed.

1. The documented project history serves as evidence of agreements made be-
tween customer and supplier throughout the project. It helps avoid misun-
derstandings over software requirements.

306 A. Valtanen, J.J. Ahonen, and P. Savolainen

2. Tracked customer requirements support better project management and im-
prove customer satisfaction. In fact, requirement traceability can save a soft-
ware project. The prerequisite of establishing traceability is the existence
of necessary documentation, where the sequential items are described and
identified.

3. A small, successful software organization will grow and need to employ new
people. It is easier to introduce the new employees to an order rather than to
chaos. A well-defined process makes the growth smoother. A defined process
is a process that has documented guidance and goals.

4. Documented software processes are needed in order to study how the pro-
cesses work and how the process improvement action influences them. With-
out documented processes there is no possibility to monitor the performance
of the process or to find out the gains of improvement.

The issues presented above were chosen as a basis for discussion while analysing
the documentation needs and planning the documentation process presented
here. These issues were deliberated throughout planning and implementing the
documentation process. In Discussion, this subject is addressed further. The
limitations of the study presented here are approached in Conclusion.

3 The Target Company

The company for whom the documentation process was created is a small soft-
ware company in Finland. The company has less than twenty employees. It is a
traditional software house that produces off-the-shelf products. Most of the com-
pany’s workload consists of planning and releasing new versions of the existing
software.

During process improvement efforts in the target company it became obvious
that many of the problems in the company’s software process were due to in-
adequate documentation [17]. Therefore, after modeling the company’s software
process and then streamlining it, the next step with the improvement efforts was
to improve the documentation practices.

While modeling the company’s processes there were major documentation
related problems found, most notable issues being:

1. Problems with testing
2. Problems with decision making

Problems with testing were due to the fact that the software documentation
while planning and implementing new versions of software was entirely inade-
quate. The requirements were not in written form, requirement based test cases
were non-existent and performed tests were not documented. Basically, all the
documentation related to new software version consisted of non-specific descrip-
tion of features to be implemented. As a result it was unclear what to test and
when.

The issues leading to problems with decision making were in evidence e.g.
when the company held a meeting of any kind, they usually did not make a

Improving the Product Documentation Process 307

memo out of it. As a result, the employees felt that they did not always stick
to what was decided and, when there were no documented decisions, it was not
always clear what the decision actually was. In addition, the planned releasing
schedules of new software versions of did not exist in written form. Due to this the
company could not always hold to their schedules because it was often unclear
what had been scheduled.

The problems stated above could be ironed out by introducing new docu-
mentation practices. During the earlier process improvement phases the process
documentation for SPI needs was already constructed. So the next step was to
create a documentation process to support the actual software engineering and
put the product documentation in shape.

4 The Documentation Process

In all SPI efforts the first step is to model and analyze the current situation
[20]. The target company’s processes were modeled and streamlined, using a
lightweight technique described in [21], in earlier phases of the SPI project, see
[17]. The current process model can be seen in Figure 1. As it can be seen, the
planning (phases 1-3) and implementation/testing (phases 3-6) of the software
happen in iterative circles. These iterations constitute the fondation of the soft-
ware process and make sure that the implementation of new software features
happen in a flexible and easily contorollable way[17]. To establish the docu-
mentation process the first task was to find out what documentation should be
generated during the different phases of the company’s software process.

Starting point with the company’s documentation practices was that there
were no official guidelines of how and what to document. However, the company
had started to customize an open source web-based bugtracking system, Man-
tis2, as a tool to support their software engineering. In addition to its intended
use, bugtracking, Mantis already worked as an information storage of customer
feedback, plans and ideas about possible new features of software. It was also
loosely tied to testing phase. The advantages of customized Mantis were obvious,
the system was already familiar to the employees of the company, they had the
ability to adapt it to meet their future needs and the software was free of charge.
Due to this the new documentation process was decided to realize the way it
takes the most out of Mantis’s advantages.

4.1 Creating the Documentation Process

Planning and implementing the documentation process described here was exe-
cuted in a workshop like manner. The documentation problems detected worked
as a starting point to documentation process improvement sessions in the tar-
get company. The steps taken in planning and implementing the documentation
process are described in Table 1.

2 http://www.mantisbt.org/

308 A. Valtanen, J.J. Ahonen, and P. Savolainen

Fig. 1. The Process Model

While planning the improved documentation process the main goal was avoid
unnecessary documentation. Because of this, the opinions of the employees using
the documentation process were taken into account as much as possible. Most
of the employees of the target company took part in planning the documentation

Improving the Product Documentation Process 309

Table 1. Steps taken in planning and implementing the documentation process

No. PHASE DESCRIPTION

1 Session 1 – Discussing and analyzing the documentation problems detected
2 – Research on documentation templates, models and standards

and possibilities of Mantis
3 Session 2 – Finding solutions to problems
4 – Adapting Mantis and creating documentation templates
5 Session 3 – Assigning responsibilities and inspecting the documentation process
6 – Implementation of the documentation process
7 Session 4 – Analyzing and estimating the effect of the documentation process

process. In all of the sessions there were at least 6 participants from the target
company and one SPI researcher, the main author of this paper.

Precise metrics to evaluate how well the documentation process served its
purpose were hard to determine. However, when the documentation process im-
provement began there was a lightweight analysis done on testing and schedul-
ing/decision making related issues already documented in Mantis, e.g. customer
feedback on bugs that were due to inproper testing. The analysis supported the
earlier made notions[17] and there were plenty of issues that could be categorized
under testing and scheduling/decision making. Despite the very informal nature
the analysis it was agreed that comparison of the amount of issues documented
would be made after surveillance period beginning from the implementation of
the new documentation process.

The fourth session was arranged to analyze and estimate the effect of the
documentation process after the process had been in use for six months. In
that session the team planning and implementing the documentation process
had a look at Mantis’s materials, made the comparison mentioned above and
interviewed the users of the documentation process to form an opinion on how
well did the documentation process actually serve the target company’s needs
(See Section 6).

4.2 The Documentation Process Template

The documentation process template produced during documentation process
improvement described is presented in Table 2. The document types required in
the documentation process and their storing places can be seen in Table 3.

4.3 The Improved Documentation Process

During the documentation process improvement Mantis was transformed to
work as a project management, design and test documentation tool that also
includes publication information while developing new versions of software. The
customization was taken so far that it was possible to store almost all the

310 A. Valtanen, J.J. Ahonen, and P. Savolainen

Table 2. The Documentation process template

No. INPUT PHASE OUTPUT

1 Possible new features3 Development Memo
Customer feedback3 meeting Inspected descriptions of

possible new features3

2 Memo Design Requirements specifications
Descriptions of possible and design document3

new features 3

3 Outputs of phases 1 and 2 Tying the new New features decision3

features Enhanced descriptions
of the new features3

4 Outputs of earlier phases Implementation Technical descriptions 3

Test cases3

5 Existing Instruction Writing the Instruction manuals
manuals instruction
Technical descriptions manuals

6 Outputs of earlier phases Testing Test report3

7 Test report 3 Inspection Inspected test report3

8 Outputs of earlier phases The approval Memo of approval meeting
meeting of new Decision to start preparing

features delivery
of software

9 Outputs of earlier phases Delivery Instruction manuals
Existing instruction preparation User documentation
manuals and user Filled check-list
documentation

10 Outputs of earlier phases Publication Publication decision
decision

11 Outputs of earlier phases Delivery

3= Document produced using Mantis.

information related to the company’s software process in it. In addition to uses
mentioned above, the same system works as an information storage and discus-
sion forum.

The documentation process begins before the actual starting point of the
software process. A lot of new development ideas and possible bugs emerge
during the maintenance phase of the current version of software. These ideas
and bugs come from customer feedback and inside the company. This valuable
information is stored in Mantis.

The purpose of the development meeting, which initiates the actual software
process, is to discuss the development ideas and possible bugs written down in
Mantis. Because of the absence of proper meeting practices, the decisions made
in the meetings tended to stay incoherent. To correct this, the meeting style was
changed in to an inspection like fairly formal meeting where the possible new

Improving the Product Documentation Process 311

Table 3. Document types

No. DOCUMENT MANTIS4 LINKED5

1 Possible new features x -
2 Customer feedback - x
3 Memos - x
4 Descriptions of possible new features x -
5 Requirements specifications x -
6 Design documentation x -
7 New features decision x -
8 Technical descriptions x -
9 Test cases x -
10 Instruction manuals - x
11 Test report x -
12 Delivery preparation decision - x
13 User documentation - x
14 Check-lists - x
15 Publication decision - x

4 = Document written in Mantis.
5 = Document linked in Mantis (eg. Text documents, spreadsheets).

features are reviewed. The inspected possible new features and bugs to be fixed
are marked in Mantis and preliminary prioritization of their implementation
order is made.

The design phase’s output was decided to be a compilation of requirements
specifications and software design documentation. The design documentation
adapts standards IEEE Std 830-1998 [12] and Std 1016-1998 [13] and is written
in Mantis.

After the design phase the next step is to decide what new features will be
implemented in the next version of software. The result of this phase was agreed
to be a decision that declares the new features to be implemented. In this phase
the implementation order of the new features is bound and this information is
also written in Mantis.

Implementation phase results in specification documents that contain the
technical descriptions of new features. The format of the technical descriptions
also adapts IEEE Std 1016-1998 [13]. Also these specifications are written in
Mantis. The test plans and the test cases will also be created at this point.
Test documentation is written straight to Mantis and tied to existing design
documentation. This way the documentation of a new feature is consistent. It
is possible to see the details of the source that erupted the development of the
particular feature, the different planning stages that it has gone through and it’s
technical implementation and the tests made to the feature from the same place
by using search and grouping functions of Mantis. At the same time with the
implementation phase software’s instruction manuals are updated.

312 A. Valtanen, J.J. Ahonen, and P. Savolainen

The documentation created during the testing phase is the test report that
covers the new features. The report does not exist as a physical document but
it is assembled from the information in Mantis. After this phase there will be a
document inspection held to make sure that the testing is made properly and
the test cases are extensive enough.

The approval of the new features follows the testing phase. From this phase
the result is a memo of the approval meeting and decision whether the new
version of software is ready for publication.

The delivery preparation phase includes writing the finalized version of the
instruction manuals and other documents that are delivered to the customer.
Also the pre-delivery check-list, created to make sure everything necessary is
enclosed to the software version prepared for delivery, must be filled. When
the new version is ready for delivery the publication decision has to be made.
From the documentation viewpoint the decision is an official document with the
signature of company’s general manager.

Because the work done in the target company is mainly developing new ver-
sions of existing software majority of the documentation work is documenting
the new features. It is important to remember that it is not enough to document
just the features implemented, but that it is equally important to document the
ones that were planned and discarded due to a reason or another. It was agreed
that all the phases of planning a feature, not depending on whether it was re-
alized or not, will be documented and stored in Mantis. This way it is possible
to create an extensive knowledge database where it is possible to check in the
future if some feature or solution has already been contemplated. The reason
for rejection of some idea is also documented. This way the traceability of the
documentation is improved. It is possible to avoid going through the same prob-
lems and poor solutions again. Also, by storing this information in Mantis, it is
possible to collect an easily available knowledge database on features, solutions
etc. for future reference.

5 Discussion

The new documentation process was designed the way creating documentation
requires as small amount of resources as possible. Earlier SPI efforts had proven
the importance of proper documentation. Because the company did not have
any official documenting guidelines, the documentation was neglected and this
had led to problems. Corresponding results have been reported in earlier studies.
The documentation processes are immature and documentation practices non-
satisfactory [23]. Documentation is often done in a minimal way, producing only
the user documentation. The reason for this is often that there is no established
process that ties the documentation into product development. Furthermore, the
organizations do not consider documentation as important as the ”real” software
product, the source code [1].

What distinguishes the case presented here from the others is partly the fact
that the employees of the company were highly motivated to process improve-
ment [24]. When it became obvious that some kind of formal documentation

Improving the Product Documentation Process 313

was needed to support their improved SE process, and make the improvement
work possible in the future, the documentation work seemed to transform into a
less unpleasant task. Furthermore, especially the employees testing the software
products had identified the problems brought by the lack of documentation.
Introduction of the new documentation process facilitated testing significantly.
When the documentation of new features of software was made consistent, it
became easy to assemble elaborate test plans and eventually test reports. This
enhances the quality of testing and culminates in improved product quality.

The documentation process is presented in Table 2. The amount of documen-
tation produced is quite minimal. The two iterations in the beginning of the SE
process (Figure 1) are quick and the documentation practices must not make
them longer. The same applies to the rest of the process, the new versions of
software usually have short publication intervals. Even though quite a lot of
design documentation is required, all of it is included in Mantis and is easy to
keep up-to-date. Because of Mantis’s structural form, writing the documentation
required happens in short iterations and does not consume much time from the
product development itself.

The documentation is easily available for all the stakeholders because using
Mantis is compulsory for all the employees of the target company. The documents
written using word processing software, e.g. memos and check-lists, are also
linked to Mantis. Using Mantis’s forms as a template for documentation reduces
the amount of writing significantly and the documenting does not require special
writing skills.

It is stated that process documentation alone does not make the process effi-
cient. The process has to have some control and someone has to be responsible
for it [20]. This applies for documentation process as well as any other process.
In context of planning and implementing the documentation process, a lot of
attention was paid to the roles and responsibilities in documenting. People re-
sponsible of keeping different documents up-to-date were assigned and it was
emphasized that documentation is an essential part of the product development.
There were also two inspections added to the documentation process to make
sure that especially the planning and testing phases are properly documented.

Using the documentation process established, it is easy to present documented
project history and track customer requirements using Mantis’s search options.
As a result of the company’s former lack of documentation, there was no proper
up-to-date descriptions of the software products of the company. This will also
be corrected immediately to make the possible growth smoother. The company’s
software process was already documented, and people responsible of keeping the
process descriptions up-to-date assigned, in earlier stages of SPI project. [19]

6 Conclusion

This article presents a solution how a small software company, committed to
process improvement work, can organize their product documentation practices
while following their own iterative and lightweight process model. In previous

314 A. Valtanen, J.J. Ahonen, and P. Savolainen

documentation research it is pointed out that the documentation processes are
immature, but little is done to the problem [22]. In the research presented here
actions are taken to remove the problems due to lack of documentation prac-
tices. In this case the need for a new documentation process came up during the
company’s process improvement efforts. Most of the problems detected while
modeling and streamlining the target company’s software process were docu-
mentation related. Starting point with the companys documentation practices
was that there were no official guidelines how and what to document.

The documentation related problems were not least due to the fact that doc-
umenting was seen as an unpleasant task among the employees of the target
company. Hence, while planning the new documentation process, the amount
of documentation effort was kept nearest to minimal. This was accomplished
by introducing a structured documentation process where documenting happens
in small steps alongside the software product development. The documenta-
tion is made easy by customizing open source bugtracking system, Mantis, as
a documentation tool. In Mantis, documentation is easily available for all the
stakeholders. It is also kept up-to-date without extra effort, because of the doc-
umentation processes’ structured nature and by assigning responsible people for
individual documents produces along the process.

The traditional parts of software product documentation; requirements spec-
ification, design and technical documentation, user documentation, test plans
and reports are all produced during the process described here, only in a differ-
ent, structured and more lightweight way. There is no traditional documenting
and planning phase before the actual software development begins. The doc-
umentation is written while the software development advances. Parts of, for
example, requirement based test cases are already written into Mantis during
the development meeting in the very beginning of the process (see Figure 1) and
after that those parts are easily available to be constructed into a test report,
used as the basis of the instruction manuals and so on. In addition to pieces of
documentation mentioned above, decisions and schedules are also automatically
documented while the memos of the meetings during the software process are
linked to Mantis and part of the scheduling is done using Mantis itself. This
way the software development cycles, that end up in publicizing new version of
a software product, become coherent and traceable.

While analyzing and estimating the documentation process presented here
(Table 1, Session 4) it was perceived that the documentation process helped to
solve the target company’s problems. While conducting informal interviews for
the employees it appeared strongly that there was no reluctance for using Man-
tis. After establishing the documentation process, which supports their iterative
planning and implementation/testing process phases, documentation happens in
smaller and iterative steps. This way the documentation effort does not cause
the stress and reluctance which seem to be quite common problems in producing
the software product documentation.

The effort of producing the product documentation had diminished and the
employees perceived that documenting happens almost automatically. When the

Improving the Product Documentation Process 315

software that they already were using for other purposes became the documen-
tation tool, the step to start documenting was made easier. As a result of imple-
menting the new documentation process, the earlier mentioned problems with
decision making and testing do not exist anymore. This notion was also confirmed
through analysing the issues reported in Mantis, e.g. the amount of testing re-
lated issues had diminished significantly. However, interesting notion considering
the total amount of issues reported in Mantis was made. Despite the fact that
the testing and decision making/scheduling related issues had diminished, the
total ammount of documented issues was unchanged.

There are some limitations to the generalization of this study. Documenta-
tion process presented and the tool customized have only been tested in this one
company. Despite the promising and quite reliable results presented here the
approach needs further analysis to be more comprehensively validated. More
precise metrics are needed in addition to more formal comparison on the doc-
umented issue amounts. Furthermore, more research on the reasons behind the
notion on the unchanged amount of the documented issues would be interesting
to conduct.

In addition, Mantis is not yet compatible with version control software (eg.
CVS), which offers another limitation. Despite that using Mantis makes the ver-
sion control of product and user documentation easy, the documentation process
would be perfected by connecting the version control of the source code with it
to make documentation more comprehensive. All these limitations are taken into
consideration and planned to be confronted in the future research. The advan-
tages of using customized Mantis seem to be quite notable and it would also
be interesting to adapt the tool for other companies needs in the future. The
presented documentation solution would best serve the needs of a company with
off-the-shelf software products and the striving for SPI.

References

1. Bayer, J., Muthig, D.: A View-Based Approach for Improving Software Documen-
tation Practices. In: Proceedings of the 13th Annual IEEE International Sympo-
sium and Workshop on Engineering of Computer Based Systems (ECBS 2006),
pp. 269–278. IEEE Computer Society, Washington (2006)

2. Olsson, T., Runeson, P.: Document Use in Software Development: A Qualitative
Survey. In: Software Engineering Research and Practice in Sweden, SERPS 2002
(2002)

3. Card, D.N., Mc Garry, F.E., Page, G.T.: Evaluating Software Engineering Tech-
nologies. IEEE Transactions on Software Engineering SE-13(7), 845–851 (1987)

4. Cook, C., Visconti, M.: Documentation is important. CrossTalk 7(11), 26–30 (1994)
5. Richardson, I., Gresse von Wangenheim, C.: Guest Editors’ Introduction: Why are

Small Software Organizations Different? IEEE Software 24(1), 18–22 (2007)
6. Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools and

technologies: a survey. In: Proceedings of the 2002 ACM symposium on Document
engineering, pp. 26–33. ACM Press, New York (2002)

7. Briand, L.C.: Software documentation: how much is enough? In: Proceedings of
Seventh European Conference on Software Maintenance and Reengineering (2003)

316 A. Valtanen, J.J. Ahonen, and P. Savolainen

8. 12207.2-1997 Industry implementation of International Standard ISO/IEC
12207:1995. (ISO/IEC 12207 standard for information technology - software life-
cycle processes - implementation considerations)

9. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley,
Boston (2000)

10. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, Reading (2004)

11. Barker, T.T., Dragga, S.: Writing Software Documentation: A Task Oriented Ap-
proach. Allyn & Bacon, Inc., Needham Heights (1997)

12. Software Engineering Standards Committee of the IEEE Computer Society: IEEE
Std 830-1998. IEEE Recommended Practice for Software Requirements Specifica-
tions. IEEE-SA Standards Board (1998)

13. Software Engineering Standards Committee of the IEEE Computer Society: IEEE
Std 1016-1998. IEEE Recommended Practice for Software Design Descriptions.
IEEE-SA Standards Board (1998)

14. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model,
version 1.1. IEEE Software 10(4), 18–27 (1993)

15. Visconti, M., Cook, C.: Software system documentation process maturity model.
In: CSC 1993: Proceedings of the 1993 ACM conference on Computer science,
pp. 352–357. ACM Press, New York (1993)

16. Kajko-Mattsson, M.: The state of documentation practice within corrective mainte-
nance. In: Proceedings of IEEE International Conference on Software Maintenance
(2001)

17. Valtanen, A., Ahonen, J.J.: Big Improvements with Small Changes: Improving
the Processes of a Small Software Company. In: Jedlitschka, A., Salo, O. (eds.)
PROFES 2008. LNCS, vol. 5089, pp. 258–272. Springer, Heidelberg (2008)

18. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Communications
of the ACM 1, 94–97 (1999)

19. Lepasaar, M., Varkoi, T., Jaakkola, H.: Documentation as a software process ca-
pability indicator. In: PICMET 2001 International Conference on Management of
Engineering and Technology, Portland, vol. 1, p. 436 (2001)

20. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Suc-
cess. Addison Wesley Professional, Reading (1998)

21. Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process
modeling technique for software process improvement. Software Process Improve-
ment and Practice 7, 33–44 (2002)

22. Visconti, M., Cook, C.R.: An overview of industrial software documentation prac-
tices. Technical Report 00-60-06, Computer Science Department, Oregon State
University (April 2002)

23. Visconti, M., Cook, C.R.: Assessing the State of Software Documentation Practices.
Lecture notes in computer science. Springer, Heidelberg (2004)

24. Valtanen, A., Sihvonen, H.M.: Employees’ Motivation for SPI: Case Study in a
Small Finnish Software Company. In: O’Connor, R.V., et al. (eds.) EuroSPI 2008.
CCIS, vol. 16, pp. 152–163. Springer, Heidelberg (2008)

Lessons Learnt from the Improvement of
Customer Support Processes: A Case Study on

Incident Management

Marko Jäntti

University of Kuopio,
Department of Computer Science,

P.O.B 1627, 70211, Kuopio, Finland
marko.jantti@uku.fi

Abstract. IT Infrastructure Library (ITIL) is the most widely used IT
service management framework that provides guidelines how to create,
manage and support IT services. Service support processes, such as in-
cident management and problem management, are among the first ITIL
processes that organizations start to implement. However, several chal-
lenges may exist in the process implementation. The research question of
this study is: which issues are important in establishing an ITIL-based
incident management process? The main contribution of this paper is to
present lessons learnt from an ITIL-based process improvement project
that focused on establishing an incident management process in an IS
department of a university hospital. Our results show that key issues in
implementing incident management are to 1) define the basic concepts
of incident management with concrete examples and 2) define process
interfaces between incident management and other support processes.

Keywords: customer support, incident, service desk.

1 Introduction

Many IT organizations start the implementation of IT service management pro-
cesses from incident management. Incident management is a process that is
responsible for operating the service desk function. The service desk extends the
services that a traditional help desk provides. While a help desk focuses solely on
dealing with software/hardware failures, a service desk acts as a single point of
contact (SPOC) for all complaints, failure reports, service requests and change
requests.

The goal of incident management is to resolve incidents reported by customers
and users as soon as possible (however, within agreed service levels defined in ser-
vice level agreement (SLA) [1]. An incident is “an unplanned interruption to an
IT service or reduction in the quality of an IT service” [2]. The term incident can
include software failures, hardware failures and service requests. Incident man-
agement is one of the service support processes within IT Infrastructure Library
(ITIL) [3] and service operation processes in the latest ITIL version 3 [2]. ITIL is

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 317–331, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

318 M. Jäntti

the most widely used IT service management framework that consists of guide-
lines how to design, implement and manage IT services and IT service manage-
ment processes.

In addition to the ITIL, several other IT service management frameworks can
be used to establish and improve the incident management process, such as IT
Service Capability Maturity Model [4], the Deliver and Support (DS) part of
the Control Objectives for IT and related Technology (COBIT) [5], the incident
management process of the Microsoft Operations Framework (MOF) [6] and
Kapella’s Framework for Incident Management and Problem Management [7].

Background for the research problem: Although there are several IT ser-
vice management frameworks and standards available, organizations face diffi-
culties during IT service management development projects. They would need a
short summary which issues are especially important in establishing IT service
management processes, such as incident management and problem management.
Difficulties are mainly due to the following reasons. First, service management
frameworks and standards include too much information. There is a huge need
for persons who extract the essential information from heavy ITIL books. Sec-
ond, IT service management concepts differ from those of traditional software
maintenance. There are concepts that are used in different ways than before (e.g.
problems and service requests) and a large number of new concepts that need
to be explained in training sessions (e.g. known errors, workarounds). Third, the
large number of process roles and responsibilities in the ITIL framework is a
big challenge for a small IT company. Finally, ITIL does not provide concrete
examples how an incident management tool should work.

Most of the research that has been conducted on this area has focused on
studying defect management, problem management, building help desks and
software maintenance. The research results reported in a Framework for Count-
ing Problems and Defects [8], and in a Defect Management Process [9] indicate
that a jungle of defect management terminology and a lack of defined process
are the key challenges in managing software problems and defects. Some of the
traditional defect management methods, such as a fault tree analysis [10], and
causal analysis [11] can also be found in the ITIL processes.

Much has been written about establishing help desks [12,13] and introduc-
tion of knowledge base applications in help desks [14,15,16]. Additionally, there
are studies that have discussed the implementation of customer support sys-
tems [17,18]. In software maintenance studies, problem and defect management
activities are classified under corrective maintenance [19,20]. Problem manage-
ment has been discussed, for example, in studies that deal with the maturity of
software maintenance [21,22].

However, there are few studies that have examined the implementation of
the incident management process. Niessink and van Vliet have examined the
maturity of IT service management processes, including incident management
[23]. The most interesting is their study that investigated software maintenance
from a service perspective and identified the problem in the interface between
incident management and problem management [24]. Additionally, Caldeira and

Lessons Learnt from the Improvement of Customer Support Processes 319

Brito e Abreu have studied the factors that affect the incident management
lifecycle [25]. Because a large number of IT organizations are adopting IT service
management processes, and will likely need help in implementing ITIL-based
support processes, incident management is a very attractive research target.

1.1 Our Contribution

The main contribution of this paper is to

– describe how an incident management process was established in an IS de-
partment of a university hospital,

– discuss the ITIL-related questions that were raised in the process improve-
ment meetings and

– present the lessons learned from establishing an incident management process.

A software process can be defined as “a set of activities, methods, and prac-
tices that are used in the production and evolution of software” [26]. Software
maintenance is the last phase of the software evolution but perhaps the most
expensive one. The main goal of this study is to improve customer support pro-
cesses within corrective software maintenance by using IT service management
framework ITIL. The main result of the study is the list of lessons learnt. Lessons
learnt in our case are both recommendations how incident management should
be implemented in order to meet the requirements of ITIL and observations of
the most difficult issues in the process implementation.

The results of this study might be useful especially for people that are respon-
sible for implementing customer support processes or are planning to improve ex-
isting processes based on IT service management frameworks. The target group
of this study includes customer support managers, support process managers,
IT service managers and quality managers.

The remainder of the paper is organized as follows. In Section 2, the re-
search methods of this study are described. In Section 3, we describe how an
incident management process was established and lessons learnt during the pro-
cess improvement. Section 4 is the analysis of findings. The discussion and the
conclusions are given in Section 5.

2 Research Methods

This case study is a part of the results of MaISSI (Managing IT Services and
Service Implementation) research project at the University of Kuopio, Finland.
The main research question of this study is: which issues are important in es-
tablishing an ITIL-based incident management process?

A combination of a case study research method and an action research method
was used as a research method. A case study is "an empirical inquiry that in-
vestigates a contemporary phenomenon within its real-life context" [27]. The
case study method was used to collect information of how Tekplus service desk
works and information of service desk’s stakeholders. Our study is partly action

320 M. Jäntti

research because we participated in improving working practices of the organi-
zation. The MaISSI research team did not work only as an external observer
but also created material for the incident management process description and
process diagrams.

2.1 The Case Organization and Data Collection Methods

Our case organization is an IS department of the Kuopio University Hospital.
They provide IT services for departments and clinics of the hospital. Currently,
they have 4 full-time employees in the service desk but the number is likely
going to increase in near future. When a case study started, the situation re-
garding IT service management processes was the following: the introduction of
the ISO 20 000 standard had started but there were not yet complete process
descriptions for any IT service management processes. The organization had re-
ceived ITIL training from an ITIL consultancy company. Additionally, a tool
development project for an incident management tool had started and was in
the requirements specification phase. At the end of the case study, the incident
management process description had received a version status 0.9. Support team
members expected that the incident management process description will receive
updates when the descriptions of other support processes become more mature.

Three important principles of data collection can be used to increase the
quality of the case study: using multiple sources of evidence, creating a case
study database and maintaining a chain of evidence. The sources of evidence
in our study included documentation (ISOQ project plan, Plussa project plan,
requirement specification for incident management system), archives (MaISSI
project’s research meeting memos, emails), and participant-observation in the
following meetings that were held with the case organization:

– Goal definition meetings (26th March, 22nd April), participants: IS manager,
MaISSI project manager, MaISSI project administrator)

– Process improvement meeting I - Concepts (8th May), participants: incident
manager, 3 customer support team members, MaISSI project manager

– Process improvement meeting II - Roles (12th May), participants: incident
manager, 3 customer support team members, MaISSI project manager

– Process improvement meeting III - Activities (19th May), participants: 3
customer support team members, MaISSI project manager

– Requirement specification meetings for incident management tool (26th May,
30th May), participants: 4 system designers incl. the coordinator, MaISSI
project manager)

– Process improvement meetings IV, V and VI - Process diagram (9th and
18th June, 2nd July), participants: customer support team members, MaISSI
project manager, MaISSI research assistants.

A standard Windows file folder with a restricted access was used as a case
study database. The case study database included the documents received from
the case organization, the work versions of process diagrams and memos from
each case study meeting. The chain of evidence was maintained primarily through

Lessons Learnt from the Improvement of Customer Support Processes 321

these memos. Each memo included the following information: date, location, par-
ticipants, detailed description what was done or discussed in the meeting and
the planned further work. Thus, the inputs for each lesson learnt can be easily
traced.

2.2 Data Analysis Method

In a case study research method, there are two main approaches to analyze data:
a case comparison analysis and a within-case analysis [28]. The basic idea of the
within-case analysis is to examine cases carefully as stand-alone entities before
making any generalizations. The cross-case analysis aims to search cross-case
patterns and is suitable for multiple case studies. Because our study was a single
case study, we used a within-case analysis to analyze the data.

The case study results were presented in chronological order. Only the most
important questions and observations regarding the incident management pro-
cess were taken into concideration and analyzed. We focused on the questions
that were related to the goals, concepts, activities, and roles of the incident man-
agement process. The questions and observations were transformed into a list
of lessons learnt. The most concrete result of the study was a process descrip-
tion document for incident management (version 0.9) with process diagrams for
different incident types.

3 Lessons Learnt from Establishing an Incident
Management Process

In this section, we describe how the incident management process description
was created in cooperation between the case organization and MaISSI research
team. Additionally, questions that were raised in process improvement meetings,
and the lessons learned during the research process are presented. The IT service
management framework IT Infrastructure Library (ITIL) version 2 was used as
a basis of process improvement.

3.1 Goals for the Process Improvement

The research cooperation between the case organization and MaISSI research
team started in the goal definition meeting on 26th March. The persons who
participated in the meeting were a project manager and a project administrator
of MaISSI, and an IS manager of the case organization. MaISSI team introduced
the MaISSI research objectives and the IS manager presented the objectives of
process improvement in the case organization. The IS manager reported that the
organization had started the improvement of customer support processes accord-
ing to ISO 20000 service management standard. Additionally, an external ITIL
consultancy firm had consulted the case organization in improving processes. It
was agreed that MaISSI helps the case organization in establishing a problem
management process.

322 M. Jäntti

The second goal definition meeting was held on 22th April. Besides a project
manager (MaISSI) and an IS manager, the person responsible for designing an
incident management process (=Incident manager) participated in the meet-
ing. As a result of meeting, it was decided that the process improvement work
should start from incident management instead of problem management. After
the meeting, MaISSI team received material from the case organization regard-
ing process improvement, such as a project management plan for the process
development project). For example, following goals for establishing a service
desk were listed in the development project plan: customers shall receive single
point of contact service, customers are able to monitor the status of their own
support requests and send support requests through web, and customer support
shall have effective problem resolution tools and communication tools.

3.2 Process Improvement Meeting I: Concepts and Terminology

The discussion of the first process improvement meeting (8th May) primarily
focused on the current state of the help desk function, IT service manage-
ment concepts and integrating those concepts into the case organization’s inci-
dent management process description. An incident manager, three support team
members and a project manager of MaISSI participated in this meeting.

Incident manager reported that one of the process goals was to combine differ-
ent organizational units that provide support services under one service desk. In
that model, each incident (a service request or a failure report), change request,
or product development idea would go to a single point of contact (Tekplus ser-
vice desk) that records them and assigns them to specialist teams if necessary.
In the ITIL framework, a single point of contact is defined as "a single consistent
way to communicate with an organization or business unit" [2].

In this meeting, the following process-related questions were raised:

– What is a service request?
– What is the difference between service requests and incidents?
– What is the difference between change request and service request?
– How can we convert an incident to a problem?
– Which activities belong to the 1st-level support and the 2nd-level support?

A standard ITIL definition for the incident is "any event which is not part of
the standard operation of a service and which causes, or may cause, an inter-
ruption to, or a reduction in, the quality of that service" [3]. A service request
in turn is an “incident not being a failure” [2]. Password queries and requests for
information are typical service requests. Also events (automated alerts generated
by the IT infrastructure) may cause incidents. There are two ways to put service
requests into a category tree: 1) put service requests under the incident category
(hardware failures, software failures and service requests), or 2) use incidents
and service requests as parallel concepts and then define subcategories for both
of them. Both ways seem to work well in practice.

Lessons Learnt from the Improvement of Customer Support Processes 323

The difference between a request for change (RFC) and a service request is
small and unclear in many cases. An RFC is “ a formal proposal for a change to
be made” [29]. In fact, many routine and small-scale RFCs can be classified into
service requests. Both 1st-line and 2nd-line incident management can generate
RFCs to resolve incidents. An RFC could be, for example, a request for replacing
a configuration item, installing hardware or software, making a code change etc.

Lesson 1. Define clearly what the following concepts of incident management
mean in your organization: incident, service request, event, request for change.
Reserve enough time for the introduction of IT service management concepts
in the organization. ITIL concepts may sound familiar but can have different
meaning than in traditional software engineering.

A frequently asked question regarding ITIL is, what is a ’problem’. The prob-
lem as as a concept belongs to the problem management process but must be
understood by the incident management team. The definition of a problem is "an
unknown underlying cause of one or more incidents" [2]. Note that customer’s
do not send problem reports but incident reports although an incident includes
a description about the problem that a user has encountered. An incident may
cause a problem but it should never become a problem. Incidents, problems and
requests for change should be separate data records.

Lesson 2. The difference between incidents and problems is difficult to under-
stand. The term ’problem’ in the ITIL framework is reserved for the support
provider organization’s internal use.

Lesson 3. The interface between incident management and problem manage-
ment is unclear and needs to be defined: who is responsible for suggesting and
opening problem reports, and in which situations a problem record is opened.

3.3 Process Improvement Meeting II: Roles and Responsibilities

In this meeting (12th May), the roles and responsibilities within the incident
management process were discussed. The following decisions were made in the
meeting. The help desk concept was replaced with the service desk, four re-
quest categories were defined (incident, advice, order, feedback), and request
for changes can also be related to the processes. Additionally, there was a long
discussion whether the support requests can be generally called service requests
because many customers like the term ’service request’. However, in the ITIL, the
term ’service request’ is reserved for information requests etc. and it is confusing
to categorize service requests into service requests. The following questions were
asked regarding the process improvement:

– Which roles does incident management process include?
– How can we close an incident?
– How should we handle resubmitted support requests?
– Which datafields regarding the customer should be included in the incident

record?

324 M. Jäntti

The incident management process includes at least the following roles: an
incident manager, a service desk worker and an incident specialist. In addition
to these roles, a major incident handling team is needed. The incident manager
is responsible for developing the incident management process and tools and
coordinating the work of service desk workers and an incident specialists. Service
desk workers record, classify, diagnose, resolve and close incidents. Their task is
to provide initial support for customers and users.

Incident specialists perform 2nd-level support activities, such as detailed in-
vestigation and incident resolution. The same person who created the incident
record is also responsible for closing the incident. If the incident resolution was
produced by a specialist, the service desk must receive information about the
resolution. The roles and responsibilities described by the ITIL were used in the
process description of the case organization.

Resubmitted support requests can be processed using ’reopened’ status.
Datafields in the incident record regarding the customer information may in-
clude customer name, phone number, email, contact address and service level
agreement.

Lesson 4. Incident management roles and responsibilities are easy to find in
the ITIL framework. The 1st-level support should be responsible for closing
the incident. Other support levels should avoid contacting customers because
there is a risk that customers start contacting developers every time they have a
problem.

3.4 Process Improvement Meeting III: Process Activities

The third process improvement meeting was held on 19th May. It started with
a discussion whether a term ’service request’ or an ’incident’ should be used in
the process diagram (see Fig. 1) and how many support levels are needed.

Fig. 1. A process diagram of the incident management process

Lessons Learnt from the Improvement of Customer Support Processes 325

Two support levels were defined for the incident management process (in-
stead of original 3 levels). The service request handling was allocated to the first
support level.

Lesson 5. There is no direct answer how many support levels are needed and
how process activities are related to the support levels. From the very beginning,
it is recommendable to divide incident management into 1st-level and 2nd-level
support. A real problem is to find out which support level should contain problem
management activities. One solution would be to put them under second-line
support and reserve third-line support for product development, external service
providers and subcontractors.

3.5 Requirement Specification Meetings for the Incident
Management Tool

MaISSI participated in two requirement specification meetings for the incident
management tool on 26th and 30th May. The case organization had decided to
create its own tool for managing incidents. The role of MaISSI in these meetings
was to answer the ITIL-related questions from designers.

In the first meeting, the coordinator of the tool development team presented
the background, objectives and the current state of the tool development project.
The second meeting focused on the incident classification and its effects on tool
specification. We observed that the representatives of change management, prob-
lem management, release management and configuration management processes
did not participate in the requirement specification meeting. The meetings re-
sulted in the following questions:

– What is the relation between incident/problem/request for change records?
– How should we implement the charging for service requests?
– Can customer information be hierarchical?
– What is the incident lifecycle?
– Can we close several incidents at one time?
– Who is responsible for closing the incident?
– When is it possible to close an incident?
– Is it possible that an incident causes several change requests?
– When do we open a problem record?
– Which status information does an incident have?

Based on our observations in requirement specification meetings, we derived
the following lessons. Lesson 6. Define interfaces between incident manage-
ment and other support processes. Incident management has close interfaces to
service request fulfillment, problem management, change management, configu-
ration management and release management. Lesson 7. The process managers
of the different ITSM processes should participate or give feedpack for the spec-
ification and design of the customer support tool. It is important that also other
support processes are well-automated. Lesson 8. It is difficult to define incident
status information. For example, the following statuses can be used: opened, in
processing, waiting for delivery, closed.

326 M. Jäntti

3.6 Process Improvement Meetings IV, V and VI: A Process
Diagram

The fourth, fifth and the last process improvement meeting were held on 9th
June, 18th June and 2nd July. These meetings dealt with the draft of the in-
cident management process diagram created by MaISSI. The diagram template
and notation was provided by the case organization. As a result, incident man-
agement process actions were grouped under two main actions: 1) Receive inci-
dent (identify and record, classify and diagnose) and 2) Process incident (resolve,
close and monitor). Additionally, the incident management process diagram was
broken down into four different process diagrams by support request type: in-
cident, order, feedback and information request. The final draft of the process
diagram was sent to the case organization on 9th July which ended the case
study. These meetings resulted in the following questions:

– When is a major incident created?
– How and when should we collect feedback from customers regarding incident

resolutions?

