

Lecture Notes in Computer Science 5565
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pascal van Eck Jaap Gordijn
Roel Wieringa (Eds.)

Advanced Information
Systems Engineering

21st International Conference, CAiSE 2009
Amsterdam, The Netherlands, June 8-12, 2009
Proceedings

13

Volume Editors

Pascal van Eck
Roel Wieringa
University of Twente
Department of Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: {p.vaneck,r.j.wieringa}@utwente.nl

Jaap Gordijn
VU University
Department of Computer Science
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
E-mail: gordijn@cs.vu.nl

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2, H.3-5, J.1, K.4.3-4, K.6, D.2, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-02143-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02143-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12690534 06/3180 5 4 3 2 1 0

Preface

Starting in the late 1980s, the CAiSE series of conferences has established a
platform for presenting and exchanging results of design-oriented research in in-
formation systems. In addition to the presentation of new information systems
techniques, recent years have seen the rise of empirical validation of such tech-
niques. There is also increasing attention for industry participation. The 21st
CAiSE conference, held in Amsterdam, The Netherlands, during June 8–12,
2009, continued this tradition.

The theme of CAiSE 2009 was “Information Systems for Business Innovati-
on.” Due to the widespread use of the Web, businesses innovate their proposi-
tions to customers and come up with new IT-enabled services. Such innovation
requires understanding of business and technology in an integrated way. Multi-
disciplinary research areas such as service science, networked enterprises, and
social networking are paying attention to IT and business innovation. This the-
me was evident both in the pre-conference workshops and in the invited speakers
of the conference.

The first two days consisted of pre-conference workshops on business process
modelling, modelling methods, requirements engineering, organizational model-
ling, interoperability and cooperation, the knowledge industry, ontologies, gover-
nance, Web information systems, business-IT alignment, legal aspects, systems
of things and domain engineering. The conference proper was combined with a
doctoral consortium where PhD students could present and discuss their research
plans and with an industrial event with presentations and exhibitions.

Four invited speakers shed light on the role of ontologies in business, pro-
cess mining, business networking and IT entrepeneurship. Highlights of the
conference included a concert and dinner in the world-famous Concertgebouw
building and a reception in the Muziekgebouw aan het IJ in Amsterdam
harbor.

We thank all Program Committee members and all additional reviewers who
put in their time and effort to make this once again an excellent conference.
Each submission was reviewed by at least three reviewers. In addition, there was
a program board whose members acted as assistant Program Committee Chairs
and who coordinated on-line discussion among the reviewers of each paper. The
program board met in January 2009 in Amsterdam to select papers based on
the reviews and on-line discussions. Out of 230 submitted papers, 36 (16%) were
accepted for the main conference. An additional 23 (10%) were accepted for the
CAiSE Forum. We extend our thanks to everyone involved in this process.

We are also grateful to all local organizers for managing the complex coordi-
nation involved in organizing a conference and extend our thanks to our sponsors

VI Preface

who made the event financially feasible. Finally, we thank the participants and
hope that they look back on another rewarding and inspiring CAiSE conference.

April 2009
Pascal van Eck

Jaap Gordijn
Roel Wieringa

Organization

Advisory Committee Janis Bubenko Jr.
Royal Institute of Technology, Sweden
Colette Rolland
Université Paris 1 Panthéon Sorbonne, France
Arne Sølvberg
Norwegian University of Science and Technology, Norway

General Chair Roel Wieringa
University of Twente, The Netherlands

Program Chair Jaap Gordijn
VU University Amsterdam, The Netherlands

Doctoral Consortium Hans Weigand
Chairs University of Tilburg, The Netherlands

Sjaak Brinkkemper
University of Utrecht, The Netherlands

Forum Chair Eric Yu
University of Toronto, Canada

Workshop and Paul Johannesson
Tutorial Chairs KTH Stockholm, Sweden

Eric Dubois
CRP Henri Tudor, Luxembourg

Industrial Event and Erik Proper
Exhibition Chairs Capgemini and Radboud University Nijmegen,

The Netherlands
Bas van der Raadt
Capgemini, The Netherlands
Nico Lassing
Accenture, The Netherlands

Sponsorship Chair Ellen Schulten
VU University Amsterdam, The Netherlands

Publications Chair Pascal van Eck
University of Twente, The Netherlands

VIII Organization

Publicity Chair Richard Starmans
SIKS & University of Utrecht, The Netherlands

Organization and Hans Akkermans
Finance Chair VU University Amsterdam, The Netherlands

Local Arrangements Elly Lammers
VU University Amsterdam, The Netherlands

Website Vincent Pijpers
VU University Amsterdam, The Netherlands

Organization IX

Pre-conference Workshops

10th International Workshop on Business Process Modeling, Development and
Support (BPMDS 2009)

Selmin Nurcan, Rainer Schmidt, Pnina Soffer, Roland Ukor

14th International Conference on Exploring Modeling Methods for Systems
Analysis and Design (EMMSAD 2009)

John Krogstie, Erik Proper, Terry Halpin

15th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2009)

Martin Glinz, Patrick Heymans

5th International Workshop on Enterprise and Organizational Modeling and
Simulation (EOMAS 2009)

Johann Kinghorn, Srini Ramaswamy

5th International Workshop on Cooperation and Interoperability -
Architecture and Ontology (CIAO! 2009)

Antonia Albani, Jan Dietz

International Workshop on Knowledge Industry Survival Strategy (KISS 2009)
Jorn Bettin, Tony Clark, Keith Duddy, Derek Roos

Third International Workshop on Ontology, Conceptualization and Epistemolo-
gy for Information Systems, Software Engineering and Service Science
(ONTOSE 2009)

Christian Kop, Miguel-Angel Sicilia, Fabio Sartori

Second International Workshop on Governance, Risk and Compliance in
Information Systems (GRCIS 2009)

Shazia Sadiq, Marta Indulska, Michael zur Muehlen

6th International Workshop on Web Information Systems Modeling
(WISM 2009)

Flavius Frasincar, Geert-Jan Houben, Philippe Thiran
4th International Workshop on Business IT Alignment and Interoperability
(BUSITAL 2009)

Hans Weigand, Hannes Werthner, Graham Gal

International Workshop on Legal Aspects of Information Systems (LAoIS 2009)
Kamalakar Karlapalem, Eleanna Kafeza, Irene Kafeza

International Workshop on Value-Driven Engineering of Systems of Things
(VEST 2009)

Camille Salinesi, Gianluigi Viscusi

First International Workshop on Domain Engineering (DE@CAiSE 2009)
Iris Reinhartz-Berger, Arnon Sturm, Yair Wand

X Organization

Program Committee Board

Hans Akkermans, The Netherlands
Sjaak Brinkkemper, The Netherlands
Eric Dubois, Luxembourg
Johann Eder, Austria
Pericles Loucopoulos, UK
Andreas Opdahl, Norway
Oscar Lopez Pastor, Spain

Barbara Pernici, Italy
Anne Persson, Sweden
Klaus Pohl, Germany
Colette Rolland, France
Camille Salinesi, France
Pnina Soffer, Israel

Program Committee

Wil van der Aalst, The Netherlands
Pär Ågerfalk, Sweden
Jacky Akoka, France
Marco Bajec, Slovenia
Luciano Baresi, Italy
Zorah Bellahsene, France
Boalem Benatallah, Australia
Giuseppe Berio, Italy
Claudio Bettini, Italy
Nacer Boudjlida, France
Mokrane Bouzeghoub, France
Fabio Casati, Italy
Silvana Castano, Italy
Jaelson Castro, Brazil
Corinne Cauvet, France
João Falcãoe Cunha, Portugal
Marlon Dumas, Estonia
Joerg Evermann, Canada
Xavier Franch, Spain
Paolo Giorgini, Italy
Claude Godart, France
Mohand-Said Hacid, France
Terry Halpin, USA
Brian Henderson-Sellers, Australia
Patrick Heymans, Belgium
Matthias Jarke, Germany
Manfred Jeusfeld, The Netherlands
Paul Johannesson, Sweden
Henk Jonkers, The Netherlands
Havard Jorgensen, Norway
Roland Kaschek, New Zealand
Marite Kirkova, Latvia
John Krogstie, Norway

Patricia Lago, The Netherlands
Régina Laleau, France
Marc Lankhorst, The Netherlands
Wilfried Lemahieu, Belgium
Michel Leonard, Switzerland
Kalle Lyytinen, USA
Isabelle Mirbel, France
Haris Mouratidis, UK
John Mylopoulos, Canada
Moira Norrie, Switzerland
Andreas Oberweis, Germany
Antoni Olivé, Spain
Barbara Paech, Germany
Herve Panetto, France
Jeffrey Parsons, Canada
Michael Petit, Belgium
Yves Pigneur, Switzerland
Geert Poels, Belgium
Erik Proper, The Netherlands
Jolita Ralyté, Switzerland
Björn Regnell, Sweden
Manfred Reichert, Germany
Mart Roantree, Ireland
Michael Rosemann, Australia
Gustavo Rossi, Argentina
Matti Rossi, Finland
Motoshi Saeki, Japan
Camille Salinesi, France
Tony C. Shan, USA
Keng Siau, USA
Guttorm Sindre, Norway
Monique Snoeck, Belgium
Janis Stirna, Sweden

Organization XI

Arnon Sturm, Israel
Alistair Sutcliffe, UK
Stefan Tai, USA
David Taniar, Australia
Bernhard Thalheim, Germany
Farouk Toumani, France
Olga de Troyer, Belgium
Aphrodite Tsalgatidou, Greece
Jean Vanderdonckt, Belgium

Olegas Vasilecas, Lithuania
Yair Wand, Canada
Mathias Weske, Germany
Hans Weigand, The Netherlands
Roel Wieringa, The Netherlands
Carson Woo, Canada
Eric Yu, Canada
Konstantinos Zachos, UK
Didar Zowghi, Australia

Additional Referees

Sudhir Agarwal
Fernanda Alencar
Nicolas Arni-Bloch
George Athanasopoulos
Ahmed Awad
Ladjel Bellatreche
Fredrik Bengtsson
Nicholas Berente
Maria Bergholtz
Richard Berntsson-Svensson
Lianne Bodenstaff
Remco de Boer
Lars Borner
Quentin Boucher
Jordi Cabot
Sven Casteleyn
Andreas Classen
Andre van Cleeff
Chad Coulin
Maya Daneva
Wilco Engelsman
Alfio Ferrara
Benôıt Fraikin
Virginia Franqueira
Dario Freni
Štefan Furlan
Frederic Gervais
Françoise Gire
Christophe Gnaho
Daniela Grigori
Alexander Grosskopf
Qing Gu
Adnene Guabtni

Martin Henkel
Marcel Hiel
Arnaud Hubaux
Ela Hunt
Helene Jaudoin
Zoubida Kedad
Oleg Koffmane
Woralak Kongdenfha
Stefan Lamparter
Algirdas Laukaitis
Dejan Lavbič
Juho Lindman
Annabella Loconsole
Kajsa Lorentzon
Dewi Mairiza
Amel Mammar
Sergio Mascetti
Zafar Mehboob
Stefano Montanelli
Dr. Mahmood Niazi
Nurie Nurmuliani
Martin F. O’Connor
Horst Pichler
Michael Pantazoglou
Linda Pareschi
Emilian Pascalau
Bram Pellens
Artem Polyvyyanyy
Rahul Premraj
Ricardo Argenton Ramos
Maryam Razavian
Daniele Riboni
Mohsen Rouached

XII Organization

Seung Ryu
Jürgen Rückert
Ove Sörensen
Khalid Saleem
Samiaji Sarosa
Farida Semmak
Patricia Silveira
Marten van Sinderen
Jonas Sjöström
Sergey Smirnov
Sergejus Sosunovas

Lovro Šubelj
Evi Syukur
Christer Thörn
Christina Tsagkani
Gaia Varese
Damjan Vavpotič
Hans van Vliet
Krzysztof Wnuk
William Van Woensel
Andreas Wombacher

Organization XIII

Sponsors

Table of Contents

Keynotes

The Science of the Web . 1
Nigel Shadbolt

TomTom for Business Process Management (TomTom4BPM) 2
Wil M.P. van der Aalst

Computer-Centric Business Operating Models vs. Network-Centric
Ones . 6

Mark de Simone

The IT Dilemma and the Unified Computing Framework 8
Edwin Paalvast

Tutorial: How to Value Software in a Business, and Where Might the
Value Go? . 9

Gio Wiederhold

Towards the Next Generation of Service-Based Systems: The S-Cube
Research Framework . 11

Andreas Metzger and Klaus Pohl

Model Driven Engineering

An Extensible Aspect-Oriented Modeling Environment 17
Naoyasu Ubayashi, Genya Otsubo, Kazuhide Noda, and Jun Yoshida

Incremental Detection of Model Inconsistencies Based on Model
Operations . 32

Xavier Blanc, Alix Mougenot, Isabelle Mounier, and Tom Mens

Reasoning on UML Conceptual Schemas with Operations 47
Anna Queralt and Ernest Teniente

Conceptual Modelling 1

Towards the Industrialization of Data Migration: Concepts and
Patterns for Standard Software Implementation Projects 63

Klaus Haller

XVI Table of Contents

Defining and Using Schematic Correspondences for Automatically
Generating Schema Mappings . 79

Lu Mao, Khalid Belhajjame, Norman W. Paton, and
Alvaro A.A. Fernandes

The Problem of Transitivity of Part-Whole Relations in Conceptual
Modeling Revisited . 94

Giancarlo Guizzardi

Conceptual Modelling 2

Using UML as a Domain-Specific Modeling Language: A Proposal for
Automatic Generation of UML Profiles . 110

Giovanni Giachetti, Beatriz Maŕın, and Oscar Pastor

Verifying Action Semantics Specifications in UML Behavioral Models . . . 125
Elena Planas, Jordi Cabot, and Cristina Gómez

Using Macromodels to Manage Collections of Related Models 141
Rick Salay, John Mylopoulos, and Steve Easterbrook

Quality and Data Integration

A Case Study of Defect Introduction Mechanisms . 156
Arbi Ghazarian

Measuring and Comparing Effectiveness of Data Quality Techniques 171
Lei Jiang, Daniele Barone, Alex Borgida, and John Mylopoulos

Improving Model Quality Using Diagram Coverage Criteria 186
Rick Salay and John Mylopoulos

Goal-Oriented Requirements Engineering

A Method for the Definition of Metrics over i* Models 201
Xavier Franch

Preference Model Driven Services Selection . 216
Wenting Ma, Lin Liu, Haihua Xie, Hongyu Zhang, and Jinglei Yin

Secure Information Systems Engineering: Experiences and Lessons
Learned from Two Health Care Projects . 231

Haralambos Mouratidis, Ali Sunyaev, and Jan Jurjens

Requirements and Architecture

An Architecture for Requirements-Driven Self-reconfiguration 246
Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

Table of Contents XVII

Automated Context-Aware Service Selection for Collaborative
Systems . 261

Hong Qing Yu and Stephan Reiff-Marganiec

Development Framework for Mobile Social Applications 275
Alexandre de Spindler, Michael Grossniklaus, and Moira C. Norrie

Service Orientation

Evolving Services from a Contractual Perspective . 290
Vasilios Andrikopoulos, Salima Benbernou, and Mike P. Papazoglou

Efficient IR-Style Search over Web Services . 305
Yanan Hao, Jinli Cao, and Yanchun Zhang

Towards a Sustainable Services Innovation in the Construction
Sector . 319

Sylvain Kubicki, Eric Dubois, Gilles Halin, and Annie Guerriero

Web Service Orchestration

P2S: A Methodology to Enable Inter-organizational Process Design
through Web Services . 334

Devis Bianchini, Cinzia Cappiello, Valeria De Antonellis, and
Barbara Pernici

Composing Time-Aware Web Service Orchestrations 349
Horst Pichler, Michaela Wenger, and Johann Eder

Asynchronous Timed Web Service-Aware Choreography Analysis 364
Nawal Guermouche and Claude Godart

Value-Driven Modelling

Evaluation Patterns for Analyzing the Costs of Enterprise Information
Systems . 379

Bela Mutschler and Manfred Reichert

Using the REA Ontology to Create Interoperability between
E-Collaboration Modeling Standards . 395

Frederik Gailly and Geert Poels

Value-Based Service Modeling and Design: Toward a Unified View of
Services . 410

Hans Weigand, Paul Johannesson, Birger Andersson, and
Maria Bergholtz

XVIII Table of Contents

Workflow

Data-Flow Anti-patterns: Discovering Data-Flow Errors in
Workflows . 425

Nikola Trčka, Wil M.P. van der Aalst, and Natalia Sidorova

Process Algebra-Based Query Workflows . 440
Thomas Hornung, Wolfgang May, and Georg Lausen

ETL Workflow Analysis and Verification Using Backwards Constraint
Propagation . 455

Jie Liu, Senlin Liang, Dan Ye, Jun Wei, and Tao Huang

Business Process Modelling

The Declarative Approach to Business Process Execution: An Empirical
Test . 470

Barbara Weber, Hajo A. Reijers, Stefan Zugal, and Werner Wild

Configurable Process Models: Experiences from a Municipality Case
Study . 486

Florian Gottschalk, Teun A.C. Wagemakers,
Monique H. Jansen-Vullers, Wil M.P. van der Aalst, and
Marcello La Rosa

Business Process Modeling: Current Issues and Future Challenges 501
Marta Indulska, Jan Recker, Michael Rosemann, and Peter Green

Requirements Engineering

Deriving Information Requirements from Responsibility Models 515
Ian Sommerville, Russell Lock, Tim Storer, and John Dobson

Communication Analysis: A Requirements Engineering Method for
Information Systems . 530

Sergio España, Arturo González, and Óscar Pastor

Spectrum Analysis for Quality Requirements by Using a Term-
Characteristics Map . 546

Haruhiko Kaiya, Masaaki Tanigawa, Shunichi Suzuki,
Tomonori Sato, and Kenji Kaijiri

Author Index . 561

The Science of the Web

Nigel Shadbolt

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ

United Kingdom

Abstract. Since its inception, the World Wide Web has changed the
ways people communicate, collaborate, and educate. There is, however, a
growing realization among many researchers that a clear research agenda
aimed at understanding the current, evolving, and potential Web is
needed. A comprehensive set of research questions is outlined, together
with a sub-disciplinary breakdown, emphasising the multi-faceted nature
of the Web, and the multi-disciplinary nature of its study and develop-
ment. These questions and approaches together set out an agenda for
Web Science — a science that seeks to develop, deploy, and understand
distributed information systems, systems of humans and machines, op-
erating on a global scale.

When we discuss an agenda for a science of the Web, we use the term
“science” in two ways. Physical and biological science analyzes the nat-
ural world, and tries to find microscopic laws that, extrapolated to the
macroscopic realm, would generate the behaviour observed. Computer
science, by contrast, though partly analytic, is principally synthetic: it is
concerned with the construction of new languages and algorithms in or-
der to produce novel desired computer behaviours. Web science is a com-
bination of these two features. The Web is an engineered space created
through formally specified languages and protocols. However, because
humans are the creators of Web pages and links between them, their
interactions form emergent patterns in the Web at a macroscopic scale.
These human interactions are, in turn, governed by social conventions
and laws. Web science, therefore, must be inherently interdisciplinary;
its goal is to both understand the growth of the Web and to create ap-
proaches that allow new powerful and more beneficial patterns to occur.
Finally, the Web as a technology is essentially socially embedded; there-
fore various issues and requirements for Web use and governance are also
reviewed.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TomTom for Business Process Management
(TomTom4BPM)

Wil M.P. van der Aalst

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tue.nl

Abstract. Navigation systems have proven to be quite useful for many
drivers. People increasingly rely on the devices of TomTom and other
vendors and find it useful to get directions to go from A to B, know
the expected arrival time, learn about traffic jams on the planned route,
and be able to view maps that can be customized in various ways (zoom-
in/zoom-out, show fuel stations, speed limits, etc.). However, when look-
ing at business processes, such information is typically lacking. Good and
accurate “maps” of business process are often missing and, if they exist,
they tend to be restrictive and provide little information. For example,
very few business process management systems are able to predict when a
case will complete. Therefore, we advocate more TomTom-like function-
ality for business process management (TomTom4BPM). Process min-
ing will play an essential role in providing TomTom4BPM as it allows
for process discovery (generating accurate maps), conformance checking
(comparing the real processes with the modeled processes), and extension
(augmenting process models with additional/dynamic information).

1 The Need for Process Navigation

Business Process Management Systems (BPMSs) [1,5,8] are used to manage and
execute operational processes involving people, applications, and/or information
sources on the basis of process models. These systems can be seen as the next
generation of workflow technology offering more support for analysis. Despite
significant advances in the last decade, the functionality of today’s BPMSs leaves
much to be desired. This becomes evident when comparing such systems with the
latest car navigation systems of TomTom that provide detailed maps, real-time
traffic information, re-routing, customized points of interest, estimated arrival
times, etc. (cf. Figure 1). Some examples of TomTom-like functionality that is
generally missing are listed below:

– In today’s organizations often a good process map is missing. Process models
are not present, incorrect, or outdated. Sometimes process models are used
to directly configure the BPMS. However, in most situations there is not an
explicit process model as the process is fragmented and hidden inside legacy
code, the configuration of ERP systems, and in the minds of people.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 2–5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TomTom for Business Process Management (TomTom4BPM) 3

Fig. 1. Comparing maps in a navigation system with maps in a BPMS

– If process models exist in an explicit form, their quality typically leaves much
to be desired. Especially when a process model is not used for enactment
and is only used for documentation and communication, it tends to present
a “PowerPoint reality”. Road maps are typically of much higher quality and
use intuitive colors and shapes of varying sizes, e.g., highways are emphasized
by thick colorful lines and dirt roads are not shown or shown using thin dark
lines. In process models, all activities tend to have the same size and color
and it is difficult to distinguish the main process flow from the less traveled
process paths.

– Most process modeling languages have a static decomposition mechanism
(e.g., nested subprocesses). However, what is needed are controls allowing
users to zoom in or zoom out seamlessly like in a navigation system or Google
maps. Note that, while zooming out, insignificant things are either left out
or dynamically clustered into aggregate shapes (e.g., streets and suburbs
amalgamate into cities). Process models should not be static but allow for
various views.

– Sometimes process models are used for enactment. However, such “process
maps” are controlling the users. When using a car navigation system, the
driver is always in control, i.e., the road map (or TomTom) is not trying to
“control” the user. The goal of a BPMS should be to provide directions and
guidance rather than enforcing a particular route.

– A navigation system continuously shows a clear overview of the current situ-
ation (i.e., location and speed). Moreover, traffic information is given, show-
ing potential problems and delays. This information is typically missing in a
BPMS. Even if the BPMS provides a management dashboard, TomTom-like
features such as traffic information and current location are typically not
shown in an intuitive manner.

– A TomTom system continuously recalculates the route, i.e., the
recommended route is not fixed and changed based on the actions of the
driver and contextual information (e.g. traffic jams). Moreover, at any point
in time the navigation system is showing the estimated arrival time. Existing
BPMSs are not showing this information and do not recalculate the optimal
process based on new information.

4 W.M.P. van der Aalst

The above list of examples illustrates desirable functionality that is currently
missing in commercial BPMSs. Fortunately, recent breakthroughs in process min-
ing may assist in realizing TomTom-like functionality for business process man-
agement (TomTom4BPM).

2 Process Mining

Process mining techniques attempt to extract non-trivial and useful information
from event logs [2,3]. Many of today’s information systems are recording an
abundance of events in such logs. Various process mining approaches make it
possible to uncover information about the processes they support. Typically,
these approaches assume that it is possible to sequentially record events such
that each event refers to an activity (i.e., a well-defined step in the process)
and is related to a particular case (i.e., a process instance). Furthermore, some
mining techniques use additional information such as the performer or originator
of the event (i.e., the person/resource executing or initiating the activity), the
timestamp of the event, or data elements recorded with the event (e.g., the size
of an order).

Process mining addresses the problem that most people have very limited
information about what is actually happening in their organization. In prac-
tice, there is often a significant gap between what is prescribed or supposed to
happen, and what actually happens. Only a concise assessment of the organi-
zational reality, which process mining strives to deliver, can help in verifying
process models, and ultimately be used in a process redesign effort or BPMS
implementation.

Some examples of questions addressed by process mining:

– Process discovery: “What is really happening?”
– Conformance checking:“Do we do what was agreed upon?”
– Performance analysis : “Where are the bottlenecks?”
– Process prediction: “Will this case be late?”
– Process improvement : “How to redesign this process?”

These examples show that process mining is an important enabler for Tom-
Tom4BPM, i.e., TomTom-like functionality for business processes. This can be
demonstrated by looking at the functionality of ProM [2].

– ProM’s Fuzzy Miner [6] can discover processes from event logs and offers a
seamless zoom similar to TomTom or Google Maps.

– ProM’s Recommendation Engine [7] learns from historic data and uses this
to provide recommendations to the user. This way the workflow system can
provide more flexibility while still supporting the user. This is comparable
to the directions given by a navigation system.

– ProM’s Prediction Engine [4] also learns for historic data but now uses this
information to make predictions, e.g., the estimated completion time of a
case or the likelihood the occurrence of a particular activity.

The interested reader is referred to www.processmining.org for more informa-
tion about these ideas and for downloading the ProM software.

www.processmining.org

TomTom for Business Process Management (TomTom4BPM) 5

References

1. van der Aalst, W.M.P.: Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. In: Desel, J., Reisig, W.,
Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp.
1–65. Springer, Heidelberg (2004)

2. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves
de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An In-
dustrial Application. Information Systems 32(5), 713–732 (2007)

3. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

4. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction:
When Will This Case Finally Be Finished. In: Meersman, R., Tari, Z. (eds.) CoopIS
2008, OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)

5. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software through Process Technology. Wiley &
Sons, Chichester (2005)

6. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining: Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

7. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting
Flexible Processes Through Recommendations Based on History. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

8. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Berlin (2007)

Computer-Centric Business Operating Models
vs. Network-Centric Ones

Mark de Simone

Chief Sales and Business Development Officer
CORDYS

Abbey House, Wellington Way – Brooklands Business Park
Surrey KT13 0TT, Weybridge

United Kingdom

The Rise of the Cloud Business Operation Platform

For the first time ever, the centricity of the computer based application model
is being challenged by a fast emerging new model fueled by 6 important changes
which have now reached an intensity which is impossible to deny.

1. Suppliers Declare New Battle Fronts
Cisco has launched a vision which builds on the network centricitiy of future
ICT models aggregating a value chain around a network and collaborative
web application architecture. This is clearly in sharp contrast with the legacy
approach of the computing centric model of HP and IBM. With VMware
and Cordys clearly positioned to enable this acceleration of virtualization
of both hardware infrastructure as well as software infrastructure, Cisco is
focusing all its considerable resources to launch what it describes as “Unified
Computing”. In what amounts to an apparent declaration that the network
centric application model is far more efficient, effective and more responsive
to today’s business needs than yesterday’s computer centric application mod-
els, Cisco has now challenged the traditional application development and
deployment framework so common to the IBM and HP ecosystems. From
Oracle to SAP to Microsoft, the virtualized application utility heralded by
WebEx and Salesforce.com is far more at home with the Cisco vision of ICT
than either IBM’s or HP’s. And the software industry has been served a
formidable challenge greater than the one which the Web served Microsoft
in the 1990s.

2. Time is the Ultimate Challenge
The new race to the post credit-crunch / economic meltdown world requires
companies of all sizes to reinvent themselves, merge, reorganize, acquire, di-
vest, change business and regulatory operating mechanisms on the fly and
with full involvement of business leaders’ decision making authorities at all
levels. The legacy model of designing in detail the specification requirements
of the business process and having specialists with application platform pro-
prietary languages know-how (4GL) to translate the requirements into a

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 6–7, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computer-Centric Business Operating Models vs. Network-Centric Ones 7

technical customization of the traditional platform is now simply too oner-
ous and long winded.

3. Integration Becomes Innovation. The Rise of Cloudsourcing
No one can afford to spend any money on integration services to just en-
able the association of data and processes from one application to another.
The speed and degree of integration needs is just too large to be addressed
through a service model with variable costs associated to the number of
people-days required in traditional application infrastructures. The business
operating platform used must be able to integrate any structured and non
structured data and application to any defined process in real time. The
Cordys Enterprise Cloud Orchestration System has created a new benchmark
in the execution of the people intensive services that need to be concentrated
on innovation of businesses processes, not integration. This is changing the
profile and business models of Professional Services companies and outsourc-
ing companies which now need to create more value for companies than just
cost arbitrage on system integration or skills availability.

4. Lower Investments and Lower Operating Expenses
Every senior executive is now asking for less expense at both Capex and Opex
levels. Furthermore whatever project is selected, the need for the payback
to be within a quarter so as to be able to have a maximum deployment
time of a quarter, a payback of a quarter and two quarters of improved
operating performance. This new framework cannot be realized with the
traditional models. The new model is a combination of Cloud Services and
seamless business operation platform orchestration of processes across legacy
environments.

5. Today’s Titans or Tomorrow’s?
History is being written very fast. The safety net and safety blanket of large
companies whose cost structures are huge and whose revenue streams are
stalling may no longer provide the same kind of security as to prior to this
inflection point. Companies like Cordys whose revenues are on a 100% growth
curve can provide the needed jolt for questioning the viability of betting on
the past alone versus a risk-adjusted model of investing with an eye to what
new model will eventually become predominant in the new equilibrium.

6. A Small Matter of Leadership
Christensen’s innovation dilemma is being put to the test at an even more
radical pace by the hypercompetitive world we are about to be part of.
Leaders who thrive in extreme competition are those who can intercept the
changing models while avoiding to destroy the ones which currently run their
companies. They understand what needs to be done, pick some important
battles, put their best talent behind it and give them the resources required
to drive the changes. 2009 will require a lot of leadership from companies’
CEOs, CIOs, COOs, CFOs and their board of directors. The Cloud model
is one which leaders can no longer afford not to experience.

The IT Dilemma and the Unified Computing
Framework

Edwin Paalvast

Vice President Service Sales Europe
Cisco Systems

Haarlerbergweg 13-19, 1101 CH Amsterdam
The Netherlands

Abstract. One of the main challenges of the IT industry is the portion
of the IT budget spent on maintaining the IT systems. For most compa-
nies this is around 80-85% of the total budget. This leaves very little room
for new functionality and innovation. One of the ways to save money is
to make more effective use of the underlying hardware like disks and
processors. With the freed up budget the real IT issue can be addressed:
the cost of application maintenance. With the use of publish-subscribe
and agent models the changes in policies and business models can be
supported more quickly, but it requires the right underlying infrastruc-
ture. I will discuss a Unified Computing framework that will enable these
savings and will have the required capabilities to support model based
programming.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, p. 8, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Tutorial: How to Value Software in a Business,
and Where Might the Value Go?

Gio Wiederhold

Professor Emeritus
Stanford University and MITRE Corporation

Stanford CA 94305-9040
USA

This tutorial consists of two parts. In the first part we motivate why businesses
should determine the value of the Intellectual Property (IP) inherent in software
and present a method to determine that value in a simple business model: En-
terprise software for sale. In the second part we consider the same software as
marketed in a service model. A service model imposes a maintenance obligation.
Maintenance is often outsourced so we also consider the risk to IP, especially
when work is performed offshore. Finally we present the consequences to the
original creators when IP is segregated into a tax haven.

There exists a voluminous literature on estimation of the cost of producing
software, but that literature largely ignores the benefits of using that software.
While software creators believe that their products are valuable, they are rarely
called upon to quantify its benefits. Evaluation of software and its benefits in
commerce is left to lawyers, economists, software vendors, or promoters. The
results are often inconsistent. For modern enterprises intellectual capital greatly
exceeds the tangible capital on the books, but is not shown in their annual
reports. The problem is that the value of software is essentially independent
of the cost and effort spent to create it. A few brilliant lines of code can have
a very high value, whereas a million lines of code that generate a report that
nobody uses have little value. The presentation will present a method for valuing
software based on the income that sales of a software product are expected to
generate, following accepted economic principles. An issue specific to software is
that software is continually being upgraded, and is hence more squishy than say
books or music. The steps of the valuation process are integrated via a simple
quantitative example.

Having a quantitative model on a spreadsheet allows exploration of alter-
natives. That capability is shown by evaluating also a service business model
alternative. In that setting we can also determine why software has a finite life,
although it does not wear out as tangibles do. The model is being used now for
international IP transfer pricing. When companies outsource part of their oper-
ations they must also give access to the required IP. If that IP is not properly
valued distortions occur in decision-making processes, and risks cannot be quan-
tified. These distortions can have very large effects on the income and capital
accumulation in the home and destination country. If a taxhaven is interposed
as a holder of the IP the consequences for creators, the stockholders, and their
countries can be amazing, and are rarely understood by the participants.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 9–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

10 G. Wiederhold

Awareness of the value of the product of a creator’s knowledge and effort
can help in making decisions on the design and the implementation focus. Some
further conclusions are drawn from the modeling results that reflect on aca-
demic and business practice. A paper on the method used has appeared in the
Comm. of the ACM, September 2006, but could not cover all of the issues. Links
to further material are available at http://infolab.stanford.edu/pub/gio/
inprogress.html#worth.

http://infolab.stanford.edu/pub/gio/inprogress.html#worth
http://infolab.stanford.edu/pub/gio/inprogress.html#worth

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 11–16, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards the Next Generation of Service-Based Systems:
The S-Cube Research Framework*

Andreas Metzger and Klaus Pohl

Software Systems Engineering, University of Duisburg-Essen
45117 Essen, Germany

{andreas.metzger,klaus.pohl}@sse.uni-due.de

Abstract. Research challenges for the next generation of service-based systems
often cut across the functional layers of the Service-Oriented Architecture
(SOA). Providing solutions to those challenges requires coordinated research
efforts from various disciplines, including service engineering, service compo-
sition, software engineering, business process management, and service infra-
structure. The FP7 Network of Excellence on Software Services and Systems
(S-Cube) performs cross-discipline research to develop solutions for those chal-
lenges. Research in S-Cube is organised around the S-Cube research frame-
work, which we briefly introduce in this paper. Moreover, we outline the
envisioned types of interactions between the key elements of the S-Cube re-
search framework, which facilitate the specification and design as well as the
operation and adaptation of future service-based systems.

Keywords: Service-based Systems, Service Oriented Architecture, Service
Engineering, Software Services.

1 Motivation

Service-orientation is increasingly adopted as a paradigm for building highly dy-
namic, distributed and adaptive software systems, called service-based systems. A
service-based system is realized by composing software services. For the service
composer, a software service is not an individual piece of software. Rather, it repre-
sents some functionality that can be invoked through the service’s interface, where the
actual software that implements this functionality is executed, maintained and owned
by the provider of that service [1].

Currently, the common practice for developing service-based systems is to employ
the Service-Oriented Architecture (SOA) paradigm, which distinguishes between
three functional layers [2][3][4]: The service infrastructure layer (SI) supports de-
scribing, publishing and discovering services and provides the run-time environment
for the execution of service-based systems. It provides primitives for service commu-
nication, facilities for service description, as well as capabilities for service discovery.

* The research leading to these results has received funding from the European Community’s

Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).
For further information please visit http://www.s-cube-network.eu/

12 A. Metzger and K. Pohl

The service composition and coordination layer (SCC) supports the (hierarchical)
composition of multiple services. Such service compositions can in turn be offered to
service clients, used in further service compositions and eventually be composed to
service-based systems. The business process management layer (BPM) provides
mechanisms for modelling, analysing and managing business processes that can span
the administrative boundaries of multiple organizations.

When building service-based systems one typically faces challenges which cut
across the functional SOA layers, such as:

• Incomplete knowledge: A service-based system cannot be specified completely in
advance due to the incomplete knowledge about the interacting parties (e.g., ser-
vice providers) as well as the system’s context. Thus, compared to traditional soft-
ware engineering, much more decisions need to be taken during the run-time
(operation) phase. As a consequence, new life cycle models and methods will have
to support the agility, flexibility and dynamism required to leverage the potential of
service-based systems.

• Adaptations across the functional layers: Adaptations at the functional layers can
be conflicting. For example, the service composition layer might perform a frag-
mentation of the business process while at the same time the infrastructure layer
might initiate a data fragmentation. These two adaptations can be in conflict if, for
example, the data required by a process fragment is moved to another location than
the process fragment, or if the data fragmentation leads to a violation of privacy
policies stipulated by the process fragments. Thus, an adaptation strategy is re-
quired which coordinates adaptations across the functional layers and thereby
avoids such conflicts.

• End-to-end-quality: Each functional layer contributes to the end-to-end quality of a
service-based system. Thus, to assure end-to-end quality, the different quality
characteristics (like reliability or performance) and their dependencies must be
understood and the different quality levels, as stipulated in individual quality con-
tracts (e.g., as part of SLAs), need to be aggregated across the functional layers.

Addressing such cross-cutting challenges (see [5][6] for a more detailed list) re-
quires an integration of knowledge and competencies of various disciplines, including
service engineering, service composition and orchestration, software engineering,
business process management, and service infrastructure. In Section 2 we sketch the
S-Cube research framework, which provides a clear separation of concerns but also
systematically addresses the cross-cutting challenges. In Section 3 we outline the
envisioned types of interactions between the key elements of the S-Cube framework,
which facilitate the specification and design as well as the operation and adaptation of
future service-based systems.

2 The S-Cube Research Framework

Figure 1 provides an overview of the S-Cube research framework and its key ele-
ments. In addition to the functional SOA layers (BPM, SCC and SI – in the S-Cube
framework we call those layers technology layers), the S-Cube research framework
introduces the following cross-cutting elements [7]:

 Towards the Next Generation of Service-Based Systems 13

• Service engineering and design (SED): SED provides principles, techniques,
methods and life-cycle models which facilitate the creation of innovative service-
based systems, which include requirements engineering and design principles and
techniques. SED takes a holistic view on engineering, operating and evolving ser-
vice-based systems.

• Service adaptation and monitoring (SAM): SAM facilitates the cross-layer moni-
toring of service-based systems as well as their continuous adaptation in response
to, e.g., context changes, system failures or underperformance. In addition, SAM
supports the pro-active adaptation of service-based systems across the three layers.

• Service quality definition, negotiation and assurance (SQDNA): SQDNA provides
principles, techniques and methods for defining, negotiating and assuring end-to-
end quality of service-based systems as well as conformance to SLAs. In addition,
it facilitates pro-active adaptations by providing novel techniques for predicting the
future quality of service-based systems.

A
d

ap
ta

ti
o

n
 &

 M
o

n
it

o
ri

n
g

(S
A

M
)

Business
Process

Mgt. (BPM)

Composition &
Coordination

(SCC)

Infra-
structure

(SI)

E
n

g
in

ee
ri

n
g

 &
 D

es
ig

n

(S
E

D
)

Quality Definition, Negotiation & Assurance
(SQDNA)

Fig. 1. Overview on the S-Cube research framework

3 Envisioned Interactions between the Framework Elements

For each element of the S-Cube research framework, its interactions and interfaces
with the other framework elements are defined. We distinguish between two principle
kinds of interactions:

• Design and Specification Interactions: These interactions expose the capabilities
and features of one framework element to another framework element. The ex-
posed capabilities and features are taken into account when engineering, designing,
monitoring, adapting or assuring the quality of a service-based system. Moreover,
the cross-cutting elements (SED, SAM and SQNDA) can constrain the capabilities
offered by the three technology layers by specifying how to use those capabilities
in a concrete service-based system.

14 A. Metzger and K. Pohl

• Operation and Run-time Interactions: These interactions reflect the information
which is exchanged between the framework elements during the operation, execu-
tion and adaptation of the service-based system as well as its instances.

We illustrate the two types of interactions by describing the envisioned interactions
between the SED, SAM and SCC elements depicted in Figure 2.

Service Composition &
Coordination (SCC)

Service
Adaptation &

Monitoring (SAM)

Monitored
Events

Adaptation
requirements

Service Infrastructure
(SI)

Business Process Management
(BPM)

Adaptation
Strategies

Service
Engineering &
Design (SED)

Requirements
Engineering

& Design

Deployment &
Provisioning

= Capability and Specification Interactions = Operation and Run-time Interactions

Quality Definition, Negotiation & Assurance
(SQDNA)

Operation,
Management
& Evolution

Construction

cross-layer adaptation and monitoring capabilities

adaptation
capabilities

monitoring
data

triggered
adaptations

monitoring
capabilities

monitoring
specifications

adaptation
specifications

composition
capabilities

composition
specifications

triggered
evolutions

1

2

3

cross-layer monitoring data

4

4

5

6

5

7

cross-layer adaptation and monitoring specifications

8

9

10

Quality
Mechanisms

Adaptation
Mechanisms

Monitoring
Mechanisms

Composition
Mechanisms

Fig. 2. Envisioned interactions between the SAM, SED and SCC elements

Envisioned interactions between SCC and SED
As depicted in Figure 2 we envision three principle interactions between SCC and
SED:

(1) The SCC layer communicates its composition capabilities to the SED element.
The SED element exploits those capabilities during requirements engineering
and design of the service-based system together with the capabilities of the SI,
BPM, SAM and SQDNA elements.

(2) As a result of the engineering and design activities, the SED element specifies
which SCC capabilities should be used for the service-based system at hand. The
SED element communicates those specifications to the SCC layer. It thereby can
restrict the capabilities offered by the SCC layer. For example, the SED element
can forbid the use of a certain composition mechanism or define the order in

 Towards the Next Generation of Service-Based Systems 15

which the mechanisms have to be used. In addition, the SED element also com-
municates the specifications for the quality, the monitoring and the adaptation
capabilities to the SCC layer (not depicted in Figure 2).

(3) In the case of an evolution of the service-based system, the SED element com-
municates the evolution triggers (i.e., actions to be executed to implement the
evolution) to the SCC layer. This includes updates of the specifications for the
SCC capabilities.

Envisioned interactions between SAM and SCC
Between SCC and SAM the following four key interactions are envisioned:

(4) The SCC layer communicates its capabilities to collect monitoring data from the
service compositions to the SAM element. In addition, the SCC layer exposes its
capabilities for adapting service compositions to the SAM element. The SAM
element uses those capabilities within its cross-layer adaptation techniques.

(5) Based on the monitoring and adaptation strategies designed for the service-based
system, the SAM element communicates the monitoring and adaptation specifi-
cation for the service-based system at hand to the SCC layer and thereby defines
which capabilities are valid for that service-based system.

(6) During the operation of the service-based system, the collected monitoring data is
communicated from the SCC layer to the SAM element. The SAM element ana-
lyzes the monitoring data received – under consideration of the monitoring data
received from the SI and BPM layers – and determines required adaptations.

(7) The adaptation strategies of the SAM element ensure conflict-free, cross-layer
adaptations. If adaptations of the service compositions are required, the SAM
element communicates the required adaptation specifications to the SCC layer.

Envisioned interactions between SAM and SED
As shown in Figure 2, three principle interactions between SAM and SED are
envisioned:

(8) The SAM element communicates its cross-layer monitoring and adaptation ca-
pabilities to the SED element, which considers those capabilities during the en-
gineering and design of the service-based system. For example, the SED element
could decide whether to use intrusive monitoring or non-intrusive monitoring in
a certain system and how the monitoring capabilities of all three technology lay-
ers should be correlated.

(9) The SED element communicates the cross-layer adaptation and monitoring
specification for the service-based system at hand to the SAM element. For ex-
ample, the specification can define that only non-intrusive monitoring capabili-
ties are to be used by all three technology layers. The SAM element follows the
specification and adjusts his monitoring and adaptation capabilities for the ser-
vice-based system accordingly.

(10) During the operation of the service-based system, the SAM element correlates
the monitoring data from the different layers and provides correlated, cross-layer
monitoring data to the SED element. This data is analyzed to determine if an
evolution of the service-based system is required (e.g., in the case that adapta-
tions of individual instances of the service-based system do not suffice).

16 A. Metzger and K. Pohl

The small arrows in Figure 2 indicate interactions between framework elements
which are not described above. The S-Cube research vision white paper describes all
envisioned interactions of the S-Cube research framework. The white paper is avail-
able from the S-Cube web portal at http://www.s-cube-network.eu/.

4 Conclusions

The FP7 Network of Excellence S-Cube addresses the cross-cutting research chal-
lenges faced when engineering, designing, adapting, operating and evolving the next
generation of service-based systems. S-Cube’s research is guided by the research
framework and its envisioned interactions sketched in this paper. The S-Cube
research framework clearly distinguishes between principles and methods for engi-
neering and adapting service-based systems and the technology and mechanisms
which are used to realize those systems, while taking into account cross-cutting issues
like Quality of Service (QoS) and SLA compliance. By synthesizing and integrating
diversified knowledge across different research disciplines, S-Cube develops the next
generation of principles, techniques and methods for the service-based systems of the
future.

Acknowledgments. We cordially thank all S-Cube members for the fruitful discus-
sions and their contributions to the S-Cube research framework.

References

[1] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A Journey to Highly Dy-
namic, Self-adaptive Service-based Applications. Automated Software Engineering
15(3-4) (December 2008)

[2] Erl, T.: Service-oriented Architecture. Prentice-Hall, Englewood Cliffs (2004)
[3] Josuttis, N.: SOA in Practice: The Art of Distributed System Design. O’Reilly, Sebastopol

(2007)
[4] Kaye, D.: Loosely Coupled: The Missing Pieces of Web Services. RDS Press (2003)
[5] Papazoglou, M., Pohl, K.: S-Cube: The Network of Excellence on Software Services and

Systems. In: Di Nitto, E., Traverso, P., Sassen, A., Zwegers, A. (eds.) At Your Service: An
Overview of Results of Projects in the Field of Service Engineering of the IST Programme.
MIT Press Series on Information Systems (2009)

[6] Papazoglou, M., Pohl, K.: Report on Longer Term Research Challenges in Software and
Services. In: Boniface, M., Ceri, S., Hermenegildo, M., Inverardi, P., Leymann, F.,
Maiden, N., Metzger, A., Priol, T. (eds.) Results from two workshops held at the European
Commission premises at 8th of November 2007 and 28th and 29th of January 2008, Euro-
pean Commission (2008), http://www.cordis.lu

[7] Metzger, A., Pohl, K.: S-Cube: Enabling the Next Generation of Software Services. In:
Filipe, J., Cordeiro, J., Cardoso, J. (eds.) Proceedings of the 5th Intl. Conference on Web
Information Systems and Technologies (WEBIST 2008). LNBIP, vol. 18, pp. 40–47.
Springer, Heidelberg (2009)

An Extensible Aspect-Oriented Modeling
Environment

Naoyasu Ubayashi, Genya Otsubo, Kazuhide Noda, and Jun Yoshida

Kyushu Institute of Technology, Japan
{ubayashi,otsubo,noda,yoshida}@minnie.ai.kyutech.ac.jp

Abstract. AspectM is an aspect-oriented modeling language for provid-
ing not only basic modeling constructs but also an extension mechanism
called metamodel access protocol (MMAP) that allows a modeler to
modify the metamodel. This paper proposes a concrete implementation
for constructing an aspect-oriented modeling environment in terms of ex-
tensibility. The notions of edit-time structural reflection and extensible
model weaving are introduced.

1 Introduction

Aspect-oriented programming (AOP) [9] can separate crosscutting concerns from
primary concerns. In major AOP languages such as AspectJ [10], crosscutting
concerns including logging, error handling, and transactions are modularized as
aspects and they are woven into primary concerns. AOP is based on join point
mechanisms (JPM) consisting of join points, a means of identifying join points
(pointcut), and a means of semantic effect at join points (advice). In AspectJ,
program points such as method execution are detected as join points, and a
pointcut designator extracts a set of join points related to a specific crosscutting
concern from all join points. A weaver inserts advice code at the join points
selected by pointcut designators. Aspect orientation has been proposed for coping
with concerns not only at the programming stage but also at the early stages of
the development such as requirements analysis and architecture design.

We previously proposed a UML-based aspect-oriented modeling (AOM) lan-
guage called AspectM that provides not only major JPMs but also a mechanism
called metamodel access protocol (MMAP) for allowing a modeler to modify
the AspectM metamodel, an extension of the UML metamodel [15]. The mecha-
nism enables a modeler to define a new JPM that includes domain-specific join
points, pointcut designators, and advice. Although the notion of extensible AOM
is useful, its construction has not yet been established.

This paper proposes a concrete implementation for constructing an AOM
environment in terms of extensibility. In our AspectM support tool consisting of
a model editor and a model weaver, the notions of edit-time structural reflection
and extensible model weaving are introduced. The model editor supporting edit-
time structural reflection enables a modeler to define a domain-specific JPM. A
newly introduced JPM is dealt with by the extensible model weaver. Although

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 17–31, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 N. Ubayashi et al.

the AspectM language features can be extended by MMAP, it is not necessarily
easy to confirm the correctness of model weaving. Verification concerning model
consistency and aspect interference becomes difficult because a weaver must
be validated whenever AspectM is extended. If a verification mechanism is not
provided, it is difficult to judge whether an extended part does not interfere
with other existing parts. If the extension includes defects, models are not woven
properly. It is not easy for a modeler to know whether the original model or the
extension is incorrect. To deal with this problem, the model weaver provides a
set of verifiers consisting of a metamodel checker for verifying whether a base
model conforms to the metamodel, a model structure checker for verifying well-
formness, and an assertion checker for validating the intention of a modeler.

The remainder of the paper is structured as follows. Section 2 explains As-
pectM briefly, and claims why extension mechanisms are needed in AOM. The
mechanisms of edit-time reflection and verifying model weaving are shown in
Section 3 and 4, respectively. In Section 5, we show a case study that adopts
AspectM and evaluates the effectiveness of the extension mechanism. Section 6
introduces related work. Concluding remarks are provided in Section 7.

2 Motivation

In this section, we briefly excerpt the overview of AspectM from our previous
work [15]. AspectM without extension mechanisms is called Core AspectM. The
necessity of extension mechanisms is pointed out.

2.1 Core AspectM

The notion of JPM can be applied to not only programming but also modeling
as illustrated in Fig.1: a class is regarded as a join point; a pointcut definition
‘classA || classB’ extracts the corresponding two classes; and a model trans-
formation add-attribute is regarded as advice. Core AspectM provides seven basic
JPMs as shown in Table 1: PA (pointcut & advice for operation bodies), CM
(class composition), EL (element), OC (open class), RN (rename), RL (relation),
and IH (inheritance). Although current Core AspectM only supports class dia-
grams, the dynamic aspect of system behavior can be described as a protocol
state machine because a modeler can specify preconditions and postconditions
in an operation by using OCL (Object Constraint Language).

An aspect in Core AspectM is separated into three compartments: aspect
name, pointcut definitions, and advice definitions. An aspect name and a JPM
type are described in the first compartment. Pointcut definitions are described
in the second compartment. Each definition consists of a pointcut name, a join
point type, and a pointcut body. In pointcut definitions, we can use designators
including cname (class name matching), aname (attribute name matching), and
oname (operation name matching). We can also use three logical operators: &&
(and), || (or), and ! (not). Advice definitions are described in the third com-
partment. Each of them consists of an advice name, a pointcut name, an advice

An Extensible Aspect-Oriented Modeling Environment 19

classX

attributes

operations

classA

attributes

operations

classB

attributes

operations

classA

attributes

operations

new attributesclassB

attributes

operations

new attributes

 [OC]
newAttributeX

classAandB:class
 {pointcut-body := cname(’classA’)||cname(’classB’)}

addX[classAandB]:add-attribute
 {advice-body := attributeX}

A

weave

join point
(class)

crosscutting

Fig. 1. Aspect-oriented modeling

Table 1. AspectM basic JPM

JPM Join point Advice
PA operation before, after, around

add/delete/modify-precondition,postcondition
CM class merge-by-name
EL class diagram add/delete/modify-class
OC class add/delete/modify-operation, attribute, invariant
RN class, attribute, operation rename
RL class add/delete/modify-aggregation, relationship
IH class add/delete/modify-inheritance

type, and an advice body. A pointcut name is a pointer to a pointcut definition
in the second compartment. The advice is applied at join points selected by a
pointcut.

2.2 Problems in Core AspectM

Although Core AspectM provides basic JPMs, a modeler cannot define domain-
specific JPMs. It would be better for a modeler to describe a model as shown in
Fig.2 (the class diagram is cited from [4]). Domain-specific model elements are
denoted by stereotypes that are not merely annotations but elements introduced
by metamodel extension.

The model in Fig.2 describes an invoice processing system comprised of two
kinds of domain-specific distributed components: DCEntityContract for defin-
ing the contract of a distributed entity component and DCControllerContract
for defining the contract of a distributed controller component. The model also
includes a domain-specific JPM DCLogger that adds log operations to DCEnti-
tyContracts whose UniqueId is not assigned by users. DCLogger consists of
domain-specific pointcut designators and advice. DCEntityContract can be re-
garded as a domain-specific join point. The !DCEntityContract UniqueId is
UserAssigned pointcut selects two classes Customer and Invoice. If only primi-
tive predicates can be used, it is necessary to specify as follows: cname

20 N. Ubayashi et al.

<<DCEntityContract>>
Customer

<<UniqueId>> id:String
 {isUserAssigned=false}
firstName:String
lastName: String

<<DCEntityContract>>
Invoice

<<UniqueId>> number:String
 {isUserAssigned=false}
amount: Double

<<DCEntityContract>>
receivablesAccount

<<UniqueId>> number:String
 {isUserAssigned=true}
currentBalance: Double
30DayBalance : Double

+unprocessedInvoices
0..*

{ordered}

+processedInvoices
0..*

{ordered}

0..1 0..1

+customer

0..1<<DCControllerContract>>
ARProcessor

ProcessInvoices (arAccounts:ReceivablesAccount[1..*])
 :void {isTx=true, isIdempotent=true}
EndofMonthUpdate(arAccounts:ReceivablesAccount[1..*])
 :void {isTx=true, isIdempotent=false}

1

<<call>>

<<DCLogger>>
Logging

logClasses:class
 {pointcut-body :=
 !DCEntityContract_UniqueId_isUserAssigned(*)}

addLog[logClasses]:add-operation
 {advice-body :=
 <<DCLoggerOperation>> log():void {isPersistent=false}}

A

This aspect adds log operations
 to the two classes Customer and Invoice.

domain-specific
pointcut designator

domain-specific
advice

domain-specific
class definitions

Fig. 2. Example of a domain-specific JPM

(‘Customer’) || cname(‘Invoice’). This definition must be modified when-
ever the isUserAssigned tag value is changed. This pointcut definition is fragile
in terms of software evolution. On the other hand, an expressive pointcut such as
!DCEntityContract UniqueId isUserAssigned is robust because this pointcut
does not have to be modified even if the isUserAssigned tag value is changed.

Although expressive and domain-specific JPMs are effective, it is not necessar-
ily easy to describe aspects such as DCLogger by merely using stereotypes as an-
notations because associations among stereotypes cannot be specified. Without
extending a metamodel, the following fact cannot be specified: DCEntityCon-
tract must have a UniqueId whose tag is isUserAssigned. If an aspect is defined
based on fragile stereotypes that lack consistency, the aspect might introduce
unexpected faults because the aspect affects many model elements.

There are many situations that need domain-specific JPMs—for example,
domain-specific logging, resource management, and transaction.

2.3 MMAP

There are two approaches to extending UML: a lightweight approach using
stereotypes and a heavyweight approach that extends the UML metamodel by
using MOF (Meta Object Facility). While it is easy to use stereotypes, there are
limitations as mentioned above: the typing of tags is weak; and new associations
among UML metamodel elements cannot be declared. On the other hand, MOF
is very strong because all of the metamodel elements can be extended. MMAP
aims at a middleweight approach that restricts available extension by MOF.
Adopting this approach, domain-specific JPMs can be introduced at low cost.

An Extensible Aspect-Oriented Modeling Environment 21

Feature Classifier

Class AspectComponent

ComponentAspectAspectAspectFeature

AdvicePointcut

StructualFeature BehavioralFeature

Attribute Operation

UniqueId

isUserAssigned
 :Boolean

PointcutAndAdvice Element

OpenClass

Rename

RelationComposition

EnterpriseOperation

isTx:Boolean
isIdempotent
 :Boolean

DCEntity
Contract

DCController
Contract

ModelElement

Namespace GeneralizableElement

DCLogger

DCLoggerOperation

isPersistenct:Boolean

extension point

example
of

extension
operations

Inheritance

Aspect Elements

Fig. 3. AspectM metamodel

Table 2. MMAP primitive predicates

Predicate Explanation
meta-class-of(mc, c) mc is a metaclass of c
member-of(m, c) m is a member of a class c
value-of(v, a) v is value of an attribute a
super-class-of(c1, c2) c1 is a superclass of c2
related-to(c1, c2) c1 is related to c2

Fig.3 shows a part of the AspectM metamodel defined as an extension of the
UML metamodel. The aspect (AspectComponent) class inherits Classifier.
Pointcuts and advice are represented by Pointcut and Advice, respectively.
Concrete advice corresponding to the seven JPMs is defined as a subclass of
Advice. The constraints among metamodel elements can be specified in OCL.

MMAP, a set of protocols exposed for a modeler to access the AspectM meta-
model, is comprised of extension points, extension operations, and primitive
predicates for navigating the AspectM metamodel. An extension point is an As-
pectM metamodel element that can be extended by inheritance. The extension
points includes Class, Attribute, Operation, Association (Association is
omitted in Fig.3), and a set of JPM metaclasses. In Fig.3, a class represented by
a gray box is an extension point. An extension operation is a modeling activity
allowed at the exposed extension points. There are four operations including de-
fine subclasses, add attributes to subclasses, create associations among subclasses,
and add/delete/replace constraints. Table 2 is a list of primitive predicates for

22 N. Ubayashi et al.

navigating the metamodel. Using these predicates, pointcut designators can be
defined as below. The defined pointcut designator represents all elements that
satisfy the right-hand side predicates.

define pointcut cname(c):
meta-class-of(‘Class’, c) && member-of(‘Name’, ‘Class’)

&& value-of(c, ‘Name’)

The idea of MMAP originates in the mechanisms of extensible programming
languages, such as metaobject protocol (MOP) [8] and computational reflection
in which interactions between the base-level (the level to execute applications)
and the meta-level (the level to control meta information) are described in the
same program. There are two kinds of reflection: behavioral reflection and struc-
tural reflection. MMAP corresponds to the latter. That is, MMAP focuses on
the reflection whose target is a model structure.

2.4 Challenges in MMAP Implementation

We have to deal with the following challenges in order to implement MMAP
effectively: 1) a model editor needs to be able to edit new model elements intro-
duced by extending the metamodel and constrained by OCL; 2) a model weaver
needs to be able to capture new model elements as join points and deal with new
pointcuts defined by MMAP; and 3) the correctness of model weaving should be
verified because it is difficult to check the consistency and the aspect interference
due to the metamodel extension.

To solve these issues, we introduce the notions of edit-time structural reflection
and verifying extensible model weaving. The contribution of this paper is to
provide a method for constructing an AOM environment in terms of extensibility.

3 Reflective Model Editor

3.1 Concept

The reflective model editor allows a modeler to not only edit application models
but also extend the metamodel. Fig. 4 is a screen shot that edits the invoice
processing system (left side) in Fig. 2 and the AspectM metamodel (right side).

The concept of the edit-time structural reflection consists of two parts: the
base editor and the metamodel editor. The former is the editor for base-level
modeling, and the latter is the editor for modifying the AspectM metamodel
and defining pointcut designators using MMAP primitive predicates. The meta-
model editor exposes extension points. Only extension points are displayed on
the editor screen as shown in Fig.4. Other metamodel elements are not visible to
a modeler, and not allowed to be modified. At an extension point, an extension
operation such as define subclasses can be executed. This extension operation
corresponds to reification in computational reflection. The result of extension
operations enhances the functionality of the base editor. That is, new kinds of
model elements can be used in the base editor. This corresponds to the reflect

An Extensible Aspect-Oriented Modeling Environment 23

Fig. 4. Reflective model editor

concept in computational reflection. In reflective programming, a programmer
can introduce new language features using MOP. In our approach, a modeler
can introduce new model elements using MMAP.

3.2 Metamodel Extension Procedure

Using the example of the invoice processing system, we illustrate a procedure for
extending the AspectM metamodel. As mentioned in section 2.2, the Logging
aspect in Fig. 4 (left side) adds a log operation to the DCEntityContracts
components whose UniqueId is not assigned by users. Although the bodies of
the logClasses pointcut and the addLog advice whose type is OC<<DCLogger>>
are invisible in Fig. 4, these bodies are defined in the same way as Fig.2.

The following is the outline of extension steps: 1) execute extension opera-
tions; 2) assign a graphic notation to a new model element; 3) check the consis-
tency between the previous metamodel and the new metamodel; 4) regenerate
the AspectM metamodel; and 5) restart the base editor. In step 1, extension
operations are executed at exposed extension points in order to introduce new
domain-specific model elements. The constraints among new model elements can
be specified using OCL. The model elements that violate the OCL descriptions
can be detected by the editor. Pointcut designators are also defined as below.

24 N. Ubayashi et al.

define pointcut
DCEntityContract_UniqueId_isUserAssigned(c):
meta-class-of(‘DCEntityContract’, c) && member-of(a, c) &&
meta-class-of(‘UniqueId’, a) && member-of(‘isUserAssigned’, ‘UniqueId’) &&
value-of(‘true’, ‘isUserAssigned’)

This pointcut selects all classes that match the following conditions: 1) the meta-
class is DCEntityContract; 2) the value of the isUserAssgned is true. In case of
Fig. 2, the negation of this pointcut designator selects the two classes Customer
and Invoice. After steps 2 – 5, the new model element can be used in the base
editor. In the reflective model editor, an extension model is separated from the
original AspectM metamodel. Extension models can be accumulated as compo-
nents for domain-specific modeling.

3.3 Implementation

The reflective model editor, a plug-in module for Eclipse, is developed using
the Eclipse Modeling Framework (EMF) [3] and Graphical Modeling Frame-
work (GMF) [5]. The former is a tool that generates a model editor from a
metamodel, and the latter provides a generative component and runtime in-
frastructure for developing a graphical editor based on EMF. EMF consists of
core EMF, EMF.Edit, and EMF.Codegen: the core EMF provides a meta model
(Ecore) for describing models and runtime support; EMF.Edit provides reusable
classes for building editors; and EMF.Codegen generate code needed to build a
complete editor for an EMF model. Since an editor generated from EMF does
not provide graphical facilities, GMF is used for this purpose.

The reflective mechanism is implemented as follows: 1) the original AspectM
metamodel is defined as an EMF model, and the original base editor is generated
using EMF.Codegen; 2) the metamodel extension specified by a modeler is saved
as an EMF model, and the editor code for the extension is generated using
EMF.Codegen; and 3) a new plug-in is generated from the code for the base
editor and the extension, and replaced with the original plug-in.

4 Verifying Model Weaver

In this section, we show a method for constructing an extensible model weaver
with a set of verifiers.

4.1 Model Weaving

The model weaver, which compounds base models, is implemented using DOM
(Document Object Model) and Prolog. After the weaving, a model is translated
into Java.

First, the weaver transforms the base and meta models into a set of Pro-
log facts. For example, the Invoice class and related metamodel elements are
represented as follows.

An Extensible Aspect-Oriented Modeling Environment 25

-- from Invoice class
meta-class-of(’DCEntityContract’, ’Invoice’), member-of(’number’, ’Invoice’),
meta-class-of(’UniqueId’, ’number’), value-of(’true’, ’isUserAssigned’).

-- from AspectM metamodel
member-of(’isUserAssigned’, ’UniqueId’).

Second, the model compiler converts a pointcut into a Prolog query, and checks
whether the query satisfies the facts above. For example, the negation of the
DCEntityContract UniqueId isUserAssigned pointcut selects Customer and
Invoice as join points. The model weaver executes advice at these join points.

In the current MMAP, the Advice class is not exposed as an extension point
because this extension needs a new weaver module that can handle new advice.
Adopting our approach, the model weaver need not be modified even if the
metamodel is modified by the reflective model editor. As shown here, the model
weaver can deal with domain-specific join points and pointcuts introduced by
using MMAP. That is, our model weaver is extensible.

4.2 Model Verification

In the model verification, we focus on the followings: 1) every model should
conform to an extended metamodel and be well-formed; and 2) the result of
weaving should reflect the intention of a modeler. The model verifier consists of
a metamodel checker, a model structure checker, and an assertion checker.

Metamodel checker. There are two problems concerning metamodel exten-
sion. First, a base model might not conform to the modified metamodel even
if the base model conforms to the previous metamodel. A base model that in-
cludes a class instantiated by a metaclass introduced by a metamodel (version
1) does not conform to a new metamodel (version 2) if the metaclass is deleted
in the version 2. We should take into account not only base model evolution but
also metamodel evolution. This issue is essential in continuous modeling-level
reflection. Second, a woven model might not conform to the metamodel even if
each base model before the weaving conforms to the metamodel. Since a new
kind of model transformation can be introduced by adding user-defined aspects,
a model transformed by these aspects might not conform to the metamodel if
the aspects are not adequate.

Model structure checker. A woven model might not be well-formed due to the
interference among aspects even if the model conforms to the metamodel. The
model might include name conflicts, multiple inheritance, and cyclic inheritance.

Assertion checker. Although the mechanism of user definable pointcuts is
effective, it is not easy for a modeler to check whether an introduced pointcut
captures join points correctly. Although the precedence can be specified in As-
pectM, the intended results might not be obtained when the modeler makes a
mistake. The mixture of illegal pointcuts and aspect precedence might cause
unexpected weaving. The assertion checker verifies the intention of a modeler

26 N. Ubayashi et al.

to deal with these problems. The intention of the modeler can be specified as
assertions described in MMAP primitive predicates.

The verification procedure is as follows: 1) translates base and meta models
into Prolog facts; 2) generates Prolog queries from assertions; and 3) checks
the satisfiability of the Prolog queries. Since an AspectM model is stored as an
XML document, step 1 can be implemented as a translator from XML to Prolog.
The following is an example of an XML model and generated Prolog facts. This
model represents an operation TransOp whose type is TransactionOperation,
a subclass of the Operation metaclass.

-- A model represented in XML

<ownedElement name="TransOp"
xsi:type="asm:TransactionOperation" />

-- Generated Prolog facts

modelElement(
[property(‘tagName’, ‘ownedElement’), property(‘name’, ‘TransOp’),
property(‘xsi:type’, ‘asm:TransactionOperation’)])

When a modeler wants to check the effect of an aspect for adding TransOp to
the C class, he or she has only to specify the assertion operation-of(‘TransOp’,‘C’).

5 Case Study and Evaluation

In this section, we show a case study using the AspectM support tool and discuss
the effectiveness of the extension mechanism provided by MMAP. As a case
study, we show a UML-based domain-specific language (DSL) for describing the
external contexts of embedded systems.

5.1 DSL Construction

Currently, development of embedded systems is mainly conducted from the view-
point of system functionalities: how hardware and software components are con-
figured to construct a system—contexts are not considered explicitly in most
cases. As a result, unexpected behavior might emerge in a system if a developer
does not recognize any possible external contexts. It is important to analyze
external contexts in order to detect the unfavorable behavior systematically at
the early stage of the development.

To deal with these problems, we are developing a context-dependent require-
ments analysis method called CAMEmb (Context Analysis Method for Embed-
ded systems) in which a context model is constructed from system requirements
by using a DSL based on UML Profile for Context Analysis proposed by us.

Fig.5 illustrates the result of the context analysis for a LEGO line trace car
and its external contexts. The car runs tracing a line by observing a line color.

Table 3 shows a list of stereotypes introduced by our profile that can describe
system elements, context elements, and associations between them: three kinds
of stereotypes � Context �, � Sensor �, and � Actuator � are defined
as an extension of the UML class; and five kinds of stereotypes � Observe �,

An Extensible Aspect-Oriented Modeling Environment 27

Fig. 5. Model editor for CAMEmb

Table 3. UML Profile for Context Analysis

Model element Extension point Definition
� Context � Class Context
� Sensor � Class Sensor
� Actuator � Class Actuator
� Observe � Association Sensor observes a context
� Control � Association Actuator controls a context
� Transfer � Association Data is transformed into a different form because a

sensor cannot observe the original data directly
� Noise � Association Noise from other contexts
� Affect � Association Affected by other contexts

� Control �, � Transfer �, � Noise �, and � Affect � are defined as
an extension of the UML association. These new model elements are introduced
by using MMAP as shown in the top of Fig.5. As shown in Fig.5, the line trace
car must observe the light reflected from the ground because the car cannot
directly observe the ground line. This is represented by � Transfer �. Unfa-
vorable behavior emerges when strong environment light is thrown to a line—the
car cannot observe a line color correctly. The EnvironmentLight context and
� Affect � represent this unfavorable phenomenon. In AspectM, constraints
among metamodel elements are specified in OCLs as below. This OCL indicates
that � Actuator � should have � Control �, and can be verified by our
extended model editor.

context � Actuator �
self.ownedAssociation− > select(oclIsTypeOf(Control))

28 N. Ubayashi et al.

Fig. 6. Generated software design model

5.2 Model Weaver Construction

A model weaver supporting CAMEmb transforms context analysis models into
a software design model that takes into account the contexts as shown in Fig.6.
The Driver and Context Recognition layers are automatically generated by the
weaver. Although the Controller layer is created by hand currently, this can be
transformed from a system analysis model. A set of contexts in the context anal-
ysis models are transformed into internal state classes recognized by a software
controller. � Sensor � and � Actuator � are transformed into driver classes
that operate hardware components. The software controller interacts with ex-
pected contexts by referring and changing the values of the internal state classes
that communicate with driver classes.

A model weaver specific to CAMEmb can be constructed by defining a set of
aspects. For example, the pointcut that captures sensors/actuators (LightSensor,
DriveMotor, and SteerMotor) as join points is defined as follows: meta-class-

of(‘Actuator’,c) || meta-class-of(‘Sensor’,c).
Using model verifiers, we can check the followings: 1) the context analysis

model conforms to the metamodel extended for supporting CAMEmb; and 2)
the generated software design model is well-formed. The intention of a modeler
can be also checked. For example, if the modeler wants to check whether the
software controller can access to driver classes, he or she only has to specify an
assertion such as “related-to(‘ControlSW’,d) && meta-class-of(‘Driver’,d)”.

An Extensible Aspect-Oriented Modeling Environment 29

Table 4. Tasks for constructing DSL tool

Task Number
1.Extend the metamodel 8
2.Define meta-level OCLs 8
3.Define aspects commonly reused in CAMEmb 3
4.Define aspects specific to a line trace car 11
5.Reuse LEGO OS components such as lejos.nxt.LightSensor 4

5.3 Evaluation

Table 4 shows the number of tasks for defining DSL and constructing the
CAMEmb weaver. Three aspects are not specific to the line trace car devel-
opment. Although other eleven aspects are specific to the line trace car, they
can be reused repeatedly if software product line (SPL) approach is adopted. In
SPL, a product is constructed by assembling core assets, components reused in
a family of products (line trace car family in this case).

The code size of the line tracing function was 223 LOC (lines of code), and 174
LOC was automatically generated from the context analysis model by using the
CAMEmb model weaver. The percentage of automated generated code was 78 %.
Since the classes in the context recognition layer are value object classes, these
classes only need setters, getters, and calls to other connected context classes.
It is easy to generate these programs. Since the driver classes only call the
LEGO OS components, it is also easy to generate code. However, as mentioned
in section 5.2, only the software controller program was coded by hand. This can
be generated from system analysis model if our weaver supports state machine
diagrams. We plan to develop a model weaver for state machine diagrams.

The CAMEmb tool for supporting MDA whose platform was LEGO OS could
be constructed by only using MMAP. No extra programming was needed. We
did not have to modify the metaclasses that were not exposed by MMAP. From
our experience, MMAP was sufficient to extend the AspectM metamodel. We
believe that the MOP approach in modeling-level is more effective than the full
metamodel extension approaches in terms of the cost and usability.

6 Related Work

There has been research that has attempted to apply aspect orientation to the
modeling phase. Stein, D. et al. proposed a method for describing aspects as
UML diagrams [14]. In this work, an aspect at the modeling-level was translated
into the corresponding aspect at the programming language level, for example
as an aspect in AspectJ. An aspect in AspectM is not mapped to an element of
a specific programming language, but operates on UML diagrams. In Motorola
WEAVR [1], weaving for UML statecharts including action semantics is possible.

Domain-specific aspect-oriented extensions are important. Early AOP research
aimed at developing programming methodologies in which a system was com-
posed of a set of aspects described by domain-specific AOP languages [9]. Domain-
specific extensions are necessary not only at the programming stage but also at

30 N. Ubayashi et al.

the modeling stage. Gray, J. proposed a technique of aspect-oriented domain
modeling (AODM) [6] that adopted the Generic Modeling Environment (GME),
a meta-configurable modeling framework. The GME provides meta-modeling ca-
pabilities that can be adapted from meta-level specifications for describing do-
mains. The GME approach is heavyweight because meta-level specifications can
be described fully. On the other hand, our approach is middleweight. Although
all of the AspectM metamodel cannot be extended, domain-specific model ele-
ments can be introduced at relatively low cost.

MMAP is similar to an edit-time metaobject protocol (ETMOP) [2] that
runs as part of a code editor and enables metadata annotations to customize
the rendering and editing of code. An ETMOP programmer can define special
metaclasses that customize a display and editing. Although ETMOP’s research
goal that is to provide mechanisms for making programs more visually expressive
is similar to our goal, we focus on the provision of middleweight mechanisms for
domain-specific expressiveness. We think that the concept of MMAP can be
applied to not only class diagrams but also other UML diagrams such as use
cases and state machine diagrams because these diagrams have corresponding
metamodels and they can be extended.

Gybels, K. and Brichau, J. proposed pattern-based pointcut constructs using
logic programming facilities [7]. Ostermann, K. et al. also proposed a pointcut
mechanism based on logic queries written in Prolog [12]. The mechanism is
implemented for a typed AOP language, called ALPHA. Although our pointcut
definition method using Prolog is similar to their approaches, the target of our
approach is not programming but modeling.

In UML 2.x, profiling mechanisms that have been improved from UML 1.x
include part of our ideas because new kinds of stereotypes can be introduced
by extending UML metamodel and OCL can be specified. However, most of the
current UML 2.x tools still provide only the stereotype definition support and do
not take into account the extensibility from the viewpoint of model compilation.
The main contribution of our approach is to provide an extensive mechanism
for AOM. This includes extension of model elements, join points, pointcuts, and
verification. We also provide a concrete implementation strategy for realizing an
integrated extensible AOM environment. Of course, our tool can be used as a
substitute of the UML profiling facility. If we take a stand on UML profiling, we
can consider our approach as a promising mechanism for integrating AOM with
UML profiles.

7 Conclusion

In this paper, we demonstrated the effectiveness of an extensible AOM envi-
ronment consisting of a model editor and a verifying model weaver. In order
to support MMAP, we introduced the notions of edit-time structural reflection,
extensible model weaving, and verification mechanisms. In our current implemen-
tation, we do not use OCL but Prolog because it is relatively easy to implement
the reasoning and verification mechanisms in our prototype tool. Currently, we
are developing a new version of AspectM in which OCL is adopted. Moreover,

An Extensible Aspect-Oriented Modeling Environment 31

we plan to develop a compilation method for translating aspects into a standard
model transformation language called QVT (Queries, Views, and Transforma-
tions) [13] in order to enhance the power of model transformation. Although
our current tool needs refining, it is an important step towards extensible AOM
environments integrated with UML.

References

1. Cottenier, T., Berg, A., Elrad, T.: The Motorola WEAVR: Model Weaving in a
Large Industrial Context. In: International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2007), Industry Track (2007)

2. Eisenberg, A.D., Kiczales, G.: Expressive Programs through Presentation Exten-
sion. In: Proceedings of International Conference on Aspect-Oriented Software De-
velopment (AOSD 2007), pp. 73–84 (2007)

3. EMF, http://www.eclipse.org/emf/
4. Frankel, D.S.: Model Driven Architecture. John Wiley & Sons, Inc., Chichester

(2003)
5. GMF, http://www.eclipse.org/gmf/
6. Gray, J., Bapty, T., Neema, S., Schmidt, D., Gokhale, A., Natarajan, B.: An

Approach for Supporting Aspect-Oriented Domain Modeling. In: Pfenning, F.,
Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 151–168. Springer, Hei-
delberg (2003)

7. Gybels, K., Brichau, J.: Arranging Language Features for More Robust Pattern-
based Crosscuts. In: Proceedings of the 2nd International Conference on Aspect-
Oriented Software Development (AOSD 2003), pp. 60–69 (2003)

8. Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Ir-
win, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

10. Kiczales, G., Hilsdale, E., Hugunin, J., et al.: An Overview of AspectJ. In: Knudsen,
J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

11. Liskov, B.H., Wing, J.M.: A Behavioral Notion of Subtyping. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16(6), 1811–1841 (1994)

12. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Mod-
ularity. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer,
Heidelberg (2005)

13. QVT, http://qvtp.org/
14. Stein, D., Hanenberg, S., Unland, R.: A UML-based aspect-oriented design nota-

tion for AspectJ. In: Proceedings of International Conference on Aspect-Oriented
Software Development (AOSD 2002), pp. 106–112 (2002)

15. Ubayashi, N., Tamai, T., Sano, S., Maeno, Y., Murakami, S.: Metamodel Ac-
cess Protocols for Extensible Aspect-Oriented Modeling. In: Proceedings of the
18th International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE 2006), pp. 4–10 (2006)

http://www.eclipse.org/emf/
http://www.eclipse.org/gmf/
http://qvtp.org/

Incremental Detection of Model Inconsistencies
Based on Model Operations

Xavier Blanc1, Alix Mougenot2,�, Isabelle Mounier2, and Tom Mens3,��

1 INRIA Lille-Nord Europe, LIFL CNRS UMR 8022,
Université des Sciences et Technologies de Lille, France

2 MoVe - LIP6, Université Pierre et Marie Curie, France
3 Service de Génie Logiciel, Université de Mons-Hainaut, Belgium

Abstract. Due to the increasing use of models, and the inevitable model
inconsistencies that arise during model-based software development and
evolution, model inconsistency detection is gaining more and more at-
tention. Inconsistency checkers typically analyze entire models to detect
undesired structures as defined by inconsistency rules. The larger the
models become, the more time the inconsistency detection process takes.
Taking into account model evolution, one can significantly reduce this
time by providing an incremental checker. In this article we propose an
incremental inconsistency checker based on the idea of representing mod-
els as sequences of primitive construction operations. The impact of these
operations on the inconsistency rules can be computed to analyze and
reduce the number of rules that need to be re-checked during a model
increment.

1 Introduction

Model driven development uses more and more complementary models. Indeed,
large-scale industrial software systems are currently developed by hundreds of
developers working on hundreds of models of different types (e.g. SysML, UML,
Petri nets, architecture, work flow, business process) [1]. In such a context, model
inconsistency detection is gaining a lot of attention as the overlap between all
these models (that are often maintained by different persons) is a frequent source
of inconsistencies.

Detection of inconsistencies was first introduced by Finkelstein et al. [2]. They
defined the Viewpoints Framework, where each developer owns a viewpoint com-
posed only of models that are relevant to him. The framework offers facilities
to ensure consistency between viewpoints. The main insight is that model con-
sistency cannot and should not be preserved at all times between all viewpoints
[3]. The Viewpoints Framework suggests to allow for temporary model inconsis-
tencies rather than to enforce model consistency at all times.
� This work was partly funded by the french DGA.

�� This work was partly funded by Action de Recherche Concertée AUWB-
08/12-UMH19, Ministère de la Communauté française, Direction générale de
l’Enseignement non obligatoire et de la Recherche scientifique, Belgique.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 32–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Incremental Detection of Model Inconsistencies Based on Model Operations 33

In all approaches that deal with detection of inconsistencies [4,5,6,7,8,9], the
detection invariably consists in analysing models to detect inconsistent config-
urations defined by inconsistency rules. Therefore, the larger the models, the
longer the detection process takes. Moreover, the large number of inconsistency
rules and their complexity are two other factors that make the detection process
highly time consuming. The impact of model changes should also be considered
by consistency checkers. Indeed, developers keep modifying and improving their
models, and some of these modifications may give rise to new model inconsis-
tencies. Due to the time it takes, re-checking the entire model after each such
model increment is unfeasible in practice.

This situation explains why there is an increasing focus on scalability issues
[6,9,10]. The challenge is to check inconsistencies on large models continuously
during their frequent evolution. As the detection of inconsistencies implies to find
structures within a model, efforts mainly target the process of the incremental
detection in its whole (what rules to check and when) and aim at not performing
a complete check of the model each time it evolves.

In this article, we propose to address this challenge by providing an incremen-
tal inconsistency checker that only adds a small fixed amount of memory to run
on top of our classical inconsistency checker. Given a model that has already
been checked for inconsistency, and given a model increment (i.e., a sequence
of modifications to this model), our goal is to identify those inconsistency rules
that need to be re-checked. Section 2 explains how to detect inconsistencies and
gives a formal definition of an incremental checker. Our proposal is based on the
operation-based model construction approach presented in [9], which is briefly
revisited in section 3. Section 4 presents our incremental checker, and section 5
provides a case study to validate our approach. Section 6 presents related work
in this domain and we conclude in Section 7.

2 Detection of Inconsistencies

2.1 Inconsistency Rules

Detection of inconsistencies consists in analyzing models to identify unwanted
configurations defined by the inconsistency rules. If such configurations are found
in the model, then the model is said to be inconsistent. Inconsistency rules can
be compared to the negation of well-formedness rules of [11], structural rules of
[12] and syntactic rules of [13].

One can see an inconsistency check as a function that receives as input a
model and a set of inconsistency detection rules and that returns the evaluation
result of each rule. If a rule evaluates to true (i.e., the model is inconsistent),
then the model elements causing the inconsistency are also returned by the check
function.

In this paper we use two inconsistency examples that are inspired by the class
diagram part of the UML 2.1 specification [14]. Figure 1 presents a simplified
fragment of the UML 2.1 meta-model for classes [14]. It will be referred to as
CMM for Class Meta Model in the remainder of this article.

34 X. Blanc et al.

Fig. 1. CMM: A simplified fragment of the UML 2.1 meta-model

The two inconsistency rules we use are specified in the UML 2.1 specification:
OwnedElement defines that an element may not directly or indirectly own itself;
OwnedParameter defines that an operation can have at most one parameter
whose direction is ‘return’.

Figure 2 shows a model instance of the CMM meta-model. This model is used
as a running example to illustrate our approach. It is composed of a package
(named ‘Azureus’) that owns two classes (named ‘Client’ and ‘Server’). The class
‘Server’ owns an operation (named ‘send’) that does not own any parameter. The
model is consistent w.r.t. our two inconsistency rules.

2.2 Incremental Checking

During any model-driven software project, models are continuously modified
by developers. As each modification can impact many model elements, checks
should be performed as often as possible during the development life cycle in
order to have a good control over the model consistency. However, as the time
needed to perform a check can be very high, the challenge is to control efficiently
the consistency of the model without burdening or delaying the developer in his
other modeling activities.

One way of dealing with this problem is to provide an incremental checker.
Incremental checks take into account the modifications made to a model. Rather
than re-checking the entire model, one can analyze the impact of a set of modifi-
cations (the model increment δ) on the consistency of a model, and only re-check
those inconsistency rules whose value may potentially have changed. In this way,
the number of rules to be checked after modification may be reduced significantly,
leading to an increased performance of the algorithm when compared to checking
the inconsistency of the entire model.

Ideally, for an incremental check to be efficient, two considerations should be
made. First, an inconsistency rule should be incrementally re-checked only if the
modifications contained in the model increment change its previous evaluation.

Incremental Detection of Model Inconsistencies Based on Model Operations 35

Second, after a modification, only the part of the model that is concerned by the
modifications needs to be analyzed in order to perform the new evaluation.

Following those two considerations while building an incremental checker, the
incremental check should (1) evaluate only a subset of inconsistency rules and
(2) analyze only a subset of model elements. Currently our approach only targets
the first point and aims at filtering at a low level of granularity those rules that
need to be re-checked after some model increment. It should be noted that our
approach only needs a small fixed memory size to run on top of our classical
inconsistency checker.

3 Detection of Inconsistencies Based on Model
Construction

3.1 Operation-Based Model Construction

In [9], we propose to represent models as sequences of elementary operations
needed to construct each model element. The four elementary operations we
defined are inspired by the MOF reflective API [15]:

1. create(me,mc) creates a model element me instance of the meta-class mc.
A model element can be created if and only if it does not already exist in
the model;

2. delete(me) deletes a model element me. A model element can be deleted if
and only if it exists in the model and it is not referenced by any other model
element;

3. setProperty(me,p,Values) assigns a set of Values to the property p of the
model element me;

4. setReference(me,r,References) assigns a set References to the reference r
of the model element me.

Figure 3 is the construction sequence σc used to produce the model of
Figure 2. In Figure 3, line 1 corresponds to the creation of the package; line

Fig. 2. Azureus UML model

1 create(p1,Package)
2 setProperty(p1,name, {‘Azureus’})
3 create(c1,Class)
4 setProperty(c1,name, {‘Client’}))
5 create(c2,Class)
6 setProperty(c2,name,{‘Server’})
7 setReference(p1,ownedMember,{c1,c2})
8 setReference(p1,ownedElement,{c1,c2})
9 create(o1,Operation)
10 setProperty(o1,name, {‘send’})
11 setReference(c2, ownedProperty, {o1})
12 setReference(c2, ownedElement, {o1})

Fig. 3. Model construction operation sequence σc

36 X. Blanc et al.

2 corresponds to the assignment of the name of the package; lines 3 and 5 corre-
spond to the creation of the two classes; lines 4 and 6 to the assignment of the
name of the two classes; line 7 links the two classes to the the package’s owned
members; line 8 does the same but with the owned element list of the package
(the parameter list subsets the element list); lines 9 and 10 correspond to the
creation of the operation and its name affectation; line 11 links the operation to
the class’ properties; line 12 does the same but with the element list of the class
(the property list subsets the element list). This arbitrary sequence is used in
the next sections to illustrate our incremental inconsistency checker.

3.2 Inconsistency Detection Rules

Our formalism allows to define any inconsistency rule as a logic formula over
the sequence of model construction operations. As syntactic shortcut, we define
the ‘last’ prefix to denote operations that are not followed by other operations
canceling their effects. For instance, a lastCreate(me, Class) operation is de-
fined as a create(me, Class) operation that is not followed by a delete(me)
operation; and a lastSetReference(me, ownedProperty, val) operation is
defined as a setReference(me, ownedProperty, val) operation for which the
value of the ownedProperty reference of me in the model corresponds to val. A
complete description of the semantics of the ‘last’ operations is provided in [9].

For the OwnedProperty inconsistency rule, the operations that can make a
model inconsistent are the ones that modify a reference to the ownedParameter
list of an operation and the ones that modify the direction of a parameter. More
formally, those operations are setReference(me,ownedParameter,θ)where θ �=
∅ and setProperty(me,direction,val).

This inconsistency rule can be formalised as follows:

OwnedParameter(σ) = {me | ∃sr, sp1, sp2 ∈ σ·
sr = setReference(me, ownedParameter, θ)∧
sp1 = setProperty(p1, direction, ‘return′)∧
sp2 = setProperty(p2, direction, ‘return′)∧
p1, p2 ∈ θ ∧ p1 �= p2}

Sequence σc of Figure 3 produces a model that is consistent with rule
OwnedParameter, as it contains only one operation (line 9) that has no
parameter.

For the OwnedElement inconsistency rule we presented in section 2.1, the only
operation that can make a model inconsistent is the one that adds a reference
to the ownedElement list of a model element. More formally, this operation
is setReference(me, ownedElement, θ) where me is an element and θ is not
empty. Such an operation produces an inconsistent UML model if and only if
the set θ is such that a cycle appears among the ownedElement references. The
way to repair such an inconsistent model is to break the cycle by removing a
relevant reference. One can easily check that sequence σc produces a model that
is consistent with rule OwnedElement.

Incremental Detection of Model Inconsistencies Based on Model Operations 37

4 Incremental Checking Based on Model Operations

Our incremental inconsistency checker reduces the set of inconsistency rules that
need to be re-checked. Our approach is based on analyzing the impact that op-
erations of the model increment may have on the evaluation of the inconsistency
rules. We define a partition of equivalence classes for construction operations
and use this partition to classify the inconsistency rules. Section 4.1 presents
the equivalence classes and section 4.2 explains how those classes can be used
to classify the inconsistency rules. Section 4.3 then presents an example of this
mechanism and highlights its benefits for building an incremental checker.

4.1 Partitioning of Operations

To reduce the set of inconsistency rules to re-check we rely on the fact that each
rule is concerned by a limited set of possible construction operations. A re-check
will only be necessary if at least one of these operations has been used in the
model increment.

For instance, the OwnedElement inconsistency rule is impacted by setRe-
ference operations that modify the values of the ownedElement set of an
element. As a consequence, this rule should only be re-checked if the model
increment changes the values of the ownedElement reference set of an element.
Any other operation in the model increment will not affect the evaluation result
of the inconsistency rule.

In order to analyze inconsistency rules and to identify the operations that
impact them, we propose a partitioning of construction operations. Given a
meta-model MM and the set OMM of all construction operations that can be
performed to build model instances of this meta-model, we propose the partition
Pimpact(OMM) of OMM . Two construction operations o1 and o2 belong to the
same equivalence class if and only if : (i) o1 and o2 both create model element
instances of the same meta-class; or (ii) o1 and o2 both change the values of the
same reference; or (iii) o1 and o2 both change the values of the same property;
or (iv) o1 and o2 both delete a model element.

This partition is finite since a meta-model holds a finite number of meta-
classes and each of them holds a finite number of properties and references.
The partition can be automatically computed for any meta-model based on the
following guidelines:

– for each non abstract meta-class M there is an equivalence class CM that
contains all the creation operations of instances of this meta-class,

– for each property p there is an equivalence class SPp that contains all the
operations setting the property value.

– for each reference r there is an equivalence class SRr that contains all the
operations setting the reference value.

– a final equivalence class D contains all the delete actions regardless of the
metaclass of the deleted model element.

The first column of figure 4 represents the partition Pimpact(OCMM) of the CMM
metamodel.

38 X. Blanc et al.

4.2 Impact Matrix

The partition Pimpact is used to identify the operations that may impact an
inconsistency rule. From a conceptual point of view, an inconsistency rule defines
a selection of specific operations within a sequence of construction operations.
This selection can be abstracted by a set of equivalence classes of the partition.
We name this set the corresponding equivalence classes of a rule.

For example, for inconsistency rule OwnedElement, the corresponding set of
equivalence classes is the singleton {SRownedElement}. For inconsistency rule
OwnedParameter, {SRownedParameter, SPdirection} is the corresponding equiva-
lence set.

We can visualize the relation between equivalence classes and inconsistency
rules by a matrix where the equivalence classes represent the rows and the in-
consistency rules represent the columns. The matrix contains boolean values
indicating the presence of a potential impact. The impact matrix for our CMM
metamodel and the two inconsistency rules is shown in Figure 4.

This impact matrix can be used as a filter on the inconsistency rules that need
to be re-checked after each model increment. For each operation contained in the
model increment, the corresponding equivalence class is selected and the matrix
is consulted to determine which rules need be re-checked. The impact matrix
ensures that all rules whose evaluation may have changed will be re-checked.
It should be noted that our approach only needs to store the impact matrix to
run. The size of this impact matrix depends only on the number of rules and
equivalence classes.

It should also be noted that our approach is a conservative approximation.
It is possible that the impact matrix identifies rules to re-check even if their
evaluation is not changed by the increment. Nonetheless, our approach effectively
reduces the set of rules needed to be re-checked, thereby avoiding a waste of
time on performing useless computations. We will present performance results
in section 5.

ownedElement ownedParameter
CPackage false false
CClass false false
COperation false false
CParameter false false
SPName false false
SPDirection false true

SRownedElement true false
SRownedMember false false
SRownedProperty false false
SRownedParameter false true

D false false

Fig. 4. Impact matrix for the CMM metamodel Fig. 5. Impact matrix for the
UML metamodel

Incremental Detection of Model Inconsistencies Based on Model Operations 39

4.3 Example

For the sequence σc of Figure 3 and the inconsistency rules of section 2.1,
the model is consistent. Let δ be the model increment of Figure 6 that cre-
ates two parameters and associates them with the ‘send’ operation through the
ownedParameter reference. The first and second construction operations of δ
belong to equivalence class CParameter . The third operation belongs to equiva-
lence class SRownedParameter. The fourth operation belongs to equivalence class
SRownedElement. The impact matrix informs us that the rules ownedElement
and ownedParameter have to be re-checked. Performing the re-check informs us
that the model remains consistent after having applied the increment.

1 create(pa1,Parameter)
2 create(pa2,Parameter)
3 setReference(o1,ownedParameter,{pa1,pa2})
4 setReference(o1,ownedElement,{pa1,pa2})

Fig. 6. a first model increment δ on σc

1 setProperty(pa1,direction,{’return’})
2 setProperty(pa2,direction,{’return’})

Fig. 7. a second model increment δ′

on σc.δ

Now, consider the second increment δ′ on σc.δ in Figure 7 that changes the
direction of the parameters. Both construction operations of δ′ belong to equiva-
lence class SPDirection. The impact matrix informs us that only ownedParameter
rule needs to be re-checked. Computing the re-check only for this rule informs
us that the model is inconsistent only for ownedParameter.

Our approach is centered around an impact matrix that expresses relation-
ships between inconsistency detection rules and their equivalence classes. This
matrix may be generated automatically, but such a generation depends on the
language that is used to define the inconsistency rules. Indeed, the more expres-
sive the language used to express the rule is, the more complex the automatic
generation of the matrix will be. We will present in section 5 how we generated
the impact matrix of UML 2.1 in a semi-automated way.

5 Validation

5.1 Prototype Implementation

In [9], we presented a global model inconsistency checker that has been realized
using Prolog. Inconsistency rules were translated into Prolog queries and model
construction operations were translated into Prolog facts. The global inconsis-
tency checker has been integrated into the modeling environments Eclipse EMF
and Rational Software Architect. It has been written in Java and is coupled with
SWI-Prolog. From any given model, a model construction operation sequence is
generated and added to the fact base. The Prolog engine then executes all queries
representing inconsistency rules and returns the results to the user.

40 X. Blanc et al.

The Prolog query presented below corresponds to the inconsistency rule
OwnedParameter we introduced in Section 2.1 to identify operations that own
more than one ‘return’ parameter:

ownedParameter(X) :-
lastCreate(X,Operation),
lastSetReference(X,ownedParameter,L),
lastSetProperty(Y,direction,’return’),
lastSetProperty(Z,direction,’return’), Y\=Z,
member(Y,L), member(Z,L).

When evaluating this query, Prolog returns all X such that lastCreate(X,
Operation) is true in the sequence. For each identified operation X, Prolog will
evaluate whether there are any pairs (Y,Z) of distinct return parameters owned
by the operation. If the query returns a result for X, then the model is inconsis-
tent since there is at least one operation in the resulting model that owns two
return parameters.

The incremental checker we propose in this paper follows the architecture of
the global inconsistency checker. It is also based on Prolog, the inconsistency
rules are Prolog queries and the model construction operation sequences are
stored in a Prolog fact base. The incremental checker differs from the global
checker by relying on the impact matrix and by working with an extensible fact
base in which new facts can be added dynamically. The incremental checker
receives as input a sequence of construction operations that corresponds to a
model increment of a sequence that is already stored in the fact base. It parses
all operations of the increment. For each of them it uses the information stored
in the impact matrix to mark all inconsistency rules that require a re-check.
Once all operations of the model increment have been parsed, it is added to the
fact base. The user is then asked whether he wants to perform an incremental
re-check or whether he prefers to continue working with a possibly partially
inconsistent model.

5.2 Case Study

The UML impact matrix. We have validated our approach on the classes
package of the UML 2 meta-model. The UML 2 classes package is composed
of 55 meta-classes required to specify UML class diagrams. Those 55 meta-
classes define a partition into 177 equivalence classes (cf. Section 4.1). The classes
package defines 58 OCL constraints that we have considered as inconsistency
rules. We translated these OCL constraints into Prolog queries and then built
the impact matrix. The dimension of this matrix is 177 × 58.

In order to minimize errors when building the UML 2 matrix (which is quite
big), we partially automate its construction. For that, we implemented a ma-
trix builder that inputs inconsistency rules specified in Prolog and returns the
corresponding impact matrix. It functions roughly as follows: (1) by default,
all matrix values are set to false; (2) if the parsed inconsistency rule uses a
lastSetReference or lastSetProperty construction operation, in the column

Incremental Detection of Model Inconsistencies Based on Model Operations 41

corresponding to the rule in the matrix, the equivalence class of the operation
is set to true; (3) if the rule uses a lastCreate, in the column corresponding
to the rule in the matrix, the equivalence class of create operation as well as the
equivalence class D are set to true.

Figure 5 presents a screenshot of the UML 2 impact matrix where the 58
rules represent the columns and the 177 equivalence classes represent the rows.
For the sake of visibility, a black square represents true while a white one rep-
resents false. It should be noted that the rules and the equivalence classes are
ordered according to the meta-classes defining them. For instance, in the upper
left corner of the matrix appear the rules that are defined in the Association
meta-class and the equivalence classes of corresponding construction operations
(i.e., create(Association) and setReference(endType)). The last line corre-
sponds to the delete equivalence class; that’s why it is quite black. Moreover,
as inconsistency rules defined in a meta-class often use construction operations
corresponding to the meta-class, there is a kind of diagonal of true values in
the matrix. It should be noted that the block of 4 × 7 true values in the mid-
dle of the matrix corresponds to the rules defined in the MultiplicityElement
meta-class. This meta-class defines 7 inconsistency rules that specify the correct
values of lower and upper multiplicities. Therefore, the setProperty(lower)
and setProperty(upper) appear in all theses rules. Finally, one can observe
that the matrix is very sparse. As we will explain in the next subsection, many
inconsistency rules are impacted by only a few equivalence classes.

Analysis of the impact matrix. Figure 8 is derived from the impact matrix
and shows, for each rule, the number of equivalence classes that impact each
inconsistency rule. The rules are shown on the x-axis, and are ordered according
to the severity of their impact: one rule is impacted by 11 equivalence classes,
one by 7 equivalence classes, two rules are impacted by 6 equivalence classes,
74.1% of the rules are impacted by 3 to 5 equivalence classes, and 18.9% of the
inconsistency rules are impacted by 1 or 2 equivalence classes.

Fig. 8. Number of equivalence classes that
impact a rule

Fig. 9. Number of rules impacted by
each equivalence class

42 X. Blanc et al.

Figure 9 is also derived from the impact matrix and shows, for each equiva-
lence class, the number of rules that are impacted by it. 66.1% of the equivalence
classes do not affect model consistency, 22.0% of the classes impact 1 or 2 in-
consistency rules, 9.0% of the classes impact 3 to 6 rules, 2.2% impact 8 to 10
rules and only the delete operation impacts almost all inconsistency rules. The
case of the delete operation is particular. It really impacts nearly all UML OCL
constraints but can only be performed on model elements that are not referenced
by any other model element.

Analysis of the rule complexity. Next to this static analysis of the impact
matrix, we have performed a complexity analysis of the inconsistency rules. In-
deed, not all rules have the same complexity. In order to measure the complexity
of a rule, we used a benchmark of the time needed to check each rule for different
sizes of model chunks.

It appears that 13 rules out of 58 (22,4%) take much more time than the others
to be checked. For a model size around three hundred thousand model elements
(about 1.9 million operations), each of those 13 rules takes more than one second
to be checked; all others need only a few milliseconds. The ownedParameter
and the ownedElement rules we presented in the previous section belong to
those 13 time-consuming rules. A manual inspection of those 13 rules revealed
that 3 have a quadratic time complexity and the others have at most a linear
complexity. The ownedElement rule we presented in the previous section is one of
the three quadratic rules. The second one specifies that classifiers generalization
hierarchies must be directed and acyclical, and the third one specifies that all
members of a namespace should be distinguishable within it.

Scalability analysis. We stress tested our incremental checker on a real, large-
scale UML model. A huge UML class model was obtained by reverse engineering
the Azureus project, which possesses a messy architecture. The model construc-
tion sequence for this UML model contained about 1.9 million model construc-
tion operations.

We performed a static analysis of the construction operation sequence of the
Azureus class model. According to our impact matrix, each rule is impacted
on average by 42000 operations of the construction sequence. This means that,
statistically, adding a new operation will have a probability of about 3% to
require re-checking an inconsistency rule.

We also executed a runtime test of our incremental checker following the test
performed by Eyged [6]. This test consists of loading a complete model and
simulating all possible modifications that can be performed on all the model
elements. Next, for each modification, an incremental check is performed. We
have performed this runtime test on our Azureus model. As the Azureus model
is a huge model, there are 1809652 modifications that can be realized. Those
modifications have been automatically generated and for each of them an incre-
mental check has been performed. The same test has been repeated six times in
order to filter out possible noise. The result of this runtime test is that the worst
time is 50.52 seconds (almost 1 minute), the best time is less than 0.1 ms (the

Incremental Detection of Model Inconsistencies Based on Model Operations 43

Table 1. Timing results in milliseconds (averaged over 6 runs) for incrementally check-
ing the impact of modification operations applied to Azureus

model size number of operations worst result best result average result
part 1 380866 38204 ≈ 0 1722
part 2 761732 38884 ≈ 0 2677
part 3 1142598 41096 ≈ 0 3725
part 4 1523464 47715 ≈ 0 5168

full model 1904331 50521 ≈ 0 5984

time needed to look in the matrix that no rule needs to be re-checked) and the
average time is 6 seconds (cf. last column of Table 1).

In order to analyze the effect of model size on the performance of our consis-
tency checker, we have split up the Azureus model into five parts with a linearly
increasing size (the fifth part corresponding to the complete Azureus model) and
we have applied the same runtime test but with a set of modification operations
corresponding to the size of the part. Applying the runtime test to those sub-
models, it turns out that best time remains roughly the same whereas the worst
time has a curious growth. In fact, we did not observe (as we would have ex-
pected) a quadratic trend that would correspond to the time needed to check the
most time-consuming rules. The reason is that the inconsistencies are not uni-
formly distributed among parts. Our hypothesis is that the worst time depends
mainly on the ordering of the operations within the sequence. Finally, we have
observed that the average time increases linearly (cf. last column of Table 1).
This was confirmed by a linear regression model that had a very high “goodness
of fit”, since the coefficient of determination R2 = 0.994 was very close to 1.

Without anticipating our conclusion, those timing results seem to show that,
if the inconsistency rule set contains complex rules (such as ownedElement), once
the model size becomes important (in the order of millions operations), the time
needed to perform an incremental check cannot be instantaneous and continues
to increase as the model size increases.

6 Related Work

Egyed proposed a framework dedicated to instant inconsistency detection [6].
This framework monitors the model elements that need to be analyzed during
the check of an inconsistency rule. If an inconsistency is detected, all the rel-
evant model elements are inserted in a corresponding “rule scope” in order to
keep track of them (a rule scope defines a relation between one inconsistency de-
tection rule and the set of model elements that need to be analyzed to evaluate
this rule). After a set of modifications, the framework traces the rule scopes that
are impacted by the modifications and then automatically re-checks the corre-
sponding rules. This allows to reduce the set of rules to re-check and the set
of model elements to analyze. Egyed presents very efficient performance charts
for his approach but also makes the observation that such results are due to

44 X. Blanc et al.

the rules that have been considered. Indeed, all considered rules have only one
root model element and their check only needs a bounded set of model elements
linked either directly or indirectly to the root. With such rules, the size of the rule
scope scales and the time needed to perform the check is almost instantaneous,
independently of the model size. This is confirmed by our findings, but we would
like to stress that not all inconsistency rules are of this kind. If we would apply
Egyed’s approach to the OwnedElement rule on our sample model (cf. figure 2), 4
“rule scopes” will be built (one per model element). The size of those rule scopes
will depend on the model size (the rule scope for the Azureus package will own
all elements of the model). Now, if we consider that a modification changes the
name of the send operation then three rule scopes will be impacted (the ones
of the send operation, of the Server class and of the Azureus package). Then
the complex ownedElement rule will be checked three times and the check will
require some time. To conclude, the more complex the inconsistency rules and
the bigger the models, the less efficient Egyed’s approach (or any other approach,
for that matter), becomes.

Wagner et al. also provide a framework for incremental consistency checking
in [16]. The framework monitors change events and tries to match them against
detection rules that are defined as graph grammar patterns. If a match is de-
tected then the rule is automatically re-checked. Wagner does not provide any
performance analysis and does not ensure that his approach is scalable. Indeed,
Wagner indicates that rules should not be time consuming in order to not block
the user while he is building his models.

In [17] is presented an OCL incremental checker. The authors describe how to
exploit the OCL description language to work on consistency invariant. The ap-
proach can be compared to ours because it enables to determine for each invari-
ant the set of impacting OCL change events. And secondly, it describes how to
compute an optimized invariant recheck code for each impacting change. How-
ever, OCL description language has a limited usage as it can only describe mono-
contextual inconsistencies, in the context of software architecture models it is
advocated to target multi-context/multi-paradigm inconsistencies as presented in
[18,19].

In the database community, incremental consistency checking is an impor-
tant research topic that has been addressed by various authors over the years.
Their main goal is to preserve data integrity, and to detect whether database
updates violate integrity constraints. For example, [20] proposed a logic-based
approach, implemented in Prolog, to check integrity of deductive databases. We
acknowledge that there is a lot to learn from database research, even though the
focus for software models is different, since inconsistencies are omnipresent and
inevitable during the modeling process [3], implying that we need more flexible
techniques for managing and allowing inconsistencies.

7 Conclusion

In this paper we proposed an incremental inconsistency checker that is based on
a sequence of model construction operations. Our approach consists of analyzing

Incremental Detection of Model Inconsistencies Based on Model Operations 45

the modifications performed on a model in order to identify a subset of inconsis-
tency rules that need to be re-checked. The analysis is based on an impact matrix
that represents dependencies between construction operation equivalence classes
and inconsistency rules. Thanks to this matrix, a user can instantaneously know
if the modifications he performs may or may not impact an inconsistency rule.
With such knowledge he can then decide whether and when to execute the in-
cremental check of impacted rules. Such an incremental check typically requires
considerably less time than a full check. Moreover, our incremental checker scales
up to huge models, as the only information required for it to run is stored in the
impact matrix.

The definition of the impact matrix relies only on the meta-model and the in-
consistency rules; it does not depend on the state of the models that are checked.
Our incremental inconsistency checker can even consider several meta-models si-
multaneously in a homogenous way, since we represent models as construction
operation sequences defined independently of any meta-model.

We aim to improve our incremental checker in two ways. First, we aim to
classify inconsistency rules according to their severity and complexity. With such
a classification, users will have more information to decide whether and when to
re-check inconsistency detection rules that have been marked by our incremental
checker. As a second improvement, we can not only reduce the set of rules to
re-check but also the set of model elements to consider during the analysis. This
would enable each rule to re-check only a relevant fragment of the whole model.
Our objective is then to integrate our approach with an incremental checker such
as the one proposed in [6].

The results we obtained can also contribute towards computer-supported col-
laborative work. Indeed, we have observed that many model construction oper-
ations are safe regarding inconsistency rules. In other words, those operations
have no major negative impact on the model consistency, and can thus be per-
formed by any one at any time. Hence, it would make sense to define a locking
and transaction mechanism on top of construction operations instead of model
elements in order to improve support for collaborative work.

References

1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003)

2. Finkelstein, A.C.W., et al.: Inconsistency handling in multiperspective specifica-
tions. IEEE Trans. Softw. Eng. 20, 569–578 (1994)

3. Balzer, R.: Tolerating inconsistency. In: Proc. Int’ Conf. Software engineering
(ICSE 1991), vol. 1, pp. 158–165 (1991)

4. Fradet, P., Le Metayer, D., Peiin, M.: Consistency checking for multiple view soft-
ware architectures. In: Proc. Joint Conf. ESEC/FSE 1999, vol. 41, pp. 410–428.
Springer, Heidelberg (1999)

5. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: Proc. Int’l Conf. Software Engineering (ICSE 2003), Washington, DC,
USA, pp. 455–464. IEEE Computer Society Press, Los Alamitos (2003)

46 X. Blanc et al.

6. Egyed, A.: Instant consistency checking for UML. In: Proceedings Int’l Conf. Soft-
ware Engineering (ICSE 2006), pp. 381–390. ACM Press, New York (2006)

7. Mens, T., et al.: Detecting and resolving model inconsistencies using transformation
dependency analysis. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Heidelberg (2006)

8. Malgouyres, H., Motet, G.: A UML model consistency verification approach based
on meta-modeling formalization. In: SAC 2006, pp. 1804–1809. ACM, New York
(2006)

9. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Robby (ed.) Proc. Int’l Conf.
Software engineering (ICSE 2008), vol. 1, pp. 511–520. ACM Press, New York
(2008)

10. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. Int’l Conf. Soft-
ware Engineering (ICSE 2007), pp. 292–301. IEEE Computer Society, Los Alamitos
(2007)

11. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. Handbook of Software Engineering and Knowl-
edge Engineering, 329–380 (2001)

12. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logics to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

13. Elaasar, M., Brian, L.: An overview of UML consistency management. Technical
Report SCE-04-18 (August 2004)

14. OMG: Unified Modeling Language: Super Structure version 2.1 (January 2006)
15. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)
16. Wagner, R., Giese, H., Nickel, U.A.: A plug-in for flexible and incremental consis-

tency management. In: Workshop on consistency problems in UML-based Software
Development - Satellite Workshop of MODELS (2003)

17. Cabot, J., Teniente, E.: Incremental evaluation of ocl constraints. In: Dubois, E.,
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg
(2006)

18. ISO/IEC 42010: Systems and software engineering architectural description.
ISO/IEC WD3 42010 and IEEE P42010/D3 (2008)

19. Boiten, E., et al.: Issues in multiparadigm viewpoint specification. In: Foundations
of Software Engineering, pp. 162–166 (1996)

20. Kowalski, R.A., Sadri, F., Soper, P.: Integrity checking in deductive databases. In:
Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 61–69. Morgan Kaufmann,
San Francisco (1987)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 47–62, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reasoning on UML Conceptual Schemas with Operations

Anna Queralt and Ernest Teniente

Universitat Politècnica de Catalunya
{aqueralt,teniente}@lsi.upc.edu

Abstract. A conceptual schema specifies the relevant information about the
domain and how this information changes as a result of the execution of
operations. The purpose of reasoning on a conceptual schema is to check
whether the conceptual schema is correctly specified. This task is not fully
formalizable, so it is desirable to provide the designer with tools that assist him
or her in the validation process. To this end, we present a method to translate a
conceptual schema with operations into logic, and then propose a set of
validation tests that allow assessing the (un)correctness of the schema. These
tests are formulated in such a way that a generic reasoning method can be used
to check them. To show the feasibility of our approach, we use an
implementation of an existing reasoning method.

Keywords: Conceptual modeling, automatic reasoning, operation contracts.

1 Introduction

The correctness of an information system is largely determined during requirements
specification and conceptual modeling, since errors introduced at these stages are
usually more expensive to correct than those made during design or implementation.
Thus, it is desirable to detect and correct errors as early as possible in the software
development process. Moreover, this is one of the key problems to solve for achieving
the goal of automating information systems building [15].

The correctness of a conceptual schema can be seen from two different points of
view. From an internal point of view, correctness can be determined by reasoning on
the definition of the schema itself, without taking the user requirements into account.
This is equivalent to answering to the question Is the conceptual schema right?. There
are some typical properties that can be automatically tested to determine this kind of
correctness like schema satisfiability, operation executability, etc.

On the other hand, from an external point of view, correctness refers to the
accuracy of the conceptual schema regarding the user requirements [1] and it can be
established by answering to the question Are we building the right conceptual
schema?. Testing whether a schema is correct in this sense may not be completely
automated since it necessarily requires the user intervention. Nevertheless, it is
desirable to provide the designer with a set of tools that assist him during the
validation process.

A conceptual schema consists of a structural part, which defines the relevant static
aspects of the domain, and a behavioral part, which specifies how the information

48 A. Queralt and E. Teniente

represented in the structural part changes as a result of the execution of system
operations [11]. System operations specify the response of the system to the
occurrence of some event in the domain, viewing the system as a black box and, thus,
they are not assigned to classes. They define the only changes that can be performed
on the IB.

Figs. 1 and 2 show a possibly incorrect conceptual schema of a (simplified) on-line
auction site that we will use as a running example.

A test that the designer can perform to validate the internal correctness of the
structural schema is to check whether it is satisfiable, that is, if it accepts at least one
instance satisfying all the constraints. In our example, the following instantiation:
"Mick is a registered user who owns a book, and bids 200$ for a bicycle, owned by
Angie, who had set a starting price of 180$" satisfies all the graphical and textual
constraints, which demonstrates that the structural schema is satisfiable.

However, the fact that the structural part is satisfiable does not necessarily imply
that the whole conceptual schema also is. That is, when we take into account that the
only changes admitted are those specified in the behavioral schema, it may happen
that the properties fulfilled by the structural schema alone are no longer satisfied.

Fig. 1. The structural schema of an on-line auction site

Fig. 2. A partial behavioral schema corresponding to the structural schema of Figure 1

Op: registerUser(id: String, email: String, ccard: String)
Pre:
Post: Registerd.allInstances()-> exists(u | u.oclIsNew() and

u.id = id and u.email = email and u.credit-card = ccard)

Op: unregisterUser(u: User, reason:String)
Pre: u.oclIsTypeOf(Registered)
Post: u.oclIsTypeOf(Unregistered) and u.reason = reason

and not u.oclIsTypeOf(Registered)

Op: placeBid(p: Product, u: User, value: Float)

Pre: u.oclIsTypeOf(Registered)

Post: Bid.allInstances()-> exists(b | b.oclIsNew() and b.user = u
and b.product = p and b.amount = value)

Op: offerProduct(u: User, id: String, desc: String, sp: Float)
Pre: u.oclIsTypeOf(Registered)
Post: Product.allInstances()->exists(p| p.oclIsNew() and p.id=id and

p.description=desc and p.starting-price=sp and p.owner=u)

Integrity constraints:

- Users and Products are identified
by their id

- The amount of a bid must be
greater than the starting price of the
product

 Reasoning on UML Conceptual Schemas with Operations 49

In our example, although it is possible to find instances of User satisfying all the
constraints as we have just seen, there is no operation that successfully populates this
class. The operation registerUser seems to have this purpose but it never succeeds
since it does not associate the new user with a Product by means of Offered by, which
violates the cardinality constraint of the role offered-prod. As a consequence, since
the only operation that creates a product (i.e. offerProduct) requires an existing user,
there can not be any instance of Product either. Then, we have that this schema can
never be populated using the operations defined and, although the structural part of
the schema is semantically correct, the whole conceptual schema is not.

The main contribution of this work is to propose an approach to help to validate a
conceptual schema with a behavioral part. To do this, we provide a method to
translate a UML schema, with its behavioral part consisting of operations specified in
OCL, into a set of logic formulas. The result of this translation is such that ensures
that the only changes allowed are those specified in the behavioral schema, and can be
validated using any existing reasoning method capable to deal with negation of
derived predicates. To our knowledge, ours is the first approach that validates jointly
the structural and behavioral parts of a UML/OCL conceptual schema.

We provide the designer with several validation tests which allow checking the
correctness of a schema from the internal and external points of view mentioned
above. Some of the tests are automatic and are directly generated from the conceptual
schema while others are user-defined and give the designer the freedom to ask
whichever questions he wants regarding situations that hold (do not hold) in the
domain to ensure that they are (not) accepted by the schema. In both cases, the
designer intervention is required to fix any problem detected by the tests.

We also show the feasibility of our approach by using an implementation of an
existing reasoning method, which has had to be extended for our purposes.

Basic concepts are introduced in section 2. Section 3 presents our method to
translate a schema with operations into logic. Section 4 presents our approach to
validation. Section 5 shows its feasibility by means of an implementation. Section 6
reviews related work. Finally, we present our conclusions in section 7.

2 Basic Concepts

The structural schema consists of a taxonomy of entity types together with their
attributes, a taxonomy of associations among entity types, and a set of integrity
constraints over the state of the domain, which define conditions that each instantiation
of the schema, i.e. each state of the information base (IB), must satisfy. Those
constraints may have a graphical representation or can be defined by means of a
particular general-purpose language.

In UML, a structural schema is represented by means of a class diagram, with its
graphical constraints, together with a set of user-defined constraints, which can be
specified in any language (Figure 1). As proposed in [21], we will assume these
constraints are specified in OCL.

The content of the IB changes due to the execution of operations. The behavioral
schema contains a set of system operations and the definition of their effect on the IB.
System operations specify the response of the system to the occurrence of some event in
the domain, viewing the system as a black box and, thus, they are not assigned to classes
[11]. These operations define the only changes that can be performed on the IB.

50 A. Queralt and E. Teniente

An operation is defined by means of an operation contract, with a precondition,
which expresses a condition that must be satisfied when the call to the operation is
done, and a postcondition, which expresses a condition that the new state of the IB
must satisfy. The execution of an operation results in a set of one or more structural
events to be applied to the IB. Structural events are elementary changes on the content
of the IB, that is, insertions or deletions of instances. We assume a strict interpretation
of operation contracts [17] which prevents the application of an operation if any
constraint is violated by the state satisfying the postcondition.

The operation contracts of the behavioral schema of our running example are shown
in Figure 2. Each contract describes the changes that occur in the IB when the operation
is invoked. Since we assume a strict interpretation, there is no need to include
preconditions to guarantee the satisfaction of integrity constraints. However, if those
preconditions were added, they would also be correctly handled by our method.

As we will see in Section 3, we translate a UML and OCL schema such as the one of
the example into a set of first-order logic formulas in order to use a reasoning method to
determine several properties on it. The OCL considered consists of all the OCL
operations that result in a boolean value, including select and size, which can also be
handled by our method despite returning a collection and an integer. The logic
formalization of the schema consists of a set of rules and conditions defined as follows.

A term is either a variable or a constant. If p is a n-ary predicate and T1, …, Tn are
terms, then p(T1, …, Tn) or p(T̄) is an atom. An ordinary literal is either an atom or a
negated atom, i.e. ¬ p(T̄) . A built-in literal has the form of A1θ A2, where A1 and A2
are terms. Operator θ is either <, ≤, >, ≥, = or ≠.

A normal clause has the form: A ← L1 ∧ ... ∧ Lm with m ≥ 0, where A is an atom and
each Li is a literal, either ordinary or built-in. All the variables in A, as well as in each Li,
are assumed to be universally quantified over the whole formula. A is the head and L1 ∧
… ∧ Lm is the body of the clause. A fact is a normal clause of the form p(ā), where p(ā)
is a ground atom. A deductive rule is a normal clause of the form: p(T̄) ← L1 ∧ … ∧ Lm
with m ≥ 1, where p is the derived predicate defined by the deductive rule. A condition
is a formula of the (denial) form: ← L1 ∧ … ∧ Lm with m ≥ 1.

Finally, a schema S is a tuple (DR, IC) where DR is a finite set of deductive rules
and IC is a finite set of conditions. All these formulas are required to be safe, that is,
every variable occurring in their head or in negative or built-in literals must also occur
in an ordinary positive literal of the same body. An instance of a schema S is a tuple
(E,S) where E is a set of facts about base predicates. DR(E) denotes the whole set of
ground facts about base and derived predicates that are inferred from an instance
(E,S), and corresponds to the fixpoint model of DR ∪ E.

3 Translation of the Conceptual Schema into Logic

Validation tests that consider the structural schema alone are aimed at checking that
an instantiation fulfilling a certain property and satisfying the integrity constraints can
exist. In this case, classes, attributes and associations can be translated into base
predicates that can be instantiated as desired, as long as integrity constraints are
satisfied, in order to find a state of the IB that proves a certain property [16].

However, when considering also the behavioral schema, the population of classes
and associations is only determined by the events that have occurred. In other words,

 Reasoning on UML Conceptual Schemas with Operations 51

the state of the IB at a certain time t is just the result of all the operations that have
been executed before t, since the instances of classes and associations cannot be
created or deleted as desired. For instance, according to our schema in Fig. 1 and the
operations defined, Angie may only be an instance of Registered at a time t if the
operation registerUser has created it at some time before t and the operation
unregisterUser has not removed it between its creation and t.

For this reason, it must be guaranteed that the population of classes and associations
at a certain time depends on the operations executed up to that moment. To do this, we
propose that operations are the basic predicates of our logic formalization, since their
instances are directly created by the user. Classes and associations will be represented
by means of derived predicates instead of basic ones, and their derivation rules will
ensure that their instances are precisely given by the operations executed.

This approach clearly differs from our previous work [16, 18], where we proposed
to formalize classes, attributes and associations as base predicates. Note, however,
that a formalization of this kind does not ensure that instances of classes and
associations result from the execution of operations.

3.1 Deriving Instances from Operations

Classes and associations are represented by means of derived predicates whose
derivation rules ensure that their instances are given by the occurrence of operations,
which are the base predicates of our formalization of the schema. Then, an instance of
a predicate p representing a class or association exists at time t if it has been added by
an operation at some time t2 before t, and has not been deleted by any operation
between t2 and t. Formally, the general derivation rule is:

p([P,]P1,...,Pn,T) ← addP([P,]P1,...,Pn,T2) ∧ ¬deletedP(Pi,...Pj,T2,T) ∧ T2≤T ∧ time(T)
deletedP(Pi,...,Pj,T1,T2) ← delP(Pi,..,Pj,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2)

where P is the OID (Object Identifier), which is included if p is a class. Pi,...,Pj are the
terms of p that suffice to identify an instance of p according to the constraints defined
in the schema. In particular, if p is a class (or association class), P=Pi=Pj. The
predicate time indicates which are the time variables that appear in the derived
predicate we are defining. As well as those representing operations, time is a base
predicate since its instances cannot be deduced from the rest of the schema. Predicates
addP and delP are also derived predicates that hold if some operation has created or
deleted an instance of p at time T, respectively. They are formalized as follows.

Let op-addPi be an operation of the behavioral schema, with parameters
Par1,...,Parn and precondition prei such that its postcondition specifies the creation of
an instance of a class or association p. For each such operation we define the
following rule:

addP([P,]Pari,...,Park,T) ← op-addPi([P,]Par1,...,Parm,T) ∧ prei(Tpre) ∧ Tpre=T-1 ∧ time(T)

where Pari,..,Park are those parameters of the operation that indicate the information
required by the predicate p, and T is the time in which the operation occurs. The
literal prei(Tpre) is the translation of the precondition of the operation, following the
same rules used to translate OCL integrity constraints [16]. Note that, since the
precondition must hold just before the occurrence of the operation, the time of all its
facts is T-1.

52 A. Queralt and E. Teniente

Similarly, for each operation op-delPi(Par1,...,Parn,T) with precondition prei that
deletes an instance of p we define the derivation rule:

delP(Pari,...Parj,T) ← op-delPi(Par1,...,Parn,T) ∧ prei(Tpre) ∧ Tpre=T-1 ∧ time(T)

where Pari,...,Parj are those parameters of the operation that identify the instance to
be deleted. Thus, if p is a class or association class, delP will have a single term in
addition to T, which corresponds to the OID of the deleted instance.

To completely define the above derivation rules for each predicate representing an
element of the structural schema, we need to know which OCL operations of the
behavioral schema are responsible for creating or deleting its instances. For our
purpose, we assume that operations create instances with the information given by the
parameters or delete instances that are given as parameters. A single operation can
create and/or delete several instances. We are not interested in query operations since
they do not affect the correctness of the schema.

Several OCL expressions can be used to specify that an instance exists or not at
postcondition time. For the sake of simplicity, we consider a single way to specify
each of these conditions, since other OCL expressions with equivalent meaning can
be easily rewritten in terms of the ones we consider. Under this assumption, we define
the rules to identify the creation and deletion of instances in OCL postconditions:

R1. An instance c(I,A1,...,An,T) of a class C is added by an operation if its
postcondition includes the OCL expression: C.allInstances()->exists(i|
i.oclIsNew() and i.attri=ai) or the expression: i.oclIsTypeOf(C)
and i.attri=ai, where each attri is a single-valued attribute of C.

R2. An instance c(I,P1,...,Pn,A1,...,Am,T) of an association class C is added by an
operation if its postcondition includes the expression: C.allInstances()->
exists(i| i.oclIsNew() and i.part1=p1 and...and i.partn=pn
and i.attr1=a1 and...and i.attrm=am) or the expression:
i.oclIsTypeOf(C) and i.part1=p1 and ... and i.partn=pn and
i.attr1=a1 and...and i.attrm=am, where each parti is a participant that
defines the association class, and each attrj is a single-valued attribute of C.

R3. An instance r(C1,C2,T) of a binary association R between objects C1 and C2, with
roles role-c1 and role-c2 in r is added by an operation if its postcondition contains
the OCL expression: ci.role-cj = cj, if the multiplicity of role-cj is at most 1
or the expression: ci.role-cj-> includes(cj), if the multiplicity of role-cj is
greater than 1. This rule also applies to multi-valued attributes. Creation or
deletion of instances of n-ary associations with n>2 cannot be expressed in OCL
unless they are association classes, which are considered in the previous rule.

R4. An instance c(I,A1,...,An,T) of a class C is deleted by an operation if its
postcondition includes the expression: Cgen.allInstances()->excludes(i)
or the expression: not i.oclIsTypeOf(Cgen), where Cgen is either the class C
or a superclass of C.

R5. An instance c(I,P1,...,Pn,A1,...,Am,T) of an association class is deleted by an
operation if its postcondition includes: C.allInstances()-> excludes(i),
or: not i.oclIsTypeOf(C), or if any of its participants (P1,...,Pn) is deleted.

R6. An instance r(C1,C2,T) of a binary association R between objects C1 and C2, with
roles role-c1 and role-c2 in r is deleted by an operation if its postcondition includes:
ci.role-cj ->excludes(cj)or if any of its participants (C1 or C2) is deleted.

 Reasoning on UML Conceptual Schemas with Operations 53

For instance, according to the previous translation rules, the class Registered of our
example will be represented by means of the clauses:

registered(U,Id,Email,Ccard,T) ← addRegistered(U,Id,Email,Ccard,T2)
∧ ¬deletedRegistered(U,T2,T) ∧ T2≤T ∧ time(T)

deletedRegistered(U,T1,T2) ← delRegistered(U,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2)

where U corresponds to the unique OID required by every instance of a class. In turn,
addRegistered and delRegistered are derived predicates whose definition depends on
the operations of the behavioral schema that insert and delete instances of the class
Registered. The operation registerUser creates an instance of
registered(U,Id,Email,C-card,T) according to R1, since its postcondition includes the
expression Registered.allInstances()->exists(u| u.oclIsNew()and

u.e-mail=e-mail and u.id=id and u.credit-card=ccard).. Since the
other operations do not create instances of Registered, there is a single derivation rule
for addRegistered:

addRegistered(U,Id,Email,Ccard,T) ← registerUser(U,Id,Email,Ccard,T) ∧ time(T)

We also need to find which operations are responsible for deleting instances of
Registered in order to specify the derivation rule of delRegistered. The operation
unregisterUser is the only one that deletes instances of Registered according to R4,
since it includes the OCL expression not u.oclIsTypeOf(Registered). Its
postcondition also includes the creation of an unregistered user, but this will be taken
into account when specifying the derivation rules of addUnregistered for predicate
unregistered. This time the precondition is not empty, and requires that u is an
instance of Registered, so the derivation rule in this case is:

delRegistered(U,T) ←unregisterUser(U,T) ∧ registered(U,Id,E,Cc,Tpre) ∧ Tpre=T-1 ∧ time(T)

Since a modification can be regarded as a deletion followed by an insertion, no
specific derived predicates are needed to deal with them.

3.2 Constraints Generated

Since we assume that events cannot happen simultaneously, we need to define
constraints to guarantee that two operations cannot occur at the same time.
Constraints are expressed as formulas in denial form, which represent conditions that
cannot hold in any state of the IB. Therefore, for each operation o with parameters
P1,...,Pn we define the following constraint for each parameter Pi:

← o(P11,...,Pn1,T) ∧ o(P12,...,Pn2,T) ∧ Pi1 <> Pi2

And for each pair o, o2 of operations we define the constraint:

←o(P1,...,Pn,T) ∧ o2(Q1,...,Qm,T)

In our example, unregisterUser(U,Reason,T) requires the constraints:

 ←unregisterUser(U,R,T) ∧ unregisterUser(U2,R2,T) ∧ U <> U2
 ←unregisterUser(U,R,T) ∧ unregisterUser(U2,R2,T) ∧ R <> R2

and, for each other operation of the schema, a constraint like:

 ←unregisterUser(U,R,T) ∧ registerUser(Id,Email,Ccard,T)

54 A. Queralt and E. Teniente

Moreover, the constraints of the UML structural schema are also translated into
this kind of formulas. The set of constraints needed is exactly the one resulting from
the translation of the structural schema [16], but now they are defined in terms of
derived predicates instead of basic ones.

4 Our Approach to Validation

Our approach to validation is aimed at providing the designer with different kinds of
tests that allow him to assess the correctness of the conceptual schema being defined.
All of them take into account both the structural and the behavioral parts of the
conceptual schema.

We express all tests in terms of checking the satisfiability of a derived predicate.
So, for each validation test to be performed, a derived predicate (with its
corresponding derivation rule) that formalizes the desired test is defined. With this
input, together with the translated schema itself, any satisfiability checking method
that is able to deal with negation of derived predicates can be used to validate the
schema. We illustrate our approach using the translation of our example obtained as
explained in Section 3.

4.1 Is the Conceptual Schema Right?

The tests devoted to check the internal correctness of the schema can be automatically
defined, i.e. they can be performed without the designer intervention. Some of them
correspond to well known reasoning tasks (such as schema satisfiability) while others
refer to additional properties that can be automatically drawn from the conceptual
schema and which are an original contribution of this paper.

4.1.1 Checking Strong Satisfiability
A schema is strongly satisfiable if there is at least one fully populated state of the IB
satisfying all the constraints [12]. In the presence of operations, this means checking
whether they allow creating at least a complete valid instantiation.

To perform this test, we need to define a derived predicate such that it is true when
the schema is strongly satisfiable, i.e. if it is possible to have an instance of all classes
and associations of the schema. In our example:

sat ← registered(U,Uid,Email,Ccard,T) ∧ unregistered(U2,Uid2,Email2,Reason,T) ∧
product(P,Pid,Descr,St-pr,T) ∧ bid(B,Prod,Bidder,Amt,T) ∧ offeredBy(P2,Owner,T)

As we discussed in the introduction, the schema of our example is not strongly
satisfiable when the behavior of the operations is taken into account. To avoid this
mistake, we may replace the original operation registerUser by the following one
responsible for creating both an instance of Registered and an instance of a Product
that will be offered by the new user when he is registered:

Op: registerUser(id: String, email: String, ccard: String, pid:
String, descr: String, st-price: Float)

Pre:
Post: Registered.allInstances()->exists(u|u.oclIsNew() and u.e-mail

= email and u.c-card=ccard and u.offered-prod->exists(p |
p.oclIsNew() and p.id=pid and p.description=descr and
p.starting-price=st-price))

 Reasoning on UML Conceptual Schemas with Operations 55

Now, if we check satisfiability of the predicate sat, the answer is that the schema is
strongly satisfiable. The following sample instantiation shows that all classes can be
populated at time 4. It only includes instances of base predicates, since the derived
ones can be obtained from them. Since our base predicates correspond to the
operations, the sample instantiations obtained give a sequence of operation calls that
leads to a state that is valid according to the schema:

{registerUser(john,john@upc.edu,111, p1, pen,10,1), unregisterUser(john,2),
 registerUser(mary,mary@upc.edu,222,p2,pen,20,3), placeBid(mary,p1,25,4)}

That is, we need to register a new user John at time 1 and then unregister him to
have an instance of Unregistered. After that, we create another user Mary to have an
instance of Registered. Finally, to populate the class Bid, Mary bids for the pen p1.

4.1.2 Automatically Generated Tests
Following the ideas suggested by model-based testing approaches [20], there are some
tests that can be automatically drawn from the concrete schema to be validated. As
usual, they will help the designer to detect potentially undesirable situations admitted by
the schema. Note, however, that we can already determine these situations at the
conceptual schema level while, in general, model-based testing requires an
implementation of the software system to execute the tests. The definition of an
exhaustive list of such kind of tests is out of the scope of this paper.

For instance, in our example, although a product may have no owner according to the
cardinality constraint 0..1 of owner, it will always have exactly one owner in practice
with the given operations. This means that there is probably something that the designer
overlooked when specifying the behavioral schema like an operation to allow users
withdrawing offered products or that the cardinality constraint should be just 1.

The derivation rule that formalizes this situation, which can be automatically
generated from the information provided by the conceptual schema, is the following:

unownedProd ←product(P,Id,Descr,St-price,,T) ∧ ¬hasOwner(P,T)
hasOwner(P,T) ←offeredBy(P,Owner,T)

The absence of a sequence of operations satisfiying unownedProd shows that the
conceptual schema does not admit products without owner and, therefore, that the
cardinality constraint of owner is not properly defined. We assume that the designer
decides to define the cardinality constraint of owner to exactly 1 to fix this situation.

The general form of the previous test is as follows. If the predicate minCardAssoc
is not satisfiable, it means that there is a potentially undesirable situation:

minCardAssoc ← classJ(Pj,...,T) ∧ ¬hasAssoc(Pj,T)
hasAssoc(P,T) ← assoc([A], P1,...,Pi,...,Pn,T)

for each j<>i representing a participant of Assoc, where Pi is the participant with
minimum cardinality 0.

4.1.3 Testing Properties of the Operations
When dealing with operations additional validation tests can be performed, namely
applicability and executability of each operation [4]. An operation is applicable if
there is a state where its precondition holds. An operation is executable if it can be

56 A. Queralt and E. Teniente

executed at least once, i.e. if there is a state where its postcondition holds, together
with the integrity constraints, and such that its precondition was also true in the
previous state.

To illustrate these properties, let us consider an additional operation
removeProduct to delete products:

Op: removeProduct(p: Product)
Pre: p.owner->isEmpty()
Post: Product.allInstances()->excludes(p)

As can be seen, the precondition of this operation requires that the product being
removed has no owner, which is not possible according to the cardinality constraint 1
of owner, just redefined in the previous section. This means that this operation is not
applicable and the designer should avoid this situation by, for example, modifying the
precondition.

The formalization for an operation O with precondition pre(t) is:

applicable_O ← pre(T)

If this applicable_O is not satisfiable, the operation is not applicable.
Although an operation is applicable, it may never be successfully executed because

it always leaves the IB in an inconsistent state. For instance, let us consider an
additional operation removeUser that deletes the specified user as long as he or she
has not bidden for any product:

Op: removeUser(u: User)
Pre: u.bid->isEmpty()
Post: User.allInstances()->excludes(u)

This operation is applicable, since its precondition can be satisfied, but the
postcondition removes a user, which is necessarily the owner of some product
according to the cardinality constraint 1..* of offered-prod. Since this operation does
not remove the products offered by the user, the resulting state of the IB will always
violate the cardinality constraint 1 of owner for all products offered by u. This means
that the execution of this operation will always be rejected because it is impossible to
satisfy its postcondition and the integrity constraints at the same time.

To check executability, an additional rule has to be added to the translation of the
schema to record the execution of the operation. In this case, if executed_O is
satisfiable, then O is executable:

executed_O ← o(P1,...,Pn,t) ∧ pre(T-1)

4.2 Is It the Right Conceptual Schema?

Once the internal correctness of the schema is ensured by the previous tests, the
designer will need to check its external correctness, i.e. whether it satisfies the
requirements of the domain.

Our approach allows testing whether a certain desirable state that the designer may
envisage is acceptable or not according to the current schema. The designer may
define such a state either by means of a set of instances that classes and associations
should contain at least; or by a derived predicate that defines it declaratively. Once a
test is executed, the designer should compare the obtained results to those expected

 Reasoning on UML Conceptual Schemas with Operations 57

according to the requirements and apply modifications to the conceptual schema if
necessary.

For instance, an interesting question could be “May a user place a bid on a
product he is offering?.” To test this situation, the designer should define the rule:

bidderAndOwner ← bid(B,Prod,Usr,Amt,T) ∧ offeredBy(Prod,Usr,T)

In this case, bidderAndOwner is satisfiable, as shown by the sample instantiation:

{registerUser(john, john@upc.edu, 111, prod1, pen, 10, 1), placeBid(john, prod1, 15, 3) }

This result might indicate that the conceptual schema should restrict a user to place
a bid on the products he owns either by defining an additional constraint in the
structural schema or by strengthening the precondition of the operation placeBid.

As mentioned above, the designer may also specify additional tests by giving
several instances of classes and associations and check whether there is at least a state
that contains them (probably in addition to other instances). As an example, the
designer could wonder whether a certain user, e.g. joan, may place two bids for the
same product, e.g. book1. This situation may be tested by determining whether there
is a state that contains the instances {bid(1,book1,joan,9,1), bid(5,book1,joan,25,7)},
obtaining a negative answer in this case since, according to the semantics of
associations, two instances of Bid cannot be defined by the same instances of User
and Product .Since a user should be able to rebid for a product, this schema is not
correct and should be modified by changing the definition of Bid.

By studying the results of the previous tests, and with his knowledge about the
requirements of the system to be built, the designer will be able to decide if the
schema is correct, and perform the required changes if not.

Checking the external correctness of a schema can also be partially automated by
generating additional tests that check other kinds of properties. For instance, given a
recursive association Assoc, it may be interesting to check whether an instance of the
related class can be associated to itself. If the predicate assocHasCycles is satisfiable,
then a constraint to guarantee that the association is acyclic or irreflexive, as it is
usual in practice, may be missing:

assocHasCycles ← assoc(X,X,T)

5 Implementing Our Approach within an Existing Method

We have studied the feasibility of our approach by using an existing reasoning
procedure, the CQC-Method [8], to perform the tests. To do this, we have extended a
Prolog implementation of this method to incorporate a correct treatment of the time
component of our atoms. We have executed this new implementation on our example
to perform all validation tests that we have explained throughout the paper. We have
also needed to implement the translation of the UML/OCL schema into logic.

The CQC Method is a semidecision procedure for finite satisfiability and
unsatisfiability. This means that it always terminates if there is a finite example or if
the tested property does not hold. However, it may not terminate in the presence of
solutions with infinite elements. Termination may be assured by defining the
maximum number of elements that the example may contain.

58 A. Queralt and E. Teniente

Roughly, the CQC Method is aimed at constructing a state that fulfills a goal and
satisfies all the constraints in the schema. The goal to attain is formulated depending
on the specific reasoning task to perform. In this way, the method requires two main
inputs besides the conceptual schema definition itself. The goal to attain, which must
be achieved on the state that the method will try to construct; and the set of
constraints to enforce, which must not be violated by the constructed state.

Then, to check if a certain property holds in a schema, this property has to be
expressed in terms of an initial goal to attain (G0) and the set of integrity constraints to
enforce (F0), and then ask the CQC Method to attempt to construct a sample IB to prove
that the initial goal G0 is satisfied without violating any integrity constraint in F0.

This means that, to perform our validation tests, we need to provide the CQC
Method with the formalization of our schema, i.e. the derived predicates that represent
classes and associations, the set of constraints of the schema as F0 and the derived
predicate formalizing the validation test to perform as G0.

5.1 Variable Instantiation Patterns

The CQC Method performs its constraint-satisfiability checking tests by trying to
build a sample state satisfying a certain condition. For the sake of efficiency the
method tests only those variable instantiations that are relevant, without losing
completeness. The method uses different Variable Instantiation Patterns (VIPs) for
this purpose according to the syntactic properties of the schema considered in each
test. The key point is that the VIPs guarantee that if the variables in the goal are
instantiated using the constants they provide and the method does not find any
solution, then no solution exists.

The VIP in which we are interested is the discrete order VIP. In this case, the set of
constants is ordered and each distinct variable is bound to a constant according to
either a former or a new location in the total linear order of constants maintained. The
value of new variables is not always static (i.e. a specific numeric value), it can be a
relative position within the linear ordering of constants. These are called virtual
constants. For instance, in the ordering of constants {1, d, 6}, d is a virtual constant
such that 1<d<6. Then, its possible absolute values are 2 to 5. It may happen that the
goal succeeds or fails without the need for further instantiations, and in this case d
will never be bound to a concrete value.

To correctly instantiate the variables representing occurrence times that we have
introduced in our translation of the conceptual schema, it has been necessary to add a
temporal VIP. This new VIP has some similarities with the discrete order VIP, since
they both deal with discrete values, order comparisons and negation, but it extends it to
be able to bind a constant, either virtual or static, with its immediate successor. This is
needed because our derivation rules require that preconditions hold exactly in the time
immediately previous to the postcondition, not at any time before the postcondition.
Then, we use a separate set of constants, with its own ordering, to deal with variables
representing event times and we instantiate them with our temporal VIP.