A major incident is an incident that has a significant negative impact on the
IT services. ITIL does not clearly define what is a major incident. However,
an organization could decide that incidents with a highest priority level go into
the major incident process. An easy way to collect feedback regading incident
resolutions is to add a hyperlink of a customer satisfaction survey to the incident
resolution message.

Lesson 9. Define what is a major incident and add a reference of a major
incident process into a process diagram.

Lesson 10. If the incident management process diagram becomes too large,
divide it into several subdiagrams that enable capturing details of handling dif-
ferent service request types.

4 Analysis

As a summary, the following list of lessons learnt was created during the case
study:

1. Define clearly what the following concepts of incident management mean in
your organization: incident, service request, event, request for change.

2. The difference between incidents and problems is difficult to understand.
3. The interface between incident management and problem management is

unclear and needs definition.
4. Incident management roles and responsibilities are easy to find in the ITIL

framework.
5. There is no direct answer how many support levels are needed and how

process activities are related to the support levels.
6. Define interfaces between incident management and other support processes.

Lessons Learnt from the Improvement of Customer Support Processes 327

7. The process managers of the different ITSM processes should participate or
give feedback for the specification and design of the customer support tool.
It is important that also other support processes are well-automated.

8. It is difficult to define incident status information.
9. Define what is a major incident and add a reference to major incident process

into a process diagram.
10. If the incident management process diagram becomes too large, divide it

into several subdiagrams.

Difficult concepts and terminology is one of the major challenges in implemen-
tation of IT service management processes. The best way to avoid extra work is
to read first the ITIL-based definitions of ITSM concepts, then take a look into
the existing support requests stored by the help desk, and finally take at least
five real examples for each concept. Practice has shown that achieving consensus
regarding incident categories takes time and requires many process meetings.

One of the most difficult and important issues in the ITIL is to understand the
incident lifecycle (Incident-> Problem -> Known error -> Request for Change),
especially the difference between incidents and problems. In traditional software
maintenance, a customer or a user sends a defect report or a problem report to
a help desk. In the ITIL, a problem ticket is created by the second line support
if they cannot find the solution to incident in the agreed time or if there are
multiple incidents from the same issue.

There are several benefits of having separate records for incidents and prob-
lems. First, an incident reported by a customer can be rapidly closed with a good
workaround (temporary solution) created by a problem management team. Thus,
a customer does not have to wait a long time for a structural solution. Second,
the investigation of the issue may continue as a problem although the original
incident was closed. Finally, separate records also enable linking several similar
incidents into one problem record. The most important thing is to remember
that an incident never becomes a problem.

The third lesson learnt addressed that the interface between incident man-
agement and problem management is unclear and needs definition. The main
objective of the incident management process is to restore the services used
by customers as quickly as possible and minimize the adverse impact of inci-
dents on business operations. The problem management process aims to find
the root cause of an incident, create a work-around for the incident and thus
convert the problem into known error. A problem record can be opened in the
following cases: A service desk or an incident specialist expects that an incident
will reoccur, multiple incidents have been received regarding the same issue, an
incident specialist (2nd-level support) cannot find a solution to the incident,
a tester/product developer/IT operator detects a fault, or a subcontractor or
third-party service provider sends a fault report.

Regarding the fourth lesson, it is important to define roles for each IT ser-
vice management process. The roles (an incident manager, a service desk worker
and an incident specialist) and responsibilities within incident management are

328 M. Jäntti

clearly written in the ITIL version 2 and easy to insert into a process description.
Note that in the ITIL version 3 role definitions can be found in the attachment
section.

Unfortunately, the organization must decide itself how many support levels it
needs (usually three) for the incident management process and how process ac-
tivities are located on the support levels. In large organizations, the second-level
support consists of parallel teams that perform the same incident management
activities but for different types of cases. If the problem management process
must follow the ITIL version 2 (with problem control and error control), our
recommendation is that problem control stays on the second level and error con-
trol on the third level as a part of the product development. In the ITIL version
3, there is no error control activity visible in the process guide.

The sixth and seventh lesson are both related to the interface between incident
management and other support processes. These interfaces should be remenbered
both in process improvement and in tool development. Each process description
should include a section ’Interfaces with other processes’. In the tool develop-
ment, the worst-case scenario is that the tool does not enable creating problem
records for problem management or request for change records for change man-
agement. An incident management team also needs updated information about
configuration items from the configuration management process and information
about delivered release packages from release management.

According to the eighth lesson process people have difficulties in defining
incident status information. Before the introduction of new statuses, one should
create clear rules how to use statuses and test them with a pilot users.

Ninth lesson indicates that people who create incident management process
descriptions often forget major incidents. Major incidents require a separate
handling procedure. Additionally, a major incidents should not be transformed
directly into a problem before a normal investigation and diagnosis because also a
major incident could be resolved with an existing workaround. In such case, there
would be no need to open a problem record and start a detailed investigation.

The last lesson is a simple advice for the process modeling work. After sev-
eral months process modeling the incident management process diagram is full
of boxes, arrows, lines, text and swimlanes. It is a challenge to get the detailed
activities, support levels, and communication flows of incident mangement, prob-
lem management and service request handling to a single diagram. Instead of a
single process diagram, it is useful to draw several subdiagrams.

Above mentioned lessons learnt were not presented in a priority order. Espe-
cially the lessons 1, 2 , 3, 5 and 8 are worth checking. It would be interesting
to compare our results with other studies but by far we have not found a simi-
lar case study. In the traditional software maintenance and defect management
a key challenge is that a research field includes many terms (defects, errors,
bugs, faults, failures, and problems) that are difficult to distinguish from each
other. The same challenge seems to appear also in the service-oriented software
maintenance because people do not understand differences between incidents,
service requests, problems and change requests. As as conclusion, defining these

Lessons Learnt from the Improvement of Customer Support Processes 329

concepts clearly enough and with concrete examples is a key success factor in
establishing an incident management process.

5 Discussion and Conclusions

Incident management is the process that manages all incidents, such as software
and hardware failures, users’ questions and queries. The main objective of the
incident management is to restore normal service operation as quickly as possible.
This study aimed to answer the following research question: which issues are
important in establishing an ITIL-based incident management process?

The main contribution of this study was to present lessons learnt from an
ITIL-based process improvement project that focused on establishing an incident
management process. The study was carried out as a case study where the target
was an IS department of a university hospital. The most important issues in
establishing an ITIL-based incident management process are to

– define clearly the basic concepts of incident management in the organization:
incident, service request, event, request for change,

– identify the difference between incidents and problems, and
– define interfaces between incident management, problem management and

oter support processes.

The introduction of the IT service management concepts does not happen
rapidly. The IT service management process improvement team will notice that
people understand the ITIL concepts in different ways. Additionally, it is im-
portant to define the number of support levels and the communication between
support levels and create rules for using incident statuses.

There are several limitations to this study. First, data were collected from
one case organization during a relatively short research period. We have no real
evidence that ITIL-based customer support would be more effective than the
traditional customer support. Second, the case organization was a member of
MaISSI research project and was selected for that reason. Third, we cannot
generalize our research results to other organizations or derive any statistical
generalizations based on case study results. However, our results can be used to
expand the theory of incident management. Additionally, the preliminary results
of our other case studies seem to show similar findings.

In conclusion, this study underlines the importance of concept definition in
the beginning of the incident management process implementation. Further case
studies are needed to replicate our results. Further research could also examine
introduction of other IT service support processes, such as problem management,
change management, configuration management and release management.

Acknowledgment

This paper is based on research in MaISSI (Managing IT Services and Service
Implementation) and SOSE (Service Oriented Software Engineering) projects,

330 M. Jäntti

funded by the National Technology Agency TEKES, European Regional Devel-
opment Fund (ERDF), and industrial partners. Special thanks to Paula Musto-
nen, Anita Toivonen and Julia Järvinen for your contribution.

References

1. Office of Government Commerce: ITIL Service Design. The Stationary Office, UK
(2007)

2. Office of Government Commerce: ITIL Service Operation. The Stationary Office,
UK (2007)

3. Office of Government Commerce: ITIL Service Support. The Stationary Office, UK
(2002)

4. Niessinka, F., Clerca, V., Tijdinka, T., van Vliet, H.: The it service capability
maturity model version 1.0. CIBIT Consultants&Vrije Universiteit (2005)

5. COBIT 4.0: Control Objectives for Information and related Technology: COBIT
4.0. IT Governance Institute (2005)

6. Microsoft: Microsoft operations framework (January 2009),
http://technet.microsoft.com/en-us/library/bb232042.aspx

7. Kapella, V.: A framework for incident and problem management. International
Network Services whitepaper (2003)

8. Florac, W.: Software quality measurement a framework for counting problems and
defects. Technical Report CMU/SEI-92-TR-22 (1992)

9. Quality Assurance Institute: A software defect management process. Research Re-
port number 8 (1995)

10. Noda, A., Nakanishi, T., Kitasuka, T.: Introducing fault tree analysis into product-
line software engineering for exception handling feature exploitation. In: Proceed-
ings of the 25th IASTED International Multi-Conference Software Engineering,
Innsbruck, Austria, pp. 229–234 (2007)

11. Card, D.N.: Learning from our mistakes with defect causal analysis. IEEE Soft-
ware 15(1), 56–63 (1998)

12. Gonzalez, L.M., Giachetti, R.E., Ramirez, G.: Knowledge management-centric help
desk: specification and performance evaluation. Decis. Support Syst. 40(2), 389–405
(2005)

13. Evans, K., Jones, W.T.: Building an it help desk: from zero to hero. In: SIGUCCS
2005: Proceedings of the 33rd annual ACM SIGUCCS conference on User services,
pp. 68–74. ACM, New York (2005)

14. Graham, J., Hart, B.: Knowledge integration with a 24-hour help desk. In:
SIGUCCS 2000: Proceedings of the 28th annual ACM SIGUCCS conference on
User services, pp. 92–95. ACM Press, New York (2000)

15. Jackson, A., Lyon, G., Eaton, J.: Documentation meets a knowledge base: blurring
the distinction between writing and consulting (a case study). In: SIGDOC 1998:
Proceedings of the 16th annual international conference on Computer documenta-
tion, pp. 5–13. ACM Press, New York (1998)

16. Cheung, C., Lee, W., Wang, W., Chu, K., To, S.: A multi-perspective knowledge-
based system for customer service management. Expert Systems with Applica-
tions 24(4), 457–470 (2003)

17. Wood, S., Howlett, R.J.: A web-based customer support knowledge base system.
In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS, vol. 5177,
pp. 349–361. Springer, Heidelberg (2008)

http://technet.microsoft.com/en-us/library/bb232042.aspx

Lessons Learnt from the Improvement of Customer Support Processes 331

18. Miller, A.: Integrating human factors in customer support systems development us-
ing a multi-level organisational approach. In: CHI 1996: Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 368–375. ACM, New York
(1996)

19. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-Wesley
Longman Publishing Co., Inc., Boston (1980)

20. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap.
In: ICSE 2000: Proceedings of the Conference on The Future of Software Engi-
neering, pp. 73–87. ACM Press, New York (2000)

21. April, A., Hayes, J.H., Abran, A., Dumke, R.: Software maintenance maturity
model (smmm): the software maintenance process model: Research articles. J.
Softw. Maint. Evol. 17(3), 197–223 (2005)

22. Kajko-Mattsson, M., Forssander, S., Olsson, U.: Corrective maintenance maturity
model (cm3): maintainer’s education and training. In: ICSE 2001: Proceedings of
the 23rd International Conference on Software Engineering, Washington, DC, USA,
pp. 610–619. IEEE Computer Society, Los Alamitos (2001)

23. Niessink, F., van Vliet, H.: Towards mature it services. Software Process - Improve-
ment and Practice 4(2), 55–71 (1998)

24. Niessink, F., van Vliet, H.: Software maintenance from a service perspective. Jour-
nal of Software Maintenance 12(2), 103–120 (2000)

25. Caldeira, J., Abreu, F.B.: Influential factors on incident management: Lessons
learned from a large sample of products in operation. In: Jedlitschka, A., Salo, O.
(eds.) PROFES 2008. LNCS, vol. 5089, pp. 330–344. Springer, Heidelberg (2008)

26. Humphrey, W.S.: A personal commitment to software quality. In: ESEC, pp. 5–7
(1995)

27. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Beverly Hills
(1994)

28. Eisenhardt, K.: Building theories from case study research. Academy of Manage-
ment Review 14, 532–550 (1989)

29. Office of Government Commerce: ITIL Service Transition. The Stationary Office,
UK (2007)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 332–346, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Decision Model for Supporting Task Allocation
Processes in Global Software Development

Ansgar Lamersdorf1, Jürgen Münch2, and Dieter Rombach1,2

1 University of Kaiserslautern,
2 Fraunhofer IESE

a_lamers@informatik.uni-kl.de,
{juergen.muench,dieter.rombach}@iese.fraunhofer.de

Abstract. Today, software-intensive systems are increasingly being developed
in a globally distributed way. However, besides its benefit, global development
also bears a set of risks and problems. One critical factor for successful project
management of distributed software development is the allocation of tasks to
sites, as this is assumed to have a major influence on the benefits and risks. We
introduce a model that aims at improving management processes in globally
distributed projects by giving decision support for task allocation that system-
atically regards multiple criteria. The criteria and causal relationships were
identified in a literature study and refined in a qualitative interview study. The
model uses existing approaches from distributed systems and statistical model-
ing. The article gives an overview of the problem and related work, introduces
the empirical and theoretical foundations of the model, and shows the use of the
model in an example scenario.

1 Motivation

More and more software products are being developed in a globally distributed way:
Technological advances and the possible benefits of distributed development have
made this not only a common practice but also a “business necessity” ([1], [2]). The
expected benefits include cost savings, access to a worldwide resource pool, prox-
imity to customers and markets, and a reduction in overall development time through
a “follow-the-sun” approach [3].

However, global software development also imposes a set of problems and risks
that are often overlooked [4]: For example, communication problems, caused by dis-
tance, language, and cultural differences, reduce productivity ([5], [6]) and quality
suffers from inexperienced developers at remote sites or from a lack of trust between
distributed teams [7]. These problems can even annihilate the cost reduction of send-
ing work to low-cost regions [4].

In order to address the benefits and, at the same time, the risks and problems of
global software development, effective project management is needed that actively
considers the nature and characteristics of global software development. An important
activity in global software development project management is task allocation: In
addition to having to consider the characteristics and the availability of the workforce

 A Decision Model for Supporting Task Allocation Processes 333

(as in collocated development), task allocation in global software development must
take into account the characteristics of the sites and their relationships (such as time
zone differences or infrastructure).

Depending on the focus and the goals of a software development project, different
allocations might be suited differently: In order to increase productivity, independent
chunks of work should be assigned to every site [8]. On the other hand, assigning
interdependent tasks to sites in different time zones might decrease the development
time [3]. The lowest labor rates can be achieved by assigning as much work as possi-
ble to low-cost sites.

These goals and assignment strategies sometimes conflict with each other and have
to be regarded systematically in order to identify the best task allocation for a particu-
lar project. In practice, however, allocation is not done systematically and often con-
siders only single aspects such as labor costs [9]. Thus, there is a need for improving
management processes in globally distributed software development processes.

This article presents a method for improving task allocation processes by develop-
ing a model for decision support. The model uses multiple criteria and weighted goals
as input for suggesting a weighted list of possible task assignments. It is based on a
systematic literature review and an interview study conducted in order to identify the
factors that influence the success of distributed development projects.

The remainder of this article is structured as follows: Section 2 gives an overview
of the related work in models for task allocation. The model is presented in detail in
Section 3 together with its goals, a systematic literature review for determining its
criteria and causal relationships, and a demonstration of its use within an example
project. Section 4 names the limitations of the model and Section 5 concludes the
article.

2 Related Work

In [8], a simple model for task allocation in global software development is pre-
sented. The underlying assumption is that software development can be described as
a series of modification requests to a set of modules. Based on that, an algorithm is
developed, which, for a given set of modules and modification requests, tries to find
the optimal assignment of modules to sites. Optimal here means that the number of
modification requests spanning multiple sites is minimized in order to reduce com-
munication overhead.

The model represents a formal and well-defined approach for optimizing task
allocation. However, its main drawback is the fact that it only considers one single
criterion, namely, minimization of the communication needed between the available
sites. It also uses the available resources per site as a constraint, but essential factors
that influence project success (e.g., the available expertise or the cost rate per site) are
not considered.

Another model for task allocation was developed by Setamanit, Wakeland, and
Raffo [10]. Based on a combination of discrete-event and system-dynamic simulation,
it allows for evaluating different allocation strategies. The model simulates software
development at every site as well as the effects of the interaction between sites. Thus,
it is able to make statements on the effects of different strategies on productivity.

334 A. Lamersdorf, J. Münch, and D. Rombach

However, the sites are only rudimentarily described in the model. Therefore, the
model can only make general statements and cannot be used for concrete decision
support. Besides, the factors influencing productivity are not identified empirically;
thus, it remains unclear if they truly reflect the factors relevant in practice.

Other models for assigning tasks to a set of sites exist in other domains: In produc-
tion, algorithms have been developed for allocating production work to a network of
global sites with the goal of minimizing production and transportation costs. In the
distributed systems domain, there are approaches for optimizing the allocation of
computing tasks to a set of processors. An analysis and comparison of existing ap-
proaches was done in [11]. The approaches were evaluated against a set of require-
ments for a task allocation model in GSD. The result showed that none of the models
fulfilled all requirements.

However, one algorithm for task allocation in distributed systems by Bokhari [12]
satisfied most of the requirements compared to the other approaches. The algorithm
tries to minimize the sum of the execution costs of the tasks at the processors and the
costs of transmitting data between tasks at different processors. The main drawbacks
for its application in GSD are: 1) The algorithm obviously does not contain empirical
data on distributed development. Particularly, it does not contain a set of variables that
represent the relevant characteristics of GSD. 2) The algorithm needs exact numbers as
input. For example, the cost of processing a specific task at a specific processor has to
be described with an exact number. Such a number can often not be specified when
human behavior is modeled.

In the following, a model is proposed that reuses the algorithm while also address-
ing these drawbacks.

3 The Decision Model

The following section will introduce the decision model. First, the terminology and
model goals are given. The model is based on a combined literature review and inter-
view study on the criteria and causal relationships in task assignment that will be
shown second. Afterwards, the theoretical foundations of the model will be presented,
followed by the application of the model in an example project.

3.1 Terminology and Model Goals

The underlying assumption of the model is that every software development project
consists of a weighted set of goals that define project success (e.g., project costs,
software quality).

Project management in global software development aims at fulfilling these goals
by assigning the tasks of a software development project to the appropriate sites dur-
ing task assignment.

However, the effect of the task assignment on project goals depends on a set of
characteristics of distributed software development. Time shift between sites, for
example, is such a characteristic: If tasks are assigned to two sites with a large time
shift between them, productivity may be reduced and thus project costs would in-
crease. Task assignment should thus not only consider the project goals but also the
characteristics of distributed development.

 A Decision Model for Supporting Task Allocation Processes 335

Project goals and characteristics of distributed development together represent the
criteria that should be regarded in task assignment for global software development.
This is the main goal of the decision support model presented here that considers
these criteria.

More formally, the main goal can be described as follows: From the perspective of
a project manager in a global software development project, it is the purpose of the
model to support task allocation with respect to individual project goals and charac-
teristics of distributed development.

From that goal, the following sub-goals are derived:

• Task allocation should be supported by suggesting several assignments of
tasks to sites for a given project. Using these suggestions, the project manager
can then make improved, systematic allocation decisions.

• The model should consider individual project goals. Therefore, the suggestions
made by the model should be dependent on the priorities of the project.

• The characteristics of globally distributed development (e.g., the overhead of
working and communicating in a distributed manner) should be taken into ac-
count systematically.

Further, more detailed, requirements for a decision support model are defined in [11]:
A distribution model should support multiple goals, should be able to describe both
properties of tasks and sites and dependencies between tasks and sites, and should be
adaptable to different environments. An appropriate degree of formality should allow
for making suggestions automatically and the criteria and causal relationships used in
the model should be empirically based.

3.2 Empirical Identification of Criteria and Causal Relations

The empirical foundations of the model were laid using a combined literature review
and interview study on distributed software development. These resulted in a set of
criteria and causal relationships. The results were then used for the development of
the task allocation model. The study is summarized in the following. (It is explained
in more detail in [13])

The goal of the literature and interview study can be described as follows: From
the perspective of a project manager in a global software development project, the
criteria for task assignment and the underlying causal relationships should be identi-
fied. Three research questions were derived from that:

• Question 1: What are the goals of distributed development projects?
• Question 2: What characteristics of distributed development should be re-

garded during task assignment?
• Question 3: What are the relationships between the characteristics of distrib-

uted development and project goals?

The following steps were performed in the study:

1. Literature study: A literature study was conducted first. 26 publications from dif-
ferent journals, conferences, and workshops were analyzed. They can be classified
into case studies, empirical studies (reporting the experiences of several distributed

336 A. Lamersdorf, J. Münch, and D. Rombach

Table 1. Analyzed literature

Case Studies Empirical Studies Other

[14], [15], [16], [17],
[18], [19], [20], [21]

[22], [23], [24], [25], [26], [27], [7], [28],
[29], [30], [31], [32], [33], [34], [35]

[36], [37] [38]

Costs Time Quality

La
ng

ua
ge

di

ffe
re

nc
e

C
ul

tu
ra

l
di

ffe
re

nc
e

C
om

m
on

ex

pe
rie

nc
es

T
im

e
sh

ift

In
fr

as
tr

uc
tu

re

di
st

an
ce

C
ou

pl
in

g
be

tw
ee

n
ta

sk
s

E
xp

er
tis

e
ne

ed
ed

fo
r

ta
sk

s

P
ro

ce
ss

m

at
ur

ity

E
xp

er
tis

e
&

kn

ow
le

dg
e

C
os

ts

P
ro

xi
m

ity
 to

cu

st
om

er

R
eq

ui
re

d
pr

ox
im

ity

P
os

si
bi

lit
y

of

ro
un

d-
th

e-
cl

oc
k

de
ve

lo
pm

en
t

Problems in
Communication,

Coordination,
Control

Productivity

Knowledge
fit

Round-the-
clock benefit

++

-
+++

++ ++

--

++

--

-

+++

++--++
++

++

++

+++ +++

Fig. 1. Identified goals, influencing factors, and their relationship: strong (+++), medium (++),
or soft (+) impact that is positive (+) or negative (-)

development projects), and other types of publications. Table 1 lists the analyzed
literature. As a result, a first set of criteria and causal relationships was identified.

2. Questionnaire design: Based on the literature results, a questionnaire was de-
signed for use in interviews with practitioners. In the questionnaire, the findings from
the literature study were presented and the practitioners were asked to comment on
these results.

3. Interview study: An interview study was conducted with managers of distributed
software development. Interviews were conducted either in person or over the tele-
phone. They usually lasted for approximately one hour. The interviews were part of a
larger study on distributed development (see [13]), with ten of them being used for the
work presented here. All interviews were recorded and transcribed literally.

4. Analysis: The transcribed interviews were analyzed question by question, com-
paring the answers with the literature study results. According to the practitioners’
answers, the previous findings were weighted, new criteria and causal relationships
were added, and irrelevant factors were removed.

 A Decision Model for Supporting Task Allocation Processes 337

The study resulted in a set of 13 influencing factors. These factors have an influ-
ence on four intermediate factors (problems in communication, coordination, and
control; possible benefit of round-the-clock-development; productivity; fit between
the knowledge needed for a task and that available at a site) and on three goals (cost,
time, quality). Figure 1 shows the relationships identified between influencing factors
and goals. It also gives a relative weight for the (positive or negative) influences.

3.3 Model Overview

Based on the results of the literature and interview studies, a model for supporting
task allocation decisions was developed. The algorithms of the model reuse ap-
proaches from distributed systems and statistical modeling. In this section, the main
elements and algorithms of the model are sketched.

3.3.1 Distributed Systems Algorithm for Identifying Optimal Assignments
In an earlier study [11], the distributed systems algorithm of Bokhari was identified as
most promising for reuse in a GSD distribution model. A detailed explanation of the
model can be found in [12].

The algorithm gets as input a set of modules (i.e., tasks) and a set of processors the
modules can be assigned to. It considers two kinds of costs:

• Costs of executing module i on processor p. These are described as eip.
• Costs of transmitting data between module i and module j with i being assigned

to processor p and j to q. These are described as spq(dij) with dij representing the
amount of data transmitted between modules i and j and spq being the cost for
transmitting one unit of data between p and q.

3 4

2

1
1a 1c1b

2a 2c2b

3a 3c3b 4a 4c 4b

 s

t t

Fig. 2. An invocation tree and the corresponding assignment graph for three processors (a, b, c)

The tasks are assumed to be connected in a tree structure – every module is called
by a single parent module and can call a set of other modules. This structure is called
an invocation tree. The algorithm creates an assignment graph out of the invocation
tree by creating a node for every combination of module and processor and connect-
ing them in accordance with the invocation tree (see Figure 2).

338 A. Lamersdorf, J. Münch, and D. Rombach

The edges in the assignment graph are weighted with the combined execution and
transmission costs. A graph algorithm developed by Bokhari then uses a dynamic
programming approach for efficiently identifying the shortest paths through the graph.
These paths represent the optimal assignment of modules to processors with a mini-
mal sum of all execution and transmission costs.

On a high-level view, the algorithm solves a problem similar to the task assignment
in GSD. Applying the model to GSD means:

• Modules and processors are represented by tasks and sites.
• The costs of executing module i on processor p are represented by the effort of

doing task i of a software development project at site p (mainly depending on
the characteristics of tasks and sites identified in Section 3.2).

• The costs of transmitting data between module i and module j with i being as-
signed to processor p and j to q are represented by the overhead being created
between tasks i and j that are assigned to sites p and q (mainly depending on the
dependencies between tasks and sites identified in Section 3.2).

The input variables describing the cost functions eip and spq(dij) in detail are given
by the results of the empirical study. However, other problems remain:

• The algorithm can only handle tasks that are connected in a tree structure. How-
ever, tasks in a development project can have arbitrary connections.

• Costs are the only criteria for comparing different assignments. Therefore, the
different conflicting goals that can exist in global software development have to
be aggregated into one cost function.

• All costs are described by a single, distinct number, which does not represent the
reality of human development that contains a large amount of uncertainty.

The first problem was solved by developing an extension of Bokhari’s algorithm that
contains an additional first step of transferring arbitrary graphs into a set of trees
(however, with reduced efficiency). The other two problems were solved by describ-
ing the cost functions not by single numbers but using Bayesian networks.

3.3.2 Bayesian Networks for Evaluating Assignments
A Bayesian Network (BN) is able to formulate causal relationships under conditions
of uncertainty. It consists of a directed acyclic graph representing discrete variables
and their relationships and a set of probability tables. For every variable, one table
describes the probabilities of its values as a function of the input variables [39].

The application of mathematical methods allows for inference within BNs: Using
bottom-up and top-down reasoning, statements can be made on the probabilistic distri-
bution of the values of any variable based on a set of observed values of other variables.
In addition, it is possible to make reasoned statements even if not all independent vari-
ables have defined observed values. Thus, in software engineering research, BNs have
been used to model and predict software development projects [40].

We used Bayesian networks in our model to represent the cost functions of the dis-
tributed systems algorithm of Bokhari: Both the cost of executing a task at a site and
the cost of transmitting data between sites is represented by a BN. Figures 3 and 4
show the resulting networks.

 A Decision Model for Supporting Task Allocation Processes 339

Every BN models the impact of a set of input variables on three cost types (finan-
cial, time, quality). This is done for every combination of task and sites individually.
For example, the BN for describing the cost at a site (Figure 3) can be instantiated for
task t1 and site s1 with the according parameters of t1 and s1 (e.g., the size of t1 and the
process maturity at s1).

BNs operate with discrete values for every input and output variable. We thus de-
fined five steps from “very low” to “very high” for most variables (e.g., proximity to
customer). For other variables (e.g., cost rate) that have numeric values, we defined
intervals in order to get discrete values.

The probabilistic tables for the BNs were designed with help of the AgenaRisk
tool [41]. It contains functions for calculating the table values by using the normal
distribution and by representing the discrete values with numbers from 1 to 5. For
example, the table for “development quality” is calculated by generating a normal
distribution with the weighted average of “staff capability” and “process maturity”
as mean value. The integration of this function between the intervals (0, 1)… (4, 5)
then delivers the values for the probabilistic table.

Input variables, cost variables, causal relationships, and their weights (e.g., the
weights of “staff capability” and “process maturity” on “development quality”) were
taken from the results of the literature and interview studies.

Local Expertise
for Task

Needed Proximity
to Customer

Proximity to
Customer

Staff
Ca abilit

Process
Maturit

Proximity
Feasibilty

Feasibilty for
task

Development
Quality

Productivity

Time Cost
Financial Cost

Quality Cost

Task Size

Cost Rate

Site Factor

Task Factor

Fig. 3. Bayesian network for cost at site

In order to get one single cost function, all three costs (financial, time, quality) are
normalized and added with different weights (which are dependent on project priori-
ties) into one function.

The repeated application of the two networks for every combination of tasks and
sites makes it possible to describe the needed cost functions of the distributed sys-
tems algorithm. However, the values of the functions are not distinct numbers but
probabilistic distributions over a set of cost values. This makes the uncertainty in

340 A. Lamersdorf, J. Münch, and D. Rombach

Language
Differences

Cultural
Differences

Common
Ex eriences

Infrastruct
ure Link

Time
Shift Process

Maturit

Round-the-clock
PossibilitRound-the-clock

Capability

Communication
Problems

Task
Cou lin

Overhead
Time

Increase

Time
Costs

Financial
Costs

Quality
Costs

Round-the-clock
BenefitSite factor

Dependency
between sites

Dependency
between tasks

Fig. 4. Bayesian network for transmission cost

human behavior explicit. On the other hand, Bokhari’s algorithm uses distinct values
as input. Therefore, an algorithm was developed that is able to suggest assignments
by using the distributed systems algorithm while taking the probabilistic cost distri-
butions as input.

3.3.3 Algorithm for Suggesting Assignments
The link between the Bayesian networks results and the (adapted) algorithm of Bok-
hari is provided by a randomization algorithm. It basically consists of three steps:

• Collect the probabilistic distributions by executing the BNs for every combina-
tion of tasks and sites.

• Repeat for a large number of runs:

o Randomly pick one number out of every probabilistic distribution. The prob-
abilities for every random pick are provided by the probabilistic distributions.
Store the numbers as cost functions for the distributed systems algorithm.

o Execute the distributed system algorithm and store the returned assignment.

• Return the stored assignments in an ordered list with a decreasing number of oc-
currences.

In other words, the algorithm simulates a number of scenarios with randomly cho-
sen numbers for the individual cost functions, based on the probabilistic distributions.
This ensures, on the one hand, that across all scenarios, the costs reflect the predic-
tions of the Bayesian networks. On the other hand, within each run, all costs are rep-
resented by distinct numbers, which makes the execution of Bokhari’s algorithm
possible.

 A Decision Model for Supporting Task Allocation Processes 341

As a result, the algorithm returns not one but several ordered assignments together
with information on the number of scenarios in which each distribution was optimal.
This makes the uncertainty in predicting human behavior explicit and gives the pro-
ject manager the opportunity to choose from an ordered set of assignments.

3.4 Example

The model was implemented as a Java prototype with a Swing GUI and consisted of a
generic and a model-specific part. The generic part contained implementations of the
algorithm of Bokhari, the randomization algorithm, and the Bayesian networks. The
BN implementation reused the JavaBayes framework [42] and extended it with func-
tions for calculating the probabilistic tables similar to the functions used in the Age-
naRisk [41] tool. The model-specific part implemented the BNs that were derived
from the empirical study. As these were developed using AgenaRisk, they were trans-
formed by hand into the implementation.

Cp: +
RtC: -

Requirements
Size: 50 NP: ++
Requirements
Size: 50 NP: ++

Design A
Size: 50 NP: +

Design A
Size: 50 NP: +

Design B
Size: 50 NP: +

Design B
Size: 50 NP: +

Design C
Size: 50 NP: +

Design C
Size: 50 NP: +

Implementation A
Size: 50 NP: --
Implementation A
Size: 50 NP: --

Implementation B
Size: 50 NP: --
Implementation B
Size: 50 NP: --

Implementation C
Size: 50 NP: --
Implementation C
Size: 50 NP: --

Integration
Size: 50 NP: ++

Integration
Size: 50 NP: ++

Cp: +
RtC: -

Cp: +
RtC: - Cp: o

RtC: -

Cp: +
RtC: -

Cp: +
RtC: -

Cp: +
RtC: -

Cp: o
RtC: -

Cp: -
RtC: -

Cp: +
RtC: -

Cp: +
RtC: -

NP: Needed proximity to customer
Cp: Coupling
RtC: Possibilty of Round-the-Clock Development

++ very high + high o medium

- low -- very low

Fig. 5. Project example – Tasks to be distributed

At Customer

USA India

Cost: 70 Prox: ++
SC: + PM: +
REx: ++ DEx: ++ ImpEx: -- IntEx: +

Cost: 25 Prox: --
SC: o PM: + REx: --
DEx: -- ImpEx: ++ IntEx: --

Cost: 50 Prox: --
SC: + PM: +
REx: ++ DEx: ++ ImpEx: o IntEx: +

LDiff: - CDiff: - CoExp: o
InfrL: + TDiff: -- LDiff: + CDiff: + CoExp: o

InfrL: + TDiff: ++

LDiff: + CDiff: o CoExp: +
InfrL: o TDiff: ++

Prox: Proximity to Customer
SC: Staff Capability
PM: Process Maturity
REx: Requirements Expertise

DEx: Design Expertise
ImpEx: Implementation Expertise
IntEx: Integration Expertise
LDiff: Language Difference

CDiff: Cultural Difference
CoExp: Common Experiences
InfrL: Infrastructure Link
TDiff: Time Zone Difference

Fig. 6. Available sites

342 A. Lamersdorf, J. Münch, and D. Rombach

In the following, the use of the model will be shown in a hypothetical example. The
tasks of the example project include requirements engineering, design and implementa-
tion of three different components, and integration. Three sites are available: One site
at the customer, which is very expensive but has very good skills in requirements engi-
neering and design. The second site is in the US. It is also expensive (but not as much
as the customer’s site) and also has good skills in requirements engineering and design.
The Indian site has large differences (especially in language and culture) compared to
the other two sites, but is very inexpensive. People there have very good skills in im-
plementation but are inexperienced in requirements engineering and design. Figures 5
and 6 show the tasks and sites with their parameters in detail.

Table 2 shows the results of executing the model with three different weights on
the goals. For every execution the three best results are presented together with the
number of runs the assignment was optimal (e.g., in the first execution, the best as-
signment was optimal in 9% of the runs). In the first result, the focus was on all goals,
with the highest weight on quality (Cost: 20%, Time: 30%, Quality: 50%). Here the
model suggests doing the implementation in India and requirements and designing
either at the customer’s site or at the US site. Integration should be done at the cus-
tomer’s site (because it should be close to the customer) or in Asia (because it is
closely coupled with implementation).

Table 2. Model results with focus on quality (left), development costs (middle), and develop-
ment time (right)

 Cust US Asia Cust US Asia Cust US Asia
Reqs X Reqs X Reqs X
Des A X Des A X Des A X
Impl A X Impl A X Impl A X
Des B X Des B X Des B X
Impl B X Impl B X Impl B X
Des C X Des C X Des C X
Imp C X Imp C X Imp C X

1.
: 9

%

Integr X

1.
: 5

1%

Integr X

1.
: 1

8%

Integr X
 Cust US Asia Cust US Asia Cust US Asia

Reqs X Reqs X Reqs X
Des A X Des A X Des A X
Impl A X Impl A X Impl A X
Des B X Des B X Des B X
Impl B X Impl B X Impl B X
Des C X Des C X Des C X
Imp C X Imp C X Imp C X

2.
: 8

%

Integr X

2.
: 7

%

Integr X

2.
: 1

1%

Integr X
 Cust US Asia Cust US Asia Cust US Asia

Reqs X Reqs X Reqs X
Des A X Des A X Des A X
Impl A X Impl A X Impl A X
Des B X Des B X Des B X
Impl B X Impl B X Impl B X
Des C X Des C X Des C X
Imp C X Imp C X Imp C X

3.
: 7

%

Integr X

3.
: 6

%

Integr X

3.
: 1

0%

Integr X

 A Decision Model for Supporting Task Allocation Processes 343

The next result shows the execution of the model with a very strong focus on the
costs and very little regard for time and quality (Cost: 80%, Time: 10%, Quality:
10%). It can be seen that the model then suggests doing everything in India due to the
low cost rate there. An alternative would be assigning requirements and design to the
US site.

In the last run, the focus was set primarily on development time (Cost: 10%, Time:
80%, Quality: 10%). Now, the model favors assigning all tasks to one site, since this
would reduce the overhead of distributed communication. Another alternative given
by the model is to do every task at the site that has the best knowledge, which means
assigning implementation to Asia and requirements and design to the customer site.

4 Limitations and Validity of the Model

There are several limitations regarding the applicability of the model:

The experiences gathered in the empirical study come from many different organi-
zations and project environment. Therefore, the expressed relationships describe a
general overview rather than a concrete environment. Within a specific organization,
the relative weights of the criteria may differ, or additional criteria may be relevant.
The model thus has to be adapted in order to be used in a specific environment. How-
ever, due to its modularization, this can be done by changing the Bayesian networks
without having to modify the algorithms.

Underlying the model development was the assumption that project management
can divide a project upfront into distinct tasks that can be independently assigned to
the available sites. However, a project manager often has no clear information on the
tasks of a project because, for example, an agile process is followed or there is not
enough knowledge on the requirements or the technology. In these cases, it would be
hard to use the model. This also implies that the model evaluation should start using
historic project data as it is easier to identify distinct tasks in retrospective.

The model also assumes that there is enough knowledge in an organization for de-
scribing the characteristics of the sites (e.g., knowledge available, cultural differ-
ences). In Bayesian networks, it is possible to calculate probabilistic distributions
without all input parameters having distinct values. Therefore, the model can be used
even if not all variables are known. But the less information is known, the less useful
are the suggestions made by the model.

The BNs operate with variable values from “very low” to “very high”. As they are
relatively fuzzy and subjective, an application of the model in a real-world environ-
ment needs to come with specific evaluation guidelines (e.g., which time zone dis-
tance is to be interpreted as “low” and which as “medium”).

Although the criteria and causal relationships of the model presented here stem
from an empirical study, the model needs further evaluation. It has so far only been
used for simulating task assignment processes with hypothetical input data. Therefore,
external validity needs to be carefully considered when applying the model and mak-
ing conclusions in practice.

344 A. Lamersdorf, J. Münch, and D. Rombach

5 Conclusion and Future Work

The main goal of the work presented here was to find decision support for task alloca-
tion that considers multiple criteria for the decision. It is, however, not easy to clearly
define the term “criteria” in a conceptual framework for a model. We distinguished
between goals of software development projects (cost, time, quality) and characteris-
tics of distributed development that have an impact on the goals. Based on that as-
sumption and on an empirical study, we developed a model for decision support in
task allocation that reuses an approach from distributed systems and Bayesian net-
works in order to suggest a prioritized list of assignments.