For instance, assume we are attempting to derive an Unregistered user which must
hold at time d, being d a virtual constant and {1, d, 5} our set of temporal constants.
According to the precondition of unregisterUser, the user must be registered at d-1.
Thus, since 1<d<5, the time variable of the corresponding instance of Registered must

 Reasoning on UML Conceptual Schemas with Operations 59

be instantiated either with 1 or with a virtual constant f, f=d-1. So, the relevant sets of
constants are {[1, d], 5} and {1,[f, d],5}, where constants between brackets are tied so
that no new constant can be ever placed between them.

The temporal VIP is formalized as follows. A variable instantiation step performs a
transition from (T ∅ KTi) to (∅ θ KTi+1) that instantiates the temporal variable T
according to one of the VIP-rules, where θ is a ground substitution of T and KTi is the
set of temporal constants. Let di denote virtual constants, ci denote static constants and
ki denote either static or virtual constants, and let Gc be the current goal. The temporal
VIP consists of the VIP-rules of the discrete order VIP, extended by the following
rules, that apply when instantiating a temporal constant T such that T = ki -1, ki∈KTi:

Tmp1. θ = T /cprev and KTi+1=KTi, where cprev=csuc-1, {csuc,cprev}⊆KTi, {T=csuc-
1}∈Gc

Tmp2. θ = T /k and KTi+1 = KTi, where {k, ksuc} ⊆ KTi, {T =ksuc-1}∈Gc, there is no
constant kprev such that k<kprev<ksuc and k is tied to ksuc in KTi+1.

Tmp3. θ = T /cnew and KTi+1 = KTi ∪ {cnew}, where cnew=csuc-1, cnew∉KTi, csuc∈KTi,
{T =csuc-1}∈Gc, there is no dprev tied to csuc in KTi, and there is no cprev ∈ KTi

such that cprev < csuc and |{di | di ∈ KTi and cprev < di < csuc}| < |csuc - cprev| -1.

Tmp4. θ = T /dnew and KTi+1 = KTi ∪ {dnew}, where dnew∉KTi, dsuc∈KTi, {T =dsuc-
1}∈Gc, there is no dprev tied to dsuc in KTi, dnew is tied to dsuc in KTi+1 and there
are no ci, cj ∈ KTi such that ci < dsuc < cj, there is no cm with ci < cm < cj and
|{di | di ∈ KTi and ci < di < cj}| < |cj – ci| -1.

6 Related Work

In this section we focus on those approaches that deal with UML schemas with a
behavioral part. Thus, we leave out from our comparison to previous work those
approaches that only deal with the structural schema [10, 12, 16], since satisfiability
of the structural part does not necessarily imply that the whole conceptual schema is
also satisfiable; as well as the first proposals to deal with behavior, in the context of
deductive conceptual schemas [4, 5].

Due to its relevance, and despite not dealing with UML schemas, we believe it is
worth including the Alloy language and analyzer [14] in this comparison. Alloy
provides interesting validation capabilities for expressive schemas by searching for
examples of the tests specified by the designer. The preconditions and postconditions
of the operations can be checked manually, before and after each execution.

One of the first approaches to check satisfiability of UML schemas with operations
is [6]. General constraints are handled, but they must be expressed in Z instead of
OCL, which is the language recommended by the UML to formalize constraints and
operations. Besides checking satisfiability of the structural schema, operations to
insert, delete and update the instances of each class or association are automatically
generated.

An approach to reason on UML/OCL schemas is HOL-OCL [2]. The method uses
a theorem prover to determine some properties, such as equivalence of two integrity
constraints, or applicability and executability of operations.

60 A. Queralt and E. Teniente

Another interesting tool to validate UML/OCL conceptual schemas is USE [9],
which allows to test if a given instantiation is accepted by the schema taking into
account the OCL constraints. Preconditions and postconditions can also be validated,
but the execution of the operation has to be simulated manually.

Recently, and also for UML/OCL schemas, [3] reports a set of properties regarding
the correctness of operations such as applicability or executability.

All the previous approaches have an important common drawback. None of them
takes into account the definition of operations when determining whether a state is
accepted or not by the schema. This means that a state may be reported as valid when,
in fact, it is impossible to construct using the operations defined. This also damages
the results obtained when testing the applicability of operations, since the state that
satisfies a precondition may not be obtained by means of the operations defined. In
fact, all these approaches would give an incorrect answer to 5 out of the 6 properties
tested in this paper.

One of the approaches that does not share this drawback is [7], which combines
state and event-based descriptions of a system to enable the automatic verification of
dynamic properties regarding the system behavior. It may handle UML class
diagrams but assumes that the system behavior is specified in the B and CSP
languages, instead of OCL, and it is mainly aimed at testing properties related to the
correct sequencing of the operations specified in the conceptual schema.

The other approach that takes the operations into account when determining
whether a state is accepted or not by the schema belongs to the Rodin project. It
combines UML-B [19] and ProB [13], the former to represent the schema and
translate it into the B language, and the latter to validate it by animation. However,
UML-B only accepts a subset of the UML that is suitable for translation into B, and
constraints and operations must be directly expressed in B by the designer.
Additionally, ProB requires that the search space is made finite by enumerating the
values to be used in the animation. Since the fact that a property does not hold for
those values does not mean that it can never hold, completeness is not guaranteed.

Finally, all of the approaches are able to check either the internal correctness [3, 6,
13] or the external correctness of the schema [2, 9, 14], but not both as we do.

7 Conclusions and Further Work

We have proposed a new approach to validate a UML conceptual schema, with
textual OCL constraints and operations. To our knowledge, ours is the first approach
that validates jointly the structural and behavioral parts of a UML/OCL schema.

Our approach allows determining automatically whether the conceptual schema is
correctly defined, through tests about the accomplishment of desirable properties; and
provides also a help to the designer to check that the schema defined is the right
conceptual schema in the sense that it correctly specifies the requirements.

This is achieved by translating the UML conceptual schema, including its behavioral
part, into a logic representation which incorporates the effect of operations in terms of
the instances of classes and associations that are created or deleted. In this way, we
ensure that the only changes allowed are those defined in the behavioral schema. With
this logic representation, we can formalize each validation test in terms of checking the
satisfiability of a derived predicate. Then, any satisfiability checking method able to
deal with negation of derived predicates can be used to validate the schema.

 Reasoning on UML Conceptual Schemas with Operations 61

We have also shown the feasibility of our approach by using and extending an
implementation of an existing reasoning procedure, called CQC-Method [8], and
applying it to our running example.

There are some interesting directions for further work, like applying the decidability
results of our previous work [18] to schemas with a behavioral part, extending our
approach to validate conceptual schemas with derived UML information or
investigating the applicability of this approach to large conceptual schemas.

Acknowledgements. This work has been partly supported by Ministerio de Ciencia y
Tecnología under TIN2008-00444/TIN, Grupo Consolidado, and TIN2008-03863.

References

1. Adrion, W.R., Branstad, M.A., Cherniavsky, J.C.: Validation, Verification and Testing of
Computer Software. ACM Comput. Surv. 14(2), 159–192 (1982)

2. Brucker, A.D., Wolff, B.: The HOL-OCL Book. Swiss Federal Institute of Technology
(ETH), 525 (2006)

3. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL Operation Contracts. In: Leuschel,
M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 40–55. Springer, Heidelberg
(2009)

4. Costal, D., Teniente, E., Urpí, T., Farré, C.: Handling Conceptual Model Validation by
Planning. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE 1996.
LNCS, vol. 1080, pp. 255–271. Springer, Heidelberg (1996)

5. Díaz, O., Paton, N.W., Iturrioz, J.: Formalizing and Validating Behavioral Models through
the Event Calculus. Information Systems 23(3/4), 179–196 (1998)

6. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An Overview of RoZ: A Tool for Integrating
UML and Z Specifications. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS,
vol. 1789, pp. 417–430. Springer, Heidelberg (2000)

7. Evans, N., Treharne, H., Laleau, R., Frappier, M.: Applying CSP || B to Information
Systems. Software and System Modeling 7, 85–102 (2008)

8. Farré, C., Teniente, E., Urpí, T.: Checking Query Containment with the CQC Method.
Data and Knowledge Engineering 53(2), 163–223 (2005)

9. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based Specification Environment for
Validating UML and OCL. Science of Computer Programming 69(1-3), 27–34 (2007)

10. Hartmann, S.: Coping with Inconsistent Constraint Specifications. In: Kunii, H.S., Jajodia,
S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 241–255. Springer, Heidelberg
(2001)

11. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and Iterative Development, 3rd edn. Prentice Hall PTR, Englewood Cliffs
(2004)

12. Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints in Entity-
Relationship Schemata. In: Proc. 13th International Conference on Very Large Databases -
VLDB 1987, pp. 147–154 (1987)

13. Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset for the B Method.
Software Tools for Technology Transfer (2008) DOI: s10009-007-0063-9

14. MIT. The Alloy Analyzer. MIT Software Design Group, http://alloy.mit.edu

62 A. Queralt and E. Teniente

15. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

16. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Constraints. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 497–512.
Springer, Heidelberg (2006)

17. Queralt, A., Teniente, E.: Specifying the Semantics of Operation Contracts in Conceptual
Modeling. In: Spaccapietra, S. (ed.) Journal on Data Semantics VII. LNCS, vol. 4244, pp.
33–56. Springer, Heidelberg (2006)

18. Queralt, A., Teniente, E.: Decidable Reasoning in UML Schemas with Constraints. In:
Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 281–295. Springer,
Heidelberg (2008)

19. Snook, C., Butler, M.: UML-B: Formal Modeling and Design Aided by UML ACM Trans.
on Soft. Engineering and Methodology 15(1), 92–122 (2006)

20. Utting, M., Legeard, B.: Practical Model-Based Testing. Morgan Kaufmann, San
Francisco (2006)

21. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for
MDA, 2nd edn. Addison-Wesley Professional, Reading (2003)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 63–78, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards the Industrialization of Data Migration:
Concepts and Patterns for Standard Software

Implementation Projects

Klaus Haller

COMIT AG, Pflanzschulstr. 7, CH-8004 Zürich, Switzerland
klaus.haller@comit.ch

Abstract. When a bank replaces its core-banking information system, the bank
must migrate data like accounts from the old into the new system. Migrating data
is necessary but not a catalyst for new business opportunities. The consequence is
cost pressure to be addressed by an efficient software development process
together with an industrialization of the development. Industrialization requires
defining the deliverables. Therefore, our data migration architecture extends the
ETL process by migration objectives to be reached in each step. Industrialization
also means standardizing the implementation, e.g. with patterns. We present data
migration patterns describing the typical transformations found in the data
migration application domain. Finally, testing is an important issue because test-
case based testing cannot guarantee that not a single customer gets lost.
Reconciliation can do so by checking whether each object in the old and new
system has a counterpart in the other system.

Keywords: Data Migration, Patterns, ETL, Standard Software, ERP.

1 Motivation

In the last years, many Swiss banks replaced old, less-flexible and expensive-to-
maintain core-banking systems with new ones like Avaloq or Finnova [1]. Replacing
the systems requires not only setting up and customizing the new system but also
migrating data like customers or accounts into the new system.1 Data migration is
necessary, but only performed once. Furthermore, it is not an enabler for business
processes. Strict budgets are the consequence requiring an industrialization of the data
migration development. Industrialization is often narrowed down to having a software
development process like CMMI [2]. But industrialization also has a technical aspect,
i.e. standardizing artifacts to be developed and concepts for constructing them.

1 To prevent confusion we want to point out the difference between database migration and data

migration. In data migration, application-related artefacts like triggers must not be migrated.
Instead, data might have to be transformed to fit into the new system’s database schema. In
contrast, migrating a database (e.g. from Microsoft SQL server to Oracle) demands not only
to copy the data but also all application-related artefacts (triggers, constraints etc.).

64 K. Haller

Typical examples are patters [3] or the three-tier-architecture for data-intensive
applications [4]. Our vision is providing concepts allowing the industrialization of our
application domain data migration.

The concepts in this paper reflect our experience with data migration as part of
several Avaloq core-banking system implementation projects in Swiss banks. They
are an outcome of COMIT’s industrialization efforts for core-banking system
implementation projects, the LeanStream initiative [5]. Up to now, our work on data
migration concentrated on a migration infrastructure architecture [6] and on project
management issues [7]. This paper complements our previous work by focusing on
the industrialization of the development by equipping practitioners with blueprints for
their implementations. The core concept is the ETL (extract, transform, load) process
known from data warehousing [8]. We assign data migration specific objectives to
each step. If different developers develop code (or use ETL tools) for the steps, the
results might look completely different. However, we observed only very few
different underlying patterns, which we compile in this paper. Developers should look
at a migration problem in a project and remember immediately the right pattern(s) he
or she has to adopt and use. By focusing on the data structure before and after the
usage of the pattern, we characterize the patterns in a universally applicable way.

We organize the rest of our paper as following: Section 2 discusses related work
followed by a presentation of our general migration architecture (Section 3). Section 4
explains the most important implementation techniques (language constructs and
tools). Sections 5-7 describe the patterns for the different data migration steps, i.e.
extract the data from the old system, transform it with respect to the new schema, and,
finally, load the data into the new system. Detecting failures, especially lost data, is a
major issue for data migration. We devote Section 8 to this challenge.

2 Related Work

Data migration is a practitioners’ topic, i.e. only very few publications exist.
However, the pioneering work comes from academia: the butterfly approach [9]. The
butterfly approach provides a phase model with five steps: (i) analysis, (ii)
development of the data mappings, (iii) building up a sample data set in the target
system, (iv) migration of the system components to the target system without any
data, and (v) step-by-step data migration. The key architectural element is a
temporary message queue. Messages in the message queue are either “waiting” or
“processed”. The message queue has two operating modes. In the first mode, it
processes messages in the state “waiting” respectively newly arriving messages from
the old system for the migration. Processed messages switch their state to “processed”
but do not leave the message queue yet. In the second mode, “processed” messages
are released into the target system whereas newly arriving messages are stored in the
queue in the mode “waiting”. The message queue switches regularly between the two
modes. The assumption is that the number of messages in the queue gets smaller and
smaller.

The butterfly architecture suits well for batch processing with one or just a few
message queues. The more interactive the processing and the more systems are
coupled, the more difficult and expensive the butterfly approach becomes.

 Towards the Industrialization of Data Migration 65

The most extensive work on data migration project management is a book written
by Morris [10]. The author focuses mainly on project managers having to set-up and
organize a migration project for the first time. He also provides a high-level overview
about the most important technical issues. An Endava white paper has the same focus
[11]. Shorter articles (e.g. [12, 13]) target the same audience, but only discuss very
basic problems and pitfalls.

Tool descriptions focus on how to use (often target system specific) tools for data
migration. Examples are a book about SAP’s data migration tools [14] or explanations
of how to migrate to a new product version or how to get away from a competitor’s
product [15, 16]. Furthermore, Carreira and Galhardas describe a specific language
designed especially for data migration purposes [17].

Broadening the view, also data warehousing respectively the ETL process
mentioned above are related [8]. Schema mapping [18], an area were tremendous
research took place, is related due to the goal of mapping schemata with their
attributes. Though we would have been more than happy to use (semi-)automatic
techniques to reduce costs, the focus is too different. Companies buy new software to
get additional functionality. This requires transforming and enriching the data being
migrated from the old to the new system, which is difficult to automate.

3 Generic Migration Architecture

Each data migration project has to decide whether to follow the source-push or the
target-pull paradigm [11]. Target-pull means migrating only data necessary for the
target system, whereas source-push migrates all data of the old system into the new
one. On a first glance, the latter one sounds appealing. One cannot forget any data
because everything is in the target system. However, it is highly uneconomical.
Usually only around 10% of the attributes have to be migrated. Users and application
management understand and know these attributes well. Other attributes require more
effort and an in-depth analysis of the application. Many attributes are there for pure
technical reasons or to store intermediate results. So if the application is not very
simple, it is too expensive to analyze every attribute. Target-pull, i.e. hunting (and
migrating) attributes of the old system needed by the new one, is the option of choice.
But certainly, it makes sense to have a copy of the old system in a read-only database
before the old system is switched off.

Load Extract Transform

Load

Semantic Migration Verification Test Cases

Technical Migration Verification / Reconciliation Error Log& Statistics

M
ig

ra
tio

n
M

ig
ra

tio
n

P
ro

ce
ss

V

er
ifi

ca
tio

n

Data Migration Process Control Component

F
iltering

R
estruc-

turing
&

M
apping

C
opy/D

e
-

coupling

Download
Data

Filtered
Data

Upload
Data

New
Platform

Old
Platform

Fig. 1. Generic Migration Architecture

66 K. Haller

The centre of our data migration architecture in Figure 1 is an ETL process. The
extract step aims firstly on decoupling the data migration project and the old system.
It copies the data to a different server named download area. Thus, the project cannot
affect the daily business of the bank. Secondly, the extract step identifies the data to
be migrated and filters everything else. Customers, for example, not doing any
business with the bank for years might not be of interest. The filtering is the one and
only point where the decision is made whether an object is migrated or not. If an
object passes this border, it must reach the target systems.

Next, the filtered data runs through the transformation step. If the database
schemata of the old and new system differ, the data must be restructured in the
transformation step. If the domain values are different (e.g. one system stores
the currency as “USD” whereas the second one used the full name “US DOLLAR”),
the transformation step accomplishes the mapping. Finally, after the transformation
step, the data is loaded into the new system.

The ETL process illustrates the migration process of a single object type like
customers or accounts. However, core-banking systems have many object types, i.e.
there is one ETL process for each object type. Furthermore, often additional tasks
must be performed like calculating statistics and histograms for the optimizer. Many
processes and additional tasks, possibly to be performed in a certain order, make it too
risky for a pure manual orchestration. Therefore, a data migration process control
component stores the execution order. It does not necessarily perform the complete
migration without manual intervention, but might automate certain steps.

After all data has been migrated, one verifies that the migrated data is correct and
complete based on two complementary migration verification techniques. Test cases
are selected sample objects, e.g. addresses and accounts of five typical and five very
important customers. A tester checks manually all attributes like owner, IBAN,
interest rate etc. in the old and in the new system for these objects (semantically
migration verification). The second technique, reconciliation, is an automatic
technical verification. It checks whether all objects have been migrated, but not
whether all attributes are correct. It allows detecting e.g. five missing accounts out of
ten millions.

4 Programming Paradigms

The generic data migration architecture assigns goals to each step. Fulfilling the
goals can be done with different programming paradigms. The choice of the
programming paradigm and the tool respectively programming language depends
on each project’s situation. The source and target systems’ databases are relevant,
knowledge in the project, availability of tools, the project duration etc. Therefore,
we focus on the ideas of the three main paradigms (row-based implementation, set-
oriented implementation, ETL tool). We discuss their different advantages on a
qualitative level and provide concrete examples using PL/SQL respectively Oracle
Warehouse Builder.

In the examples, the source schema has one table for natural persons
(OLD_PERSONS) and one for juristic persons (OLD_COMPANIES). The target

 Towards the Industrialization of Data Migration 67

schema consists of one table CUSTOMERS. All rows of the natural and juristic
persons tables are migrated if they represent customers (TYPE='Customer'). To
illustrate transformations, natural persons having a Ph.D. (attribute PHD='+') get a
“Dr.“ prefix to their names in the target table.

1 DECLARE
2 CURSOR c_old_persons
3 IS SELECT name, internal_id, phd FROM old_persons WHERE ctype = 'CUSTOMER';
4 CURSOR c_old_companies
5 IS SELECT name, internal_id FROM old_companies WHERE ctype = 'CUSTOMER';
6 newname varchar2(100);
7 BEGIN
8 FOR cp IN c_old_persons
9 LOOP
10 IF (cp.phd = '+') THEN newname := 'Dr. ' || cp.NAME;
11 ELSE newname:=cp.name; END IF;
12 INSERT INTO customers (NAME, internal_id)

 VALUES (newname, cp.internal_id);
13 END LOOP;
14 FOR cc IN c_old_companies
15 LOOP
16 INSERT INTO customers (NAME, internal_id)

 VALUES (cc.NAME, cc.internal_id);
17 END LOOP;
18 COMMIT;
19 END;

Example 1: Row-oriented Implementation Paradigm using PL/SQL

1 BEGIN

2 INSERT INTO customers(name, internal_id)

3 SELECT CASE WHEN phd='+' THEN 'Dr. '||name ELSE name END, internal_id

4 FROM old_persons WHERE ctype='CUSTOMER'

5 UNION

6 SELECT name, internal_id

7 FROM old_companies WHERE ctype='CUSTOMER';

8 COMMIT;

9 END;

Example 2: Set-oriented Implementation Paradigm using PL/SQL

Example 3: ETL-Tool-based Implementation using Oracle Warehouse Builder

68 K. Haller

4.1 The Row-Oriented Implementation Paradigm

The row-oriented implementation paradigm specifies the migration in an imperative
way using e.g. Java with JDBC or PL/SQL scripts. There is one script for each object
type (addresses, persons etc.). The key idea is that each script has a loop enclosing the
mapping (Example 1, lines 8-13 and 14-17). Inside the loop, a cursor accesses and
processes one row per iteration of the loop. The actual implementation of the
migration deals only with one source table row per iteration (lines 10-12 and line 16).
The advantage of a row-based implementation is, firstly, that everyone familiar with
imperative programming understands the concept. Secondly, the concept hides data-
parallelism. Using cursors means that one does not have to consider the whole table at
once but only the recent row. The ultimate benefit of having programming tasks with
a lower complexity is that staffing the project becomes easier. However, some
optimization possibilities are lost which a database optimizer might have otherwise.

4.2 The Set-Oriented Implementation Paradigm

The set-oriented implementation paradigm also uses an imperative programming
model. Instead of hiding data-parallelism using cursors, it uses set-oriented SQL-
statements like SELECT. In our example, all relevant data of table OLD_PERSONS
respectively of table OLD_COMPANIES is selected and transformed in one statement
(Example 2, lines 3-4 and 6-7). Complex transformations are more difficult to be
implemented in a single step. Then, it might be wise implementing the transformation
in more steps and storing intermediate results in temporary tables. The highly
compact implementation allows database optimizers to execute the code more
efficiently than row-oriented implementations. The disadvantage is the higher level of
abstraction requiring programmers feeling comfortable with data set-oriented
thinking.

4.3 ETL-Tool-Based Implementation Technique

ETL-tools often provide a visual programming language for defining data-flows. Data
flows have one or more data sources. In Example 3 on the left, the tables
OLD_COMPANIES and OLD_PERSONS are such sources. A data sink collects the
result (table CUSTOMERS). Between the data sources and the data sink(s) operators
can be placed for manipulating the data. In our example, the operators
FILTER_PERSONS and FILTER_COMANIES filter objects not being customers.
The operator EXPRESSION changes the names of persons depending on the PHD
attribute. The companies thread and the customers thread come together at the
UNION set operation implementing a UNION.

ETL tools provide a visual way of programming. The systems are very robust.
However, complex migrations might require large data-flows which might be difficult
to understand. The main obstacle against ETL tools is that learning them might take a
long time if the knowledge does not already exist.

 Towards the Industrialization of Data Migration 69

5 Extract Step Patterns

The extract step fulfils two goals. It downloads data from the productive system in the
first sub-step. Afterwards, in the second sub-step, it filters the data. The purpose of
the download sub-step is decoupling. A data migration project works on a separate
project server, such that the project does not interfere with the daily operations on the
old system. The decoupling requires downloading a copy of all possibly needed tables
(e.g. customers, customer accounts, and banks in the example in Figure 2, but not
account bookings). Generally, it is not wise to be too selective with the tables to be
downloaded. Firstly, downloading a missing table later might only be allowed during
dedicated service windows of the old system. Secondly, the data might become
inconsistent. Assume one downloads all customer accounts on May 2nd and account
balances on May 15th. If accounts are opened or closed between May 2nd and May
15th, there are suddenly accounts without account balances or vice versa. Such
inconsistencies result in errors or testing problems. Thus, one missing table might
require downloading a large number of tables to ensure consistency.

The filtering sub-step is conceptually important for the migration verification (see
Section 8). Objects passing the filter must make it into the target system. This rule
must be enforced strictly. Otherwise, it becomes difficult to decide whether an object
was excluded on purpose or was forgotten. Such questions are especially difficult to
answer if they arise weeks after the implementation.

The filtering allows excluding superfluous objects, e.g. customers who died ten
years ago. Filtering also excludes objects to be migrated manually. Manual migration
is more economical if there are only a few objects of a certain type (usually less then
100-1000). Also, some objects might already be in the target system. A core-banking
system might e.g. already store all stock exchanges in a table. However, it is
important to understand that no transformation takes place in the filtering step. But
certainly, the object model in the old and new system might differ resulting in
splitting object sets. Figure 2 illustrates the aspect. The old system stores all banks in
one table. The new one distinguishes between the roles of banks. There are banks the
bank does business with directly, e.g. because the bank has nostro accounts with
them. Other banks are for reference purposes only, e.g. banks in Central Asia to
which money could be sent by SWIFT. Thus, the banks of the old system are divided
during the filtering into “business partner” banks and “reference data” banks.

Old Platform Download Data Filtered Data

Data Migration Project ServerProduction Server

Download Filtering

Reference only
Direct interaction

Banks

Reference only
Direct interaction

Banks

Customer Account Bookings

Customer Accounts

Customers

Banks
Customers

Business Partners

Banks
Customers

Business Partners

Customer Accounts

Accounts

Customer Accounts

Accounts

Banks
Reference Data

Banks
Reference Data

Reference only
Direct interaction

Banks

Reference only
Direct interaction

Banks

Customer Accounts

Customers
Business
Partners
Script

Accounts
Script

Bank
References
Script

Fig. 2. Extract Step

70 K. Haller

The download sub-step copies tables and therefore does not need special patterns
for the implementation. The filtering is more complex. In the following, we present
the three main filtering patterns mostly needed in projects. Our presentation relies on
the sample schema in Figure 3. The schema stores all accounts of the old system in
table T_ACCOUNT. Customer accounts (in contrast to internal accounts) refer to their
owner in table T_CUSTOMER. The third table T_INTERESTRATE stores the
accounts’ interest rates and how they changed over time. With the help of this sample
schema, the three patterns are introduced quickly.

• Attribute value based filtering. The pattern decides whether a row is selected
for each row independently of other rows or tables. One example is choosing all
accounts from table T_ACCOUNT with PRODUCT=’SAVINGS ACCOUNT’
(Result Set 1 in Figure 3).

• Selection table based filtering. The pattern decides whether a row is selected
based on information in a second table. The pattern determines a key for each of
the rows in table one. In the second table, the pattern looks for rows having a
matching key. Depending on the identified rows in the second table, the row of
the first table passes the filter. An example is choosing all rows from table
T_ACCOUNT having an owner with BRANCH_ID=10 stored in table
T_CUSTOMER or not having a customer as an owner (Result Set 2). It could be
implemented e.g. based on a join condition like:

SELECT a.*
FROM T_ACCOUNT a LEFT OUTER JOIN T_CUSTOMER c

ON a.OWNER_ID=c.CUSTOMER_ID
WHERE c.CUSTOMER_ID IS NULL OR c.BRANCH_ID=10

• Aggregation based filtering. Aggregation functions in SQL determine a value
based on information in several rows, e.g. the highest value or the average.
Similarly, aggregation based filtering decides whether a row is filtered based not
only on the information of the row itself. It considers also other rows of the same
table. A good example is choosing the latest interest rate for each account, i.e. the
currently valid one (Result Set 3). Table T_INTERESTRATE stores two interest
rates for account 1000765208, one valid from 6.8.2007, the other one from
1.1.2007. For choosing the actual valid interest rate, one must look at all interest
rates of account 1000765208. Thus, the filter chooses the interest rate valid from
6.8.2007 and to skip the one from 1.1.2007.

125669

105670

105668

BRANCH_IDCUSTOMER_IDT_CUSTOMER

125669

105670

105668

BRANCH_IDCUSTOMER_IDT_CUSTOMER

22INTERNAL ACCOUNT1000605751

5670SAVINGS ACCOUNT1000455444

5669CHECKING ACCOUNT1000405201

SAVINGS ACCOUNT

PRODUCT

5669

OWNER_ID

1000765208

ACCOUNT_IDT_ACCOUNT

22INTERNAL ACCOUNT1000605751

5670SAVINGS ACCOUNT1000455444

5669CHECKING ACCOUNT1000405201

SAVINGS ACCOUNT

PRODUCT

5669

OWNER_ID

1000765208

ACCOUNT_IDT_ACCOUNT

Result Set 1

Result Set 2

Result Set 3

0.5%1.1.20071000405201

0.5%1.1.20071000765208

5.8.2007

DATE

0.85%

INTREST_RATE

1000765208

FK_ACCOUNT_IDT_INTRESTRATE

0.5%1.1.20071000405201

0.5%1.1.20071000765208

5.8.2007

DATE

0.85%

INTREST_RATE

1000765208

FK_ACCOUNT_IDT_INTRESTRATE

Fig. 3. Sample Tables for Filtering Patterns

 Towards the Industrialization of Data Migration 71

6 Transformation Implementation Patterns

6.1 Pattern Group Mapping

Mapping is similar to working with a dictionary. You look for the value of the old
system (e.g. “Germany” or “United States”). In the same row, but in a different
column, you find the value for the new system (“DEU” and “USA”). The pattern
group mapping provides two implementation patterns (Figure 4):

• Mapping table. A mapping table stores a value of the old system (“Germany”)
and the corresponding value of the new system (“DEU”) in each row. Mapping
tables are specified best as Excel sheets by experts with business knowledge.
Then, the excel file is loaded into the database system. However, if the table is
very small, it might make sense to use a CASE statement instead of a mapping
table. Figure 4 provides a simple example based on the mapping table
MAP_COUNTRY. Simple means that there is one attribute used for choosing the
row (NAME), and one attribute is delivered back (ISO_CODE_3). The new value
is determined by a join statement.

SELECT c.CUSTOMER_ID, m.ISO_CODE_3
FROM CUS_OLD c LEFT OUTER JOIN MAP_COUNTRY m
 ON c.nationality=m.name

• Mapping function. Some mappings are more complex and too difficult to be
specified using a mapping table. A good example is temperature conversion from
degree Celsius to Fahrenheit, where e.g. 3.21°C=(3.21*9/5+32)F or if the assets
under management and the margin of a customer are mapped to a classification of
the customer. In this situation, a mapping function is needed as represented by f
in Figure 4. A corresponding mapping SQL statement would be:

SELECT CUSTOMER_ID, f(CONTRIBUTION_MARGIN, ASSETS)

FROM CUS_OLD

f

SGPSingapore

USAUnited States

DEUGermany

ISO_CODE_3NAMEMAP_COUNTRY

SGPSingapore

USAUnited States

DEUGermany

ISO_CODE_3NAMEMAP_COUNTRY

USA

SGP

DEU

NATIONALITYT_CUSTOMER

23.10.1968G5670

12.03.1948A5669

05.07.1970C5668

BIRTHDAYCLASSIFICATIONCUSTOMER_ID

USA

SGP

DEU

NATIONALITYT_CUSTOMER

23.10.1968G5670

12.03.1948A5669

05.07.1970C5668

BIRTHDAYCLASSIFICATIONCUSTOMER_ID

United States21‘787-3005670

Singapore5‘740‘22057‘2005669

Germany100‘5303‘5005668

NATIONALITYASSETSCONTRIBUTION_MARGINCUSTOMER_IDCUS_OLD

United States21‘787-3005670

Singapore5‘740‘22057‘2005669

Germany100‘5303‘5005668

NATIONALITYASSETSCONTRIBUTION_MARGINCUSTOMER_IDCUS_OLD

Fig. 4. Sample Tables Mapping Pattern Group

6.2 Pattern Group Restructuring

The old and the new system usually have different object models resulting in different
database schemata. Restructuring patterns help transform existing data to fit into the
database schema of the target system. The three main patterns are:

72 K. Haller

T_CUS

25%5669

50%5670

0%5668

DISCOUNT_LEVELCUSTOMER_ID

T_CUS

25%5669

50%5670

0%5668

DISCOUNT_LEVELCUSTOMER_ID

T_ACC

56701000324419

56701000225055

FK_OWNER_IDACCOUNT_ID

56691000765208

5670

5669

1000565097

1000405201

T_ACC

56701000324419

56701000225055

FK_OWNER_IDACCOUNT_ID

56691000765208

5670

5669

1000565097

1000405201

LOG

PROBLEMID

Discount5670

LOG

PROBLEMID

Discount5670

T_ADDRESS

Denver

Singapore

Berlin

CITY

USA

SGP

DEU

COUNTRY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

FK_CUS_ID

5669

5668

T_ADDRESS

Denver

Singapore

Berlin

CITY

USA

SGP

DEU

COUNTRY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

FK_CUS_ID

5669

5668

Expansion

Reduction

Move

Expansion

Reduction

Move

Denver

Singapore

Berlin

CITY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

5669

5668

FK_CUS_ID

T_ADDRESS

Denver

Singapore

Berlin

CITY

Main Street 504

112 Robinson Road

Unter den Linden 7

STREET

5670

5669

5668

FK_CUS_ID

T_ADDRESS

T_ACCOUNT

50%56701000225055

25%56691000765208

25%56691000405201

5670

5670

FK_OWNER_ID

50%

25%

DISCOUNTACCOUNT_ID

1000565097

1000324419

T_ACCOUNT

50%56701000225055

25%56691000765208

25%56691000405201

5670

5670

FK_OWNER_ID

50%

25%

DISCOUNTACCOUNT_ID

1000565097

1000324419

T_CUSTOMER

5670

5669

5668

CUSTOMER_ID

SGP

USA

DEU

RESID_COUNTRY

T_CUSTOMER

5670

5669

5668

CUSTOMER_ID

SGP

USA

DEU

RESID_COUNTRY

Fig. 5. Restructuring Pattern Group Examples

• Simple Attribute Move. The old and the new data schema store the same
attribute in different tables. For example, the left schema in Figure 5 models the
country of residence as address information and stores it in the address table
T_ADDRESS. The right schema emphasizes the tax perspective. It stores the
country of residence as customer information in table T_CUSTOMER. The simple
attribute move pattern “moves” the information during the transformation step to
a different table, i.e. from T_ADDRESS to T_CUSTOMER.

• Expansion. Both schemata have a semantically similar attribute but modeled on
a different level of granularity. In Figure 5, the left schema provides a discount
level for each customer (T_CUS). Each customer can get one discount level for
all her bank charges, e.g. 0%, 50%, or even 100%. The right schema allows a
more sophisticated fee modeling. Each account can have a different discount
level. If the data from the left schema is migrated into the right one, the discount
level information is expanded by copying the value into each account.

• Reduction. It is the opposite of expansion. The old system allows a more
granular modeling than the new one. Thus, the migration is an approximation of
the old data. Information gets lost. If the migration in Figure 5 takes place from
right to left, customer 5670’s accounts have different discount levels in the right
schema. But the customer can have only one in the left schema. Depending on the
circumstances, it might be mandatory to log such loss of information (table LOG),
because customers must be informed about changes. Thus, it is important not
only to have a log table but also to have a process in place how to deal with such
problems.

7 Load Patterns

When the data is transformed, the migration team loads the data into the target
system. The implementation of the loading is the decision of the vendor. The vendor
can choose from three patterns (Figure 6): the direct approach, the simple API one,
and the workflow API one. The direct approach provides no API. All data is inserted

 Towards the Industrialization of Data Migration 73

Upload
Area

New Platform
Internal Tables

Workflow API Approach

Called for each customer who should be migrated.

Simple API Approach
Gets data from upload area and writes it into internal
target system tables (small transformations possible,
e.g. denormalization).

Direct Approach
Data is written directly into the internal target system
tables, potentially without upload area tables
(migration team).T

ran
sfo

rm
atio

n

Fig. 6. Data Loading Approaches

directly into the internal tables. The simple API approach provides an upload area
with API tables. The migration team inserts data into the API tables and invokes an
API load procedure, which writes the data into the internal tables of the system. The
workflow-based API approach also comes with an upload area with API tables.
However, the API invokes the workflow separately for each object in the API table.
The workflow is the same used e.g. by the GUI if new objects are entered manually.

Before we compare the patterns, we want to point out the vendor’s dilemma.
Customers are not willing to pay a premium for superior support for loading data
during the migration. But the vendor risks his reputation if the project fails due to data
migration problems. For a better understanding of the patterns, we compare them
considering the dimensions in Table 1. Error detection considers whether the
migration team gets feedback for each object whether it was migrated successfully. If
not, a reason shall be given. Conformity compares data migrated by the data migration
team and data manually entered via a GUI. The migrated data shall comply with the
same requirements as manually entered data. Vendor effort rates the investment
the vendor has to make. The migration team training addresses how much training the
implementation team needs to work efficiently. The migration team implementation
effort reflects the effort a trained team has for the implementation.

If the new system implements the direct approach, the core-banking system does
not detect any migration errors. At most, some triggers or constraints might prevent
the most severe mistakes. The conformity of migrated and manually entered data
might be weak if the migration team does not implement exactly the same checks

Table 1. Load Step Strategies

 Technical Dimensions Vendor Costs Costs Migration Team

 Error
Detection

Conformity Team Training Imple-
mentation

Direct
Approach

No support Not
guaranteed,
difficult to
achieve

No effort High, in-depth
understanding
of internal
tables needed

High(est) due
to the need to
implement all
checks

Simple
API

Handled by
API

Some confor-
mity, but not
guaranteed

High, if
conformity
desired

Low, requires
good vendor
documentation

Overhead for
guaranteeing
conformity

Workflow-
based API

Handled by
API

Guaranteed Initial costs
for framework,
rest low

Low, requires
good vendor
documentation

No overhead
for extra
checks

74 K. Haller

applied to manually entered data respectively if not all restrictions are enforced by the
database schema. However, the direct approach is the cheapest one for the vendor. It
costs nothing. On the other side, the migration team needs much training (respectively
learns by trial and error during the project, which is quite expensive). Also, the
implementation is costly because the migration team has to implement many
consistency checks.

The simple API approach means that the API copies the data from the API tables
(possibly with some changes) into the internal tables of the system. The API can
check for failures or non-compliances to the data model. The vendor either has to
implement the same checks again he already uses for the GUI (high costs) or there is
only a limited conformity guarantee. The benefit of an API for the migration team is
that the team needs less training due to a clearly defined API. The migration team’s
implementation effort is restricted to missing conformity checks; therefore, it looses
time by running into mistakes. The extra effort of the migration team depends how
much the customization can change, because the changes require adopting the
conformity checks or might be a source for mistakes.

If a vendor implements the workflow-based API approach, the workflows used
for checking the consistency and inserting new data into the system are identical for
data inserted via a GUI or data being migrated. The API uses existing workflows and
returns already defined error messages. The vendor has initial costs for a framework.
Afterwards, he has nearly no additional efforts no matter how many object types have
to be considered. Also the migration team benefits from this approach. It has low
training costs and gets data consistency guaranteed by the API.

8 Technical Migration Verification

A standard method for checking the functional correctness of applications is using test
cases. In data migration projects, this means checking whether all attributes of
selected objects are correctly migrated. Additionally, customers like banks or external
auditors want to be sure that no data is lost. Every single customer, account, etc. must
be checked. This is a task to be automated and usually termed technical migration
verification or reconciliation. The focus is on checking relevant, selected attributes of
all objects. Result is a reconciliation sheet. It is produced after each test data
migration as a feedback for the migration team and after the final data migration. In
the latter case, it enables the bank to decide whether the new system can replace the
old one.

Based on our experience, we suggest that a reconciliation sheet consists of two
parts, statistics and migration errors. Statistics provide an aggregated high level view,
e.g. how many objects (accounts or also the sum of assets under management) exist in
both systems and which only in one of the two. The migration errors part lists the
“needles in a haystack”. If three out of three million accounts are missing or have
different attribute values, the error section lists keys identifying the wrong or missing
objects together with the failure information (“object is missing” or “attribute
BALANCE has different values”).

We distinguish three patterns for deriving a reconciliation sheet (Table 2). The top-
down pattern is the simplest one. It is used only if a project has not (or has yet not

 Towards the Industrialization of Data Migration 75

Table 2. Reconciliation Strategies

Pattern Idea Identification Usage Restrictions Recon Sheet
Section

Top-down Counting,
potentially
grouped by

Object type level, based
on table or characteristic
attributes

No restrictions. Statistics

Bottom-up
equivalence

Comparing
row by row

Key candidate are
equivalent in both cases,
attributes to be compared
belong in both systems to
the same object type

Key candidate
attributes or attributes
to be compared must
not be involved in a
restructuring

Comparison,
results can be
aggregated to
statistics

Bottom-up
fingerprint

Comparing
aggregated
row
information

Aggregated rows have a
common key attribute (but
not a key for each row)

Useful in case of
restructuring

Comparison,
results can be
aggregated to
statistics

had) enough time to implement a sophisticated reconciliation. At least, it informs
whether a large number of objects are missing. It creates the statistics section only by
counting the objects in the old and new system, possibly considering subtypes. The
accounts’ reconciliation sheet in Figure 7 illustrates the aspect with the statistics for
the accounts with subtype information (customer, nostro, etc.).

For identifying which single account got lost or has a wrong type, the comparison
section of the reconciliation sheet must be created. The bottom-up equivalence
pattern is one possibility. It creates a unique key for each row in the tables of the old
and new system and looks whether there is a corresponding one in the other table. The
attribute ACCOUND_ID, for example, is a good key for the tables T_ACCOUNT_OLD
and T_ACCOUNT_NEW. The pattern can be implemented as following:

SELECT o.ACCOUNT_ID, n.ACCOUNT_ID,
CASE WHEN o.ACCOUNT_ID is not null AND n.ACCOUNT_ID is not null THEN 'OK'
 ELSE 'FAILED'
END as match

FROM t_account_old o FULL OUTER JOIN t_account_new n ON n.account_id=o.account_id

It is mandatory to use a full outer join to identify rows in the old or the new system
missing a counterpart in the other one. In our example, account 1000765208 exists
only in the old system and 5000565097 is a phantom only existing in the new system.
If the keys match, selected attributes are checked for correctness. The equivalence
comparison includes relevant and comparable attributes. The only comparable
attributes for accounts is the account type, which fails for account 9500000084. To
get this result, we extend the matching join-condition as following:

SELECT o.ACCOUNT_ID, n.ACCOUNT_ID,
CASE WHEN o.ACCOUNT_ID is not null AND n.ACCOUNT_ID is not null THEN 'OK'

 ELSE 'FAILED'
 END as match,

CASE WHEN o.ACCOUNT_TYPE = n.ACCOUNT_TYPE THEN 'OK'
 ELSE 'ERROR'

END as equal
FROM t_account_old o FULL OUTER JOIN t_account new n ON

n.account_id=o.account_id

In practice, the bottom-up equivalence pattern works well for 90-95% of the
situations. The interest rates example in Figure 7 is one where it fails. A good
reconciliation would use a pair <ACCOUNT_ID, LIMIT> as a key and compare the

76 K. Haller

interest rate as the most relevant attribute. This is not possible because the limit in the
old system is an upper limit whereas the one in the new system a lower one. The
worst thing one can do in such a situation is to copy the code used to transform
the upper to a lower limit. If this is done, the reconciliation looks always perfect. The
data migration step and the reconciliation have the same input and process the data in
the same way. Thus, the results are the same no matter how wrong the transformation
itself is. In such situations, the bottom-up fingerprint pattern helps. A fingerprint (a
kind of hash value) is constructed using all relevant attributes, but it is not necessarily
a semantically sensible piece of information.

We discuss now three sample fingerprints for the situation above. The simplest
fingerprint is to look whether interests exist in the old and the new system for exactly
the same accounts. Better would be option two, i.e. to look whether accounts with
interests have always the same number of interests in both systems (like account
1000405201 having three ones). The third approach, which we used in our projects, is
to sum up the interest rates for each account. It is semantically nonsense to calculate
3.00%+3.50%+3.75%=10.25% for account 1000405201. However, the rate
information is included and the number of limits also influences the result. Our
fingerprint does not guarantee that the limit - rate relationship is correct. However,
such systematic failures should be detected by the manual migration verification,

C
om

pa
ri

so
n

A
cc

o
un

ts

Profit-Loss

Nostro

Vostro

Customer

Customer

Customer

ACCOUNT_TYPE

SINGAPORE

NEW YORK

BAHAMAS

MUNICH

ZUERICH

HONG KONG

BRANCH

5000565097

9500000084

3000324419

1000225055

1000765208

1000405201

ACCOUNT_IDT_ACCOUNT_OLD

Profit-Loss

Nostro

Vostro

Customer

Customer

Customer

ACCOUNT_TYPE

SINGAPORE

NEW YORK

BAHAMAS

MUNICH

ZUERICH

HONG KONG

BRANCH

5000565097

9500000084

3000324419

1000225055

1000765208

1000405201

ACCOUNT_IDT_ACCOUNT_OLD

3

4

4

10

4

5

CLASSIFICATION

Nostro

Nostro

Nostro

Vostro

Customer

Customer

ACCOUNT_TYPE

5000165097

5000565097

9500000084

3000324419

1000225055

1000405201

ACCOUNT_IDT_ACCOUNT_NEW

3

4

4

10

4

5

CLASSIFICATION

Nostro

Nostro

Nostro

Vostro

Customer

Customer

ACCOUNT_TYPE

5000165097

5000565097

9500000084

3000324419

1000225055

1000405201

ACCOUNT_IDT_ACCOUNT_NEW

3.50%NULL1000225055

NULL

150‘000

NULL

NULL

200‘000

50‘000

UPPERLIMIT

3.10%1000225055

0.50%3000324419

3.00%1000765208

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_OLD

3.50%NULL1000225055

NULL

150‘000

NULL

NULL

200‘000

50‘000

UPPERLIMIT

3.10%1000225055

0.50%3000324419

3.00%1000765208

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_OLD

3.50%150‘0001000225055

0

0

200‘000

50‘000

0

LOWERLIMIT

3.00%1000225055

0.50%3000324419

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_NEW

3.50%150‘0001000225055

0

0

200‘000

50‘000

0

LOWERLIMIT

3.00%1000225055

0.50%3000324419

3.75%1000405201

3.50%1000405201

3.00%1000405201

RATEACCOUNT_IDT_INTR_NEW

T
ran

sform
ation

/M
ig

ration

C
o

m
pa

ri
so

n
In

te
re

st
s

0.50%30003244190.50%3000324419

6.50%10002250556.60%1000225055

3.00%1000765208

10.25%100040520110.25%1000405201

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

0.50%30003244190.50%3000324419

6.50%10002250556.60%1000225055

3.00%1000765208

10.25%100040520110.25%1000405201

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Nostro5000165097Nostro5000565097

Vostro3000324419Vostro3000324419

Customer1000225055Customer1000225055

Customer1000765208

Customer1000405201Customer1000405201

Value_1KeyValue_1Key
EqualMatch

NewOld

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Nostro5000165097Nostro5000565097

Vostro3000324419Vostro3000324419

Customer1000225055Customer1000225055

Customer1000765208

Customer1000405201Customer1000405201

Value_1KeyValue_1Key
EqualMatch

NewOld

R
ec

on
ci

lia
ti

on
 S

h
ee

t
A

cc
o

un
ts

R
ec

o
nc

ili
at

io
n

S
he

et
A

cc
ou

nt
s

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Customer1000765208

Value_1KeyValue_1Key
EqualMatch

NewOld

Section 2: Migration Errors

66Total

014. Profit-Lost

113. Vostro

312. Nostro

231. Customer

NewOldType

Section 1: Statistics

Nostro9500000084Profit-Loss9500000084

Nostro5000565097

Customer1000765208

Value_1KeyValue_1Key
EqualMatch

NewOld

Section 2: Migration Errors

66Total

014. Profit-Lost

113. Vostro

312. Nostro

231. Customer

NewOldType

Section 1: Statistics

6.50%10002250556.60%1000225055

3.00%1000765208

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

Section 2: Migration Errors

47Total

NewOldType

Section 1: Statistics

6.50%10002250556.60%1000225055

3.00%1000765208

Fingerprint_1KeyFingerprint_1Key
EqualMatch

NewOld

Section 2: Migration Errors

47Total

NewOldType

Section 1: Statistics

Reconciliation: Statistics and Migration Errors

Reconciliation: Comparison Preparation

Fig. 1. Reconciliation Sheet Generation Process

 Towards the Industrialization of Data Migration 77

which should include test cases with accounts with complex interest rate information.
This fingerprint could be implemented as following:

SELECT o.ACCOUNT_ID, n.ACCOUNT_ID,
CASE WHEN o.ACCOUNT_ID is not null AND n.ACCOUNT_ID is not null THEN 'OK'
 ELSE 'FAILED'
END as match,
CASE WHEN o.FINGERPRINT= n. FINGERPRINT THEN 'OK'
 ELSE 'ERROR'
END as equal
FROM (SELECT ACCOUNT_ID, SUM(RATE) as fingerprint
 FROM T_INTR_OLD GROUP BY ACCOUNT_ID) o
FULL OUTER JOIN (SELECT ACCOUNT_ID, SUM(RATE) as fingerprint
 FROM T_INTR_NEW GROUP BY ACCOUNT_ID) n
ON n.account_id=o.account_id

Data migration is often overlooked, but it is crucial for success when replacing an
old by a new system. Our data migration architecture relies on an ETL process based
data migration architecture. It defines clear objectives for the different ETL steps.
Decoupling and filtering takes place in the extract step, mapping and restructuring
data to fit into the schema of the target system follow in the transformation step.
Getting the data into the target system with a feedback about the success takes place
during the load step. Furthermore, we present the typical patterns developers find in
their project such that they can rely on simple building blocks for their
implementation. By also addressing the reconciliation challenge which is unique for
data migration projects, all our concepts together form a blueprint for the
implementation tasks in data migration projects. Companies can easily incorporate
our work into their development processes. Thereby, they improve the standardization
and industrialization of data migration in their projects.

References

1. Gabriel, C.: Plattform-Wechsel: Parforce-Übung mit weitreichenden Folgen, Schweizer
Bank, Zürich (June 2007)

2. CMMI for Development, Version 1.2, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA (2006)

3. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman,
Boston (2002)

4. Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys 31(3) (September 1999)

5. LeanStream® – COMIT Implementationsmethodik, V. 3.0, Comit AG, Zürich (2007)
6. Haller, K.: Datenmigration bei Standardsoftware-Einführungsprojekten. Datenbank-

Spektrum 8(25), 39–46 (2008)
7. Haller, K.: Data Migration Project Management and Standard. In: 5th Conference on Data

Warehousing (DW 2008), St. Gallen, Switzerland. Lecture Notes in Informatics (2008)
8. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology.

SIGMOD Record 26(1), NY (1997)
9. Wu, B., Lawless, D., Bisbal, J., et al.: The Butterfly Methodology: A Gateway-free

Approach for Migrating Legacy Information Systems. In: ICECCS, Como, Italy (1997)
10. Morris, J.: Practical Data Migration. British Computer Society, Swindon (2006)
11. Data Migration – The Endava Approach, White Paper, London (2006)
12. Burry, C., Mancusi, D.: How to plan for data migration, Computerworld, May 21 (2004)

78 K. Haller

13. Hudicka, J.R.: An Overview of Data Migration Methodology. Select Magazine,
Independent Oracle Users Group, Chicago, IL (April 1998)

14. Willinger, J., Gradl, J.: Data Migration in SAP R/3. Galileo Press, Boston (2004)
15. Anavi-Chaput, V., et al.: Planning for a Migration of PeopleSoft 7.5 from Oracle/UNIX to

DB2 for OS/390 (Red Book), IBM, Poughkeepsie, NY (2000)
16. Manek: Microsoft CRM Data Migration Framework (White Paper), Microsoft Corporation

(2003)
17. Crreira, P., Galhardas, H.: Efficient development of data migration transformations. In:

SIGMOD, Paris, France (2004)
18. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB

Journal 10, 334–350 (2001)

Defining and Using Schematic Correspondences for
Automatically Generating Schema Mappings

Lu Mao, Khalid Belhajjame, Norman W. Paton, and Alvaro A.A. Fernandes

School of Computer Science
University of Manchester

Oxford Road, Manchester, UK
{lmao,khalidb,norm,alvaro}@cs.man.ac.uk

Abstract. Mapping specification has been recognised as a critical bottleneck
to the large scale deployment of data integration systems. A mapping is a de-
scription using which data structured under one schema are transformed into data
structured under a different schema, and is central to data integration and data ex-
change systems. In this paper, we argue that the classical approach of correspon-
dence identification followed by (manual) mapping generation can be simplified
through the removal of the second step by judicious refinement of the correspon-
dences captured. As a step in this direction, we present in this paper a model for
schematic correspondences that builds on and extends the classification proposed
by Kim et al. to cater for the automatic derivation of mappings, and present an
algorithm that shows how correspondences specified in the model proposed can
be used for deriving schema mappings. The approach is illustrated using a case
study from integration in proteomics.

Keywords: Schematic correspondences, schema mappings, mapping generation.

1 Introduction

Data integration has for the last two decades been the subject of active investigations
within the database and the artificial intelligence communities [2, 4]. This is testified
partly by the number of research papers, projects and prototypes that tackle data inte-
gration related issues [9]. The aim is to provide users with integrated access to data sets
that reside in multiple sources and are stored using heterogeneous representations [13].
A data integration system can play a central role in multiple applications, e.g., it can
be used for cross-querying of data stored in databases that belong to independent com-
panies, or to promote collaboration in large scientific projects by providing investiga-
tors with a means for querying and combining results produced by multiple research
labs [21]. The components at the heart of a data integration system are: the schemas
of the sources, the data sets to be integrated, an integration schema over which users
pose queries, and mappings that specify how data structured under the schemas of the
sources can be transformed and combined into data structured according to the integra-
tion schema [6].

Despite the advances made, data integration seems to have had a limited impact in
practice: existing data integration systems are mostly research prototypes. The limited

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 79–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

80 L. Mao et al.

adoption of this technology is partly due to its cost ineffectiveness [8]. In particular,
the specification of the mappings between the schemas of the sources and the inte-
gration schema has proved to be both time and resource consuming, and was recently
recognised as a critical bottleneck to the large scale deployment of data integration
systems [8, 15].

Mapping specification is generally a two-phase process. In the first phase, the cor-
respondences specifying how the elements of the integration schema relate to the el-
ements of the sources’ schemas are specified. Correspondences are primarily used to
identify the elements of the integration schema and the source schemas that are seman-
tically equivalent, i.e., represent information that belongs to the same domain concept.
For example, the correspondence 〈Sint .Staff , S1 .Employee〉 specifies that the relation
Staff in the integration schema Sint is semantically equivalent to the relation Employee
of the source schema S1. Different types of correspondences may be drawn between
two schemas [5, 19]. For example, correspondences can be used to relate one element
of a given schema to one element of another schema, e.g., 〈Sint .Staff , S1 .Employee〉,
or to relate multiple elements of one schema to one element of another schema, e.g.,
the correspondence 〈Sint .Staff , {S1 .Employee,S1 .Department}〉 states that the relation
Staff in the integration schema is semantically equivalent to some combination of the
relations Employee and Department of the source schema S1. There are several models
for drawing schematic correspondences in the literature [7, 12, 14, 17], of which the
model proposed by Kim et al. [12] is perhaps the most comprehensive. In the second
phase of mapping specification, the views that implement the mappings necessary for
rewriting the queries issued against the integration schema into queries over the schemas
of the sources are specified. Examples of techniques that can be used for specifying
the mappings based on identified correspondences were informally described by Kim
et al. [11].

The specification of schema mappings is largely a manual activity. In this paper,
we show that the views implementing the mappings can be automatically derived
if the correspondences defined by Kim et al. [12] are refined in a number of care-
fully targeted ways. In essence, it is the argument of this paper that the classical
approach to correspondence identification followed by (manual) mapping generation
can be made more cost-effective through the removal of the second step based on
judicious refinement of the correspondences captured. Take for example the correspon-
dence 〈Sint .Staff , {S1 .Employee, S1 .Department}〉, presented earlier. This correspon-
dence does not specify the correspondences between the attributes of Staff and those
of Employee and Department. Neither does it specify how the tuples of the Staff and
Department relations should be combined. Because of this, an algorithm would not be
able to derive the view that can be used for populating the relation Staff using the tuples
in Employee and Department. The main contributions of this paper are therefore:

– A model for schematic correspondences that builds on and extends the classification
proposed by Kim et al. to enable the automatic derivation of mappings.

– An algorithm for automatically generating the views that implement the mappings
between two schemas based on these more expressive schematic correspondences.

Accordingly, the paper is organised as follows. We begin by presenting the model
for specifying schematic correspondences in Section 2. We go on to show how the

Defining and Using Schematic Correspondences 81

correspondences specified in this model can be used for automatically generating the
views that implement the mappings between two schemas in Section 3. We show how
schematic correspondences can be used for deriving mappings between proteomics data
sources in Section 4. We analyse existing proposals for modelling schematic correspon-
dences and automating mapping specification in Section 5. Finally, we close the paper
by underlying our main contributions in Section 6.

2 Schematic Correspondences

Schematic correspondences are used to associate elements of one schema (referred to in
what follows as the source schema) to elements that are semantically equivalent in an-
other schema (referred to as the target schema). For the purpose of this paper we assume
that source and target schemas are specified using the relational model [3]. Therefore,
the elements connected by schematic correspondences are relations and/or attributes.
As mentioned earlier, the model of schematic correspondences presented in this paper
is built on the classification proposed by Kim et al. [12]. This classification identifies a
wide range of correspondences that may occur between two schemas. Nevertheless, the
correspondences as defined by Kim et al. do not convey sufficient information for de-
riving the views that express the mappings between schemas. Consider, for example, a
correspondence that connects the relations Employee and Address in the source schema
to the relation Staff in the target schema. To be able to specify the view for populating
the relation Staff using the tuples in both Employee and Address, information specifying
how the tuples in Employee and Address are to be combined is needed. In the follow-
ing, we augment the model of correspondences proposed by Kim et al. to support the
automatic generation of mappings. In doing so, we distinguish between two kinds of
correspondences: relation correspondences and attribute correspondences.

2.1 Relation Correspondences

This family of correspondences associates relations from the source schema with re-
lations that are semantically equivalent in the target schema. We distinguish between
four kinds of relation correspondences depending on the number of relations used to
represent a given concept in the source and target schemas, namely one-to-one relation
correspondence, many-to-many relation correspondence, many-to-one relation corre-
spondence and one-to-many relation correspondence.

One-To-One Relation Correspondence. This kind of correspondence associates one
relation in the source schema with one relation that is semantically equivalent to it
in the target schema. For example, a one-to-one relation correspondence can be used
to associate the Company relation in the source schema with the Corporation relation
in the target schema: the tuples of both relations represent business organisations. We
define a one-to-one relation correspondence by the tuple:

〈rs, rt, ps, pt, AC〉
where rs is a relation in the source schema and rt is a relation in the target schema.
AC is a set of attribute correspondences that specifies the relationships between the

82 L. Mao et al.

attributes of the relation rs and those of rt. Attribute correspondences will be presented
in Section 2.2. ps and pt are two selection predicates specifying which instances of
rt can be used to populate rs and which instances of rs can be used to populate rt,
respectively. Note that rs and rt can have different names and different structures, i.e.,
one or more attributes in rs may not have any corresponding attributes in rt, or vice
versa.

Many-To-Many Relation Correspondence. This kind of correspondence associates mul-
tiple relations from the source schema Rs with multiple relations in the target schema
Rt. It specifies that the combination of the relations in Rs is semantically equivalent to
the combination of the relations in Rt. We define a many-to-many relation correspon-
dence by the tuple:

〈Rs, Rt, types, typet, JPs, JPt, HPPs, HPPt, AC〉

where, Rs is a set of relations in the source schema and Rt is a set of relations in the
target schema. To specify the mapping from the relations in Rs to the relations in Rt,
we need information specifying how the relations in Rs and the relations in Rt are
to be combined, respectively. This is specified using the fields types and typet which
take either the value Vertical partitioning or the value Horizontal partitioning. types

specifies how the relations in Rs are to be combined, whereas typet specifies how the
relations in Rt are to be combine. Vertical partitioning indicates that the relations in
Rs (resp. in Rt) should be combined by joining them using JPs (resp. JPt), a con-
junction of attribute comparison predicates. Figure 1 illustrates an example of vertical
partitioning in which the combination of the relations Department and Grant in the
source schema corresponds to the combination of the relations Fund and Person in the
target schema. The relations Department and Grant are combined using the join predi-
cate ‘Department .did = Grant .did ’, and the relations Fund and Person are combined
using the join predicate ‘Fund .PI = Person.person id ’. Note that the attribute PI
represents the identifier of the principal investigator. As we shall see later in Section 3,
we use outer join predicate instead of natural join to avoid any loss of information.

Fig. 1. Example of many-to-many vertical partitioning

Defining and Using Schematic Correspondences 83

A horizontal partitioning indicates that the relations in Rs ∪ Rt represent the same
domain concept. As an example, consider the many-to-many relation correspondence
that connects the relations Undergraduate and Postgraduate from the source schema to
the relations LocalStudent and OverseasStudent in the target schema (see Figure 2). The
relations Undergraduate, Postgraduate, LocalStudent and OverseasStudent capture in-
formation about the same semantic domain, namely Student. Differently from vertical
partitioning in which the relations are combined using the join relational operator, in
the case of horizontal partitioning the relations in the source schema (resp. in the target
schema) have compatible structures and are combined using the union relational oper-
ator. Note that this assumes that semantically corresponding attributes in the relations
to be combined are given the same name. It is worth noting that horizontal partitioning
may be defined between relations that do not have identical structures. Consider the ex-
ample of horizontal partitioning presented earlier in Figure 2. The relation Postgraduat-
eStudent may have, in addition to the attributes of UndergraduateStudent, the attributes
supervisor and advisor. Applying a union operator in this case is not possible since the
two relations have different structures. In this case, it is possible to use the outer union
operator to combine the relations UndergraduateStudent and PostgraduateStudent [3].
This operator deals with the problem of inconsistency in structure between two relations
r1 and r2 by applying the union operator over the relations r’1 and r’2, where r’1 (resp.
r’2) is obtained by adding the attributes in r2 (resp. r1) that are missing in r1 (resp. r2)
and padding them with null values. For example, the outer union of the Undergraduat-
eStudent and PostgraduateStudent relations is a relation that has the same structure as
PostgraduateStudent and in which the tuples representing undergraduate students have
null values for the attributes supervisor and advisor.

To specify the view for populating a relation in the target schema we need information
specifying which tuples obtained by the union of the relations in the source schema are
to be considered. For example, we know that not all local and overseas students are
undergraduate students, and, therefore, we cannot populate the relation Undergradu-
ateStudent using all the tuples obtained by the union of the relations LocalStudent and
OverseasStudent. HPPs and HPPt are used for this purpose. These are two sets, the
elements of which are predicates: an element of HPPt is a conjunction of predicates
that specifies which tuples should be used for populating a given relation in the target
schema; similarly an element of HPPt is a conjunction of predicates that specifies
which tuples should be used for populating a given relation in the source schema.
We assume in the following the existence of the function getHPPredicate(corr,r) that
returns the conjunction in corr.HPPt that is associated with the relation r. For example,
getHPPredicate(corrstudent .HPPs ,UndergraduateStudent) = ‘(category = “undergrad ′′)′,
where corrstudent is the correspondence that relates the relations LocalStudent and Over-
seasStudent to the relations Undergraduate and Postgraduate.

As in one-to-one relation correspondences, AC is a set specifying the correspon-
dences between the attributes of the relations in Rs and those of the relations in Rt.

Many-To-One and One-To-Many Relation Correspondences. These can be seen as spe-
cific cases of many-to-many relation correspondences. A many-to-one relation corre-
spondence associates multiple relations from the source schema Rs to one relation rt

in the target schema. It specifies that the relation obtained by combining the relations

84 L. Mao et al.

Fig. 2. Example of many-to-many horizontal partitioning

in Rs is semantically equivalent to rs. As for many-to-many relation correspondences,
the relations in Rs can be combined by joining them in the case of vertical partitioning,
or by using the union operator in the case of horizontal partitioning. A many-to-one
relation correspondence can be defined by the tuple:

〈Rs, rt, types, JPs, HPPs, ptAC〉
where, Rs is a set of relations in the source schema and rt is a relation in the target
schema. types, JPs, HPPs and AC have the same meaning as in the definition of many-
to-many relation correspondence. pt is a selection predicate specifying which tuples
can be used to populate rt.

A one-to-many relation correspondence associates one relation from the source
schema to multiple relations in the target schema. It is defined by the tuple:

〈rs, Rt, typet, JPt, HPPt, AC〉
where, rs is a relation in the source schema and Rt is a set of relations in the target
schema. typet, JPs, HPPs and AC have the same meaning as in the definition of many-
to-many relation correspondence. ps is a selection predicate specifying which tuples
can be used to populate rs.

2.2 Attribute Correspondences

This family of correspondences associates attributes of relations that belong to the
source schema with attributes that are semantically equivalent in the target schema. As
for relation correspondences, attribute correspondences can be classified into four kinds
depending on the number of attributes involved from the source and target schemas.

One-To-One Attribute Correspondence. This correspondence associates one attribute
in the source schema with one attribute that is semantically equivalent in the target
schema. We define a one-to-one attribute correspondence by the tuple:

〈rs.atts, rt.attt, fs→t, ft→s〉
where atts and attt are attributes of the relations rs and rt, respectively. fs→t (resp.
ft→s) is a function specifying how a value of attt (resp. atts) can be computed using a
value of atts (resp. atts).

Defining and Using Schematic Correspondences 85

Many-To-Many Attribute Correspondence. This correspondence associates multiple at-
tributes Atts in the source schema with multiple attributes Attt in the target schema. It
specifies that the combination of the attributes in Atts is semantically equivalent to the
combination of the attributes in Attt. To specify the mapping between Atts and Attt
we need information specifying how the values of the attributes in Atts are to be com-
bined to obtain the values of the attributes in Attt, and vice versa. We therefore define
many-to-many attribute correspondence by the tuple:

〈Atts, Attt, fs→t, ft→s〉

where Atts is a set of attributes in the source schema and Attt is a set of attributes in
the target schema. The correspondence also specifies two functions: fs→t for computing
the values of the attributes in Attt given the values of the attributes in Atts, and ft→s

for computing the values of the attributes in Atts given the values of the attributes in
Attt.

Notice that the attributes in Atts do not have to belong to the same relation, i.e.
attributes from different relations can be involved. The same observation applies to the
attributes in Attt.

Many-to-one and one-to-many attribute correspondences. These are specific cases of
many-to-many attribute correspondences. A many-to-one attribute correspondence as-
sociates multiple attributes in the source schema with one attribute in the target schema,
whereas a one-to-many attribute correspondence associates one attribute in the source
schema with multiple attributes in the target schema. Both correspondences can be spec-
ified using the same tuple we used for defining many-to-many attribute correspondence,
i.e., 〈Atts, Attt, fs→t, ft→s〉: Atts (resp. Attt) is a singleton in the case of one-to-many
(resp. many-to-one) attribute correspondence. Below is an example of a many-to-one at-
tribute correspondence that associates the attributes fare and tax in the source schema
to the attribute full price in the target schema.

〈{fare, tax}, {full price}, price(), getPriceDetails()〉

price() is a function with the signature given below. Given a fare f, and a tax t, price(f,t)
returns the full price, i.e., the sum of f and t. getPriceDetails() is a function with the
signature given below. Given a full price p, getPriceDetails(p) returns a pair 〈f, t〉,
where f is the fare and t is the tax. In the following, we use getPriceDetails(p)↓fare and
getPriceDetails(p)↓tax to denote f and t, respectively.

price : domain(fare) × domain(tax) → domain(full prise)
getPriceDetails : domain(full price) → domain(fare) × domain(tax)

Schematic correspondences as defined above can be used, as we shall see in the next
section, for automatically generating the mappings between source and target schemas.
To avoid (or minimise) human intervention during this process, every relation in the

86 L. Mao et al.

target schema should be involved in zero or one schematic correspondence, and every
attribute of a relation in the target schema should be involved in zero or one schematic
correspondence. Failure to meet the above criteria will lead to conflicts between corre-
spondences, the resolution of which requires the intervention of a human user. The
resolution of conflicts between correspondences is outside the scope of this pa-
per. Therefore, we assume henceforth that the above conditions are satisfied by the
schematic correspondences between source and target schemas.

3 Mapping Generation

Given the model for schematic correspondences just presented, we can construct an
algorithm (shown in Figure 3) for automatically generating the mappings. The outcome
of a mapping generation process are the views specifying how data described using a
source schema could be used to populate a target schema. Before presenting the details
of this algorithm, we outline the notation that we will use:

– The algorithm for mapping generation outputs a set of views. A view is a
named query. For the purpose of this work, we define a view, v, by the pair
〈namev , queryv 〉, where namev is a string that identifies the view, and queryv

is a query specified using the relational algebra.
– Given a relation r, r.name denotes the name of r and r.attributes the list of attributes

of r.
– Given a relation correspondence corr, corr.source denotes the set of relations in the

source schema that are involved in corr, and corr.target denotes the set of relations
in the target schema that are involved in corr.

– Given a schematic correspondence corr, be it a relation or an attribute correspon-
dence, getCorrCardinality(corr) is a function that specifies whether corr is a one-
to-one, many-to-one, one-to-many or many-to-many correspondence.

– Given a set of attributes correspondences AC, getAttCorrepondence(AC,r.att) re-
turns the correspondence in which the attribute r.att is involved if such a correspon-
dence exists, and returns null otherwise.

– Given a set of relations R = {r1, . . . , rm}, and a conjunction of predicates JP, we
use ����JP R to denote the full outer join of the relations in R using JP, and

⊎
R

to denote the union of the relations in R using the outer union operator.
– append(l,e) is an operation that adds the element e to the end of the list l.

The mapping generation algorithm takes as input a target schema together with a set
of relation correspondences. It iterates over the relations present in the target schema,
retrieving for each of them the associated correspondences (Figure 3, line 3). If a rela-
tion has no correspondence (Figure 3, line 5) then no view is generated for that relation.
If, on the other hand, it is associated with more than one correspondence, then this
conflict in correspondences is reported to the user (Figure 3, line 7). Otherwise, the
algorithm derives a view for the relation in question using the subroutine presented in
Figure 4. This subroutine operates in two steps. Firstly, it specifies the relations taking
part in the view and the way they are to be combined. If the correspondence corr used as
input is a one-to-one or one-to-many relation correspondence then the view is assigned

Defining and Using Schematic Correspondences 87

Algorithm GenerateMappings

inputs Sct: a target schema.

Corr: a set of schematic relation correspondences.

outputs View: a set of views.

begin

1 View = ∅
2 FOR EACH rt ∈ Sct.relations DO;

3 Corrrt = getCorrespondences(Corr,rt)

4 IF |Corrrt | = 0 THEN

5 Signal(‘No view is generated for the relation ′ + rt)

6 IF |Corrrt | > 1 THEN

7 Signal(‘The relation ′ + rt + ‘ has more than one correspondence.′)

8 IF |Corrrt | = 1 THEN

9 Let corr be the only element of Corrrt

10 v = DeriveView(rt,corr)

11 View = View ∪ {v}
12 RETURN View

end

Fig. 3. Algorithm used for generating mappings

the source relation specified by the correspondence (Figure 4, lines 5 and 6). If, on the
other hand, corr is a many-to-many or many-to-one relation correspondence then the
following cases are possible:

– corr specifies a vertical partitioning between the source relations: The view is as-
signed the relation obtained by applying an outer join to the source relations in
corr using corr.JPs (Figure 4, lines 8 and 9). We use the outer join for combining
the relations in the source schema instead of a natural join to avoid any loss of
information. To further illustrate this, consider the example of vertical partitioning
presented earlier in Figure 1. A department may not have any associated grants.
Therefore, applying a natural join, instead of an outer join, for combining Depart-
ment and Grant means losing available information about those departments when
joining the two relations.

– corr specifies a horizontal partitioning between the source relations: The view is
assigned the union of the source relations in corr. As pointed out earlier, we use
the outer union operator instead of the union operator as the relations may not be
union incompatible. In addition, the view is augmented with a selection specifying
which tuples in the source relations are to be used for populating the target relation
(Figure 4, lines 11 and 12).

Secondly, the subroutine specifies the elements that constitute the columns of the
view. To do this, it iterates over the attributes of the target relation rt, retrieving for
each attribute attt the associated attribute correspondence among the correspondences
in corr.AC. The following four cases are possible:

88 L. Mao et al.

Algorithm DeriveView

inputs rt: a relation in the target schema.

corr: a schematic relation correspondence that involves rt.

outputs view: a view for populating rt.

begin

1 view = new View()

2 view.name = rt.name

3 q = new Query()

4 IF (getCorrCardinality(corr) ∈ {‘one − to − one′, ‘one − to − many′}) THEN

5 Let rs be the source relation of corr

6 q ← σcorr.ps rs

7 IF (getCorrCardinality(corr) ∈ {‘many − to − many′, ‘many − to − one′}) THEN

8 IF (corr.types = ‘VerticalPartitioning’) THEN

9 q ← ����corr.JPs corr.source

10 IF (corr.types = ‘HorizontalPartitioning’) THEN

11 p = getHPPredicate(corr,rt)

12 q ← ⊎
corr.source

13 ViewColumns = new List()

14 FOR EACH (attt ∈ rt.attributes) DO

15 corratt = getAttCorrepondence(corr.AC, attt)

16 IF (corratt = null) THEN // That is, if attt is a missing attribute

17 IF (attt IS a key attribute) THEN

18 append(ViewColumns, generateKey());

19 ELSE append(ViewColumns, ‘null′);

20 IF (getCorrCardinality(corratt) = ‘one − to − one′) THEN

21 Let atts be the source attribute in corratt

22 append(V iewColumns, corratt.fs→t + ‘(′+atts + ‘)′)
23 IF (getCorrCardinality(corratt) �= ‘many − to − many′) THEN

24 Let atts1 , . . . , attsm be the attributes in the source schema that are associated with attt

25 append(V iewColumns, corratt.fs→t + ‘(′+atts1 + ‘,′ + . . . + ‘,′ +attsm + ‘) ↓′ +attt)

26 q ← ΠV iewColumns q

27 view.query = q

28 RETURN view

end

Fig. 4. Algorithm for deriving the view for populating a given relation in the target schema

– attt has no associated correspondence among the set of attribute correspondences
specified by corr. In this case, attt is considered as a missing attribute. If attt is a
key attribute then the call to function generateKeyValue() is appended to the list of
columns of the view, otherwise, the value null is appended to the list of columns
of the view (Figure 4, lines 16-19). generateKeyValue() is a function for generating
unique identifiers: it is used to enable the mapping in the absence of attribute cor-
respondences that specify the values of key attributes of the relation in the target
schema.

Defining and Using Schematic Correspondences 89

– attt is involved in a one-to-one attribute correspondence. In this case, the corre-
sponding source attribute is appended to the list of columns of the view (Figure 4,
line 22).

– attt is involved in a many-to-many, many-to-one or one-to-many attribute corre-
spondence. In this case, a call to the function specified by the attribute correspon-
dence with the source attribute(s) used as input, is appended to the list of columns
of the view (Figure 4, lines 24 and 25).

The next section describes an extended, realistic example of automatic mapping gen-
eration in the area of proteomics data.

4 Using Schematic Correspondences for Deriving Mappings
Between Proteomics Data Sources

Proteomics is the study of the set of proteins produced by an organism with the aim
of understanding the behaviour of these proteins under varying environments and con-
ditions. There is a growing number of resources that offer a range of approaches for
the capture, storage and dissemination of proteome experimental data. While the ex-
istence of such resources opens up possibilities for the proteomics community, the di-
versity of data models creates schema integration challenges. In this respect, we have
integrated, in previous work [21], the schemas of four major proteomics data sources,
namely PedroDB1, GPMDB2, PepSeeker3 and Pride4. To do this, we manually spec-
ified the mappings between the schemas of these sources and the integration schema
using the Automed toolkit [1]. In this section, we show that these mappings can be au-
tomatically generated if schematic correspondences of the form presented in this paper
are used as input. Due to space limitation, we will present one example of a one-to-one
relation correspondence and one example of a many-to-many relation correspondence.
Three relations from the integration schema are involved in these examples, namely
IntProtein, IntProteinHit and IntPeak (see Figure 5). The IntProtein relation describes a
protein using an accession number, the name of the gene, its synonyms, the organism in
which the protein is to be found, a textual description, the protein amino-acid sequence,
in vivo modification and the reading frame rf. The IntProteinHit relation is used to
store information about the protein against which all or some of the peptides have been
aligned, and links to some information about the protein itself. A protein is (experimen-
tally) identified using a mass spectrometer which produces a spectrum composed of a
list of peaks. A peak is described by the IntPeak relation using the mass-to-charge ratio
of the protein ions, m-to-z, the peak height, abundance and the isotopic pattern around
the main peak, multiplicity5.

1 http://pedro.cs.manchester.ac.uk
2 http://gpmdb.thegpm.org
3 http://nwsr.smith.man.ac.uk/pepseeker
4 http://www.ebi.ac.uk/pride
5 For further information about the integration schema, the reader is referred to [21].

90 L. Mao et al.

Fig. 5. Examples of relations from the integration schema, GPMDB schema and PepSeeker
schema

Example 1. The correspondence corr1 presented below is an example of a one-to-one
relation correspondence that associates the SearchMasses relation in the schema of GP-
MDB with the IntPeak relation in the integration schema. It specifies that the attributes
pid and m-to-z of the IntPeak relation are associated with the attributes sid and prod-
ucts of the SearchMasses relation, respectively, whereas abundance and multiplicity are
missing attributes in the sense that they are not involved in any attribute correspondence.

corr1.source = {SearchMasses}
corr1.target = {IntPeak}
corr1.AC = {〈sid, pk id, false〉, 〈products, m− to− z, false〉}
corr1.ps = true

corr1.pt = true

Using the schematic correspondence corr1 together with the IntPeak as input to the
algorithm presented in Section 3, we obtained the view vIntPeak presented below for
populating the IntPeak relation of the integration schema. Notice that the missing at-
tributes abundance and multiplicity are assigned the null value.

vIntPeak.query ← Πsid,products,null,nullSearchMasses

Example 2. The schematic correspondence corr2 presented below is an example of a
many-to-many relation correspondence that associates the relations Protein and ProSeq

Defining and Using Schematic Correspondences 91

in the schema of GPMDB with the relations IntProtein and IntProteinHit in the in-
tegration schema. It specifies that the relations Protein and ProSeq should be com-
bined by joining them using the attribute comparison predicate ‘Protein.proseqid =
ProSeq.proseqid’, and that the relations IntProtein and IntProteinHit should be com-
bined by joining them using the attribute comparison predicate ‘IntProtein.p id =
IntProteinHit.p id’.

corr2.source = {Protein, ProSeq}
corr2.target = {IntProtein, IntProteinHit}
corr2.types = ‘VerticalPartitioning′

corr2.AC = {〈proid, p id, false〉, 〈proseqid, hit id, false〉, 〈expct, expect, false〉,
〈seq, sequence, false〉, 〈label, accession number, false〉, 〈rf, rf, false〉}

corr2.JPs = ‘Protein.proseqid = ProSeq.proseqid′

corr2.JPt = ‘IntProtein.p id = IntProteinHit.p id′

As with corr1, we used the schematic correspondence corr2 as input to the algorithm
DeriveView and obtained the views vIntProtein and vIntProteinHit presented below for
populating the relations IntProtein and IntProteinHit, respectively.

vIntProtein .query ← Πproid,label,null,null,null,null,seq,null,rf (Protein ����proseqid ProSeq)
vIntProteinHit .query ← Πproseqid,null,expect,null,null,proid (Protein ����proseqid ProSeq)

5 Related Work

A number of authors have proposed models for specifying schematic correspondences
between heterogeneous schemas (e.g., in [19, 20]), in most of which a correspondence
is defined as an association between attributes of two schemas, i.e., one-to-one or many-
to-many attribute correspondences. Schematic correspondences of this form do not pro-
vide the necessary information for deriving the mappings between schemas. This is the
case, for example of mappings that involve more than one relation in the source or
target schemas. To overcome this problem, the authors in Clio [20] exploit functional
dependencies and referential integrity constraints between the relations in the source
and target schemas. For example, they rely on referential integrity constraints to spec-
ify the join predicates for joining relations in the case of vertical partitioning. This is
a partial solution in that it does not always lead to the desired schema mapping. For
example, referential integrity constraints that can be used for joining the relations in-
volved in a mapping may not exist. And, even if they did exist, they may not encode the
join condition that meets the semantics of the desired schema mapping.

Richer models for schematic correspondences were proposed by Pottinger et al. [16]
and Quix et al. [18]. A schematic correspondence in these models can be used to model
many-to-many relation and attribute correspondences, for instance. Yet, the information
they provide is not sufficient, and human intervention may be needed for deriving the
mappings. For example, they do not distinguish between horizontal and vertical parti-
tioning, and they do not specify the condition that can be used for combining relations.

In other proposals, such as those by Magnani et al. [14] and Hakimpour [7] et al.,
correspondences are defined as extentional constraints between the elements of two
schemas. For example, correspondences of this form can be used to specify that the

92 L. Mao et al.

extent of a relation is covered by the extent of another relation. While correspondences
of this form are useful for merging schemas, as shown by the authors of these proposals,
they do not provide the information necessary for deriving schema mappings.

Kedad et al. [10] proposed a solution similar to that proposed in Clio, for generating
views that populate the elements of an integration schema. In doing so, they use as input
extentional constraints such as those defined by Magnani et al. [14] together with func-
tional dependencies and referential integrity constraints specified within the schemas
of the sources. Because the correspondences used as input do not provide information
that is sufficient for deriving the mappings that encode the semantics desired by the
user, the solution proposed by the authors attempts to generate multiple alternatives for
populating a given relation in the integration schema. The user is then responsible for
choosing the view that implements the desired mapping. In our approach, we use input
correspondences that provide information that is sufficient for determining and deriving
the desired schema mappings.

6 Conclusions

We presented in this paper a model for schematic correspondences that extends and
enriches those proposed by Kim et al. [12]. The model proposed outperforms existing
correspondence models in that it covers the information necessary to cater for automatic
derivation of schema mappings. Note that the model of schematic correspondences pre-
sented in this paper does not handle all the kinds of correspondences between schemas
identified by Kim et al., e.g., we did not consider schematic correspondences associ-
ating relations that are semantically not equivalent, i.e., that refer to different semantic
domains. Instead, we focused on refining the correspondences that are useful for gen-
erating schema mappings. In this respect, we presented an algorithm for automatically
generating the views implementing schema mappings between two schemas.

References

1. Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P., Rizopoulos, N.: Automed: A bav
data integration system for heterogeneous data sources. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg (2004)

2. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information integra-
tion: Conceptual modeling and reasoning support. In: CoopIS, pp. 280–291. IEEE Computer
Society Press, Los Alamitos (1998)

3. Codd, E.F.: Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4(4), 397–434 (1979)

4. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources: A
machine-learning approach. In: SIGMOD Conference, pp. 509–520 (2001)

5. Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief
survey. AI Magazine 26(1), 83–94 (2005)

6. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89–124 (2005)

7. Hakimpour, F., Geppert, A.: Global schema generation using formal ontologies. In: Spac-
capietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 307–321.
Springer, Heidelberg (2002)

Defining and Using Schematic Correspondences 93

8. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: Vansummeren,
S. (ed.) PODS, pp. 1–9. ACM, New York (2006)

9. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In: Dayal,
U., Whang, K.-Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K., Kim,
Y.-K. (eds.) VLDB, pp. 9–16. ACM, New York (2006)

10. Kedad, Z., Bouzeghoub, M.: Discovering view expressions from a multi-source information
system. In: CoopIS, pp. 57–68. IEEE Computer Society, Los Alamitos (1999)

11. Kim, W., Choi, I., Gala, S.K., Scheevel, M.: On resolving schematic heterogeneity in mul-
tidatabase systems. In: Modern Database Systems, pp. 521–550. ACM Press and Addison-
Wesley (1995)

12. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase systems.
IEEE Computer 24(12), 12–18 (1991)

13. Lenzerini, M.: Data integration: A theoretical perspective. In: Popa, L. (ed.) PODS, pp. 233–
246. ACM, New York (2002)

14. Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based on un-
certain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J.,
Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)

15. McCann, R., AlShebli, B.K., Le, Q., Nguyen, H., Vu, L., Doan, A.: Mapping maintenance
for data integration systems. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson,
P.-Å., Ooi, B.C. (eds.) VLDB, pp. 1018–1030. ACM, New York (2005)

16. Pottinger, R., Bernstein, P.A.: Creating a mediated schema based on initial correspondences.
IEEE Data Eng. Bull. 25(3), 26–31 (2002)

17. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences. In: VLDB,
pp. 826–873 (2003)

18. Quix, C., Kensche, D., Li, X.: Generic schema merging. In: 9th International Conference on
Advanced Information Systems Engineering, pp. 127–141. Springer, Heidelberg (2007)

19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
J. 10(4), 334–350 (2001)

20. Yan, L.-L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven understanding and refinement of
schema mappings. In: SIGMOD Conference, pp. 485–496 (2001)

21. Zamboulis, L., Fan, H., Belhajjame, K., Siepen, J.A., Jones, A.C., Martin, N.J., Poulovassilis,
A., Hubbard, S.J., Embury, S.M., Paton, N.W.: Data access and integration in the ispider
proteomics grid. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI),
vol. 4075, pp. 3–18. Springer, Heidelberg (2006)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 94–109, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Problem of Transitivity of Part-Whole Relations in
Conceptual Modeling Revisited

Giancarlo Guizzardi

Ontology and Conceptual Modeling Research Group (NEMO)
Computer Science Department,

Federal University of Espírito Santo (UFES), Brazil
gguizzardi@inf.ufes.br

Abstract. Parthood is a relation of fundamental importance in a number of dis-
ciplines including cognitive science, linguistics and conceptual modeling. How-
ever, one classical problem for conceptual modeling theories of parthood is
deciding on the transitivity of these relations. This issue is of great importance
since transitivity plays a fundamental role both conceptually (e.g., to afford in-
ferences in problem-solving) and computationally (e.g., to afford propagations
of properties and events in a transitive chain). In this article we address this
problem by presenting a solution to the case of part-whole relations between
functional complexes, which are the most common types of entities represented
in conceptual models. This solution comes in two parts. Firstly, we present a
formal theory founded on results from formal ontology and linguistics. Sec-
ondly, we use this theory to provide a number of visual patterns that can
be used to isolate scopes of transitivity in part-whole relations represented in
diagrams.

1 Introduction

Parthood is a relation of fundamental importance from the cognitive and linguistic
perspectives [1,2]. In conceptual modeling, part-whole relations have also been con-
sidered of substantial significance. It is present in practically all conceptual/object-
oriented modeling languages (e.g., OML, UML, EER) and, although it has not yet
been adopted as a modeling primitive in the semantic web languages, many authors
have already pointed out its relevance for reasoning in description logics (e.g., [3]).

Theories of parts have been a central point of interest in philosophical enquiry
since the pre-socratic philosophers and along the years many precise formal theories
have been developed (e.g., General Extensional Mereology, Calculus of Individuals)
[4]. These formal theories provide an important starting point for the understanding
and axiomatization of the notion of Part. Nonetheless, despite their importance, there
are many controversial properties that they ascribed to the part-whole relation that
cannot be accepted by cognitive and conceptual theories of parthood [2,4,5]. One of
these controversial properties is the unrestricted transitivity of parthood.

In philosophical ontology, all mereological theories include transitivity as an
axiom for the formal part-whole relation. Also in many conceptual modeling
languages, the part-whole relations are considered to be transitive (e.g., composition

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 95

relation in UML). However, there are many counter-examples in the literature of part-
whole relations in which transitivity is not warranted by language or cognition. For
instance: (i) Rio de Janeiro is part of Brazil and Brazil is part of the United Nations
(UN), it is not the case that Rio de Janeiro is part of the UN; (ii) the heart is part of
the musician, the musician is part of the orchestra, but the heart is not part of the
orchestra [2,4].

In [4], we revised the classical typology of parthood relations proposed in [1]. As
demonstrated there, the six linguistically-motivated types of part-whole relation
proposed by [1] give rise to only four distinct ontological types, namely: (a) subquan-
tity-quantify (e.g., alcohol-wine) – modeling parts of an amount of matter which are
unified in a whole due to a topological connection relation; (b) member-collective
(e.g., a specific tree – the black forest) – modeling a collective entity in which all
parts play an equal role w.r.t. the whole; (c) subcollective-collective (e.g., the north
part of the black forest- the black forest); (d) component – functional complex (e.g.,
heart-circulatory system, engine – car) - modeling an entity in which all parts play a
different role w.r.t. the whole, thus, contributing to the functionality of the latter.
Moreover, in [4], we have demonstrated that there is a strong connection between the
issue of transitivity of parthood and the type of the relation being considered. For
instance, it can be formally proved that subquantity-quantify and subcollective-
collective are always transitive. Moreover, although member-collective is never tran-
sitive, a combination of member-collective and subcollective-collective is again
always transitive.

Despite their relevance, these results do not suffice as a general solution for the
problem of transitivity in conceptual modeling, since most of the entities which are
represented in conceptual models are actually functional complexes (e.g., Persons,
Cars, Computers, Cells, Organs, Organizations, Organizational Units). Parthood rela-
tions between functional complexes are neither transitive nor intransitive, but non-
transitive, i.e., transitive in certain occasions and intransitive in others [6]. For this
reason, the current attempts to provide real-world semantics for part-whole relations
in the conceptual modeling literature simply exclude transitivity from the list of pri-
mary properties of part-whole relations [7]. This solution is, again, non-satisfactory.
From both a conceptual and computational point of view, there are many benefits
from explicitly reasoning with the transitivity of parthood. Examples include propaga-
tion of properties and events along the transitive chain of parts (e.g., spatial change,
rotation, creation, destruction) and diagnostic reasoning with transitive parts in bio-
medical conceptual models. For this reason it is fundamental to understand why tran-
sitivity holds in some cases and not in others, and to determine the contexts in which
part-whole relations are guaranteed to be transitive.

The contributions of this article are two-fold. Firstly, we build on a formal onto-
logical analysis of relations [8] and on the pioneering theory of transitivity of linguis-
tic functional parthood relations [2] to propose a formal theory and typology of
part-whole relations between functional complexes. Secondly, we employ this theory
to propose a number of visual patterns that can be used as a methodological support
for the identification of contexts of transitivity for this mostly common type of
part-whole relations in conceptual modeling.

The remainder of this article is organized as follows. Section 2 briefly discusses an
ontological analysis of relations based on a Foundational Ontology. Section 3 em-
ploys this analysis to interpret the specific case of part-whole relations in functional

96 G. Guizzardi

complexes. Section 4 uses the results of section 3 to propose a typology of functional
part-whole relations and a number of visual patterns for isolating the context of transi-
tivity in conceptual models. Finally, section 5 elaborates on some final consideration.

2 Background: An Ontological Analysis of Relations

In [8], we have presented an in depth analysis of domain relations from an ontological
point of view. In particular, we have employed the Unified Foundational Ontology
(UFO), a formal framework which has been constructed by considering a number of
theories from formal ontology in philosophy, but also cognitive science, linguistics
and philosophical logics. In a number of papers, UFO has been successfully employed
to analyze and provide real-world semantics for conceptual modeling grammars and
specifications. Here, we make a very brief presentation of this foundational ontology
and concentrate only on the categories which are germane to the purposes of this
article. For an in depth discussion on the categories of UFO, empirical evidence for
the choice of its categories as well as formal categorization, one should see [4].

A fundamental distinction in this ontology is between the categories of Objects and
Tropes. Objects are existentially independent entities. Examples include ordinary ob-
jects of everyday experience such as an individual person, an organization, an organ,
a car, and The Rolling Stones1. The word Trope, in contrast, denotes, what is some-
times named an individualized (objectified) property, a moment, an accident, or prop-
erty in particular. A trope is an individual that can only exist in other individuals.
Typical examples of tropes are a color, a connection, an electric charge, a symptom, a
covalent bond. Tropes have in common that they are all dependent of other individu-
als (their bearers), i.e., an important feature that characterizes all tropes is that they
can only exist in other individuals (in the way in which, for example, electrical charge
can exist only in some conductor, or that a covalent bond can only exist if those con-
necting atoms exist). To put it more technically, we say that they inhere on other
individuals. Inherence (symbolized as i) is a formal relation that has the following
meta-properties: (a) irreflexivity; (b) asymmetry; (c) intransitivity; (d) exclusive exis-
tential dependence, i.e., if x inheres in y then x cannot exist in a given situation with-
out that very specific y existing in that same situation (existential dependence) and
there is no z different from y such that x inheres in z. Finally, existential dependence
can also be used to differentiate intrinsic tropes and Relators (relational tropes): in-
trinsic tropes are dependent of one single individual (e.g., color, a headache, a
temperature); relators depend on a plurality of individuals (e.g., an employment, a
marriage).

Another important distinction in the UFO ontology is within the categories of rela-
tions. Following the philosophical literature, it recognizes two broad categories of re-
lations, namely, material and formal relations [8]. Formal relations hold between
two or more entities directly, without any further intervening individual. Examples in-
clude the relations of existential dependence (ed), Subtype, instantiation (::), formal

1

 According to this definition, the category of objects can include quantities, collectives
and functional complexes. However, all objects we consider in this article are examples of
functional complexes.

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 97

parthood (<), inherence (i), among many others not discussed here [4]. Domain rela-
tions such as working at, being enrolled at, and being the husband of are of a
completely different nature. These relations, exemplifying the category of Material
relations, have material structure of their own. Whilst a formal relation such as the
one between Paul and his headache x holds directly and as soon as Paul and x exist,
for a material relation of being treated in between Paul and the medical unit MU1 to
exist, another entity must exist which mediates Paul and MU1. These entities are
termed relators.

Relators are individuals with the power of connecting entities. For example, a
medical treatment connects a patient with a medical unit; an enrollment connects a
student with an educational institution; a covalent bond connects two atoms. The
notion of relator is supported by several works in the philosophical literature [9] and,
they play an important role in answering questions of the sort: what does it mean to
say that John is married to Mary? Why is it true to say that Bill works for Company X
but not for Company Y? Again, relators are special types of tropes which, therefore,
are existential dependent entities. The relation of mediation (symbolized m) between a
relator r and the entities r connects is a sort of (non-exclusive) inherence and, hence, a
special type of existential dependence relation. It is formally required that a relator
mediates at least two distinct individuals [4].

An important notion for the characterization of relators (and, hence, for the charac-
terization of material relations) is the notion of foundation. Foundation can be seen as
a type of historical dependence [10], in the way that, for instance, an instance of be-
ing kissed is founded on an individual kiss, or an instance of being punched by is
founded on an individual punch, an instance of being connected to between airports is
founded on a particular flight connection. Suppose that John is married to Mary. In
this case, we can assume that there is an individual relator m1 of type marriage that
mediates John and Mary. The foundation of this relator can be, for instance, a wed-
ding event or the signing of a social contract between the involved parties. In other
words, for instance, a certain event e1 in which John and Mary participate can create
an individual marriage m1 which existentially depends on John and Mary and which
mediates them. The event e1 in this case is the foundation of relator m1.

Now, let us elaborate on the nature of the relator m1. There are many intrinsic
tropes that John acquires by virtue of being married to Mary. For example, imagine
all the legal responsibilities that John has in the context of this relation. These newly
acquired properties are intrinsic tropes of John which, therefore, are existentially de-
pendent on him. However, these tropes also depend on the existence of Mary. We
name this type of trope externally dependent tropes, i.e., externally dependent tropes
are intrinsic tropes that inhere in a single individual but are existentially dependent on
(possibly multiple) other individuals. The individual which is the aggregation of all
externally dependent tropes that John acquires by virtue of being married to Mary is
named a qua individual (in this case, John-qua-husband-of-Mary). A qua individual
is, thus, defined as an individual composed of all externally dependent tropes that in-
here in the same individual and share the same foundation. In the same manner, by
virtue of being married to John, Mary bears an individual Mary-qua-wife-of-John.

The notion of qua individuals is the ontological counterpart of what has been
named role instance in the literature [11] and represent the properties that characterize
a particular mode of participation of an individual in a relation. Now, the entity which

98 G. Guizzardi

is the sum of all qua individuals that share the same foundation is a relator. In this
example, the relator m1 which is the aggregation of all properties that John and Mary
acquire by virtue of being married to each other is an instance of the relational prop-
erty marriage.

The relator m1 in this case is said to be the truthmaker of propositions such as
“John is married to Mary”, “Mary is married to John”, “John is the husband of Mary”,
and “Mary is the wife of John”. In other words, material relations such as being mar-
ried to, being legally bound to, being the husband of can be said to hold for the indi-
viduals John and Mary because and only because there is an individual relator
marriage m1 mediating the two. Thus, as demonstrated in [8], material relations are
purely linguistic/logical constructions which are founded on and can be completely
derived from the existence of relators. In fact, in [8], we have defined a formal rela-
tion of derivation (symbolized as der) between a relator type (e.g., Marriage) and each
material relation which is derived from it.

Finally, there is an intimate connection between qua individuals and role types: let
T be a natural type (kind) instantiated by an individual x, and let R be a role type spe-
cializing T. We have that there is a qua individual type Q such that x instantiates R iff
x bears an instance of Q. Alternatively, we have that for every role type R there is a
relator type RR such that x instantiates R iff x is mediated by an instance of RR. Note
that this conforms to the formal property of roles as relationally dependent types [12].

The summary of the discussion promoted in this section is illustrated in figures
1a-c. Figure 1.a, illustrates the inherence relation between John and his externally de-
pendent tropes which are existentially dependent on Mary (as well as analogous rela-
tions in the converse direction). In figure 1.b, John instantiates the role type Husband
(which is a specialization of the natural type (Male) Person) iff there is a qua individ-
ual John-qua-husband-of-Mary which inheres in John. Moreover, this figure illus-
trates that the qua individuals John-qua-husband-of-mary and Mary-qua-wife-of-John
are mutually existentially dependent. In other words, John cannot be the Husband of
Mary without Mary being the wife of John [4]. Finally, figure 1.c shows that the ma-
terial relation married to is derived from the relator type Marriage and, thus, tuples
such as <John,Mary> and <John,Mary> are instances of this relation iff there is an
instance of Marriage that mediates the elements of the tuple.

i
i

i

i
i
i

ed

ed

ed

ed

ed

ed

John Mary

j1

j2

j3

m1

m2

m3

i

ed

John Mary

j1
j2

j3

m1

m2

m3

i

ed

ed

Mary-qua-wife-of-John

John-qua-husband-of-Mary

Person

Husband Wife

::::

m

John
Mary

m

Person

Husband Wife

::::
j1

j2
j3 m1

Marriage

::

married to

der<John,Mary>

m1

m2

m3

<Mary,John>

:: ::

(a) (b) (c)
Fig. 1. (a-left) Objects and their inhering externally dependent tropes. (b-center) Objects, their
instantiating roles and their inhering qua individuals. (c) Material Relations are founded on
relators that mediate their relata.

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 99

Notice that the relation between the two qua individuals and the relator m1 is an ex-
ample of formal relation of parthood [8]. As previously discussed, formal parthood
conforms to the meta-properties prescribed by mereology and, therefore, is always
transitive. Another example of a parthood relation that conform to axioms of mereol-
ogy is the spatial (temporal) part-whole relation between regions of space (or time)
[9]. One of the major points advocated in this article is that the domain part-whole re-
lations that interest us in conceptual modeling are not formal but material relations:
the fact that Brazil is part of the United Nations or that Paul’s transplanted heart is
part of his body demand for the existence of founding events and consequent relators.

3 Functional Complexes and Functional Dependence

As we previously discussed, the parts of a functional complex have in common the
fact that they all posses a functional link with the complex. In other words, they all
contribute to the functionality (or the behavior) of the complex. According to [2],
parthood relations between complexes represent, aside from the mereological relation
itself, relations of functional dependence. Take the example of figure 2. Following
[2], we claim that this type of relationship represented between the types Heart and
Body is what is termed Generic Functional Dependence between two types. This rela-
tionship can be defined as follows: (1) GFD(X,Y) ≡ ∀x (x::X) ∧ F(x,X) → ∃y ¬(y =
x) ∧ (y::Y) ∧ F(y,Y).

Heart Body

11

Fig. 2. A parthood relation between two Functional Complex Types

The predicate F(x,X) in formula (1) has the meaning x functions as an X. In Vieu
and Aurnague’s theory [2], it is not necessary for an X that it functions as an X. So for
instance, it is not the case that in every circumstance an engine functions as an engine.
We thus can think of a type XF which is a specialization of X according to the
specialization condition expressed by the predicate F(x,X), so that every XF is a X
functioning as a X. We name the type XF a functional restriction of X. Notice that XF
in this case is a type which can be characterized by the qua individual qX. This qua
individual, in turn, stands for the tropes bearing in an X’s while functioning as such,
or the particular behaviour of an X while functioning as an X. For instance, an engine
x can have the property of emitting a certain number of decibels or being able to
perform certain tasks only when functioning as an engine.

In figure 3.a, we can create specializations of the types Heart and Body to the types
HeartF (FunctioningHeart) and BodyF(FunctioningBody). In this picture, the arrow
with the hollow head represents subtyping. The symbols ::, i and ed represent instan-
tiation, inherence and existential dependence, respectively. Whenever a heart func-
tions as such, i.e., whenever it instantiates the type FunctioningHeart, there is a
qua individual qh that inheres in it. Mutatis Mutandis, the same goes to Body and

100 G. Guizzardi

FunctioningBody in this picture. As represented in this picture, the qua individuals qh

and qb are existentially dependent on each other. In this case, ed(qh,qb) can be inter-
preted as “the heart functioning behavior existentially depends on the body function-
ing behavior”. In this model the converse also holds, i.e., that ed(qb,qh), or that “the
body functioning behaviour existentially depends on the heart functioning behavior”.
Additionally, according to our model, a heart functioning qh must inhere in a heart h.
Likewise, a body functioning qb must inhere a body b. From this we have that when-
ever a heart h functions as a heart (i.e., i(qh,h)) there must exist a body functioning
behavior qb (from ed(qh,qb)), which in turn, inheres a body b (i.e., i(qb,b)). In other
words, whenever a heart h functions as a heart, there must be a body b functioning as
a body. Again, from the model of figure 3.a we can derive the converse information,
namely, that whenever a body b functions as a body, there must be a heart h function-
ing as a heart.

HeartF BodyF

qh qb

h b

::

ed

::

Heart Body
GFD

i i

HeartF BodyF

qh qb
ed

i i

r

h b

:: ::

mm

R

::

<<

Fig. 3. (a-left) Representation of Types with Generic Functional Dependence and their
Functional Restrictions. (b) Representation of the relator instance composed of two functional
qua individuals.

By definition of the relational qua individuals, qh and qb in figure 3.a are externally
dependent tropes that compose a relator r that, in turn, can be said to mediate the in-
stances of FunctioningHeart and FunctioningBody. This idea is depicted in figure 3.b.
The symbols m and < in this picture represent the mediation relation and the formal
proper parthood relation, respectively.

The relator universal R of which the relator r in figure 3.b is an instance, can be
said to derive the material relation ϕR between the universals FunctioningHeart and
FunctioningBody. We shall define here the more general binary predicate ϕ(x,y) ≡ ∃r
m(r,x) ∧ m(r,y). In other words, ϕ(x,y) holds iff there is a relator r which mediates
these two individuals. More naturally, in this case, we can say that ϕ hold of x and y
of type X and Y iff x to function as an X is depends on y functioning as a Y, and vice-
versa. Notice that the functional restriction FunctioningHeart (FunctioningBody) is
indeed relationally dependent and, consequently, it conforms to the characterization
of role types previously discussed: a FunctioningHeart is a Heart functioning as a
Heart in relation to a Body functioning as a Body, and vice-versa. To put in different
terms, these functional restrictions of natural types are sorts of Roles types.

The predicate ϕ to hold for instances of functional restrictions XF and YF requires
the presence of a relator r to mediate these instances. This requires that the functional
qua individuals inhering in the mediated instances of XF and YF share a genuine

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 101

foundation. The formula (1) of generic functional dependence between X and Y can
then be better expressed as: (2). GFD(X,Y) ≡ ∀x (x::X) ∧ F(x,X) → ∃y (y::Y) ∧
F(y,Y) ∧ ϕ(x,y). Notice that, by definition, a relator must mediate at least two distinct
individuals. As a consequence, we have that ϕ(x,y) implies ¬(y = x), rendering this
condition superfluous in the consequent of formula (2).

Suppose that the universal X is a specialization of another universal A. Then not
only every X is an A but whenever an X functions as such it also functions as an A
[2]. For example, suppose that X and A are the types MechanicHeart and Heart, re-
spectively. Whenever a MechanicHeart functions as a MechanicHeart, it also func-
tions as a Heart, or alternatively, whenever a MechanicHeart bears the behaviour (or
properties) of a functioning MechanicHeart, then it also bears the properties of a
functioning Heart. This is illustrated in figure 4.a. We thus have that (3).(F(x,X) ∧
Subtype(X,Y)) → F(x,Y).

MechanicHeart

Heart

MechanicHeartF

h

:: qh1

(h qua mechanic heart qh2

i

i

(h qua heart) AF BF

a b

::::

A B
GFD

C

AF BF

qa qb
ed

i

r

a b

::

<

i

::

CF

qc

i

c

::

ed

GFD GFD

ed

A B C

< <

Fig. 4. (a-left) Propagation of Functioning to the Supertype. (b-center) Propagation of
Functioning to the Supertype. (c-right) Transitivity of General Functional Dependence.

Suppose the situation depicted in figure 4.b. The universal A is generally function-
ally dependent on universal B. Thus, for every instance a of A that functions as such
there is an instance b of B functioning as a B. Moreover, the predicate ϕ holds for a
and b. Now, since b is also a C and, due to (3), b also functions as a C. Hence, we
have that whenever an instance a of A functions as such there is an instance b of C
that functions as a C. Since ϕ(a,b), we can derive that GFD(A,C). Thus, we have that
the following is always true: (4). GFD(X,Y) ∧ Subtype(Y,Z) → GFD(X,Z).

Now, suppose the situation depicted in figure 4.c. In this model, every instance a of
A functioning as an A bears a particular qa behaviour. The qua individual qa is
existentially dependent on the qua individual qb, i.e., on the behaviour of a b
functioning as a B. However, this model also represents that if b functions as a B
(bears qb) there is a c functioning as a C, i.e., bearing a C behavior qc. Due to
transitivity of existential dependence [4], we have that qa is existential dependent also
on qc. Additionally, qa and qb share the same foundation and so do qb and qc. Thus, qa

and qc also must share the same foundation. In other words, whatever is responsible
for creating qa and qb must also be responsible for creating qc. By definition, a relator
is an aggregation of qua individuals that share the same foundation. We can then

102 G. Guizzardi

define a relator r which consists of qa, qband qc. Consequently, we have that ϕ(a,b),
ϕ(b,c) and ϕ(a,c). Now, we have that for every instance a of A functioning as an A,
there is an instance of c functioning as a C. Since ϕ(a,c), we then have that
GFD(A,C). This argument shows that the following is always true: (5). GFD(X,Y) ∧
GFD(Y,Z) → GFD(X,Z).

Although formula (2) defines the notion of general dependence, we need in
addition to establish that a functional dependence link holds precisely between two
individual entities x and y: (6). IFD(x,X,y,Y) ≡ GFD(X,Y) ∧ x::X ∧ y::Y ∧ (F(x,X) →
F(y,Y)). This predicate termed individual functional dependence states that if an
individual x::X is individually functionally dependent of another individual y::Y in a
given situation then: (i) there is a generic functional dependence between their types;
(ii) x and y are classified as those given types in that situation; (iii) for x to function as
a X in that situation, then y must function as a Y.

An example of individual functional dependence is one between a particular heart
h and a particular body b in figure 2. As discussed, there is a generic functional de-
pendence between the types Heart and Body, and if in a given circumstance a heart h
functions as a heart there is a body b that functions as a body in that circumstance.

4 A Typology of Functional Part-Whole Relations and Visual
Patterns for Isolating the Scope of Transitivity

Let us now return to the example of figure 2 of a parthood relation between the
universals Heart and Body. In this model, a particular heart h is not only functionally
dependent of a body b in a given situation, but h is also part of b. This type of the
parthood relation is termed in [2] direct functional parthood of type 1:

Definition 1 (Direct Functional Part of type 1): An individual x instance of X is a
direct functional part of type 1 of an individual y of type Y (symbolized as
d1(x,X,y,Y)) iff x is a part of y and x is individually functionally dependent of y.
Formally, d1(x,X,y,Y) ≡ ((x < y) ∧ IFD(x,X,y,Y)). ■

Examples of d1 include cuff-sleeve, stem-plant, carburetor-engine, finger-hand, hand-
arm, arm-body, hand-body, heart-body, heart-circulatory system. In conformance with
the findings of [3], we propose that a parthood relation between two functional com-
plexes (such as the one depicted in figure 2) should be interpreted as a case of direct
functional parthood. In this specific case, the model implies that: ∀x x::Heart → ∃y
y::Body ∧ d1(x,Heart,y,Body))).

Now, suppose that we have a model such as the one represented of figure 5.a.

Mitral Valve Heart
11

Body
11

Carburetor Engine

11

Machine

11

Fig. 5. (a-left) Examples of direct functional part of type 1. (b) Examples of direct functional
part of type 1: transitivity always hold across parthood relations of this type.

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 103

In this case, both the relationships between Heart and Body, and between Mitral
Valve and Heart, are mapped in the instance level to cases of direct functional
parthood(1), i.e., (i) ∀x x::Heart → ∃y y::Body ∧ d1(x,Heart,y,Body); (ii) ∀x
x::MitralValve → ∃y y::Heart ∧ d1(x,MitralValve,y,Heart). The important question at
this point is: from (i) and (ii), can we derive formula (iii) ∀x x::MitralValve → ∃y
y::Body ∧ d1(x,MitralValve,y, Body). Notice that (iii) follows from (i) and (ii) iff d1 is
transitive. Thus, the this question can be rephrased as: is direct functional parthood(1)
a transitive relation?

In the sequel we demonstrate that this is indeed the case. The abbreviations in the
proofs are: (a) TFP (transitivity of formal parthood); (b) TLI (transitivity of the logi-
cal implication); (c) EC (Elimination of the Disjunction), and (d) IC (Introduction of
the Disjunction).

(T1) Theorem 1: d1(x,X,y,Y) ∧ d1(y,Y,z,Z) → d1(x,X,z,Z)
Proof:
1. d1(x,X,y,Y) T1
2. d1(y,Y,z,Z) T1
3. (x < y) ∧ IFD(x,X,y,Y) 1, Definition 1
4. GFD(X,Y) ∧ x::X ∧ y::Y ∧ (F(x,X) → F(y,Y)) 3, (6)
5. (y < z) ∧ IFD(y,Y,z,Z) 2, Definition 1
6. GFD(Y,Z) ∧ y::Y ∧ z::Z ∧ (F(y,Y) → F(z,Z)) 5, (6)
7. (x < z) 3,5, TFP
8. GFD(X,Z) 4,6, (5)
9. (x::X) ∧ (z::Z) 4,6, EC
10. (F(x,X) → F(z,Z)) 4,6, TLI
11. GFD(X,Z) ∧ (x::X) ∧ (z::Z) (F(x,X) → F(z,Z)) 8,9,10, IC
12. IFD(x,X,z,Z) 11, (6)
13. (x < z) ∧ IFD(x,X,z,Z) 7,12, IC
14. d1(x,X,z,Z) 13, Definition 1 □

We can generalize this result for any chain of direct functional dependence in a
model. Another example of such case is depicted in figure 5.b.

In models such as 5.a-b, the parthood relation represents functional dependence in
both directions. Take for instance figure 5.b. The minimum cardinality constraint of 1
in the Engine association end of the aggregation relation between Carburator and En-
gine implies that every instance of Carburator necessitates an Engine to function as a
Carburator. Likewise, the minimum cardinality constraint of 1 in the Carburator asso-
ciation end of that relation implies that every Engine necessitates a Carburator to
function as an Engine. [2] names this type of functional parthood in which x is part of
y but y as Y is individually functionally dependent on x as an X direct functional
parthood (2):

Definition 2 (Direct Functional Part of type 2): An individual x instance of X is a
direct functional part of type 2 of an individual y of type Y (symbolized as
d2(x,X,y,Y)) iff x is a part of y and y is individually functionally dependent of x.
Formally, d2(x,X,y,Y) ≡ (x < y) ∧ IFD(y,Y,x,X). ■

104 G. Guizzardi

Examples of d2 include wall-house, engine-car, electron-atom, atom-molecule, finger-
hand, hand-arm, cell-heart, feather-canary. In the sequel, we prove that d2 is also
transitive.

(T2) Theorem 2: d2(x,X,y,Y) ∧ d2(y,Y,z,Z) → d2(x,X,z,Z)
Proof:
(1). d2(x,X,y,Y) T2
(2). d2(y,Y,z,Z) T2
(3). (x < y) ∧ IFD(y,Y,x,X) 1, Definition 2
(4). GFD(Y,X) ∧ y::Y ∧ x::X ∧ (F(y,Y) → F(x,X)) 3, (6)
(5). (y < z) ∧ IFD(z,Z,y,Y) 2, Definition 2
(6). GFD(Z,Y) ∧ z::Z ∧ y::Y ∧ (F(z,Z) → F(y,Y)) 5, (6)
(7). (x < z) 3,5, TFP
(8). GFD(Z,X) 4,6, (5)
(9). (z::Z) ∧ (x::X) 4,6, EC
(10). (F(z,Z) → F(x,X)) 4,6, TLI
(11). GFD(Z,X) ∧ (z::Z) ∧ (x::X) (F(z,Z) → F(x,X)) 8,9,10, IC
(12). IFD(z,Z,x,X) 11, (6)
(13). (x < z) ∧ IFD(z,Z,x,X) 7,12,IC
(14). d2(x,X,z,Z) 13, Definition 2 □

Whenever in a conceptual model we have a representation of a parthood relation be-
tween complex objects such as in figures 5.a-b, we have both a case of d1 and a case
of d2. In particular, the model of figure 5.b implies both the formulae: (i) ∀x
x::Carburator → ∃y y::Engine ∧ d1(x,Carburator,y,Engine) and (ii) ∀x x:: Engine →
∃y y:: Carburator ∧ d2(y,Carburator,x,Engine). Since both d1 and d2 are transitive, we
maintain that transitivity holds within any chain of direct functional dependence rela-
tions in a conceptual model.

Now, take for instance the relationship depicted in figure 6 below.

Human Heart «kind»
Person

11

«role»
Musician

0..1
1

d1d2

i1

d2

Fig. 6. Example of indirect functional part of type 1(from Human Heart to Musician)

Every human heart necessitates a person, and every person necessitates a human
heart, i.e., both d1 and d2 hold between direct instances of human heart and person.
Moreover, every musician is a person. So, as any person, a musician necessitates a
human heart, i.e., d2 holds also between instances of human heart and musician. How-
ever, it is not the case that a direct functional dependence holds between human heart
and musician. A human heart necessitates a person, but this person does not have
to be a musician (this is made evident by the cardinality 0..1 of the inherited relation

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 105

between these two universals). This type of relationship is termed indirect functional
parthood (1) in [2] and it is defined as follows:

Definition 3 (Indirect Functional Part of type 1): i1(x,X,y,Y) ≡ (x < y) ∧ IIFD
(x,X,y,Y). IIFD(x,X,y,Y) is the relation of individual indirect functional dependence
and is defined as (7). IIFD(x,X,y,Y) ≡ y::Y ∧ ∃Z (Subtype(Y,Z) ∧ IFD(x,X,y,Z)). ■

To put it in a simple way, x as an X is individually indirect functional dependent of y
as a Y iff for x to function as an X, y must function as a Z, whereas Z is a more gen-
eral universal (subsuming that Y) that y instantiates. Examples of i1 include handle-
door (with “movable entity” for type subsuming “door”), door-house (with “wall,
enclosure or building” subsuming “house”), engine-car (with “machine” subsuming
“car”), brick-wall (with “construction” subsuming “wall”), valve-carburetor (with
“fluid-holding device” subsuming carburetor), cell-heart (with “organ” subsuming
“heart”), feather-canary (with “bird” subsuming “canary”).

Now, take the model depicted in figure 7 below. There are two potential parthood
relations A and B. The relation A between Mitral Valve and Musician holds iff transi-

tivity holds across (Mitral Valve ⎯→⎯ 1d Human Heart) and (Human Heart ⎯→⎯ 1i
Musician), since in the other reading of these relations, i.e., (Mitral

Valve ⎯→⎯ 2d Human Heart) and (Human Heart ⎯→⎯ 1d Musician), transitivity is
already guaranteed by theorem (T2). To put it baldly, relation A is transitive in this
case iff d1(x,X,y,Y) ∧ i1(y,Y,z,Z) → i1(x,X,z,Z) is a theorem. Likewise, relation B is
transitive in this case iff i1(x,X,y,Y) ∧ d1(y,Y,z,Z) → i1(x,X,z,Z) is a theorem. As we
show in the sequel, d1(x,X,y,Y) ∧ i1(y,Y,z,Z) → d1(x,X,z,Z) ∨ i1(x,X,z,Z) is a
theorem (T3) while i1(x,X,y,Y) ∧ d1(y,Y,z,Z) → d1(x,X,z,Z) ∨ i1(x,X,z,Z) is not.
Therefore, whilst A is a case of indirect functional parthood between Mitral Valve
and Musician, relation B is not warranted and, hence, must not exist in figure 7.

Human Heart
«kind»
Person

«role»
Musician

0..1
1

d1d2

i1

d2

Mitral Valve

11

A (?)

d1d2

Orchestra

11

d1d2

11

B (?)

Fig. 7. Two candidate parthood relations due to transitivity

(T3) Theorem 3: d1(x,X,y,Y) ∧ i1(y,Y,z,Z) → i1(x,X,z,Z)
Proof:

(1). d1(x,X,y,Y) T3
(2). i1(y,Y,z,Z) T3
(3). (x < y) ∧ IFD(x,X,y,Y) 1, Definition 1
(4). GFD(X,Y) ∧ x::X ∧ y::Y ∧ (F(x,X) → F(y,Y)) 3, (6)

106 G. Guizzardi

(5). (y < z) ∧ IIFD(y,Y,z,Z) 2, Definition 3
(6). z::Z ∧ ∃W (Subtype(Z,W) ∧ IFD(y,Y,z,W)) 5, (7)
(7). GFD(Y,W) ∧ y::Y ∧ z::W ∧ (F(y,Y) → F(z,W)) 6, (6)
(8). (x < z) 3,5,TFP
(9). GFD(X,W) 4,7, (5)
(10). (x::X) ∧ (z::W) 4,7, EC
(11). (F(x,X) → F(z,W)) 4,7,TLI
(12). GFD(X,W) ∧ (x::X) ∧ (z::W) (F(x,X) → F(z,W)) 9,10,11,IC
(13). IFD(x,X,z,W) 12, (6)
(14). z::Z ∧ ∃W (Subtype(Z,W) ∧ IFD(x,X,z,W) 6,13,IC
(15). IIFD(x,X,z,Z) 14, (7)
(16). (x < z) ∧ IIFD(x,X,z,Z) 8,15, IC
(17). i1(x,X,z,Z) 16, Definition 3 □

Let us now modify the model of figure 7 to depict a more realistic conceptualization.
In this modified specification (figure 8) we have that every Blood Pump is part of a
Circulatory System and necessitates a Circulatory System in order to work as such
(d1). Likewise, every Circulatory System has as part a Blood Pump and necessitates
the latter to work as such (d2). As any Blood Pump, a Biological Heart is part of a
Circulatory System and necessitates a Circulatory System to work as such, i.e., direct
functional dependence (2) is inherited by Biological Heart from the subsuming uni-
versal. The same obviously holds for Artificial Heart. However, it is not the case that
a Circulatory System is directly functionally dependent of a Biological Heart specifi-
cally. To put it in an alternative way, a Circulatory System, in order to function as
such, relies on the behavior of a Blood Pump, but this behavior does not have to be af-
forded in the specific way a Biological Heart does. In [2], this type of relationship be-
tween Biological Heart and Circulatory System is termed indirect functional parthood
(2) and it is defined as follows:

Definition 4 (Indirect Functional Part of type 2): i2(x,X,y,Y) ≡ (x < y) ∧ IIFD
(y,Y,x,X). ■

Examples of i2 include heart-circulatory system (with “blood pump” subsuming
“heart”), brick-wall (with “construction material” subsuming “brick”).

Fig. 8. Example of an indirect functional parthood of type 2 (from Biological Heart to Coronary
Circulatory System) and of a candidate parthood relationship (C) due to transitivity

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 107

Once more, we have the question: does transitivity hold across (Heart Cell

⎯→⎯ 2d Biological Heart) and (Biological Heart ⎯→⎯ 2i Coronary Circulatory Sys-

tem)? In the other reading we have (Heart Cell Valve ⎯→⎯ 1d Biological Heart) and

(Biological Heart ⎯→⎯ 1d Coronary Circulatory System), thus, relation C is war-
ranted iff the question above is answered affirmatively. The answer in this case is
negative, since d2(x,X,y,Y) ∧ i2(y,Y,z,Z) → d2(x,X,z,Z) ∨ i2(x,X,z,Z) cannot be
shown to be a theorem in this theory. However, the following is a theorem:

(T4) Theorem 4: i2(x,X,y,Y) ∧ d2(y,Y,z,Z) → i2(x,X,z,Z)
Proof:
(15). i2(x,X,y,Y) T4
(16). d2(y,Y,z,Z) T4
(17). (x < y) ∧ IIFD(y,Y,x,X) 1, Definition 4
(18). (y < z) ∧ IFD(z,Z,y,Y) 2, Definition 2
(19). x::X ∧∃W (Subtype(X,W) ∧ IFD(y,Y,x,W)) 3, (7)
(20). GFD(Y,W) ∧ y::Y ∧ x::W ∧ (F(y,Y) → F(x,W)) 5, (6)
(21). GFD(Z,Y) ∧ z::Z ∧ y::Y ∧ (F(z,Z) → F(y,Y)) 4, (6)
(22). (x < z) 3,4, TFP
(23). GFD(Z,W) 6,7, (5)
(24). (z::Z) ∧ (x::W) 6,7,EC
(25). (F(z,Z) → F(x,W)) 6,7,TLI
(26). GFD(Z,W) ∧ (z::Z) ∧ (x::W) (F(z,Z) → F(x,W)) 9,10,11,IC
(27). IFD(z,Z,x,W) 12,(6)
(28). x::X ∧ ∃W (Subtype(X,W) ∧ IFD(z,Z,x,W) 5,13,IC
(29). IIFD(z,Z,x,X) 14,(7)
(30). (x < z) ∧ IIFD(z,Z,x,X) 8,15,IC
(31). i2(x,X,z,Z) 16, Definition 4 □

Due to this theorem we have that the relation D between Biological Heart and Circu-
latory System (depicted in figure 8 below) is warranted, since transitivity holds across

(Biological Heart ⎯→⎯ 2i Coronary Circulatory System) and (Coronary Circulatory

System ⎯→⎯ 2d Circulatory System) in this case.

Fig. 8. Example of an indirect functional parthood of type 2 due to transitivity (from Biological
Heart to Circulatory System)

108 G. Guizzardi

A B C A B C

D

A B C

D

A B

CD

X

(a) (b)

(c)

(d)

A

B C

D

X
(e)

Fig. 9. The patterns of figures (a-c) represent cases in which a derived functional transitive
parthood relation can be inferred. Instransitive cases are shown in figures (d) and (e).

We conclude this section by providing the following set of visual patterns that can
isolate the scope of transitivity in conceptual models containing parthood relations be-
tween functional complexes (functional parthood). Transitivity can be guaranteed for
these relations only in cases where the patterns of figures (9.a-c) occur. In summary,
parthood relations between concrete functional complexes are neither transitive nor
intransitive, but non-transitive relation (i.e., transitive in certain cases and intransitive
in others). One of the main contributions of this paper is to provide a systematic engi-
neering tool based on a solid theory to exactly inform the modeler which are the cases
in which transitivity hold.

5 Final Considerations

The work presented here is part of a series of publications (e.g., [4,6,8]) in which we
make use of Ontological theories for analyzing, re-designing and providing real-world
semantics for conceptual modeling languages and models. Here we build on a formal
theory of linguistic functional parthood presented in [2], and on and ontological the-
ory of relationships presented [8] to provide a solution to one classical problem in
conceptual modeling, namely, deciding on the transitivity of part-whole relations be-
tween the most common objects in conceptual models (functional complexes).

Despite being precise and ontologically well-founded, the theory presented here is
of a substantial complexity, thus, demanding for its full understanding at least a basic
notion of logics and an advanced understanding of formal ontology. For this reason,
and with the intent to provide some methodological tools for helping the modeler in
employing the results of this theory, we proposed a number of visual patterns that can
be directly applied to diagrams to isolate the scope of transitivity of functional part-
whole relations. We believe that these results contribute to the task of defining sound
engineering tools and principles for the practice of conceptual modeling. It is impor-
tant to emphasize that these patterns can be used to isolate the contexts of transitivity
in a diagram regardless of the content of what is being represented there. As a conse-
quence, fully automated tool support can be built for this task in a relatively simple

The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited 109

way, since the underlying algorithm merely has to check structural properties of the
diagram and not the content of involved nodes. We are currently working on the im-
plementation of prototype to do exactly that.

Acknowledgement. This work is partly funded by the Infra-Modela (FAPES) project.

References

1. Winston, M.E., Chaffin, R., Herrman, D.: A taxonomy of part-whole relations. Cognitive
Science 11, 417–444 (1987)

2. Vieu, L., Aurnague, M.: Part-of Relations, Functionality and Dependence. In: Aurnague,
M., Hickmann, M., Vieu, L. (eds.) Categorization of Spatial Entities in Language and
Cognition. John Benjamins, Amsterdam (2007)

3. Keet, M., Artale, A.: Representing and Reasoning over a Taxonomy of Part-Whole Rela-
tions. Applied Ontology 3(1-2), 91–110 (2008)

4. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, PhD Thesis,
University of Twente, The Netherlands (2005)

5. Gerstl, P., Pribbenow, S.: Midwinters, End Games, and Bodyparts. A Classification of
Part-Whole Relations. Intl. Journal of Human-Computer Studies 43, 865–889 (1995)

6. Guizzardi, G., Herre, H., Wagner, G.: Towards Ontological Foundations for UML Concep-
tual Models. In: Meersman, R., Tari, Z., et al. (eds.) ODBASE 2002. LNCS, vol. 2519.
Springer, Heidelberg (2002)

7. Opdahl, A., Henderson-Sellers, B., Barbier, F.: Ontological Analysis of whole-part rela-
tionships in OO-models. Information and Software Technology 43, 387–399 (2001)

8. Guizzardi, G., Wagner, G.: What’s in a Relationship: An Ontological Analysis. In: Li, Q.,
Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231. Springer, Heidelberg
(2008)

9. Heller, B., Herre, H.: Ontological Categories in GOL. Axiomathes 14, 71–90 (2004)
10. Thomasson, A.L.: Ontological Categories and How to Use Them, The Electronic Journal

of Analytic Philosophy, Indiana University, USA (5) (Spring 1997)
11. Wieringa, R.J., de Jonge, W., Spruit, P.A.: Using dynamic classes and role classes to

model object migration. Theory and Practice of Object Systems 1(1), 61–83 (1995)
12. Steimann, F.: On the representation of roles in object-oriented and conceptual modeling.

Data & Knowledge Engineering 35, 1 (2000)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 110–124, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using UML as a Domain-Specific Modeling Language:
A Proposal for Automatic Generation of UML Profiles

Giovanni Giachetti, Beatriz Marín, and Oscar Pastor

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia

Camino de Vera s/n
46022 Valencia, Spain

{ggiachetti,bmarin,opastor}@pros.upv.es

Abstract. Nowadays, there are several MDD approaches that have defined
Domain-Specific Modeling Languages (DSML) that are oriented to represent-
ing their particular semantics. However, since UML is the standard language for
software modeling, many of these MDD approaches are trying to integrate their
semantics into UML in order to use UML as DSML. The use of UML profiles
is a recommended strategy to perform this integration allowing, among other
benefits, the use of the existent UML modeling tools. However, in the literature
related to UML profile construction; it is not possible to find a standardized
UML profile generation process. Therefore, a process that integrates a DSML
into UML through the automatic generation of a UML profile is presented in
this paper. This process facilitates the correct use of UML in a MDD context
and provides a solution to take advantage of the benefits of UML and DSMLs.

Keywords: UML Profile, UML, MDD, DSML.

1 Introduction

An appropriate modeling language is one of the most important elements for Model-
Driven Development (MDD) approaches [22]. To obtain modeling languages that are
adequate, different MDD approaches have defined their own Domain-Specific Model-
ing Languages (DSML) in order to represent their particular modeling needs. Two of
the benefits that the use of DSMLs provide to MDD approaches are: (1) a correct
and precise representation of the conceptual constructs related to the application do-
main, and (2) simplification of the implementation of tools oriented to improving the
modeling tasks, development, and maintenance of generated software solutions.

However, since UML is seen as the standard language for software modeling pur-
poses, many MDD approaches are integrating their modeling needs into UML in
order to use UML as DSML. To perform this integration, the use of the extension
mechanism defined in the UML specification, called UML profile, is the most suitable
strategy. Therefore, the MDD approaches could achieve a larger market (greater
number of potential users), take advantage of the existent UML technologies, and
reduce the learning curve [2][12][23]. In addition, UML can be used as a mechanism
to interchange ideas and theories among different research communities.

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 111

Currently, there are many definitions of UML profiles that are associated to MDD
approaches [14]. Generally speaking, these profile definitions are manually elaborated
in a straightforward way and without a standardized process because a standard that
specifies how the UML extensions must be defined does not currently exist [6]. For
this reason, many of the existent UML profiles are invalid or of poor quality [23]. In
addition, the manual definition of a UML profile is an error-prone and time-
consuming task [24]. These two risk factors (time and error) must be avoided,
especially in a MDD industrial context, where time costs money and mistakes in im-
plementation directly impact on customer satisfaction.

To avoid the risks described above, some works related to UML profile elaboration
have defined proposals to achieve a semi-automated profile generation [12][24]. For
the generation of the UML profile, these proposals use as input the metamodel that
describes the conceptual constructs related to the DSML of an MDD approach (the
DSML Metamodel). However, none of these proposals provide a sound solution for
the automatic generation of a complete UML profile. This is because, in real MDD
solutions, structural differences between the DSML metamodel and the UML Meta-
model, which prevent the automated identification of the extensions that must be
performed in UML, may be found.

This paper introduces a solution for a completely automated UML profile genera-
tion using as input the DSML Metamodel related to a MDD approach. This solution is
part of an integration process that has been designed to introduce the modeling needs
of MDD approaches into UML. In this process, the proposal presented in [8] is used
to obtain a correct input for the generation of the UML profile.

Thus, this paper shows how the required UML extensions can be automatically
identified and details the transformation rules to obtain the UML Profile that imple-
ments these extensions. This paper also shows the application of the integration proc-
ess in an industrial MDD approach called OO-Method [19][20] in order to exemplify
how this process can be used to integrate UML and DSML models in a unique MDD
solution.

The rest of the paper is organized as follows: Section 2 shows the background re-
lated to UML profile generation. Section 3 introduces the proposed process. Section 4
details the automatic UML profile generation. Section 5 presents the application of
the process. Finally, Section 6 presents our conclusions and further work.

2 Background

The UML profile extension mechanism is defined in the UML Infrastructure [16]. It
defines the mechanisms used to adapt existing metamodels to specific platforms,
domains, business objects, or software process modeling. In this work, the UML
profiles are used to integrate the modeling needs of MDD approaches in UML [17].
Further details about UML Profiles and UML extensions can be consulted in
[2][7][16].

In the literature related to the definition of UML profiles, two main working sche-
mas can be observed: 1) the definition of the UML profile from scratch; and 2) the
definition of the UML profile starting from the DSML Metamodel [23], which is the
metamodel that describes the conceptual constructs required by a MDD approach. For

112 G. Giachetti, B. Marín, and O. Pastor

the process presented in this paper, the second working schema has been selected
since it provides a methodological solution that has more automation possibilities.

One of the first proposals related to this working schema is the work presented by
Fuentes-Fernández et al. in [7], who propose some basic guidelines for the UML
profile definition. In [23], Selic proposes a systematic approach that takes into ac-
count the new UML profile extension features. In addition, this systematic approach
establishes some guidelines to ensure a correct DSML metamodel specification and
defines some criteria to obtain a UML profile by means of a mapping that identifies
the equivalences between the DSML metamodel and the UML metamodel.

Nowadays, there are very few works related to the automation of the definition of a
UML profile. One of these works is the Lagarde et al. approach [12], which can be
partially automated through the identification of a set of specific design patterns.
However, this approach requires the manual definition of an initial UML profile
skeleton. Another interesting work is presented by Wimmer et al. [24]. This work
proposes a semi-automatic approach that introduces a specific language to define the
mapping between the DSML metamodel and the UML metamodel. This mapping
allows an automated UML profile generation. However, this approach does not sup-
port all the possible mapping alternatives, for instance, the mapping M:M (many
elements of the DSML metamodel mapped to many elements of the UML meta-
model). As a consequence, the effective application in real MDD approaches is not
possible.

In general, the analyzed works are only centered on representing those modeling
elements of the DSML that do not exist in UML using the generated UML Profile.
However, this focus is not enough to generate a correct UML profile because there are
other elements that must be considered for a correct UML profile definition. These
other elements are: 1) the representation of the differences that exist between ele-
ments of the DSML, and corresponding elements that already exist in UML, and 2)
the definition of rules oriented to validate the correct use of the UML profile in order
to produce correct conceptual models.

Even when these additional considerations are omitted, none of the works men-
tioned above provide a sound transformation process to automatically generate a
complete UML profile solution. The main limitation of these approaches comes from
the structural differences between the DSML metamodel and the UML metamodel. If
these structural differences are solved, then the UML Profile generation can be auto-
mated. In Giachetti et al.[10], we propose a solution to solve these structural prob-
lems. This solution consists of the transformation of the DSML metamodel into a new
metamodel. This new metamodel provides an adequate input to automate the integra-
tion of the abstract syntax that is represented in a DSML metamodel into the UML
Metamodel. The automatic UML profile generation that is presented in the next
section of this paper is based on this solution.

3 A Process to Integrate a DSML into UML

This section presents the process that has been defined to integrate the modeling
needs related to a specific MDD approach into UML by means of an automatically
generated UML profile. These modeling needs are represented by the DSML

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 113

metamodel of the MDD approach. To elaborate this process, different works have
been considered. Some of these works are: definition of profiles using DSML meta-
models [7][12][23][24], correct use of metamodels in software engineering [11],
UML profile implementations [14], interchange between UML and DSMLs [1][9],
and new UML profile features introduced in UML [16].

The proposed process can be used in those MDD approaches where the conceptual
constructs can be considered as a subset or extension of the UML constructs. This
constraint comes from the limitation of the UML profile to change the reference
metamodel and guarantees that the MDD approaches that use the proposed process
are UML-Compliant. The process is composed of three steps (see Figure 1):

• Step 1: Definition of the Integration Metamodel from the DSML metamodel taking
into account the UML Metamodel defined in the UML Superstructure [17].

• Step 2: Comparison between the Integration Metamodel and the UML Metamodel.
This comparison identifies the extensions that must be defined in UML by using
the equivalences identified in the Step 1.

• Step 3: Transformation of the Integration Metamodel according to a set of trans-
formation rules in order to obtain the final UML profile.

Automatic UML Profile Generation

STEP 1
Integration Metamodel

Definition

Integration Metamodel
+

Mapping Information
Integration Metamodel

+
Mapping Information

+
Identified Extensions

DSML
Domain
Model

STEP 2
Metamodels
Comparison

STEP 3
Integration Metamodel

Transformation

UML
Profile

Fig. 1. Integration Process Schema

The second and third steps of the integration process correspond to the Automatic
UML Profile Generation. In this process, the original DSML metamodel is redefined
to obtain the input required for the UML profile generation. This input is called the
Integration Metamodel, and its main characteristics are described below.

3.1 Definition of the Integration Metamodel

The Integration Metamodel is a special DSML metamodel that has been defined to
automate the integration of a DSML into UML. This metamodel is defined from the
DSML metamodel, and it represents the same abstract syntax of the original meta-
model. The main difference between the Integration Metamodel and the DSML
metamodel is its structure since it is defined to obtain a mapping with the UML
metamodel, which allows the automatic identification of the required UML exten-
sions. This mapping information is included inside the Integration Metamodel defini-
tion. The UML metamodel selected for the definition of the Integration Metamodel is
the metamodel presented in the UML Superstructure [17].

The Integration Metamodel is manually defined according to the systematic ap-
proach presented in [10]. In that work, the structural problems that can exist in a

114 G. Giachetti, B. Marín, and O. Pastor

DSML metamodel as well as the benefits of the Integration Metamodel are discussed.
Summarizing, the Integration Metamodel has the following features:

• It is defined according to the EMOF modeling capabilities, which are defined in
the MOF (Meta Object Facility) specification [15]. By using EMOF, the resultant
metamodel properties do not have features that are not supported by UML profiles.
Moreover, EMOF has a standardized XMI definition [18]. Thus, the UML profile
generation can be automated by means of transformation rules that are imple-
mented over the XMI definition of the Integration Metamodel. The EMOF defini-
tion also allows the implementation of specific model editors with tools such as
Eclipse GMF [4].

• It is mapped to the UML Metamodel taking into account: Classes, Properties (At-
tributes and Associations), Enumerations, Enumeration Literals, and Data Types.
The mapped elements are considered as equivalent elements, and the non-mapped
elements are considered as new elements in the Integration Metamodel. This map-
ping complies with the following rules:
− All the classes from the Integration Metamodel are mapped. This assures that

the conceptual constructs of the DSML can be represented from the conceptual
constructs of UML.

− The mapping is defined between elements of the same type (classes with
classes, attributes with attributes, and so on).

− An element from the Integration Metamodel is only mapped to one element of
the UML Metamodel. This rule also considers the possibility of have X:1 map-
pings (X ≥ 0); for instance, many classes of the Integration Metamodel can be
mapped to one class of UML. In this example, the mapping rule is also accom-
plished because each class of the Integration Metamodel is only mapped to one
UML class. It is important to note that the many-to-many mappings that may
exist between the original DSML metamodel and the UML Metamodel are
transformed into X:1 mappings during the generation of the Integration Meta-
model.

− If the properties (attributes and associations) of a class from the Integration
Metamodel are mapped to properties of a UML class, then the class that owns
the properties is mapped to this UML class (or a generalization of it).

4 Automatic Generation of the UML Profile

This section presents how a correct UML profile can be automatically generated from
an Integration Metamodel. This automatic generation is comprised by two steps: 1)
the comparison of metamodels to obtain the required UML extensions; and 2) The
transformation of the Integration Metamodel into the corresponding UML profile.
These steps are presented below.

4.1 Comparison of Metamodels

The identification of the required UML extensions is performed through a comparison
between the Integration Metamodel and the UML Metamodel. To perform this com-
parison, the mapping information defined in the Integration Metamodel is used.

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 115

The comparison between the Integration Metamodel and the UML Metamodel
considers:

• The identification of new elements, which are the elements from the Integration
Metamodel that are not equivalent to UML elements. These elements can be
attributes, associations, enumerations, literal values, and data types.

• The identification of differences in type or cardinality of equivalent properties
(attributes and associations).

Figure 2 shows an example of an Integration Metamodel that will be used to help
understand how the UML extensions are identified. The metamodel presented in this
figure represents a binary association between classes. In this metamodel, the attrib-
utes of the class DMAssociationEnd represent the cardinality related to each associa-
tion end, and the attributes of the classes DMClass and DMAssocation represent
generic attributes related to these classes.

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

Integration Metamodel UML Metamodel

DMAssociation

newAttr2 : string

memberEnd [2..2]

type [1..1]
Association

Property

Type

TypedElement

DMClass
newAttr1 : string

Class
attr1 : integer

Fig. 2. Integration Metamodel related to a binary association between classes

Table 1 shows the comparison result obtained from the Integration Metamodel pre-
sented in Figure 2. In this table, the column Integration Metamodel shows the new
elements identified, or equivalent elements that differ in relation to the related UML
elements. The Difference column shows what the differences are by indicating (when
necessary) the values for the Integration Metamodel element (I.M.) and the UML
element (UML).