By conducting an empirical study on the goals and characteristics of distributed
development, we assured that the model considered criteria relevant for task alloca-
tion. However, since the adapted distributed systems algorithm and the mechanism of
selecting cost values according to probabilistic distributions work independently of
the Bayesian networks, the model can be easily changed if other goals or influencing
factors are relevant in a specific environment.

The model fulfills the goals stated in Section 3.1.: It results in a weighted list of
suggestions for task allocation while systematically considering both multiple project
goals and characteristics of distributed development. The requirements for a distribu-
tion model defined in [11] are also fulfilled:

• Multi-objectivity: The example shows how different weights put on the project
goals can change the resulting assignments suggested by the model.

• Properties of tasks and sites, dependencies between tasks and sites: All of these
types of influencing factors can be described in the Bayesian networks.

• Adaptability: The model can be adapted to different environments by changing
the Bayesian networks.

• Formality: The model contains formal algorithms that can automatically suggest
assignments.

• Empirically-based criteria: The influencing factors and goals were identified in
an empirical study.

Future work will have to test the model in real-world environments. We therefore
plan to evaluate and iteratively extend the model in case studies and experiments.

References

1. Herbsleb, J.D., Moitra, D.: Guest editors’ introduction: Global software development.
IEEE Software 18(2), 16–20 (2001)

2. Damian, D., Moitra, D.: Global Software Development: How Far Have We Come? IEEE
Software 23(5), 17–19 (2006)

3. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software 18(2), 22–29 (2001)

4. Seshagiri, G.: Point/Counterpoint: GSD: Not a Business Necessity, but a March of Folly.
IEEE Software 23(5), 62–65 (2006)

5. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code: Conway’s
law revisited. In: 21st International Conference on Software Engineering, pp. 85–95 (1999)

 A Decision Model for Supporting Task Allocation Processes 345

6. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of global
software development: Distance and speed. In: 23rd International Conference on Software
Engineering, pp. 81–90 (2001)

7. Smite, D., Moe, N.B.: Understanding a Lack of Trust in Global Software Teams: A Multi-
ple-Case Study. Software Process: Improvement and Practice 13(3), 217–231 (2007)

8. Mockus, A., Weiss, D.M.: Globalization by Chunking: A Quantitative Approach. IEEE
Software 18(2), 30–37 (2001)

9. Bass, M., Paulish, D.: Global Software Development Process Research at Siemens.
In: Third International Workshop on Global Software Development, Edinburgh, Scotland
(2004)

10. Setamanit, S., Wakeland, W.W., Raffo, D.: Using Simulation to Evaluate Global Software
Development Task Allocation Strategies. Software Process: Improvement and Prac-
tice 12(5), 491–503 (2007)

11. Lamersdorf, A., Muench, J., Rombach, D.: Towards a Multi-Criteria Development Distri-
bution Model: An Analysis of Existing Task Distribution Approaches. In: International
Conference on Global Software Development, pp. 109–118 (2008)

12. Bokhari, S.H.: A Shortest Tree Algorithm for Optimal Assignments Across Space and
Time in a Distributed Processor System. IEEE Transactions on Software Engineering 7(6),
583–589 (1981)

13. Lamersdorf, A.: Towards a global software development distribution model: Empirically-
based model building for distributed software development. Master Thesis, University of
Kaiserslautern (2008),

 http://wwwagse.informatik.uni-kl.de/staff/lamersdorf
14. Treinen, J.J., Miller-Frost, S.L.: Following the sun: Case studies in global software devel-

opment. IBM Systems Journal 45(4), 773–782 (2006)
15. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global

Software Development. IEEE Software 18(2), 70–77 (2001)
16. Ebert, C., De Neve, P.: Surviving Global Software Development. IEEE Software 18(2),

62–69 (2001)
17. Mullick, N., Bass, M., Houda, Z., Paulish, D.J., Cataldo, M., Herbsleb, J.D., Bass, L.:

Siemens Global Studio Project: Experiences Adopting an Integrated GSD Infrastructure.
In: International Conference on Global Software Engineering, pp. 203–212 (2006)

18. Lindqvist, E., Lundell, B., Lings, B.: Distributed Development in an Intra-national, Intra-
organizational Context: An Experience Report. In: International workshop on Global soft-
ware development for the practitioner, pp. 80–86 (2006)

19. Casey, V., Richardson, I.: Uncovering the Reality within Virtual Software Teams. In:
International Workshop on Global software development for the practitioner, pp. 66–72
(2006)

20. Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or Sinking: Global Software
Outsourcing Relationships. IEEE Software 18(2), 54–60 (2001)

21. Kobitzsch, W., Rombach, H.D., Feldmann, R.L.: Outsourcing in India. IEEE Soft-
ware 18(2), 78–86 (2001)

22. Alami, A., Wong, B., McBride, T.: Relationship Issues in Global Software Development
Enterprises. Journal of Global Information Technology Management 11(1), 49–86 (2008)

23. Oza, N.V., Hall, T.: Difficulties in Managing Offshore Software Outsourcing Relation-
ships: An Empirical Analysis of 18 High Maturity Indian Software Companies. Journal of
Information Technology Case and Application Research 7(3), 25–41 (2005)

24. Komi-Sirvio, S., Tihinen, M.: Lessons Learned by Participants of Distributed Software
Development. Knowledge and Process Management 12(2), 108–122 (2005)

346 A. Lamersdorf, J. Münch, and D. Rombach

25. Espinosa, A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Familiarity, Complexity, and
Team Performance in Geographically Distributed Software Development. Organization
Science 18(4), 613–630 (2007)

26. Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in Glob-
ally-Distributed Software Development. IEEE Transactions on Software Engineer-
ing 29(6), 481–494 (2003)

27. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global software development at Siemens: Experi-
ence from nine projects. In: 27th International Conference on Software Engineering,
pp. 524–533 (2005)

28. Pilatti, L., Audy, J., Prikladnicki, R.: Software Configuration Management over a Global
Software Development Environment: Lessons Learned from a Case Study. In: Interna-
tional workshop on Global software development for the practitioner, pp. 45–50 (2006)

29. Ramasubbu, N., Balan, R.K.: Globally Distributed Software Development Project Per-
formance: An Empirical Analysis. In: 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 125–134 (2007)

30. Gareiss, R.: Analyzing the Outsourcers. Information Week (November 18, 2002)
31. Smite, D.: Global Software Development Project Management – Distance Overcoming.

In: Dingsøyr, T. (ed.) EuroSPI 2004. LNCS, vol. 3281, pp. 23–33. Springer, Heidelberg
(2004)

32. Kommeren, R., Parviainan, P.: Philips experiences in global distributed software develop-
ment. Empirical Software Engineering 12(6), 1382–3256 (2007)

33. Espinosa, J.A., Nan, N., Carmel, E.: Do Gradations of Time Zone Separation Make a Dif-
ference in Performance? A First Laboratory Study. In: International Conference on Global
Software Engineering, pp. 12–22 (2007)

34. DeLone, W., Espinosa, J.A., Lee, G., Carmel, E.: Bridging Global Boundaries for IS Pro-
ject Success. In: 38th Hawaii International Conference on System Sciences, p. 48b (2005)

35. Coward, C.T.: Looking Beyond India: Factors that Shape the Global Outsourcing Deci-
sions of Small and Medium Sized Companies in America. Electronic Journal on Informa-
tion Systems in Developing Countries 13(11), 1–12 (2003)

36. Sakthivel, S.: Managing Risks in Offshore Systems Development. Communications of the
ACM 50(4), 69–75 (2007)

37. Gurung, A., Prater, E.: A Research Framework for the Impact of Cultural Differences on
IT Outsourcing. Journal of Global Information Technology Management 9(1), 24–43
(2006)

38. Carmel, E.: The Explosion of Global Software Teams. Computerworld 31(49) (1997)
39. Ben-Gal, I.: Bayesian Networks. In: Ruggeri, F., Kenett, R., Faltin, F. (eds.) Encyclopedia

of Statistics in Quality and Reliability. John Wiley & Sons, Chichester (2007)
40. Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M.: Making Resource Deci-

sions for Software Projects. In: 26th International Conference on Software Engineering,
pp. 397–406 (2004)

41. AgenaRisk Tool. Agena Limited, http://www.agenarisk.com/products/
42. Cozman, F.G.: JavaBayes - Bayesian Networks in Java,

 http://www.cs.cmu.edu/~javabayes/

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 347–361, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Software Process Improvement: Supporting the Linking
of the Software and the Business Strategies

Adriano Bessa Albuquerque1, Ana Regina Rocha2, and Andreia Cavalcanti Lima1

1 University of Fortaleza, Washington Soares Avenue,
1321 - Bl J Sl 30 - 60.811-341 - Fortaleza, Brazil

2 COPPE/UFRJ - Federal University of Rio de Janeiro,
P.O. BOX 68511 – ZIP21945-970 – Rio de Janeiro, Brazil

adriano.ba@terra.com.br, darocha@cos.ufrj.br,
andreia@bnb.gov.br

Abstract. The market is becoming more and more competitive, a lot of prod-
ucts and services depend of the software product and the software is one of the
most important assets, which influence the organizations’ businesses. Consider-
ing this context, we can observe that the companies must to deal with the soft-
ware, developing or acquiring, carefully. One of the perspectives that can help
to take advantage of the software, supporting effectively the business, is to in-
vest on the organization’s software processes. This paper presents an approach
to evaluate and improve the processes assets of the software organizations,
based on internationally well-known standards and process models. This ap-
proach is supported by automated tools from the TABA Workstation and is part
of a wider improvement strategy constituted of three layers (organizational
layer, process execution layer and external entity layer). Moreover, this paper
presents the experience of use and their results.

Keywords: Software Quality, Software Process Improvement, Business Strategy.

1 Introduction

Nowadays, the world’s software industry increases because the software became part
of many products and activities. According to Nollen [1], the Indian software industry
reached about $23.4 billion in sales revenue in the Indian fiscal year 2004-05. The
Chinese software industry was $26.5 billion in 2004. And the worldwide software
industry size was $1,045 billion in 2004.

Moreover, the software is becoming one of the most important assets to the organi-
zations, because their products depend more and more of the software’s services and
their characteristics.

Prahalad et al. [2], emphasized that in all businesses, from the consolidated ones to
the volatile, the information technology is a critical source of competitive opportuni-
ties and risks. They also said that the software products are determining the nature of
the experiences that the clients, employees, partners and investors have with the com-
pany, their products, services and operations.

348 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

Reed [3] highlighted that 40% of the world population will suffer with the conse-
quences, if some globally used systems fail.

In face of a context where the software product is a very important strategical
component to the organizations, and knowing that the software process can influence
positively the quality of this product, we defined an approach to evaluate and improve
the organizations’ process assets, integrated to TABA Workstation, where the busi-
ness objectives and the product quality objectives are strongly considered to the plan-
ning and actions of the improvement cycle.

This paper presents this approach and the results of a real experience of use in a
software organization of Rio de Janeiro.
Following this introduction, section 2 presents some relevant consideration related to
organizational strategic planning. Section 3 presents some knowledge about software
process improvement. Section 4 presents the proposed process. Section 5 presents the
results of the experience of use and section 6 concludes the paper.

2 Business Strategy

On this competitive market, defining an adequate strategy is fundamental, because,
the strategy can be seen as a headlight pointing out the direction of the investments.
Without this, the initiatives can do not obtain the expected outcomes.

Moreover, as the software is an essential part of the products and services of the
companies, the developer and the consumer should define specially strategies to ac-
quire and develop their software products. Today, the matter “software” and their
related actions must be introduced carefully on the strategic planning of any company.

Strategy is the choice of the market segment and clients that the business unities in-
tends to serve, identifying the critical internal processes where the units should reach
the excellence to accomplish their value proposition to the clients of the target-
segments and selecting the individual and organizational capabilities to achieve the
internal, of clients and financial objectives [4].

Wright, Kroll and Parnell [5] said that the strategy should be established with the
participation of the high managers to obtain results in harmony with the organization’s
mission and objectives. At the same manner, Thompson Jr. and Strickland III [6] un-
derstand the strategy as the plan defined by the administration to reinforce the position
of the organization on the market, promote the clients’ satisfaction and achieve the
performance objectives.

One of the most used approaches that deal with the strategic management is the
Balanced ScoreCard (BSC), which is a methodology to facilitate the organizations to
align their management processes and to focus all the organization on the strategy’s
implementation at long term.

This methodology has four operational perspectives, which are listed bellow. The
objectives and measures of the scorecard of each perspective derive from the organi-
zation’s vision and strategy.

• Financial Perspective: indicates if the implementation and execution of the
strategy is contributing to improve the company’s tangible outcomes. This
perspective aims to evaluate the financial and economic outcomes of the busi-
ness, considering the strategic objectives.

 Software Process Improvement 349

• Customer Perspective: indicates how to create values to the organization’s
clients, how to comply a demand satisfactorily and to identify the reasons
which the clients want to obtain the products and services.

• Internal Process Perspective: analyzes the organization’s internal processes,
including the identification of the resources and capabilities that the company
needs to raise their level of quality. The organizations should focus on the
critical internal operations that permit to satisfy the clients and stockholders
needs. According to Kaplan and Norton [17] the organizations should identify
and measure their essential competences and the critical technologies neces-
saries to guarantee their permanence as the leader of the market, from the
complete value chain of the internal processes which includes three main
processes: Innovation, Operation and Pos-Sale Services.

• Innovation and Learning Perspective: ponders the organization’s cultural
attitudes related to development and retention of talents and the creation and
systematization of the knowledge inside the organization [4]. This perspective
permits the organization to guarantee its capability of renewing at long term.

However, nowadays, others models similar to BSC have emerged. Maisel [7] de-
fined the Balanced Scorecard model, with the same name of the model created by
Kaplan and Norton. This model consists of four perspectives (financial, client, com-
mercial process and human resource) to measure the business. Mc Nair et al. [8] de-
fined an approach called Performance Pyramid, which defined as its basic principle,
the focus on the clients, linked with the organization’s strategy. Adams and Roberts [9]
defined the EP2M – Effective Progress and Performance Measurement, where they
highlighted that the implementation of the strategy is not sufficient, but the organiza-
tion should develop a culture to prepare the company to the changes, that are constants
and to permit to make decisions in a rapid way. In 2005, Kim and Mauborgne [10]
studying more than 150 strategic movements, created the Blue Ocean Strategy. This
strategy tries to guide the organizations to the innovation and to markets not yet ex-
plored. The focus of this strategy is not the competition but rather the creation of new
markets, aggregating values and reducing costs.

3 Software Process Improvement

The success of an Improvement Program depends of some factors that must be consid-
ered adequately. For example: (i) providing sufficient resources [11]; (ii) customizing
the Improvement Program to the organization’s characteristics [11]; (iii) adjust the
improvement objectives to the business strategy objectives [12]; (iv) considering other
type of factors besides only technical factors [11]; (v) investing in the human resources
qualification [13]; (vi) obtain the engagement of all collaborators [11]; (vii) provide
support of knowledge management approaches [11].

In the face of the complexity of some technical, cultural and environmental aspects
related to software process improvement, standards and models were created or
evolved aiming to guide the organizations to define and improve their processes [14]
[15] [16] [17]. Besides, some effective approaches were already defined.

350 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

Komi-Sirviö [18] presented the approach Pr2imer, where the actual situation is
analyzed, an ideal state and their indicators are defined, pilot projects are performed
and according to the results, the improvements are institutionalized.

Birk et al. [19] defined an interesting improvement process approach, which the
main characteristic is to be guided to the organization’s specific software quality re-
quirements. Birk and Pfhal [20] presented and approach based on system perspective,
emphasizing the business objectives, the product objectives and the process objectives.

Caivano [21] defined a continuous process improvement approach using Statisti-
cal Process Control. Martins and Da Silva [22] defined the approach SPI – ProPAM,
which is supported by the alignment between the processes and the projects man-
agement. This alignment is defined as the degree which the projects’ plan and goals
support and are supported by the processes’ practices. Salo and Abrahamsson [23]
presented an approach focused on knowledge management, which the objective is to
provide, systematically, knowledge and experience mechanisms to help the project
teams to define processes more adequate and to improve the engagement of the
teams, including the software process group.

4 Process “Evaluation and Improvement of the Process Assets”

This reality, described above, motivated the following research assumption: how
would be possible to define and implement on TABA Workstation an strategy able to
guide the definition and execution of software process to improve the organizational
standard processes using data from the projects.

This approach had to have the following requirements: (i) it must be part of a ma-
jor strategy (Strategy in Layers to Define, Evaluate and Improve Software Processes);
(ii) it must be integrated to the TABA Workstation; (iii) it must be guided by the
business objectives; (iv) it must be guided by the product quality objectives; and (v) it
must be executed on a real situation. The approach was defined and was called
“Evaluation and Improvement of Process Assets”. It encompasses four subprocesses:
(1) Identifying improvement opportunities; (2) Planning and implementing improve-
ments; (3) Identifying preventive actions; and (4) Concluding the improvement cycle.

Subprocess: Identifying Improvement Opportunities
The purpose of this subprocess is to identify the improvements to be implemented on
the process assets aiming to satisfy the organization’s vertical and/or horizontal im-
provement objectives. It encompasses the following activities which are made up of
tasks:

1. Characterize the improvement cycle: the purpose of this activity is to
characterize the actual improvement cycle of the organization. The process
group, the high managers and the consultants (if exist) should to hold a
meeting to identify important information to support this characterization.

a. Identify vertical improvements: objectives related to reach
some level on maturity models should be identified.

b. Identify horizontal improvements: objectives related to the
processes’ performance or their suitability to the organization’s
needs should be identified.

 Software Process Improvement 351

c. Identify business objectives: the business objectives to support
the selection of the organization’s critical processes and the pri-
oritization of the improvements should be identified. If the or-
ganization has already defined these objectives, it should review
them.

d. Identify product quality objectives: product quality objectives
to support the selection of the organization’s critical processes,
and the prioritization of the improvements should be identified.
If the organization has already defined these objectives, it should
review them. Before this definition, the process group should
hold a meeting with the organization’s collaborators to know
their perception about the quality of the products. Besides, the
organization could hold a meeting with the clients, a Forum of
clients, to know the perceptions of them about its products and
services.

e. Identify and select the organization’s critical processes: the
processes considered critical to the organization should be iden-
tified. As the problems of these processes are more relevant than
others, these processes must be handled on this improvement
cycle.

f. Select projects: the organization’s projects, whose data should
be analyzed on the actual improvement cycle to identify prob-
lems and improvement needs, are selected.

g. Plan the process: the execution of the process “Evaluation and
Improvement of the Process Assets” is planned to the actual im-
provement cycle. On the planning, the activities and respective
dates and resources should be defined. If some activity is not
relevant to the actual cycle, it can be put out of the plan.

2. Analyze processes to implement vertical improvements: the purpose of
this activity is to identify what are the improvements to be implemented
on the organization’s processes aiming to get a new level on maturity
models, like: CMMI and MPS.BR.

a. Identify changes to the processes: the processes should be ana-
lyzed, comparing them with the expected results of the models,
to identify the changes to be implemented on the processes. The
Gap Analysis technique [24] or the Compliance of Factors tech-
nique [25] can be utilized.

3. Analyze data to implement horizontal improvements: the purpose of
this activity is to analyze data from the processes executed on selected
projects, to identify problems that are making difficult achieve the busi-
ness and product quality objectives. This activity is performed by the
process group and consultants, if exist.

a. Analyze the results of the adequacy evaluations: the results of
the adequacy evaluations, which are always executed at the end
of an activity, should be analyzed. The analysis should try to
identify pattern of problems related to the training adequacy,

352 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

support tool adequacy, template adequacy, activity’s description
adequacy and the activity’s relevance.

b. Analyze data from post mortem analysis: data from the pro-
jects’ post mortem analysis should be analyzed.

c. Analyze results of the monitoring processes indicators: results
of the monitoring processes indicators should be analyzed.

d. Select others data sources to be analyzed: if necessary, others
data sources can be selected, to improve the contextualization of
the analysis. The following data source can be selected: (i) proc-
esses adherence evaluation; (ii) work products adherence evalua-
tion; (iii) lessons learned; (iv) guidelines; (v) processes changes;
(vi) processes changes demands and (vii) results of the official
assessment MPS.BR or SCAMPI.

e. Analyze others data sources: if others data sources were se-
lected on the anterior task, they should be analyzed.

f. Evaluate problems: all the found problems should be evalu-
ated. Optionally, the Matrix to Analyze Problems can be filled
out to each process, aiming to confirm or refute the evidences.
This matrix is based on the method to support qualitative analy-
sis, called Content Analysis [26]. This technique tries to iden-
tify, mainly, the frequency and intensity of some information on
the documents.

g. List the identified problems: The problems identified during
the analysis should be registered.

4. Identify problems to be held: the purpose of this activity is to identify
the problems to be handled on the actual improvement cycle to achieve
the vertical and/or horizontal improvement objectives. The tasks of this
activity should be performed by all the process group’s participants and if
necessary, with the helping of the high managers.

a. Present problems: the collaborators which executed the activities
“Analyze processes to implement vertical improvements” and
“Analyze data to implement horizontal improvements” should
present to the others members of the process group, the results ob-
tained from their work, helping the process group to select the
problems to be handled on this actual improvement cycle.

b. Select problems to be handled: the meeting’s participants
should select the problems to be handled, considering, mainly,
the business objectives and product quality objectives.

5. Identify the causes of the problems: the purpose of this activity is to
analyze the problems with the collaborators which performed any proc-
esses’ activities, to find out the problems’ root causes and to identify
improvement opportunities to solve the identified problems.

a. Analyze problems: the identified problems are analyzed to iden-
tify the root causes. In a meeting, predefined cause and effect dia-
grams to each problem are presented, supporting the discussion

 Software Process Improvement 353

between the participants and helping them to elaborate final versions
of the diagrams. Other approach that can be executed to improve the
understanding of the problems is to try to define the relationships be-
tween the causes using the Matrix to Discover Relationships or Influ-
ence Diagrams.
b. Suggest improvements: On the same meeting held to identify

the root causes, the process group should capture improvement
opportunities, which must come from the final version of the
cause and effect diagrams.

6. Identify improvement opportunities to be implemented: the purpose of
this activity is to present the results of the anterior activity to all members
of the process group, supporting them on the selection of the improvement
opportunities that must be implemented on the actual improvement cycle.
If convenient, the high managers can participate on the execution of this
activity.

a. Analyze and prioritize the improvement opportunities: the
analysis of the improvement opportunities should be performed
using, firstly, the approach SWOT Analysis, to deepen the
knowledge of the opportunities. Then, the level of prioritization
must be defined using the most appropriate approach, consider-
ing, especially, the complexity of the improvements and the
characteristics of the process group.

b. Select the improvement opportunities to be implemented: Af-
ter the prioritization of the improvement opportunities, the meet-
ing’s participants should define the improvements which will be
implemented on the actual improvement cycle.

c. Work out the improvement report: a member of the process
group or the consultant, if exists, should work out a report con-
taining the obtained results from this subprocess.

Subprocess: Planning and Implementing Improvements
The purpose of this subprocess is to plan the implementation of the selected im-
provement opportunities, and to implement and institutionalize them on the organiza-
tion. It encompasses the following activities which are made up of tasks:

1. Change the process assets: the purpose of this activity is to define and
execute an action plan to implement the required modifications on the
process assets. If exist high risky improvements to the organization, the
action plan must consider the performance of pilot projects to evaluate
them, before their institutionalization.

a. Define the action plan: the process group should define an ac-
tion plan to guide the implementation of the improvement oppor-
tunities.

b. Execute the action plan: the collaborators of the organization
should execute the actions defined on the action plan.

c. Manage the action plan: the process group should manage the
execution of the actions defined on the action plan.

354 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

2. Perform the pilot project: the purpose of this activity is to perform one
or more pilot Project to evaluate the high risky improvement opportuni-
ties, before their institutionalization. If they are not risky, the process
group can do not execute this activity. All the tasks of this activity are per-
formed by the process group.

a. Plan the pilot project: the pilot projects should be planned,
identifying the objectives, the assumptions and the data that must
be collected.

b. Execute the pilot project: the planned pilot project should
be executed aiming to evaluate the effects derived from the
modifications.

c. Analyze the results of the pilot projects: the results obtained
from the pilot project execution should be analyzed to decide if
the improvement opportunities will be institutionalized. The
analysis must verify if the effects are consistent with the assump-
tions defined on the planning.

3. Implement the improvement opportunities: the purpose of this activ-
ity is to implement the new process assets and institutionalize the
improvements. All the tasks of this activity are performed by the process
group.

a. Plan the implementation of the improvement opportunities:
the implementation of the improvement opportunities should be
planned. When the improvement can not be implemented on the
organization, like the creation of a new template, it will be re-
quired a new configuration of the TABA Workstation.

b. Perform the implementation of the improvement opportunities:
the new process assets are institutionalized on the organization in
accordance to the planning and are incorporated on the Organiza-
tional Asset Library.

c. Training the team on the modified process: the trainings re-
quired to guarantee the adequacy of the modified processes’ exe-
cution are carried out and the implemented improvements are
communicated to the stakeholders. These trainings can be carried
out formally, inside the organization, by the members of the proc-
ess group or by the consultants or can be performed more infor-
mally, with the support of a mentor. Besides, the implemented
improvements should be published on the organization, inform-
ing, mainly, the objectives, the origin and the expected outcomes.

Subprocess: Identifying Preventive Actions
The purpose of this subprocess is to analyze historical data of the organization’s proc-
esses and define preventive actions aiming to eliminate or reduce the probability of
the occurrence of imminent problems. This subprocess can be executed whenever the
organization considers convenient. It is not dependent of the execution of others sub-
processes. It encompasses the following activities which are made up of tasks:

 Software Process Improvement 355

1. Analyze data focusing in preventive actions: the purpose of this activity
is to analyze organizational historical data to identify possible preventive
actions.

a. Select processes: the processes, whose data will be analyzed,
should be selected.

b. Identify imminent problems: the relevant imminent problems
of the selected processes should be identified. These problems
should be identified from the risks which occurred on the organi-
zation’s projects and from the audit reports. Besides, the results
of the monitoring process indicators can be used too.

2. Establish preventive actions: the purpose of this activity is to establish
preventive action to reduce the chances of the imminent problems to be-
come a real problem.

a. Define preventive actions: imminent problems should be ana-
lyzed by the process group to define preventive actions, which
must be registered, along with the related problems, on the Ma-
trix of Preventive Actions. The stakeholders can help on the
identification of the preventive actions.

b. Define preventive actions plan: a plan including the preventive
actions, the respective responsible person, the beginning and fi-
nal date should be defined by the process group.

c. Execute preventive action plan: the preventive actions should
be executed in accordance to the preventive actions plan.

d. Manage preventive action plan: the preventive actions should
be managed by the process group.

Subprocess: Concluding the Improvement Cycle
This subprocess has two purposes: the first is to identify, analyze and register the
lessons learned during the execution of the processes to permit their reuse. The sec-
ond aims to collaborate with the consultancy companies (external entities), to support
the improvement of their process assets. It encompasses the following activities which
are made up of tasks:

1. Register lessons learned: the purpose of this activity is to identify the
lessons learned during the execution of this approach (“Evaluation and
Improvement of the Process Assets”). All the tasks of this activity are per-
formed by the process group.

a. Identify lessons learned: relevant lessons learned during the
execution of the approach should be identified.

b. Store lessons learned: the identified lessons learned should be
analyzed to choose those that must be stored on the organiza-
tional repository.

2. Communicate results to the consultancy company: the purpose of this
activity is to send the results obtained on the actual improvement cycle
and on the official assessments (CMMI, MPS.BR) to the consultancy
company to collaborate with its process assets. The improvement report or
only a part of it should be sent, including pertinent information.

356 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

a. Send the report: if pertinent to the organization, the process
group should send, to the consultancy company, the improve-
ment report or just a part of it. The results of the CMMI and
MPS.BR assessments are also important to be sent.

5 The Experience of Use

We executed The Process “Evaluation and Improvement of the Process Assets” on the
Software Engineering Laboratory (SEL) of COPPE, specifically on the Quality Sec-
tor, to evaluate its adequacy. This sector had implemented processes of MPS.BR level
E and soon would be assessed in this maturity model.

The Quality Sector team was composed of a doctor professor, a laboratory coordi-
nator, three project manager, one technical coordinator, one quality assurance analyst,
one measurement analyst, two responsible for managing the configuration, one re-
sponsible to managing the reuse, analysts and programmers. The process group was
composed of the laboratory coordinator and three project managers.

The laboratory’s activities included three families of projects: (i) projects related to
the development of the TABA Workstation; (ii) projects related to the development of
CORE-KM, a knowledge management environment and (iii) projects to develop tools
related to Master and Ph.D. thesis. All the projects used the software development
process and the others processes (Measurement, Configuration Management etc.).

Nowadays, the laboratory has implemented the following processes: Project Man-
agement, Requirement Management, Quality Assurance, Measurement, Configuration
Management, Organizational Process Definition, Reuse Management, Human Re-
source Management and Evaluation and Improvement of Organizational Process.

When this experience was carried out, there were three concluded projects and five
were still in process. The three concluded projects were related to the CORE-KM.
They were developed to an external client and one project manager and one analyst
participated of it. The quality assurance analyst has audited the products and the ad-
herence of the processes, measures were collected and the activities of the Configura-
tion Management were executed.

As the concluded projects had used the tool AvalPro, one of the tools of TABA
Workstation, we had data from the adequacy evaluations and post mortem analysis.
We had also the quality assurance reports and the measures collected during the exe-
cution of the processes.

The use of the process was restricted to the subprocess 1: Identifying improvement
opportunities and subprocess 4: Concluding the improvement cycle. The process
group decided do not execute neither the subprocess 2: Planning and implementing
improvements nor the subprocess 3: Identifying preventive actions. The subproc-
ess 2 was not executed because none of the modifications were implemented before
the moment of the assessment. And the subprocess 3 was not executed because it was
not obligatory.

It is important to highlight that one of the authors of this paper participated on this
experience as consultant.

 Software Process Improvement 357

5.1 Execution of the Subprocess 1: Identifying Improvement Opportunities

Activity: Characterize the improvement cycle
Three members of the process group participated in the execution of this activity.
A meeting with the process group was held, where the improvement cycle was
characterized.

On the meeting, they defined the following horizontal improvement objective:
“analyze the results obtained form the execution of the processes, aiming to convert
the processes of level E (MPS.BR) more mature and adequate to the reality of the
Quality Sector of the SEL, examining, mainly, the processes where the measures
present greater deviation from the expected performance.”.

On this moment, the group does not defined none vertical improvement objective,
because all the processes of level E (MPS.BR) had already been implemented.

The process group defined the following business objectives: (i) increase the con-
fidence of the clients on the quality of the products and on meeting the delivery dead-
line; (ii) create an experimentation environment to high maturity processes.

Moreover, they defined three product quality objectives: (i) Reliability: the prod-
ucts, when installed on the clients’ environment, must have a high level of reliability,
with a high time between failures, which must be quantitatively defined to each pro-
ject in accordance to its characteristics. (ii) Maintainability: the products must be easy
to maintain and evolve; (iii) Usability: the products must be easy to use, without any
need to carry out training when the software is evolved.

The Project Management and Measurement were defined as critical processes, us-
ing as the main criterion the level of relationship between the processes and the busi-
ness objectives. A third process (Quality Assurance), also related to business objec-
tives, was not considered critical because they did not perceived problems on it. The
process Measurement, although considered critical to achieve the second business
objective, was excluded from the improvement cycle, because did not exist sufficient
data to analyze its adequacy and performance. So, on this improvement cycle, only
the Project Management was considered as critical.

Finally, the process group select three concluded projects related to CORE-KM.
After the characterization, a member of the group worked out the Process Execution
Plan. The next executed activity was “Analyze data to implement horizontal im-
provements”.

Activity: Analyze data to implement horizontal improvements
A member of the process group and the consultant identified tendencies of problems,
analyzing data of the selected projects and processes. The analysis included data from
the adequacy evaluation, post mortem analysis and process monitoring indicators of
the three selected projects. The data were obtained from TABA Workstation, using
the tools AvalPro and Metrics. At the end of the activity, the report “Tendencies of
problems” was worked out.

Activity: Identify problems to be held
The member of the process group and the consultant, who had analyzed the data,
presented the report “Tendencies of problems” to all the participants of the process
group. On this meeting, the problems were analyzed again. They also decided to per-
form a causal analysis on the problem “The timeline estimative precision is far from

358 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

the expected”, because it was considered important to the organization and it was
extremely related to one of the business objective.

They observed that some problems were already being solved. Besides, they de-
cided to handle some problems only on the next improvement cycle. Moreover, they
established that two improvement opportunities should be handled on the actual cycle:
(i) improve the template used on the activity Data and Communication Management
and (ii) begin to use other support tool on the process Configuration Management,
replacing the Bugzilla.

Activity: Identify the causes of the problems
This activity was performed in a meeting held with the participants of the three projects.
During the meeting, the consultant presented a predefined cause and effect diagram to
the problem described on the anterior activity. At the end, were produced: (i) the final
version of the cause and effect diagram and (ii) a set of improvement opportunities.

Activity: Identify improvement opportunities to be implemented
This activity was executed in a meeting where the process group analyzing the results
obtained on the anterior activities, prioritized and selected the improvement opportu-
nities that should be implemented.

Firstly, a SWOT Analysis was performed in all the improvements, aiming to iden-
tify the barriers and the facilitators to the implementation. Then, the group decided
that it was not necessary to define the level of prioritization of the improvement op-
portunities related to TABA Workstation and that they will be inserted automatically
on the improvement report. On the same meeting, the group defined the level of pri-
oritization of the others improvements: (i) develop the knowledge about the perform-
ance of the processes (quantitative models of process), (ii) improve the template used
on the activity Data and Communication Management and (iii) begin to use other
support tool on the process Configuration Management, replacing the Bugzilla.

To define the prioritization we used the Matrix to Prioritization (Table 1), where
each participant of the meeting evaluated the improvements, considering the criteria
of the matrix. When we defined the criteria of the matrix we tried to link the im-
provements to the business objectives and product quality objectives.

Table 1. Criteria used to prioritize the improvements

Criteria Description
Seriousness Seriousness of the problem.
Importance to the
organization’s business
objectives

Importance of the improvement implementation to
the organization’s business objectives.

Impact on the quality of the
software products

Impact of the improvement implementation on the
quality of the organization’s software products.

Impact on the productivity
of the team

Impact of the improvement implementation on the
productivity of the teams.

Impact on the satisfaction of
the team

Impact of the improvement implementation on the
satisfaction of the teams.

Impact on the satisfaction of
the clients

Impact of the improvement implementation on the
satisfaction of the clients.

 Software Process Improvement 359

After this, when the result of the prioritization was analyzed, we observed that they
were very similar. So we used the Delphi technique [27] as a new approach to support
the meeting of the consensus.

On this same meeting, the improvement opportunities were analyzed considering
others criteria to choose the improvements that must be implemented, considering the
short, medium and long term. The following criteria were used: (i) Effort: estimative
in Men/Hour to implement the improvement; (ii) Resource Availability: availability
of resources (financial, human and technological) to implement the improvement;
(iii)Time: time to implement the improvement and (iv) Operational simplicity: sim-
plicity to implement the improvement.

As the result of this activity’s execution, was decided the following prioritization:
(1) begin to use other support tool on the process Configuration Management, replac-
ing the Bugzilla; (2) develop the knowledge about the performance of the processes
(quantitative models of process) and (3) improve the template used on the activity
Data and Communication Management. Finally, all the improvement opportunities
were selected to be implemented on the actual improvement cycle.

5.2 Execution of the Subprocess 4: Concluding the Improvement Cycle

Some lessons learned were captured and registered during the execution of the ap-
proach: (i) The discussions between the members of the process group, occurred when
the cycle is being characterized, is very important, because the objectives become
more coherent with the organization; (ii) The definition of the critical process helps
the data analysis to become more focused; (iii) The orientation of the decision must
be always based on the business objectives and the product quality objectives, be-
cause the software is one of the most important asset of the companies; (iv) Structured
data can speed the analysis up; (v) The predefined cause and effect diagrams helps the
participants to remember others possible causes; (vi) The Delphi technique permits
the decisions to be in accordance to the organization’s needs and to the point of view
of the majority of the members; (vii) All the points which were already defined, can
be always improved in a new improvement cycle.

At the end, the members of the process group worked out the Improvement Report
to be sent to the Consultancy (external entity).

5 Conclusion

Analyzing critically the experience of use in the Quality Sector of the SEL, we could
observe, considering the execution of the subprocesses 1and 4, that the process was
adequate. In spite of the subprocesses 2 and 3 were not executed, the process seemed
feasible and useful, because the main subprocesses were performed.

The process group executed the approach easily. However, on the last activity of
the subprocess 1, as the technique used was not adequate, we began to utilize the
Delphi technique. Besides, the tools supported adequately the process, for example,
the AvalPro. We could also observe that the definition of the business objectives and
the product quality objectives were fundamental to the approach, because the it was

360 A.B. Albuquerque, A.R. Rocha, and A.C. Lima

executed on behalf of the company. As we could see on the Balanced Scorecard
(BSC), the software process has to become a real perspective. So, all the organiza-
tions must define and execute their software process to support the achievement of the
defined organizational strategy.

After the analysis of the experience we could identify the following limitations of the
approach: (i) The qualitative analysis is not well structured; (ii) There is not a tool to
support the activities related to the preventive actions and (iv) There are not tasks re-
sponsible to evaluate the effectiveness of the implemented improvement opportunities.

Other challenge is to define and implement an approach to software process im-
provement adequate to companies that invest on innovations and have their strategies
focused on the creation of new markets. So, others experiences of use must be carried
out. Probably, formal and planned use cases to verify in other context the adequacy of
the approach.

References

1. Nollen, S.: Software Industry Performance in India and China. In: Amar, K., Nayak, J.,
Jomon, M.G. (eds.) INDIA in the Emerging Global Order, ch. 4. Tata McGraw-Hill Pub-
lishing, New York (2008)

2. Prahalad, C.K., et al.: The new meaning of quality in the information age, pp. 109–118.
Harvard Business, Boston (1999)

3. Reed, K.: Software engineering – a new millenium? IEEE Software (July-August 2000)
4. Kaplan, R.S., Norton, D.: The Balanced Scorecard: indicators that drive the performance.

Harvard Business Review (January/Febuary 2000)
5. Wright, P., Kroll, M.J., Parnell, J.: Strategic Administration. Atlas, São Paulo (2000)
6. Thompson Jr., A.A., Strickland III, A.J.: Dtrategic Planning. Pioneira, São Paulo (2000)
7. Maisel, L.S.: Performance Measurement Practices: A Long Way from Strategy Manage-

ment. The Balanced Scorecard Report (May - June 2001)
8. Nair, C.J., Lynch, R.L., Cross, K.F.: Do Financial and Nonfinancial Performance Measures

Have to Agree? Management Accounting 72(5), 28–35 (1990)
9. Adams, C., Roberts, P.: You Are What You Measure. Manufacturing Europe, 504–507

(1993)
10. Kim, W.C., Mauborgne, R.: Blue Ocean Strategy. Campus, São Paulo (1995)
11. Dyba, T.: Factors of Software Process Improvement Success in Small Organizations: An

Empirical Study in the Scandinavian Context. In: Proceedings of the ESEC/FSE 2003,
Helsinki, pp. 148–157 (2003)

12. Hefner, R., Tauser, J.: Things They Never Taught You in CMM School. In: Proceedings of
the 26th Annual NASA Goddard Software Engineering Workshop, November 2001,
pp. 27–29 (2001)

13. Cater-Steel, A.P.: Low-rigour, Rapid Software Process Assessments for Small Software
Development Firms. In: Proceedings of the 15th Australian Software Engineering Confer-
ence (ASWEC 2004), Melbourne, April 2004, pp. 368–377 (2004)

14. SOFTEX: Brazilian Software Process Improvement – General Guide version 1.2
15. CMU/SEI: CMMI for Development version 1.2., CMU/SEI-2006-TR-008 (2006)
16. ISO/IEC: ISO/IEC PDAM 12207: Information Technology – Amendment 2 to ISO/IEC

12207 (2004)
17. ISO/IEC: ISO/IEC 15504-4: Information Technology – Process Assessment, Part 4: Guid-

ance on use for Process Improvement and Process Capability Determination (2004)

 Software Process Improvement 361

18. Komi-Sirvio, S.: Development and Evaluation of Software Process Improvement Methods.
In: Espoo 2004, p. 535. VTT Publications (2004)

19. Birk, A., et al.: PROFES: A Product Driven Process Improvement Methodology. In: Pro-
ceedings of European Conference on Software Process Improvement (SPI 1998), Monaco,
December 1998, 9 p. (1998)

20. Birk, A., Pfahl, D.: A System Perspective on Software Process Improvement, IESE-Report
No. 047.02/E Version 1.0 (2002)

21. Caivano, D.: Continuous Software Process Improvement through Statistical Process Con-
trol. In: Proceedings of the Ninth European Conference on Software Maintenance and Re-
engineering (CSMR 2005), Manchester, March 2005, pp. 288–293 (2005)

22. Martins, V.M., Da Silva, A.R.: ProPAM: SPI based on Process and Project Alignment.
In: Proceedings of the IRMA International Conference, Vancouver (May 2007)

23. Salo, O., Abrahamson, P.: Integrating Agile Software Development and Software Process
Improvement: a Longitudinal Case Study. In: Proceedings of the 4th International Sympo-
sium on Empirical Software Engineering (ISESE 2005), Noosa Heads, November 2005,
pp. 193–202 (2005)

24. Stalhane, T.: Root Cause Analysis and Gap Analysis - A Tale of Two Methods.
In: Dingsøyr, T. (ed.) EuroSPI 2004. LNCS, vol. 3281, pp. 150–160. Springer, Heidelberg
(2004)

25. Alloui, I., et al.: Advanced Services for Process Evolution: Monitoring and Decision Sup-
port. In: Conradi, R. (ed.) EWSPT 2000. LNCS, vol. 1780, pp. 21–37. Springer, Heidel-
berg (2000)

26. Bardin, L.: Content Analysis, Lisboa. Edições 70 (1977)
27. Boehm, B., et al.: Software cost estimation with COCOMO II. Prentice-Hall, Englewood

Cliffs (2000)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 362–374, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Integrating Value and Utility Concepts into a Value
Decomposition Model for Value-Based Software

Engineering

Mikko Rönkkö1, Christian Frühwirth1, and Stefan Biffl2

1 Helsinki University of Technology, Software Business Laboratory
Otaniementie 17, Espoo, Finland

2 Vienna University of Technology, Institute of Software Technology,
Vienna, A-1040, Austria

{mikko.ronkko,christian.fruehwirth}@tkk.fi,
Stefan.Biffl@tuwien.ac.at

Abstract. Value-based software engineering (VBSE) is an emerging stream of
research that addresses the value considerations of software and extends the tra-
ditional scope of software engineering from technical issues to business-
relevant decision problems. While the concept of value in VBSE relies on the
well-established economic value concept, the exact definition for this key con-
cept within VBSE domain is still not well defined or agreed upon. We argue the
discourse on value can significantly benefit from drawing from research in
management, particularly software business. In this paper, we present three as-
pects of software: as a technology, as a design, and as an artifact. Furthermore,
we divide the value concept into three components that are relevant for software
product development companies and their customers: intrinsic value, external-
ities and option value. Finally, we propose a value decomposition matrix based
on technology views and value components.

Keywords: Value-based software engineering, stakeholder value, software
business.

1 Introduction

Researchers focusing on value-based software engineering (VBSE) have suggested
that the economic and value perspectives should be integrated into the software engi-
neering processes that until now have had a very technical focus. According to Biffl
and his colleagues [1] and Huang and Boehm [2], software engineering is currently
performed in a value-neutral setting, where the basis of methods and tools is on sup-
porting development of technology, not on creating business value. This value-neutral
approach makes it hard to create products that are valuable to people and make it
difficult to make financially responsible decisions.

Based on the work of the Economics-Driven Software Engineering Research
(EDSER) community, a VBSE research agenda has emerged aiming to integrate value
considerations in all aspects of software engineering, and calling forth the development

 Integrating Value and Utility Concepts into a Value Decomposition Model 363

of tools and methods to support the business side of software engineering [1]. Due to
the novel nature of this idea, empirical evidence – currently being called for in soft-
ware engineering [3] – supporting the feasibility of realizing value-based software
engineering is limited.

Some of the most central work in the area of VBSE includes the initial theory of
VBSE as presented by Jain and Boehm [4] and calculation methods estimating return
on investment (ROI) of software development pioneered by for example Erdogmus,
Favaro and Halling [5]. This work and the research in VBSE in general use several
concepts and techniques from economics and accounting and apply them to the context
of software engineering. While the inclusion of general business and management
theories to the research of business aspects in software engineering can be considered a
fundamental aspect of VBSE, we argue that the researchers in the area could signifi-
cantly benefit from adapting more of the findings of the so-called software business
research into their work.

Software business, as the authors of this paper define it, is a management research
area, which focuses on software firms and develops knowledge to understand how and
why these firms succeed. When defined this way, software business and VBSE share
the phenomenon of interest but differ in the research paradigm. While researchers
involved in VBSE use the engineering paradigm and develop tools and methods to
help software firms succeed, researchers operating in software business area examine
how and why firms succeed using the social sciences paradigm. Simply put, the mod-
els of VBSE are mostly prescriptive, while the software business research considers
explanatory models as a central goal. We argue that these viewpoints are different
sides of the same coin, and hence there is a great potential for cooperation and knowl-
edge sharing.

The rest of the paper is structured as follows. First, we present some of the key theo-
ries used in the emerging software business research, particularly those related to
value. Second, we review three different ways to conceptualize software based on the
current paradigm employed by software business researchers. Throughout these two
sections, we use software product development or market driven software development
as the context. Finally, we will integrate the perspectives of value and the perspectives
of software into a value decomposition matrix. The main contributions of this paper
include linking VBSE and software business research as well as providing a conceptual
tool to aid in different value considerations.

2 Concept of Value in Software Business Research

The concept of value is central to VBSE. Indeed, the main goal of this research move-
ment is to assign a measure of value on decision making in the software process. This
is seen as a complement to previous software engineering research that has mainly
focused on technical aspects such as quality, cost, and development time. The concept
of value is not strictly defined, but can be evaluated for example by a technique called
Stakeholder Value Proposition Elicitation and Analysis [6]. From the perspective of
economics, this resembles analyzing the utility function [see e.g. 7] of each stake-
holder. After this, win-win technique, can be applied to negotiate the requirements.

364 M. Rönkkö, C. Frühwirth, and S. Biffl

Research by Briggs and Grünbacher [8] and Oza, Biffl, Fruehwirth, and Selioukova [9]
have demonstrated the successful use of this approach in the elicitation of stakeholder
values.

Another set of techniques focuses on valuating different features, requirements, or
decisions on a single-dimensional measure (most commonly money) using mathemati-
cal formulas adapted mainly from accounting and finance[5]. However, the vagueness
of the concept of value seems to be a central problem. If the researchers cannot agree
on a common definition of value, we run the risk of producing incommensurable re-
search, which seriously inhibits the progress of the field. We attempt to clarify the
concept of value by anchoring it to the theory base used in software business.

The economic concept of value is most commonly defined as the amount of money
that a unit of goods or services is traded for. Utility, on the other hand, is all the good
and desirable that is created by consuming a product or a service. Hence the concept of
value in VBSE is closer to economic utility than economic value. To avoid confusion
with the terminology, we use the term “value” for value in VBSE context, and “eco-
nomic value” when discussing the economic concept. The problem with utility, and
value, is that good and desirable are highly subjective and idiosyncratic issues. Eco-
nomics has solved the problem of diversity in utility between consumers by developing
a multi-attribute utility theory [10] and using statistical distribution functions as utility
functions. However, the abstract and generic nature of these theories limits their appli-
cability to VBSE, as long as no relevant agreed on dimensions and measures exist for
value components. In this paper we omit the philosophical of definition of value and
assume that value exists, and we can use any definition that suits our needs. Hence, we
rather ambiguously define “value is the degree of desirability”. Agreeing that this defi-
nition sheds little normative light on the decision-making processes, we will now take
a closer look what value means in different contexts. The discussion is structured
around two central players in the software markets: utility-seeking customers and
profit-seeking firms.

2.1 Values of Utility-Seeking Customers

From the customer perspective the value of software comes from its use, the utility it
can create. While this is a seemingly trivial argument, it embeds much complexity:
First, the utility is not only dependent on the intrinsic properties of the software, but
also the skills of the user and several factors that are external to both the user and the
software. Second, as discussed earlier, each customer values the software differently
depending on for example her unique set of capabilities, and her own desires for differ-
ent types of utility. Recent research by Oza and his colleagues [9] illustrates this value
diversity in dynamic settings of software process improvement initiatives.

In a static setting where future is not considered, the value of the software comes
from three different sources: intrinsic value, complementary value [11] and direct net-
work externalities [12,13]. The intrinsic value is embedded in the software as function-
ality and attributes such as security and usability. This part of the value seems to have
the closest match with the current concept of value in VBSE. A complement can be
defined as a product or a service, which increases the value of another product or ser-
vice [14] and here complementary value refers to value, which is created by combining
a piece of software with another good or service. For example, a word processor is

 Integrating Value and Utility Concepts into a Value Decomposition Model 365

much more valuable when bundled in an office suite due to the possibility to embed
objects created with other applications. Last, if the software can be used in communi-
cation, it is subject to network externalities – its value is dependent on the amount of
other users of the software that are relevant to the focal user. For example, if two col-
leagues use compatible word processors, they can share files and collaborate benefiting
both from the compatibility. A somewhat idealistic view of this phenomenon is known
as Metcalfe’s law “the value of a network is the number of users squared” [15]. Em-
pirical evidence suggests that the value of network externalities can be in par with
product features when a product’s economic value is evaluated[11,16,12]. In other
words, compatibility with other pieces of software can be as important as the features
and quality of the software.

The problem with the above-presented decomposition of value is that it does not
take into account the bounded rationality of people. Especially in the context of com-
plex issues, people cannot base their decisions fully on facts. Hence, the purchase
decisions are not based on real value, but perceived value [see e.g., 17]. We will first
discuss the issue of where the estimate of real value comes from and then present
some of the factors that may create bias between the real and the perceived value. In
economics, a good whose value cannot be estimated without using the good is called
“an experience good” [18]. While software is far from typical experience goods, like
music, Messerschmitt and Szyperski [19] argue that software should be considered to
be an experience good. This implies that the estimate for the value comes from using
the good, referring to other users or reviews, or simply through advertisements. In the
context of software, especially influential seems to be the experience with the prior
generation or release of the product. However, even with perfect information gained
through experience, the perceived value rarely equals the real value. One reason for
this is that value contains also purely psychological parts. Often the market share
correlates with the perceived value causing bandwagon effect [20], where the current
user base drives adoption without any mechanism that would generate externalities.
While the psychological part of the value has traditionally been considered as being
solely in the domain of marketing, some recent work suggests that it should be taken
into account also in the product development phase [21]. The significance of these
psychological effects can be so strong as to enable firms with inferior products to
capture the markets if they gain control of the bandwagon [13]. Product launch timing
is an influential factor in creating these effects and hence at least release planning is
affected by this market effect [22].

The last problem with estimating the value of a piece of software from the cus-
tomer point of view is that software is an investment in a durable good and hence the
expected future value matters. More concretely, the customer is interested on avail-
ability of complements in the future (including for example updates), and expected
size of the user base. These both are issues, which can significantly affect which
products are chosen and which firms’ offerings prevail in the markets.

2.2 Values of Profit-Seeking Firms

Next we will discuss the concept of value from the perspective of a software firm.
The objective of the firm is simple: to maximize the cumulative long term profits.
However, this simple and uniform concept of value does not help much when trying

366 M. Rönkkö, C. Frühwirth, and S. Biffl

to estimate the value of software development decisions. The reason is that the profits
of the firm are realized in market transactions, and the evolution of the markets is an
external facto that is largely outside the control of the firm. This is particularly true
for the turbulent software markets, where standards, technologies, and even compa-
nies change rapidly. Due to this, attempts to generate systematic heuristics to optimize
against the unknown future have not yet matched the use of managerial intuition in
decision-making [23].

We will divide the further discussion of the value from the perspective of the soft-
ware firm into two themes: market mechanisms and path dependency. In economics,
market is a place where buyers and sellers exchange goods and services. If a buyer
considered something as being more valuable than the seller, a transaction occurs.
The purpose of the market is to create and divide surplus – the utility of the good for
the buyer measured in money minus the cost of creating the good by the seller meas-
ured in money. Since the utility of different buyers varies, the seller usually prices the
good in such a way that only a certain amount of users want to trade with the price.
When a competitor with a similar product arrives, the optimal price that the seller
should charge decreases. If the goods are sufficiently similar and there is sufficiently
large number of sellers, the basic economic models predict that prices will fall to a
level that equals the cost of production and sales by the sellers. If this so-called per-
fect competition situation occurs, no firm will create profit. To counter the effects of
competition firms often deliberately create products that cause lock-in by means of
creating extra costs when switching to other vendors or use advertising to make their
product seem more advantageous than it actually is [24]. With these tactics, the firm
is decreasing the surplus (value minus cost) that goes to the customer to create more
profits. The importance of lock-in is that it enables software firms to extract more
value from their products than would be possible if consumers could switch to com-
peting products freely, thus explaining the voracious strive for market share in grow-
ing markets [25]. The phenomenon of lock-in and existence of network externalities
create a challenge for evaluating the value of the software: Often several incompatible
standards compete, and the outcome of this battle for dominance cannot be evaluated
accurately ex ante [26]. The dilemma of a firm is that while it maximizes utility by
being compatible with the dominant network, it can often capture more economic
value by excluding competitors from the network by being incompatible with compet-
ing solutions [13]. The dilemma of compatibility and limiting the choice of the cus-
tomer is something rather opposite to the win-win principle [27] used in VBSE.
Another problem is that when technology is first developed and then sold at the mar-
kets, the value for the technology cannot be accurately defined at the time when the
most value affecting development decisions are made since we cannot accurately
predict how the market develops in the future [28].

Another issue with firms is that they have technological path dependency. That is,
their future technological options are a function of the technology that they currently
have in terms of not only technology assets but also knowledge. This means that
sometimes firms need to optimize for longer term rather than following the most
value-efficient approach for the current customers. If a firm fails to see this, it might
end up in technological obsolescence or technological lockout [29].

To summarize the discussion in this section and the previous, we conclude that
there probably cannot be a single unidimensional and measurable construct for value,

 Integrating Value and Utility Concepts into a Value Decomposition Model 367

but how value is seen depends on the context. However, we argue that just abstracting
the value to a single figure can sometime be too simple solution since three different
dimensions of value exits: intrinsic value of the software, externalities through com-
patibility and complements, and option value by enabling future development paths.
Next we will look at the concept of value from a rather different perspective, that of
software as a modular technology.

3 Three Perspectives on Software as Technology

After the initial discussion of value, we will now take an orthogonal view on the is-
sue. If we are to understand what value means for software from the perspective of
various management disciplines, we need to also understand how these disciplines
conceptualize software. It is easy to define software as a technology without further
considerations on the general nature of the term. To understand how software is pre-
sented in management research, we adopt a definition for the concept of technology
by Schilling [30]

Technology refers to any manner of systematically applying knowledge or science to a practical
application … Technology in this context is generally understood to include information
technology as well as technology embodied in products, production processes, and design
processes.

Since the process of creating and the process of executing are systematic, and there
is a practical application for software, we can indeed conclude that software fits well to
this definition. The adopted definition links technology intimately but not exclusively
to artifacts, that is, technology is both the artifacts that extend our capabilities and the
skill to produce and efficiently use them. This definition is much more strict, than
defining technology as knowledge that is intended for “use”. If defined this broadly,
technology would encompass virtually all useful routines and capabilities developed
through organizational evolution.

In addition to artifacts and knowledge, technology can be considered from a third
perspective: as a design. Design is a “blue print”, a type of artifact that acts as a tem-
plate for producing more artifacts. While not strictly correct, we distinguish between
software design and software artifact by defining that software design is technology-
in-development and the software artifact is technology-in-use, or technology which is
embedded inside a medium and is ready to be executed or traded. We present each of
these views in more detail and build link to VBSE.

3.1 Software Artifacts

Most notable property of software artifacts is that they are information. More pre-
cisely, software artifacts are a sequence of instructions that is codified in a form that
can be interpreted and executed by computer hardware. Information artifacts have
several distinct properties: First, information contains always two parts, message and
the language, which it is codified with [31]. With software this naturally implies that
the codification needs to be compatible with the hardware. However, in contrast to
many other information goods, this codification is not readily comprehensible by

368 M. Rönkkö, C. Frühwirth, and S. Biffl

people, and in the case of interpreted programming languages where the software is
distributed in source code format and interpreted to machine language when executed,
it still requires considerable effort to comprehend the code[24]. In this way, software
does not suffer from the property shared by many other information goods, that is,
software can be appropriated even if it has been once disclosed [32]. Hence, software
should be considered as an experience good [19,18], but the implications of revelation
are much less serious than with other more typical information goods.

Like any other information good, software does not wear out when used. However,
it shares a characteristic with knowledge: Knowledge does not wear out, but competi-
tion can drive down the price even though the utility has not declined. The value can
also diminish through obsoletion[33]. That is, the utility of the information does not
decrease, but the market value is decreased through emergence of new and more ad-
vanced competing artifacts, or the environment where it is used changes so that the
artifact is no longer useful for the purpose it was intended for. The speed of obsole-
tion can range from rapid to nearly inexistent. For example software that is run on the
mainframes of financial institutions can be even several decades old, while anti-virus
software needs to be updated several times a day to keep it on an adequate level of
capability to block emerging and constantly developing threats. The value implication
of this insight is that normal discounting methods that are used when evaluating eco-
nomic value over time are not sufficient when considering value of software, which
will be developed in the future, since the face value of the artifact does not stay con-
stant over the time.

Software artifacts consist of two types of data: instructions for computer hardware
and embedded information. The latter includes all text, images, sounds as well as
information that is passed to external devices as forms of instructions [19]. The in-
struction part of the software artifact is what makes software behave like virtual ma-
chines that do things [34]. Software goods that consist mainly of instructions can be
considered as tools that help people to get jobs done. Usually, when technology en-
ables us to get things done, there emerges a dominant design [35], and hence there is
in the longer run little variance in preferences – or the desire for utility - for software
that is low in the information content. If there is no service component linked to the
software, the offering of one firm scales easily and hence can result in capturing a
monopolistic market share.

In contrast, when the embedded information content of the software is high, or the
purpose of the software is to present information interactively, the preferences of the
consumers behave very differently [see e.g., 36]. This is due to the fact that informa-
tion and instruction content are valued differently: While the interactive part is valued
for what it does, information is valued for what it teaches us or how it influences us
[19]. Generally, there is a large variance in preferences for information, for both enter-
tainment and education purposes. Moreover, these types of products suffer somewhat
similar issues than information goods, once the users learn the information, the utility
of the software artifact decreases. Prime examples of this kind of software artifacts are
computer games. Indeed, computer games are no longer programmed, they are de-
signed since the storyline, graphics, and environment of the game grow in importance
related to technical aspects of the program [19]. Once a game is released, it might sell
for only less than a year after its initial release. Moreover, once a person has completed
the game once, his interest in the program is decreased since there is no element of
novelty anymore in the information content.

 Integrating Value and Utility Concepts into a Value Decomposition Model 369

3.2 Software Designs

As a system, technology is a collection of subsystems that are bound together with
architecture, and each subsystem can be a system of other subsystems. The key in-
sight from general systems theory is that a system cannot be comprehended as only
through its parts, but needs to be considered as a whole.

According to Schilling [30]

Modularity is a general systems concept: is a continuum describing the degree to which a sys-
tem’s components can be separated and recombined, and it refers both to the tightness of
coupling between components and the degree to which “rules” of the system architecture
enable (or prohibit) the mixing and matching of components.

The level of modularity in software artifacts varies significantly, and it is not neces-
sarily tied to modularity of the technology, which was used to generate the artifact.
That is, a modular technology can result in highly integrated tightly coupled artifact
systems. While this seems initially counterintuitive, it becomes clear after one consid-
ers the process of compiling software, where several source files are compiled and
linked to become one binary executable. In this process the modularity of the technol-
ogy is decreased and the modules loose their autonomy: it is no longer possible to
easily exchange the compiled modules and in order for the system to work as designed,
each module needs to work.

However, one software artifact can consist of several (executable and non-
executable) files. In this case the system retains part of the modularity of the technol-
ogy. For such modular product to be realized, several interfaces are required to define
the architecture of the system [37,38]. In software, this modular design has several
advantages: modular system can be upgraded or modified by exchanging modules to
enhanced versions, and documented modular interfaces enable user driven innovation
[39,40]. Modern computer games where users can create new scenarios or modifica-
tions are a prime example of the latter. Moreover, modularity enables the emergence
of complements, which can be a significant source of value for a software product
[41,42].

Modularity is a powerful concept, since modular designs include what Baldwin and
Clark [38] call “option value”. In their work combining the research streams of real
options and complexity theory they identify six modular operations: splitting, substi-
tuting, augmenting, excluding, inverting, and porting. After developing theoretical
measures of value for performing each of the operation, they present history of the
computing industry as an example of how modularity works. The problem of modular
design is, that while modularity enables more efficiently constructing a product fam-
ily, it can lead to loosing the control of the design, that is, the parts of the design pro-
vided by the original vendor are no longer the value critical elements.

The power of modularity of design is that much of the complexity can be hidden
under layers of abstraction. Modularity, measured often as coupling and cohesion in
software engineering, has much benefits, including more comprehensible design and
as a consequence result in better developer performance [43,44], can boost the inno-
vation rate at each module, and enable better system reconfigurability [38]. How-
ever, this comes with a cost: First, even software with well defined architecture and
internal interfaces tend to degrade over time. That is, incremental changes break the

370 M. Rönkkö, C. Frühwirth, and S. Biffl

architecture and make the modules more tightly coupled if efforts are not spent to
prevent this. This is a general property of technology and other complex systems and
in software engineering it is known as Lehman’s law [45]. When a complex system
becomes more integrated, it looses its adaptability [46]. Moreover, the links become
more numerous and less general, even to an extent that the abstracting effect of the
modular system is lost. There is little use in modularity, if the software designer
needs to be concerned with the internal structures of modules.

Clearly, not only the requirements, but also the architecture of the software needs to
be value-based, if the long run value of the design is to be optimized. Unfortunately,
this is not often the case when firms follow the client or market requirements to stay
with the competition, especially when developing products on internet time [47].

3.3 Software Knowledge

The final aspect that we take on software as a technology is that of technological
knowledge and competence. Currently, knowledge and technological capability are
increasingly in the core of creating competitive advantage for companies [21,48,33] in
high tech industries, like semiconductors, biotechnology, electronics, and software,
where the development costs of new products can form a significant part of the cost
structure of the entire company.

Defining the knowledge part of software is not straightforward unless one knows a
bit of psychological aspects of programming. Hence, we start by briefly introducing a
psychological view of how software is created. When a software engineer starts to
write software that conforms to the previously designed requirements, he goes
through a series of tasks. First, the problem is analyzed and formalized so that it can
be solved with a computer, after which architecture and components of the solution
are designed. This designing follows a cognitive problem solving process, where the
software engineer combines external and codified knowledge to his own tacit knowl-
edge creating a mental model of the solution [49-51]. After the model of the solution
has been created, it is codified into a message using a programming language [31].
The result of the process of programming is a stream of textual information that re-
sides on a computer or a similar platform. In this sense, the software code is only a
projection of the solution developed by the programmer. Several finer aspects, espe-
cially why something is done like it is, remain tacit. In essence the codified form and
the tacit form of software are intimately linked, and in this way software is tied to the
people or organization that developed the software.

Clearly this knowledge is valuable and hence knowledge creation should be in-
cluded in the value considerations, for example through integrating VBSE and experi-
ence factory [52], which is a general knowledge management framework for software
engineering organizations. The value of knowledge comes from the fact that ability to
learn is a function of what is already known and hence software firms who are on the
edge of technology development often invest in projects for the main reason of learn-
ing. The downside for knowledge creation is, that it can lead to islands of specializa-
tion, where only one person or a small group holds a piece of tacit knowledge that is
critical to the software development organization. If this happens it gives these em-
ployees an edge in the considerations of how the created value should be distributed

 Integrating Value and Utility Concepts into a Value Decomposition Model 371

among the stakeholders, thus enabling a potentially negative impact on the organiza-
tional knowledge distribution.

4 Synthesizing the Two Perspectives into a Value Decomposition
Matrix

In the previous two sections we presented two views on value. First, we addressed the
issue through three value components: intrinsic value, externalities, and option value.
Second, we discussed three different views on software: as artifact, as design and as
knowledge. Based on this discussion, we propose a value decomposition matrix to aid
in considering the different aspects of value. The matrix is shown below in Table 1.
Each cell in the cross-section of a view on software (rows) and value sources (col-
umns) contains an illustrative question to aid in utilizing the nine different combina-
tions in value considerations. The current limitation of the matrix is, that it mostly
focuses on the view of the value to the customers and the organization, hence largely
disregarding the value considerations that are relevant to employees. More work will
be needed here in the future to integrate this third stakeholder group into the value
decomposition matrix. Moreover, the framework is focused on market-driven devel-
opment that takes place in software product firms.

Table 1. Value decomposition matrix

 Intrinsic value Externalities Option value

Software artifact What is the direct
value of this
decision to the users
of the software?

What is the indirect
value of this decision
to the users of the
software through
enabling connectivity
to other users or
software components?

What future software
acquisition or
enhancement options
does this
development decision
provide for the users?

Software design What is the direct
value of this
decision to our
ability to create
software artifacts?1

What is the value of
this development
decision on our
ability to create
connectivity and
compatibility to our
software artifacts?

What is the value of
this development
decision in terms of
modular options?

Software knowledge What do we learn
directly by making
this decision?

What do other parties
that provide value for
the users of our soft-
ware learn if we
take this decision?

What kinds of future
learning options does
this decision enable us
to pursue?

1 Consider that software design can be used to create several different artefacts (e.g. a product

line).

372 M. Rönkkö, C. Frühwirth, and S. Biffl

Finally, we propose 5 potential avenues of future research in VBSE:

1. External value sources, like complements and network externalities need to
be taken into account in value considerations.

2. Modularity, in terms of modular options and as an enabler for maintenance is
a significant source for long-term value.

3. Market mechanisms have been the most successful institution in dividing
utility in society and they provide a potential avenue for further research in
VBSE.

4. Most firms do not create win-win, but win-loose less (firm-customer) situa-
tions, if they achieve lock-in. Hence, win-win does not necessarily create the
most optimal solution for the stakeholder that has the most power in decision
making.

5. Experience factory or some other knowledge management concept should be
integrated in VBSE.

References

1. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P.: Value-Based Software
Engineering. Springer, Heidelberg (2005)

2. Huang, L., Boehm, B.: How Much Software Quality Investment Is Enough: A Value-
Based Approach. IEEE Software 23, 88–95 (2006)

3. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., Rosenberg,
J.: Preliminary guidelines for empirical research in software engineering. IEEE Transac-
tions on Software Engineering 28, 721–734 (2002)

4. Jain, A., Boehm, B.: Developing a theory of value-based software engineering. In: Pro-
ceedings of the seventh international workshop on Economics-driven software engineering
research, pp. 1–5. ACM Press, St. Louis (2005)

5. Erdogmus, H., Favaro, J., Halling, M.: Valuation of Software Initiatives Under Uncer-
tainty: Concepts, Issues, and Techniques. In: Biffl, S., Aurum, A., Boehm, B.W., Erdog-
mus, H., Grünbacher, P. (eds.) Value-Based Software Engineering, Heidelberg, pp. 39–66
(2006)

6. Grünbacher, P., Köszegi, S., Biffl, S.: Stakeholder Value Proposition Elicitation and Rec-
onciliation. In: Value-Based Software Engineering, pp. 133–154 (2006)

7. Parkin, M.: Economics. Pearson Education, Boston (2008)
8. Briggs, R., Gruenbacher, P.: EasyWinWin: Managing Complexity in Requirements Nego-

tiation with GSS. In: Proceedings of the 35th Annual Hawaii International Conference on
System Sciences. IEEE Computer Society, Big Island (2002)

9. Oza, N., Biffl, S., Frühwirth, C., Selioukova, Y., Sarapisto, R.: Reducing the Risk of Mis-
alignment between Software Process Improvement Initiatives and Stakeholder Values. In:
Industrial Proceedings of EuroSPI 2008, Publizon, Dublin, pp. 6.9-6.18 (2008)

10. Keeney, R.L., Raiffa, H., Rajala, D.W.: Decisions with Multiple Objectives: Preferences
and Value Trade-Offs. IEEE Transactions on Systems, Man, and Cybernetics 9, 403
(1979)

11. Brynjolfsson, E., Kemerer, C.F.: Network Externalities in Microcomputer Software: An
Econometric Analysis of the Spreadsheet Market. Management Science 42, 1627–1647
(1996)

 Integrating Value and Utility Concepts into a Value Decomposition Model 373

12. Gandal, N.: Competing Compatibility Standards and Network Externalities in the PC
Software Market. The Review of Economics and Statistics 77, 599–608 (1995)

13. Katz, M.L., Shapiro, C.: Network Externalities, Competition, and Compatibility. The
American Economic Review 75, 424–440 (1985)

14. Brandenburger, A.M., Nalebuff, B.J.: Co-Opetition: A Revolution Mindset That Combines
Competition and Cooperation: The Game Theory Strategy That’s Changing the Game of
Business. Doubleday, New York (1996)

15. Metcalfe, B.: Metcalfe’s Law: A network becomes more valuable as it reaches more users.
InfoWorld 17, 53 (1995)

16. Gallaugher, J.M., Wang, Y.: Understanding Network Effects in Software Markets: Evi-
dence from Web Server Pricing. MIS Quarterly 26, 303–327 (2002)

17. Kotler, P., Keller, K.L.: Marketing Management. Prentice Hall, Upper Saddle River (2006)
18. Nelson, P.: Information and Consumer Behavior. Journal of Political Economy 78, 311

(1970)
19. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensable

Technology and Industry. The MIT Press, Cambridge (2003)
20. Rohlfs, J.H.: Bandwagon effects in high-technology industries. MIT Press, Cambridge

(2001)
21. Boztepe, S.: Toward a framework of product development for global markets: a user-

value-based approach. Design Studies 28, 513–533 (2007)
22. Lee, Y., O’Connor, G.: New product launch strategy for network effects products. Journal

of the Academy of Marketing Science 31, 241–255 (2003)
23. Dane, E., Pratt, M.G.: Exploring Intuition and Its Role in Managerial Decision Making.

Academy of Management Review 32, 33–54 (2007)
24. Shapiro, C., Varian, H.R.: Information rules a strategic guide to the network economy.

Harvard Business School Press, Boston (1999)
25. Klemperer, P.: Markets with Consumer Switching Costs. The Quarterly Journal of Eco-

nomics 102, 375–394 (1987)
26. Arthur, W.B.: Competing Technologies, Increasing Returns, and Lock-In by Historical

Events. The Economic Journal 99, 116–131 (1989)
27. Boehm, B.W., Ross, R.: Theory-W Software Project-Management - Principles and Exam-

ples. IEEE Transactions on Software Engineering 15, 902–916 (1989)
28. Bowman, C., Ambrosini, V.: Value creation versus value capture: Towards a coherent

definition of value in strategy. British Journal of Management 11, 1–15 (2000)
29. Schilling, M.A.: Technological Lockout: An Integrative Model of the Economic and Stra-

tegic Factors Driving Technology Success and Failure. Academy of Management Re-
view 23, 267–284 (1998)

30. Schilling, M.A.: Toward a General Modular Systems Theory and Its Application to Inter-
firm Product Modularity. The Academy of Management Review 25, 312–334 (2000)

31. Cowan, R., Foray, D.: The Economics of Codification and the Diffusion of Knowledge.
Industrial & Corporate Change 6, 595–622 (1997)

32. Varian, H.R., Farrell, J., Shapiro, C.: The Economics of Information Technology: An In-
troduction. Cambridge University Press, Cambridge (2004)

33. Teece, D.J.: Technology and Technology Transfer: Mansfieldian Inspirations and Subse-
quent Developments. Journal of Technology Transfer 30, 17 (2005)

34. Quintas, P.: Programmed Innovation? Trajectories of Change in Software Development.
Information Technology & People 7, 25–47 (1994)

374 M. Rönkkö, C. Frühwirth, and S. Biffl

35. Anderson, P., Tushman, M.L.: Technological Discontinuities and Dominant Designs - a
Cyclical Model of Technological-Change. Administrative Science Quarterly 35, 604–633
(1990)

36. Vogel, H.L.: Entertainment Industry Economics: A Guide for Financial Analysis. Cam-
bridge University Press, Cambridge (2001)

37. Abernathy, W.J., Clark, K.B.: Innovation: Mapping the winds of creative destruction. Re-
search Policy 14, 3–22 (1985)

38. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT Press, Cam-
bridge (2000)

39. Franke, N., Hippel, E.V.: Satisfying heterogeneous user needs via innovation toolkits: the
case of Apache security software. Research Policy 32, 1199–1215 (2003)

40. Schilling, M.A.: Intraorganizational Technology. In: Baum, J.A.C. (ed.) Companion to Or-
ganizations, pp. 158–180. Blackwell Publishers, Malden (2002)

41. Nambisan, S.: Complementary product integration by high-technology new ventures: The
role of initial technology strategy. Management Science 48, 382–398 (2002)

42. Sengupta, S., Sengupta, S.: Some Approaches to Complementary Product Strategy. Journal
of Product Innovation Management 15, 352 (1998)

43. Banker, R.D., Datar, S.M., Kemerer, C.F., Zweig, D.: Software Complexity and Mainte-
nance Costs. Communications of the ACM 36, 81–94 (1993)

44. Kemerer, C.: Software complexity and software maintenance: A survey of empirical re-
search. Annals of Software Engineering 1, 1–22 (1995)

45. Lehman, M., Ramil, J., Wernick, P., Perry, D., Turski, W.: Metrics and laws of software
evolution-the nineties view. In: Proceedings of the Fourth International Software Metrics
Symposium, pp. 20–32. IEEE Computer Society, Albuquerque (1997)

46. Orton, J.D., Weick, K.E.: Loosely Coupled Systems: A Reconceptualization. The Acad-
emy of Management Review 15, 203–223 (1990)

47. Cusumano, M.A., Yoffie, D.B.: Competing on Internet Time – Lessons from Netscape and
Its Battle with Microsoft. Free Press, New York (1998)

48. Helfat, C.E., Peteraf, M.A.: The dynamic resource-based view: Capability lifecycles. Stra-
tegic Management Journal 24, 997–1010 (2003)

49. Vessey, I.: The role of cognitive fit in the relationship between software comprehension
and modification. MIS Quarterly 30, 29–55 (2006)

50. Zhang, J.: The nature of external representations in problem solving. Cognitive Science 21,
179–217 (1997)

51. Zhang, J., Norman, D.A.: Representations in distributed cognitive tasks. Cognitive Sci-
ence 18, 87–122 (1994)

52. Basili, V.: The Experience Factory and its relationship to other Improvement Paradigms.
In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 68–83. Springer,
Heidelberg (1993)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 375–385, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On Business-Driven IT Security Management and
Mismatches between Security Requirements in Firms,

Industry Standards and Research Work

Christian Frühwirth

Helsinki University of Technology, Software Business Laboratory
Otaniementie 17, Espoo, Finland

christian.fruehwirth@tkk.fi

Abstract. Industry managers have long recognized the vital importance of in-
formation security for their businesses, but at the same time they perceived se-
curity as a technology-driven rather then a business-driven field. Today, this
notion is changing and security management is shifting from technology- to
business-oriented approaches. Whereas there is evidence of this shift in the lit-
erature, this paper argues that security standards and academic work have not
yet taken it fully into account. We examine whether this disconnect has lead to
a misalignment of IT security requirements in businesses versus industry stan-
dards and academic research. We conducted 13 interviews with practitioners
from 9 different firms to investigate this question. The results present evidence
for a significant gap between security requirements in industry standards and
actually reported security vulnerabilities. We further find mismatches between
the prioritization of security factors in businesses, standards and real-world
threats. We conclude that security in companies serves the business need of
protecting information availability to keep the business running at all times.

Keywords: Software Security, IT Security Management, security standards,
software vulnerabilities.

1 Introduction

Managers in the software industry have long recognized the vital importance of in-
formation security for their businesses, but at the same time they perceived security as
a technology-driven field rather then a business-driven one. Several developments in
recent years have started to change this point of view: Rising costs of security meas-
ures [1] and an increasing risk of financial loss due to security incidents [2], [3], [4]
are forcing companies to re-establish executive control over information security
issues in their organization. Managers have taken action and today, the transition from
a technical- to a business-oriented approach on information security is under full
steam [5]. This transition however requires significant efforts and problems arise
where business requirements for information security and standard practices are mis-
matched. This work investigates such mismatches by analyzing arguments from the
literature and industry practitioners. We report on a series of 13 interviews that were
conducted with a selected group of industry professionals of 9 different companies.

376 C. Frühwirth

1.1 Terminology

Information security is defined by its objectives, as the assurance of confidentiality,
integrity and availability of information. Literature refers to this concept as the “CIA
triad” [6]. Confidentiality provides the secrecy of data to prevent unauthorized access
or disclosure. Integrity refers to the reliability and trustworthiness of data. Availability
ensures reliable and timely access to information for authorized individuals.

Security management strives to provide appropriate organizational and technologi-
cal measures to fulfill these objectives. The failure to do so can result in a security
vulnerability, threat or incident. A vulnerability is a point of weakness in a system. If
this weakness is exposed and can be exploited it becomes a threat. The chance that
such exploitation actually occurs is called risk. Security management thus acts as a
distinct part of risk management and works on handling such risks in an economical
way. A security incident is a violation a information security policy. It is any actual or
anticipated act that threatens the confidentiality, integrity or availability of informa-
tion in an unauthorized, unacceptable or illegal way. A vulnerability, which enables
such a threat, can be considered an incident as well.

1.2 Objectives

Whereas there is strong evidence of a shift from technology to business driven secu-
rity management in the practitioner literature [5], [7], [8], [9] our observation is that
security standards and academic work have not fully taken it into account. We thus
form the following proposition:

(P1) “The field of Information security management is transforming from a technol-
ogy- to a business driven approach.”

The key motivation of this research is to examine whether this disconnect has lead
to misalignment of it security requirements in businesses versus in industry standards
and research work. We formulate our research question as:

(Q1) “Is there a misalignment between the business requirements for information
security by practitioners, current industry standards and academic research?”

We will conduct our investigation by examining the existing literature and con-
ducting 13 interviews with practitioners from 9 different firms. The main contribution
of investigating these issues lies in the possibility to identify the gaps between what
businesses demand and what the actual work- and academic practices in information
security provide. Knowing these gaps will allow researchers to better target their
efforts towards industry’s requirements in the future, hence increasing the applicabil-
ity of their work.