Table 1. Metamodel comparison for the Integration Metamodel presented in Figure 2

Integration Metamodel Difference

DMClass.newAttr1 Different type: I.M. = string; UML = integer

DMAssociation.memberEnd Different upper bound: I.M. = 2; UML = *

DMAssociation.newAttr2 New attribute

DMAssociationEnd.type Different lower bound: I.M = 1; UML = 0

Different type: I.M. = DMClass; UML = Type

116 G. Giachetti, B. Marín, and O. Pastor

The mapping information defined in the Integration Metamodel allows the identifi-
cation of type differences. For instance, in the case of DMAssociationEnd.type and
Property.type, the type is different because DMClass is not equivalent to Type.

The cardinality differences are identified by analyzing the lower and upper bound
of the equivalent properties and the referenced UML properties. This is the case of the
equivalent properties DMAssociation.memberEnd and DMAssociationEnd.type.

Finally, the differences identified in the comparison are the extensions that must be
introduced into the UML in order to correctly represent the modeling needs of the
related MDD approach.

4.2 Transformation of the Integration Metamodel

The third step in the process defines a set of transformation rules to automatically
generate a complete UML profile from the Integration Metamodel and the UML ex-
tensions previously obtained. These transformation rules are defined considering that
the new elements and the differences between equivalent elements identified during
the metamodel comparison must be represented in the generated UML profile. In
addition, these rules take into account the automatic generation of the needed con-
straints in order to assure the correct application of the generated extensions.

In order to show how the Integration Metamodel can be transformed into the corre-
sponding UML profile, the required transformation rules are described below. These
transformation rules are separated by the different EMOF conceptual constructs. The
possible modeling situations are analyzed for each construct, according to the Integra-
tion Metamodel features. A figure that exemplifies the application of the transforma-
tion rules in a generic way is also presented.

Classes
Rule 1: One Stereotype for each equivalent class. The stereotype extends the refer-
enced UML class, and its name is equal to the equivalent class name. Figure 1 exem-
plifies this rule.

This first transformation rule is the most relevant because it involves the generation
of the stereotypes, which are the main constructs of the UML profile. The rest of
transformation rules are applied according to the results obtained by this first rule.

Validation: At the end of the UML profile generation, if there is only one stereotype
that extends a UML class, then the stereotype extension must be defined as required.
This constraint is defined because, in the DSML context, the UML class only has the
semantics of the involved equivalent class (see Class3 in Figure 3).

Integration Metamodel UML Metamodel UML Profile

Class2

Class1
UMLClass1

<<stereotype>>
Class1UMLClass2

<<metaclass>>
UMLClass1

Class3

<<metaclass>>
UMLClass2

<<stereotype>>
Class2

<<stereotype>>
Class3

{required}

Fig. 3. Generic example for the transformation rule related to classes: Rule 1

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 117

Properties
In EMOF, the properties represent attributes of a class (metaclass) or references (as-
sociations) between the classes. The main difference between an attribute and an
association is that an attribute represents a data-valued property, while an association
is an object-valued property. In other words, in an association, the type is given by
another class of the model that represents the related class. These differences are
taken into account in the definition of the involved transformation rules.

Rule 2: One tagged value for each new property. The tagged value must have the
same type and cardinality as the new property. The name of the tagged value must be
the name of the new property. In the case of an association, the tagged value must
have the same aggregation kind as the new property. The application of this rule can
be observed in Figure 4 for the association Class1.rolClass2.

Rule 3: One OCL constraint if the lower bound of an equivalent property is higher
than the lower bound of the referenced UML property:

self.[property]->size() >= [newLowerBound]

Rule 4: One OCL constraint if the upper bound of an equivalent property is lower
than the upper bound of the referenced UML property:

self.[property]->size() <= [newUpperBound]

As Figure 4 shows, rules 3 and 4 are applied to the Class2.roleClass3 and
Class3.roleClass1, respectively.

Validation: For rules 3 and 4, an OCL constraint is defined to validate that the corre-
sponding stereotype is applied each time that the involved UML association is estab-
lished. Thus, the type of the referenced UML association is restricted to the stereotype
that represents the type of the equivalent association:

self.[equivalentAssociation]->isStereotyped1∗([newType])

This validation is also applied if the type of an equivalent association is changed
by a specialization of the original type (see Class2.rolClass3 in Figure 4).

Lower bound cardinality difference:
Class1.rolClass3 = 1
UMLClass1.rolUMLClass3 = 0

UMLClass1Class1

UML MetamodelIntegration Metamodel

rolClass3

Class2 UMLClass2

Class3
UMLClass3

rolClass2

rolClass1

[0..*]

[0..2]

rolUMLClass2[0..*]
[1..2]

rolUMLClass3[0..2]

Upper bound cardinality difference:
Class3.rolClass1 = 2
UMLClass3.rolUMLClass2 = *

self.rolUMLClass2->isStereotyped(Class1)

self.rolUMLClass3->size >= 1

UML Profile

<<metaclass>>
UMLClass1

<<stereotype>>
Class1

<<metaclass>>
UMLClass2

<<stereotype>>
Class2

{required} {required}

<<metaclass>>
UMLClass3

<<stereotype>>
Class3

self.rolUMLClass2->size <= 2

self.rolUMLClass3->isStereotyped(Class3)

rolClass2 : Class2[0..*]

{required}

Fig. 4. Generic example for the transformation rules 2 to 4

1 The OCL operation isStereotyped is not part of the OMG specification and is only used to
simplify the OCL rules presented. In the application of the integration process, this operation
must be implemented according to the target UML tool.

118 G. Giachetti, B. Marín, and O. Pastor

Even though an extension relationship represents a refinement of a class in a way
similar to a generalization relationship, its semantics is represented as a special kind
of association and not as a generalization. For this reason, a tagged value cannot rede-
fine UML properties. Therefore, when the differences that exist between an equiva-
lent property and the referenced UML property cannot be represented using OCL
constraints, a tagged value that replaces the original UML property is created. In this
case, the MDD process must only consider the tagged value and not the UML
property.

Rule 5: One tagged value that replaces a UML property when one of the following
conditions holds:

• The type of equivalent property is different than the type of the referenced UML
property, and the new type is not a specialization of the original type or a stereo-
type that extends the original type (see Class1.attr3 in Figure 5).

• The upper bound of the equivalent property is higher than the upper bound of the
referenced UML property (see Class1.attr2 in Figure 5).

• The lower bound of the equivalent property is lower than the lower bound of the
referenced UML property (see Class1.attr1 in Figure 5).

UMLClass1

attr1 : typeX [1..1]
attr2 : typeX [2..2]
attr3 : typeX [1..1]

Lower bound cardinality difference:
Class1.attr1 = 0
UMLClass1.attr1 = 1

Upper bound cardinality difference:
Class1.attr2 = *
UMLClass1.attr2 = 2

UML MetamodelIntegration Metamodel

UML Profile

Class1

attr1 : typeX [0..1]
attr2 : typeX [2..*]
attr3 : typeY [1..1]

Different type:
Class1.attr3 = typeY
UMLClass1.attr3 = typeX

<<metaclass>>
UMLClass1

attr1 : typeX [0..1]
attr2 : typeX [2..*]
attr3 : typeY [1..1]

<<stereotype>>
Class1

Fig. 5. Generic example for transformation rule 5

Enumerations
The enumerations are used to specify a customized set of values that can be repre-
sented by an attribute of a class. Graphically, the enumerations are represented as a
class. However, the enumeration is a specialization of a Classifier and not of a Class.
This difference is considered in the following transformation rule.

Rule 6: One enumeration for each new enumeration or equivalent enumeration with
new literal values. In the case of an equivalent enumeration, the generated enumera-
tion replaces the original UML enumeration, and the involved equivalent attributes
are considered as new attributes (Rule 2). In this case, since the UML enumeration is
not a class, it cannot be extended with a stereotype in order to include the new literal
values. Figure 6 shows the application of this rule for Enum2 (equivalent enumera-
tion) and Enum3 (new enumeration).

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 119

Validation: One OCL constraint for each attribute whose type corresponds to an
equivalent enumeration that has fewer alternatives (literal values) than the referenced
UML enumeration (see Class1.attr1 and Enum1 in Figure 6).

self.[attribute] <> #[nonMappedLiteralValue]

This constraint avoids the use of invalid alternatives (non-referenced literal values)
that are defined in the referenced UML enumeration.

<<enumeration>>
UMLEnum1

literal1
literal2
literal3

literal3
literal4
literal5

Class1

attr1 : Enum1
attr2 : Enum2
attr3 : Enum3

UMLClass1

attr1 : UMLEnum1
attr2 : UMLEnum2

Integration Metamodel

UML Profile

<<metaclass>>
UMLClass1

<<enumeration>>
Enum1

literal1
literal2

<<enumeration>>
Enum3

literal6
literal7

<<enumeration>>
Enum2

literal3
literal4
literal5

<<enumeration>>
UMLEnum2

literal3
literal4

<<enumeration>>
Enum2

literal3
literal4
literal5

<<enumeration>>
Enum3

literal6
literal7Self.attr1 <> #literal3

attr2 : Enum2
attr3 : Enum3

<<stereotype>>
Class1

UML Metamodel

Fig. 6. Generic example for transformation rule 6.

Generalizations
The generalization relationships have interesting features that must be considered in
the generation of the related stereotypes. Two of the main features that must be con-
sidered are: 1) since stereotypes are a special kind of class, it is possible to define a
generalization between stereotypes; and 2) since the extension association between a
stereotype and its related class is a specialization of Association, the extension rela-
tionship can be inherited.

Rule 7: Define one generalization between two stereotypes that represent equivalent
classes that are associated with a new generalization and that are referencing the same
UML class. The extension related to the child stereotype is not defined since it is
implicit in the generalization relationship. Figure 7 shows the application of this rule
for the generalization defined between the classes Class1 and Class3.

Rule 8: If there is a new generalization between two equivalent classes that are refer-
encing different UML classes, the generalization relationship is not represented in the
UML profile. In this case, the extensions of each stereotype to the corresponding
UML class are defined, and the inherited properties (attributes and associations) are
duplicated (see the generalization between classes Class3 and Class4 in Figure 7). If
the generalization is represented, then the child stereotype will be able to extend the
UML class that is extended by the father stereotype. This could produce a modeling
error since, according to the mapping information, the child stereotype is referencing
(extends) a different UML class.

Rule 9: If there is an equivalent generalization between two equivalent classes,
the generalization relationship is not represented in the UML profile, and only the

120 G. Giachetti, B. Marín, and O. Pastor

extensions of each stereotype are defined to the corresponding UML class. In this
way, the generalization defined in UML is used instead of the equivalent generaliza-
tion (see the generalization between classes Class1 and Class2 in Figure 7).

Note that an equivalent generalization represents a generalization that already ex-
ists in the UML Metamodel. The equivalent generalizations are automatically identi-
fied through the participant classes of the Integration metamodel that are equivalent to
the classes that participate in the UML generalization.

UMLClass1

UMLClass3

<<metaclass>>
UMLClass1

UMLClass2

Equivalent generalization

Class3

property3

Class1

property1

Class2

property2

Class4

property4

<<stereotype>>
Class1

property1

<<stereotype>>
Class3

property3

<<stereotype>>
Class2

property2

<<metaclass>>
UMLClass2

self.isStereotyped(Class1)

<<stereotype>>
Class4

property1
property3
property4

<<metaclass>>
UMLClass3

Integration Metamodel UML Metamodel

UML Profile

Fig. 7. Generic example for transformation rules 7, 8 and 9

OCL Rules
The OCL rules defined in the Integration Metamodel manage the interactions between
the different constructs of the DSML. Therefore, these rules must be included in the
generated UML profile.

Rule 10: The OCL rules defined in the classes of the Integration Metamodel must be
included in the stereotypes generated from these classes. The elements referenced in
the rules must be changed by the corresponding UML classes and stereotypes.

Data Types
Rule 11: The new data types defined in the Integration Metamodel are defined in a
separate model library. This model library must be imported in each UML model that
is designed using the generated UML profile.

The equivalent data types that have differences in relation to the referenced UML
data types are considered as new data types. Since the data types are classifiers, they
cannot be extended using stereotypes.

Validation: The UML data types that are not referenced by equivalent data types are
not valid in the DSML context. For this reason, one OCL constraint is defined over
the UML metaclass TypedElement to restrict the invalid UML data types:

self.type->oclIsTypeOf([invalidType]) = False

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 121

Rule 11 is the last rule defined for the transformation of the Integration Metamodel
in the equivalent UML profile. Figure 8 presents the UML profile obtained after
applying the proposed transformation rules to the example Integration Metamodel
presented in Figure 2.

UML Profile
<<metaclass>>

Class

<<stereotype>>
DMClass

<<metaclass>>
Association

<<stereotype>>
DMAssociation

<<metaclass>>
Property

<<stereotype>>
DMAssociationEnd

{required}{required} {required}

self.memberEnd->size < 3

self.memberEnd->isStereotyped(DMAssociationEnd)

self.type->isStereotyped(DMClass)

newAttr1 : stringnewAttr2 : string

self.type->size > 1

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

Integration Metamodel UML Metamodel

DMAssociation

newAttr2 : string

memberEnd [2..2]

type [1..1]
Association

Property

Type

TypedElement

DMClass
newAttr1 : string

Class
attr1 : integer

Fig. 8. UML profile generated for the example Integration Metamodel

In addition to the UML profile, the transformation of the Integration Metamodel
also generates a new mapping that takes into account the generated UML profile ele-
ments (stereotypes, tagged values, etc.). This new mapping provides bidirectional
equivalence between the Integration Metamodel and the UML Metamodel (extended
with the generated UML profile). Figure 9 shows this new mapping information for
the UML profile presented in Figure 8.

Integration Metamodel UML Metamodel + UML Profile

lower : integer
upper : unat

DMAssociationEnd

lower : integer
upper : unat

MultiplicityElement

memberEnd[2..*]

type [0..1]

memberEnd [2..2]

type[1..1]

Class

Association

Property

Type

TypedElement

<<stereotype>>
DMAssociationEnd

DMClass
newAttr1 : string

<<stereotype>>
DMClass

newAttr1 : string

DMAssociation

newAttr2 : string

<<stereotype>>
DMAssociation
newAttr2 : string

Fig. 9. New mapping information generated for the UML profile presented in Figure 8

The generated UML profile together with the new mapping definition can be used
to interchange UML models and DSML models [9], in order to take advantage of
these two modeling solutions. The following section shows how the proposed integra-
tion process has been applied to an industrial MDD approach [3], to integrate UML
tools and the existent DSML-based tools.

122 G. Giachetti, B. Marín, and O. Pastor

5 Applying the Integration Process

In this section, the implementation schema used to apply the proposed integration
process in the OO-Method industrial approach [19][20] is introduced. This schema
(Figure 10) takes advantage of UML tools, without losing the benefits of the existent
MDD technology based on the OO-Method DSML.

Integration
Process

OO-Method
Metamodel

OO-Method
UML Profile

XMIExporter

XMI Importer

Mapping Information

OO-Method Tools

OO-Method
Model UML

Tool

UML
Model

Fig. 10. Schema designed to apply the integration process into the OO-Method approach

XMI Importer ToolUML Model

Generated Application

…….

During the importation process, six new
services for the creation, deletion and
modification of instances are automatically
generated (three services for each class).
For this reason, in this screenshot, ten
imported services can be observed, and not
only the four services that are defined in the
UML class model.

Fig. 11. Application of the OO-method compilation technology over a UML model

The core of the proposed schema is made up of two interchange tools called XMI
importer and XMI exporter [3], which transform the UML models into DSML mod-
els, and vice versa. These tools are extended with the new mapping information ob-
tained in the UML profile generation process in order to support the generated UML
profile [9]. Figure 11 shows the application of the extended XMI importer tool to

 Using UML as a DSML: A Proposal for Automatic Generation of UML Profiles 123

automatically generate an application from a UML model extended with the OO-
Method UML profile. This model has been defined using the Eclipse UML2 tool [5].

The schema proposed to apply the integration process in the OO-Method approach
has three main benefits:

1. The technology, support, and commercial structure defined for the OO-Method
development process can be used in a transparent way for UML users.

2. The different OO-Method tools, such as the OO-Method model compiler [21],
and functional size measurement tools [8][13] can be used over UML models.

3. The customers can easily migrate from UML tools to OO-Method tools in order
to take advantage of the improved functionalities that the OO-method tools pro-
vide for the management of OO-Method conceptual models.

6 Conclusions and Further Work

This paper presents a solution for the automatic generation of a UML profile from the
metamodel that represents the DSML related to a MDD approach. This automatic
generation is applied in an integration process in order to take advantage of the bene-
fits provided by the use of UML and DSML based technologies.

The proposed solution tackles an important topic that has not yet received the re-
quired attention: the correct definition of UML profiles for MDD solutions. Even
though the number of UML profile solutions has increased, the number of publications
related to a correct UML profile definition is very limited [23]. In order to obtain this
correct definition, the proposed transformations are focused on three main elements: 1)
the generation of modeling elements defined in the DSML that are not present in UML;
2) the management of differences that could exist between elements of the DSML that
are equivalent with UML elements; and 3) the generation of constraints to assure that
the application of the generated UML profile follows the DSML specification.

It is important to note that the transformation rules defined in this paper are just
one possible solution for the complete generation of a correct UML profile. Variations
of these transformation rules can be defined depending on different design decisions.
This paper also explains how this solution can be applied in MDD approaches, taking
as example the application performed for the OO-Method approach in order to inte-
grate UML tools and the existent OO-Method tools.

As further work, we plan to finish the implementation of a set of open-source tools
that support the proposed integration process in order to provide a generic integration
solution for different MDD approaches.

Acknowledgments. This work has been developed with the support of MEC under
the project SESAMO TIN2007-62894 and co financed by FEDER.

References

1. Abouzahra, A., Bézivin, J., Fabro, M.D.D., Jouault, F.: A Practical Approach to Bridging
Domain Specific Languages with UML profiles. In: Best Practices for Model Driven Soft-
ware Development (OOPSLA 2005) (2005)

2. Bruck, J., Hussey, K.: Customizing UML: Which Technique is Right for You? IBM (2007)

124 G. Giachetti, B. Marín, and O. Pastor

3. CARE-Technologies, http://www.care-t.com/
4. Eclipse: Graphical Modeling Framework Project, http://www.eclipse.org/gmf/
5. Eclipse: UML2 Project, http://www.eclipse.org/uml2/
6. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using

uml 2.0: Promises and pitfalls. IEEE Computer 39(2), 59–66 (2006)
7. Fuentes-Fernández, L., Vallecillo, A.: An Introduction to UML Profiles. The European

Journal for the Informatics Professional (UPGRADE) 5(2), 5–13 (2004)
8. Giachetti, G., Marín, B., Condori-Fernández, N., Molina, J.C.: Updating OO-Method

Function Points. In: 6th IEEE International Conference on the Quality of Information and
Communications Technology (QUATIC 2007), pp. 55–64 (2007)

9. Giachetti, G., Marín, B., Pastor, O.: Using UML Profiles to Interchange DSML and UML
Models. In: Third International Conference on Research Challenges in Information Sci-
ence, RCIS (2009)

10. Giachetti, G., Valverde, F., Pastor, O.: Improving Automatic UML2 Profile Generation for
MDA Industrial Development. In: Song, I.-Y., et al. (eds.) ER Workshops 2008. LNCS,
vol. 5232, pp. 113–122. Springer, Heidelberg (2008)

11. Henderson-Sellers, B.: On the Challenges of Correctly Using Metamodels in Software En-
gineering. In: 6th Conference on Software Methodologies, Tools, and Techniques
(SoMeT), pp. 3–35 (2007)

12. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S.: Improving UML Profile Design Practices
by Leveraging Conceptual Domain Models. In: 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 445–448 (2007)

13. Marín, B., Giachetti, G., Pastor, O.: Automating the Measurement of Functional Size of
Conceptual Models in an MDA Environment. In: Jedlitschka, A., Salo, O. (eds.) PROFES
2008. LNCS, vol. 5089, pp. 215–229. Springer, Heidelberg (2008)

14. OMG: Catalog of UML Profile Specifications
15. OMG: MOF 2.0 Core Specification
16. OMG: UML 2.1.2 Infrastructure Specification
17. OMG: UML 2.1.2 Superstructure Specification
18. OMG: XMI 2.1.1 Specification
19. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for Informa-

tion Systems Modelling: From Object-Oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26(7), 507–534 (2001)

20. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice: A Software Production
Environment Based on Conceptual Modeling, 1st edn. Springer, New York (2007)

21. Pastor, O., Molina, J.C., Iborra, E.: Automated production of fully functional applications
with OlivaNova Model Execution. ERCIM News 57 (2004)

22. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19–25
(2003)

23. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In:
10th IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC), pp. 2–9 (2007)

24. Wimmer, M., Schauerhuber, A., Strommer, M., Schwinger, W., Kappel, G.: A Semi-
automatic Approach for Bridging DSLs with UML. In: 7th OOPSLA Workshop on Do-
main-Specific Modeling (DSM), pp. 97–104 (2007)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 125–140, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Verifying Action Semantics Specifications in UML
Behavioral Models

Elena Planas1, Jordi Cabot1, and Cristina Gómez2

1 Estudis d'Informàtica, Multimèdia i Telecomunicacions, Universitat Oberta de Catalunya
{eplanash,jcabot}@uoc.edu

2 Dept. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
cristina@lsi.upc.edu

Abstract. MDD and MDA approaches require capturing the behavior of UML
models in sufficient detail so that the models can be automatically
implemented/executed in the production environment. With this purpose,
Action Semantics (AS) were added to the UML specification as the
fundamental unit of behavior specification. Actions are the basis for defining
the fine-grained behavior of operations, activity diagrams, interaction diagrams
and state machines. Unfortunately, current proposals devoted to the verification
of behavioral schemas tend to skip the analysis of the actions they may include.
The main goal of this paper is to cover this gap by presenting several techniques
aimed at verifying AS specifications. Our techniques are based on the static
analysis of the dependencies between the different actions included in the
behavioral schema. For incorrect specifications, our method returns a
meaningful feedback that helps repairing the inconsistency.

1 Introduction

One of the most challenging and long-standing goals in software engineering is the
complete and automatic implementation of software systems from their initial high-
level models [21]. This is also the focus of current MDD (Model-driven development)
and MDA (Model-driven architecture) approaches.

Recently, the OMG itself has issued a RFP for the “Foundational Subset for
Executable UML Models” [20], with the goal of reducing the expressivity of the
UML to a subset that can be directly executable [17]. A key element in all executable
UML methods is the use of Action Semantics (AS) to specify the fine-grained
behavior of all behavioral elements in the model. Actions are the fundamental unit of
behavior specifications. Their resolution and expressive power are comparable to the
executable instructions in traditional programming languages. Higher-level behavioral
formalisms of UML (as operations, activity diagrams, state machines and interactions
diagrams) are defined as an additional layer on top of the predefined set of basic
actions (e.g. creation of new objects, removals of existing objects, among others) [19].

Given the important role that actions play in the specification of the behavioral
aspects of a software system, it is clear that their correctness has a direct effect on the
quality of the final system implementation. As an example, consider the class diagram

126 E. Planas, J. Cabot, and C. Gómez

of Fig. 1 including the operations changeAddress and addPerson. Both operations are
incorrect, since changeAddress tries to update an attribute which does not even exist
in the class diagram and addPerson can never be successfully executed (i.e. every
time we try to execute addPerson the new system state violates the minimum ‘1’
cardinality constraint of the department role in WorksIn, since the created person
instance p is not linked to any department). Besides, this operation set is not complete,
i.e. through these operations users cannot modify all elements of the class diagram,
e.g. it is not possible to create and destroy departments. These errors must be fixed
before attempting to generate the system implementation.

 context Person::changeAddress(a:String) {
 AddStructuralFeature(self,address,a); }

context Person::addPerson(n:String, e:String) {
 p: Person;
 p := CreateObject(Person);
 AddStructuralFeature(p,name,n);

 AddStructuralFeature(p,email,e); }

Fig. 1. A simple example of a class diagram with two operations

The main goal of this paper is to provide a set of lightweight techniques for the
verification of correctness properties (syntactic correctness, weak executability and
completeness) of action-based behavior specifications at design time. Due to space
limitations, we will focus on the verification of AS specifications used to define the
effect of the operations included in the class diagram (as the example above).
Nevertheless, the techniques presented herein could be similarly used to verify action
sequences appearing in other kinds of UML behavior specifications.

Roughly, given an operation op, our method (see Fig. 2) proceeds by first,
analyzing the syntactic correctness of each action ac ∈ op. Then, the method analyzes
op to determine all its possible execution paths. Executability of each path p is
determined by performing a static analysis of the dependencies among the actions in p
and their relationship with the structural constraints (as cardinality constraints) in the
class diagram. Next, our method analyses the completeness of the whole operation
set. For each detected error, possible corrective procedures are suggested to the
designer as a complementary feedback. After our initial analysis, model-checking
based techniques could also be used to get more information (e.g. incorrect execution
traces) on the operations.

Syntactic
Correctness

CompletenessExecution
Paths

MODEL
CHECKING

input

OUR METHOD

feedback

translation
Weak

ExecutabilityUML Model

Fig. 2. Method overview

Department

name : String

Person

name : String
email : String

WorksIn 1*

 Verifying Action Semantics Specifications in UML Behavioral Models 127

The rest of the paper is structured as follows. The next section describes basic AS
concepts. Section 3 focuses on the operations’ syntactic correctness. Section 4
explains how to determine the different execution paths in an operation and Section 5
determines their executability. Section 6 study the completeness of an operation set.
In Section 7, we compare our method with the related work and, in Section 8, we
present the conclusions and further work.

2 Action Semantics in the UML

The UML standard [19] defines the actions that can be used in behavioral specifica-
tions. In this paper, we will focus on the following write actions1 (actions that modify
the system state) since they are the ones that can compromise the system consistency:

1. CreateObject(class:Classifier):InstanceSpecification: Creates a new object that
conforms to the specified classifier. The object is returned as an output parameter.

2. DestroyObject(o:InstanceSpecification): Destroys the object o. We assume that
links in which o participates are not automatically destroyed.

3. AddStructuralFeature(o:InstanceSpecification, at:StructuralFeature, v:
ValueSpecification): Sets the value v as the new value for the attribute at of the
object o. We assume that multi-valued attributes are expressed (and analyzed) as
binary associations between the class and the attribute data type.

4. CreateLink(as:Association, p1:Property, o1:InstanceSpecification, p2:Property,
o2:InstanceSpecification): Creates a new link in the binary association as between
objects o1 and o2, playing the roles p1 and p2, respectively.

5. DestroyLink(as:Association, p1:Property, o1:InstanceSpecification, p2:Property,
o2:InstanceSpecification): Destroys the link between objects o1 and o2 from as.

6. ReclassifyObject(o:InstanceSpecification, newClass:Classifier[0..*], oldClass:
Classifier[0..*]): Adds o as a new instance of classes in newClass and removes it
from classes in oldClass. We consider that classes in newClass may only be direct
superclasses or subclasses of classes in oldClass.

7. CallOperation(op:Operation, o:InstanceSpecification, arguments:
List(LiteralSpecification)): List(LiteralSpecification): Invokes op on o with the
arguments values and returns the results of the invocation.

These actions can be accompanied with several read actions (e.g. to access the
values of attributes and links of the objects). Read actions do not require further
treatment since they do not affect the correctness properties we define in this paper.

Additionally, UML defines that actions can be structured to coordinate basic
actions in action sequences, conditional blocks or loops (do-while or while-do loops).

As an example, we have defined three operations: endOfReview, submitPaper and
dismiss (Fig. 4) for the class diagram of Fig. 3, aimed at representing part of a
conference management system. The first operation reclassifies a paper as rejected or
accepted depending on the evaluation parameter. The second one creates a new
“under review” paper and links the paper with its authors. The last one deletes the
WorksIn link between a person and his/her department.

1 UML provides an abstract syntax for these actions [19]. Our concrete syntax is based on the

names of the action metaclasses. For structured nodes we will use an ASL-based syntax [17].

128 E. Planas, J. Cabot, and C. Gómez

Pe rson

nam e : S trin g { re ad On ly }
ema il : S trin g

P aper

tit le : S tr ing

Rejec te d

com men ts : Stri ng

Acce pte d

acce pDa te : Da te

Depa rtm ent
nam e : S trin g

UnderRe vie w

IsA utho rO f

 a utho r

1 ..** W orksIn 1*

{d isjoint,comp le te }

context Department inv Ma xPa persS ent:
 self .pers on.paper a sSet() size() < = 10

Fig. 3. Excerpt of a conference management system class diagram

context Paper::submitPaper(tit:String, authors:Person[1..*]) {
 i: Integer := 1;
 p: Paper;
 p := CreateObject(UnderReview);
 AddStructuralFeature(p,title,tit);
while i <= authors->size() do

 CreateLink(IsAuthorOf,author,authors[i],paper,p);
 i := i+1;
endwhile }

context Paper::endOfReview(com:String,d:Date,
evaluation:String) {
if self.oclIsTypeOf(UnderReview) then
if evaluation = ’reject’ then

 ReclassifyObject(self,[Rejected],[]);
 AddStructuralFeature(self,comments,com);

else
 ReclassifyObject(self,[Accepted],[]);
 AddStructuralFeature(self,accepDate,d);

endif
endif }

context Person::dismiss() {
 DestroyLink(WorksIn,person,self,department,self.department); }

Fig. 4. Specification of endOfReview, submitPaper and dismiss operations

3 Syntactic Correctness

The UML metamodel includes a set of constraints (i.e. well-formedness rules
(WFRs)) that restrict the possible set of valid (or well-formed) UML models. Some of
these WFRs are aimed at preventing syntactic errors in action specifications. For
instance, when specifying a CreateLink action ac over an association as, the WFRs
ensure that the type and number of the input objects in ac are compatible with the set
of association ends defined for as.

An operation is syntactically correct when all the actions included in the operation
satisfy the WFRs. Unfortunately, our analysis of the WFRs relevant to the Action
Packages has revealed several flaws (see the detected errors in [22]). Besides, several
required WFRs are missing. For instance, in actions of type WriteStructuralFeature
we should check that the type of the input object (i.e. the object to be modified) is
compatible with the classifier owning the feature (in OCL: context
WriteStructuralFeature inv: self.value.type = self.structuralFeature.type). Also, in
CreateObject, the input classifier cannot be the supertype of a covering generalization
set (in a covering generalization, instances of the supertype cannot be directly
created). Similar WFRs must be defined to restrict the possible newClassifiers in the
ReclassifyObject. For instance, we should check that the newClassifiers set and the
oldClassifiers set are disjoint sets. Additional rules are needed to check that values of
readOnly attributes are not updated after their initial value has been assigned and so
forth. These WFRs must be added to the UML metamodel to ensure the syntactic
correctness of action specifications.

After this initial syntactic analysis, we proceed next with a more semantic
verification process that relates the specified actions with other model elements.

 Verifying Action Semantics Specifications in UML Behavioral Models 129

4 Computing the Execution Paths

The correctness properties that will be presented in the next sections are based on an
analysis of the possible execution paths allowed by the structured group of actions
that define the operation effect. An execution path is a sequence of actions that may
be followed during the operation execution. For trivial groups of actions (e.g. with
neither conditional nor loop nodes) there is a single execution path but, in general,
several ones will exist.

To compute the execution paths, we propose to represent the actions in the
operation as a model-based control flow graph (MBCFG), that is, a control flow graph
based on the model information instead of on the program code, as traditional control
flow graph proposals. MBCFGs have been used to express UML sequence diagrams
[9]. Here we adapt this idea to express the control flow of action-based operations.

For the sake of simplicity, we will assume that the group of actions defining the
operation behavior is defined as a structured SequenceNode (see the metamodel
excerpt in Fig. 5) containing an ordered set of ExecutableNodes, where each
executable node can be either one of the basic modification actions described in
Section 2 (other types of actions are skipped since they do not affect the result of our
analysis), a ConditionalNode, a LoopNode or an additional nested SequenceNode. We
also use two “fake” nodes, an initial node (representing the first instruction in the
operation) and a final node (representing the last one). These two nodes do not change
the operation effect but help in simplifying the presentation of our MBCFG.

Fig. 5. Fragment of UML metamodel

The digraph MBCFGop= (Vop, Aop) for an operation op is obtained as follows:

- Every executable node in op is a vertex in Vop.
- An arc from an action vertex v1 to v2 is created in Aop if v1 immediately

precedes v2 in an ordered sequence of nodes.
- A vertex v representing a conditional node n is linked to the vertices v1…vn

representing the first executable node for each clause (i.e. the then clause, the
else clause,…) in n. The last vertex in each clause is linked to the vertex vnext

immediately following n in the sequence of executable nodes. If n does not
includes an else clause, an arc between v and vnext is also added to Aop.

- A vertex v representing a loop node n, is linked to the vertex representing the
first executable node for n.bodyPart (returning the list of actions in the body of
the loop) and to the vertex vnext immediately following n in the node sequence.
The last vertex in n.bodyPart is linked back to v (to represent the loop
behavior).

StructuredActivityNode

ExecutableNode

ConditionalNode SequenceNode LoopNode

Action

*

0..1

{ordered}

130 E. Planas, J. Cabot, and C. Gómez

- A vertex representing an OperationCall action is replaced by the sub-digraph
corresponding to the called operation c like follows: (1) the initial node of c is
connected with the node that precedes the OperationCall node in the main
operation, (2) the final node of c is connected with the node/s that follow the
OperationCall node and (3) the parameters of c are replaced by the arguments
in the call.

Operation submitPaper:

Operation endOfReview:

Operation dismiss:

 p := CreateObject
 (UnderReview)

AddStructuralFeature
 (p,title,tit)

while

AddStructuralFeature
 (self,accepDate,d)

ReclassifyObject
(self,[Rejected],[])

 if

if

 AddStructuralFeature
 (self,comments,com)

CreateLink
(IsAuthorOf,author,
authors[i],paper,p)

 ReclassifyObject
 (self,[Accepted],[])

DestroyLink
(WorksIn,person,self,

department,self.department)

Fig. 6. MBCFG of endOfReview, submitPaper and dismiss operations for the example

Fig. 6 shows the MBCFGs for the operations in Fig. 4. Test conditions of
conditional and loop nodes are not shown since they are not part of our analysis2.

Given a MBCFGop graph G, the set of execution paths exop for op is defined as
exop=allPaths(MBCFGop) where allPaths(G) returns the set of all paths in G that start
at the initial vertex (the vertex corresponding to the initial node), end at the final node
and does not include repeated arcs (these paths are also known as trails [2]).

Each path in exop is formally represented as a sequence of <number,action> node
tuples where number indicates the number of times that the action action is executed
in that node. Vertices representing other types of executable nodes are discarded.

The number in the tuple is only relevant for actions included in loop nodes. For
other actions the number value is always ‘1’. For an action ac within a loop, number
is computed as follows: (1) each while-do loop in the graph is assigned a different
variable N,…,Z representing the number of times the loop may be executed. Do-while
loops are assigned the value 1+N,…,1+Z to express that the body is executed at least
once and (2) the number of ac is defined as the multiplication of the variable values of
all loop nodes we find in the path between ac and the initial vertex, i.e. ac will be
executed N times if ac is in a top-level loop, N*M if ac is part of a single nested loop,
and so forth. Fig. 7 shows the execution paths for the graphs in Fig. 6.

2 Detection of infeasible paths due to unsatisfiable tests conditions is out of scope of this paper.

This SAT-problem could be tackled with UML/OCL verification tools [3] adding the test
condition as an additional constraint and checking if the extended model is still satisfiable.

 Verifying Action Semantics Specifications in UML Behavioral Models 131

endOfReview:
 p1 = ø
 p2 = [<1,ReclassifyObject(self,[Rejected],[])>, <1,AddStructuralFeature(self,comments,com)>]
 p3 = [<1,ReclassifyObject(self,[Accepted],[])>, <1,AddStructuralFeature(self,accepDate,d)>]

submitPaper:
 p = [<1,p:=CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>,
 <N,CreateLink(IsAuthorOf,author,authors[i],paper,p)>]

dismiss:
 p = [<1,DestroyLink(WorksIn,person,self,department,self.department)>]

Fig. 7. Execution paths of endOfReview, submitPaper and dismiss operations

5 Weak Executability

An operation is weakly executable when there is a chance that a user may successfully
execute the operation, that is, when there is at least an initial system state and a set of
arguments for the operation parameters for which the execution of the actions
included in the operation evolves the initial state to a new system state that satisfies
all integrity constraints. Otherwise, the operation is completely useless: every time a
user tries to execute the operation (and regardless of the input values provided to the
operation) an error will arise because some integrity constraint will become violated.
We define our executability property as weak executability since we do not require all
executions of the operation to be successful, which could be defined as strong
executability. Obviously, weak executability is a prerequisite for strong executability.
So, designers could check first our weak executability and then, if they think it is
necessary, they could apply other techniques (see the related work) to determine the
stronger property.

As an example, consider again the operations of Fig. 4. Clearly, dismiss is not
executable since every time we try to delete a link between a person p and a
department d, we reach an erroneous system state where p has no related department,
a situation forbidden by the minimum ‘1’ multiplicity in the WorksIn association. As
we will see later, in order to dismiss p from d we need to either assign a new
department d’ to p or to remove p itself within the same operation execution. Instead,
submitPaper is weakly executable since we are able to find an execution scenario
where the new paper can be successfully submitted (e.g. when submitting a paper
whose authors belong to a department that has not previously submitted any other
paper). Note that, as discussed above, classifying submitPaper as weakly executable
does not mean that every time this operation is executed the new system state will
be consistent with the constraints. For instance, if a person p passed as a value for the
authors parameter belong to a department with already 10 submissions, then, the
operation execution will fail because the constraint MaxPapersSent will not be
satisfied by the system state at the end of the operation execution.

The weak executability of an operation is defined in terms of the weak
executability of its execution paths: an operation is weakly executable if at least one
of its paths is weakly executable3. Executability of a path p depends on the set of

3 It is also important to detect and repair all non-executable paths. Otherwise, all executions of

the operation that follow one of those paths will irremediably fail.

132 E. Planas, J. Cabot, and C. Gómez

actions included in the path. The basic idea is that some actions require the presence
of other actions within the same execution path in order to leave the system in a
consistent state at the end of the execution. Therefore, to be executable, a path p must
satisfy all action dependencies for every action ac in p. Dependencies for a particular
action are drawn from the structure and constraints of the class diagram and from the
kind of modification performed by the action type. For example, the dismiss operation
is not weakly executable because its single path (see Fig. 7) is not executable since
the action DestroyLink(WorksIn,person,p,department,d) must be always followed by
CreateLink(WorksIn,person,p,department,d’) or DestroyObject(p) to avoid violating
the minimum multiplicity. The single path includes none of these actions and thus it is
not executable.

To determine if a path p is weakly executable, we proceed by (1) computing the
action dependencies for each action in p and (2) checking that those dependencies are
satisfied in p. If all dependencies are satisfied, then, we may conclude that p is weakly
executable. In the following, we explain in detail these two steps and provide an
algorithm that combines them to determine the executability of a path.

5.1 Computing the Dependencies

A dependency from an action ac1 (the depender action) to an action ac2 (the
dependee) expresses that ac2 must be included in all execution paths where ac1
appears to avoid violating the constraints of the class diagram. It may happen that ac1
depends on several actions (AND-composition) or that we have different alternatives
to keep the consistency of the system after executing ac1 (OR-composition; as long as
one of the possible dependee actions appears in the path, the dependency is satisfied).

Table 1 provides the rules to compute the dependencies for each kind of action,
linked with the AND and OR operators, if necessary. These rules are adapted from
[4]. The third column (Shareable) determines, for each dependency, if two or more
dependee actions can be mapped (i.e. share) to the same depender action in the path.

As an example, according to the table 1, a CreateLink action needs (when the rule
condition is true) a DestroyLink, a CreateObject or a ReclassifyObject action in the
same execution path. The first dependency is not shareable, since each CreateLink
needs a different DestroyLink to keep the system consistent. Instead, the alternative
dependency CreateObject (ReclassifyObject) is shareable since several create links
may rely on the same new (reclassified) object to satisfy the cardinality constraints.

Note that, to determine the dependencies we just take into account cardinality
constraints and disjoint and complete generalization constraints. Other constraints do
not affect the weak executability property, since we can always find a system state
and/or a set of arguments for which the execution of an action results in a consistent
state with respect to those constraints. For instance, constraints restricting the value of
the attributes of an object may be satisfied when passing the appropriate arguments as
parameters for the action (and similarly with constraints restricting the relationship
between an object and related objects). As seen before, MaxPapersSent constraint
(Fig. 3) does not affect the weak executability of submitPaper. It certainly restricts the
set of people that may be passed as authors for the submitted paper but it is easy to
see that there are many system states (and many possible values for the authors
parameter) over which the operation can be successfully executed.

 Verifying Action Semantics Specifications in UML Behavioral Models 133

Table 1. Dependencies for modification actions. Min(ci,as) and max(ci,as) denote the minimum
(maximum) multiplicity of ci in as (for reflexive associations we use the role name).

Depender Action Dependee Actions Share
-able

AddStructuralFeature(o,at,v) for each non-
derived and mandatory attribute at of c or of a
superclass of c

No

o := CreateObject(c)
AND <min(c,as),CreateLink(as,p,o,p2,o2)> for
each non-derived association as where c or a
superclass of c has mandatory participation

No

DestroyObject(o:c)

<min(c,as),DestroyLink(as,p,o,p2,o2)> for each
non-derived as where c or a superclass of c has
a mandatory participation

No

DestroyLink(as,p1,o1,p3,,o3) (if min(c2,as) <>
max(c2,as))

No

OR CreateObject(o1) Yes

CreateLink(as,p1,o1:c1, p2,o2:c2)
(when min(c1,as) = max(c1,as))
to be repeated for the other end

OR ReclassifyObject(o1,[c1],[]) Yes

CreateLink(as,p1,o1,p3,,o3) (if min(c2,as) <>
max(c2,as))

No

OR DestroyObject(o1) Yes

DestroyLink(as,o1:c1,o2:c2)
(when min(c1,as) = max(c1,as))
to be repeated for the other end

OR ReclassifyObject(o1,[],[c1]) Yes

AddStructuralFeature(o,at,v) - -

AddStructuralFeature(o,at,v) for each non-
derived and mandatory attribute at of each class
c ∈ nc

No

AND <min(c,as),CreateLink(as,p,o,p3,o3)> for
each c ∈ nc and for each non-derived
association as where c has a mandatory
participation

No

AND {ReclassifyObject(o,[],[c1]) OR
ReclassifyObject(o,[],[cn])} for each c ∈ nc
such that c is a subclass in a disjoint and
complete generalization G(superclass, c,
c1,…,cn) and not ∃ i | ci ∈ nc

Yes

AND <min(c,as),DestroyLink(as,p,o,p3,o3)> for
each c in oc and for each non-derived
association as where c has a mandatory
participation

No

ReclassifyObject(o,[nc],[oc])

AND {ReclassifyObject(o,[c1],[]) OR
…ReclassifyObject(o,[cn],[])} for each c ∈ oc
such that c is a subclass in a disjoint and
complete generalization G(superclass, c,
c1,…cn) and not ∃ i | ci ∈ oc

Yes

134 E. Planas, J. Cabot, and C. Gómez

5.2 Mapping the Dependencies

Each single dependency d=<number,action> computed for a path must be satisfied.
Otherwise, d must be returned as a feedback to the user to help him/her to repair the
inconsistency. A dependency is satisfied if it can be successfully mapped to one of the
actions in the path.

A dependency d can be mapped onto a node n in the path when the following
conditions are satisfied: (1) d.action and n.action are the same (e.g. both are
CreateLink actions), (2) the model elements referenced by the actions coincide (e.g.
both create new links for the same association), (3) all instance-level parameters of
d.action can be bound to the parameters in n.action (free variables introduced by the
rules may be bound to any parameter value in n.action, while fixed ones must have
the same identifier in d and n) and (4) d.number ≤ 1 (for actions that are shareable) or
d.number ≤ n.number (for non-shareable actions). This comparison may include
positive integer abstract variables (when n is part of a loop, see Section 4). In those
cases, d can be mapped iff there is a possible instantiation of the abstract variables
that satisfies the inequality comparison d.number-n.number ≥ 0. This can be easily
expressed (and solved) as a constraint satisfaction problem [16].

5.3 Algorithm to Determine the Weak Executability of a Path

In the following, we present an algorithm for determining the weak executability of
an execution path path on a class diagram cd. For non-executable paths, the algorithm
returns a set of possible repair action alternatives (output parameter requiredActions)
that could be included in the path to make it executable4.

function weakExecutability (
in: path: List(<number:Integer,action:Action>),
in: cd: <Set(Class),Set(StructuralFeature),Set(Association),
Set(GeneralizationSet),Set(Constraint)>,
out: requiredActions: Set(List<number:Integer,action:Action>)): Boolean
{ node: <number:Integer,action:Action>;
 depLists: Set(List<number:Integer,action:Action>):=ø;
 //Loop 1: Computing the dependencies
 i: Integer:=1;
 while i ≤ path->size() do
 node:=getNode(path,i);
 updateDependencies(node,cd,depLists); i:=i+1;
 endwhile
 //Loop 2: Determining the required actions
 executable: Boolean:=false; i:=1;
 while i ≤ depLists->size() and ¬executable do
 requiredActions[i]:=mapping(depLists[i],path);
 if (requiredActions[i] = Ø) then executable:=true;
 else i:=i+1;
 endif
 endwhile
 return executable;}

4 Extending the path with this sequence is a necessary condition but not a sufficient one to

guarantee the executability of the path. Actions in the sequence may have, in its turn,
additional dependencies that must be considered as well.

 Verifying Action Semantics Specifications in UML Behavioral Models 135

Roughly, the algorithm works by executing two loops5. The first loop uses the
updateDependencies function to compute the dependencies for each action in the
input path. This function updates the variable depLists as follows: (1) computes
the dependencies for the action in node.action as stated in Table 1 (2) multiplies the
number value in each dependency by the value of node.number and (3) adds the
dependencies to the end of all lists in depLists (if all dependencies for node are AND-
dependencies) or forks all lists and adds to the end of each cloned list a different
dependency (in case of OR-dependencies) to represent the different alternatives we
have to satisfy the dependencies.

The second loop tries to map each dependency d onto the actions in path. The
mapping(depLists[i],path) function copies in requiredActions[i] the actions of
depLists[i] that either do not map in the path or that map with an insufficient number
value. In this latter case, the dependency is added indicating the additional number of
actions that are needed. In the former, number is directly extracted from d.number.

If at least one of the lists in depLists is fully satisfied the path is determined as
weakly executable. Otherwise, the algorithm returns in requiredActions a list of repair
actions for each possible way of satisfying the dependencies.

The execution of the executability function for the submitPaper and dismiss
operations (Fig. 4) is shown in Tables 2 and 3. EndOfReview is detailed in [22].
v1…vn represent free variables introduced by the rules.

The only path of submitPaper operation is executable since all dependencies in
depLists[1] are satisfied by the path (when N takes the value 1, the last dependency
can be mapped to the first node in the path). Thus, the operation is weakly executable.

Table 2. Weak Executability for the submitPaper operation

Input path p = [<1,p:=CreateObject(UnderReview)>,
<1,AddStructuralFeature(p,title,tit)>, <N,CreateLink(IsAuthorOf,author,authors[i],paper,p)>]

Dependencies

depLists[0] = [<1,AddStructuralFeature(p,title,v1)>,
 <1,CreateLink(IsAuthorOf,person,v2,paper,p)>,
 <N,DestroyLink(IsAuthorOf,person,authors[i],paper,v3)>
depLists[1] = [<1,AddStructuralFeature(p,title,v1)>,
 <1,CreateLink(IsAuthorOf,person,v2,paper,p)>,
 <N,p:=CreateObject(UnderReview)>]

su
bm

itP
ap

er

Output requiredActions = ø (depLists[1] maps correctly with input path p)
executability = TRUE

Table 3. Weak Executability for the dismiss operation

Input path p = [<1,DestroyLink(WorksIn,person,self,department,self.department)>]

Dependencies depLists[0] = [<1,CreateLink(WorksIn,person,self,department,v1)>]
depLists[1] = [<1,DestroyObject(self)>]

di
sm

is
s

Output
requiredActions[0] = [<1,CreateLink(WorksIn,person,self,department,v1)>]
requiredActions [1] = [<1,DestroyObject(self)>]
executability = FALSE

5 We could also mix both loops by checking partial satisfiability of depLists after each node

(more efficient but with a poorer feedback since only part of the required actions would be
returned).

136 E. Planas, J. Cabot, and C. Gómez

This path is not executable (and thus, neither the dismiss operation, since this is its
only path), because removing the link violates the multiplicity ‘1’ of WorksIn. Adding
a new link to the dangling object (with CreateLink(WorksIn,…)) or destroying it (with
DestroyObject(self)) would make the path executable, as reported by our method.

6 Completeness

Users evolve the system state by executing the set of write actions defined in the
behavior elements of the UML model (the operations in the class diagram in our
case). Intuitively, we say that the set of actions in an UML model is complete when,
all possible changes (inserts/updates/deletes/…) on all parts of the system state can be
performed through the execution of those actions. Otherwise, there will be parts of the
system that users will not be able to modify since no behavioral elements address
their modification. For instance, the set of actions in the operations defined in Fig. 4 is
incomplete since actions to remove a person or to create and remove departments are
not specified, forbidding users to perform such kind of changes on the data.

We feel this property is important to guarantee that no behavioral elements are
missing in the model. Clearly, it may happen that a class diagram contains some
elements that designers do not want the users to modify but then those elements
should be defined, for instance, as derived information or read-only elements.

More formally, an operation set setop = {op1,…,opn} is complete when, for each
modifiable element e in the class diagram and each possible action ac modifying the
population of e, there is at least a weak executable path in some opi that includes ac.

A simple function for checking the completeness of setop is the following:

function completeness (in: cd: <Set(Class), Set(StructuralFeature),
Set(Association), Set(GeneralizationSet)>, in: op: Set(Operation), out:
feedback: Set(Action)): Boolean
{ requiredActionsSet, existingActionsSet: Set(Action):=Ø;
 action: Action; feedback:=Ø;
 existingActionsSet:=getExistingActions(op);
 requiredActionsSet:=getRequiredActions(cd);
 for each action ∈ requiredActionsSet do
 if action∉existingActionsSet then feedback:=feedback U {action};
 endif
 endfor
 return (feedback = Ø);}

The parameters of the completeness function are the model elements of the class
diagram. The result indicates whether the set of operations is complete. For incomplete
operations sets, the output parameter feedback contains the set of actions that should be
included in some operation to satisfy the completeness property. GetExistingActions
simply retrieves all different actions of weak executable paths of the operations set (op
parameter). GetRequiredActions computes the set of actions that the software system
should provide to its users in order to be able to modify all parts of the system state,
depending on the structure and properties of the class diagram.

The set of actions returned by getRequiredActions is computed by first determining
the modifiable model elements in the class diagram (i.e. the elements whose value or
population can be changed by the user at run-time) and then deciding, for each
modifiable element, the possible types of actions that can be applied on it.

 Verifying Action Semantics Specifications in UML Behavioral Models 137

A class is modifiable as long as it is not an abstract class and it is not the supertype
of a complete generalization set (instances of such supertypes must be created/deleted
through their subclasses). An attribute is modifiable when it is not derived6. An
association is modifiable if none of its member ends are derived.

For each modifiable class c, users must be provided with the actions
CreateObject(c) and DestroyObject(o:c)7 to create and remove objects from c. For
each modifiable attribute at the action AddStructuralFeature(o,at,v) is necessary. For
each modifiable association as, we need the actions CreateLink(as,p1,o1,p2,o2) and
DestroyLink(as,p1,o1,p2,o2). For generalizations, we need a set of actions
ReclassifyObject(o,nc,oc) among the classes involved in them to specialize
(generalize) the object o to (from) each subclass of the generalization. As an example,
the result of getRequiredActions for our running example is provided in [22].

7 Related Work

There is a broad set of research proposals devoted to the verification of behavior
specifications in UML, focusing on state machines [15], [14], [18], interaction
diagrams [1], sequence diagrams [11], activity diagrams [8] or on the consistent
interrelationship between them and/or the class diagram [13], [5], [10], [26], [25],
[23], [6], among others. Nevertheless, many of these methods target very basic
correctness properties (basically some kind of well-formedness rules between the
different diagrams) and/or restrict the expressivity of the supported UML models.
Most of the methods above do not accept the specification of actions in the behavior
specifications (a relevant exception is [24]), which is exactly the focus of our method.

Another major difference is the formalism used to perform the verification. To
check the executability of a behavior specification (or, in general, any property that
can be expressed as a Linear Temporal Logic formula - LTL [7]) previous approaches
rely on the use of model-checking techniques [12]. Roughly, model checkers work by
generating and analyzing all the potential executions at run-time and evaluating if for
each (or some) execution the given property is satisfied.

When compared with model-checking methods, our approach presents several
advantages. First of all, our analysis is static (no animation/simulation of the model is
required) and, thus, our method is more efficient. Model-checking methods suffer
from the state-explosion problem (i.e. the number of potential executions to analyze
grows exponentially in terms of the size of the model, the domains of the
parameters,…) even though a number of optimizations are available (as partial order
reduction or state compression). Therefore, in general, it is not possible to explore all
possible executions. This implies that results provided by these methods are not
conclusive, i.e. absence of a solution cannot be used as a proof: an operation classified
as not weakly executable may still have a correct execution outside the search space
explored during the verification. Another advantage of our method is the kind of
feedback provided to the designer when a property is not satisfied. Model-checking
based proposals provide example execution traces that do (not) satisfy the property. In

6 Read-only attributes are considered modifiable because users must be able to initialize their

value (and similar for read-only associations).
7 Or a generic operation DestroyObject(o:OclAny) to remove objects of any class.

138 E. Planas, J. Cabot, and C. Gómez

contrast, our method provides a more valuable feedback (for our correctness analysis)
since it suggests how to change the operation specification in order to repair the
detected inconsistency.

As a trade-off, our method is unable to verify arbitrary LTL properties. In this sense,
we believe our method could be used to perform a first correctness analysis, basic to
ensure a basic quality level in the actions specification. Then, designers could proceed
with a more detailed analysis adapting current approaches presented above to the
verification of behaviors specified with AS. For instance, example execution traces that
lead to an error state would help designers to detect particular scenarios not yet
appropriately considered.

Finally, we would like to remark that, to the best of our knowledge, our method is
the first one considering the completeness and syntactic analysis of action
specifications.

8 Conclusions and Further Work

We have presented an efficient method for the verification of the correctness of AS
specifications. In particular, we have focused on the verification of actions specified
as part of the definition of the effect of imperative operation specifications, one of the
key elements in all MDD methods. Our approach can be easily extended to cope with
other kinds of behavioral specifications since all of them use AS for a fine-grained
behavior specification.

Our method is based on a static analysis of the dependencies among the actions; an
animation/simulation is not required. Thus, our method does not suffer from the state-
explosion problem as current model-checking methods. As a trade-off, our method is
not adequate for evaluating general LTL properties. Moreover, the feedback provided
by our method helps designers to correct the detected errors since our method is able
to suggest a possible repair procedure instead of just highlighting the problem.

Therefore, we believe that the characteristics of our method make it especially
suitable for its integration in current CASE and code-generation tools, as part of the
default consistency checks that those tools should continuously perform to assist
designers in the definition of software models.

As a further work, we would like to complement our techniques by providing an
automatic transformation between the UML AS specification and the input language
of a model-checker tool (as the PROMELA language [12]) so that, after an initial
verification with our techniques (simpler and which would efficiently provide a first
correctness result), designers may get a more fine-grained (though partial) analysis by
means of applying more complex model checking techniques. Also, we also plan to
implement/integrate these techniques into a CASE tool and validate them with a more
complex case study. In addition, we plan to empirically evaluate the computational
cost of each technique and compare them.

Acknowledgements. Thanks to the anonymous referees and the people of the GMC
group for their useful comments to previous drafts of this paper. This work has been
partly supported by the Ministerio de Ciencia y Tecnologia under TIN2008-00444
project, Grupo Consolidado.

 Verifying Action Semantics Specifications in UML Behavioral Models 139

References

1. Baker, P., Bristow, P., Jervis, C., King, D., Thomson, R., Mitchell, B., Burton, S.:
Detecting and Resolving Semantic Pathologies in UML Sequence Diagrams.
ESEC/SIGSOFT FSE, 50–59 (2005)

2. Bollobas, B.: Modern graph theory. Springer, Heidelberg (2002)
3. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of

UML/OCL models using constraint programming. ASE, 547–548 (2007)
4. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. In:

Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 196–210. Springer, Heidelberg (2007)

5. Gallardo, M.M., Merino, P., Pimentel, E.: Debugging UML Designs with Model
Checking. Journal of Object Technology 1(2), 101–117 (2002)

6. Egyed, A.: Instant Consistency Checking for the UML. In: ICSE, pp. 381–390 (2006)
7. Emerson, E.A.: Temporal and Modal Logic. Handbook of Theoretical Computer

Science 8, 995–1072 (1990)
8. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transactions on

Soft. Eng. and Methodology 15(1), 1–38 (2006)
9. Garousi, V., Briand, L., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence

Diagrams. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp.
160–174. Springer, Heidelberg (2005)

10. Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Models.
Electronic Notes in Theoretical Computer Science 101, 3–24 (2004)

11. Grosu, R., Smolka, S.A.: Safety-Liveness Semantics for UML 2.0 Sequence Diagrams. In:
ACSD, pp. 6–14 (2005)

12. Holzmann, G.J.: The spin model checker: Primer and reference manual. Addison-Wesley
Professional, Reading (2004)

13. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions. In: Kühne, T. (ed.)
MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

14. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Subset of
UML Statechart Diagrams using the SPIN Model-Checker. Formal Aspects of
Computing 11(6), 637–664 (1999)

15. Lilius, J., Paltor, I.P.: Formalising UML State Machines for Model Checking. In: France,
R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 430–445. Springer, Heidelberg
(1999)

16. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT Press,
Cambridge (1998)

17. Mellor Stephen, J., Balcer Marc, J.: Executable UML: A foundation for model-driven
architecture. Addison-Wesley, Reading (2002)

18. Ober, I., Graf, S., Ober, I.: Validating Timed UML Models by Simulation and
Verification. Int. Journal on Software Tools for Technology Transfer 8(2), 128–145 (2006)

19. Object Management Group (OMG): UML 2.0 Superstructure Specification. OMG
Adopted Specification (ptc/07-11-02) (2007)

20. Object Management Group (OMG): Semantics of a Foundational Subset for Executable
UML Models RFP (ad/2005-04-02) (2005)

21. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520.
Springer, Heidelberg (2005)

140 E. Planas, J. Cabot, and C. Gómez

22. Planas, E., Cabot, J., Gómez, C.: Verifying Action Semantics Specifications in UML
Behavioral Models (Extended Version). LSI-09-6-R LSI Research Report, UPC (2008)

23. Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams: Classes and State
Machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 229–243. Springer, Heidelberg (2003)

24. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic Generation of CSP || B
Skeletons from xUML Models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.)
ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidelberg (2008)

25. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to
Maintain Consistency between UML Models. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

26. Xie, F., Levin, V., Browne, J.C.: Model Checking for an Executable Subset of UML. ASE,
333–336 (2001)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 141–155, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Macromodels to Manage Collections of Related
Models

Rick Salay, John Mylopoulos, and Steve Easterbrook

Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada

{rsalay,jm,sme}@cs.toronto.edu

Abstract. The creation and manipulation of multiple related models is common
in software development, however there are few tools that help to manage such
collections of models. We propose a framework in which different types of model
relationships -- such as submodelOf and refinementOf -- can be formally defined
and used with a new type of model, called a macromodel, to express the required
relationships between models at a high-level of abstraction. Macromodels can be
used to support the development, comprehension, consistency management and
evolution of sets of related models. We illustrate the framework with a detailed
example from the telecommunications industry and describe a prototype
implementation.

Keywords: Modeling, Metamodeling, Macromodeling, Relationships, Mappings.

1 Motivation

In Software Engineering, it is common to model systems using multiple interrelated
models of different types. A typical modeling paradigm provides a collection of
domain specific modeling languages, and/or multi-view languages such as UML. The
modeling languages are typically defined through a metamodel, however only very
limited support is typically provided for expressing the relationships between the
models.

Existing approaches to supporting model relationships tend to focus on how the
contents of specific model instances are related (e.g. [7, 10]), rather than on the
models themselves. Those approaches that do provide abstractions for expressing
relationship between models typically concentrate on a limited set of relationship
types required to support model transformation (e.g. [2, 4]) and/or traceability (e.g.
[1]). In contrast, we argue that a rich, extensible set of relationship types for relating
models is needed, to capture the intended meaning of the models and the various ways
that models in a collection can constrain one another.

UML suffers from a similar limitation. The UML metamodel defines a number of
diagram types as projections of a single UML model. However, developers rarely
manipulate the underlying UML model directly - they work with the diagrams, and
the intended purpose of each new diagram is only partially captured in the UML
metamodel. For example, a developer might create an object diagram showing

142 R. Salay, J. Mylopoulos, and S. Easterbrook

instantiations of a subset of the classes, chosen to be relevant to a particular use case
scenario. The relationships of these objects to the classes in the model is captured in
the metamodel, but the relationship between this particular object diagram and the set
of behaviour models (e.g. sequence diagrams) that capture the scenario is left implicit.

The key point is that each model in a collection is created for a specific purpose,
for example to capture important concepts, or to elaborate and constrain other models.
Each model therefore has an intended purpose and a set of intended relationships with
other models. Such relationships might include submodels, refinements, aspects,
refactorings, transformations, instantiations, and so on. A precise definition of these
intended relationships is needed to fully capture the intended meanings of the models.

We propose a framework for systematically extending a modeling paradigm to
formally define model relationship types between model types and we introduce a
new type of model, called a macromodel, for managing collections of models. A
macromodel consists of elements denoting models and links denoting intended
relationships between these models with their internal details abstracted away. The
framework provides a number of benefits:

1. Understandability. When large models are decomposed into smaller ones, the
representation of relationships is essential for understandability [9], thus, making
the underlying relational structure of a set of models explicit helps comprehension.

2. Specifying constraints on models, even for models yet to be created. When
constituent models change, they are still expected to maintain the relationships
expressed in the macromodel, because the macromodel captures the intentions of
the modelers on how the set of models should be structured.

3. Consistency checking. The macromodel can be used to assess an evolving set of
models for conformance with modeler intentions even when mappings between
models are incomplete.

4. Model evolution. A change to the macromodel can be taken as a specification for
change in the collection of models it represents – either involving the removal of
some models, changes in model relationships, or additions of new models. Thus,
a macromodel can be used to guide model evolution.

In a short paper [14], we introduce the basic concepts of the framework. In this
paper, we elaborate the details, provide a formal semantics for macromodels and
describe a new implementation that integrates the framework with the model finder
Kodkod [16] to support automated model management activities such as consistency
checking and model synthesis.

The structure of this paper is as follows. Section 2 introduces the framework
informally and then Section 3 provides a formal treatment. In Section 4, we describe a
prototype tool implementation and Section 5 describes the application of the
framework to a detailed example from the telecommunications domain. In Section 6
we discuss related work and finally in Section 7 we state some conclusions and
discuss future work.

2 Framework Description

In the framework we assume that at the detailed level, the relationship between two
(or more) models is expressed as a special kind of model that contains the mapping

 Using Macromodels to Manage Collections of Related Models 143

relating the model elements. Furthermore, these relationships can be classified into
types and that they can be formalized using metamodels. For example, Figure 1 shows
an instance of the objectsOf relationship type that can hold between a sequence
diagram and object diagram in UML. Each object symbol in the sequence diagram is
mapped to an object symbol in the object diagram that represents the same object (via
the identity relation id) and each message in the sequence diagram is mapped to the
link in the object diagram over which the message is sent (via the relation sentOver).
In addition, the mapping is constrained so that both id and sentOver are total functions
and the mapping must be consistent in the sense that the endpoint objects of a
message should be the same as the endpoint objects of the link to which it is mapped.

The benefit of defining different relationship types such as objectsOf is that their
instances express the relationships between models at two levels of abstraction. At the
detail level, it shows how the elements of the models are related. At the aggregate, or
macro level, it expresses a fact about how the models are related as a whole and
conveys information about how a collection of models is structured. Thus, we can use
these to express meaningful macromodels such as the one in Figure 2 that shows the
relationships between some of the models and diagrams of a hypothetical library
management system. Here we have added the relationship types caseOf that holds
between a sequence diagram and its specializations, actorsOf that holds between a
model and an organization chart and diagramsOf that holds between a collection of
UML diagrams and the UML model they are diagrams of.

id idsentOver sentOver sentOver
id id f:objectsOf

 Fig. 1. A relationship between a sequence diagram and an object diagram

144 R. Salay, J. Mylopoulos, and S. Easterbrook

Borrow Book:
SequenceDiagram

Return Book:
SequenceDiagram

Media Transaction:
SequenceDiagram

Customer Interaction: UMLDiagrams

Library Management System
Design: UML

HumanResources:
OrgChart Lending Desk:

ObjectDiagram

f2:caseOf
f3:objectsOf f4:caseOf

f1:objectsOf

f5:diagramsOf

f6:actorsOf

Fig. 2. Partial macromodel of a library system specification

A macromodel also has a metamodel and can contain well-formedness constraints
on the valid configurations of models. For example, in Figure 2, a macromodel of
type UMLDiagrams can only contain symbols denoting UML diagrams.

The symbols in a macromodel are realized by actual models and mappings. As the
development of the library management system proceeds and as these artifacts evolve
we expect the relationships expressed in the macromodel to be maintained. Thus, the
macromodel provides a new level of specification in which the intentions of
the modelers are expressed at the macroscopic level as models that must exist and
relationships that must hold between models. Since these constraints are formalized
using the metamodels of the relationship types involved, they can be leveraged by
automated support for model management activities such as consistency checking and
change propagation. We illustrate this in Section 5 with the prototype MCAST
(Macromodel Creation and Solving Tool).

The application of the framework to a particular modeling paradigm involves the
following steps:

1. The relationship types that are required for relating model types are defined using
metamodels.

2. The metamodel for macromodels is defined in terms of the model and
relationship types.

3. For a given development project within the paradigm, an initial macromodel is
created expressing the required models and their relationships. As the project
continues, both the macromodel and the constituent realizations of the models
and relationships (i.e. mappings) continue to evolve. During the project, the
macromodel is used as a way of supporting the comprehension of the collection
of models in a project, specifying extensions to it and for supporting model
management activities with tools such as MCAST.

We describe the formal basis for these steps below.

3 Formalization

The problem of how to express relationships between models has been studied in a
number of different contexts including ontology integration [6], requirements
engineering [10, 11] and model management [3]. Bernstein [3] defines the

 Using Macromodels to Manage Collections of Related Models 145

relationship in terms of the semantics of the models: two models are related when the
possible interpretations of one model constrain the possible interpretations of the
other model. Thus, it is a binary relation over the sets of interpretations of the models.

At the syntactic level, this relationship can be expressed by embedding the models
within a larger relator model that contains the mapping showing how the elements of
the models are related. Figure 3 shows how the objectsOf relationship type between
sequence and object diagrams shown in Figure 1 is defined using metamodels. Note
that these are simplified versions of portions of the UML metamodel that correspond
to the content of these diagrams. In order to formally relate these metamodels, we
exploit the following similarity between metamodels and logical theories: a
metamodel can be taken to consist of a pair 〈Σ, Φ〉 where Σ defines the types of
elements used in a model and is called its signature while Φ is a set of logical
sentences over this vocabulary that define the well-formedness constraints for models.
Thus, a metamodel is a logical theory and the set of finite models of this theory, in the
model-theoretic sense, is also the set of models that the metamodel specifies. We
designate this set Mod(Σ, Φ).

Institution theory [5] provides a general way to relate logical theories by mapping
the signatures of the theories in such a way that the sentences are preserved. We take
a similar approach for metamodels and define the notion of a metamodel morphism
between two metamodels as follows: a metamodel morphism f:〈ΣA, ΦA〉→〈ΣB, ΦB〉 is a
homomorphism of the signatures fΣ:ΣA → ΣB such that ΦB f(ΦA) - where we have
abused the notation and have used f as a function that translates sentences over ΣA to
sentences over ΣB according the mapping fΣ:ΣA → ΣB. Thus, by establishing a
metamodel morphism from metamodel A to metamodel B we both map the element
types and set up a proof obligation that ensures that any B-model contains an A-
model that can be “projected” out of it.

In the example of Figure 3, the metamodel morphisms pOD and pSD map in the
obvious way into the relator metamodel of objectsOf and the fact that they are
metamodel morphisms ensures that every well-formed instance of objectsOf contains
a well-formed instance of ObjectDiagram and of SequenceDiagram that it relates. In
particular, an instance of objectsOf constrains the SequenceDiagram to have a subset
of the objects of the ObjectDiagram, and it contains a functional association

sentOver:Message → Link that satisfies the consistency constraint that when it maps

a message to a link then the endpoint objects of the message must be endpoint objects
of the link. Thus,

ΦobjectsOf = pOD(ΦObjectDiagram) ∪ pSD(ΦSequenceDiagram) ∪

{∀m:Message.

(linkStart(sentOver(m)) = messageStart(m) ∧

 linkEnd(sentOver(m)) = messageEnd(m)) ∨

(linkEnd(sentOver(m)) = messageStart(m) ∧

 linkStart(sentOver(m)) = messageEnd(m))}

146 R. Salay, J. Mylopoulos, and S. Easterbrook

Object Message

messageEnd

messageStart

nextMessage

Sequence Diagram

ObjectLink

linkEnd

linkStart

ObjectDiagram

Message
messageEnd

messageStart

nextMessage

ObjectODLink
linkEnd

linkStart

objectsOf

sentOver

pOD

ObjectSD

pSD

Fig. 3. Defining the objectsOf relationship type

The key benefit of using metamodel morphisms for relating metamodels is that the
approach can be formulated in a way that is independent of the metamodeling
language since each metamodeling language can define its own type of metamodel
morphism. Furthermore, institution theory provides a formal means to relate different
logics using Institution morphisms [5] and thus our approach extends similarly to
multiple metamodeling formalisms; however, we do not pursue this direction further
in this paper as it is secondary to our interests here.

In addition to “custom defined” relationship types such as objectsOf there are a
variety of useful generic parameterized relationship types that can be automatically
constructed from the metamodels for the associated model types. We discuss two of
these briefly as they are used in Section 5.

Given any model type T, we can define the relationship type eq[T] where
eq[T](M1, M2) holds iff there is an isomorphism between M1 and M2 and where we
interpret corresponding elements as being semantically equal – i.e. they denote the
same semantic entities. A second parameterized type is merge[T]. Given a collection
of models K consisting of T-models, merge[T](K, M) holds iff M is the smallest T-
model that contains all of the models in K as submodels. Note that a unique merge M
may not always exist.

3.1 Macromodels

Now that we have an approach for defining relationship types we can characterize a
macromodel type in terms of the model types and relationship types it contains. A
macromodel is a hierarchical model whose elements are used to denote models that
must exist and the relationships that must hold between them. Like model and
relationship types, a macromodel type is defined using a metamodel. Figure 4 depicts
a simple example of this. The upper part shows a macromodel metamodel
SimpleMulti (left side) and the set of metamodels for the model and relationship
types it can depict (right side). The axioms of the macromodel metamodel limit the
possible well-formed collections of models and relationships that the macromodel can
represent. The notation for macromodels expresses binary model relationship types as
directed arrows between model types however they should be understood as

 Using Macromodels to Manage Collections of Related Models 147

consisting of a relator model and two metamodel morphisms. The simple illustration
in Figure 4 does not depict hierarchy but Figure 9 shows a more complex one that
does that we used in the example of Section 5.

The lower part of Figure 4 depicts a particular macromodel M:SimpleMulti and a
collection of models that conform to it. The asterisk preceding f:objectsOf,
M2:ObjectDiagram and f1:refines indicate that they are “unrealized” models and
relationships. This implies that there is no corresponding instance for these in the
collection of models specified by the macromodel and they are just placeholders used
to express more complex constraints. The macromodel in Figure 4 expresses the fact
that the collection should contain models M1, M3 and M4 and these must satisfy the
constraint that M4 is a sequence diagram and the object diagram corresponding to
sequence diagram M1 is a refinement of object diagram M3. Translated into first
order logic we get the set of sentences shown in Figure 5.

sorts SobjectsOf, Srefines, SObjectDiagram, SSequenceDiagram

pred objectsOf: SobjectsOf , refines: Srefines, ObjectDiagram: SObjectDiagram,
SequenceDiagram: SSequenceDiagram

func pod: SobjectsOf → SObjectDiagram, psd: SobjectsOf → SSequenceDiagram,

pod1: Srefines → SObjectDiagram, pod2: Srefines → SObjectDiagram,
M1, M4: SSequenceDiagram, M3: SObjectDiagram

axioms
SequenceDiagram(M4),
SequenceDiagram(M1),
ObjectDiagram(M3),
∃f: SobjectsOf, f1: Srefines,m2: SObjectDiagram. objectsOf(f) ∧ psd(f) = M1 ∧ pod(f) = m2

∧ refines(f1) ∧ pod1(f1) = m2 ∧ pod2(f1) = M3 ∧ ObjectDiagram(m2)

Fig. 5. Example translation

SequenceDiagram

objectsOf

ObjectDiagramObjectDiagram

SequenceDiagram

M1:SequenceDiagram

M3:ObjectDiagram

M4:SequenceDiagram

M1:SequenceDiagram

M3:ObjectDiagram

M4:SequenceDiagram

M:SimpleMulti

refines

Fig. 4. A macromodel metamodel and an instance of it

pod

psd
objectsOf

*M2:ObjectDiagram

*f:objectsOf

*f1:refines

conforms to

denotes

conforms to

 +axioms

SimpleMulti

refines

pod1

pod2

148 R. Salay, J. Mylopoulos, and S. Easterbrook

Here we are using projection functions with the same name as their corresponding
metamodel morphisms to associate relator models with the models they relate. Each
connected set of unrealized elements in the macromodel is translated to an existential
sentence with the unrealized models and relationships as existentially quantified
variables. We will use this translation approach for defining the semantics of
macromodels in general, below.

3.2 Macromodel Syntax and Semantics

We now define the syntax and semantics of macromodels formally. Figure 6 shows
the abstract syntax and well-formedness rules of the macromodel language1. The
notation of macromodels is summarized as follows:

o A Model element is represented as a box containing the model name and type
separated by a colon. When the name is preceded with an asterisk then it is has
the realized attribute set to false.

o A Relation element is represented with an arrow, if binary, or as a diamond with
n legs, if n-ary. It is annotated with its name, type and with optional Role labels.
When the name is preceded with an asterisk then it is has the realized attribute set
to false.

o A sub-Macromodel element is represented as a box containing its name and type.
It optionally can show the sub-macromodel as the contents of the box.

o A Macrorelation element is represented with an arrow, if binary, or as a diamond
with n legs, if n-ary. It is annotated with its name, type and with optional
Macrorole labels. It can optionally show its contents as a dashed oval linked to
the main the arrow or diamond symbol.

Assume that we have a macromodel K which has metamodel T. To define the
formal semantics of macromodels we proceed by first translating T to a first order
signature ΣT reflecting the different model and relationship types in it and then

translating K to the theory 〈ΣT ∪ ΣK, ΦK〉 where ΣK consists of a set of constants

(R1) A Macromodel cannot contain itself
∀m:Macromodel. ¬TC(contains(m, m))

(R2) There is a unique root Macromodel
∀m, m1:Macromodel.

(¬∃m2:Macromodel. contains(m2, m)) ∧

(¬∃m3:Macromodel .contains(m3, m1)) m = m1

(R3) If any of its arguments are unrealized then a
Relation is unrealized.

∀r:Relation∃ri:Role. ri.Relation = r ∧

ri.Model.realized = false r.realized = false.Role Relation

Model
realized = {true, false}
type
name

1..*

*

1..*
{ordered}

*

MacroRelation

Macromodel
name
type

**
1..*

*

1..*

*

{ordered}

**

MacroRole

Fig. 6. Abstract syntax and well-formedness constraints of macromodels

1 TC(pred(x, y)) denotes the transitive closure of pred(x, y).

 Using Macromodels to Manage Collections of Related Models 149

corresponding to the realized models and relationships in K and ΦK is a set of axioms.
Figure 5 is the result of performing the translation to the example in Figure 4. We
then construct a “universal” interpretation JT of ΣT that consists of all possible models
and relationships using these types. Any collection M of models and relationships
conforms to K iff it is an assignment of the constants in ΣK to elements of the
appropriate types in JT such that ΦK are satisfied.

Figure 7 shows the algorithms involved. Note that in the translation algorithm for
K, the connected sets of unrealized Model and Relation elements are obtained by
treating the macromodel as a graph and forming the maximally connected subgraphs
consisting of unrealized elements.

4 Prototype Implementation: MCAST

The prototype implementation MCAST is built in Java on the Eclipse-based Model
Management Tool Framework (MMTF) described in [12] and leverages the Eclipse
Modeling Framework (EMF) and related components. Figure 8 shows the architecture

The translation algorithm for T is as follows:
 ΣT is initially empty, then,

o For each metamodel X = 〈ΣX, ΦX〉 denoted by a Model or Relation element, add a sort
symbol SX and a unary predicate symbol X:SX to ΣT

o For each metamodel morphism p:〈ΣX, ΦX〉→〈ΣY, ΦY〉 denoted by a Role element, add a

function symbol p:SY→SX to ΣT

The interpretation JT is constructed as follows:
o To each sort symbol SX assign the set Mod(ΣX, ∅)
o To each predicate symbol X:SX assign the unary relation defined by the set Mod(ΣX, ΦX)
o To each function symbol p:SY→SX assign the function p: Mod(ΣY, ∅) →Mod(ΣX, ∅)

induced by the signature morphism pΣ:ΣX → ΣY

The translation algorithm for K is as follows:
 ΣK and ΦK are initially empty, then,

o For each realized Model or Relation element M of type X add the constant M:SX to ΣK
and the axiom ‘X(M)’ to ΦK.

o For each Role element of type p from realized relation R to a realized model M, add the
axiom ‘p(R) = M’ to ΦK.

o For each connected set S={M1, …, Mn} of unrealized Model and Relation elements, add
the axiom ‘∃m1, …, mn. φS’ to ΦK where φS is a conjuction constructed as follows:

φS is initially empty, then,
o For each element Mi of type X add the conjunct ‘X(mi)’ to φS.
o For each Role element of type p from relation Mi to realized model M, add

the conjunct ‘p(mi) = M’ to φS.
o For each Role element of type p from relation Mi to model Mj, add the

conjunct ‘p(mi) = mj’ to φS.
o For each Role element of type p from realized relation R to model Mi, add

the conjunct ‘p(R) = mi’ to φS.

Fig. 7. Semantic interpretation algorithms

150 R. Salay, J. Mylopoulos, and S. Easterbrook

of MCAST. MMTF already provides a simplified version of a macromodel called a
Model Interconnection Diagram (MID) used as an interface for invoking the model
manipulation operators and editors that can be plugged into the framework. MCAST
extends this to a full macromodel editor and provides the Solver module that utilizes
the Kodkod [16] model finding engine to solve model management problems
expressed using annotated macromodels. We now revisit the three steps for utilizing
the framework as described in Section 2 and describe how these steps are
implemented using MCAST.

Step 1: Defining relationship types. In the formal treatment of section 3,
relationship types are expressed using a relator metamodel plus metamodel
morphisms. In the implementation we exploit the fact that EMF metamodels (i.e.
Ecore) can directly reference other metamodels and thus rather than replicate the
endpoint model types within the relator metamodel they are referenced as external
metamodels. Axioms are expressed using a textual representation of Kodkod’s
relational logic language. Metamodels for model types are also expressed in this way.

Step 2: Defining a macromodel metamodel. MCAST allows metamodels for
macromodels to be defined as Ecore metamodels that extend the base metamodel
shown in Figure 6. Each model and relationship type is given as subclass of classes
Model and Relation, respectively. In order to implement the mapping in the top part
of Figure 4, these are annotated with references to the Ecore metamodels they denote.

Step 3. Managing the evolution of model collections. The Solver takes as input, a
macromodel with a subset of the model and relationship elements annotated with
references to existing models and relationships (i.e. relator models). It then transforms
this into a Kodkod model finding problem and uses it to find solutions that assign the
remainder of the elements to new models and relationships in such a way that the
constraints expressed by the macromodel are satisfied. This can be used in two ways:

o Simple Conformance Mode: If the input consists of all of the realized elements
assigned to existing models and relationships then a solution exists to the Kodkod
problem iff this is a conformant collection and hence the Solver can be used for
conformance checking.

o Extensional Conformance Mode: If simple conformance mode yields the result
that the collection is non-conformant, some of the assigned models and
relationships can be marked as “incomplete” and the Solver will allow these to be
extended in order to find a conformant solution.

Eclipse Services
(GMF, EMF, etc.)

MMTF Services
(operator/editor plugin support)

Macromodel
Editor

Kodkod

Ecore Metamodel
Editor

Solver

Fig. 8. MCAST Architecture

 Using Macromodels to Manage Collections of Related Models 151

Table 1. Example Solver scenarios

Case Input Output

1 As in Figure 1, all marked
complete.

Conformant

2 As in case 1 but sentOver
relations removed from
mapping f:objectsOf.

Non-conformant
violates constraint that sentOver is a
function.

3 As in case 2 but f:objectsOf
marked incomplete

f:objectsOf can be uniquely extended to
conformance

4 As in case 3 but the link from
:Desk to Loans:DB removed.

f:objectsOf cannot be extended due to
violation of the endpoint preservation
axiom.

In extensional conformance mode, when new models and relationships are

constructed as part of finding a conformant solution they are guaranteed to be
consistent with the existing models/relationships but of course, this does not mean
they are necessarily correct because there may be many possible consistent
extensions. When the solution is unique, however, then it must be correct and hence
this provides a way to do model synthesis. On the other hand, if a solution cannot be
found, this indicates that there is no way to consistently extend the incomplete
models/relationships and so this provides a way to do consistency checking with
incomplete information.

Note that since Kodkod finds solutions by exhaustively searching a finite bounded
set of possible solutions, the above results are valid only within the given bounds.
Fortunately, there are common cases in which it is possible to compute upper bounds
for model extension that are optimal in the sense that if a conformant extension
cannot be found within the bounds then one does not exist. MCAST allows a
metamodel to specify such bounds computations using special annotations within the
metamodel.

We illustrate both usage modes using a macromodel consisting of the models and
objectsOf mapping in Figure 1. Table 1 shows four cases in which we applied Solver.
In case 1 we passed the models and mapping of Figure 1 (all marked as complete) and
Solver determined that they satisfied the constraints and hence were conformant. In
case 2 we removed all sentOver relation instances from the mapping and Solver found
the models to be non-conformant because the constraint that sentOver is a total
function from Message to Link was violated. Case 3 is the same except that the
mapping was marked as incomplete and hence we use extensional conformance mode.
In this case, we used an upper bound based on the fact that every objectsOf
relationship is bounded by the models it relates and these would not be extended (i.e.
they are marked complete). Solver responded by generating an extension of the
mapping that filled in the missing sentOver links. In this case, Solver identified it as
the unique extension that satisfied the constraints, thus it must be the correct one and
so it had automatically synthesized the missing part of the mapping. In case 4, we
modified the object diagram to remove the link from :Desk to Loans:DB. Now Solver
could not find a conformant extension of the mapping and we can conclude that the
models (and partial mapping) are inconsistent with the constraint that the objectsOf

152 R. Salay, J. Mylopoulos, and S. Easterbrook

relationship holds between the models. Cases 3 and 4 showed that it is possible to
work usefully with incomplete (or even non-existent) mappings. This is significant
because the creation of mappings is often given little attention in the modeling
process and is considered to be overhead.

5 A Detailed Example

As a more detailed illustration of the framework we applied it2 to a design project
taken from a standards document for the European Telecommunications Standards
Institute (ETSI) [8]. The example consists of three UML models: a context model (4
diagrams), a requirements model (6 diagrams) and a specification model (32
diagrams) and details the development of the Private User Mobility dynamic
Registration service (PUMR) – a simple standard for integrating telecommunications
networks in order to support mobile communications. More specifically, it describes
the interactions between Private Integrated Network eXchanges (PINX) within a
Private Integrated Services Network (PISN). The following is a description from the
document:

“Private User Mobility Registration (PUMR) is a supplementary service that
enables a Private User Mobility (PUM) user to register at, or de-register from,
any wired or wireless terminal within the PISN. The ability to register enables the
PUM user to maintain the provided services (including the ability to make and
receive calls) at different access points.” [pg. 43]

Figure 9 shows the macromodel metamodel UMLMulti that we constructed and
Figure 10 shows part of the macromodel that we used it to create it. Note that our
macromodels include models as well as “diagrams” of these models. We treat a
diagram as a special type of model that identifies a submodel of the model for which
it is a diagram. This allows both the diagram structure within a UML model and the
relational structure across UML models to be expressed within a macromodel.

Due to lack of space we do not show the definitions of the relationship types of
UMLMulti. Please see [13] for further details.
The diagram in Figure 10 shows two sub-macromodels representing the diagrams of
the context model and a subset of the diagrams of the specification model.

2 Note that this example application was performed by hand – as future work we intend to

implement it using MCAST.

ObjectDiagram SequenceDiagram
objectsOf

ClassDiagram

detailOf

StatemachineDiagram
detailOf

overlap

UMLDiagrams UML

diagramsOf

refines case
instanceOf

refines

Fig. 9. UMLMulti

detailOf

 Using Macromodels to Manage Collections of Related Models 153

55-De-Registration
:SequenceDiagram

58- Registration
:StatemachineDiagram

51-Basic Domain Model
:ClassDiagram

57-PUMR Detailed
Domain Model

:ClassDiagram

61-Identification of PUMR
signaling at QSIG
interfaces:ClassDiagram

52-PUMR Object Model
:ObjectDiagram

*:instanceOf
53-Registration using
the PUM Number

:SequenceDiagram

54-Registration using
Alternative Identifier

:SequenceDiagram

59 -Registration Request
:StatemachineDiagram

Specification Model Diagrams1: UMLDiagrams

40-Context Model Packages
:PackageDiagram

41-Simple PUMR Domain Model
:ClassDiagram

42-Flow between User and PISN
:SequenceDiagram

43-PUMR System Architecture
:ObjectDiagram

*42a:ObjectDiagram
*:instanceOf

*:refines

*:instanceOf

Context Model Diagrams: UMLDiagrams

:refine
s

*:overlap

:caseOf :caseOf

*:objectsOf

:eq:eq

*:objectsOf

*54a: ObjectDiagram

*53a: ObjectDiagram

*55a: ObjectDiagram

*:merge[ObjectDiagram]

*:objectsOf

*:objectsOf

*(PINX:Class):detailOf

Request:State):detailOf
*(Processing PUM Registration *(Home PINX:Class):detailOf

Fig. 10. PUMR Macromodel

Relationships are shown both among the diagrams within each UML model and also
between the diagrams across the models. In the latter case, these are aggregated
within the refines relationship that holds between the two collections of diagrams.

We found two interesting cases where we needed to express complex relationships
using unrealized models. The relationship between sequence diagram 42 and class
diagram 41 is expressed using the unrealized object diagram *42a and this is also
used to show that object diagram 43 is a refinement of the objects in diagram 42.
Another example is the one between the three sequence diagrams 53, 54, 55 and the
object diagram 52. The macromodel shows that 52 is the smallest superset (i.e. the
merge) of the object diagrams corresponding to each of these sequence diagrams.

Even without understanding the details of the PUMR domain, it should be clear
how the expression of the relationships helps to expose the underlying structure in this
collection of models and diagrams. In the process of constructing the macromodel, we
observed that it significantly helped us to understand how the collection of diagrams
contributed toward creating an overall model of the PUMR domain. Unfortunately,
since this example involved an existing completed collection, we were not able to
assess the hypothesis that the macromodel can be used throughout the development
lifecycle to assess conformance and guide development. In order to do this, we are
planning to do a more in depth case study that uses our framework from project
inception through to completion.

154 R. Salay, J. Mylopoulos, and S. Easterbrook

6 Related Work

Existing work on dealing with multiple models has been done in a number of different
areas. The ViewPoints framework [10] was an influential early approach to multiview
modeling. Our approach differs from this work in being more formal and declarative
rather than procedural. Furthermore we treat relationships as first class entities and
provide support for typing of relationships.

More recently, configurable modeling environments have emerged such as the
Generic Modeling Environment (GME) [7]. None of these approaches provide
general support for expressing model relationships or their types; hence, they have
limited support for defining and expressing interrelated collections of models.
Furthermore, the focus of these approaches is on the detail level (i.e. the content of
particular models) rather than at the macroscopic level.

Process modeling approaches like the Software Process Engineering Metamodel
(SPEM) [15] bear some similarity to our notion of a macromodel metamodel;
however, our main focus is in the use of a macromodel at the instance level to allow
fine-grained control over the ways in which particular models are related rather than
the activities that consume and produce them. However, we believe that macromodels
could complement process models by providing a means for specifying pre and post
conditions on process activities.

The emerging field of Model Management [3] has close ties to our work but our
focus is different in that we are interested in supporting the modeling process whereas
the motivation behind model management is primarily model integration.

The term “megamodel” as representing models and their relationships at the
macroscopic level emerged first in the work of Favre [4] and also later as part of the
Atlas Model Management Architecture (AMMA) [2]. Macromodels bear similarity to
these two kinds of megamodels, but the intent and use is quite different – to express
the modeler’s intentions in a development process.

Finally, the work on model traceability also deals with defining relationships
between models and their elements [1]; however, this work does not have a clear
approach to defining the semantics of these relationships. Thus, our framework can
provide a way to advance the work in this area.

7 Conclusions and Future Work

By its very nature, the process of software development is an activity involving many
interrelated models. Much of the research and tools for modeling is focused on
supporting work with individual models at the detail level. Working with collections
of models creates unique challenges that are best addressed at a macroscopic level of
models and their inter-relationships.

In this paper we have described a formal framework that extends a modeling
paradigm with a rich set of model relationship types and uses macromodels to manage
model collections at a high level of abstraction. A macromodel expresses the
relationships that are intended to hold between models within a collection. We have
focused on two main ways that macromodels can support modeling. Firstly, they are
tools for helping the comprehension of the collection by revealing its intended

 Using Macromodels to Manage Collections of Related Models 155

underlying structure. Secondly, macromodels can be used to help maintain the model
relationships as a collection evolves. In this capacity they are used to guide the
development process by ensuring that modelers intentions are satisfied.

Finally, we described the prototype implementation MCAST that integrates the
Kodkod model finding engine [16] as a way to support model management activities
using macromodels. As part of future work, we are exploring other ways to use a
macromodel to manipulate collections of models.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model Traceability. IBM
Systems Journal 45(3), 515–526 (2006)

2. ATLAS MegaModel Management website, http://www.eclipse.org/gmt/am3/
3. Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In: Proc.

Conf. on Innovative Database Research, pp. 209–220 (2003)
4. Favre, J.M.: Modelling and Etymology. Transformation Techniques in Software

Engineering (2005)
5. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and

Programming. J. ACM 39(1), 95–146 (1992)
6. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowledge

Engineering Review 18(1), 1–31 (2003)
7. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,

G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. In: Workshop on
Intelligent Signal Processing (2001)

8. Methods for Testing and Specification (MTS); Methodological approach to the use of
object-orientation in the standards making process. ETSI EG 201 872 V1.2.1 (2001-2008),
http://portal.etsi.org/mbs/Referenced%20Documents/eg_201_72.
pdf

9. Moody, D.: Dealing with ‘Map Shock’: A Systematic Approach for Managing Complexity
in Requirements Modelling. In: Proceedings of REFSQ 2006, Luxembourg (2006)

10. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specifications. IEEE TSE 20(10), 760–773
(1994)

11. Sabetzadeh, M., Easterbrook, S.: An Algebraic Framework for Merging Incomplete and
Inconsistent Views. In: 13th IEEE RE Conference, Paris, France (2005)

12. Salay, R., Chechik, M., Easterbrook, S., Diskin, Z., McCormick, P., Nejati, S., Sabetzadeh,
M., Viriyakattiyaporn, P.: An Eclipse-Based Tool Framework for Software Model
Management. In: ETX 2007 at OOPSLA 2007 (2007)

13. Salay, R.: Macro Support for Modeling in Software Engineering. Technical Report,
University of Toronto,
http://www.cs.toronto.edu/~rsalay/tr/macrosupport.pdf

14. Salay, R., Mylopoulos, J., Easterbrook, S.: Managing Models through Macromodeling. In:
Proc. ASE 2008, pp. 447–450 (2008)

15. Software Process Engineering Metamodel V1.1. Object Management Group,
http://www.omg.org/technology/documents/formal/spem.htm

16. Torlak, E., Jackson, D.K.: A Relational Model Finder. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424. Springer, Heidelberg (2007)

A Case Study of Defect Introduction Mechanisms

Arbi Ghazarian

Department of Computer Science, University of Toronto, Canada
arbi@cs.toronto.edu

Abstract. It is well known that software production organizations spend a size-
able amount of their project budget to rectify the defects introduced into the soft-
ware systems during the development process. An in depth understanding of the
mechanisms that give rise to defects is an essential step towards the reduction
of defects in software systems. In line with this objective, we conducted a case
study of defect introduction mechanisms on three major components of an in-
dustrial enterprise resource planning software system, and observed that external
factors including incomplete requirements specifications, adopting new, unfamil-
iar technologies, lack of requirements traceability, and the lack of proactive and
explicit definition and enforcement of user interface consistency rules account for
59% of the defects. These findings suggest areas where effort should be directed.

Keywords: Defects Sources, Defect Root Cause Analysis, Case Study.

1 Introduction

It has been frequently mentioned in the software engineering literature that maintenance
activities are the dominant costs of developing software systems. Studies have shown
that changes made to software systems account for 40 to 90 percent of the total devel-
opment costs [4] [10] [3] [7] [6]. These changes can be corrective, adaptive, perfective,
or preventive. Corrective changes deal with fixing the defects introduced into the soft-
ware systems during the development process, and account for a significant portion of
the maintenance costs; in their study of 487 data processing organizations, Lientz and
Swanson [15] reported that, on the average, about 21% of the maintenance effort is
allocated to the corrective maintenance. More recent studies have concluded that, in
spite of the advances in software engineering in the past few decades, the maintenance
problems have remained the same [18] [22]. These figures clearly indicate the poten-
tial economic value that can be gained from leveraging defect prevention techniques. A
reduced rate of defects in the delivered software results in a reduction in the corrective
maintenance activities, which in turn translates into a lower total development cost.

The importance of defect prevention has been emphasized by quality standards such
as the Software Engineering Institute’s Capability Maturity Model (SEI-CMM) [26],
where defect prevention is a key process area for the optimizing maturity level (i.e.,
CMM Level 5). According to CMM [25]:

“Defect prevention involves analyzing defects that were encountered in the past and
taking specific actions to prevent the occurrence of those types of defects in the future.
The defects may have been identified on other projects as well as in earlier stages or

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 156–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Case Study of Defect Introduction Mechanisms 157

tasks of the current project. Defect prevention activities are also one mechanism for
spreading lessons learned between projects.”

It goes without saying that an important first step to devising tools, techniques, and
processes to counteract the mechanisms that give rise to software defects is to gain a
profound understanding of these mechanisms. The work reported in this paper is an ef-
fort in this direction. However, it should be noted that due to the high variations among
software projects in terms of the programming language, development process, design
complexity, team size, organizational structure, application domain, individual team
member characteristics, and many other factors, it is not possible to identify all possi-
ble defect introduction mechanisms in a single case study. Many studies of real-world
systems are required to understand the full spectrum of defect introduction mechanisms.

We noticed that there are few published studies of defects on business software sys-
tems. Instead, most previous studies have been conducted on system-level software
products in other software domains such as telecommunication, networking, real-time,
and control systems. As a result, it is not clear to what extent results from these stud-
ies are applicable to business software systems. We, therefore, believe that there is a
need for more studies of defects, similar to those performed in other domains, in the
domain of business software systems. The importance of repeated studies by different
researchers in establishing confidence in the results is well recognized by software engi-
neering researchers. Hofer and Tichy [12] analyzed all the refereed papers that appeared
in the Journal of Empirical Software Engineering from its first issue in January 1996
through June 2006, and observed that 26% of the papers describing an experiment were
replications. Replication is needed to obtain solid evidence [23]. Moreover, it is only
through conducting a multitude of similar studies and comparing the findings of these
studies (i.e., looking for commonalities, differences, and patterns in defects in various
projects) that we can gain deeper insights into questions such as:

– Which defect introduction mechanisms are common in all types of systems?
– Which defect introduction mechanisms are specific to, or occur more frequently

in certain application types or domains? For instance, are the types of defects in
business software applications different from those of scientific software systems?

– On average, what percentage of defects in software systems are pure logic mistakes
on the programmers’part, and what percentage of defects are rooted outside the
code and in other external sources such as incorrect or incomplete specifications?

Eldh et al. [8] emphasize that it is important to regularly collect and report findings
about software defects from real industrial and commercially used systems to keep in-
formation in tune with development approaches, software and faults. They identify the
lack of recent industry data for research purposes as the key problem. This view is sup-
ported by Mohagheghi et al. [17] who argue that there is a lack of published empirical
studies on industrial systems and that many organizations gather large volumes of data
on their software processes and products, but either the data are not analyzed properly,
or the results are kept inside the organization. This situation hinders the spreading of
lessons learned between projects in various organizations. The case study reported in
this paper is a response to this need for more empirical studies on industrial systems.
The main purpose of the study is to collect empirical evidence to answer the following
two research questions:

158 A. Ghazarian

1. What are the mechanisms that gave rise to defects in the case under study?
2. How large a role each identified mechanism has played in introducing defects in

the case under study?

To answer our research questions, we performed root cause analysis (RCA) on 449
defects from a commercial Enterprise Resource Planning (ERP) software system. Our
analysis, backed up by evidence drawn from project data including the defect reports in
the defect tracking system, source code, requirements specifications, and test cases, as
well as group sessions and individual interviews with the project team members identi-
fied a number of defect categories and their root causes, along with their frequencies.

Overall, we found that in our case, the causes for 59% of the reported defects were
rooted in external factors including incomplete requirements specifications, adopting
new, unfamiliar technologies, lack of requirements traceability, and the lack of proactive
and explicit definition and enforcement of user interface consistency rules.

The rest of this paper is organized as follows: in Section 2, we report on our empirical
study of defect introduction mechanisms. In Section 3, we discuss the related work. The
conclusion and directions for future work follow in Section 4.

2 Case Study

2.1 Context of the Case Study

The organization where the case study was conducted is a manufacturer of telecommu-
nication devices and an information technology company. For confidentiality reasons,
we keep the organization anonymous. For the past five years, the IT department has
been actively involved in developing a web-based ERP system comprised of various
subsystems1 including Bookkeeping, Inventory Management, Human Resources, Ad-
ministration, Manufacturing, Procurement, and Workflow Management. The implemen-
tation of the ERP system is carried out in Java programming language, and the software
developers involved in the project have an average of 7 years of industry experience.

The IT department follows a customized development process, which borrows
concepts from both Rational Unified Process (RUP) and Extreme Programming (XP)
methodologies. For instance, most programming is performed in pairs, which is an XP
practice, whereas the requirements and analysis phases are conducted through a more
traditional RUP-like process using use cases. At the time of this study, the project team
was comprised of 28 individuals in various roles including a development manager, 5
system analysts, 13 developers, 4 testers, 2 graphics designers, and 3 marketing rep-
resentatives. As with most long-term software projects, a number of individuals have
left the team during the project, while a few others have joined the team. The team has
had 35 members in its largest size. The development of the Bookkeeping, Human Re-
sources, Administration, and Inventory Management subsystems has been completed,
while the remaining subsystems are still under development. The final product is esti-
mated to contain 200,000 lines of code.

1 Throughout this paper, we use the terms system, subsystem, component, and module (source-
code file) as units of system decomposition from largest to smallest, respectively.

A Case Study of Defect Introduction Mechanisms 159

The company uses the following process for handling defects. When a defect is de-
tected, a defect report is registered in a defect tracking software tool. Each defect report
captures a set of information including a unique defect identifier, a summary of the de-
fect, a detailed description, the date the defect report is created, the subsystem to which
the defect is attributed, the reporter of the defect, the assignee of the defect, priority,
status, resolution, any number of additional comments by team members, and the date
the defect report is last updated.

During system testing, all detected defects are assigned to a single team member (i.e.,
a point of contact between the testing and development teams), who in turn reviews
the reported defects and further assigns them to the appropriate developers (i.e., the
developer who has introduced the defect into the system) to be fixed. The idea behind
this practice is that the developer who implements a feature is also the most qualified
team member to rectify the defects reported on that feature since he/she is considered
to be the most knowledgeable team member about the implementation details of that
feature and therefore should be able to rectify the defect more reliably and in less time.

All team members, periodically or upon request by a team member, review all or
some of the reported defects, and if they have any specific information or comments
that can facilitate the correction of the defects, add them to the defect reports in the
defect tracking system. Typical information in the added comments includes the cause
of the defects, the location of the defects in the source code, how to fix the defects, and
comments to clarify the descriptions of the defects. Developers assigned to the defects
then use this information to correct the reported defects.

2.2 Description of the Case

All ERP subsystems in the studied organization are built on top of a shared infras-
tructure layer, which is composed of a set of reusable libraries and frameworks. The
components in the infrastructure layer are either developed in-house or acquired as
open-source software. All subsystems follow a three-tier layered architectural style,
which is comprised of user interface, application logic, and data access layers. Each
layer is considered a distinct component and as such each subsystem is divided into
three major components. Our case study concerns the three components of the Book-
keeping subsystem. The first five columns in Table 1 present the characteristics of the
target components in terms of the types of the modules (i.e., source-code files) in each

Table 1. Characteristics and Metrics of the Target Components

Component
Module Size Module Avg. Module Incorrect Missing Defect Defect
Type (LOC) Count Size (LOC) Impl. Impl. Count Density

User Interface
JSP 7802 41

191 180 150 330 38.606Javascript 678 1
XML 126 3

Application Logic Java 9434 24 393 22 41 63 6.677
Data Access Java 4602 59 78 56 0 56 12.168
Total 22642 128 258 191 449

160 A. Ghazarian

component, the size of each component, the number of modules in each component,
and average module size. The sizes of the components and modules are reported in
non-commented and non-blank lines of code (LOC).

2.3 Case Study Process and Data Collection

At the time of this study, there were 482 defect reports in the defect tracking system,
assigned to the target subsystem that we used in our case study. The time span between
the first and the last defect was 17 months. Of these, 4 defects were labeled as “Dupli-
cate”, and 29 defects were labeled as “Not a Bug”. The defects labeled as “Duplicate”
were reported twice in the defect tracking system, whereas the ones labeled as “Not a
Bug” were not actually defects and were initially reported as defects as a result of the
incorrect usage of the subsystem or the unfamiliarity of the reporters of these defects
with the correct behavior of the subsystem. We excluded these 33 defect reports, which
left us 449 unique defects to study.

To analyze the distribution of the defects over the target components, the author of
the paper and a member of the studied organization, who had a thorough understanding
of the system, independently followed the analysis process described below to analyze
each of the defect reports and attribute them to their corresponding components. This
analysis of the distribution of the defects over the three target components was required
since this information was not readily available; records in the defect tracking system
included a data field that captured the attribution of the defects to the subsystems, but
no data fields were available to capture the attribution of the defects to the lower-level
units such as components and modules. The results from this analysis were required to
compute the defect count and defect density measures for each of the components.

We used the following process to analyze the distribution of the reported defects
over the three target components. We started our analysis by checking the information
recorded in the “Defect Summary”, “Detailed Description”, and all of the available
“Additional Comments” fields for each of the defect reports. Based on the information
recorded in these fields, a group of the defects could be directly attributed to their corre-
sponding components in the source code. For the remaining group of the defects, where
the attribution of the defects to the components could not be derived from the informa-
tion available in the defect reports, we recovered this information through conducting a
series of defect review sessions. Each session was attended by two people: a research
investigator who facilitated the session and recorded the recovered information, and a
developer who had been involved in fixing the defects. During each defect review ses-
sion, all defects fixed by the participant developer were discussed and attributed to their
corresponding component. Where necessary, the system’s source code was consulted to
locate the components related to the defects. In addition to the attribution of the defects
to their corresponding components, where possible, for each defect, we identified the
internal cause of the defect in the source code (e.g. an incorrect database query state-
ment or missing source code statements). We also determined whether the defect was
caused as a result of a missing or incorrect implementation.

To ensure the quality of the collected information, the abovementioned analysis pro-
cess was conducted twice and independently. The results of the two analyses were in
close agreement (Cohen’s Kappa inter-rater agreement of 0.79), which is an indication

A Case Study of Defect Introduction Mechanisms 161

of the objectivity of the analyses performed. The cases where there was a difference
between the two analyses were jointly reexamined to reach a consensus.

We then measured the sizes of the target components in non-blank and non-
commented lines of code using a software tool, and computed the defect density for
each of the target components. The results are summarized in the last two columns in
Table 1, which present the Defect Count and Defect Density (in defects per KLOC) for
each of the target components, respectively.

We followed our data collection and analysis process by performing root cause anal-
ysis of the reported defects through conducting a series of group sessions and interviews
with the team members. During these sessions, we used input from project team mem-
bers and, for each defect, identified the external factor that underlay the internal cause
of the defect (e.g., the unfamiliarity of the developers with the new query language un-
derlying the incorrect query statements, or incomplete requirements specification doc-
uments underlying the missing source code statements). To ensure the correctness of
the identified root causes, the team members frequently consulted the project data in-
cluding defect information in the defect tracking system, requirements documents, test
cases, and the source code, as well as the results of the analysis of the attribution of
the defects to the components and the collected project metrics (size, defect count, and
defect density). As a result of these sessions, we traced each defect back to its origin,
which led to the classification of the defects based on their root causes. Unfortunately,
the available data was not detailed enough to allow us to calculate the cost and effort
spent on rectifying the defects.

2.4 Results

Based on a detailed analysis of the data collected during the study, we make several
observations about the mechanisms that gave rise to defects in the studied subsystem.
We discuss the impact of each identified mechanism on defect rate of the subsystem.

The Impact of Adopting New, Unfamiliar Technologies on Defect Rate. The data
from our study show that of the 56 defects attributed to the data access component (see
Table 1), 47 (roughly 84%) were caused by incorrect database query statements. We dis-
cussed this finding with the development team and found that the unexpected number
of query-related defects in the data access component was due to the adoption of a new
database query technology. The development team had adopted an unfamiliar query
language to implement the data access component. Since there had been no previous
experience and expertise on the newly adopted query language, the team had encoun-
tered many problems with this new technology. Only 16% of the defects attributed to
the data access component were caused by the code written in the Java language, which
constitutes the bulk of the code in the data access component and serves as the host
language for the embedded queries.

We excluded the defects directly caused by the introduction of the new technology
and recalculated a defect density of 1.955 for the data access component. Comparing
this new calculated value for the defect density in the data access component with its
current value from Table 1 (12.168) clearly demonstrates the negative impact of adopt-
ing the new, unfamiliar technology in increasing the defect rate in this component. As

162 A. Ghazarian

a result of adopting the unfamiliar technology, the defect density of the data access
component has increased by a factor of 6.22. The data from our study suggest that:

The adoption of new, unfamiliar technologies into a software component is a risk
factor that has adverse effects on the component’s quality in terms of its defect rate.

This observation is not surprising. There is an intuitive consensus in the software
engineering literature on the correctness of this proposition. However, empirical evi-
dence taken from industrial software systems, like ours, to support it can strengthen our
beliefs in this proposition.

The Impact of Incomplete Requirements Specifications on Defect Rate. As part of
our data analysis, we classified the reported defects under two broad categories of in-
correct implementation and missing implementation, and observed that about 57.5%
of the defects (258 cases) were caused as a result of incorrect implementations of the
requirements in the code, whereas the remaining 42.5% of the defects (191 cases) were
a result of missing implementations from the code. Columns 6 and 7 in Table 1 present
the distribution of defects classified as incorrect versus missing implementation over
the three components. A chi square test of independence, at the significance level of
0.05, revealed that the type of defect (incorrect or missing implementation) is depen-
dent on component type (user interface, application logic, or data interface). We further
observed that the majority of the defects classified under the missing implementation
category were related to missing business rules and data validations. Defects caused
by missing implementations (i.e., the code that is necessary is missing) have also been
referred to as ”faults of omission” in the literature [8].

Our inspection of the requirements specification documents revealed that in 156
cases (roughly 82% of the defects in the missing implementation category), the system
analysis team had not explicitly included the requirements in the requirements speci-
fication documents, and were consequently missing from the system’s implementation
as well. In a series of defect root cause analysis group session with the team mem-
bers, we reviewed all of the 191 defects in the missing implementation category, and
confirmed that the reason for the 156 missing implementation cases which didn’t have
corresponding requirements was actually the missing requirements.

We know for a fact that the requirements specification documents were the main
means through which the requirements of the system were communicated to devel-
opers. The introduction of this group of defects into the system’s source code can be
directly traced back to the incomplete requirements specifications. This conclusion is
consistent with the results of the interviews conducted with the development team mem-
bers. When asked about the relatively large number of defects related to missing imple-
mentations, the team members expressed their opinions in statements such as ”what is
obvious for the business analysis team is not clear to anyone else in the development
team. Consequently, if they fail to communicate some of the business requirements in
an explicit manner, we are highly likely to miss these requirements in our implementa-
tions” and ”when we start the development of a new use case of the system, we are not
provided with all the details. What we initially receive from the business side includes
a description of the use case including the main and alternative flows, and some of the
major related business requirements, but the documents are not comprehensive enough

A Case Study of Defect Introduction Mechanisms 163

to cover all aspects of the use cases including some of the data validations and less
obvious business rules. Therefore, a number of missing requirements are detected dur-
ing the system testing”.

An interesting aspect of this observation is that it puts into question the comprehen-
siveness of the traditional view of a defect as any characteristic of the system that does
not comply to its predetermined (proactively and explicitly documented) specification.
In our case, we observed that there were no predetermined specifications for a signifi-
cant number of functionalities in the system and yet the absence of these functionalities
from the system were reported as defects, whose rectification were required for the
correct operation of the system. An interview with the testing team revealed that they
had partly relied on their implicit knowledge of the system domain to test the software
system. For instance, while the requirements documents lacked some of the data vali-
dation rules, the testing team, relying on their knowledge of the system, had identified
and incorporated some of these missing rules into their test cases. A consequence of
this phenomenon is that a part of software requirements are documented outside the
requirements specification documents, and inside the test cases and defect records. This
practice, over time, can lead to the loss of parts of the system knowledge as a part of
requirements are buried within test cases and defect reports. Our data suggest that:

Incomplete requirements specifications (i.e., some requirements are not explicitly
stated in the specifications) are a mechanism for introducing defects into software sys-
tems in the form of missing implementations.

As mentioned earlier, in our case, the development team was following a traditional
document-centric requirements process. This means that the majority of communica-
tion between the business analysis and development teams was taking place through
requirements documents. A direct consequence of this reliance on documentation as
the main form of communicating system requirements is that the performance of the
system developers (e.g., in terms of the number of defects related to missing imple-
mentations introduced into the system) becomes partly dependent on the quality of the
documents produced by the requirements team (e.g., in terms of the completeness of
the requirements). The results could be different in projects with an agile requirements
process, where the project team mostly relies on verbal communication of requirements.

The Impact of the Lack of Requirements Traceability on Defect Rate. An inter-
esting observation was that in the remaining 35 defects classified under the missing
implementation category (roughly 18% of the defects in this category), the correspond-
ing requirements were existing somewhere in the requirements documents and were
somehow overlooked by developers.

Our inspection of the requirements documents in conjunction with group sessions
with the team members revealed that these cases were related to the business concepts
or data items and their associated business rules and data validations that were defined
in one requirements document and implicitly referred to in other requirements docu-
ments. For instance, consider the case where a step in one of the system use cases states
that the user shall enter a data item into the system as part of the data entry for that use
case, without explicitly making references to the other use cases of the system where the
data validation rules for this data item have been specified. Since there were no explicit

164 A. Ghazarian

links between the parts of a document that referred to external business concepts or data
items and the parts of the other documents that actually specified the requirements for
that concept (requirement-requirement traceability link), developers either did not real-
ize that some of the requirements pertaining to the feature are defined somewhere else,
or had to manually navigate between the various requirements documents to capture a
complete view of the requirements pertaining to the feature under development. This
process of moving from a requirements document to another in order to collect all the
relevant requirements can be problematic when a document has many points of jump
(i.e., items mentioned in a document are specified in other documents, but not explicitly
linked to those external documents). In other words, the requirements related to a fea-
ture under development were scattered across different documents without an explicit
mechanism for cross-referencing, and the human errors involved in the process of nav-
igating between the various documents and collecting the complete set of requirements
had led to the introduction of a group of defects into the system in the form of missing
implementations. Since, other than system testing, there was no other mechanism in
place to verify the completeness of the implementation of a feature under development
with regards to its specified requirements, these missing implementation defects were
remained hidden until system testing. Our data suggest that:

The lack of traceability between requirements specification documents, when the re-
quirements pertaining to a feature of the system are scattered across multiple docu-
ments, plays a role in the occurrence of the cases where the requirements are existing
in the requirements documents but missing from the implementation.

The Impact of Not Proactively Defining and Enforcing the User Interface Consis-
tency Rules on Defect Rate. Another observation is that the cause of 8% of the defects
in the user interface component (or 6% of the total number of defects in the subsystem
under study) can be directly traced back to inconsistencies in the user interface. A close
examination of this group of defects in conjunction with a group session with develop-
ers revealed that in the absence of explicit consistency rules for the unification of the
system’s user interface behavior, developers had made individualistic and ad hoc deci-
sions in their implementations, which led to inconsistencies in the user interface of the
system. The descriptions given for these defects in the defect tracking system refer to
various types of inconsistencies in the user interface of the system including inconsis-
tencies in the screen layouts, user interface navigation methods, fonts, and data formats
in various screens and reports displayed by the system. In the subsystem under study,
these forms of inconsistencies were considered to be detrimental to the usability of the
application and as such any occurrences of such inconsistencies in the user interface
were reported as defects. The data from our study suggest that:

The lack of explicit and proactive definition and enforcement of implementation con-
sistency rules leads to defects in cases, such as the user interface, where inconsistent
implementations are considered defects.

The Impact of Software Size on Defect Rate. The relationship between defect mea-
sures such as the defect count and defect density, and software size has been the subject
of many studies in the literature. For example, [9], [19], [2], [21], [24], [1], [11], [20],

A Case Study of Defect Introduction Mechanisms 165

and [16] are some of the studies that have been conducted in this area. Table 4 in the
related work section of this paper summarizes the key results from these nine studies.
Some of the previous studies report a relationship between these parameters, while oth-
ers do not. What makes the situation complicated is that the results from the studies
where a relationship between these two parameters have been observed are conflicting.
Some of these studies report a rising trend of defects as the size increases, while other
studies report a declining trend of defects as the size grows. Others have tried to explain
these rising and declining trends.

The data from our study does not suggest any noticeable dependence between defect
rate and component size. 73.5% of all reported defects are attributed to the user interface
component. In contrast to this high defect concentration, the business logic, and data
access components have a share of only 14% and 12.5% of the total reported defects,
respectively. Obviously, this noticeable difference between the defect distributions over
the user interface component and the other two components cannot be attributed to the
sizes of the components. Although the user interface component is almost the same size
as the business logic component, and only twice the size of the data access component,
it has at least five times more defects compared to each of the other two components.
Since our data come from only three components, we cannot draw any conclusions
about the dependence between the defect rate and component size.

We would like to study the relationship between defect measures and module size (as
opposed to component size). Unfortunately, no data were available on the distribution
of defects over the modules. An attempt to collect these data after the fact would be
extremely time consuming and error prone.

2.5 Summary of the Results

Based on the analysis of the collected data, we can now answer the two research ques-
tions posed in the introduction.

1. What are the mechanisms that gave rise to defects in the case under study?
2. How large a role each identified mechanism has played in introducing defects in

the case under study?

Table 2 summarizes the answers to these questions. The major conclusions and con-
tributions of our study are presented below. These findings suggest areas where effort
should be directed.

Table 2. Defect Introduction Mechanisms Identified in the Subsystem Under Study

Defect Introduction Mechanism
Defect % of
Count Defects

Incorrect implementations not linked to external causes 184 41
Incomplete requirements specifications 156 34.7
Adopting new, unfamiliar technology 47 10.5
Lack of traceability between requirements specifications 35 7.8
Lack of consistency in the user interface 27 6
Total 449 100

166 A. Ghazarian

– A significant portion of the defects originate outside the source code. This finding
is supported by the evidence that 59% of the reported defects were propagated into
the considered subsystem from external sources including incomplete requirements
specifications, adopting new, unfamiliar technologies, lack of requirements trace-
ability, and the lack of proactive and explicit definition and enforcement of user
interface consistency rules.

– Specification-related defects represent the largest category of defects (42.5%, of
which 34.7% were caused by incomplete requirements specifications, and 7.8%
were a result of a lack of traceability between various requirements specifications).

2.6 Implications of the Findings

Given the profile of defect sources identified in our case study, in Table 3, we propose
a set of mitigation strategies that software development organizations can employ to
counteract these defect introduction mechanisms.

Table 3. Defect Mitigation Strategies

Defect Source Defect Mitigation Strategy
Incomplete requirements specifications • Improving the requirements process in terms of the completeness

of the requirements specifications
• Explicit documentation of all business rules and data validations

Adopting new, unfamiliar technology • Thorough evaluation of new technologies before adopting them
• Provision of sufficient training when a decision is made to adopt
a new technology

Lack of traceability between requirements • Practicing requirements traceability
• Automated support for requirements process including tools to help
the project team to keep track of the relationships between require-
ments and requirements status

Lack of consistency in the user interface • Proactive definition and enforcement of user interface design rules
to unify the implementation of user interface look and behavior

2.7 Threats to Validity

Several factors potentially affect the validity of our findings. We discuss these factors
under standard types of validity threats in empirical studies.

Construct Validity. The construct validity criterion questions whether the variables
measured and studied truly reflect the phenomenon under study. We use defect count
and defect density as surrogate measures for the quality of the software components.
These measures are widely used in software engineering studies. All component and
module sizes were measured in lines of non-commented and non-blank code. The pur-
pose of the study was to identify some of the mechanisms that give rise to defects
in software systems. Our observations involve the calculated measures of size, defect
count (for various categories of defects), and defect density. Therefore, the variables
measured and studied, truly reflect the purpose of the study.

A Case Study of Defect Introduction Mechanisms 167

Internal Validity. The internal validity of a study is concerned with distinguishing true
causal relationships from those effected by confounding variables. In our study, the in-
correct attribution of the defects to the components could be a threat to the internal
validity of our findings. To minimize the potential effect of this confounding factor,
the author of the paper and a member of the development team, who had a detailed
knowledge of the system and had been actively involved in fixing the reported defects,
independently analyzed the defects and attributed them to their corresponding com-
ponents. For the great majority of the defects, we were able to accurately assign the
defects to their corresponding components. The accuracy of the assignment of defects
to the components was evident from the closely matching results of the two analyses.
The cases where there was a difference in the results of the two analyses were jointly
reexamined and resolved. We are highly confident that the attribution of defects to their
corresponding components was accomplished accurately.

We studied the entire population of the reported defects in the subsystem under study.
This effectively eliminated any potential sampling bias, which can be a problem for
studies where a selected sample of the population is included in the study. Furthermore,
the inclusion of the complete set of defects in our study not only helped us to obtain a
complete picture of the defects and their root causes, but also increased the reliability
of the conclusions drawn from the analysis of the data.

In studies where components developed in multiple languages are involved, an equiv-
alent code must be calculated for the components, to make the comparison of the com-
ponent sizes meaningful. The software tool used in our study to measure the component
sizes provides an equivalent code size in a hypothetical third generation programming
language. To calculate the equivalent sizes, the software tool multiplies the component
size in Java with 1.36, Javascript with 1.48, JSP with 1.48, and XML with 1.90. We
recalculated all the metric data collected in our study using the equivalent sizes. The
results did not change any of our findings or conclusions.

To further validate our findings, we discussed them with the team members during
our interviews and group sessions. They believe that the five findings of the study, pre-
sented in Section 2.4 of this paper, capture an accurate portrayal of their situation.

External Validity. The external validity of a study is concerned with the extent to which
the findings of the study can be generalized. Our dataset was taken from one product of
a development organization, which can be a limit to the generalizability of our findings.
The results of our study can be considered as early evidence for some of the mechanisms
that give rise to defects in software systems. Gaining more confidence in the results of
the present study requires further replication of the study with other systems within and
outside the considered organization. This is planned as future work.

3 Related Work

The work of Leszak et al. [13] is similar to ours in intent. They conducted a root cause
analysis study of defects in a large transmission network element software, and based
on the findings of the study devised countermeasures to either prevent the defects or
detect them earlier in the development process. Results from our study contradict their

168 A. Ghazarian

findings. They concluded that the majority of defects do not originate in early phases.
They report that in the system they studied defects were introduced into the system pre-
dominantly (71%) within the component-oriented phases of component specification,
design, and implementation. In contrast to our study results, in their case, requirements-
related defects did not have a significant contribution to the total number of defects.

Eldh et al. [8] studied and classified the failures in a large complex telecommuni-
cation middleware system. They concluded that faults related to unclear specifications
(46.6%) dominates among the software faults. In their case, faults of omission and spu-
rious faults accounted for 38.3% and 8.3% of the total faults, respectively. Our study
agrees with their finding. In our case, we also observed that specification-related defects
represent the largest category of defects (42.5%). Our work is different from theirs both
in its motivation and the focus of the study. Our goal is to identify the causes of defects
so that appropriate actions can be initiated to prevent the sources of defects. To fulfill
our goal, we performed root cause analysis of the defects and traced the defects to their
sources outside the code and into the external factors (e.g., specifications, processes,
and decisions). In contrast, the main motivation behind the classification of faults in
Eldh et al.’s work is to investigate software test techniques through injecting the identi-
fied classes of faults into code. As a result, in contrast to our focus on the external root
causes of the defects, their focus is on the static origin of the faults within the code.

From a research methodology point of view, our data selection approach is different
from both Eldh et al. [8] and Leszak et al.’s [13] study. In our study, the entire popula-
tion of defects in the considered subsystem was included for analysis. In comparison,
the data used in Eldh et al.’s [8] study were selected by convenience sampling. they
selected their sample data set from the defects whose labels in the configuration man-
agement system allowed them to trace the failures back to their origins in the system’s
source code. Leszak et al.’s [13] used a combination of manual and random sampling.
Another distinction between our study and the two previous studies is that our data is
taken from an ERP system, which is a business software system, whereas both previous
studies collected data from system-level software products namely, telecommunication
middleware software and transition network element software.

Chillarege et al. [5] propose a semantic classification of defects called Orthogonal
Defect Classification (ODC), which is comprised of eight distinct defect types, each
capturing the meaning of a type of defect fix. The distribution of defects over the ODC

Table 4. Summary of Observations from the Previous Studies on Defect Measures and Size

Study Results
Fenton and Ohlsson [9] (a) No significant relation between fault density and module size. (b) A weak correlation between module size and the number of

pre-release faults. (c) No correlation between module size and the number of post-release faults.
Ostrand and Weyuker [19] (a) Fault density slowly decreases with size. (b) Files including a high number of faults in one release, remain high-fault in later

releases. (c) Newer files have higher fault density than older files.
Basili and Perricone [2] Larger modules are less error prone, even when they are more complex in terms of cyclomatic complexity.
Shen et al. [21] (a) Of 108 modules studied, for 24 modules with sizes exceeding 500 LOC, the size does not influence the defect density. (b) For

the remaining 84 modules, defect density declines as the size grows.
Withrow [24] A minimum defect density for modules with sizes between 161 and 250 LOC, after which the defect density starts increasing with

module size.
Banker and Kemerer [1] Proposed a hypothesis that for any given environment, there is an optimal module size. For lesser sizes, there is rising economy,

and for greater sizes, the economy declines due to rising number of communication paths.
Hatton [11] (a) For sizes up to 200 LOC, the total number of defects grows logarithmically with module size, giving a declining defect density.

(b) For larger modules, a quadratic model is suggested.
Rosenberg [20] Argued that the observed phenomenon of a declining defect density with rising module sizes is misleading.
Malaiya and Denton [16] (a) Proposed that there are two types of defects: module-related defects, and instruction-related defects. (b) Module-related defects

decline with growing module size. (c) The number of instruction-related defects rises with growing module size. (d) An optimal
module size for minimum defect density is identified.

A Case Study of Defect Introduction Mechanisms 169

classes changes with time, which provides a measure of the progress of the product
through the process. The main motivation for ODC is to provide feedback to developers
during the development process. In contrasts to ODC’s focus on providing in-process
feedback, the classes of defects identified by our study, along with the observed distri-
bution of defects over these classes can provide after-the-fact feedback to developers,
which can be used to improve the development of the next subsystems within the or-
ganization. In this sense, a study like ours can serve as a means for spreading lessons
learned between projects. Given the qualitative nature of performing root cause analysis
of defects, the resources required to perform the analysis are significant, which might
make it impractical for providing in-process feedback.

There have been several studies about the relationship between defect-based mea-
sures such as defect count and defect density, and software size. Table 4 summarizes
the findings of these studies.

4 Conclusion and Future Work

Defect prevention is a possible way to reduce software maintenance costs. However, to
devise tools, techniques, and processes to support defect prevention requires an under-
standing of the mechanisms that give rise to defects during the development process.
Case studies of real-world industrial systems are a systematic approach towards gaining
such an insight. The study reported in this paper is meant to serve such a purpose.

Our case study identified four possible defect introduction mechanisms including
incomplete requirements specifications, adopting new, unfamiliar technologies, lack of
traceability of requirements, and the lack of explicit definition of user interface con-
sistency rules that collectively account for 59% of the defects in the subsystem under
study. These four defect introduction mechanisms are all well understood, which sug-
gests that the cause of a significant portion of defects in industrial software projects is
not a lack of knowledge, but rather a lack of application of existing knowledge.

In our future work, we intend to replicate this study with the other subsystems in the
considered organization, as well as with ERP systems in other organizations in order
to determine if patterns of defect introduction mechanisms exist among ERP systems.
This should also give us insights into the factors affecting the magnitude of the defects
introduced by each identified mechanism.

For the remaining 41% of the reported defects, no external contributing factors could
be found. We intend to investigate this group of defects in future work. We plan to
analyze historical data from the revision control system to track and analyze the changes
made to the modules to fix the defects in order to understand the nature of these defects.

References

1. Banker, R.D., Kemerer, C.F.: Scale Economics in New Software Development. IEEE Trans-
actions on Software Engineering, 1199–1205 (October 1989)

2. Basili, V.R., Perricone, B.R.: Software Errors and Complexity. Communications of ACM 27,
42–45 (1984)

3. Bersoff, E., Henderson, V., Siegel, S.: Software Configuration Management. Prentice-Hall,
Englewood Cliffs (1980)

170 A. Ghazarian

4. Boehm, B.W.: Software and its Impacts: A Quantitative Assessment. Datamation 9, 48–59
(1973)

5. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong,
M.: Orthogonal Defect Classification - A Concept for In-Process Measurements. IEEE
TSE 18(11), 943–956 (1992)

6. Cleland-Huand, J., Chang, C.K., Christensen, M.: Event-Based Traceability for Managing
Evolutionary Change. IEEE TSE 29(9), 1226–1242 (2003)

7. Devanbu, P., Brachman, R.J., Selfridge, P.G., Ballard, B.W.: LaSSIE: A Knowledge-Based
Software Information System. Com. of ACM 34(5), 34–49 (1991)

8. Eldh, S., Punnekkat, S., Hansson, H., Jonsson, P.: Component Testing Is Not Enough - A
Study of Software Faults in Telecom Middleware. In: Petrenko, A., Veanes, M., Tretmans,
J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 74–89. Springer, Hei-
delberg (2007)

9. Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Complex Soft-
ware System. IEEE Transactions on Software Engineering 26(8), 797–814 (2000)

10. Fjelstad, R.K., Hamlen, W.T.: Application Program Maintenance Study - Report to Our Re-
spondents. Technical Report, IBM Corporation, DP Marketing Group (1986)

11. Hatton, L.: Reexamining the Fault Density-Component Size Connection. IEEE Software,
89–97 (March 1997)

12. Hofer, A., Tichy, W.F.: Status of Empirical Research in Software Engineering. In: Empirical
Software Engineering Issues, pp. 10–19. Springer, Heidelberg (2007)

13. Leszak, M., Perry, D.E., Stoll, D.: A Case Study in Root Cause Defect Analysis. In: Proceed-
ings of International Conference on Software Engineering, ICSE 2000, pp. 428–437 (2000)

14. Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application Software Main-
tenance. Communications of the ACM 21(6), 466–471 (1978)

15. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-Wesley, Reading
(1980)

16. Malaiya, K.Y., Denton, J.: Module Size Distribution and Defect Density. In: Proceedings of
ISSRE 2000, pp. 62–71 (2000)

17. Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An Empirical Study of Software
Reuse vs. In: Defect-Density and Stability. In: Proceedings of ICSE 2004, pp. 282–292
(2004)

18. Nozek, J.T., Palvia, P.: Software Maintenance Management: Changes in the Last Decade.
Journal of Software Maintenance: Research and Practice 2(3), 157–174 (1990)

19. Ostrand, T.J., Weyuker, E.J.: The Distribution of Faults in a Large Industrial Software Sys-
tem. In: Proceedings of ISSTA 2002, pp. 55–64 (2002)

20. Rosenberg, J.: Some Misconceptions about Lines of Code. In: Proceedings of the Interna-
tional Software Metrics Symposium, November 1997, pp. 137–142 (1997)

21. Shen, V.Y., Yu, T., Thebut, S.M.: Identifying Error-Prone Software- An Empirical Study.
IEEE Transactions on Software Engineering 11, 317–324 (1985)

22. Vliet, H.V.: Software Engineering: Principles and Practices. John Wiley & Sons, Chichester
(2000)

23. Tichy, W.F.: Should Computer Scientists Experiment More? IEEE Computer 31(5), 32–40
(1998)

24. Withrow, C.: Error Density and Size in Ada Software. IEEE Software, 26–30 (1990)
25. Whitney, R., Nawrocki, E., Hayes, W., Siegel, J.: Interim Profile: Development and

Trial of a Method to Rapidly Measure Software Engineering Maturity Status. Technical
Report,CMU/SEI-94-TR-4, ESC-TR-94-004, March 26-30 (1994)

26. http://www.sei.cmu.edu/index.html

http://www.sei.cmu.edu/index.html

Measuring and Comparing Effectiveness of Data
Quality Techniques

Lei Jiang1, Daniele Barone2, Alex Borgida1,3, and John Mylopoulos1,4

1 Dept. of Computer Science, University of Toronto
2 Dept. of Computer Science, Università di Milano Bicocca

3 Dept. of Computer Science, Rutgers University
4 Dept. of Information Engineering and Computer Science, University of Trento

Abstract. Poor quality data may be detected and corrected by performing vari-
ous quality assurance activities that rely on techniques with different efficacy and
cost. In this paper, we propose a quantitative approach for measuring and com-
paring the effectiveness of these data quality (DQ) techniques. Our definitions
of effectiveness are inspired by measures proposed in Information Retrieval. We
show how the effectiveness of a DQ technique can be mathematically estimated
in general cases, using formal techniques that are based on probabilistic assump-
tions. We then show how the resulting effectiveness formulas can be used to eval-
uate, compare and make choices involving DQ techniques.

Keywords: data quality technique, data quality measure, data quality assurance.

1 Introduction

The poor quality of data constitutes a major concern world-wide, and an obstacle to
data integration efforts. Data of low quality may be detected and corrected by perform-
ing various quality assurance activities that rely on techniques with different efficacy
and cost under different circumstances. In some cases, these activities require addi-
tional data, changes in the database schema, or even changes in core business activities.
For example, consider the relation schema Person(sin, name, address), which intends
to record a person’s social insurance number, name and address. Due to the decision
to represent an address value as single string, no obvious integrity constraints or other
automatically enforceable techniques can be specified on the components of the ad-
dress value [1]. In particular, one cannot detect missing street, city, etc. using “not null”
constraints, because nothing is said in the schema about the exact format of address
values.

In [2], we proposed a goal-oriented database design process, and extended in [3] to
handle data quality goals. The quality design process starts with a conceptual schema,
which is then augmented by a set of high level data quality goals (e.g., “accurate stu-
dent data”). These goals are gradually decomposed into concrete data quality problems
to be avoided (e.g., no “misspelled student names”). For each such problem, a list of
risk factors (i.e., potential causes) and mitigation plans (i.e., potential solutions) is pre-
sented. The main component of a mitigation plan is a design proposal consisting of a
revised original schema and a set of data quality (DQ) techniques it supports.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 171–185, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

172 L. Jiang et al.

In this paper, we take the next step of proposing a quantitative approach for mea-
suring and comparing the effectiveness of DQ techniques used in quality assurance
activities. The main contributions of this paper include: (i) the definitions of effective-
ness measures for DQ techniques, based on the well-established notions of precision,
recall and F-measure; (ii) formal techniques for estimating the expected effectiveness
scores for a technique (on a wider range of possible instances of a database), based on
probabilistic assumptions about the occurrence of errors in data values and confound-
ing factors; these techniques result in effectiveness formulas parametrized by variables
introduced by these assumptions; (iii) analysis and comparison of DQ techniques and
their respective strengths in terms of the subranges of values of the parameters in the
effectiveness formulas.

The rest of the paper is organized as follows. We first discuss briefly the main con-
cepts in our approach in Section 2. We then present the definitions of our effectiveness
measures in Section 3, and show examples of calculating effectiveness scores when a
database instance is available. Next, a general pattern is identified for the formal esti-
mation of the expected effectiveness scores based on the probabilistic assumptions, and
is applied to several DQ techniques in Section 4.1. The resulting effectiveness formulas
provide input for the what-if analysis in Section 4.2, in which we evaluate a single DQ
technique and compare multiple ones under different scenarios. Finally, we review the
related work in Section 5, and conclude and point out to our future work in Section 6.

2 Main Concepts

2.1 DQ Techniques

The core concept in our approach is a DQ technique, which is, broadly speaking, any
automatic technique that can be applied to data in a quality assurance activity, in order
to assess, improve and monitor its quality. This includes techniques to standardize data
of different formats, to match and integrate data from multiple sources, and to locate
and correct errors in data values[1]. In this paper, we focus on DQ techniques that
automatically enforce a rule of the form “if condition then action”, where condition
checks violation of some integrity constraint, and action produces either deterministic
or probabilistic decisions regarding quality of data being examined (e.g., to mark values
as possibly erroneous, to suggest possible corrections to erroneous values). Following
example illustrates two simple rules.

Example 1. Consider the relation schema Person again. Suppose we are especially con-
cerned with the quality of name values. In this case, we can modify this schema by
adding a second name attribute as in Person′(sin, name, address, name′), with the in-
tention of modifying the workflow so that names are entered twice (by the same or
different persons), and then detect errors by comparing the two name entries. The re-
vised schema makes it possible to specify and enforce following rule, “for each tuple
t inserted in Person′, if t.name �= t.name′ then mark the tuple 〈t.name,t.name′〉 as er-
roneous”. Another way to provide quality assurance for names, without changing the
schema of Person, is to keep a table of valid names, Lname . This allows to specify and
enforce the rule, “if ¬(t.name ∈ Lname), then mark t.name as erroneous”. �

Measuring and Comparing Effectiveness of Data Quality Techniques 173

2.2 Effectiveness of DQ Techniques

Different DQ techniques may have different efficacy and cost under different circum-
stances. The effectiveness of a DQ technique is determined both by the nature of the
technique and the particular values and errors in the data being examined. Following
example explains the concept of effectiveness in the context of DQ techniques.

Example 2. Consider a simple conditional functional dependency φ = [country-code
= 44, area-code = 131] → [city-name = Edinburgh] [4,5]1. If it is the case that city
name has much higher possibilities of having errors than country code and area code,
violation of φ is more likely an indication of erroneous city name values than others.
In this case, a DQ technique may check for violation of φ, and mark the city name
value in a tuple as possibly erroneous whenever the tuple violates φ. A set of tuples
marked by this DQ technique then needs to be presented to a domain expert who will
make the final decision. To minimize human effort, ideally a city name value is actually
erroneous if and only if the tuple containing this value is in the returned set. How-
ever, this is unlikely to be true due to (comparably small amount of) errors in country
code and area code values. Effectiveness of φ measures its ability to produce “good”
sets of tuples compared to the ideal set, for a given database instance or a range of
instances. �

2.3 Effectiveness Measures, Scores and Formulas

With respect to a particular database instance, an effectiveness score is assigned to a DQ
technique. To obtain such effectiveness scores, the first step is to adopt a set of effec-
tiveness measures, such as precision, recall and F-measure from Information Retrieval.
Then, the DQ technique is applied to a database instance (for which quality of data is
already known, e.g., through manual assessment); and the effectiveness scores of the
DQ technique is calculated by comparing its output with existing knowledge of the in-
stance. There are several limitations for this approach. First, a database instance may
not always be available (e.g., when designing a new schema) or only partially available
(e.g., when modifying an existing schema). Second, the effectiveness scores only tell us
how the DQ technique performs on one snapshot of the database.

Therefore, it is often necessary to consider how a DQ technique performs on average
over a range of possible instances of the database. This leads to the expected effective-
ness score of a DQ technique. To obtain expected effectiveness score of a DQ technique,
one can first derive an effectiveness formula of the DQ technique. This requires making
probabilistic assumptions about the occurrence of errors in data values and confound-
ing factors. By confounding factors, we mean special events that may “confuse” a DQ
technique, making it less effective. For example, the country name “Australia” may
be misspelled as “Austria”, which is still a valid country name; such an error cannot
be detected using a technique based on a country name lookup table. The resulting
effectiveness formulas, can be evaluated and compared by fixing some parameters in
formulas and allowing the others to vary.

1 A conditional functional dependency is formally defined as a pair of a regular functional de-
pendency and a pattern tableau. Here we are using an abbreviated notation.

174 L. Jiang et al.

3 Effectiveness Measures

In this section, we present the definitions for our effectiveness measures. We first ex-
plain the general idea and give the basic definitions for these measures, and then extend
them to accommodate errors of different types and data values from multiple attributes.

3.1 Basic Definition

Effectiveness represents the ability to produce a desired result (in order to accomplish
a purpose). For DQ techniques, the purpose is to assess, improve, etc. quality of data.
This gives rise to measures for assessability, improvability, etc. In what follows, we
concentrate on assessability measures; we defer a detailed treatment of other types of
effectiveness measures to a later report.

Assessability represents an DQ technique’s ability to effectively detect erroneous
data values. Normally, this ability can only be measured if we have access to the real-
ity (i.e., is an erroneous value marked by a DQ technique really an error). When not
accessible, we need an approximation of the reality, possibly obtained through some
manual quality assurance activity. The precise meaning of “assessability” depends on
what do we mean by “erroneous” and “data value”. To begin with, we assume that each
DQ technique assesses quality of data in a single attribute, and classifies the attribute
values into two categories: those with some error, and those without. In Section 3.2, we
relax these limitations.

Inspired by Information Retrieval, we define assessability measures in terms of pre-
cision, recall and F-measure [6]. More specifically, let S be a relation schema, A be an
attribute in S, and I be an instance of S. Consider a DQ technique T , which is applied
to I in order to assess quality of A values. Equation 1 and 2 defines the precision and
recall [6] for T with respect to I and A; these two measures are combined in Equation
3 into F-measure [6], where β is a constant that represents the importance attached to
recall relative to precision.

precision(T, I, A) =
TP (T, I, A)

TP (T, I, A) + FP (T, I, A)
(1)

recall(T, I, A) =
TP (T, I, A)

TP (T, I, A) + FN(T, I, A)
(2)

Fβ(T, I, A) =
(1 + β2) × precision(T, I, A) × recall(T, I, A)

β2 × precision(T, I, A) + recall(T, I, A)
(3)

The values TP , FP and FN represent the number of true positives, false posi-
tives and false negatives respectively, and are explained more clearly below. Example 3
shows how the assessability scores can be calculated using the sampling approach.