The remainder of this text is structured as follows: In section 1 we present related
literature from different research communities and analyze their findings in the light
of our proposition and research question. Section 2 introduces the methodology and
presents the main findings of the interview series. The last section compiles the out-
put of section 1 and 2 and compares their findings to identify possible gaps between
them.

 On Business-Driven IT Security Management 377

2 Related Work

2.1 Transition towards Business Driven Security Management

The classic definition of security in software is to assure the confidentiality, integrity
and availability of data [6]. We see that this particular concept of security is value
neutral and contains no references to business requirements. More modern definitions
of security, like the ISO 17799 standard address this shortcoming: ISO 17799:2005
adds a business perspective and refers to security as “the process of protecting infor-
mation from a wide range of threats in order to ensure business continuity, minimize
business damage and maximize return on investment (ROI) by preserving confidenti-
ality, integrity and availability of information” [10]. We can take ISO’s choice to
recognize the business factor in security as the first argument to support P1. We will
further refer to this argument as (P1-A1).

Information security is further recognized as a significant cost factor in organiza-
tional budgets and international studies have shown, that company security investments
have been steadily increasing for years [1]. One problem with increasing security in-
vestments in companies is the necessary budget authority. An organization’s technical
personnel, which is associated with such investments, has typically less budget author-
ity then what would be required for bigger investments, hence managers or executives
need to step in. Thus, as the size of investments increase, the responsibility for the
investment decisions is gradually delegated towards higher levels of organizational
hierarchy. This shift in security investment responsibilities towards the executive or-
ganizational levels, due to the increased investment size, is our second argument to
support P1 (P1-A2). How far up the hierarchy the investment decisions are being
pushed will be laid out in the interview analysis of section 2.

While the investments in security grew, so has the number of published security
vulnerabilities in software products. The “National Vulnerability Database (NVD)” of
the U.S. department for Homeland Security collects newly published software security
vulnerabilities since 2002. It showed a climbing number of new vulnerability reports
from the very beginning [11]. By October 2008, 17 new vulnerabilities are published
each day and the NVD now holds a record number of over 33.000 known software
vulnerabilities. Disclosed security vulnerabilities are important to business executives
and financial investors because of their impact on the market performance of the af-
fected companies. Recent empirical research by Telang [4], Campbell [2], Cavusoglu
[12] and Ishiguro [3] has demonstrated the negative effects of disclosed security vul-
nerabilities on a companies’ performance on the stock market. Telang quantified this
negative market impact with stock price drops between -0.63% and -2,1% [4]. Telang
also identified cases where the timing of the software vulnerability’s disclosure was
used as a strategic weapon to influence the stock market price of a firm’s competitor.
[4] Alongside such punctual stock market losses, the average losses due to security
incidents have risen as well since 2003 [13].

This is our third argument to support P1: Because the impact of security incidents
now reaches beyond the operational level of a company, and literally into the pockets
of shareholders and investors, business managers are highly incentivized to take con-
trol of security management issues (P1-A3).

378 C. Frühwirth

We can further extend the argument of manager incentives for public companies on
the US market. In 2002 the U.S. government enacted the Sarbanes Oxley Act (SOX)
as a reaction to the ENRON financial scandal. Section 404 of SOX requires compa-
nies to establish internal control systems that prevent financial fraud and specifies,
that these controls include IT systems as well as business processes. Where compa-
nies fail to meet these legal requirements, their executives are held directly account-
able. Hence, SOX provides additional incentives for executives to take on information
security issues in their company.

2.2 Misalignment between Industry Requirements, Standards and Academic Research

There are numerous standards for information security in the industry. Well known
examples are the early “trusted computer system evaluation criteria” (TCSEC)1 from
1985 [14], the later ITSEC or today’s “Common Criteria” (CC) [15] and ISO 17799
[10]. Empirical work by Myagmar [13] on the National Vulnerability Database has
shown that there is a significant mismatch between these standards’ requirements and
the security vulnerabilities that are discovered in real life. Myagmar found that even
the latest iteration of the CC standard put more emphasis on securing information in-
tegrity then the actual number of occurring integrity vulnerabilities would justify. At
the same time the CC contains too little availability requirements, compared to the
high number of availability related vulnerabilities recorded in the NVD. This quantita-
tive gap between the requirements in industry standards and actually reported security
vulnerabilities is our first argument to support Q1 (Q1-A1).

The identified gap however seems to be slowly closing, as further work by Myag-
mar shows [13]. From 1996 to 2005 the extent of the mismatch between vulnerabili-
ties and the standard’s security requirements was continuously reduced. We argue that
this is partly due to the increased involvement of the industry in the development
process of security standards. While primarily governments developed the first major
security standards for military purposes, newer versions, like the CC Version 3.1, are
products of cooperation between industrial and governmental organizations and hence
take business requirements into closer consideration. An additional argument to sup-
port P1 is thus the shrinking gap between the real-world security vulnerabilities and
industry standards, due to the increased involvement of industry stakeholders in stan-
dard development (P1-A4).

The academic community has also addressed the problem of mismatched require-
ments between industry and research work in its discussion. Recognized author
Schneier [16] for example criticized investments in quantum cryptography by stating:
“[Quantum cryptography] as a product, it has no future”. He explained his argument
by noting that “It's not that quantum cryptography might be insecure; it's that cryptog-
raphy is already sufficiently secure” [16]. Schneier implies that researches are some-
times looking to solve security problems in the wrong places. He raises the issue that
security research tends to focus on improving security factors that are of less impor-
tance to businesses than others: The research in quantum cryptography for example
emphasizes information confidentiality and integrity over availability. Scholars like

1 TCSEC is also commonly known as “the orange book”, referring to its origins in the “Rain-

bow” book series on computer security, published by the U.S. Department of Defense.

 On Business-Driven IT Security Management 379

Neubauer [8] argue in a similar direction and suggest that security issues should be
addressed from a value-based point of view, hence a business perspective. Neubauer’s
argument is supported by scholars from the software engineering literature, like Boehm
[17] and Biffl [18], who have long called for stronger considerations of value concepts.
We will take Schneier’s example and the other author’s call for increased value con-
siderations as arguments to support both P1 and Q1 (P1-A5, Q1-A2).

3 Interviews with Industry Practitioners

3.1 Methodology

The presented interviews are part of a larger study on security management practices
in the industry. To represent “the industry” we identified 6 different company types
that took part in the study: Retail, Construction, IT, Trade, Consulting and Public
services.

The study was conducted in 2007 through structured interviews, following a ques-
tionnaire with 69 questions. The duration of the interviews ranged from 50 to 90 min-
utes. Every interview-session was followed up by an open feedback conversation
where the interviewees could explain their answers in more detail.

Each company type had to be represented by at least 1 interviewee, who either
held a managerial-, operational-, or consulting position for at least 2 years that was
related to IT security issues. The number of interviewees in each of these three job
categories is shown in Table 1. A total number of 13 interviews were conducted. All
questionnaires were complete and used for the analysis. All figures presented in this
work are averages across the complete data set, unless stated otherwise. The size of
the data set prohibits extensive regression analysis, thus the results are limited in
their generalizability, but should be considered as indicators that invite future work
with larger samples.

The 13 interviewees worked for 9 different companies. Out these 9 companies, 6
were large, multi-national corporations with computer networks of more then 1000
hosts. Although only 5 of 9 companies stated that information technology was among
their core business areas, all (100%) described IT as vital for their business success. A
dedicated IT Security department was employed by 6 out of 9. Those who had no
security department where smaller companies, which instead employed dedicated
individuals that took on security related tasks. None of the interviewees stated that
they had no security caretaker whatsoever.

This work presents the first part of this study’s results, hence only a subset of the
total 69 questions in the questionnaire was used in this paper. The analysis of the
remaining questions is subject to future work.

3.2 Managerial Versus Operational View of Security

In the beginning of the interview, the interviewees were asked to rate their approach
towards IT security on a scale of 1 to 5, where 1 equals a completely technical ap-
proach and 5 equals an organizational one. The term “organizational” was used for
reasons of readability in the questionnaire as substitute for “business- or value-driven

380 C. Frühwirth

approach” and explained verbally to the interviewees. Table 1 shows that interviewees
in managerial roles generally rated their security approach as more business driven
then people with operational roles. However, the average rating among all groups
(mean average of each group dived by the number of groups) at 3,2 on a 1 to 5 scale
shows that security issues are not perceived as a purely organizational issue. We inter-
pret this result as a supporting argument for an ongoing transition from technology
to business oriented approaches. Thus, this interpretation is considered as argument
(P1-A6) to support (P1).

Table 1. Interviewees and their view on security, categorized in three groups, according to the
interviewee’s role in the company

Interviewees role in the
company

Operational Managerial Consulting Total

Number of interviewees in
group

3 9 1 13

Average answer to “What is
your approach to security on a
scale of 1-5?”
1 = technical, 5 =
organizational

Mean: 2,3
(Median: 2)

3,2
(3)

4
(4)

3,2
(3)

“Do you know the concept of
the CIA triad?”

1 Yes
answer

4 Yes
answers

1 Yes
answer

6 Yes
answers

As control question, the interviewees were asked whether they were familiar with

the concept of the CIA triad (confidentiality, integrity, availability). Interviewee
groups with a stronger organizational view on security were more likely to know the
CIA concept then those with a more technical view.

It needs to be noted that the small number of interviewees and especially the single
member in the group “Consulting” does not allow to identify global trends. The re-
sults should instead be considered as anecdotal evidence that encourage further em-
pirical investigation.

3.3 Importance of Security Factors

In section 1 we have identified the arguments (Q-1A1) and (Q1-A2) that described the
mismatch between the distributions of emphasis among the different security factors
in real-life software vulnerabilities versus industry standards and academic research.
So far though, we lacked the comparison with the practitioners’ point of view. Hence,
we asked the interviewees on which security factors they focus on in their companies.
The interviewees answered by distributing 100 points among 5 security factors. Fac-
tors, which were more important to the company should receive more points then
those, which were less important. The result is pictured in Figure 1.

Figure 1 shows that the interviewees clearly regarded data availability as the most
important security factor. Because we analysed 5 different security factors, a direct
comparison with Myagmar’s [14] findings (see section 1, Q1-A1), who analyzed only
4 factors is not possible. Nevertheless, we can compare the relative ranking of the

 On Business-Driven IT Security Management 381

Fig. 1. Comparison of the importance of individual security factors to the interviewees

Table 2. Comparing the importance ranking of security factors between interviewees, industry
standard and actual software vulnerabilities

Ranking of by in-
terviewees

Ranking in industry stan-
dard
(Myagmar 2006, Figure 6.)

Ranking in actual vulnerabili-
ties
(Myagmar 2006, Figure 6.)

1. Availability
2. Confidentiality
3. Integrity
4. Authenticity

1. Authentication
2. Integrity
3. Availability
4. Confidentiality

1. Authentication
2. Availability
3. Integrity
4. Confidentiality

4 factors both works have in common. Table 2 shows that the interviewees had very
different priorities for their companies then Myagmar indentified in the Common
Criteria (CC) industry standard and the National Vulnerability Database.

While the interviewees’ companies had the strongest focus on data availability, fol-
lowed by confidentiality, the CC industry standard ranked availability 3rd and confi-
dentiality 4th. A similar mismatch is visible in the ranking of the actually recorded
vulnerabilities in the NVD.

During the interview feedback session, one of the interviewees, an IT manager of a
retail company, explained his decision to emphasize data availability over other secu-
rity factors: “Our stores have a combined sale volume of more then 1 million EUR per
business day. A breach of data confidentiality would be horrible, but we would still be
able to continue sales operations. We would loose sales though if data availability
was suddenly interrupted.” Hence, from the companies’ point of view, investing in
availability is a simple business decision. The high availability rating was further not

382 C. Frühwirth

specific to the retail industry. Nearly all other interviewees chose similar priorities: 10
out of 13 interviewees had allocated 40% or more of their points to secure informa-
tion availability.

The businesses’ strong emphasis on availability clearly collides with the priorities set
by the industry standards, however it is not unheard of that standards are not always
applied as they are supposed to be. What is more surprising though, is the mismatch
between the businesses’ security priorities and real-world security vulnerabilities that
were recorded by the NVD as shown in Table 2. We argue that this is due to the lack of
a business-value based ranking of vulnerabilities in the NVD. While companies can
prioritize security aspects based on the potential impact of a security breach on business
value (e.g. sales), the NVD rates vulnerabilities based on the Common Vulnerability
Scoring System (CVSS), which uses mostly technological metrics [19]. These different
approaches in assessing the importance of security aspects might be responsible for the
observed mismatch.

Hence, we can support Q1 (Q1-A3) by concluding that there is a clear mismatch
between security requirements in businesses, standards and real-world vulnerabilities.

3.4 Who Drives Security Investments?

The problem of funding decisions in growing security investment was identified in
section 1. We argued in (P1-A2) that due to the increased investment volume, the
funding decisions are taken at higher levels of company hierarchy then before, thus by
managers rather then technicians. The interviewees were asked to provide their ex-
perience on this issue by noting who drove past IT security investments in their com-
pany and who drives them now.

Fig. 2. Current and past drivers of IT security investments

The interviewees’ answers are pictured in Figure 2. In the interviewees’ experi-
ence, technical personnel used to be the strongest security investment driver and
clearly outnumbered the combined senior and middle management 10 to 3. This find-
ing is consistent with the notion that information security originated as a technology
driven field. Today however, the emphasis has changed and security investments lie

 On Business-Driven IT Security Management 383

now in the hands of managers. Figure 2 further shows that this change is more visible
in middle management then in senior management, where the increase of investment
drivers is significantly smaller. The overall movement however presents a clear direc-
tion, towards more involvement of business executives in IT security. Hence, the
interviewees’ response confirms our initial claim in (P1-A2).

4 Conclusion

In the course of this work we presented 5 arguments that support our proposition

(P1) “The field of Information security management is transforming from a technol-
ogy- to a business driven approach.”

P1-A1: Modern security standards adopt the concept of business value in their defini-
tion of security.

P1-A2: Increasing security investment costs move the investment responsibilities
towards higher levels of management.

P1-A3: The financial impact of security incidents incentivizes managers to take con-
trol of security management

P1-A4: Businesses are increasingly involved in the development of security standards.

P1-A5: Authors in the academic literature are calling for increased value considera-
tions in security research.

The purpose of this work was to analyze whether this transformation has led to
misalignments between the requirements for information security by businesses, in-
dustry standards and academic research. We have presented three arguments, which
addressed that question:

Q1-A1: Literature identified a quantitative gap between security requirements in in-
dustry standards and actually reported security vulnerabilities.

Q1-A2: Authors in the literature criticized a gap between academic security research
and the security needs of companies

Q1-A3: The conducted interviews with industry practitioners showed a clear mis-
match between businesses’ security requirements, standards and actual security
vulnerabilities.

Based on the presented arguments, we conclude that security management has in-
deed become a business issue and what used to be a technical domain is now handled
by managers. Today’s security standards showed misalignments with security vulner-
abilities that are discovered in the real world. However, literature indicated that the
gap between standards and real-world could shrink over time.

A strong mismatch was identified between standards, real-world vulnerabilities and
the need of practitioners. We found that security in companies clearly serves a busi-
ness need, the need to keep the business running at all times. One can argue that this
strong focus on information availability will increase as more business-minded people
replace technicians in the roles of security investment drivers. However, newer em-
pirical research [3] suggests that confidentiality issues become more important as

384 C. Frühwirth

well, as confidentiality breaches get more costly for firms. Hence, it remains unclear
whether the identified mismatches between businesses and standards and businesses
and real-world vulnerabilities are going to grow over time. Future work in this area
will thus help us to focus the development of security management and further in-
crease its application value for businesses.

References

1. Larsen, A.: Global security survey: Virus attack,
 http://Informationweek.com/743/security.htm (visited, October 2008)

2. Campbell, K., Gordon, L., Loeb, M., Zhou, L.: The Economic Cost of Publicly Announced
Information Security Breaches: Empirical Evidence from the Stock Market. Journal of
Computer Security 11(3), 431–448 (2003)

3. Ishiguro, M., Tanaka, H., Matsuura, K., Murase, I.: The Effect of Information Security In-
cidents on Corporate Values in the Japanese Stock Market. In: The Workshop on the Eco-
nomics of Securing the Information Infrastructure, WESII (2006)

4. Telang, R., Wattal, S.: An Empirical Analysis of the Impact of Software Vulnerability An-
nouncements on Firm Stock Price. IEEE Transactions on Software Engineering (2007)

5. Egan, M., Mather, T.: The Executive Guide to Information Security: Threats, Challenges,
and Solutions. Addison-Wesley Professional, Reading (2004) ISBN: 0321304519

6. Bishop, M.: Introduction to Computer Security. Addison-Wesley Longman, Amsterdam
(2004) ISBN-10: 0321247442

7. ISACA, Information Systems Audit and Control Association (2000), COBIT,
 http://www.isaca.org/COBIT (visited, May 2007)

8. Neubauer, Klemen, Biffl: Business Process-based Valuation of IT-Security. In: Proceed-
ings of the seventh international workshop on Economics-driven software engineering re-
search EDSER 2005 (2005)

9. Roeckle, H., Schimpf, G., Weidinger, R.: Process-oriented approach for role-finding to
implement role-based security administration in a large industrial organization. In: Pro-
ceedings of the fifth ACM workshop on Role-based access control table of contents,
pp. 103–110 (2000) ISBN:1-58113-259-X

10. ISO/IEC Std. ISO 17799:2005, Information Technology – Security Techniques - Code of
Practice for Information Security Management, ISO (2005)

11. NVD, U.S. National Institute of Standards and Technology: National Vulnerability Data-
base (NVD), http://nvd.nist.gov/ (visited October 21, 2008)

12. Cavusoglu, H., Mishra, B., Raghunathan, S.: The Effect of Internet Security Breach An-
nouncements on Market Value: Capital Market Reactions for Breached Firms and Internet
Security Developers. International Journal of Electronic Commerce 9(1), 69 (2004)

13. Myagmar, S., Yurcik, W.: Why Johnny Can Hack: The Mismatch between Vulnerabilities
and Security Standards. In: IEEE International Symposium on Secure Software Engineer-
ing, ISSSE 2006 (2006)

14. DoD, Department of Defense (1983), Trusted Computer System Evaluation Criteria, 1983.
DoD 5200.28-STD, Library No. S225, 7ll,

 http://csrc.ncsl.nist.gov/publications/secpubs/rainbow/
 std001.txt

15. CC, Common Criteria, and Common Criteria Recognition Agreement, (CCRA) (2006),
http://www.commoncriteriaportal.org/ (visited, January 2009)

 On Business-Driven IT Security Management 385

16. Schneier, B.: Crypto-Gram Newsletter, Issue (November 15, 2008,
 http://www.schneier.com/crypto-gram-0811.html#4

17. Boehm, B.: Value-Based Software Engineering: Overview and Agenda. Value-Based
Software Engineering: Overview and Agenda 15(3), USC-CSE-2005-504 (2005)

18. Biffl, S.: Message from the Track Chairs SPPI. In: 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications, EUROMICRO 2006 (2006)

19. Mell, P., Scarfone, P.: A Complete Guide to the Common Vulnerability Scoring System
Version 2.0. National Institute of Standards and Technology 2007 (2007),

 http://www.first.org/cvss/cvss-guide.pdf

The Waterfall Model in Large-Scale
Development

Kai Petersen1,2, Claes Wohlin1, and Dejan Baca1,2

1 Blekinge Institute of Technology, Box 520,
SE-37225 Ronneby, Sweden

kai.petersen@bth.se, claes.wohlin@bth.se, dejan.baca@bth.se
2 Ericsson AB, Box 518,

SE-37123 Karlskrona, Sweden
kai.petersen@ericsson.com, dejan.baca@ericsson.com

Abstract. Waterfall development is still a widely used way of working
in software development companies. Many problems have been reported
related to the model. Commonly accepted problems are for example to
cope with change and that defects all too often are detected too late
in the software development process. However, many of the problems
mentioned in literature are based on beliefs and experiences, and not
on empirical evidence. To address this research gap, we compare the
problems in literature with the results of a case study at Ericsson AB
in Sweden, investigating issues in the waterfall model. The case study
aims at validating or contradicting the beliefs of what the problems are
in waterfall development through empirical research.

1 Introduction

The first publication on the waterfall model is credited to Walter Royce’s arti-
cle in 1970 (cf. [1]). In literature there seems to be an agreement on problems
connected to the use of the waterfall model. Problems are (among others) that
the model does not cope well with change, generates a lot of rework, and leads
to unpredictable software quality due to late testing [2]. Despite the problems
identified, the model is still widely used in software industry, some researchers
are even convinced that it will be around for a much longer period of time (see
[3]). The following trends can be seen in research. First, the model seems to be
of very little interest for researchers to focus on as it seems to be old-fashioned.
Instead, recent studies have much more focus on agile and incremental develop-
ment. Secondly, there is very little empirical research backing up what we believe
to know about the waterfall model. In order to identify the evidence provided
by empirical research on the waterfall model we conducted the following search
on Inspec & Compendex:

– (”waterfall model” OR ”waterfall development”) AND (”empirical” OR ”case
study” OR ”industrial”)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 386–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Waterfall Model in Large-Scale Development 387

Inspec & Compendex was selected as it integrates many full-text databases in
computing and thus is considered a good starting point. The search resulted in
33 publications where none of the publications had an explicit focus on studying
the waterfall model in an industrial setting. Thus, most of the problems reported
on the waterfall model are mainly based on researchers’ beliefs and experience
reports. Consequently, in order to provide substantial evidence on the useful-
ness of the waterfall model in industry empirical studies are needed. Evaluating
the usefulness empirically aids decision making of whether to use the model in
specific context (here large-scale-development).

To address this research gap we conducted a case study focusing on identify-
ing issues in waterfall development and compare them to what has been said in
literature. Furthermore, the issues identified are ranked based on their criticality.
The case being studied is a development site of Ericsson AB, Sweden. The wa-
terfall model was used at the company for several years. The case study has been
conducted according to the guidelines provided by Yin (see [4]). The case study
makes the following contributions to research on waterfall development: 1) Illus-
tration of the waterfall implementation in practice within large-scale industrial
software development, 2) Identification of issues related to the waterfall model
and their prioritization showing the most critical issues, and 3) Comparison of
case study results with state of the art (SotA).

The remainder of this paper is structured as follows: Section 2 provides an
overview of related work. Thereafter, Section 3 illustrates the waterfall model
used at the company. Section 4 presents the case study design. The analysis of
the collected data is provided in Section 5 (qualitative analysis) and Section 6
(quantitative analysis). Section 7 presents a comparison of the case study findings
and state of the art. Section 8 concludes the paper.

2 Related Work

Literature identifies a number of problems related to the waterfall model. An
overview of the problems identified in literature is shown in Table 1. In addi-
tion to the identified articles we considered books discussing advantages and
disadvantages of the waterfall model.

The waterfall model is connected to high costs and efforts [2][5]. That is, it
requires approval of many documents, changes are costly to implement, itera-
tions take a lot of effort and rework, and problems are usually pushed to later
phases [2]. Few studies are explicitly focused on the waterfall model and some
reasons for the failures of the waterfall approach have been identified. One reason
mentioned by several studies is the management of a large scope, i.e. require-
ments cannot be managed well and has been identified as the main reason for
failure (cf. [7] [9] [8]). Consequences have been that the customers’ current needs
are not addressed by the end of the project [7], resulting in that many of the
features implemented are not used [9].

Additionally, there is a problem in integrating the overall system in the end
and testing it [10]. A survey of 400 waterfall projects has shown that the soft-
ware being developed is either not deployed or if deployed, it is not used. The

388 K. Petersen, C. Wohlin, and D. Baca

Table 1. Issues in Waterfall Development (State of the Art)

ID Issue Reference

L01 High effort and costs for writing and approving documents for
each development phase.

[2][5]

L02 Extremely hard to respond to changes. [2][5][6]
L03 When iterating a phase the iteration takes considerable effort

for rework.
[2]

L04 When the system is put to use the customer discovers problems
of early phases very late and system does not reflect current
requirements.

[1] [2] [7]

L05 Problems of finished phases are left for later phases to solve. [2]
L06 Management of a large scope of requirements that have to be

baselined to continue with development.
[8] [7] [9]

L07 Big-bang integration and test of the whole system in the end of
the project can lead to unexpected quality problems, high costs,
and schedule overrun.

[10][1][11]

L08 Lack of opportunity for customer to provide feedback on the
system.

[10]

L09 The waterfall model increases lead-time due to that large chunks
of software artifacts have to be approved at each gate.

[12]

reasons for this are the change of needs and the lack of opportunity to clarify
misunderstandings. This is caused by the lack of opportunity for the customer
to provide feedback on the system [13]. Specifically, the waterfall model fails in
the context of large-complex projects or exploratory projects [3].

On the other hand, waterfall development comes with advantages as well. The
waterfall model is predictable and pays attention to planning the architecture
and structure of the software system in detail which is especially important when
dealing with large systems. Without having focus on architecture planning there
is a risk that design decisions are based on tacit knowledge and not explicitly
documented and reviewed [14]. Thus, the probability of overlooking architectural
problems is high.

3 The Waterfall Model at the Company

The waterfall model used at the company runs through the phases requirements
engineering, design & implementation, testing, release, and maintenance. Be-
tween all phases the documents have to pass a quality check, this approach is
referred to as a stage-gate model (see for example [15]). An overview of the
process is shown in Figure 1.

We explain the different phases and provide a selection of checklist-items
to show what type of quality checks are made in order to decide whether the
software artifact developed in a specific development phase can be passed on to
the adjacent phase.

The Waterfall Model in Large-Scale Development 389

Main Product Line

Requirements
Engineering MaintenanceReleaseTestingDesign &

Implementation

Quality Door
(Checklist)

Main Development Project

Quality Door
(Checklist)

Quality Door
(Checklist)

Quality Door
(Checklist)

Fig. 1. Waterfall Development at the Company

Requirements Engineering: In this phase, the needs of the customers are identi-
fied and documented on a high abstraction level. Thereafter, the requirements
are refined so that they can be used as input to the design and implementation
phase. The requirements (on high as well as low abstraction level) are stored in
a requirements repository. From this repository, the requirements to be imple-
mented are selected from the repository. The number of requirements selected
depends on the available resources for the project. As new products are not built
from the scratch, parts from the old product (see main product line in Figure 1)
are used as input to the requirements phase as well. At the quality gate (among
others) it is checked whether all requirements are understood, agreed upon, and
documented. Furthermore, it is checked whether the relevant stakeholders are
identified and whether the solution would support the business strategy.

Design and Implementation: In the design phase the architecture of the system
is created and documented. Thereafter, the actual development of the system
takes place. The developers also conduct basic unit testing before handing the
developed code over to the test phase. The quality gate checklist (among others)
verifies whether the architecture has been evaluated, whether there are devia-
tions from the requirements compared to the previous quality gate decision, and
whether there is a deviation from planned time-line, effort, or product scope.

Testing: In this phase the system integration is tested regarding quality and
functional aspects. In order to make a decision whether the the system can
be deployed, measures of performance (e.g, throughput) are collected in the test
laboratory. As the company provides complete solutions (including hardware and
software) the tests have to be conducted on a variety of hardware and software
configurations as those differ between customers. The outcome of the phase is
reviewed according to a checklist to see whether the system has been verified
and whether there are deviations from previous quality gate decisions in terms
of quality and time, whether plans for hand-over of the product to the customer
are defined according to company guidelines, and whether the outcome of the
project meets the customers’ requirements.

Release: In the release phase the product is brought into a shippable state. That
is, release documentation is finalized (e.g. installation instructions of the system
for customers and user-guides). Furthermore, build-instructions for the system

390 K. Petersen, C. Wohlin, and D. Baca

have to be programmed. Build-instructions can be used to enable and disable
features of the main product line to tailor the system to specific customer needs.
At the quality gate (among others) it is checked whether the outcome meets
the customers’ requirements, whether the customer has accepted the outcome,
and whether the final outcome was presented in time and fulfilled its quality
requirements. A post-mortem analysis has to be performed as well.

Maintenance: After the product has been released to the customer it has to be
maintained. That is, if customers discover problems in the product they report
them to the company and get support in solving them. If the problems are due
to faults in the product, packages for updating the system are delivered to the
customers.

4 Case Study Design

The context in which the study is executed is Ericsson AB, a leading and global
company offering solutions in the area of telecommunication and multimedia.
Such solutions include charging systems for mobile phones, multimedia solutions
and network solutions. The company is ISO 2001:2000 certified. The market in
which the company operates can be characterized as highly dynamic with high
innovation in products and solutions. The development model is market-driven,
meaning that the requirements are collected from a large base of potential end-
customers without knowing exactly who the customers will be.

4.1 Research Questions

The following main research questions should be answered in the case study:

– RQ1: What are the most critical problems in waterfall development in large-
scale industrial development?

– RQ2: What are the differences and similarities between state of the art and
the case study results?

The relevance of the research questions can be underlined as follows: The
related work has shown a number of problems related to waterfall development.
However, there is too little empirical evidence on the topic and thus more data
points are needed. Furthermore, the criticality of problems is not addressed in
any way so far, making it hard to decide in which way it is most beneficial to
improve the model, or whether the introduction of a new way of working will
help in improving the key challenges experienced in the waterfall model.

4.2 Case Selection and Units of Analysis

The case being studied is one development site of Ericsson AB. In order to
understand the problems that occurred when the waterfall model was used at
the company, three subsystems (S1, S2, and S3) are analyzed that have been
built according to the model. The systems under investigation in this case study

The Waterfall Model in Large-Scale Development 391

Table 2. Units of Analysis

Language Size (LOC) No. Persons

Overall System >5,000,000 -
S1 C++ 300,000 43
S2 C++ 850,000 53
S3 Java 24,000 17
Apache C++ 220,000 90

have an overall size of approx. 2,000,000 LOC (as shown in Table 2). The LOC
measure only includes code produced at the company (excluding third-party
libraries). Furthermore, the number of persons involved in building the system
are stated. A comparison of the system considered for this study and the size
of the Apache web server shows that the system being studied is considerably
larger and thus can be considered as large-scale.

4.3 Data Collection Procedures

The data is collected through interviews and from process documentation.

Selection of Interviewees. The interviewees were selected so that the over-
all development life cycle is covered, from requirements to testing and release.
Furthermore, each role in the development process should be represented by at
least two persons if possible. The selection of interviewees was done as follows:

1. A complete list of people available for the system being studied. Overall 153
people are on this list as shown in Table 2.

2. For the selection of persons we used cluster sampling. At least two persons
from each role (the roles being the clusters) have been randomly selected
from the list. The more persons are available for one role the more persons
have been selected.

3. The selected interviewees received an e-mail explaining why they have been
selected for the study. Furthermore, the mail contained information of the
purpose of the study and an invitation for the interview. Overall, 44 persons
have been contacted of which 33 accepted the invitation.

The distribution of people between different roles is shown in Table 3. The
roles are divided into ”What”, ”When”, ”How”, ”Quality Assurance”, and ”Life
Cycle Management”.

– What: This group of people is concerned with the decision of what to develop
and includes people from strategic product management, technical managers
and system managers.

– When: People in this group plan the time-line of software development from
a technical and project management perspective.

– How: Here, the architecture is defined and the actual implementation of the
system takes place. In addition, developers test their own code (unit tests).

392 K. Petersen, C. Wohlin, and D. Baca

Table 3. Distribution of Interviewees Between Roles and Units of Analysis

S1 S2 S3 Total

What (Requirements) 2 1 1 4
When (Project Planning) 3 2 1 6
How (Implementation) 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

– Quality Assurance: Quality assurance is responsible for testing the software
and reviewing documentation.

– Life Cycle Management: This includes all activities supporting the overall
development process, like configuration management, maintenance and sup-
port, and packaging and shipment of the product.

Interview Design. The interview consists of five parts, the duration of the
interviews was set to approximately one hour each. In the first part of the in-
terviews the interviewees were provided with an introduction to the purpose of
the study and explanation why they have been selected. The second part com-
prised questions regarding the interviewees background, experience, and current
activities. Thereafter, the issues were collected through a semi-structured inter-
view. To collect as many issues as possible the questions have been asked from
three perspectives: bottlenecks, rework, and unnecessary work. The interviewees
should always state what kind of bottleneck, rework, or unnecessary work they
experienced, what caused it, and where it was located in the process.

Process Documentation. Process documentation has been studied to gain an
in-depth understanding of the processes. Documentation for example includes
process specifications, training material for processes, and presentations given
to employees during unit meetings.

4.4 Data Analysis Approach

The problems related to the waterfall model at the company have been identified
conducting the four steps outlined below. The steps are based on more than 30
hours of interview transcriptions and have been executed by the first author over
a three month period.

1. Clustering: The raw data from the transcriptions is clustered, grouping state-
ments belonging together. For example, all statements related to require-
ments engineering are grouped together. Thereafter, statements addressing
similar areas within one group (e.g,. all areas that would relate to require-
ments engineering lead-times) are grouped.

2. Derivation of Issue Statements: The raw data contains detailed explanations
and therefore is abstracted by deriving problem statements from the raw

The Waterfall Model in Large-Scale Development 393

data, explaining them shortly in one or two sentences. The result was a
number of problem statements where statements varied in their abstraction
level and could be further clustered.

3. Mind-Mapping of Issue Statements: The issue statements were grouped
based on their relation to each other and their abstraction level. For ex-
ample, problems related to requirements lead-times are grouped within one
branch called ”long requirements lead-times”. This was documented in form
of a mind-map. Issues with higher abstraction level are closer to the center
of the mind map than issues with lower abstraction level.

4. Validation of Issues: In studies of qualitative nature there is always a risk
that the data is biased by the interpretation of the researcher. Therefore,
the issues have been validated in two workshops with three representatives
from the company. The representatives have an in-depth knowledge of the
processes. Together, the steps of analysis described here have been repro-
duced together with the authors and company representatives. For this a
subset of randomly selected issue statements have been selected. No major
disagreement has been discovered between the workshop participants on the
outcome of the analysis. Thus, the validity of the issue statements can be
considered as high.

After having identified the problems they are prioritized into A-problems (crit-
ical), B-problems (very important), C-problems (important), D-problems (less
important), and E-problems (local). The actual limits on the classes is based
on the results. The main objective of the classification is to systematize and
structure the data and not to claim that these classes are optimal or suitable for
another study.

A. The problem is mentioned by more than one role and more than one sub-
system. Moreover, the problem has been referred to by more than 1/3 of the
respondents.

B. The problem is mentioned by more than one role and more than one sub-
system. Moreover, the problem has been referred to by more than 1/5 of the
respondents.

C. The problem is mentioned by more than one role and more than one subsys-
tem. Moreover, the problem has been referred to by more than 1/10 of the
respondents.

D. The problem is mentioned by more than one role and more than one subsys-
tem. Moreover, it has been referred to by 1/10 of the respondents or less.

E. The problem is only referred to by one role or one subsystem and thus con-
sidered a local or individual problem.

4.5 Threats to Validity

Threats to the validity of the outcome of the study are important to consider
during the design of the study allowing to take actions mitigating them. Threats
to validity in case study research are reported in [4]. The threats relevant to the
study are: construct validity, external validity and reliability.

394 K. Petersen, C. Wohlin, and D. Baca

Construct Validity: Construct validity is concerned with obtaining the right mea-
sures for the concept being studies. One threat is the selection of people to obtain
the appropriate sample for answering the research questions. Therefore, experi-
enced people from the company selected a pool of interviewees as they know the
persons and organization best. From this pool the random sample was taken. The
selection by the representatives of the company was done having the following
aspects in mind: process knowledge, roles, distribution across subsystems, and
having a sufficient number of people involved (although balancing against costs).
Furthermore, it is a threat that the presence of the researcher influences the out-
come of the study. The threat is reduced as there has been a long cooperation
between the company and university and the author collecting the data is also
employed by the company and not viewed as being external. Construct validity
is also threatened if interview questions are misunderstood or misinterpreted. To
mitigate the threat pre-tests of the interview have been conducted.

External Validity: External validity is the ability to generalize the findings to
a specific context as well as to general process models. One threat to validity
is that only one case has been studied. Thus, the context and case have been
described in detail which supports the generalization of the problems identified.
Furthermore, the process model studied follows the main principles of waterfall
development (see Section 3) and thus can be well generalized to that model. In
addition, the outcome is compared to state of the art.

Reliability: This threat is concerned with repetition or replication, and in par-
ticular that the same result would be found if re-doing the study in the same
setting. There is always a risk that the outcome of the study is affected by
the interpretation of the researcher. To mitigate this threat, the study has been
designed so that data is collected from different sources, i.e. to conduct triangula-
tion to ensure the correctness of the findings. The interviews have been recorded
and the correct interpretation of the data has been validated through workshops
with representatives of the company.

5 Qualitative Data Analysis

In total 38 issues have been identified in the case study. The majority of is-
sues is categorized in class E, i.e, they are only referred to by individuals or are
not mentioned across subsystems (see Table 4). Furthermore, the distribution
of issues between the phases requirements engineering (RE), design and devel-
opment (DI), verification and validation (VV), release (R), maintenance (M),
and project management (PM) is shown. The distribution of issues is further
discussed in Section 7.

In the analysis of the issues we focus on classes A to D as those are the most
relevant ones as they are recognized across roles and systems. Thus, they have
a visible impact on the overall development process. However, this does not im-
ply that local issues are completely irrelevant, they just have little impact on the

The Waterfall Model in Large-Scale Development 395

Table 4. Number of Issues in Classification

Classification RE DI VV R M PM No. of Issues

A 1 - 1 - - - 2
B - - 2 - - - 2
C 1 2 - - 1 1 5
D 1 1 2 - - - 4
E 1 1 2 3 8 10 25

Sum 4 4 7 3 9 11 38

Table 5. Issues in Waterfall Development

ID Class Process Area Description SotA

P01A Requirements Requirements work is wasted as documented and vali-
dated requirements have to be discarded or reworked.

L02,
L03,
L08

P02A Verification Reduction of test coverage due to limited testing time
in the end.

L07

P03B Verification Amount of faults found increases with late testing. L05
P04B Verification Faults found later in the process are hard and expen-

sive to fix.
L07

P05C Requirements Too much documentation is produced in requirements
engineering that is not used in later stages of the pro-
cess.

L01

P06C Design Design has free capacity due to long requirements en-
gineering lead-times.

L09

P07C Design Confusion on who implements which version of the
requirements.

-

P08C Maintenance High effort for maintenance (corrections released to
the customer).

L04

P09C Project Mgt. Specialized competence focus of team members and
lack of confidence.

-

P10D Requirements The impact of requirements on other parts of the sys-
tem are not foreseen.

L06

P11D Design Design is overloaded with requirements. -
P12D Verification High amount of testing documentation has to be pro-

duced.
L01

P13D Verification Problems in fault localization due to barriers in com-
munication.

-

overall development process and thus are not recognized by other roles. Table 5
shows an overview of the identified issues in classes A to D and their mapping
to literature summarized in Table 1.

396 K. Petersen, C. Wohlin, and D. Baca

5.1 A Issues

P01: The long lead-times of the requirements engineering phase led to the need
to change requirements or discard already implemented and reviewed require-
ments as the domain investigated (telecommunication) is very dynamic. Further-
more, the distance to the customer caused misunderstandings which resulted in
changed requirements or discarded requirements. Due to the complexity of the
scope to be defined the number of requirements was too high for the given re-
sources which resulted in discarding requirements (and sometimes this was done
late in the development process). Furthermore, the interviewees emphasized that
the decision what is in the scope and what is not takes a lot of time as a high
amount of people that have to be involved.

P02: Test coverage in waterfall development was reduced due to multiple rea-
sons. Testing is done late in the project and thus if there have been delays in
development, testing has to be compromised as it is one of the last steps in devel-
opment. Furthermore, too much has to be tested at once after the overall system
has been implemented. Additional factors are that testing related to quality is
often given low priority in comparison to functional testing, trivial things are
tested too intensively, and test resources are used to test the same things twice
due to coordination problems.

5.2 B Issues

P03: The later the testing, the higher the amount of faults found. The num-
ber of faults and quality issues is influenced negatively when using waterfall
development. The main cause for this is late testing after everything has been
implemented. This provides far too late feedback from test on the software prod-
uct. Furthermore, basic testing is neglected as there has been low interaction
between design and testing, resulting in lack of understanding of each other in
terms of consequences of neglecting basic testing. Also due to communication
issues, testing started verifying unfinished code which led to a high number of
false positives (not real faults).

P04: Having late testing results in faults that are hard to fix, which is especially
true for issues related to quality attributes of the system (e.g. performance).
These kinds of issues are often rooted in the architecture of the system which is
hard to change late in the project.

5.3 C Issues

P05: The interviewees emphasized that quite a lot of documentation is pro-
duced in the requirements phase. One of the reasons mentioned is limited reuse
of documentation (i.e., the same information is reported several times). Further-
more, the concept of quality gates requires producing a lot of documentation
and checklists which have to be fulfilled before passing on the requirements to
the next phase. Though, in waterfall development the quality gates are required

The Waterfall Model in Large-Scale Development 397

as they assure that the hand-over item is of good enough quality to be used as
input for all further development activities.

P06: Design and implementation have free capacity, the reasons being that re-
quirements have to be specified in too much detail, decision making takes a long
time, or requirements resources are tied up due to the too large requirements
scope. This has a negative impact on design, as the designers have to wait for
input from requirements engineering before they can start working. As one in-
terviewee pointed out ”For such large projects with so many people involved half
the workforce ends up working for the rest”. In consequence, the lead-time of the
overall project is prolonged.

P07: From a design perspective, it is not always clear which version of the
requirements should be implemented and by whom. The cause of this problem
is that work often starts on unfinished or unapproved requirements which have
not been properly baselined.

P08: Support is required to release a high number of corrections on already
released software. This is due to the overall length of the waterfall projects
resulting in very long release cycles. In consequence, the customers cannot wait
for the corrections to be fixed for the next release, making corrections a time-
pressing issue. Furthermore, the development model requires to handle parallel
product branches for customer adaptations of the main product line. In this
domain, products have a high degree of variability and thus several product
branches have to be supported (see Figure 1).

P09: The competence focus of people in waterfall development is narrowed, but
specialized. This is due to that people are clearly separated in their phases and
disciplines, and that knowledge is not well spread among them. As one intervie-
wee pointed out, there are communication barriers between phases. Furthermore,
a lack of confidence has been reported. That is, people are capable but do not
recognize their particular strength to a degree they should.

5.4 D Issues

P10: New requirements do not have an isolated impact, instead they might affect
multiple subsystems. However, due to the large requirements scope, requirements
dependencies are often overlooked.

P11: The scope of the requirements was too big for the implementation re-
sources. In consequence, designers and architects were overloaded with require-
ments which could not be realized with the given resources. Furthermore, after
the project has been started more requirements were forced into the project by
the customer. In consequence, emergent requirements cannot be implemented
by architects and designers as they already face an overload situation.

P12: Test documentation has been done too extensively as the documents be-
came obsolete. The reason for the high amount of documentation was mainly
that the process has been very documentation centric.

398 K. Petersen, C. Wohlin, and D. Baca

P13: When dealing with different subsystems, the fault localization is problem-
atic as a problem might only show in one subsystems, but due to communication
barriers not all subsystem developers are aware of the problem. In consequence,
due to the lack of communication (see P09) the localization of faults reported
by the customer is time consuming.

6 Quantitative Data Analysis

Table 6 shows the distribution of time (duration) in the development process.
The requirements engineering phase takes very long time in comparison to the
other phases. The actual implementation of the system seems to be the least
time-intensive activity.

Table 6. Distribution of Time (Duration) over Phases (in %)

Req. Impl.&Design Verification Release Total

41 17 19 23 100

Furthermore, we measured the number of change requests per implemented
requirement, the discarded requirement, and the percentage of faults found in
system test that should have been found in earlier tests (function test and com-
ponent test). The figures quantify the issues identified earlier. In particular, the
high number of discarded requirements and the cause of change requests are re-
lated to issue P01. The long lead-times of requirements engineering increase the
time-window for change requests and approximately 26 % of all requirements
become obsolete. From a quality perspective the fault slip of 31 % is a symptom
of P03 (increase of number of faults with late testing) and P04 (the types of
faults found in system tests could have been found earlier and thus would have
been easier to fix).

Table 7. Performance Measures

Measure Value

CRs per implemented requirement 0.076
Discarded requirements 26 %
Fault slip to system test 31 %

7 Comparative Analysis of Case Study and SotA

Table 5 relates the issues identified in the case study to the issues mentioned in
literature. If an issue from the case study is identified in literature the column
SotA provides the ID of the issue identified in literature (listed in Table 1).
Through this comparison it becomes apparent that four issues not mentioned

The Waterfall Model in Large-Scale Development 399

in the identified literature have been discovered in the case study, namely P07,
P09, P11, and P13. Vice versa all issues acknowledged in literature have been
identified in the case study. Table 5 also shows that the highest prioritized issues
(A and B) have all been mentioned in literature describing the waterfall model.
In conclusion researchers and practitioners are aware of the most pressing issues
related to waterfall development, while lower prioritized (but still important)
issues have not been linked to the waterfall model to the same degree.

The issues in the case study are formulated differently from those identified
in literature as the formulation is an outcome of the qualitative data analysis.
Therefore, we explain how and why the issues of high priority from the case
study and SotA are related to each other. The most critical issues are related
to the phases of requirements engineering, and verification and validation (both
identified in literature). We found that requirements often have to be reworked
and or discarded (P01). The qualitative analysis based on the interviews ex-
plained the issue with long lead-times for requirements and large scope making
responding to changes hard (related to L02), distance to the customer (related
to L08), and change in large scope leads to high effort due to that many people
are involved (related to L03). The quantitative analysis shows that 41 % of the
lead-time is consumed for requirements engineering. Having to define a large
requirements scope extends lead-time and thus reduces requirements stability.
In consequence the waterfall model is not suitable in large-scale development in
the context of a dynamic market. Regarding verification issue L07 identified in
literature states that testing the whole system in the end of the project leads to
unexpected quality problems and project overruns. This issue relates to the case
study in the following ways: First, testing has to be compromised and thus test
coverage is reduced when having fixed deadlines which do not allow for project
overruns (P02). Secondly, the faults found late in the process are hard to fix,
especially if they are rooted in the architecture of the system (P07).

The issues categorized as C are quite mixed, i.e. they include issues related
to requirements, design, maintenance and project management. The issues cat-
egorized as D show a similar pattern as the most critical ones (A and B), i.e.
they are related to requirements, and verification and validation. Furthermore,
one issue is related to design. As mentioned earlier, less than half of the issues
classified as C and D have been identified in literature before. An explanation
of the issues not yet identified has been provided in the qualitative analysis (see
Section 5).

It is also interesting to observe that a majority of local issues is related to
project management and maintenance (see Table 4). Thus, it seems that there
is a high number of issues which do not have such an impact on the process that
knowledge about them spreads in the organization.

8 Conclusion

This case study investigates issues related to the waterfall model applied in the
context of large-scale software development and compares the findings with lit-
erature. The results are that the most critical issues in waterfall development

400 K. Petersen, C. Wohlin, and D. Baca

are related to requirements and verification. In consequence, the waterfall model
is not suitable to be used in large-scale development. Therefore, the company
moved to an incremental and agile development model in 2005. The comparison
of the case study findings with literature shows that all issues found in litera-
ture are found in the case study. Though, the case study findings provide more
detailed explanations of the issues and identified four new issues, namely 1) con-
fusion of who implements which version of the requirements, 2) high effort for
maintenance, 3) specialized competence focus and lack of confidence of people,
and 4) problems in fault localization due to communication barriers.

References

1. Royce, W.: Managing the development of large software systems: Concepts and
techniques. In: Proc. IEEE WESCOM. IEEE Computer Society Press, Los Alami-
tos (1970)

2. Sommerville, I.: Software Engineering, 7th edn. Pearson Eductation Ltd., London
(2004)

3. Raccoon, L.B.S.: Fifty years of progress in software engineering. SIGSOFT Softw.
Eng. Notes 22(1), 88–104 (1997)

4. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Applied Social
Research Methods Series, vol. 5. Prentice Hall, Englewood Cliffs (2002)

5. McBreen, P.: Software craftsmanship: the new imperative. Addison-Wesley, Boston
(2002)

6. Pfleeger, S.L., Atlee, J.M.: Software engineering: theory and practice, 3rd edn.
Prentice Hall, Upper Saddle River (2006)

7. Jarzombek, J.: The 5th annual jaws s3 proceedings (1999)
8. Thomas, M.: It projects sink or swim. British Computer Society Review 2001

(2001)
9. Johnson, J.: Keynote speech: Build only the features you need. In: Proceedings of

the 4th International Conference on Extreme Programming and Agile Processes in
Software Engineering (XP 2002) (2002)

10. Jones, C.: Patterns of Software Systems: Failure and Success. International Thom-
son Computer Press (1995)

11. Sametinger, J.: Software engineering with reusable components: with 26 tables.
Springer, Berlin (1997)

12. Anderson, D.J.: Agile Management for Software Engineering: Applying the The-
ory of Constraints for Business Results (The Coad Series). Prentice Hall PTR,
Englewood Cliffs (2003)

13. Cohen, D., Larson, G., Ware, B.: Improving software investments through require-
ments validation. In: Proceedings of the 26th Annual NASA Goddard Software
Engineering Workshop (SEW 2001), Washington, DC, USA, p. 106. IEEE Com-
puter Society, Los Alamitos (2001)

14. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
15. Karlström, D., Runeson, P.: Combining agile methods with stage-gate project man-

agement. IEEE Software 22(3), 43–49 (2005)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 401–415, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Better Understanding of CMMI and Agile
Integration - Multiple Case Study of Four Companies

Minna Pikkarainen

VTT Technical Research Centre of Finland
P.O. Box 1100, FIN-90571 Oulu, Finland

minna.pikkarainen@vtt.fi

Abstract. The amount of software is increasing in the different domains in
Europe. This provides the industries in smaller countries good opportunities to
work in the international markets. Success in the global markets however de-
mands the rapid production of high quality, error free software. Both CMMI
and agile methods seem to provide a ready solution for quality and lead time
improvements. There is not, however, much empirical evidence available ei-
ther about 1) how the integration of these two aspects can be done in practice
or 2) what it actually demands from assessors and software process improve-
ment groups. The goal of this paper is to increase the understanding of CMMI
and agile integration, in particular, focusing on the research question: how to
use ‘lightweight’ style of CMMI assessments in agile contexts. This is done
via four case studies in which assessments were conducted using the goals of
CMMI integrated project management and collaboration and coordination with
relevant stakeholder process areas and practices from XP and Scrum. The
study shows that the use of agile practices may support the fulfilment of the
goals of CMMI process areas but there are still many challenges for the agile
teams to be solved within the continuous improvement programs. It also iden-
tifies practical advices to the assessors and improvement groups to take into
consideration when conducting assessment in the context of agile software
development.

1 Introduction

There is an increasing need for software in all industrial domains in Europe [1]. There
is even an increase in its part of everyday life as software is more used in ambulances,
hospitals, mobile applications and home electronics. This need for software offers
companies in smaller countries opportunities to work as software suppliers in interna-
tional markets [2].

Even if there is a need for an increasing amount of software in the market, there is
also high competition among software intensive companies. The profits are simply
going to the company that can most rapidly produce customer value. This demands an
organizational ability to respond to the changing customer requirements.

At the same time, there should not be any errors in the delivered software prod-
ucts. This is because, at the delivery stage, defect correction is extremely expensive

402 M. Pikkarainen

and time consuming. In fact, in traditional software development it takes more than
40 times longer to find and fix a defect if it is found in system testing as opposed to
module testing [3]. Furthermore, in the safety critical product, even one error in the
ready delivered system can lead to the loss of human life [2]. Thus, at the same time
when the companies have demands for high quality software they also need to be
agile.

Standards and models such as CMMI (Capability Maturity Model Integration) [4]
provide ready, evaluated solutions for the software process improvement. [5-7]. It is
shown that the CMM based software process improvement programs have brought
companies even 28–53% of improvements in lead time and 70 to 74% of improve-
ment in quality measured by the amount of defects [5]. One problem in the CMM
model based software process improvement programs have been the high assessment
costs [8] . It seems also that the actual developers are often forgotten in the software
process improvement programs [9]. On the other hand, CMM based software devel-
opment arguably leads to a situation in which the developers implement more docu-
ments than the actual software code [10] .

Agile methods have been increasingly used in software development companies.
For example F-Secure1 reported that the use of agile methods such as short cycles,
continuous planning and daily meetings have brought them even 50% improvements
in software quality [11]2.One problem in the agile methods is their time-consuming
deployment which can lead to the situation in which one half of the company does not
know what the other is doing [12]]. This is because the deployment of agile methods
signifies a large change to companies [13]. Traditionally, a company should change
both 1) their ways of action 2) and overall culture. In these situations most of the
companies, however, may not have a possibility to invest in the large process assess-
ments or programs [14]. Furthermore, the impact of the use of agile methods on the
interaction between the teams, management, and customer have not yet been covered
as a part of the real research [15]. There are, however, risks and challenges also in the
projects using agile methods which can lead also to project failure. [16]

In general, people, especially in industries seem to believe that “CMMI and agile
methods are like oil and water” [17] like opposite elements that should not be mixed
together as a part of the software process improvement. SEI [18] has published a
report arguing that there is compliance between the CMMI model and agile methods.
The validity of this argument has not, however, yet been proved as a part of the em-
pirical research. The goal of this research is to increase the empirical understanding in
this research field. This is done by focusing on the research question: how to use a
‘lightweight’ style of CMMI assessment in an agile software development context.
The research was done step by step based on the case study method that was applied
in four case companies.

The structure of this paper is the following. Section 2 describes the research back-
ground including aspects of CMMI and agile software development. Section 3 pre-
sents the research design i.e. method used in the study. Section 4 presents an analysis
of the cases, while section 5 concludes the paper with the key findings, research limi-
tations and future work related to the CMMI and agile integration.

1 http://www.f-secure.fi/
2 This was reported directly by the F-Secure manager.

 Towards a Better Understanding of CMMI and Agile Integration 403

2 Background

This section describes the background to this study including the key concepts of
CMMI and Agile and the empirical findings related to CMMI based SPI problems and
agile software development.

2.1 CMMI

The main SPI model, investigated in this research, is the capability maturity model,
CMMI [4]. CMMI was chosen as the focus of this research because CMMI based
assessments are widely-used for evaluating the software processes within a company
[19] and indicating key weaknesses needing immediate attention and improvement
[20].The Capability Maturity Model® CMM is a model which is often used as a ref-
erence model in assessments to facilitate the organization to achieve a level where
continuous, optimized improvement of the software development is possible [21].
CMM, as well as the numerous other IEEE standards and guidelines, integrates some
of the wisdom in the software development industry [22]. The key differences be-
tween CMM and CMMI are 1) in CMMI the measurement and analysis process is
added in the maturity level 2) there is more focus on software and product develop-
ment, its risk management, verification and validation instead of the organizational
level processes 3) in CMMI the organizational innovation and deployment process
area is included in maturity level 5 instead of the change management process area.

CMMI includes both capability and maturity models, which means that it can be
used in a staged and continuous way. The staged representation focuses on a set of
key process areas, which are exclusively identified within the maturity levels (1–5)
[4]. The assumption of the staged representation of the CMMI is that an organization
cannot achieve the next maturity levels before achieving the previous level first. In
the continuous representation, processes are measured using the same scale of capa-
bility levels [4]. CMMI includes 25 key process areas and each of them contains spe-
cific and generic goals that are again dealt with by specific and generic practices. [4].

Empirical studies have proven that assessments, integrated with the successful im-
plementation of a change, can enable organizations to improve the speed and reduce
the costs of the software development [5, 6]. CMM and more recently CMMI is re-
garded as the most popular reference model used in assessments as the first step of
SPI [23] and it has been used, for example, to enhance the reduced costs of software
development [5]. The assessments are also claimed to be wasteful, because the current
assessment methods often tend to be too ‘heavy’ and expensive [8]. It has been re-
ported that even 77% of process improvements take longer than expected [24]. There
are many reasons why the assessment costs have risen too high. For example, organi-
zations do not often know the process areas of higher levels before they have
achieved the goals of the lower level [24].

The CMMI based improvement programs seem to demand a great deal of resources
[25]. For example, the case study of 56 software organizations, that have conducted a
CMM-based process improvement initiative, illustrates that the exploitation of the
improvements is difficult [26]. It has been argued that in many cases it takes a long
time and significant effort for organizations to show the benefits of the CMMI pro-
grams [6]. For example, a survey of 138 individuals in 56 software organizations

404 M. Pikkarainen

shows that 72% of the SPI programs that successfully applied the CMM based identi-
fication of weaknesses, are not actually improved [27]. The reason for why the CMMI
initiatives take so much time to be implemented might lie in the fact that the processes
often produce an environmental change which means a shift in the whole process
hierarchy to achieve the identified improvements [9]. This demands not only SPI team
involvement but also efficient coordination and involvement of the developers. In
most of the cases people in industries do not have much time for software process [9].
Often, processes get in the way of the developers and slow the pace of software de-
velopment to a frustrating level [21]. The reason for this might lay in the wrong focus
of improvement programs [9]. Although the assessments can involve the relevant
people, the applied improvement programs have often focused too much on the proc-
ess aspects at the expense of the people behind the actual development work [9]

2.2 AGILE Software Development

Although the initial ideas of agile software development have been created and used
already in the 1970s and 1980s, the agile methods emerged in the late 1990s and the
early 2000s. Since then, they have been introduced in companies as significant
mechanisms to increase the organization’s capability to respond to changes [34]. This
study focuses on investigating eXtreme Programming (XP) [28] and Scrum [29].
These methods were chosen because they are considered to be the most popularly
used of all the agile methods [30] and because studying these two methods in use
gives a researcher possibility to examine both project management and engineering
aspects of software development.

XP is an agile method originally presented by Kent Beck [28]. It is a ‘lightweight’
methodology with four key values: communication, simplicity, feedback and courage
[28]. Scrum has been pioneered by Schwaber and Beedle [29]. It is a simple process
mainly focused on project management of software development [30]. Scrum was
originally influenced by Boehm’s ‘spiral’ model, but it was developed based on in-
dustrial experiences to simplify the complexity of the project and requirements man-
agement in software organizations [31]. Scrum describes practices on an iterative,
incremental time boxed process skeleton. At the beginning of the iteration, the team
has a sprint planning meeting in which they decide what the team will do during the
following iteration. At the end of the iteration, the team presents the results to all the
stakeholders in the sprint review meetings to gain feedback on their work. The heart
of Scrum is an iteration in which the self-organizing team builds software based on
the goals and plans defined in the sprint planning meeting [31].

Both XP and Scrum define practices for the software development process. Beck
[32] identifies 12 key practices for the software development process, which mostly
focus on software engineering. Beck [28] argues that the XP practices are situation
dependent, which means that the application of the practices is a choice which can be
made based on the current development context.

During the 2000s, interest in agile methods has increased dramatically [13]. These
methods have been adopted in different types of software projects and in wide-
ranging application domains [33]. It has been shown that the use of agile methods
can be beneficial for product manageability, visibility and team communication [34]
as well as ensuring frequent feedback from the customer [35]. In Motorola, on the
other hand a selected set of XP practices was used also in the field of safety critical

 Towards a Better Understanding of CMMI and Agile Integration 405

systems [36]. In that case, the use of XP practices was reported to have 53% im-
proved average quality compared to the plan-driven software development project.

3 Research Design

Case study research is appropriate in the situations when 1) actors of the case are
important and the context of the case organization is critical [37] and 2) where con-
trol over behaviour is not possible as research data can be collected through observa-
tion in an unmodified setting [38]. Because the case context is considered critical in
case studies [37] , it is important to select cases and researched entities carefully to
make it easier and limit the analysis process [37]. This can be done, for example, by
selecting companies for the case study research using some specific context factors
(i.e. size, domain) [39]. The case study research has often been implemented and
reported iteratively, for example, based on Yin [38] steps of case study research
method. The case study has been said to be most suitable in the situations in which the
researchers purpose to find answers to the explanation to some phenomena through
how and why questions [37]. Answers to those questions can be created through the
data analysis in which consistency is assured by collecting the research data from
multiple settings [37]. Therefore, the collected data can be a combination of inter-
views, questionnaires and observations [39].

Table 1. Data collection

 Case1 Case2 Case 3 Case 4
Individual interviews 10 5 6

3
Group Interviews 5 1 3

7

Research Period 2005, 2006 2005 2005, 2006, 2008 2007, 2008

Number of Interviewed persons 6 5 6 18

During the period 2005–2008, the initial approach was to interview managers and

employees in four firms that were in the process of implementing the XP and Scrum
methods. Since this period was still early for software process improvement via agile
practices, the firms were chosen opportunistically based on their business goals to
adopt agile practices. During this research, a total of 40 interviews were conducted. All
the individual interviews were semi structured and lasted for about 60–90 minutes
each. All together 33 people from different industries participated in the assessments.
This included developers, architects, project managers, customers and line managers
from the case companies.

In case studies the data are typically collected from a few entities that can be a per-
son, group or an organization [37]. In this study one project team was selected under
analysis from each of the case companies. The case study research can be done using
within-case and cross case comparison between these entities [39]. For example, analys-
ing the selected entities first as a stand-alone entity ‘within-case analysis’ as described

406 M. Pikkarainen

by Yin [38]. In this study, each of the cases were first analysed case by case and then
compared to find the similarities and differences affecting CMMI and agile integration.

4 Empirical Analysis

This section describes the background of the analysed cases. It also presents an exam-
ple of a brief analysis of each of the assessed organizations from the perspectives of
integrated project management and collaboration.

4.1 Background of the Cases

This research was done in four companies producing software for telecom, informa-
tion security and financial sectors (Table 2). All of the case organizations were work-
ing in the global markets in both Europe and USA. Additionally the case company 4
was working in distributed environments, having developers in Europe, India and
USA. The sizes of the companies varied from 100 to 60,000 employees.

Table 2. Background of the cases

Company Domain Size of the company
Case 1 Telecom 100
Case 2 Telecom 60000
Case 3 Information security 300
Case 4 Financial 40000

All of the companies used a combined set of XP and Scrum practices as described

by Fitzgerald et al [30]. Overall, the agile practices used varied quite considerably
even between the teams between the companies but also inside of a company between
the development teams. All the analyzed teams excluding case 13 used a Scrum
framework (i.e. product backlogs, sprints, sprint planning and review meetings) and
XP practices (i.e. continuous integration and collaborative code ownership). Some XP
practices such as TDD, pair programming, were not used in any of the case compa-
nies for several reasons. For example, TDD seemed not to be useful for most of the
cases. It was only used sometimes in cases 2 and 3 to support testing work but not as a
regular part of development. Pair programming was analyzed as totally against the
culture in case company 4 but useful in case company 2. In that case the project
members also changed pairs on a daily basis. In case company 3, pair programming
was used sometimes when doing complex tasks.

4.2 Implementation of the Assessments

Assessment planning started with the discussion of organization management of the
assessed case company. In all cases, the common opinion of the management was that
‘even if the assessments itself are useful, they need to be implemented in the lightest
way possible’ (i.e. not taking too much of the teams’ and organizations’ time). There-
fore, the assessments were decided to be conducted as follows:

3 The Scrum was used in case company 1 while conducting the second assessment.

 Towards a Better Understanding of CMMI and Agile Integration 407

• Assessments followed 7 of the 9 criteria outlined by Anacleto et al. [40] for
the development of lightweight assessment methods: low cost, detailed de-
scription of the assessment process, guidance for process selection, detailed
definition of the assessment model, support for identification of risks and im-
provement suggestions, no specific software engineering knowledge required
from companies’ representatives, and tool support is provided.

• Assessments were done purposing to lower costs [41] focused processes [42]
simple assessment process [43] and modified use of assessment models [44].

• The assessment shared some of the requirements of the ADEPT and AHAA
methods [2, 14] meaning that the assessment is implemented without the pur-
pose of certification, both preparation and assessment time was minimized.

• Continuous representation of CMMI was used. This was because the goal of
all evaluated companies was to achieve business goals through the improve-
ment of software development process. Not, actually, to have official CMMI
certification or to achieve certain maturity levels.

• Data used in the assessments were mainly based on the conducted group and
individual interviews. In some of the cases (2 and 3) data from iteration retro-
spectives was also used in the analysis. Project plans and feature sheets were
only documents that were checked during the assessments.

4.3 Assessment Results

In integrated project management aspects of CMMI specific goals were best achieved
in company 2. Collaboration with stakeholders were efficient in cases 1, 2 and 4 but
problematic also in agile case company 3.

Achievement of CMMI specific goals (rating 1-5)

0

1

2

3

4
Case 1

Case 2

Case 3Case 4

Case 6 Integrated Project
Management

Collaboration and
Coordination with Relevant
Stakeholders

Fig 1. Integrated project management and coordination, (ratings 1-5 = 1 the CMMI goal not
achieved, 3 partially achieved, 4 largely achieved, 5 fully achieved

4.3.1 Case 1
Integrated Project Management. In case 1 the company had two different process
models one for customer tailoring work and another for the baseline product develop-
ment. The company had separated software and hardware teams which were located

408 M. Pikkarainen

close to each other. Interface dependencies were managed using an MS Word docu-
ment. This document was created in several workshops with participation of both
hardware and software development teams. “We have workshops during the design phase, and

(every) couple of days we get together and go through the decisions and modifications”, developer. At the
beginning of the project, planning was done using detailed project plan which was not
updated later on during the development. In agile mode, the plans were based on Excel
sheets that were continuously updated in iteration planning meetings.

Coordinate and collaborate with relevant stakeholders. The fact that customers
wanted just ready products instead of concurrent participation in development made it
difficult to get customers involved in actual iteration planning meetings. “and with our

customers there is no commitment to be a part of the co-development”, developer . Therefore, the
practice was rather that management was involved in weekly project meetings. Other
stakeholders were involved when needed. Coordination such as feature management,
task processing were based on iterative meetings and weekly discussions

A summary of the status of integrated project management and coordination process
areas is provided in Table 3.

Table 3. Integrated project management and coordination in case 1

SG 1 Integrated Project Manage-
ment Status in case company 1

SP 1.1 Establish the Project’s
Defined Process

The company had two different process models one for customer
tailoring work and another for baseline product projects

SP 1.2 Use Organizational Process
Assets for Planning Project
Activities

The use of the organizational level processes varied between the
teams in the case company. In the evaluated team the company
level process model was not used

SP 1.3 Establish the Project's Work
Environment

The company had separated software and hardware teams which
were located close to each others

SP 1.4 Integrate Plans Plans were continuously discussed in iteration planning meetings
SP 1.5

Manage the Project Using
the Integrated Plans

In the first phase, project was planned using detailed project plan
which was not updated later on during the development. In agile
mode, the plans were based on excel sheets that were continu-
ously updated in Iteration planning meetings

SP 2.1

Contribute to the Organiza-
tional Process Assets

Organizational process assets were updated once a year based on
the changed situation but feedback from projects were not sys-
tematically collected for this purpose

SG 2 Coordinate and Collaborate
with Relevant Stakeholders Status in the case company 1

SP 2.2

Manage Stakeholder
Involvement

Customers were located in other countries and wanted just ready
products instead of concurrent participation in development
which made it difficult to get customers involved in actual itera-
tion planning meetings. Management was involved in weekly
project meetings. Other stakeholders were involved time to time

SP 2.3

Manage Dependencies

Dependencies were managed using word documentation that
describes all the features and their interfaces. This document was
created in several workshops with participations of both hard-
ware and software development sites

SP 2.1
Resolve Coordination Issues

Coordination such as feature management, task processing were
based on iterative meetings and weekly discussions

 Towards a Better Understanding of CMMI and Agile Integration 409

4.3.2 Case 2
Integrated Project Management. In case 2 the project manager defined agile based
product development process for the specific project before the project started. The
work process and practices were communicated to the developers in workshop and on
the wall of the open office space. The information radiators (project status information
on the wall) were used efficiently to communicate about project task status and overall
progress. Plans were continuously updated and integrated into the project work status.
Organization level processes did not, however, support the agile software development
approach. “In practice I made an exception to our standard process…I took customers in the steering
group to watch milestones which was not actually a requirement of the milestone process” Project manager.
The project was monitored through the traditional state gate model.

Coordinate and collaborate with relevant stakeholders. In practice, project man-
ager had separated milestone meetings with other stakeholders of the project in able to
fulfil organizational level requirements. The architecture of the overall system was on
developer’s responsibility. At the beginning, developers had difficulties with the in-
terface definition. This led to the situation in which the whole architecture was refac-
tored and totally changed during the second iteration. A summary of the status of
integrated project management and coordination process areas is given in Table 4.

Table 4. Integrated project management and coordination in case 2

SG 1 Integrated Project Management Status in case company 2
SP 1.1 Establish the Project’s Defined

Process
Process for the project were defined before the project started
and communicated to the developers in workshop

SP 1.2 Use Organizational Process
Assets for Planning Project
Activities

The evaluated team tailored the process model that they used
based on the process model provided on company level

SP 1.3
Establish the Project's Work
Environment

Project work environment was open office space, all informa-
tion of project tasks and task estimations were located on the
wall of open office space

SP 1.4 Integrate Plans Plans were continuously updated
SP 1.5 Manage the Project Using the

Integrated Plans Plans were continuously integrated to the project work status
SP 2.1 Contribute to the Organiza-

tional Process Assets Organization process did not supported the case team
SG 2 Coordinate and Collaborate with

Relevant Stakeholders Status in the case company 2
SP 2.2

Manage Stakeholder
Involvement

Customer visited in project room daily to look at the task
status with developers. Project manager had separated mile-
stone meetings with other stakeholders of the project

SP 2.3

Manage Dependencies

Architecture was developers’ responsibility. They had first
difficulties with the dependency definition. The whole
architecture was refactored and totally changed during the
second iteration

SP 2.1
Resolve Coordination Issues

Feature and task processing issues were continuously discussed
in iteration planning meetings

4.3.3 Case 3
Integrated Project Management. In case 3 the evaluated project was using a com-
pany-wide agile process model. The working environment was an open office space.

410 M. Pikkarainen

The project work tasks and task status was managed using an Excel sheet that was
updated daily with the development team and Scrum master. According to the project
manager the project status was continuously discussed in iteration retrospective meet-
ings and then used to improve the organizational level process model.

Coordinate and collaborate with relevant stakeholders. One problem for the pro-
ject members was the stakeholder involvement in the iteration planning and review
meetings. In fact, both parties got frustrated because the management expected that
their feedback would be taken into the project work on a daily basis but team mem-
bers were expecting planning meetings before the decisions of the updates in the
product backlog can be made. “that made people confused, because they thought they had a voice,
because they were in the daily meeting talking about something and then because that something didn’t get
done” project manager. Dependencies between the features in the overall system were not
well managed. In the end there were many unfinished features in the system which
affected the output quality. One reason for the situation was that the requirements
were not analysed in sufficient detail at the end of the project due to the short iteration
planning meetings and lack of resources. A summary of the status of integrated pro-
ject management and coordination process areas are described in Table 5.

Table 5. Integrated project management and coordination in case 3

SG 1 Integrated Project Management Status in case company 3
SP 1.1 Establish the Project’s Defined

Process Company had so called agile process model
SP 1.2 Use Organizational Process Assets

for Planning Project Activities
The evaluated team tailored the company level process
model based on their needs

SP 1.3 Establish the Project's Work
Environment Project working environment was open office space

SP 1.4 Integrate Plans Project was managed using excel sheets
SP 1.5 Manage the Project Using the

Integrated Plans
The project plans were updated daily by Scrum master
and development team

SP 2.1 Contribute to the Organizational
Process Assets

Project results were used to improve the organizational
level process model

SG 2 Coordinate and Collaborate with
Relevant Stakeholders Status in case company 3

SP 2.2

Manage Stakeholder Involvement

Stakeholders could not always being able to participate
in iteration planning meetings. They got frustrated
because they were not used to a situation in which their
change requests were taken part of the project work only
in monthly iteration planning meetings

SP 2.3

Manage Dependencies

Dependencies were not well managed, there was unfin-
ished features in the project outputs that affected to the
quality of the project results

SP 2.1
Resolve Coordination Issues

Feature and task processing issues were not well solved
due to the lack of time

4.3.4 Case 4
Integrated Project Management. In case 4 the project was using a so-called com-
pany wide hybrid process model which included aspects from both agile and plan-
driven software development. Project members were working in the large open office
space. The project was managed using Excel sheets and phone conference meetings

 Towards a Better Understanding of CMMI and Agile Integration 411

with the people from US, India and Europe. Plans were continuously discussed and
updated together with the team members and managers. Task allocation was made in
Scrum meetings and the developers were responsible for the project tasks.

Coordinate and collaborate with relevant stakeholders. Project management was
however, taking care of customer communication and in some projects the customers
were not involved in the Scrum meetings. “customer… they don’t know too much. They’re not

very helpful.” developer. Therefore, the developers informed that there is a gap in the
communication between the customer and product development team. Projects were
short and established only for a short period at a time. The project manager stated that
the requirements were defined in a large requirements definition document and then
allocated to developers in Scrum meetings based on the manager’s suggestions about
their priorities. The allocation was done only by the development team without the
customer support. A summary of the status of integrated project management and
coordination process areas is given in Table 6.

Table 6. Integrated project management and coordination in case 4

SG 1 Integrated Project Man-
agement Status of case company 4

SP 1.1 Establish the Project’s
Defined Process Organization had a so-called hybrid process model

SP 1.2 Use Organizational Proc-
ess Assets for Planning
Project Activities

The evaluated team tailored the process model that they used
based on the process model provided on company level

SP 1.3 Establish the Project's
Work Environment Project members were working in a large open office space

SP 1.4

Integrate Plans

Project was managed using excel sheets and phone conference
meetings with the people from the US, India and Europe, Plans
were continuously updated

SP 1.5 Manage the Project Using
the Integrated Plans

Project feedback was not systematically used in the process
model continuous development

SP 2.1 Contribute to the Organ-
izational Process Assets

Project management took care of the customer communication,
the customer was not involved in the Scrum meetings

SG 2 Coordinate and Collabo-
rate with Relevant Stake-
holders Status of case company 4

SP 2.2
Manage Stakeholder
Involvement

Design decisions were efficiently shared using Viki through the
US and Europe. The business analyst and product management
were not always involved in the Scrum meetings

SP 2.3
Manage Dependencies

Task allocation was done in Scrum meetings, developers were
responsible for the project tasks

SP 2.1 Resolve Coordination
Issues

Project managements ‘took care’ of the customer communica-
tion, the customer was not involved in the Scrum meetings

4.4 Deployment of the Improvements

In companies 2-4, both the software process improvement and agile practice deploy-
ment was first based on the management decision, but later tailored to the needs of the
self-organizing development teams. In the longer term it was revealed from inter-
views that this caused a lot of process variations between the teams even in the same
organization. Compared to the previous plan-driven situation both management and

412 M. Pikkarainen

developers indicated that the use of agile methods really affected the developers’ role
in the assessment and software process improvement projects emphasizing the role of
tailoring as a part of the deployment process.

6-12 months later the assessor went back to companies 1 and 3 to see the results of
the assessment work. It seemed that integrated project management was becoming
more systematic due to Scrum deployment especially in company 1. In company 3 the
product management was now based on the group of people who were responsible for
continuous feature analysis for the sprint planning meetings. All of the evaluated
companies, however, reported that Scrum practices were adopted throughout the
company during the two years after the assessment. In practice, however, the used
agile activities varied significantly between the different development teams, even
inside the same company.

6 Conclusions

Both CMMI and agile methods provide practical solutions on how to improve the
speed of software development and quality of software products. There is not, how-
ever, much empirical evidence available on how to integrate these two aspects in
practical assessments and SPI situations in the agile software development context.
The purpose of this paper is to increase the understanding of CMMI and agile integra-
tion. As a result of this paper it was revealed:

The results of Iteration retrospectives can be utilized as a part of the assessment
data. Iteration retrospectives were used in case companies 2-4. In case companies 2
and 3, the data of iteration retrospectives were collected and used also when in the
analysis of the improvement needs of development teams during the assessments.
This gave a much larger view of the project work in the longer period than the typical
face-to-face interviews. Compared to the normal iteration retrospectives, assessments
helped teams to come together and share information about the challenges and solu-
tions inside and between the companies.

Agile software development needs to be improved using well established
reference models. The analysis in section 4 was done using CMMI specific goals and
agile practices. It is possible to integrate CMMI and agile in a framework that helps
assessors to evaluate the status of the software development teams. All of the
evaluated teams had major challenges that need immediate improvement to assure the
rapid development of high quality software. There were some challenges that were
common to most of the case companies:

• Component interface management is difficult in agile teams. There is a need for
additional documentation of the components and their interfaces (companies 1-4)

• Organizational level processes do not support agile-type software develop-
ment (companies 1, 2, 4, 5)

• Customer and part of the management are not committed to agile development,
they are not involved enough in the project planning and monitoring work
(companies 1- 5)

 Towards a Better Understanding of CMMI and Agile Integration 413

Self organizing is key when improving the development processes. It seems that
there are some fundamental differences between the SPI programs that are conducted
in the traditional software development teams and the SPI programs that are con-
ducted in an agile context [45]. It has been argued, for instance that CMMI based
improvement programs are often based on strong management control, whereas SPI
in an agile context emphasizes the use of self organizing teams as the key for SPI
implementation [45]. Thus, the process of conducting SPI in agile software develop-
ment is based on team level improvements to daily working practices [45]. The same
happened also in all of the evaluated cases in which the self organizing teams made
the final decision about tailoring the process. In the longer term this may cause many
process variations between the teams even in the same organization.

This research was carried out as a series of case studies to create a better under-
standing of agile practice adoption and improvement in software intensive organiza-
tions. Owing to the confidential nature of the data and the extended periods of data
collection, the research team could not rely on more objective constructs to observe
processes or process changes. The research team was also constrained by access to a
few key informants in each organization who were managers or developers. Thus, it
was only possible to triangulate across different observations of the same data point
(interviews at different time points) and across other published material, and the re-
searchers and research team’s own observations In addition, due to the lack of a refer-
ence model for agile practices (e.g. a standard), the ratings presented in this study
were achieved through the author’s current knowledge gained from the literature and
personal experience. Thus, the ratings presented are also subjective and context-
specific. Furthermore, the author’s role as a lead assessor in case companies 1, 2, 3
and 4 can be considered as a factor of bias in this research. However, the case study
research method was considered a suitable and practical method in rapidly changing
software development organizations.

Future research can go down two different routes. Firstly, the research can continue
on other process areas of CMMI. For example, requirements development, technical
solutions, product integration, validation and verification are process areas that could
be mapped to XP and Scrum practices. Secondly, another possible avenue for further
research is to examine agile method practices beyond those covered in this study i.e.
XP and Scrum. Methods such as LSD, FDD, APM, Crystal and ASD are all such
methods that could be assessed.