– TP(T, I, A) = the number of erroneous A values in I , correctly marked by T as
being erroneous

– FP(T, I, A) = the number of non-erroneous A values in I , incorrectly marked by T
as being erroneous

Measuring and Comparing Effectiveness of Data Quality Techniques 175

– FN(T, I, A) = the number of erroneous A values in I , not marked by T as being
erroneous, but should have been

Example 3. Consider the Person schema again. Suppose from one of its instances,
IPerson, 10 tuples are selected as the sample. After performing some manual quality
assurance activity on the sample, 3 erroneous name values are identified and the correct
values are obtained. Table 1(a) shows the result of this manual activity, where the name
value is erroneous iff err = “1”; namenew is used to record the suggested name values2.

Now consider a DQ design proposal P1(Person′(sin, name, address, name′), Tequal),
in which the Person schema is revised to Person′, and Tequal is a DQ technique that
enforces the rule: “for each tuple t inserted in an instance of Person′, if t.name �=
t.name′ then mark t.name as erroneous.” An instance IPerson′ of Person′ is gener-
ated by starting with data from IPerson and obtaining independent values for the new
attribute name′.

Suppose we need to know how effective Tequal is in assessing name values in
IPerson′ . First, we select the same 10 tuples from IPerson′ as the sample, and obtain
the quality assessments on the sample using Tequal, as shown in column err of Table
1(b). By comparing Table 1(b) with Table 1(a), we obtain following numbers TP = 2
(due to Tuple 006 and 009), FP = 2 (due to Tuple 001 and 008), and FN = 1 (due
to Tuple 004). The assessability scores for Tequal on this sample (when β = 1) are:
precision(Tequal, IPerson′ , name) = 0.5, recall(Tequal, IPerson′ , name) = 0.67, and
F1(Tequal, IPerson′ , name) = 0.57. �

Table 1. Calculation of effectiveness scores using the sampling approach

(a) Quality of name values in
IPerson

sin name err namenew

001 Kelvin 0
002 Michelle 0
003 Jackson 0
004 Alexander 1 Alexandre
005 Maria 0
006 Tania 1 Tanya
007 Andrew 0
008 Christopher 0
009 Michale 1 Michael
010 Matthew 0

(b) DQ annotation for name values
in IPerson′ using Tequal

sin name name′ err

001 Kelvin Kelvn 1
002 Michelle Michelle 0
003 Jackson Jackson 0
004 Alexander Alexander 0
005 Maria Maria 0
006 Tania Tanya 1
007 Andrew Andrew 0
008 Christopher Christophor 1
009 Michale Michael 1
010 Matthew Matthew 0

(c) DQ annotation for name values in
IPerson′ using Tequal−prob

sin name name′ err err′

001 Kelvin Kelvn 0.5 0.5
002 Michelle Michelle 0 0
003 Jackson Jackson 0 0
004 Alexander Alexander 0 0
005 Maria Maria 0 0
006 Tania Tanya 0.5 0.5
007 Andrew Andrew 0 0
008 Christopher Christophor 0.5 0.5
009 Michale Michael 0.5 0.5
010 Matthew Matthew 0 0

3.2 Extensions

We may be interested in measuring the effectiveness of a DQ technique with respect
to particular types of errors, instead of considering all possible ones. For example, a
lookup-table based DQ technique is very effective in detecting syntactic but not se-
mantic accuracy errors [1]. In this case, the assessability scores can be calculated using
Equation 1 and 2 in the same way as before, except that we only consider errors of the
specified types when counting TP , FP and FN .

2 The address values are omitted here and thereafter.

176 L. Jiang et al.

Equation 1 and 2 work for DQ techniques whose output involve a single attribute. In
some case, the result of a DQ technique may involve values of a set X = {A1, . . . , An}
of attributes. There are two ways to look at this situation, which lead to two different
solutions. In one view, we may treat a tuple t.X as a single value (i.e., t.X is erro-
neous if any of t.A1, . . . , t.An is). Then we can calculate assessability scores of a DQ
technique using modified versions of Equation 1 and 2, where precision(T, I, A) and
recall(T, I, A) are replaced with precision(T, I, X) and recall(T, I, X) respectively.
In another view, we introduce the notion of uncertainty. This leads to a more general
solution. When a DQ technique marks a tuple t.X as being erroneous, it essentially
marks each individual value t.A1, . . . , t.An in the tuple as being erroneous with certain
probability. If those probabilities can be estimated, we can still treat each attribute in-
dividually, but allow the assessment result to be a number between 0 and 1. Example 4
illustrates the second view.

Example 4. Let us consider another DQ design proposal P2(Person′(sin, name, address,
name′), Tequal−prob), where Tequal−prob is same as Tequal in P1, except that it marks
the whole tuple t[name, name′] as being erroneous when t.name �= t.name′. Following
the second view, if we assume that a name and name′ value have the same probability
of being wrong, Table 1(c) shows the output of Tequal−prob applied to the same sample
of IPerson′ (as in Example 3). Notice, err = “0.5” (respectively err′ = “0.5”) means the
name (respectively name′) value is marked as erroneous with the 0.5 probability.

In this case, a real erroneous name value, being marked as erroneous with 0.5 proba-
bility (e.g., Tuple 006), counts for 0.5 toward TP and 0.5 toward FN. By comparing this
table with Table 1(a), we can obtain following numbers: TP = 1 (due to Tuple 006 and
009), FP = 1 (due to Tuple 001 and 008) and FN = 2 (due to Tuple 004, 006 and 009).
The assessability scores for Tequal−prob on this sample can then be calculated using this
numbers. �

4 Estimating and Comparing Expected Effectiveness Scores

4.1 Formal Approach

The above examples show the calculation of assessability scores for a DQ technique
on a particular database instance. In this section, we show how assessability scores
can be estimated without applying the DQ technique to data. More specifically, we
show how to obtain the expected assessability scores for a DQ technique based on
probabilistic assumptions. This approach can be divided into four steps: (1) setting the
stage, (2) making probabilistic assumptions, (3) calculating probabilities for the events
of interests, and (4) formulating assessability scores. In what follows, we illustrated this
approach on several DQ techniques.

Introducing Redundancy. Although duplicating an attribute as we have shown in
previous examples may seem simplistic, the idea of using redundancy checks (e.g.,
checksum) to protect the integrity of data has long been practiced in computer com-
munication, and also been proposed for detecting corruption in stored data [7]. More
generally, partial redundancy is the basis of many integrity constraints (e.g., correlations
between phone area codes and postal codes).

Measuring and Comparing Effectiveness of Data Quality Techniques 177

Step 1: setting the stage. In general, given a relation schema S, we are interested in
DQ design proposals of the form Predundancy(S′, TB �=f(X)), where S′ contains all
attributes in S plus a new attribute B, and TB �=f(X) enforces the rule “for each tuple
t inserted in an instance of S′, if t.B �= f(t.X) then mark t.X as erroneous”; here X
is a subset of attributes in S, and f represents some computable function. For example,
X may contain a single attribute birthdate and B is the attribute age; f computes the
current age from the date of birth3. In what follows, we illustrate the formal approach
for the case where X contains a single attribute A and f is the identity function, i.e., for
the DQ technique TB �=A. More general cases can be handled in a similar way.

Step 2: making probabilistic assumptions. The main factor that affects the assessability
scores for TB �=A is the occurrence of errors in the attributes A and B. For the rest of the
paper, we make several independence assumptions about values and errors in general:
(i) the probability that a value will be wrong is independent of the value itself, and (ii)
the probability of an error occurring in one attribute is independent of those of the other
attributes.

To simplify the analysis here, we will assume that the probability of a A value
or B value being incorrect is the same — denoted by p. If we use Errt.A to name
the event that the recorded value in t.A does not correspond to the real one and use
Cort.A to mean the converse, this assumption can be stated symbolically as pr(Errt.A)
= pr(Errt.B) = p, where pr(E) represents the probability of an event E. Before we pro-
ceed further, we need to recognize that there is the possibility that both t.A and t.B are
incorrect yet contain the same erroneous value; in this case, these errors “cancel out” as
far as the DQ technique TB �=A is concerned (since they cannot be detected by TB �=A).
We call this situation “error masking”, which is a particular type of confounding factors.
Let us say that such masking will happen only with probability 1 − c1.

Step 3: calculating probabilities for the events of interests. To estimate the assessability
scores, we are interested in events concerning a tuple t (i) whether t.A has an error, and
(ii) whether a DQ problem is signaled by TB �=A. This estimation has to be adjusted for
error masking. To compute the expected values for TP, FP and FN, we will actually
compute the probabilities of events concerning a particular tuple t, and then multiply
this by the number of tuples in the relation.

First, true positives occur when t.A has an error (probability p) that is correctly
signaled by TB �=A. This happens when either t.B is correct (prob. (1 − p)) or t.B is
incorrect (prob. p) but different from t.A (prob. c1); this yields probability: pr(Errt.A∧

Cort.B) + pr(Errt.A
∧

Errt.B
∧

(t.A �= t.B)) = p × (1 − p) + p × p × c1.
False negatives occur when t.A has an error that is not signaled by TB �=A, because

error masking occurs (which requires t.B to contain the exact same error); this has
probability: pr(Errt.A

∧
Errt.B

∧
(t.A = t.B)) = p × p × (1 − c1).

False positives occur when t.A has no error yet TB �=A signals a problem, which
arises according to our rule when t.B �= t.A (i.e., when t.B has an error); this has
probability: pr(t.Acor

∧
t.Berr) = (1 − p) × p.

3 A variant of TB �=f(X) replaces the condition “t.B �= f(t.X)” with “d(t.B, f(t.X)) > δ”;
so instead of requiring t.B and f(t.X) to be exactly the same, it only requires their distance
(measured by d) be less than a constant δ.

178 L. Jiang et al.

Step 4: formulating assessability scores. Given the probabilities obtained in Step 3,
the expected number of true positives, false positives and false negatives can be cal-
culated as the number of tuples (say N) times the respective probability as following:
TP (TB �=A, A) = N×(p(1−p)+p2c1); FN(TB �=A, A) = N×p2(1−c1); FP (TB �=A, A)
= N × (1 − p)p; The expected assessability scores for TB �=A can then be obtained by
plugging these numbers into Equation 1, 2 and 3. Since N appears both in the numera-
tor and denominator, it will cancel out, resulting in the effectiveness formulas in Table
2 (Section 4.2).

Using Lookup Tables. For an attribute with a standardized (and finite) domain, such
as country name or postal code, a common DQ technique is to check its values against
a lookup table for the attribute. Attributes with enumerated value domains (such as
gender) also offer this possibility.

Step 1: setting the stage. Given the original schema S and an attribute A in S, we are
interested in DQ design proposals of the form Plookup(S, TLA), where TLA is the DQ
technique that detects errors in A values using a lookup table LA. In what follows, we
illustrate the formal approach for this type of DQ techniques.

Step 2: making probabilistic assumptions. We make two passes through this analysis,
in order to account for two different sources of problems. First, we assume as before
there is a probability p that the recorded value of t.A is incorrect. In this case, error
masking occurs when this erroneous value is still a valid value in the domain of A
(e.g., “Australia” vs “Austria”) – an event to which we assign probability c2. If we
use V alidt.A to name the event that the value t.A is valid and Invalidt.A to mean the
converse, we can represent these assumptions using following conditional probabilities:
pr(V alidt.A|Errt.A) = c2 and pr(Invalidt.A|Errt.A) = 1 − c2.

Second, we consider the possibility of the lookup table being imperfect, which is
another type of confounding factors. In particular, we allow a probability s that some
value (e.g., the name of a newly independent country) is missing from the lookup table
LA

4. If we use Lt.A
A to name the event that the value t.A is contained in LA, and L¬t.A

A

to mean the converse, we have pr(Lt.A
A) = 1 − s and pr(L¬t.A

A) = s. Notice here we are
implicitly assuming that pr(Lt.A

A) is independent from the characteristics of t.A values
(e.g., name values of different length or in different languages).

Step 3: calculating probabilities for the events of interests. In the first case (i.e., assum-
ing a perfect lookup table), true positives occur when t.A is incorrect and the value is not
in the lookup table LA (therefore t.A must be invalid, since all valid values are in LA);
this has probability: pr(Errt.A

∧
Invalidt.A) = pr(Errt.A) × pr(Invalidt.A|Errt.A)

= p × (1 − c2).
False negatives occur when the error is masked (i.e., when t.A is incorrect but hap-

pens to be valid, and therefore is in LA); this has probability pr(Errt.A
∧

V alidt.A) =
pr(Errt.A) × pr(V alidt.A|Errt.A) = p × c2.

Finally, in this case, there can be no false positives: every A value not in LA is an
incorrect A value.

4 A more thorough, but complex, analysis would allow errors in the table values themselves or
extra/out of date values.

Measuring and Comparing Effectiveness of Data Quality Techniques 179

In the second case (i.e., assuming a imperfect lookup table), false positives show up
when t.A is correct, yet the value is missing from LA; this has probability: pr(Cort.A∧

L¬t.A
A) = (1 − p) × s.

For true positives, another source is possible, i.e., when an incorrect t.A value is valid
(due to error masking), but is accidentally missing from LA; the total probability for
true positives is therefore the one obtained in the first case plus following probability:
pr(Errt.A

∧
V alidt.A

∧
L¬t.A

A) = pr(Errt.A
∧

V alidt.A) × pr(L¬t.A
A) = (p× c2)× s.

For false negatives, we need to multiply the probability obtained in the first case by
(1 − s), since they require the masking values also be in LA .

Step 4: formulating assessability scores. Given the probabilities we obtained in Step
3, the expected assessability scores for TB �=A can be calculated in the same way as for
the case of TB �=A. See Table 2 (Section 4.2) for the resulting effectiveness formulas
for TLA .

4.2 What-If Analysis

The results of the formal approach are formulas representing the expected assessabil-
ity scores for DQ techniques. These formulas are useful for several reasons. First, they
identify conditions (e.g., parameters p and s in Table 2) that affect the effectiveness of
a DQ technique. Second, as we show below, they allow us to perform trade-off analysis
concerning different scenarios that involve one or more DQ techniques. (Each scenario
produces a plot of effectiveness scores by fixing most parameters and allowing the oth-
ers to vary.)

The formulas that represent expected precision, recall and F-measure (when β = 1)
for the DQ techniques TB �=A and TLA , together with a summary of the parameters used
in these formulas, are shown in Table 2. In what follows, we first show how these two
techniques are evaluated individually (in Scenarios 1 - 4) and then show how they are
compared with each other (in Scenarios 5 - 10).

Scenarios 1 - 4: Evaluating Individual DQ Techniques. Scenarios 1 and 2 consider the
impact of “error masking” (varying c1) on the effectiveness of TB �=A, while Scenarios 3

Table 2. Expected assessability scores for TB �=A and TLA

Technique: TB �=A Technique: TLA

Assessability Scores: Assessability Scores:
precision(TB �=A, A) = 1+(c1−1)p

2+(c1−2)p
precision(TLA , A) = 1+(s−1)c2

s/p+(s−1)(c2−1)

recall(TB �=A, A) = 1 + (c1 − 1)p recall(TLA , A) = 1 + (s − 1)c2

F1(TB �=A, A) = 2+2(c1−1)p
3+(c1−2)p

F1(TLA , A) = 2+2(s−1)c2
1+s/p+(s−1)(c2−1)

Parameters:
p: the probability that an A value is erroneous

c1: the probability that both A and B values in a tuple are erroneous, but contain different errors

c2: the probability that an erroneous A value is valid in the domain of A

s: the probability that a valid A (with or without error) is not contained in the lookup table LA

180 L. Jiang et al.

(a) Scenario 1: a relative clean database (b) Scenario 2: a dirty database

Fig. 1. Evaluation of TB �=A

and 4 consider the impact of LA’s “coverage” (varying s) on the effectiveness of TLA. For
each technique, the evaluation is carried out with respect to a relatively clean database
(p = 0.05, in Scenarios 1 and 3) and a dirty database, (p = 0.3, in Scenarios 2 and 4).

The results for Scenarios 1 and 2, as given in Figure 1(a) and 1(b), show that the
precision and recall of TB �=A decrease when the chance of “error masking” increases
(i.e., as c1 decreases). This corresponds to our intuition. However a comparison of these
two figures also reveals that, in a dirty database (i.e., with a larger p), the effectiveness
of TB �=A decreases more precipitously as the chance of “error masking” increases. For
example, as c1 decreases from 1 to 0, the recall of TB �=A decreases by only 0.05 in the
clean database, but by 0.3 in the dirty database.

The results for Scenarios 3 and 4 are shown in Figure 2(a) and 2(b) respectively. In
both cases, as the “coverage” of the lookup table decreases (i.e., as s increases), we
notice an intuitively expected decrease in precision; however, the dramatic nature of its
drop is not so easily predicted by intuition, and is therefore a benefit of this analysis. We
also note that recall is much less affected by the “coverage”. Moreover, by comparing
these two figures, we observe that the probability of errors in A has much greater im-
pact on precision than on recall. More specifically, the recall of TLA remains the same
when comparing the clean and dirty databases; however, in the dirty database, the pre-
cision decreases considerably slower as the “coverage” decreases. For example, when
s increases from 0 to 1, the precision of TLA decreases by 0.95 in the clean database,
and by only 0.7 in the dirty database.

Scenarios 5 and 6: Comparing DQ Techniques - The Impact of Errors. In this sub-
section, we compare DQ techniques TB �=A and TLA in two scenarios, by investigating
the impact of the probability of errors in A (varying p) on the effectiveness of these two
techniques in an optimistic and a pessimistic setting. In the optimistic case, the chance
of “error masking” is very small and the “coverage” of the lookup table is nearly per-
fect. More specifically, we assume that (i) in 99% of the cases, erroneous A and B
values in a tuple contain different errors (i.e., c1 = 0.99), (ii) only 1% of erroneous A

Measuring and Comparing Effectiveness of Data Quality Techniques 181

(a) Scenario 3: a relative clean database (b) Scenario 4: a dirty database

Fig. 2. Evaluation of TLA

(a) Scenario 5: an optimistic view (b) Scenario 6: a pessimistic view

Fig. 3. Comparison of TB �=A and TLA - Impact of Errors

values happen to be other valid values (i.e., c2 = 0.01), and (iii) only 1% of the valid A
values are not contained in the lookup table LA (i.e., s = 0.01). In the pessimistic case,
we significantly increase the chance of “error masking” and decrease the “coverage” of
the lookup table. More specifically, we set c1 = 0.70, c2 = 0.30 and s = 0.30. Figure
3(a) and 3(b) compare the F-Measures of TB �=A and TLA in these scenarios.

We observe that in both settings, the F-measure of TB �=A increases as the number of
erroneous A values increases (i.e., p increases). A similar pattern can be observed for
TLA in the pessimistic setting; in the optimistic setting, the F-measure of TLA increases
dramatically when p < 0.05, and remains almost constant when p ≥ 0.05. These
two figures suggest under what circumstances one DQ technique is preferable to the
other one. More specifically, in an optimistic world, TB �=A outperforms TLA only when
the probability of erroneous A values is quite small (i.e., when p < 0.01), while in a

182 L. Jiang et al.

pessimistic world, TB �=A is a more effective choice than TLA as long as the error rate
in A is less than 40% (i.e., when p < 0.4).

A briefer summary might be that in a typical situation, where the chance of “error
masking” is reasonably small (say, less than 5%) and the “coverage” of lookup table is
nearly perfect (say, more than 95%), a lookup-table based DQ technique is generally
more effective in detecting errors than a redundancy-check based DQ technique, as long
as the database is expected to have more than 5% erroneous values.

Scenarios 7 - 10: Comparing DQ Techniques - The Impact of “Error Masking”.
In this subsection, we compare the DQ techniques TB �=A and TLA in another four sce-
narios, by investigating the impact of the “error masking” (varying c1 and c2) on the
effectiveness of these techniques. The comparison is carried out with respect to a rel-
atively clean database, i.e., p = 0.05 (Scenarios 7 and 9) and a dirty database, i.e.,
p = 0.30 (Scenarios 8 and 10), and as well as with respect to a nearly perfect lookup
table, i.e., s = 0.01 (Scenarios 7 and 8), and an imperfect lookup table, i.e., s = 0.3
(Scenarios 9 and 10).

Figure 4(a) and 4(b) compare the F-Measures of TB �=A and TLA in Scenarios 7 and
8, while Figure 5(a) and 5(b) compare them in Scenarios 9 and 10. From these figures,
a dominant pattern can be observed: the chance of “error masking” has more impact
on TLA than on TB �=A, and this influence is independent of the probabilities of errors
in A and the “coverage” of LA. In other words, the F-measure of TLA increases more
precipitously than that of TB �=A does (in all four cases) as the chance of “error masking”
decreases (i.e., as c1 and 1 − c2 increases).

In addition to this general pattern, the following conclusion can be reached according
to these figures. For relative clean databases with less than 5% of erroneous values, a
redundancy-check based DQ technique is always more effective than a lookup-table
based technique. When there are more than 5% of erroneous values, the redundancy-
check based technique still outperforms the lookup-table based one, unless a relatively
low chance of “error masking” is guaranteed and the “coverage” of the lookup table is

(a) Scenario 7: clean db, good lookup (b) Scenario 8: dirty db, good lookup

Fig. 4. Comparison of TB �=A and TLA - Impact of “Error Masking” (I)

Measuring and Comparing Effectiveness of Data Quality Techniques 183

(a) Scenario 9: clean db, bad lookup (b) Scenario 10: dirty db, bad lookup

Fig. 5. Comparison of TB �=A and TLA - Impact of “Error Masking” (II)

nearly perfect. This conclusion, together with the one we made in Scenarios 5 and 6,
gives us a complete comparison of TB �=A and TLA .

The general point is that the mathematical assessment of the effectiveness of DQ
techniques based on probabilistic parameters allows us to make judgments about when
to use one technique vs. another, or whether to use one at all – we need to remember
that there is an overhead for putting into place a DQ technique.

5 Related Work

Software engineering researchers and practitioners have been developing and using nu-
merous metrics for assessing and improving quality of software and its development
processes [8]. In comparison, measures for DQ and DQ techniques have received less at-
tention. Nevertheless, significant amount of effort has been dedicated to the classification
and definition of DQ dimensions. Each such dimension aims at capturing and represent-
ing a specific aspect of quality in data, and can be associated with one or more measures
according to different factors involved in the measurement process [1]. Measures for
accuracy, completeness, timeliness dimensions have been proposed in [9,10,11].

Although to the best of our knowledge no general measurement framework exists for
DQ techniques, performance measures have been proposed and used for certain types
of techniques (such as Record linkage). Performance measures in this case are often de-
fined as the functions of the number of true positives, false positives, etc [12,13]. For
example, in addition to precision, recall and F-measures, the performance of a record
linkage algorithm can also be measured using Accuracy = (TP + TN) / (TP + FP + TN
+ FN), among others [13]. In these proposals, performance scores are obtained for par-
ticular applications of a record linkage algorithm on actual data sets, and are mainly used
as a mechanism to tune the parameters (e.g., matching threshold) of the algorithm. The
present paper focuses on the estimation of expected effectiveness scores and the com-
parison of DQ techniques under different scenarios. The formal techniques and what-if

184 L. Jiang et al.

analysis presented in this paper are therefore complementary to the existing performance
measures used for record linkage algorithms.

As we have discussed, the schema of a database plays a significant role in ensuring
quality of data in the database. Researchers in conceptual modeling have worked on
the understanding and characterization of quality aspects of schemas, such as (schema)
completeness, minimality, pertinence [14,1]. Moreover, quality measures have been pro-
posed for ER schemas; for example, the integrity measure in [15] is defined using the
number of incorrect integrity constraints and the number of correct ones that are not en-
forced. Quality measures for logical schemas have also been developed in [16,17,18,19].
The question that remains is — if quality of schema influences that of data, how is this
influence reflected in their quality measures. The present paper can be seem as one step
toward answering this question. Since DQ techniques rely on changes to the structure
and elements of schemas (and the specifiable constraints according the changes), their ef-
fectiveness measures contribute to the measurement of schemas′ controllability on DQ
problems, another quality measure for schemas yet to be explored. Our effectiveness
measures therefore help us to understand the relationship between the ability to con-
trol DQ problems at the schema level and the actual manifestation of these problems at
instance level.

6 Conclusion

In this paper, we have proposed a quantitative approach for measuring the effectiveness
of DQ techniques. Inspired by Information Retrieval, we started by proposing to calcu-
late numeric effectiveness scores for a DQ technique by comparing its performance on
a database instance with that of humans, who are assumed to have perfect knowledge of
the world represented by that instance. As in Information Retrieval, this has the weak-
ness of depending on the particular database instance used, and may require significant
human effort in evaluating the actual data.

We therefore generalized the idea by introducing probabilistic assumptions concern-
ing the occurrence of errors in data values and confounding factors that may render the
DQ technique less effective. These assumptions are expressed in terms of probability dis-
tributions for various events, each characterized by certain parameters. We then showed
with several examples how one can obtain mathematical formulas for the effectiveness
of a DQ technique, which involve the parameters of the above-mentioned distributions.
This is a significant advance, because it provides a way for the effectiveness of a DQ tech-
nique to be evaluated over a range of possible values for the parameters. This allows us for
the first time to compare in a mathematically precise way different DQ techniques, and
talk about the circumstances when one becomes better than another. Moreover, it lays the
foundations for future research on optimal allocation of resources for DQ enforcement.

Ongoing and future work is needed to fulfill the promise of this approach. This in-
cludes to identify classes of DQ techniques (integrity constraints and workflows) for
which the formal approach for deriving effectiveness formulas, as illustrated in this pa-
per, can be mechanized or at least reduced to a systematic methodology. This will likely
include a comprehensive classification of DQ techniques, and will result in a library of
DQ techniques augmented by their effectiveness formulas. The next stage is to also make

Measuring and Comparing Effectiveness of Data Quality Techniques 185

the process of generating interesting scenarios more systematic. Finally, while this paper
concentrated only on error detection, there are many other aspects, such as error correc-
tion and monitoring, that can be brought into this more precise, mathematical approach.

References

1. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques (Data-
Centric Systems and Applications), 1st edn. Springer, Heidelberg (2006)

2. Jiang, L., Topaloglou, T., Borgida, A., Mylopoulos, J.: Goal-oriented conceptual database
design. In: Proceedings of the 15th IEEE International Requirements Engineering Conference
(RE 2007) (2007)

3. Jiang, L., Borgida, A., Topaloglou, T., Mylopoulos, J.: Data quality by design: A goal-oriented
approach. In: Proceedings of the 12th International Conference on Info. Quality (ICIQ 2007)
(2007)

4. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional de-
pendencies for data cleaning. In: IEEE 23rd International Conference on Data Engineering,
2007. ICDE 2007, pp. 746–755 (2007)

5. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional dependencies for
capturing data inconsistencies. ACM Trans. Database Syst. 33(2), 1–48 (2008)

6. van Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworth, London (1979)
7. Barbará, D., Goel, R., Jajodia, S.: Using checksums to detect data corruption. In: Advances

in Database Technology — EDBT 2000, pp. 136–149 (2000)
8. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS

Publishing Co., Boston (1998)
9. Ballou, D., Wang, R., Pazer, H., Tayi, G.K.: Modeling information manufacturing systems

to determine information product quality. Manage. Sci. 44(4), 462–484 (1998)
10. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications of the

ACM 45(4), 211–218 (2002)
11. Ballou, D.P., Pazer, H.L.: Modeling completeness versus consistency tradeoffs in information

decision contexts. IEEE Trans. on Knowl. and Data Engineering 15(1), 240–243 (2003)
12. Gu, L., Baxter, R., Vickers, D., Rainsford, C.: Record linkage: Current practice and future

directions. Technical report, CSIRO Mathematical and Information Sciences (2003)
13. Christen, P., Goiser, K.: Quality and complexity measures for data linkage and deduplication.

In: Guillet, F., Hamilton, H.J. (eds.) Quality Measures in Data Mining. Studies in Computa-
tional Intelligence, vol. 43, pp. 127–151. Springer, Heidelberg (2007)

14. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-Relationship Ap-
proach. Benjamin/Cummings (1992)

15. Moody, D.L.: Metrics for evaluating the quality of entity relationship models. In: Ling, T.-W.,
Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 211–225. Springer, Heidelberg
(1998)

16. Piattini, M., Calero, C., Genero, M.: Table oriented metrics for relational databases. Software
Quality Journal 9(2), 79–97 (2001)

17. Calero, C., Piattini, M.: Metrics for databases: a way to assure the quality. In: Piattini, M.G.,
Calero, C., Genero, M. (eds.) Information and database quality, pp. 57–84. Kluwer Academic
Publishers, Norwell (2002)

18. Baroni, A.L., Calero, C., Abreu, F.B., Piattini, M.: Object-relational database metrics formal-
ization. In: Sixth International Conference on Quality Software, pp. 30–37. IEEE Computer
Society, Los Alamitos (2006)

19. Serrano, M.A., Calero, C., Piattini, M.: Metrics for data warehouse quality. In: Khosrow-Pour,
M. (ed.) Encyclopedia of Info. Sci. and Techno. (IV), pp. 1938–1944. Idea Group (2005)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 186–200, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Improving Model Quality Using Diagram Coverage
Criteria

Rick Salay and John Mylopoulos

Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada

{rsalay,jm}@cs.toronto.edu

Abstract. Every model has a purpose and the quality of a model ultimately
measures its fitness relative to this purpose. In practice, models are created in a
piecemeal fashion through the construction of many diagrams that structure a
model into parts that together offer a coherent presentation of the content of the
model. Each diagram also has a purpose – its role in the presentation of the
model - and this determines what part of the model the diagram is intended to
present. In this paper, we investigate what is involved in formally characterizing
this intended content of diagrams as coverage criteria and show how doing this
helps to improve model quality and support automation in the modeling
process. We illustrate the approach and its benefits with a case study from the
telecommunications industry.

Keywords: Modeling, Model quality, Diagrams.

1 Motivation

All models are created for a purpose [4]. For example, in a software development
context, models may be used to communicate a software design, to help a designer
work through alternative ideas, to support the work of various stakeholders, to enable
a particular type of analysis, etc. The quality of a model corresponds to how well it
can support its purpose by providing the information required by it – i.e. the purpose
of a model determines its intended content. Thus, if the intended content can be char-
acterized in terms of content criteria such as the required notation, coverage, accu-
racy, level of abstraction, etc. we can consider model quality to be measured by the
degree to which the model meets these criteria.

In practice, a model is often manifested as a set of diagrams, possibly of different
types, that decompose and structure the content of the model. The prototypical example
of this is the UML which defines a single metamodel for UML models and identifies
thirteen types of diagrams that can be used with it [13]. Like the models they present,
each diagram has a purpose and plays a particular role in the presentation of model
content, hence they too have content criteria. In particular, the content criteria relating to
coverage, or coverage criteria, for a diagram identifies the part of the information car-
ried by a model that is intended to be presented within the diagram. For example, in a
UML model of a communication system, one class diagram may be intended to show
the different types of communicating entities while another is intended to show the
different types of messages that an entity of type Terminal can send.

 Improving Model Quality Using Diagram Coverage Criteria 187

Coverage criteria are not typically modeled and if they are made explicit at all, it is
only through some informal means such as comments or as part of the name of the
diagram. However, the explicit and precise expression of coverage criteria is a fruitful
activity because it helps improve the quality of models in several ways. Firstly, it
improves model comprehension because it provides information that allows model
consumers to properly interpret the content of diagrams and assess their overall qual-
ity. For example, without explicit coverage criteria it may not be clear whether the
associations in the class diagram of communicating entity types represent all or just
some of the associations between these entities. Secondly, it can be used to identify
types of defects that are not detectable through other means. For example, coverage
criteria can be used to detect when the class diagram of communicating entity types
contains classes it shouldn’t or doesn’t contain classes that it should. Finally, the cov-
erage criteria can be used with change propagation mechanisms to properly maintain
the intended content of diagrams as the model evolves.

In [11] we describe how the types of relationships that exist between models and
between diagrams play a role in describing the intentions about content. In this paper,
we explore the relationship between a diagram and a model in greater depth. In par-
ticular, we make the following contributions:

o The notion of diagram coverage criteria is introduced as a new kind of infor-
mation that can be included in a model.

o Four kinds of modeling defects are identified that can only be detected using
coverage criteria.

o A systematic approach for defining formal coverage criteria is presented and
the validity conditions that coverage criteria must satisfy are specified.

o A strategy for parameterizing coverage criteria is defined that allows reuse of
coverage criteria to reduce specification effort and to allow diagrams with
standard types of intentions to be auto-generated.

o Empirical results are presented of the application of the approach to a medium
size UML model with 42 diagrams.

The rest of the paper is structured as follows. Section 2 introduces the concepts re-
lated to diagram coverage criteria and illustrates them using examples. Section 3 for-
malizes these concepts and provides a systematic way of defining coverage criteria.
Section 4 describes the results of applying the approach to a UML case study in the
telecommunications domain. Finally in Section 5 we discuss related work and in
Section 6 make some concluding remarks.

2 Diagram Coverage Criteria

In order to illustrate the idea of diagram coverage criteria we utilize examples from a
UML case study taken from a standards document for the European Telecommunica-
tions Standards Institute (ETSI) [7]. The case study consists of three UML models: a
context model (4 diagrams), a requirements model (6 diagrams) and a specification
model (32 diagrams) and details the development of the Private User Mobility dynamic
Registration service (PUMR) – a standard for integrating telecommunications net-
works in order to support mobile communications. Thus, for example, PUMR allows

188 R. Salay and J. Mylopoulos

an employee using a mobile phone at her home company with a private exchange to
roam to other private exchanges seamlessly. More specifically, it describes the interac-
tions between Private Integrated Network eXchanges (PINX) within a Private Inte-
grated Services Network (PISN). The following is a description from the document:

“Private User Mobility Registration (PUMR) is a supplementary service that en-
ables a Private User Mobility (PUM) user to register at, or de-register from, any
wired or wireless terminal within the PISN. The ability to register enables the
PUM user to maintain the provided services (including the ability to make and
receive calls) at different access points.” [7, pg. 43]

Consider diagram 65 from the specification model as shown in Figure 1. The intent
of this class diagram is to show the detail for the types of response messages that can
be exchanged between communication entities when they are trying to connect. The
class PUM Responses is the abstract base class for these classes. This intention
implies that the following constraints must hold between diagram 65 and the
specification model:

1. Every class that is included in this diagram must either be PUM Responses or
be a direct subclass of it.

2. Every direct subclass of PUM Responses in the specification model is included
in this diagram.

3. For each class included in this diagram, every attribute in the specification
model is included in this diagram.

4. No associations are included in the diagram.

These constraints constitute the coverage criteria for diagram 65. Assume that we
identify three roles for stakeholders dealing with diagrams: definer, producer and
consumer. The diagram definer asserts that such a diagram must exist and what it is
intended to contain. The producer creates the content and the consumer uses it for
their purposes. Expressing the coverage criteria explicitly and precisely is useful for
all three roles. The definer can articulate the intent of the diagram and effectively
communicate this to the producer. The producer can use this to assess whether they
are conforming to this intent. Constraints (1) and (4) ensure that nothing is included
that does not belong in the diagram while constraints (2) and (3) ensure that every-
thing that does belong is included. The consumer can use the constraints to properly
interpret the content of the diagram. For example, without (3) it may not be clear to
the consumer whether or not the attributes for these classes shown in the diagram are
all the attributes for these classes or there are some more that have been omitted from
the diagram. Thus, while diagrams are typically assumed to be incomplete relative to
the model, the coverage criteria provide the consumer with information about the
ways in which the diagram is complete. If formalized, the coverage criteria are useful
for automated support of the management of the diagram content in order to ensure
that the intent of the diagram is maintained as the specification model evolves. For
example, if the producer adds a class to the model via diagram 65 and does not make
it a subclass of PUM Responses, this violates constraint (1) and can be flagged as
such. On the other hand, if a subclass of PUM Responses is added to the specification
model by some other means, such as manually through another diagram, change
propagation, round-trip engineering, etc., the violation of constraint (2) can trigger the
“repair” action of adding it to diagram 65.

 Improving Model Quality Using Diagram Coverage Criteria 189

PUM Responses

PumRegistrRes
<<communication message>>

pumNumber : PartyNumber
serviceOption : ServiceOption
sessionParams : SessionParams
argExtension : PumrExtension

PumInterrogRes
<<communication message>>

basicService : BasicService
hostingAddr : PartyNumber
serviceOption : ServiceOption
interrogParams : SessionParams
argExtension : PumrExtension

PisnEnqRes
<<communication message>>

pisnNumber : PartyNumber
dummyRes : DummyRes

Fig. 1. Diagram 65 is a class diagram showing PUMR response message types carried in a
connect signal

Note that the constraints in coverage criteria are different from constraints that are
expressed within the metamodel. Metamodel constraints include invariants that must
hold in the modeled domain (e.g. a class can’t be a subclass of itself), completeness
constraints from the modeling process (e.g. every use case requires an activity that
describes it) and stylistic constraints (e.g. only single inheritance is permitted). Since
diagrams do not exist within the model, these constraints do not address the content of
diagrams. In contrast, coverage criteria are wholly concerned with the relationship
between diagrams and the model. Furthermore, since the diagram intent is defined
relative to the model, the coverage criteria is comprised of information that exists at
the model level rather than at the metamodel level. For example, if model evolution
causes some coverage criterion to be violated, a valid response may be to change the
coverage criterion rather than the diagram. This represents a decision on the part of
the model definer that the intent of a diagram has evolved.

The coverage criteria for diagram 65 are constraints that are mostly expressed in
terms of the generic concepts in the metamodel (i.e. class, subclass, association, etc.)
except for the mention of the specific class PUM Responses. The diagram has a spe-
cial existential relationship to this element since it doesn’t make sense to have a dia-
gram that shows the subclasses of PUM Responses unless there exists a class in the
model called PUM Responses. Thus, we consider it to be a precondition for the exis-
tence of diagram 65 that the model contain this class. When the precondition for a
diagram is the required existence of a single model element, then the diagram is often
a “detailing” of this element. For example, diagram 65 could be considered to be a
detail view of the PUM Responses class. This special case has been leveraged by
modeling tools [5, 6] to define a natural navigation path between diagrams containing
the detailed element and the diagrams that are detail views of this element.

The coverage criteria for diagram 65 are strong enough that for any UML model that
satisfies the precondition, the content of the diagram is uniquely determined – i.e. the
coverage criteria constitutes a query on those specification models that satisfy the

190 R. Salay and J. Mylopoulos

PUM user

SpecifyProfile

Register PUM User at a Terminal
for Outgoing Calls

Specify Access Point for Incoming
Call

Authorized user

Specify Service Type

Fig. 2. Diagram 44 is a use case diagram showing the registration use cases

precondition. The intuition here is that when the producer fills in a diagram they must
always have some principle in mind by which they decide what should be included and
what should not be included and following this principle results in a unique diagram1.
This principle is exactly the coverage criteria. Thus, there is a general pattern for cover-
age criteria: there is a (possibly empty) precondition and the coverage criteria uniquely
determine the content of the diagram on any model satisfying the precondition.

Now consider diagram 44 from the requirements model shown in Figure 2. The in-
tent of this diagram is to show all use cases related to the registration of PUM users
within a network. The coverage criteria can be expressed as follows:

1. Every use case that is included this diagram is a registration use case.
2. Every registration use case (in the requirements model) is included in this dia-

gram.
3. Every actor (in the requirements model) associated with a use case included in

the diagram is also included in the diagram.
4. Every association (in the requirements model) between any elements in the

diagram is also included in the diagram.

Like the coverage criteria for diagram 65 this lists a set of diagram inclusion con-
straints that pick out a unique diagram for each model; however, unlike diagram 65,
the truth of these conditions cannot be fully determined from the content of the
requirements model alone. In particular, there is no information in the requirements
model that can be used to determine whether or not a particular use case is a
registration use case. This highlights another benefit of articulating the coverage crite-
ria – it exposes contextual information that is assumed when interpreting the diagram
and that may be missing from the model. One response to this is to extend the model

1 Note that we are not suggesting that the information in a diagram can only be presented in one

way but rather that what information is included in the diagram is determined completely by
the principle the producer is following.

 Improving Model Quality Using Diagram Coverage Criteria 191

to include this information. In this case, this could be done in several ways ranging
from formal to informal including: adding a use case called “Registration” which
these use cases specialize, adding a profile at the metamodel level with an attribute to
indicate the type of use case, using a naming convention on use cases to indicate the
type of use case, annotating the use cases with comments, etc.

Another response to this situation is to treat the inclusion of a use case in the dia-
gram as meaning that the use case is a registration use case. In this case, diagrams are
not only used as views on the model but also to extend the model itself. Since dia-
grams are typically considered to only be relevant to the presentation of a model and
not its content, this approach has the drawback that the information may not be pre-
served in further refinements of the model (e.g. into the code) and hence would be
lost. This suggests that the first response may be preferred if this information is
needed in downstream processes – i.e missing context information should be viewed
as a case of model incompleteness.

2.1 Parameterized Coverage Criteria

In many cases, it is possible to generalize the diagram intention and coverage criteria
by replacing certain constants by parameters. For example, let DirectSubclass[c:class]
represent the coverage criteria for a type of class diagram having the generalized
intention that the diagram shows a class c and the detail of all of its direct subclasses:

1. Every class that is included in this diagram must either be c or be a direct
subclass of it.

2. Every direct subclass of c in the specification model is included in this
diagram.

3. For each class included in this diagram, every attribute in the specification
model is included in this diagram.

4. No associations are included in the diagram.

Now the coverage criteria for diagram 65 in Figure 1 could be expressed as Di-
rectSubclass[PUM Response]. An obvious benefit of parameterized coverage criteria
is reuse as it reduces the incremental effort to define the coverage criteria for different
diagrams when the coverage criteria have the same form. However, there are other
benefits as well. Formalized parameterized coverage criteria can be used to define a
library of common types of diagrams that can then be used to automatically generate
diagrams of these types and hence reduce modeling effort. For example, a model that
is produced by a reverse engineering tool can be quickly structured by generating
diagrams using different parameterized coverage criteria and various parameters.
Furthermore, the generalized intent can be used to generate a meaningful diagram
name (and other metadata) that reflects the intent of the diagram. For example, Di-
rectSubclass[c:class] can be applied to various classes to produce the diagram of its
subclasses and generate the name “The direct subclasses of c” for each diagram.

3 Formalization

The objective of this section is to encode coverage criteria formally in order to be
precise about its structure, allow the definition of validity conditions that must hold

192 R. Salay and J. Mylopoulos

and for characterizing the types of defects that can be detected. In order to express
metamodels in a formal way, we have chosen to use order-sorted first order logic with
transitive closure (henceforth referred to as FO+) as the metamodeling formalism
rather than using either MOF or Ecore with OCL. There are a number of reasons for
this. Firstly, first order logic is widely known and has comparable expressive power to
the other metamodeling approaches. Secondly, it has a textual representation that is
more convenient when discussing formal issues. Finally, its semantics are formal and
notions such as logical consequence and consistency are well defined.

Using FO+ we can define the metamodel of a model type as a pair 〈Σ, Φ〉 where Σ
is called the signature and defines the types of model elements and how they can be
related while Φ is a set of axioms that defines the well-formedness constraints for
models. Thus, a metamodel 〈Σ, Φ〉 is an FO+ theory and each finite model (in the
model theoretic sense) of this theory will be considered to be a model (in the model-
ing sense) that is an instance of this metamodel.

For example, we define the metamodel (abstract syntax) of a simplified UML class
diagram as follows.

 CD = (1)

 sorts class, assoc, attr, string
 pred startClass: assoc × class

 endClass: assoc × class
 attrClass: attr × class
 className:class × string
 subClass: class × class

 constraints

 // startClass, endClass, attrClass and className are functions2

 ∀a:assoc ∃!c:class · startClass(a, c)

 ∀a:assoc ∃!c:class · endClass(a, c)

 ∀a:attr ∃!c:class · attrClass(a, c)

 ∀c:class ∃!s:string · className(c, s)

 // a class cannot be a subclass of itself

 ∀c:class · ¬TC(subClass(c, c))

The signature ΣCD consists of the pair 〈sortsCD, predCD〉 where sortsCD is the set of

element types that can occur in a model while predCD is a sets of predicates used to
connect the elements. We will say ΣT1 ⊆ ΣT to mean that sortsT1 ⊆ sortsT and predT1 ⊆

predT. The constraints section describes ΦCD. Note that the quantifier ∃! means
“there exists one and only one” and the operator TC takes a predicate and produces its
transitive closure.

2 In FO+ we express functions as appropriately constrained predicates rather than including

functions directly into the logic in order to treat this in a uniform way with other well-
formedness constraints.

 Improving Model Quality Using Diagram Coverage Criteria 193

Here we are treating a type of diagram (i.e. class diagrams) in the same way as a
type of model by giving it a metamodel defining its abstract syntax. We do this since
in this paper we are not interested in the notational aspects of a diagram, only in what
subsets of a model they can be used to present. Thus, we will take a diagram to be
equivalent to the submodel it picks out from a model.

Assume that T = 〈ΣT, ΦT〉 is the metamodel of some model type and T1 = 〈ΣT1,
ΦT1〉 is the metamodel for a type of submodel of T. For example, we could have UML
= 〈ΣUML, ΦUML〉 as the model type and CD = 〈ΣCD, ΦCD〉 as the type of submodel we
are interested in. Since T1 is a type of submodel of T we will assume that ΣT1 ⊆ ΣT.
Note that in general, the constraints of a type of submodel may be either stronger or
weaker than the constraints of the model. For example, in UML, communication dia-
grams can only represent interactions in which message overtaking does not take
place [13] and so the constraints on communication diagrams are stronger than on
interactions within a UML model.

Now assume that M:T is a model and Msub:T1 is intended to be a submodel of it.
We will interpret this to mean that the constraint Msub ⊆ M must hold. That is, each
element and relation instance in Msub must also be found in M. If in addition, we state
that Msub has coverage criteria CC(Msub, M), then intuitively this will mean that CC
contains the preconditions and the constraints that further limit which submodels Msub
can be. Formally, we can express CC as a set of constraints on the combined signatures
of T1 and T using a special type of metamodel that includes the metamodels of T1 and
T and additional constraints showing how these models are related [11]. As an exam-
ple, we will express the coverage criteria for diagram 65 as follows:

CCM65(M65:CD, M:UML) = M65.CD + M.UML + (2)

subsort M65.class ≤ M.class, M65.assoc ≤ M.assoc, M65.attr ≤ M.attr (3)

constraints
// precondition

∃ mc:M.class · M.className(c) = “PUM Responses” ∧ (4)

// inclusion constraints

 ∀c:M.class · (∃c1:M65.class · c1 = c) ⇔ (c = mc ∨ M.subClass(c, mc)) ∧ (5)

 ∀a:M.assoc · (∃a1:M65.assoc · a1 = a) ⇔ FALSE ∧ (6)

 ∀a:M.attr · (∃a1:M65.attr · a1 = a) ⇔ (∃ c:M65.class · M.attrClass(a) = c) ∧ (7)

 ∀c1, c2:M65.class · M65.subClass(c1, c2) ⇔ (M.subClass(c1, c2) ∧ c2 = mc) ∧ (8)

 ∀a:M65.attr, c:M65.class · M65.attrClass(a, c) ⇔ M.attrClass(a, c) ∧ (9)

 ∀c:M65.class, s:M65.string · M65.className(c, s) ⇔ M.className(c, s) (10)

Line (2) indicates that CCM65 imports the signature and constraints for CD and

UML and to avoid name clashes these are “namespaced” with “M65” and “M”, re-
spectively. Thus, for example, the sort M65.class is distinct from the sort M.class.
Line (3) asserts that the elements in M65 are subsets of the elements in M. The
precondition (4) asserts the constraints that must hold in M for the diagram to exist –
in this case that M must contain a class named “PUM Responses”. The use of a

194 R. Salay and J. Mylopoulos

precondition distinguishes the case of a diagram not existing from the case that the
diagram exists but is empty.

The inclusion constraints define the constraints that must hold between the content
of M65 and M and are defined in the scope of the precondition so that the variable
mc is bound. These encode the constraints for diagram 65 expressed in words in
section 2. Thus, constraints 1 and 2 are expressed by (5), constraint 3 is expressed by
(7) and (9) and constraint 4 is expressed by (6). Note that parameterized coverage
criteria can be defined by allowing free variables in the definition. For example, if we
allow mc to remain a free variable in the above then we define the parameterized
coverage criteria DirectSubclass(M65:CD, M:UML)[mc: class].

The coverage criteria above are written in a standardized form. If we assume that
we are expressing coverage criteria CC(Msub:T1, M:T) then the form is:

 CC(Msub:T1, M:T2) = Msub.T1 + M.T2 + (11)

 subsort for each S ∈ sortsT1, Msub.S ≤ M.S

 constraints
 // precondition

 precondition ∧

 // inclusion constraints
 for each S ∈ sortsT1,

 ∀x:M.S · (∃x1:Msub.S · x1 = x) ⇔ QS(x) ∧

 for each predicate P:S1 × … × Sn ∈ predT1

 ∀ x1:Msub.S1, …, xn:Msub.Sn ·
 Msub.P(x1, …, xn) ⇔ M.P(x1, …, xn) ∧ QP(x1, …, xn) ∧

In each inclusion constraint, Qi represents a formula called the inclusion condition that

may involve bound variables in the precondition. Intuitively, the inclusion conditions
pick out the parts of M that belong in Msub and provide a systematic way of defining
coverage criteria. Based on this form, the coverage criteria can be seen to consist more
simply of the precondition and a set of inclusion conditions. For example, the coverage
criteria for diagram 65 could be expressed more compactly as the set of definitions:

precondition := ∃ mc:M.class · M.className(c) = “PUM Responses”

Qclass(c) := (c = mc ∨ M.subClass(c, mc))

Qassoc(a) := FALSE

Qattr(a) := ∃ c:M65.class · M.attrClass(a, c)

QsubClass(c1, c2) := (c2 = mc)
QattrClass(a, c) := TRUE
QclassName(c, s) := FALSE
QstartClass(a, c)3 := FALSE
QendClass(a, c) := FALSE

(12)

3 Inclusion constraints for startClass and endClass were omitted in (11) since these must always

be empty relations because there are no associations.

 Improving Model Quality Using Diagram Coverage Criteria 195

When the coverage criteria is expressed in terms of inclusion conditions it is clear
that for every M that satisfies the precondition, the inclusion constraints specify a
unique submodel Msub of M. This is because there is a constraint for each sort and
predicate of Msub that determines exactly what subset of these from M are included
in Msub. To ensure that the resulting submodel Msub is also always well formed – i.e.
that it satisfies the constraints ΦT1 – we must add the following validity conditions:

M.ΦT ∪ Msub.ΦT1 ∪ ΦCC FALSE (13)

M.ΦT ∪ ΦCC Msub.ΦT1 (14)

Here, M.ΦT and Msub.ΦT1 are the imported versions of the constraints of T and T1
found in CC(Msub:T1, M:T2) and ΦCC are the set of subsort, precondition and inclu-
sion constraints. Condition (13) says that the constraints in CC must be consistent and
condition (14) guarantees that the submodel defined by the coverage criteria for each
T-model is a well formed T1-submodel. As a simple example of a case where candi-
date coverage criteria does not satisfy condition (14), consider that in (12) we can
change the definition of the inclusion condition Qattr(a) to be Qattr(a) := TRUE. This
now says that M65 contains all attribute elements of M but still only a subset of the
class elements. This clearly can result in M65 being an ill-formed class diagram since
it can now contain attributes with no corresponding class – i.e. attrClass is no longer
necessarily a function. In particular, this is due to the fact that for the modified con-
straints

65MCCΦ we have that:

ΦUML ∪
65MCCΦ ∀a:M65.attr ∃!c:M65.class · attrClass(a, c) (15)

We can directly relate the structure of coverage criteria to the types of defects that
coverage criteria can be used to detect as shown in Table 1. The first two types of
defects can occur when an instance of the submodel violates the coverage criteria –
either by excluding intended information or by including unintended information. The
third type of potential defect indicates that the coverage criteria cannot be fully char-
acterized using information in M. This was the case with diagram 44 discussed in
Section 2 since the inclusion condition identifying a registration use case could not be
expressed. As discussed there, the corrective action required depends on whether the
information represented by the inclusion conditions is considered to be needed by
downstream processes using the model. The fourth type of potential defect is the case
where the inclusion condition can be specified using information in the model but this
information is only “weakly modeled” using some informal scheme such as naming
conventions. For example, if a convention is used to prefix all registration use cases
with the string “Reg_”, this would allow the inclusion condition to be defined by
checking for this prefix. The potential problem with this is that the semantics of these
conventions may be lost in downstream uses of the model unless they are recorded
with the model in some way. Thus it may be preferable to promote this information to
“first class” status by modeling it directly – e.g. assuming registration use cases all
specialize a use case called “Registration”.

196 R. Salay and J. Mylopoulos

Table 1. Defect types

Defect Type Description Occurrence criteria
Missing
information
in Msub

Msub does not contain
some information from
M that it should.

An instance of an inclusion
constraint in which right hand
side is satisfied but the left hand
side is not.

Too much
information
in Msub

Msub contains some
information in M that it
should not.

An instance of an inclusion
constraint in which the left hand
side is satisfied but the right hand
side is not.

Missing
information in M

The coverage criteria of
Msub cannot be formally
expressed in terms of the
content of M.

One or more formulas Qi cannot
be formally expressed using
information in M.

Weakly modeled
information in M

The coverage criteria of
Msub is expressed in
terms of content in M
that is not modeled in the
metamodel of M.

One or more formulas Qi are
expressed using informal criteria
such as naming conventions.

4 Application to the PUMR Example

In this section we discuss the results of our analysis to express the content criteria for
the 42 diagrams over the three UML models in the PUMR example. Since we did not
have access to the original definers of these diagrams, we relied on the documentation
[7] of the diagrams to infer their intentions. Fortunately, the documentation is sub-
stantial and detailed so that we have a high level of confidence that our results are
reasonable. To give a sense for the diversity of coverage criteria of the PUMR dia-
grams, we summarize a few in Table 2.

Figures 3 summarizes the defects found due to our analysis. The bars correspond to
the types of defects described in Table 1. To some extent, the low number of miss-
ing/additional info defects found for Msub could be attributed to the fact that in

0
1
2
3
4
5
6
7
8

Missing
Info Msub

Additional
Info Msub

Missing
Info M

Weak info
M

Number of
Cases

Fig. 3. Defects found in PUMR example

 Improving Model Quality Using Diagram Coverage Criteria 197

Table 2. Examples of coverage criteria from PUMR analysis

Diagram Diagram Type Summary of coverage criteria
62 Class Diagram The communication classes in the QSIG package

that are used by classes in the PUMR package.
73 Class Diagram All error code classes in the PUMR package and

their attributes.
52 Object Diagram All the objects and links used in registration and

de-registration interactions.
58 Statemachine

Diagram
The content of statemachine “Registration Proc-
essing” except the content of composite state
“Registration Request” (the content of
“Registration Request” is shown in diagram 59).

Table 3. Parameterized coverage criteria used in the PUMR example

Parameterized coverage
criterion

Diagram
Type

Summary of coverage
criteria

Inst.

DirectSubSuper[class]
Class
Diagram

Immediate subclasses and
superclasses of the class

2

DirectSubclass[class]
Class
Diagram

Immediate subclasses of the
class

4

DirectAgg[class]
Class
Diagram

Classes directly aggregated by
the class

3

NameContains[string]
Class
Diagram

Classes whose name contains
the string

6

FullActivity[activity]
Activity
Diagram

The full contents of the
activity

4

FullSequence[interaction]
Sequence
Diagram

The full contents of the
interaction

5

FullState[state]

State
machine
Diagram

The full contents of a
composite state

1

expressing the coverage criteria we were trying to find the criteria that would best fit
the existing diagrams. It is interesting that despite this, there were some clear errors
that we were able to find. Cases that exhibited the third type of defect included dia-
gram 44 shown in Figure 2 where there was no way to express the inclusion condition
on registration use cases using information in the model. All of the examples of the
fourth type of defect relied on naming conventions to identify a type of element. For
example, diagram 70 shows the different enquiry message classes. These are all iden-
tifiable by having the stereotype “communication message” and by having a name
with the prefix “PumEnq”.

Of the 42 diagrams, 25 could be seen to clearly be instances of more general pa-
rameterized coverage criteria types. This is elaborated in Table 3. Certain “large ob-
jects” (e.g. activities, interactions and statemachines) in a UML model have dedicated

198 R. Salay and J. Mylopoulos

diagram types. The most common coverage criteria is to show the full content of these
objects in a diagram (e.g. FullActivity[activity], FullSequence[interaction]). The vari-
ety of coverage criteria that can be associated with these depend on their ability to
show partial information. For example, statemachine diagrams can also be used to
show the content of a single composite state and so we have FullState[state]. This
capability can be used to decompose the presentation of a large statemachine across
several diagrams. This is the case with diagrams 58 and 59 – together they depict the
statemachine showing registration processing. A similar possibility exists with large
interactions and activities but no instances of these occur in the PUMR example.

5 Related Work

Most of the work relating to diagrams deals with their role in providing a notation for
a model. For example, in [1] Baar formalizes the relationship between the metamod-
els for the concrete syntax and the abstract syntax, in [2], Gurr defines conditions
under which a notation is effective, etc. In contrast, our interest is in how diagrams
delineate submodels and impose structure on a model and this bears a closer connec-
tion to the work on heterogeneous collections of related models.

The problem of inter-view consistency has been much studied, especially with
UML (e.g. see [3]) and along with this, investigations into generic constraint man-
agement mechanisms such as change propagation and conformance detection have
been pursued [10, 9]. Our focus is on the identification and elaboration of a new class
of constraints that can characterize an aspect of modeling intention and can be of use
in modeling. Thus, our concerns are somewhat orthogonal to but complementary with
this work.

In another direction, generic configurable modeling environments have emerged
such as MetaEdit+[6] and the Generic Modeling Environment (GME) [5]. The use of
the diagram structure here is for the navigation from model elements in one diagram
to other diagrams showing more detail about the element (e.g. its internal structure).
Such a navigation approach is limited to expressing the intent of diagrams that detail
model elements and cannot express more complex intentions such as the “depend-
ency” class diagram containing all classes in package P1 used by classes in package
P2. Furthermore, the types of detailing diagrams that can be expressed are restricted
to those that can be defined by revealing/hiding particular element types defined in
the metamodel. More complex coverage criteria such as only showing “direct” sub-
classes in diagram 65 are not possible.

Aspect oriented modeling (AOM) bears some similarity to our work and a wide va-
riety of approaches for AOM have been proposed [12]. Here the idea is to provide a
means for separately maintaining and developing aspects - subsets of the information
in a model relating to particular concerns such as security or customization - and then
allowing these to be woven together to produce the complete model when necessary.
Since there is no consensus on what exactly an aspect is, it is difficult to clearly dif-
ferentiate our work from this – is every diagram with an intent a valid aspect? The
practice of AOM suggests otherwise. Aspects are typically associated with software
concerns that crosscut the model whereas we have no such bias. The motivation of
AOM is to provide techniques for separating concerns in a manageable way whereas

 Improving Model Quality Using Diagram Coverage Criteria 199

ours is to articulate the intent of diagrams in order to improve the quality of models.
AOM emphasizes the independence of aspects whereas we focus on how submodels
are related and are interdependent.

6 Conclusions and Future Work

All models and diagrams of a model have a purpose that circumscribes their contents
through content criteria. Moreover, their quality can be assessed by how well their
content meets these content criteria. In this paper, we focus on a particular type of
content criteria for diagrams called coverage criteria. Coverage criteria for a diagram
specify the part of the model that a given diagram is intended to contain. Although
coverage criteria are not typically expressed explicitly, we propose that doing so can
improve the quality of models by improving model comprehension by stakeholders,
allowing the detection of defects that previously could not be detected and supporting
automated change propagation and generation of diagrams. We have specified a sys-
tematic way of defining coverage criteria using preconditions and inclusion condi-
tions and we have formally defined the conditions under which these conditions are
valid. Finally, we have shown the results of applying these concepts to an actual UML
case study consisting of 42 diagrams and the concrete benefits we obtained.

As part of future work, we are investigating how to extend this research to express-
ing coverage criteria about collections of diagrams. The motivating observation here
is that the collection of diagrams presenting a model are typically structured further
into related subgroups. For example, diagram 44 in Figure 2 can be grouped with
another similar use case diagram (diagram 48) that shows the deregistration use cases
and together, these two diagrams decompose the full set of use cases in the require-
ments model. If we take this subgroup of diagrams to be a kind of model (a multi-
model [11]) then it can have its own coverage criteria that says that it consists of a set
of use case diagrams that decompose the use cases in the requirements model. In this
way, we hope to extend the ideas in this paper to characterize the intentions about the
way collections of diagrams are structured.

Acknowledgments. We are grateful to Alex Borgida for his insightful comments on
earlier drafts of this paper.

References

1. Baar, T.: Correctly defined concrete syntax for visual models. In: Nierstrasz, O., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 111–125. Springer,
Heidelberg (2006)

2. Gurr, C.: On the isomorphism, or lack of it, of representations. In: Marriott, K., Meyer, B.
(eds.) Visual Language Theory, pp. 293–306. Springer, Heidelberg (1998)

3. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L.: Consistency problems in uml-based
software development. In: Jardim Nunes, N., Selic, B., Rodrigues da Silva, A., Toval Al-
varez, A. (eds.) UML Satellite Activities 2004. LNCS, vol. 3297. pp. 1—12. Springer,
Heidelberg (2005)

200 R. Salay and J. Mylopoulos

4. Ladkin, P.: Abstraction and modeling, research report RVS-Occ-97-04, University of
Bielefeld (1997)

5. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. In: Workshop on Intel-
ligent Signal Processing, May 17 (2001)

6. MetaEdit+ website, http://www.metacase.com
7. Methods for Testing and Specification (MTS); Methodological approach to the use of ob-

ject-orientation in the standards making process. ETSI EG 201 872 V1.2.1 (2001-2008),
http://portal.etsi.org/mbs/Referenced%20Documents/
eg_201_872.pdf

8. MOFTM Query / Views / Transformations (QVT) – Final Spec.,
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01

9. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking
and smart link generation service. ACM TOIT 2(2), 151–185 (2002)

10. Nuseibeh, B., Kramer, J., Finkelstein, A.: A Framework for Expressing the Relationships
Between Multiple Views in Requirements Specifications. IEEE TSE 20(10), 760–773
(1994)

11. Salay, R., Mylopoulos, J., Easterbrook, S.: Managing Models through Macromodeling. In:
Proc. ASE 2008, pp. 447–450 (2008)

12. Schauerhuber, A., Schwinger, W., Retschitzegger, W., Wimmer, M.: A Survey on Aspect-
Oriented Modeling Approaches (2006),
http://wit.tuwien.ac.at/people/schauerhuber

13. UML 2.0 Metamodel,
http://www.omg.org/cgi-bin/apps/doc?ptc/04-10-05.zip

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 201–215, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Method for the Definition of Metrics over i* Models*
†

Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/Jordi Girona, 1-3, E-08034 Barcelona, Spain

franch@lsi.upc.edu

Abstract. The i* framework has been widely adopted by the information sys-
tems community for goal- and agent-oriented modeling and analysis. One of its
potential benefits is the assessment of the properties of the modeled socio-
technical system. In this respect, the definition and evaluation of metrics may
play a fundamental role. We are interested in porting to the i* framework met-
rics that have been already defined and validated in other domains. After some
experimentation with i* metrics in this context, the complexity inherent to their
definition has driven us to build a method for defining them. In this paper, we
present the resulting method, iMDFM, which is structured into 4 steps: domain
analysis, domain metrics analysis, metrics formulation and framework update.
We apply our approach to an existing suite of metrics for measuring business
processes performance and drive some observations from this experiment.

Keywords: goal-oriented models, i*, metrics, business process performance.

1 Introduction

Goal-oriented modelling [1] is widely used in Information Systems (IS) development
as a way to establish high-level goals and decompose them until obtaining measurable
requirements. High-level goals capture the overall organizational objectives and key
constraints; therefore they represent stable needs that are less sensitive to changes.

The i* framework [2] is currently one of the most widespread goal- and agent-
oriented modelling and reasoning frameworks. It has been applied for modelling or-
ganizations, business processes, system requirements, software architectures, etc. As a
modelling framework, one of its required applications is the ability to evaluate proper-
ties of the model that may help to detect some flaws in the modelled system, or to
compare different alternatives with respect to some criteria.

As a result, some authors have explored techniques for driving the analysis of i*
models. Qualitative-predominant techniques were already formulated in [2] and later
other techniques were proposed [3, 4]. Quantitative-predominant proposals aim at
formulating metrics for measuring some criteria (see Section 2.1). Having good suites
of metrics allows not only analysing the quality of an individual model, but also com-
paring different alternative models with respect to some properties in order to select
the most appropriate alternative.

*

* This work has been partially supported by the Spanish project TIN2007-64753.

202 X. Franch

Having this in mind, we proposed iMDF, an i* Metrics Definition Framework [5]
(see Section 2.2). The framework maintains a language of patterns in which metric
templates are defined by means of OCL expressions expressed over an i* metamodel.
We are especially interested in the case in which the metrics are not defined from
scratch, but they already exist in the domain that is being modelled with i* (e.g., or-
ganizations, business processes, software architectures, etc.) and they have been prop-
erly validated. Therefore, the problem we face is not metric definition and validation,
but mapping metrics from the starting domain to i*.

As a result of experimentation with iMDF in the context described above, we have
observed that the process for defining metrics may be quite complex, because it re-
quires a full understanding of the domain that is being modelled using i*, as well as
the suite of metrics itself. Therefore, we have formulated a method, iMDFM, for driv-
ing the process of definition of metrics in i*. The presentation of this method is the
main goal of the paper.

To illustrate the method, we define a suite of i* metrics for business process design
and evaluation based on a proposal from Balasubramanian and Gupta [6] that in its
turn consolidates others’ proposals. The definition of this suite becomes a second goal
of the paper, both for the interest of the result itself (i.e., a representative iteration in
the incremental construction of a comprehensive catalogue of metrics in i*), and for
the feedback over the framework (for refining the language of patterns, acquiring
some more lessons learned, etc.).

Basic knowledge of i* is assumed in the paper, see [2] and the i* wiki
(http://istar.rwth-aachen.de) for a thorough presentation.

2 Background and Previous Work

2.1 Quantitative Analysis of i* Models

In spite of the high dissemination of the i* framework, only a few approaches have
been proposed presenting some kind of metrics for measuring i* models. We are
mostly interested in quantitative-dominant proposals because they allow more objec-
tive and repeatable analysis of i* models. Apart from iMDF itself, we mention Kaiya
et al.’s AGORA method [7] that provides techniques for estimating the quality of
requirements specifications with emphasis in the AND/OR decomposition of goals.
Sutcliffe and Minocha [8] propose the analysis of dependency coupling for detecting
excessive interaction among users and systems; they combine quantitative formulae
based in the form of the model with some expert judgment for classifying dependen-
cies into a qualitative scale. Bryl et al. propose structural metrics for measuring the
Overall Plan Cost of agent-based systems [9].

2.2 iMDF: A Framework for i* Metrics

The iMDF framework is the result of our work on i* metrics over time:

– Phase 1. Preliminary work. Several metrics were defined ad-hoc for comparing
alternative i* models with respect to some properties [10]. This phase revealed the
convenience of having some foundations for defining these metrics and provided
the necessary expertise for formulating a framework with this goal.

 A Method for the Definition of Metrics over i* Models 203

– Phase 2. Formulation of the iMDF framework. From this experience and the study
of other work done in the field, the iMDF framework was formulated embracing:
o A metamodel [11] including the most relevant concepts in i*. It is conceived as

extensible, since this is a crucial characteristic of the i* framework.
o General forms of i* metrics [12] and patterns for producing them [5].
o A preliminary (formative) validation based on experimentation over individual

metrics coming from several sources (e.g., [13]). The result formed a first cata-
logue of i* metrics in iMDF.

– Phase 3. Validation of the framework. As mentioned in the introduction, we are
currently porting some existing measurement proposals over iMDF. Also, some
work is planned for formulating and validating metrics about the structural quality
of i* models (complexity, cohesion, ...). As a result, we are enlarging the iMDF
catalogue whilst learning some insights about limitations of this approach.

Precisely, one of the identified limitations, the lack of clear guidance to define the
metrics, has motivated the present work.

3 iMDFM: A Method for Defining Metrics over i* Models

In this section we describe the iMDFM method for developing metrics over i* models
in the iMDF framework. It consists of 4 steps (see Fig. 1) described below.

Step 2. Domain
Metric Analysis

Step 2. Domain
Metric Analysis

i * Metamodeli * Metamodel
Customized

i * Metamodel
Customized

i * Metamodel

Step 3. i * Metrics
Formulation

Step 3. i * Metrics
Formulation

Step 4. i MDF
Update

Step 4. i MDF
Update

D
O

M
AI

N
 S

PA
C

E
M

E
T

H
O

D
i*

 S
PA

C
E

OCL-based, i*
Domain Metrics

context Goal::f()
pre...
post...

context...

OCL-based, i*
Domain Metrics

context Goal::f()
pre...
post...

context...

OCL-based Language of
Patterns for i* Metrics

• context ...
• problem ...
• solution ...
• OCL formula ...

Artifacts

Statistics

context Goal::f()...
• context + problem
+ solution +
• OCL formula ...

Domain
Metrics Suite

“Ontologied” Domain
Metrics Suite

“Ontologied” Domain
Metrics Suite

Domain
Ontology

Domain Onto-
logy with Metrics

Step 1. Domain
Analysis

Step 1. Domain
Analysis

Domain
Knowledge

Domain
Knowledge

i MDF

Fig. 1. The iMDFM method: steps and artifacts

3.1 Step 1: Domain Analysis

The goal of this step is to gain understanding about the domain whilst establishing the
mapping from concepts in that domain onto the i* framework. Therefore, Domain
Analysis comprises two different activities:

204 X. Franch

– Activity 1.1: Create a Domain Ontology. From the knowledge about the domain
(in the form of domain model semantics, related ontologies, tacit knowledge, etc.),
an ontology is created or eventually, reused.

– Activity 1.2: Map the Domain Ontology onto the i* Metamodel. The correspon-
dence between domain concepts and i* constructs is established here. Concepts
like e.g. business process, stakeholder, software component, etc., are therefore
mapped onto i* constructs like goal, task, agent, etc.
o Activity 1.2.1: Customize the i* metamodel. The i* metamodel as defined in

[11] is refined into a specialization for the domain. This refinement step may
involve adding some new attributes or even classes, or more usually integrity
constraints that impose restrictions on the way i* constructs are used to sup-
port the domain ontology.

3.2 Step 2: Domain Metrics Analysis

This step aims at analysing the departing suite of domain metrics before its formaliza-
tion is tackled. The analysis moves along two directions, exogenous (seeking an accu-
rate correspondence with the domain ontology), and endogenous (making the metrics
uniform and complete). The activities performed are thus:

– Activity 2.1: Extend the Domain Ontology. The domain ontology is extended to
incorporate those concepts that did not appear in the former analysis of the domain
and that become necessary for using the metric suite.

– Activity 2.2: Consolidate the Domain Metrics Suite. The suite of metrics is ana-
lysed in the search of inconsistencies, lack of uniformity, ambiguities, etc. The
domain ontology is extensively used during this activity. As a result, the suite is
reformulated: definitions are clarified and eventually some metric may experiment
some change (e.g., the subject over which the metric is applied may change).

3.3 Step 3: i* Metrics Formulation

This step makes operative the metrics in terms of i* constructs following the mapping
from the domain ontology to the i* metamodel established in Step 2:

– Activity 3.1: Map the Metrics onto the i* Metamodel. The formulation of the met-
ric is analysed and the definition rephrased in terms of the i* metamodel.

– Activity 3.2: Express the Metrics in OCL. The rephrased definition is made opera-
tive as OCL formulae expressed over the i* metamodel class diagram taking the
integrity constraints into account.
o Activity 3.2.1: Apply Language of Patterns. Patterns from the iMDF cata-

logue are identified and applied wherever possible. In fact, it is expected that
patterns cover most of the situations to be faced during the process of metrics
definition, making thus this process easier.

3.4 Step 4: iMDF Update

Last, the result of the process is analysed to learn more about the method and the
whole framework. This step combines three different activities:

 A Method for the Definition of Metrics over i* Models 205

– Activity 4.1: Update Statistics. Statistics refer specially to applicability of the
patterns that form our language and are used in the Activity 4.2 below.

– Activity 4.2: Update Language of Patterns. At some moment, as a result of the
accumulated statistics, patterns seldom used may be removed, or may be reformu-
lated. Also, most used patterns may be further analysed for possible specializa-
tions. Last, some new patterns may be added after the current process.

– Activity 4.3: Update Metric Catalogue. Finally the decision to include or not the
result of the current process has to be taken. Although the usual case should be to
add the obtained metrics to the catalogue, we could eventually discard the suite for
some reason (e.g., concerns on the mapping from the domain ontology to the i*
metamodel). Also, it could be the case that some particular metric is removed
from the catalogue.

4 Applying iMDFM on a Business Process Modeling Metrics Suite

Balasubramanian and Gupta consolidated a metrics framework composed of eights
metrics for business process design and evaluation [6]. These metrics come from
others’ proposals (remarkably Nissen [14, 15], and Kueng and Kawalek [16]) and
address performance aspects such as process cost, cycle time, process throughput and
process reliability. In this section we apply iMDFM over this suite of metrics.

4.1 Step 1: Domain Analysis

[6] proposes a 3-view model for business processes. The workflow view reveals the
sequence of constituent activities and the business participants that execute them. In
business processes, an activity may be defined as “work that a company performs”
[17]. This is quite similar to the notion of task in the i* framework, so we establish
this fundamental equivalence (see Table 1). A sequence of activities may be thought
as a particular kind of routine in i*, i.e., a sequence of intentional elements that are
inside some actor’s boundary in the Strategic Rational (SR) view of the i* model. To
represent a sequence of activities, the routine must fulfill: 1) its components are just
tasks; 2) constraints expressing precedence relationships are included; 3) there exists
one and only one initial task. In particular, if task T2 goes after task T1, we assume a
constraint Follows(T2, T1); if task T branches into T1, ..., Tk, k > 1, we assume k
constraints Branches(T, T1), ..., Branches(T, Tk). We consider also a Join constraint
which acts the opposite than Branches. Participants are represented as actors.

Table 1. Mapping among the concepts on [6] and the i* metamodel constructs

Business Process Ontology according to [6] i* Metamodel
View Concept i* Element

Activity Task
Sequence of activities Routine Workflow view

Business participant Actor
Interaction Resource dependency

Business segment Actor Interaction view

Operation Is-part-of
Process stakeholder Actor

Milestone Goal Stakeholder-state view

Visibility need Goal placement + dependency

206 X. Franch

Update pick-up
and delivery status

Create and send
invoice

……

Update order
system

Send delivery
confirmation

S
el

ec
te

d
C

ar
ri

er

C
le

rk

Clerk Selected
Carrier

Shipment
Status

Manager

Customer

Shipment
delivered

Orders
received

(a) Workflow view

(b) Interaction view (c) Stakeholder view

3PL
Service
Provider

Carriers

Update pick-up
and delivery

status

Create and
send invoice

Selected
Carrier

Update order
system

Send delivery
information

Clerk

Shipment
Status

Customer

Orders received

Manager

Orders received

Shipment
delivered

Shipment
delivered

is-part-of

Orders
received

Orders
received

Shipment
delivered

3PL
Service
Provider

Fig. 2. An extract of process model according to the 3 views proposed by Balasubramanian and
Gupta (up) and its mapping onto the i* framework using the mapping given in Table 1 (down)

The interaction view reveals the interaction among the business participants and

the business segments in which they operate. Interactions take the form of information
transmitted between participants (e.g., transportation order, invoice, shipment status);
therefore they may be modeled as resource dependencies: when the participant A
interacts with B for transmitting the information C, we say that the actor B depends
on A by means of a resource dependum C. For stating that a participant operates in a
business segment, we again may represent segments by actors and represent this “op-
erating” notion using a “is-part-of” relationship from the participant actor to the seg-
ment actor. We assume that a service provider will always be present in the model.

 A Method for the Definition of Metrics over i* Models 207

The stakeholder-state view reveals the important process stakeholders and the ful-
fillment of their process visibility needs with respect to identified process states or
milestones. Again stakeholders may be modeled as actors. Milestones (e.g., orders
received) can be represented as goals in i*, placed inside the boundaries of those
process actors that must satisfy the goal. If a stakeholder A has a visibility need with
respect to milestone M, we include M also in A’s boundary; if the need is satisfied,
then we establish a dependency from that goal to the business segment corresponding
to the service provider actor.

Each business process is constituted by these three views. In the usual case, the
model will include several business processes whose views will coexist in the i*
model. Therefore, routines, stakeholders and milestones will appear altogether. Tasks
may be part of different routines, with different constraints in the general case.

Fig. 2 shows an extract of a process model appearing in [6] and its correspondence
in i* according to the explanation above. The workflow view generates 2 actors and 4
tasks, as well as several precedence constraints (represented in the model as dotted
arrows instead of textually) reflecting the activity relationships. The interaction view
shows one interaction involving the same two actors, generating a resource depend-
ency between them. Also, the operation of business participants in business segments
appears in the view (just one of them has been represented in the i* model by means
of a is-part-of relationship). Last, the stakeholder view shows some milestones of the
different stakeholders and three of them are satisfied in the given process model
(so the fourth one will be unsatisfied or alternative means for satisfaction should be
explored).

Fig. 3. Extract of the i* metamodel as defined in [11] including the extension for Balasubrama-
nian and Gupta’s suite of metrics (framed). Integrity constraints not included. The complete
class diagram can be downloaded from www.lsi.upc.edu/~franch/supplementaryMaterial/
iStarMetaModelWithBPMconstructs.pdf.

208 X. Franch

The i* metamodel must be customized to this mapping (this customization will be
completed in Step 2):

1) We add an OCL invariant for restricting routine steps to tasks.
2) A subclass of Constraint named Precedence, with an attribute type that takes

values from {Follows, Branches, Join}, is added (see Fig. 3, where the changes are
framed; the whole metamodel is not included for space reasons, see [11] for details).
It has two roles bound, source and target, to tasks that belong to the same routine than
the constraint. New integrity constraints for avoiding error conditions (e.g., loops,
joining disjoint paths) must also be added, as well as an integrity constraint for ensur-
ing that there is just one initial state (a task that is not target of any other).

3) Resource dependencies inferred from the interaction view must be aligned with
the precedence relationships stated in the workflow view. If a resource dependency
stems from actor A to actor B, then some of B’s activities must be executed before
some A’s activity according to those relationships. An integrity constraint ensures it.

It must be mentioned that the i* model generated with this mapping does not pre-
sent a lot of fundamental concepts: softgoals, resources inside actors’ boundaries,
links inside actors’ boundaries, etc. We could have chosen to add some integrity con-
straints (or directly to prune the metamodel) to reflect this fact, but we think that bet-
ter not: the modeler may decide to add this information to exploit fully the capabilities
of the i* framework. This has an important consequence when formulating the met-
rics: to be general enough, we have to consider this fact and in particular, we mention
that allowing decomposition of tasks inside SR diagrams will have an impact on the
final form that metrics will take in i*.

4.2 Step 2: Domain Metric Analysis

We summarize next the business process metrics framework proposed in [6]. Since
the departing proposal was quite uniform, consolidation was straightforward, i.e.
definitions are basically quotations from that paper except in one case (APF, see
below); for sake of brevity we do not provide the rationale for the metrics, see [6] for
discussion. Underlined terms stand for concepts added to the domain ontology.

– Branching Automation Factor (BAF). Proportion of decision activities in a proc-
ess that do not require human intervention. A decision activity is an activity that
branches into several others in the workflow view.

– Communication Automation Factor (CAF). Proportion of inter-participant infor-
mation interchanges in a process where the information source is a system.

– Activity Automation Factor (AAF). Proportion of total activities in a process that
are either interactive or automated. An interactive activity is an activity performed
by a human actor and assisted through a system. An automated activity is one that
is performed entirely by a system.

– Role Integration Factor (RIF). Ratio of number of activities performed by a proc-
ess actor where the process control is not passed to another participant within the
same organization to the total number of activities performed by that actor.

– Process Visibility Factor (PVF). Proportion of number of process states required
to be visible to process stakeholders that are actually reported to or recorded for
the relevant stakeholders. A process state is a point where a milestone is achieved.

 A Method for the Definition of Metrics over i* Models 209

– Person Dependency Factor (PDF). Proportion of activities performed by human
participants that are executed using human discretion within the entire process. In
[6], human discretion is an attribute of activities in the workflow view.

– Activity Parallelism Factor (APF). Proportion of activities that are executed in
parallel in a process. We think that this definition is not much accurate, for in-
stance given a process with 5 activities T1, …, T5 the result would be the same for
one process with branches (T1, T2), …, (T1, T5) and another with (T1, T2), (T1,
T3), (T2, T4), (T2, T5). Therefore, we prefer to adopt the definition by Nissen
[14] as the length of longest path of activities that must be executed sequentially
divided by the total number of activities.

– Transition Delay Risk Factor (TDRF). Ratio of the number of activity control
transitions to any human participant to the total number of transitions between par-
ticipants in a process.

It is worth to mention that one of the metrics, RIF, is different than the others, since it
is local to roles. For finishing this unifying step, we define an augmented version of
RIF, RIF+, as the average of the local measures of RIF for all human roles.

4.3 Step 3: i* Metrics Formulation

In this section we tackle i* metrics formulation. We base this step on the iMDF lan-
guage of patterns [5], see Table 2 below for a sample. For space reasons, we cannot
present the metrics in detail. For illustration purposes, we show the two most difficult
cases that may give an upper bound of the complexity of the process.

AAF. The main pattern applied is Normalization (shown in Table 2). The Elem is the
i* Routine that represents the business process under analysis in the i* model, and the
resulting Type is a float number. The Size is the number of tasks in that Routine:

Size ::= self.step.oclAsType(TaskSRE)-> size()

Table 2. Examples of patterns (given in abridged form, see [5] for details)

 Category Name Description
 Declaration Individual The metric applies just to one type of element, Elem
context Elem::metric(): Type

 Definition Sum The element metric’s value is the sum of its components’ values

context Aggregated::metric(): Type
post: result = self.aggregees().metric()->sum()

 Numerical Normalization The metric needs to be restricted to some interval

context Elem::metric(): Type
post: Size = 0 implies result = 1.0
post: Size > 0 implies result = Value / Size

 Navigational Property evaluation The value of some property is needed

context Node::propertyEval(name: String): Type
pre: self.value->select(v | v.property.name = name)->size() = 1
post: self.value->select(v | v.property.name = name).val

210 X. Franch

For Value, it must be noted that an automated activity is represented in an i* model
as a task that: 1) belongs to a Software actor and, 2) the task and all of its subtasks, if
any, have dependencies just to other Software actors. An interactive activity is a task
that: 1) belongs to a Human actor and, 2) the task itself, or some of its subtasks, has
some dependency going to a Software actor:

Value ::= self.const.oclAsType(Precedence)->select(t | t.interactive() or t.automated())->size()

The refinement of the auxiliary operations is given below; they are obtained by ap-
plying the following patterns: isHuman and isSoftware, applying propertyEval (see
Table 2); allSubtasks, applying TopDownDecomposition over task-decomposition
links; requiresSoftware, applying TransitiveCheck (if task T1 depends on task T2, the
condition holds either if T1 is inside a human actor, or if T2 or any of its subtasks
depends on a human actor). Other auxiliary patterns were also applied.

Task::interactive() ::= isHuman(self.owner) and
 exists(t | self.allSubtasks()->includes(t) and t.requiresSoftware())

Task::automated() ::= isSoftware(self.owner) and
 forAll(t | self.allSubtasks()->includes(t) implies not t.requiresSoftware())

APF. Again we apply the Normalization pattern, computing the length of the longest
path of the business process (i.e., Routine) and dividing by the total number of activi-
ties. Computing the length of the longest path is not straightforward due to possible
branches and joins:

Elem ::= Routine; Type ::= Float

Size ::= self.step.oclAsType(Task)->size()

Value ::= self.allPaths()->select(p | self.allPaths()->forAll(p2 | size(p) >= size(p2))) ->size()

Routine::allPaths() ::= self.step->select(t | t.initialActivity()).allPaths()

Task::allPaths() ::= if self.finalActivity() then self
 else self.allDirectSuccessors().allPaths()->prepend(self) end-if

Task::allDirectSuccessors() ::= self.firstComp->select(source=self).target

Task::finalActivity() ::= self.firstComp->size() = 0

4.4 Step 4: iMDF Update

Special importance takes the update of the language or patterns. It is still too early in
our research to decide the removal of some pattern from the language, although some
were not used in this particular case. Concerning the discovery of new patterns, we
remark that 7 out of the 8 metrics were defined by a similar application of the Nor-
malization pattern as done with AAF:

– The Size parameter is the size of a collection of i* elements, e.g. the collection of
all tasks in AAF, the collection of all stakeholder goals in PVF, etc.

– Value is defined by applying a filter (i.e., an aggregation operation such as Sum,
Count, etc.) over the same collection than before.

– As a consequence, the Type is a float (in the interval [0, 1]).

 A Method for the Definition of Metrics over i* Models 211

Let’s call Col that collection. Thus, the form that the Normalization pattern takes in
these seven metrics is:

context Routine::metric(): Float
 post: Col->size() = 0 implies result = 1.0
 post: Col->size() > 0 implies result = Col.filter()->size() / Col->size()

Given its rationale, it is reasonable to expect that this variation of the Normalization
pattern will be useful in future experiments and case studies. This is why we have
decided to enlarge our pattern language with this expression upgraded to pattern (spe-
cialization of the Normalization pattern –we have specializations in our pattern lan-
guage), just abstracting Routine to Elem.

Concerning the metrics catalogue, we incorporated this new suite.

5 Observations

In this section we summarize the key observations on this application of the iMDFM
method and we try to extract some general risks and facts summarized in Table 3.

5.1 Step 1: Domain Analysis

This first step was really crucial for the success of the experiment, even more than
expected beforehand. We observed two different sources of difficulties, correspond-
ing to the two identified activities.

Creation of the domain ontology. In the 3-view model of business processes pro-
posed in [6], we faced the problem of model integration (risk R1 in Table 3). We
found two concrete difficulties:

Table 3. Risks (Ri) and facts (Fj) that may appear during the application of iMDFM

Step Act. Risk / Fact

1.1 R1 Need of aligning different types of domain models that do not match exactly

R2 Lack of some of the i* expressive power in the domain ontology

D
om

ai
n

A
na

ly
si

s

1.2
R3 Some concepts of the domain ontology cannot be directly mapped to i*

2.1 R4 The metrics suite is not completely aligned with the domain ontology

R5 The suite of metrics is not uniformly defined

M
et

ri
cs

A

na
l.y

si
s

2.2
R6 Some metric is not accurately defined and demands further investigation

R7 Definition of many properties in the metamodel needed for mapping metrics
3.1

R8 Mapping of metrics defined over an i* metamodel richer than strictly needed

R9 Some inherent characteristics may make the process harder (e.g., transitivity)

F1 As the process progresses, reuse of concepts and OCL facilitates the process

M
et

ri
cs

 F
or

-
m

ul
at

io
n

3.2

F2 The language of patterns is a good starting point for the metrics definition

4.1 F3 Keeping track of pattern use statistics is essential for maintaining the framework

4.2 F4 Upgrading an OCL expression into patterns mostly depends on frequency of use

iM
D

F M

up
da

te

4.3 F5 Incorporating the result of the process into the catalogue will be the usual case

212 X. Franch

– The relationship among interactions in the interaction view and transitions in the
workflow view is not explicit. If just one transition exists among two actors in the
workflow view, it may be inferred, but otherwise the link must be established by
observation or even it may require further investigation.

– The relationship among the milestones in the stakeholder view and the activities in
the workflow view is not explicit. In this case, it is much harder to try to observe
the link.

Both are instances of the same generic difficulty: aligning different types of models
that are part of the departing domain.

Mapping onto the i* metamodel. Basically we found two types of difficulties:

– Those coming from the departing ontology. If we assume that a business process
model cannot be modified, the consequence is that the resulting i* model is not as
rich as it could be (risk R2). For instance, as a consequence of the observations
above, resource dependencies cannot be established at the level of intentional ele-
ments but just at the level of actors. We may argue that this is not a problem since
our goal is to define metrics on the i* models that are equivalent to the original
ones. Thus if the departing metrics were formulated without needing this informa-
tion, we can do the same over the i* models. This being true, we also think that
wasting some capabilities of i* models may make the approach less useful and
less attractive. We envisage two solutions: 1) to refine the departing ontology; 2)
to refine the resulting i* model adding the missing information. Trade-offs be-
tween all the options should be considered in detail before taking any decision.

– Those coming from the fundamental differences between the domain ontology and
the i* metamodel (risk R3). Here, we have succeeded in translating all the cons-
tructs from the business process case, even those that had not a direct counterpart
in i*, by enriching the i* metamodel. Enriching the metamodel means losing some
kind of standardization, but as shown e.g. in [11], there are a lot of variants in the
i* framework and this is one of the features that makes i* attractive.

5.2 Step 2: Domain Metrics Analysis

Extension of the Domain Ontology. In the definition of the departing metrics ap-
peared some concepts that were not present in the ontology after Step 1 (risk R4).
Notions like “decision activity”, “parallel execution of activities” and “process state”
were not described precisely enough in the framework and we were forced to set our
own interpretation of these terms. Other concepts like “activity control transitions”
and “passing process control” had to be carefully examined. As a result, our [6]-based
business process ontology grew.

Consolidation of the Metrics Suite. The definition of the metrics needed to be exam-
ined in detail. In our case, we found risks that may arise in future situations:

– Non-uniform definition of the metrics suite (risk R5). Uniformity is a fundamental
property for conceptual frameworks. In our case, the metric RIF was clearly dif-
ferent from the others since it focused not just on a business process but also on a
role. Thus, it did not fit with the overall goal of the metric framework, namely
evaluating business processes. As a result, we proposed a slightly modification
RIF+, although we also kept RIF to be respectful with the original proposal.

 A Method for the Definition of Metrics over i* Models 213

– Not accurate definition of a metric (risk R6). We look for metrics giving as much
relevant information as possible, thus we were not happy with the definition of
APF given in [6] and we preferred the original definition in [14], even paying the
price of having a metrics quite different in structure than the others, therefore
hampering somehow the uniformity criteria stated above.

5.3 Step 3: i* Metrics Formulation

Mapping the Metrics onto the i* Metamodel. Firstly, an issue is to what extent we
need to add information (represented by properties in the i* metamodel) to i* models
(risk R7). Too many properties would eventually require a lot of effort in the defini-
tion. In this case, we just needed 3 properties for the 8-metric framework. One of
them, Nature, for knowing the type of an actor (human, software, etc.) was already
introduced in iMDF before this experiment. Another one, Process-Stakeholder, to
know the actor that owns a routine, has a high probability of reuse. Both of them are
quite straightforward to evaluate. Thus their need is not really a strong drawback in
terms of effort. The third one, DecisionActivity, to check if an activity is a decision
activity, could be more difficult to handle in the general case but, in the departing
proposal, decision activities are explicitly labeled as such. So, this third property does
not raise any relevant problem neither (although it has a lower chance of reuse).

On the other hand, we have defined our metrics without considering some simplifi-
cations of the model to make them more robust (risk R8). Just to mention an illustra-
tive example, in some metrics we have considered that tasks could be decomposed
into subtasks although the departing framework as defined in [6] did not mention this
case.

Expression of the metrics in OCL. Two of the most error-prone and cumbersome
characteristics to face are transitive clousure and transitive definition of some opera-
tions (risk R9). Illustrative examples are: for the first case, the generation of all the
paths or subtasks; for the second case the analysis of chains of dependencies.

In the positive side, as the definition of metrics progresses, it becomes easier to
write them (fact F1). Two related reasons behind: the flavor of the metrics is similar
after Step 2, and also some OCL expressions may be reused.

Use of the pattern language. For the definition of metrics itself, we used intensively
the pattern language. The detailed results are given in the next subsection, but as a
kind of summary we are quite happy with the results, the language demonstrated to be
powerful and versatile enough (fact F2).

5.4 Step 4: iMDF update

Updating statistics. We have applied 59 patterns to define the 8 metrics (without
considering RIF+). Each metric needs two declaration patterns (one for the context,
other for the type) and a third pattern applied is Proportion (Normalization in the case
of APF). The most complex in terms of number of applications has 11 whilst APF has
just 4 (because we couldn’t solve allPaths() by patterns) and next, PDF has 6. If we
consider RIF+, we add 6 new applications of patterns. Keeping track of this statistics
provide useful insights to the iMDF framework (fact F3).

214 X. Franch

Updating the pattern language. We have been able to formulate most of the metrics
using intensively our pattern language. During the experiment, we faced two different
expressions that could be upgraded into patterns. As seen in section 4.4, we defined a
new pattern Proportion due to its intensive use in this framework and the conjecture
that the situation dealt is likely to happen in the future. On the contrary, the allPaths()
operation needed in APF, which was difficult and done ad-hoc, seemed so particular
that we decided not upgrading it into a pattern (fact F4).

Updating the catalogue of metrics. For the metrics catalogue, since all the metrics
were successfully solved, the whole suite of metrics could be incorporated into the
catalogue. After the several experiences we have had, this is expected to be the usual
case, provided that the whole experiment makes sense (fact F5).

6 Conclusions and Future Work

In this paper we have presented a method for defining metrics in i* using the iMDF
framework. Since we are interested in porting already existing, validated metrics to i*,
the method is largely concerned with the analysis of the domain and the metrics them-
selves, and the mapping onto the i* metamodel, more than on design of com-pletely
new metrics, which would a different matter of research. The method has been articu-
lated by defining the relevant activities (organized into steps) and the artifacts in-
volved. We have identified some risks and facts that may be used in future cases.

In addition, this paper has fulfilled a second goal, to offer a new suite of perfor-
mance metrics for business process models represented in i*. This new suite enforces
our current catalogue in a domain we hadn’t addressed before. Our language of pat-
terns has been enlarged and we have obtained more statistical data about pattern use.

As future work, we are planning new experiments on different fields to the method
and the whole iMDF framework whilst offering an increasingly large catalogue of
metrics to the community. The experiments shall also assess the effort required to use
this approach; this is a crucial validation to perform, since iMDF requires knowledge
in: domain analysis, ontology construction, metamodeling and metrics. On the other
hand, about implementation, after a first prototype available over an existing tool, we
are starting to build a new tool taking advantage of the recent proposal of an XML-
like standard for encoding i* models called iStarML [18]. Our plans are to build the
tool able to import models expressed in an iStarML-based grammar (the codification
of the customization of the i* metamodel). Translators from other models to iStarML
(following the rules coming from Steps 1 and 2 of the process) would allow evaluat-
ing metrics over models built in the departing ontology.

References

1. van Lamsweerde, A.: Goal-oriented Requirements Engineering: A Guided Tour. In: Procs.
5th ISRE Intl’ Symposium. IEEE, Los Alamitos (2001)

2. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Dissertation,
Univ. of Toronto (1995)

 A Method for the Definition of Metrics over i* Models 215

3. Giorgini, P., Mylopoulos, J., Nicciarelli, E., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002.
LNCS, vol. 2503. Springer, Heidelberg (2002)

4. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for
Goal Models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 20–35.
Springer, Heidelberg (2004)

5. Franch, X., Grau, G.: Towards a Catalogue of Patterns for Defining Metrics over i* Mod-
els. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 197–212.
Springer, Heidelberg (2008)

6. Balasubramanian, S., Gupta, M.: Structural Metrics for Goal Based Business Process De-
sign and Evaluation. Business Process Management Journal 11(6) (2005)

7. Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-Oriented Requirements Analy-
sis Method. In: Procs. 10th RE Intl’ Conference. IEEE, Los Alamitos (2002)

8. Sutcliffe, A., Minocha, S.: Linking Business Modelling to Socio-technical System Design.
In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, p. 73. Springer, Heidel-
berg (1999)

9. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing Cooperative IS: Exploring and Evaluat-
ing Alternatives. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 533–
550. Springer, Heidelberg (2006)

10. Franch, X., Maiden, N.A.M.: Modelling Component Dependencies to Inform Their Selec-
tion. In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580. Springer, Hei-
delberg (2003)

11. Ayala, C.P., et al.: A Comparative Analysis of i*-Based Goal-Oriented Modeling Lan-
guages. In: Procs. 17th SEKE Intl’ Conference, KSI (2005)

12. Franch, X.: On the Quantitative Analysis of Agent-Oriented Models. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)

13. Grau, G., Franch, X.: A Goal-Oriented Approach for the Generation and Evaluation of Al-
ternative Architectures. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 139–155.
Springer, Heidelberg (2007)

14. Nissen, M.E.: Valuing IT through Virtual Process Measurement. In: Procs. 15th ICIS Intl’
Conference. ACM, New York (1994)

15. Nissen, M.E.: Towards Enterprise Process Engineering: Configuration Management and
Analysis. NPS Technical Report, NPS-GSBPP-02-003 (2002)

16. Kueng, P., Kawalek, P.: Goal Based Business Process Models: Creation and Evaluation.
Business Process Management Journal 3(1) (1997)

17. White, S.A.: Introduction to BPMN.Report at BPMN website (2004),
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf

18. Cares, C., Franch, X., Perini, A., Susi, A.: iStarML: An XML-based Model Interchange
Format for i*. In: Procs. 3rd i* Intl’ Workshop, CEUR Workshop Proceedings, vol. 322
(2008)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 216–230, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Preference Model Driven Services Selection

Wenting Ma, Lin Liu, Haihua Xie, Hongyu Zhang, and Jinglei Yin*

Key Lab for Information System Security, MOE
Tsinghua National Lab for Information Science and Technology

School of Software, Tsinghua University
* School of Computer and Information Technology,
Beijing JiaoTong University Beijing, China, 100084

Tel.: +86(10)62773284
{mwt07@mails.,linliu@,xiehh06@mails.,hongyu@}tsinghua.edu.cn

Abstract. Service, as a computing and business paradigm, is gaining daily
growing attention, which is being recognized and adopted by more and more
people. For all involved players, it is inevitable to face service selection situa-
tions where multiple qualities of services criteria needs to be taken into account,
and complex interrelationships between different impact factors and actors need
to be understood and traded off. In this paper, we propose using goal and agent-
based preference models, represented with annotated NFR/i* framework to
drive these decision making activities. Particularly, we present how we enhance
the modeling language with quantitative preference information based on input
from domain experts and end users, how softgoals interrelationships graph can
be used to group impact factors with common focus, and how actor dependency
models can be used to represent and evaluate alternative services decisions. We
illustrate the proposed approach with an example scenario of provider selection
for logistics.

Keywords: Services Selection, Goal Modeling, Decision Making, Actor
Dependency Network.

1 Introduction

Service-oriented computing has gained its momentum in recent years both as a new
computing and business paradigm. In the services environment, the social nature of
software services gets fully embodied when related players make decisions during
service discovery, publication, selection and revocation. Current techniques, frame-
work and ontology for services selection mainly focuses on qualities of services at the
system level rather than services qualities related to the high-level business objectives
and contexts.

In the case of the supply-chain management domain, there are many well estab-
lished theories and computational models for making integrated planning and optimal
decisions for a given business service planning problem. Together with the new and
fast development of the business world and information technology, supply-chain
management concepts emerge as an important underlying model for all business ser-
vices that involves manufacture and distribution of products. In this spirit, this line of
thinking can easily migrate into the services world, that is, we view service requestors

 Preference Model Driven Services Selection 217

and providers as agents with intent, who evaluate alternative ways to form a suitable
service network based on runtime demand.

Multi-criteria decision making problems exist everywhere, and many researchers
have been working on multi-motive decision models and methods. Some focus on the
decision process itself and some work on domain-specific applications [10, 15]. Few
research efforts have been made to model and analyze multi-criteria decisions in a
systematic way, i.e., from the very beginning step of identifying the criteria, to the last
step of making the final decision. In this paper, we adopt graphical notations of the
NFR modeling methods to model the interrelations among different criteria, and then
we add numerical annotations to the nodes in the model to represent preferences of
decision makers. Actor dependency models in i* can be used to represent and evalu-
ate alternative services networking decisions. Algorithms for reasoning about these
models to identify optimal solutions for the given decision problem is also given. We
illustrate the proposed approach with an example scenario of provider selection for
logistic services.

The structure of this paper is organized as follows: Section 2 presents a method for
setting up and analyzing services selection criteria with annotated NFR. Section 3
introduces a decision making method based on agent-based preference model and
criteria. Section 4 discusses related work and concludes the paper.

2 Setting Up Services Selection Criteria with Annotated NFR

Generally speaking, given a conventional multi-criteria decision problem, the very
first step is to identify the essential impact factors to be included in the selection crite-
ria in an extensive way. Besides, rough evaluation about the importance of these
criteria could be in place. In order to collect decision criteria, focus group meetings,
brain-storming sessions, literature reviews, and subject matter expert (SME) inter-
views can all be sources of the initial list criteria. No matter how trivial a factor looks
like, as long as it has substantial influence, it should be taken into consideration.

When facing the service-oriented context, we first need an online community of
experts contribute a QoS ontology for the particular business service domain, which
allows service agents to compare the available services and making selections based
on their preferences. Providers can express their capabilities and consumers can ex-
press their preferences using this ontology. In this paper, we base our upper ontology
of business service QoS on the Non-Functional Requirements (NFR) Framework [1]
in general, and we use domain-specific NFRs as a lower ontology for particular busi-
ness services.

2.1 An Upper Ontology for Services Selection Based on NFR Framework

Fig. 1 shows the upper ontology for services selection we build based on concepts
from the NFR framework. The notion of softgoal in NFR is used to denote a factor of
services selection criteria. Correlation links, which associate two softgoals, illustrate
how the satisfaction of one softgoal contributes to that of another. The correlation
element has two attributes: direction and type. If there is a correlation link from soft-
goal A to softgoal B, it means A has some influence on B. There are seven types of

218 W. Ma et al.

contributions existing in conventional NFR framework, namely, break, hurt, some -,
unknown, some+, help and make, representing to what extent, one softgoal contributes
to another. For example, break means a full negative impact, while make means there
is a full positive impact, hurt means a partial negative, help means a partial positive
impact, some+ means a negative impact with unknown degree, some- means a positive
impact with unknown degree, and unknown means it is uncertain what relationship
exists between the two softgoals, but there is a relation.

Based on the basic NFR concepts we have made an extension. The concept of
Softgoal Cluster is introduced, which consists of one or more softgoals and denotes
softgoals with a common theme or subject. Softgoals belonging to one softgoal cluster
has characters in common or stronger correlation, which is substituted with contribu-
tion links in NFR. To each Softgoal Cluster, a Preference value is associated to it as a
quantitative attribute, which denotes expert preference to it.

Fig. 1. An upper ontology for services selection based on NFR framework

2.2 Source of Lower Ontology –A Service Example from the Logistics Domain

Taking the example of logistic services, there are many well-known catalogues in the
literature we may ground the lower ontology on. There is a 23-parameter criterion for
vendor selection identified by Dickson in 1966[2]. Based on his investigation of 273
procurement managers, which 170 feedbacks were received, the 23 parameters are
ranked based on importance as in table 1. Weber collected and analyzed literature in
this domain between 1967 and 1990, and re-ranked the 23 criteria based on their
popularity and frequency of reference [8]. The detailed parameters and their compara-
tive importance and popularity can be found in table 1. Since Dickson’s time, the cri-
teria of vender selection have been hardly changed, and research is mainly focused on
how to evaluate and select venders [14].

 Preference Model Driven Services Selection 219

Table 1. 23 criteria and order of vender selection

Dickson’s
order

Importance Criteria
Literature
amount

Percentage
Weber’s

order
6 Important + Price 61 80 1
2 Important + Delivery 44 58 2
1 Important ++ Quality 40 53 3
5 Important + Production facilities / capability 23 30 4

20 Important Geographical location 16 21 5
7 Important + Technical capability 15 20 6

13 Important Management and organization 10 13 7
11 Important Industry reputation and position 8 11 8
8 Important + Financial position 7 9 9
3 Important + Performance history 7 9 10

15 Important Repair service 7 9 11
16 Important Attitude 6 8 12
18 Important Packaging ability 3 4 13
14 Important Operating controls 3 4 14
22 Important Training aids 2 3 15
9 Important + Bidding procedural compliance 2 3 16

19 Important Labor relation record 2 3 17
10 Important + Communication System 2 3 18
23 Important - Reciprocal arrangement 2 3 19
17 Important Impression 2 3 20
12 Important Desire for business 1 1 21
21 Important Amount of past business 1 1 22
4 Important + Warranties and claim policies 0 0 23

As a consequence, a list of candidate criteria is identified. In the meantime, we also
collect input about the relative importance of each criterion. Such kind of list can help
rationalize the services selection decision process by conducting qualitative and quan-
titative analysis with evidence data. However, these criteria are still lacking an inter-
nal structure that represents the interdependencies among individual criterion. It may
prevent us from understanding the impact criteria in more depth. So in next step, we
should make a correlation analysis to all the criteria and build a lower services selec-
tion ontology based on this knowledge.

2.3 Multiple Criteria Correlation Analysis Using Conventional NFR Model

To analyze the correlation of criteria, goal-oriented modeling approach, such as NFR
is used. As we mentioned in 2.1, two model elements in NFR are used in our correla-
tion analysis, NFR softgoal and correlation link. Each criterion is modeled as an NFR
softgoal, while correlation link denotes the relation of two softgoals. After finding all
the direct relationship among criteria, we analyze the coupling and cohesiveness of
the nodes in the diagram and divide them into several criteria group. Then, each crite-
ria group is represented as a Softgoal Cluster.

During this step, we should note that only direct correlations should be marked,
and derived/indirect ones should be omitted from the diagram since redundant rela-
tionships will prevent us from finding the right clusters of criteria. Relationships are

220 W. Ma et al.

usually recommended by experts with profound understanding about problem do-
main. A negative relation should always have an importance level attached, because it
can lead to a contradiction with existing criteria, or even groups of criteria identified
in our analysis. If some factor is loosely coupled with others, different treatment
should be taken based on the importance of this factor. For very important factors that
cannot be omitted, it should stay in a group. Otherwise it can be omitted depends on
how many factors are identified, and the distribution of relative importance repre-
sented as a percentage.

To illustrate that, we use the twenty three factors for vender selection listed in
table 1. All factors are treated as non-functional requirements. After adding their rela-
tions and adjusting their position in the graph, we can get the following result (Fig. 2).

Fig. 2. Correlation analysis of services selection criteria

In our example, the categories are easily identified due to simplicity of the model.
For complicated ones, assign weights to relations and automated clustering algorithms
can be applied to identify clusters based on a customer-defined policy (people could
adjust the result if needed). Each cluster should form a hierarchy with a root node
representing a distinctive quality attribute and a few leaf nodes contributing/ influ-
enced by the root node, and we use ellipse to indicate the boundary of each softgoal
cluster. In our example, five categories are identified. We can use the root elements
of them as the group name, and they are: delivery, quality, price, management and

 Preference Model Driven Services Selection 221

reputation. But what is the relative importance of these groups? How can we denote
the importance? These are the questions we want to answer next.

2.4 Preference Annotated Hierarchical NFR Model

It is very difficult to quantify the impact of services selection factors, which is soft in
nature. Standardizing these quantified data and making them comparable is even
harder. Continuing the thread of analysis in section 2.3, we use the softgoal clusters
identified above as our decision criteria. Then we adopt AHP (analytic hierarchy
process) method to calculate the weight of each factor, which is a critical decision
making tool. Although there are possible drawbacks of AHP, such as poor scalability,
incapable of reflecting intrinsic characteristics of complex evaluation issues, many
researchers have proved that AHP is an easy-to-use and effective method to solve
complex decision making problems. It is understandable not only to the experts, but
also to general stakeholders. After the stakeholders and experts conduct a pair-wise
comparison to the elements, their relative weights can be calculated. Then we can
make an extension to the NFR framework by annotate each softgoal cluster with their
weight. As shown in Fig. 3, we use the ellipse to denote the boundary of each cluster,
and a cloud is associated to each cluster to show the name and the weight of cluster
(format: cluster name: weight).

Fig. 3. Correlation analysis using annotated hierarchical NFR model

Quality: 0.307

Price: 0.282

Delivery: 0.218

Management: 0.081

Reputation: 0.112

222 W. Ma et al.

We use NFR method to analyze correlations of the selection criteria, and find out cri-
teria groups standing for all the detailed factors. AHP method is used to find the weights
of criteria groups. All these are the basis of the following decision making phase.

3 Services Selection Based on Preferences Modeling

Once the criteria for services selection decision are identified, the next step is to
evaluate the performance of the candidates. First, we evaluate each single criterion of
each candidate objects. Second, we use the results of single criteria evaluation to
make decision considering factors from all categories. In this stage, the generic pref-
erence information from experts will be used.

i* framework is a widely used strategic intentional modeling method. Actors’ goals
and tasks could be modeled intuitively. Services selection problem always involves at
least two types of actors. And there are mutual dependencies between them. So i*
model [11, 12] is a natural fit for modeling services selection. In this section, we first
introduce the quantification method, an approach called Weighted Set-Valued Statis-
tics [10], and then we introduce a single criteria decision making model. Then in sec-
tion 3.3, we introduce how to make multi-criteria decision based on the analysis result
of 3.2. Sensitivity analysis is discussed as a further step of our method in 3.4.

3.1 Weighted Set-Valued Statistics Approach to Calculate the Contribution of
Candidate

In the services selection process, different candidate usually have different contribu-
tions when carrying out a same required task. So in order to calculate the satisfaction
degree of softgoal, it is essential to know for a given task, what impact each candidate
will result in. It can only be estimated by people with sufficient domain knowledge. In
general, the principle they use to decide the value of e (t, s) is estimating the task t’s
execution result which contributes to softgoal s. And the estimation method we intro-
duce is weighted set-valued statistics.

Suppose several domain experts estimate the value of a certain e (t, s). The set of
experts is represented with P= {p1, p2, …, pn}. Each expert pi (1≤i≤n) gives an evalua-
tion range for e (t, s), for simplicity, we use q to denote the value of e (t, s). The
evaluation range of e (t, s) is as below:

11],,[)(
2

)(
1

)(
2

)(
1 ≤<≤− iiii qqqq

The lower bound of the range means the worst execution impact, and the upper
bound of the range means the best execution effect.

According to experts’ evaluation, we define Projective Function as the equation be-
low, which expresses pi’s evaluation range projecting onto the axis x:

⎩
⎨
⎧ ∈

=
others

qqq
qY

ii

qq ii

,0

],[,1
)(

)(
2

)(
1

],[)(
2

)(
1

Integrating all experts’ Projective Functions, we can get the Set-Valued Function:

∑
=

=
n

i
qq

qY
n

qY ii

1
],[

)(
1

)()(

2

)(
1

 Preference Model Driven Services Selection 223

The narrower the range given by expert pi is the more confident is he about his
evaluation. Under normal circumstances, that means his evaluation is more accurate,
so his weight on this evaluation should be higher than others’. In order to distinguish
from the weight of softgoal, we call it e-weight of expert. For designation, we use wi
to denote the e-weight of expert pi. The value of wi is computed according to the
evaluation range given by pi:

∑
=

=
n

i
i

i
i

d

d
w

1

, in which)(

1
)()(

12

iii qq
d

−
=

Then we get the Weighted Set-Valued Function:

∑
=

=
n

i
qqi qYwqY ii

1
],[

)()()(

2

)(
1

The expanded form of the weighted set-valued function is:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈

∈
∈

=

+],[,

...

],[,

],[,

)(

1

322

211

LLL bbqa

bbqa

bbqa

qY

In this formula, 121 ,....,, +Lbbb is an ascending sequence of all end points of evalua-

tion ranges given by experts. L is the number of intervals divided by these end points.

ia (i=1, 2, …, L) is the sum of e-weights of experts whose evaluation range contain

the interval [bi, bi+1].
According to Set-Valued Statistics, the expectant value of e (t, s) is:

∑

∑

∫
∫

=
+

=
+

−

−
==

+

+

L

i
iii

L

i
iii

b

b

b

b

bba

bba

dqqY

qdqqY
qE

L

L

1
1

1

22
1

)(

)(
2
1

)(

)(
)(

1

1

1

1

We expect experts’ evaluations approach the actual value as closely as possible. In
other words, the variance of all evaluations should be the lower the better. The vari-
ance is:

∑

∑

∫
∫

=
+

=
+

−

−−−
=

−
=

+

+

L

i
iii

L

i
iii

b

b

b

b i

bba

qEbqEba

dqqY

dqqEqqY
qD

L

L

1
1

1

33
1

2

)(

})]([)]({[
3

1

)(

))()((
)(

1

1

1

1

We compute the standard deviation based on the variance:

)()(qDqS =

The smaller the standard deviation is the more accurate is the evaluations. We de-
fine credibility of set-valued statistics to represent the accuracy of evaluation:

)(

)(
1

qE

qS
B −=

224 W. Ma et al.

If B≥0.9, we think experts’ evaluations can be accepted and E (q) is considered to
be the quantified value of e (t, s). Otherwise, experts do not quit the evaluation proc-
ess until the credibility’s value reaches 0.9.

3.2 Services Selection Based on Single Criterion

There are always two classes of actors involved in the service decision making proc-
ess. Both have their own goals and intentions. The dependencies representing the se-
lection criteria become a bridge between them. To establish a dependency, actors
need to perform certain tasks. To what extent the dependency or goal can be achieved
depends on how each actor takes actions to operationalize these softgoals.

To evaluate the task execution result, related original data should be collected,
which includes objective historical data related to the criteria. It can also be collected
from domain experts or by a survey. Although these data is more subjective, it is help-
ful for our decision making process. Besides, standardized evaluation is also needed.
Because we will compare different candidates, evaluation must give every facet a
standardized quantitative mark. It is usually set up by a domain expert who under-
stands the specific domain. Here, we choose weighted set-valued statistics approach
introduced in 3.1 to calculate the contribution of candidates.

In order to illustrate how to use annotated i* model to evaluate the achievement of
each single criteria, procurement is used as an example. Due to space limitation, we
will choose quality as the sole criterion to be considered. The analysis of other factors
follows a similar process. For example, a company wants to procure some material.
There is historical product data on quality- three suppliers’ rates of return (Table 2).
Because of cooperation and domain reputation, etc., other related data can also be
saved as our primal evaluation data.

Depending on the different trust level or knowledge level, different situations could
be modeled. Here we give two example cases based on different cooperation degree
or trust level.

Table 2. Three suppliers’ rates of return

 Supplier A Supplier B Supplier C
Rate of return (%) 2.6 3.8 3.2

Scenario 1. Single point decision model. In general, when the procurer only checks
the overall rank of the concerned parameter, it is the supplier’s responsibility to op-
erationalize the standard. In this case, there are either little cooperation or strong trust
between the procurer and supplier. The procurer could also check the products if it
satisfies their need using certain preset standard. As shown in Fig. 4, annotated i*
models with related data can help us position the decision point in the right context.
For single point decision model, the verdict is made based on whether the single soft-
goal dependency is satisfied or not. The procurer defines a range, while suppliers
provide their performance rate.

 Preference Model Driven Services Selection 225

Fig. 4. Single point decision model in annotated i*

As we have mentioned before, a decision can’t be made with only model and pri-
mal data. We need evaluation criteria. Here, expert knowledge is used to make such a
standard. In our example, because there is no other detailed information about suppli-
ers, what the experts could use is three suppliers rate of return. What experts should
do is to quantify the rate to a standard score (0 to 1, for example), which could denote
the contribution of each supplier. Assuming the usage of weighted set-valued statis-
tics approach, we get the contribution of each supplier to quality and the result is
listed below in Table 3. Based on the estimation of experts, supplier A is the best
choice when the quality criterion is considered only.

Table 3. Three suppliers’ contribution to quality

 Supplier A Supplier B Supplier C
Contribution 0.92 0.68 0.81

Scenario 2: Multi-points decision model. A more complex scenario is that the pro-
curer not just checks the overall rank of a concerned parameter, but also controls mul-
tiple other operational level parameters. In this case, it is the procurer’s responsibility
to operationalize the standard. In this case, there are either close cooperation or weak
trust between the procurer and supplier. The procurer could also check every factor
that it believe have impact on product quality. As shown in Fig. 5, annotated i* mod-
els with related data can help us position the decision point in the right context. For
multi-point decision model, the verdict is made based on the sum of each related
factor that supplier feel relevant to the quality of products.

226 W. Ma et al.

Fig. 5. Multi-points decision model in annotated i*

To evaluate the performance of each supplier, two techniques mentioned are used.
AHP can help decide the weight of each sub-softgoal, and weighted set-valued statis-
tics approach is used to decide the contribution of each task result through experts’
evaluation. And then we can get the overall score about achievement of single softgoal.
In our example, assuming related results of three suppliers are shown as in Table 4.

The final score q of supplier is calculated by the following formula:

qi=
4

1
i i

i

w r
=
∑

Table 4. Weights and three suppliers’ contributions to sub-softgoals

Sub-softgoal 1-staff 2-Management and control 3-material 4-equipment q
Weight(w) 0.231 0.112 0.305 0.352
Result(r)-A 0.92 0.68 0.81 0.91 0.85605
Result(r)-B 0.89 0.71 0.75 0.83 0.80602
Result(r)-C 0.75 0.77 0.71 0.88 0.78580

Then we can choose supplier A as the best based on the calculation results.
The two cases about quality criterion, not only explain these two particular situa-

tions about procurement services selection, but also give general suggestions on how
to evaluate one criterion. It depends on how much information regarding the supplier
one has, and how much knowhow knowledge is available to the procurer. Different
annotated i* models can be developed to help analyze the problem.

3.3 Multi-criteria Decision Making

After every criterion of each service instance is evaluated, the multi-objective decision
making becomes straightforward. AHP method has given the weight of contribution of

 Preference Model Driven Services Selection 227

Fig. 6. High leveled multi-criteria decision making model

each criterion (Softgoal Clusters). High level multi-criteria decision making can be
modeled as in Fig. 6. The notation of the link from softgoal to goal is its weight, which
is an extension of i* framework.

Each instance can receive a final total score given single criteria the weight of each
criterion. And we can choose the one having highest score as the result of decision. In
our example, assuming related results of three suppliers are shown as in Table 5.

The final score M of supplier is calculated by the following formula:

Mi=
5

1
i i

i

w r
=
∑

Table 5. Weights and three suppliers’ contributions to the softgoals

softgoal 1- quality 2-delivery 3- cost 4- management 5- reputation M
Weight(w) 0.307 0.218 0.282 0.081 0.112
Result(r)-A 0.85605 0.84085 0.60012 0.87414 0.87741 0.78842
Result(r)-B 0.80602 0.91121 0.71487 0.74885 0.90445 0.82500
Result(r)-C 0.78580 0.87414 0.67445 0.91004 0.76640 0.78154

Then instance B is the best choice, recommended by our evaluation framework.
For readability of models, we can show models at different abstract levels during

different stage of the analysis process. For example, if there are many criteria, detailed
models for each criterion should be given independently. The multi-objective decision
should show the objects at highest abstract level. On the other hand, the multi-objective
model can be made with single criteria models in detail within one model file.

228 W. Ma et al.

3.4 Sensitivity Analysis of the Decision Result

Human factors are deeply involved in our model driven decision method, from stake-
holders’ evaluation of the importance of criteria to experts’ evaluation of the candi-
dates’ contribution. Sometimes, a small change of people’s attitude will significantly
affect the final decision. So sensitivity analysis is necessary to help people understand
the potential threats to validity.

Sensitivity analysis can be conducted in two situations. One is criteria weights sen-
sitivity analysis which analyzes how the changed weights of two criteria affects the
final result, and the other is satisfaction sensitivity analysis which analyzes how the
changed satisfaction evaluation affects the decision result. In our example, if we make
sensitivity analysis of supplier A and B, we can get the results in Table 6 and 7.

Data in Table 6 means how much the weight change could impact the final score of
the two suppliers. For example, the data “+0.2095” in the column quality and row
delivery means supplier A and B will have same score if the weight of quality adds
0.2095 (with the corresponding loss of delivery). “(Data)” means we cannot reach the
balance of score by changing weights of the two factors.

Data in Table 7 means how much the satisfaction change of A will result in the two
suppliers having the same score. for example, “+0.119” means if the quality satisfac-
tion of A adds 0.119, the score of A will be the same with B. “(Data)” has the same
meaning with that in Table 6.

Table 6. Criteria weights sensitivity analysis of supplier A and B

softgoal quality delivery cost management reputation
quality -0.2948 -0.1530 (+0.3351) (-0.3272)

delivery +0.2095 (-0.5681) +0.1289 (+0.5822)
cost +0.1530 (+0.5681) +0.1051 (+0.2875)

management (-0.3351) -0.1289 -0.1051 (-0.1656)
reputation (+0.3272) (-0.5822) (-0.2875) (+0.1656)

Table 7. Satisfaction sensitivity analysis of supplier A to B

Softgoal quality delivery cost management reputation
Satisfaction Chang +0.119 (+0.168) +0.130 (+0.452) (+0.327)

Sensibility analysis is needed when some candidates have similar scores. It will
help examine whether adjustment is needed before getting the final decision.

4 Related Work and Discussion

The services paradigm presents a promising direction for enterprises to compose
complex services applications from existing individual services on demand. It is im-
portant for enterprise to select their service partners dynamically to form strong and
optimal alliances. Thus, services selection is an interesting research area that has at-
tracted many researchers’ attentions.

 Preference Model Driven Services Selection 229

Earlier work such as [7] inherited ideas from autonomous agents match making in
AI, in which the selection of services is based on semantic matching of the service
functionalities rather than service qualities. Later, [6] proposes a services selection
framework and ontology to support the systematic treatment of services selection
based on quality of services, in which an upper ontology of QoS and a middle ontol-
ogy specifying domain independent quality concepts are given. There is also research
on services selection algorithms based on multiple QoS constraints [5, 13]. [15] pro-
poses a Bayesian approach helps make decisions about adoption or rejection of a al-
ternative from uncertain information. As a complementary, our work in this paper
gears towards defining a methodology for developing domain-specific ontology for
services selection.

As a natural extension to our earlier work on goal and scenario-based modeling
approach for information systems [4], this paper proposes using goal and agent-based
preference models, represented with annotated NFR/i* modeling framework to facili-
tate services selection decision making activities. In particular, we present how we
enhance the modeling language with quantitative preference information based on
input from domain experts and end users, how softgoals interrelationships graph can
be used to group impact factors with common focus, and how actor dependency mod-
els can be used to represent and evaluate alternative services decisions. The proposed
approach is illustrated with running example scenarios of provider selection for logis-
tic services. We adopt the characteristic of NFR to find the correlations of factors and
find out main factor categories which affects the decision making, and use annotated
i* model to fulfill the decision making process.

In the future, the weighted set-valued statistics approach in this paper can be fur-
ther enhanced with other quantification measures. Their efficacy in supporting ser-
vices selection can be studied and evaluated. Another possible future line of research
is to develop domain specific services selection knowledge base and integrate with
widely used service execution platform.

Acknowledgement

Financial support from the National Natural Science Foundation of China (Grant
No.60873064), the National Basic Research and Development 973 Program (Grant
No.2009CB320706), the National 863 High-tech Project of China (Grant
No.2007AA01Z122) and the Key Project of National Natural Science Foundation of
China (Grant no. 90818026) are gratefully acknowledged.

References

1. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

2. Dickson, G.: An Analysis of Vendor Selection Systems and Decisions. Journal of Purchas-
ing 1966(2)

3. Liu, L., Liu, Q., Chi, C.-h., Jin, Z., Yu, E.: Towards service requirements modelling ontol-
ogy based on agent knowledge and intentions. International Journal of Agent-Oriented
Software Engineering 2(3), 324–349, DOI:10.1504/IJAOSE.2008.019422

230 W. Ma et al.

4. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach. Information Systems 29(2), 187–203 (2004)

5. Liu, Y., Ngu, A., Zeng, L.: QoS computation and policing in dynamic web service selec-
tion. In: Proceedings of the 13th International World Wide Web Conference, New York,
USA, pp. 66–73 (2004)

6. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic Web services se-
lection. Internet Computing 8(5), 84–93 (2004)

7. Sycara, K.P., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic Matchmaking among Het-
erogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Sys-
tems 5(2), 173–203 (2002)

8. Weber, C.A., Current, J.R., Benton, W.C.: Vendor selection criteria and methods. Euro-
pean journal of Operational Research 50 (1991)

9. Xiang, J., Qiao, W., Xiong, Z., Jiang, T., Liu, L.: SAFARY: A semantic web service im-
plementation platform. In: Proceedings of APSEC-SOPOSE 2006, Bangalore, India, De-
cember 9 (2006)

10. Xie, H., Liu, L., Yang, J.: i*-Prefer: Optimizing Requirements Elicitation Based on Actor
Preferences. Accepted by proceedings of ACM Software Applications Conference (to ap-
pear) (March 2009)

11. Yu, E.: Agent Orientation as a Modeling Paradigm. Wirtschaftsinformatik 43(2), 123–132
(2001)

12. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engi-
neering. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engi-
neering (RE 1997), Washington D.C., USA, January 6-8, 1997, pp. 226–235 (1997)

13. Yu, T., Lin, K.J.: Service selection algorithms for Web services with end-to-end QoS con-
straints. Information Systems and E-Business Management (2005)

14. Yahya, S., Kingsman, B.: Vendor rating for an entrepreneur development programme: a
case study using the analytic hierarchy process method. Journal of Operational Research
Society 50(9), 916–930 (1999)

15. Zhang, H., Jarzabek, S.: A Bayesian Network Approach to Rational Architectural Design.
International Journal of Software Engineering and Knowledge Engineering 15(4), 695–717
(2005)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 231–245, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Secure Information Systems Engineering: Experiences
and Lessons Learned from Two Health Care Projects

Haralambos Mouratidis1, Ali Sunyaev2, and Jan Jurjens3

1 School of Computing and Technology, University of East London, England
haris@uel.ac.uk

2 Institut fur Informatik, Technische Universitat Munchen, Germany
sunyaev@in.tum.de

3 Computing Department, The Open University, Great Britain
j.jurjens@open.ac.uk

Abstract. In CAiSE 2006, we had presented a framework to support develop-
ment of secure information systems. The framework was based on the integra-
tion of two security-aware approaches, the Secure Tropos methodology, which
provides an approach for security requirements elicitation, and the UMLsec ap-
proach, which allows one to include the security requirements into design mod-
els and offers tools for security analysis. In this paper we reflect on the usage of
this framework and we report our experiences of applying it to two different in-
dustrial case studies from the health care domain. However, due to lack of space
we only describe in this paper one of the case studies. Our findings demonstrate
that the support of the framework for the consideration of security issues
from the early stages and throughout the development process can result in a
substantial improvement in the security of the analysed systems.

1 Introduction

Current information systems contain a large number of important and sensitive infor-
mation that needs to be protected. Therefore, the need to secure these systems is rec-
ognised by academics and practitioners alike. This is reflected in the current literature
where it is now widely accepted [13] [5] that security should be embedded into the
overall information systems development and not added as an afterthought. As a re-
sult, a number of researchers are working towards the development of modelling lan-
guages and methodologies that can support the consideration of security as part of the
information systems development process, and various approaches coming from dif-
ferent schools of thought have been reported in the literature(see for example [13]).
Along these lines, a number of model-based security engineering approaches have
been proposed [8][1][2]. In such approaches, a model of the system is initially con-
structed and a corresponding implementation is derived from that model either
automatically or manually. An important limitation of these approaches is the lack of
consideration of the earlier stages of the development process, such as early require-
ments analysis. To overcome this issue, in previous work, which was presented in
CAiSE 2006 [14], we integrated the UMLsec approach [8] with the secure Tropos
methodology [11]. The resulting framework allows the construction of an initial secu-
rity requirements model that is constantly refined until a well defined model of the

232 H. Mouratidis, A. Sunyaev, and J. Jurjens

system has been constructed. In particular, the framework defines a set of guidelines
and transformation steps to enable developers to “translate”, in a structured manner,
the initial high level security requirements models, defined in Secure Tropos, to a well
defined design model defined in UMLsec. Our framework is different from other
works [16][1][2][6][10] trying to integrate security considerations into the develop-
ment lifecycle. Existing work is mainly focused either on the technical or the social
aspect of considering security. Moreover, approaches are usually applicable only to
certain development stages. In contrast our approach considers security as a two di-
mensional problem, where the technical dimension depends on the social dimension.
Moreover, our approach is applicable to stages from the early requirements to imple-
mentation. The next two sections describe the application of the framework to the two
industrial case studies.

In this paper we report on the application of our framework to an industrial case
study for the development of a Telematics system at a German hospital. We then re-
flect on the applicability of this framework and our experiences from its applications
to two industrial case studies from the health care domain, the described German
Hospital Telematics case study and the Single Assessment Process of the English Na-
tional Health Service (NHS) case study. The paper is structured as follows. Section 2
provides a summary of the main elements of the framework to assist readers not
familiar with it. Section 3 discusses the case study and it demonstrates how our frame-
work was applied and how the security of the Telematics system was improved.
Section 4 reflects on the application of the framework. Our reflection is mainly
sub-divided into three main areas: Framework Development, Lessons Learned, and
Improvements. Section 5 concludes the paper.

2 Secure Tropos meets UMLsec: A Model-Based Security Aware
Framework

As mentioned above, the framework, under discussion in this paper, has been pre-
sented in CAiSE 2006 [14]. Therefore, the aim of this section is not to repeat the de-
tails of the framework but rather to summarise it, in order to enable the readers of the
paper to understand the following sections. The security-aware process of the frame-
work includes four main stages: Security Analysis of System Environment, Security
Analysis of System, Secure System Design, and Secure Components Definition. In
each of these stages a number of models are defined that are then refined in the later
stages. In particular, the main aim of the first stage is to understand the social dimen-
sion of security by considering the social issues of the system’s environment, which
might affect its security. In doing so, the environment in which the system will be
operational is analysed with respect to security. In particular, in line with the Secure
Tropos methodology, the stakeholders of the system along with their strategic goals
are analysed in terms of actors who have strategic goals and dependencies for achiev-
ing some of those goals. Then the security needs of those actors are analysed in terms
of security-related constraints that are imposed to those actors. Such analysis results
into the Secure Tropos security-enhanced model. Then, for each of the actors depicted
on the Secure Tropos security-enhanced model, security goals and entities are identi-
fied, in order to satisfy the imposed security constraints. This information is modelled

 Secure Information Systems Engineering: Experiences and Lessons Learned 233

with the aid of the Secure Tropos security-enhanced goal model. During the second
stage, the technical dimension of security is analysed by employing modelling and
reasoning activities similar to the ones used in the previous stage, but now the focus is
on the system rather than its environment. The output of this stage is refined Secure
Tropos security-enhanced actor and goal models. During the third stage, the aim is to
define the architecture of the system with respect to its security requirements. To
achieve this, a combination of Secure Tropos and UMLsec models are employed. The
Secure Tropos security-enhanced actor and goal models are furthered refined and
provide input to the Secure Tropos architectural style model, which defines the gen-
eral architecture and the components of the system. The Secure Tropos models are
then transformed to UMLsec Class and Deployment diagrams, which are used to
model the security protocols and properties of the architecture. To support the trans-
formation of the Secure Tropos to UMLsec models, the framework defines a set of
guidelines and steps [14]. In particular, two main transformation guidelines have been
defined along with eight steps that describe each of the guidelines in detail. During
the fourth stage, the components of the system are identified in detail. To achieve this,
UMLsec activity diagrams are used to define explicitly the security of the components
and UMLsec sequence diagrams or state-chart diagrams are used to model the secure
interactions of the system’s components. For example, to determine if cryptographic
session keys, exchanged in a key-exchange protocol, remain confidential in view of
possible adversaries, UMLsec state-chart diagrams can be used to specify the security
issues on the resulting sequences of states and the interaction with the component’s
environment. Moreover, the constraints associated with UMLsec stereotypes are
checked mechanically, based on XMI output of the models and using sophisticated
analysis engines such as model-checkers and automated theorem provers. The results
of the analysis are given back to the developer, together with a modified model,
where the weaknesses that were found are highlighted [9].

3 Case Study

The case study is based on experience during a project with healthcare professionals
of the University Hospital in Munich, Germany. Some of the authors have long stand-
ing project relationships with this establishment and that relationship was the starting
point of the project. The project involved around 13 people, including the hospital’s
head of the computer centre, a number of physicians, a data protection officer, and a
number of computer scientists including some of the authors. Gradually every in-
sured patient in Germany is to receive a new smart-card based patient card, which will
replace the past insurance cards. This new electronic patient card will be able to carry
administrative functions as well as control access to the health data of the patient. As
such, the electronic patient card is the central part of a Telematics infrastructure
which can provide access to multiple forms of information and can store data locally.
Besides the storage of data on the electronic patient card, other applications are possi-
ble. These applications include: drug order documentation, electronic physician
letters, treatment cost receipts, emergency case data, general patient data, and an elec-
tronic health record. In accordance with the new German health reform, the next
phase after the introduction of the electronic patient card will be the electronic patient
document. For this reason, the goal is to realize a uniform Telematics platform as a

234 H. Mouratidis, A. Sunyaev, and J. Jurjens

communication turntable for all parties, involved in the health care industry. Many
different aspects must be considered during the development and implementation of
such a health care Telematics infrastructure. Due to ethical, judicial, and social impli-
cations, medical information requires extremely sensitive handling. Guaranteeing the
protection of the patient-related information and the health care information-systems
is becoming increasingly important. On the other hand, there is an acceptance prob-
lem on the part of the end users (patients, care providers, cost units). Data collection
and requirements elicitation took place through analysis of existing specifications
(that are confidential and cannot further discuss) and a number of interviews with the
stakeholders. Our interviews with a number of health care professionals [17] revealed
that the main problems were deficient communication between medical practices and
hospitals and bad scheduling in hospitals. All interviewees identified an existent de-
mand for IT support in health care networks. But at the same time they expressed
some worries about the security level and dependability of using information systems.

Following the steps of our framework, it is important to understand the environ-
ment of the system and reason about the security constraints imposed by that envi-
ronment to the various system stakeholders. To keep the analysis of the case study in
a manageable length, for this paper, we focus our analysis on three main stakeholders:
the Patient, the Hospital and the Physician. Security constraints related to the distri-
bution of medical information are imposed by the environment (such as German
health data protection laws) and also by the Patient. As mentioned above, a secure
Tropos security-enhanced actor diagram is used to initially model this information,
which is later refined by adding the system-to-be, as another actor who has dependen-
cies with the existing actors. This model is shown in Figure 1. As shown in that

Fig. 1. secure Tropos security enhanced actor diagram

 Secure Information Systems Engineering: Experiences and Lessons Learned 235

figure, the Physician depends on the Electronic System to access patient records.
However, there are a number of security constraints imposed both to the Physician
and to the Electronic System for that dependency to be valid.

The Secure Tropos security-enhanced actor diagram is furthered refined by analys-
ing the internal goals of the Electronic System. This analysis results in the Secure
Tropos security-enhanced goal diagram that models the various internal goals, tasks
and security constraints of the system. In particular, our analysis indicates that for the
system to satisfy its security constraints, various secure goals are introduced such as
Ensure System Privacy, Ensure Data Integrity, Ensure Data Availability, Ensure Se-
cure Transfer of Records. These abstract goals have been analysed further and
appropriate secure tasks have been identified such as Encrypt Data, Check Digital
Signatures, Perform Auditing, Transfer Data through Virtual Private Network,
Enforce Access Control and so on.

When all the secure goals and secure tasks of the system have been identified, the
main aim is the identification of a suitable architecture. The core idea of the
physician-hospital architecture that was considered in this application is based on a
separation of the central database into two independent, and stand-alone partial
databases, whose linking returns the inquired answer, just as is the case with a central
database. For the user of the system, the procedure remains transparent. Every kind of
electronic communication between the medical practices and the hospitals is
fundamentally based on one central storage and processing place: the core database.
This core database contains and processes all organizational, administrative, and
medical information about the patient. The idea of this architecture is to split this core
database into two separate databases: first, the so-called "Metadatabase", and
secondly, the "Hospital Information System database" ("HIS-database"). The
"Metadatabase" contains all administrative data of the patient (name, first name, date
of birth, address, insurance data etc.).

The "HIS-database" contains all medical data (like diagnostic images, data,
pictures, treatment, medicines etc.) of the respective patient. This sensitive health in-
formation does not have a reference to the individual person; it is stored pseudony-
mously. Additionally, these two "records" possess an attribute named "ID". With its
assistance, the combination of the two suitable entities (the administrative data of a
patient and his/her health information) can be realized. The two databases are kept
physically separate from each other. They are completely autonomous, i.e. there is no
direct connection between the two databases. The access is gained through an en-
crypted connection and is possible to only one of the two databases at any given point
in time.

Following the steps and transformation rules of the framework (see [14]) UMLsec
deployment diagrams are constructed from the Secure Tropos models to represent the
architecture defined in our analysis. When the components of the system have been
defined, the next step involves the verification of the security of the modelled archi-
tecture. For this purpose, UMLsec sequence diagrams are employed and security
properties, identified as important during the analysis of the system (modelled in Se-
cure Tropos models), such as integrity, secrecy, authenticity are used to evaluate the
architecture and to indicate possible vulnerabilities.

For example, consider figure 2 that illustrates the sequence diagram of the trans-
mission of data between the user (e.g. Doctor) and the databases. It allows its secret

236 H. Mouratidis, A. Sunyaev, and J. Jurjens

information to be read using the operation getMetaData(), whose return value is also
secret. That specification violates the security information flow requirement, since
partial information about the time input from the higher sensitivity level operation
getMetaData() is leaked out via the return value of the lower sensitivity level opera-
tion getHISData().

However, our analysis indicated that in order to avoid such violation, the system’s
architecture should include a wrapper with a function of placing artificial inquiries to
the databases. Artificial inquiries are constantly placed against the system in a way
that does not simply place them sequentially after each other; instead, they overlap, at
best several times over the entire time. Through this variation, it is impossible for the
attacker to filter and/or further pursue individual inquiries. Thus, the problem of the
possible time inquiries on the part of the attacker would be solved. The attacker is not
able to plumb individual-queries and has thus no possibility thereby to extract the
numerical data (time stamps).

Fig. 2. Sequence Diagram illustrating transmission of data

 Secure Information Systems Engineering: Experiences and Lessons Learned 237

Fig. 3. Refined Sequence Diagram

The refined sequence diagram is shown in Figure 3. If a correct query is posed to
the system, the wrapper simply continues to lead the query. If this is not the case, the
wrapper generates more own queries. Each time, the wrapper examines whether a
query is present, in order to be able to then act accordingly.

The wrapper constantly sends artificial inquiries to the HIS-Database, with each
clock pulse the query is passed on. If a "correct" query against the system has been
placed, the wrapper simply passes on the query. One does not know on which clock
pulse the query falls. The allocation of a date to the appropriate operation sequence is

238 H. Mouratidis, A. Sunyaev, and J. Jurjens

thus not realizable. The attacker cannot find out which response belongs to which
request, and accordingly, which queries from both databases belong together. With
this discreteness, a more complex distribution for clock pulses is possible as well.
With regards to security verification, there is only one way for the attacker to gain
knowledge of the right assignment between the two databases (i.e. Meta-Database and
HIS-Database).

The attacker could succeed if he can extract which tuple of information has been
queried at which time. Then, the attacker could use this information to find out about
the linking of the information between the two databases.

Here, the concern is about an indirect loss of information since following our
analysis the system encrypts and securely keep the information. The date of the query
procedure indirectly reveals partial knowledge of the confidential information. The
attacker can possibly assume the information which was queried after each other
and/or time near briefly by the two databases could belong together. The assumption
is based on the fact that in the normal case, after the client requests something from
the server, the server responds relatively timely. It is the same with the two databases,
the HIS-Database and the Meta-Database. First, the user requests something from the
Meta-Database and then simultaneously (so the physician does not have to wait) the
HIS-Database is queried. If the attacker wants to extract the combination of these two
databases, he just has to wait from the Meta-Database-Request until the HIS-
Database-Request and the subsequent answers and would then probably be able to
extract the correct combination. In the above sequence diagram, the secret informa-
tion is allowed to be read using the operation getMetaData(), whose return value is
also secret. The data object is supposed to be prevented from indirectly leaking out
any partial information about high via non-high data, as specified by the stereotype
<<no down-flow>>. It is important that the observable information on the time of
query allows no conclusions about the information that are being requested. There-
fore, by applying the UMLsec tool suite [9], one can now make sure that the proposed
design in fact fulfils its security requirements. More importantly by following the
transformation rules and guidance of the framework, we are able to track specific se-
curity solutions (mechanisms) to specific security requirements.

The solution above developed improves on a number of security problems that
current telematics platforms, such as HealthBase, TempoBy, MeDaCom, IHE, Inter-
mediation platform, RITHME, PICNIC, and NHSnet, suffer. A large number of
telematics platform exist. For our research, we have empirically compared a number
of them, against the system developed by employing our framework. Most of the
telematics concepts use the same security standards and techniques. The assurance of
data security and data integrity is based on the electronic communication with the
following six points: (1) There is only one central storage and processing place - the
database in the clinic/hospital; (2) A special software is installed and implemented at
all attached and entitled points of the network entrance; (3) There is a smart-card
reader at each entitled point of network entrance; (4) The connection is based on a
virtual private network. There is a VPN router and the required clients for it; (5) Hos-
pitals as well as the medical practices communicate through special firewalls which
have been devised for this kind of electronic communication; (6) The medical and
administrative personal data is transmitted in encrypted form. Having just one, gener-
ally used, central database could be a possible security weakness open to exploitation,

 Secure Information Systems Engineering: Experiences and Lessons Learned 239

since all stored patient information is concentrated in a single location. Even though
there are several security mechanisms in place for the protection of the records data-
base as well as for the connection to and from the database; there are no further pro-
tection mechanisms for the data in the case of capture and decryption by an attacker.
The eavesdropping or interception of the transmitted data could happen via intercep-
tion of the transmitted packages as well as a direct hardware infiltration of the data-
base connection within the hospital. An administrator, or a person who is responsible
for the setup and maintenance of the database system, could be an attacker. The at-
tacker could intercept the transmitted packages, save them locally in his hard drive and
decrypt them without time- or place-restrictions. In the above mentioned Telematics
platforms, the central database contains complete data for each patient. This means it
contains purely administrative data as well as medical information about the patient.
This is the reason, why the protection of the sensitive information and its access re-
striction/non-readability to attackers cannot be presupposed anymore. However, these
issues are all dealt with by the architecture described in the previous section.

4 Reflection

In this section we reflect on the framework based on its application to the case study
described above, as well as a second case study again from the health care domain.
However, due to lack of space we cannot explicitly describe the application of our
framework to the case study. The project involved health and social care profession-
als, such as General Practitioners and Nurses, specialist health professionals, such as
Social Workers, and health care IT professionals. Its main aim was to analyse and
specify the requirements of a software system to deliver the Single Assessment Proc-
ess (SAP) [12], a health and social care needs assessment process for older people in
England, with particular emphasis on its security. Two important conclusions were
drawn. First of all, it became obvious from the discussions with various social care
professionals and patients, that privacy was the number one security attribute required
by this system. Secondly, the project identified the lack of security-aware methodolo-
gies that could assist developers in analysing the electronic Single Assessment Proc-
ess (eSAP) system with security in mind.

So the following sections discuss our reflections from both these case studies. Our
discussion is mainly sub-divided into three main areas: Framework Development,
which discusses challenges faced during the development of the framework, along
with the solutions provided at that point, and it reflects on whether the given solutions
are satisfactory based on the application of the methodology to the case study; Les-
sons Learned, which discusses the lessons learned from applying the methodology to
the case study; and Improvements, which provides an insight about how the method-
ology can be improved for the application in large industrial context.

4.1 Framework Development

In this sub-section we reflect on the issues and challenges we faced during the devel-
opment of our framework and we discuss, by reflecting on the application of
the framework to the case studies, whether the decisions taken at the framework’s
development stages were successful.

240 H. Mouratidis, A. Sunyaev, and J. Jurjens

Challenge 1: Integration. A major challenge on the development of the framework
was the seamless transition from the secure Tropos models to the UMLsec models.

Solution: To achieve the above challenge, we decided to employ a functional integra-
tion [15], where individual approaches’ models stay intact and guidelines to translate
the models from one approach to another and indicate the inputs and the outputs of
these models are defined. A number of guidelines and steps were also defined to sup-
port the integration [14].

Reflection: The initial guidelines and the steps defined assisted in the translation of
the models from secure Tropos to UMLsec. However, during the development of the
Telematics system we identified some inconsistencies between the secure Tropos and
the UMLsec models. By investigating this issue, we found out that the problem ex-
isted due to some errors in some of the guidelines. In particular, initially our guide-
lines suggested that actor related resources of the secure Tropos security-enhanced
actor models should be translated in a 1-to-1 analogy to attributes of the UMLsec
class models. However, by applying the framework to the Telematics case study it
became obvious that this was not the case, and in most of the cases, a resource will
result in more than one attributes. This was mainly because the secure Tropos secu-
rity-enhanced actor models contain analysis information whereas the class UMLsec
models contain design information. Another issue that was raised during the applica-
tion of such guidelines was the possible need to formalise them using a transformation
language. This clearly constitutes area of future work.

Challenge 2: Process. An important issue of our work was the development of a
process to support the development of framework.

Solution: We decided to base the development process on the Secure Tropos devel-
opment process. In particular, the development process enables the construction of an
early requirements model that is furthered refined, following a top-down approach, to
a security model that is amenable to formal verification with the aid of automatic
tools [9]. The refinement process is governed by a set of rules and activities [14]. It is
worth mentioning that the process is highly iterative.

Reflection: The application of our framework to the case study indicated some prob-
lems. In particular, initially all the information from the early and late requirement
models was effectively refined to the design models. However, during the application
of the framework to the case study, it became apparent that this should not be the
case. This was mainly because the analysis models contain reasoning information
which should not be transformed to the design models. For instance, analysis models
can contain information on different alternatives for satisfying a particular security
constraint. At the initial development of the framework, we would transform all these
alternatives to the design models. However, by applying the framework to the case
study and when trying to transform all the reasoning information to design, we were
faced with a large number of design goal conflicts. Currently, such conflicts need to
be overcome manually but we envisage that in the future some automatic support can
be provided.

 Secure Information Systems Engineering: Experiences and Lessons Learned 241

4.2 Lessons Learned

In this sub-section we discuss with the aid of a number of questions all the lessons
learned from the application of the methodology.

How easy is the framework to learn?
The described approach results from the integration of two existing security-aware
approaches. As such, a number of software engineers are familiar with their concepts
and notation. Especially, the UMLsec approach effectively uses UML concepts and
notation and therefore it is easy to understand by developers familiar with UML. The
Secure Tropos approach on the other hand, is based on the i* [19]/Tropos [3] notation
and concepts that although not as popular as UML, it is well known in the require-
ments engineering area. Therefore, although an initial effort is required to understand
the framework, we expect that developers familiar with UML and/or Tropos will be
able to grasp the concepts and notations of the methodology easily.

Did you come across any unexpected obstacles during the application of the
framework to any of the case studies?
The application of the framework to the case studies did no yield any unexpected ob-
stacles. As discussed above, there were some inconsistencies between the models due
to some errors on the guidelines, but we were expecting something like this, since it
was the first time the framework was applied to real-life health care case studies. On
the other hand, once these inconsistencies were solved, the framework worked as ex-
pected and we were able to analyse the environment of the system in terms of its se-
curity and transform this analysis to a design, which we could verify.

Was the framework modified to enable its application to the case studies?
The framework was not modified to fit the case studies, but the application of the
framework to the case studies resulted in a number of modifications as discussed in
the previous section.

How the framework helps the analysis and design of the system with respect to
security?
The application of the framework to the case studies revealed that it helps the analysis
and design of the system with respect to security in various ways:

(i) Developers are able to consider security both as a social aspect as well as a
technical aspect. It is widely known that security is most often compromised
not by breaking dedicated security mechanisms but by exploiting vulnerabili-
ties in their usage. Therefore, as argued widely in the literature, it is not
enough just to consider security mechanisms and protocols, but an understand-
ing of the human factor and the environment of the software system is also
required. By considering both the social aspect and the technical aspect of se-
curity, our framework allows developers to obtain a clear understanding of any
potential security vulnerabilities that might raise from the interplay of the two
security aspects and therefore minimize, leading to the development of secure
software systems.

242 H. Mouratidis, A. Sunyaev, and J. Jurjens

(ii) The framework allows the definition of security requirements at different lev-
els and as a result it provides better integration with the modelling of the sys-
tem’s functionality.

(iii) Security is not considered in isolation but simultaneously with the rest of the
system requirements. Such treatment of security helps to minimize the number
of conflicts between security and other requirements. Such conflicts are usu-
ally the reason for security vulnerabilities, therefore by minimizing these con-
flicts, the security vulnerabilities of the system are also minimized.

(iv) The framework allows the consideration of the organisational environment for
the modelling of security issues, by facilitating the understanding of the secu-
rity needs in terms of the real security needs of the stakeholders, and then it
allows the transformation of the security requirements to a design that is ame-
nable to formal verification with the aid of automatic tools. This introduces a
well structured approach to model-based security engineering.

Was the framework appropriate for the health care domain case studies?
In general, the framework was appropriate for the two studies from the health care
domain. The health care sector is quite complex and security issues are affected not
only by related technologies but also from the human factor. The framework allowed
us, in collaboration with the health care professionals involved, to analyse both these
security dimensions by (i) analysing the security issues imposed to the system by its
environment (various stakeholders); (ii) reasoning about different possible solutions
that satisfy the system’s security requirements.

What useful conclusions did you derive for model-based security engineering?
It is worth mentioning that the case studies were not set up to assess the usefulness of
model-based security engineering and/or compare it with other security and non-
security engineering approaches. However, some useful conclusions were drawn.
First of all, it became obvious that, as with all the security-aware approaches, some
extra effort and knowledge is required due to the security aspect. In particular, basic
knowledge is needed about security terminology and theory and extra effort is re-
quired by the developers to analyse and model the security concerns. Therefore, we
expect that model-based security engineering will be an attractive option to develop-
ers looking to develop security-critical systems rather than a general option for any
software system development. Secondly, the production of models that integrate secu-
rity concerns, as opposed to the production of models without security concerns,
allows developers to (i) reason in a conclusive way and by taking into account simul-
taneously the general requirements of the system together with the security require-
ments and therefore identify any conflicts; (ii) develop a extensive and precise
security-aware documentation, something that it is required by common security
standards, such as the Common Criteria [4].

4.3 Improvements

In this section we discuss how the framework can be improved to enable its applica-
tion in large industrial context.

 Secure Information Systems Engineering: Experiences and Lessons Learned 243

Tool Support
Currently the framework is supported by different types of tools corresponding to the
two approaches integrated (i.e. Secure Tropos and UMLsec). The transformation from
the secure Tropos models to the UMLsec models takes place manually (the Secure
Tropos tool produces details of the models developed in XML, which can be used to
feed information on the UMLsec tool). Although, this does not prevent the application
of the framework to large industrial projects, it is a concern in terms of efficiency and
time. The development of a tool to support the transformation of the models will sub-
stantially reduce the time that is required to transform the models and therefore in-
crease the applicability of the framework to that type of projects. Such tool will also
support the analysis and resolution of design goal conflicts.

Documentation
Currently, the only documentation about the framework is a set of research papers and
internal reports describing some of its aspects, as well as documentation that describes
the two original approaches, i.e. secure Tropos and UMLsec. It is important, however,
to produce a complete documentation that will explain the original approaches, the
advantages of the integration, the transformation steps, the models and the new devel-
opment process. Such documentation will help to understand the framework and to
make it accessible to a larger number of developers. In other words, it will help to
improve the usability of the framework.

Model related improvements
There are two main issues related to the improvement of the models. The first is re-
lated to the version of the UML in which the UMLsec definition is based. Currently,
UMLsec is based on UML1.5. The subsequent release of UML 2.0 raises the question
to what extent the UMLsec approach is dependent on a particular version of UML, or
whether it can be used flexibly with different UML versions (including UML 2.0).
This would be a very interesting question to explore. The second issue is related to the
linkage between the models and the implementation (code). In particular, automatic
generation of text-sequences from the models to provide assurance that the code cor-
rectly implements the models and thus satisfies the security requirements of the
system would be desirable.

5 Conclusions

This paper presented an experience report from the application of a model based secu-
rity engineering framework to two case studies from the health and social care domain
(German Hospital Telematics and electronic Single Assessment Process). Apart from
the reflections described above, our experience of employing such framework to the
health care case studies has indicated two important issues related to each of the indi-
vidual methodological components of the framework. Secure Tropos concepts are
more intuitive and comprehensible than for instance Object Oriented concepts for

244 H. Mouratidis, A. Sunyaev, and J. Jurjens

people without information systems engineering background, such as the majority of
health care professionals. As such, this provides an advantage during the requirements
elicitation stage for health care case studies. Using UMLsec, the extension of the
Unified Modelling Language (UML) for secure systems development and the concept
of model-based security requirements, security requirements are handled as an inte-
grated part of the development and derived from enterprise information such as secu-
rity policies, business goals, law and regulation as well as project specific security
demands. These are then updated and refined iteratively and finally refined to security
requirements at a technical level, which can be expressed using UMLsec, and ana-
lyzed mechanically using the tool-support for UMLsec by referring to a precise
semantics of the used fragment of UML. This allows one to validate design against
security requirements early in the development cycle.

References

1. Alam, M., Hafner, M., Breu, R.: Constraint based role based access control in the SEC-
TET-framework A model-driven approach. Journal of Computer Security 16(2), 223–260
(2008)

2. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security for Process Oriented Systems.
In: Proceedings of the 8th ACM symposium on Access Control Models and Technologies,
Como, Italy (2003)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An Agent
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

4. Common Criteria, http://www.commoncriteriaportal.org/
5. Devanbu, P., Stubblebine, S.: Software Engineering for Security: a Roadmap. In: Proceed-

ings of ICSE 2000 (track on The future of Software engineering) (2000)
6. Hermann, G., Pernul, G.: Viewing business-process security from different perspectives.

International Journal of electronic Commence 3, 89–103 (1999)
7. Jennings, N.R.: An agent-based approach for building complex software systems. Com-

munications of the ACM 44(4) (April 2001)
8. Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2004)
9. Jürjens, J., Shabalin, P.: Tools for Secure Systems Development with UML. In: FASE

2004/05 special issue of the International Journal on Software Tools for Technology
Transfer. Springer, Heidelberg (2007)

10. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Analysis.
In: Proceedings of the 15th Annual Computer Security Applications Conference (Decem-
ber 1999)

11. Mouratidis, H., Giorgini, P., Manson, G.: Modelling Secure Multiagent Systems. In: The
Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multi-
agent Systems, Melbourne, Australia, pp. 859–866. ACM, New York (2003)

12. Mouratidis, H., Philp, I., Manson, G.: A Novel Agent-Based System to Support the Single
Assessment Process of Older People. Journal of Health Informatics 9(3), 149–162 (2003)

13. Mouratidis, H., Giorgini, P.: Integrating Security and Software Engineering: Advances and
Future Visions. Idea Group Publishing (2006)

 Secure Information Systems Engineering: Experiences and Lessons Learned 245

14. Mouratidis, H., Jürjens, J., Fox, J.: Towards a Comprehensive Framework for Secure Sys-
tems Development. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 48–
62. Springer, Heidelberg (2006)

15. Muhanna, W.: An Object-Oriented Framework for Model Management and DSS Devel-
opment. Decision Support Systems 9(2), 217–229 (1993)

16. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir.
Eng. 10(1), 34–44 (2005)

17. Sunyaev, A.: Telematik im Gesundheitswesen - Sicherheitsaspekte,tech. rep., TU Munich
(2006)

18. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of the
Art. In: Ciancarini, P., Wooldridge, M. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 1–28.
Springer, Heidelberg (2001)

19. Yu, E.: Modelling Strategic Relationships for Process Reengineering, Ph.D. Thesis. Dept.
of Computer Science, University of Toronto (1995)

An Architecture for Requirements-Driven
Self-reconfiguration

Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

University of Trento - DISI, 38100, Povo, Trento, Italy
{fabiano.dalpiaz,paolo.giorgini,jm}@disi.unitn.it

Abstract. Self-reconfiguration is the capability of a system to autonomously
switch from one configuration to a better one in response to failure or context
change. There is growing demand for software systems able to self-reconfigure,
and specifically systems that can fulfill their requirements in dynamic environ-
ments. We propose a conceptual architecture that provides systems with self-
reconfiguration capabilities, enacting a model-based adaptation process based on
requirements models. We describe the logical view on our architecture for self-
reconfiguration, then we detail the main mechanisms to monitor for and diag-
nose failures. We present a case study where a self-reconfiguring system assists
a patient perform daily tasks, such as getting breakfast, within her home. The
challenge for the system is to fulfill its mission regardless of the context, also
to compensate for failures caused by patient inaction or other omissions in the
environment of the system.

1 Introduction

There is growing demand for software systems that can fulfill their requirements in very
different operational environments and are able to cope with change and evolution. This
calls for a novel paradigm for software design where monitoring, diagnosis and com-
pensation functions are integral components of system architecture. These functions
can be exploited at runtime to monitor for and diagnose failure or under-performance,
also to compensate through re-configuration to an alternative behavior that can better
cope with the situation on-hand. Self-reconfiguration then is an essential functionality
for software systems of the future in that it enables them to evolve and adapt to open,
dynamic environments so that they can continue to fulfill their intended purpose.

Traditionally, self-reconfiguration mechanisms are embedded in applications and
their analysis and reuse are hard. An alternative approach is externalized adaptation [1],
where system models are used at runtime by an external component to detect and ad-
dress problems in the system. This approach – also known as model-based adaptation
– consists of monitoring the running software, analyzing the gathered data against the
system models, selecting and applying repair strategies in response to violations.

We analyze here the usage of a special type of system models: requirements models.
Deviations of system behavior from requirements specifications have been discussed
in [2], where the authors suggest an architecture (and a development process) to reconcile
requirements with system behavior. Reconciliation is enacted by anticipating deviations

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 246–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Architecture for Requirements-Driven Self-reconfiguration 247

at specification time and solving unpredicted circumstances at runtime. The underlying
model is based on the goal-driven requirements engineering approach KAOS [3].

In this paper, we propose a conceptual architecture that, on the basis of requirements
models, adds self-reconfiguration capabilities to a system. The architecture is structured
as a set of interacting components connected through a Monitor-Diagnose-Compensate
(MDC) cycle. Its main application area is systems composed of several interacting sys-
tems, such as Socio-Technical Systems [4] (STSs) and Ambient Intelligence (AmI)
scenarios. We have chosen to use Tropos [5] goal models as a basis for expressing re-
quirements, for they suit well for modeling social dependencies between stakeholders.
We enrich Tropos models adding activation events to trigger goals, context-dependent
goal decompositions, fine-grained modeling of tasks by means of timed activity di-
agrams, time limits within which the system should commit to carry out goals, and
domain assumptions that need to be monitored regardless of current goals.

We adopt the BDI paradigm [6] to define how the system is expected to reason and
act. The system is running correctly if its behavior is compliant with the BDI model:
when a goal is activated, the system commits to it by selecting a plan to achieve it. The
architecture we propose monitors system execution and looks for alternatives when
detects no progress or inconsistent behaviour.

The closest approach to our work is Wang et al. [7], which proposes a goal-oriented
approach for self-reconfiguration. Our architecture differs from hers in the details of the
model we use to monitor for failures and violations. These details allow us to support a
wider class of failures and changes, also to compensate for them.

This paper is structured as follows: Section 2 presents the baseline of our approach,
Section 3 describes our proposed architecture for self-reconfiguration, whereas Sec-
tion 4 explains how to use it. Section 5 details the main monitoring and diagnosis
mechanisms the architecture components use. Section 6 shows how the architecture
can be applied to a case study concerning smart-homes. Section 7 presents related work
and compares our approach to it. Finally, Section 8 discusses the approach and draws
conclusions.

2 Baseline: Requirements Models

A requirements-driven architecture for model-based self-reconfiguration needs a set
of models to support full modeling of requirements. A well established framework in
Requirements Engineering (RE) is goal-oriented modeling [3], where software require-
ments are modelled as goals the system should achieve (with assistance from exter-
nal agents). Among existing frameworks for requirements models, we have chosen
Tropos [5], for it allows to describe systems made up of several socially interacting
actors depending on each other for the fulfillment of their own goals. Recently, Ju-
reta et al. [8] have revisited the so-called “requirements problem” – what it means to
successfully complete RE – showing the need for requirements modeling frameworks
richer than existing ones. The core ontology they propose is based on the concepts of
goal, softgoal, quality constraint, plan, and domain assumption. Direct consequence
of this result is that goal models alone are insufficient to completely express system

248 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

Fig. 1. Enriched Tropos goal model used by our architecture

requirements, and in our framework we support some of the suggested ingredients to
express requirements.

We adopt an enriched version of Tropos, which contains additional information to
make it suitable for runtime usage: (i) activation events define when goals are triggered;
(ii) commitment conditions express a time limit within which an agent should commit
to its goal; (iii) contexts express when certain alternatives are applicable (like in Ali et
al. [9]); (iv) preconditions define tasks applicability. In Fig. 1, two agents (Patient and
Supermarket) interact by means of a dependency for goal Provide Grocery. The top-
level goal of patient – Have lunch – is activated when it’s 12AM, and the patient should
commit to its achievement within one hour since activation. Two alternatives are avail-
able to achieve the goal, that is Prepare lunch and Get lunch prepared. In this scenario,
the former option is applicable only in context c1, that is when patient is autonomous,
whereas the latter option is applicable when the patient is not autonomous (c2). Goal
Prepare lunch is and-decomposed to sub-goals Get needed ingredients and Cook lunch.
The former goal is a leaf-level one, and there are two tasks that are alternative means to
achieve it (means-end): Take ingredients from cupboard and Order food by phone. The
latter task requires a dependency for goal Provide grocery on agent supermarket.

A shared language to express information about domain is clearly needed. This
language is used to formally express contexts, preconditions, domain assumptions,
and any relation between domain and requirements. We exploit an object diagram (as
in [9]), where context entities are objects, their properties are attributes, and relations
between entities are association links. For instance, the precondition for task Order
food by phone (Patient.house.hasPhone = true) can be expressed in an object model
with classes Patient and House, where Patient is linked to House by an aggregation
called house, and House has a boolean attribute hasPhone. Domain assumptions are
rules that should hold regardless of current goals. For example, a domain assumption
for our small example is that each patient has exactly one house. Finally, we use a fine
grained definition of tasks, in which each task is a workflow of monitorable activities
to be carried out within time constraints. The completion of each activity is associated
to the detection of an associated event, which is expressed over the context model. We
provide further details about this formalism (timed activity diagram) in Section 5.

An Architecture for Requirements-Driven Self-reconfiguration 249

3 System Architecture

In this section we propose our conceptual architecture for structuring systems able to
self-reconfigure. We present the architecture logical view in Fig. 2, exploiting an UML
2.0 component diagram to show the components and the connections among them.
Component diagrams depict not only the structure of a system, but also the data flow
between components (through provided and required interfaces).

Fig. 2. Logical view on the proposed architecture for self-reconfiguration

3.1 External Components

Our architecture supports systems characterized by decentralized and non-monolithic
structure, such as Socio-Technical Systems (STSs) and Ambient Intelligence (AmI) sce-
narios, which require quick and effective reconfiguration in response to context change
or failure. A set of external components interacts with the self-reconfiguration compo-
nent, providing inputs and enacting reconfigurations.

250 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

The component Context sensor represents any system providing up-to-date informa-
tion about the context where the system is running. In AmI settings, sensors are spread
throughout the environment and collect data such as temperature, light level, noise,
presence. Also desktop applications have several context sensors that provide useful
values such as free memory, CPU utilization, mainboard temperature, and list of active
processes. The component context sensor provides changes in the context through the
interface Events. Possible events are changes in the light level, detection of humans in
front of the door, identification of loud noise in the bathroom.

Monitored system is the system the self-reconfiguration component assists, that is the
stakeholder whose requirements are monitored to diagnose and compensate failures.
This system need not necessarily be software or hardware, but can be – and often is –
a human or an organization. Examples of monitored systems are anti-virus software,
patients living in smart-homes, firemen in crisis management settings. This component
provides all available information concerning the current status of the system through
the interface Log, and requires from the interface System pushes advice on what should
be done (which goals) and how it should act (which tasks). A patient can be reminded
to take her medicine by sending an SMS to her mobile phone (system pushes interface).

Support system represents any system connected to the monitored system by require-
ments level links by goal, task, or resource dependencies from the monitored system.
For example, anti-virus software may depend on update sites for the resource “updated
virus definition file”, while patients may depend on social workers for the goal “prepare
breakfast”. The provided interface Interaction log contains information about the sta-
tus of dependencies with the monitored system; the required interface Task assignments
provides the tasks or goals for which the monitored system depends on support systems.
If the patient should prepare breakfast but did not commit to it, the self-reconfiguration
component can order breakfast from a catering service (the support system), enacting a
dependency from the patient to the catering service for goal “prepare breakfast”.

Context actuator identifies any actuator in the environment which can receive com-
mands to act on the context. Examples of actuators in AmI scenarios are sirens, door
openers, automated windows, and remote light switches. The component gets from the
required interface Actuations the commands to enact.

3.2 Self-reconfiguration Component

The self-reconfiguration capabilities of our architecture are provided by the component
self-reconfiguration. We identified three major sub-components in the reconfiguration
process, each enacting a phase in a Monitor-Diagnose-Compensate cycle. Monitor is
in charge of collecting, filtering, and normalizing events and logs; Diagnoser identifies
failures and discovers root causes; Reconfigurator selects, plans and deploys compen-
sation actions in response to failures.

The monitoring phase starts with the Event normalizer gathering the current status
of the monitored system, of the context, and of the interaction with support systems.
These events are normalized according to a shared context model, e.g. defining trans-
formation schemes using XSLT [10]. The event normalizer provides the translated data
through the interface Normalized events. This interface is required by three different
components, each handling a specific type of events. Dependency monitor computes

An Architecture for Requirements-Driven Self-reconfiguration 251

the status of existing dependencies and exposes it through the provided Dependencies
status interface. Context sensor is in charge of updating the interface Current context,
processing the normalized events related to changes in the context. For instance, if the
house door is closed (door.status = closed) and we just received an event such as
open(door, timei), the status of the door will change to open (door.status = open).
The component Task execution monitor handles events concerning the execution of
tasks and provides the interface Task execution status. For example, if the patient is ex-
ecuting the task “Open door” and event pressed(patient, button, timej) is received,
the status of task “Open door” will turn to success.

The diagnosis phase – responsibility of the component Diagnoser – is essentially
a verification of the current status against requirements models. Models specify what
should happen and hold: which goals should / can / cannot be achieved, which tasks can
/ cannot be executed, the domain assumptions that should not be violated. The richer
the requirements models are, the more accurate the diagnosis will be. In contrast, the
granularity of detected events is bounded by technological and feasibility concerns,
and also increases the overhead introduced by the architecture. Detecting if a patient is
sitting on a sofa is reasonably realizable (e.g., using pressure sensors), while detecting
if she is handling a knife the wrong way is far more complex.

Contextual goal model manager analyzes the goal model to identify goals and tasks
that should / can / cannot be achieved, and provides this output through the interface
Goals / Tasks applicability. The component Domain assumption verifier checks a list
of domain assumptions against the current context, and exposes identified violations
through the provided interface Violated domain assumptions.

Dependency diagnoser computes problems in established dependencies. Dependen-
cies fail not only if the dependee cannot achieve the goal or perform the task (e.g.,
the nurse cannot support the patient because she’s busy with another patient), but also
when changes in the context modify goal applicability and the dependency is not pos-
sible anymore (e.g., the patient exits her house and thus cannot depend on a catering
service anymore). Task execution diagnoser is needed to verify whether the current
execution status of tasks is compliant with task applicability. For example, if the pa-
tient is preparing breakfast but already had breakfast, something is going wrong and
this failure should be diagnosed. This component provides the interface Failed tasks
/ goals. Goal commitment diagnoser is in charge of detecting those goals that should
be achieved but for whose fulfillment no action has been taken. In our framework, each
top-level goal has a commitment time, a timeout within which a commitment to achieve
the goal should be taken (i.e., an adequate task should begin). For instance, the patient
should have breakfast within two hours since waking up. This component provides the
interface Uncommitted goals.

The component Failure diagnoser requires the interfaces containing the identified
failures and Tolerance policies provided by component Policy manager. The policy
manager – handling policies set by system administrators – specifies when failures
do not lead to reconfiguration actions. For example, lack of commitment for washing
dishes can be tolerated if the patient’s vital signs are good (she may wash dishes after
next meal). Diagnoses to be compensated are exposed through Failure diagnosis.

252 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

The reconfiguration phase – carried out by component Reconfigurator – should de-
fine compensation / reconfiguration strategies in response to any kind of failure. Its
effectiveness depends on several factors: number of tasks that can be automated, avail-
able compensation strategies, extent to which the monitor system accepts suggestions
and reminders. In our architecture we propose general mechanisms, but the actual suc-
cess of compensation strategies is scenario-dependent and difficult to assess in a general
way. Suppose a patient suddenly feels bad: if she lives in a smart-home provided with
a door opener, the door can be automatically opened to the rescue team; otherwise, the
rescue team should wait for somebody to bring the door keys.

The component Prioritize diagnosis selects a subset of failures according to their
priority level and provides them through the interface Selected Diagnosis. Common
criteria to define priority are failure severity, urgency of taking a countermeasure, time
passed since failure diagnosis. Selected diagnoses are then taken as input by the compo-
nent Reaction strategy selector, which is in charge of choosing a reaction to compensate
the failure. This component acts as a planner: given a failure, it looks for appropriate
reconfigurations, and selects one of them. Three different types of reconfigurations are
supported by our architecture, each manifested in a specific interface. Task reassign-
ment reconfigurations contains reconfigurations that involve the automated enactment
dependencies on support systems. For example, if the patient didn’t have breakfast and
the commitment time for the goal is expired, the system could automatically call the
catering service. Push system reconfigurations includes strategies that push the moni-
tored system to achieve its goals (reminding goals or suggesting tasks). A push strategy
for the patient that forgot to have breakfast is sending an SMS to her mobile phone.
Actuate reconfigurations consists of compensations that will be enacted by context ac-
tuators. For instance, if the patient feels bad, the door can be automatically opened by
activating the door opener. Three components use the interfaces provided by reaction
strategy selector: Task assigner, System pushing, and Actuator manager. Their role is
to enact the reconfigurations that have been selected, and each component provides a
specific interface.

4 Creating the Architecture for an Existing System

We describe how the architecture can be used in practice to add self-reconfiguration
capabilities to an existing distributed socio-technical system. The required input is a set
of interacting sub-systems – sensors and effectors – that compose the distributed sys-
tem. The following steps should be carried out: (i) define context model (ii) define re-
quirements models; (iii) establish traceability links for monitoring; (iv) select tolerance
policies for diagnosis; and (v) choose reconfiguration and compensation mechanisms.

Steps (i) and (ii) output the models we presented in Section 2, that is the context
model, Tropos goal models, timed activity diagrams for tasks, and domain assumptions.
Step (iii) defines what to monitor for at runtime, by connecting requirements to code.
Traceability is ensured by associating events – produced by sensors – to activities that
are part of a task, to task preconditions, to contexts, and to activation conditions for top-
level goals. Events should also be normalized according to the context model defined
in step (i).

An Architecture for Requirements-Driven Self-reconfiguration 253

Step (iv) is carried out to specify tolerance policies for failures. Indeed, some failures
have to be addressed through reconfiguration, whereas some others can be tolerated. In
step (v) the reaction mechanisms enacting self-reconfiguration are defined. Two sub-
steps should be carried out: (i) definition of a compensation plan to revert the effects
of the failed strategies, and (ii) identification of a reconfiguration strategy to retry goal
achievement. Both steps exploit the actuation capabilities of the distributed system,
i.e. reconfigurations consist of giving commands to effectors (execute a task, enact a
dependency, issue a reminder).

5 Monitoring and Diagnosis Mechanisms

We detail now monitoring and diagnosis mechanisms included in our architecture. Ef-
ficient and sound algorithms need to be defined for successfully diagnosing problems
in the running system. Failures are identified by comparing monitored behavior of the
system to expected and allowed behaviors. Failures occur when (a) monitored behavior
is not allowed or (b) expected behavior has not occurred.

Table 1 defines expected and allowed goals and tasks. We use first-order logic rules
for clarity, but our prototype implementation is based on disjunctive Datalog [11]. We
suppose that each goal instance differs from other instances of the same goal class for

Table 1. First-order logic rules to define expected and allowed goals and tasks

goal(G) ∧ goal parameters(G,P) ∧ ¬done(G, P) ∧ activation evt(G, P, T)
∧ T ≤ current time ∧ � Gp s.t.

goal(Gp) ∧ decomposed(Gp, G)
(i)

should do(G,P)

should do(G, P)
(ii)

can do(G,P)

goal(G) ∧ goal parameters(G,P) ∧ ¬done(G, P)
∧ ∃ Gp s.t.

goal(Gp) ∧ goal parameters(Gp, Pp) ∧ decomposed(Gp, G, Dec)
∧ can do(Gp, Pp) ∧ context cond(Dec)
∧ ∀ p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p,n) ∧ name(pp, n)),

value(p, v) ∧ value(pp, v)
(iii)

can do(G,P)

task(T) ∧ task parameters(T,P) ∧ pre cond(T, P) ∧ ¬done(T, P)
∧ ∃ G s.t.

goal(G) ∧ goal parameters(Gp, Pp) ∧ means end(G, T, Dec)
∧ context cond(Dec) ∧ can do(G, Pp)
∧ ∀ p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p,n) ∧ name(pp, n)),

value(p, v) ∧ value(pp, v)
(iv)

can do(T,P)

254 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

actual parameters; for example, a patient’s goal Have breakfast can be repeated every
day, but with different values for the parameter day.

Rule (i) defines when a top-level goal should be achieved. This happens if G is a goal
with parameters set P , the goal instance has not been achieved so far, the activation
event has occurred before the current time, and G is a top-level goal (there is no other
goal Gp and/or-decomposed to G). Rule (ii) is a general axiom saying that whenever a
goal instance should be achieved, it is also allowed. Rules (iii) and (iv) define when tasks
and decomposed goals are allowed, respectively. A goal instance G with parameters set
P can be achieved if it has not been done so far and exists an achievable goal Gp with
parameters Pp that is decomposed to G, the context condition on the decomposition is
true, and the actual parameters of G are compatible with the actual parameters of Gp. A
similar condition holds for means-end tasks, with two main differences: tasks are also
characterized by a precondition – which should hold to make the task executable – and
are connected to goals through means-end (rather than by and/or decomposition).

Expected and allowed goals and tasks identified by rules (i-iv) are used by Algo-
rithm 1 to diagnose goals and tasks failures, comparing the monitored behavior to
expected and allowed behaviors. The parameters of COMPUTEFAILURES are the mon-
itored system, the examined goal instance, and the set of failures (initially empty). The
algorithm is invoked for each top-level goal of the monitored system and explores the
goal tree recursively; all parameters are passed by reference.

Algorithm 1 starts by setting the status of goal g to uncommitted, and the variable
means end to false. Lines 3-10 define the recursive structure of the algorithm. If the goal
is and/or decomposed (line 3), the set G contains all the sub-goals of g (line 4), and the
function COMPUTEFAILURES is recursively called for each sub-goal (lines 5-6). If the
status of all the sub-goals is success, also the status of g is set to success (lines 7-8).
If the goal is means-end decomposed (lines 9-10), G contains the set of tasks that are
means to achieve the end g, and means end is set to true.

If g is still uncommitted (line 11) each sub-goal (or means-end decomposed task)
is examined (lines 12-39). If g is and-decomposed (lines 13-23), two sub-cases are
possible: (a) if the sub-goal gi is not allowed but its status is different from uncommitted,
and the status of g is still uncommitted, the status of g is set to fail and the cycle is broken,
for the worst case – failure – has been detected (lines 14-17); (b) if the status of gi is fail
(lines 18-23), the status of g is set to fail in turn, and the cycle is broken (lines 19-21);
if gi is in progress, the status of g is set to in progress.

If g is or-decomposed or means-end (lines 24-39), it succeeds if at least one sub-
goal (or task) succeeds. If g is means-end decomposed, the algorithm calls the function
MONITORSTATUS, which diagnoses the execution status of a task (lines 24-25). If gi is
not allowed and its status is different from uncommitted, gi is added to the set of failures
(line 27), and if g is not committed its status is set to fail (lines 28-29). If gi is allowed
or its status is uncommitted (line 30), three sub-cases are possible: (a) if the status of gi

is success, the status of g is set to success and the cycle is terminated (lines 31-33); (b)
if gi is in progress, the status of g is set to in progress and the loop is continued (lines
34-35); (c) if the status of gi is fail, gi is added to the set of failures, and if g is still
uncommitted its status is set to fail. If g is a top-level goal that should be achieved, its
status is uncommitted, and the commitment condition is true, then the status of g is set

An Architecture for Requirements-Driven Self-reconfiguration 255

to fail because no commitment has been taken (lines 40-41). If the status of g is fail, it is
added to the list of failures (lines 42-43).

Algorithm 1. Identification of goal and task failures.
COMPUTEFAILURES(s : System, g : Goal, F : Failure [])

1 g.status ← uncommitted
2 means end ← false
3 if ∃g1 ∈ s.goals s.t. decomposed(g, g1, dec)
4 then G ← {gi ∈ s.goals s.t. decomposed(g, gi, dec)}
5 for each gi in G
6 do COMPUTEFAILURES (s,gi,F)
7 if ∀gi in G, gi.status = success
8 then g.status ← success
9 else G ← {t ∈ s.tasks s.t. means end(g, t, dec)}

10 means end ← true
11 if g.status = uncommitted
12 then for each gi in G
13 do if and decomposed(g, gi, dec)
14 then if gi.can do = false and gi.status �= uncommitted
15 and g.status = uncommitted
16 then g.status ← fail
17 break
18 else switch
19 case gi.status = fail :
20 g.status ← fail
21 break
22 case gi.status = in progress :
23 g.status ← in progress
24 else if means end = true
25 then gi.status ← MONITORSTATUS (gi,g)
26 if gi.can do = false and gi.status �= uncommitted
27 then F ← F ∪ gi

28 if g.status = uncommitted
29 then g.status ← fail
30 else switch
31 case gi.status = success :
32 g.status ← success
33 break
34 case gi.status = in progress :
35 g.status ← in progress
36 case gi.status = fail :
37 F ← F ∪ gi

38 if g.status = uncommitted
39 then g.status ← fail
40 if g.should do = true and g.status = uncommitted and g.comm cond = true
41 then g.status ← fail
42 if g.status = fail
43 then F ← F ∪ g

256 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

Due to space limitations, the algorithms for diagnosing task failures are only sketch-
ed here, but they are fully described and discussed in [12]. We define tasks as workflows
of activities each occurring within well-defined time limits (we refer to this formalism
using the term “timed activity diagram”). Successful completion of an activity a is
associated to the happening of an event e (happens(e)→ success(a)). Activities can be
connected sequentially, in parallel (by fork and join nodes), and conditionally (through
branch and merge nodes). A graphical example of this formalism is given in Fig. 4. The
allowed branch of a decision point is defined by a branch condition. At any instant, a
well-formed model has exactly one allowed branch. MONITORSTATUS is invoked by
Algorithm 1 to check the status of a particular task; its parameters are a task t and a
goal g linked through means-end. This algorithm returns task failure if the first activity
of the task has happened but beyond the commitment time for goal g, whereas returns
uncommitted if the first activity hasn’t happened so far but the commitment time for
g has not expired. If no failure or uncommittment has been identified, the algorithm
retrieves the next node in the timed activity digram that defines the task, calling the
recursive function CHECKNODE.

The behavior of Algorithm CHECKNODE depends on node type. If the node is an
activity, we check if the associated event happened within the time limit. If it happened
beyond time limit we return failure, if it happened before time limit we recursively
check the next node. If the event hasn’t happened so far: (a) if time limit has expired
we return failure; (b) if the activity is still within its time limit we return in progress. If
a fork is found, CHECKNODE is recursively called for all the forks. If any fork failed a
fail value is returned. If all the forks joined a recursive check is performed on the node
that follows the join, with time limit starting from the last joined fork. Otherwise, the
algorithm returns in progress. If a branch is met, all the branches should be checked. We
return failure if any branch that was disallowed happened or an activity in an allowed
branch failed. We return in progress if allowed activities occurred within time limits
and no disallowed activity happened. If none of these conditions hold, we check the
node following the merge construct and return its status.

6 Case Study: Smart Homes

We show now a promising application for our architecture, emphasizing how require-
ments models are used to define and check allowed and expected behaviors, and how
the architecture performs the MDC cycle. Our case study concerns smart homes: a pa-
tient lives in a smart home, a socio-technical system supporting the patient in everyday
activities (such as eating, sleeping, taking medicine, being entertained, visiting doctor).
Both smart home and patient are equipped with AmI devices that gather data (e.g., pa-
tient’s health status, temperature in the house) and enact compensations (e.g., open the
door). The partial goal model in Fig. 3 represents the requirements of the patient; due
to space limitations, we present here only the top-level goal “Have breakfast”.

Goal g1 is activated when the patient wakes up (activation event); a commitment to
achieve g1 should be taken (either by the patient or by other agents) within two hours
since goal activation. Four different contexts characterize the scenario: in c1 the patient
is autonomous, in c2 the patient is not autonomous, in c3 the patient is at home, in c4

An Architecture for Requirements-Driven Self-reconfiguration 257

Fig. 3. Contextual goal model describing the patient health care scenario

the patient is not at home. If the patient is autonomous (c1 holds) g1 is decomposed
into the subtree of goal “Eat alone” (g2); if c2 holds g1 is decomposed into the subtree
of goal “Get eating assistance” (g22). In the former case, c3 enables the subtree of goal
“Eat at home” (g3), whereas c4 enables the subtree of goal “Eat outside” (g7). When
eating at home, the patient has to prepare food (g4), eat breakfast (g5), and clean up
(g6). Goal g4 is means-end to two alternative tasks: “Prepare autonomously” (p1) and
“Order catering food” (p2). The latter task requires interaction with actor “Catering
service”, which should fulfill goal “Provide food” to execute p2. The other subtrees of
Fig. 3 are structured in a similar way, thus we don’t detail them here.

Our requirements models characterize each task with a precondition that, if false,
inhibits the execution of the task. If a task is executed but its precondition is false,
a failure occurs (see rule (iv) in Table 1). A possible precondition for task “Prepare
autonomously” is that there are both bread and milk in the house; a precondition for
task “Order catering food” is that the house is provided with a landline phone.

Fig. 4 is a timed activity diagram for task p1. The task starts as goal “Prepare food”
is activated. When the patient enters the kitchen (a1), there is evidence that she is going

258 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

Fig. 4. Timed activity diagram for monitoring the task “Prepare autonomously”

to prepare food. If this doesn’t happen within 45 minutes from goal activation the task
fails. After a1, a fork node creates two parallel execution processes. In the first fork, the
patient should open the fridge (a2) and put the milk on stove (a4); in the second fork,
the bread cupboard should be opened (a3) and bread has to be put on the table (a5). The
forks are then merged, and the next activity is to turn on the stove (a6) within a minute
since the last completed activity. Sequentially, the task requires the stove to be turned
off within 5 minutes (a7) and the milk to be poured into the cup (a8).

We conclude this section with a description of a possible reconfiguration process.
Let’s suppose that patient Mike wakes up at 8.00 am. Mike is autonomous (c1) and at
home (c3); goal g1 is expected, and the subtree of g3 is the only allowed one (see rules
(i) and (ii) in Table 1). At 8.20 am Mike enters the kitchen: checking the activity diagram
for p1 against this event changes the status of the goal g4 to in progress. In turn, this
status is propagated bottom-up till g1 (see Algorithm 1). At 8.25 Mike hasn’t neither
opened the fridge nor opened the bread cupboard. This violates the specification of p1
(Fig. 4). The reconfiguration strategy selector component selects to push the system,
and the system pushing component sends an SMS message to remind Mike to have
breakfast. The strategy succeeds, for Mike opens both the fridge (a2) and the bread
cupboard (a3), then he puts bread on table (a5). These events are compliant with the
task specification of Fig. 4, thus the task is evaluated as in progress. Anyhow, Mike
does not put milk on stove (a4) within one minute since a2, therefore a new failure
is diagnosed. The compensation to address this failure is to automate p2, and the task
assigner component selects a catering service. In an alternative scenario Mike exits
house (the context c4 is true, c3 is false). This would change the tasks that can happen:
the subtree of g7 becomes the only possible one, and this influences all its sub-goals
(rule (iii) in Table 1) and the tasks linked to leaf-level goals (rule (iv) in Table 1).

7 Related Work

Self-adaptive software has been introduced by Oreizy et al. [13] as an architectural ap-
proach to support systems that modify their behaviour in response to changes in the
operating environment. This class of systems performs self-reconfiguration according
to the criteria specified at development time, such as under what conditions reconfig-
uring, open/closed adaptation, degree of autonomy. The building units for self-adaptive
software should be components and connectors. Compared to our work, the solution
proposed in [13] is generic and flexible to many reconfiguration criteria, whereas ours
is focused on particular types of models, that is requirements models.

An Architecture for Requirements-Driven Self-reconfiguration 259

Rainbow [1] is an architecture-based framework that enables self-adaptation on the
basis of (i) an externalized approach and (ii) software architecture models. The authors
of Rainbow consider architecture models as the most suitable level to abstract away
unnecessary details of the system, and their usage both design- and at run-time promotes
the reuse of adaptation mechanisms. Our proposal shares many features with Rainbow;
the main difference is that we use higher level models to support the ultimate goal of
any software system, that is to meet its requirements. A drawback of our choice is that
establishing traceability links between requirements and code is more complex.

Sykes et al. [14] propose a three-layer architecture for self-managed software [15]
that combines the notion of goal with software components. This approach is based on a
sense-plan-act architecture made up of three layers: goal management layer defines sys-
tem goals, change management layer executes plans and assembles a configuration of
software components, component layer handles reactive control concerns of the com-
ponents. Our proposal exploits a more elaborate goal representation framework, and
differs in planning (predefined plans instead of plan composition) and reconfiguration.

Wang’s architecture for self-repairing software [7] uses one goal model as a software
requirements model, and exploits SAT solvers to check the current execution log against
the model to diagnose task failures. We propose more expressive goal models, accurate
specification of tasks based on timed activity diagrams, allow for specifying multiple
contexts, and support dependencies on other actors / systems.

Feather et al. [2] address system behaviour deviations from requirements specifi-
cations; they introduce an architecture (and a development process) to reconcile re-
quirements with behaviour. This process is enacted by jointly anticipating deviations at
specification time and solving unpredicted situations at runtime, and examine the lat-
ter option using the requirements monitoring framework FLEA [16]. FLEA is used in
conjunction with the goal-driven specification methodology KAOS [3]. Our architec-
ture differs in the usage of different requirements models (Tropos rather than KAOS),
support to a wider set of failures ([2] is focused on obstacle analysis), and applicability
to scenarios composed of multiple interacting actors (such as AmI ones).

Robinson’s ReqMon [17] is a requirements monitoring framework for specific us-
age in enterprise systems. ReqMon integrates techniques from requirements analysis
(KAOS) and software execution monitoring. Although ReqMon’s architecture covers
all the reconfiguration process, accurate exploration is provided only for the monitor-
ing and analysis phases. Our approach has broader applicability, can diagnose a larger
set of failure types, and supports more reconfigurations mechanisms; on the contrary,
ReqMon is particularly suitable for enterprise systems.

8 Discussion and Conclusion

We have proposed a novel architecture for self-configuring systems founded on princi-
ples adopted from Goal-Oriented Requirements Engineering, externalized adaptation,
and BDI paradigm. Our approach adds self-reconfiguration capabilities to a wide vari-
ety of systems, among which Ambient Intelligence scenarios and Socio-Technical Sys-
tems. The architecture is a model-based one, with requirements models used to specify
what can, should, and should not happen. We have detailed the main mechanisms for

260 F. Dalpiaz, P. Giorgini, and J. Mylopoulos

monitoring and diagnosis, which describe how requirements models are checked against
monitored information. We also introduced a case study – smart homes – to show how
a realization of the architecture works in practice.

Several aspects will be addressed in future work. Firstly, we need a complete im-
plementation of our architecture, as well as further experimentation on the smart-home
case study. We also want to extend our framework so that it deals with a broader class of
monitored phenomena, including attacks and failures caused by false domain assump-
tions. Finally, we propose to introduce mechanisms through which a system can extend
its variability space through collaboration with external agents.

Acknowledgements

This work has been partially funded by EU Commission, through the SERENITY
project, and by MIUR, through the MEnSA project (PRIN 2006).

References

1. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-
based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)

2. Feather, M., Fickas, S., Van Lamsweerde, A., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: IWSSD 1998, pp. 50–59 (1998)

3. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. In: Sci-
ence of computer Programming, pp. 3–50 (1993)

4. Emery, F.: Characteristics of socio-technical systems. Tavistock, London (1959)
5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. JAAMAS 8(3), 203–236 (2004)
6. Rao, A., Georgeff, M.: An abstract architecture for rational agents. In: KR&R 1992, pp.

439–449 (1992)
7. Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J.: An automated approach to monitoring and

diagnosing requirements. In: ASE 2007, pp. 293–302 (2007)
8. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in re-

quirements engineering. In: RE 2008 (2008)
9. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis: Tropos-

based approach. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231, pp. 169–182. Springer, Heidelberg (2008)

10. Clark, J., et al.: Xsl transformations (xslt) version 1.0. W3C Recommendation 16(11) (1999)
11. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database Sys-

tems 22(3), 364–418 (1997)
12. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An architecture for requirements-driven self-

reconfiguration. Technical Report DISI-09-010, DISI, University of Trento (2009)
13. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:

ICSE 1998, pp. 177–186 (1998)
14. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a combined ap-

proach to self-management. In: SEAMS 2008, pp. 1–8. ACM Press, New York (2008)
15. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: ICSE 2007, pp.

259–268. IEEE Computer Society, Washington (2007)
16. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: RE 1995,

pp. 140–147. IEEE Computer Society Press, Washington (1995)
17. Robinson, W.N.: A requirements monitoring framework for enterprise systems. Require-

ments Engineering 11(1), 17–41 (2006)

Automated Context-Aware Service Selection for
Collaborative Systems

Hong Qing Yu and Stephan Reiff-Marganiec

University of Leicester, Department of Computer Science, Leicester, UK
{hqy1,srm13}@le.ac.uk

Abstract. Service-Oriented Architecture (SOA) can provide a paradigm
for constructing context-aware collaboration systems. Particularly, the
promise of inexpensive context-aware collaboration devices and context-
awareness for supporting the selection of suitable services at run-time
have provoked growing adoptation of SOA in collaborative systems. In
this paper, we introduce an approach for selecting the most suitable ser-
vice within a SOA based collaboration system, where suitability depends
on the user’s context. The approach includes context modelling, gener-
ation of context-aware selection criteria and a suitable service selection
methodology.

Keywords: Context-awareness, SOA, Service Selection, Collaborative
Systems.

1 Introduction

Collaboration systems are becoming more and more important for facilitating
team work and e-activities (e.g. e-business, e-government or e-education). In
particular, context-aware and dynamically configured collaboration systems are
demanded in order to support collaboration activities, which are progressively
flexible due to changes in modern work environments. While context-aware fea-
tures can not be found in some legacy collaboration systems [Dus04], these
systems are static in their architecture and hence the functionality that they
offer. With widespread deployment of inexpensive context-aware devices and
the innovations brought by the SOA paradigm, we get an opportunity to re-
construct collaboration architectures with context-awareness and dynamic con-
figuration at its centre. For example, the inContext project1 has defined a
platform, called PCSA (Pervasive Collaboration Services Architecture)
[RMTC+08] to support context-aware collaboration services by working closely
with industry users and studying their collaboration needs. The PCSA mainly
includes three subsystems:

1 www.in-context.eu

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 261–274, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

262 H.Q. Yu and S. Reiff-Marganiec

1. The Access subsystem controls the user and service registration and system
access.

2. The service management subsystem, most relevant to this work, is in charge
of maintaining the service repository which includes a categorisation of ser-
vices and details of NFPs (non-functional properties) of the registered ser-
vices. It also provides functionality to look up services and to obtain service
suggestions based on suitability.

3. The Context management subsystem maintains context data of registered
users, based on a specified context model.

One of the major challenges of the PCSA is to select collaboration services
based on user context information by matching services according to their non-
functional properties – clearly the decision is made in the service management
subsystem, but is based on the data obtained by the context subsystem.

Before we consider the challenges in more detail and provide an overview of
the results of this paper, we consider two motivating examples, which highlight
the challenges that modern collaborative systems need to adapt to.

Organising an emergencymeeting is a typical e-business and e-government
collaboration activity. Notifying all participants to attend the meeting
is an important and difficult task because different participants may
be in different context situations including different in locations and
time zones, they are available on different devices, have diverse contact
preferences/rules. For example, a participant may be on holidays in a
foreign country and only has a mobile phone with him, or the participant
has switched off his mobile phone to save power but is online using IM
(Instant Messenger).

In this scenario, the service selection challenge becomes to select the most suit-
able one. This decision has to be based on dynamically obtain user’ context
information, with the user being passive in that they cannot be asked upfront
which service is most suitable for them.

In contrast to the first scenario, the second case study is concerned with
selecting a medical support service during a park fair:

It is expected that a large number of people joins the fair and incidents
are expected. Two medical tents are prepared in different locations for
providing aid. Efficient collaboration between fair assistants and tents
is essential. One tent (Service 1) has more staff and is meant to cope
with minor injury cases. The other tent (Service 2) has fewer staff, but
more advanced equipment to deal with severe incidents as well as minor
injuries. One assistant team scours the park to locate incidents and re-
ports to the most suitable medical support service based on injury level,
location of the incident, availability of the tents and response times. For
example, if the injury has been reported close to Service 2, but it is not
severe then which medical support service should receive the report from
the assistant?

Automated Context-Aware Service Selection for Collaborative Systems 263

Successfully supporting such a collaboration system, requires the service selec-
tion method to recognize both users’ (member of assistant team) current context
and the services’ current NFPs.

These two examples highlight a number of challenges to be addressed in
context-aware collaboration service selection.

1. The users’ runtime context information needs to be dynamically gathered
and aggregated in a structured form.

2. The context information needs to be an input to the service selection ap-
proach, requiring a link between user context and the relevant non-functional
properties of services.

3. The service selection method needs to be automatic.

While services are often considered to be virtual, it turns out that the ser-
vices that we have to consider do sometimes have physical locations, this is
exemplified in the second scenario. In this paper, we are going to illustrate our
novel contributions to address these challenges. Specifically we are presenting the
following:

1. An OWL/RDF based user context model, with a link connecting to the
service NFPs.

2. A method for dynamically generating context-aware service selection criteria
based on the service category.

3. A TLE (Type-based LSP Extension) service selection method using the
context-aware criteria.

The reminder of this paper is organised as follows. In section 2, we present
the context modelling techniques and the details of the model. In section 3,
we discuss the connection of the context model to the service’s non-functional
requirements. In section 4, we explain the TLE method, thus providing a so-
lution to the service ranking issue. Implementation and evaluation results are
presented in section 5. We then discuss some current related work and finally
draw conclusions.

2 User Context Modelling

To allow for selecting the most suitable service for a user, the user’s context
needs to be evaluated, which is only realistically feasible if it is well defined and
organized. In addition, the context information might be distributed and must
be easily retrievable. Based on these requirements, we use OWL [OWL] to model
user context information and RDF [Gro04] to store context data. By analysing
the motivating scenarios and context information in general, our context model
has been divided into 4 packages. A simplified top level OWL context model is
shown in Figure 1.

264 H.Q. Yu and S. Reiff-Marganiec

Fig. 1. The integration of 4 packages context model

User profile context (Profile) stores a user’s personal data. The profile links
to other context properties: Language shows which languages this person
knows and their proficiency level; ContactInfo connects to possible contact
details of a particular person such as postal address, contact number or
online contact details. For service selection, Language can be used to filter
services that are usable by the user; ContactInfo might indicate which way
of contact is preferred by the person. Person details make use of the FOAF
ontology2.

Resource context (Resources) includes both electronic documents and ar-
tifacts, as well as physical resource such as devices available. The resource
context allows determination of which devices, software and documents are
available.

Activity context (Activity) describes everything a person is doing (maybe
performed by a service) in order to fulfil a goal. The Goal property uses
ontology-based keywords to describe the task and its desired outcomes. It
also allows for special variants for e.g. emergency situations. These properties
imply the functional requirements of the service. The Situation property
influences the importance of different non-functional properties. For example,
emergency situation change the weights applied to certain criteria.

2 http://xmlns.com/foaf/0.1/

Automated Context-Aware Service Selection for Collaborative Systems 265

The physical location context (Location) is the detailed ontology for Lo-
cation property. It indicates the location and time related constraints. A
fixed location may have different representations such as GPS Coordinate or
PostalAddress; [FipD07] provides more detail.

3 Context-Aware Criteria Generation

3.1 Services Categories with Meta Data

Services are traditionally categorised by their functional properties, e.g. in the
categorisation system used in UDDI [Org04]. This kind of service categorisation
is insufficient for automatic service selection processes because it does not specify
NPFs that are essential to differentiate functionally similar services in different
situations. We propose to extend the functional properties based categorisation
with details of NFPs, following a well-structured data model. We refer to this
additional data as service meta data. Different service categories have different
sets of relevant meta data. For example, printing services can consider colour
options, while communication services might consider the transmission mode
(e.g. synchronous).

The service registration process (see Figure 2) builds a link between the service
and the category. Meanwhile, the OWL-S description of the service should specify
the meta information data which is defined by the category. In the following we
provide more details about the category, meta data (Meta) and service.

Each category has a name, which identifies the category (there is also an iden-
tifier for computer rather than human use). This is useful for service developers

Fig. 2. The conceptual model of category, service and service registration

266 H.Q. Yu and S. Reiff-Marganiec

who wish to register a new service, however for searches and finer grained un-
derstanding of what the category represents a number of keywords describing
the functional properties of services (or better operations) in the category are
provided. A detailed description adds further detail for human use. Each cate-
gory has a set of meta data associated to it, which captures the non-functional
properties.

Each meta data element has an AbstractType, which is used to identify the
correct evaluation function for this type of data. The associated WeightSet re-
flects the importance of this particular non-functional property in the category,
from a service provider point of view. However, different situations require a shift
in importance, as do individual users. So weights are more flexible in that they
provide the default weight as specified by the provider, they allow for an emer-
gency weight (usually defined for the application domain) and custom weights
(usually defined by the end user).

In order to indicate that a small value is desirable, weights take on negative
values in the range of [0,-1], if a larger value is desirable values come from the
[0, 1] interval. In addition, an absolute value of 1, means that the criteria is
a hard constraint (that is it must be satisfied, or we are not interested in the
service). Examples for these cases are cost (the smaller the better), speed (the
faster the better) and availability in a certain country (e.g. a retail service not
shipping to the UK would be of no interest to a UK customer).

While some meta data can be found in the service profile (for example the
speed of a printer, or whether it prints in colour), there are some criteria that
depend on the service context and need to be more up to date (e.g. the length
of a print queue). To obtain such data the ServiceQuery specifies a SPARQL
[Gro08] query statement which can be used to locate this kind of information
from the service context.

A service is described by typical elements, such as information about its
provider. the service. OWLURL is a link to the location of the OWL-S de-
scription file of the service, which should contain the required data for the non-
functional attributes. WSDLURL provides a link to the services WSDL file, as
is required for using the service in current web service technologies.

Registering a service involves linking this to the service category model, that
is assigning a category for each service (or operation). This has the side effect
of linking the service to typical non-functional criteria for which users might
require values and this data is populated from the services OWL-S file.

3.2 Automated Criteria Generation

Based on the user context model and the service category model, we define
context-aware criteria that link the two sides of user context and service non-
functional properties and are generated automatically. Context-aware criteria
consists of a number of criteria that are initialised from the meta data of the
correct service category.

The idea is that this brings together the data required to evaluated the service.
For example when considering a transport service from Leicester, it is clear that

Automated Context-Aware Service Selection for Collaborative Systems 267

the user would specify some values for locations, services would provide to be
queried on those and more over the two values need to be available for evaluation.
While we have shown this on a location example, the same has to be done for
every other criteria of relevance for the application in question to include any
appropriate aspects of the context model.

In detail the context-aware criteria consists of data from the service profile
as well as data from the user context. It presents itself with an AbstractType
which is used to identify the related evaluation function. In terms of user data it
contains a value and a weight set, which are both derived automatically from the
user’s context using the context query. The context query is a SPARQL query
extracting context information from the user context repository (the repository is
structured according to the context model presented earlier). The AbstractType
and name of criteria as well as the service query are extracted from the service
profile. This process of extracting and merging data is completely automatic.

4 The TLE Service Selection Method

In sections 2 and 3 we have discussed the context model and how it is linked
to the services’ meta data. We will now focus on the service selection process.
There are two major steps in the service selection process: First we need to
evaluate each criterion of each service. Then we need to aggregate all criteria
evaluation results to get an overall score for each service in order to select the
most suitable service for the user. To complete these two steps, we use a Type-
based LSP (Logic Scoring Preference [Duj96]) Extension (TLE) method which
has been introduced in our previous work [YRM08]. The TLE method includes a
type-based single criterion evaluation process and an extended LSP aggregation
function.

4.1 Type-Based Evaluation Process

Most current criteria evaluation functions strongly rely on human input; usually
this means that evaluation functions are designed and assigned to each criterion
by hand, providing excellent results by allowing fine tuning of measurements.
However, in the dynamic context, the evaluation function often requires to be
adapted at runtime as the relevant criteria change. Therefore, human interaction
is not acceptable and the method needs to be atomized.

The type-based evaluation process is designed to automatically match evalu-
ation functions to the criteria at runtime based on each criteria’s abstract type.
Various types can be defined for different evaluation contexts and environments
to extend this type-based evaluation process.

The Numerical type is used for criteria which take numerical input to the
evaluation method such as cost, time and other quantitative measurement values.
The evaluation function is given by Formula 1:

ε =

{
1−(vmax−v)
vmax−vmin

iff W ≥ 0,
vmax−v

vmin−vmin
otherwise

(1)

268 H.Q. Yu and S. Reiff-Marganiec

where w is the weight of the criterion. vmax is the maximum value of all compet-
ing services, v is the value for the service under evaluation. vmin is the minimum
value of all competitive services (if user context does not indicate a minimum
value constraint, in which case that value is used). For example, the price crite-
rion or service response time.

The Boolean type is used for criteria which are evaluated to 1 or 0. The
function is:

ε =

{
1 if criterion is met,
0 otherwise.

(2)

The Set overlap type is used to define criteria which are measured by matching
on instances on an enumerated set:

ε =
ε1 + ε2 + ... + εi

n
(3)

with εi being a score for each element of the set. For example, the constraint
value of the available devices criterion is Cad = {mobile, PAD, laptop, IM} in
our notification service selection scenario.

The Distance type is used to evaluate the criteria which are measured by
distance between two locations expressed by latitude and longitude.

ε =

{
R × c iff c ≥ 1
R × 2 × arcsin(1) otherwise

(4)

with c = 2 × arcsin
√

sin 2(|L2−L1|
2) + cos(L1) × cos(L2) × sin2(|G2−G1|

2), L1 =
latitude of the first point, G1 = longitude of the first point, L2 = latitude of the
second point, G2 = longitude of the second point and R = the Earth’s mean
radius of 6371 km. For example, the distance between injured person and the two
medical support services is the crucial selection criterion in the medical support
service scenario.

Our case studies focussed on some examples from the inContext project, of
which the two scenarios mentioned earlier provide snapshots. A more complete
description of the case studies can be found in [CMCe08]. We found the four
types mentioned sufficed for the case studies however as this is only empirical
we do not claim for the types to be complete. Nevertheless, more types can be
simply added by specifying an evaluation function and type name; the type name
is then used in the service meta data definition.

Table 1. Selection Criteria and Service NFPs Meta

Criteria ID C1 C2 C3 C4 C5 C6
Criteria Name Location Devices Price Time Privacy PCW
Criteria Type Boolean Set overlap Numerical Numerical Numerical Set overlap
Weight 0.9 0.9 0.5 0.3 0.7 0.8
PCW = Prefer Contacting Way.

Automated Context-Aware Service Selection for Collaborative Systems 269

This method provides a link between the evaluation function and the spe-
cific criteria under investigation, and the appropriate function can be chosen at
runtime. Table 1 shows the criteria examples of the select a notification service
scenario.

4.2 Extended LSP Aggregation Function

Having defined how individual criteria cam be evaluated, we turn our attention to
the criteria aggregation function: vital for computing overall scores for a service.
The LSP aggregation function [Duj96] modifies the traditional weighted sum
aggregating function, to capture concepts such as replaceability (the fact that
one criteria might be replaced, that is ignored, if another criteria is extremely well
suited) or an mandatory-ness (the fact that a criteria can under no circumstances
be ignored no matter how low the score is compared to other criteria). These
concepts are captured in the power (r) that is applied to each factor (see 5).

E = (
n∑

i=1

WiE
r
i)

1
r (5)

LSP was developed for manual evaluation, we extended the LSP function with
an automatic process to determine the correct value of r based on the weight
values of different criteria. The extended function is shown in formula 6, where
Wi can be less than 0 to express that a smaller value is desirable for numerical
type criteria (e.g. think about minimizing cost).

E = (
n∑

i=1

| Wi | Er
i)

1
r (6)

If we refer back to the table 1, then the concrete evaluation function is 7:

E =| WC1 | Er
C1+ | WC2 | Er

C2 + ...+ | WC6 | Er
C6 (7)

Details of the evaluation function have been introduced in [YRM08]. In this
paper we added the link to context information, so that the service selection
decision can be made automatically.

5 Evaluation

While the ranking approach is implemented in terms of the relevance engine
in the inContext platform, the engine itself is developed as a Web service so
allows for easy embedding in different environments. For more detailed analysis
we have developed a testbed that also considers the generation of the criteria as
described here. The testbed includes an OWL/RDF context store, a repository
that is organised by service category, but is enhanced with the meta data model
and information and the relevance engine performing the TLE selection process.
The evaluation reported here considers scalability and was conducted through

270 H.Q. Yu and S. Reiff-Marganiec

Fig. 3. Evaluation results for increasing numbers of services with a fixed number of
criteria

3 evaluation cases for notification service selection scenarios. Within inContext
the ranking method has been evaluated further on real case studies, focusing on
functional correctness rather than scalability.

The first series of tests focuses on measuring the selection time when the
number of services increases. There was a fixed number of criteria that was used
to evaluate the services here (there were 6 criteria). We considered up to 1000
services.

Figure 3 shows that the approach is essential linear with respect to the number
of services.

The second evaluation case was to evaluate the selection time in the light
of increasing the number of criteria. We fixed the number of services to 4, but
tested up to 192 criteria. The test results are shown in Fig. 4. We can again see
that the approach is linear with respect to the number of criteria.

Fig. 4. Evaluation results for increasing numbers of criteria with a fixed number of
services

Automated Context-Aware Service Selection for Collaborative Systems 271

Fig. 5. Results for increasing number of services and criteria

In the last test we evaluated the selection time against both an increasing
numbers of criteria and services. We defined a number of test groups with dif-
ferent service numbers and evaluated these against an increase in criteria. The
evaluation results are shown in Fig. 5.

From the results, we can see that the scalability will be not dramatically
decreased with an increasing number of criteria if the number of services is not
too large (e.g. less than 16 services) or if we consider large number of services
but smaller numbers of criteria (less than 96 criteria).

This merits some more general discussion: in the real world service selection
scenarios, we do not expect there to be vast numbers of criteria, so around 100
seems a good pragmatic upper bound. Also, in terms of competing services, while
we expect these to increase with more services becoming available, it seems safe
to claim that a choice of 20 services fulfilling our functional requirements and
hence been drawn into the comparison should be already a significant number.

Additionally, we should see that the services are chosen in a matter of sec-
onds based on the prototype implementation (which has not been designed with
performance in mind, but rather with functional correctness). When considering
real service selection scenarios, the runtime of services usually exceed this time
by far, and being presented with the best possible service will be ‘worth the
wait’, even more so if we consider this selection to form part of a longer running
business process possibly containing human tasks.

It would also be interesting to evaluate the selection correctness from a user
point of view. However, correctness is difficult to define in general because it
depends on different views and concerns. As is typical for multiple criteria de-
cision problems, one can tell which decision is wrong, but it is very hard to say
which one is better than others for humans. Large scale user testing would pro-
vide an evaluation and this has to some extent be conducted and recently in the
inContext project.

272 H.Q. Yu and S. Reiff-Marganiec

6 Related Work

Several research approaches have considered using context information for select-
ing suitable services for the end-user. Location, which is introduced in Cooltown
project [Pac04], [RT06] and the Jini [KEKW04] service discovery protocol, is the
earliest form of context information used for service selection. These approaches
can discovery and select the service nearest to the user. Nerveless, the context
information is limited to location context only.

[CKL05] and [LH03] extended the context information by adding so called
dynamic and static service attributes. The dynamic service attributes are those
characteristics of a service whose values change over time. Other attribute are
said to be static. Since there is more than a single context constraint, these
works make use of weighted vector based aggregation functions for ranking the
services and returning the top matches to the user. However, there are two main
drawbacks:

1. the work is reliant on a syntactic representation of contextual information of
services. Consequently, it is very difficult to apply more advanced semantic
level searching, matching and reasoning techniques.

2. they only focus on modelling services’ attributes/context information with-
out specifying the user’s context information. Thus, context-awareness means
service non-functional properties awareness.

Work in [ESB06] addressed the first drawback by utilising concepts from the
Semantic Web. However, it does not address the second problem of considering
and modelling user context information. In contrast, [SVC+03] makes a lot of
efforts on defining user’s context information in details and identifies nine cate-
gories expressing user context: User information, Personal Information, Activity
Information, Social Information, User Defined Rules, Environment Information,
Application Information, Terminal Information and Network information. How-
ever, this work then expects service developers to build suitable new services in
order to satisfy these context constraints.

In summary, current context-aware service selection methodologies do not
bridge the gap between user’s context and service’s context. Few approaches
provide a clear picture of using the user’s context information for generating the
service selection criteria/constraints. Furthermore, the ranking methods are far
more simplistic than what is really required to cope with the context mapping
between user and services. The presented work bridges between service and user
context and provides a powerful, yet scalable ranking approach.

7 Conclusion and Future Work

In this paper, we developed a context model including four aspects typical for
collaborative systems: user profile, resources, activities and physical environ-
ment. In order to link the user context information to the service selection, we
defined a meta data based category system and context-aware criteria which

Automated Context-Aware Service Selection for Collaborative Systems 273

can be automatically generated by querying both user context and service non-
functional meta data. Context-aware service selection also requires a suitable
selection method to use the criteria. Therefore, we introduced the TLE selection
method, which is based on type-based evaluation functions and an extended LSP
aggregation method. Our evaluation results show capability in both increasing
numbers of services as well as increasing numbers of criteria. We illustrated the
need for this work through two typical scenarios.

The presented selection method has been developed and applied for service
selection as presented in this paper, however in its more basic form it can be
transferred to other domains where automatic selection based on a number of
criteria is required. One such transfer has been made to select appropriate people
for a people finder service [YHHRM07].

There are some issues worth future exploration. On one hand, it would be
worthwhile to explore how other services selected as part of a workflow provide
additional context and requirements. In fact, we have recently started to look
at this issue and initial result has been presented in [YRMT08]. On the other
hand, it is worthwhile to enable reasoning on context information to determine
criteria weights automatically rather than statically providing weights for each
user or service domain.

Acknowledgments. This work is partially supported by EU inContext (In-
teraction and Context Based Technologies for Collaborative Teams) project:
IST-2006-034718.

References

[CKL05] Cuddy, S., Katchabaw, M., Lutfiyya, H.: Context-aware service selec-
tion based on dynamic and static service attributes. In: Proceedings of
IEEE International Conference on Wireless And Mobile Computing,
Networking And Communications, vol. 4 (2005)

[CMCe08] Yu, H.Q., Schall, D., Melchiorre, C., Reiff-Marganiec, S., Dustdar, S.:
Incontext – interaction and context-based technologies for collabora-
tive teams. In: Cunningham, P., Cunningham, M. (eds.) Collaboration
and the Knowledge Economy: Issues, Applications, Case Studies. IOS
Press, Amsterdam (2008)

[Duj96] Dujmovic, J.J.: A method for evaluation and selection of complex hard-
ware and software systems. In: Proceedings of 22nd International Con-
ference for the Resource Management and Perfromance Evaluation of
Enterprise Computer Systems, Turnersville, New jersey (1996)

[Dus04] Dustdar, S.: Caramba—a process-aware collaboration system support-
ing ad hoc and collaborative processes in virtual teams. Distrib. Par-
allel Databases 15(1), 45–66 (2004)

[ESB06] El-Sayed, A.-R., Black, J.P.: Semantic-based context-aware service dis-
covery in pervasive-computing environments. In: Proceedings of IEEE
Workshop on Service Integration in Pervasive Environments. SIPE
(2006)

274 H.Q. Yu and S. Reiff-Marganiec

[FipD07] European Union FP6 Framework and inContext project Deliveries.
Design and proof-of-concept implementation of the incontext context
model version 1 wp 2.2 (2007)

[Gro04] RDF W3C Working Group. Rdf/xml syntax specification (2004),
http://www.w3.org/TR/rdf-syntax-grammar

[Gro08] W3C SPARQL Standard Group. Sparql query language for rdf (2008),
http://www.w3.org/TR/rdf-sparql-query

[KEKW04] Klimin, N., Enkelmann, W., Karl, H., Wolisz, A.: A hybrid approach
for location-based service discovery. In: Proceedings of International
Conference on Vehicular Ad Hoc Networks (2004)

[LH03] Lee, C., Helal, S.: Context attributes: An approach to enable context-
awareness for service discovery. In: Proceedings of SAINT 2003 (2003)

[Org04] OASIS Organisation. Uddi version 3 specification, oasis standard
(2004)

[OWL] Owl web ontology language,
http://www.w3.org/TR/owl-ref/

[Pac04] Hewlett Packard. Cooltown project (2004),
http://www.cooltown.com/cooltown/

[RMTC+08] Reiff-Marganiec, S., Truong, H.-L., Casella, G., Dorn, C., Dustdar, S.,
Moretzki, S.: The incontext pervasive collaboration services architec-
ture. In: Mahonen, P., Pohl, K., Priol, T. (eds.) Proceedings of Service
Wave 2008. LNCS, vol. 5377, pp. 134–146. Springer, Heidelberg (2008)

[RT06] Riva, O., Toivonen, S.: A hybrid model of context-aware service provi-
sioning implemented on smart phones. In: Proceedings of ACS/IEEE
International Conference on Pervasive Services (2006)

[SVC+03] Sygkouna, I., Vrontis, S., Chantzara, M., Anagnostou, M., Sykas, E.:
Context-aware services provisioning on top of active technologies. In:
Horlait, E., Magedanz, T., Glitho, R.H. (eds.) MATA 2003. LNCS,
vol. 2881, pp. 67–76. Springer, Heidelberg (2003)

[YHHRM07] Yu, H.Q., Hong, Y., Heckel, R., Reiff-Marganiec, S.: Context-sensitive
team formation: Towards model- based context reasoning and update.
In: 6th International and Interdisciplinary Conference on Modeling and
Using Context, Doctorial Consortium (2007)

[YRM08] Yu, H.Q., Reiff-Marganiec, S.: A method for automated web service
selection. In: Proceedings of 2nd IEEE International Workshop on Web
Service Composition and Adaptation (WSCA 2008) Special Theme:
Dynamic Services Composition and User Steering held in conjunction
with 6th IEEE International Conference on Services Computing (SCC
2008), Honolulu, USA (2008)

[YRMT08] Yu, H.Q., Reiff-Marganiec, S., Tilly, M.: Composition context for ser-
vice composition. In: Proceedings of IEEE International Conference on
Web Service, WIP Track (2008)

http://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/owl-ref/
http://www.cooltown.com/cooltown/

Development Framework for
Mobile Social Applications

Alexandre de Spindler, Michael Grossniklaus, and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{despindler,grossniklaus,norrie}@inf.ethz.ch

Abstract. Developments in mobile phone technologies have opened the
way for a new generation of mobile social applications that allow users to
interact and share information. However, current programming platforms
for mobile phones provide limited support for information management
and sharing, requiring developers to deal with low-level issues of data
persistence, data exchange and vicinity sensing. We present a framework
designed to support the requirements of mobile social applications based
on a notion of P2P data collections and a flexible event model that con-
trols how and when data is exchanged. We show how the framework can
be used by describing the development of a mobile application for col-
laborative filtering based on opportunistic information sharing.

Keywords: Mobile SocialApplications,DevelopmentFramework,Adap-
tive Middleware.

1 Introduction

The increased computational power and storage capacity of mobile phones now
makes them capable of hosting a wide range of multimedia services and appli-
cations. In addition, the integration of sensing devices such as GPS and connec-
tivity such as Bluetooth and WiFi has made it easier to support location-based
services and new forms of information sharing.

As a result of these technical innovations, service providers and application de-
velopers are keen to exploit a new potential market for mobile social applications
that allow users to interact and share data via their mobile phones. However,
programming platforms for mobile phones currently provide little support for
flexible forms of information management and sharing. In a rapidly emerging
and highly competitive market, this presents companies with a major challenge
in terms of the effort required to prototype and validate potential applications.

To address this problem, we have designed an application development frame-
work to support the requirements of mobile social applications. The frame-
work ensures that developers can work at the level of the application domain
model, without having to deal with the low-level mechanisms provided in current

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 275–289, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

276 A. de Spindler, M. Grossniklaus, and M.C. Norrie

platforms for dealing with peer-to-peer (P2P) information sharing, data persis-
tence and location sensing. Instead, applications can be designed around a novel
concept of P2P collections of persistent data coupled with a flexible event model
that can determine how and when data is exchanged and processed.

In this paper, we present the requirements of mobile social applications along
with the limitations of existing platforms with respect to these requirements. We
then provide the details of our framework and demonstrate its use by describ-
ing how we developed an application for collaborative filtering based on P2P
information sharing in mobile environments.

Section 2 discusses the limitations of existing platforms for mobile phones
with respect to the goal of supporting the development of mobile social applica-
tions. In Sect. 3, we then examine the requirements of mobile social applications
in detail and describe how our framework supports these requirements. Details
of P2P collections and the event model are given in Sect. 4 and Sect. 5, re-
spectively. In Sect. 6, we describe how the collaborative filtering application was
implemented using the framework. Concluding remarks are given in Sect. 7.

2 Background

Mobile phones are no longer simply regarded as communication devices, but
rather as computing devices capable of, not only hosting a range of applications,
but also communicating with each other. This has led to a great deal of interest
in mobile social applications which can take advantage of these capabilities to
allow users to interact and share information in innovative ways. Applications
have been proposed that exploit ad-hoc network connections between phones
via Bluetooth or WiFi to support user awareness of social contexts [1,2] or to
automatically exchange data between users in shared social contexts [3,4]. In
particular, physical copresence has been used as a basis for forming a weakly
connected community of users with similar tastes and interests [5,6].

A variety of development toolkits for mobile phones are available. These range
from vendor-specific solutions such as iPhone SDK1, Windows Mobile Edition2,
Symbian3 and Google Android4 to the platform independent Java WTK (Wire-
less Toolkit). These provide integrated emulation environments along with sup-
port for the development of user interfaces. They also provide access to typical
phone features such as personal information management (PIM) data, the cam-
era, Bluetooth, Internet access and GPS. However, the development of mobile
social applications using these toolkits still requires considerable effort since
they provide no high-level primitives to support vicinity sensing, location aware-
ness, information sharing and data persistence. As a result, developers have to

1 http://developer.apple.com/iphone
2 http://www.microsoft.com/windowsmobile
3 http://www.symbian.com
4 http://code.google.com/android

Development Framework for Mobile Social Applications 277

implement components to handle requirements related to these issues for each
application and each target platform.

For example, Java WTK uses a simple key-value store for data persistence
which means that developers have to define and implement the mapping
between Java application objects and key-value pairs for each application. This
contrasts with development platforms for PCs such as db4o5 that support Java
object persistence. Support for information sharing is also limited in these plat-
forms and data sharing must be implemented based on sockets able to send and
receive binary data. The developer must therefore implement the facilities to
serialise and deserialise data, to open and listen to sockets and stream data.
Short-range connectivity such as Bluetooth or WiFi can be used to react to
peers appearing in the physical vicinity. Using Java WTK, the developer has to
implement two listeners, one registered for the discovery of a device and another
which is notified about services discovered on a particular device. For each scan
of the environment, both listeners must be registered and the developer must
also implement the coupling of peer discovery with data sharing.

Frameworks have been developed specifically for P2P connectivity including
Mobile Web Services [7] and JXTA [8], but these tend to focus on lower-level
forms of data exchange rather than information sharing. For example, JXTA
provides the notion of a peer group as a central concept of their metamodel.
A group mainly provides facilities for peer discovery, service publishing and
message routing. Application development consists of specifying message formats
and how they are processed in terms of request and response handling similar to
that of service-oriented architectures. This results in a blending of the application
logic typically embedded in an object-oriented data model and the collaboration
logic specified based on a request-response scheme. Efforts to provide higher
level abstractions of P2P networks have either focussed on the allocation and
retrieval of identifiers to resources in fixed networks without considering any
notion of handling [9] or they offer only a few limited collaboration primitives
and lack support for vicinity awareness [10,11].

Within the database research community, a number of P2P database systems,
overlay networks and middlewares have been developed including Pastry [12], Pi-
azza [13], PeerDB [14], Hyperion [15], P-Grid [16] and GridVine [17]. However,
research efforts have tended to focus on issues of object identity, schema match-
ing and query reformulation, distributed retrieval, indexing and synchronisation
as well as transaction management. To date, there has been little effort on sup-
porting developers of mobile applications that utilise P2P connectivity to share
information opportunistically with other users in the vicinity.

Based on our own experiences of developing mobile social applications using
existing platforms, we realised that there was a need for an application framework
that offers functionality for P2P information sharing as high-level primitives. In
the next section, we examine the requirements of such a framework in detail
before presenting an overview of the framework that we have developed.

5 http://www.db4o.com

278 A. de Spindler, M. Grossniklaus, and M.C. Norrie

3 Framework

A distinguishing feature of mobile social applications is the notion of collabo-
ration. Each peer follows a set of application-specific rules which determine its
behaviour within the collaborative environment. This behaviour includes the lo-
cal creation, storage and processing of data as well as interacting with other
peers by sending, receiving and forwarding data. Such behaviour may be trig-
gered automatically or explicitly by the user. Each peer offers the services of the
application to the user independently of the other peers, but the effectiveness of
these services depends on the combined effects of local peer behaviour.

To examine the requirements of mobile social applications and illustrate how
our framework supports these requirements, we will consider the example of a
recommender system. Due to space limitations, a more comprehensive exam-
ination cannot be presented here. In previous work [18], we have shown how
collaborative filtering (CF) algorithms can be adapted to mobile settings using
physical copresence in social contexts as a basis for measuring user similarity.
Figure 1 will be used to illustrate how such an application works. Assume users
rate items such as music, films or places to go and this data is stored as a collec-
tion C of triples (u, i, r) where u is a user, i an item and r a rating. Essentially,
we can view the collaborative filtering process as some function f that is applied
to C to return the result recommendation R as a list of items. The details of the
function f are not relevant to this discussion, but what is important is that each
peer has an instance of C and will locally compute f(C) when the recommender
service is called. We refer to such application-specific services as the application
logic of the system, and they may be executed either automatically or upon an
explicit request by the user.

An application may have multiple data collections defined by a schema shared
by all peers, say {C1, C2, ...Cn} and a set of participating peers {P1, P2, ...Pm}.

P1

C = { (u,i,r) }

R = f(C)appln

data

P1P2

P2P1

P1P3

q(C)publish

P2

C = { (u,i,r) }

R = f(C)appln

data

q(C)publish

P3

C = { (u,i,r) }

R = f(C)appln

data

q(C)publish

P4

C = { (u,i,r) }

R = f(C)appln

data

q(C)publish

Fig. 1. Collaborative Filtering as a Mobile Social Application

Development Framework for Mobile Social Applications 279

Each peer will have its own instance of each of the application collections and we
use Ci|Pj to denote the instance of the collection Ci stored on peer Pj . Note that
we prefer to refer to Ci|Pj as an instance of collection Ci rather than as a part of
some global collection Ci since the application services running on Pj will operate
only on the locally stored collection of the appropriate name, independently of
the collections stored on other peers. In the case of the collaborative filtering
application illustrated in Fig. 1, there are four peers each of which has a single
data collection C containing rating triples of the form (u, i, r) and an application
to compute the CF result denoted by R = f(C).

Computing user similarity in centralised CF algorithms can be computation-
ally expensive. In mobile settings, a much simpler approach can be used which
takes advantage of the fact that local data comes only from the owner of the de-
vice, or from users with similar tastes and interests. The underlying assumption
is that users who are close enough to exchange data through ad-hoc connections
between mobile devices share social contexts and hence are likely to have similar
tastes and interests. Detailed studies related to this assumption have been car-
ried out in a number of projects, see for example [5,6,18], and it is beyond the
scope of this paper to discuss this aspect in detail. Our interest here is the fact
that mobile social applications often involve some form of opportunistic sharing
of information based on ad-hoc connectivity between mobile devices, or possi-
bly mobile and stationary devices. It is therefore important that a development
framework for mobile social applications supports a notion of vicinity awareness.

At a given time t, the vicinity of a peer Pi is the set of peers to which Pi

is connected, and we denote this by Vt(Pi) = {P1, ..., Pk}. In Fig. 1, we use
a dashed circle to denote the connectivity range of P1 at time t and, hence,
Vt(P1) = {P2, P3}. If Pj ∈ Vt(Pi) then it is possible for peers Pi and Pj to
exchange data. The collaboration logic of an application will specify if, when
and what data is shared. We will discuss the details of how the if and when can
be specified later in the paper when we present the details of our framework.
The what is specified by associating a query expression qi with each application

collection Ci. We use
→

PjPk to denote an exchange of data from Pj to Pk. This
means that if Pj and Pk both have instances of collections {C1, C2, ...Cn} then

→
PjPk: ∀Ci ∈ {C1, C2, ...Cn}, Ci|Pk := qi(Ci|Pj) ∪ Ci|Pk

Figure 1 shows a case where P1 and P2 exchange data bilaterally, meaning
that each peer sends rating tuples to the other peer and adds the data to its local
C collection. The query expression q acts as a filter on the data to be published.
In the case of collaborative filtering, only the data pertaining to the actual user
of the device, and hence the user currently in the same social context, will be
sent to the other peer. In the case of the connection between P1 and P3, P3
sends data to P1 but P3 does not receive data from P1. This is indicated in the
figure by the fact that the connection between P1 and P3 has an arrow in only
one direction. It could be the case that P3 had previous encounters with P1 and
found their data unreliable and hence placed them on some sort of black list to
indicate that they did not want to receive data from them in the case of future

280 A. de Spindler, M. Grossniklaus, and M.C. Norrie

P2P Collection

Data
Management

Application Logic

Collaboration Logic

Data
Sharing

Vicinity
Awareness

a

c
d

Vicinity
Awareness

Data
Sharing

b

P2P1 P3

f
e

Fig. 2. Framework Overview

encounters. Note that, in practice, it might be that P1 would publish the data,
but P3 would simply choose not to receive it. Details of this will be given in later
sections.

Generally, it should be possible for mobile social applications to have flexibility
in determining how and when peers exchange data. For example, there are many
ways in which applications might want to control the exchange of data for reasons
of privacy. Within our framework, we provide a flexible event processing model
that allows applications to determine how and when they share data.

Having looked at the general operation and key requirements of mobile social
applications, we see that there are three main functionalities that a framework
needs to support. First, it needs to provide basic services for the management
and querying of data collections. Second, it should offer developers high-level
abstractions to enable data from those collections to be shared via ad-hoc con-
nections to peers. Third, it needs to provide vicinity awareness. At the same
time, it is important to separate the concerns of application logic and collabora-
tion logic to ensure maximum flexibility in meeting the requirements of a broad
spectrum of users, devices and applications. Figure 2 presents an overview of
our framework. The concept of a P2P collection is the central component which
encapsulates persistent data storage, data sharing and the ability to sense peers
entering and leaving a peer’s physical vicinity. As an interface to application
logic and user interaction, the framework offers standard data management fa-
cilities such as the creation, retrieval, manipulation and deletion of data (a).
These facilities are offered in terms of a database management system which
includes transaction management support. Furthermore, it offers a second inter-
face allowing collaboration logic to be specified and executed in terms of events
and their handling (d,e). By keeping these interfaces independent, we are able to
achieve the required separation of concerns. The actual scanning of the physical
environment (f) and data sharing (b,c) is encapsulated by the framework.

In the next section, we will present the concept of P2P collections in detail
before going on to describe how the collaboration logic can be specified by means
of the event processing system.

Development Framework for Mobile Social Applications 281

4 P2P Collections

Programming languages such as Java and C++ have standard libraries that
offer various types of collections in terms of interface definitions that declare
operations to insert, retrieve and remove data along with concrete implemen-
tations that provide the corresponding functionality. Following this paradigm,
the central component of our framework—the peer collection—is an alternative
collection implementation that provides additional functionality to address the
requirements of mobile social applications.

Most programming systems define collections in terms of a collection be-
haviour and a member type. For example, Java offers collection implementa-
tions for sets, lists and maps that, through the use of generics, can be bound
to a member type that restricts the possible members of the collection. Our
definition of a peer collection follows this approach but extends it to cope with
more specific requirements. Generally, a peer collection is characterised by its
name n, its member type t and its behaviour b. As we will see, the use of a
name to identify the collection is motivated by the requirements of data shar-
ing in a peer-to-peer environment that makes it necessary to identify collections
across peers. Our framework introduces additional collection behaviours to sup-
port data management. The behaviour b ∈ {set, bag, sequence, ranking}, where
{set, bag} are unordered, {sequence, ranking} are ordered and {set, ranking}
have no duplicates while {bag, sequence} do.

Similar to common programming environments, methods to add, retrieve and
remove data to/from a collection provide basic data management. Peer collec-
tions can optionally be marked as persistent with the effect that not only the
collection, but also the members are automatically made persistent in a trans-
parent way. In addition, our framework has support for events that get triggered
whenever elements are added to, or removed from, peer collections. In Sect. 5,
we will discuss how this mechanism can be leveraged to support the decoupling
of the collaboration logic.

Our framework also features a low-level query facility that surpasses the data
retrieval mechanisms offered by current collection implementations. A query is
specified by building a query tree where the inner nodes represent query op-
erations and leaf nodes contain query arguments. Once a query tree has been
constructed, its root node is passed to the query evaluator component of the
framework which processes the query and returns the result. While a complete
presentation of our query facility is outside the scope of this paper, Tab. 1 gives
an overview of the most important nodes including those we refer to in this
paper. A node may have child nodes and attributes. For example, a selection
node has a collection from which members are to be selected as a child and
an attribute containing the selection predicates. In order to simplify the task of
creating frequently used queries, a query tree builder is provided with the frame-
work. Given the required parameters, it automatically builds the query tree and
returns its root node.

Peer collections also address the requirements of data sharing. This additional
functionality is provided through a set of methods that can be used to make

282 A. de Spindler, M. Grossniklaus, and M.C. Norrie

Table 1. Example query tree nodes, their children and attributes

Node #Child Nodes Attributes

Selection 1 predicates
Intersect 2 −
Union 2 −
Map 1 function
Attribute Access 1 attribute
Collection − collection

a collection available for sharing, connect it to other peers and exchange its
members. In order for two peers P1 and P2 to share data, both peers have to
make the collection to be shared available. When the two peers enter in each
other’s vicinity, available collections can be connected if they have the same
name n and member type t. Once two peer collections are connected, all or some
of the collection members from each peer are sent to the other peer. A query
expression attached to the collection determines which members are sent.

Based on these basic sharing capabilities, our framework also provides a flexi-
ble mechanism to control what data is exchanged. This can be done in two ways.
A selection query can be bound to a collection to filter data sent to peers. These
filter queries are also expressed and evaluated based on the framework’s query
facilities presented above. In addition, white and black lists can be used to con-
trol with which peers data is exchanged. Thus, a collection that has been made
available is associated with a positive and negative neighbourhood of peers. The
positive neighbourhood contains those peers with which members are shared if
they appear in vicinity, while other peers in vicinity will be ignored. If the posi-
tive neighbourhood is empty, members will be shared with any peer appearing in
vicinity. The negative neighbourhood optionally contains those peers that should
not be considered for data sharing even if they appear in vicinity. Similar to the
positive neighbourhood, if that collection is empty, no restrictions are assumed
to exist. These two neighbourhoods therefore enable a user to define constraints
over the social network within which data is shared.

Our framework offers support for vicinity awareness which is used to react
upon the appearance or disappearance of peers in the physical vicinity. As well
as triggering events to connect collections and share data as described above,
an application may react on such events directly. We will present the event
mechanism offered by the framework in more detail in the next section.

Based on the Java programming language in conjunction with Java WTK
platform, we will now describe how the framework can be implemented. Other
programming languages such as C++ or Objective C as well as other platforms
such as Symbian, iPhone SDK or Google Android can be supported analogously.

The implementation of the framework consists of two parts. First, there is
the application programming interface (API) visible to the developer of a mo-
bile social application together with the implementation of functionality that
is common to all platforms. Then, there is the service provider interface (SPI)
which needs to be implemented to support the peer collection framework on a

Development Framework for Mobile Social Applications 283

setAvailable(QueryNode<T>)
setUnavailable()

name: String

P2PCollection<T>

addHandler(Handler<T>)
removeHandler(Handler<T>)
setPersistent()
setTransient()

ObservableCollection<T>

result(): Collection<T>

List<QueryNode<?>>

QueryNode<T>

action(ObservableCollection, T)

Handler<T>

neighbourhood+ neighbourhood-

0..*

add(T)
remove(T)
iterator(): Iterator<T>

Collection<T>

P2PSet P2PBag P2PSequence P2PRanking

Fig. 3. API of the peer collection framework

given mobile phone and, thus, represents the platform-specific implementation.
While other frameworks such as Java WTK address a similar problem, they
usually do not cover the entire range of existing devices. In the remainder of
this section, we will describe both parts of the framework in turn. Figure 3 gives
an overview of the peer collection framework API that is based on the concepts
described above. At the top of the figure, a simplified version of the existing Java
collection interface is shown, highlighting the methods for adding, retrieving and
deleting collection members. Our framework extends the Java collection interface
and introduces an interface ObservableCollection<T>. Observable collections
support the registration of handlers that are invoked whenever an event is trig-
gered through the addition or removal of a collection element. A peer collection
is represented by interface P2PCollection<T> that defines a collection name as
well as methods to make the peer collection available or unavailable. The four
different collection behaviours are provided through dedicated implementations
of the peer collection interface. Finally, the query facility of the framework is sup-
ported by QueryNode<T> which serves as the common interface of the various
query nodes discussed earlier.

The peer collection framework SPI defines the interfaces for three platform-
dependent components and is shown in Fig. 4. One component offers persistent
data storage, another the connection technology and a third the scanning of the
physical vicinity for other peers. Note that, in contrast to existing platforms,
these components have to be implemented once per platform rather than once
per application. All persistence mechanisms make use of a single class offering
database facilities such as storing, retrieving and deleting objects. This class is

284 A. de Spindler, M. Grossniklaus, and M.C. Norrie

register(Collection)
unregister(Collection)
store(Collection, Object)
delete(Collection, Object)
select(Collection, Predicate): Collection
intersect(Collection, Collection): Collection
union(Collection, Collection): Collection
collection(String): Collection

StorageProvider

turnOn(Peer)
turnOff()
send(Object, Peer, Map<String, Object>)
notify(Object, Map<String, Object>)

SharingProvider
implements

<<Observable>>

scan()
start(Frequency)
stop()
notify(Collection<Peer>)

Scanner
implements

<<Observable>>

Fig. 4. SPI of the peer collection framework

defined in terms of interface StorageProvider and the framework makes use of
it based on this interface only which allows it to be adapted to any underlying
persistent storage technology such as a record store in the case of Java WTK.

To send and receive data, our framework makes use of a component that is
dependent on the connection technology. The implementation of this component
is abstracted through interface SharingProvider. Developers may turn on and
off its availability within the collaborative environment. When turned on, the
technology-specific information for reaching the local peer must be provided. In
the case of Java sockets, this information includes a host identifier and a port
number. Once the peer is turned on, collections may be made available. The peer
can be turned off at any time, in which case, no more collections are available and
the local peer is no longer available to other peers. This component is defined
by a generic interface and can thus be implemented for different connection
technologies such as Java sockets, WiFi and Bluetooth.

Finally, connection technologies such as Bluetooth and WiFi are used to scan
the physical environment of a peer and discover other peers nearby. As with the
other two components, the scanning is implemented by a platform-dependent
component which is defined by and used through the interface Scanner. This
interface declares the means to perform a single scan as well as starting a periodic
scan with a frequency that can be specified.

5 Event Processing

Within our framework, it is the appearance of a peer in the vicinity of another
that drives the sharing process. Thus, data sharing is linked with an event system
composed of events for which handlers can be registered to be notified. While
events and handlers can be specified by an application developer, predefined
system events exist. Table 2 shows these events along with the arguments to
which they are attached and the parameters passed to the registered handlers.
To register a handler for an event, the developer needs to implement interface
Handler<T> shown in Fig. 3 and specify an action method to be executed.

As part of the framework, a system collection Vicinity is provided. This
collection is maintained by the framework and its members represent those peers
that are currently in the physical vicinity. Whenever a new peer is detected, a new
object is created and added to the Vicinity collection. When a peer moves away,

Development Framework for Mobile Social Applications 285

Table 2. Events, their arguments and parameters passed to the handlers

Event Argument Parameters

New Object − Object
Object Changed Object Object, Attribute
Member Added Collection Collection, Member
Member Received Collection Collection, Member, Source Peer
Member Removed Collection Collection, Member

the respective member is removed from the collection. Note that this collection is
not set to be persistent. Since our event model generally supports the triggering
of actions when objects are added to collections, vicinity awareness is realised
based on addition events associated with the Vicinity collection that will be
triggered when a new peer enters the physical vicinity. If a collection is made
available, a predefined handler for sending collection members is automatically
registered with this addition event.

As explained previously, when a collection is made available, the root node of
a selection query is passed along. The query is handed over to the handler. The
handler action consists of executing the query and sending the result.

6 Collaborative Filtering

To show how our framework is used, we present the implementation of the rec-
ommender system introduced in Sect. 3 as a use case. A detailed description of
the system has been presented in [18]. A fundamental ability of recommender
systems is to infer a rating for a requesting user about a target item unknown
to the user. Based on this query, all items known to the system can be sorted
according to the inferred rating for a requesting user. In order to recommend an
item, the best ranked item(s) can be presented to the user.

Ratings are tuples that contain references to a user and item and the rating
value. Consequently, a new tuple is created whenever a user makes a rating. In
order to process the fundamental query, a filtering algorithm such as user-based
collaborative filtering processes the collection of tuples as follows.

1. Compute the similarity of the requesting user to all other users.
2. Select n most similar users.
3. Aggregate the rating values of the users selected in step 2 for the target item.

The resulting aggregation is the rating value inferred for the requesting user
about the target item. However, as was mentioned in Sect. 3, the first two steps
can be omitted in a mobile setting where users exchange their own ratings when-
ever they are in each other’s vicinity. Therefore, the main components of this
recommender application can be summarised as follows. The application model
consists of user and item entities and a relationship representing rating tuples.
The application logic performs the rating inference by retrieving all rating tuples

286 A. de Spindler, M. Grossniklaus, and M.C. Norrie

stored locally which contain the target item and aggregating their rating values.
The collaboration consists of sending rating tuples made by the local user when-
ever that user encounters other users in the vicinity while consuming items. Note
that peers do not share tuples as soon as they are in each other’s vicinity but
wait for a configurable amount of time before starting the data transmission.

For illustration, we now describe how this application is implemented using
the Java WTK platform. In a first step, the application model is mapped to the
Java object model. The concepts of a user and an item are described by classes
User and Item, respectively. These classes declare at least one identifier attribute
allowing their instances to be recognised as equal when they are shared among
peers. Additionally, attributes such as names and descriptions can be added
to provide the users with meaningful information. Finally, we define the class
RatingTuple to represent ratings as shown below.

public class RatingTuple {

User user;

Item item;

float rating;

}

To access and share ratings, we create a peer collection named RatingTuples
with set behaviour and RatingTuple as its member type. The following code
shows the creation of this collection and how it is set to be persistent.

P2PSet<RatingTuple> ratingTuples =new P2PSet<RatingTuple>("RatingTuples");

ratingTuples.setPersistent();

Having modelled the application in Java, the developer uses the data manage-
ment facilities provided by peer collections to implement the application logic.
In our simple example, the application logic consists of two main components.
First, it needs to give the user the possibility of generating ratings and storing
them persistently. Second, it needs to be able to infer ratings about items un-
known to the user. The following example shows how to store a user rating by
creating a new member of the RatingTuples collection. Note that the amount
of code is equivalent to that required for existing Java collections.

RatingTuple tuple = new RatingTuple(localUser, item, rating);

ratingTuples.add(tuple);

To infer ratings, all members of RatingTuples containing the target item must
be selected. To do so, the query in Fig. 5 is used. It consists of a selection
operation where the attribute comparison predicate constrains the item attribute
to point to the target item. An attribute access node performs a projection to
obtain the rating values of all tuples returned by the selection node.

Using the query tree builder, the code required to construct this query is given
below. At runtime, once this query has been executed, the application logic can
simply aggregate the rating values returned by the projection node.

QueryNode<RatingTuple> collection = Queries.collection("RatingTuples");

QueryNode<RatingTuple> selection =

Queries.select(collection, "item", targetItem);

QueryNode<Float> projection = Queries.project(selection, "rating");

Development Framework for Mobile Social Applications 287

C

item = [target item]

[RatingTuples]

rating value

Fig. 5. A query selecting rating tuples
containing the target item

C

user = [local user]

[RatingTuples]

Fig. 6. A query selecting rating tuples
containing the local user

To implement the opportunistic sharing of rating tuples, the query to be executed
when a peer appears in the vicinity must be specified. Since we only want to
send those rating tuples containing the local user, the selection query shown in
Fig. 6 is built using the statements given below.

QuerNode<RatingTuple> selection =

Queries.select(collection, "user", localUser);

This selection query is given as an argument when the RatingTuples collection
is made available.

ratingTuples.setAvailable(selection);

We now compare the effort required to implement this application with that
required if using Java WTK. Figure 7 compares the components needed and
the amount of interaction required to implement data management, vicinity
awareness and data sharing using Java WTK, on the left hand side, and our
framework, on the right hand side. To implement the application logic using
Java WTK, a Java collection is used to maintain all rating tuples. Consequently,
when all tuples with a particular item must be selected, all tuples would have
to be accessed in order to select those having the required attribute value. The
program code implementing this behaviour would be part of the application
logic whereas, using our framework, it is hidden away from the developer by the
query facility. The transparent persistence mechanism is a great improvement
compared to Java WTK where application objects have to be serialised manually
and stored using key-value records. In order to store objects of a particular type
based on key-value pairs, an application developer has to program a database-
like component and put a lot of effort into overcoming the impedance mismatch
between objects and key-value pairs. If objects of different types must be stored,
the required effort increases even further and, allowing stored objects to reference
each other, would make this even more challenging. As opposed to the simple
vicinity awareness mechanism provided by our framework, the developer of a
Java WTK application needs to implement the scanning of the environment
based on low-level connection technologies such as Bluetooth or WiFi. Moreover,

288 A. de Spindler, M. Grossniklaus, and M.C. Norrie

Java WTK

Application StreamConnectionDiscoveryAgent DiscoveryListener DataOutputStream DataInputStreamRecordStoreSerialiser

DiscoveryAgent.startInquiry(…)
DiscoveryListener.deviceDiscovered(…)
DiscoveryListener.inquiryCompleted()
DiscoveryAgent.searchServices(…)
DiscoveryListener.servicesDiscovered(…)
DiscoveryListener.serviceSearchCompleted()

RecordStore.openRecordStore(…)
Serialiser.serialise(Object)
RecordStore.addRecord(…)
RecordStore.getRecord(…)
Seriliaser.deserialise(…)
RecordStore.closeRecordStore()

Serialiser.serialise(Object)
StreamConnection.openDataOutputStream()
StreamConnection.openDataInputStream()
DataOutputStream.write(…)
DataInputStream.readFully(…)
DataOutputStream.close()
DataInputStream.close()
StreamConnection.close()
Serialise.deserialise(…)

Peer Collections

P2PCollectionApplication

setPersistent()

setAvailable(…)
peerDiscovered(…)

setAvailable(Query)
dataReceived(…)

Fig. 7. Comparison of using Java WTK (left) and our framework (right)

using our framework, the application developer does not have to bother with low-
level socket-based connectivity and data transmission in terms of serialisation
and deserialisation. The fact that the developer can work at the level of the
application model by deciding how data collections should be shared presents a
significant contribution to the development of mobile social applications.

7 Conclusions

We have motivated a set of novel requirements introduced by the emerging class
of mobile social applications. Due to the limitations and heterogeneity of mobile
phone development platforms, we have proposed to address these requirements
with a framework based on a notion of peer collections. A peer collection en-
capsulates data management, data sharing and vicinity awareness, all of which
are recurring issues in the development of mobile social applications. Further,
through the provision of both declarative queries and events associated with
peer collections, our framework decouples application and collaboration logic.
The merits of our approach have been shown by comparing the implementation
of a collaborative filtering application based on our framework with one based
on an existing mobile phone platform.

We are currently experimenting with extending our framework to accommo-
date further mobile social application requirements. Vicinity awareness is cur-
rently provided in terms of a real-time representation. One extension is to keep
track of peers previously encountered which enables applications to take into
account frequencies of encounters and to recognise social contexts. We are also
considering support for access control by providing the possibility of associating
multiple selection queries with a P2P collection to represent user groups or social
contexts.

Development Framework for Mobile Social Applications 289

References

1. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Personal
Ubiquitous Comput. 10(4) (2006)

2. Nicolai, T., Yoneki, E., Behrens, N., Kenn, H.: Exploring social context with the
wireless rope. In: OTM 2006 Workshops (2006)

3. Borcea, C., Gupta, A., Kalra, A., Jones, Q., Iftode, L.: The mobisoc middleware
for mobile social computing: challenges, design, and early experiences. In: Proc.
1st Intl. Conf. on MOBILe Wireless MiddleWARE, Operating Systems, and Ap-
plications (2007)

4. Eagle, N., Pentland, A.: Social serendipity: mobilizing social software. Pervasive
Computing, IEEE 4(2) (2005)

5. Counts, S., Geraci, J.: Incorporating Physical Co-presence at Events into Digital
Social Networking. In: Proc. CHI 2005 (2005)

6. Lawrence, J., Payne, T.R., Roure, D.D.: Co-presence Communities: Using Perva-
sive Computing to Support Weak Social Networks. In: Proc. Intl. Workshop on
Distributed and Mobile Collaboration (2006)

7. Srirama, S.N., Jarke, M., Prinz, W.: Mobile web services mediation framework. In:
Proc. 2nd Workshop on Middleware for Service Oriented Computing (2007)

8. Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J.C.,
Pouyoul, E., Yeager, B.: Project JXTA 2.0 Super-Peer Virtual Network. Technical
report, Sun Microsystems, Inc. (2003)

9. Aberer, K., Alima, L.O., Ghodsi, A., Girdzijauskas, S., Haridi, S., Hauswirth, M.:
The Essence of P2P: A Reference Architecture for Overlay Networks. In: Proc. 5th
IEEE Intl. Conf. on Peer-to-Peer Computing (2005)

10. Wang, A.I., Bjornsgard, T., Saxlund, K.: Peer2Me - Rapid Application Framework
for Mobile Peer-to-Peer Applications. In: Intl. Symp. on Collaborative Technologies
and Systems (2007)

11. Kortuem, G., Schneider, J., Preuitt, D., Thompson, T.G., Fickas, S., Segall, Z.:
When Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing in
Mobile Ad hoc Networks. In: Proc. Intl. Conf. on Peer-to-Peer Computing (2001)

12. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

13. Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.L.,
Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project.
SIGMOD Rec. 32(3) (2003)

14. Ooi, B.C., Tan, K.L., Zhou, A., Goh, C.H., Li, Y., Liau, C.Y., Ling, B., Ng, W.S.,
Shu, Y., Wang, X., Zhang, M.: Peerdb: peering into personal databases. In: Proc.
ACM SIGMOD Intl. Conf. on Management of Data (2003)

15. Rodŕıguez-Gianolli, P., Kementsietsidis, A., Garzetti, M., Kiringa, I., Jiang, L.,
Masud, M., Miller, R.J., Mylopoulos, J.: Data sharing in the hyperion peer database
system. In: Proc. 31st VLDB Conf. (2005)

16. Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing data-oriented overlay
networks. In: Proc. 31st VLDB Conf. (2005)

17. Cudré-Mauroux, P., Agarwal, S., Budura, A., Haghani, P., Aberer, K.: Self-
organizing schema mappings in the gridvine peer data management system. In:
Proc. 33rd VLDB Conf. (2007)

18. de Spindler, A., Norrie, M.C., Grossniklaus, M.: Recommendation based on Oppor-
tunistic Information Sharing between Tourists. Information Technology & Tourism
(to appear)

Evolving Services from a Contractual
Perspective�

Vasilios Andrikopoulos1, Salima Benbernou2, and Mike P. Papazoglou1

1 ERISS, Tilburg University, Netherlands
2 LIRIS, Université de Lyon 1, France

{v.andrikopoulos,mikep}@uvt.nl, sbenbern@liris.univ-lyon1.fr

Abstract. In an environment of constant change, driven by competition
and innovation, a service can rarely remain stable - especially when it de-
pends on other services to fulfill its functionality. However, uncontrolled
changes can easily break the existing relationships between a service and
its environment (its customers and providers). In this paper we present
an approach that allows for the controlled evolution of a service by lever-
aging the loosely-coupled nature of the SOA paradigm. More specifically,
we formalize the notion of contracts between interacting services that en-
able their independent evolution and we investigate under which criteria
can changes to a contract-bound service, or even to the contract itself,
be transparent to the environment of the service.

Keywords: service evolution, service contracts, compatibility, contract
invariance, contract evolution.

1 Introduction

A number of serious challenges like mergers and acquisitions, outsourcing pos-
sibilities, rapid growth, regulatory compliance needs and intense competitive
pressures require changes at the enterprise level and lead to a continuous busi-
ness process redesign and improvement effort. Service changes that are required
by this effort however must be applied in a controlled fashion so as to mini-
mize inconsistencies and disruptions by guaranteeing seamless interoperation of
business processes that may cross enterprise boundaries.

In general, we can classify service changes depending on their direct and side
effects [1] in shallow, where the change effects are localized to the service or
are strictly restricted to the clients of that service, and deep, that are cascading
types of changes which extend beyond the clients of a service, and possibly to
its entire value-chain, i.e., to clients of the service clients such as outsourcers
or suppliers. Shallow changes characterize both singular services and business
processes and require a structured approach and robust versioning strategy to

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 290–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Evolving Services from a Contractual Perspective 291

support multiple versions of services and business protocols. Deep changes on
the other hand are more intricate and require the assistance of a change-oriented
service life cycle where the objective is to allow services to predict and respond
appropriately to changes as they occur [1]. Due to the complexity and scope
of deep changes this paper discusses only shallow changes and more specifically
changes to the Structural layer elements of the Service Specification Reference
Model introduced in [2], i.e., to the message content, operations, interfaces, and
message exchange patterns (MEPs), roughly corresponding to WSDL artifacts.

The setting discussed has a number of similarities with the fields of evo-
lution transparency and interoperability preservation that have been discussed
in different forms in [3] and [4] (among others), and essentially boil down to
preventing incompatibility between interoperating (interacting) services. These
works though depend mainly on adaptation mechanisms to maintain interoper-
ability, and adaptation approaches are by definition a posteriori interventions
focusing on incompatibility identification and resolution by modification of a ser-
vice. In that sense, the adaptation process can not discern between shallow and
deep changes and is unable to prevent the propagation of changes throughout
the value chain, since the modification of a service may have unforeseen conse-
quences to the parties that interact with it. For that reason we are focusing on
identifying under which conditions changes to a service are shallow and discuss
an a priori approach that aims to prevent or at least predict and confine the
necessity for adaptation.

The goal of this work is therefore to allow the independent evolution of loosely
coupled interacting parties in a transparent manner so as to preserve their in-
teroperability. In this context, the parties involved in an interaction can either
be services, or services and client (service-based) applications. We only consider
bilateral interactions, and for each such interaction we distinguish two roles: that
of the producer and that of the consumer. It must be kept under consideration
that the role of a service, unlike that of an application that always acts as a con-
sumer, can vary depending on the interaction. An aggregate service for example
plays both roles: that of the producer for its clients, and that of the consumer
when it interacts with the aggregated services to compose a result. To achieve
meaningful interoperability in this context, service clients and providers must
come to a mutual agreement, a contract of sorts between them [5]. A contract of
this type formalizes the details of a service in a way that meets the mutual under-
standing and expectations of both service provider and service client. Building
around this idea, we are presenting mechanisms to effectively deal with the evo-
lution of the structural aspect of both parties, while preserving interoperability
despite the changes that may affect them. After we lay down this foundation we
discuss the evolution of interactions and contracts themselves.

The rest of the paper is organized as follows: section 2 presents a notation
for service description that leverages the decoupling of service providers and
clients through the introduction of the contract construct (section 3). Section
4 shows how the introduced notions can be used to control the evolution of
the interacting parties while maintaining a high degree of flexibility. Section 5

292 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

will briefly present related works, and section 6 discusses conclusions and future
work. To facilitate the conversation, we are using the simple service described
below as a point of reference:

Example 1 (Running Example). Let’s assume the case of a very simple inventory
service that checks for the availability of an item and responds that the purchase
order can be fulfilled or issues a fault stating that the order cannot be completed.
The WSDL file of this service is shown in listing 1.

...

<types>

<xsd:schema targetNamespace="http://e-grocery.com/InventoryService">

<xsd:complexType name="inventoryItem">

<xsd:sequence>

<xsd:element name="orderID" type="xsd:string"/>

<xsd:element name="itemID" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

</types>

<message name="InventoryRequest">

<part name="inventoryItem" type="tns:inventoryItem"/>

</message>

<message name="InventoryConfirmation">

<part name="confirmationMessage" type="xsd:string"/>

</message>

<message name="InventoryFault">

<part name="faultMessage" type="xsd:string"/>

</message>

<portType name="InventoryServicePortType">

<operation name="checkInventory">

<input name="item" message="tns:InventoryRequest"/>

<output name="confirmation" message="tns:InventoryConfirmation"/>

<fault name="fault" message="tns:InventoryFault"/>

</operation>

</portType>

...

Listing 1. Inventory Service WSDL specification

2 Service Specifications

The WSDL description of the inventory service in listing 1 is far from complete in
describing the structural aspect of the service. In specific, apart from providing
an unambiguous schema for the service interfaces (the signature of the service)
to be used by its clients, it lacks completely in providing a) any information on
the services used by the service itself to fulfill its functionality (if any), and b)
the means to connect the information required and provided by its signatures

Evolving Services from a Contractual Perspective 293

with that of the signatures of the other services it is using. It is therefore not
suitable for describing the interaction of the service with its environment and has
to be replaced by a declarative specification that fulfills this role. [2] provides
a more exhaustive discussion on the structure and content of such a service
specification scheme. For the purposes of this work, we will only define the
following constructs:

Definition 1 (Element). An element e of a service s is defined as a tuple
(a1, a2, . . . , an), the set of attributes that characterize the element. ai is either
an atomic attribute or another element ei of the service.

For example, InventoryRequest, checkInventory, and the rest of the WSDL
constructs in listing 1 can be represented as elements a1 =(inventoryItem),
a2 =(item, confirmation, fault), etc.

Definition 2 (Type extension). The specification E of a service is defined
by the set E = {ei, i ≥ 1} of its elements. We associate to E the reflexive and
transitive relation type extension ≤ on elements (E,≤) defined as: e ≤ e′ ⇔
{a1, . . . , an} ⊆ {a′

1, . . . , a
′
m}, m ≥ n ∧ ai ≤ a′

j , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

If for example ∃a′
1 = (orderID,itemID,comment) (as in listing 1 in section 3.1)

then: (orderID,itemID) ⊆ (orderID,itemID,comment) ⇒ a1 ≤ a′
1, i.e., the

new (inventoryItem) is a type extension of the old one.
As discussed in the previous section, the approach discussed by this work

assumes that a) both producer and consumer are in the general case services, and
therefore use the same notation to describe their specifications, and b) a producer
in one interaction can also act as the consumer for another interaction. This latter
interaction may or may not be related to the producer’s function in the former.
Beyond this generic case, the same paradigm can also be applied to “simpler”
cases: autonomous services that implement all of their offered functionalities
without using other services act only as producers. Non-service clients (e.g., GUI-
supported applications) can be perceived as special cases of exclusive consumers.

We define two orthogonal views on E (see figure 1a): the expositions/
expectations view and the required/provided view:

These views provide us with reference points in disambiguating the roles and
functions of elements in a service specification like listing 1. More specifically:

(a) Both views (b) XPO/XPE view (c) REQ/PRO view

Fig. 1. Views on the service specification

294 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

2.1 Exposition/Expectation View

This view (figure 1b) classifies the elements within a service specification with
respect to whether they are offered as an interface to the environment or they
are “imported” into the service specification, referring to interface elements of
other services. In the former case, the service acts as a producer; in the latter as
a consumer. Elements of a service specification can therefore fall into one of the
following categories:

– Exposition Expo: the set of elements that describe the offered functionality
of the service.

– Expectation Expe: the set of elements describing the perceived offering of
functionality to the service by other services.

The WSDL file of the inventory service for example in listing 1 contains the
information on how to access the elements that constitute the inventory service
and what information is exchanged while accessing it. From the perspective of
the producer of the service, this file specifies what the producer will offer to
the service customers: if the checkInventory operation is invoked using the
InventoryServicePortType and the message payload defined, the generated
result or fault message will be a simple string. The elements of the file are in
that sense in the exposition subset of the service producer specification.

On the other hand, when a consumer of this service builds and/or uses an
application that incorporates an invocation of this service, the consumer refers
to what it perceives to be a set of elements that allow it to access the service.
To put it simply, the client is built on the premise of a particular specification
of the provided interface, being bound for example to the service of listing 1.
These elements are therefore contained in the expectation subset of the consumer
specification. What becomes apparent from this is that the same elements can
either be expositions or expectations; it only depends on the adopted viewpoint.

Ideally, this perceived specification and the actual specification of the pro-
vided service are the same - and that is so far the fundamental assumption in
service interactions. But changes to either side, as we will discuss in the follow-
ing sections, could lead to inconsistencies - in other terms incompatibilities -
between those two.

2.2 Required/Provided View

The division enforced by this view (figure 1c) is much more straightforward:
it provides the means to cleanly separate input from output in a service spec-
ification (irrespective of whether it acts as a producer or a consumer). More
specifically:

– Required Ereq: contains the input-type elements of the service specification.
– Provided Epro: contains the output-type elements.

InventoryRequest for example is clearly a required element for the producer:
it is the input message type for the service. At the same time it is a provided

Evolving Services from a Contractual Perspective 295

element for the consumer since it has to be provided to the producer in order to
use the respective operation. InventoryConfirmation and InventoryFault are
respectively provided elements for the producer - they are produced as output by
the service in one way (normal result) or another (fault message) - and required
elements for the consumer (input to it).

2.3 Combining the Views

Since the two views are orthogonal, they can be used in conjunction to describe
the elements of a service specification: Expo∪Expe = Ereq∪Epro = E (figure 1a).

Example 2. Figure 2 shows how an invocation of the inventory service of listing 1
by a Web services client can be described using the classification presented. Due
to the request-response messaging pattern of the checkInventory operation, the
interaction between the service and its client is broken down into two phases:
in the first phase, the consumer (client) is using the expectation element (1) to
invoke the exposition element (2) of the producer (service). Since (1) is an output
for the consumer it belongs to the Epro

consumer set, and (2) is in the Ereq
producer as

the input of the service. The situation is inversed for the second phase, where
the producer uses (3) to call back (4) in the consumer side.

Element

1 Consumer:InventoryRequest
2 Producer:InventoryRequest
3 Producer:InventoryResponse
4 Consumer:InventoryResponse

Fig. 2. Service Interaction

3 Contracts

This section builds on the notation and classification presented in the previous
section to discuss the interaction of parties in a loosely-coupled environment
and introduce the notion of contracts as the means to leverage the decoupling
between producer and consumer.

By the term contract we do not refer to the legal documents that describe a
binding agreement, but we use the term in the same manner as the (software)
contracts in the Eiffel language [6]. The contracts in this context are documents
that record the benefits expected by each party from their interaction, and the
obligations that each party is prepared to carry out in order to obtain these
promised benefits. In that sense, the contract protects both sides by clearly
defining what is the acceptable contribution and result for a task described by
the contract. Our approach applies the same paradigm on services specifications,

296 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

using the different views discussed above to distinguish between those benefits
and obligations, depending on the role that the service plays.

In specific, there is an important distinction in the way that the producer
and the consumer of a service are perceiving a service specification document:
the producer promises to offer the service in the manner specified in it (the
expositions set), and the consumer accepts this promise and builds a client for
it based on this promise (the expectations set). In most contemporary SOA
implementations, by using for example Web services technologies, this funda-
mental difference is bridged by accepting one perspective, that of the producer,
and shifting the consumer side perspective accordingly. But in this case the con-
sumer has to adopt any changes and assumptions that are done by the producer.
Failure to comply with the producer means that the consumer is unable to use
the offered functionality, which explains why producer updates typically fail on
the client side.

In order to amend this situation, we propose to use a construct (the contract)
that bridges the two perspectives and allows for mapping from and to it by either
party. This contract is nothing more than an intermediary specification, contain-
ing a set of commonly agreed elements specified in a party-independent way. By
providing a neutral mapping procedure from each party to the contract we min-
imize the producer/consumer coupling. Furthermore, given a contract, we allow
for reasoning by each party in isolation, enforcing the separation of concerns and
responsibilities in service design and operation. In the following we formally de-
fine the contract construct and describe how to formulate a contract between two
parties.

3.1 Contract Definition

In principle only a part of the offered service functionalities may be used by a
specific client; on the other hand, a client may depend on a number of disparate
services in order to achieve its goals. Thus we need a way to identify and isolate
the parts of the interacting parties that actually contribute to the interaction. For
that purpose we will denote with P ⊆ Expo

producer and C ⊆ Expe
consumer the subsets

from the producer and consumer specifications respectively that participate in
the interaction.

Following on we define a binding function ϑ that reasons horizontally between
the elements of parties P and C:

Definition 3 (Service Matching). A service matching is a binding function
defined as ϑ : P × C → U, U = P ∪ C such that

ϑ(x, y) = {z ∈ U/

{
x ≤ z ≤ y, x ∈ P req, y ∈ Cpro

y ≤ z ≤ x, x ∈ P pro, y ∈ Creq } (1)

Example 3. Let’s assume that P contains the elements of listing 1 and let’s
denote by x ∈ P req the InventoryItem element: x = (a1, a2), a1 = (orderID)
and a2 = (itemID). A consumer of this service that is bound to listing 1 uses
all elements as they are defined in the listing (that is: P ≡ C) and therefore

Evolving Services from a Contractual Perspective 297

∃y ∈ Cpro/y = x ⇒ ϑ(x, y) = z = (a1, a2). This reasoning holds also for the rest
of the elements of P and C and the service matching is in that case trivial.

Now consider the case of another consumer C′ that is bound to listing 2 that
differs from listing 1 in the definition of InventoryItem: y′ = (a1, a2, a3), a3 =
(comment) to allow for attaching notes to items. By its definition ϑ(x, y′) = z′

returns two possible values: z′ = (a1, a2) or z′ = (a1, a2, a3). By selecting the first
value (reflecting the assumption that P can ignore this extra argument in the
requests of C′) we observe that the previous service matching between P and C
persists for P and C′ despite the changes in consumer C. The actual selection of
the binding function value during the contract formulation is a matter of policy
(see following section for a further discussion on this subject).

...

<xsd:complexType name="inventoryItem">

<xsd:sequence>

<xsd:element name="orderID" type="xsd:string"/>

<xsd:element name="itemID" type="xsd:string"/>

<xsd:element name="comment" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

...

Listing 2. Alternative inventory item definition

Binding function ϑ is acting in the same manner as a schema matching func-
tion would. Schema matching aims at identifying semantic correspondences be-
tween elements of two schemas, e.g., database schemas, ontologies, and XML
message formats [7]. It is necessary in many database applications, such as
integration of web data sources, data warehouse loading and XML message
mapping. In most systems, schema matching is manual or semi-automatic; a
time-consuming, tedious, and error-prone process which becomes increasingly
impractical with a higher number of schemas and data sources to be dealt with.
In our case though, the matching function relies on the type extension relation
to automatically identify elements on either party that are semantically related
to each other according to their respective schemata.

Based on the matching function ϑ we can define the Contract R between two
parties as a service mapping:

Definition 4 (Service Mapping). A Service mapping is a Contract R defined
by a triplet < P, C, Θ > between the two parties that is defined as their image
under ϑ, i.e., Θ = {ϑ(x, y)|x ∈ P, y ∈ C}. The elements that comprise R are
called the clauses of the contract.

The mapping therefore consists of the results of the binding function for all
possible pairs in the producer/consumer sets and is formulated by reasoning
vertically through the parties. The contract that is produced by this mapping

298 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

Fig. 3. Producer/Consumer/Contract relation

identifies and represents the mutually agreed specification elements that will
be used for the interaction of the parties. Figure 3 demonstrates the relation
between P , C, and R graphically.

Example 4. Following the previous example, the service mapping between P and
C (consumer using listing 1) would consist of the contract R =< P, C, Θ >, P ≡
C ≡ Θ.

For the service mapping between P and C′ (consumer using listing 2) we are
presented with two options: either we opt for z′ = (a1, a2) and since the rest of
the elements remain the same then Θ′ ≡ Θ ⇒ R′ ≡ R, or in the case of selecting
z′ = (a1, a2, a3) then a new contract R′ =< P, C′, Θ′ > has to be formulated.

3.2 Contract Formulation and Management

The definition of contract R between two parties as a service mapping < P, C, Θ >
allows for a straightforward formulation of the contract: given the two parties’
specifications P and C, each of which defines the elements through which the in-
teraction is achieved, Θ can be calculated directly by applying the matching func-
tion ϑ to them. The issue of contract development therefore shifts in producing
P and C from the service provider Expo

producer and client Expe
consumer specifications

respectively.
Due to the fact that the service provider is unaware of the internal workings

of the service client (represented by the Expe
consumer set) the process of contract

formulation is consumer-driven; more specifically, the steps to be followed are:

1. The consumer decides on the functionality offered by the producer that will
be used (if more than one is offered).

2. The set of elements from Expo
producer that fulfill this functionality (e.g., the

port type and the associated structural elements) are identified.
3. The identified elements are either copied to the (initially empty) Expe

consumer

set or the existing Expe
consumer set is used.

4. The image of P and C under ϑ set is calculated. If the resulting set is empty
then the image is attempted to be re-calculated using alternative values from
ϑ (or cancelled in case all possibilities have been exhausted); otherwise the
contract R =< P, C, Θ > is produced.

Evolving Services from a Contractual Perspective 299

5. The consumer submits the formulated contract R to the producer for pos-
terity and begins interaction with producer.

The formulating, storing, and reasoning aspects of the proposed solution can
be incorporated in the service governance infrastructure that supports each
party. Since ϑ may return one or more possible values, depending on the type ex-
tension ’distance’ in the element definition between the producer and consumer
specification, a minimum level of ’insight’ on the consumer side is required in
selecting the appropriate elements from the producer and in assigning values to
the binding function ϑ:

Conservative selection policies would opt for the values contributed by the
consumer to the calculation of ϑ, trying to protect the consumer from pos-
sible changes to the producer.

Liberal selection policies on the other hand would pick the values contributed
by the producer and allow for the possibility of the consumer evolving in the
future.

The type of policy to be followed is therefore largely a design and governance
issue and has to be dealt as such. The solution presented assumes that producers
and consumers have the means to formulate, exchange, store, and reason on the
basis of contracts. In absence of these facilities from one or both parties the
interaction between them reverts to the non contract-based modus operandi that,
as we have discussed above, can not guarantee interoperability. The exchange of
contracts requires the existence of a dedicated mechanism for this purpose that
is not part of the service specification.

4 Contract-Controlled Service Evolution

The previous section discussed how to leverage the loose coupling of the producer
and the consumer by means of the contract construct. The following section
discuss how this design solution enables evolutionary transparency that preserves
(under certain conditions) the producer/consumer interoperability.

In the initial ’static’ state of two interoperating parties P and C, and after a
contract R =< P, C, Θ > has been formulated and accepted between them, it
holds in general that P ≡ Θ ≡ C. For example, when a simple client is using
the service described in listing 1 it is safe to assume that due to the granularity
of the service, the client will be using the one (and only) functionality provided
by it. That in turn means that it will refer to all the elements contained in the
WSDL file. Therefore, P ≡ C and by the definition of the contract construct,
P ≡ Θ ≡ C, as we have seen in the previous section.

But since either party can, or at least should be able to evolve independently
of the other, shifts from this state can occur. When changes for example occur to
the producer then it may hold that P ′ �≡ Θ ≡ C, or for the consumer side P ≡
Θ �≡ C′, or both. These latter states reflect situations of incompatibility between
producer and consumer and they have to be prevented from occurring in order

300 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

to avoid the occurrence of deep changes in the context of the interacting parties.
The introduction of a contract between them allows us to reason about the
contribution of each party to the interaction without directly affecting the other
party, ensuring that each party is able to evolve independently but transparently,
that is without requiring modifications, to each other.

For that purpose we will distinguish shallow changes occurring to a party
in two categories: those that respect the contractual invariance and those that
require contractual evolution. Changes to a party that fall in the former category
do not affect the existing contract between the parties. Changes in the latter
category require modifications to the contract but nevertheless do not require
changes to the other party.

4.1 Contract Invariance

Taking advantage of the ability to reason exclusively on one party given an exist-
ing contract, without the need for the other party to participate in this reasoning,
exemplifies the notion of independence in evolution. In order to show how this is
accomplished we will first formally define what it means for a (modified) party
specification to respect, or to be compliant with a contract:

Definition 5 (Compliance to Contract). A version of a party, e.g. version
P ′ of producer P , is said to be compliant with respect to an existing contract
R =< P, C, Θ > with a consumer C denoted by P ′ �R C iff

∀z ∈ Θ/∃x′ ∈ P ′, ϑ(x′, y) = z, y ∈ C (2)

Corollary 1. Consequently, P ′ violates R, and we write P ′ �R C, iff ∃z ∈
Θ/∀x′ ∈ P ′, ϑ(x′, y) �= z, y ∈ C.

The definition above allows for a simple algorithm to check for the compliance of
a new version of a party in the producer-consumer relationship: as long as there
is a mapping produced by ϑ to all clauses of the contract from the elements of
the new specification, the two versions are equivalent or compatible with respect
to the contract - or more formally:

Definition 6 (Compatibility w.r.t. existing Contract)

1. Given a party, e.g. consumer C, then two versions of the other party, P and
P ′, are called compatible w.r.t. a contract R denoted by P �→R P ′ iff they
are both compliant to R: P �R C ∧ P ′ �R C.

2. Two versions of a party S and S′ are called fully compatible iff they are com-
patible for all contracts Ri, i ≥ 1 that they participate in, either as producers
or consumers: S �→Ri S′ ∀Ri.

Example 5. Consider the modifications applied to the service specification as de-
picted in listing 3. Let’s assume that these changes are applied to P ; in that case
P ′ is compatible with P , since they are both compliant to the same contract R. To

Evolving Services from a Contractual Perspective 301

prove that, we start with the observation that element x =(InventoryConfir-
mation) in listing 1 is in the P pro set, and therefore contributes to the second leg
of the binding function (1) which means that

∃y ∈ Creq, z ∈ Θ/y ≤ z ≤ x. (3)

Let’s denote with x′ the changed element from listing 4.1. It holds that x ≤ x′ and
in conjunction with (3) we get: ∃y ∈ Creq, z ∈ R/y ≤ z ≤ x′. Thus, ϑ(x′, y) =
ϑ(x, y), and since the rest of the matchings remain unchanged, by (2) we can de-
duce that P ′ �R C.

If listing 3 though is depicting changes to the consumer side, then by the same
reasoning we can easily prove that C and C′ are not compatible, since P �R C′.

...

<message name="InventoryConfirmation">

<part name="confirmationMessage" type="xsd:string"/>

<part name="confirmationDate" type="xsd:date"/>

</message>

...

Listing 3. New inventory Service WSDL specification

4.2 Contract Evolution

The previous section discussed the criteria under which changes to one party can
leave the contract between them intact, essentially ensuring that these changes
are shallow. This does not necessarily mean that all changes that do not re-
spect this criteria are deep. The existing interaction between the parties can be
preserved in certain cases despite the necessity to modify the contract due to
changes to one or both of the parties involved, defined as backward and forward
compatibility preserving cases:

Definition 7 (Backward Compatibility). Two contracts R =< P, Θ, R >
and R′ =< P, Θ′, C′ > are called backward compatible and we write R �→b R′

iff ∀x ∈ P/∃z′ ∈ Θ′, ∃y′ ∈ C′, z′ = ϑ(x, y′).

In that case changes to the consumer side leave the producer unaffected. The (new)
consumer will use the producer in the same manner as the old consumer did.

Definition 8 (Forward Compatibility). Two contracts R =< P, Θ, R > and
R′ =< P ′, Θ′, C > are called forward compatible and we write R �→f R′ iff
∀y ∈ C/∃z′ ∈ Θ′, ∃x′ ∈ P ′, z′ = ϑ(x′, y).

Forward compatibility therefore allows for the seamless interoperation of the new
producer with the old consumer without the former party to have to be modified
in any way.

It must be noted that these definitions following [1] are using the vantage
point of the consumer to discuss changes: a change to a contract is backwards

302 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

compatible if it allows the consumer to accept input from older devices (ver-
sions of the producer). Similarly, a forwards compatible contract means that the
consumer can accept input from newer versions of the producer. Consider for
example the discussion in section 3.1 on the possibilities for service matching
and mapping: if we choose to create a new contract R′ then it can be easily
shown that this contract is backward compatible to R and therefore the new
consumer C′ can still use the old producer P .

Furthermore, by combining the two definitions we can define when two con-
tracts are compatible:

Definition 9 (Contract Compatibility). Two contracts R =< P, Θ, R >
and R′ =< P ′, Θ′, C′ > are called compatible and we write R �→ R′ iff they are
both backward and forward compatible: R �→b R′ ∧ R �→f R′.

Contrary to the case of contractual invariance, evolution of the contract itself
requires of the parties to exchange a new contract and replace the old contract
with the new one. This creates an additional communication overhead that nev-
ertheless has to be weighted against the cost of possible inconsistencies in the
current and future interactions of the parties due to the discrepancy between
the contract versions.

5 Related Work

The term ‘contract’ and the approach of introducing contracts in software com-
ponents design stems from the Eiffel language [6], [8]; the core ideas of that work
have greatly influenced our approach.

There are a number of works discussing the introduction of adapters between
interacting parties to ensure their interoperability: [9], [10], [3], [11], [12], and [4]
among others. Of specific interest to us is the work in [13], since they also make
a clear distinction between the service producer and service consumer interfaces
and protocols and use mappings to bridge them. Then they proceed to describe
how to semi-automatically identify and resolve incompatibilities (mismatches)
on interface and protocol level. Our approach extends this idea of separating
producer and consumer specifications, but discusses how to avoid mismatches
altogether instead of resolving them.

Furthermore, the W3C Technical Architecture Group has published an edito-
rial draft on the extensibility and versioning of XML-based languages [14]. Their
findings build on a number of previously developed theories and techniques like
[15], [16] and draw lessons from the HTML and HTTP standards. They show
how compatibility can be defined in terms of set theory, using super-sets and sub-
sets to ensure compatibility. Our approach follows a similar way in dealing with
the issue of compatibility, but instead of allowing the direct producer/consumer
interaction, it introduces the contract as an intermediary to further decouple
them.

The notion of service mapping comes from the field of schema evolution, i.e.,
the ability to change deployed schemas - metadata structures formally describing

Evolving Services from a Contractual Perspective 303

complex artifacts such as databases [17],[18],[7], messages, application programs
or workflows. Typical schemas thus include relational or object-oriented (OO)
database schemas, conceptual ER or UML models, ontologies, XML schemas,
software interfaces and workflow specifications. Effective support for schema evo-
lution is challenging since schema changes may have to be propagated, correctly
and efficiently, to instance data, views, applications and other dependent system
components. Our approach provides the means to identify schema changes that
do not result in propagation of changes.

6 Conclusions and Future Work

In the work presented in the previous sections we discuss an approach that allows
for transparency in the evolution of a service as viewed from the perspective of
both clients and providers, in the context of the loosely-coupled nature of the
SOA paradigm. For that purpose we introduce the contract construct as the
means to leverage the decoupling of the interacting parties. We present a con-
tract constructing function that bridges the gap between service matching and
service mapping. Following on, we build on contractual invariance and contrac-
tual evolution to show how to effectively deal with shallow changes to the service
provider and client interaction - without the need for adaptation which may lead
in turn to deep changes.

There are of course a number of issues that are briefly discussed by our ap-
proach that we plan to work on in the future. The matter of management of
the contracts and its relationship to service governance mechanisms is the most
important issue at hand, since it can provide further insights on the proposed
solution. Furthermore, the binding function ϑ value selection policy has to been
further investigated. Using a static selection policy can be very restricting; a
balancing mechanism for example can be applied for a more dynamic approach,
expressed for example by negotiation between the parties in deciding the terms
of the contract. Such a negotiation process during the formulation of the con-
tract could result in the offering of additional or more specialized functionalities
by the producer and could add a feedback loop to the presented algorithm for
contract formulation. A promising direction when it comes to the implementa-
tion of our approach is to see whether it is possible to use techniques like the
mapping constraints and tools developed by the schema mapping community
like ToMAS [7].

The preservation of interoperability enforced by our approach is only the
foundation in discussing the evolution of the interaction of parties. Following
on, we plan to investigate how we can build on this work to deal with deep
changes and the propagation mechanisms that run through them. On the other
hand, another of the limitations of this work, the focus on the structural aspect
of the service specification has also to be investigated, and examined if it is
possible to apply the same approach to business protocols and policy-related
constraints.

304 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

References

1. Papazoglou, M.P.: The challenges of service evolution. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Heidelberg (2008)

2. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of
service specifications. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 359–374. Springer, Heidelberg (2008)

3. Ponnekanti, S.R., Fox, A.: Interoperability among independently evolving web ser-
vices, Toronto, Canada, pp. 331–351. Springer, New York (2004)

4. Senivongse, T.: Enabling flexible cross-version interoperability for distributed ser-
vices, p. 201. IEEE Computer Society, Los Alamitos (1999)

5. Papazoglou, M.P.: Web Service: Principles and Technology. Prentice Hall/Addison-
Wesley (E) (2007)

6. Meyer, B.: Applying ”design by contract”. Computer 25, 40–51 (1992)
7. Velegrakis, Y., Miller, R.J., Popa, L., Mylopoulos, J.: Tomas: A system for adapting

mappings while schemas evolve. In: ICDE, p. 862 (2004)
8. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall PTR,

Upper Saddle River (1997)
9. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM

Trans. Program. Lang. Syst. 19, 292–333 (1997)
10. Evans, H., Dickman, P.: Drastic: A runtime architecture for evolving, distributed,

persistent systems. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 243–275. Springer, Heidelberg (1997)

11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

12. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented
framework for service adaptation, 15–26 (2006)

13. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions, Banff, Alberta, Canada, pp. 993–
1002. ACM, New York (2007)

14. Orchard, D.(ed.): Extending and versioning languages: Terminology. W3C Techni-
cal Architecture Group (2007)

15. Orchard, D.: A theory of compatible versions. Published: xml.com article (2006)
16. Hoylen, S.(ed.): Xml schema versioning use cases, Published: W3C XML Schema

Working Group Draft (2006)
17. Miller, R.J.: Retrospective on clio: Schema mapping and data exchange in practice.