Acknowledgements. This work was partially supported by Science Foundation Ire-
land grant 03/CE2/I303_1 to Lero - the Irish Software Engineering Research Centre
(www.lero.ie) and TEKES to VTT, Technical Research Centre of Finland. Special
thanks also to Mikko Korkala about his valuable comments to this paper.

References

1. ITEA (2005),
http://www.itea2.org/attachments/150/
ITEA_SIS_in__the_future__Final_Report.pdf

2. McCaffery, F., Pikkarainen, M., Richarsson, I.: AHAA -Agile, Hybrid Assessment Method
for Automotive, Safety Critical SMEs. In: ICSE 2008, Leipzig, Germany (2008)

414 M. Pikkarainen

3. Humphrey, W.S.: The Payoff from Software Quality. Computerworld (2002),
http://www.computerworld.com/developmenttopics/
development/story/0,10801,71222,00.html

4. CMMI, ed. Capability Maturity Model® Integration for Development, Version 1.2, Techni-
cal Report CMU/SEI-2006-TR-008 CMU/SEI-2002-TR-002 ed, Software Engineering In-
stitute (2006),
http://www.sei.cmu.edu/publications/documents/
06.reports/06tr008.html

5. Galin, D., Avrahami, M.: Are CMM Program Investment Beneficial? Analysing Past Stud-
ies. IEEE Software 23(6), 81–87 (2006)

6. Niazi, M., Wilson, D., Zowghi, D.: A maturity model for the implementation of software
process improvement: an empirical study. The Journal of Systems and Software, 1–18
(2003)

7. Stelzer, D., Mellis, W.: Success Factors of Organizational Change in Software Process Im-
provement. Software Process Improvement and Practice 4(4), 227–250 (1998)

8. Fayad, M., Laitinen, M.: Process Assessment Considered Wasteful. Communications of
the ACM 40(11), 125–128 (1997)

9. Laitinen, M., Fayad, M.: Surviving a process performance crash. Communications of the
ACM 41(2), 83–86 (1998)

10. Boehm, B., Turner, R.: Balancing Agility and Discipline. In: Balancing Agility and Disci-
pline -A Guide for the Perplexed, p. 304. Addison Wesley, Reading (2003)

11. Agile Newsletter (2005), http://www.agile-itea.org
12. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization. IEEE Computer 36(6),

74–78 (2003)
13. Lindvall, M., et al.: Agile Software Development in Large Organizations. Computing Prac-

tices 37(12), 38–46 (2004)
14. McCaffery, F., Taylor, P., Coleman, G.: Adept: A Unified Assessment Method for Small

Software Companies. IEEE Software 24(1), 24–31 (2007)
15. Pikkarainen, M., et al.: The Impacts of agile practices on communication in software de-

velopment. Empirical Software Engineering 13(3), 303–337 (2008)
16. Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods. In: Com-

puter 2003, pp. 57–66. IEEE Computer Society, Los Alamitos (2003)
17. Turner, R., Jain, A.: Agile Meets CMMI: Culture Clash or Common Cause. In: 1st Agile

Universe Conference, Chigago (2002)
18. SEI (2008),

http://www.sei.cmu.edu/pub/documents/08.reports/08tn003.pdf
19. Trudel, S., et al.: The small company-dedicated software process quality evaluation

method combining CMMI and ISO/IEC 14598. Software Quality Journal 14(3) (2006)
20. Daskalantona, M.K.: Achieving Higher SEI Levels. IEEE Software 11(4), 17–24 (1994)
21. Andersson, D.J.: Stretching Agile to Fit CMMI Level 3. In: Agile Development, Denver

(2005)
22. Bamberger, J.: Essence of the Capability Maturity Model. Computer 30(6), 112–114

(1997)
23. Agarwal, R., Chari, K.: Software Effort, Quality and Cycle Time: A Study of CMM Level

5 Projects. IEEE Transactions on Software Engineering 33(3), 145–155 (2007)
24. Dangle, K.C., Larssen, P., Zelkowitz, M.V.: Software Process Improvement in Small Or-

ganizations: A Case Study. IEEE Software 22(6), 68–75 (2005)
25. Hareton, K., Leung, N., Terence, C.F.: A process framework for small projects. Software

Process Improvement and Practice 6(2), 67–83 (2001)

 Towards a Better Understanding of CMMI and Agile Integration 415

26. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors For Software Process Im-
provement Implementation: An Empirical Study. Software Process Improvement and Prac-
tice 11, 193–211 (2006)

27. Herbsleb, J., et al.: Benefits of CMM-based software process improvement: Initial results,
CMS/SEI-94-TR-013. Carnegie Mellon University, Pittsburgh (1994)

28. Beck, K.: Extreme Programming Explained: Embrace Change, p. 190. Addison Wesley
Longman, Inc., Amsterdam (2000)

29. Schwaber, K., Beedle, M.: Agile Software Development With Scrum. Prentice-Hall, Upper
Saddle River (2002)

30. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising Agile Methods to Software Practices
at Intel Shannon. European Journal of Information Systems 15(2), 200–213 (2006)

31. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Washington
(2003)

32. Beck, K.: Embracing Change with Extreme Programming. IEEE Computer 32(10), 70–77
(1999)

33. Karlström, D.: Introducing Extreme Programming - An Experience Report. In: XP 2002.
Springer, Alghero (2002)

34. Larman, C.: Agile & Iterative Software Development, p. 340. Addison Wesley, Reading
(2003)

35. Rising, L., Janoff, N.S.: The Scrum software development process for small teams. IEEE
Software 17(4), 26–32 (2000)

36. Grenning, J.: Using XP in a Big Process Company: A Report From the Field. In: XP Uni-
verse, Raleigh, NC (2001)

37. Benbasat, I., Goldstein, D.K., Mead, M.: The Case Research Strategy in Studies of Infor-
mation Systems. MIS Quartely 11 (1987)

38. Yin, R.K.: Case Study Research: Design and Methods. Thousand Oaks, California (2003)
39. Eisenhardt, K.: Building Theories from Case Study Research. Academy of Management

Review 14(4), 532–550 (1989)
40. Anacleto, A., et al.: A Method for Process Assessment in small software Companies. In:

Proceedings of the International SPICE conference of Process Assessment and Improve-
ment, Portugal, Lisbon (2004)

41. Richardson, I.: Software Process Matrix: A Small Company SPI Model. Software Process
Improvement and Practice 6(3), 157–165 (2001)

42. Wilkie, F.G., McCaffery, F.: Evaluation of CMMI Process Areas for Small to Medium-
sized Software Development Organizations. Software Process Improvement and Prac-
tice 10(2), 189–202 (2005)

43. Horvat, R.V., Rozman, I., Györkös, J.: Managing the Complexity of SPI in Small Compa-
nies. Software Process Improvement and Practice 5(1), 45–54 (2000)

44. Kautz, K.: Software Process Improvement in Very Small Enterprises: Does it Pay Off.
Software Process Improvement and Practice 4(4), 209–226 (1998)

45. Salo, O., Abrahamsson, P.: An Iterative Improvement Approach for Agile Development:
Implications from multiple case study. Software Process: Improvement and Practice 12(1),
81–100 (2007)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 416–428, 2009.
© Springer-Verlag Berlin Heidelberg 2009

ERP System Implementation: An Oil and Gas
Exploration Sector Perspective

Alok Mishra and Deepti Mishra

Department of Computer Engineering, Atilim University,
Incek, 06836, Ankara, Turkey

alok@atilim.edu.tr, deepti@atilim.edu.tr

Abstract. Enterprise Resource Planning (ERP) systems provide integration and
optimization of various business processes which leads to improved planning
and decision quality, smoother coordination between business units resulting in
higher efficiency, and quicker response time to customer demands and inquiries.
This paper reports challenges, opportunities and outcome of ERP implementa-
tion in Oil & Gas exploration sector. This study will facilitate in understanding
transition, constraints and implementation of ERP in this sector and also provide
guidelines from lessons learned in this regard.

Keywords: ERP, Implementation, Oil and Gas Exploration, SAP.

1 Introduction

Business environment is becoming increasingly complex with functional units requiring
more and more inter-functional data flow for decision making, timely and efficient
procurement of product parts, management of inventory, accounting, human resources and
distribution of goods and services [1]. To deal with these challenges Enterprise Resource
Planning (ERP) came into existence. ERP is an integrated set of subsystems that integrates
all facets of the business, including planning, manufacturing and logistics, sales and
marketing. ERP systems are originated to serve the information needs of manufacturing
companies. Over time though, they have grown to serve other industries, including
financial services, customer good sector, supplier chain management and human resource
sector. These systems provided integration and optimization of various business processes
and this was what the companies looked for [2] along with tangible and intangible
business benefits to organizations [3]. It is not wrong to say that ERP systems gained
importance as they arrived at a time when process improvement and accuracy of
information became critical strategic issues [4]. With this growth, ERP systems, which first
ran on mainframes before migrating to client-server systems, are now migrating to the Web
and include numerous applications. ERP is a product that helps automate a company's
business process by employing an integrated user interface, an integrated data set, and an
integrated code set. ERP systems are complex and implementing one can be challenging,
time-consuming and expensive project for any company [5]. Motwani et al. [6] emphasized
that ERP adoption involves initiating appropriate business process changes as well as
information technology changes to significantly enhance performance, quality, costs,

 ERP System Implementation: An Oil and Gas Exploration Sector Perspective 417

flexibility, and responsiveness. ERP systems are widely adopted in a diverse range of
organizations and define the business model on which they operate [7]. An ERP
implementation can take many years to complete and cost tens of millions of dollars for a
moderate size firm and upwards of $100 million for large organizations [8]. Implementing
an ERP system is a major undertaking. About 90% of ERP system implementations are
late or over budget [9] and the success rate of ERP systems implementation is only about
33% [10] [11]. The relative invisibility of the ERP implementation process is also
identified as a major cause of ERP implementation failures [12]. Such invisibility is
attributed to the unpredictably complex social interaction of IT and organization [13].
Volkoff [14] suggested that the critical challenge of ERP implementation is believed to be
the mutual adaptation between IT and user environment. It is also interesting to note that
ERP systems are large and complex, taking years to implement, the inclusion of today’s
strategic choices into the enterprise systems may significantly constrain future action. By
the time the implementation of an ERP system is completed, the strategic context of the
firm may have changed [7]. Mabert et al. [2] suggested that case studies and interviews
facilitate to obtain reliable and detailed information on the current status of ERP practice
and ERP implementations. They further argued that most implementation projects are
unique in many ways in spite of many common underlying issues, activities and strategies.
To meet on time and budget targets, ERP projects have to be planned very carefully and
managed very efficiently [2].

Limited research has been conducted about ERP implementation issues and mainly
in the form of individual organizations case studies only. Implementation failures,
challenges and problems are still not documented in the literature [15]. In the context
of ERP project implementation, challenges represent major pitfalls which if not
addressed then a project stands little success. Therefore, it is important to understand
the real life implementations, problems and related scenarios in detail.

Further to the best of our knowledge very few real life ERP implementations in oil
and gas sector are documented in the literature. Therefore this paper will facilitate in
understanding constraints, problems, success and pitfalls of implementation in this
sector.

This paper is organized as follows: First ERP implementation related literature is
reviewed. The next section follows real life ERP (SAP) implementation as case study,
followed by lessons learned. Section 5 summarizes conclusions.

2 Literature Review

ERP systems, similar to other management information systems, are often perceived as
very complex and difficult to be implemented [16][17]. System implementation success
depends on many factors. ERP system evaluation, vendor selection, the ERP consultant,
implementation plan and execution are all critical to the success of implementing an
ERP system [18]. The inability of some firms to successfully implement and utilize
enterprise systems to increase organizational outcomes has been a source of concern for
both practitioners and academia [19]. The evidence of enterprise implementation
failures go back to the late 1990s [20][21][5]. For many organizations, ERP systems are
the largest systems they have worked with in terms of financial resources invested, the
number of people involved and the scale of implementation [18]. Several recent cases of

418 A. Mishra and D. Mishra

ERP system implementation have experienced considerable difficulties [22][23][24][17].
The failure rate of ERP implementation is very high [25]. Among other obstacles,
technical problems and people obstacles have been cited as the major barriers [26][23].
The types of problems and issues that arise from the implementation of ERP systems
range from specific issues and problems that can come up during the installation of an
ERP to behavioural, procedural, political and organisational changes etc. That manifests
themselves once the system is installed. In case of ERP successful implementation is
urgent, since the costs and risks of these technology investments rival their potential
pay-offs [27]. Failure of ERP system implementation projects may lead to bankruptcy
[5][28][29][30]. A study of 100 projects by Sirkin and Dikel [31] found that their
sponsors considered them successful in only one-third of the cases and that tangible
financial impact was achieved in only 37% of cases. Markus et al. [32] suggests that
ERP systems are inherently flexible which means that stakeholders have many
opportunities to influence the form of technology during the initial decision-making,
development, the implementation and also the use of the system. They further argued
that many problems related to ERP-implementation are related to a misfit of the system
with the characteristics of the organization. This is supported by Davenport [5] that
“ERP tends to impose its own logic on a company’s strategy, culture, and organization’
which may or may not fit with existing organizational arrangements”. Although ERP
systems are functionally wealth, standardizing organizational processes with these
systems is often difficult [33]. It is found out that many firms that have experienced
success with ERP, have comprehensively reengineered their organizational processes
and structures as a method for enterprise–wide transformation [34]. In case of
implementing ERP system we should put more effort in customizing ERP modules to
compile with the existing workflow, report formats and data needs [18]. Involving users
as early as possible in system implementation is generally a good strategy [35]. As an
enterprise system, the success of ERP implementation requires a close cross-functional
cooperation [6]. Further evidence from literature shows that, although many
organizations are using some modules of an ERP system, they do not see themselves to
be equipped with ERP [36][37][38].

In particular, IT integrators that specialize in energy are seeing more opportunities in
what's termed as the "upstream" segment of the oil and gas sector. Upstream includes
oil and gas exploration and the drilling and operation of wells. Drilling companies deal
with large assets and work crews that move about the country or different ocean sites.
Such companies use ERP to make sure their resources are deployed effectively. ERP
solutions also help companies track equipment maintenance and keep tabs on employee
certification and training. Drilling personnel may need certification to operate certain
types of equipment [39]. Mergers and acquisitions are common in the upstream space,
and integrators find opportunity in consolidation. The trend got underway a few years
ago and continues apace. Consolidation begets complexity and generates interest in
ERP. Moore [39] further suggests as oil and gas sector companies absorb others,
operations may span several countries, each with its own statutory reporting
requirements. Companies crossing international boundaries also need to deal with
multiple currencies. Overall, combined organizations face rationalizing financial and
accounting systems which requires ERP implementation.

The ERP system is an increasingly popular management tool to reshape a business
or organization. Generally, the case study method is a preferred strategy when “how”

 ERP System Implementation: An Oil and Gas Exploration Sector Perspective 419

and “why” questions are being posed, and the researcher has little control over events
[40]. The case study method, a qualitative and descriptive research method, looks
intensely at an individual or small participants, drawing conclusions only about the
participants or group and only in the specific context [40]. The case study method is an
ideal methodology when a holistic, in-depth investigation is required [41]. The Case
study method has been proven a useful tool in investigating the problems of ERP
implementation [42][43][44][6].

3 Case Study

3.1 Background of the Company

The Company was established in early 1970’s to handle drilling operations required for
exploration and field development as well as undertaking work-over and maintenance
operations in both onshore and offshore areas. It has successfully carried out all
drilling operations requirements and played an important role in the discovery of oil
and gas. The main functions of the company are:

• Operations: This function includes two main divisions: Offshore and Onshore –
each handles drilling operations. A Logistics division is also under this function
and is responsible for providing logistics support in terms of transportation and
civil equipment.

• Technical: Mainly responsible for providing technical support to the Operations
function. The key divisions under this function are Commercial (procurement,
inventory, tendering, warehouse, etc), Engineering & Projects, Maintenance,
Business Support and a newly established division under the name of New
Services. The field support services like two warehouses and two workshops are
under Commercial and Maintenance divisions respectively.

• Administration: The role of this function is to provide administrative support
including HR, Finance, IT and General Services. All of these divisions are
located in head office.

3.2 IT Setup

The Information Systems & Technology (IS&T) department was formally established
in the early 1990s with the mandate of providing computer and networking services to
employees at Head Office. At that time, the company was running on Novel Netware
and XT computers primarily used by Finance and Payroll services. The structure of
the IS&T consisted of a networking unit and applications unit. The total number of IT
staff, including network engineers, FoxPro programmers and customer support staff
was under 20. The following in-house Foxpro based applications were being used:

• Financial Applications: General Ledger, Accounts Payable, Accounts Receivable,
Payroll

• Material Management: Inventory Management, Fixed Assets
• Miscellaneous: Employee Database, Maintenance Work order Historical Database

420 A. Mishra and D. Mishra

Most of the above applications were developed by third parties and later on supported,
maintained and enhanced by the internal development team of IS&T. Each application
was dedicated to a particular group (department or process) and the exchange of data
among these applications was very limited. The standard management reports were
incorporated in the applications and those were printed and distributed to the
management or concerned staff on a periodic or on-request basis. Management had to
rely on the availability of the existing data and most of the decision making required a lot
of manual information from various resources.

Initially the computers were only available to financial analysts, data entry
operators and managers. During mid-90s, PC-based computing became popular and
gradually all employees were provided PC workstations with Windows operating
systems using word processing tools and other office applications. After all of the PCs
were networked, the company decided to centralize the electronic files and hence the
storage system (merely a dedicated file server) was added to the data centre.

3.3 Weaknesses of IT Applications

Following problems were faced in the old IT setup:

• Only a few functions / processes were automated using FoxPro-based applications.
• All the applications were working in silos without any exchange or integration

among them.
• The maintenance of these applications was very difficult due to lack of

documentation of source code, process information among development team, etc
• Most of the business areas were not automated – hardly any decision-making was

fully supported by the existing applications.
• Most of the company’s processes were cross-functional e.g. Material Requirement

Planning, Procurement, Inventory, Maintenance, Invoices and Payments,
Operations Planning, etc. However the existing applications were only supporting a
small portion of the cross-functional process so the value generated by these
applications used to be offset by the subsequent manual flow of the information.

• The architecture of the applications itself was weak. The system controls were
inappropriate, allowing human error during data entry. As a result, the management
had little confidence in the reports generated from the system resulting in a forced
parallel-run of the manual registers and files for reconciliation and validation
purposes.

• The core business areas were handled by manual processes. For example, more
than 80% of staff was working in Operations (offshore and onshore), 10% were
based in Head office and the remaining 10% were deployed in field support
services (workshops, warehouses, base camps, etc) – all of these areas did not
have any IT systems to support their processes.

• Long-employed staff with built-up tacit knowledge of the company became the
only source of information. Lack of process documentation aggravated the problem
and a few key positions held most of the process knowledge, creating critical
organizational risk.

 ERP System Implementation: An Oil and Gas Exploration Sector Perspective 421

3.4 ERP Implementation

3.4.1 Objectives setting
In order to define clear goals and set expectations, the taskforce arranged a workshop
with the management team to obtain their viewpoint. Participants were agreed on the
following points:

• Timeframe – the implementation should not take a long time to complete.
• Cost – learning from industry experience, it was a general concern that any

such implementation typically takes 3 times the initially estimated cost; the
taskforce was asked to focus on the cost variance of the project.

3.4.2 ERP Selection
The first task was to finalize the selection of a particular ERP system. The task force
had the following options to evaluate:

i) Single ERP (SAP or Oracle) or
ii) Best of breed (selecting the best module for each of its functional area)

Option (ii) was discarded quickly as it required more cost, time and skills to
implement. In addition, it required building a comprehensive skill set for a variety of
applications that was extremely difficult at the time. Therefore the option to go for a
single ERP was selected. The next question was to choose between SAP and Oracle
as these two ERP packages were amongst the most popular choices in that region and
industry sector (i.e. Oil & Gas). Again the taskforce had the following options to
consider:

i) Conduct a self-study and choose between SAP and Oracle or
ii) Hire a consultant to study company’s requirements and propose a

particular ERP system

After evaluating both options, the taskforce dismissed the second option as it
required extra time (the tendering process itself could take many weeks) and cost.
Therefore it was decided to:

• Arrange meetings with other sister companies who had already implemented
an ERP to obtain their view point and lessons learnt.

• Arrange volunteers from each functional area to study the high-level features
of a particular module of both ERPs.

After conducting the self-study and meetings with other operating companies, the
task force agreed to proceed with SAP. The recommendation was presented to the
management and they accepted it.

The task force then conducted a market research to find out the range of costs and
timeframe. The initial data collected was not much encouraging as the minimum cost
identified as USD 8 million (software license, hardware and implementation cost). The
average implementation time was ranging from 18 months to 3 years which was also
beyond the initial estimations as the company was aiming to complete the transition in
12 months.

422 A. Mishra and D. Mishra

3.4.3 Scoping and Approach Definition
The taskforce then moved to the Scoping and Planning phase in which a team of focal
points (from each of the functional areas) was created to jointly develop a business
requirements document for the ERP implementation. The focal points were selected
based on their experience and knowledge of functional areas of the company. These
focal points were required to allocate 80% of their business hours to work on this task as
the deadline was in four weeks. Since most of the focal points were new to this type of
work, they started working on their individual areas in their own style – the consolidated
set of requirements produced by the team were clearly lacking the quality and
consistency as the requirements were either too high-level/generic or too detailed. The
team took another two weeks to refine those requirements further.

It was planned to implement the following SAP modules in the first round of
implementation:

• Financial Accounting

o General Ledger
o Accounts Receivable
o Accounts Payable
o Book Close
o Consolidation

• Controlling

o Cost Elements
o Cost Centres
o Activity Based Costing (ABS)
o Profit Centres

• Asset Management

o Purchase
o Sale
o Depreciation
o Tracking

• Human Resource

o Employment History
o Payroll
o Succession Planning
o Career Management

• Plant Maintenance

o Labour
o Material
o Downtime and Outages

• Material Management
o Requisitions
o Purchase Orders
o Goods Receipt
o Inventory Management
o Bill of Material

 ERP System Implementation: An Oil and Gas Exploration Sector Perspective 423

The taskforce had to address some of the strategic options:

• Big-Bang vs. Phased Approach: One of the questions was to finalize the
implementation approach – whether to implement all modules in parallel or use a
phased approach where each module would be implemented in a sequential
manner. The later approach seemed to take longer time than big-bang therefore the
team proposed to adopt a big-bang approach.

• Third Party vs. In-house Implementation: Where the first question was mainly
addressing the timeframe, this question was concerning the cost as well. The
taskforce evaluated various options and the most suitable appeared to hire SAP
Consultants on a contract bases (as short-term employee) along with an experienced
SAP Project Manager whose core responsibility would be to manage the SAP
contract staff to deliver in the agreed time frame. Most of the SAP consultants were
recruited from a body-shop (Indian resource costing maximum 20% of any SAP
implementation consultancy firm).

During this phase, the new SAP project manager was recruited and a team of 10
SAP consultants were hired as contract employees. These included six functional
resources specialized in different SAP modules, two SAP ABAP developers as
technical resources, one SAP GUI and security administrator and one database
administrator. At that time, SAP 4.6C version was bought. The license agreement
included all SAP modules along with 200 initial user licenses.

3.4.4 Business Blueprints
The newly recruited project manager formed a functional team including the focal
points from each of the business areas and the SAP Functional Consultants. The team
was given the task to prepare the detailed business blueprints which were mainly the
detailed definition of the company’s processes and their mapping with the existing best
practice-based processes defined in SAP. In most of the areas, company agreed to
adopt the built-in processes of SAP as it gave the company an opportunity to
implement the best practices simultaneously. The HR and payroll modules however
required some customization as the certain local personnel policies were governed by
government regulations and changing them was out of the question.

The task took eight weeks – with some known and unknown weaknesses in the
blueprint document, the team decided to move to the next phase.

3.4.5 Design and Development
During the design phase, the complete definition of SAP GUI screens, transaction
details, input/output layout and reporting formats were prepared. As most of the
existing processes were manual, the major part of the design phase was actually aiming
to a vanilla implementation of SAP. The design phase started in the 13th week of the
project (measured from Scoping and Approach Definition Phase), and it took nearly
eight weeks to complete. As time elapsed, the team was feeling a sense of urgency to
complete the tasks-in-hand. As a result, some of the areas like detailed reporting
requirements, test criteria, test cases and others did not get the attention they required.
Nonetheless, the team produced a detailed design document at the end of the design
phase. The role of the focal points was merely to review and sign-off the design
document.

424 A. Mishra and D. Mishra

During the design phase, the technical team had completed the hardware sizing and
specification. The platform choices were left open for the company and based on the
long-term relations with the existing hardware vendors, a combination of Compaq and
Dell servers were acquired. The backend database server was also kept open for the
company to choose and the existing relationships with Microsoft business partner were
leveraged to cut the deal for Microsoft SQL Server as the backend database server.
Clearly the company’s platform choice was Windows as all the PCs were equipped
with Windows O/S, Microsoft Office, and Windows NT/2000 as network operating
system. The company-wide email was supported by Microsoft Exchange server.

Towards the end of the design phase, the project team moved to the development
phase. During this phase, the following activities were carried out:

• Hardware set up
• MS SQL Server installation and configuration on database server
• Installation and configuration of development and testing environment on

separate servers
• Preparation for the test user machines
• Configuration of the SAP applications
• Data migration and conversion for the existing applications

At the end of this phase, the project had completed 32 weeks and the overall
management was satisfied with the progress.

3.4.6 Implementation
Once the configuration of the SAP interfaces was completed, the initial user acceptance
testing was conducted. The same team of focal points was used with a few added
divisional users. Not much time was given for this testing as it was assumed that
unchanged processes in SAP were already tested and confirmed. A list of target users
was prepared for the system training in their respective areas. The project team
struggled during this phase as the availability of the users was only 50% in all the
training sessions despite the management instructions of giving full time to these
training sessions. The project adopted a ‘train the trainers’ concept where it was
assumed that the selected users would train the rest of the staff in their divisions.

The system finally rolled-out in the 40th week. The whole SAP team’s contract was
extended for another year to provide continuous technical and functional support until
the system matured. The company had great expectations for SAP and was aiming to
collect immediate benefits after the implementation.

4 Lessons Learned and Discussions

The overall project achieved both of the primary goals - timeline and cost. However,
post-implementation progress did not occur as the company expected. Many areas
remained ‘out of SAP’, data residing in SAP was questionable for its accuracy, certain
controls were still missing in SAP, and transactions were taking more time to complete
in SAP compared to the previous applications or manual processes.

When these issues were realized at the top-management level, a SAP Review
Committee was formed to conduct an assessment of the current situation and to

 ERP System Implementation: An Oil and Gas Exploration Sector Perspective 425

develop an action plan. The team started working on the task and after assessing the
situation and meeting with key staff; the following was presented to management:

• The overall project lacked appropriate change management during its
implementation. The SAP was definitely a transformational project for the company
where its scope involved the company-wide processes and almost all the head office
based employees were expected to use the system. Since ERP is a major investment
of an organization and the implementation may involve substantial organizational
changes, top management support has been found to be a key success factor of
success, but more importantly top management need to develop a shared vision and
to communicate it to the employees so that expectation is clear [18][45][35]. Thus
the expectation of both peers and top management may influence the behaviour of
the ERP users [18]. However in this case very little effort was spent in planning the
transition from its legacy/manual processes to a sophisticated ERP arena. The
project’s core focus remained on the timely completion within the budget rather than
achieving the results. Mabert et al. [2] also found in their case study that because of
the investment required for an ERP project, both in terms of the resources and the
resulting organizational changes, companies are very sensitive about implementation
times and budgets.

• Another factor which was not considered was the employees’ perception about the
SAP. The rumour had already been spread in the company that after SAP, the
warehouse staff will be truncated to just 20% of the original staff. Similarly, the
support staff in other areas like Finance, HR, and Material Management had a
similar impression. Focal points that were part of the project team were aware of
the uncertain climate and may not have proactively quelled fears and rumours. As a
result, the design phase remained weak and certain controls in SAP remained open.
This allowed the system to accept inaccurate data in some of the transactions,
which created doubts about the integrity of the system later on. Compatibility
between the new system and the existing business procedures and data format are
the major issues reported by the companies [46][47]. Reimers [48] also observed
that implementing an ERP system implies that master data are maintained in one
department but are actually used by other departments; smooth master data
maintenance involves a high degree of cross-functional collaboration and also
understanding which might be lacking in state-owned enterprises. Since ERP
contains various modules that are intricately linked with each other, data should be
managed properly to ensure their accuracy [49]. Here it is important to note that
implementing an ERP will bring in changes to the way people work within the
organization, processes will change and there may be job cuts and rationalization of
responsibilities within departments [15].

• The third very important factor was the reduced training time for the end users. The
project team wanted to complete the implementation phase and make an unfairly
optimistic assumption about the ‘train the trainers’ approach. In order to provide a
smooth access to ERP systems, a large number of elements must work closely
together. These elements include supports in hardware, software, training and
information provision [18]. Reimers [48] also identified training as one of the
critical success factor in ERP implementation. The company had a mix of many
nationalities and cultures and not all employees had influence over others to train or

426 A. Mishra and D. Mishra

convince them in their respective areas. Moreover, some of the trained employees
viewed their new status as one of increased power within the company, and were
reluctant to pass their new-found knowledge to their colleagues.

5 Conclusions

This study provides valuable insights towards understanding ERP implementations and
significant factors influencing success. Various case studies provide different findings
which are unique to ERP implementations because of the integrative characteristics of
ERP systems. Alignment of the standard ERP processes with the company’s business
process has been considered as an important step in the ERP implementation process
[26]. After almost 7 years of implementation, company has mixed results in this case.
Certain areas have seen great improvements after the implementation of SAP (e.g.
Procurement, Maintenance, Financial) where certain areas remain weak (e.g. Employee
Records, Contract Administration, Integrated Planning). From this implementation
experience, it can be seen that it is not a particular technology platform or software
application that can transform a company. Instead it is the way the company implements
the technology that makes it successful.

References

1. Karsak, E.E., Özogul, C.O.: An integrated decision making approach for ERP system
selection. Expert Systems with Applications: An International Journal 36(1), 660–667
(2009)

2. Mabert, V.A., Soni, A., Venkataramanan: Enterprise resource planning: Managing the
implementation process. European Journal of Operational Research 146, 302–314 (2003)

3. Mishra, A.: Achieving Business Benefits from Enterprise Systems in Enterprise Resource
Planning for Global Economies: Managerial Issues and Challenges, Carlos Ferran and
Ricardo Salim, IGI Global, USA, ch. V, pp. 76–91 (2008b)

4. Yen, H.R., Sheu, C.: Aligning ERP implementation with competitive priorities of
manufacturing firms: an exploratory study. International Journal of Production
Economics 92, 207–220 (2004)

5. Davenport, T.H.: Putting the Enterprise into the Enterprise System. Harvard Business
Review 76(4), 121–132 (1998)

6. Motwani, J., Mirchandani, D., Madan, M., Gunasekaran, A.: Successful implementation of
ERP projects: evidence from two case studies. International Journal of Production
Economics 75(1-2), 83–96 (2002)

7. Mishra, A.: Enterprise Resource Planning Systems: Effects and Strategic Perspectives in
Organizations. In: Gupta, J.N.D., Sharma, S.K., Rashid, M.A. (eds.) Handbook of
Research on Enterprise Systems, IGI Global, USA, ch. V, pp. 57–66 (2008a) ISBN:978-1-
59904-859-8

8. Mabert, V.A., Soni, A., Venkataramanan: Enterprise resource panning survey of US
manufacturing firms. Production and Inventory Management Journal 41(20), 52–58 (2000)

9. Martin: An ERP strategy. Fortune 2, 95–97 (1998)
10. Zhang, M.K.O., Lee, L.: Critical Success Factors of Enterprise Resource Planning Systems

Implementation Success in China. In: Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (2003)

 ERP System Implementation: An Oil and Gas Exploration Sector Perspective 427

11. Arif, M., Kulonda, D., Jones, J., Proctor, M.: Enterprise Information Systems: Technology
First or Process First? Business Process Management Journal 11(1), 5–21 (2005)

12. Griffith, T.L., Zammuto, R.F., Aiman-Smith, L.: Why New Technologies Fail? Industrial
Management, 29–34 (1999)

13. Markus, M.L., Robey, D.: Information Technology and Organizational Change: casual
Structure in Theory and research. Management Science 34, 583–598 (1988)

14. Volkoff, O.: Enterprise System Implementation: A process of individual metamorphosis.
In: American Conference on Information Systems (1999)

15. Otieno, J.O.: Enterprise resource planning (ERP) systems challenges: A Kenyan case
study. In: Schlender, B., Frielinghaus, W. (eds.) BIS 2008. LNBIP, vol. 7, pp. 399–409.
Springer, Heidelberg (2000)

16. Liang, H., Saraf, N., Hu, Q., Xue, Y.: Assimilation of Enterprise Systems: The effect of
Institutional Pressures and the Mediating Role of Top Management. MIS Quarterly 31(1),
59–87 (2007)

17. Xue, Y., Liang, H., Boulton, W.R., Snyder, C.A.: ERP implementation failures in China:
Case studies with implications for ERP vendors. International Journal of Production
Economics 97(3), 279–295 (2005)

18. Chang, M.K., Cheung, W., Cheung, C.-H., Yeung, J.H.Y.: Understanding ERP System
Adoption from the User’s Perspective. International Journal of Production Econom-
ics 113(2008), 928–942 (2008)

19. Kumar, V., Movahedi, B., Kumar, U., Lavassani, M.: A Comparative Study of Enterprise
System Implementations in Large North American Corporations. In: Abramowicz, W.,
Fansel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 390–398. Springer, Heidelberg (2008)

20. Hayes, S.: Providing Enterprise Systems. Practical Accountant 40(2), SR11 (2007)
21. Hendricks, K.B., Singhal, V.R., Stratman, J.K.: The Impact of Enterprise Systems on

Corporate Performance: A Study of ERP, SCM, and CRM System Implementations.
Journal of Operations Management 25(1), 65–82 (2007)

22. Goldberg, A.: The ERP trap. Upside 12(11), 32 (2000)
23. Krasner, H.: ERP Experiences and Evolution. Communications of the ACM 43(4), 22–26

(2000)
24. Wah, L.: Give ERP a change. Management Review 89(3), 20–24 (2000)
25. Yeh, T.M., Yang, C.C., Lin, W.T.: Service Quality and ERP Implementation: A

conceptual and empirical study of semiconductor-related industries in Taiwan. Computers
in Industry 58(8-9), 844–854 (2007)

26. Botta-Genoulaz, V., Millet, P.: A Survey on the Recent Research Literature on ERP
Systems. Computers in Industry 95(2), 510–522 (2006)

27. Boonstra, A.: Interpreting an Erp-implementation project from a stakeholder perspective.
International Journal of Project Management 24(2006), 38–52 (2006)

28. Fowler, A., Gilfillan, M.: A framework for stakeholder integration in higher education
information system projects. Technol. Anal. Strategic Manage. 15(4), 467–489 (2003)

29. Markus, M.L., Tanis, C.: Multisite ERP implementations. Communications of ACM 43(4),
26–42 (2000)

30. McAfee, A.: When too much IT knowledge is a dangerous thing. Sloan Management
Review 44(2), 83–89 (2003)

31. Sirkin, H., Diekel, K.: Getting value from enterprise initiatives. Boston Consulting Group,
Boston (2001)

32. Markus, M.L., Axline, S., Petrie, D., Tanis, C.: Learning from Adopters’ experiences with
ERP: problems encountered and success achieved. Journal of Information Technol-
ogy 15(4), 245–265 (2000)

428 A. Mishra and D. Mishra

33. Genoulaz, V.B., Millet, P.A.: An Investigation into the use of ERP systems in the service
sector. International Journal of Production Economics 99, 202–221 (2006)

34. Mische, R., Bennis, W.: Reinventing through reengineering. Information Systems
Management 13, 58–65 (1996)

35. Tchokogue, A., Bareil, C., Duguay, C.R.: Key lessons from the Implementation of an ERP
at Pratt & Whitney Canada. International Journal of Production Economics 95(2), 151–163
(2005)

36. Keil, M., Tiwana, A.: Relative Importance of Evaluation Criteria for Enterprise Systems:
A Conjoint Study. Information Systems Journal 16(3), 237–262 (2006)

37. Rikhardsson, P., Kraemmergaard, P.: Identifying the Impacts of Enterprise System
Implementation and Use: Examples from Denmark. International Journal of Accounting
Information Systems 7(1), 36–49 (2006)

38. Choi, J., Ashokkumar, S., Sircar, S.: An Approach to Estimating Work Effort for
Enterprise Systems Software Projects. Enterprise Information Systems 1(1), 69–87 (2007)

39. Moore, J.: Oil and gas sector generates big business for systems integrators,
SearchITChannel. com (2008),
http://searchitchannel.techtarget.com/news/article/
0,289142,sid96_gci1334850,00.html

40. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Sage Publications,
Thousands Oaks (2003)

41. Feagin, J., Orum, A., Sjoberg, G. (eds.): A Case for Case Study. University of North
Carolina Press, Chapel Hill (1991)

42. Sheu, C., Chae, B., Yang, C.L.: National differences and ERP implementation: issues and
challenges. Omega 32(5), 361–371 (2004)

43. Sarker, S., Lee, A.S.: Using a case study to test the role of three key social enablers in ERP
implementation. Information & Management 40(8), 813–829 (2003)

44. Voordijk, H., Leuven, A.V., Laan, A.: Enterprise resource planning in large construction
firm: implementation analysis. Construction Management & Economics 21(5), 511–521
(2003)

45. Motwani, J., Subramanian, R., Gopalakrishna, P.: Critical Factors for successful ERP
implementation: Exploratory findings from four case studies. Computers in Industry 56(6),
524–544 (2005)

46. Soh, C., Kien, S.S., Tay-Yap, J.: Cultural fits and misfits: Is ERP a universal solution?
Communications of the ACM 43(4), 47–51 (2000)

47. Van Everdingen, Y.: ERP adoption by European midsize companies. Communications of
the ACM 43(4), 27–31 (2000)

48. Reimers, K.: Implementing ERP Systems in China. In: Proceedings of the 35th Hawaii
International Conference on System Sciences. IEEE Computer Society, Los Alamitos
(2002)

49. Ngai, E.W.T., Law, C.C.H., Wat, F.K.T.: Examining the Critical Success Factors in the
adoption of enterprise resource planning. Computers in Industry 59(2008), 548–564 (2008)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 429–432, 2009.
© Springer-Verlag Berlin Heidelberg 2009

11th International Workshop on Learning Software
Organizations (LSO 2009)

New Media in Transfer and Innovation

Andreas Jedlitschka1 and Sira Vegas2

1 Fraunhofer IESE, Germany
2 Universidad Politécnica de Madrid, Spain

andreas.jedlitschka@iese.fraunhofer.de, svegas@fi.upm.es

1 Introduction

Software is one of the most important drivers of innovation. As organizations are
becoming more dependent on software, the improvement of software quality and
productivity becomes of essential importance for the competitiveness of an organiza-
tion. Continuing the success of the LSO Workshop series since 1999, this workshop
will provide a communication forum bringing together academia and industry for
discussing the advancements made and addressing the challenges faced by continuous
learning in software-intensive organizations.

Building upon existing work on knowledge management and organizational learn-
ing, the workshop will promote interdisciplinary approaches from computer science
and information systems, business, management and organization science as well as
cognitive science.