In: Description Logics (2007)
18. Fuxman, A., Hernández, M.A., Ho, C.T.H., Miller, R.J., Papotti, P., Popa, L.:

Nested mappings: Schema mapping reloaded. In: VLDB, pp. 67–78 (2006)

Efficient IR-Style Search over Web Services

Yanan Hao1, Jinli Cao2, and Yanchun Zhang1

1 School of Engineering and Science, Victoria University
P.O. Box 14428, Melbourne, VIC 8001, Australia

{haoyn,yzhang}@csm.vu.edu.au
2 Department of Computer Science and Computer Engineering, La Trobe University

Bundoora, VIC 3086, Australia
j.cao@latrobe.edu.au

Abstract. In service-based systems, one of the most important prob-
lems is how to discover desired web services. In this paper, we propose a
novel IR-Style mechanism for discovering and ranking web services au-
tomatically. In particular, we introduce the notion of preference degree
for web services and then we define service relevance and service im-
portance as two desired properties for measuring the preference degree.
Furthermore, various algorithms are given for computing the relevance
and importance of services, respectively. Experimental results show the
proposed IR-style search strategy is efficient and practical.

1 Introduction

Service-Oriented Computing (SOC) is emerging as a new paradigm for develop-
ing distributed applications. Web service discovery, among the most fundamental
elements of SOC, provides a way to combine basic web services into value added
services to satisfy user needs. As the number of web services and Service Ori-
ented Computing applications increases, there is a growing need for mechanisms
for discovering services efficiently.

Web service discovery introduces many new challenges. First, current web ser-
vice discovery methods are mostly based on the UDDI-registry. To find a service
in UDDI, a user needs to browse the relevant UDDI category to locate relevant
web services. Considering a large amount of service entries, this process is time
consuming and frustrating. So, we need an effective mechanism for automatic
web service discovery. Second, a user’s requirement for desired web services may
not always be precise and a service discovery mechanism can potentially return
a large number of results to satisfy the user’s requirement, especially when a
large service repository is available. Consequently, an important requirement for
web service discovery is to rank the discovered results so that the most relevant
services appear first. Finally, a good web service discovery mechanism should
also be able to assist users in selecting relevant services and compose with them.
For example, a typical strategy would allow users to see the services first she
can use to start composing her application. Consider the three services shown in
Fig. 1. The second and the third services can process the order information for

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 305–318, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

306 Y. Hao, J. Cao, and Y. Zhang

 WS1: Web Service: CreateOrder
 Operation: OrderBuilder
 Input: UserID DataType:int
 Requirement DataType:ItemList
 Output: ProductsList DataType: BuyingOrder

 WS2: Web Service: ProcessPayment
 Operation: CheckoutOrder
 Input: UserProducts DataType:UserOrder
 Output: PaymentConfirmation DataType:bool

WS3: Web Service: TransportOrder
 Operation: ShippingOrder
 Input: Cargo DataType:Order
 Output: PickupTime DataType:TimeLimit

Fig. 1. Sample web-service operations

level 0

level 1

level 2

level 3

level 4

Order

OrderID [,] ProductParts ExpectedShipDate

CustomerName CustomerContacts [m, n]

[|] Part

Telephone email PartName PartPrice PartQuantity

Fig. 2. XML schema tree of Order type

one transaction provided that a buyer’s order has been generated; whereas the
first service provides the buyer’s order according to her requirement. Obviously,
it is reasonable to say the first service is more important than the others since
it contributes indispensable information for both of the other two services to be
invoked. So, an ideal ranking strategy should put the first service on top. Also,
as we can see, there are two links between the first and the other two services,
in which the output of CreateOrder service, BuyingOrder, is also the input of
both ProcessPayment service and TransportOrder service. This form of link po-
tentially involves more web services and thus are particular useful in web service
composition.

To address the problems above, in this paper we propose a novel IR-Style
mechanism for discovering and ranking web services automatically, given a tex-
tual description of desired services. The contribution of the work reported here
is summarized as follows:

1. We introduce the notion of preference degree for web services and then we
define service relevance and service importance respectively as two desired
properties for measuring the preference degree.

Efficient IR-Style Search over Web Services 307

2. We design novel algorithms for computing the relevance and importance de-
gree of services. Our algorithms take into account both textual and structural
information of web services.

3. We define service connectivity, a novel metric to evaluate the importance of
services. Meanwhile, we use our existing schema tree matching algorithm to
measure the service connectivity.

4. We do various experiments to search for desired web services. Initial results
show the proposed IR-style search strategy is efficient and practical.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 introduces the conception of preference degree for service rank-
ing. Section 4 and section 5 present models and definitions for service relevance
and service importance, followed by section 6, in which we present algorithms
for ranking web services. In section 7 we describe our experimental evaluation.
Section 8 gives some concluding remarks.

2 Related Work

Most approaches use text or structural matching to find similar web services for
a given web service. The earlier technique tModel presents an abstract inter-
face to enhance service matching process. But the tModel needs to be defined
while authors publishing in UDDI [1]. In [2], the authors propose a SVD-Based
algorithm to locate matched services for a given service. This algorithm uses
characteristics of singular value decomposition to find relationships among ser-
vices. But it only considers textual descriptions and can not reveal the semantic
relationship between web services. Wang etc. [3] discover similar web services
based on structure matching of data types in WSDL. The drawback is that sim-
ple structural matching may be invalid when two web-service operations have
many similar substructures on data types. Woogle [4] develops a clustering algo-
rithm to group names of parameters of web-service operations into semantically
meaningful concepts. Then these concepts are used to measure similarity of web-
service operations. However, it relies too much on names of parameters and does
not deal with composition problem.

Recently, some methods have been proposed to annotate web services with
additional semantic information. These annotations are used to match and com-
pose services. For example, in [5] the authors extended DAML-S to support
service specifications, including behavior specifications of operations; The Web
Service Modeling Ontology (WSMO) [6] is a conceptual model for describing
Web services semantically, and defines the four main aspects of semantic Web
service, namely Ontologies, Web services, Goals and Mediators. However, most
of existing web services currently use WSDL specifications, which do not contain
semantics. Annotating the collection of services requires much effort, and it is
infeasible in web service discovery. [7] formally defines a behavior model for web
service by automata and logic formalisms. However, the behavior signature and
query statements need to be constructed manually, which can be very hard for
common users.

308 Y. Hao, J. Cao, and Y. Zhang

Some of our algorithms to be presented in this paper are related to keyword
search in databases or Internet. For example, Discover [8,9] and DBXplore [10]
operate on relational databases and facilitate information discovery on them by
allowing users to issue keyword queries without any knowledge of the database
schema; Google PageRank [11] uses the Internet’s link structure as an indication
of each web page’s importance value. Also, our work is inspired by the work on
XML schema. For instance, in [12] authors propose a syntactic approach to web
service composition, given only the input-output schema types of web services
available in their WSDL descriptions; [13] introduces the concept of schema sum-
mary and suggests importance and coverage as two relevant properties by which
to judge the quality of a schema summary. In our previous work [14], we pro-
posed a new schema matching algorithm for supporting web-service operations
matching. The matching algorithm catches not only structures, but even better
semantic information of schemas.

Other approaches include P2P-based service discovery [15], QoS-based discov-
ery and ranking [16], service crawler [17]. Although these work provide ranking
strategies, they overlook user’s semantic preferences and can not identify the
semantic relationship between services.

3 Desired Properties for Service Rank

Our goal is to find services in a more automatic and IR-style way, given a poten-
tially partial specification of the desired service. We need an efficient mechanism
to select the preferred services from available ones to satisfy the user’s require-
ment. A natural idea is, firstly, to evaluate the user’s preference for available
services with respect to the textual service requirement, rank them according to
the degree of preference, and then return the top services as search results. But,
what makes a good service to the user? What does “preference degree”mean
and how do we compute it? In [11], authors pointed that the final rank of a web
page appearing in search results pages is determined by both the goodness of
the match of the search terms on the page itself (relevance of the page) and this
page’s PageRank (importance of the page). Extending this idea to our context,
we consider two factors for the user’s preference degree for a service, in other
words, the rank of the service. First, a good web service should be relevant to the
user’s requirement, i.e., to a certain extent, similar to the service requirement;
Second, we should select services that are important. Intuitively, a service is im-
portant if it is employed by many other services in service composition; therefore,
services that can be employed by as many as services are worth looking at.

Having seen what we consider to be desired properties for ranking web ser-
vices, in the next two sections we will define the service relevance metric and
service importance metric respectively, and then we calculate the user’s prefer-
ence degree for available services in reference to a textual description of desired
web services provided by the user.

Efficient IR-Style Search over Web Services 309

4 Service Relevance

Let q be a natural language description of the desired web services,
S = {s1, s2, ..., sk} be the set of all available services published through UDDI;
and D = {D1, D2, ..., Dk} be a document collection containing WSDL specifica-
tions for all the services in S, where each WSDL document Di corresponds to
service si. Suppose there are N distinct words in D after a pre-processing step,
including word stemming, removing stop words and expanding abbreviations
and acronyms into the original forms. Applying the vector-space model to web
services context, we describe each service si as an N -dimensional vector −→

D i con-
taining all terms in its specification Di, denoted as −→

D i = {(t1, wi1), (t2, wi2), ...,
(tN , wiN)}, where each term is assigned a weight. A well-known weighting
method is TF/IDF, namely the normalized term frequency (TF) and inverse
document-frequency (IDF). Typically, the weight for each term tj in document
Di is given by wij = tfij × idfj = tfij × log(k/nj), where k is the total number of
available web services and nj is the number of corresponding WSDL documents
in which the term tj appears. For more details, interested readers are referred
to see [18].

Given the weighted vector −→q for the user’s description of desired services
and the weighted vector −→

D i for a service si’s WSDL specification document,
we adopt the cosine distance metric to compare their similarity. Formally, the
service relevance can be defined as follows:

Definition 1. (Service Relevance). The relevance of a service si, denoted as
Rsi, with respect to the user’s natural language description of desired web ser-
vices, written as q, is defined as:

Rsi =
∑N

k=1 wik × w′
ik√∑N

k=1 (wik)2.
√∑N

k=1 (w′
ik)2

(1)

where wik is the weight for term k in −→s i and w′
ik is the weight for term k in −→q .

Rsi ranges from 0 to 1. The higher score Rsi is, the higher relevance service si

has with respect to q, indicating a closer similarity between the user’s description
of request q and the available web service si.

5 Service Importance

A web service is in some way not different from a software component or mod-
ule. Like in a software library, where different functions or modules have different
level, not all services have equal importance in a web service repository. For ex-
ample, consider the services in Fig. 1. Although all their WSDL descriptions
contain terms provided by the user to search for desired services, most people
would agree that service CreateOrder is more important than both the Process-
Payment service and the TransportOrder service, since the output of the first
service, BuyingOrder, is also the input of the other two services, and thus a must

310 Y. Hao, J. Cao, and Y. Zhang

prerequisite for the other two services to be invoked. Based on this observation,
we argue that a service can have great importance if there are many other ser-
vices that employ it, or if there are some services that employ it and have a
great importance. From this point of view, a service having low relevance may
be more important than a service showing high relevance.

In order to reveal the nature of the importance of a service, we need to identify
the relationships between the service and other services. Furthermore, we need an
appropriate metric to capture how well a service can be used by other services.
In the following parts, we describe models and algorithms to evaluate service
importance; in particular, we show how to measure connectivity between two
web-service operations based on schema matching, and how by connectivity we
can achieve the importance of a web-service operation, which contributes to part
of the importance of the service it belongs to.

5.1 Web-Service Operation Modeling

Definition 2. A web service is a triple ws = (TpSet, MsgSet, OpSet), where
TpSet is a set of data types; MsgSet is a set of messages (parameters) conforming
to the data types defined in TpSet; OpSet = {opi(inputi, outputi)|i = 1, 2, ..., n}
is a set of operations, where inputi and outputi are parameters (messages) for
exchanging data between web-service operations.

Fig. 1 has given three web-service operations used as examples in this paper.
According to definition 1, a web service can be briefly described as a set of
operations.

Definition 3. Each web-service operation is a multi-input-multi-output func-
tion of the form f : s1, s2, ..., sn → t1, t2, ..., tm, where si and tj are data types
in according with XML schema specification. We call f a dependency and si/tj
a dependency attribute.

A dependency attribute can be a complex data type or a primitive data type.
Complex data types, such as BuyingOrder and UserOrder in Fig. 1, define the
structure, content, and semantics of parameters, whereas primitive data types,
like int and bool, are typically too coarse to reflect semantic information. Since
parameters usually can be regarded as data types, we can convert primitive
data types to complex data types by replacing them with their corresponding
parameters. For example, in Fig. 1 bool is converted into PaymentConfirmation
type while int is converted into UserID type. Both PaymentConfirmation and
UserID are considered as complex data types with semantics. Therefore, now
each data type defined in a web-service operation can carry semantic meaning,
according with XML schema specification at the same time.

5.2 Connectivity of Web Service Operations

As we can see, data types defined in web-service operations carry semantic in-
formation. Intuitively, we can consider two web-service operations, say A and

Efficient IR-Style Search over Web Services 311

B, connected if the output data types/attributes of A is the same as the input
data types/attributes of B, so service B could directly employ service A’s output
result and they can potentially collaborate in a user’s web-service composition
process. Obviously, however, requiring that A’s output and B’s input are the
same so as to be connected is too strict and not practical in many cases. Gen-
erally, the connectivity relationship between two web-service operations can be
defined formally as below:

Definition 4. (Web-service Operation Connectivity). Given two web-service
operations op1 : s1, s2, ..., sn → t1, t2, ..., tm and op2 : u1, u2, ..., ul → v1, v2, ..., vk,
Let X = {t1, t2, ..., tm} and Y = {u1, u2, ..., ul}. The connectivity of op1 with
respect to op2 can be measured as the similarity degree between X and Y , denoted
as Conop2→op1 = sim(X, Y).

Service operation op1 is said to be connected to op2 If the connectivity degree
Conop2→op1 is greater than some threshold value λ(0 < λ < 1). If op1 has ex-
actly the same output data type as op2’s input, we will have Conop2→op1 =
sim(X, Y) = 1, indicating the highest possible degree of connectivity of op1
regarding op2. In this case, we say op1 is well connected to op2. On the con-
trary, if the output of op1 is totally different from op2’s input, we will have
Conop2→op1 = sim(X, Y) = 0, indicating the lowest possible degree of connec-
tivity of op1 regarding op2.

As we have known, a data type used in web service operations presents a
structure of schema tree, so X and Y are actually two groups of schema trees.
Therefore, we can convert the problem of measuring connectivity between two
web-service operations to the problem of schema tree matching. Section 6 will
detail the algorithms for deriving the connectivity of a web service operation.

5.3 Importance of Web Service Operations

Based on the notion of connectivity, the web-service operation importance is
given by an iterative equation as below, similar to the technique used in PageR-
ank [11] algorithm:

Definition 5. (Web-service Operation Importance). The importance of a
web-service operation op, written as Iop, is calculated as the following iterative
formula until convergence is reached:

Ir
op = (1 − p) + p ∗

∑
j∈Fopj

Conopj→op∗Ir−1
opj

∗ 1/Nopj (2)

where Conopj→op is the connectivity degree of op with respect to service oper-
ation opj ; r denotes the number of iterations; Fopj is the set of service opera-
tions connected by opj ; Nopj =

∣∣Fopj

∣∣ is the number of operations in Fopj ; and
0 ≤ p ≤ 1 is a tuning parameter indicating how well the importance of a web
service operation is affected by that of others. For all web-service operations,

312 Y. Hao, J. Cao, and Y. Zhang

the initial importance I0 is set to 1/N , where N is the total number of available
web-service operations. The computing process of the iterative equation above
is shown by the CompImp algorithm in section 6.2.

6 Algorithm for Ranking Web Services

We now turn to the main focus of this paper, which is efficiently ranking web
services. Recall that in section 3, two factors are considered for the rank of a
service: service relevance and service importance. Since service relevance has
been discussed in section 4, now the key issue remaining is how to compute the
importance of services. We start with computing the connectivity of web-service
operations by our schema tree matching strategy, then iteratively compute the
importance of operations by CompImp algorithm. Finally, we combine these two
factors to achieve the final rank scores for all web-service operations.

6.1 Computing Connectivity Using Schema Tree Matching

In this section, we use our existing schema tree matching algorithm [14] to mea-
sure the connectivity of a web-service operation, which is also a key step for
evaluating its importance.

Our schema matching algorithm is based on tree edit distance [19,20]. How-
ever, traditional tree edit distance methods have three shortcomings:

1. They consider all tree edit operations to have same unit distance.
2. They neglect semantic information carried by the labels of nodes.
3. They do not consider the node difference between tag nodes and constraint

nodes, and assign each edit operation unit cost.

To overcome these shortcomings, we presented a new cost model to compute
the cost of tree edit operation, by which the tree edit distance of two schema
trees is achieved. The new cost model integrates weights of nodes and semantic
connections between nodes. Let T1,T2 be two schema trees and let n, node1 and
node2 be tree nodes. Formally, the cost model is defined as

cost(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

weight(n)/W (T1, T2), ifρ = insert(n)
weight(n)/W (T1, T2), ifρ = delete(n)
α × wd(node1, node2) ifρ relabels
+β × sd(node1, node2) node1 to node2

(3)

where ρ indicates a tree edit operation. weight(n) shows the weight of node n,
which is defined in definition 5. wd(node1, node2) and sd(node1, node2) give the
weight and semantic difference of node1 and node2, respectively. α and β are
weights of wd and sd, satisfying α + β = 1. W (T1, T2) is defined as W (T1, T2) =
weight(T1)+weight(T2), where weight(Ti) is the sum of all node weights of tree
Ti(i = 1, 2). wd(node1, node2) is defined as

wd(node1, node2) =
‖weight(node1) − weight(node2)‖

W (T1, T2)
(4)

where node1 ∈ T1 and node2 ∈ T2 .

Efficient IR-Style Search over Web Services 313

In equation 3, weight(n)/W (T1, T2) explains the cost of inserting or deleting
node n. For the relabel operation, both weight and semantics of node1 and node2
can be different, so we use the combination of weight and semantic difference as
the relabel cost. All the costs are normalized by W (T1, T2), i.e. the sum of all
nodes weights of tree T1 and T2.

Definition 6. Let level(n) denote the level of node n in schema tree T . The
weight of node n is defined by a weight function:

weight(n) = 2depth(T)−level(n)(∀n ∈ T) (5)

The weights of all nodes fall in the range of [2, 2depth(T)]. Each weight reflects
the importance of a node in schema tree T .

Having seen that traditional tree edit distance algorithms are not suitable
for XML schema trees, three transformation rules: split, merge and delete are
proposed to solve this problem. These rules are used to transform constraint
nodes, specifically, sequence nodes, union nodes and multiplicity nodes to tag
nodes. At the same time, the weights of nodes are reassigned. Fig. 3 gives an
example of the three rules.

Note that the definition of complex types can be nested according to XML
schema specification. Thus, given a schema tree, we apply the three transforma-
tion rules to its nodes level by level, from bottom to top. After the bottom-up
transformation, schema tree T is converted into a new schema tree T∗. Each
node n of T∗ is a tag node, which contains a few words.

Our idea relies on a hypothesis that two co-occurrence words in a WSDL
description tend to have same semantics. We exploit the co-occurrence of words
in word bags to cluster them into meaningful concepts. To improve accuracy of
semantic measurement, we first carry out the pre-processing step before words
clustering, which has been done in the service relevance computation.

Then we use the agglomeration algorithm [21] to cluster words set I =
{w1, w2, ..., wm} into concept set C = {C1, C2, ...}. There are three steps in
the clustering process. It begins with each word forming its own cluster and
gradually merges similar clusters.

Order

[,]

ProductParts

CustomerName

[m, n]

PartCustomerContacts T elephone

[|]

CustomerContacts

email

25

23

24

23

25

24

ProductParts

PartTelephone, email

CustomerContacts

(a) Sequence node transformation (c) Multiplicity node transformation(b) Union node transformation

24

24

23

22

24

23

22

2 2

23

23CustomerName CustomerContacts

Order

23*(m+n)/2

Fig. 3. XML Schema tree transformation

314 Y. Hao, J. Cao, and Y. Zhang

Finally, we get a set of concepts C. Each concept Ci consists a set of words
{w1, w2, ...}. To compute semantic similarity between schema-tree nodes, we
replace each word in tag nodes with its corresponding concept, and then use
the TF/IDF measure. After schema-tree transformation and semantic similarity
measure, the tree edit distance can be applied to match two XML schema trees
by the new cost model.

Obtaining Connectivity. As it has been mentioned before, we use tree edit
distance to match two schema trees. It is equivalent to finding the minimum cost
mapping. Let M be a mapping between schema tree T1 and T2, let S be a subset
of pairs (i, j) ∈ M with distinct word bags. Let D be the set of nodes in T1 that
are not mapped by M , and I be the set of nodes in T2 that are not mapped by
M . The mapping cost is given by C = Sp + Iq + Dr, where p, q and r are the
costs assigned to the relabel, insertion, and removal operations according to the
cost model proposed in section 6.1.2. We call C the match distance between T1
and T2, denoted as C = ED(T1, T2). Match distance reflects semantic similarity
of two schema trees.

Now let us see how to compute the connectivity of a web-service operation.
Given two web-service operations op1 : s1, s2, ..., sn → t1, t2, ..., tm and op2 :

u1, u2, ..., ul → v1, v2, ..., vk, Let X = {t1, t2, ..., tm} and Y = {u1, u2, ..., ul}.
The connectivity of op1 with respect to op2 is Conop2→op1 = sim(X, Y). To
achieve sim(X, Y), for each schema tree ∈ X , we find its corresponding schema
tree ∈ Y with the minimum match distance. We simply identify all possible
matches between two lists of schema trees X and Y , and return the source-
target correspondence that minimizes the overall match distance between the
two lists. It does not depends on whether the number of schema trees is the
same or not between X and Y . This process is illustrated by algorithm 1.

input : op1 : s1, s2, ..., sn → t1, t2, ..., tm

op2 : u1, u2, ..., ul → v2, ..., vk

output: The connectivity of op1 with respect to op2

for i ← 1 to m do1

Si = min{ED(ti, uj)|j = 1, 2, ..., l};2

end3

Conop2→op1 =
m∑

i=1

Si
4

Algorithm 1. Algorithm for computing web-service operation connectivity

6.2 The CompImp Algorithm

Based on the strategies proposed in section 5.3, we design the CompImp algo-
rithm for automatically computing the importance of a set of given web-service
operations OP = {op1, op2, ..., opN}. The algorithm iteratively computes the im-
portance values for all operations until convergence. It initializes the importance

Efficient IR-Style Search over Web Services 315

input : A set of web-service operations OP = {op1, op2, ..., opN}
output: An array I [1 : N] to store the importance values of OP

foreach service operation opi ∈ OP do1

Icur
i = 1/N ;2

convergence[1 : N]=false;3

end4

repeat5

foreach service operation opi ∈ OP do6

calculate Icur
i using equation 2;7

if |Inew
i − Icur

i |/Icur
i ≤ c then8

convergence[i] = true;9

else10

convergence[i] = false;11

Icur
i = Inew

i ;12

end13

end14

until convergence[1:N]=true ;15

Return I ;16

Algorithm 2. The CompImp Algorithm

of each service operation to 1/N and then iteratively applying equation 2 until
the importance values converge, i.e., for each operation, the difference between
the old and the new importance value is less than some threshold c (typically,
we can choose c = 0.1%). The details of CompImp are shown in Algorithm 2.

Once the importance of all available web-service operations has been obtained,
we simply define the importance of a web service as the average of the importance
values of all operations in the service. The process is straightforward and not
presented due to space limitations.

6.3 Combining Service Relevance with Importance

Recall that in section 4, each web service s is assigned a relevance score by simi-
larity measure. In order to reflect the two factors we proposed for characterizing
the user’s preference degree for s, we need to incorporate a service importance
score into the relevance score of s. Then, we can rank s according to its combi-
nation score, which is a weighted sum of its relevance score with a query q and
its importance score. Formally, we have

Ranking Score(q, s) =
{

w × Rs + (1 − w) × Is

0
ifRs > 0
otherwise (6)

where 0 ≤ w ≤ 1. Both Rs and Is need to be normalized to between [0, 1].
A higher rank score indicates a more desirable web service, so the user’s top-k
search requirement can be satisfied.

316 Y. Hao, J. Cao, and Y. Zhang

7 Experiments and Evaluations

We have implemented a prototype system to evaluate the techniques presented in
this paper. First, we investigate the time saving issue and present a service index
structure that is used in our experiments; second, we evaluate the performance
of building the service index; finally, we evaluate the effectiveness and efficiency
of our IR-style search strategy.

The experiments were conducted on a P4 Windows machine with a 2GHz Pen-
tium IV and 512M main memory. The data set used in our tests is a web service
repository collected from [22,23,24]. Their WSDL specifications are available so
we can obtain the textual descriptions and XML schemas of input/output data
types. The data contains 223 web services including 930 web-service operations.

In order to improve the performance of searching for desired web services, we
design a service index for the service repository. The service index keeps TF/IDF
information about each WSDL document. Considering schema tree matching is
time consuming, we also included an importance entry in the service index.

We first evaluated the efficiency of building the service index. The time perfor-
mance of our algorithm is tested with the increase of the number of web-service
operations. Taking CPU time as the standard measure, we get time costs of
building the service index in Fig. 4(a), in which the time includes the costs of
constructing relevance entry for all services, and the computation of the impor-
tance entry as well. Fig. 4(a) shows that, as the number of operations increases,
the time cost of building the service index increases rapidly. This indicates that,
by adding service operations, the number of schema trees increases significantly,
leading to more cost of schema tree matching. However, the efficiency is still
good since we take a fast tree edit distance method from [25].

We then evaluated the efficiency of searching for desired web services. The
time cost is given in Fig. 4(b). It is can be seen that the time increases almost
in a linear way with respect to the number of web service operations. This
demonstrates that by building the service index, our searching performance is
rather high, although building index is a bit time costing. But considering the
fact that the web service repository does not change frequently comparing with
a user’s query request, the service index is effective and practical.

(a) Performance of Building Service
Index

0
40
80

120
160
200
240
280
320
360
400
440
480
520
560
600

10 150 320 420

T
im

e(
s)

(b) Searching Performance

0

0.5

1

1.5

2

2.5

3

0 80 140 220 300 380 480

ti
m

e(
s)

Fig. 4. Performance

Efficient IR-Style Search over Web Services 317

8 Conclusions

In this paper, we have presented a novel IR-Style mechanism for discovering
and ranking web services automatically, given a textual description of desired
services. We have introduced the notion of preference degree for a web service,
and suggested relevance and importance as two desired properties for measuring
its preference degree. Also, various algorithms are given to obtain service rel-
evance and importance. The key part for computing service importance is our
schema tree matching algorithm, which catches not only structures, but even
better semantic information of schemas defined in web services. Experimental
results show the proposed IR-style search strategy is efficient and practical.

As part of on-going work, we are interested in improving efficiency of the con-
nectivity computation algorithm in terms of running time, since the computation
of extended tree edit distance is costly.

References

1. Booth, D., Haas, H., McCab, F., Newcomer, E., Champion, M., Ferris, C., Orchard,
D.: Web Services Architecture (2004), http://www.w3.org/TR/ws-arch/

2. Sajjanhar, A., Hou, J., Zhang, Y.: Algorithm for Web Services Matching. In: Yu,
J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 665–670.
Springer, Heidelberg (2004)

3. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery. In:
Proceedings of International Conference on Web Information Systems Engineering
(WISE) (2003)

4. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity Search
for Web Services. In: Proceedings of International Conference on Very Large Data
Bases (VLDB), pp. 372–383 (2004)

5. Sycara, K.P., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic Matchmaking Among
Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-
Agent Systems 5(2), 173–203 (2002)

6. Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO).
WSMO Final Draft 10 (2005)

7. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: Proceed-
ings of International Conference on Services Computing (SCC), vol. 1, pp. 279–286
(2005)

8. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-Style Keyword
Search over Relational Databases. In: Proceedings of International Conference on
Very Large Data Bases (VLDB), pp. 850–861 (2003)

9. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword Search in Relational
Databases. In: Proceedings of International Conference on Very Large Data Bases
(VLDB), pp. 670–681 (2002)

10. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A System for Keyword-Based
Search over Relational Databases. In: Proceedings of International Conference on
Data Engineering (ICDE) (2002)

11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks 30(1-7), 107–117 (1998)

http://www.w3.org/TR/ws-arch/

318 Y. Hao, J. Cao, and Y. Zhang

12. Pu, K., Hristidis, V., Koudas, N.: Syntactic Rule Based Approach to Web Service
Composition. In: Proceedings of International Conference on Data Engineering
(ICDE), p. 31 (2006)

13. Yu, C., Jagadish, H.V.: Schema summarization. In: VLDB, pp. 319–330 (2006)
14. Hao, Y., Zhang, Y., Cao, J.: WSXplorer: Searching for desired web services. In:

Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 173–187. Springer, Heidelberg (2007)

15. He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: Chord4s: A p2p-based decen-
tralised service discovery approach. In: IEEE SCC (1), pp. 221–228 (2008)

16. Al-Masri, E., Mahmoud, Q.H.: Qos-based discovery and ranking of web services.
In: ICCCN, pp. 529–534 (2007)

17. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: WWW, pp. 795–804 (2008)

18. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Communications of the ACM (CACM) 18(11), 613–620 (1975)

19. Reis, D.D.C., Golgher, P.B., Silva, A.S.d., Laender, A.H.F.: Automatic web news
extraction using tree edit distance. In: Proceedings of WWW Conference, pp. 502–
511 (2004)

20. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between
Trees and Related Problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

21. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley, New York (1990)

22. http://www.xmethods.org (XMethod)
23. http://www.bindingpoint.com (BindingPoint)
24. http://www.webservicelist.com (WebServiceList)
25. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in xml documents.

In: WebDB, 61–66 (2002)

http://www.xmethods.org
http://www.bindingpoint.com
http://www.webservicelist.com

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 319–333, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Towards a Sustainable Services Innovation in the
Construction Sector

Sylvain Kubicki1, Eric Dubois1, Gilles Halin2, and Annie Guerriero1,2

1 Public Research Centre Henri Tudor
29, av. J.F. Kennedy, L-1855 Luxembourg-Kirchberg, Luxembourg

{sylvain.kubicki,eric.dubois,annie.guerriero}@tudor.lu
2 Research Centre in Architecture and Engineering

2, rue Bastien Lepage, 54001 Nancy, France
gilles.halin@crai.archi.fr

Abstract. In this paper, we report on a business case in the construction sector
where we have designed and prototyped an innovative Web-based distributed
document management application. It supports various exchange and sharing of
information services between the different stakeholders involved in a
construction project. The development of the application is based on a service-
oriented architecture and follows a systematic model-driven engineering
approach. Besides the application itself, the paper also reports on a Sustainable
Services Innovation Process (S2IP) guiding our activities related to the
valorization and the successful technology transfer of a demonstrator into an
innovative product. We illustrate how this innovation process has been applied
to this business case in the construction sector where a networked value
constellation has been identified and realized with professionals of the
construction sector (including a standardization body), software houses and our
technology transfer centre.

Keywords: service oriented architecture, model-driven engineering, science for
service systems, open and networked innovation process, networked value
constellation, construction domain.

1 Introduction

Cooperation between actors is essential for the success of a construction project. The
short-lived groups of actors, the heterogeneity of stakeholders and of the local
strategies of their firms are the main specificities of AEC (Architecture, Engineering
and Construction) sector activities. Indeed, the diversity of projects and architectural
realizations is added to the complexity of groups of stakeholders and relations among
them. In this context, the improvement and the change of work methods takes time,
and there are clear opportunities for innovation through IT services.

In Luxembourg, to answer to this need, the Public Research Centre Henri Tudor
(CRPHT) has been engaged in several R&D projects, most of them in a PPP
(Public/Private Partnership) approach with different stakeholders active in the sector

320 S. Kubicki et al.

as well as with the CRTI-B1, the national professional association promoting new
usages of ICT in the construction sector and its associated standards. These projects
have resulted in several demonstrators and prototypes [1, 2], the latest one, dealing
with a document management services system supporting construction projects, is the
focus of this paper. Developing demonstrators is clearly an important activity in a
global innovation process in order to get the support of early adopters through
experiments and validation. However such demonstrators are only one of the elements
that is part of a complete innovation chain resulting in a successful technology
transfer. From its past experiences, CRPHT has built and continuously improved the
elements of this chain, resulting in a so-called S2IP (Sustainable Service Innovation
Process). S2IP supports a networked and open innovation approach [3] based on the
identification of a networked value constellation [4] making sustainable this
innovation. In this paper we illustrate how the S2IP has been applied to the
demonstrator developed for the innovative document management services system.

The structure of the paper reflects the twofold orientation of this work, namely the
development of the innovative document management services system demonstrator
as well as of the technology transfer innovation process associated with this
demonstrator itself. The approach for designing new document management services
is presented in Section 4 where is detailed the followed model-driven service design
and architectural approach used for building a demonstrator (prototype). The work is
mainly based on the instantiation of a meta-model that has been built for
understanding the nature of cooperation and collaboration activities taking place in
the construction sector. The metamodel is presented in Section 2. Transforming an
innovative demonstrator into a sustainable innovation is the target of the S2IP whose
generic associated activities are introduced in Section 3. Its application based on the
identification of a networked value constellation making sustainable the original
demonstrator is detailed in Section 5. Section 6 concludes with a summary of the
paper and with an overview of our future plans.

2 Electronic Cooperation in the Construction Sector

In this section, we first start by motivating the need for research in new electronic
platform for supporting cooperation and collaboration dedicated to the specific
services and associated constraints of the AEC sector. Then we report on actual
research results regarding the definition of a meta-model associated with the nature of
the cooperation in the sector and explain the methodological approach followed in the
development of the demonstrator.

2.1 Cooperative Practices in AEC

The AEC business market is largely driven by building & infrastructure projects
demand. Such projects involve temporarily teams of heterogeneous actors (architects,

1 The Resource Centre for Technologies and Innovation in Construction (CRTI-B) is a

standardization body involving all the representative building trades in Luxembourg (owners,
architects/engineers and contractors) in more than 40 thematic working groups. It was created
in 1990. http://www.crtib.lu

 Towards a Sustainable Services Innovation in the Construction Sector 321

engineers, contractors, material providers, etc.) able to respond to the customer’s
requirements (namely its architectural program). Each of these heterogeneous firms
has its own internal processes, methods and IT infrastructures. Then, the project’s
activity today is characterized by a low-level of integrated design & construction
collective processes.

In this particular context, the “concurrent engineering methods and tools” applied
for many years in several other industries (e.g. automotive, aerospace) are not well
adapted to the specificities of cooperation in AEC projects. Thus, our research is
considering an alternative concept of “cooperative engineering” [5] favoring mutual
adjustment, trust between practitioners and enabling the necessary flexibility of
processes realization and the need for an adapted IT environment.

We underline that collective processes have not to be described in the details in
order to be flexible. Then we think that numerous process modeling approaches (both
methods and IT support) are not well adapted to our case. But “working processes”
could be described and agreed at a “high level”, on the basis of a common and shared
vocabulary (more details in Section 2.2) between actors of the domain. That is what
the CRTI-B working groups did (more details in Section 3.2), with the consensus of
all the involved representative partners. Then, IT support can be considered from the
perspective of these cooperative (best) practices.

2.2 A Methodological Approach of Cooperation Support

In the role of technology transfer centre, CRPHT is not developing real software
products but more demonstrators (or prototypes) that can be used for the purpose of
experiments. The goal is to demonstrate the benefits of the new features to the
different stakeholders of the sector. In the targeted AEC sector, for developing rapidly
and in a flexible way these demonstrators, we are following a Model Driven
Engineering (MDE) approach.

This approach is based on model development, steering both domain analysis and
tool engineering. It is largely based on Model Driven Architecture (MDA) for
software systems development [6] where the objective is to define a framework of
certified industrial standards (MOF, UML). In parallel, the Model Driven Engineering
(MDE) research area is an evolution aiming to unify different technical spaces (XML,
ontology etc.). It does not focus on a unique technology: it is an integrative approach
[7]. MDE recommends the use of meta-models to define domain languages. Models
represent real systems. Each model has to be conformed to its meta-model [8, 9].
Finally the transformation concept is a central one, a transformation being itself
described with a model.

We use this methodological framework and propose two levels of modeling for the
cooperative activity in the AEC domain [10, 11]. First, a Cooperation Context Meta-
Model (CCMM) allows us to describe the cooperative activity at a high level of
abstraction. This meta-model is used to construct a specific model representing the
particular context of a real construction project. The instantiation MOF architecture
(M2 > M1 > M0), which we base this reasoning on, nicely fits with in the approach
based on models and meta-models from MDE.

Our CCMM (M2) takes into account the existing relations between the different
elements of a project (See Figure 1). We identify three main categories of elements

322 S. Kubicki et al.

Fig. 1. Cooperation Context MetaModel CCMM – M2 (extract)

existing in every cooperation project: the activity, the actor and the artefact
(associated with documents and objects related to an activity). CCMM strengthens the
relationships existing between these elements of cooperation.

More details about the CCMM can be found in articles where we have M1 models
that have been instantiated to represent specific architectural design context [12] and
building construction activity dedicated context [11]. Finally, these Cooperation
Context Models (CCM, M1) also enable the description of particular project contexts
(M0) representing the business knowledge in which actors cooperate. Note also that
an additional benefit of having several M1 models instantiated from the same M2 is to
guarantee a better interoperability between different information systems possibly
located in different organizations (e.g. engineering offices, architectural agencies…).

In this paper, we will report on a specific new M1 model - focusing on the specific
early building design/construction activities and the need for extensively exchanging
documents (plans, 3D views, etc.).

3 Towards a Sustainable Service Innovation Process (S2IP)

3.1 An Introduction to the S2IP

In the previous section, we have introduced the technological and scientific
ingredients that are at the basis of the demonstrator offering new services related to
AEC document management. Those services and their underlying architecture will be
further detailed in Section 4. At this point, we would like to present how the design
and the validation of these services are part of a general process applied by CRPHT in
a rigorous management of its innovation activities.

 Towards a Sustainable Services Innovation in the Construction Sector 323

CRPHT is the Luxembourg R&D centre dedicated to the support of technology
transfer and innovation in different technological domains including ICT, health,
environment and materials. In the ICT domain, most of these applications are services
oriented. This is in line with the nature of the national economy where the service
sector accounts for above 85% percent of total value added in 2006 granting
Luxembourg with the first place in the European landscape. According to the EARTO
terminology (www.earto.org), CRPHT is a RTO, a public Research and Technology
Organization whose is a “specialized knowledge organization dedicated to the
development and transfer of science and technology to the benefit of the economy and
society”. The main mission of a RTO is therefore to provide research, development
and innovation services both to private and public beneficiaries according to an open
approach (or Public-Private-Partnership) where it acts as interface between
universities and firms [13].

In order to perform its public mission, transfer of technologies but also of
knowledge, ideas and concepts, CRPHT has defined and applied an innovation
management process targeting the support to innovation in services within open
partnerships with the targeted beneficiaries [3]. This process is called “Sustainable
Service Innovation Process” (S2IP) [14]. It is based on a participatory and collaborative
innovation approach in order to sustain deep involvement of the network’s actors in the
development of innovation services. Targeted services are mostly based on ICT services
but packaged into business services, i.e. also including the organizational (processes)
and the human (skills and competencies) perspectives. This view is in line with the new
research domain of Service Science [15]. The overall structure of S2IP is depicted in
Figure 2.

Although the figure may suggest that the S2IP is lifecycle oriented, the reality is
that each box corresponds to a process that has to be performed and may be pursued
in parallel with other processes in a non strict sequence.

Fig. 2. The S2IP Innovation Process

324 S. Kubicki et al.

The main processes are:

1. Service value and business strategy: This process covers the activities associated
with the identification of an opportunity for a new service innovation. They cover a
study of the technological feasibility of the service (which, in most cases, requires
the building of a demonstrator for the purpose of experiments with early-adopters)
as well as a preliminary identification of the business model associated with the
value proposition (both expressed in terms of tangible financial elements and of
intangible assets).

2. Service design and engineering: This process is associated with the definition of
the service not only in terms of its business functional objectives but also in terms
of all its required (non-functional) qualities. Thus requires to elicit the strategic
goals of the different early-adopters stakeholders involved in the final acceptance
of the service as well as to understand the constraints associated with the
environment (like specific regulations associated with a sector). From this initial
elicitation, requirements have to be formally expressed in terms of properties of the
services that can be organized in terms of a service contract (or a service level
agreement).

3. Service promotion: Once the service contract has been validated by early adopters,
it is important to promote the service to other potentially interested parties. This
can be done within an organization through some marketing regarding the socio-
economical sustainability of the service. In a network of organizations or for a
sector, this promotion can also include initiatives regarding the branding of the
new service through some label definition and associated certification scheme.
Ultimately standardization activities run for example at the national or international
levels (like e.g. ISO) definitively help in a successful promotion of the service.

4. Service management: This is out of the scope of CRPHT’s mission to deploy by
itself the service with an organization or within a sector. This is where the market
should play its role. However we define and provide tools that can be used by those
that will deploy the service for checking and measuring the correctness of its
implementation. In particular for each new service we propose metrics associated
with the measurement of the quality of the services implementation with respect to
the services contract.

5. Service capitalization: Once a services system is deployed within organizations,
we can start to collect the feedbacks associated with the measures as well as from
assessment performed with the end-users. The analysis of this feedback indicates
the possible evolution of the service in terms of new requirements, new business
model, etc. Thus this is where new iterations associated with the different
processes described above are starting.

3.2 Applying the S2IP Value Proposition Process to the Building Construction
Sector

Starting from the generic presentation of the S2IP introduced above, we now illustrate
its application to our business case in the construction sector by first considering
the initial Service Value process and then detailing the four other processes in
Section 5.

 Towards a Sustainable Services Innovation in the Construction Sector 325

The Service Value process has the twofold objective of “inventing” new services
together the strategic business model underlying their acceptance and sustainability.
The invention itself is difficult to formally describe but always results from the
matching between the knowledge about an innovation opportunity in a sector or a
firm, and the knowledge acquired about the potentialities of new technologies, new
processes, new methods, etc. In our case, knowledge about the sector was gained
through our long-term relationship with the CRTI-B (the national professional
association promoting new usages of ICT in the construction sector) in Luxembourg,
while knowledge about technology and scientific advances was acquired through our
cooperation with the co-author of this paper (namely the MAP-CRAI laboratory in
Nancy).

At the centre of our innovation idea was the decision to address the issue of
document management through two viewpoints: the human one (i.e. human practices
related to document management) and the technological one (i.e. existing software
solutions).

The issue of document management in weakly integrated activities needs to focus
on the structuring of metadata related to these documents [16, 17] rather than on
cross-organizational workflows approaches. Metadata management should be
considered both the human viewpoint (Why do I share a document? How to document
the flow of documents?) and the technological one (How to represent metadata? How
should the users fill in metadata?). Regarding such approach, it should be noted that
Turk & Björk suggested one of the first model describing document-related concepts
in AEC: presentation, document lifecycle, organization and especially the link with
building product models [18].

In this context, designing new document management services for the AEC sector
is not really challenging but designing those which really answer to the demand of the
CRTI-B is really the topic of the innovation. To do so the following activities were
performed with the overall objective of demonstrating the existence of a business
model (further detailed in Section 5) for new software services fitting a clearly
identified market.

1. During the first activity, enquiries were performed and showed that most of the
users were not really satisfied with the existing solutions. Some reasons were
collected through brainstorming with practitioners. Interesting synthesis papers
also introduced some metrics and indicators to understand the factors of success or
failure of AEC groupware solutions [19, 20]. The complexity of their common
functionalities and associated services is one important reason [21]. Their low
adequacy to the AEC projects specificities (in particular organizational, processes
and actors’ skills ones) is another reason of the failures in introducing such new IT
information systems. Finally technical reasons also have been underlined. Actors
have to use numerous IT solutions (one project – one tool) because it is often that
the owner or main contractor decides and forces to use such a system in its project.

2. Then, as the decision was taken regarding the development of a new solution,
initial needs have been formulated by the end-users themselves through a second
enquiry/interview stage. Working practices have been collected by CRPHT who
transformed them into a comprehensible set of best working practices. A dedicated
working group allowed the practitioners to agree on it in a consensus way.

326 S. Kubicki et al.

3. During the third activity, six releases of the demonstrator have been incrementally
developed and regularly validated with 6 working groups (more details in the next
Section). These working groups were constituted of 15 AEC practitioners
representing several fields (i.e. architects/engineers, owners). The CRPHT team
frequently presented the developments’ progress. This enabled a validation of the
progress but also an early appropriation of the application by its future users.

4. Experiments begun early with only some basic services in order to rapidly debug
the system and to let the users better formulate their needs.

4 A Model-Driven Service Design Approach to a Document
Management IT Service in AEC

The incremental development of the successive releases of the demonstrator took
direct benefits of the MDE approach introduced in Section 2 and of its tailoring to the
cooperation issues in AEC. The flexibility and the efficiency of this approach for a
systematic derivation and evolution of new specific cooperation platforms was
already proved by our previous experiences regarding the development of open-
source applications, and of their related business services [2].

4.1 Document Management Business Services

In our new application, as explained in the previous section, the objective is to
support cooperative practices related to the exchange of documents which fits the
specificities of the building construction working practices. From interviews and
working group meetings with practitioners involved in construction projects
(architects, engineers, owners, contractors), we collected information about their
practices. After structuring it, and agreeing on it with the involved practitioners, we
organized it around seven high level practices. Two examples are:

• Practice 2: A standard naming of project documents is setup and agreed by all the
actors involved. It is developed on the basis of the actual norm used in public
buildings projects.

• Practice 4: When a document is shared, it is necessary to inform the interested
participants of its availability and of all its related modifications.

From the identified cooperation practices (Px) related to document exchange
between practitioners, the following services have been incrementally developed:

• A file name management service enables the use of a standard for naming the
plans, contracts or meeting reports. It is defined for each construction project and
enables to obtain the metadata of a document when it is uploaded. It also ensures
the classification of documents in the standard structuring of the project. Standard
name is composed of fields and separators. A web service parses the name of the
document submitted by the user and interprets its content. If the user uses standard
names for his documents, he has just to check if the name is correct. If he does not,
he can rename his file using the field contents that the tool suggests him.

• A notification service allows the users to receive notification when a document is
uploaded, updated or when various actions are performed (such as leaving a

 Towards a Sustainable Services Innovation in the Construction Sector 327

reaction, assigning a request and so on). For example an engineer designing its
plan on the basis of the architect’s one is automatically informed of the upload of a
new architect’s index, which could be of interest for him.

• A request management service has been developed to manage and keep trace of the
interactions between the users. The author of a document can inform someone else
that a document has been uploaded. He can also make a request for validation or
ask for a reaction. Requests, “due date” and “accomplished date” are then stored
and enable to trace the state of a document (validated, waiting for a validation,
rejected).

• The reaction service traces the discussions between users about a document and
allows them for example to directly inform the owner of a change.

• Finally, a privacy management service enables to manage privacy areas in which
the users are authorized to access or not: a first area is restricted to the designers
(architects, engineers), a second one allows the owner to see the plans he has to
validate, and a third one is completely public and accessible for all the contractors.

4.2 Development of the Demonstrator

Today most of the solutions are based on a classical client/server architecture
enabling the description, storage and retrieval of cooperation context data in a
database. In our case, for the purpose of openness and ease of integration with
existing tools, we choose to orient our developments towards a service-based
architecture. Examples of such architectures in AEC include the solution developed in
the ISTforCE EU project [22] and the one implemented in the e-Nvision project [23].

Our services’ platform manages the cooperation context, based on a specific
construction business-domain model instantiated from the cooperation context meta-
model CCMM) presented in section 2.2. Following the Model-Driven Engineering
approach summarized in the right part of Figure 3, we have built a specific
cooperation context (M1) associated with the work practices described in the previous
sub-section and derived from CCMM. This modeling framework enables to define an
adaptable and flexible business context which was useful in the incremental
development of the different demonstrator’s releases. On our case, M1 represents the
specific context of specific early building/construction activities characterized by
many exchanges of documents (plans, 3D views, texts) between different actors
(firms, agencies, control bodies, etc.). For example, in the M1, we can manage
explicitly the relationships existing between the author of a document (e.g. a plan) and
the other actors who have to validate it.

The implementation of the business domain context through the use of IT services
requires to use the same modeling framework to guarantee the alignment between the
concepts introduced at each modeling level. The IT Service metamodel (left part of
Figure 3) describes existing visualization modes, designed business processes, usable
functional resources and the configuration elements. The metaconcept matching at
M2 level enables to define IT services adapted to specific business cooperation
contexts by using business concepts when configuring the IT service (M1 level).

The business-oriented services described above have been developed through the
use of Web services. The aim is to facilitate their integration in existing software
infrastructures used by some of our partners. These Web services are described in the

328 S. Kubicki et al.

Fig. 3. A MDE approach for the design of IT services fitting a Business Domain

REST protocol [24] and are also available in SOAP. REST is a Web services
technology based on the Web architecture and its basic technologies: HTTP, URI and
XML. We structured these Web services using the ROA approach (Resource Oriented
Architecture) [25]. It describes a set of good practices for REST Web service design
and is very adapted to our Agile development process, involving business experts,
technical experts and final users.

4.3 Validation of the Demonstrator

The prototype implementing these document management business services is under
validation in two different experimental contexts. The first one consists of real
projects’ experiments (3 running at the time of writing this article), where early-
adopters use the tool to support the exchange of electronic documents instead of
classical ones (such as fax and email). The second one is an education context (an
Architecture Master curriculum [26]), where distant architecture students working on
architectural design projects (4 projects performed in fall semester 2008) use the tool
to share their design documentation.

The figure 4 shows the evolution of the number of e-documents shared each week
via the demonstrator. It distinguishes between real construction projects and education
projects.

Figure 4 shows that the usage of such an innovative tool is increasing during the
duration of each experiment. This reflects the necessary appropriation time, during
which users become aware of the possibilities of the tool and progressively trust it. It
corresponds also to the increasing amount of documents produced and exchanged in a
construction project.

 Towards a Sustainable Services Innovation in the Construction Sector 329

Fig. 4. Statistics of usage of the document management tool by week of experiment

Functional feedback is also targeted by the experiment stage. The cooperative
practices supported by the IT services implemented seem to fit well the needs of all
the practitioners of construction projects. Some particular demands came from
architects and engineers (daily users of the tool), especially in order to gain time in
uploading documents (addition of metadata) and to improve visualization of the
documents (consultation and validation flows). Minor bugs have also been fixed.

5 Applying a Sustainable Service Innovation in AEC

As the result of the incremental evolutionary development and experiments of the
demonstrator presented in the previous section, there has been an agreement of
professional early adopters from the construction sector on the usefulness of the tool
and more importantly on the added value of its offered services. Thus, the first
process of the S2IP (see section 3.1) being accomplished, our role was to make
sustainable this innovation by applying the next processes of the S2IP.

The challenge was thus to build a networked value constellations of actors that
jointly satisfy a consumer need, where each actor contributes its own expertise and
services [4]. The consumer’s needs and requirements are here represented by
professionals (both individuals and companies) from the AEC sector. The actors are
the CRTI-B, software houses interested in selling and supporting the software
services and the CRPHT. Regarding the latter, in its role of RTO, its objective is not
to commercialize the developed software product derived from the demonstrator by
itself but more to find partners for doing this and motivate them through the identified
value proposition.

330 S. Kubicki et al.

Hereafter we describe how the networked value constellation of actors has been put
in place through the realization of the remaining four processes (numbered 2-5 in
Section 3.1) of the S2IP.

2. Service design and engineering process: The first demonstrator was not robust,

neither reliable enough to be transferred to a commercial software house. In our
case, the benefit of the demonstrator was to help in the elicitation of the features
required from the end-users and also to convince them from the usefulness of the
application in support to their practices. The transfer (or selling) of a new release
more stable to commercial entities is not sufficient for them. What is required is
also to precisely define the set of requirements (both functional and non-
functional) associated with the future commercial application. This precise set of
requirements is required from the software house to help it in the engineering of
the final product, but also from the end-users who want to check that the nice
features shown through the demonstrator are also part of the final product.

3. Service promotion process: One of the mechanisms that can be used for the
promotion of new services within a sector is the standardization approach. In other
words, if the sector promotes an innovation as being the standard to be followed, it
also strongly boosts this innovation. In our case, the CRTI-B has played this role of
standardization body at national level. This was first through the endorsement of
the proposed meta-data information structure for the documents. Then, from the
experiments we conducted with the demonstrator, the CRTIB recognizes the
importance to promote its usage in future construction projects. More importantly,
the Ministry of Public Construction (one of the partners of the CRTI-B) decided to
foster the use of such software services in its future public building construction
projects. The CRTI-B also imposes that only a services system respecting the set of
requirements formally expressed in the requirements document produced according
to the process described above was eligible under its trademark “CRTI-weB”.

4. Service management process: As indicated above, the role of CRPHT is not to
deploy and manage the new designed services by itself. However its role is to
support partners in a successful commercialization of the innovation. In our case
there is today 5 consultancy software houses which are interested to develop a
software system offering the services defined according to the requirements
document produced by CRPHT. What they are also interested in is to demonstrate
that their developed software is compliant with requirements endorsed by CRTI-B
(see above). This is also what the CRTI-B expects from the proposed software. To
this end it has mandated the CRPHT in its quality of neutral actor, to check for the
compliance of the different proposed solutions with the requirements document. So
only the companies, which will have produced a ‘certified’ product, will get the
CRTI-B label. To do this certification approach, the CRPHT is applying a
service/software procurement approach based a systematic test of both functional
and non functional requirements in order to detect and track inconsistencies.

5. Service capitalization process: CRTI-B has also asked to CRPHT for a follow-up
of construction projects managed with the new document management services
system. To this end a working group will be set up in order to get feedbacks
coming both from the professional construction actors as well as from software
houses. The objective is here to enter a Plan-Do-Check-Act (PDCA) model aiming

 Towards a Sustainable Services Innovation in the Construction Sector 331

at improving the set of delivered services through an agreement and the publication
of new releases of the requirements document.

6 Conclusion and Future Work

This article presents the design of IT services for the construction sector in
Luxembourg. In particular, it focuses on a specific approach based on a high
implication of the AEC sector professionals through the CRTI-B national
standardization body. The design of an innovative document management IT services
system demonstrator has been realized according to the Model-Driven Engineering,
paradigm enabling the modeling of the business domain, and the rapid prototyping of
the services. This development is carried out in the framework of a Sustainable
Service Innovation Process (S2IP) driving the various R&D projects of CRP Henri
Tudor.

Besides a continuous improvement and formalization of the S2IP through the
capitalization of other innovations performed in the context of open networks of
stakeholders, more technical work is pursued in two directions.

• First, we are opening the document management services to other information
systems, especially the ones used internally by some of our partners (e.g.
engineering firms). The required interoperability between the global document
management solution and these particular services is an essential key to guarantee
a large usage of the application in Luxembourgish construction projects.

• Second, we are also addressing several research issues related to the development
of these services. In particular we plan to improve the description of IT services
(modeling) and of the business domain use cases (cooperation context models,
M1). Our aim is to setup a repository of M1 business models, enabling the
selection/discovery of IT services closely related to the specificities of these
business contexts. In the construction domain it will allow us to provide IT
services’ offers fitting the particular context of each architectural project.

Acknowledgements

The authors would like to thank the CRTI-B network and more especially the
practitioners who participated in working groups and took part in real-world
experiments.

References

1. Kubicki, S., Guerriero, A., Halin, G.: Model-based eServices for supporting Cooperative
Practices in AEC. In: ECPPM 2008 Conference. E-Business and e-work in Architecture,
Engineering and Construction. Sophia-Antipolis, France (2008)

2. Kubicki, S., Guerriero, A., Halin, G., Hanser, D.: IT services design to support
coordination practices in the Luxembourguish AEC sector. In: Luo, Y. (ed.) CDVE 2007.
LNCS, vol. 4674, pp. 396–403. Springer, Heidelberg (2007)

332 S. Kubicki et al.

3. Chesbrough, H.: The era of open innovation. MIT Sloan Management Review 44(3), 35–
41 (2003)

4. Tapscott, D., Ticoll, D., Lowy, A.: Digital Capital: Harnessing the Power of Business
Webs. Nicholas Brealy Publishing, London (2000)

5. Kubicki, S.: Assister la coordination flexible de l’activité de construction de bâtiment. Une
approche par les modèles pour la proposition d’outils de visualisation du contexte de
coopération, PhD Thesis, Université Henri Poincaré, CRAI - Centre de Recherche en
Architecture et Ingénierie, Nancy (2006)

6. Soley, R.: OMG: Model Driven Architecture, Object Management Group (2000)
7. Bézivin, J.: On the Unification Power of Models. Software and Systems Modelling

(SoSym) 4(2), 171–188 (2005)
8. Favre, J.M.: Towards a Basic Theory to Model Driven Engineering. In: Workshop on

Software Model Engineering, WISME 2004, joint event with UML2004. Lisboa, Portugal
(2004)

9. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing. OMG
Press (2003)

10. Halin, G., Kubicki, S.: Une approche par les modèles pour le suivi de l’activité coopérative
de construction d’un bâtiment. In: Augeraud, M. (ed.) Une interface multivue et des
services métiers orientés gestion de chantier, in RSTI série ISI (Ingénierie des Systèmes
d’Information). Modèles, formalismes et outils pour les systèmes d’information, Lavoisier,
Paris (2008)

11. Kubicki, S., Bignon, J.C., Halin, G., Humbert, P.: Assistance to building construction
coordination. Towards a multi-view cooperative platform. ITcon Electronic Journal of
Information Technology in Construction 11, 565–586 (2006); (Special Issue Process
Modelling, Process Management and Collaboration, edited by Katranuschkov, P.)

12. Hanser, D.: Proposition d’un modèle d’auto coordination en situation de conception,
application au domaine du bâtiment, PhD Thesis, Institut National Polytechnique de
Lorraine, CRAI - Centre de Recherche en Architecture et Ingénierie, Nancy (2003)

13. Dodgson, M., Gann, D., Salter, A.: Think, Play, Do: Technology, Innovation and
Organization. University of Oxford Press, Oxford (2005)

14. Absil, F., Dubois, E., Grein, L., Michel, J.-P., Rousseau, A.: Trust in the Heart of the Open
Innovation: Lessons by the Resource Centre for Information Technologies for the Building
Industry. In: International Society for Professional Innovation Management (ISPIM)
(2008)

15. Chesbrough, H., Spohrer, J.: A research manifesto for services science. Communications
of the ACM 49(7), 35–40 (2006)

16. Caldas, C., Soibelman, L.: Automating hierarchical document classification for
construction management information systems. Automation in Construction 12, 395–406
(2003)

17. Forcada, N., Casals, M., Roca, X., Gangolells, M.: Adoption of web databases for
document management in SMEs of the construction sector in Spain. Automation in
Construction 16, 411–424 (2007)

18. Turk, Z., Bjork, B.-C.: Document Management Systems as an Essential Step towards CIC.
In: CIB-W78 Conference 1994, Helsinki, Finland (1994)

19. Nitithamyong, P., Skibniewski, M.J.: Web-based construction project management
systems: how to make them successful? Automation in Construction 13, 491–506 (2004)

20. Nitithamyong, P., Skibniewski, M.J.: Key Success/Failure Factors and their Impacts on
System Performance of Web-Based project Management Systems in Construction. ITcon
Electronic Journal of Information Technology in Construction 12, 39–59 (2007)

 Towards a Sustainable Services Innovation in the Construction Sector 333

21. Björk, B.-C.: The Impact of Electronic Document Management on Construction
Information Management. In: CIB-W78 Conference 2002. Aarhus School of Architecture
(2002)

22. Katranuschkov, P., Scherer, R., Turk, Z.: Intelligent services and tools for concurrent
engineering? An approach towards the next generation of collaboration platforms. ITcon
Electronic Journal of Information Technology in Construction 6, 111–128 (2001); (Special
Issue Information and Communication Technology Advances in the European
Construction Industry)

23. Angulo, I., Garcia, E., Peña, N., Sanchez, V.: E-nvisioning the participation of European
construction SMEs in a future e-Business scenario. In: ECPPM 2006, E-Business and e-
work in Architecture, Engineering and Construction, Valencia, Spain (2006)

24. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures, PhD Thesis, University of California, Irvine, USA (2000)

25. Richardson, L., Ruby, S.: RESTful Web Services. Web Services for the Real World.
O’Reilly, Sebastopol (2007)

26. Kubicki, S., Bignon, J.C., Leclercq, P.: Cooperative Digital Studio: IT-supported
Cooperation for AEC students. In: CIB-W78 2008 Improving the management of
construction projects through IT adoption. Santiago de Chile, Chile (2008)

P2S: A Methodology to Enable
Inter-organizational Process Design through

Web Services

Devis Bianchini1, Cinzia Cappiello2, Valeria De Antonellis1,
and Barbara Pernici2

1 University of Brescia
{bianchin,deantone}@ing.unibs.it
2 Politecnico of Milan, Milan (Italy)
{cappiell,pernici}@elet.polimi.it

Abstract. With the advent of Service Oriented Architecture organiza-
tions have experienced services as a platform-independent technology to
develop and use simple internal applications or outsource activities by
searching for external services, thus enabling inter-organizational inter-
actions. In this scenario, services are units of work provided by service
providers and offered to the other organizations involved in a collabora-
tive business process. Collaboration should be facilitated by guaranteeing
a homogeneous description of services at the right level of granularity. We
propose a methodology to support the designer of a business process in
the identification of services that compose the process itself. The method-
ology should allow collaborative partners to standardize process mod-
elling through component services, enabling effective inter-organizational
service discovery. The methodology is presented by means of a running
example in a real case scenario.

Keywords: service-based process decomposition, service-based collabo-
rative processes.

1 Introduction

Internet and related technologies demonstrate that information systems and
IT can provide a strategic platform to support the collaboration among In-
ternetworked Enterprises (IE) [1], that is, borderless organizations that share
applications, services and knowledge and whose processes are transformed and
integrated with the ones of their partners. Heterogeneity of such collaborative
environments implies the adoption of standards and infrastructures to commu-
nicate. With the advent of Service Oriented Architecture (SOA), organizations
have experienced services as a platform-independent technology to develop and
use simple internal applications or outsource activities by searching for exter-
nal services, thus enabling inter-organizational interactions. In particular, IE
can share their own applications by using the Software as a Service paradigm

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 334–348, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

P2S: A Methodology to Enable Inter-organizational Process Design 335

(SaaS). They can place their own implemented functionalities at the other orga-
nizations’ disposal by creating services and providing them across the Internet,
thus designing operating information systems able to connect IEs each other.
In this scenario, services are units of work provided by service providers and
offered to the other organizations involved in a collaborative business process.
By eliminating the need to install and run the application on the customer’s
own computer, SaaS alleviates the customer’s burden of software maintenance,
ongoing operation and support. In such a way, the adoption of SOA technology
also enables small and medium enterprises (SMEs) to join IE networks, since
it promises to reduce costs and complexity for connecting systems and business
processes. At the heart of the SOA paradigm there is a catalog of available ser-
vices that can be shared across IE and reused to build up collaborative processes.
Collaboration should be facilitated by guaranteeing a homogeneous description
of services at the right level of granularity. A uniform level of granularity enables
the comparability among different services. In fact, a coarse-grained service (e.g.,
a service associated with many tasks of a process) could not be compared with
an elementary service (e.g., a service that corresponds to a single task).

We propose the P2S (from process to services) methodology to support the
designer of a business process in the identification of the component services. The
methodology starts from a process represented by means of a workflow-based lan-
guage (e.g., BPMN) and supports the designer through the semantic annotation
of the business process elements and the identification of component services on
the basis of the notion of values produced for the actors that collaborate in the
process. The methodology also provides metrics to evaluate the quality of the
performed decomposition and to guide the designer in improving the solution
found, given the widely accepted definition of services as platform-independent,
self-contained, loosely coupled units of work. The P2S methodology should al-
low collaborative partners to standardize process modelling through component
services, enabling effective inter-organizational service discovery.

The paper is structured as follows: in Section 2 basic definitions are provided;
in Section 3 the proposed methodology is presented and discussed by means of
a running example in a real case scenario; in Section 4, the described approach
is compared with related solutions proposed in the literature; finally, Section 5
gives some hints about future work and concludes the paper.

2 Basic Definitions

Roughly speaking, a business process BP can be defined as a combination of
a set T of simple tasks through control structures (e.g., sequence, choice, cycle
or parallel) to form composite tasks, also denoted as sub-processes. Each sim-
ple task ti ∈ T of the business process BP is described through the operation
that it performs and by its I/O data. Data exchanged between tasks and control
flows connecting them are modelled as data dependencies and control flow de-
pendencies, respectively. Processes are usually defined at a business level using
a workflow-based notation (e.g., BPMN1), independently from implementation
1 http://www.bpmn.org/

336 D. Bianchini et al.

technology and platforms [2]. As usual, a process has an entry point (start event)
and one or more stop events. Furthermore, actors participating in the process
must also be considered. Actors are represented as abstract entities that interact
with the business process as responsible of one or more simple tasks. Actors can
be grouped into organizations. In workflow-based notation, task responsibilities
are represented through swimlanes. For example, BPMN supports swimlanes
with two main constructs: pools, to represent organizations participating in the
process, and lanes, that constitute sub-partitions within pools and are used to
organize activities which are logically related to each other (e.g., when they are
performed by the same department). We can provide the formal definition of a
simple task ti ∈ T as follows:

ti = 〈nti , IN(ti), OUT (ti), fti , Ati , Oti , {ti−1}〉 (1)

where: nti is the task name: IN(ti) and OUT (ti) are the sets of task inputs and
outputs, respectively; fti : IN(ti) → OUT (ti) is the transformation associated
with the task; Ati and Oti are the actor and the organization responsible for the
task, respectively; {ti−1} is the set of tasks that precede the task ti according to
control flow dependencies. According to widely accepted data structure diagrams
(e.g., UML, XML complex data types) each input in ∈ IN(ti) can be described
as 〈n, P〉, where n is the input name and P = {pi} a set of properties or attributes
that further detail the input data. Outputs can be described in the same manner.

Given two simple tasks ti and tj ∈ T , we say that there is a data dependency
from tj to ti if fti(OUT (tj))
= fti(IN(tj)), that is, execution of ti depends on
the execution of tj . A task ti ∈ T is defined as dependent on another task tj ∈ T
(tj �→ ti) if all the following conditions holds:

1. there is a path of control flow dependencies from tj to ti, that is, there exists
a set {tk} ⊆ T of simple tasks, for k = 1, . . . n, such that tj≡t1, ti≡tn and,
for each tk, tk−1 �→ tk;

2. there is a data dependency directly from tj to ti.

We introduce the task dependency graph T DG as 〈T , T D〉, where T is the set
of simple tasks and T D : T ×T is the set {tj, ti} of task dependencies such that
tj �→ ti.

Considering cooperation among actors that participate in the process, we
define the data exchange graph DEG = 〈A, E〉, where A is the set of actors,
E : A × A × Data is the set {〈Ai, Aj , d〉} of data exchanges between actors,
Data is the union set of inputs and outputs of the simple tasks in the overall
process and d ∈ Data represents a data value that is transferred from actor Ai to
actor Aj
= Ai. Exchanged data are those associated with control flows crossing
swimlanes boundaries. Among actors we also include the final user, that is the
beneficiary of the overall process execution.

Also a service S can be defined as a collection of tasks. However, the definition
of a service imposes a series of additional constraints with respect to that of a
business process: (i) services are self-contained units of work (that is, they do not
require context or state information of other services) and are connected each
other using standard, dependency reducing, decoupled message-based elements

P2S: A Methodology to Enable Inter-organizational Process Design 337

such as XML document exchanges; (ii) each service takes one or more inputs and
creates an output perceived as a tangible value for the service requester. More
specifically, in [3] a service is recognized as a recurrent communication pattern,
where the service requester sends a request and receives a response that is of value
for the requester himself/herself. On the other hand, the provider can invoke
other services to execute his/her tasks, becoming requester for those services.
Therefore, the overall business process can be viewed as a complex structure
of nested and chained service invocations connected by control structures. The
aim of P2S methodology is to support the process designer in a semi-automatic
identification of component services, as well as to give metrics for evaluating the
decomposition that has been identified.

2.1 Case Study

As a motivating example, we present a case study based on the cooperative sce-
nario in which a sofa manufacturer produces all the textiles sofa components
and purchases backbones from trusted suppliers (Figure 1). Different actors be-
longing to the sofa manufacturer enterprise have an active role in the analyzed
process. In details, administrative activities are performed by the sales and pur-
chasing offices, while production and delivery activities are performed by the
manufacturing and shipping departments. Among the participating actors, the
final user that sends the order and receives the sofa is implicitly considered.

Check
Order

Order

Refused Order

Complete
order?

Bill of
Material

generation

Backbone
Component

analysis

Check
feasibility

No

No

Yes

Yes
Backbones
production

Backbones
Delivery

+ Assemblage

Packing
Sofa

Delivery

BOM and
order

evaluation

Textile
Component

analysis

Check
feasibility

Yes
Textiles

production

+

No

Split Order
RefusedBackboneOrder
/RefusedTextileOrder

Packing List

Packing List

- Date
- ShippingAddress
- Name
- SofaQuantity

Order

- Quantity
- Address
- Product
- Payment
- Name

M
an

uf
ac

tu
rin

g
D

ep
t.

S
hi

pp
in

g
D

ep
t

P
ur

ch
as

in
g

O
ffi

ce
S

al
es

O
ffi

ce
M

an
uf

ac
tu

rin
g

D
ep

t.

B
ac

kb
on

e
P

ro
vi

de
r

S
of

a
M

an
uf

ac
tu

re
r

1

2 3 4

5 6

7 8 9

10

11 12

Fig. 1. Business process used as running example

338 D. Bianchini et al.

Table 1. Complete task representation (details about I/O have been omitted)

Name Input Output
1. Check order Order CompletenessEvaluation
2. BoM Generation Order BoM
3. BoM and order Order, BoM SuitableProviders, Schedule

Evaluation
4. SplitOrder Order, BoM, BackboneComponentOrder,

SuitableProviders, Schedule TextileComponentOrder
5. Textile Component TextileComponentOrder OrderFeasibility

Analysis
6. Textile Production TextileComponentOrder TextileComponent
7. Backbone Component BackboneComponentOrder OrderFeasibility

Analysis
8. Backbones Production BackboneComponentOrder BackboneComponent
9. Backbones Delivery BackboneComponent DeliveredBackboneComponent
10. Assemblage TextileComponent, Sofa

DeliveredBackboneComponent
11. Packing Sofa Pack
12. Delivery Pack PackingList

Name Operation Organization.Actor
1. Check order CheckCompleteness (Order, SofaManufacturer.SalesOffice

Constraints)
2. BoM Generation BoMDefinition (Order) SofaManufacturer.PurchasingOffice
3. BoM and order Planning (Order, BoM, SofaManufacturer.PurchasingOffice

Evaluation ProvidersList, ProductionPlan)
4. SplitOrder SplitOrder (Order, BoM, SofaManufacturer.PurchasingOffice

SuitableProviders, Schedule)
5. Textile Component Evaluate (TextileComponentOrder, SofaManufacturer.ManifacturingDept

Analysis ProductionPlan)
6. Textile Production TextileProduction (RawMaterials) SofaManufacturer.ManifacturingDept
7. Backbone Component Evaluate (BackboneComponentOrder, BackboneProvider.ManifacturingDept

Analysis ProductionPlan)
8. Backbones Production BackboneProduction (RawMaterials) BackboneProvider.ManifacturingDept
9. Backbones Delivery Delivery (BackboneComponent) BackboneProvider.ManifacturingDept
10. Assemblage Assemblage (TextileComponent, BackboneProvider.ManifacturingDept

BackboneComponent)
11. Packing Packing (Sofa) SofaManufacturer.ShippingDept
12. Delivery Delivery (Pack) SofaManufacturer.ShippingDept

The event that activates the process is the reception of an order by the sales
office. The office checks the order and refuses it if it is affected by incompleteness
or inaccuracy problems. If the order is well defined, then the sales office forwards
it to the purchasing office, that is responsible for the relationships with raw ma-
terials and components providers. The purchasing office generates the Bill of
Material (BoM) and evaluates it together with the received order to identify
the required components and the providers to contact. Thus, the order is split
in sub-orders for each component required. In the example, two sub-orders are
created and sent to the internal manufacturing department for the textile pro-
duction and to an external provider for the backbone production. In both cases,
the production units check the received document: if the order is considered as
feasible, they start with the production phase and, at the end of the production
step, they commit the delivery of the realized components. The assemblage of
the components and thus the realization of the final product is in charge of the
purchasing office. The process finishes when the shipping department receives
the product and delivers it to the final user.

P2S: A Methodology to Enable Inter-organizational Process Design 339

The most of the workflow-based notation tools allow the designer to represent
the process in terms of tasks and control structures. Information about the data
flow is not provided. In order to identify services, a preliminary step before
applying the P2S methodology is the completion of the task representation with
the definition of inputs and outputs, the associated operation and responsible
actors and organizations (Equation 1). The completed representation of tasks
in the running example is summarized in Table 1. Each input/output can be
associated to a complex type definition, that includes the I/O name and the
list of properties/attributes. For example, Figure 1 also shows the definitions
of Order and PackingList information at the beginning and at the end of the
process.

According to basic definitions given in Section 2 and task descriptions in
Table 1, the task dependency graph and the data exchange graph for the run-
ning example are the following:

T DG = 〈T ,T D〉
T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
T D = {〈2, 3〉, 〈2, 4〉, 〈3, 4〉, 〈4, 5〉, 〈4, 6〉, 〈4, 7〉, 〈4, 8〉, 〈6, 10〉, 〈8, 10〉, 〈10, 11〉, 〈11, 12〉}

DEG = 〈A, E〉
A = {A0 = FinalUser, A1 = SofaManufacturer.SalesOffice, A2 = SofaManufacturer. Purchasin-

gOffice, A3 = SofaManufacturer.ManufacturingDept, A4 = SofaManufacturer.ShippingDept, A5 =

BackboneProvider.ManufacturingDept}
E = {〈A0,A1,Order〉,〈A1,A0,RefusedOrder〉, 〈A1,A2,Order〉, 〈A2,A5,BackboneComponentOrder〉,
〈A2, A3,TextileComponentOrder〉, 〈A5,A2,RefusedBackboneOrder〉, 〈A3, A2, RefusedTextileOrder〉,
〈A5, A2,DeliveredBackboneComponent〉, 〈A3,A2,DeliveredTextileComponent〉, 〈A2,A4,Sofa〉, 〈A4,

A0,PackingList〉}

3 Methodology

According to the definitions given in Section 2, we consider the business process
as the combination of component services that execute the set of simple tasks.
The proposed methodology (see Figure 2), that guides the business process de-
signer in the identification of component services, is organized into four main
phases:

1. semantic process annotation - in a distributed heterogeneous environment,
where different SMEs provide independently developed process representa-
tions, business process elements (inputs and outputs, task names) must be
semantically annotated with concepts extracted from shared ontologies; in
fact, process designer could use synonymies or terms that are semantically
related to ontological concepts and tools and methods to figure out seman-
tic similarities between terms should also be proposed to uniform adopted
terminology;

2. identification of candidate services - according to an external perspective,
process actors involved in the task execution and the values they expect
from the business process are identified to determine a first set of candidate

340 D. Bianchini et al.

Semantic

process

annotation

External
ontologies

WordNet

IMPORT

Identification

of preliminary

service

candidates

Evaluation of

service

cohesion/coupling

Refinement of

process

decomposition

=

Fig. 2. Methodology phases

component services; in particular, the data exchange graph will be exploited
to figure out service invocations and value exchanges between requesters and
providers;

3. evaluation of service cohesion/coupling - according to an internal perspec-
tive, evaluation of service dependencies in terms of cohesion/coupling criteria
is useful to better define service structure and granularity; to this aim, the
task dependency graph will be exploited;

4. refinement of process decomposition - an additional phase is performed to
detect multiple invocations of the same service throughout the process work-
flow by means of proper coefficients; such coefficients will be applied to each
pair of identified services to check if they perform the same operations or
operate on the same data.

Methodological phases will be detailed in the following sections, with reference
to the motivating example.

3.1 Phase 1: Semantic Process Annotation

We suppose that SMEs aiming at collaborating through their business activities
agree on a shared reference ontology O = 〈C, R〉, where C is the set of ontologi-
cal concepts (atomic concepts) and R is the set of semantic relationships (e.g.,
equivalence, subsumption) between concepts. In the semantic process annotation
phase, after the completion of the task representation as shown in Section 2.1,
concepts names are associated with business process elements (i.e., task names,
input and output names and properties). Since terms used for business process
elements do not necessarily coincide with atomic concepts, the reference ontology
is extended with pre-existing, domain independent terminological knowledge ex-
tracted from an underlying lexical system (e.g., WordNet [4]), that relates each
term that is not already included in the reference ontology to atomic concepts
by means of synonymy (SYN), broader/narrower term (BT/NT) and related

P2S: A Methodology to Enable Inter-organizational Process Design 341

Order Product

Sofa Armchair

Name

Quantity

Receipt

Date

Address

Payment

PackingList

SofaQuantity

ShippingAddress

SYN
(=1.0)

SYN
(=1.0)

subsumption (=0.8)

ObjectProperty (=0.5)

DatatypeProperty
(=0.5)

Terminological
relationship

BT/NT
(=0.8)

Terminological
item (term)

Atomic concept

Fig. 3. A portion of shared ontology for the running example

term (RT) relationships. This approach is common and it has been successfully
adopted in other contributions [5,6]. A weight σ ∈ (0, 1] is associated with each
kind of relationship. For example, σ = 1.0 for equivalence or synonymy relation-
ships, σ = 0.8 for subsumption or BT/NT relationships, σ = 0.5 for the other
kinds of relationships. Two generic terms n1 and n2 (either atomic concepts or
not) can be related by a chain of weighted relationships. We define the name
affinity value between n1 and n2 (denoted with NAff(n1, n2)) as the product of
weights associated to the chain of relationships that relates n1 to n2. During the
semantic annotation phase, the name affinity evaluation between a term n1 /∈ C
adopted as business process element name and the atomic concepts in C is used
to suggest to the designer the ontological concepts that better match with n1.
Moreover, given two data items d1 = 〈n1, P1〉 and d2 = 〈n2, P2〉 (either input
or output of simple tasks), we define the structural affinity SAff(d1, d2) as the
evaluation of their semantic similarity, that is:

SAff(d1, d2) =
1
2
·
[
NAff(n1, n2) +

2·∑p1,p2
NAff(p1, p2)

|P1| + |P2|

]
(2)

where p1 ∈ P1, p2 ∈ P2, |Pi| is the cardinality (that is, the number of elements)
of the set Pi of properties. For the running example, let consider the descriptions
of Order and PackingList data items represented in Figure 1 and the portion
of reference ontology and domain-independent terminological knowledge shown
in Figure 3. The following affinity values can be evaluated:

NAff(Order,PackingList) = 1.0 * 0.5 = 0.5
NAff(Quantity,SofaQuantity) = 0.8
NAff(Address,ShippingAddress) = 1.0
SAff(Order,PackingList) = 1

2

[
0.5 + 2∗(0.8+1.0+1.0)

9

]
= 0.56

AffTOT (D1, D2) is the total structural affinity between two sets of data items
and is defined as the sum of structural affinity for each pair of items d1 ∈ D1 and

342 D. Bianchini et al.

d2 ∈ D2, normalized with respect to the cardinality of D1 and D2. The AffTOT

coefficient will be exploited in the next phases of the methodology. Note that the
proposed use of domain independent terminological knowledge can be exploited
to bridge the gap between different reference ontologies (as shown in [7]), thus
avoiding to constrain collaborating partners to adhere to the same reference
ontology.

3.2 Phase 2: Identification of Candidate Services

For the identification of candidate services that are combined in a business pro-
cess, we propose some heuristics that are derived from empirical observations
about the features and the definition of a service found in literature. Services
constitute units of work that are logically decoupled. Workflow-based tools and
languages usually collect in the same swimlane (either pool or lane in BPMN
process representation) logically coupled sets of tasks. Moreover, services are
invoked by actors participating to the process to obtain tangible values from
other actors. We exploit the data exchange graph defined in Section 2 to iden-
tify value exchanges. According to definitions given in [3], a value for one of the
process actors can be associated to a service invocation request. For each node
A of the data exchange graph (that is, an actor), the outgoing and incoming
edges (that is, data transfers towards and from other actors, respectively) are
considered as service requests/invocations and responses/values, respectively.
The total structural affinity evaluation is performed for each pair 〈Dreq, Dres〉,
where Dreq is a data item associated with one of the outgoing edges and Dres
is a data item associated with one of the incoming edges. Only pairs such that
AffTOT (Dres, Dreq) > 0 are maintained, that correspond to the service invoca-
tion and the corresponding value produced through the service execution. Three
cases should be distinguished: (i) an outgoing data value Dreq is not associated
with any incoming data, that is, 〈Dreq, ∅〉; (ii) a match is found between outgo-
ing data Dreq and incoming data Dres, that is, 〈Dreq, Dres〉; (iii) an incoming
data value Dres is not associated with any outgoing data, that is, 〈∅, Dres〉.
The first and the third cases seem correspond to borderline situations, in which
an actor sends a request without receiving any value from service invocation or
an actor receives a service response/value without sending any request, respec-
tively. This could be due to the impossibility for the supporting tool to find out
semantic correspondences between outgoing and incoming data items; in these
cases, the process designer must intervene to explicitly set, modify or exclude
this kind of matches, according to his/her own domain or process knowledge.
The second case corresponds to the invocation of a service, that produces the
corresponding value. This leads to the following heuristics. For each process actor
that is associated with a pair 〈Dreq, Dres〉, a candidate service S is recognized
whose first task ti is such that IN(ti) ≡ Dreq and whose last task tj is such
that OUT (tj) ≡ Dres. In particular, the service S is invoked from the service
(if exists) containing the task tk such that OUT (tk) ≡ Dreq.

The list of candidate services is proposed to the process designer, that can
validate or refuse them. Let consider the sofa manufacturer example. Applying

P2S: A Methodology to Enable Inter-organizational Process Design 343

the heuristics described above, the following pairs 〈Dreq, Dres〉 are identified,
with corresponding candidate services:

〈Order,RefusedOrder〉 ⇒ S1 = {t1} (requester: final user)

〈Order,PackingList〉 ⇒ S2 = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12} (requester: final user)

〈BackboneComponentOrder,DeliveredBackboneComponent〉 ⇒ S3 = {t7, t8, t9}
(requester: purchasing office)

〈BackboneComponentOrder,RefusedBackboneOrder〉 ⇒ S4 = {t7} (requester: purchasing office)

〈TextileComponentOrder,DeliveredTextileComponent〉 ⇒ S5 = {t5, t6}
(requester: purchasing office)

〈TextileComponentOrder,RefusedTextileOrder〉 ⇒ S6 = {t5} (requester: purchasing office)

〈Sofa,PackingList〉 ⇒ S7 = {t11, t12} (requester: purchasing office)

3.3 Phase 3: Evaluation of Service Cohesion/Coupling

Once the candidate services have been identified as set of tasks, services are
further analyzed in terms of cohesion/coupling criteria in order to better define
service structure and granularity. The adopted cohesion/coupling metrics have
been inspired by their well-known application in software engineering field [8]. In
our scenario, task dependencies inside and across services are identified in terms
of common used data and are exploited to better aggregate tasks or to figure out
parallelism among them. In this phase, the task dependency graph is exploited.

Given two tasks ti and tj , we define the task coupling coefficient as follows:

τ (ti, tj) =

⎧⎨
⎩

AffTOT (OUT (tj), IN(ti))) if tj → ti

AffTOT (IN(tj), OUT (ti))) if ti → tj
AffTOT (IN(ti),IN(tj)))+AffTOT (OUT (ti),OUT (tj)))

2
otherwise

(3)

The third member in the equation 3 is used for tasks ti and tj that are executed
on parallel branches, but work on semantically related data. In details, two
tasks ti and tj are considered: (i) loosely coupled, if 0 < τ(ti, tj) < δ, where δ is
a threshold set by the designer (δ ∈ [0, 1]); (ii) strongly coupled, if τ(ti, tj) ≥ δ;
(iii) decoupled, if τ(ti, tj) = 0. Given a service S identified in phase 2, the service
cohesion coefficient is defined as:

coh(S) =

{
2 ·

∑
i,j τ(ti,tj)

|S|·(|S|−1)
∀ ti, tj ∈ S |S| < 1

1 |S| = 1
(4)

where |S| is the number of tasks in S. Given two services S1 and S2, the coupling
coefficient between them is defined as:

coup(S1,S2) =

∑
i,j τ (ti, tj)
|S1|·|S2| ∀ ti ∈ S1 ∧ tj ∈ S2 (5)

Service cohesion and coupling coefficients are used to evaluate the average cohe-
sion and coupling of the overall process BP , respectively:

pcoh(BP) =
∑

coh(Si)
|BP | (6)

344 D. Bianchini et al.

pcoup(BP) =

∑
i,j coup(S1,S2)

|BP |·(|BP | − 1)
(7)

combined in the coupling/cohesion ratio Γ :

Γ =
pcoup(BP)
pcoh(BP)

(8)

where |BP | is the number of services identified in second phase. Task coupling
coefficient is used to establish the goodness of the service cohesion and coupling
of the set of candidate services identified in the second phase of the method-
ology. Tasks are aggregated according to their level of coupling by applying a
hierarchical clustering algorithm. Firstly, each task constitutes a cluster with
only one element (singleton). Two clusters C1 and C2 are merged together if
there exist two tasks t1 ∈ C1 and t2 ∈ C2 that are coupled (loosely or strongly)
or viceversa. Clusters are iteratively merged until a unique cluster is obtained
for the overall process or there is no coupling between the tasks of clusters that
have been identified. Clusters that present tasks with highest value for τ are
merged first. At each merging step the coupling/cohesion ratio Γ is evaluated.
The best clustering level is the one that minimized the Γ value. After clustering
has been applied and optimized, the system proposes to the designer to further
split services identified in the previous phase if they contain tasks belonging to
different clusters to allow their parallel execution. On the other hand, the pro-
cess designer may be suggested to merge services if they contain coupled tasks.
The designer can evaluate the results and then decide to adopt different business
process re-engineering actions.

If we apply the clustering algorithm to the running example, we obtain the tree
shown in Figure 4, where, for example, the task t10 is decoupled from the other
ones, while from phase 2 it is included with the other simple tasks as part of the
S2 candidate service. The process designer may decide to split this candidate

{t2} {t3} {t4} {t5} {t6} {t7} {t8} {t9} {t10} {t11} {t12}

Check
Order

BOM
Generation

BOM and Order
Evaluation

Split
Order

Textile
Component

Analysis

Textile
Production

Backbone
Component

Analysis

Backbone
Production

Backbone
Delivery

Assemblage Packing Delivery

{t2,t3} {t5,t6} {t8,t9} {t11,t12}

{t2,t3,t4}

{t5,t6,t7,t8,t9}

{t5,t6,t7,t8,t9,t10}

{t4} {t7}

{t5,t7} {t7,t8,t9}

{t10}

{t10}

{t10}

{t11,t12}

{t11,t12}

{t2,t3,t4} {t11,t12}

{t1}

{t1}

{t1}

{t1}

{t1}

=0.038

{t2,t3,t4}

Fig. 4. Clustering of coupled simple tasks

P2S: A Methodology to Enable Inter-organizational Process Design 345

service, thus obtaining three more services S21 = {t1, t2, t3, t4, t5, t6, t7, t8, t9},
S22 = {t10} and S23 = {t11, t12}.

3.4 Phase 4: Refinement of Process Decomposition

Services identified in the previous phases are sub-processes constituted by one
or more tasks that identify service operations. However, there could be similar
services that are invoked multiple times throughout the process. For example,
services that check the textile component and backbone component feasibility
could be recognized as similar services and, in particular, they could be viewed as
different invocations of the same service. To detect possible overlapping services
in the business process, coefficients already introduced in [9] are applied. In
particular, the Entity-based similarity coefficient between two services S1 and
S2, denoted with ESim(S1, S2), is used to state if S1 and S2 work on the same
data. Denoting with SIN and SOUT the union sets of inputs and outputs of the
tasks in a service S, the ESim coefficient is computed as:

ESim(S1,S2) = AffTOT (S1
IN ,S2

IN) + AffTOT (S1
OUT ,S2

OUT) ∈ [0, 2] (9)

The Functionality-based similarity coefficient between two services S1 and S2,
denoted with FSim(S1, S2), is used to state if S1 and S2 perform the same
operations. FSim is based on the Operation Similarity coefficient between two
tasks t1 of S1 and t2 of S2, denoted with OpSim(t1, t2) and computed as:

OpSim(t1, t2) = NAff(nt1 , nt2) + AffTOT (IN(t1), IN(t2))+
AffTOT (OUT (t1), OUT (t2))

(10)

where OpSim ∈ [0, 3], since it is the sum of three elements in the range [0,1].
The FSim coefficient is evaluated as:

FSim(S1,S2) =
2 ∗ ∑

h,k OpSim(th, tk)
|S1| + |S2| ∈ [0, 3] (11)

Entity-based and functionality-based service similarity coefficients support the
designer to recognize multiple invocations of the same service throughout the
process workflow.

Considering the running example, it is possible to find some similarities be-
tween the services identified in the previous phase. In details, two pairs of services
are selected: 〈S3 = {t7, t8, t9}, S5 = {t5, t6}〉, 〈S4 = {t7}, S6 = {t5}〉. The de-
signer will discard the pair 〈S3, S5〉 since they are characterized by input, output
and terms similarities but the task operation has a different implementation in
the two services and it is not possible to merge them in a unique component. The
pair 〈S4, S6〉 can be instead considered for a service reconciliation, since both
services have as input the same document and on the basis of the production
plan use the same algorithm in order to evaluate the order feasibility.

4 Related Work

Links between the world of business processes and Web services have been thor-
oughly analyzed in different contexts and from different perspectives in the lit-
erature. Many contributions focus on the analysis of existing Web services and

346 D. Bianchini et al.

address the issue of their composition to obtain the desired process. Nowadays,
organizations more and more implement collaborative businesses through com-
ponent services over the Internet.

In the literature, in order to bridge the link between services and business
processes some contributions consider existing Web services and define enriched
process representation. In particular, they start from a business process that is
manually represented as a composition of services semantically enriched with
ontologies. In [10] an abstract process represents a Web process whose control
and data flow are defined at design time, but the actual services are not chosen
till at run-time. Run-time service selection can be automated with the semantic
representation of the knowledge of the domain experts in ontologies and rules
(semantic Web processes). In [11] the notion of process template is introduced.
Process templates are reusable business process skeletons that are devised to
reach particular goals and are made up of states and transitions. A state corre-
sponds to the execution of a service (called component service) that is member
of a Web service community. A community is a collection of services with a
common functionality, but different non functional properties such as different
QoS parameters, that are exploited to select the right service at run-time. These
approaches are especially useful in environments where component services are
relatively fixed, while the methodology presented in this paper does not require
any knowledge about existing services.

Moreover, there are approaches that attempt to assist service providers and
service aggregators in multi-party business processes [12,13,14]. In particular,
[13] discusses how business process should be described so that services can be
properly identified and provides strategies and principles regarding functional
and non-functional aspects of Web service design. Furthermore, in [14] authors
define a methodology that aims at defining a foundation of development princi-
ples for Web services based on which business processes can be assembled into
business scenarios. In [12] a goal-based approach for the identification of service
composition is proposed. All these approaches provide guidelines for the service
identification without giving an operational support. The use of coupling and
cohesion metrics to evaluate process decomposition into sub-processes or activ-
ities has been suggested in [8,15,16], but these approaches mainly propose tech-
niques to compare different decompositions to choose the best one. This issue
also relates to existing contributions in literature to support the transforma-
tion of legacy applications into component services [17,18,19]. For example, [17]
describes the Service-Oriented Migration and Reuse Technique (SMART) as
a technique that helps organizations to analyze legacy systems to determine
whether their functionalities, or a subsets of them, can be reasonably exposed
as services in a Service-Oriented Architecture. Other valuable guidelines in this
context are provided in [18,19]. Moreover, a considerable number of research
efforts have been devoted to the composition of services both in academia and
industry [20,21,22]. However, all these valuable contributions do not offer opera-
tional support for the identification of process tasks that can be aggregated and
exposed as services. For this purpose, the methodology described in this paper

P2S: A Methodology to Enable Inter-organizational Process Design 347

tries to uniform component services identification at the same granularity, in
order to improve and speed up the following discovery phase. To the best of our
knowledge, there are no approaches in literature that propose a semi-automatic
methodology that supports the designer in identifying the component services
in a business process.

5 Conclusion

The methodology presented in this paper aims at constituting a semi-automatic
approach for the identification of the subset of functionalities that can be ex-
ported as services to implement a collaborative business process. The method-
ology starts from a process represented by means of a workflow-based language
(e.g., BPMN) and supports the designer for the identification of component ser-
vices. Future work will focus on the design of a CASE tool able to support
the process designer through the phases of the methodology. Currently, single
modules that implement the methodological phases have been developed and
it is necessary to integrate them and properly test the resulting application.
Additional features of the developed system will be investigated to deal with
a multi-knowledge environment, where the system relies on distinct reference
ontologies and different process representation languages are used and must be
integrated. Finally, the proposed methodology will be further studied in the field
of service orchestration and composition to implement efficient solutions.

Acknowledgements

This work has been partially supported by the TEKNE (Towards Evolving
Knowledge-based internetworked Enterprise) FIRB Project (http://www.tekne-
project.it/), founded by the Italian Ministry of Education, University and
Research.

References

1. O’Brien, J.A.: Introduction to Information Systems: Essentials for the Internet-
worked Enterprise. McGraw-Hill Education, New York (2000)

2. Chang, S.H., Kim, S.D.: A service-oriented analysis and design approach to de-
veloping adaptable services. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749. Springer, Heidelberg (2007)

3. Dietz, J.L.G.: The atoms, molecules and fibers of organizations. Data & Knowledge
Engineering (2003)

4. Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

5. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet:Similarity - Measuring the
Relatedness of Concepts. In: Proc. of Nineteenth Conf. of Artificial Intelligence
(AAAI 2004), Intelligent Systems Demonstration, San Jose, CA, pp. 1024–1025
(2004)

348 D. Bianchini et al.

6. Corley, C., Mihalcea, R.: Measuring the Semantic Similarity of Texts. In: Proc. of
the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entail-
ment, Ann Arbor, Michigan, pp. 13–18 (2005)

7. Bianchini, D., De Antonellis, V., Melchiori, M.: Flexible Semantic-based Service
Matchmaking and Discovery. World Wide Web Journal 11(2), 227–251 (2008)

8. Vanderfeesten, I., Reijers, H., van der Aalst, W.: Evaluating workflow process de-
signs using cohesion and coupling metrics. Computer in Industry 59(5), 420–437
(2008)

9. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based method-
ology for e-service discovery. Journal of Information Systems, Special Issue on
Semantic Web and Web Services 31(4-5), 361–380 (2006)

10. Mulye, R., Miller, J., Verma, K., Gomadam, K., Sheth, A.: A semantic template
based designer for Web processes. In: Proc. of 2005 IEEE Int. Conf. on Web Services
(ICWS 2005), Orlando, Florida, USA, pp. 461–469 (2005)

11. Sheng, Q., Benatallah, B., Maamar, Z., Dumas, M., Ngu, A.: Enabling Personalized
Composition and Adaptive Provisioning of Web Services. In: Persson, A., Stirna,
J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 322–337. Springer, Heidelberg (2004)

12. Kaabi, R.S., Souveyet, C., Rolland, C.: Eliciting service composition in a goal
driven manner. In: Proc. of the 2nd Int. Conf. on Service Oriented Computing,
New York, NY, USA, pp. 308–315 (2004)

13. Papazoglou, M.P., Yang, J.: Design Methodology for Web Services and Business
Processes. In: Buchmann, A., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. (eds.)
TES 2002. LNCS, vol. 2444, p. 54. Springer, Heidelberg (2002)

14. Papazoglou, M.P., van den Heuvel, W.J.: Business process development life cycle
methodology. Communications of ACM 50(10), 79–85 (2007)

15. Castano, S., De Antonellis, V., Melchiori, M.: A Methodology and Tool Envi-
ronment for Process Analysis and Reengineering. Data and Knowledge Engineer-
ing 31(3), 253–278 (1999)

16. Baresi, L., Casati, F., Castano, S., Fugini, M., Mirbel, I., Pernici, B.: WIDE Work-
flow Development Methodology. In: Proc. of Int. Joint Conf. on Work Activities
Coordination and Collaboration, pp. 19–28 (1999)

17. Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.: SMART: The Service-
Oriented Migration and Reuse Technique. Techncal Note CMU/SEI-2005-TN-029,
Carnegie Mellon University, Software Engineering Institute (2005)

18. Lawrence, C.: Adapting legacy systems for SOA. Technical report, IBM (2007)
19. Microsoft: The Business Value of Legacy Modernization. Technical report, Mi-

crosoft (2007)
20. Baresi, L., Bianchini, D., De Antonellis, V., Fugini, M., Pernici, B., Plebani, P.:

Context-aware Composition of e-services. In: Proc. of Fourth VLDB Workshop on
Technologies for E-Services (TES 2003), Humboldt-University zu Berlin, Germany,
pp. 49–58 (2003)

21. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv environment for Web ser-
vices composition. IEEE Internet Computing 7(1), 40–48 (2003)

22. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

Composing Time-Aware Web Service Orchestrations

Horst Pichler, Michaela Wenger, and Johann Eder

University of Klagenfurt, Department of Informatics-Systems, Austria�

Abstract. Workflow time management deals with the calculation of temporal
thresholds for process activities, which allows forecasts about looming deadline
violations. We present a novel approach to transform a web service orchestra-
tion into a time-aware orchestration, that contains temporal assessment and in-
tervention logic. During process execution intervention strategies are triggered
pro-actively to speed up a late process and to avoid upcoming violations of tem-
poral constraints.

1 Introduction

Web service orchestrations are used to assemble processes from external processes and
web-services to implement business processes. Expected process execution times and
compliance to agreed upon deadlines rank among the most important quality measures
[5,1]. To speed up processes and decrease the number of deadline violations should
therefore be among the major objectives of business process management. This can be
achieved by the application of workflow time management [17]. It deals with temporal
aspects of time-constrained processes and aims at optimized, timely, and violation-free
process execution. Based on explicit knowledge about process structure, activity dura-
tions, and deadlines it is possible to calculate temporal thresholds (internal deadlines)
for each activity of a process. During run time, these thresholds are utilized to monitor
the progress, forecast looming deadline violations, and to pro-actively trigger interven-
tion strategies which speed up the remainder of the process, like skipping of optional
activities, choosing alternative shorter paths, substituting activities, etc.

Time management approaches have mainly dealt with modelling of temporal aspects,
checking satisfiability of temporal constraints, scheduling, and so on. The basic con-
cepts of intervention strategies have been described (see Section 2), but how to model,
implement, and apply them on process definitions and within process instances is still
open. Suggested realization of time management functionality requires new process
definition elements and additional logic within the process engine.

Our main goal is to close the gap between build and run-time concepts and enable
time management for long-running web service orchestrations. The novel contribution
of our approach is that we do not propose an extension of the process enactment service
but make the process itself time aware and capable of triggering pro-active measures. So
time-aware information systems can be realized without waiting for vendors to comple-
ment their process enactment services with up-to-date time management capabilities.

� Part of this work has been supported by EU Commission within the FET-STREP Project WS-
Diamond.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 349–363, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

350 H. Pichler, M. Wenger, and J. Eder

BPEL Process
Definition

Temporal
Information

Intervention
Information

Process Graph

Timed Process
Graph

Time-aware BPEL
Process Definition

1
2

3

3 Process Engine

Time-aware Process

deploy

A CB
3

1

Fig. 1. Generation of a Time-aware Process Definition

The architecture of our approach is shown in Figure 1. Inputs to the process are
a process model (in our realization a BPEL process definition), a representation of
explicit temporal information (durations and deadlines) and a representation of inter-
vention strategies. From the process model, augmented with temporal information, we
calculate particular internal deadlines for all activities. Then we use this timed process
graph and the intervention information to extend the process model with 2 aspects: (a)
temporal state assessment and (b) intervention logic. Temporal state assessment moni-
tors the execution of the process and compares the execution times with pre-calculated
thresholds. If the process is not running within its tolerance, exceptions are raised. The
intervention logic reacts to these exceptions and enables changes to the original pro-
cess logic with the goal to regain a safe execution state. This results in an extended
time-aware process with self-healing capabilities which can then be executed on any
enactment service of that process model type.

To be more concrete we instantiated this general approach for WS-BPEL. How-
ever, this approach can be easily ported to any commercial workflow system, which
supports exceptions and timed triggers in it’s proprietary control flow language. Some
more assumptions: we focus on long-running processes with asynchronous communi-
cation structures that take hours, days or even weeks, where the execution time of the
process logic is negligible compared to the processing time of the individual activities.

The remainder of the paper is organized as follows: Section 2 provides an overview
of related work and describes time management basics. Section 3 gives an overview
of elements in a BPEL process definition and shows how to transform it into a graph
representation, a prerequisite for the calculation of the timed graph in Section 4. In Sec-
tion 5 we show how to define intervention and state assessment information. Section 6
describes how to transform the original definition into a time-aware process definition,
based on the timed graph and intervention information. Finally we discuss our prototype
and complexity in Section 7, and conclude the paper with Section 8.

2 Related Work

Workflow time management architectures, as sketched in [9] or [14], consist of sev-
eral components. [9] proposes a build time component that takes a control flow model
and temporal information about activity duration and time constraints as input, and

Composing Time-Aware Web Service Orchestrations 351

calculates thresholds for each activity in the process. The calculation of thresholds is
frequently rooted in techniques based on temporal constraint networks to model and
verify temporal information [12,19], others utilize project planning methods [13,11,19].
All these techniques apply variants of interval-timed graph-based models, which can
also be used to calculate schedules for workflow execution. A node represents an ac-
tivity or its start/end-event, edges represent precedence, constraints between nodes, and
intervals are used to describe valid time frames for the execution of an activity or oc-
currence of an event. In this paper we adopted the approach of [10]. They extend the
temporal model of [11] for asynchronous messaging patterns, an important prerequisite
in web service environments (see also [18]). During run time a prediction component [9]
correlates and compares time stamps of start and end-events with precalculated thresh-
olds of corresponding activities. Based on this comparison the temporal state can be
assessed, for example with the traffic-light model introduced in [17], or the duration
and instantiation space model introduced in [15]. Delays, caused by unexpected wait-
ing times or longer execution durations, will change the temporal state of the process.
According to this state a proactive component [9] has to select intervention strategies
that trigger actions within the process engine to speed up the process. Proactive inter-
vention strategies, aiming at speeding up the process, may be applied according to the
current temporal state to avoid looming deadline violations.

In this paper we apply intervention strategies that can be realized by implementing
them within the process definition, like skipping optional tasks, execution of alterna-
tive paths or the parallel execution of sequential activities (see [22,11,8,16] for basic
descriptions). Furthermore, we utilized an adaptation of the technique described in [6]:
early escalation, which terminates a late process immediately, if the cost of finishing
it, is higher than immediate escalation followed by termination. More escalation strate-
gies, which can not be realized by changing the process definition, can be found in [8].
This includes load balancing strategies like resource redeployment (e.g., add resource
capacity) or grouping similar tasks to batches to decrease the task preparation time.
The closest approach to our’s is [8] where time-awareness is also integrated into the
process definition itself, by extending it with hard-coded conditional structures. Such
a structure could for example be ”if (process late) then {perform two reviews} else
{perform three reviews}”. Naturally, the statement ”process late” must be specified as
a state-assessment expression, that compares time stamps of events (start or end of an
activity) with a precalculated thresholds. The disadvantages of such an approach are
obvious. Defining the process gets more complex as the designer has to specify state
assessment mechanisms and temporal exception handling parts. New duration estima-
tions or changed deadlines alter the thresholds, resulting in manual adaptations of the
assessment expressions. Furthermore, intervention strategies for late processes may be
added, changed or removed, which alters the process structure. And finally, with such a
”passive” approach it is not possible to handle activities that block process execution.

Specific temporal aspects of web service environments where examined in, e.g.,
[20,21]. [20] uses temporal abstractions of business protocols in a finite state machine
formalism and [21] exploits an extension of a timed automata formalism for modeling
time properties of web services. However, these approaches aim primarily at service
compatibility, therefore proved to be unsuitable for our purposes.

352 H. Pichler, M. Wenger, and J. Eder

3 Process Representations

In this section we describe the elements of BPEL (the process definition language of
our realization), show how to transform it to a graph representation and augment it with
temporal information, and describe subsequent timed graph calculations.

3.1 BPEL Representation

The original process is defined in WS-BPEL, also known as BPEL 2.0, which provides
the following elements:

Declarative Elements to specify the environment of the process, like links to web ser-
vices (partner links), process variables, or correlation sets.

Basic Activities for the communication with web services: invoking or sending a mes-
sage to a web service with invoke; receive a message from an external service; send
a reply to an external service (as answer to a prior receive). Furthermore, activities
to assign a value to a variable, delaying execution with wait, doing nothing with
empty, and explicit termination with exit.

Structured Activities which define the control flow of the process by nesting of basic
or structured activities: sequence for sequentially executed activities; if for condi-
tional exclusive execution of activities; flow for parallel execution; while, repea-
tUntil and forEach for iterative execution; and pick for conditional execution based
on the type of a received message. Additionally it is possible to declare event and
fault-handlers within scopes, which handle thrown faults and raised events.

Some activity-types delay process execution because they wait for something (e.g.,
an incoming message). Therefore we consider the basic activities receive and pick as
blocking. Furthermore, every structured activity is considered as blocking, if it contains
a blocking basic or structured activity. The left-hand side of Figure 2 shows the skeletton
of a BPEL process definition. To identify specific activities within a process definition,
we use the name-attribute, an attribute that can be added to any BPEL-element. Note
that this paper focuses on the regular flow in block-structured processes, therefore we
do not consider flows with links and exception handlers.

3.2 Process Graph

According to [10] and as visualized in Figure 2, a process graph consists of named
nodes (rectangles with labels) connected by edges, which describe precedence con-
straints (solid arrows). Each node has a type (label above or below a node), which can
either be activity (act) or an opening or closing node-type for structured elements: se-
quential execution of elements (seq-start, seq-end), 1-out-of-n exclusive conditional ex-
ecution (xor-split, xor-join), parallel execution of a several paths (and-split, and-join),
and the process itself (proc-start, proc-end). Furthermore, asynchronous communica-
tion relationships between invoking and receiving activities are represented as dashed
arrows, augmented with service response times (angle-brackets on top of dashed ar-
rows). The example process contains several nested structures: a sequence s0 that exe-
cutes a-i, followed by an if-conditional element i, which selects either b-i and b-r or c-i

Composing Time-Aware Web Service Orchestrations 353

<process name="p">
<variables>…
<partnerLinks>…
<correlationSets>…
<sequence name="s0">
<invoke name="a-i">…
<if name="i">
<condition>…
<sequence name=“s1“>
<invoke name="b-i">…
<receive name="b-r">…

</sequence>
<else>
<sequence name=“s2“>
<invoke name="c-i">…
<receive name="c-r">…

</sequence>
</else>

</if>
<receive name="a-r">…

</sequence>
</process>

p-ps s0-ss a-i i-xs

a-r i-xjs0-sep-pe

proc-start seq-start

seq-endproc-end

act

act

xor-split

act xor-join

[7,10] [3,5] [8,11]
act

b-r

b-i

act

act

c-r

c-i

s1-ss s2-ss
seq-start seq-start

s1-se s2-se
seq-end seq-end

Fig. 2. BPEL process and Graph-representation - Generation Step 1

and c-r, followed by a receiving a-r. Although the details are not specified in this short-
ened example, assume, that a-i asynchronously sends a message to an external service,
whose response is received by a-r; furthermore, b-i and c-i send messages to services,
whose response is received by b-r and c-r. Due to space limitations we omitted the
XML-representation of the process graph and temporal information, which we used in
our prototypical implementation.

3.3 Temporal Information

Additionally we need explicit temporal information, which are a maximum process du-
ration (assume [15,15] for our running example) and response times of asynchronous
relationships between invoking and receiving nodes. We apply [min, max]-intervals
for temporal information (durations, deadlines), given in a specified time-unit, which
will be days or hours (as applied in the running example) for long running processes.
Expected service response times may stem from empirical knowledge (extracted from
logs) or be estimated by experts. Especially when dealing with web services this in-
formation may also come from the service provider [5] or service directories, which
may offer temporal information as part of their service descriptions [3]. The algorithm
in [10] additionally requires explicit information about the execution duration of ev-
ery node (ranging from millis to a few minutes at maximum), which we considered,
compared to service response times, negligible. So we set all node durations to [0,0].

3.4 Transformation

How to transform a hierarchical block-structured process, which BPEL is, to a flat-
tened graph representation is described in [4]. For the transformation we had to add the
following BPEL-specific rules:

354 H. Pichler, M. Wenger, and J. Eder

– every basic activity is represented as a node of type act
– the structured activities sequence, if and flow are represented as two nodes of cor-

responding type, which embrace inner nested activities: seq-start and seq-end, xor-
split and xor-join, and-split and and-join

– the structured activity pick must be encapsulated in a sequence, which contains one
node (the message receiver), followed by an xor-structure with a branch for each
message type handler

– structured scope activities are interpreted as sequences

The following exceptions to above stated rules had to be considered: (a) iterative activ-
ities are represented by two nodes of type act connected by a precedence edge. Even-
tually nested elements are omitted.1 Additionally these two nodes are connected with
an asynchronous relationship edge, augmented with the specified, estimated (or calcu-
lated) execution time of the activity, specified in the temporal information file. (b) The
same applies for wait activities, but here the duration can be extracted from the dura-
tion expression in the BPEL-definition. (c) Event, fault and compensation handlers of
the original process definition are not considered, as time management focuses on the
regular flow, and are therefore omitted in the graph representation.

It is basically possible to extract asynchronous, and therefore temporal, relationships
(dashed arrows) between invoking and receiving activities from the BPEL process defi-
nition by interpreting the declaration parts (partnerLinks, etc.). However, this is outside
the scope of this paper, and therefore we demand, that information about these relations
must be specified by the process designer within the temporal information file. Asyn-
chronous relationship edges and their response times can now be added to the graph in
the final transformation step.

4 Timed Graph Calculation and State Assessment

Now we have a basic graph representation, augmented with a maximum duration and
service response times (in hours) between invoking and receiving activities. Equipped
with this information we can calculate the timed graph. Based on the process structure
and explicit temporal information, it is is possible to determine remaining durations for
each node in the process graph. The remaining duration interval represents the expected
minimum and maximum execution duration of the path between node n and the end of
the process. The calculation algorithm utilizes the graph specified above and explicit
temporal information, and yields remaining durations for each node as visualized in
Figure 3. The remaining duration of the first node proc-start also depicts the expected
overall process duration. Due to space limitations we can not explain the details of this
calculation (refer to [10]). Furthermore note that remaining durations or thresholds may
be calculated with any interval-based approach that is capable of dealing with above
mentioned control structures, where some even allow more complex time constraints
(like [11], which introduces upper and lower-bound constraints).

1 As cyclic structures are problematic for time management calculations, since the actual number
of iterations will not be known in advance, we applied a common solution for now: interpreting
the loop as one complex activity with an estimated or calculated overall duration.

Composing Time-Aware Web Service Orchestrations 355

p-ps

s0-ss

a-i i-xs a-ri-xj

s0-se

p-pe[7,10]

[3,5]

[8,11]

b-rb-i

c-rc-i

s1-ss

s2-ss

s1-se

s2-se

[7,11]

[7,11]

[7,11] [3,11]
[3,5] [3,5] [0,0] [0,0]

[0,0]

[0,0]

[8,11] [8,11] [0,0] [0,0]

[0,0]

[0,0]

Fig. 3. Timed Graph - Generation Step 2

For run-time purposes we need thresholds, relative to the start time of the process,
that shall not be exceeded in order to meet the process deadline. For this we adapted
the idea of the traffic light model, described in [17]. It’s lights represent the tempo-
ral states: (1) Green indicates, that the process can be finished within the calculated
process duration. (2) Yellow indicates, that the process can be finished within the speci-
fied maximum duration. Future delays should be avoided, as the process already started
consuming buffer time. Proactive intervention is advised. And otherwise it is (3) Red,
which indicates, that all available buffer time has been consumed, and that missing the
deadline is likely. Proactive intervention is inevitable, the process must be sped up.

For illustration purposes we applied a very simple (rather pessimistic worst-case)
approach for temporal assessment: we calculate two state switching thresholds for each
node/activity n, based on the upper bound of a specified maximum process duration
interval maxduration.ub = 15 hours, the upper bound of the calculated process dura-
tion interval calcduration.ub = 11 hours, and the upper bound of the node’s remaining
duration interval n.rduration.ub, as follows:

– n.greenToYellow := calcduration.ub - n.rduration.ub
– n.yellowToRed := maxduration.ub - n.rduration.ub

Note, that state assessment for blocking structured activities must use the remaining
durations of the corresponding end node. This calculation yields, e.g., for the node
a-i the following thresholds: a-i.greenToYellow = 0 hours after process start and a-
i.yellowToRed = 4 hours after process start. As a-i is the first basic activity in the pro-
cess, it will be reached within (milli)seconds (rounded to 0 hours) after process start,
therefore the temporal state will most probably never switch to yellow or red at this
position. However, theoretically a-i could consume up to four hours before the state
switches to red - this time is also called buffer time. For the receiver activity b-r, we
determine the following values: b-r.greenToYellow = 11 and b-r.yellowToRed = 15. If,
for example, b-r did not receive its message until 11 (hours after process start) then the
state switches to yellow and we could start an intervention, e.g., interrupt the waiting
activity b-r and invoke an alternative fast (more ”expensive”) service which returns a
message immediately: the process is in time, but the costs increased. You will notice,
that the threshold-values of b-r are equal to the specified and calculated process dura-
tion (and equal to the thresholds of c-r and a-r). This means that each of these activities
is allowed to consume the whole buffer time of the process, leaving no buffer for sub-
sequent activities. For descriptions of fairer buffer distribution techniques refer to [7].

356 H. Pichler, M. Wenger, and J. Eder

5 Interventions

Proactive time management needs information about how to intervene when the tem-
poral state changes. We support the following intervention strategies, which may be
applied on any BPEL-activity (basic or structured).

Optional Execution. Skipping optional activities can be used on any element, which is
not absolutely necessary for the successful completion of the process. Therefore the
element, or activities nested within this element, should not have communication
relationships to another element in the process (e.g. skipping an invoke activity may
block the process at the matching receive activity).

Parallelization of Sequence. Parallelization of sequences forces the parallel execution
of elements of a sequence. Note, that elements nested in the sequence (or their
subelements) may have communication relationships between each other. In the
worst case, such an execution will again be sequential.

Alternative Path. A late process can sped up by executing a faster alternative (basic or
structured) activity, instead of the original one. Again, eventually existing commu-
nication relationships between elements must be considered: e.g., an alternative for
an invoke-activity which calls another service may block the process at the match-
ing receive-activity.

Dynamic Service Selection. This strategy is a variant of Alternative Path that offers
multiple alternatives. In case the process is late, the fastest of several variants
must be selected and executed. We assume, that the list of matching candidates has
been preselected. Alternatively one could also apply a QoS-based adaptive service-
retrieval technique, which automatically finds compatible candidates [23].

Early Termination. Early termination of a late process, depicted by terminate, aims
at the avoidance of costs resulting from further process execution and exception-
handling actions at the end. Although we do not consider the cost factor in this
paper (cp. [6]), we offer this policy as a last resort, only to be used in extreme
cases, as it does not consider side-effects on integrated processes or services.

The specification of interventions binds activities of the process, depicted by their
name, to a certain intervention-behavior, which shall be invoked instead of the activity,
if the process is in the given temporal-state. We defined an XML-structure for interven-
tion information, specified by the following DTD.

<!ELEMENT interventions (intervention)+ >
<!ELEMENT intervention (intervene)+ >
<!ATTLIST intervention activity CDATA #REQUIRED >
<!ELEMENT intervene ((terminate|optional|parallelize|alternative|dynamic), bpel?>
<!ATTLIST intervene when (yellow|red) #REQUIRED >
<!ELEMENT terminate EMPTY >
<!ELEMENT skip EMPTY >
<!ELEMENT parallelize EMTPY >
<!ELEMENT alternative (bpel) >
<!ELEMENT dynamic (variant)+ >
<!ATTLIST dynamic objective (green|yellow|red) #REQUIRED >
<!ELEMENT variant (bpel) >
<!ATTLIST variant duration CDATA >
<!ELEMENT bpel (declarations,actions) >
<!ELEMENT declarations (#PCDATA) >
<!ELEMENT activity (#PCDATA) >

Composing Time-Aware Web Service Orchestrations 357

A set of interventions for a specific process may contain several intervention el-
ements. Each refers to a basic or structured activity-name in the BPEL-process and
contains intervene elements, that define which intervention strategy to apply, when a
certain temporal state is assessed. An Intervene-element must contain one element of
type terminate, skip, parallelize, alternative, or dynamic, which specifies the strategy to
apply. Furthermore, an intervene-element may contain an optional bpel element, which
defines a BPEL-activity (basic or structured) and necessary BPEL-declarations, which
we do not further specify here (variables, partnerLinks, etc.). This BPEL code will be
executed before the intervention itself takes place; it may for instance be used to no-
tify the process-owner about temporal state changes. The following example defines
interventions for two activities of a (fictituos) process.

<interventions>
<intervention activity="a_sequence" >

<intervene when="red"> <optional/> </intervene>
<intervene when="yellow"> <parallelize/> </intervene>

</intervention>
<intervention element="an_activity">

<intervene when="yellow"> <optional/> </intervene>
<intervene when="red" >

<terminate />
<bpel>

<declarations> ... BPEL declarations ... </declarations>
<activity> ... BPEL activity (e.g. notify owner)... </activity>

</bpel>
</intervene>

</intervention>
</interventions>

Intervene-elements of type alternative must contain bpel declarations and code of the
alternative. For interventions of type dynamic we must specify multiple execution vari-
ants, augmented with information about the (expected) duration for each alternative.
The attribute objective defines the desired temporal state after the execution of a vari-
ant. The duration of a variant (may be a structured activity) can be calculated with the
calculation algorithm explained above. The following intervention specification refers
to activities within our example process. The sequence s1 shall be skipped if the pro-
cess enters state red, and if it enters state yellow alternative code shall be executed (e.g.
invoking a fast service and receiving it’s message). If the process waits too long at the
the receiving activity a-r it shall either select a faster variant (yellow) or even terminate
(red). Note, that both activities are considered ’blocking’, as they wait for an incoming
message.

<interventions>
<intervention element="s1">

<intervene when="red"> <optional/> </intervene>
<intervene when="yellow">

<alternative>
<bpel> declarations and activity for alternative </bpel>

</alternative>
</intervene>

</intervention>
<intervention element="a-r">

<intervene when="red"> <terminate/> </intervene>
<intervene when="yellow">

<dynamic objective="green">
<variant duration="[6,9]">

<bpel> declarations and activity for alternative1 </bpel>

358 H. Pichler, M. Wenger, and J. Eder

</variant>
<variant duration="[3,5]">

<bpel> declarations and activity for alternative3 </bpel>
</variant>
<variant duration="[4,7]" >

<bpel> declarations and activity for alternative2 </bpel>
</variant>

</dynamic>
</intervene>

</intervention>
</interventions>

6 Generation of a Time-Aware Process Definition

A time-aware process definition is an extension of the original process definition with
state assessment and intervention mechanisms for specified process-parts, to be exe-
cuted in case given thresholds are violated. The generation is based on the original
process definition, the timed graph, and intervention information, and consists of the
following basic steps:

[works on copy of original process definition]
add process-level extensions
for each activity x in bottom-up order (deepest nestings first)

if exists intervention for x
if x is non-blocking

add activity-level extensions for non-blocking activity x
elseif x is blocking

add activity-level extensions for blocking activity x
end-if

end-if
end-for

6.1 Process-Level Extension

First the original process definition must be extended on the top-level, as visualized in
the BPMN-diagram [2] on the left-hand side of Figure 4 (elements of the original pro-
cess are displayed grey-shaded). We decided to use BPMN as graphical representation
instead of BPEL-code due to space limitations.

1. Nest the top-level activity of the process within a new sequence-activity top seq
2. Insert assignment for the current time t, which is the start time of the process.
3. Initialize the temporal state by assigning it the value ’green’.

top_seq
state :=
green

t :=
now

process x_seq activity x

state

green

assess
state

yellow interventionyellow

red interventionred
Process-level
extensions

Activity-level
extensions

top-level
activity

Fig. 4. Process-level Extensions and Extensions for non-blocking Activities

Composing Time-Aware Web Service Orchestrations 359

We used XQuery and XPath in our BPEL-prototype for accessing, comparing and ma-
nipulating variables, as they offer a rich function-base for diverse purposes, along with
datatypes for the structured representation of dates, times and durations.

6.2 Generation of Intervention Logic

The intervention logic for an activity consists of a state assessment mechanism to de-
termine the current temporal state, conditional structures to select the corresponding
intervention, and timed triggers for blocking elements.

State Assessment Mechanism. An important part of intervention logic is the assess-
ment of the current temporal state. The following shows a simplified pseudo-code
representation of the necessary state assessment extensions for an activity x and it’s
thresholds:

rel_time := currentTime() - t;
if (rel_time <= x.greenToYellow) then state := green

elsif (rel_time <= x.yellowToRed) then state := yellow
else state := red

State assessment is based on a comparison of the relative time (duration since start of
the process) and the corresponding node-dependent threshold value. For non-blocking
activities it takes place before the invocation, and for blocking activities during their
execution.

Basic Intervention Extensions for Non-blocking Activities. The BPMN-diagram on
the right-hand side of Figure 4 shows the extensions for a non-blocking activity x.

1. Replace activity x with a new if-activity x if (omitted in the diagram).
2. Add three branches and conditions for states green (if), yellow and red (elseif).
3. Insert activity x into the if-branch.
4. Generate intervention handling code for the elseif-branches (see details below).
5. Nest x if within a new sequence-activity a seq.
6. Insert state assessment elements before x if into a seq.

Intervention Extensions for Blocking Activities. For blocking activities such a pas-
sive intervention mechanism is not sufficient. The prediction component must addi-
tionally check threshold-violations during the execution of this element. Therefore it is
necessary to add time-triggered logic as visualized in Figure 5. We used several mech-
anisms: timed triggers (circle with clock) which invoke corresponding event-handlers,
throwing of faults (fat circle with flash-symbol), and catching of faults within a fault-
handler (double circle with flash-symbol). Within a BPEL-scope we use fault-handlers,
which catch named faults (exceptions) that are thrown within this scope. Furthermore,
it is possible to define time triggered event-handlers based on the onAlarm-element,
which periodically executes specified code (basically a concurrent sub-process). The
diagram is to be interpreted as follows: the control flow enters the scope and starts
the (blocking) activity. An onAlarm event-handler periodically calls state assessment,
which checks if the temporal state has changed. If this is the case, it will immediately

360 H. Pichler, M. Wenger, and J. Eder

activity x
x_scope

x_faulthandler

catch x_fault

yellow intervention

state

yellow

red red intervention

repeatEvery
P minutes

x_eventhandler

state

green

throw x_fault

yellow
or red

assess
state

Fig. 5. Activity-level Extensions for blocking Activities

throw x fault, which is caught by x faulthandler. If the state is still green the event han-
dler will return control to the regular control flow (the execution of x). The generation
of extensions for blocking activities consists of the following steps:

1. Nest activity x within a new scope x scope.
2. Add x eventhandler to the scope, containing an onAlarm-element with a specified

repeatEvery-period, including state assessment logic including a throw-element.
3. Add x faulthandler to the scope, which contains state-dependent intervention han-

dling code.

Generating Intervention Handler Code. Intervention handler code is executed when
the temporal state changes to yellow or red, and must be integrated in the corresponding
if-branches. Intervention code for an activity x and a certain temporal state is determined
by the specified intervene-element within the intervention information (see Section 5)
and basically generated as follows.

1. Insert a sequence x int seq within the corresponding if-branch.
2. Add type-dependent intervention code to x int seq (for details see below).
3. If the optional bpel-element exists within the intervene element:

(a) add the bpel-activity before the intervention code that was generated in step 2
(b) add the related bpel-declarations (variables, partnerLinks, etc.) on process level

Step 2 generates type-dependent intervention code: for an intervention of type op-
tional we add the BPEL-activity empty and for terminate we simply add the BPEL-
activity exit. Adding BPEL-code for an alternative path is equal to steps 3.a) and 3.b).
To parallelize a sequence we generate a flow element in the corresponding if-branch of
the intervention logic, which contains a duplicate of every activity within the sequence-
activity (including already generated intervention logic of nested activities).

The last intervention mechanism, dynamic service replacement, has to select one
out of several replacement alternatives. Selection is based on the current delay of the
process, the position and duration of replacement variants, and the objective (desired
goal state). Code generation is best explained by an example. In Section 5 we defined
a yellow-intervention of type dynamic for activity a-r, with three replacement variants
ordered by maximum duration: one with a duration of [6,9], one with [4,7] and one with
[3,5]. The objective is green, which means that the execution of the selected alternative

Composing Time-Aware Web Service Orchestrations 361

should be finished until the green end-threshold of a-r. The calculation of green and
yellow thresholds for activity a-r yielded: c greenToYellow=11 and c yellowToRed=15
(hours after the process start). With this information we generate the following code:

if (state = yellow)
rel_time := currentTime() - t;
timeframe := a-r.greenToYellow - rel_time;
if (timeframe >= 9) bpel-code of variant

elseif (timeframe >= 7) bpel-code of variant
else bpel-code of fastest variant

Again we applied a worst-case approach: first we calculate the relative time (duration
since process start), followed by the calculation of the time frame. The time frame is the
difference between the threshold of the goal state (greenToYellow) and the relative time.
The duration of the selected variant must fit into this time frame. Therefore we compare
the time frame with the upper bound values (worst case) of the duration intervals spec-
ified for each alternative (in decreasing order) and add corresponding BPEL-code. The
fastest variant will be selected, even if it does not fit in the time frame. This approach
assumes that the faster a service the more expensive it will be, and shall therefore only
be selected if absolutely necessary. For our prototype we implemented an additional
version, which allows to specify variants ordered by preference – a preferred service
will be selected when it fits into the time frame, even if a slower service exists, that also
fits into the time frame.

Furthermore, we designed and implemented an improved version for alternative and
dynamic interventions on blocking activities, which exploits the following finding: if the
(blocking) activity is almost finished, it is not a wise decision to interrupt it and execute
one of the variants. Therefore we added a special treatment on state-assessment-level
for these types, which checks (on state change) if the remaining execution duration of
the activity is less than the duration of the variant that fits into the time frame. If this is
the case no fault will be thrown, and the original activity is allowed to finish.

7 Prototypical Implementation and Complexity Considerations

We implemented a proof-of-concept Java-based transformation prototype and tested
several processes with the open source engine ActiveBPEL. The advantage of this ap-
proach is, that it adds pro-active time-awareness to the process, which results in less
deadline violation. The process designer is not addressed with complicated calculations
and programming of tedious intervention logic. Furthermore, if the effect of current in-
tervention strategies is insufficient, then temporal information, intervention strategies or
temporal assessment can be changed easily, and used to generate new time-aware pro-
cess definition. On the downside we have to state, that the generated process will contain
considerably more elements than the original process definition. The number of addi-
tional elements varies heavily, depending on various parameters, the nesting-depth, the
number of specified interventions, and the complexity of intervention logic. Still, it can
be predicted by using the tables in Figure 6. For specific interventions both tables must
be combined, e.g., when defining an intervention for non-blocking sequence-activity
(with n = 3 nested basic activities), where the yellow-intervention is parallelize and the

362 H. Pichler, M. Wenger, and J. Eder

process**
non-blocking

blocking

var
decl.

var
assign

seq
if fault

handler
event

handler
3*** 2 1 0 0 0

br*
0

scope

0

on
Alarm

0

throw

0

catch

0
0 3 1 1 0 03 0 00 0

Sum

6
8

0 3 1 3 1 17 1 11 1 20

Extension Types: Number of additional Elements

*number of branches incl. conditions ** always included *** includes rel_time for state assessment

skip
terminate
parallelize

act &
decl.

flow seq
if

1 0 0 0
br

0

var
assign

0
1 0 0 0 0 0

Sum

1
1

n 1 0 0 0 0 n + 1

Intervention Types: Number of additional Elements (w/o optional BPEL code)

n … #activities nested in activity for which intervention has been declared
v … #variants (activities) for dynamic replacement
b … avg. #activities nested in activities, which describe one variant
d … avg. #declarative elements (partnerLinks, etc.) for one variant

alternative b + d 0 0 0 0 0 b + d
dynamic (v*b) + (v*d) 0 1 1 v 2 (v*b) + (v*d) + 4

Fig. 6. Tables for Prediction of Number of Additional Elements

red-intervention is skip, we calculate the number of additional elements as: sum pro-
cess + sum non-blocking + sum skip + sum parallelize = 6 + 8 + 1 + 4 = 19 additional
elements. In nearly all cases the complexity will be linear, with one exception: nested
parallel structures, where increase is exponential in the number of parallelizations in a
nesting path, as all nested elements must be duplicated on each level with paralleliza-
tion during the bottom up generation of intervention logic. Therefore, we propose to
specify interventions only for selected mission-critical parts and for parts which have
the potential to significantly speed up the process. A related problem is, that a user who
monitors the progress of the process will see a rather complicated transformed process.

8 Conclusions

The prediction and proactive avoidance of deadline violations decreases costs of pro-
cesses and increases their quality of service. Existing approaches describe how to model
and calculate temporal information for these purposes, but do not show how to apply
corresponding interventions on running processes. Therefore we enhanced the original
process definition with additional interval-based temporal and intervention information,
and showed how to transform it into a time-aware process definition, which pro-actively
avoids looming deadlines and that can be executed on any engine that supports BPEL.
To achieve this we utilized inherent control-flow features of the process definition lan-
guage to integrate time-triggered predictive and proactive intervention mechanisms,
with a focus on blocking activities that wait for messages of delayed external services.
Current and future research comprises handling of non-blocked structures (flows with
links), exception handlers, and how to compensate already finished activities.

References

1. Cardoso, J., Sheth, A., Miller, J.: Workflow Quality of Service. In: Proc. of the Int. Conf. on
Integration and Modeling Technology (IEIMT/IEMC). Kluwer Publishers, Dordrecht (2002)

2. OMG: Business Process Modelling Notation (BPMN) 1.1. OMG Specification (2008)

Composing Time-Aware Web Service Orchestrations 363

3. W3C: OWL-S: Semantic Markup for Web Services. W3C Member Submission (2004)
4. Eder, J., Gruber, W.: A Meta Model for Structured Workflows Supporting Workflow Trans-

formations. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS,
vol. 4152. Springer, Heidelberg (2006)

5. Gillmann, M., Weikum, G., Wonner, W.: Workflow Management with Service Quality Guar-
antees. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data. ACM Press, New
York (2002)

6. Panagos, E., Rabinovich, M.: Predictive Workflow Management. In: Proc. of the 3rd Int.
Workshop on Next Generation Information Technologies and Systems, Neve Ilan, Israel
(1997)

7. Kao, B., Garcia-Molina, H.: Deadline Assignment in a Distributed Soft Real-Time System.
IEEE Transactions on Par. Dist. Systems 8(12) (1997)

8. van der Aalst, W.M.P., Rosemann, M., Dumas, M.: Deadline-based Escalation in Process-
Aware Information Systems. BPM Center Report, BPM-05-05, BPMcenter.org (2005)

9. Eder, J., Pichler, H., Vielgut, S.: An Architecture for Proactive Timed Web Service Composi-
tions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 323–335.
Springer, Heidelberg (2006)

10. Eder, J., Pichler, H., Vielgut, S.: Avoidance of Deadline-violations for Inter-org. Business
Processes. In: Proc. of the 7th Int. Baltic Conf. on DBs and Inf. Systems. IEEE Press, Los
Alamitos (2006)

11. Eder, J., Panagos, E., Rabinovich, M.: Time Constraints in Workflow Systems. In: Jarke, M.,
Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, p. 286. Springer, Heidelberg (1999)

12. Haimowitz, I.J., et al.: Temporal Reasoning for Automated Workflow in Health Care En-
terprises. In: Adam, N.R., Yesha, Y. (eds.) Electronic Commerce 1994. LNCS, vol. 1028.
Springer, Heidelberg (1996)

13. Marjanovic, O., Orlowska, M.: On Modeling and Verification of Temporal Constraints in
Production Workflows. Knowledge and Information Systems 1(2) (1999)

14. Marjanovic, O., Orlowska, M.: Workflow Temporal Manager. In: Proc. of the Australian
Workshop on Intelligent Desicion Support and Knowledge Management, Sydney, Australia
(1998)

15. Marjanovic, O., Orlowska, M.: Dynamic Verification of Temporal Constraints in Produc-
tion Workflows. In: Proc. of the Australasian Database Conf. IEEE Computer Society, Los
Alamitos (2000)

16. Baggio, G., et al.: Applying Scheduling Techniques to Minimize the Number of Late Jobs in
Workflow Systems. In: Proc. of ACM 2004 Symp. on Applied Computing. ACM Press, New
York (2004)

17. Eder, J., Panagos, E.: Managing Time in Workflow Systems. In: Workflow Handbook 2001,
Future Strategies Inc. (2001) ISBN 0-970-35090-2

18. Newcomer, E.: Understanding Web Services. Addison-Wesley, Reading (2002)
19. Bettini, C., et al.: Free Schedules for Free Agents in Workflow Systems. In: Proc. of 7th Int.

Workshop on Temporal Representation and Reasoning. IEEE Computer Society Press, Los
Alamitos (2000)

20. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of web service
protocols. In: CAiSE 2005 Forum Short Paper Proceedings, CEUR-WS.org (2005)

21. Kazhamiakin, R., et al.: Representation, verification, and computation of timed properties in
web service compositions. In: Proc. of Int. Conf. on Web Services. IEEE Comp. Society, Los
Alamitos (2006)

22. Pozewaunig, H., et al.: ePERT – Extending PERT for Workflow Management Systems. In:
Proc. of Symp. on Adv. in Databases and Information Systems, Nevsky Dialect (1997)

23. Ardagna, D., et al.: PAWS: A Framework for Executing Adaptive Web-Service Processes.
IEEE Software 24(6) (2007)

Asynchronous Timed Web Service-Aware
Choreography Analysis

Nawal Guermouche and Claude Godart

LORIA-INRIA-UMR 7503
F-54506 Vandoeuvre-les-Nancy, France

{Nawal.Guermouche,Claude.Godart}@loria.fr

Abstract. Web services are the main pillar of the Service Oriented
Computing (SOC) paradigm which enables applications integration
within and across business organizations. One of the important features
of the Web services is the choreography aspect which allows to capture
collaborative processes involving multiple services. In this context, one of
the important investigations is the choreography compatibility analysis.
We mean by the choreography compatibility the capability of a set of
Web services of actually interacting by exchanging messages in a proper
manner. Whether a set of services are compatible depends not only on
their sequences of messages but also on quantitative properties such as
timed properties. In this paper, we investigate an approach that deals
with checking the timed compatibility of a choreography in which the
Web services support asynchronous timed communications.

Keywords: Web service, Timed properties, Asynchronous timed Com-
patibility analysis.

1 Introduction

The evolution of computer science technologies gives life to many paradigms
such as the Service Oriented Computing (SOC) paradigm. In this latter, Web
services are the main pillar. Based on standard interfaces, Web services facilitate
application-to-application interaction. This advantageous property gives rise to
several important concepts such as the choreography concept. This feature of-
fers the possibility to capture collaborative processes involving multiple services
where the interactions between these services are seen from a global perspective.
In this context, one of the important elements is the compatibility analysis. By
compatibility we mean the capability of a set of services of actually fulfilling
successful interactions by exchanging messages.

In the last few years, few works have investigated the compatibility problem
of a client and a provider service [4,2,13,9,7]. In all these works, the authors
deal with services that support synchronous communications. In that case, to
characterize the compatibility class of two services, the authors check if each
input (resp. output) message of a service corresponds to an output (resp. input)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 364–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Asynchronous Timed Web Service-Aware Choreography Analysis 365

message of the other service in the same order (i.e., the services are synchronized
over messages). However, the nature of distributed systems and particularly the
Web services could be asynchronous, hence the problem of the applicability of
these approaches in real application scenarios is still open. To overcome such
limitations, in this paper, we tackle the problem of analyzing the compatibility
of a choreography in which the Web services support asynchronous communica-
tions. In an asynchronous communication, when a message is sent, it is inserted
to a message queue, and the receiver can consume it later from the queue.

It is commonly agreed that in general the interaction of Web services and
in particular the compatibility of Web services depend not only on the sup-
ported sequences of messages but also on crucial quantitative properties such
as timed properties [2,11,10,13,9,7,8]. We mean by timed properties the neces-
sary delays to exchange messages (e.g., in an e-government system to manage
handicapped pension requests, a prefecture must send its final decision to grant
an handicapped pension to a requester after 168 hours and within 336 hours).
There are some works that tried to consider timed properties when analyzing the
compatibility of two synchronous services [2,13,9,7]. However, dealing only with
synchronous services decreases considerably the feasibility and the applicability
of these approaches.

In this paper, we propose a framework for analyzing the choreography compat-
ibility. This framework supports asynchronous communicating services. In our
framework we take into account data flow that can be involved when exchanging
messages. Furthermore, we consider timed properties that specify the necessary
delays to exchange messages. By studying the possible impacts of timed prop-
erties on a choreography, we remark that when the Web services are interacting
together, implicit timed dependencies could be built between the different timed
properties of the different services. Such dependencies could give rise to implicit
timed conflicts. To discover such timed conflicts, we first study the possibility to
apply the proposed compatibility approaches of synchronous services [2,13,9,7],
and we have remarked that the existing approaches are inadequate to discover all
the eventual timed conflicts since the authors rely on synchronizing the services
over messages. In order to catch all the possible timed conflicts, in this paper
we rely on the clock ordering process we have proposed in some earlier work on
Web service composition [8]. The clock ordering process aims at making explicit
the eventual implicit timed conflicts when services are interacting together.

To summarize, in this paper we make the following contributions: (1) we pro-
pose an asynchronous model of Web services that takes into account messages,
data types and timed requirements. (2) unlike existing compatibility frame-
works, we propose primitives for analyzing and characterizing the compatibil-
ity class of a choreography in which the services support asynchronous timed
communications.

The reminder of the paper is organized as follows. Section 2 presents the
e-government case study that we use to show the related issues of the pro-
posed approach. In Section 3 we present how we model the timed behavior of

366 N. Guermouche and C. Godart

Web services. For better understanding, in section 4, we discuss informally and
intuitively the timed compatibility problem of a choreography. Section 5 presents
the formal choreography compatibility investigation we propose. An illustrative
example using the e-government scenario is given in Section 6. In Section 7, we
discuss related work. Finally section 8 concludes.

2 Case Study: e-Government Application

Let us present a part of an e-government application that we use at the end to
illustrate our approach. The goal of the e-government application we consider
is to manage handicapped pension request. Such a request involves three Web
services: (1) requester service (RS), (2) health authority (HS) service, and (3)
prefecture service (PS). The high level choreography model of the process is
depicted on Fig. 1. To grant an handicapped pension to a requester, the process
can be briefly summarized as follows. (1) via a requester service, a citizen deposits
a file in the prefecture, (2) the citizen requests a medical file from the health
authority service. (3) The health authority negotiates a date for an appointment
to examine the citizen. (4) after the examination, the health authority service
sends a medical report to the prefecture. (5) after studying the received file and
the medical report, the prefecture sends the notification of the final decision to
the citizen.

The interaction between these partners is constrained by timed properties.
Below, we give some timed requirements.

– Once the health authority service proposes meeting dates to the citizen, the
health authority service must receive the filled form within 24 hours.

– The prefecture requires at least 168 hours and at most 336 hours since re-
ceiving the file from the requester to notify the citizen with the final decision.

– Via the requester service, once the citizen obtains the medical form, he must
send the filled form within 36 hours.

The Web services we consider could support asynchronous communications.
The first issue we deal with is how to analyze the compatibility of a choreogra-
phy in which the Web services are asynchronous? Moreover, the behavior of the
Web services might be constrained by timed requirements. In order to manage

Fig. 1. Global view of the e-government application

Asynchronous Timed Web Service-Aware Choreography Analysis 367

the global interaction between the Web services (i.e., to ensure that the chore-
ography is deadlock free), we need primitives that consider timed properties
when analyzing the compatibility of Web services. Thus, the second issue we
handle is how to consider timed properties when analyzing the compatibility of
asynchronous services in a choreography?

3 Modeling Timed Behavior of Web Services

One of the important ingredient in a compatibility framework is the timed con-
versational protocol of Web services. In our framework, the timed conversational
protocol specifies the sequences of messages a service supports, the involved data
flow and the associated timed properties to exchange messages. We adopt a finite
state machine based formalism to model the timed behavior of Web services (i.e.,
the timed conversational protocol). Intuitively, the states represent the different
phases a service may go through during its interaction. Transitions enable send-
ing or receiving a message. An output message is denoted by !m, whilst an input
one is denoted by ?m. A message involving a list of data types is denoted by
m(d1, . . . , dn), or m(d̄) for short. To capture the timed properties when modeling
Web services, we propose to use the standard timed automata clocks [1]. The
automata are equipped with a set of clocks. The values of these clocks increase
with the passing of time. Transitions are labeled by timed constraints, called
guards, and resets of clocks. The former represent simple conditions over clocks,
and the latter are used to reset values of certain clocks to zero. The guards
specify that a transition can be fired if the corresponding guards are satisfiable.

Let X be a set of clocks. The set of constraints over X , denoted Ψ(X), is
defined as follows:

true | x �� c | ψ1 ∧ ψ2, where ��∈ {≤, <, =,
=, >, ≥}, x ∈ X , ψ1, ψ2 ∈ Ψ(X),
and c is a constant.

Definition 1. (Timed conversational protocol)
A timed conversational protocol of a Web service Q is a tuple (S, s0, F, M, X, T)
such that:

S is a set of states, s0 is the initial state (s0 ∈ S), F is the set of final states
(F ⊆ S), M is a set of messages, X is the set of clocks, T is a set of transitions
such that T ⊆ S ×M ×Ψ(X)×2X ×S, with an exchanged message that involves
data types (?m(d): input message, !m(d):output message), a guard over clocks,
and the clocks to be reset.

A transition (s, a, ψ, Y, s′) is denoted by s →a
ψ,Y s′.

A trace is a sequence of transitions leading to a final state, denoted as follows:
s0 →α0

ψ0,Y0
s1 →α1

ψ1,Y1
. . . →αn−1

ψn−1,Yn−1
sn where sn is a final state.

The semantic of the former is defined using a transition relation over configura-
tions made of a state and a clock valuation. The clock valuation is a mapping
u : X → T from a set of clocks to the domain of timed values. The mapping u0

368 N. Guermouche and C. Godart

denotes the (initial) clock valuation, such that ∀x ∈ X, u0(x) = 0. Initially, the
queue of the services are empty.

A service remains in the same state s without triggering a transition, when the
time increments, if there is no transition (s, α, ψX , Y, s′) such that the timed con-
straints ψX are satisfied, where ψX ⊆ Ψ(X) and α is either an output message
!m(d) or an input message ?m(d) which is available in the queue. In an asyn-
chronous communication, when a message is sent, it is inserted to a message
queue, and the receiver consumes (i.e. receives) the message while it is available
in the queue.

Definition 2. (Semantic of timed conversational protocol)
Let P = (S, s0, F, M, X, T) be a conversational protocol. The semantic is defined
as a labeled transition (Γ, γ0,→), where Γ ⊆ S × VT is the set of configurations,
such that VT is a set of timed valuations, γ0 = (s0, u0) is the initial configuration,
and → is defined as follows:

– Elapse of time: (s, u) tick→ (s, u + δ)
– Location switch: (s, u) α→ (s′, u′), if ∃t = (s, α, ψX , Y, s′) such that u ∧ ψX

are satisfiable and ∀y ∈ Y, u′(y) = 0, ∀x ∈ X\Y, u′(x) = u(x), where Y ⊆ X,
and
- If α =!m(d), Que := Que + m(d)
- If α =?m(d), and m(d) ∈ Que, Que := Que − m(d)

The timed conversational protocols of the three services introduced in Section 2
are depicted on Fig. 2. Next, we will present the intuition behind the choreog-
raphy compatibility problem.

Fig. 2. Web services

Asynchronous Timed Web Service-Aware Choreography Analysis 369

4 Timed Compatibility Problem

In this section, by using examples, we discuss informally and intuitively the
timed choreography compatibility problem and the related issues. Then, in the
next section, we present the formal investigation we propose.

Example 1. Let us first consider the two untimed conversational protocols of the
two services Q and Q′ depicted on Fig. 3. In spite that both services cannot pro-
duce and consume their messages in the same order, the two asynchronous ser-
vices are fully compatible. The service Q starts by sending the message m0(d0, d1)
which becomes available in the queue of Q′. On the other side, Q′ sends the mes-
sage m2(d3). After that, Q′ consumes the message m0(d0, d1) then it sends the
message m1(d2). Once the message m1(d2) is sent, it is added to the queue of
Q. Therefore, Q can consume the message m1(d2) and then the message m2(d3).
By using the existing work, these two services are considered as incompatible
although they can succeed an execution. In fact, the proposed frameworks (e.g.,
see [4,2,13,9,7]) deal only with synchronous communicating services.

Fig. 3. Untimed asynchronous Web services

Augmenting the conversational protocol of asynchronous services by timed
properties lays important challenges. Particularly, the clocks used to define timed
properties are local and mutually independent. At the same time, in our work,
we do not assume that the timed properties are synchronized over messages.
Consequently, when services interact together, implicit timed conflicts can arise.
To illustrate this issue, in the following we present an illustrative example.

Example 2. Let us consider the two timed conversational protocols of the two
services Q and Q′ depicted on Fig. 4. The service Q starts by sending the message
m0(d0, d1). So this latter becomes available in the queue of Q′. On the other
hand, Q′ can send the message m2(d3) that can be stored in the queue of Q.
The service Q remains blocked, since the message m1(d2) is not yet available.
But Q′ can consume the message m0(d0, d1) which has been already sent by Q.
Once consumed, Q′ sends the message m1(d2) after 20 and within 40 units of
time from consuming the message m0(d0, d1) (i.e., 20 ≤ x ≤ 40). Consequently,
the message m1(d2) becomes available in the queue of Q after 20 units of time
from consuming the message m0(d0, d1). In that case, Q will be able to consume

370 N. Guermouche and C. Godart

the message m1(d2) after 20 units of time. Finally, Q must consume the message
m2(d3) within 10 units of time. However, this message can be consumed only
after consuming the message m1(d2), i.e., after 20 units of time. In fact, the
message m1(d2) can be sent (becomes available) by Q′ after 20 units of time.
So, the message m2(d2) must be consumed within 10 units of timed and at the
same time it is possible to consume it after 20 units of time which represents a
timed conflict.

Fig. 4. Incompatible timed asynchronous services

In order to catch the eventual timed conflicts in a choreography, we propose
the formal approach described in the following section.

5 Formal Compatibility Analysis

In the previous section, we have shown the need of formal primitives of analyzing
the timed choreography compatibility of asynchronous services. In general a
compatibility framework should be able to characterize the compatibility class
of Web services. But in addition, in case of compatibility, it is quite important to
characterize the deadlock free interaction schema of a choreography. When the
different services are interacting together, timed dependencies could be created
between their different timed properties. Therefore, we need mechanisms that
allow to catch the eventual implicit timed conflicts. In the following sections we
present respectively how we compute the interaction schema of a set of Web
services and how to discover the eventual timed conflicts when computing this
schema.

5.1 Building the Timed Choreography Interaction Schema

By having the set of conversational protocols of the involved services, our aim
is to build a global timed conversational protocol that specifies an executable
Timed Choreography Interaction Schema (TCIS). In order to build this TCIS,
we introduce the concept of configuration that represents the states of the TCIS
at a given time. A configuration defines the evolution of the services states when
they are interacting together. In the initial configuration, all the services are

Asynchronous Timed Web Service-Aware Choreography Analysis 371

in their initial states. Given a source configuration, the TCIS reaches a new
configuration when there exists one service that changes its state by exchanging
a message so that no timed conflicts arise. The process of discovering the eventual
implicit timed conflicts is presented in Section 5.2.

Definition 3. (Timed Choreography Interaction Schema (TCIS))
Let Qi(Si, s0i , Fi, Mi, Xi, Ti) to be a set of Web services for i = {1, . . . , n}.
The Timed Choreography Interaction Schema TCIS of Qi is defined as a tuple
(S, s0, F, M, X, T) such that

S = S1 × . . .×Sn, s0 = s01 × . . .×s0n , F = F0 × . . .×Fn, M = M0 ∪ . . .∪Mn,
X = X0 ∪ . . . ∪ Xn, T ⊆ S × M × Ψ(X) × 2X × S is defined as follows:

- (s1 . . . si . . . sn, m(d), ψ′
X , Y, s1 . . . s′i . . . sn) ∈ T if (si, m(d), ψX , Y, s′i) ∈ Ti

When we build a TCIS, we simulate the transactions of the queues of the services
by using one queue. By using the built TCIS, we can characterize each queue
transaction of each service. In order to build a TCIS, we propose the algorithm 1.

Algorithm 1: TCIS−Computing
Input: A set of Web services Qi = (Si, s0i , Fi, Mi, Xi, Ti), for i = {1, .., n}. Empty queue Que.
Output: TCIS = (S, s0, F, M, X, T)
begin

computedTr = T1 × . . . × Tn for i = {1, .., n}
while computedTr �= ∅ do

incompatibility=false
currentTr = {t1, . . . , tn} where ti ∈ Ti and {t1, . . . , tn} ∈ computedTr
computedTr = computedTr − currentTr
for each transition (si, m(d), ψi, Yi, s

′
i) of each trace ti ∈ currentTr do

if Cycle−Checked((si, m(d), ψi, Yi, s
′
i)) then

/*If the message m is an input message, then polarity(m) =? else polarity(m) =!*/
if (polarity(m) =′!′) or (polarity(m) =′?′ and m(d) ∈ Que) then

tcandidate = (s1 . . . si . . . sn, m(d), ψ, Y, s1 . . . s′i . . . sn)
if Clock−Order(tcandidate) then

T = T ∪ tcandidate

if polaritym(d) =! then

Que = Que + m(d)
else

Que = Que − m(d)

else
there is a timed conflict, tcandidate is not accepted,incompatibility=true

else

if polarity(m) =′?′ and m(d) /∈ Que then
The current message is not yet available. We choose another transition of another service.

else
The current message is not yet available. We choose another transition of another service.

if not incompatibility then
/*there are good traces*/
if Que �= ∅ then

There is an extra message. The current traces combination of the services are not compatible
else

The current traces combination of the services are compatible

else
The current traces combination of the services are not compatible

end

372 N. Guermouche and C. Godart

In the worse case, the algorithm 1 is exponential in time. In fact, in order to
check if a set of services are compatible, the cartesian product of the services
traces could be parsed.

The algorithm 1 considers cycles when analyzing the compatibility of a chore-
ography thanks to the algorithm 2.

Algorithm : Cycle−Checked

Input: a transition (s, m(d), ψ, Y, s′)
Output: boolean
begin

if s′ is already visited then
if polarity(m)=! then

/*The message could be sent infinitely*/
mark the message m(d)
return true

else

if m(d) ∈ Queue and m(d) is marked then
return true

else
return false

else
return true

end

2

5.2 Making Explicit the Implicit Timed Constraints Dependencies

In order to make explicit the dependencies between the timed properties when
building the TCIS, we use the clock ordering process we proposed in our previous
work on Web service composition directed by client data [8]. The clock ordering
process aims at defining an order between the different clocks of the different
services when they are interacting together. The idea behind the clock ordering
process is to define a total order between the different clocks of the services
for each new TCSA transition. To explain the idea behind the clock ordering
process, we use the following example.

Fig. 5. Making explicit the implicit timed conflicts

Asynchronous Timed Web Service-Aware Choreography Analysis 373

Example 3. Let us consider the two timed conversational protocols of the ser-
vices S and P depicted on Fig. 5. The service S can send the message m1(d1)
and resets the clock x. So we build the TCIS transition (s0q0, !m1(d1), x =
0, s1q0). Then, P sends the message m2(d1, d0). We build the TCIS transition
(s1q0, !m2(d1, d0), s1q1). After that, P sends the message m0(d0) and resets the
clock y. Since the clock x is reset before the clock y, hence we can define the order
y ≤ x. We build the corresponding TCIS transition (s1q1, !m0(d0), y = 0, y ≤
x, s1q2). As the message m1(d1) has been already sent by S, so P can consume
it so that 20 ≤ y ≤ 40. By propagating the order y ≤ x defined above, we built
the TCIS transition (s1q2, ?m1(d1), 20 ≤ y ≤ x, y ≤ 40, s1q3). Once the message
m1(d1) is consumed, P sends the message m4(d4). On the other side, S consumes
the message m0(d0) that has been already sent by P . We build the TCIS tran-
sition (s1q4, ?m0(d0), s2q4). Then S consumes the message m2(d1, d0) that has
been already sent by P . We build the TCIS transition (s2q4, ?m2(d1, d0), s3q4).
Finally, S must consume the message m4(d4) within 10 units of time from send-
ing the message m1(d1). By propagating the order 20 ≤ y ≤ x we defined above,
we build the TCIS transition (s3q4, ?m4(d4), 20 ≤ y ≤ x ≤ 10, s4q4). The order
20 ≤ y ≤ x ≤ 10 presents a timed conflict, i.e., 20 ≤ 10 and it is not possible
to fire the transition (s3q4, ?m4(d4), 20 ≤ y ≤ x ≤ 10, s4q4) (i.e., the message
m2(d3) cannot be consumed). As remarked, without the timed propagation pro-
cess, the timed conflict could not be detected.

In order to define the clock ordering process, we are using the algorithm 3.

Algorithm : Clock−Order

Input: a transition (si, mi(d), ψi, Yi, s
′
i)

Output: boolean
begin

if si is the initial state then
return true

else
/*propagation of the constraints of the form x ≥ v (resp. x > v) of a predecessor transition over the
current transition*/
for each �i−1 ∈ ψi−1, such that �i−1 = x ≥ v or �i−1 = x > v of (si−1, mi−1(d), ψi−1, Yi−1, s

′
i−1) do

ψi = ψi ∪ �i−1

/*The value of the clocks reset in the current transition is smaller than the value of a clock reset in
the predecessor transition */
for each y = 0 ∈ Yi and z = 0 ∈ Yi−1 do

ψi = ψi ∪ y ≤ z

/*We propagate the order defined in the predecessor transition over the current transition*/
for each z1 ≤ z2 ∈ ψi−1 do

ψi = ψi ∪ z1 ≤ z2

if ∃ v ≤ y0 ≤ . . . ≤ yn ≤ v′ ∈ ψi where v′ < v then
return false

else
return true

end

3

374 N. Guermouche and C. Godart

5.3 Characterization of Compatibility Classes

Previously, we have shown how we can build a deadlock free TCIS. In this
section, we present how we can characterize the compatibility class of a set of
asynchronous Web services. Before that, let us present the subsumption and
crossing relations of protocols.

We say that a protocol Qi is subsumed by a given TCIS if each transition
of each trace of the protocol Qi belongs to the given TCIS. In the context
of our work, this means that for each transition (si, αi, ψi, Yi, s

′
i) of Qi, there

exists a transition (s1 . . . si . . . sn, α′
i, ψ

′
i, Yi, s1 . . . s′i . . . sn) of TCIS which can be

preceded by a sequence of messages.

Definition 4. (Protocol subsumption ⊆tcis)
Let TCIS =(S, s0, F, M, X, T) be a computed TCIS and Qi = (Si, s0i , Fi, Mi, Xi,
Ti) be a protocol of a Web service. We say that the TCIS subsumes Qi, denoted
Qi ⊆tcis TCIS if for each trace s0i →α0

ψ0,Y0
s1i →α1

ψ1,Y1
. . . sn−1i →αn−1

ψn−1,Yn−1
sni

in Qi, there exists a trace t: (s0 . . . sn) ϑ0→ (s0, . . . s0i . . . sn) →α0
ψ′

0,Y0
(s0, . . . s1i

. . . sn) . . . → (s0, . . . sn)
ϑn−1→ (s0, . . . sn−1i . . . sn) →αn−1

ψ′
n−1,Yn−1

(s0, . . . sni . . . sn)
ϑn→ (s0, . . . sn) of TCIS such that for i = 0, . . . , n, (s0 . . . sn) ϑi→ (s0 . . . sn) is a
(possibly empty) message sequence of TCIS.

We say that a protocol Qi crosses a given TCIS if there is at least one trace of
Qi which is subsumed by this TCIS. Next, we present the formal definition of
the crossing relation.

Definition 5. (Protocol crossing ∩tcis)
Let TCIS =(S, s0, F, M, X, T) be a computed TCIS and Qi = (Si, s0i , Fi, Mi, Xi,
Ti) be a protocol of a Web service. We say that Qi crosses the TCIS, denoted
Qi ∩tcis TCIS if ∃ s0i →α0

ψ0,Y0
s1i →α1

ψ1,Y1
. . . sn−1i →αn−1

ψn−1,Yn−1
sni in Qi, such

that there exists a trace t: (s0 . . . sn) ϑ0→(s0, . . . s0i . . . sn) →α0
ψ′

0,Y0
(s0, . . . s1i . . . sn)

. . . → (s0, . . . sn)
ϑn−1→ (s0, . . . sn−1i . . . sn) →αn−1

ψ′
n−1,Yn−1

(s0, . . . sni . . . sn) ϑn→
(s0, . . . sn) of TCIS such that for i = 0, . . . , n, (s0 . . . sn) ϑi→ (s0 . . . sn) is a
(possibly empty) message sequence of TCIS.

We say that a set of Web services constitutes a full compatible choreography if
each protocol of each service is subsumed by the TCIS. However, when there are
some traces that are subsumed by the TCIS and there are some traces that are
not subsumed by the TCIS, we say that the set of Web services constitutes a
partial compatible choreography. But, when the TCIS is an empty protocol, thus
we say that the set of Web services constitutes a full incompatible choreography.

Definition 6. (Choreography compatibility classes)
Let TCIS = (S, s0, F, M, X, T) be a computed TCIS of a set of Web services
Qi = (Si, s0i , Fi, Mi, Xi, Ti) for i ∈ {1, .., n}

Asynchronous Timed Web Service-Aware Choreography Analysis 375

– A set of Web services Qi for i = {1, .., n} are said to be fully compatible if
∀i ∈ {1, .., n}, Qi ⊆tcis TCIS

– A set of Web services Qi are said to be partially compatible if ∃i ∈ {1, .., n},
Qi �tcis Q and Qi ∩tcis TCIS

– A set of Web services Qi are said to be fully incompatible if TCIS = ∅.

6 Illustrative Example

By using the e-pension application we introduced in Section 2, let us now present
an illustrative example of how analyzing the compatibility of the correspond-
ing choreography. Initially, the three services client service (CS), prefecture ser-
vice (PS) and health authority service (HS) are in their initial states. That
means, the first TCIS configuration is (c0p0m0). From this configuration, CS en-
ables the transition (c0, !FileDeposite(file), c1). We build the TCIS transition
(c0p0m0, !FileDeposite(file), c1p0m0). From the configuration c1p0m0, CS en-
ables the transition (c1, !formClaim(sn, reason), c2). We build the TCIS tran-
sition (c1p0m0, !formClaim(sn, reason), c2p0m0). HS can consume the message
formClaim(sn, reason) which has been already sent by CS. Thus, we build the
TCIS transition (c2p0m0, ?formClaim(sn, reason), c2p0m1). The new configu-
ration becomes c2p0m1. From this latter, HS enables the transition (m1, !gett−
ingForm(form), m2). We can build the TCIS transition (c2p0m1, !gettingF−
orm(form), c2p0m2). After sending the message gettingForm(form), HS sends
the message meeting(proposeDates) and resets a clock z1. In that case, we
build the TCIS transition (c2p0m2, !meeting(proposeDates), z1 = 0, c2p0m3).
From the new configuration c2p0m3, CS can consume the available message
gettingForm(form) which is already sent by HS. Once consumed, the clock
x is reset. Since the clock z1 is reset before the clock x, hence we define the
clock order x ≤ z1. Then, we build the TCIS transition (c2p0m3, ?gettingForm

Fig. 6. TCIS of the e-pension application

376 N. Guermouche and C. Godart

(for− m), x = 0, x ≤ z1, c3p0m3). After that, CS can send the message
sendF illed− Form(filledForm) within 36 units of time (x ≤ 36). Regarding
the clock order x ≤ z1 we have defined above, we build the TCIS transition
(c3p0m3, !sendF ill− edForm(filledForm), 0 ≤ x ≤ z1, x ≤ 36, c4p0m3).

When the configuration c5p0m3 is reached, HS can consume the message
sendF illedForm(filledForm) which is already sent (regarding the built TCIS)
by CS. HS can consume the message sendF illedForm(filledForm) within 24
units of time (z1 ≤ 24). Regarding the order we have defined above, we de-
fine the order 0 ≤ x ≤ z1 ≤ 24 that we associate to the TCIS transition
(c5p0m3, ?sendF illedForm(filledForm), 0 ≤ x ≤ z1 ≤ 24, c5p0m4). By apply-
ing the same steps, we build the deadlock free TCIS depicted on Fig. 6.

According to this TCIS, the three services CS, PS, and HS are fully compat-
ible, since each protocol of each service is subsumed by the built TCIS. For ex-
ample, according to the trace p0 →?medicalReport(report,sn) p1 →?FileDeposite(file)

y1=0

p2 →!finalNotification(notif)
168≤y1≤336 p3 of PS, we can remark that each transition be-

longs to the trace of the TCIS. For example, if we consider the transition
(p0, ?medicalReport(report, sn), p1), we can see that from the TCIS initial con-
figuration c0p0m0, we can reach the configuration c6p0m7 that allows to fire the
transition (c6p0m7, ?medicalReport(report, sn), c6p1m7).

7 Related Work

Checking and analyzing in general the Web services features is an important
investigation [4,3,2,5,12,11,10]. Particularly, in this paper we are interested in
the compatibility analysis of a choreography in which the services support asyn-
chronous communicating services. In general, the compatibility problem is based
on analyzing message exchange sequences (conversations). In practice, other met-
rics affect the Web services compatibility, such as the kind of communication
(synchronous or asynchronous) the services support. Besides, quantitative prop-
erties such as timed constraints plays a crucial role in Web services interaction.

In [4,3], the authors consider the sequence of messages that can be exchanged
between two synchronous Web services. But, considering only message exchange
sequences is not sufficient. To succeed a conversation, other metrics can have
an impact such as timed properties which are not considered in [4,3]. Another
important remark is that in [4,3], the authors consider synchronous Web services.
Such assumption is very restrictive since the nature of Web services can be
asynchronous. To overcome this limitation, we propose a compatibility checking
approach for timed asynchronous services.

The compatibility framework presented in [12,13], that is an extension of the
framework presented in [2], considers a more expressive timed constraints model.
Although powerful, in some cases, the compatibility framework cannot detect
some timed conflicts due to non-cancellation1 constraints. In fact, the authors
1 In [13] the non-cancellation constraints are called C-Invoke. They specify a time win-

dow within which a given message can be fired. Outside the window, the transition
is disabled (exchanging the message results in an error).

Asynchronous Timed Web Service-Aware Choreography Analysis 377

deal only with synchronous communicating services. Thus, to discover timed
conflicts, the authors are based on synchronizing the corresponding timed prop-
erties over messages. Therefore, this framework cannot be applied to discover
the eventual timed conflicts in case of asynchronous Web services.

In [6], the authors handle the timed conformance problem which consists in
checking if a given timed orchestration satisfies a global timed choreography. In
this framework, the authors propose to deal with timed cost (i.e., the delay)
of operations. According to our work, our aim is to detect conflicts that can
arise when a set of Web services are interacting altogether. Whilst, [6] is not
interested in analyzing the compatibility of a choreography but in checking if
a given orchestration conforms to a choreography. So, one of the assumption is
that the choreography does not hold timed conflicts.

We would like to mention that we are not using the techniques that have
been proposed in the context of timed automata such as building region au-
tomata since the protocols of the services could be huge, consequently, building
the structures such as region automata could be very complex and very huge.
Moreover, in the context of our work such structure that gives rich information is
not required. Whilst, by using the clock ordering process we are just defining an
order between the different clocks in order to make explicit the eventual implicit
timed conflicts.

8 Conclusion

In this paper, we presented a formal framework for analyzing the compatibility
of a choreography. Unlike the proposed approaches, this framework caters for
timed properties of asynchronous Web services. We presented how to model the
timed behavior of Web services. To model timed properties, we propose to use
the standard clocks of standard timed automata. In a choreography, when the
services are interacting together, implicit timed dependencies can arise which
could give rise to timed conflicts. We used the clock ordering process to discover
such conflicts.

In a compatibility framework, it is important to characterize the executable
interaction schema. To do so, we proposed an algorithm that allows to compute the
timed choreography interaction schema of a set of Web services that can support
asynchronous communications. We presented the clock ordering process that aims
at discovering implicit timed conflict in a choreography. By using the mechanisms
we proposed, we presented classes of timed choreography compatibility.

In our future work, we are interested in analyzing the compatibility of a
choreography in which the instances of the involved services is not known in
advance. Our aim is to provide primitives for defining dynamically the required
instances for a successful choreography. Moreover, we plan to extend the pro-
posed approach to support more complex timed properties when analyzing the
compatibility of a set of Web services.

378 N. Guermouche and C. Godart

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of
web service protocols. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520. Springer, Heidelberg (2005)

3. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In: 23rd International Conference on Conceptual Modeling (November
2004)

4. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

5. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V., Cuartero, F.: Verification of
web services with timed automata. In: Proceedings of the International Workshop
on Automated Specification and Verification of Web Sites (WWV 2005). ENTCS,
vol. 157, pp. 19–34 (2005)

6. Eder, J., Tahamtan, A.: Temporal conformance of federated choreographies. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp.
668–675. Springer, Heidelberg (2008)

7. Guermouche, N., Godart, C.: Timed model checking based approach for compati-
bility analysis of synchronous web services. Research report (2008)

8. Guermouche, N., Godart, C.: Timed properties-aware asynchronous web service
composition. In: Proceedings of the 16th International Conference on Cooperative
Information Systems (CoopIS 2008), Monterrey, Mexico, November 9-14, 2008, pp.
44–61 (2008)

9. Guermouche, N., Perrin, O., Ringeissen, C.: Timed specification for web services
compatibility analysis. In: International Workshop on Automated Specification and
Verification of Web Systems (WWV 2007), San Servolo island, Venice, Italy, De-
cember 14, 2007, pp. 155–170 (2007)

10. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and com-
putation of timed properties in web service compositions. In: Proceedings of the
IEEE International Conference on Web Services (ICWS), pp. 497–504 (2006)

11. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Timed modelling and analysis in web
service compositions. In: Proceedings of the The First International Conference on
Availability, Reliability and Security, ARES, pp. 840–846. IEEE Computer Society
Press, Los Alamitos (2006)

12. Ponge, J.: A new model for web services timed business protocols. In: Atelier
(Conception des systèmes d’information et services Web) SIWS-Inforsid) (2006)

13. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and
replaceability analysis of timed web service protocols. In: Parent, C., Schewe, K.-
D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 599–614.
Springer, Heidelberg (2007)

Evaluation Patterns for Analyzing the Costs
of Enterprise Information Systems

Bela Mutschler1 and Manfred Reichert2

1 Business Informatics, University of Applied Sciences Ravensburg-Weingarten, Germany
bela.mutschler@hs-weingarten.de

2 Institute of Databases and Information Systems, University of Ulm, Germany
manfred.reichert@uni-ulm.de

Abstract. Introducing enterprise information systems (EIS) is usually associated
with high costs. It is therefore crucial to understand those factors that determine
or influence these costs. Existing cost analysis methods are difficult to apply. Par-
ticularly, these methods are unable to cope with the dynamic interactions of the
many technological, organizational and project-driven cost factors, which specif-
ically arise in the context of EIS. Picking up this problem, in previous work we
introduced the EcoPOST framework to investigate the complex cost structures
of EIS engineering projects through qualitative cost evaluation models. This pa-
per extends this framework and introduces a pattern-based approach enabling
the reuse of EcoPOST evaluation models. Our patterns do not only simplify the
design of EcoPOST evaluation models, but also improve the quality and com-
parability of cost evaluations. Therewith, we further strengthen our EcoPOST
framework as an important tool supporting EIS engineers in gaining a better un-
derstanding of those factors that determine the costs of EIS engineering projects.

Keywords: Information Systems Engineering, Cost Analysis, Evaluation Mod-
els, Patterns.

1 Introduction

While the benefits of enterprise information systems (EIS) are usually justified by im-
proved process performance [1], there exist no approaches for systematically analyzing
related cost factors and their dependencies. Though software cost estimation has re-
ceived considerable attention during the last decades [2] and has become an essential
task in software engineering, it is difficult to apply existing approaches to EIS, par-
ticularly if the considered EIS shall support business processes. This difficulty stems
from the inability of these approaches to cope with the numerous technological, or-
ganizational and project-driven cost factors which have to be considered for process-
aware EIS (and which do only partly exist in data- or function-centered information
systems). As example consider the costs which emerge when redesigning business pro-
cesses. Another challenge deals with the many dependencies existing between different
cost factors. Activities for business process redesign, for example, can be influenced
by intangible impact factors like available process knowledge or end user fears. These
dependencies, in turn, result in dynamic effects which influence the overall costs of EIS
engineering projects. Existing evaluation techniques [3] are typically unable to deal

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 379–394, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

380 B. Mutschler and M. Reichert

with such dynamic effects as they rely on too static models based upon snapshots of the
considered software system.

What is needed is an approach that enables project managers and EIS engineers to
model and investigate the complex interplay between the many cost and impact factors
that arise in the context of EIS. This paper is related to the EcoPOST methodology, a
sophisticated and practically validated, model-based methodology to better understand
and systematically investigate the complex cost structures of EIS engineering projects
[4,5]. Specifically, this paper extends previously described concepts [6,7] and intro-
duces a pattern-based approach to enable the reuse of EcoPOST evaluation models.
Using the presented evaluation patterns does not only simplify the design of EcoPOST
evaluation models, but also improves the quality of EcoPOST cost evaluations.

Section 2 summarizes the EcoPOST methodology. This background information is
needed for understanding this work. Section 3 introduces evaluation patterns for design-
ing evaluation models. Section 4 deals with the use of our evaluation patterns. Section
5 discusses related work. Section 6 concludes with a summary.

2 The EcoPOST Cost Analysis Methodology - A Brief Summary

We designed the EcoPOST methodology [3,4,5,6,7] to ease the realization of process-
aware EIS. The EcoPOST methodology comprises seven steps (cf. Fig. 1). Step 1
concerns the comprehension of an evaluation scenario. This is crucial for developing
problem-specific evaluation models. Steps 2 and 3 deal with the identification of two
different kinds of Cost Factors representing costs that can be quantified in terms of
money (cf. Table 1): Static Cost Factors (SCFs) and Dynamic Cost Factors (DCFs).

Table 1. Cost Factors

SCF Static Cost Factors (SCFs) represent costs whose values do not change during an EIS engineering project (except
for their time value, which is not further considered in the following). Typical examples: software license costs,
hardware costs and costs for external consultants.

DCF Dynamic Cost Factors (DCFs), in turn, represent costs that are determined by activities related to an EIS engineer-
ing project, e.g. process modelling, requirements elicitation and definition, process implementation and adaptation.
These activities cause measurable efforts which, in turn, vary due to the influence of intangible impact factors.

Step 4 deals with the identification of Impact Factors (ImFs), i.e., intangible factors
that influence DCFs and other ImFs. We distinguish between organizational, project-
specific, and technological ImFs. ImFs cause the value of DCFs (and other ImFs) to
change, making their evaluation a difficult task to accomplish. As examples consider
factors such as ”End User Fears”, ”Availability of Process Knowledge”, or ”Ability to
(re)design Business Processes”. Also, ImFs can be static or dynamic (cf. Table 2).

Table 2. Impact Factors

Static ImF Static ImFs do not change, i.e., they are assumed to be constant during an EIS engineering project; e.g., when
there is a fixed degree of user fears, process complexity, or work profile change.

Dynamic
ImF

Dynamic ImFs may change during an EIS engineering project, e.g., due to interference with other ImFs.
As examples consider process and domain knowledge which is typically varying during an EIS engineering
project (or a subsidiary activity).

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 381

Impact Factors (ImF)

Dynamic Cost Factors (DCF)

Static Cost Factors (SCF)

Steps 2 - 4 Step 5 Step 6

Design of
Evaluation

Models

Step 1 Step 7

Deriving
Conclusions

Simulation of
Evaluation

Models

Evaluation Context

Fig. 1. Basic EcoPOST Methodology (without Evaluation Patterns)

Unlike SCFs and DCFs the values of ImFs are not quantified in monetary terms.
Instead, they are “quantified” by experts using qualitative scales describing the degree
of an ImF. As known from software cost estimation models, such as COCOMO [2],
qualitative scales we use comprise different “values” (ranging from “very low” to “very
high”) expressing the strength of an ImF on a given cost factor.

Generally, dynamic evaluation factors (i.e., DCFs and dynamic ImFs) are difficult to
comprehend. In particular, intangible ImFs (i.e., their appearance and impact in EIS en-
gineering projects) are not easy to follow. When evaluating the costs of EIS engineering
projects, therefore, DCFs and dynamic ImFs constitute a major source of misinterpre-
tation and ambiguity. To better understand and to investigate the dynamic behavior of
DCFs and dynamic ImFs, we introduce the notion of evaluation models as basic pillar
of the EcoPOST methodology (Step 5; cf. Section 2.2). These evaluation models can be
simulated (Step 6) to gain insights into the dynamic behavior (i.e., evolution) of DCFs
and dynamic ImFs (Step 7). This is important to effectively control the design and im-
plementation of EIS as well as the costs of respective projects. Note that EcoPOST
evaluation models can be designed and simulations can be performed using any System
Dynamics modeling and simulation tool. In our case, we used the tool “Vensim”.

2.1 Evaluation Models

In EcoPOST, dynamic cost/impact factors are captured and analyzed by evaluation
models which are specified using the System Dynamics [8] notation (cf. Fig. 2). An
evaluation model comprises SCFs, DCFs, and ImFs corresponding to model variables.
Different types of variables exist. State variables can be used to represent dynamic
factors, i.e., to capture changing values of DCFs (e.g., the ”Business Process Redesign
Costs”; cf. Fig. 2A) and dynamic ImFs (e.g., ”Process Knowledge”). A state variable
is graphically denoted as rectangle (cf. Fig. 2A), and its value at time t is determined
by the accumulated changes of this variable from starting point t0 to present moment
t (t > t0) – similar to a bathtub which accumulates at a defined moment t the amount
of water poured into it in the past. Typically, state variables are connected to at least
one source or sink which are graphically represented as cloud-like symbols (except for
state variables connected to other ones) (cf. Fig. 2A). Values of state variables change
through inflows and outflows. Graphically, both flow types are depicted by twin-arrows
which either point to (in the case of an inflow) or out of (in the case of an outflow) the
state variable (cf. Fig. 2A). Picking up again the bathtub image, an inflow is a pipe that
adds water to the bathtub, i.e., inflows increase the value of state variables. An outflow,
by contrast, is a pipe that purges water from the bathtub, i.e., outflows decrease the

382 B. Mutschler and M. Reichert

A) State Variables & Flows

Costs

Business
Process

Redesign

Controls
the Inflow

Controls
the Outflow

DCF

Cost
Increase

Cost
Decrease

Auxiliary Variables

Rate Variables

Dynamic Cost Factors Sources and Sinks

Dynamic Impact Factors

Text

Static Cost Factor [Text]

Static Impact Factor (Text)

B) Auxiliary Variables

Cost Increase Cost Decrease

Adjusted
Process Analysis

Costs

-

-

+

Analysis Costs
per Week]+

Water
Tap

Water
Drain

[SCF1]

[SCF2]

(ImFS)

Auxiliary
Variable

+
+

--

Business Process
Redesign Costs

Ability to Redesign
Business

Processes

[Planned

Notation:
Flows

Links [+|-]

Process
Knowledge

Domain
Knowledge

Fig. 2. Evaluation Model Notation and Initial Examples

value of state variables. The DCF ”Business Process Redesign Costs” shown in Fig. 2A,
for example, increases through its inflow (”Cost Increase”) and decreases through its
outflow (”Cost Decrease”). Returning to the bathtub image, we further need ”water
taps” to control the amount of water flowing into the bathtub, and ”drains” to specify the
amount of water flowing out. For this purpose, a rate variable is assigned to each flow
(graphically depicted by a valve; cf. Fig. 2A). In particular, a rate variable controls the
inflow/outflow it is assigned to based on those SCFs, DCFs, and ImFs which influence
it. It can be considered as an interface which is able to merge SCFs, DCFs, and ImFs.

Besides state variables, evaluation models may comprise constants and auxiliary
variables. Constants are used to represent static evaluation factors, i.e., SCFs and static
ImFs. Auxiliary variables, in turn, represent intermediate variables and typically bring
together – like rate variables – cost and impact factors, i.e., they merge SCFs, DCFs, and
ImFs. As example consider the auxiliary variable ”Adjusted Process Analysis Costs” in
Fig. 2B. It merges the three dynamic ImFs ”Process Knowledge”, ”Domain Knowl-
edge” and ”Ability to Redesign Business Processes”, and the SCF ”Planned Analysis
Costs per Week”. Both constants and auxiliary variables are integrated into an evalu-
ation model with labeled arrows denoted as links (not flows). A positive link (labeled
with ”+”) between x and y (with y as dependent variable) indicates that y will tend in
the same direction if a change occurs in x. A negative link (labeled with ”-”) expresses
that the dependent variable y will tend in the opposite direction if x changes.

EcoPOST evaluation models are useful for EIS engineers and project managers.
However, the evolution of DCFs and dynamic ImFs is still difficult to comprehend.
Thus, we added a simulation component to our evaluation framework (cf. Fig. 1).

2.2 Understanding Model Dynamics through Simulation

To enable simulation of an evaluation model we need to formally specify its behavior by
means of a simulation model. We use mathematical equations for this purpose. Thereby,
the behavior of each model variable is specified by one equation (cf. Fig. 3), which

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 383

Constant
Equations

Integral
Equations User-defined Equations

SCF, Static ImF DCF, Dynamic ImF Rate Variables Auxiliary Variables
Elements of an
Evaluation Model

Elements of a
Simulation Model

Part I Part II Part III Part IV

Fig. 3. Elements of a Simulation Model

describes how a variable is changing over time from simulation start. Details on the
specification of simulation models can be found in [3,9].

Generally, results of a simulation enable EIS engineers to gain insights into causal
dependencies between organizational, technological, and project-specific factors. This
helps them to better understand resulting effects and to develop a concrete ”feeling” for
the dynamic implications of EcoPOST evaluation models. To investigate how a given
evaluation model ”works” and what might change its behavior, we simulate the dynamic
implications described by it – a task which is typically too complex for human mind. In
particular, we conduct ”behavioral experiments” based on a series of simulation runs.
During these simulation runs selected parameters are changed in a controlled manner
to systematically investigate their effects within an evaluation model, i.e., to investigate
how the output of a simulation will vary if its initial condition is changed. This proce-
dure is also known as sensitivity analysis. Simulation outcomes can be further analyzed
using graphical charts (generated by the used simulation tool).

2.3 Applying EcoPOST in Practice: Experiences and Lessons Learned

We applied the EcoPOST framework in several case studies in the automotive domain.
This has made us aware of a number of critical success factors which foster the transfer
of the EcoPOST framework into practice.

First, it is important that EcoPOST users get enough time to become familiar with
the provided evaluation concepts. Note that EcoPOST exhibits a comparatively large
number of different concepts and tools, such that it will need some time to effectively
apply them. In practice, this can be a barrier for potential users. However, this complex-
ity quickly decreases through gathered experiences.

Second, it is crucial that results of EcoPOST evaluations are carefully documented.
This does not only enable their later reuse, it also allows to reflect on past evaluations
and lessons learned as well as to reuse evaluation data. For that purpose, the EcoPOST
Cost Benefit Analyzer can be used, which is a tool we developed to support the use of
EcoPOST [3]. For example, it enables storage of complete evaluation scenarios, i.e.,
evaluation models and their related simulation models.

Third, evaluation models should be validated in an open forum where stakeholders
such as policy makers, project managers, EIS architects, software developers, and con-
sultants have the opportunity to contribute to the model evolution process.

Finally, the use of EcoPOST has shown that designing evaluation models can be
a complicated and time-consuming task. Evaluation models can become complex due
to the high number of potential cost and impact factors as well as the many causal
dependencies that exist between them. Evaluation models we developed to analyze a

384 B. Mutschler and M. Reichert

large EIS engineering project in the automotive domain, for example, comprise more
than ten DCFs and ImFs and more than 25 causal dependencies [3]. Taking the approach
described so far (cf. Section 2), each evaluation and each simulation model would have
to be designed from scratch. Besides additional efforts, this results in an exlusion of
existing modeling experience, and prevents the reuse of both evaluation and simulation
models. In response to this problem, we introduce a set of reusable evaluation patterns.

3 EcoPOST Evaluation Patterns

EIS engineering projects often exhibit similarities, e.g., regarding the appearance of cer-
tain cost and impact factors. We pick up these similarities by introducing customizable
patterns. This shall increase model reuse and facilitate practical use of our EcoPOST
framework. Evaluation patterns (EPs) do not only ease the design and simulation of
evaluation models, but also enable reuse of evaluation information. This is crucial to
foster practical applicability of the EcoPOST framework.

Specifically, we introduce an evaluation pattern (EP) as a predefined, but customiz-
able EcoPOST model, i.e., EPs can be built based on same elements as introduced in
Section 2. An EP consists of an evaluation model and an associated simulation model.
More precisely, each EP constitutes a template for a specific DCF or ImF as it typically
exists in many EIS engineering projects. Moreover, we distinguish between primary
EPs (cf. Section 3.2) and secondary ones (cf. Section 3.3).

A primary EP describes a DCF whereas a secondary EP represents an ImF. We de-
note an EP representing an ImF as secondary as it has a supporting role regarding the
design of EcoPOST cost models based on primary EPs.

The decision whether to represent cost/impact factors as static or dynamic factors in
EPs also depends on the model designer. Many cost and impact factors can be modeled
both as static or dynamic factors. Consequently, EPs can be modeled in alternative ways.
This is valid for all EPs discussed in the following.

3.1 Research Methodology and Pattern Identification

As sources of our patterns (cf. Tables 3 and 4) we consider results from surveys [5], case
studies [3,10], software experiments [4], and profound experiences we gathered in EIS
engineering projects in the automotive domain. These projects addressed a variety of
typical settings in enterprise computing which allows us to generalize our experiences.

To ground our patterns on a solid basis we first create a list of candidate patterns.
For generating this initial list we conduct a detailed literature review and rely on our
experience with EIS-enabling technologies, mainly in the automotive industry. Next we

Table 3. Overview of primary Evaluation Patterns and their Data Sources

Pattern Name Discussed in Paper Survey Case Study Literature Experiment Experiences
Business Process Redesign Costs yes x x x - x
Process Modeling Costs yes - - x x x
Requirements Definition Costs yes - x x - x
Process Implementation Costs yes x x x x x
Process Adaptation Costs no x x x x x

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 385

Table 4. Overview of secondary Evaluation Patterns and their Data Sources

Pattern Name Discussed in Paper Survey Case Study Literature Experiment Experiences
Process Knowledge yes x - x x x
Domain Knowledge yes x - x x x
Process Evolution yes x - x - x
Process Complexity yes - - x - -
Process Maturity no - - x - x
Work Profile Change no x - x x x
End User Fears no x x x - x

thoroughly analyze the above mentioned material to find empirical evidence for our
candidate patterns. We then map the identified evaluation data to our candidate patterns
and - if necessary - extend the list of candidate patterns.

A pattern is defined as a reusable solution to a commonly occurring problem. We
require each of our evaluation patterns to be observed at least three times in different
settings of literature and our empirical research. Only those patterns, for which enough
empirical evidence exists, are included in the final list of patterns, which is presented
in the following. Also note that these patterns represent a first baseline which clearly
needs to be extended in future. This includes a deeper analysis of additional cost areas
such as data modelling or system configuration efforts.

3.2 Primary Evaluation Patterns

Business Process Redesign Costs. The EP shown in Fig. 4 deals with the costs of
business process redesign activities. Prior to EIS development such activities become
necessary for several reasons. As examples consider the need to optimize business pro-
cess performance or the goal of realizing a higher degree of process automation.

This EP is based on our experiences (from several process redesign projects) that
business process redesign costs are primarily determined by two SCFs: ”Planned Costs

Business Process Redesign

Business Process
Redesign CostsCost

Growth

Process
Knowledge

Ability
Growth

(End User
Fears)

(Management
Commitment)

Adjusted Costs for
Process Analysis

Adjusted
Costs for
Process
Modeling

++

Domain
Knowledge

Growth

Process
Knowledge

Growth

+
+

+

+

(Process
Complexity)

[Planned Costs for
Process Analysis]

[Planned Costs for
Process Modeling]

+

+

+
+

+

+ +

Ability
Reduction

Impact due to
Ability to Redesign

Business Processes

Ability to Redesign
Business Processes Domain

Knowledge

+

+

-

+

Fig. 4. Primary Evaluation Pattern: Business Process Redesign Costs

386 B. Mutschler and M. Reichert

for Process Analysis” and ”Planned Costs for Process Modeling”. While the former
SCF represents planned costs for accomplishing interviews with process participants
and costs for evaluating existing process documentation, the latter SCF concerns costs
for transforming gathered process information into a new process design. Process re-
design costs are thereby assumed to be varying, i.e., they are represented as DCF.

Process Modeling Costs. The EP shown in Fig. 5 deals with the costs of process mod-
eling activities in EIS engineering projects. Such activities are typically accomplished
to prepare the information gathered during process analysis, to assist software devel-
opers in implementing the EIS, and to serve as guideline for implementing the new
process design (in the organization). Generally, there exist many notations that can be
used to specify process models. Our EP, for example, assumes that process models are
expressed as event-driven process chains (EPC).

Process Modeling

Process
Modeling Costs

Cost
Rate

[Planned
Modeling Costs] (Process Size)

(Process
Complexity)

Knowledge
Growth
Rate

-

(Number of Events)

(Number of Functions)

(Number of Connectors)

(Number of Arcs)

+

+

+ +

(Number of Start Events)

(Number of End Events)

+

+

Impact due to
Process Size

+

Process
Knowledge

+

+
+

+
(Basic Process

Knowledge
Growth)

+

Fig. 5. Primary Evaluation Pattern: Process Modeling Costs

Basically, this EP (cf. Fig. 5) reflects our experiences that ”Process Modeling Costs”
are influenced by three ImFs: the two static ImFs ”Process Complexity” and ”Process
Size” (whereas the impact of process size is specified based on a table function trans-
forming a given process size into an EcoPOST impact rating [3]) and the dynamic ImF
”Process Knowledge” (which has been also confirmed by our survey described in [3]).
The ImF ”Process Complexity” is not further discussed here. Instead, we refer to [3]
where this ImF has been introduced in detail. The ImF ”Process Size”, in turn, is char-
acterized based on (estimated) attributes of the process model to be developed. These
attributes depend on the used modeling formalism. As aforementioned, the EP from Fig.
5 builds on the assumption that the EPC formalism is used for process modeling. Taking
this formalism, we specify process size based on the ”Number of Functions”, ”Number
of Events”, ”Number of Arcs”, ”Number of Connectors”, ”Number of Start Events”,
and ”Number of ”End Events”. Finally, the DCF ”Process Modeling Costs” is also in-
fluenced by the dynamic ImF ”Process Knowledge” (assuming that increasing process
knowledge results in decreasing modeling costs). Level of process knowledge increases
with costs (the comprehensiveness of the modeled process increases over time).

Requirements Definition Costs. The EP from Fig. 6 deals with costs for defining and
eliciting requirements [3]. It is based on the two DCFs ”Requirement Definition Costs”
and ”Requirement Test Costs” as well as on the ImF ”Requirements to be Documented”.

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 387

Requirements Definition

Cost Rate

[Planned Process
Analysis Costs]

Adjusted Process
Analysis Costs

+

+
(Process Complexity)

(Process Fragmentation) (Emotional Resistance
of End Users)

+

+

Process
Knowledge

Growth Rate

+

+

Requirements
Documentation

Costs

[Costs for Requirements
Management Tool]

Analyzed
RequirementsCompletion

Rate
Documentation

Rate

(Basic
Comprehension

Rate)

+

[Documentation
Costs per

Requirement]

(Relevance
Rate)

Requirements
Test Costs

Test Cost
Rate

[Test Costs per
Requirement]

[Costs for
Test Tool]

Requirements to
be Documented

Process
Knowledge

Requirements
Definition Costs

+

++
+

+

+
+

+

+

+

Fig. 6. Primary Evaluation Pattern: Requirements Definition Costs

This EP reflects our observation from practice that the DCF ”Requirements Definition
Costs” is determined by three main cost factors: costs for a requirements management
tool, process analysis costs, and requirements documentation costs. Costs for a require-
ments management tool are constant and are therefore represented as SCF. The auxiliary
variable ”Adjusted Process Analysis Costs”, in turn, merges the SCF ”Planned Process
Analysis Costs” with four process-related ImFs: ”Process Complexity”, ”Process Frag-
mentation”, ”Process Knowledge”, and ”Emotional Resistance of End Users” (whereas
only process knowledge is represented as dynamic ImF).

Costs for documenting requirements (represented by the auxiliary variable ”Require-
ments Documentation Costs”) are determined by the SCF ”Documentation Costs per
Requirement” and by the dynamic ImF ”Requirements to be Documented”. The lat-
ter ImF also influences the dynamic ImF ”Process Knowledge” (resulting in a positive
link from ”Analyzed Requirements” to the rate variable ”Process Knowledge Growth
Rate”). ”Requirements Test Costs” are determined by two SCFs (”Costs for Test Tool”
and ”Test Costs per Requirement”) and the dynamic ImF ”Requirements to be docu-
mented” (as only documented requirements need to be tested). Costs for a test tool and
test costs per requirement are assumed to be constant (and are represented as SCFs).

Process Implementation Costs. The EP shown in Fig. 7 deals with costs for imple-
menting a process and the interference of these costs through impact factors [3]. An
additional EP (not shown here) deals with the costs caused by adapting the process(es)
supported by an EIS. This additional EP is identical to the previous EP ”Process Imple-
mentation Costs” – except for the additional ImF ”Process Evolution”.

3.3 Secondary Evaluation Patterns

Process Knowledge. Fig. 8 shows an EP which specifies the ImF ”Process Knowl-
edge”, i.e., causal dependencies on knowledge about the process(es) to be supported.

Domain Knowledge. The EP from Fig. 9 deals with the evolution of domain knowledge
along the course of an EIS engineering project. Our practical experiences allow for the

388 B. Mutschler and M. Reichert

Process Implementation

Process
Implementation Costs

Cost
Rate

Adjusted Process
Modeling Costs

[Data Modeling
Costs]

Adjusted Form
Design Costs

Adjusted User/Role
Management Costs

[Test Costs] [Miscellaneous Costs]

-
+

+

++

+

Domain
Knowledge

Growth Rate

Process
Knowledge

Growth Rate

+

+

(Process Complexity)

[Planned Process
Modeling Costs]

[Planned User/Role Management Costs]

+

+

+

(Technical Maturity of Process
Management Platform)

(Experiences in using Process
Management Platform)

(Usability of Process
Management Platform)

(Quality of Product
Documentation)

[Planned Form
Design Costs]

-
+ -

-

-

Process
Knowledge

Domain
Knowledge

-

-
-

Fig. 7. Primary Evaluation Pattern: Process Implementation Costs

Process Knowledge

Process
Knowledge

Growth Rate
+

+
Ability
Rate+

Domain
Knowledge

Growth Rate

+ (Emotional Resistance of End Users)

-

(Process
Complexity)

(Process
Fragmentation)

-
-+

Domain
Knowledge

Ability to Acquire
Process

Knowledge

Process
Knowledge

Fig. 8. Secondary Evaluation Pattern: Process Knowledge

Domain Knowledge

Domain Knowledge
Growth Rate+

Process Knowledge
Growth Rate

+

+

(Domain
Complexity)

-+

Experience
Growth Rate +

(Basic Experience Growth)

+ +

(Basic Process
Knowledge Growth) +

(Basic Domain
Knowledge Growth) +

Experience

Process
Knowledge

Domain
Knowledge

+

Fig. 9. Secondary Evaluation Pattern: Domain Knowledge

conclusion that ”Domain Knowledge” is a dynamic ImF influenced by three other ImFs:
the period an EIS engineer is working in a specific domain (captured by the dynamic
ImF ”Experience”), the dynamic ImF ”Process Knowledge”, and the complexity of the
considered domain (represented by the static ImF ”Domain Complexity”).

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 389

Process Evolution. The EP shown in Fig. 10 covers the static ImF ”Process Evolu-
tion”. Specifically, it describes origins of process evolution. Basically, this EP reflects
the assumption that business process evolution is caused by various drivers. Note that
arbitrary drivers of evolution can be included in the EP.

Process Evolution

(Entry of
Competitors)

(Threat of
Substitutes)

(Power of
Buyers)

(Power of Suppliers)

(Rivalry among
Market Players)

(Market
Pressure)

+
+

+
+

+

(Need for Compliance with
Regulations and Laws)

(Need for Process
Optimization)

(Process
Evolution)

+

+

+

(User Acceptance)

(Compatibility with Suppliers) (Compatibility with Customers)+

+

-

(Management
Order)

+

Fig. 10. Secondary Evaluation Pattern: Business Process Evolution

Process Complexity. The EP from Fig. 11 deals with the ImF ”Process Complexity”.
Note that this EP does not specify process complexity itself, but defines it based on
an easier manageable replacement factor. In our context, this replacement factor cor-
responds to the complexity of the process model describing the business process to be
supported [11]. Thus, we extend process complexity to ”Process Complexity / Process
Model Complexity”. The EP from Fig. 11 further aligns with the assumption that re-
spective process models are formulated using EPC notation. According to the depicted
EP, the static ImF ”Process Complexity/Process Model Complexity” is determined by
four other static ImFs: ”Cycle Complexity”, ”Join Complexity” (JC), ”Control-Flow
Complexity” (CFC), and ”Split-Join-Ratio” (SJR) (whereas the latter ImF is derived
from the SCFs ”Join Complexity” and ”Control-Flow Complexity”).

Process Complexity (based on the Complexity of EPC Process Models)

(Process
Complexity/

(Cycle Complexity)

(Control Flow Complexity)

(Join
Complexity)

(Split-Join-
Ratio)

+
+

+
+

+
+

Process Model
Complexity)

Fig. 11. Secondary Evaluation Pattern: Process Complexity

The complexity driver ”Cycle Complexity” is confirmed in [12,13]. Arbitrary cycles,
for example, can lead to EPC models without clear semantics (cf. [14] for examples).
The ImF ”Control-Flow Complexity” is characterized by [11]. It is based on the obser-
vation that the three split connector types in EPC models introduce a different degree of
complexity. According to the number of potential post-states an AND-split is weighted
with 1, an XOR-split is weighted with the number of successors n, and an OR-split is
weighted with 2n − 1. The sum of all connector weights of an EPC model is then de-
noted as ”Control-Flow Complexity” [15]. The ImF ”Join Complexity” can be defined

390 B. Mutschler and M. Reichert

as the sum of weighted join connectors based on the number of potential pre-states
in EPC models [16,17]. Finally, the mismatch between potential post-states of splits
and pre-states of joins in EPC models is included as another driver of complexity. This
mismatch is expressed by the static ImF ”Split-Join-Ratio” (= JC/CFC) [16,17]. Based
on these four static ImFs (or drivers of complexity), we derive the EP from Fig. 11.
Thereby, an increasing cycle complexity results in higher process complexity. Also,
both increasing CFC and increasing JC result in increasing process complexity. A JSR
value different from 1 increases error probability and thus process complexity. It is
important to mention that – if desired – other drivers of process complexity can be con-
sidered as well. Examples can be found in [13,17].

Work Profile Change. This EP (not shown here, but discussed in [3]) deals with change
of end user work profiles (and the effects of work profile changes). More specifically,
it relates the perceived work profile change to changes emerging in the five job dimen-
sions of Hackman’s job characteristics model [18,19]: (1) skill variety, (2) task identity,
(3) task significance, (4) autonomy, and (5) feedback from the job. For each of these five
core job dimensions, the emerging change is designated based on the level before and
after EIS introduction.

End User Fears. This EP (not shown here, but discussed in [3] and [6]) is based on
experiences which allow to conclude that the introduction of an EIS may cause end
user fears, e.g., due to work profile change (i.e., job redesign) or changed social clues.
Such fears can lead, for example, to emotional resistance of end users. This, in turn, can
make it difficult to get needed support from end users, e.g., during process analysis.

4 Working with Patterns: Customization and Composition

Using EcoPOST evaluation patterns starts with the identification of those patterns which
are relevant in a given context. After selecting a pattern, it might have to be customized.
Note that EPs are applied in different evaluation context. Thereby, we have to distin-
guish between customization of an evaluation model (Step I) and of its corresponding
simulation model (Step II). The former always requires the subsequent adaptation of
the underlying simulation model, while the latter is also possible without customiz-
ing the associated evaluation model. Adapting an evaluation model can be achieved by
adding or removing model variables, flows, or links. An example can be found in [3].
Correctness of customized EPs is ensured through EcoPOST-specific design rules [7].

Customizing a simulation model, by contrast, means to adapt functions of the sim-
ulation model, e.g. changes of SCF values. Customizing an EP can be quickly realized
as a single EP does not require complex adaptations.

Another important feature with respect to the practical applicability of the EcoPOST
framework concerns pattern composition (cf. Fig. 12). In particular, EcoPOST enables
EIS engineers to compose new evaluation models by merging EPs. Unlike pattern cus-
tomization, composing patterns is typically more complex and costly. Note that the
number of composition variants might be quite large. Indeed, composition can be partly

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 391

Relevant
Evaluation Pattern 1

Relevant
Evaluation Pattern 2

Composed Evaluation Model

Relevant
Evaluation Pattern 3

Pattern Library

based on
Correctness
Criteria

Common
ImFs

Common
SCFs

Context-oriented Identification of relevant Evaluation Patterns

If possible: Automatic Merge of the selected EPs (Tool-support available)

Manual Postprocessing (Customization and Model Extension)

Common
DCFs

Common
Links

Common
Flows

Fig. 12. Composition of Patterns

automated, but usually manual postprocessing becomes necessary. Respective concepts
and merge algorithms are introduced in [3].

In a large case study [3] in the automotive domain, we have successfully applied EPs
when designing complex evaluation and simulation models (see [3] for details).

5 Related Work

Boehm et. al [20] distinguish six categories of cost estimation techniques. They dis-
tinguish between model-based approaches (e.g., COCOMO, SLIM), expertise-based
approaches (e.g., the Delphi method), learning-oriented approaches (using neural net-
works or case based reasoning), regression-based approaches (e.g., the ordinary least
squares method), composite approaches (e.g., the Bayesian approach), and dynamic-
based approaches (explicitly acknowledging that cost factors change over project du-
ration). Picking up this classification, EcoPOST can be considered as an example of a
dynamic-based approach (the other categories rely on static analysis models).

There are other formalisms that can be applied to unfold the dynamic effects caused
by causal dependencies in EIS engineering projects. Causal Bayesian Networks (BN)
[21], for example, promise to be a useful approach. BN deal with (un)certainty and
focus on determining probabilities of events. A BN is a directed acyclic graph which
represents interdependencies embodied in a given joint probability distribution over a
set of variables. In our context, we are interested in the interplay of the components
of a system and the effects resulting from this. BN do not allow to model feedback
loops as cycles in BN would allow infinite feedbacks and oscillations that prevent sta-
ble parameters of the probability distribution. Agent-based modeling provides another
promising approach. Resulting models comprise a set of reactive, intentional, or social
agents encapsulating the behavior of the various variables that make up a system [22].
During simulation, the behavior of these agents is emulated according to defined rules
[23]. System-level information (e.g., about intangible factors being effective in a EIS
engineering project) is thereby not further considered. However, as system-level infor-
mation is an important aspect in our approach, we have not further considered the use
of agent-based modeling.

392 B. Mutschler and M. Reichert

Patterns were first used to describe best practices in architecture [24]. However,
they have also a long tradition in computer science, e.g., in the fields of software
architecture (conceptual patterns), design (design patterns), and programming (XML
schema patterns, J2EE patterns, etc.). Recently, the idea of using patterns has been
also applied to more specific domains like workflow management [25,26] or inter-
organizational control [27]. Generally, patterns describe solutions to recurring prob-
lems. They aim at supporting others in learning from available solutions and allow for
the application of these solutions to similar situations. Often, patterns have a generative
character. Generative patterns (like the ones we introduce) tell us how to create some-
thing and can be observed in the environments they helped to shape. Non-generative
patterns, in turn, describe recurring phenomena without saying how to reproduce them.

Reusing System Dynamics models has been discussed before as well. On the one
hand, authors like Senge [28], Eberlein and Hines [29], Liehr [30], and Myrtveit [31]
introduce generic structures (with slightly different semantics) satisfying the capability
of defining ”components”. On the other hand, Winch [32] proposes a more restrictive
approach based on the parameterization of generic structures (without providing stan-
dardized modeling components). Our approach picks up ideas from both directions, i.e.
we address both the definition of generic components as well as customization.

6 Summary and Future Work

This paper extends our EcoPOST framework, a model-based methodology to systemati-
cally investigate the complex cost structures of EIS engineering projects, by introducing
the notion of evaluation pattern (EP). Each EP constitutes a template for specific cost
or impact factors we encounter in typical EIS engineering projects. All EPs have been
derived based on different pillars: results from two surveys [5], case studies [3,10], a
controlled software experiment [4], and practical experiences gathered in EIS engineer-
ing projects.

In future work we will extend available EPs and apply them in a broader context
in order to gather detailed experiences in applying EcoPOST. This includes the perfor-
mance of additional experiments to analyze different use cases (e.g., customization and
composition) for our patterns.

References

1. Reijers, H.A., van der Aalst, W.M.P.: The Effectiveness of Workflow Management Systems
- Predictions and Lessons Learned. Int’l. J. of Inf. Mgmt. 25(5), 457–471 (2005)

2. Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D., Steece, B.: Software Cost Estimation with Cocomo 2. Prentice-Hall, Englewood
Cliffs (2000)

3. Mutschler, B.: Analyzing Causal Dependencies on Process-aware Information Systems from
a Cost Perspective. PhD Thesis, University of Twente (2008)

4. Mutschler, B., Weber, B., Reichert, M.: Workflow Management versus Case Handling: Re-
sults from a Controlled Software Experiment. In: Proc. ACM SAC 2008, pp. 82–89 (2008)

5. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the Effectiveness of Process-oriented
Infomation Systems: Problem Analysis, Critical Success Factors and Implications. IEEE
Transactions on Systems, Man, and Cybernetics, 38(3), pp.280-291 (2008)

Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems 393

6. Mutschler, B., Reichert, M., Rinderle, S.: Analyzing the Dynamic Cost Factors of Process-
aware Information Systems: A Model-based Approach. In: Krogstie, J., Opdahl, A.L., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 589–603. Springer, Heidelberg
(2007)

7. Mutschler, B., Reichert, M.: On Modeling and Analyzing Cost Factors in Information Sys-
tems Engineering. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.
510–524. Springer, Heidelberg (2008)

8. Richardson, G.P., Pugh, A.L.: System Dynamics - Modeling with DYNAMO (1981)
9. Mutschler, B., Reichert, M.: Exploring the Dynamic Costs of Process-aware IS through Sim-

ulation. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 173–182. Springer, Heidelberg (2007)

10. Mutschler, B., Rijkpema, M., Reichert, M.: Investigating Implemented Process Design: A
Case Study on the Impact of Process-aware Information Systems on Core Job Dimen-
sions. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 379–384. Springer, Heidelberg (2007)

11. Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s Properties.
In: Proc. Int’l. Enformatika Conference, vol. 8, pp. 213–218 (2005)

12. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.: A Discourse on Complexity of Process
Models. In: Proc. Int’l. Workshop on Business Process Design (BPI 2006), pp. 115–126
(2006)

13. Latva-Koivisto, A.: Finding a Complexity Measure for Business Process Models. Research
Report, Helsinki University of Technology (2001)

14. Kindler, E.: On the Semantics of EPCs: Resolving the Vicious Circle. Data Knowledge En-
gineering 56(1), 23–40 (2006)

15. Gruhn, V., Laue, R.: Complexity Metrics for Business Process Models. In: Proc. 9th Int’l.
Conf. on Business Information Systems, BIS 2006 (2006)

16. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst,
W.M.P.: Faulty EPCs in the SAP Reference Model. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Heidelberg (2006)

17. Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst,
W.M.P.: A Quantitative Analysis of Faulty EPCs in the SAP Reference Model. BPM Center
Report, BPM-06-08, BPMcenter.org (2006)

18. Hackman, R.J., Oldham, G.R.: Development of the Job Diagnostic Survey. Journal of Ap-
plied Psychology 60(2), 159–170 (1975)

19. Hackman, R.J., Oldham, G.R.: Motivation through the Design of Work: Test of a Theory.
Organizational Behavior & Human Performance 16(2), 250–279 (1976)

20. Boehm, B., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches - A
Survey. Technical Report, USC-CSE-2000-505 (2000)

21. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2002)
22. Brassel, K.H., Möhring, M., Schumacher, E., Troitzsch, K.G.: Can Agents Cover All the

World? In: Simulating Social Phenomena. LNEMS, vol. 456, pp. 55–72 (1997)
23. Scholl, H.J.: Agent-based and System Dynamics Modeling: A Call for Cross Study and Joint

Research. In: Proc. 34th Hawaii Int’l. Conf. on System Sciences (HICSS 2001) (2001)
24. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Oxford Press, Oxford

(1979)
25. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Advanced

Workflow Patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901,
pp. 18–29. Springer, Heidelberg (2000)

26. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support Features -
Enhancing Flexibility in Process-Aware Information Systems. Data and Knowledge Engi-
neering 66(3), 438–466 (2008)

394 B. Mutschler and M. Reichert

27. Kartseva, V., Hulstijn, J., Tan, Y.H., Gordijn, J.: Towards Value-based Design Patterns for
Inter-Organizational Control. In: Proc. 19th Bled E-Commerce Conference (2006)

28. Senge, P.M.: The 5th Discipline - The Art and Practice of the Learning Organization, 1st edn.
Currency Publications (1990)

29. Eberlein, R.J., Hines, J.H.: Molecules for Modelers. In: Proc. 14th SD Conference (1996)
30. Liehr, M.: A Platform for System Dynamics Modeling - Methodologies for the Use of Pre-

defined Model Components. In: Proc. 20th Int’l. System Dynamics Conference (2002)
31. Myrtveit, M.: Object-oriented Extensions to System Dynamics. In: Proc. 18th Int’l. System

Dynamics Conference (2000)
32. Winch, G., Arthur, D.J.W.: User-Parameterised Generic Models: A Solution to the Conun-

drum of Modelling Access for SMEs? System Dynamics Review 18(3), 339–357 (2003)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 395–409, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using the REA Ontology to Create Interoperability
between E-Collaboration Modeling Standards

Frederik Gailly and Geert Poels

Faculty of Economics and Business Administration, Ghent University
{Frederik.Gailly,Geert.Poels}@ugent.be

Abstract. E-collaboration modeling standards like ISO/IEC 15944 and the
UN/CEFACT Modeling Methodology (UMM) provide techniques, terms and
reference models for modeling collaborative business processes. They offer a
standardized approach for business partners to codify the business conventions,
agreements and rules that govern business collaborations and to share business
process information. Although effective in creating interoperability between
organizations at the business process level, prospective business partners are
required to commit to the same modeling standard. In this paper we show how the
REA enterprise ontology can be used to semantically relate the ISO/IEC 15944
and UMM e-collaboration standards. Using the REA ontology as a shared
business collaboration ontology, business partners can create interoperability
between their respective business process models without having to use the same
modeling standard.

Keywords: interoperability, business model, e-collaboration, business ontology.

1 Introduction

Today’s fast paced global landscape calls for agile organizations that can swiftly
integrate their business processes with that of other organizations. As many business
processes are administrative processes that process information (as opposed to
physical processes that handle and transform material goods), integrating such
processes becomes a matter of creating interoperability, which is the ability of two
different systems or components to exchange information and use information that
has been exchanged [1].

Possible collaboration between companies gives rise to interoperability problems at
different business levels: data, service, process and business level [2]. Over the years
different kind of technologies (XML, schema standards and mapping, web services)
have been proposed and used by different types of enterprise information integration
tools (e.g. data warehouses, message mappings tools, virtual data integration) [3],
which support the creation of interoperability at the data and service level(Functional
Services View (FSV) of the open-EDI reference model [4]). Recently more attention
is paid to solving the interoperability barriers at the process and enterprise level
(Business Operational View (BOV)). Prospective business partners might use
different languages to document and enact business processes (e.g. BPMN, BPEL,
UML activities, EPC), which creates syntactic and semantic barriers to the integration

396 F. Gailly and G. Poels

of their respective business processes. A possible solution is the use of e-collaboration
modeling standards like the UN/CEFACT’s Modeling Methodology (UMM) [5] and
the ISO/IEC 15944 standard [6], to describe the global choreography between
business partners involved in collaborative business processes. E-collaboration
standards address the Business Operation View and provide a set of terms (e.g.
business conventions, agreements and rules), reference models (e.g. a standard
business process lifecycle) and techniques (e.g. UML activity diagrams) that can be
used to model business processes in a way that they can be integrated easily with
other business processes that also use these standards.

When two organizations wish to establish a B2B e-collaboration relationship and
merge their respective business processes into one collaborative business process (e.g.
integrating the sales process of the supplier with the acquisition process of the
customer), they must agree on a common BOV e-collaboration standard. As currently
none of the available standards is predominant in any industry, enterprises might end
up with multiple representations of business processes articulated in many different
languages and committing to different conceptualizations, a situation which is clearly
suboptimal from the point of view of development and maintenance costs.

An alternative for imposing a modeling standard is the use of a shared ontology
onto which the local ontologies of the different actors are mapped. Several proposals
have been made to compare the abstract syntax and semantics of enterprise and
business process modeling languages via a common meta-model (e.g. UEML [7] for
enterprise modeling languages and BPDM [8] for business process modeling
languages). These meta-models are based on domain-independent ontologies (also
called core or upper-level ontologies) or meta-meta-models.

Mappings between BOV e-collaboration standards like UMM [5] and the ISO/IEC
15944 standard [6] and these common meta-models may remove the syntactic barriers
to the creation of collaborative business processes, but they do not guarantee the
removal of domain-specific semantic barriers because they make abstraction of
specific e-collaboration semantics like commitments, contracts and requiting money
flows. Therefore, in this paper, we present an approach to the creation of
interoperability between business processes of different partners wishing to engage in
B2B e-collaboration by means of a shared domain-specific ontology which accounts
for e-collaboration-specific semantics. In particular, we show how the Resource-
Event-Agent (REA) enterprise ontology [9-11] can be used as a shared ontology for
the UMM and ISO/IEC 15944 standards such that business process models articulated
using one standard can easily be transformed into models articulated using the other
standard, without losing domain-specific semantics.

This paper is structured as follows: Section 2 provides an overview of our
approach. Section 3 briefly describes the REA ontology. Section 4 presents the UMM
and ISO/IEC 15944 standards by means of an example based on the enhanced
Telecommunications Operations Map (eTOM), which describes in detail the business
processes required by a service provider in the telecommunications industry [12].
Section 5 then describes how the REA ontology is used to create interoperability
between eTOM business process models developed using these two standards.
Section 6 concludes the paper.

 Using REA to Create e-Collaboration Model Interoperability 397

2 Ontology-Based Model Interoperability in the E-Collaboration
Domain

According to Guarino [13], a core ontology is a formal representation of a
conceptualization of the world (i.e. everything that exists or can exist), a domain
ontology is a formal representation of the conceptualization of a particular part (i.e. a
domain) of this world (e.g. business, medicine, sports) and a task ontology is formal
representation of the conceptualization of a task executed within the world, possibly
across different domains (e.g. planning, diagnosing, measuring). Domain and task
ontologies should be defined as specializations of a core ontology meaning that their
concepts add domain/task-specific meaning to the core ontology concepts.

Based on the ideas of Guarino, Guizzardi [14] defined the relationships between
ontologies, conceptual modeling languages and models (Fig. 1). A model is
articulated using some modeling language meaning that it instantiates the meta-model
defining this language. The model is meant to represent an abstraction of a situation in
the world (e.g. an order-to-cash process seen as an ordered collection of tasks). The
abstraction of a given situation is constructed in terms of some domain or task
conceptualization (e.g. workflows). This conceptualization is formally represented by
a domain or task ontology and if this ontology is used to define the meta-model of the
modeling language, then the language ‘ontologically commits’ to the
conceptualization, meaning that the modeling language constructs derive their
meaning from the concepts defined in the ontology.

Fig. 1 further shows that domain and task conceptualizations are generalized by
real-world conceptualizations which are represented by core ontologies that
generalize the domain and task ontologies used to represent the domain and task
conceptualizations. These core ontologies define meta-meta-models (defining

Fig. 1. Relation between conceptualization, ontology and modeling language

398 F. Gailly and G. Poels

meta-languages) of which the meta-models of domain or task-specific modeling
languages are instances. Fig. 1 also clarifies how interoperability between models
articulated using different modeling languages can be established using ontologies. If
the conceptualizations that the different languages commit to overlap and this shared
conceptualization (i.e. intersection of conceptualizations) is represented by an
ontology, then the meta-models of the languages need to be mapped onto the common
ontology to explain how a phenomenon represented in one language would be
represented in the other language.

Different researchers have recognized the potential of ontologies to provide precise
semantics for conceptual modeling languages and have used core ontologies like
BWW [15] or the Unified Foundational Ontology (UFO) [14] to evaluate the
semantics of existing general purpose modeling languages like UML [16] and Petri-
nets [17]. The mappings between the meta-models of these languages and the chosen
reference ontology are then used to evaluate the ontological adequacy of the modeling
languages. The ontological mappings identified are, however, not used to create
interoperability between models articulated using different languages.

The Unified Enterprise Modeling language version 2 (UEML2), which was
developed by the INTEROP Network of Excellence, follows the same approach but
recognizes that the ontological mappings can also be used create interoperability
between models. UEML2 acts as an intermediate language between existing
enterprise modeling languages and facilitates interoperability between a wide variety
of enterprise modeling languages and models [7]. In terms of Fig. 1, UEML2 is a
meta-language defined by the BWW ontology, which is an upper-level ontology, and
as such, UEML2 abstracts from specific domain or task semantics. Consequently,
domain or task specific semantics attached to special-purpose modeling languages
may get lost when mapping the meta-models of these languages to UEML2.

To preserve the domain or task-specific semantics of special-purpose modeling
languages a mapping onto a domain or task ontology instead of a core ontology is
required. For instance, for creating interoperability between models created using
different BOV e-collaboration standards, a mapping onto a domain ontology for
e-collaboration will preserve more of the domain semantics than a mapping onto a
core ontology. The goal of this paper is to demonstrate such a mapping for the e-
collaboration domain.

Ciocoiu and Nau described in general how ontologies can be used to formally
define translations between models developed in different languages [18]. Their
approach consists of three steps:

1. Define a function that can be used to convert a model articulated in a specific
language into a model articulated in a logic-based language. This function is called
a logical rendering function and results in a logical rendering of the model.

2. Define an interpretation for the concepts of the language using a shared ontology.
Put differently, during this phase the semantics of the modeling language
constructs are defined using an ontology. Together the logical rendering function
and the ontology-based interpretation make it possible to convert a model in a
specific language into an ontology-based model.

3. The results of the previous steps can now be used to create an ontology-based
translation between models such that every model can be explained in terms of the
conceptualization specified by the shared ontology.

 Using REA to Create e-Collaboration Model Interoperability 399

We use the approach of Ciocoiu and Nau to create interoperability between models
articulated in the UMM and ISO/IEC 15944 modeling standards (Fig. 2). Instead of
using a formal first order predicate logic language, the description logic language
OWL was used to specify the ontologies and the logical renderings of the models. We
decided to use OWL because OWL is considered as the standard ontology language.
Moreover, OWL provides mapping constructs that are used to relate terms in different
ontologies. There also exist different easy to use OWL description logic reasoners
which can be easily integrated into ontology engineering tools. Reasoners such as
Pellet1 can be used for consistency checking (identify contrary facts), concept
satisfiability (verify that all classes can be populated with instances), classification
(create a complete subclass hierarchy by identifying subclass relations) and
realization (compute the direct types for individuals).

Fig. 2 shows how model interoperability is created by transforming two
collaborative business process models (model 1 and model 2) that are developed
following two different BOV e-collaboration standards (ISO/IEC 15944 and UMM)
into OWL renderings of the models (model 1’ and model 2’) that refer to their own
local ontology (OeBTO2 and UMM ontology3). By mapping these local ontologies
onto a global, shared OWL-formalized ontology (i.e. the REA ontology), both models
can be interpreted in terms of the same global ontology.

Fig. 2. Ontology-based e-collaboration model translation

3 The Resource Event Agent Enterprise Ontology

The Resource-Event-Agent ontology (REA-ontology) [10, 11] originates in a
semantic data model for accounting proposed in [9]. The subject domain of REA can
be described as ‘the enterprise’. Hence REA is an enterprise ontology and as such it

1 http://clarkparsia.com/pellet/
2 The Open-EDI Business Transaction Ontology (OeBTO) is the UML class diagram

specification of the collaborative business process conceptualization that underlies the
ISO/IEC 15944 standard.

3 The (unnamed) ontology of the UMM method is also specified using UML class diagrams.

400 F. Gailly and G. Poels

provides a description of explicit knowledge about enterprises that is structured in
terms of concepts, a concept classification based on ‘is-a’ relations, relations between
concepts other than ‘is-a’ relations, and a set of axioms that hold for these relations.
Other well-known business ontologies are the e3-value ontology [19] and e-BMO
[20], which focus on different, though largely overlapping aspects of business and as
a result can be unified with REA to create a more encompassing business ontology, as
demonstrated in [21].[21]

The particular conceptualization of enterprises specified by REA is heavily
influenced by REA’s accounting background. Primary attention is paid to what
changes the value of the enterprise (i.e. recording these value-affecting events and the
value composition of the enterprise is what we call ‘accounting’) and who can be held
accountable for this (i.e. accounting enables control of the organization and its
members). So enterprise reality is described in terms of Resources (having value),
Events (affecting this value) and Agents (having control over the resources and being
responsible for the events); hence the name of the ontology. The conceptualization
includes additional business concepts to predict future value changes (e.g. contracts,
terms and commitments) or to specify policies for value creation, transfer and
consumption (e.g. business policies).

Recently the REA-ontology has also been extended with a procedural component
that states that all REA concepts can be considered as business objects which all have
a defined lifecycle determining their states and state transitions. REA events may be
decomposed into business events which each may trigger state transitions for multiple
business objects. A business process is then defined as an aggregate of REA events.
In our previous work [22, 23], we already formalized the REA-ontology in OWL4
starting from an UML representation of the ontology. This OWL formalization is used
in this paper as a reference ontology to create interoperability between models
developed using the ISO/IEC 15944 and UMM BOV e-collaboration standards.

4 E-Collaboration Modeling Standards

In the next subsections the ISO/IEC 15944 standard and the UMM method, and their
ontologies, are introduced by means of the enhanced Telecommunications Operations
Map (eTOM) example [12]. In this paper we focus on the eTOM process used by a
communication provider to reserve and schedule field technicians for the installation
and configuration of goods and services.

4.1 ISO/IEC 15944 Standard

The ISO/IEC 15944 standard provides a methodology and tool for specifying shared
business practices (as part of shared business transactions) in the form of scenarios,
scenario attributes, roles, information bundles and semantic components. This is
achieved by developing standard specifications of generally accepted business
transaction conventions and practices as scenarios and scenario components. Fig. 3
and Fig. 4 show representations related to the ‘reserve and schedule field technicians’
process following the ISO/IEC 15944 standard. UML is the modeling language of
choice in the standard though it is extended with domain-specific stereotypes.

4 See http://purl.org/REA/REAontology.owl

 Using REA to Create e-Collaboration Model Interoperability 401

Fig. 3. Use case diagram for Negotiate Reservation following ISO/IEC 15944

The modeling of ‘the reserve and schedule field technicians’ process starts with a
use case scenario Negotiate Reservation that interacts with 3 different persons5: the
Subscriber, the Communication Provider and the Field Labor Provider (see the use
case diagram shown in Fig. 3). This use case scenario6 includes three separate
business transactions: Check Time Slot Availability, Negotiate Time and Request
Time Slot Reservation. Check Time Slot Availability queries the Field Labor Provider
for available time slots which results in a list of available time slots. Negotiate Time
negotiates an actual time slot using the available slots that correspond to the wishes of
the Subscriber. Finally this time slot is reserved by the Communication Provider by
means of Request Time Slot Reservation.

The Request Time Slot Reservation business transaction is described in more detail
in Fig. 4. This UML activity diagram shows the business events that transition the state
of the business transaction entities. The OeBTO defines a business transaction entity as
a computable representation of any real-world entity that participates, occurs or is
materialized during a business transaction. In Fig. 4 two business transactions entities
are distinguished: Field Labor and Labor Contract. The business event RequestTime
SlotReservation brings the business transaction entities Field Labor and Labor Contract
into a ‘proposed’ state (called a business transaction entity state). If the Field Labor
Provider accepts this request (AcceptTimeSlot Reservation business event) then the
state of the two business transaction entities shown will change into ‘specified’ and the
Communication Provider will receive the contract (Receive Contract business event),
which ends the business transaction. The business transaction entity states are said to
reside in the collaboration space between the Communication Provider and the Field
Labor Provider and allow each partner to determine simultaneously what the exact
status of the overall business collaboration is.

5 Concepts in italic refer to concepts that are defined in the ontologies of the e-collaboration

standards (here OeBTO; in the next sub-section the UMM-ontology).
6 Scenario is not an OeBTO concept, but is defined in the open-EDI reference model [3].

According to this reference model, business processes may consist of one or more use case
scenarios.

402 F. Gailly and G. Poels

Fig. 4. Activity diagram Request Time Slot Reservation following ISO/IEC 15944

Note that in Fig. 3 and Fig. 4 the UML stereotype extension mechanism was
employed for specifying BOV e-collaboration concepts like person, business event,
business transaction, business transaction entity and business transaction entity state.
Following the framework shown in Fig. 1, these domain-specific stereotypes
represent the ontological commitment of the modeling standard to the
conceptualization of the business e-collaboration domain that is specified by the
Open-edi Business Transaction Ontology (OeBTO).

The model interoperability approach that we follow (see Fig. 2) requires that the
OeBTO UML class diagrams must be translated into OWL. Specifying an OWL
formalization of the OeBTO is straightforward because the ISO/IEC 15944 standard
contains clear definitions of the concepts and the relationships between the concepts.
As UML class diagrams are used to visualize the concepts and relationships, the
Ontology Definition Metamodel (ODM) [24] was used to transform these UML class
diagrams into OWL specifications. Additionally we followed the guidelines provided
by W3C’s Semantic Web Best Practices and Deployment Working Group [25] to
formalize the part-whole relations of the OeBTO because OWL does not contain
specific primitives for part-whole relations and as a result the ODM lacks this type of
mapping.

4.2 UN/CEFACT’s Modeling Methodology

The UN/CEFACT’s Modeling Methodology (UMM) is an UML modeling approach
to design a global choreography for the business processes between business partners
[5]. UMM distinguishes three views (i.e. Business Domain View, Business
Requirements View and Business Transaction View) each covering a set of well

 Using REA to Create e-Collaboration Model Interoperability 403

Fig. 5. Use case diagram Negotiate Reservation following UMM

Fig. 6. Activity diagram Request Time Slot Reservation following UMM

defined artifacts of the open-EDI BOV and which can be used to model a complete
business collaboration. In this paper only the Business Domain View and the Business
Requirements View are considered because these views correspond to the abstraction
level employed in ISO/IEC 15944.

In Fig. 5 and Fig. 6 the eTOM ‘negotiate reservation’ process is modeled using
UMM. Although for humans the mappings between these models and the models
developed using the ISO/IEC 15944 standard (Fig. 3 and 4) are obvious because we
used the same names for the modeled concepts, in reality these mappings must be
determined based on the semantic annotations in the models. Because both standards
focus on the same semantic domain, there exists for different modeling concepts one-
to-one mappings (e.g. an OeBTO person is an UMM business partner type).
However, the semantic domains of both standards are not identical, but only
overlapping, which means that some of the concepts defined in the ontology of one
standard have no counterpart in the other standard. For instance, the ISO/IEC 15944

404 F. Gailly and G. Poels

standard prescribes the use of economic commitments, a concept that is not used in the
UMM approach. An economic commitment is a promise by one person to transfer
economic resources to another person at some specified point in the future.
Consequently, in Fig. 4 (following the ISO/IEC 15944 standard) the business event
RequestTimeSlotReservation changes the state of two business transaction entities:
FieldLabor and LaborContract, whereas in Fig. 6 the corresponding UMM business
process activity only changes the state of the UMM FieldLabor business entity as
LaborContract (an economic commitment in ISO/IEC 15944) cannot be represented
using UMM concepts. Another difference between the two standards is that UMM
makes an explicit difference between shared business entities and internal business
entities. This difference is only implicitly present in ISO/IEC 15944 models by
positioning the transaction business entity states in the collaboration space between
two persons.

Compared to the ISO/IEC 15944 standard, UMM pays less attention to the formal
specification of the business collaboration conceptualization that underlies the
standard (i.e. the development of an BOV e-collaboration ontology) and more to the
development of a domain-specific language (based on UML) that can be used to
develop models for the different views. The syntax of the UMM views is defined by
extending standard UML meta-models like the use case meta-model and the activity
diagram meta-model with stereotypes. The semantics of the defined stereotypes are
partly described in text and partly graphically presented by means of UML class
diagrams. Based on the available meta-model descriptions we have developed an
OWL formalization of the domain-specific concepts (e.g. business process, business
process activity, business entity state, etc.) used in UMM.

5 E-Collaboration Model Interoperability via the REA Ontology

The federated model interoperability approach outlined in Fig. 2 requires that the
concepts of the local ontologies (OeBTO and UMM) are mapped onto the concepts of
the global ontology (REA). At this stage the mapping of the ontologies is done
manually because the used ontologies are only lightweight ontologies. However in
the future the ontologies are extended, we need to further investigate how ontology
mapping techniques [26] can be incorporated in our approach. As all ontologies are
represented in OWL (see sections 3 and 4), the equivalentClass and equivalent
Property OWL mapping constructs can be used for this purpose. The OWL equivalent
Class construct allows one to say that a class description (representing an ontology
concept) has exactly the same class extension as another class description. Put
differently, given their definitions, both class extensions would always contain the
same set of individuals. Similarly, the OWL equivalentProperty construct can be used
to state that two properties have the same property extension. OWL properties are
binary relations on individuals, i.e. they link two individuals together. For instance,
the OWL OeBTO ontology contains a custody property that links person individuals
to economic resource individuals (meaning that the person has physical control over
the resource). Two properties have the same extension if they link the same
individuals together.

 Using REA to Create e-Collaboration Model Interoperability 405

Fig. 7. OWL import hierarchy for creating interoperability between models developed using the
ISO/IEC 15944 and UMM e-collaboration standards

Fig. 7 gives an overview of the OWL ontology files (represented as UML
packages) that are needed to create interoperability between e-collaboration models
developed using the ISO/IEC 15944 and UMM standards7. To define the ontology
mappings, separate files (UMM-REA-mapping.owl and OeBTO-REA-mapping.owl)
were created that each import a local ontology (OeBTO.owl and UMM-ontology.owl)
and the REA ontology (REA-ontology.owl). Then, based on our understanding of the
ontologies, we created ontology mappings. Next, the classification service of the
Pellet reasoner was invoked to identify subclass relations between the classes of
the local and global ontology and to detect equivalent classes, in order to verify our
ontology mappings.

With the help of the reasoner some problems were detected that necessitated
changes in the OWL ontologies or mappings. For instance, based on the UML class
diagram specification of the UMM ontology and the examples given in [4], we
defined business partner type as being disjoint with business entity. However, by
specifying in the UMM-REA mapping that a business partner type is equivalent to an
REA economic agent (which is a logical conclusion based on the definitions of these
concepts and the granularity and intended use of the UMM and REA ontologies),
Pellet infers that business partner type is a subclass of business entity (because UMM
business entity is equivalent to REA business object which is the supertype of REA
economic agent), which contradicts the disjointness constraint in our UMM OWL
ontology. Table 1 gives an extract of the final version of the mappings defined in the
UMM-REA-mapping.owl and OeBTO-REA-mapping.owl files8.

Creating interoperability between an ISO/IEC 15944 model and an UMM model
requires that the models are transformed into ontology-based models that can be
interpreted in terms of the business collaboration conceptualizations that are specified
by the ontologies referred to. Consequently, UML models like the ones described in
rendering transformation in Fig. 2). In doing so, we decided to define the models as

7 Readers can retrieve these OWL ontology files from the following URL:

http://www.managementinformatics.ugent.be/CaiseInteropPaper.zip
8 The extract contains those mappings that are required to create interoperability between the

ISO/IEC 15944 and UMM eTOM models used for the eTOM example in the paper.

406 F. Gailly and G. Poels

Table 1. Extract of OWL mappings e-collaboration ontologies and REA-ontology

e-collaboration ontology concept REA-ontology concept
OeBTO:BusinessTransactionEntity REA:BusinessObject

UMM:BusinessEntity REA:BusinessObject

OeBTO:BusinessEvent REA:BusinessEvent
UMM:BusinessProcessActivity REA:BusinessEvent
OeBTO:BusinessTransaction REA:BusinessProcess
UMM:BusinessProcess REA:BusinessProcess

OeBTO:BusinessTransactionEntityState REA:BusinessObjectState
UMM:BusinessEntityState REA:BusinessObjectState

OeBTO:Person REA:EconomicAgent

UMM:BusinessPartnerType REA:EconomicAgent

OeBTO:EconomicCommitment REA:Commitment

OeBTO:EconomicContract REA:EconomicContract

ontology instantiations (i.e. using OWL individuals that are classified as instances of
existing ontology classes) and not by specializing ontology concepts (i.e. by creating
new OWL classes as subclasses of existing ontology classes), because this
corresponds more to the UML view where the abstract syntax of a language is defined
in a meta-model which can then be instantiated to create models.

The OeBTO-model.owl file (see Fig. 7) is the ontological rendering of the ISO/IEC
15944 model for the eTOM example (see sub-section 4.1) and will be used to
illustrate the creation of model interoperability.9 This OeBTO-model.owl file imports
indirectly the OeBTO OWL ontology by importing the OeBTO-REA-mapping.owl
file (see Fig. 7). In Fig. 8 the UML OWL profile of the ODM [22] is used to visualize
the result of the ontological rendering of part of the ISO/IEC 15944 eTOM example,
more specifically the activity diagram shown in Fig. 4. This result contains only the
classifiers and instance-of relationships drawn with solid lines in Fig. 8.

After importing also the UMM-REA-mapping.owl file, the classification service of
the reasoner (Pellet) is invoked to detect equivalent classes in the OeBTO and UMM
OWL ontologies. Two classes are equivalent if they map onto the same class in the
REA OWL ontology. The realization service of the reasoner (Pellet) can now be
invoked to classify the OWL individuals (representing the elements of the ISO/IEC
15944 activity diagram shown in Fig. 4) as instances of the UMM OWL ontology
classes. The inferred assertions after reasoning are shown in dashed lines in Fig. 8. For
instance, after reasoning, the LaborContractState and the FieldLaborState are classified
as UMM business entity states. These two OWL individuals are instances of the
OeBTO BusinessTransactionEntityState class that is equivalent to the UMM
BusinessEntityState class, and therefore they are inferred as instances of this UMM
OWL class.

9 Analogously, the UMM-model.owl file is the ontological rendering of the UMM model for

the eTOM example (see sub-section 4.2).

 Using REA to Create e-Collaboration Model Interoperability 407

Fig. 8. OeBTO-model before (solid lines) and after reasoning (dashed lines)

Some OeBTO concepts have no direct counterpart in the UMM ontology but
because of the classification hierarchy created after reasoning, the reasoner also
makes assertions for these concepts. For instance, the LaborContract is an OWL
individual of the OeBTO EconomicContract class which has no counterpart in the
UMM ontology. However, based on the classification hierarchy, LaborContract is
classified as an UMM business entity because the UMM BusinessEntity class is a
superclass of the OeBTO EconomicContract class and LaborContract is an instance of
EconomicContract.

6 Conclusions and Future Work

The goal of this paper was to show how ontologies can be used to create interoperability
between models developed in different languages that have an overlapping semantic
domain. More specifically, the REA-ontology was used to create interoperability
between models that were developed following two different e-collaboration modeling
standards: ISO/IEC 15944 and the UN/CEFACT Modelling Methodology. Model
interoperability was realized by formalizing the ontologies that are part of these e-
collaboration standards using OWL and relating these ontologies with the REA
ontology using OWL ontology mapping constructs. The mappings between both e-
collaboration ontologies and the REA-ontology were then used by an OWL description
logic reasoner (Pellet) to identify equivalences between the two modeling standards.
Next, we showed by means of an example that a model developed using one standard
can be interpreted in terms of the other standard. First, the model was made ontology-
based by translating it into an instantiation of the OWL formalized ontology that is part
of the standard used to develop the model. Second, a reasoner was invoked that, based
on the previously identified equivalences, automatically classifies the model elements as
instances of the ontology concepts of the other standard.

408 F. Gailly and G. Poels

A current limitation of our approach is that not all information in an e-
collaboration model is preserved when translating it into an ontology-based model.
Both e-collaboration standards prescribe the use of general purpose modeling
techniques (use case diagrams and activity diagrams) to articulate collaborative
business process models. Most of the constructs of these techniques (e.g. actors, use
cases, actions, object nodes) are stereotyped so that they derive their meaning from
the ontology of the standard. Other constructs (e.g. include relationships between use
cases, control flow arrows in activity diagrams) derive their meaning from the meta-
model of the modeling technique and are not ‘overloaded’ with domain-specific
semantics. As a consequence, these model elements are not classified as instances of
the domain ontology classes, so do not appear in the ontology-based models, leading
to a loss of information. Therefore an ontology-based model cannot replace the model
it is derived from. To transform a model developed using one standard into a model
following the other standard, both the original model and the ontology-based model
are needed. For the ISO/IEC 15944 and UMM standards, such a translation is
straightforward because both standards prescribe the use of the same general purpose
modeling techniques. For standards that use different modeling techniques the
translation problem becomes more complicated. Further research is required to
investigate how solutions for creating mappings between modeling languages (e.g.
solutions like UEML [7] and BPDM [8]) can be integrated into our approach.

As future research we plan to build an extension to the REA ontology that
integrates the UMM Business Transaction View. This more detailed view on business
transactions is needed to extend our approach of creating interoperability between
BOV e-collaboration models to Functional Service View (FSV) models. In this
context we will also need to evaluate how our approach is related to existing
information integration research and industry solutions [3]. Additionally the proposed
approach needs to be validated using more complex practical examples.

References

1. IEEE Computer Society. Standards Coordinating Committee: IEEE standard computer
dictionary: a compilation of IEEE standard computer glossaries, 610. Institute of Electrical
and Electronics Engineers, New York, NY, USA (1990)

2. Chen, D.: Enterprise Interoperability Framework. In: Petit, M., Latour, T. (eds.) CAISE
2006 EMOI-INTEROP workshop. University Namur Press, Luxembourg (2006)

3. Bernstein, P.A., Haas, L.M.: Information integration in the enterprise. Communications of
the ACM 51, 72–79 (2008)

4. ISO: Open-EDI reference model. ISO standard 14662. ISO (1997)
5. UN/CEFACT: UN/CEFACT’s Modeling Methodology (UMM): UMM Meta Model –

Foundation Module Version 1.0 Technical Specification 2006-10-06 (2006)
6. ISO: Information technology – Business Operational View – Part 4: Business transaction

scenarios – Accounting and economic ontology (ISO/IEC 15944-4). ISO (2006)
7. Opdahl, A., Berio, G.: Interoperable language and model management using the UEML

approach. In: International workshop on Global integrated model management. ACM,
Shangai (2006)

8. OMG: Business Process Definition MetaModel Volume I: Common Infrastructure
(BPDM) V1. OMG (2008), http://www.omg.org/spec/BPDM/20080501

 Using REA to Create e-Collaboration Model Interoperability 409

9. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Accounting
Systems in A Shared Data Environment. The Accounting Review 57, 554–578 (1982)

10. Geerts, G., McCarthy, W.E.: An Ontological Analysis of the Economic Primitives of the
Extended-REA Enterprise Information Architecture. International Journal of Accounting
Information Systems 3, 1–16 (2002)

11. Geerts, G., McCarthy, W.E.: Policy-Level Specification in REA Enterprise Information
Systems. Journal of Information Systems 20, 37–63 (2006)

12. TeleManagement Forum: enhanced Telecom Operations Map (2008),
 http://www.tmforum.org/browse.aspx?catID=1647

13. Guarino, N.: Formal Ontology and Information Systems. In: International Conference on
Formal ontology in Information Systems (FOIS 1998), pp. 3–15. IOS Press, Trento (1998)

14. Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Languages, and
(Meta)Models. In: Vasilecas, O. (ed.) Frontiers in Artificial Intelligence and Applications,
Databases and Information Systems IV. IOS Press, Amsterdam (2007)

15. Wand, Y., Weber, R.: An Ontological Model of an Information System. IEEE Transactions
on Software Engineering 16, 1282–1292 (1990)

16. Opdahl, A.L., Henderson-Sellers, B.: Ontological Evaluation of the UML Using the
Bunge–Wand–Weber Model. Software and Systems Modeling 1, 43–67 (2002)

17. Soffer, P., Wand, Y.: On the notion of soft-goals in business process modeling. Business
Process Management Journal 11, 663–679 (2005)

18. Ciocoiu, M., Nau, D.S.: Ontolgy-Based Semantics. In: Seventh International Conference
on Principles of Knowledge Representation and Reasoning (KR 2000). Breckenbridge,
Colorado (2000)

19. Gordijn, J., Akkermans, J.M.: E3-value: Design and Evaluation of e-Business Models.
IEEE Intelligent Systems 16, 11–17 (2001)

20. Osterwalder, A.: The Business Model Ontology - a proposition in a design science
approach. Ecole des Hautes Etudes Commerciales. University of Lausanne, Lausanne
(2004)

21. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P., Grégoire,
B., Schmitt, M., Dubois, E., Abels, S., Hahn, A., Gordijn, J., Weigand, H., Wangler, B.:
Towards a Reference Ontology for Business Models. In: Embley, D.W., Olivé, A., Ram, S.
(eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer, Heidelberg (2006)

22. Gailly, F., Laurier, W., Poels, G.: Positioning and Formalizing the REA enterprise
ontology. Journal of Information Systems 22, 219–248 (2008)

23. Gailly, F., Poels, G.: Towards Ontology-driven Information Systems: Redesign and
Formalization of the REA Ontology. In: Abramowicz, W. (ed.) BIS 2007. LNCS,
vol. 4439, pp. 245–259. Springer, Heidelberg (2007)

24. OMG: Ontology Definition Metamodel: OMG Adopted Specification (ptc/06-10-11).
Object Management Group (2006)

25. Rector, A., Welty, C.: Simple part-whole relations in OWL Ontologies, W3C Semantic
Web Best Practices and Deployment Working Group (2005),

 http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
 index.html

26. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowledge
Engineering Review 18, 1–31 (2003)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 410–424, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Value-Based Service Modeling and Design: Toward a
Unified View of Services

Hans Weigand1, Paul Johannesson2, Birger Andersson2, and Maria Bergholtz2

1 Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands

H.Weigand@uvt.nl
2 Royal Institute of Technology

Department of Computer and Systems Sciences, Sweden
{pajo,ba,maria}@dsv.su.se

Abstract. Service-oriented architectures are the upcoming business standard for
realizing enterprise information systems, thus creating a need for analysis and
design methods that are truly service-oriented. Most research on this topic so far
takes a software engineering perspective. For a proper alignment between
business and IT, a service perspective at the business level is needed as well. In
this paper, a unified view of services is introduced by means of a service
ontology, service classification and service layer architecture. On the basis of
these service models, a service design method is proposed and applied to a case
from the literature. The design method capitalizes on existing value modeling
approaches.

Keywords: service design, business services, value modeling.

1 Introduction

Service-Oriented Architectures provide major advantages for today's enterprise
information systems by presenting the interfaces that loosely coupled connections
require [Pa05]. Web services [WS04] seem to become the preferred implementation
technology for realizing the SOA promise of service sharing and interoperability.

In the view of Papazoglou and Van den Heuvel [PH06], (web) service design and
development is about identifying the right services, organizing them in a manageable
hierarchy of composite services and choreographing them together for supporting a
business process. A business service (in this context, a service implementing a
business process) can be composed of finer-grained services, which in turn are being
supported by infrastructure services. Following previous work on SOAD [Zi04], they
distinguish between top-down, bottom-up and meet-in-the-middle approaches and
discuss major principles of service design such as low coupling and high cohesion.
Although the paper provides useful criteria, it considers service design mainly as a
software engineering problem, which in our view is not sufficient. As stated in
[NL07], “the current trend toward a service-oriented enterprise necessitates a formal
characterization of business architecture that reflects service-oriented business
thinking”. The starting point for design should be the business level at which services

 Value-Based Service Modeling and Design: Toward a Unified View of Services 411

can be identified that provide value to customers and can be offered in an
economically viable way.

IBM’s SOAD has evolved into SOMA [AG08] described as “a software
development life-cycle method invented and initially developed in IBM for designing
and building SOA-based solutions”. SOMA advocates a meet-in-the-middle
approach. Domain decomposition is a top-down analysis that starts with analysis of
the functional areas in the business domain and of the business processes. This is
complemented by a bottom-up asset analysis. The two lines are pulled together by
Goal-Service Modeling (GSM). SOMA incorporates many more methods and
techniques, including conceptual data modeling, and advocates a fractal model for
software development. On the basis of the information available, we infer that SOMA
is a comprehensive method based on real industrial experience but the same remark
applies as above: it does not consider service-oriented business thinking.

In contrast, [Sp08] introduces the notion of service system in an abstract way that
can be applied to the business. The service system is defined as an open system
capable of improving the state of another system through sharing or applying its
resources (providing value), and capable of improving its own state by acquiring
external resources (receiving value). The way of thinking is resonating the earlier
work of Norman as well as Prahalad on co-creation of value [NR93, PK08], and
existing work in the IS field on value modeling [Go00, Mc82].

What is lacking so far is a principled way of linking the two different branches of
service science [Al08]. If a business is viewed as a service system, what does this
have to do with service-oriented software design?

The objective of this paper is precisely to establish this link by (a) proposing a
generic service model in which software services are defined as a service subtype, and
(b) providing a method for service identification that starts from a value-based
business model. Section 2 sets the stage by reviewing the most relevant business
modeling approaches. It also introduces a running example, taken from [AG08] to
allow easy comparison. In section 3, we provide a general service model rooted in the
REA ontology, and extend it with a fully integrated service layer architecture. Section
4 introduces a value-based service identification method and illustrates it using the
running example. Section 5 contains conclusions and directions for future research.

2 Business Modeling and Service Systems

There exist a number of approaches, languages, and ontologies for business modeling
in literature, e.g., [Go00], [Di05], [Us96] and [Mc82]. In [An06] the e3value [Go00]
and the REA ontologies [Mc82] were compared (together with a third business
ontology – the BMO [Os04]) in order to establish a common reference business
ontology. One result of that comparison was a set of mappings between e3value and
REA indicating strong similarities between the concepts of the two.

2.1 Business Modeling

The Resource-Event-Agent (REA) ontology was formulated originally in [Mc82] and
has been developed further, e.g. in [UM03, Ge06, Hr06]. Its conceptual origins can be

412 H. Weigand et al.

traced back to traditional business accounting. REA was originally intended as a basis
for accounting information systems and focused on representing increases and
decreases of value in an organization. REA has been extended to form a foundation
for enterprise information systems architectures [Hr06], and it has also been applied
to e-commerce frameworks [UM03]. The following is a short overview of the core
concepts of the REA ontology. In section 3 their relation to the service concept is
proposed and motivated.

A resource was defined as “any object that is of utility and under the control of
some enterprise”. Originally, only resources that could be exchanged were
considered, such as goods, services and money. Later on, internal resources were
taken into account as well, including intangible ones like knowledge.

Resources are modified or exchanged in processes. A conversion process uses
some input resources to produce new or modify existing resources. For example,
water and flour can be used as input economic resources in a baking conversion
process to produce the output economic resource bread. An exchange process occurs
as two agents exchange (external) resources. To acquire a resource an agent has to
give up some other resource. For example, in a goods purchase a buying agent has to
give up money in order to receive some goods. The amount of money available to the
agent is decreased, while the amount of goods is increased.

The constituents of processes are called economic events. An economic event is
carried out by an agent and affects a resource. In REA, the notion of stockflow is
used to specify in what way an economic event affects a resource. REA identifies five
stockflows: produce, use, consume, take and give, where the first three occur in
conversion processes and the latter two in exchange processes. The stockflows
produce and take are positive stockflows in the sense that they increase the value of
some resource for an agent – an economic event with a produce stockflow creates or
improves some resource in a conversion process while an economic event with a take
stockflow transfers a resource to the agent in an exchange process. Similarly, the
stockflows use, consume and give are negative stockflows in the sense that they
decrease the value of some resource for an agent – an economic event with a use or
consume stockflow uses or consumes some resource in a conversion process while an
economic event with a give stockflow transfers a resource from the agent in an
exchange process. An agent is an individual or organization capable of having control
over economic resources, and transferring or receiving the control to or from other
agents [Ga07].

The e3value value ontology [Go00] aims at identifying exchanges of resources
between actors in a business case and it also supports profitability analyses of
business cases. e3value includes a graphical notation for business models. The basic
concepts in e3value are actors, resources, value ports, value interfaces, value activities
and value transfers. An actor is an economically independent entity. An actor is often,
but not necessarily, a legal entity, such as an enterprise or end-consumer or even a
software agent. A set of actors can be grouped into a market segment. A resource
(also called value object) is something that is of economic value for at least one actor,
e.g., a car, Internet access, or a stream of music. A value port is used by an actor to
provide or receive resources to or from other actors. A value port has a direction: in
(e.g., receive goods) or out (e.g., make a payment), indicating whether a resource
flows in to or out from the actor. A value interface consists of in and out ports that

 Value-Based Service Modeling and Design: Toward a Unified View of Services 413

belong to the same actor. Value interfaces are used to model economic reciprocity and
value bundling. A value exchange represents one or more potential trades of resources
between these value ports. A value activity is an operation that can be carried out in
an economically profitable way for at least one actor.

Both the e3value and the REA ontologies include concepts on the operational level
as well as the knowledge level [Fo97], where the operational level models concrete,
tangible individuals in a domain, while the knowledge level models information
structures that characterize categories of individuals at the operational level. In REA
almost all classes on the operational level have a corresponding class on the
knowledge level, which is generally not the case for e3value. The REA ontology
distinguishes between event type (abstract transfer of categories of resources) and
event (actual transfer of tangible concrete resources), both of which correspond to
e3value’s value transfer.

2.2 Service Systems

The notion of service system as proposed recently by Spohrer and colleagues [Sp08] is
based on Vargo’s Service-Dominant Logic [VL06]. No explicit ontology or modeling
technique has been published yet, but we can identify a number of key concepts. A
system is a configuration of resources. Some resources are operants that act on other
(operand or operant) resources. A service is the application of resources to bring about
changes that have value for another system. Services are performed in the context of
economic exchanges – the mutual value creation by two or more interacting systems. So
value is created in interactions between service systems. As a first rough approximation,
we could make the following mapping to REA: resource – resource, system – agent, and
exchange – exchange process. For service it is not so clear.

For service system interactions, Spohrer proposes the ISPAR model that follows a
kind of Conversation for Action protocol for reaching agreement, but draws particular
attention to failed interactions as sources of learning. For [Al08], the service
interactions (or service encounters as he calls them) are part of a service value chain
with a certain division of responsibilities.

2.3 Running Example

XYZ Financial Services (XFS) is a fictitious company introduced in [AG08]
developing new services for baby boomers. The analysis of XFS has revealed that as
these customers advance retirement age, their investment strategies are becoming
more risk-averse and they tend to shift their savings from stocks and securities to
saving accounts and certificates of deposits. Realizing also that no-interest checking
and saving accounts are becoming an important source of revenue, XFS wants to
design services that would attract and retain these customers.

3 A Unified Service Model

Based on a survey of the literature on services [UM03, Pr04, WS04, VL06, OA06,
Sp08, among others] it is possible to identify five salient characteristics of services
that apply both to business services and software services.

414 H. Weigand et al.

- A service is an economic resource, since it is an object that is considered valuable
by actors and that can be transferred from one actor to another.

- A service is always provided by one actor for the benefit of another actor.
- A service is existence dependent on the processes in which it is produced and

consumed, which means that the service exists only when it is consumed and
produced. In other words, a service is consumed and produced simultaneously. In
contrast to goods and information, a service cannot be stored for later
consumption.

- A service encapsulates a set of resources owned by the provider. More precisely,
when an actor uses a service in a process, she actually uses the resources
encapsulated by the service. When an actor acquires a service in an exchange
process, the customer does not get ownership rights on the encapsulated
resources, but only use rights.

- A service is always governed by a policy. This means that when a service is used,
the resources encapsulated have to be used in compliance with a number of rules
formulated in a policy.

Fig. 1. Basic Service Ontology (core REA concepts in dashed boxes)

3.1 Service Ontology

As has been noted REA offers a comprehensive ontology of business concepts, but
does not elaborate on the concept of a service. Our ontology (Fig. 1) is based on the
core REA constructs Resource, Event, and Agent. All concepts are modeled at the
knowledge level [Fo97]. In the following explanations of the concepts the word ‘type’
is sometimes omitted to reduce repetition.

A service is a resource as it is viewed as valuable by some agent and can be
exchanged between agents. This is captured in the model by modeling Service Type
as a subtype of Resource Type. As such, it automatically inherits all features of
external resources, in particular:

 Value-Based Service Modeling and Design: Toward a Unified View of Services 415

• it can be exchanged between agents
• it is realized by a (conversion) process
• it can be used within a (conversion or exchange) process

A distinctive feature of a service is that it has a goal to modify (and hence add
value to) other resources which is modelled by the association hasGoal from Service
to Economic Event. For example, the goal of the hairdressing service is to convert the
customer’s hair. A service does not specify how it is to be realized, i.e. how its goals
are to be achieved. Instead, a service can be realized in many different ways. This is
captured in the model by means of the association Realizes from Process to Service.
To realize a service, the process must achieve at least the goal of the service. To be
precise, the event being the goal of the service is contained in the process realizing it.

Services are exchanged like other resources in an exchange process (not included
in the Fig. 1) that meets the REA duality principle. This exchange process needs to be
distinguished conceptually from the process realizing the service, but they are
interwoven in time. The typical sequence of stockflow events is like this:

Resource (consume/produce) Service (take/give) Service (consume/produce) Resource
 Money (take/give) Money

On the left hand side, we find resources that are consumed or used to produce the
service. In the middle, we see the exchange of the service –which is part of an
exchange process. On the right hand side, the service is consumed resulting in a
change of the customer’s resource, which corresponds to the goal event.

A process in the REA sense represents only changes in value of resources as
expressed through economic events; it does not address control flow or temporal
aspects. In order to represent the latter, a new class Work Process has been
introduced. A work process implements a process by executing a number of activities
according to some composition (orchestration). So the work process may involve a
number of (sub-) services. A work process is executed by an agent.

A policy is a set of assertions intended to govern some behavior. In REA terms, it
should be classified as an internal resource that can be created, used and converted but
not exchanged. Policies do not apply to a service as such, but to the process in which
the service is exchanged or to the process in which the service is produced. An
external (or public) policy constrains the set of events contained in an exchange
process. For example, an exchange process involving a loan service should include
the exchange of an exemption statement. Note that a contract can be modeled as a
special type of external policy. An internal policy constrains the set of events in a
conversion process that realizes a service (or any other resource, for that matter).

Our service ontology unifies the notion of business service (like hotel rooms, loans
and hair dressing) and software service (e.g. web service by means of which hotel
reservations can be made). The ontological representation of service is fully in line
with SOA as a way of hiding process details to the service customer.

416 H. Weigand et al.

Fig. 2. Service Classification

3.2 Service Classification

The starting point of our service classification is the recognition of what we call core
services. The reason for viewing these services as core is that they provide the raison
d’être for an actor in a value network, as they specify what value the actor is able to
provide to the network. Core services are easy to identify.

Given a set of core services, there is a need for a number of services that add to or
can improve on the core services. We divide these services into four categories:
complementary services enhancing services, support services, and coordination services.

Complementary service
A service complements another service if they are part of the same service bundle and
their goals concern the same resource [We07]. For example, a gift-wrapping service
complements a book sales service by having as goal to improve the book by
packaging it in an attractive way. Thus, both services concern the same resource, the
book. A service bundle is defined in our ontology as the services provided to a
customer in the same service exchange process.

Enhancing service
An enhancing service is a service that adds value to another service (rather than to
some other kind of resource). The possibility of enhancing services follows from our
conceptualization of a service as a resource. The enhancing service has an effect on
the quality of another service or some feature like visibility or accessibility. By
definition, it is existence-dependent on the other service. On the basis of a review of
cases, we have identified the following types of enhancing services:

• Publication service. A publication service provides information about another
service (or any other resource) e.g. by means of a web page, a TV ad or a public
service registry. Hence it produces visibility of the service. At the same time, it
increases the knowledge of customers, so it has a dual focus.

 Value-Based Service Modeling and Design: Toward a Unified View of Services 417

• Access service. An access service gives an agent access to another service, i.e.
the agent uses the access service to invoke the other service. An advantage of
using an access service is that it can act like Facade object in Software
Engineering [Ga95] that induces loose coupling by hiding the service details from
the consumer. At the same time, it can contain medium-specific logic. Formally,
if A is an access service to B, the following must hold: the goal of B is included
in the goal of A, and B is a core service.

• Management service. A management service is a service that has as goal to
maintain or optimize another service, typically by changing some feature of the
work process. The management service can be seen as a service provided by
some agent to the owner of the operational service being the customer. The
service management includes several tasks that can be delegated to supporting
management services, such as monitoring services, controlling services,
authorization services, and evaluation services.

Support services
A service A supports a service B if A has as goal to produce B, or if A has as goal to
produce a resource that is used in a process that produces B [Er07].

Coordination services
A coordination service is any service that supports (ontologically speaking “is used
in”) an exchange process. It is used for ensuring that communicating parties in a
business relation are coordinated or synchronized. The value object exchanged can be
a service but also a good.

Coordination services can be classified according to the stage in a business relation
where the stages are identification, negotiation, actualisation, and post-actualisation
[UM03]. For example, a catalogue service is instrumental in the identification stage.
In the negotiation stage the terms and conditions of resource deliveries are formed
(negotiation service, brokerage service) or reservations are made (reservation service).
The actualisation stage is concerned with the actual deliveries of offered resources,
including payment (payment service) whereas the post-actualisation stage may
include all kinds of in-warranty services.

Coordination services are most elaborate when services are exchanged on a market
and usually more simple when the services are exchanged between departments or
individuals within an organization.

3.3 Service Layer Architecture

For a Service Layer Architecture that integrates business services and software
services, we draw upon the enterprise ontology of Dietz [Di06] that distinguishes a
social (performational) level, an informational level and a formational level. To
illustrate: an order is a request at the social level, a message at the informational level
and a document or file at the formational level.

In the context of IS design, an informational service is a software service that has
as goal to produce information or enhance communication. A utility service is a
service that is realized by means of IT hardware and supports informational services
by storing, processing or transferring data. A business service is an economic service
provided by an economic actor to fulfill a customer need. Both informational and
utility services can be classified as supporting services (cf. section 3.2).

418 H. Weigand et al.

Fig. 3. Service Layer Architecture

Informational services are software services that are characterized by some
economic autonomy. They can use other informational services and utility services as
resources Informational services can be supported by management services whose
aim is to maintain and improve the quality level of the managed service over time,
and other enhancing services.

Utility services [Er07] are software services at the infrastructure level that are
characterized by a certain economic autonomy (which makes them suitable candidates
for outsourcing) and usually support more than one informational service. The value
provided by the utility service is the storage of data or the execution of programs.
Also at this level we can have managing and other enhancing services.

Informational services support the business level in different ways, depending on
their focus:

- Decision support. Some business services are knowledge intensive. Take for
example a credit-check service at the business level. Assessing the credit level of
a customer is a responsible task assigned to some business actor. However, the
service can make use of a web service that generates a credit rating on the basis
of a database and/or business intelligence function. In this case, the web service
at the informational level is a resource used by the credit-check process at the
business level. It can even replace the credit-check if the service is completely
delegated to the software. A decision service may be seen as the application of a
set of business rules (that make up a policy) to generate a statement.

- Process support. Work processes at the business level can be supported by an
informational service that takes care of the orchestration. Such services
correspond to what [Er07] calls task-oriented services and what [Pa05] calls
business process service.

- Information management support (for any kind of business service). Here we talk
about what [Er07] calls entity-oriented information services that maintain and
provide information about entities (business objects) and typically have a CRUD-
style web service interface. For example, a web service that creates hotel
reservations on request and stores them in the database is an information
management service supporting a coordinating (reservation) service at the
business level.

 Value-Based Service Modeling and Design: Toward a Unified View of Services 419

4 Service Identification – A Method Proposal

The service models introduced in section 3 enable the designer to start designing or
identifying services in the business domain, and use this as input for the design of
web services in the information system domain. As argued in [HJ07], this means that
the web service designer does not need to start from scratch. The advantage of using
value modeling is that it is already supported by established modeling techniques and
methodologies. In section 4.1 we introduce a value-based service design method. In
4.2, this method is applied to the running example.

The first step in the method consists of creating a value model, which represents
resource exchanges and conversions. However, in order to realize a value network as
described by an e3value model, there is a need for a number of additional resources
not explicitly visible in the e3value model. These resources are services required for
managing the exchanges as well as the conversions of resources. Thus, the main
purpose of the proposed method is to assist a designer in identifying these services in
a systematic way.

Fig. 4. Service design method schematic overview

4.1 A Service Design Method

Given the service ontology and architecture of section 3, a service design method can
be developed that bridges the business and software level. The following description
is not a complete cookbook, but is intended just to show how this bridging can be
achieved.

Step 1: Value model creation or adaptation

In the value modeling step, we model the business activities from an economic
perspective – in terms of value creation. In the current age of global networks, the
focus cannot limit itself to a single actor only but should be on modeling value
constellations of business parties. When modeling we do, however, take the
perspective of one of the actors of the value network, to be called the focal actor, and
identify services needed by that actor. We propose to use e3value modeling as
introduced in section 2. Services do occur in the value model as a particular kind of
value objects exchanged. The value model distinguishes service bundles and can
identify complementary services. The value model also identifies supporting services
needed to realize the core services.

420 H. Weigand et al.

The result of this step is a value model of the network that does abstract from IT
services and from processes. The advantage is two-fold: first, this model is a relatively
stable reference point when processes and particular service implementations evolve
over time. Secondly, the model allows addressing business evolution at the appropriate
level. For example, the reconfiguration of services for technical or logistic reasons is
something that should be addressed at the information level. However, the replacement
of one partner in the network by another one is a decision that needs to consider the
strategic impacts.

The value model does not only contain core services, but can also represent quality
features relating to these services, such as “convenience” or “low-budget” (so-called
second-order values [We06]). They have an impact on how the service is provided,
and hence may also influence the software service design.

Step 2: Business Service Identification

In the second step, the value model is used as a basis for identifying more business
services in addition to the core services, complementary services and supporting
services identified in step 1, in particular:

• enhancing services (access, information and management)
• coordination services that support the resource exchanges

The identification of business services includes the specification of business rules and
policies governing the services (i.e., its exchange and conversion processes). A table
notation can be used with four columns: the core service, its enhancing services, its
coordination services and the applicable policies.

Step 3: Software Service Identification

The goal of this step is to identify services at the informational level and
infrastructure level. A top-down approach can start from the (business) services
identified in phase 2. Alternatively, a meet-in-the-middle approach can start from the
available applications and identify services that embed these applications while at the
same time supporting a business service. It is noteworthy that the informational
services are exchanged between the IS domain and the business domain, usually
represented by different departments each having their own responsibilities and
autonomy, and so the service identification itself is very much a negotiation process.

The informational services are not logically derivable from the e3value model, but
for various classes of business services (e.g. a reservation service, or a payment
service) generic solutions can be applied. Such an approach can be seen as a concrete
implementation of the suggestion made by [PH06] that service design should draw on
business standards whenever possible.

Process support provides service orchestration. As work processes are governed by
business rules/policies, it is recommendable to design decision services that
incorporate these rules and can be used by the service orchestration.

Informational services can be further supported by management services whose
aim is to maintain and improve the quality level of the managed service over time.
Note that these are software services themselves.

 Value-Based Service Modeling and Design: Toward a Unified View of Services 421

Finally, the infrastructural support for the informational services has to be
designed, including their sourcing and required SLA level.

4.2 Example: XYZ Financial Services

As described in section 2, XFS decided to target a particular market segment, the
more risk-averse conservative senior citizens. A value analysis makes clear that there
are opportunities for co-creation of value: for instance, certificates of deposit (CD)
provide long-term funds to XFS, while at the same time offering the customer a safe
place for their long-term savings. For the purpose of this example and because the
data are limited, we have kept the value model very simple. One feature that we want
to draw attention to is the second-order values “convenience” and “safety”. To reach
the target group, these can be an important competitive feature that should also be
taken into account when considering the way the services are provided.

Step 2. Identification of business services. Evidently, there are two core services
offered by XYZ to its customers: account management and money transfer (we ignore
here the loan service that explores the money provided by this customer group but
offered to another group). For lack of space, we do not elaborate on the enhancing
services and lump them all together in a single access service.

Step 3. Software services. The core services identified in step 2 lend themselves to
automation support. For transfer of money, XYZ needs to involve an inter-bank
payment exchange service, and to access this external service, an access service must be
added. The customer access service can also be supported by informational services.
Examples are: product information service (that provides information about the product
to potential customers), product contracting service (that allows a customer to open an
account), a payment access service, and an account management service.

The payment access service is to be distinguished from the payment core service.
The latter incorporates the basic functions of money transfer. The payment access
service provides an interface to this service. Since convenience is a strategic second-
order value, it is important to offer one or more user-friendly interfaces. For example,
a pay-by-phone interface and a web interface. The distinction between payment
access service and payment core service is apparently not made in SOMA. However,
it is very useful way of improving business agility.

Fig. 5. Initial value Model for XYZ Case, business level only

422 H. Weigand et al.

Fig. 6. Three-layer service model (for payment service only)

Information support services can be identified for the business objects involved,
such as Customer, with a CRUD-style interface (create customer, update customer,
delete customer, update address, etc).

In the case of a meet-in-the-middle approach, the informational services identified
so far should be confronted with the existing legacy applications.

Some remarks

- when comparing our value-based model results with those from SOMA –
however sketchy both are – one difference is that e3value tends to draw attention
to value networks. In the XFS case, it is clear that XFS cannot deliver the
proposed services on its own. In particular, a pay-by-SMS service is the result of
a co-creation of value that benefits all parties involved in some way. In contrast,
SOMA seems to restrict itself to the internal software services in the company.

- an advantage of the value-based method is that it not only identifies services, but
can also record second-order values, corresponding to extra-functional properties
such as security or availability that should be considered in SLA agreements.

- the value-based method clarifies the dual focus of informational services, such as
an XFS web interface. It provides support to the business (the coordination
services). At the same time, it is a kind of access service that serves the customer
in gettingt to the payment service. The effect of this dual focus is that it has at
least two goals: satisfy the customer (who interacts with the service) and satisfy
the business (that has set up and maintains the service).

5 Conclusion

In this paper, we have developed a unified model of services. On the basis of the
service ontology, we have proposed a service design method that starts from a value

 Value-Based Service Modeling and Design: Toward a Unified View of Services 423

model and helps to identify core and enhancing services. Subsequently, it can help
identifying possible web services. Whereas most SOA design methods consider
service design as a software engineering problem, we consider it as both a business
engineering and software engineering problem.

Topics for future research include validation by means of more cases, as well as the
development or reuse of graphical notations supporting the service design. The
graphical notation of e3value is useful but has problems with rendering larger models.

References

[An06] Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.,
Gordijn, J., Grégoire, B., Schmitt, M., Dubois, E., Abels, S., Hahn, A., Wangler, B.,
Weigand, H.: Towards a Reference Ontology for Business Models. In: Embley,
D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer,
Heidelberg (2006)

[Al08] Alter, S.: Service system fundamentals: Work system, value chain, and life cycle.
IBM Systems Journal 47(1), 71–86 (2008)

[AG08] Arsanjani, A., et al.: SOMA: A method for developing service-oriented solutions.
IBM Systems Journal 47(3), 377–396 (2008)

[BP07] OASIS Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html

[Di06] Dietz, J.: Enterprise Ontology - Theory and Methodology. Springer, Berlin (2006)
[Er07] Erl, T.: Soa: principles of service design. Prentice-Hall, Englewood Cliffs (2007)
[Fo97] Fowler, M.: Analysis Patterns. Reusable Object Models. Addison-Wesley, Reading

(1997)
[Ga07] Gailly, F., Poels, G.: Towards Ontology-driven Information Systems: Redesign and

Formalization of the REA Ontology. Working paper, Univ. Ghent (2008-03-27),
http://www.FEB.UGent.be/fac/research/WP/Papers/wp_07_445
.pdf

[Ga95] Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading (1995)

[Ge99] Geerts, G., McCarthy, W.E.: An Accounting Object Infrastructure For Knowledge-
Based Enterprise Models. IEEE Int. Systems & Their Applications, 89–94 (1999)

[Go00] Gordijn, J., Akkermans, J.M., van Vliet, J.C.: Business modeling is not process
modeling. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops 2000.
LNCS, vol. 1921. Springer, Heidelberg (2000)

[HJ07] Henkel, M., Johannesson, P., Perjons, E., Zdravkovic, J.: Value and Goal Driven
Design of E-Services. In: Proc. of the IEEE Int. Conference on E-Business
Engineering (Icebe 2007). IEEE Computer Society, Washington (2007)

[Hr06] Hruby, P.: Model-Driven Design of Software Applications with Business Patterns.
Springer, Heidelberg (2006)

[Mc82] McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment. The Accounting Review (1982)

[NL07] Nayak, N., Linehan, M., et al.: Core business architecture for a service-oriented
enterprise. IBM Systems Journal 46(4), 723–742 (2007)

[NR93] Norman, R., Ramirez, R.: From value chain to value constellation: Designing
interactive strategy. Harvard Business Review, 65–77 (July-August 1993)

[OA06] OASIS. Reference Model for Service Oriented Architecture 1.0 (2006),
 http://www.oasis-open.org/committees/download.php/

19679/soa-rm-cs.pdf

424 H. Weigand et al.

[Os04] Osterwalder, A.: The Business Model Ontology, Ph.D. thesis, HEC Lausanne
(2004), http://www.hec.unil.ch/aosterwa/ (last accessed, 007-07-01)

[Pa05] Papazoglou, M.: Web Services Technologies and Standards. ACM Computing
Surveys (2005)

[PH06] Papazoglou, M., van den Heuvel, W.J.: Service-oriented design and development
methodology. Int. Journal of Web Engineering and Technology 2(4), 412–442
(2006)

[PK08] Prahalad, C.K., Krishnan, M.S.: The New Age of Innovation: Driving Cocreated
Value Through Global Networks (2008)

[Pr04] Preist, C.: A Conceptual Architecture for Semantic Web Services. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
395–409. Springer, Heidelberg (2004)

[Sp08] Spohrer, J., et al.: The Service System Is the Basic Abstraction of Service Science.
In: Proc. HICSS (2008)

[UM03] UN/CEFACT Modelling Methodology (UMM) User Guide (2003),
http://www.unece.org/cefact/umm/UMM_userguide_220606.pdf
2008-02-19

[UN08] United Nations, Dept. of Economic and Social Affairs. Common DataBase (CDB)
Data Dictionary (February 19, 2008), http://unstats.un.org/unsd/
cdbmeta/gesform.asp?getitem=398

[Us96] Uschold, M., Gruninger, M.: Ontologies: Principles, Methods, and Applications.
Knowledge Engineering Review 11(2), 93–155 (1996)

[VL06] Vargo, S.L., Lusch, R.F., Morgan, F.W.: Historical Perspectives on Service-
Dominant Logic. In: Lusch, R.F., Vargo, S.L., Sharpe, M.E. (eds.) The Service-
Dominant Logic of Marketing, Armonk, NY, pp. 29–42 (2006)

[We06] Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A.,
Ilayperuma, T.: On the Notion of Value Object. In: Dubois, E., Pohl, K. (eds.)
CAiSE 2006. LNCS, vol. 4001, pp. 321–335. Springer, Heidelberg (2006)

[We07] Weigand, H., et al.: Strategic Analysis Using Value Modeling–The c3-Value
Approach. In: HICSS 2007, p. 175 (2007)

[WS04] W3C. Web Services Architecture W3C Working Group (2004),
 http://www.w3.org
[Zi04] Zimmerman, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis

and Design (2004), http://www-128.ibm.com/developerworks/
library/ws-soad1/

Data-Flow Anti-patterns: Discovering Data-Flow
Errors in Workflows

Nikola Trčka, Wil M.P. van der Aalst, and Natalia Sidorova

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{n.trcka,w.m.p.v.d.aalst,n.sidorova}@tue.nl

Abstract. Despite the abundance of analysis techniques to discover
control-flow errors in workflow designs, there is hardly any support for
data-flow verification. Most techniques simply abstract from data, while
data dependencies can be the source of all kinds of errors. This paper
focuses on the discovery of data-flow errors in workflows. We present an
analysis approach that uses so-called “anti-patterns” expressed in terms
of a temporal logic. Typical errors include accessing a data element that
is not yet available or updating a data element while it may be read
in a parallel branch. Since the anti-patterns are expressed in terms of
temporal logic, the well-known, stable, adaptable, and effective model-
checking techniques can be used to discover data-flow errors. Moreover,
our approach enables a seamless integration of control flow and data-flow
verification.

1 Introduction

A Process-Aware Information System (PAIS) is a software system that man-
ages and executes operational processes involving people, applications, and/or
information sources on the basis of process models [6]. Examples of PAISs are
workflow management systems, case-handling systems, enterprise information
systems, etc. Many of these systems are driven by explicit process models, i.e.,
based on a process model a system is configured that supports the modeled pro-
cess. In this paper, we primarily focus on the analysis of the models used to
configure workflow management systems [2,9,11,21]. However, our approach is
also applicable to other PAISs.

In the last 15 years, many analysis techniques have been developed to analyse
workflow models [2]. Most of these techniques focus on verification, i.e., on the
discovery of design errors. Although many process representations have been
used or proposed, most researchers are using Petri nets as a basic model [1,20].
The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Most workflow
management systems provide a graphical language that is close to Petri nets,
or that has a token-based semantics making a (partial) mapping to Petri nets
relatively straightforward. Industrial languages like Business Process Modeling

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 425–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

426 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

Notation (BPMN), extended Event-driven Process Chains (eEPCs) and UML
activity diagrams, are examples of languages that can be translated to Petri
nets.

Unfortunately, lion’s share of attention has only been devoted to control flow
while other perspectives such as data flow and resource allocation have been
completely ignored. Existing analysis techniques typically check for errors such
as deadlocks, livelocks, etc. while abstracting from data and resources. In most
cases the abstraction from resource information is unavoidable, as resources are
often external and dynamic in nature. The role of data in the workflow is how-
ever important: Routing choices in a workflow are typically based on data, which
makes the control flow data dependent. Moreover, the data flow can be erroneous
itself. Another limitation of the most of the existing workflow verification ap-
proaches is the way they communicate to the user: they are not configurable, and
it is not always clear what types of errors they capture (the details are typically
hidden in the verification algorithms).

To address some of the limitations of existing approaches, we propose a new
analysis framework based on (a) workflow nets with data, (b) temporal logic,
and (c) “anti-patterns”. A WorkFlow net with Data (WFD-net) is a special type
of a Petri net, with a clear start and end point and annotations related to the
handling of data (a task can read, write, or destroy a particular data element).
Assuming a WFD-net representation, we define several anti-patterns related to
the data flow. The term “anti-patterns” was coined in 1995 by Andrew Koenig
[12]. He stated that “An anti-pattern is just like pattern, except that instead of
solution it gives something that looks superficially like a solution, but isn’t one”
[12]. The goal of anti-patterns is to formally describe repeated mistakes such that
they can be recognized and repaired. In this paper, we use the temporal logic
CTL∗ (and its subclasses CTL and LTL) to formalize our anti-patterns. This
formalization can be used to discover the occurrence of such anti-patterns in
WFD-nets by standard model-checking techniques [4]. Although not elaborated
on in this paper, the same techniques can be used to define correctness notions
related to the control flow and check these in an integral way.

An example of an anti-pattern is DAP 1: Missing data. This anti-pattern
describes the situation where some data element needs to be accessed, i.e. read
or destroyed, but either it has never been created or it has been deleted without
having been created again. This property can be expressed in both CTL and LTL.
Hence, given a WFD-net it can be easily checked using standard model checkers.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 introduces WFD-nets. This representation is used in Section 4
to define a comprehensive set of data-flow anti-patterns. The formalization of
these anti-patterns is given in Section 5. Section 6 concludes the paper.

2 Related Work

Since the mid-nineties, many researchers have been working on workflow ver-
ification techniques [1,16]. It is impossible to give a complete overview of the

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 427

related work here (see [3] for references). Therefore, we only mention the work
directly relevant to this paper, namely verification approaches in which control
and data flow are both taken into account for verification.

The importance of data-flow verification in workflow processes was first men-
tioned in [15]. There, several possible errors in the data flow are identified, like,
e.g., the missing and the redundant data error, but no means for checking these
errors is provided. Later, [18] conceptualized the errors from [15] using UML
diagrams, and gave supporting verification algorithms. This work was further
extended and generalized in [19]. None of these approaches consider data re-
moval. The exact details of the erroneous scenarios are not always clear, being
hidden in the verification algorithms, and good diagnostics are missing. More-
over, the methods are not adaptive enough, as new properties cannot be easily
added to the checks.

In [8], a model called dual workflow nets is proposed, that can describe both
the data flow and the control flow. The notion of classical soundness from [1]
is extended to support the case when data flow can influence control flow. No
explicit data correctness properties are considered.

The ADEPTflex tool [14] supports a limited set of checks for data-flow cor-
rectness. The focus is entirely on dynamic changes in workflow models.

The work closest to ours is [7]. There, model checking is used to verify business
workflows, from both the control- and data-flow perspective. The underlying
workflow language is UML diagrams as opposed to the Petri net approach taken
in this paper. Only a few data data correctness properties are identified and no
systematic classification is presented. Data can only be read or written, but not
destroyed. Finally, [7] only considers LTL model-checking while several of our
anti-patterns are not expressible in LTL.

In the field of software verification model checking have been successfully
used to discover program bugs that are caused by, e.g., non-initialized or dead
variables [17]. In this, totally different, application domain, concurrency issues
are rarely treated and systematic classification of errors is missing.

3 Workflow Nets with Data

Workflow nets (WF-nets) are commonly used as a basic representation for work-
flow processes [1]. A WF-net is a Petri net with one unique source place and
one unique sink place such that all nodes are on a path from the source place
to the sink place. The transitions in a WF-net represent tasks. A WF-net is
instantiated for a particular case by putting a token on the source place. The
completion of this instance is denoted by a token on the sink place. WFD-nets
extend WF-nets with data elements and define four relationships between tasks
and these data elements. First, a task may read a particular data element. This
data element is thus expected to have a value before the task is executed. Sec-
ond, a task may write (to) a particular data element. This means that this data
element gets a new value. If it did not have a value yet, it is created; otherwise
it is overwritten. Third, a task may destroy a data element, leaving it with no
value. Finally, a task may use a particular data element in its guard (optional).

428 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

[pred(v)]

[not pred(v)]

start

t1

r: a

w: c,e,f

d:

p1

p2

t3

r:
w: b,g,v

d:
t4

r: e

w: g

d: b

t2

r:
w: a,d,h

d:

t5

r:
w: u

d:

p5

t7

r: b,g,u

w: f,h

d:

t6

r: a,h

w: u,v

d: d

t8

r: f,h,u

w:

d: e,f,g end

p4

p3

p7

p6

Fig. 1. A WFD-net

We only consider data elements that are case-related, i.e., that belong to an
individual process instance and cannot be shared among different cases and/or
different processes. The techniques of this paper, however, can be applied to
support complete data interplay, if all processes are modeled and combined into
one (huge) WFD-net. In addition, we assume workflows to start from an empty
data state; starting with some existing data can easily be modeled with an
artificial start task.

The following definition introduces Workflow nets with Data (WFD-nets).

Definition 1 (WFD-net).A tuple〈P, T, F, D, GD , Read, Write, Destroy, Guard〉
is a Workflow net with data (a WFD-net) iff:

– 〈P, T, F 〉 is a WF-net, with places P , transitions T and arcs F ;
– D is a set of data elements;
– GD is a set of guards over D;
– Read : T → 2D is the reading data labeling function;
– Write : T → 2D is the writing data labeling function;
– Destroy : T → 2D is the destroying data labeling function; and
– Guard : T → GD is the guarding function, assigning guards to transitions. ��

Note that a WFD-net is just an annotated WF-net; its formal semantics will be
given in Section 5 using the concept of unfolding to a WF-net.

Fig. 1 shows an example of a WFD-net. There are 10 data elements (a, . . . , h,
u, and v), and these elements are linked to tasks in the process. Task t6, e.g.,
reads from data elements a and h, writes to u and v, and destroys d. Thus:
Read(t6) = {a, h}, Write(t6) = {u, v}, Destroy(t6) = {d}, and Guard(t6) = true
(i.e., no guard). If one ignores the read, write, destroy, and guard annotations,
Fig. 1 is a WF-net with source place start and sink place end . All cases start
with task t1 and end with task t8. In-between, t2 and t6 are executed in sequence
and this is done in parallel with the lower process fragment that starts with t3
and ends with t7. In-between t3 and t7 either t4 or t5 is executed. This choice
depends on the evaluation of pred(v); if this predicate evaluates to true, t4 is
selected, otherwise t5.

WFD-nets can be seen as an abstraction from notations deployed by popular
modeling tools. To illustrate this we show in Fig. 2 the Protos model correspond-
ing to the WFD-net from Fig. 1. Protos (Pallas Athena) uses a Petri-net-based

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 429

Fig. 2. A Protos model showing both the control flow and data flow

modeling notation and is a widely-used business process modeling tool. It is used
by more than 1500 organizations in more than 20 countries and is the leading
business process modeling tool in the Netherlands. Like most other tools it al-
lows for the modeling of both control flow and data flow. The left-hand side of
Fig. 2 shows the control flow while the right-hand side shows the different data
elements. The colors (different shades of grey in this case) show the relationships
between t1 and these data elements, and the bottom window of Fig. 2 shows the
nature of these relationships.

As illustrated by Fig. 2, the language used by Protos is close to Defini-
tion 1. Other popular notations such as the Business Process Modeling Notation
(BPMN), extended Event-driven Process Chains (eEPCs), UML activity dia-
grams, etc. also allow for the modeling of both control flow and data flow. In
fact, the basic idea to link data elements to tasks originates from IBM’s Busi-
ness Systems Planning (BSP) methodology developed in the early eighties. Here
a so-called CRUD matrix is used showing Create, Read, Update, and Delete re-
lationships between tasks and data elements. The Read relationship in a CRUD
matrix is similar to the Read function and the Delete relationship is similar to
the Destroy function in Definition 1. The Update relationship is similar to the
Write function, but may also refer to a combination of read and write. The Cre-
ate relationship can be seen as the first write action for a data element. In Protos
a variant of the CRUD matrix is used and the basic relations are Mandatory,
Created, Deleted, and Modified. Other tools use other variants. However, all
of these operations can be translated into the primitives given in Definition 1.
Hence, the applicability of the results presented in the remainder extends to
other notations (BPMN, eEPCs, etc.) and variants of the CRUD matrix.

Soundness [1] is the mostly used correctness notion for workflows. The basic
idea is that the process cannot deadlock or livelock and it is always still possible
to terminate properly. However, the classical soundness notions do not consider
data. This is serious limitation. For example, the workflow design shown in Fig. 1

430 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

is sound but has some serious design flaws when considering the data annota-
tions. For example, data element b may be destroyed in task t4 while it is needed
in the following task t7 for reading. To identify such problems we use so-called
data-flow anti-patterns.

4 Data-Flow Anti-Patterns

In this section we introduce data-flow anti-patterns and explain them using the
example WFD-net shown in Fig. 1. For the sake of readability, when saying “data
element d is read” in the descriptions of anti-patterns, we actually mean “data
element d is read or used for the evaluation of a guard”. Evaluating predicate pred
on data element v in Fig. 1 thus will be interpreted as reading v by transitions
t4 and t5.

DAP 1 (Missing Data). This anti-pattern describes the situation where some
data element needs to be accessed, i.e. read or destroyed, but either it has never
been created or it has been deleted without having been created again.

In Fig. 1, data elements a and b are missing. Note that a needs to be read
immediately by the first task, although it has not been created yet. Data element
b is created by t3, but it can be destroyed by t4 before it reaches t7 that needs
to read it.

Unlike some other anti-patterns we will present later, we do not introduce a
strong and a weak variant for missing data depending on the fact whether we
will certainly miss a data element, or we miss it only at some execution paths
that might be choosen. We require that data should be present independently of
the choices made in the workflow—the absence of data necessary for an action
indicates a flaw in the workflow.

DAP 2 (Strongly Redundant Data). A data element is strongly redundant
if there is a writing activity after which in all possible continuations of the ex-
ecution this data element is never read before it gets destroyed or the workflow
execution is completed.

In Fig. 1, data elements c and d are strongly redundant. Task t1 creates c but it
is never read in the workflow, while task t2 creates d and t6 destroys d without
reading it.

DAP 3 (Weakly Redundant Data). A data element is weakly redundant if
there is some execution scenario in which it is written but never read afterwards,
i.e. before it is destroyed or the workflow execution is completed.

If a data element is strongly redundant (DAP 2), it is also weakly redundant
(DAP 3), while the opposite does not hold in general. Consider data element e
in Fig. 1. It is created by t1 and it is only read by t4. In case t5 and not t4 is
chosen, e remains unread, and hence it is weakly redundant. On the other hand,

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 431

if t5 is chosen, e is read between its creation and destruction, and therefore e is
not strongly redundant.

Strongly redundant data indicates in most situations a real flaw in the work-
flow. Weakly redundant data can in principle refer not to a flaw but to a design
decision aimed e.g. at the uniformization/simplification of data requests (asking
all clients to provide data d1, . . . , dk, while dk is of interest only for the clients
with a particular value of d1) or at the improvement of the performance (com-
puting some weakly redundant data element d in parallel to some other activity
whose result will make it clear whether d is needed afterwards or not; in case d
is needed, it is immediately available, and it is ignored otherwise).

DAP 4 (Strongly Lost Data). A data element is strongly lost if there is a
writing activity after which in all possible continuations of the execution this
element gets overwritten without having been read first.

In Fig. 1, element f is strongly lost, since t1 writes to f , t7 rewrites it, and f
cannot be read in between.

DAP 5 (Weakly Lost Data). A data element is weakly lost if there is an
execution sequence in which it is overwritten without been read first.

Strongly lost data (DAP 4) implies weakly lost data (DAP 5) but, in general,
not the other way around. In Fig. 1, g and h are weakly lost. Task t3 writes to g,
then g may be overwritten by t4, after which g is read by t7. In case t5 is chosen
instead of t4, g is read by t7 without having been overwritten. The example
of h shows a concurrency-related instance of this anti-pattern. In case of the
execution sequence t1t2t6t3t4t7t8, t2 writes to h, t6 reads it, t7 writes again and
t8 reads h. If t6 is scheduled to be executed later, and the execution sequence is
t1t2t3t4t7t6t8, t2 writes to h, then t7 rewrites it, and only then h is read. Note
that in the latter case both t6 and t8 use the value of h produced by t7.

Strongly lost data normally indicates a real flaw in the workflow, while weakly
lost data may be a design decision, but may also be a flaw. Examples where
weakly lost data may be an instance of a normal behavior are, e.g., reading some
client’s data (address, telephone number, etc.), which might remain possible
along the whole workflow. The fact that they are updated (overwritten) without
ever having been read is then a normal scenario.

DAP 6 (Inconsistent Data). Data is inconsistent if a task is using this data
while some other task (or another instance of the same task) is writing to this
data or is destroying it in parallel.

In Fig. 1, u is inconsistent since t5 and t6 may write to u in parallel and it is
not clear which version of u will be used by t7 and t8. Data element v is also
inconsistent, as t6 might change its value before or after the predicate pred is
evaluated. Inconsistent data normally indicates a real flaw in the workflow.

The following anti-patterns are related to data removal. They should be seen
more as efficiency drawbacks rather than strict correctness problems. These anti-
patterns are especially important for scientific workflows, where data is often

432 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

large and its unnecessary storage should be avoided, while automatic garbage
collection is rare.

DAP 7 (Never destroyed). A data element is never destroyed if there is a
scenario in which it is created but not destroyed afterwards.

For example, a is never destroyed after its creation by t2, which indicates the
possibility of leaving garbage by the workflow.

DAP 8 (Twice Destroyed). A data element is twice destroyed if there is a
scenario in which it is destroyed twice in a row without having been created in
between.

This anti-pattern is similar to the strongly lost data error but concerns data
deletion. It can be seen as a special instance of DAP 1.

DAP 9 (Not Deleted on Time). A data element is not deleted on time when
there is a task that reads it without destroying it, and after this task the data
element is never read again in the workflow, independently of the choices made.

For example, t7 is the last (and the only) task reading g, but g is deleted later,
by t8. Thus g is not deleted on time.

5 Formalization and Implementation

After introducing the anti-patterns in an informal manner, we now show that
these patterns can be formalized and supported by standard model checking
tools. We first introduce CTL∗ and its subclasses LTL and CTL. Then we provide
a translation of WFD-nets to Kripke structures to facilitate the verification of the
desired temporal properties, and we provide formalizations for the anti-patterns
formulated in Section 4. Finally, we discuss how the approach can be supported
by existing tools.

5.1 Temporal Logic CTL∗

CTL∗ [4] is a powerful (state-based) temporal logic combining linear time and
branching time modalities. It is typically defined on Kripke structures, so we
introduce this model first.

Definition 2. A Kripke structure is a tuple (S, A, L,→) where S is a finite set
of states, A is a non-empty set of atomic propositions, L : S → 2A is a (state)
labeling function, and → ⊆ S × S is a transition relation. ��

If (s, s′) ∈ →, then there is a step from s to s′, then also written as s → s′. For
a state s, L(s) is the set of atomic propositions that hold in s.

A path from s is an infinite sequence of states s0, s1, s2, . . . such that s = s0,
and either sk → sk+1 for all k ∈ N, or there exists an n ≥ 0, such that sk → sk+1
for all 0 ≤ k < n, sn
→ , and sk = sk+1 for all k ≥ n. For a path π = s0, s1, s2, . . .
and some k ≥ 0, πk denotes the path sk, sk+1, sk+2,

We now define the syntax of CTL∗.

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 433

Definition 3. The classes Φ of CTL∗ state formulas and Ψ of CTL∗ path for-
mulas are generated by the following grammar:

φ ::= a | ¬φ | φ ∧ φ | Eψ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ

with a ∈A, φ ∈ Φ, and ψ ∈ Ψ . ��

Validity of CTL∗ formulas is defined as follows.

Definition 4. We define when a CTL∗ state formula φ is valid in a state s
(notation: s |= φ) and when a CTL∗path formula ψ is valid on a path π (notation:
π |= ψ) by simultaneous induction as follows:

– s |= a iff a ∈ L(s);
– s |= ¬φ iff s
|= φ;
– s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2;
– s |= Eψ iff there exists a path π from s such that π |= ψ;
– π |= φ iff s is the first state of π and s |= φ;
– π |= ¬ψ iff π
|= ψ;
– π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2;
– π |= Xψ iff π1 |= ψ; and
– π |= ψ U ψ′ iff there exists a j ≥ 0 such that πj |= ψ′, and πk |= ψ for all

0 ≤ k < j. ��

A formula Xψ says that ψ holds next, i.e. in the second state of a considered
path. A formula ψ U ψ′ says that, along a given path, ψ holds (at least) until
ψ′ holds. We standardly write Fψ for � U ψ (“In the future ψ” or “ψ will hold
eventually”), Gψ for ¬F¬ψ (“Globally ψ” or “ψ holds always along a path”),
and Aψ for ¬E¬ψ (“ψ holds along all paths”). The combinators AG and EF can
then be interpreted as “in all states” and “in some state” respectively.

The complexity of checking CTL∗ formulas is linear in the size of the model
but exponential in the size of the formula. We define two most popular (syntac-
tic) restrictions of CTL∗ that allow for more optimal verification. A CTL∗ state
formula of the form Aψ, where ψ is a path formula containing no state formulas,
is a linear temporal logic (LTL) formula. A CTL∗ state formula in which every
sub-formula of the type ψ U ψ′ is prefixed by an A or E quantifier, is a com-
putational tree logic (CTL) formula. The complexity of LTL model checking is
the same as of CTL∗, but the advantage is that LTL formulas can be checked
on-the-fly [4]. The complexity of CTL model checking is linear in both the size of
the model and the size of the formula, and thus lower than for CTL∗ [4]. As we
will see later, all our correctness properties belong to either the LTL or the CTL
subset (or both)The reason we work with CTL∗ is to have a common framework,
and to be allowed to (temporarily) jump outside of the restricted domain when
rewriting one formula to another.

434 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

5.2 Unfolding of WFD-Net

Since we use a state-based logic, the states of a Kripke structure representing
the behavior of a WFD-net, should include information necessary for the for-
malization of our anti-patterns, namely what happens with the data when some
transition is executed. This information is lost if we just build the reachability
graph of a WFD-net—e.g. we can see that two transitions writing to a data
element d can be enabled at the same time, but we cannot see whether they can
be executed at the same time.

Preprocessing. To include the information about the data operations into the
states, we use a preprocessing step that converts a WFD-net into a WF-net,
while keeping the original structure intact. This step consists of the following
smaller steps:

1. We split every transition t into its start ts and its end te connected by a
place pt. A token on pt means that transition t is being executed.

2. To capture the restrictions on the behavior due to guards, we add a “guard
layer” to our net: For every predicate pred appearing in some guard we
introduce places predtrue and predfalse. A token on predtrue indicates that the
predicate is evaluated to true for the current set of data values. A token on
predfalse means that pred evaluates to false.

3. For every transition t with a guard pred in the WFD-net, we add an arc from
predtrue to ts and an arc back from ts to predtrue to our preprocessed net. This
self-loop makes sure that t is executed only when its guard is evaluated to
true. For the guard ¬pred we add the arcs to the place predfalse instead of
predtrue.

4. A change of the value of a data element d that appears in a predicate pred
may potentially change the evaluation of pred. We reflect that by assuming
that every transition t writing to d might change the value of pred (or not).
Therefore, we split te into three transitions: two to represent possible changes
of the predicate value (from true to false and from false to true), and one
leaving the predicate value unchanged.1

Please note that in case the transition changes data items related to k predi-
cates, it will be in general split into 3k transitions.

Fig. 3 illustrates the preprocessing for transition t with a guard pred1(c) writ-
ing to data element b. We assume that b is used in some predicate pred2(b), guard-
ing some other transition(s) of the workflow. Places pred1(c)true, pred1(c)false (not
shown in the figure), pred2(b)true and pred2(b)false are added to represent the
values of the predicates. The transition is split into the start transition ts, con-
trolled by place pred1(c)true, and transitions te−true−false, changing the value of
the predicate pred2 from true to false, te−false−true, changing the value of the
predicate from false to true, and te leaving the value unchanged.

1 In this paper we assume that predicates do not depend on each other; our method,
however, can be easily extended to support dependencies.

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 435

...

[pred1(c)]

t

q1

qm

r: a

w: b

d: c

..
. p1

pn

..
.

p1

pn

pt

... q1

qm

ts

te-true-false

te

pred1(c)true pred2(b)falsepred2(b)true

te-false-true

Fig. 3. Decomposition of a transition in a WFD-net

We make an arbitrary choice assuming that all predtrue places initially have
a token and predfalse places not. We can afford making an arbitrary choice since
the errors related to the use of undefined data for the valuation of guards is
captured by DAP 1 and will be signaled as an error, in case it takes place.

Building the Kripke structure. The Kripke structure is in fact an extended reach-
ability graph of the preprocessed net. The states of the Kripke structure are
states (markings) of the reachability graph and the transition relation is the
reachability relation. We define the set of atomic propositions A= {p ≥ i | p ∈
P, i ∈ N} to express properties of markings (p ≥ i means that place p holds
at least i tokens). The labels of states map the markings to the sets of atomic
propositions as follows: for some p ∈ P and i ∈ N, (p ≥ i) ∈ L(m) iff m(p) ≥ i.

For the sake of readability, we introduce some abbreviations. We write p = i
for p ≥ i∧¬(p ≥ i + 1). To directly formulate that some transition t is executing,
we write exec(t) instead of pt ≥ 1. That the workflow is in its final state is denoted
term, defined by (end = 1∧

∧
p∈P\{end}(p = 0)). To represent the fact that a data

element d ∈ D is being read by some transition, either as its input or for evaluat-
ing a guard, we write r(d), abbreviating thus

∨
t:d∈Read(t)∪data(Guard(t)) exec(t).

The constructs w(d) and d(d) are defined similarly.
We will use a convention that the order of operations within a transition is

fixed as first read, then write and after that destroy, which e.g. implies that
transition t8 in Fig. 1 first reads f and only after that destroys it, i.e. here there
is no attempt to read a destroyed data element.

Example. We use a simplistic example to show that the addition of the guard
layer reduces the number of false positives and false negatives, compared to the
analysis on the net without it. Consider the WFD-net from Fig. 4. If guards are
ignored while generating the behavior, d′ will be reported missing in t4. This is
a false negative, as t4 can never be enabled—t2 can only be chosen when pred(d)
is false, and the value of the predicate remains the same when it is evaluated at
t4. On the other hand, a soundness check on the net with the guard layer will

436 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

start p2
p1

t1

w: d

end

[not pred(d)]

t5

[not pred(d)]

t2

t3

[pred(d)]

t4

r: d’

[pred(d)]

Fig. 4. Data can influence reachability

correctly report that transition t4 is dead, while the check on the control flow
would result in a false positive, saying that the net is sound.

5.3 Formalization of Anti-patterns

We explain the formalization process for some of the anti-patterns in detail, and
we merely provide the corresponding CTL∗ formulas for the rest.

DAP 1: Missing Data. A data element d is missing if there is an execution path
along which no writing to d happens until reading d or destroying d takes place.
This can be expressed by E[¬w(d) U (r(d) ∨ d(d))]. A data element d is also
missing if d first get destroyed and then no writing takes place until d is read
of destroyed, which can be captured by EF[d(d) ∧ (¬w(d) U (r(d) ∨ d(d)))]. The
disjunction of these two expressions results in the formalization given in Table 1.

DAP 2: Strongly Redundant Data. A data element is strongly redundant if there
is a path leading to a writing to d (i.e. EF[w(d) ∧ . . .]) such that in all possible
continuations of this path no reading takes place until the workflow terminates
or d get destroyed (AX [¬r(d)U(term ∨ (d(d)∧¬r(d)))]). We need X here because
we want to impose ¬r(d) restriction starting from the next state only, not from
the state where the writing in question takes place—reading there would precede
the writing, according to our convention. This convention is also the reason for
including ¬r(d) in the conjunction d(d) ∧ ¬r(d).

The formalization of DAP 3 Weakly Redundant Data differs from its strong
counterpart by one letter only: the A requirement is removed, since it is sufficient
to have one path showing the undesired behavior. The principle of formulating
DAP 4 is the same as for DAP 2, the principle of formulating DAP 5, DAP 7
and DAP 8 is the same as for DAP 3.

DAP 6: Inconsistent Data. A data element d is inconsistent if some transition
t that changes d and some transition t′ that uses d can be executed at the
same time, captured by

∨
t∈T :d∈change(t) EF[(exec(t) ∧

∨
t′ �=t:d∈use(t′) exec(t′))], or

if two or more instances of transition t changing d can be executed in parallel,
captured by

∨
t∈T :d∈change(t) EF[pt ≥ 2]. Here change(t) stands for the set {d |

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 437

Table 1. Formalization of anti-patterns for a data element d

Anti-pattern Formalization

DAP 1
Missing Data

E[(¬w(d) U (r(d) ∨ d(d))) ∨
F[d(d) ∧ (¬w(d) U (r(d) ∨ d(d)))]]

DAP 2
Strongly Redundant Data

EF[w(d) ∧ A X [¬r(d) U (term ∨ (d(d) ∧ ¬r(d)))]]

DAP 3
Weakly Redundant Data

EF[w(d) ∧ X[¬r(d) U (term ∨ (d(d) ∧ ¬r(d)))]]

DAP 4
Strongly Lost Data

EF[w(d) ∧ A X [¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]]

DAP 5
Weakly Lost Data

EF[w(d) ∧ X[¬(r(d) ∨ d(d)) U (w(d) ∧ ¬r(d))]]

DAP 6
Inconsistent Data

∨
t∈T :d∈change(t)

EF[(exec(t) ∧ ∨
t′ �=t:d∈use(t′) exec(t′)) ∨ pt ≥ 2]

DAP 7
Never destroyed

EF[w(d) ∧ X[¬(d(d) ∨ w(d)) U term]]

DAP 8
Twice Destroyed

EF[d(d) ∧ X[¬w(d) U (d(d) ∧ ¬w(d))]]

DAP 9
Not Deleted on Time

∨
t∈T :d∈(Read(t)∪data(Guard(t)))\Destroy(t)

AG[exec(t) ⇒ exec(t) U G(¬r(d))]

d ∈ Write(t) ∪ Destroy(t)}, and use(t) stands for the set {d | d ∈ Read(t) ∪
data(Guard(t)) ∪ Write(t) ∪ Destroy(t)}.

DAP 9: Not Deleted on Time. To conclude that a data element d is not deleted
on time, we need a transition that reads d without destroying it (i.e. t ∈ T with
d ∈ (Read(t) ∪ data(Guard(t))) \ Destroy(t)), such that the execution of this
transition is never followed by reading d. This means that for all paths whenever
t is executed (AG[exec(t) ⇒ . . .]), d is never read again after the execution of t is
finished (captured by exec(t)UG(¬r(d))). An additional explanation needed here
is that there can be several consecutive states for which exec(t) is true, which
means that there are events happening in parallel branches while t continues its
execution. The resulting formula is given in Table 1.

All the formulas except for the last one (DAP 9) are (or can be rewritten
to) CTL formulas. Negations of formulas for DAPs 1, 3, 5, 6, 7 and 8 can be
rewritten to LTL. DAP 9 is a set of LTL formulas itself.

5.4 Tool Support

As explained in the previous section, all anti-patterns we identified (or their
negations) can be expressed in one of the two most commonly used temporal
logics, CTL or LTL. Therefore, to check for data correctness we do not need to
build our own tool but can choose from a number of Petri-net model-checkers
available (e.g. [10,13,5]). The Model-Checking Kit [10] allows for both CTL and
LTL model-checking, and supports a variety of Petri-net modeling languages as

438 N. Trčka, W.M.P. van der Aalst, and N. Sidorova

input. Maria [13] is an LTL model-checker, and CPN Tools [5] is a powerful
framework for modeling and analysis of Colored Petri nets with the CTL model-
checking facility. We used CPN Tools in our verification experiments, and we
were able to easily state all the CTL anti-patterns, and to check them within a
fraction of a second.

6 Conclusion

This paper provides a systematic classification of possible flaws related to the
data flow in business workflows. We formulated these flaws as data-flow anti-
patterns. To avoid ambiguities inherent to formulations in a natural language,
we formalized the anti-patterns in the temporal logic CTL∗. All anti-patterns
belong to one of the two (or both) most popular subsets of CTL∗: CTL and LTL.
This opens a way to easy tool support for our approach, since there are many
model-checkers for both CTL and LTL.

Our approach is a first step towards a unifying framework for the integral
analysis of workflows taking into account both control and data flow. As we
showed in the example related to Fig. 4 (Subsection 5.2), by including data flow
along with control flow into consideration when checking classical properties of
workflow like soundness, we can reduce the number of false positives and false
negatives caused by (unavoidable) abstraction of data values.

In the future we will try to identify more anti-patterns. We will also build an
integrated tool-chain that starts with the check for boundedness, then performs
the preprocessing transformations and Kripke structure generation, proceeds in
looking for anti-patterns’ instances by using an existing model-checker, e.g. [10],
and finally generating a verification report for the workflow designer.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge (2004)

3. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification,
Decidability, and Analysis. BPM Center Report BPM-08-02, BPMcenter.org (2008)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

5. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page,
http://wiki.daimi.au.dk/cpntools/

6. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software through Process Technology. Wiley &
Sons, Chichester (2005)

7. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transac-
tions on Software Engineering Methodology 15(1), 1–38 (2006)

http://wiki.daimi.au.dk/cpntools/

Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows 439

8. Fan, S., Dou, W.C., Chen, J.: Dual Workflow Nets: Mixed Control/Data-Flow
Representation for Workflow Modeling and Verification. In: Chang, K.C.-C., Wang,
W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C., Wang, H. (eds.) APWeb/WAIM
2007. LNCS, vol. 4537, pp. 433–444. Springer, Heidelberg (2007)

9. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases 3, 119–153 (1995)

10. Institute of Formal Methods in Computer Science, Software Reliability and Security
Group, University of Stuttgart. Model-Checking Kit Home Page,
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/mckit/

11. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London (1996)

12. Koenig, A.: Patterns and Antipatterns. Journal of Object-Oriented Program-
ming 8(1), 46–48 (1995)

13. Mäkelä, M.: Maria: Modular Reachability Analyser for Algebraic System Nets.
In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 434–444.
Springer, Heidelberg (2002)

14. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

15. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Foulger, C.: Data Flow and Validation
in Workflow Modelling. In: Fifteenth Australasian Database Conference (ADC),
Dunedin, New Zealand. CRPIT, vol. 27, pp. 207–214. Australian Computer Society
(2004)

16. Sadiq, W., Orlowska, M.E.: Analyzing Process Models using Graph Reduction
Techniques. Information Systems 25(2), 117–134 (2000)

17. Schmidt, D.A.: Data Flow Analysis is Model Checking of Abstract Interpretations.
In: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL 1998), pp. 38–48. ACM, New York (1998)

18. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Liu Sheng, O.R.: Formulating the Data
Flow Perspective for Business Process Management. Information Systems Re-
search 17(4), 374–391 (2006)

19. Sundari, M.H., Sen, A.K., Bagchi, A.: Detecting Data Flow Errors in Workflows:
A Systematic Graph Traversal Approach. In: 17th Workshop on Information Tech-
nology & Systems (WITS 2007), Montreal (2007)

20. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow Pro-
cesses using Woflan. The Computer Journal 44(4), 246–279 (2001)

21. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Berlin (2007)

http://www.informatik.uni-stuttgart.de/fmi/szs/tools/mckit/

Process Algebra-Based Query Workflows

Thomas Hornung1, Wolfgang May2, and Georg Lausen1

1 Institut für Informatik, Universität Freiburg
{hornungt,lausen}@informatik.uni-freiburg.de

2 Institut für Informatik, Universität Göttingen
may@informatik.uni-goettingen.de

Abstract. In this paper we combine ideas from workflow processing
and database query answering. Tailoring process algebras like Milner’s
Calculus of Communicating Systems (CCS) to relational dataflow makes
them a natural candidate for specifying data-oriented workflows in a
declarative way. In addition to the classical evaluation of relational op-
erator trees, the combination with the CCS control structures provides
(guarded) alternatives and test-based iterations using recursive process
fragment definitions. For the actual atomic constituents of the process,
language concepts from the relational world, like queries, but also the
use of abstract datatypes, e.g., graphs, can be embedded.

We illustrate the advantages of the approach by an application sce-
nario with remote, heterogeneous sources and Web Services that return
their results asynchronously. The presented approach has been imple-
mented in a prototype.

1 Introduction

Most of the information that is needed for daily tasks is available on the Web. The
main problem is often not to get the information, but to process it efficiently and
appropriately in an automatic way. Efficiency does not necessarily mean millions
of data items, but often a relatively small number of items, scattered over mul-
tiple data sources, and to organize the process of combining, evaluating, making
decisions, interacting. Consider for example travel planning: not only the nearest
airport to a certain destination has to be found, but depending on the airlines,
different airports must be considered, and availability of the flights has to be
checked. Then, transportation from/to the airports, possibly provided by local
railway companies, has to be arranged. Even employees of travel agencies usually
process such enquiries manually, which requires a lot of time and is potentially
incomplete and suboptimal. Although the manual process follows a small num-
ber of common patterns (e.g., searching for paths in a transitive relationship
distributed over several sources, like flight schedules and train schedules, with
heuristics for bridging long distances vs. shorter distances, making prereserva-
tions, doing backtracking) it is hard to automatize it since the sources are not
integrated, and the underlying formalism has to cover both procedural tasks and
data manipulation tasks. Often it is easier to design the process how to solve

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 440–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

{hornungt,lausen}@informatik.uni-freiburg.de
may@informatik.uni-goettingen.de

Process Algebra-Based Query Workflows 441

such a problem than stating a single query. Furthermore, most of the data is not
immediately available for querying via e.g. query languages like SQL or XQuery,
but kept in the Deep Web, which consists of dynamically generated result pages,
which can only be queried interactively via Web forms.

This technical environment together with the intrinsic complexity of the tasks
requires for flexible data workflows using a generic data model and an extensible
set of functional modules, including the ability to interact actively with remote
services. Important basic functionality includes appropriate mechanisms to deal
with information acquisition and target-driven information processing on a high
level, like using design patterns for acting on graph-structured domains.

In the following, we present and discuss an approach that attempts to sat-
isfy the above requirements. The core aspects are the intertwined description of
the control flow of the process (by a process algebra, e.g., CCS [14]) and the
handling of the dataflow (based on the relational model), and the use of het-
erogeneous atomic constituents like queries and actions in the workflow: CCS
is extended to relational dataflow, called RelCCS, and realized as a language
in the MARS (Modular Active Rules for the Semantic Web) framework [13] for
embedding heterogeneous component languages. RelCCS is complementary to
the original rule-based MARS paradigm, and employs the functionality of the
MARS framework as an infrastructure.

The focus is not on performance, but on the qualitative ability to express and
execute complex workflows and decision processes in a reasonable time – i.e., to
replace hours of interactive human Web search by an unsupervised automated
process that also may take hours but finally results in one or more proposals,
including the optimal one.

The process design/programming in the RelCCS language is not expected to
be done by casual users, but by skilled process designers in cooperation with
domain experts – analogously to application database design.

Application Scenario. Consider the scenario to find either the cheapest or short-
est (in terms of total time spent travelling) route to a given location (e.g., for
a conference travel) or a combination of both. Human, manual search usually
employs some kind of intuitive search strategy. Roughly, the strategy is to try
to cover as much distance as possible by plane (assuming the distance is above
a certain threshold), and then bridge the remaining distance by train or bus; if
this fails, do backtracking. One usually starts with considering a known set of
airports near the hometown. This shows that human problem solving, although
always considering one possibility (=tuple) at a time, is inherently based on a
set-oriented model.

With the means of the presented approach, such tasks can be formulated as
data workflows. The backtracking is here replaced by breadth-first search, where
the search space is explored stepwise and pruned based on intermediate results.

The actual process can thus be described as (i) determining a set of local
airports, e.g., the ten nearest airport to a place, (ii) computing all connections
from the starting point to each of these airports, (iii, in parallel) trying to find
connections from each of the airports to the destination, and joining the results

442 T. Hornung, W. May, and G. Lausen

from (ii) and (iii); always under consideration of arrival and departure times and
required time for changing. While for train connections, sources usually are able
to return transitive connections, flight portals only return transitive connections
over the flights of the same airline. Thus, here an actual graph exploration and
search is to be applied.1

The expected answer is the set of k best alternatives (wrt. a weighted function
of price and duration), where each solution contains the actual connection data
(flight and train numbers, departure/arrival times). Furthermore, it should in
general be possible to extend the process specification in such a way that the
best available one is actually booked automatically.

Structure of the paper. Section 2 introduces the RelCCS language. In Section 3,
we illustrate the use of the approach by implementing the above example work-
flow. Related work is discussed in Section 4 before we draw a short conclusion.

2 RelCCS: The Relational Dataflow Process Language

RelCCS is a variant tailored to relational dataflow of the well-known Calculus
of Communicating Systems (CCS) process algebra [14]. It has been designed as
a part of the MARS (Modular Active Rules for the Semantic Web) framework
[13] whose central metaphor is a model and an architecture for active rules
and processes that use heterogeneous event, query, and action languages. This
distinctive feature of MARS proves useful in the present paper, too: it allows to
embed sublanguages for queries and even supplementary generic data structures
via APIs expressed as actions and queries into the workflows to be specified.

Here we present MARS only as far as it is necessary to get the ideas that
are relevant for the realization of RelCCS. The MARS meta-model distinguishes
rules (not relevant in this paper), events (that may also occur in CCS workflows
as described in this paper), queries, tests, and actions/processes (cf. Section 2.1);
the dataflow is based on sets of tuples of variable bindings (like in Datalog; cf.
Section 2.2). The MARS meta-language concept relies on an XML markup for
nested expressions of different languages throughout whole MARS.

2.1 The Process Model: Processes and Their Constituents

The CCS Process Algebra. Processes can formally be described by process alge-
bras; the most prominent ones are CCS – Calculus of Communicating Systems
1 Experiences with conference travels showed that real travel agencies are often chal-

lenged with finding the potential nearest airports to rather unknown destinations
(e.g., St.Malo/France), and are rather weak in finding non-direct flight connections
using different airlines (e.g., Lufthansa + AirFrance) or via non-expected interme-
diate airports (via Stansted to reach Dinard/France), or surprising connections (fly
to Jersey Island and take the ferry to St.Malo) – actually, ferries are contained in
the railway portals, so it is not necessary to find out about individual ferry lines.
The latter shows also that it would not be advantageous to try to save time by
predefining the set of destination airports by the user, but to use a fully algorithmic
search that is not biased in any way.

Process Algebra-Based Query Workflows 443

[14] and CSP – Communicating Sequential Processes [10]; we chose CCS as the
base to develop RelCCS. A CCS algebra with a carrier set A (its atomic con-
stituents) is defined as follows (we consider here the asynchronous variant of
CCS that allows for implicit delays), using a set of process variables:

With a ∈ A, X a process variable, P and Q process expressions, X := P
is a process definition, a, X , a.P (prefixing; sequential composition), (P, Q)
(sequential composition), P |Q (concurrent composition), and P1+P2 (alternative
composition; generally written as

∑
i∈I Pi for a set I of indexes) are process

expressions. The semantics is defined in [14] by transition rules that immediately
induce an implementation strategy. By carrying out an action, a process changes
into another process:

a.P a→ P ,
P a→ P ′

(P, Q) a→ (P ′, Q)
,

Pi
a→ P∑

i∈I Pi
a→ P

(for i ∈ I) ,

P a→ P ′

P |Q a→ P ′|Q
,

Q a→ Q′

P |Q a→ P |Q′ ,
X := P P a→ P ′

X a→ P ′ .

Note that prefixing a.Q is actually a special case of sequence (P, Q) where P is
atomic. While in CCS, the state of a process is encoded in its behavior (via the
possible actions), we generalize the definition to processes with an explicit state
described by sets of tuples of variable bindings in Sections 2.2 and 2.3.

Atomic Constituents. While in the basic formalism of CCS, all atomic con-
stituents are considered to be actions, in our approach, atomic constituents are
event specifications, queries, tests, and atomic actions:

– atomic actions: these are actually executed as actions, e.g., by Web Services;
– event specifications as atomic constituents: executing an event specification

means to wait for an occurrence of the specified event, incorporate the results
in the state of the process, and then continue;

– executing a query means to evaluate the query, incorporate the results in
the state of the process, and continue the process;

– executing a test means to evaluate it, and incorporate the results in the state
of the process, and continue appropriately.

The approach is parametric in the languages used for expressing the constituents.
Users write their processes in RelCCS, embedding atomic constituents in sub-
languages of their choice. While the semantics of RelCCS provides the global
semantics, the constituents are handled by specific services that implement the
respective languages.

2.2 State, Communication, and Data Flow via Variable Bindings

The state of a process, and the dataflow through the process and to/from the
processors of the constituents is provided by logical variables in the style of
deductive rules, production rules etc.: The state of the computation of a process

444 T. Hornung, W. May, and G. Lausen

is represented by a set of tuples of variable bindings, i.e., every tuple is of the
form t = {v1/x1, . . . , vn/xn} with v1, . . . , vn variables and x1, . . . , xn elements
of the underlying domain (which is in our case the set of strings, numbers, and
XML literals). Thus, for given active variables v1, . . . , vm, such a state can be
seen as a relation whose attributes are the names of the variables. We denote a
process expression P to be executed in a current state R by P [R].

By that, the approach does only minimally constrain the embedded languages.
For instance, all paradigms of query languages, following a functional style (such
as XPath/XQuery), a logic style (such as Datalog or SPARQL [17]), or both (F-
Logic [11]) can be used. The semantics of the event part (that is actually a
“query” against an event stream that is evaluated incrementally) is –from that
aspect– very similar, and the action part takes a set of tuples of variable bindings
as input.

2.3 Syntax and Semantics of RelCCS

RelCCS combines the constructs of CCS with relational data flow. Syntactically,
it uses mnemonic names (which are also used in its XML markup) instead of the
CCS symbol operators.

Let P denote the set of process expressions, let V denote the set of variable
names. For a given finite set Var ⊆ V, Tuples(Var) denotes the set of possible
tuples over Var. As usual, 2Tuples(Var) denotes the set of sets of tuples over Var.
A given set R of tuples of variable bindings is thus an element R ∈ 2Tuples(Var).

The mapping [[]] : P × 2Tuples(Var) → 2Tuples(Var) specifies the formal
semantics by mapping a process expression P ∈ P and a set R of tuples of
variable bindings to the set [[P [R]]] of tuples of variable bindings that result from
execution of a process P for an initial state R. The definition of this denotational
semantics [[P [R]]] by structural induction over P is given below.

Example 1. Consider a simple query q whose answers are all pairs (c, b) such
that c is a country and b is a city in c with more than one million inhabitants:

[[q({{c/”Germany”}, {c/”Austria”}, {c/”Switzerland”}, {c/”Joe”}})]] =
{{c/”Germany”, b/”Berlin”}, {c/”Germany”, b/”Hamburg”},
{c/”Germany”, b/”Munich”}, {c/”Austria”, b/”Vienna”}}

There is no resulting tuple for “Switzerland”, because there are no cities with
more than one million inhabitants in Switzerland, and there is no resulting tuple
for “Joe” since “Joe” is not a country at all. On the other hand, answer tuples
to q like {c/”France”, b/”Paris”} do not belong to the result because their value
for c does not match any value of c of the initial tuples.

Note that [[]] is just the declarative semantics that does neither depend on,
nor prescribe the operational details of actual evaluation: q[R] may be answered
by computing R �� σ[population > 1000000](City) for a suitable database relation
City, or iteratively a Deep Web query q′ can be stated for every country, yielding
e.g. q′(“Germany”) = {“Berlin”, “Hamburg”, “Munich”} and generating the result
set incrementally from the answers.

Process Algebra-Based Query Workflows 445

The situation is similar to the definition of the formal semantics of the rela-
tional algebra, and actual query optimization and evaluation.

Atomic Constituents. For atomic constituents p, [[p[R]]] extends R (Queries,
Events), restricts R (Tests), or (Actions) just uses R and leaves it unchanged:

– Actions: executing Action(a)[R] means to execute a for each tuple in R with-
out changing the state R. [[Action(a)[R]]] := R, plus external side effects of a.

– Query(q)[R]: R is used to provide the input parameters to the query q. A
query q can be seen as a predicate q0 (its characteristic predicate, which
contains all input/output mappings) over variables qv = {qv1, . . . , qvn}, from
which some variables qιn = {qin1, . . . , qink} ⊆ {qv1, . . . , qvn} act as input
variables, the others qout = {qout1, . . . , qoutm} = qv \ qιn act as output
variables. Given a tuple t ∈ R, the input tuple for q is tq := π[qιn](t)2

and [[Query(q)[tq]]] := {t′ ∈ q0 : tq ⊆ t′}. With this, let [[Query(q)[t]]] :=
{t} �� [[Query(q)[tq]]], and analogously, [[Query(q)[R]]] :=

⋃
t∈R[[Query(q)[t]]] =

R �� q0.
– Test(c)[R]: the tuples r ∈ R that satisfy the test survive: [[Test(c)[R]]] =

σ[c](R), like SQL’s SELECT * FROM R WHERE c.
Optionally, the test can be parameterized with a quantifier(exists|notExists|all)
where the whole set R of tuples is taken and if one, none, or all tuples t ∈ R
satisfy the test, the result is R, otherwise ∅. E.g., [[Test[exists](x = 3)[R]]] =
R if for some tuple t in R, the value of the variable x is 3, otherwise
[[Test[exists](x = 3)[R]]] = ∅.

– Event(ev)[R] is analogous to queries: for each tuple of R, events matching
the given event specification are caught and the variable bindings are appro-
priately extended. For the present application for query answering, events
actually play a minor role; they can be used for designing complex workflows
manually. Here we just give the semantics for the sake of completeness:
Given an event occurrence ev0 that matches the event specification ev for a
certain tuple t ∈ R resulting in a set of tuples ev0(t), [[Event(ev)[R]]] contains
R �� ev0(t) (the actual semantics of “matching” depends on the embedded
event specification language). Thus, at a given timepoint τ , [[Event(ev)[R]]] =
R �� {ev0(t) : ev0 occurred between “starting” ev[R] and τ}.

Operators. For every evaluation P [R], the set R of initial tuples is modified by
executing the process P , resulting in a new relation [[P [R]]] as “outcome” that
is returned to the superior process.

– Prefixing, Sequence: execute Seq(P, Q)[R] by executing P [R], yielding R′,
and then execute Q[R′]. This “common” interpretation of sequence builds
actually upon the inner join: [[Seq(P, Q)[R]]] := [[Q[[[P [R]]]]]]. More explicitly,
[[Seq(P, Q)[R]]] = [[P [R]]] �� [[Q[[[P [R]]]]]] (analogously, [[Seq(P1, . . . , Pn)[R]]] is
defined inductively).

2 As usual, π, σ, ρ denote relational projection, selection, and renaming.

446 T. Hornung, W. May, and G. Lausen

As a more general idea, tailored to (more accidentally sequential) evaluation
of queries, instead of ��, also left/right/full outer joins make sense, and even a
modified form of relational difference as negation: For that, we parameterize
Seq as Seq[join] (default), Seq[(left|right|full)-outer-join], and Seq[minus].
E.g., the semantics of Seq[minus](P1, . . . , Pn) is defined as follows: Assume
Ri := [[Seq[minus](P1, . . . , Pi)[R]]] after step i (for i = 0: R0 := R) and S :=
[[Pi+1[Ri]]] of step i+1, let [[Seq[minus](P1, . . . , Pi+1)[R]]] := Ri \ (Ri �< S).
For example, the query q1(A, B, X) ∧ ¬∃C, Y : q2(B, C, Y) can be evaluated
as Seq[minus](Query(q1(A, B, X)), Query(q2(B, C, Y))) .

– Alternative(P1, . . . , Pn)[R] and Union(P1, . . . , Pn)[R]: each branch is started
with R.

For the (full) union, the result tuples of an alternative or union are the
union R1 ∪ . . . ∪ Rn of the results of its branches, [[Union(P1, . . . , Pn)[R]]] =
[[P1[R]]] ∪ . . . ∪ [[Pn[R]]].
For the alternative, the following operational restriction holds: All branches
have to be guarded, i.e., before the first action is executed, a test must
be executed (optionally preceded by queries to obtain additional informa-
tion). For instance, in Alternative(Seq(Test(c), P1), Seq(Test(¬c), P2)), all tu-
ples that satisfy c will actually run through the first branch, and the others
run through the second branch.

If the guards of the branches are exclusive, the alternative is equivalent
to the union. If the guards are non-exclusive, the actual outcome is nonde-
terministic: for each tuple t, the quicker branch will preempt the others, and
exclusively contribute [[Pi[t]]] to the result.

– Concurrent(P1, . . . , Pn)[R]: each branch is started with R. The result is
[[Concurrent(P1, . . . , Pn)[R]]] := [[P1[R]]] �� . . . �� [[Pn[R]]], i.e., each tuple
runs through all branches (possibly being extended with further variables),
and the results are joined. Note that if a tuple is removed in some branch,
it will not occur at all in the result.

Like for sequences, the operator is also parameterized: in addition to ��,
left/right/full outer join and relational difference are also allowed.

Complete vs. Partial Answers. An intuitive and simple model is that the whole
set of tuples proceeds synchronously through the process, like the view on re-
lational algebra when taught in courses. The actual execution also covers asyn-
chronous remote services and even partial answers, where services return tuples
that can be computed quickly, and later send back further tuples.

2.4 Recursive Processes in RelCCS

Recursive processes extend the expressiveness from that of relational algebra
(trees) to that of recursive Datalog, which e.g. allows to compute transitive
closure. Recursive processes are defined by (i) giving and naming a process def-
inition, and (ii) then using this definition somewhere in the process/tree.

Since logical variables can be bound only once, variables that are bound to
different values in each iteration must be considered to be local to the current

Process Algebra-Based Query Workflows 447

iteration. They can be bound either when starting the process, or in some step
inside the process. Only the final result is then bound to the actual logical
variable. For a process expression P ∈ P , pname[local: lv1, . . . , lvn] := P defines
pname to be P where the variables lv1, . . . , lvn are local. Syntactically, the use
of process definitions is of the form (e.g. in a sequence)

Seq(. . . , UseDefinition(pname[lvk1 ← v�1 , . . . , lvkm ← v�m]), . . .)

with the following semantics: let Var denote the set of active variables used in the
surrounding context. The definition of pname is invoked based on the current
tuples, where each tuple is extended or modified by initializing the local variables
lvk1 , . . . , lvkm (ki ∈ {1, . . . , n}) with the values of the variables v�1 , . . . , v�m ∈
Var. Formally,

[[UseDefinition(pname[lvk1 ← v�1 , . . . , lvkm ← v�m])[R]]] :=
[[P [{t ∈ Tuples(Var ∪ {lvk1 , . . . , lvkm}) | exists t′ ∈ R s.t.

ρ[v�1 ← lvk1 , . . . , v�m ← lvkm](π[{lvk1 , . . . , lvkm}](t)) = π[vl1 , . . . , vlm](t′)
and π[Var \ {lv1, . . . , lvn}](t) = π[Var \ {lv1, . . . , lvn}](t′)}]]]

which is a subset of Tuples(Var ∪ {lv1, . . . , lvn}). Note that recursive processes
call themselves inside their definition; in this case, {lvk1 , . . . , lvkm} ⊆ Var.

2.5 Data-Oriented RelCCS Operators

While the above operators extend the classical CCS operators that focus on the
control flow with relational state, additional operators integrate unary relational
operators: projection, duplicate elimination, and top-k.

Projection and Duplicate Elimination. In relational algebra, projection is a very
useful operator to reduce intermediate results when some variables are no longer
needed. For RelCCS, Projection(v1, . . . , vn) with a specification which variables
to keep does the analogue during execution of a process. Distinct removes dupli-
cate tuples, and is usually applied after a projection.

The RelCCS Top-K Operator. The top-k operator is known as a useful extension
for many applications. It allows to “take the best k answers” and continue. For
instance, when a set of potentially relevant airports are known, only the nearest
10 to the starting place should be considered for continuing the process. Here we
adapt the top-k functionality to asynchronous processing of RelCCS workflows:
Applied to a set of tuples over variables v1, . . . , vn,

TopK(k, m, t, mapfct, datatype, order, cont) acts as follows:

– wait until either m tuples are present, or t time units have passed,
– then, for each tuple, compute mapfct(v1, . . . , vn) (expressed as an embedded

query) which yields a value of datatype. Order them according to order (which
can be either asc or desc) and take the top k, and return them.

– if cont is true, then for every tuple coming in later, check if it is amongst the
best k up to now. If yes, return it, otherwise discard it.

448 T. Hornung, W. May, and G. Lausen

2.6 Embedding Algorithmic Webservices

The design of the MARS framework allows to use Web Services that communi-
cate via the atomic metaphors of MARS: actions, tests, queries, and optionally
events. Such auxiliary Web Services can for instance provide the functionality of
abstract datatypes that embed algorithmic aspects in form of external support
in the declarative specification of RelCCS workflows.

A recurring motive when designing query workflows is the computation of
(parts of) transitive closures in graphs, as in our travel scenario. For this, a
GDT –Graph DataType– Service provides a configurable API to graphs. Edges
and paths in an application usually have properties where the properties of the
paths are defined inductively via its edges. For the present paper, we take a GDT
instance as given that provides the following actions and queries:

– a query gid ← newGraph() with the side effect of initializing an empty graph,
– an action addEdge(gid, from, to, [p1 ← v1, . . . , pn ← vn]), that adds the

respective edge with values of vi for parameters pi, and computes new paths
accordingly,

– an accessor (query) v ← getNewVertices(gid) that returns all vertices that
have been added since the preceding call of getNewVertices(gid).

– an action reportPaths(start, dest, [v1 ← p1, . . . , vm ← pm]) that returns
all paths that connect start with dest with their parameters pi bound to
variables vi.

2.7 Technical Realization

RelCCS has been implemented as a language service within the MARS frame-
work. RelCCS processes are given as XML documents (or as RDF graphs), bor-
rowing the main principles from MARS’ ECA-ML markup language [13]. The
language markup has the usual form of a tree structure over the CCS composers
in the ccs: namespace. Every expression (i.e., the CCS process, its CCS subpro-
cesses, the event specification, test, queries, and the atomic actions) is an XML
(sub)tree whose namespace (i.e., the URI associated with the prefix) indicates
the language.

The services are implemented in Java, using a common set of basic classes that
handle e.g. the variable bindings. For larger numbers of tuples, an SQL database
is used as backend [12]. The actual data exchange is done in an XML format for
results and variable bindings. Determining an appropriate service and organizing
the communication is performed by a Languages and Services Registry (LSR)
and a Generic Request Handler (GRH) [6].

3 Application Scenario: Travel Planning

The RelCCS process for sample travel planning scenario can now be given: If
the overall distance is less than 400km, only train connections are searched for.
Otherwise, train connections (for less than 800km) and flights are investigated.

Process Algebra-Based Query Workflows 449

For the latter, train connections to potential airports are searched, and the
remaining distance is bridged by connecting flights and, if necessary, a final
train connection.

Recall that the whole connection graph is not accessible like a database, but
must be explored by Web queries. The design of the process is thus significantly
different from straightforward bottom-up evaluation of transitive closure queries
in Datalog. The relevant fragment of the connection graph is built stepwise online
during the workflow, using the GDT service as described above. The strategy
is based on reachability by breadth first search for shortest paths. Edges (i.e.,
connections) and their properties (as slotted name-value pairs; i.e., departure
and arrival time and price) are obtained from Web queries, and added to the
graph. Note that each single connection can be useful in several combinations.

The process uses variables start and dest (destination), date (which are ini-
tialized when calling the process), ap (relevant near airports), dist (distance to
airport), i, j (intermediate places), rd (remaining distance), dt and at (depar-
ture and arrival time), pr (price), and gid (graph id). We use the prefixes ccs
and gdt to indicate the respective languages. We abstract from the concrete
data sources, which are for this example actually wrapped Deep Web sources,
e.g. http://www.bahn.de for (not only German) Railways, and flights/airline
portals:

ccs:Seq(ccs:Query(rd ← distance(start, dest)), # process input: (start, dest)
ccs:Query(gid ← gdt:newGraph()),
ccs:Union(

ccs:Seq(ccs:Test(rd < 800), # consider to go by train
ccs:Query((dt, at, pr) ← getTrainConnection(start, dest, date)),
ccs:Action(gdt:addEdge(gid, start, dest,

[deptTimeLocal ← dt, arrTimeLocal ← at, price ← pr]))),
ccs:Seq(ccs:Test(rd ≥ 400), # consider also to use flights

ccs:Query(ap ← getAirports()),
ccs:Query(dist ← distance(start, ap)),
ccs:TopK(10,100,null,dist,xsd:decimal,asc,false), # consider 10 nearest airports
ccs:Query((dt, at, pr) ← getTrainConnection(start, ap, date)),
ccs:Action(gdt:addEdge(gid, start, ap,

[deptTimeLocal ← dt, arrTimeLocal ← at, price ← pr])),
ccs:Projection(start, dest, date), ccs:Distinct,
ccs:UseDefinition(runGraph[]))),

gdt:reportPaths(start, dest, [pathId ← pid, price ← price])),

ccs:Definition(runGraph[local:i, rd, dt, at, pr]) :=
additional global vars gid, dest, date are known
ccs:Seq(

ccs:Query(i ← gdt:getNewVertices(gid)), # consider all newly reached places
ccs:Query(rd ← distance(i, dest)),
ccs:Union(

ccs:Seq(ccs:Test(i = dest)), # no recursive call in this case → return
ccs:Seq(ccs:Test(rd < 400 ∧ i
= dest) # reach destination by train

http://www.bahn.de

450 T. Hornung, W. May, and G. Lausen

ccs:Query((dt, at, pr) ← getTrainConnection(i, dest, date)),
ccs:Action(gdt:addEdge(gid, i, dest,

[deptTimeLocal ← dt, arrTimeLocal ← at, price ← pr])),
ccs:Projection(start, dest, date), ccs:Distinct,
ccs:UseDefinition(runGraph[])),

ccs:Seq(ccs:Test(rd ≥ 200), # try to get even nearer by flight
ccs:Query((j, dt, at, pr) ← getFlights(i, date)),
ccs:Action(gdt:addEdge(gid, i, j,

[deptTimeLocal ← dt, arrTimeLocal ← at, price ← pr]))
ccs:Projection(start, dest, date), ccs:Distinct,
ccs:UseDefinition(runGraph[]))))

postcondition: reached, either by train or train+flight+, or train+flight++train

The workflow proceeds stepwise, set-oriented:

Example 2. Consider to start the workflow with the single tuple

{start/“Heidelberg”, dest/“St.Malo”, date/“1.1.2009”} .

The query for the remaining distance extends the tuple to

{start/“Heidelberg”, dest/“St.Malo”, date/“1.1.2009”, rd/784} .

It then starts two branches, one for a train-only travel (since rd < 800), and one
that includes consideration of flight connections (since rd > 400); the results of
both will be returned at the end. We follow the second one:

It will first state a query for all known airports, which results in a set of
(thousands of) tuples, where each is extended in the subsequent step with distance
between start and the respective airport, i.e.,

{{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, rd/784, ap/“FRA”, dist/85},
{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, rd/784, ap/“STG”, dist/95},

:
{start/“Heidelb.”, dest/“St.Malo”, date/“. . . ”, rd/784, ap/“JFK”, dist/6230}, . . . }

The next topK step keeps the ten nearest ones, amongst them FRA and STG
(and not JFK). For these, the next step looks up (multiple) train connections to
each of them, binding price etc., and for each tuple, the connection is put into
the graph, and the tuples are projected back down to start, dest, date, and du-
plicates are removed (so only the single tuple {start/“Heidelb.”, dest/“St.Malo”,
date/“1.1.2009”} remains). Then, the process definition for runGraph is invoked.
In its first step, the new vertices, which are the 10 nearest airports, are retrieved
from the graph and bound to the variable i (intermediate):

{{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, i/“FRA”},
{start/“Heidelb.”, dest/“St.Malo”, date/“1.1.2009”, i/“STG”}, . . . }

The following iterative process is then concerned with extending the graph in
parallel (i.e., set-oriented for all tuples) breadth-first search until connections to
dest (i.e., when i = dest) are found.

Process Algebra-Based Query Workflows 451

Figure 1 illustrates a fragment of the contents of the GDT. The sample also
illustrates that (i) some paths are not needed to be inserted as already better ones
are known [*] and, on the other hand, “longer” (in the number of steps) paths
can be better wrt. the user’s criteria (price, duration; [**]).

id head tail label start end dept arr price

p1 e1 null HD→FRA HD FRA 7:30 8:10 29.00
p2 e2 null HD→STG HD STG 7:50 8:50 39.00
p3 e13 p1 HD→FRA→CDG HD CDG 7:30 11:20 229.00
p4 e14 p1 HD→FRA→LON HD LON 7:30 11:50 129.00
p5 e15 p2 HD→STG→CDG HD CDG 7:50 13:30 289.00
p71 e23 p3 HD→FRA→CDG→StM HD StM 7:30 +1:08:30 345.00
p85 e25 p3 HD→FRA→CDG→RNS HD RNS 7:30 15:20 459.00
p86 e25 p5 HD→STG→CDG→RNS HD RNS 7:50 17:50 519.00 [*]
p93 e29 p4 HD→FRA→LON→DNR HD DNR 7:30 16:50 159.00
p103 e25 p85 HD→FRA→CDG→RNS→StM HD StM 7:30 18:20 487.00
p123 e39 p93 HD→FRA→LON→DNR→StM HD StM 7:30 17:50 175.00 [**]

: : : : : : : : :

Fig. 1. Sample contents of the GDT data structure

The termination condition, i.e., that when all “open” paths are more expensive
than the best k known paths to the destination is enforced by the insertion policy
of the graph. This guarantees that the k preferable paths will be reported, and that
the workflow terminates. Recall that such completeness is not guaranteed by the
heuristic methods applied by current travel agencies to prune the search space,
since this may result in the fact that “unexpected” connections –like reaching
St.Malo via Stansted or Jersey– are excluded.

4 Related Work

Two already traditional areas that are related to our work are (i) query plans
for relational algebra expressions that work on the operator level, and also on
the choice of actual algorithms for, e.g., joins, and (ii) conjunctive queries over
homogeneous or heterogeneous sources, including HTML and XML Web sources,
for querying issues according to the yet classical wrapper-mediator architecture
that provide integrated views on data, but without considering process-oriented
aspects of data-oriented workflows. Since in these areas, the control flow does
not play a central role, we do not further discuss them.

Dataflow and Data Exchange: Comparison to Tuple Spaces. A frequently asked
question is the relationship between the dataflow model in MARS and RelCCS,
and Tuple Spaces [7] (in the following abbreviated as “TS”) and its variants. TS
are a middleware approach for cooperation and coordination between distributed
processors, in the TS context usually called agents. A TS is an unstructured
collection of tuples without fixed schema that allows for associative access: insert,

452 T. Hornung, W. May, and G. Lausen

read, read with delete; updates are accomplished by removing and inserting. IBM
TSpaces [19] support four further types of Queries: MatchQuery, IndexQuery,
AndQuery, and OrQuery, that all result in sets of tuples.

Similarities between RelCCS and TS are thus in the support for data exchange
between autonomous, distributed processors. Also, in both approaches, the data
is decoupled from the programs. In TS, data can explicitly exist without being
assigned to a certain agent. Communication is anonymous from the point of view
of the processors – they get and put tuples from/to the TS.

TS are in many aspects similar to relational databases, but they are used
differently. We shortly analyze the main aspects wrt. MARS and RelCCS:

– TS: Use as communication bus, not permanent storage. This characteristic
is shared with MARS and RelCCS.

– TS: Unstructured set of tuples. MARS: sets of tuples that belong together.
– TS: Associative access operations. Not needed by MARS and RelCCS.
– TS: Generally, no predefined schema. In MARS and RelCCS, for each state,

all tuples have the same schema, which changes during the processing.

So, MARS and RelCCS do not need some of the features of TS. On the other
hand, a core requirement of MARS is not covered by TS: Tuples in MARS are
grouped into sets of tuples (the above relations over the active variable names)
and usually assigned to a (single) current processor, and exchanged between
processors in a directed and controlled way. Moreover, the RelCCS operators
require to apply relational operations on the sets of tuples. Functionally, the
definition of sets of tuples belonging together could be emulated in TS by an
additional column c0 of the tuples. Nevertheless, TS do not efficiently support
operations on such sets of tuples, like e.g. joining the result relation R of a
query with the previous tuples, joins of branches of concurrent subprocesses,
projection, duplicate elimimation, and top-k. For MARS and RelCCS, using a
relational database as “communication bus” is preferable since the operations
can easily be mapped to relational operations on database tables [12]. Note
that there is also a realization without any middleware (except plain internet
communication) using data exchange by XML (i.e., sets of tuples serialized as
XML) and operations performed on an internal (Java) data structure.

Workflow and Dataflow. Several approaches have been presented that combine
dataflow with control flow: The focus of Petri Net-based approaches is to express
workflows completely in a uniform graphical formalism, with a concise formal
semantics to be able to apply formal analysis and verification techniques. Ex-
tensions of Petri Nets with nested relational structures are investigated in [15]
(NR/T -nets) and [9] (Workflow Nets/Dataflow Nets). The language YAWL [1],
which has been designed based on an exhaustive analysis of workflow patterns
[2] and has its roots in Petri Nets, also treats dataflow as a first class citizen.

Petri nets are, like RelCCS, process-oriented. While RelCCS is based on a
set of operators, in Petri Nets, the control flow patterns such as concurrent
execution and recursion have also to be encoded within the Petri Net formalism.
Additionally, abstract data types, such as the GDT, must also be encoded.

Process Algebra-Based Query Workflows 453

Many current approaches to workflow languages, such as BPEL [5] also pro-
vide an XML markup. In contrast to RelCCS in the MARS framework, where
the XML markup carries important language information for enabling the pro-
cessing of embedded language fragments, these languages use XML just as a
serialization format. Dataflow in BPEL is described by BPEL variables, which
can, using appropriate database products like e.g. IBM WebSphere, reference
database tables, and thus be made set-valued. Also datatypes like GDT can
be embedded into BPEL processes. In [18], optimization strategies of such ap-
proaches are discussed.

In Transaction Logic T R [4] and Concurrent Transaction Logic CT R [16] the
description of a workflow consists of rules that make use of temporal connec-
tives instead of just the Datalog conjunction. The semantics of T R is inherently
set-valued. Such rules can be formulated over embedded literals/atoms (called
elementary transitions) that are not part of Transaction Logic, but are con-
tributed externally. This is similar to the embedding of the use of the GDT data
type in RelCCS.

Furthermore, systems for data-oriented workflows in general can be applied for
query answering tasks. Such systems usually have a set-oriented dataflow. The
Lixto Suite [8] is an integrated system for implementing data-oriented workflows
with a focus on data acquisition and integration. Its process model is less explicit,
and the workflows are solely built upon Lixto’s own modules. Kepler [3] is an
extensible system for design and execution of scientific workflows whose goal is
to capture, formalize, and reuse workflows. It supports a concept of individual,
reusable workflow steps.

Although these approaches can encode the same behavior, the advantage of
RelCCS is that it provides both the primitives for control structures and data flow
on the same level of the language. A further feature of the language is provided by
its embedding in the MARS meta model: RelCCS fragments can be used e.g. as
action part in MARS’ ECA rules, and fragments in other languages for specifying
complex events, queries and atomic actions can be embedded in RelCCS processes
without having to revert to Web Services as intermediate wrappers.

5 Conclusion

In this paper, we presented the RelCCS approach for specifying and executing
data-oriented workflows and discussed its use for solving tedious, repetitive, al-
though complex tasks related to answering queries based on Web data. For such
tasks, it is often simpler to design the process how to solve the problem, than
stating a single query. We also illustrated how complementing module-like data
structures can be embedded to support the algorithmic issues of such processes,
and gave an impression what processes in this framework look like. Apart from
the use for query answering as described above, RelCCS can also be applied for
specifying data-oriented workflows in general.

RelCCS is implemented in a prototype which can be found with sample pro-
cesses and further documentation at http://www.semwebtech.org/mars/frontend/
→ run CCS Process.

454 T. Hornung, W. May, and G. Lausen

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Inf. Syst. 30(4), 245–275 (2005)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

3. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler:
An extensible system for design and execution of scientific workflows. In: SSDBM
2004, pp. 423–424 (2004)

4. Bonner, A.J., Kifer, M.: An overview of Transaction Logic. Theoretical Computer
Science 133(2), 205–265 (1994)

5. Business Process Execution Language (BPEL),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

6. Fritzen, O., May, W., Schenk, F.: Markup and Component Interoperability for
Active Rules. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp.
197–204. Springer, Heidelberg (2008)

7. Gelernter, D.: Generative communication in Linda. ACM TOPLAS 7(1), 80–112
(1985)

8. Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The Lixto data
extraction project - back and forth between theory and practice. In: ACM PODS,
pp. 1–12 (2004)

9. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., den Bussche, J.V.: DFL:
A Dataflow Language Based On Petri Nets and Nested Relational Calculus. Inf.
Syst. 33(3), 261–284 (2008)

10. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

11. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4), 741–843 (1995)

12. May, W.: A Database-Based Service for Handling Logical Variable Bindings.
Databases as a Service, Technical Report, Univ. Münster, Germany (2009)

13. May, W., Alferes, J.J., Amador, R.: Active rules in the Semantic Web: Dealing
with language heterogeneity. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML
2005. LNCS, vol. 3791, pp. 30–44. Springer, Heidelberg (2005)

14. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science,
267–310 (1983)

15. Oberweis, A., Sander, P.: Information system behavior specification by high-level
Petri Nets. ACM TOIS 14(4), 380–420 (1996)

16. Roman, D., Kifer, M.: Reasoning about the Behavior of Semantic Web Services
with Concurrent Transaction Logic. In: VLDB, pp. 627–638 (2007)

17. SPARQL Query Language for RDF (2006),
http://www.w3.org/TR/rdf-sparql-query/

18. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft,
T.: An Approach to Optimize Data Processing in Business Processes. In: VLDB,
pp. 615–626 (2007)

19. Wyckoff, P., McLaughry, S.W., Lehman, T.J., Ford, D.A.: T Spaces. IBM Systems
Journal 37(3), 454–474 (1998)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/rdf-sparql-query/

ETL Workflow Analysis and Verification Using
Backwards Constraint Propagation

Jie Liu1,2, Senlin Liang3, Dan Ye2, Jun Wei2, and Tao Huang2

1 University of Science and Technology of China, Anhui Hefei, China
2 Institute of Software, Chinese Academy of Sciences, Beijing, China

{ljie,yedan,wj,tao}@otcaix.iscas.ac.cn
3 Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794, USA

sliang@cs.sunysb.edu

Abstract. One major contribution of data warehouses is to support
better decision making by facilitating data analysis, and therefore data
quality is of primary importance. ETL is the process that extracts, trans-
forms, and ultimately loads data into target warehouses. Although ETL
workflows can be designed by ETL tools, data exceptions are largely
left to human analysis and handled inadequately. Early detection of ex-
ceptions helps to improve the stability and efficiency of ETL workflows.
To achieve this goal, a novel approach, Backwards Constraint Propaga-
tion (BCP), is proposed that automatically analyzes ETL workflows and
verifies the target-end restrictions at their earliest points. BCP builds
an ETL graph out of a given ETL workflow, encodes the target-end re-
strictions as integrity constraints, and propagates them backwards from
target to sources through the ETL graph by applying constraint pro-
jection rules. It is showed that BCP supports most relational algebra
operators and data transformation functions.

Keywords: ETL, Workflow Analysis, Data Quality, Data Warehouse,
Constraint Propagation.

1 Introduction

ETL (Extract, Transform, and Load) is the important process to build data
warehouses [1], and it involves identifying relevant information at data sources,
extracting the relevant data, transforming it to fit business needs and ulti-
mately loading the data into the target data warehouse. Initially, ETL processes
were hard-coded, and thus difficult and expensive to maintain. Nowadays most
database and data integration systems vendors offer powerful ETL tools, most
of which can be classified into two categories. One provides independent engines
to run ETL tasks, and its representatives are PowerCenter1 from Informatica,

1 http://www.informatica.com/products services/powercenter/Pages/index.aspx

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 455–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

456 J. Liu et al.

DataWarehouse
DS1

DS2

DS3

Fig. 1. An Example of ETL Workflows

Data Stage2 from IBM, and SSIS3 from Microsoft. The other category is also
named ELT (Extract, Load, Transform), which delegates the task of running
ETL workflows to DBMS. Its representative is Oracle Data Integrator4.

An example ETL workflow is presented in Figure 1, which integrates data from
several data sources (DS1, DS2 and DS3) into target data warehouse by applying
series of transformations (triangles). ETL workflows are designed by ETL tools
manually, using schema mappings between sources and target. Due to the diversity
of source schema and complexity of ETL workflows, some dirty data may cause
exceptions when going through workflows or being loaded into the target.

There have been many researches in exceptional data detection and data
cleaning, and most vendors provide data quality control suites together with
their ETL tools. They mainly employ the following methods: data analysis, data
sampling, data quality monitoring and target-end integrity checking.

Data Analysis analyzes real data instances to obtain data characteristics and
value patterns, which help detect data outliers and build schema mappings [2].
There are two approaches to data analysis: data profiling and data mining. Data
profiling derives the information of each attribute (e.g. type, uniqueness, null val-
ues), and data mining discovers data patterns (e.g. relationships among several
attributes).

Data sampling applies ETL workflows on a sample data set to find exceptional
data and improves the design of ETL workflows. Data sampling is commonly
used in practice, and its performance heavily depends on the quality of the
sampling data set.

Data quality monitoring imposes quality control by defining data quality rules
over ETL workflows. The system decides whether to abort the ETL workflows
or to perform data cleaning on detecting the violation of these rules. However,
these rules have to be manually defined, and most of time it is infeasible to define
rules to capture all possible exceptions in real applications.

Target-end integrity checking filters out exceptional data, which violates
the target-end integrity constraints, when loading into the target warehouse and
keeps a record of them for later processing.

Only target-end integrity checking can guarantee the satisfiability of all the con-
straints at the target. However, all involved data (exceptional or not) are

2 http://www-01.ibm.com/software/data/infosphere/datastage
3 http://code.msdn.microsoft.com/SSIS/Wiki/View.aspx
4 http://www.oracle.com/technology/products/oracle-data-integrator/index.html

ETL Workflow Analysis and Verification Using BCP 457

transferred to the target, which incurs much extra cost. Moreover, data analysis
and data quality monitoring require manual analysis of ETL processes and man-
ual encoding of mappings between the target and sources, which are expensive,
error-prone and time consuming. Thus we want an approach that can automati-
cally: 1) analyze ETL workflows and the target-end restrictions, and verify these
restrictions at their earliest possible points; 2) on the violation of these restrictions,
call predefined handlers according to user specified exception handling policies.

Most restrictions at the target warehouse can be expressed by a set of integrity
constraints, which are also referred as data quality rules. In order for the data in
the ETL workflow to satisfy the integrity constraints at the target, it should have
certain properties when it moves through the ETL workflow. These properties
can be derived from the target’s integrity constraints.

In this paper, we proposed a novel approach, Backwards Constraint Prop-
agation (BCP), that automatically analyzes ETL workflows and verifies target-
end integrity constraints at their earliest possible points.

1. BCP analyzes ETL workflows and target-end restrictions using an abstract
interpretation, ETL graph.

2. It reports the earliest points in ETL workflows where these restrictions can
be verified.

3. On detecting the violations of these restrictions, BCP calls predefined ex-
ception handlers.

4. BCP verifies whether ETL workflows contain contradictions.

Given an ETL process, BCP builds an ETL graph, which extends the query
tree in [3] and the system graph in [4], [5]. Then it pushes target-end restrictions
backwards to the data sources by constraints projections [6], [7].

BCP can be used as a preprocessing step and applied to both categories of
ETL tools. To evaluate its performance, we have implemented a prototype in
our ETL tool OnceDI [8]. The preliminary results show that 1) BCP propagates
most target-end restrictions back through ETL workflows, and places them at the
earliest points where they can be verified; 2) our constraint propagation method
supports all the relational algebra operators and data manipulation functions if
they are monotonic and have inverse functions, which most involved functions
in ETL workflows satisfy.

This paper is organized as follows. Section 2 gives a motivating example. Sec-
tion 3 describes the BCP framework including constraints projection, automatic
data quality rule generation and verification. Section 4 discusses related works,
and Section 5 concludes the paper.

2 One Motivating Example

This section gives a motivating example, which is used as the running example
in this paper.

Example 1. employee-department example: suppose a companyhas twoheadquar-
ters, and both keep their employee and department information locally at two data
sources DS1 and DS2. We want to integrate them into target data warehouse DW.

458 J. Liu et al.

DS1 is located in America, and contains two tables employee and department:

employee(EId, EName, Address, DeptId, StartDate, Salary)
department(DeptId, DeptName, DirectorId, Revenue)

Relation employee has a tuple for every employee: EId is a unique integer ID
assigned to each employee and the primary key; EName is the empoyee name;
Address records the employee’s home address; DeptId is the ID of the em-
ployee’s department and a foreign key referring to the attribute DeptId of table
department; StartDate is the date when the employee started working in de-
partment DeptId, and it is of DATE type and "MM-DD-YYYY" format; Salary
is the annual salary in US dollars. Relation department has a tuple for every
department: DeptId is a unique integer ID assigned to each department and
the primary key; DeptName is department name; DirectorId is the ID of the
department’s director and a foreign key referring to the attribute EId of table
employee; Revenue is the annual revenue of the department in US dollars.

DS2 is located in China, and also contains two tables employee and department:

employee(EId, EName, DeptId, StartDate, Salary)
department(DeptId, DeptName, DirectorId, Revenue)

Their differences from DS1 are: 1) attribute Address is not recorded; 2) StartDate
is of "YYYY-MM-DD" format, such as "2001-11-24"; 3) Salary and Revenue are in
Chinese RMB instead of US dollars.

DW is located in America, and contains one relation defined as:

seniorEmpInLargeDept(EId, EName, StartDate, Salary,
DeptName, Size, Revenue, Source)

It has a tuple for each employee, and the primary key is EId. StartDate is in the
format of MM-DD-YYYY, Salary and Revenue are in US dollars, Size is the number
of employees in department DeptName, and Source denotes its data source.

In this problem data from both sources have to be processed before being
loaded into DW. Without loss of generality, we used the ETL logic model intro-
duced in [9] to represent the ETL process. The ETL workflow is shown in Figure
2, where triangles represent SQL operations or data manipulation functions.
Assume there is an intermediate result relation resultTable(X) of an operation
(triangle) X. We detail each operation as:

A1: join tables employee and department from DS1 on DeptID.
A2: count (aggregate operation) EId as Size grouping by DeptId, DeptName,

Revenue.
A3: join tables resultTable(A2) and employee from DS1.
A4: add attribute Source to table resultTable(A3), and set its values

as “DS1”.
A5: project out attribute DeptId from table resultTable(A4), get

resultTable(A5) (EId, EName, StartDate, Salary, DeptName, Size,
Revenue, Source).

ETL Workflow Analysis and Verification Using BCP 459

B1-B5: similar to A1-A5.
B6: convert StartDate format from "YYYY-MM-DD" to "MM-DD-YYYY".
B7: convert Salary from Chinese RMB to US dollars.
B8: convert Revenue from Chinese RMB to US dollars.
C1: union tables resultTable(A5) and resultTable(B8).

Suppose the set of restrictions at the target ic(DW) consists of the following
five integrity constraints:

DW-IC1: all employees have a minimal salary of 50,000 US dollars.
DW-IC2: all departments have a minimal revenue of 1,000,000 US dol-

lars.
DW-IC3: all departments have at least 10 employees.
DW-IC4: notNull(Salary), salary can not be NULL.
DW-IC5: pk(EId), EId is the primary key.

In order for the data arriving at the target warehouse to satisfy the set of
integrity constraints ic(DW), the data at a certain point p in the workflow should
have some properties derivable from ic(DW). These properties can be encoded
as a set of integrity constraints ic(p) and verified at point p. Our approach
to derive the integrity constraints over an ETL workflow and to place them at
appropriate points is based on its ETL graph (an abstract interpretation).

An ETL graph is a labeled directed acyclic graph (DAG). The construction
algorithm is formalized in Section 3. There are two types of nodes: relation
nodes and axiom nodes. Relation nodes represent relations, and axiom nodes
represent SQL operations or data manipulation functions. There are a set of data
quality rules rules(α) and exception handlers handlers(α) associated with each
relation node α, and a set of mapping rules with each axiom node. The mapping
rules of an axiom node β, mappings(β), is an abstract interpretation of the
operation β. Edges capture the interactions between relation nodes and axiom
nodes. Edges are also referred as ports : incoming edges are referred as input
ports and outgoing edges as output ports. The intuition is that data goes from
data sources to the target along the edges. Relation nodes receive tuples from
input ports, verify its set of data quality rules, and send tuples to output ports

seniorEmpIn
LargeDept

C2A 2$

U

C1

employee

department
Join Add

employee

department

Join Add

DS1

DS2 2$

DW

A1 A2 A4 A5

B1 B2 B4 B5 B6 B7 B8

Join

Join

B3

A3

Fig. 2. ETL Workflow of Example 1

460 J. Liu et al.

employee department employee department

A1

resultTable(A1)

A2

A3

A4

A5

B1

B2

B3

B4

B5

B6

seniorEmpinLargeDept

C1

resultTable(A2)

resultTable(A3)

resultTable(A4)

resultTable(A5)

resultTable(B1)

resultTable(B2)

resultTable(B3)

resultTable(B4)

resultTable(B5)

resultTable(B6)

B7

resultTable(B7)

B8

resultTable(B8)

resultTable(C1)

User defined library:
1 moneyC2A(RMB)=RMB/7
2 dateC2A(YYYY-MM-DD)=

MM-DD-YYYY

in(A3,1)

in(A1,2)in(A1,1)

in(A2,1)

in(A3,2)

in(A4,1)

in(A5,1)

in(C1,1) in(C1,2)

in(B8,1)

in(B7,1)

in(B6,1)

in(B5,1)

in(B4,1)

in(B3,2)in(B3,1)

in(B2,1)

in(B1,1)

Axiomnode Mappings:
A1:1){EId,Ename,Address,DeptId,

StartDate,Salary}@in(A1,1)
2){DeptId,DeptName,DirectorId,
Revenue}@in(A1,2)

3)DeptId@in(A1,1)=DeptId@in(A1,2)

A2:1)Size=COUNT(EId@in(A2,1))
2)){DeptId,DeptName,Revenue}@in(A2,2)

A3:1){EId,Ename,Address,DeptId,
StartDate,Salary}@in(A3,1)
2){DeptId,DeptName,Revenue,Size}@in(A3,2)
3)DeptId@in(A3,1)=DeptId@in(A3,2)

A4:1)Source=“DS1”
2){EId,Ename,Address,DeptId,
StartDate,Salary,DeptName,
Revenue,Size}@in(A4,1)

A5:1){EId,Ename,StartDate,Salary,DeptName,Size,
Revenue,Source}@in(A5,1)

B1-B5:similar to A1-A5
B6:1)StartDate=dateC2A(StartDate@in(B6,1)
2){EId,Ename,Salary,DeptName,
Revenue,Size,Source}@in(B6,1)

B7:1)Salary=moneyC2A(Salary@in(B7,1)
2){EId,Ename,StartDate,DeptName,
Revenue,Size,Source}@in(B7,1)

B8:1)Revenue=moneyC2A(Revenue@in(B8,1)
2){EId,Ename,Salary,DeptName,
StartDate,Size,Source}@in(B8,1)

C1:1){EId,Ename,StartDate,Salary,DeptName,
Revenue,Size,Source}@in(C1,1)

2){EId,Ename,StartDate,Salary,DeptName,
Revenue,Size,Source}@in(C1,2)

Fig. 3. ETL Graph of Example 1

if there is no exception. Otherwise, predefined exception handlers are called.
Axiom nodes receive tuples from input ports, perform the stored operations,
and send the resulting tuples to output ports.

The proposed ETL graph of the ETL process is shown in Figure 3. It also
includes a user defined data transformation library, which defines how to perform
the StartDate format conversion from China to America (function dateC2A),
and how to convert Chinese RMB to US dollars (function moneyC2A).

BCP builds an ETL graph out of given ETL workflow, automatically derives
the data quality rules rules(α) of relation node α, and pushes rules(α) back-
wards to data sources against the directions of data flows by applying constraint
projection rules. Our constraint projection rules can push the constraints fur-
ther back to data sources through functions if they are bijective and monotonic.
Consider DW-IC1, at axiom node B7, we know that

Salary = moneyC2A(Salary@in(B7, 1)),

and function moneyC2A is bijective and monotonically increasing, which gives us

moneyC2A(Salary@in(B7,1)) ≥ 50, 000.

ETL Workflow Analysis and Verification Using BCP 461

After applying simple mathematical calculation, we know the incoming tuples
to axiom node B7 from input port in(B7,1) should have the property that

Salary ≥ 350, 000

whichtherefore ispushedtoresultTable(B6)byadding it torules(resultTable
(B6)). Finally we can push this constraint down to DS2, which is the earliest place
it can be verified.

3 ETL Workflow Analysis and Verification

3.1 BCP Framework

A framewrok is presented in Figure 4 to demonstrate how to integrate BCP into
current ETL tools. The input of BCP module is the ETL graph of and target-
end integrity constraints. The output is the data quality rules of each relation
node. One step constraint projection algorithm is applied to each atom node to
push constraints backwards. The redundancy resolve unit removes the redundant
rules of each relation node. The implementation details of BCP in our ETL tool
OnceDI and the preliminary results can be found in [10], and they are omitted
here due to space limitations.

Source Target

Workflow to ETL Graph

BCP

Redundancy Resolve
Reasoning

Extract ICs
User
Define

DQ
Rules ICs

ETLWorkflow

CPRules

ETL
Graph

Fig. 4. BCP Framework

3.2 ETL Graph

ETL graph is an extension of the query tree in [3] and the system graph in [4],
[5]. Before proceeding to the algorithm of ETL graph construction, we give some
useful definitions (some have been used above informally).

Definition 1. Given an operation with label α in the given ETL workflow Ω, its
producers, producers(α), is the set of relations that provide data to operation
α, and its consumers, consumers(α), is the set of operations to whom operation
α provides data.

462 J. Liu et al.

For instance, in Example 1 of Section 2, the producers of operation A3,
producers(A3) = {resultTable(A2), employee}.

Definition 2. A data quality rule is an integrity constraint supported by
DBMS (e.g., not null, unique, primary key, foreign key and check), or a user
defined constraint of the form R1(X̄1) ∧ . . . ∧ Rn(X̄n) ∧ ϕ(x1, . . . , xm), where Ri

is a table, X̄i (1 ≤ i ≤ n) is a vector of attributes, xj (1 ≤ j ≤ m) is a constant
or an attribute in ∪1≤i≤n(X̄i), and ϕ is a built-in binary predicate that evaluates
to true or false (e.g., =, ≤, ≥).

When the involved relations are obvious, we omit them when expressing a
data quality rule. For example we used Salary ≥ 50, 000 without mentioning
its involved relation seniorEmpInLargeDept in Example 1 of Section 2. The
set of integrity constraints ic(DW) in Example 1 are encoded as data qual-
ity rules rules(DW): Salary ≥ 50, 000, Revenue ≥ 1, 000, 000, Size ≥ 10,
notNull(Salary), and pk(EId).

Given an ETL workflow Ω, the ETL graph GΩ is built in the following steps: 1)
create an axiom node α for each SQL operation or data manipulation operation
(triangle) α in Ω, and compute mappings(α); 2) create a result relation node
resultTable(α) for each axiom node α, initialize rules(resultTable(α)) = ∅,
and set its exception handling policies handlers(resultTable(α)); 3) add edges
between axiom nodes and relation nodes. The algorithm is as follows:

Algorithm 1. ETL Graph Construction

for (each operation with label α in Ω) {
create an axiom node with the same label α;
compute mappings(α);
create a result relation node resultTable(α);
initialize rules(resultTable(α)) = ∅;
set handlers(resultTable(α));

}
for (each axiom node α) {

add edge out(α) from axiom node α to resultTable(α);
index = 1;
for (each element i ∈ producers(α)) {

add edge in(α, index) from relation node i to axiom node α;
index+ +;

}
}

For a given atom node α associated with operation op, we suffix each table
and its attributes in op with its input port label, and create mappings(α) to
capture the mappings from its input attributes to output attributes. The map-
pings for different operations are generated differently as shown in Figure 5,
where attrs(X) returns the set of attributes involved in X, which can be a
relation, condition, rule, or function; annotate(X, inport) annotates each at-
tribute y in X with its input port label by replacing y with y@inport; S@in(α, i)

ETL Workflow Analysis and Verification Using BCP 463

Operations Mappings

Selection Select *

From rel@in

Where condition

1) attrs(rel)@in

2) annotate(condition,in)

Projection Select col1,…,coln

From rel@in

1) (col,…,coln)@in

Rename Select oldname as newname

From rel@in

1) newname=oldname@in

2) attr(rel)-{oldname}@in

Add field Add newname to rel@in 1) attrs(rel)@in

Ordering Select *

From rel@in Order by ….

1) attrs(rel)@in

Aggregate Select groupByAttrs,f(oldname) as newname

From rel@in

Where condition

Group by groupByAttrs Having …

1) {groupByAttrs}@in

2) annotate(condition,in)

3) newname=f(oldname)

Function newname = f(oldname) 1) newname=f(oldname)

2) attrs(rel)-{oldname}@in

Join/ Intersection/

Union/-/

rel1@in1 join/intersect/union /-/

rel2@in2

1) attrs(rel1)@in1

2) attrs(rel2)@in2

Fig. 5. Mapping Generation of ETL Operations

means the set of output attributes S of axiom node α are from its input port
in(α, i). For example of the second mapping of axiom node A3 in Figure 3,
{DeptId, DeptName, Revenue, Size}@in(A3, 2) means that attributes DeptId,
DeptName, Revenue, and Size are from input port in(A3, 2).

3.3 Constraint Propagation

After the ETL graph of a given workflow is constructed, we initialize the set
of data quality rules at the target warehouse (rules(DW) in Example 1) as its
restrictions. Then our approach applies constraint projection rules to propagate
these rules backwards to data sources. The constraint propagation algorithm
support all relational algebra operators and most ETL workflow data manipu-
lation functions (they are monotonic and have inverse functions).

Definition 3. The closure of a set of rules S, closure(S), is the set of all
rules that are logically implied by S.

For example of rules S={x ≤ 10, x=y}, closure(S)= {x ≤ 10, x = y, y ≤ 10},
since y ≤ 10 is logically implied by S.

Definition 4. Given an axiom node α with input ports in(α, 1), . . . , in(α, n)
from tables table1, . . . , tablen respectively, one step constraint projection

464 J. Liu et al.

Γ(α) propagates data quality rules rules(resultTable(α)) to tables table1, . . .,
tablen through axiom node α.

One step constraint projection Γ(α) works in the following three steps:

1. compute the union Ψ(α) = rules(resultTable(α)) ∪ mappings(α);
2. compute the closure of the union closure(Ψ(α));
3. project each data quality rule in closure(Ψ(α)) onto every producer in

producers(α).

In step 1, before performing union, each mapping in mappings(α)of the for-
mat {attr1, . . . , attrn}@inport is replaced with a set of rules {attr1 = attr1@
inport, . . . , attrn = attrn@inport}. After this step, there are built-in predi-
cates in Ψ(α). The attributes with “@inport” are from producers(α).

In step 2, we compute the closure closure(Ψ(α)). If a contradiction is detected
when computing the closure, the whole constraint propagation is aborted and
an error is reported: there are errors in the ETL workflow design. For instance,
if x < 10 ∈ rules(resultTable(α)) and mappings(α) = {x@inport > 20,
x = x@inport}, then the union Ψ(α) = {x < 10, x@inport > 20, x = x@
inport}. We can infer that both x@inport < 10 and x@inport > 20 are in
closure(Ψ(α)), which is a contradiction.

Step 3 works differently for different data quality rules and axiom nodes. We
elaborate below on how to project a data quality rule r onto table tablei from
input port in(α, i).

Operations without functions: selection, projection, rename, union, intersec-
tion, difference, product, join, not null, add field, ordering. There is no function
application involved in these operations. Therefore, it is simpler to handle and
the constraint projection rule, Rule 1, can be applied.

Rule 1. If attrs(r) ⊆ attrs(tablei), then data quality rule r is added
to rules(tablei).

Example 2. Consider the data quality rules in Example 1, we know:

rules(DW) = rules(resultTable(C1))
= {Salary ≥ 50, 000, Revenue ≥ 1, 000, 000,

Size ≥ 10, notNull(Salary), pk(EId)}.

Since operations {C1, A5, A4} do not change the involved set of attributes, by
Rule 1, we get:

rules(resultTable(C1)) = rules(resultTable(A5)) =
rules(resultTable(A4)) = rules(resultTable(A3)).

But operation A3 changes the involved set of attributes via mappings(A3), which
pushes rules (resultTable(A3)) onto input port in(A3, 2) as:

rules(resultTable(A2)) = {Revenue ≥ 1, 000, 000, Size ≥ 10}

ETL Workflow Analysis and Verification Using BCP 465

We also notice that some rules are relaxed in this process. If a data qual-
ity rule involves more than one tuples in some relation, it is relaxed when it is
pushed through union, intersection, product, and join. For example, pk(EId) in
rules(resultTable(A5)) and pk(EId) in rules(resultTable(B8)) cannot guar-
antee pk(EId) in rules(DW).

Operations with functions: aggregation, function application. There are func-
tion applications involved in these operations, and thus more complex.

Rule 2.1. If axiom node α is aggregate operation on tablei min(attr)
and r is min(attr) ≥ val (or min(attr) > val), then rule attr ≥ val
(or attr > val) is added to rules(tablei).
Rule 2.2. If axiom node α is aggregate operation on tablei max(attr)
and r is max(attr) ≤ val (or max(attr) < val), then rule attr ≤ val
(or attr < val) is added to rules(tablei).
Rule 2.3. If axiom node α is aggregate operation on tablei which
is grouped by groupByAttrs and attrs(r) ⊆ goupeByAttrs, then data
quality rule r is added to rules(tablei).

Example 3. In Example 2, we know rules(resultTable(A2)) = {Revenue ≥
1, 000, 000, Size ≥ 10}. Axiom node A2 is an aggregateion operation on at-
tributes {DeptId, DeptName,Revenue}, by Rule 2.3, Revenue ≥ 1, 000, 000 is
pushed down to resultTable(A1), while Size ≥ 10 is not.

Rule 3. If axiom node α is a function application newname = f(oldname),
f has an inverse function and monotonic, and attrs(r) ⊆ attrs(tablei),
then replace(r, newname, f(oldname)) is added to rules(tablei), where
replace(r, newname, f(oldname))replaces every occurrence of newname in
rule r with f(oldname).

Example 4. In Example 1, we know that

rules(resultTable(B8)) = {Salary ≥ 50, 000, Revenue ≥ 1, 000, 000,

Size ≥ 10, notNull(Salary), pk(EId)}.

Axiom node B8 coverts Revenue from Chinese RMB to US dollars by applying

Revenue = moneyC2A(Revenue@in(B8, 1))
= Revenue@in(B8, 1)/7

We know moneyC2A is monotonically increasing and bijective. By Rule 3, it can
be pushed down to resultTable(B7) as

Revenue@in(B8, 1) ≥ 7, 000, 000

A similar process is applied to axiom node B7 for the conversion of attribute
Salary, as shown in Example 1 of Section 2.

466 J. Liu et al.

Let queue candidates contain the set of relation nodes whose rules are still
to be pushed backwards. After defining one step constraint projection rules, we
formalize the proposed backwards constraint propagation algorithm below.

Algorithm 2. Constraint Propagation

for (each element α ∈ producers(DW)) {
rules(α) = rules(DW);
candidates.push(α);

}
while (! empty(candidates)) {

i = candidates.pop();
set handlers(i);
let axiom node α output result table i;
perform Γ(α);
mark each input port of α as processed;
for (each element j ∈ producers(α)) {

if (all the output ports are processed) {
candidates.push(j);

}
}

}
for (each relation node α) {

minimize rules(α);
}

The last step of constraint propagation is to minimize the set of data qual-
ity rules at each relation node. There are two kinds of redundancies: 1) when
computing closure, we may introduce more than necessary rules; 2) when
rules(resultTable(α)) are pushed down to producers(α), where they are ver-
ified, it is redundant to verify them again at resultTable(α). Redundancies of
the first kind can be removed by the known technique transitive reduction, which
repeatedly removes a rule if it is logically implied by the rest of the closure. For the
second kind of redundancies, if a data quality rule r in rules(resultTable(α))
is projected onto all producers(α) and not relaxed, it is removed.

Example 5. Consider Example 1, after constraint propagation, we get handlers
and rules of each relation node. The handler handler(α) of relation node α is
to keep records of data exceptions. The rules of each relation node are:

rules(resultTable(C1)) = {pk(EId)}
rules(resultTable(A2)) = {Size ≥ 10}

rules(DS1.employee) = {Salary ≥ 50, 000, notNull(Salary), pk(EId)}
rules(DS1.department) = {Revenue ≥ 1, 000, 000}
rules(resultTable(B2)) = {Size ≥ 10}

rules(DS2.employee) = {Salary ≥ 350, 000, notNull(Salary), pk(EId)}
rules(DS2.department) = {Revenue ≥ 7, 000, 000}

ETL Workflow Analysis and Verification Using BCP 467

The rules of all other relation nodes are ∅. The data quality rules are propagated
down to their earliest verifiable nodes.

3.4 Correctness and Complexity

Theorem 1. Suppose Γ(α) projects data quality rule r onto table tablei as ri.
If resultTable(α) satisfies r, then tablei satisfies ri. If tablei does not satisfy
ri, then resultTable(α) does not satisfy r.

Proof. The basic idea is that: for an axiom node α, in order that resultTable(α)
satisfies its rules, each table in producers(α) should provide data that satisfies
both the projections of rules(resultTable(α)) and the operation conditions,
which are captured by mappings(α).

Theorem 2. One step constraint projection Γ(α) finishes in polynomial time of
the number of rules.

Proof. Step 1 finishes in constant time. Step 2 finishes in polynomial time. Step
3 finishes in constant time. Overall Γ(α) finishes in polynomial time.

Theorem 3. Constraint propagation finish in polynomial time.

Proof. From Theorem 2, Γ(α) finishes in polynomial time, and constraint prop-
agation performs one step constraint projection only once for each constraint.
Overall constraint propagation finishes in polynomial time.

4 Related Works

There have been some studies in data cleaning and data quality control in ETL
workflows, both industrial and academic. We discuss related works below.

ETL workflow design: The ETL market is increasing rapidly and so are the
powerful features of leading data integration tools [11]. SSIS from Microsoft
supports data cleaning operations such as duplicate removal and exceptional
data filtering. Oracle Data Integrator allows users to define filters at data sources.
Some other ETL tools supports modular design and users can plug in their own
data quality control module, such as Informatica Data Quality5 allows business
owners to configure data quality control processes. It supports data analysis,
cleaning, matching and data monitoring. None of these system can perform ETL
workflow analysis and target-end restriction verification automatically, which is
the focus of this paper.

[12] presented a generic and customizable framework of ETL workflow designs.
They proposed a metamodel to define ETL activities, and employed declarative
database programming language, LDL, to define ETL activity semantics. We
used this framework in design the ETL workflow of Example 1.
5 http://www.informatica.com/products services/data quality/Pages/index.aspx

468 J. Liu et al.

Query optimization: ETL workflow design can be optimized using predicate
pushdown techniques [13]. [3] generalized this techniques to handle aggregations
and other constructs such as NOT EXISTS. Their methods move predicates
bottom-up and then top-down in the query tree, and thereby enables moving
predicates to applicable nodes across the whole query tree. [5] further generalized
this techniques to query deductive databases. Deductive database programs are
modeled as system graphs, and the evaluation of queries are viewed as data flows
in system graphs. They impose filters on edges to verify predicates. [9] modeled
the logical optimization of ETL workflows as state-space search problems. Two
unary activities can be swapped if it does not affect results. This paper focuses
propagating target-end restrictions backwards to data sources. Although the
resulting data quality rules help to optimize the design of ETL workflows, it is
not our main topic.

Consistent Query Answering: It seeks consistent and correct answers when
there are data exceptions. Some techniques perform query rewriting to incorpo-
rate the given integrity constraints. [14] gave a comprehensive survey. [15] studied
data integration with integrity constraints. They focused on global schema anal-
ysis with primary key and foreign key constraints, and presented techniques to
effectively answer queries in this situation. This paper is dealing with a more
complete set of integrity constraints, not just primary and foreign key analysis.

5 Conclusions

In this paper, an approach (BCP) is proposed that automatically analyzes ETL
workflows and verifies target-end restriction as early as possible. It supports all
relation algebra operators and user defined functions if they are monotonic and
bijective, which covers most ETL data transformation functions. Our analysis
reports the set of integrity constraints that a given ETL workflow must satisfy
at every point in the workflow, and it helps to optimize ETL workflow design.
Future work includes extending the approach to support more complete ETL
operations, implementing it completely in our ETL tool OnceDI, and run more
extensive benchmarks.

Acknowledgements. This work was partially supported by the Na-
tional Grand Fundamental Research 973 Program of China under Grant
No.2009CB320704; the National Natural Science Foundation of China under
Grant No.90718033, 60773028; National High-Tech Research and Development
Plan of China under Grant No.2007AA01Z149 and No.2007AA04Z148. We also
thank the anonymous reviewers for their very insightful comments.

References

1. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Ware-
houses. Springer, New York (2001)

2. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull. 23(4), 3–13 (2000)

ETL Workflow Analysis and Verification Using BCP 469

3. Levy, A.Y., Mumick, I.S., Sagiv, Y.: Query optimization by predicate move-around.
In: VLDB 1994: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 96–107. Morgan Kaufmann, San Francisco (1994)

4. Kifer, M., Lozinskii, E.L.: Filtering data flow in deductive databases. In: Atzeni, P.,
Ausiello, G. (eds.) ICDT 1986. LNCS, vol. 243, pp. 186–202. Springer, Heidelberg
(1986)

5. Kifer, M., Lozinskii, E.L.: On compile-time query optimization in deductive
databases by means of static filtering. ACM Trans. Database Syst. 15(3), 385–
426 (1990)

6. Srivastava, D., Ramakrishnan, R.: Pushing constraint selections. In: PODS 1992:
Proceedings of the eleventh ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pp. 301–315. ACM Press, New York (1992)

7. Marriott, K.G., Stuckey, P.J.: The 3 r’s of optimizing constraint logic programs:
refinement, removal and reordering. In: POPL 1993: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 334–
344. ACM Press, New York (1993)

8. Jiangang, M., Dan, Y.: Data integration middleware. oncedi. 2.0. Technical Report
(2004)

9. Simitsis, A., Vassiliadis, P., Sellis, T.: State-space optimization of etl workflows.
IEEE Trans. on Knowl. and Data Eng. 17(10), 1404–1419 (2005)

10. Liu, J., Liang, S., Ye, D., Wei, J., Huang, T.: Etl workflow analysis and verification
using backwards constraint propagation. Technical Report (2009)

11. Friedman, T., Beyer, M.A., Bitterer, A.: Magic quadrant for data integration tools
(2008)

12. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.: A framework for the de-
sign of etl scenarios. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681,
pp. 520–535. Springer, Heidelberg (2003)

13. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume 1 and
2. Computer Science Press, New York (1989)

14. Chomicki, J.: Consistent query answering: Five easy pieces. In: Proceedings of In-
ternational Conference on Database Theory, pp. 68–76. Springer, Heidelberg (2007)

15. Cal̀ı, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under
integrity constraints. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 262–279. Springer, Heidelberg (2002)

The Declarative Approach to Business Process
Execution: An Empirical Test

Barbara Weber1, Hajo A. Reijers2, Stefan Zugal1, and Werner Wild3

1 Quality Engineering Research Group, University of Innsbruck, Austria
{Barbara.Weber,Stefan.Zugal}@uibk.ac.at

2 School of Industrial Engineering, Eindhoven Univ. of Technology, The Netherlands
H.A.Reijers@tue.nl

3 Evolution Consulting, Innsbruck, Austria
Werner.Wild@evolution.at

Abstract. Declarative approaches have been proposed to counter the
limited flexibility of the traditional imperative modeling paradigm, but
little empirical insights are available into their actual strengths and us-
age. In particular, it is unclear whether end-users are really capable of
adjusting a particular plan to execute a business process when using a
declarative approach. Our paper addresses this knowledge gap by de-
scribing the design, execution, and results of a controlled experiment in
which varying levels of constraints are imposed on the way a group of
subjects can execute a process. The results suggest that our subjects
can effectively deal with increased levels of constraints when relying on
a declarative approach. This outcome supports the viability of this ap-
proach, justifying its further development and application.

1 Introduction

In today’s dynamic business environment the economic success of an enterprise
depends on its ability to react to various changes, like shifts in customers’ at-
titudes or the introduction of new laws [1]. Process-aware information systems
(PAISs) offer a promising perspective on shaping this capability, resulting in a
growing interest to align information systems in a process-oriented way [2]. Yet,
a critical success factor in applying a PAIS is that it can flexibly deal with pro-
cess changes [3]. To address the need for flexible PAISs, competing paradigms
enabling process changes and process flexibility have been developed, e.g., adap-
tive processes [4], case handling [5], declarative processes [6], and late binding
and modeling [7] – for an overview see [8]. All of these approaches relax the
strict separation of build-time (i.e., modeling or planning) and run-time (i.e.,
execution), which is typical for plan-driven planning approaches as realized in
traditional workflow management systems (cf. Fig. 1). By closely interweaving
planning and execution the above mentioned approaches allow for a more agile
way of planning. In particular, users are empowered to defer decisions regarding
the exact control-flow to run-time, when more information is available.

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 470–485, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Declarative Approach to Business Process Execution: An Empirical Test 471

Depending on the concrete approach, planning and execution are interweaved
to different degrees, resulting in different levels of decision deferral. The high-
est degree of decision deferral is fostered by Late Composition [8] (e.g., as en-
abled through a declarative approach) which describes activities that can be
performed as well as constraints prohibiting undesired behavior. An example
of a constraint in an aviation process would be that crew duty times cannot
exceed a predefined threshold. A declarative approach, therefore, seems to be
particularly promising to support highly dynamic processes [6,9]. The support
for partial workflows [9] allowing users to defer decisions to run-time [8], the
absence of over-specification [6], and more maneuvering room for end users [6]
are all advantages commonly attributed to declarative processes. Although the
benefits of declarative approaches seem rather evident, such approaches are not
widely adopted yet in practice. In addition, there is a lack of empirical evidence
on how well declarative approaches perform in real-world settings. In particu-
lar, it is unclear how well users can cope with the gained flexibility provided
by declarative approaches, especially when processes and their context become
rather complex.

The goal of this paper is to pick up on the demand for more empirical insights
into the use of declarative approaches. Specifically, we aim to investigate how
different levels of constraints may impede on the success that end users will
have using a declarative approach for handling a particular business case (i.e.,
process instance). While it might be expected that the declarative approach will
be effective to deal with business cases when few constraints apply, it is not clear
whether end users are capable of translating a large number of constraints into
effective updates on their initial plans. Because all constraints must be satisfied,
one can argue that the sheer number of constraints will obscure from an end
user’s view what proper actions are still available. But proponents of declarative
approaches to process planning and execution expect that end users will have
little difficulty in doing this. In fact, this would exactly be one of its strengths
[10,11,12], although this has not been established yet in an empirical setting.

To test whether end users can indeed deal with constraints, we conducted
a controlled experiment with 41 students from both the Eindhoven Univ. of
Technology and the Univ. of Innsbruck. In that test, we have been particularly
interested in the potential impact of such constraints on the effectiveness of ex-
ecuting a process. This paper reports on the results of what we assume to be the
first empirical work testing the declarative modeling paradigm. The structure of
this paper is as follows. Section 2 provides backgrounds, while Section 3 describes
our experimental framework. Section 4 covers the execution and results of our
experiment. Finally, Section 5 discusses related work, followed by a conclusion.

2 Background

This section provides background information on planning approaches, presents
different techniques for decision deferral, introduces declarative processes as well
as the software we used for our experiment, the Alaska Simulator.

472 B. Weber et al.

2.1 Planning Approaches

The flexibility of existing PAISs is significantly influenced by the underlying
planning approach. In the following, we differentiate between plan-driven, agile
and chaotic planning approaches, each of which assumes a completely different
view on planning. Both plan-driven and agile approaches consider planning to
be an essential activity, while chaotic approaches often lack a sufficient degree of
planning and regard plans as unnecessary paperwork. In plan-driven approaches,
the planning is usually done at the beginning and is not a repeated effort like in
agile approaches (cf. Fig. 1). Although in both plan-driven and agile approaches
the value of planning is appreciated, they have entirely different perceptions of a
plan. In the former a plan is viewed as a schema for execution. Uncertainty is ad-
dressed by carefully planning everything upfront, which is appropriate for highly
predictable processes. In contrast, agile approaches use a plan more like a guide-
line supporting decision making and recognize that in dynamic environments
plans are quickly outdated and become inaccurate [13]. Decisions are made at
the last responsible moment, when most information is available [1].

Plan-Driven
Chaotic

Agile

Planning

Execution Execution

Planning

Execution

Degree of Pre-planning

LowHigh

Fig. 1. Different Planning Approaches

2.2 Dealing with Uncertainty by Deferring Decisions

When examining existing PAISs, four different patterns for deferring decisions
to the last responsible moment can be identified [8]. The Multi-Instance Activity
pattern offers the least amount of freedom during run-time. It allows users to
defer the decision on how often a specific activity should be executed to run-
time, while the activity itself needs to be predefined. The Late Binding pattern
offers slightly more flexibility by deferring the selection of the implementation of
a particular process activity to run-time. Prior to execution, only a placeholder
activity has to be provided; the concrete implementation is selected during run-
time from a set of predefined fragments. The Late Modeling pattern goes one
step beyond this and allows for the modeling of selected parts of the process
schema at run-time. Prior to execution, a placeholder activity as well as a set
of modeling constraints has to be defined. Most flexibility is offered by the Late
Composition pattern, which allows users to compose process fragments from the
process repository on the fly. No predefined model is required, as the business
case can be created in an ad-hoc way by selecting activities from a repository,

The Declarative Approach to Business Process Execution: An Empirical Test 473

while respecting all existing constraints. Consequently, Late Composition allows
users to freely switch between process modeling and execution. The focus of this
paper will be on Late Composition as enabled by declarative processes, which
allows for the maximum level of flexibility.

2.3 Declarative Processes

There is a long tradition of modeling business processes in an imperative way.
Process modeling languages supporting this paradigm, like BPMN, BPEL and
UML Activity Diagrams, are widely used. Recently, declarative approaches have
received increased interest and suggest a fundamentally different way of describ-
ing business processes [14]. While imperative models specify exactly how things
have to be done, declarative approaches only focus on the logic that governs the
interplay of actions in the process by describing (1) the activities that can be
performed, as well as (2) constraints prohibiting undesired behavior. Imperative
models take an ‘inside-to-outside’ approach by requiring all execution alterna-
tives to be explicitly specified in the model. Declarative models, in turn, take
an ‘outside-to-inside’ approach: constraints implicitly specify execution alterna-
tives as all alternatives have to satisfy the constraints [15]. Adding additional
constraints means discarding some execution alternatives (cf. Fig. 2). This re-
sults in a coarse up-front specification of a process, which can then be refined
iteratively during run-time. Typical constraints described in literature can be
roughly divided into three classes (e.g., [7,14]): constraints restricting the se-
lection of activities (e.g., the minimum or maximum occurrence of activities,
mutual exclusion, co-requisite), the ordering of activities (e.g., pre-requisite or
response constraints) or the use of resources (e.g., execution time of activities,
time difference between activities, budget, etc.).

Fig. 2. Declarative Approaches to Process Modeling [11]

2.4 The Alaska Simulator

To foster the comparison of different approaches for process flexibility the Alaska
Simulator1 has been implemented, which takes a journey as metaphor for a
business process. The similarities being exploited here are that regardless whether

1 Developed at the University of Innsbruck, http://www.alaskasimulator.org

474 B. Weber et al.

a journey or a business process is executed, various steps must be planned and
carried out, even if the actual execution of those steps may be different from
what is initially foreseen. Furthermore, journey planning is an attractive context
for many people to become engaged in, which highly improves their willingness
to use the system for experimental purposes.

In the Alaska Simulator, a plan can either be created in a plan-driven or in
a more agile way (cf. Section 2.1). The Alaska Simulator also provides support
for Late Composition as enabled by declarative processes. The actions of a jour-
ney, like travel activities, routes and overnight stays correspond to activities in
the business process. For optimizing the execution of a particular business case,
information about benefits (i.e., business value), cost and duration of activities
is essential. Incomplete information prior to execution is a characteristic of both
journeys and highly flexible business processes and is best handled by waiting un-
til more information is available (cf. Section 2.2). The business value of a travel
activity is not predefined, but can vary depending on the weather conditions
during the journey. Thereby, the degree of variation depends on the activity’s
reliability. When composing a concrete business case, different constraints like
selection constraints, ordering constraints or resource constraints have to be con-
sidered (cf. Section 2.3), similar constraints also exist when planning a journey
(e.g., mandatory activities, dependencies between activities).

Fig. 3 depicts the graphical user interface of the Alaska Simulator. Users
can compose their individual travel plan by dragging available actions from the
Available Actions View (3) onto the travel itinerary (1). Actions are usually
only available at a particular location on the map (4). Existing constraints are

Fig. 3. Screenshot of the Alaska Simulator

The Declarative Approach to Business Process Execution: An Empirical Test 475

displayed in the Constraint View (2) and have to be considered when composing
a concrete journey. After each user action, the journey is validated and the user
is informed about any constraint violations and plan inconsistencies(5).

3 Experiment Definition and Planning

The main goal of our experiment is to evaluate the outcome of end-users execut-
ing a business process that is guided by a declarative approach under varying
numbers of constraints. This section explains the setup of our experiment (cf.
Section 3.1) and introduces its specific design (cf. Section 3.2). Factors threat-
ening the validity of the experiment results, as well as potential mitigations, are
discussed in Section 3.3. We follow the recommendations given in [16] in setting
up and describing an experiment throughout this section.

3.1 Experiment Setup

This section describes the subjects, objects and selected variables of our ex-
periment, introduces our hypothesis and presents the instrumentation and data
collection procedure.

Subjects: Subjects are 25 students of a graduate course on Business Process
Management at Eindhoven University of Technology and 16 students of a similar
course at the University of Innsbruck.

Objects: The objects to be modeled and executed are two declarative process
models representing two journeys that must be planned and executed (referred
to as Configuration Alaska and Configuration California). These configurations
comprise activities to be executed, constraints that restrict their execution as
well as their ordering, and events that might occur during run-time. For example,
between a Diving activity and a Flightseeing activity there must be a rest
period of two days to prevent aeroembolism. For each of the configurations, two
variants are created: A and B, differing in the number of constraints only. To
be specific, variant A contains a true subset of the constraints of variant B. An
overview of the different variant characteristics is given in Fig. 4. Note that in
addition to the constraints mentioned, in both variants all travel activities but
one could be executed at most once, e.g., not visiting the Golden Gate bridge
twice. To cover a broad and representative set of constraints we ensured that
both configurations comprise constraints belonging to all three typical constraint
classes (i.e., selection, ordering and resource constraints).

Factor and Factor Levels: The number of constraints in the model is the
considered factor with levels “low” and “high”. Variant A of a configuration
corresponds to factor level “low” and variant B to factor level “high”.

Response Variable: The response variable is the business value the subjects
achieve when executing the journey. Thereby, the maximum achievable business

476 B. Weber et al.

Fig. 4. Characteristics of the Configuration Variants

value for each activity is known upfront, whereas the value actually gained de-
pends on the weather conditions during the journey (in the upfront phase only
statistical data about the weather and the degree to which the business value
can vary are known)2. To ensure comparability of results, weather conditions are
the same for each subject.

Hypothesis Formulation: In our experiment we investigate whether adding
additional constraints has an influence on the response variable business value.
Based on this the following hypothesis is derived:

– Null hypothesis H0,1: There is no significant difference in the business
values of configurations with a low and a high level of constraints.

– Alternative hypothesis H1,1: There is a significant difference in the busi-
ness values of configurations with a low and a high level of constraints.

Instrumentation: To precisely measure our response variable we have imple-
mented a logging function in the Alaska Simulator, which automatically records
the required data.

Data Analysis Procedure: For data analysis well-established statistical meth-
ods and standard metrics are applied (cf. Section 4.2 for details).

3.2 Experiment Design

Literature on software experiments provides various design guidelines for setting
up an experiment (e.g., [17]). Considering these design criteria, we accomplish
our experiment as a balanced single factor experiment with repeated measure-
ment (cf. Fig. 5). Our experiment is denoted as single factor experiment, since
it investigates the effects of one factor (i.e., number of constraints in a config-
uration) on a common response variable (e.g., business value). Our experiment
design also allows us to analyze variations of a factor called factor levels (i.e.,
configurations with few and with many constraints). The response variable is

2 A detailed description on how to calculate the business value can be found in the
Alaska Simulator’s documentation (http://www.alaskasimulator.org).

The Declarative Approach to Business Process Execution: An Empirical Test 477

determined when the participants of the experiment (i.e., subjects) apply the
factor or factor levels to an object (i.e., Configuration Alaska or Configuration
California). We denote our experiment as balanced, as all factor levels are used
by all participants of the experiment, i.e., each subject has to plan a journey with
both few and many constraints. This enables repeated measurements and thus
the collection of more precise data, since every subject generates data for every
treated factor level. Generally, repeated measurements can be realized in differ-
ent ways. We use a frequently applied variant which is based on two subsequent
runs (cf. Fig. 5). During the first run, half of the subjects (referred to as Group
1) apply few constraints to the treated object, while the other half (referred to
as Group 2) uses many constraints. After having completed the first run, the
second run begins. During this second run each subject applies the factor level
not treated so far to the object. In order to avoid learning effects we use two
different configurations for the two runs. Each subject was randomly assigned
to either Group 1 or Group 2.

Factor Level 1:
Few Constraints

California A
Group 1

n/2 Participants

First Run Second Run

Factor Level 2:
Many Constraints California B

Group 2

n/2 Participants

Factor Level 2:
Many Constraints Alaska B

Group 1

n/2 Participants

Factor Level 1:
Few Constraints Alaska A

Group 2

n/2 Participants

Experiment Eindhoven

Experiment Innsbruck (replication)

Fig. 5. Design of our Balanced Single Factor Experiment

3.3 Risk Analysis and Mitigations

When accomplishing experimental research related risks have to be taken into
account as well. Generally, factors exist that threaten the internal validity (“Are
the claims we made about our measurements correct?”), as well as the external
validity (“Can the claims we made be generalized?”) of an experiment. In our
context, threats to internal validity are:

People: The students participating in our experiment differ in their skills and
productivity. In particular, different experience levels in terms of process mod-
eling, planning and scheduling may have an influence on the students’ perfor-
mance. This issue can only be balanced by conducting the experiment with a
sufficiently large and representative set of students and to perform replications
of the experiment. The number of 41 students seems sufficiently large to achieve
such a balance. Furthermore, the experiment was replicated in the setting of the
Innsbruck students after its initial conduct in the Eindhoven setting.

Besides, there are threats to the external validity of experiment results:

Students instead of professionals: Involving students instead of profession-
als can be critical. However, [18] has shown before that the results of student

478 B. Weber et al.

experiments are transferable and can provide valuable insights into an analyzed
problem domain. Moreover, for a journey planning and execution exercise as in
this experiment, which requires no knowledge of a business domain, graduate
students will probably have a similar ability as professionals.

Investigation of tools instead of concepts: In our experiment, the Alaska
Simulator was used as a representative for a tool providing modeling and execu-
tion support for declarative business processes. Obviously, the achieved results
to some degree depend on the quality of the used tool. Problems in understand-
ing the tool as well as poor user support might influence the results. To mitigate
this risk, considerable effort was put into designing an intuitive and easy to use
user interface. As the Alaska Simulator was used at the 2008 Austrian Research
Night by around 300 lay users of all ages (i.e., 7 to 70) without any considerable
problems, tool understandability is not a major issue. However, it has to be rec-
ognized that our results cannot be automatically transferred to tools with less
elaborated user support.

Choice of object: To mitigate the risk that the two variants of a configuration
(i.e., few and many constraints) do not differ enough in terms of complexity, we
performed pre-tests with several subjects (who did not further participate in the
experiment) and repeatedly refined the configurations based on their feedback.
We involved test persons both with in-depth knowledge of the Alaska Simulator
and novices.

4 Performing the Experiment

By now, the set-up of the experiment has been explained. Section 4.1 describes
the preparation and execution of the experiment. Then, the analysis and inter-
pretation of the experiment data is presented in Section 4.2. Finally, in Section
4.3, a discussion of the experiment results is provided.

4.1 Experimental Operation

Experimental Preparation: As part of the set-up of the intended experiment,
we prepared two travel configurations, i.e., Configuration California and Con-
figuration Alaska. For each of the configurations, two variants were created: A
(few constraints) and B (many constraints). To ensure that each configuration is
correct and can be executed in the available amount of time, we involved several
persons with different backgrounds in its pre-tests. Based on their feedback, the
configurations were refined in several iterations. Finally, we compiled a “starter
kit” for each participant, consisting of a screencast explaining the main features
of the simulator and a test configuration to casually explore.

Experimental Execution: The experiment was conducted at two distinct, sub-
sequent events. The first event took place during October 2008 in Eindhoven, a
replication was performed three weeks later in Innsbruck. Prior to the start of

The Declarative Approach to Business Process Execution: An Empirical Test 479

the experiment, all students had to attend an introductory lecture to obtain an
overview on declarative processes. During this lecture, we further informed them
about the goals and rules of the experiment. Afterwards, each student received
his/her “starter kit”. Having watched the screencast and having gone through the
test configuration, the actual experiment started. In the first run, the students had
to model and execute Configuration California. Half of them were assigned to the
A variant of the configuration (containing few constraints), the other half to the
more complex B variant. For all students, a familiarization phase of 25 minutes
was available, in which they could explore the configuration and gather relevant
domain knowledge. After this phase, the students had another 20 minutes to plan
and execute the journey exactly once, with the goal to optimize the business value
of the journey. In the second run of the experiment, Configuration Alaska had to
be executed and the variants for the groups were switched, i.e., the students who
had worked on an A variant had to work on the B variant and vice versa. Again,
the actual execution of the configuration to obtain a high business value was pre-
ceded by a familiarization phase of 25 minutes.

Data Validation: After having conducted the experiment, the logged data was
analyzed. We discarded the data of one Eindhoven student as the journey could
not be properly executed due to a bug in the software that occurred only for this
student. In addition, we did not consider the data of one Innsbruck student who
performed the wrong variant of Configuration Alaska (A instead of B) in the
second run. Finally, data provided by 25 Eindhoven students and 16 Innsbruck
students were used in our data analysis.

4.2 Data Analysis

In this section, we describe the analysis of the gathered data and interpret the
obtained results.

Descriptive Analysis: Based on raw data from the log of the Alaska Simulator
we calculated some descriptive statistics for the response variable business value
(cf. Fig. 6). By analyzing Fig. 6 one can observe the following:

Experiment Eindhoven
California A 13 0 4778,59 3477,39 1298,44
California B 12 0 4956,12 2278,75 2083,20
Total 25 0 4956,12 2902,04 1790,41
Alaska A 12 0 7254,13 5147,90 1887,27
Alaska B 13 0 7580,83 5117,30 2441,38
Total 25 0 7580,83 5131,99 2147,77
Experiment Innsbruck
California A 8 0 6473,07 4563,34 1997,49
California B 8 2356,34 5816,09 4571,13 1179,95
Total 16 0 6473,07 4567,26 1584,84
Alaska A 8 4966,54 8328,13 6620,14 1107,89
Alaska B 8 5650,97 9043,25 7409,52 1035,02
Total 16 4966,54 9043,25 7014,83 1113,05

p p

Fig. 6. Descriptive Statistics for Response Variable ‘Business Value’

480 B. Weber et al.

– For the Eindhoven sample, the mean business value for Configuration Cali-
fornia A is higher than that for Configuration California B.

– For the Eindhoven sample, the mean business values for Configurations
Alaska A and Alaska B are rather similar.

– For the Innsbruck sample the mean business value for Configuration Cali-
fornia A is rather similar to that for Configuration California B.

– For the Innsbruck sample the mean business value for Configuration Alaska
B is higher that that for Configuration Alaska A.

The question is whether the noted differences are statistically significant.

Data Plausibility: We analyzed data plausibility based on box-whisker-plot
diagrams, which visualize the distribution of a sample and particularly show
outliers. The diagram takes the form of a box that spans the distance between
the 25% quartile and the 75% quartile (the so called interquartile range – IQR)
surrounding the median which splits the box into two parts. The “whiskers”
are straight lines extending from the ends of the box, the length of a whisker is
at most 1.5 times the interquartile range. All results outside the whiskers can
be considered as outliers. Fig. 7A shows the outliers for the Eindhoven sample.
For all configurations except for California B outliers exist with respect to the
obtained business values. As can be seen in Fig. 7B, for the Innsbruck sample only
outliers exist for Configuration California A, while all data from the remaining
configurations lie within the boxed areas. At a first glance, the number of outliers
may appear rather high. However, this result can be explained by the fact that
journeys which were finished with constraint violations were assigned a business
value of 0. When these values are not considered, only one outlier remains for
the Eindhoven sample and no outliers for the Innsbruck sample. Thus, plausible
data distributions seem to be in effect.

Testing for Differences in Business Value: To test for differences in busi-
ness values, we compare the business values obtained by the subjects using

A) B)

Fig. 7. Data Distribution (Box-Whisker-Plot Diagrams)

The Declarative Approach to Business Process Execution: An Empirical Test 481

Configuration California A in the first run with those using California B. Fur-
thermore, we compare the business values for the Alaska variants in the second
run.

Eindhoven Experiment: Data for Configuration California A from the Eind-
hoven sample is not normally distributed, with standardized skewness and stan-
dardized kurtosis values outside the normal range. Therefore, a t-test cannot be
applied to determine any differences in this case and the non-parametric Mann-
Whitney test [19] – which can be thought of as comparing the medians of the
distributions – is applied. With an obtained P-value of 0.125 (> 0.05), hypothe-
sis H0,1 cannot be rejected at a confidence level of 95%. Data for Configurations
Alaska A and B for the Eindhoven sample is also not normally distributed. Thus,
the non-parametric Mann-Whitney test is applied, resulting in a P-value of 0.643
(> 0.05). Like for the first test run, hypothesis H0,1 cannot be rejected. So, for
both Configuration Alaska and Configuration California there is no statistically
significant difference between the business values obtained within their simple
(A) and complex (B) variants.

Innsbruck Experiment: Data for California A from the Innsbruck sample
is not normally distributed, thus a t-test is not applicable to determine any
differences. Again, we apply the non-parametric Mann-Whitney test and obtain
a P-value of 0.636 (> 0.05). Based on this result, hypothesis H0,1 cannot be
rejected at a confidence level of 95%. Data for Configurations Alaska A and
Alaska B of the Innsbruck sample are both normally distributed and have the
same variance. Therefore, we apply the t-test and obtain a P-value of 0.163
(> 0.05). Based on this, hypothesis H0,1 cannot be rejected at a confidence
level of 95%. The results of the replication confirm the results of the Eindhoven
experiment. Again, for both the Alaska and the California configuration there is
no statistically significant difference between the business values obtained within
their simple (A) and complex (B) variants.

Overall Conclusion: Considering the results, strong support emerges for the
conclusion that hypothesis H0,1 cannot be rejected, i.e., no significant difference
can be found between obtained business values in configurations with a low and
a high level of constraints.

4.3 Discussion of Results

The major finding from our data analysis is that through our experiment no
statistically significant differences can be found in the outcome of planning and
executing a journey when we considerably vary the level of constraints that end-
users have to take into account. This is supportive of the argument that end-users
can use agile planning as enabled by a declarative approach to effectively deal
with substantially varying levels of constraints.

The most plausible alternative explanation for the absence of any differences
is that the configuration variants were not sufficiently distinguishable. We would

482 B. Weber et al.

like to recall, however, that we refined the various configurations and their vari-
ants until the involved subjects in our pre-tests perceived a notable and consid-
erable difference in difficulty between them (see Section 3.3).

Another alternative explanation, and a more technical one, is that the range of
potential business values does not have enough spread to identify any differences.
Yet, the coefficient of variation across the obtained business values for the various
samples has ranged from 14% to 91%. This potentially offers sufficient variation
to identify statistical differences, if there is any.

Considering that the alternative explanations do not appear stronger than the
explanation we propose, i.e., the suitability and robustness of agile planning, the
question that needs to be raised is to what extent our findings can be generalized.

First of all, planning a journey in the Alaska Simulator is not quite the same
as collectively executing a business process. Furthermore, business processes can
take on widely different forms and the required mix of support and flexibility
may vary likewise. At the same time, the journey metaphor seems not to be
a major threat to the validity of our results as similarities outweigh existing
differences and the configurations used in the experiment range well beyond the
size of toy examples, as they typically cover 22 to 26 actions to be planned and
executed. It is clear to us that additional work is required to extend the scope
and content of the experiment matter towards even more realistic settings. As
is often the case, raising the level of external validity may be difficult without
affecting the internal validity. In other words, it is questionable how the size and
duration of a similar experiment could be extended to better reflect a realistic
scenario without suffering from bad responses. Therefore, alternative empirical
evaluations, such as gaming or case studies, may be more attractive instruments
for further empirical research in this area.

Secondly, the Alaska Simulator provides its users means for creating a rough
plan which is then incrementally validated. As such, users are well supported to
become aware of constraint violations and resolve them. From a manual analysis
of the planning actions (which were all logged during the experiment) we can
establish that every subject created such a rough plan at the beginning. Based
on some earlier experiences using the Alaska Simulator where subjects were un-
successful when not following this approach, we suspect that the incremental
validation of constraint violations and the ability to create a rough plan is essen-
tial for a good performance. So, it is unlikely that our results can be replicated
by using a declarative system that does not provide this support, e.g., DECLARE
[6], which is a clear restriction on generalizing our results.

5 Related Work

Most existing work about flexibly dealing with exceptions, changes, and un-
certainty in the context of PAISs and related technologies is strongly design-
centered, i.e., aiming at the development of tools, techniques, and methodologies.
For overviews and discussions of these approaches, see [8,20,21].

The Declarative Approach to Business Process Execution: An Empirical Test 483

Only few empirical investigations exist that aim to establish the suitability
of the various proposed artifacts. In [22], the results of a controlled experiment
comparing a traditional workflow management system and case-handling are
described. The systems are compared with respect to their associated imple-
mentation and maintenance efforts. In turn, the impact of workflow technology
on PAIS development and PAIS maintenance is investigated in [23]. However,
these existing works primarily focus on traditional workflow technology, while
this paper is the first one investigating the declarative modeling paradigm. Other
empirical works with respect to PAISs mainly deal with establishing its contri-
bution to business performance improvement, e.g. [24,25], and the way end-users
appreciate such technologies, e.g. [26,27].

Worth mentioning here is a stream of research that relates to so-called change
patterns [8]. It provides a framework for the qualitative comparison of existing
flexibility approaches. This paper is complementary to that work by providing
empirical findings in addition to the qualitative data presented earlier.

6 Summary and Outlook

Although the advantages attributed to declarative processes are manifold (e.g.,
support for partial workflows allowing users to defer decisions to run-time, the
absence of over-specification as well as more room for end users to maneuver),
their practical application is still limited. Furthermore, strengths and weaknesses
of the declarative modeling paradigm are not yet well understood. In particu-
lar, it is unclear how well users can cope with the flexibility gained, especially
when processes and their context become rather complex as the number of con-
straints increases. This paper reports on the results from what is presumably
the first controlled experiment on the declarative process modeling paradigm.
Our results indicate end-users can effectively use agile planning as enabled by
a declarative approach over a considerable spectrum of constraints. However,
incremental validation of constraint violations and the ability to create a rough
plan seem essential ingredients for a good performance.

Our future work will aim at further investigating the practical suitability of
declarative processes, in particular their maintainability. Although declarative
workflows allow for easy changes of both business cases and process models
by modifying constraints [6], it is notoriously difficult to determine which con-
straints have to be modified and then to test the newly adapted set of constraints.
Acceptance testing, which is well established in software engineering, is known to
facilitate communication regarding the intent of the developed software. To en-
sure that constraint changes are performed as intended, we consider transferring
ideas from acceptance testing to the modeling of constraints.

In addition to this future line of research, we aim to investigate different
techniques for improving understandability of declarative process models (e.g.,
through modularization or the definition of higher-level constraints) and we plan
to validate our approach through further experiments.

484 B. Weber et al.

Finally, we believe that there is a need for a benchmark to compare differ-
ent declarative approaches. After all, it can be noted that different declarative
approaches vary in respect to the extent that they hide procedural information
from the modeler or the end user. It can be expected that results as we have
reported in this paper may vary along that spectrum.

To conclude this paper, we wish to express our hope that the presented results
will serve as an incentive for others to continue the promising development and
application of declarative approaches for the planning and execution of business
processes.

Acknowledgements. We thank G. Molina, M. Netjes, M. Song, J. Pinggera
and T. Schrettl for their much appreciated help in preparing and executing the
experiment.

References

1. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development:
From Concept to Cash. Addison-Wesley, Reading (2006)

2. Weske, M.: Business Process Management: Concepts, Methods, Technology.
Springer, Heidelberg (2007)

3. Lenz, R., Reichert, M.: IT Support for Healthcare Processes - Premises, Challenges,
Perspectives. Data and Knowledge Engineering, 39–58 (2007)

4. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10, 93–129 (1998)

5. Van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering 53, 129–162 (2005)

6. Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.: Constraint-Based
Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM
2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

7. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems 30, 349–378 (2005)

8. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support fea-
tures -enhancing flexibility in process-aware information systems. Data and Know-
eldge Engineering, 438–466 (2008)

9. Wainer, J., Bezerra, F., Barthelmess, P.: Tucupi: a flexible workflow system based
on overridable constraints. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 498–502. Springer, Heidelberg (2004)

10. Hull, R., et al.: Declarative workflows that support easy modification and dynamic
browsing. Software Engineering Notes 24, 69–78 (1999)

11. Pesic, M., van der Aalst, W.: A declarative approach for flexible business processes.
In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–
180. Springer, Heidelberg (2006)

12. Mulyar, N., Pesic, M., van der Aalst, W., Peleg, M.: Declarative and procedural
approaches for modelling clinical guidelines: Addressing flexibility issues. In: BPM
2007 International Workshops, pp. 335–364 (2008)

13. Cohn, M.: Agile Estimating and Planning. Prentice Hall Professional, Englewood
Cliffs (2006)

The Declarative Approach to Business Process Execution: An Empirical Test 485

14. van der Aalst, W., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. Technical report, BPMcenter.org (2006)

15. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Eindhoven University of Technology (2008),
http://alexandria.tue.nl/extra2/200811543.pdf

16. Wohlin, C., Runeson, R., Halst, M., Ohlsson, M., Regnell, B., Wesslen, A.: Exper-
imentation in Software Engineering: an Introduction. Kluwer, Dordrecht (2000)

17. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Springer, Heidelberg (2001)

18. Runeson, P.: Using students as experiment subjects - an analysis on graduate and
freshmen student data. In: Proc. EASE 2003, pp. 95–102 (2003)

19. Siegel, S.: Nonparametric statistics for the behavioral sciences. McGraw-Hill, New
York (1956)

20. Kammer, P., Bolcer, G., Taylor, R., Hitomi, A., Bergman, M.: Techniques for
Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative
Work (CSCW) 9(3), 269–292 (2000)

21. Reijers, H., Rigter, J., van der Aalst, W.: The case handling case. International
Journal of Cooperative Information Systems 12, 365–391 (2003)

22. Mutschler, B., Weber, B., Reichert, M.: Workflow management versus case handling
- results from a controlled software experiment. In: Proc. SAC 2008, pp. 82–89
(2008)

23. Kleiner, N.: Supporting usage–centered workflow design: Why and how?. In: Desel,
J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 227–243. Springer,
Heidelberg (2004)

24. Oba, M., Onoda, S., Komoda, N.: Evaluating the quantitative effects of workflow
systems based on real case. In: Proc. HICSS 2000 (2000)

25. Reijers, H., van der Aalst, W.: The effectiveness of workflow management sys-
tems: Predictions and lessons learned. International Journal of Information Man-
agement 25, 458–472 (2005)

26. Bowers, J., Button, G., Sharrock, W.: Workflow from within and without: technol-
ogy and cooperative work on the print industry shopfloor. In: Proc. CSCW 1995,
pp. 51–66. Kluwer Academic Publishers, Dordrecht (1995)

27. Poelmans, S.: Workarounds and distributed viscosity in a workflow system: a case
study. ACM SIGGROUP Bulletin 20, 11–12 (1999)

http://alexandria.tue.nl/extra2/200811543.pdf

Configurable Process Models:
Experiences from a Municipality Case Study

Florian Gottschalk1, Teun A.C. Wagemakers1, Monique H. Jansen-Vullers1,
Wil M.P. van der Aalst1,2, and Marcello La Rosa2

1 Eindhoven University of Technology, The Netherlands
{f.gottschalk,m.h.jansen-vullers,w.m.p.v.d.aalst}@tue.nl,

teun.wagemakers@pallas-athena.com
2 Queensland University of Technology, Brisbane, Australia

m.larosa@qut.edu.au

Abstract. Configurable process models integrate different variants of
a business process into a single model. Through configuration users of
such models can then combine the variants to derive a process model op-
timally fitting their individual needs. While techniques for such models
were suggested in previous research, this paper presents a case study in
which these techniques were extensively tested on a real-world scenario.
We gathered information from four Dutch municipalities on registra-
tion processes executed on a daily basis. For each process we identified
variations among municipalities and integrated them into a single, con-
figurable process model, which can be executed in the YAWL workflow
environment. We then evaluated the approach through interviews with
organizations that support municipalities in organizing and executing
their processes. The paper reports on both the feedback of the inter-
viewed partners and our own observations during the model creation.

Keywords: Business Process Models, Configuration, YAWL, Registra-
tion Process, Questionnaires, Case Study.

1 Introduction

Many processes in public administration are driven by legislation, e.g. the process
of renewing a drivers licence is constrained by law. Therefore, the processes exe-
cuted in the administration of municipalities are extensively regulated. Although
legislation is establishing the important steps, some freedom is left regarding the
concrete implementation of such processes. Hence, municipalities can still adapt
their processes to local needs and preferences, e.g. depending on the size of the
municipality, or on the services provided along with these processes.

Configurable process models were developed to align the variation options of
widely standardized processes with small variations like the ones executed by
municipalities. Further, they enable software providers to support the execu-
tion of these process variations through their service-oriented software. For this,
configurable process models integrate several process variants into a single pro-
cess model. To adapt this integrated model to individual needs, a configurable

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 486–500, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Configurable Process Models: Experiences from a Municipality Case Study 487

process model can be configured allowing an organization to disable all the un-
necessary process parts. In this way, an organization can derive a process model
that fits its individual needs without actually performing any process modeling
activities. If the configurable model is defined as a workflow specification, the
resulting models can then be executed through a workflow engine [5].

As disabling unnecessary process parts of the workflow definitions still re-
quires insights into the process modeling notation, this can be steered through a
questionnaire with domain-related questions. In this way, domain experts with-
out such skills can configure and derive executable workflow specifications fitting
their particular needs [7,8].

To evaluate the concept of configurable process models in practice, we per-
formed a case study with four municipalities of different sizes in the Nether-
lands. Using the YAWL workflow notation and its configuration extension [5],
we created configurable process models for four registration processes that are
executed within each of the selected municipalities on a daily basis. The four
configurable models incorporate all the variations in the execution of these pro-
cesses among the municipalities as well as the suggestions of a reference model
for these processes, i.e. 5x4=20 processes were used as input for creating these
models. Afterwards, we evaluated the practical usefulness of the resulting mod-
els through focus group interviews with software providers, consultants, and the
municipalities themselves. During these interviews the stakeholders could derive
individual process models for these four processes. To test whether the resulting
models conform to what they intended by answering the questionnaires, they
could execute the resulting process definitions using the YAWL system1.

The results of the case study are presented in this paper which is structured
as follows. Section 2 will provide some background information on configurable
process models and configurable YAWL, as well as on how these models can be
configured through questionnaires. Next, Section 3 first depicts how we created
the configurable models for the municipality processes before summarizing our
practical experiences during the model creation phase. Section 4 provides details
on the interviews we performed with the stakeholders, as well as the conclusions
from these interviews. The paper ends with a brief overview on similar case
studies in Section 5, and draws overall conclusions in Section 6.

2 Background

Configurable extensions have been suggested for several process modeling nota-
tions. In this case study we used configurable YAWL, i.e. an extension of the
YAWL notation aiming at configuration [5,7]. Using a workflow notation for
implementing the configurable model comes with the advantage that we can ex-
ecute the configured process models in the corresponding workflow engine and
thus test and demonstrate the practical feasibility of the suggested methodol-
ogy even to users unfamiliar with process modeling. In addition, the steering

1 http://www.yawlfoundation.org

http://www.yawlfoundation.org

488 F. Gottschalk et al.

of the configuration through a questionnaire aims at providing such domain ex-
perts with the ability to derive configurations for process models. In this way,
the adaptation of a business process model for later execution can be achieved
without extensive modeling skills.

2.1 Configurable YAWL

YAWL is a process modeling notation and workflow environment based on Petri
nets but extended with powerful features for cancelation, OR-joins, etc. It has
been developed with the aim to provide a notation with formal semantics that
supports all desired workflow patterns [1]. The YAWL system is open-source
and supports the execution and work distribution of workflows depicted in such
models even in production environments. Thus, although originally developed
as a proof of concept, the YAWL system can be used for practical applications.

Figure 1 depicts a simple YAWL model for the process executed by munici-
palities when a man registers that he will become the father of a not-yet-born
child although he is not married to the mother.2 In this model tasks are de-
picted as rectangles while circles represent conditions like the initial and final
condition in this example. Conditions mark the states between tasks but can be
omitted for simplicity (like in the example). Composite tasks enable the hier-
archical specification of sub-processes while split and join types of tasks allow
the specification of how the process should proceed in case a task splits or joins
the process’s control flow. For this, YAWL distinguishes an XOR-split (as in the
example in Figure 1) allowing the triggering of only one of the subsequent paths,
an AND-split requiring the triggering of all subsequent paths, and an OR-split
requiring the triggering of at least one subsequent path but allowing also for
path combinations. Similarly, a task with an XOR-join can be executed as soon
as one of its incoming paths is triggered, an AND-join requires that all incoming
arcs are triggered, and a task with an OR-join allows for the execution of the
task as soon as no further incoming paths can potentially be triggered at any
future point in time (see [1] for further details).

This routing behavior can be restricted by process configuration. For this
purpose, input ports are assigned to each task depicting how the task can be
triggered and output ports are assigned to depict which paths can be triggered
after the completion of the task. A task with an XOR-join can be triggered via
each of its incoming paths. Thus, it has a dedicated input port for each of these
paths. Tasks with AND-joins and OR-joins can only be executed if all paths
(that can potentially be triggered) are triggered, i.e. there is only one way these
tasks can be triggered and thus only one input port. A task with an XOR-split
has an output port for each subsequent path as each of these paths can be
triggered individually while a task with an AND-split has only one output port
as all subsequent tasks must always be triggered. A task with an OR-split can
trigger a subset of the outgoing paths, i.e. in this case a separate output port
exists for each of these combinations.
2 Note that this process is specific for the Netherlands and constrained by Dutch law.

Configurable Process Models: Experiences from a Municipality Case Study 489

Port
configurations

Blocked

Hidden

Fig. 1. A YAWL process model for acknowledging an unborn child. The input port of
check permission is configured as hidden and one output port is blocked.

The process flow can be restricted at these ports. A blocked port prevents the
process flows through it, i.e. a blocked input port prevents the triggering of the
task through the port while a blocked output port prevents that the correspond-
ing output paths can be triggered. In the model in Figure 1, we blocked the
output port from Check for permission to No acknowledgement. Thus, the task
Check for permission must always be followed by the task Decide choice of name
(under Dutch law) as the path to the task No acknowledgement can no longer
be triggered. Input ports can not only be blocked but also be configured as hid-
den. Similarly, the subsequent task can then not be triggered through this port
anymore. However, in this case the process flow is not completely blocked, but
only the execution of the corresponding task is skipped. The process execution
continues afterwards. In Figure 1 the input port of the task Check for permission
is hidden. Thus, the execution of this task is skipped which also explains why
we blocked one of the task’s output ports: the configuration results in skipping
the check. Hence, it can no longer fail and the process must continue normally.
Further details on configurable YAWL can be found in [5].

As we can observe from this example, the configurations of ports are often not
independent from each other but rather driven by more general domain-related
aspects. It is therefore suggested to steer the configuration through questions on
these domain-related aspects as is discussed next.

2.2 Steering Process Configuration through Questionnaires

In principle, the variability of the domain can be depicted independently of the
process flow by means of a set of domain facts that form the space of possible
answers to a set of questions. A domain fact is a boolean variable representing a
feature of the domain, e.g. Perform a check of the nationality, that can be enabled
or disabled. Questions can group domain facts according to their content, so that
all the facts of the same question can be set at once by answering the question.
Interdependencies between questions can specify a partial order in which the
questions should be posed to the user. Figure 2 depicts such a questionnaire
model for the various options in the process of acknowledging an unborn child.

490 F. Gottschalk et al.

q1: Do you want to check if the informer and the mother both are not married?

f1: Yes f2: No

q2: In which order do you want to execute the process?

f3: Name choice -> Permission f4: Permission -> Name Choice

f5: Yes

f6: The order does not matter

q3: Do you want to perform a nationality check?

f7: Yes f8: No

q5: Do you want to inform the parents about who is getting the authority?

f11: Yes f12: No

q6: Do you want to have name choice as one task?

f13: No

q7: Do you want to check in a seperate task if this is the first child out of the relation?

f14: Yes f15: No

Fig. 2. The questionnaire model addressing the various options in performing the pro-
cess of acknowledging an unborn child

Incoming ports Determine Nationality BLOCKED

f8

Determine
Nationality

Fig. 3. The setting of a domain fact through answering a question leads to the selection
of a particular port configuration via the so-called mapping table

Each configuration of a port in the process model can then depend on such
domain facts. For example, the input ports of the task in which the nationality
check is performed must be set to allowed when the corresponding domain fact
is set to true while it must be hidden or blocked when the domain fact is set

Configurable Process Models: Experiences from a Municipality Case Study 491

to false. Such a port configuration might also be dependent on a combination of
answers, i.e. domain facts. For this, the facts can be combined in propositional
logic expressions that capture their interplay. It is then important to make sure
that a single port will never have two configuration values at the same time
(e.g. blocked and hidden) which can be achieved through corresponding, addi-
tional constraints. These can then also imply that certain answers given in the
questionnaire automatically define the answers to further questions.

Figure 3 depicts and summarizes the steering of process configuration through
questionnaires. Further details on the approach can be found in [7,8].

3 Creating Configurable Process Models

In the first project phase we created configurable process models for four regis-
tration processes. These processes are executed on a daily basis in each of the
municipalities. In this way, we evaluated the feasibility of configurable process
models in public administration. The steps taken during the creation of the mod-
els are explained in the first part of this section. Afterwards, we summarize the
challenges we were confronted with during the creation of such models and how
we addressed them.

3.1 Building the Models

In total we created configurable process models for the following four registration
processes:

– Acknowledging an unborn child: This process is executed when a man wants
to register that he will be the father of a child still to be born while he is
not married to his pregnant partner.

– Registering a newborn: This process is executed by the municipality to reg-
ister a newborn child and handing out a birth certificate.

– Marriage: This process includes all steps necessary before a couple can get
married in a Dutch municipality.

– Decease: This process is executed when a person deceases to provide the
relatives with the documentation necessary to bury the deceased.

Reference process models for these processes are available from the Neder-
landse Vereniging Voor Burgerzaken (NVVB3), i.e. the Dutch association for
services to the public. These models describe a single “best-practice” version of
how the particular process should be executed. While these models are avail-
able in several notations, we used the notation of the business process modeling
tool Protos. Protos is very popular among Dutch municipalities: these reference
models are used by over 100 Dutch municipalities (mainly for auditing purposes).

To detect the variations of the processes in the daily practice we visited four
municipalities in the