The LSO concept is not easy to implement because of the different nature of each
organization, i.e., the fact that each organization is unique. In order to successfully
implement LSO concepts, each organization has to find its own way, which requires the
underlying concepts to be flexible. Some of these issues have been discussed in recent
literature on organizational and individual learning. Recent developments in new media,
such as everyone using new media for various business and private purposes, might
pose the question to which extent these can support LSO. Do new media provide a
means for solving at least parts of the issues?

Hence, the focus of this workshop will be on new media facilitating transfer of
knowledge and supporting innovation. In economically difficult times such as today, it
is important that knowledge management initiatives in software organizations are
lightweight (i.e., do not place considerable additional burden on developers and end
users), allow for an incremental adoption (i.e., do not require large up-front investment
before any return of investment is at least visible), and are flexible regarding frequent
changes in experts and topics.

This workshop invites researchers and practitioners to report on the current state of
learning software organizations, share successes and failures, and discuss promising
new ideas and approaches for using new media that enable organizations to system-
atically transfer experience and/or general knowledge in order to support innovation.

430 A. Jedlitschka and S. Vegas

2 Topics of Interest

The following list gives the topics of interest to be discussed in the workshop:

• Social Software and Web 2.0 for LSO
• Practical applications of LSO approaches
• Success stories and failures in LSO
• Knowledge acquisition, generation, and transfer in software organizations
• Knowledge/skills representation and management in software organizations
• Knowledge distribution and feedback mechanisms
• Tacit knowledge capture and dissemination
• Process-oriented knowledge management approaches for LSO
• Learning software organization maturity
• Light-weight knowledge management approaches for agile software development

processes
• Knowledge-generating software communities
• New media-based collaborative learning in software organizations
• New media facilitated technical infrastructures and technologies to support LSO
• Learning organizations related to innovation
• Lessons learned: becoming a LSO (positive and negative experience)
• How learning is shared in an organization across all networks: customers, internal

staff, managers, key stakeholders
• The influence these networks have in an organization
• The relationship between networks and performance in an organization
• Evaluation techniques for knowledge management and LSO activities

3 Workshop Chairs

Andreas Jedlitschka
andreas.jedlitschka@iese.fraunhofer.de
Fraunhofer-Institute for Experimental Software Engineering (IESE), Kaiserslautern,
Germany

Sira Vegas
svegas@fi.upm.es
Facultad de Informática, Universidad Politécnica de Madrid, Campus de
Montegancedo, 28660 Boadilla del Monte, Madrid, Spain

4 LSO2009 Program Committee

• Althoff, Klaus-Dieter, University of Hildesheim, Germany
• Birk, Andreas, Consultant, Germany
• Bomarius, Frank, Fraunhofer IESE, Germany
• Conradi, Reidar, NTNU, Norway
• de Almeida Falbo, Ricardo, Universidade Federal do Espírito Santo, Brazil

 11th International Workshop on Learning Software Organizations (LSO 2009) 431

• Dingsoyr, Torgeir, SINTEF, Norway
• Dieste, Oscar, University Politechnica Madrid, Spain
• Emrich, Andreas, DFKI, Germany
• Feldmann, Raimund, Fraunhofer Center Maryland, USA
• Gresse von Wangenheim, Christiane, UNIVALI Universidade do Vale do Itajaí,

Brazil
• Grundy, John C., University of Waikato, New Zealand
• Lehner, Franz, University Passau, Germany
• Marçal de Oliveira, Káthia, Universidade Católica de Brasília, Brazil
• Menzies, Tim, West Virginia University, Canada
• Nick, Markus, Empolis , Germany
• Park, Shelly, University of Calgary, Canada
• Pfahl, Dietmar, SIMULA, Norway
• Rocha, Ana Regina Cavalcanti, Universidade Federal do Rio de Janeiro, Brazil
• Rodriguez, Daniel, University of Alcalá, Spain
• Sarcia, Alessandro, University Roma "Tor Vergata", Italy
• Schneider, Kurt, Leibniz Universität Hannover, Germany
• Steinbach-Nordmann, Silke, Fraunhofer IESE, Germany
• Varkoi, Timo, Tampere University of Technology, Finland
• Weber, Rosina, Drexel University, USA
• Weber, Sebastian, Fraunhofer IESE, Germany
• Wessner, Martin, Fraunhofer IESE, Germany

5 LSO Workshop History

1998: LSO“ - first presentation by Althoff & Bomarius at the Workshop on Organ-
izational Memories, ECAI’98, Brighton, England

1999: LSO’99 - 1rst Workshop held in Kaiserslautern, Germany at the 11th SEKE
Conference (SEKE09)

2000: LSO2000 - 2nd Workshop held in Oulu, Finland at the 2nd PROFES Conference
(Profes2000)

2001: LSO2001 - 3rd Workshop held in Kaiserslautern, Germany at the 3rd PROFES
Conference (Profes2001)

2002: LSO2002 - 4th Workshop held in Chicago, IL, USA at the Conference XP/Agile
Universe 2002

2003: LSO2003- 5th Workshop held in Luzern, Switzerland, at the 2nd KM Confer-
ence (KM2003)

2004: LSO2004 - 6th Workshop held in Banff, Canada at the 16th SEKE Conference
(SEKE04)

2005: LSO2005 - 7th Workshop held in Kaiserslautern, Germany at the 3rd Conference
Wissensmanagement (WM05)

2006: LSO2006 - 8th Workshop held in Rio de Janeiro, Brazil at the Int‘l Symposium
on Empirical SWE (ISESE06) and another LSO2006 Workshop in Hannover,
Germany

432 A. Jedlitschka and S. Vegas

2007: LSO2007 - 9th Workshop held in Potsdam, Germany at the 5th Conference
Wissensmanagement (WM07) collocated with 4th German Workshop on Ex-
perience Management (GWEM2007)

2008: LSO2008 - 10th Workshop held in Rome, Italy at the 9th PROFES Conference
(Profes2008)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 433–434, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Half-Day Workshop on “Smarter Investment by
Aligning SPI Initiatives, Capabilities and Stakeholder

Values”

Yana Selioukova and Christian Frühwirth

Helsinki University of Technology
BIT Research Centre, Software Business Lab

P.O. Box 5500, FI-02015, TKK, Finland
{Yana.Selioukova,Christian.Fruehwirth}@tkk.fi

Abstract. Software companies who want to improve software process capabili-
ties (SPCs)a systematic method to make informed investment decisions on
software process improvement (SPI) initiatives. Such decisions should aim at
creating maximum stakeholder values. To address this problem, we present a
method with tool support that may help companies align stakeholder values
with SPCs and SPI initiatives. The proposed method has been developed based
on the well-established “Quality Function Deployment” (QFD) approach. The
experience with the proposed method suggests that it particularly helps to re-
duce the risk of misalignment by identifying those SPI initiatives that are most
beneficial to stakeholders. The tool support provided with the proposed method
also generated positive experiences in increasing the usability of the method
and helped companies in the elicitation and prioritization of stakeholder values.
Therefore, we propose a workshop for the method work out named “Smarter
Investment by Aligning SPI Initiatives, Capabilities and Stakeholder Values” in
hypothetical case company.

Keywords: software process improvement, value-based software engineering,
capabilities.

Introduction

Company executives need to invest in change initiatives that are most likely to improve
those core capabilities of the company that have considerable impact on benefits pro-
vided to customers and other success-critical stakeholders. Change initiatives include,
but are not limited to, SPI initiatives and aim at improving a company’s performance in
delivering stakeholder values. Software quality teams often struggle to convince senior
management to grant funding for SPI programs for lack of getting a clear picture of
tangible benefits [1]. Even if there is common understanding on needed investment in
SPI programs, senior management and the SPI team still may fail to invest in “right”
capabilities, i.e., capabilities that best improve the value to stakeholders. By investing
in right capabilities companies may diminish risk of spending financial assets on
change initiatives that do not provide evident advantages to stakeholders.

434 Y. Selioukova and C. Frühwirth

While there are many potential benefits of SPI initiatives, one of the major risks is
to focus on initiatives that have only marginal effects on capabilities of the company
and bottom-line benefits. We refer to such misleaded focus as “misalignment of SPI
initiatives and stakeholder value”. Software process assessment models, such as
CMMI or Spice, are useful to give an overview on relevant target candidates in soft-
ware process areas (SPAs) and provide feedback on process maturity to motivate SPI
initiatives [2].

We present a method for eliciting and aligning stakeholder values with a com-
pany's software process capabilities to identify the most promising SPI initiatives.
Stakeholder value is the part of value-based requirement engineering activities which
includes: “identification of success-critical stakeholders; eliciting their value propo-
sitions with respect to the system; and reconciling their value propositions into a
mutually satisfactory set of objectives for the system” [3]. The proposed method is
largely based on “Quality Function Deployment” (QFD) principles and is supported
with a prototype tool for more efficient data collection and analysis. The method
comprises two iterations:

I) The first iteration helps to understand the alignment/impact between stakeholder
values and SPCs,
II) The second iteration helps to understand the alignment between SPCs and SPI
initiatives.

Based on the analysis of alignment data from both iterations, the decision makers
are more likely to make an informed decision on investing in “right” capabilities,
which shows a strong connection between SPI initiatives, SPCs, and stakeholder val-
ues. Furthermore, the accompanying tool support intrinsically fosters an improved
common understanding between senior management and SPI teams on the value of
SPI initiatives.

References

1. López-Cortijo, R., Guzmán, J.G., Amescua Seco, A.: ICharts: Charts for Software Process
Improvement Value Management. In: Abrahamsson, P., Baddoo, N., Margaria, T., Mess-
narz, R. (eds.) EuroSPI 2007. LNCS, vol. 4764, pp. 124–135. Springer, Heidelberg (2007)

2. Dyba, T.: An Empirical Investigation of the Key Factors of Success in Software Process
Improvement. Empirical Software Engineering 31, 410–413 (2005)

3. Boehm, B.: Value-Based Software Engineering: Reinventing “Earned-Value” Monitoring
and Control. SIGSOFT Softw. Eng. Notes 28, 3 (2003)

Business Alignment: Measurement-Based
Alignment of Software Strategies and Business

Goals

Jürgen Münch1, Jens Heidrich1, and Vladimir Mandić2

1 Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
jens.heidrich@iese.fraunhofer.de

2 University of Oulu, Department of Information Processing Science, Rakentajantie
3, 90014 University of Oulu, Finland

vladimir.mandic@tol.oulu.fi

Summary

Most of today’s products and services are software-based. Organizations that de-
velop software want to maintain and improve their competitiveness by controlling
software-related risks. To do this, they need to align their business goals with
software development strategies and translate them into quantitative project
management. There is also an increasing need to justify cost and resources for
software and system development and other IT services by demonstrating their
impact on an organization’s higher-level goals. For both, linking business goals
and software-related efforts in an organization is necessary. However, this is a
challenging task, and there is a lack of methods addressing this gap.

The popular Goal Question Metric (GQM) approach has served the software
industry well for several decades in defining measurement programs. However,
it does not provide explicit support for motivating and integrating measurement
at various levels of the organization. On the other hand, approaches such as Bal-
anced Scorecard address mainly business-level goal-setting activities, and do not
support the alignment of objectives at different levels of the organization with
an integrated methodology. To fill this gap, we propose GQM+Strategies R©: an
integrated approach that is based on GQM and adds the capability to create
measurement programs that ensure alignment between goals and strategies at
different levels, from the highest strategic levels of the business to the level of
individual development projects. The approach is based on rationales for decid-
ing about options when operationalizing goals and for evaluating the success of
strategies with respect to goals [1,2,3].

The tutorial will illustrate the GQM+Strategies R© approach using practi-
cal examples from industry, present related approaches (like BSC, PSM, and
CoBIT), and provide practical exercises on how to actually apply the method.
The tutorial will focus on the following topics in detail:

Session 1: Principles and basics of goal-oriented measurement for quantitative
management of an organization exemplified by the GQM approach.

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 435–436, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

436 J. Münch, J. Heidrich, and V. Mandić

Session 2: Effective linkage of goals and strategies on different organizational
levels using the GQM+Strategies R© approach.

Session 3: Utilizing the GQM+Strategies R© approach in modeling organiza-
tional context to achieve an effective decision-making process on different
organizational levels.

Session 4: Cost-efficient integration of measurement programs into organiza-
tional processes and their usage for transparent decision-making.

Furthermore, the tutorial will present related approaches for quantitative
management of an organization, such as BSC (Balanced Score Card), PSM
(Practical Software Measurement), and CoBIT (Control Objectives for Infor-
mation and Related Technology). All topics will be illustrated with practical
examples and experiences from industry.

Participants will learn how to apply the basic approach as part of practical
exercises. This includes the following activities:

– Modeling and structuring of goals and corresponding strategies across dif-
ferent levels of an organization.

– Mapping goals and strategies to concrete metrics and indicators.
– Integrating measurement programs into the organization.
– Assessing the efficiency of strategies with respect to achieving goals.

Organization. The tutorial is planned for one day. The ideal number of partici-
pants is between 10 and 20; to ensure good discussions, we see 30 as a maximum
practical figure. The tutorial will have three theoretical sessions and one prac-
tical exercise session, where the participants will apply the presented approach
to their own business strategies and goals and exchange experiences with all
participants.

Target Group. This tutorial addresses managers in the area of software develop-
ment and IT, project managers, quality assurance managers, and controllers.

References

1. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., et al.:
GQM+Strategies: A comprehensive methodology for aligning business strategies
with software measurement. In: MetriKon 2007, Kaiserslautern, Germany, pp. 1–14
(2007)

2. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., et al.:
Bridging the gap between business strategy and software development. In: Twenty
Eighth International Conference on Information Systems, Montreal, Canada,
pp. 1–16 (2007)

3. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Trendowicz, A.:
GQM+Strategies–aligning business strategies with software measurement. In: First
International Symposium on Empirical Software Engineering and Measurement,
ESEM 2007, Madrid, Spain, pp. 488–490 (2007)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 437–440, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Customer Communication Challenges and Solutions in
Globally Distributed Agile Software Development

Minna Pikkarainen and Mikko Korkala

VTT Technical Research Centre of Finland
P.O.Box 1100, FI-90571, Oulu, Finland

{Minna.Pikkarainen,Mikko.Korkala}@vtt.fi

1 Summary of the Tutorial

Working in the globally distributed market is one of the key trends among the soft-
ware organizations all over the world. [1-5]. Several factors have contributed to the
growth of distributed software development; time-zone independent ”follow the sun”
development, access to well-educated labour, maturation of the technical infrastruc-
ture and reduced costs are some of the most commonly cited benefits of distributed
development [3, 6-8]. Furthermore, customers are often located in different countries
because of the companies’ internationalization purposes or good market opportunities.

Inefficient communication between customers and project teams can have a nega-
tive impact on the project outcome [9]. If the customer communication fails, it is likely
that software products will be delivered late and over budget without meeting the needs
of stakeholders and in particular end users. Customer communication is a significant
challenge also in distributed agile software development, and it has been identified as
one of the key issues that have to be taken into account [4, 10, 11]. Agile software
development relies heavily on informal face-to-face communication over detailed
documentation [12]. However, face-to-face communication and active customer in-
volvement proposed by agile approaches do not often work as such in distributed envi-
ronment. In such an environment, the customer can not necessarily participate in the
face-to-face meetings with different stakeholders. Therefore, customer communication
problems have tried to be solved by using different communication media, for example
videoconferencing [11] and whiteboard software [4]. In addition, also more general
level solutions have been proposed e.g. by Layman et al. [4] and Ramesh et al. [13].
These recommendations aim to create a communication rich environment and promote
finding a balance between formal and informal communication in distributed agile
context.

In spite of the communication challenges, there is not yet much research available
focusing on the customer communication aspects of globally distributed agile software
development. The purpose of this tutorial is to present some of the highlights related to
this topic based on the in-depth, longitudinal research made in large software intensive
company of 60000 employees during the years 2008 and 2009. After this introduction,
the challenges and solutions of the customer communication will be discussed with the
attendants. The discussion will be led based on the presenters’ experiences on customer
communication from 7 different companies during the years 2005-2009. This tutorial

438 M. Pikkarainen and M. Korkala

will increase the knowledge of the attendees on this field and provide them solutions in
order to tackle the problems related to customer communication.

2 Audience of the Tutorial

Since the agile methods are been increasingly used in the large globally distributed
software development environments, this topic is relevant for all the companies work-
ing in this context. On the other hand, many small companies are pursuing for interna-
tionalization. One of the first steps in this process is often to find a customer group
from international markets. This immediately creates the need for globally distributed
customer communication.

Agile methods are also utilized by several consulting companies working in the
field of software development. From their point of view, it would be significant to
hear what kind of customer communication challenges companies are experiencing
and how these challenges could be solved. Since customer communication in the
context of agile software development seems to lack empirical knowledge, the topic
would be also relevant for research organizations.

Attendees: industries: large and small; consulting companies; researchers.

3 How the Tutorial will be Structured and Run?

The tutorial will be composed of two different sections. During the initial 45 minute
introduction, some of the key findings on the communication challenges in distributed
agile environment are described. The discussed challenges are based on the empirical
findings made by the presenters.

After the presentation, one hour workshop will be held. The goal is first to collect
the challenges that the attendants have found of this topic and then discuss of the
results together with the whole group. The purpose of the approach is to reveal both
challenges and solutions that attendants have related to the customer communication
in agile software development. After taking this tutorial, the attendees should have a
more comprehensive view to the challenges on customer communication and solu-
tions mitigating the risks related to this field.

During the discussions presenters will give examples based on the experiences of
the companies that they have been working with related to this topic.

4 Biographies

Minna Pikkarainen has graduated from the Department of Information Processing
Science, University of Oulu and finished her PhD about the topic of improving soft-
ware development mediated with CMMI and agile practices at 2008. Minna has been
working as researcher and project manager in VTT Technical Research Centre of
Finland more than 11 years now. During that time she has worked in 18 industrial
driven research projects doing close industrial collaboration with 8 organizations
in Finland and in Ireland. Minna has participated as a key person for several large

 Customer Communication Challenges and Solutions 439

international ITEA project preparation work doing full project proposals and project
outlines as collaboration together with large European level company networks
(e.g. Flexi and Evolve projects). During 2007 and 2008 Minna has been leading VTT
research group of the Large European projects called Agile ITEA (embedded agile
software development) and Finnish consortium of ITEI (project about open innova-
tions). So far Minna has provided several agile trainings, workshops with 10 different
industries related to agile methods. Minna has been member of Lero, The Irish Soft-
ware Engineering Research Centre since 2006. For the past 4 years, her work and pub-
lications have been focused on research in the area of agile software development.

Mikko Korkala is currently working on his doctoral dissertation on customer com-
munication and collaboration in agile software development. Mikko has been in-
volved with agile development since he started working on his Master’s thesis in early
summer of 2002. Mikko has worked at VTT Technical Research Centre of Finland as
a research scientist since early 2007 and has previously worked at the Department of
Information Processing Science and as a software engineer in software industry. In
addition to research, Mikko has provided several agile trainings and has held invited
agile talks both in Finland and abroad. Mikko has also worked as an onsite agile con-
sultant for management in a large software company and helped to outline agile refer-
ence processes for software intensive companies.

5 History of the Tutorial

The tutorial will be based on the research of a large globally distributed software
intensive company. Customer communication aspects in agile software development
were studied in a longitudinal in-depth case study during the years 2008-2009. Fur-
thermore, the presenters have experiences on customer communication challenges and
solutions from 7 different organizations applying agile methodologies during the
years 2005-2009. This experience will be utilized when discussing about the topic
with the participants.

References

1. Herbsleb, J., Moitra, D.: Global software development. IEEE Software 18, 16–20 (2001)
2. Damian, D., Zowghi, D.: Requirements Engineering Challenges in Multi-site Software

Development Organizations. Requirements Engineering Journal 8, 149–160 (2003)
3. Komi-Sirviö, S., Tihinen, M.: Lessons Learned by Participants of Distributed Software

Development. Knowledge and Process Management 12, 108–122 (2005)
4. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for

Extreme Programming in a global software development team. Information and Software
Technology 48, 781–794 (2006)

5. Taxén, L.: An integration centric approach for the coordination of distributed software de-
velopment projects. Information and Software Technology 48, 767–780 (2006)

6. Ebert, C., De Neve, P.: Surviving Global Software Development. IEEE Software 18,
62–69 (2001)

7. Gorton, I., Motwani, S.: Issues in co-operative software engineering using globally distrib-
uted teams. Information and Software Technology 38, 647–655 (1996)

440 M. Pikkarainen and M. Korkala

8. Battin, R., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global
Software Development. IEEE Software 18, 70–77 (2001)

9. Lee, G., DeLone, W., Espinosa, J.A.: Ambidextrous coping strategies in globally distrib-
uted software development projects. Commun. ACM 49(10), 35–40 (2006)

10. Schümmer, T., Schümmer, J.: Support for distributed teams in eXtreme programming. In:
Succi, G., Marchesi, M. (eds.) Extreme Programming Examined, 1st edn., pp. 355–377.
Addison Wesley, Boston (2001)

11. Kircher, M., Jain, P., Corsaro, A., Levine, D.: Distributed eXtreme programming. In: XP
2001, pp. 66–71 (2001)

12. Agile Manifesto (2001), http://agilemanifesto.org/
13. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?

Commun. ACM 49(10), 41–46 (2006)

F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp. 441–442, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Tutorial: Case Studies in Software Engineering

Per Runeson and Martin Höst

Lund University, Sweden
{per.runeson,martin.host}@cs.lth.se

Abstract. This document presents a tutorial on case study research methodol-
ogy in software engineering, held at the 10th International Conference on Prod-
uct Focused Software Development and Process Improvement (Profes).

Keywords: Case study, research methodology, tutorial.

1 Introduction

Software engineering and software process improvement are complex activities,
which success or failure depends on many interrelated factors. This complex interac-
tion cannot be fully studied in isolation, but needs empirical studies in real world
settings. Case studies offer the opportunity to conduct this kind of studies. A case
study is an empirical inquiry that investigates a contemporary phenomenon within its
real-life context, especially when the boundaries between the phenomenon and con-
text are not clearly evident. [1]

The area of software engineering involves development, operation, and maintenance
of software and related artifacts. Research on software engineering is to a large extent
aimed at investigating how this development, operation, and maintenance are con-
ducted by software engineers and other stakeholders under different conditions. This
means that the activities are carried out by individuals and groups of individuals, and
social and political questions are of importance for this development. This means that
many research questions in software engineering are suitable for case study research.

Case studies focus on phenomena in their context, especially when the boundary
between the phenomenon and its context is unclear. This is particularly true in soft-
ware engineering. This is to a large extent what is needed when conducting research
in software engineering.

The term “case study” appears every now and then in the title of software engineer-
ing research papers. However, the presented studies range from very ambitious and
well organized studies in the field, to small toy examples that claim to be case studies.
However, case studies which are conducted and reported as stories of what a positive
participant has experienced do not fulfill the criteria of solid independent research.
This tutorial aims at presenting and applying guidelines for case study research that
fulfill scientific criteria of good research.

Case study research focuses on the investigated case as such and does not have the
same objectives of generalization as less flexile research approaches. This makes case
study research an attractable research approach not only from a researcher's point of

442 P. Runeson and M. Höst

view, but also for industry representatives. Industry representatives can conduct case
studies as part of their ongoing improvement work in order to understand the benefits
and costs of investigated new methods and ways of working. University researchers
can take part in this process in order to investigate the suitability of investigated ap-
proaches in different environments.

2 Content

The tutorial is based on lectures, intertwined with practical tasks for the participants.
The tasks involve analyzing published case studies and defining procedures for new
ones.

The attendant is provided with a set of practical guidelines, which helps setting up
new case studies as well as assessing the information in published case study reports,
summarized in [2]. The following topics are covered in the tutorial

1. Definitions: What is a case study? What is action research? Quantitative and quali-
tative aspects of a case study. Fixed and flexible designs in empirical studies.

2. Setting up a case study: Defining scope and goal of a case study. Setting up con-
tracts between the researcher and the studied organization. How to conduct a case
study as part of an ongoing improvement process.

3. Data collection: Defining procedures for data collection. Questionnaire design.
Interviews. Metrics collection. Archival data collection.

4. Data analysis and interpretation: Data filtering. Qualitative and quantitative analy-
sis. Data interpretation in conjunction with the organization.

5. Reporting: What should be reported in a case study. Issues of secrecy and publicity.
6. Validity issues: Analysis of validity and actions to improve the validity of a case

study.

References

1. Yin, R.K.: Case Study Research, 3rd edn. Sage Publications, Thousand Oaks (2003)
2. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in

Software Engineering. Empirical Software Engineering 14(2), 131–164 (2009)

Author Index

Aaramaa, Sanja 275
Ahonen, Jarmo J. 303
Alarcón, Pedro P. 171
Albuquerque, Adriano Bessa 347
Ali Babar, Muhammad 126

Baca, Dejan 386
Baldassarre, Maria Teresa 111
Belt, Pekka 275
Bengtsson, Henrik 71
Biffl, Stefan 362
Bozlu, Banu 290
Bruno, Giovanni 111
Bugayenko, Yegor 59

Caivano, Danilo 111

Daneva, Maya 141
Demirörs, Onur 290

El Boustani, Christian 28

Flohr, Thomas 28
Fraser, Steven 8
Frühwirth, Christian 362, 375, 433

Garbajosa, Juan 171
Gencel, Cigdem 87

Heidrich, Jens 435
Heikkilä, Marikka 216
Hossain, Emam 126
Höst, Martin 71, 441
Hyysalo, Jarkko 275

Jäntti, Marko 317
Jedlitschka, Andreas 429

Kaur, Arvinder 43
Knauss, Eric 28
Kollanus, Sami 231
Korkala, Mikko 437
Koskimies, Kai 246
Kossak, Felix 14

Lamersdorf, Ansgar 332
Lehto, Jari 275
Lichter, Horst 261
Lima, Andreia Cavalcanti 347

Malhotra, Ruchika 43
Mandić, Vladimir 96, 435
Markkula, Jouni 96
Messerschmitt, David G. 1
Mishra, Alok 416
Mishra, Deepti 416
Münch, Jürgen 332, 435

Natschläger, Thomas 14
Nilsson, Fredrik 71

Oivo, Markku 96

Petersen, Kai 386
Pikkarainen, Minna 401, 437
Pricope, Simona 261

Racheva, Zornitza 141
Ramler, Rudolf 14
Regnell, Björn 71
Rocha, Ana Regina 347
Rodŕıguez, Pilar 171
Rombach, Dieter 332
Rönkkö, Mikko 362
Runeson, Per 441

Saukkonen, Samuli 275
Savolainen, Paula 303
Selioukova, Yana 433
Sikkel, Klaas 141
Similä, Jouni 275
Singh, Yogesh 43
Smite, Darja 87
Stauder, Erwin 14
Szőke, Ákos 156

Tervonen, Ilkka 199

444 Author Index

Tuomikoski, Janne 199

Valtanen, Anu 303
Vegas, Sira 429
Verner, June 126
Vesiluoma, Sari 246
Visaggio, Giuseppe 111

Wang, Yi 185
Wohlin, Claes 386
Wolfmaier, Klaus 14

Yagüe, Agust́ın 171
Yeşildoruk, Filiz Çelik 290

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Addresses
	The Consumer Juggernaut: Web-Based and Mobile Applications as Innovation Pioneer
	Introduction
	The Opportunity
	The Cutting Edge of Consumer Software
	Capturing Innovations in Functionality
	Capturing Other Benefits
	Conclusions
	References

	Software “Best” Practices: Agile Deconstructed
	Introduction
	The Practice of Software Engineering
	“Best” Practices
	Learning – An Iterative Process
	Observations
	References

	Evidence Based Software Engineering and Quality Assurance
	Key Questions in Building Defect Prediction Models in Practice
	Introduction
	Project Background
	Defect Prediction Approach
	Discussion of Key Questions and Decisions
	Overview of Defect Prediction Results
	Summary and Further Work
	References

	Investigating the Impact of Software Requirements Specification Quality on Project Success
	Introduction
	Requirements Quality in Literature
	Study Goals
	Project Settings
	Hypotheses

	Conduction and Findings
	Strategy of Measurement
	Results and Discussion
	Comparison to Related Studies

	Evaluation of Validity
	Construction Validity
	Conclusion Validity
	Internal Validity
	External Validity
	Discussion of Repeatability

	Conclusion and Outlook
	References

	Prediction of Software Quality Model Using Gene Expression Programming
	Introduction
	An Overview of Gene Expression Programming
	Converting Expression Tree into k-Expression
	Genes
	Chromosomes
	GEP Process

	Research Background
	Dependent and Independent Variables
	Empirical Data Collection

	Research Methodology
	Descriptive Statistics and Outlier Analysis
	Correlation among Metrics
	Evaluating the Performance of the Models

	Analysis Results
	Descriptive Statistics
	Gene Expression Programming (GEP) Results

	Software Quality Metric Definition and Validation
	Application of the FF Metric
	Conclusion
	References

	Method for Software Cost Estimating Using Scope Champions
	Introduction and Problem Statement
	The Method of Scope Champions
	Formal Proof of the Method
	Practical Example of the Method Application
	Lessons Learned
	Threats to Validity
	Conclusion
	References

	A Measurement Framework for Team Level Assessment of Innovation Capability in Early Requirements Engineering
	Introduction
	Research Approach
	Case Company
	Research Methodology
	Validity Discussion

	Results
	Discussion of Some General Findings from Interviews
	The MINT Framework
	Validation within the Case
	Comparison with Parallel Case

	Related Work
	Conclusion
	References

	Evidence Based Software Engineering
	Why a CMMI Level 5 Company Fails to Meet the Deadlines?
	Introduction
	Case Study
	Methodology
	Case Organization Description
	Case Project Description
	Project Management

	Findings and Discussion
	Effort Underestimation
	Unforeseen Effects of the Corrective Actions

	Conclusions
	References

	Towards Multi-Method Research Approach in Empirical Software Engineering
	Introduction
	Motivation for the Use of Empirical Methods in Software Engineering
	Basic Terminology of the Software Engineering Experimentation
	Quantitative Aspect of the Experimentation
	Software Experiment Replication
	ReportingExperiments
	Multi-Method Research Approach
	Conclusions
	References

	The Role of Empirical Evidence for Transferring a New Technology to Industry
	Introduction
	Related Literature
	Technology Transfer Process
	Knowledge Creation and Flow
	Importance of Evidence

	Empirical Studies for Transferring Multiview Framework
	From Current Practice to Technology/Methodology Creation
	From Technology/Methodology Creation to Initial Industrial Trial
	From Initial Industrial Trial to Wider Application and Refinement

	Conclusions
	References

	Agile Software Development
	Towards a Framework for Using Agile Approaches in Global Software Development
	Introduction
	Research Background
	Our Research
	Conceptual Framework
	Development Process
	Framework Usage
	Framework Components

	Research Methodology and Case Study
	Case Description
	Discussion
	Case Study Limitations

	Conclusions and Future Research
	References

	Value Creation by Agile Projects: Methodology or Mystery?
	Introduction
	Background and Motivation
	Agile Software Development
	Related Work
	The Concept of Business Value

	The Research Method
	Results
	Definitions of Business Value
	Comparison of the Concepts
	Perspectives to Consider When Thinking of Business Value
	Conceptual Categories Helping Understand Business Value

	Summary of Results and Implications
	Limitations
	Comparing Our Findings to Previously Published Related Work
	Conclusions and Future Work
	References

	Decision Support for Iteration Scheduling in Agile Environments
	Introduction
	Background
	Release Planning
	Iteration and Daily Planning

	Decision Support in Iteration Scheduling
	Conceptual Model of Agile Planning
	Mapping Iteration Scheduling to RCPSP
	Formulating RCPSP Model
	Solving Iteration Scheduling
	Tool Support

	Experiments
	Research Questions
	Context and Methodology
	Data Collection and Results
	Analysis

	Discussion
	Conclusions
	References

	Some Findings Concerning Requirements in {\it Agile} Methodologies
	Introduction
	Background and Related Work
	Case Study: From TOPENprimer to TOPENbiogas
	The Evolution Product Description
	The {\it Agile} Development Process Description
	Some New and Dropped Features

	Identified Issues in the Case Study
	Requirements Elicitation
	Crosscutting Requirements
	Derived Requirements
	Granularity
	Customer Needs Documentation in Form of Stories

	Discussion
	User Stories Interaction
	A Way to Review Stages
	Managing Non-functional Needs

	Conclusions and Future Work
	References

	An Exploratory Investigation on Refactoring in Industrial Context
	Introduction
	Preliminary Conceptual Framework
	Stage 1: Decision for Refactoring
	Stage 2: Refactoring Process
	Stage 3: Refactoring Results

	Empirical Methodology
	Who Can Be the Interview Subjects?
	Interviews

	Final Framework and Results
	Changes to the Preliminary Framework
	Relationships in the Final Framework
	The Importance of Each Factors

	Disscussions
	The Implications of the Factors’ Importance
	Are the Factors and Framework Fundamental?
	Are the Factors and Framework General?
	Summary

	Concluding Remarks
	References

	Absorbing Software Testing into the Scrum Method
	Introduction
	Research Setting
	The Company and Software Under Study
	How the Research Was Conducted

	Absorbing Software Testing into the Scrum Method
	Core Characteristics of the Scrum Method
	Starting Point
	First Iteration: Introducing Exploratory Testing
	Second Iteration: Looking for Appropriate Team Structure
	Third Iteration: Coordinating Testing Tasks

	Discussion and Conclusions
	References

	Process Models and SPI
	Learning and Organizational Change in SPI Initiatives
	Introduction
	Learning Organizations
	Creativity and Chaos
	The Change Process

	Organizations in Change
	Software Process Management in Changing Learning Organizations
	Management
	Learning

	Conclusions
	References

	The Role of Different Approaches in Inspection Process Improvement
	Introduction
	Improvement Process
	Reference Models for Inspection Process Improvement
	Problem Based Approach
	Inspection Patterns
	Effectiveness Factors
	Conclusions
	References

	Scenario-Based Assessment of Process Pattern Languages
	Introduction
	Quality in Software Engineering
	The Q-PAM Method
	Method Overview
	Creating Quality Profile
	Constructing Scenarios
	Analysis

	Case Studies
	Assessing a Pattern Language for Knowledge Sharing in Software Development
	Assessing a Pattern Language for Global Software Development

	Concluding Remarks
	References

	Towards a Systematic Metric Based Approach to Evaluate SCAMPI Appraisals
	Introduction
	Modeling the Appraisal Process
	Appraisal Meta Model
	Instantiating the Meta Model

	Appraisal Quality Metrics
	Metric Design
	Goals and Requirements
	Quality Metric for Activities
	Quality of Appraisal Phases
	Metric Interpretation

	Experience and Validation
	Conclusions
	References

	A New Way to Organize DFX in a Large Organization
	Introduction
	Research Process
	Requirements Engineering Flow
	Requirements Engineering Flow in the DFX Context

	DFX Management in the Case Company
	DMPD within Operations
	DMPD Organization

	Discussion
	Conclusions
	References

	The Tool Coverage of Software Process Improvement Frameworks for Small and Medium Sized Enterprises
	Introduction
	Difficulties of SPI Implementation in Small Settings
	Discussion of SME-Specific SPI Frameworks
	General Properties
	Reference Model
	Modeling Approach
	Assessment Methodology
	Improvement Methodology
	Automation Support

	Conclusion
	References

	Processes
	Improving the Product Documentation Process of a Small Software Company
	Introduction
	Research Problem
	TheTargetCompany
	The Documentation Process
	Creating the Documentation Process
	The Documentation Process Template
	The Improved Documentation Process

	Discussion
	Conclusion
	References

	Lessons Learnt from the Improvement of Customer Support Processes: A Case Study on Incident Management
	Introduction
	Our Contribution

	Research Methods
	The Case Organization and Data Collection Methods
	Data Analysis Method

	Lessons Learnt from Establishing an Incident Management Process
	Goals for the Process Improvement
	Process Improvement Meeting I: Concepts and Terminology
	Process Improvement Meeting II: Roles and Responsibilities
	Process Improvement Meeting III: Process Activities
	Requirement Specification Meetings for the Incident Management Tool
	Process Improvement Meetings IV, V and VI: A Process Diagram

	Analysis
	Discussion and Conclusions
	References

	A Decision Model for Supporting Task Allocation Processes in Global Software Development
	Motivation
	Related Work
	The Decision Model
	Terminology and Model Goals
	Empirical Identification of Criteria and Causal Relations
	Model Overview
	Example

	Limitations and Validity of the Model
	Conclusion and Future Work
	References

	Software as a Business
	Software Process Improvement: Supporting the Linking of the Software and the Business Strategies
	Introduction
	Business Strategy
	Software Process Improvement
	Process “Evaluation and Improvement of the Process Assets”
	The Experience of Use
	Execution of the Subprocess 1: Identifying Improvement Opportunities
	Execution of the Subprocess 4: Concluding the Improvement Cycle

	Conclusion
	References

	Integrating Value and Utility Concepts into a Value Decomposition Model for Value-Based Software Engineering
	Introduction
	Concept of Value in Software Business Research
	Values of Utility-Seeking Customers
	Values of Profit-Seeking Firms

	Three Perspectives on Software as Technology
	Software Artifacts
	Software Designs
	Software Knowledge

	Synthesizing the Two Perspectives into a Value Decomposition Matrix
	References

	On Business-Driven IT Security Management and Mismatches between Security Requirements in Firms, Industry Standards and Research Work
	Introduction
	Terminology
	Objectives

	Related Work
	Transition towards Business Driven Security Management
	Misalignment between Industry Requirements, Standards and Academic Research

	Interviews with Industry Practitioners
	Methodology
	Managerial Versus Operational View of Security
	Importance of Security Factors
	Who Drives Security Investments?

	Conclusion
	References

	Industrial Case Studies
	The Waterfall Model in Large-Scale Development
	Introduction
	Related Work
	The Waterfall Model at the Company
	Case Study Design
	Research Questions
	Case Selection and Units of Analysis
	Data Collection Procedures
	Data Analysis Approach
	Threats to Validity

	Qualitative Data Analysis
	A Issues
	B Issues
	C Issues
	D Issues

	Quantitative Data Analysis
	Comparative Analysis of Case Study and SotA
	Conclusion
	References

	Towards a Better Understanding of CMMI and Agile Integration - Multiple Case Study of Four Companies
	Introduction
	Background
	CMMI
	AGILE Software Development

	Research Design
	Empirical Analysis
	Background of the Cases
	Implementation of the Assessments
	Assessment Results
	Deployment of the Improvements

	Conclusions
	References

	ERP System Implementation: An Oil and Gas Exploration Sector Perspective
	Introduction
	Literature Review
	Case Study
	Background of the Company
	IT Setup
	Weaknesses of IT Applications
	ERP Implementation

	Lessons Learned and Discussions
	Conclusions
	References

	Workshops
	11th International Workshop on Learning Software Organizations (LSO 2009) New Media in Transfer and Innovation
	Introduction
	Topics of Interest
	Workshop Chairs
	LSO2009 Program Committee
	LSO Workshop History

	A Half-Day Workshop on “Smarter Investment by Aligning SPI Initiatives, Capabilities and Stakeholder Values”
	Introduction
	References

	Tutorials
	Business Alignment: Measurement-Based Alignment of Software Strategies and Business Goals
	Summary
	References

	Customer Communication Challenges and Solutions in Globally Distributed Agile Software Development
	Summary of the Tutorial
	Audience of the Tutorial
	How the Tutorial will be Structured and Run?
	Biographies
	History of the Tutorial
	References

	Tutorial: Case Studies in Software Engineering
	Introduction
	Content
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

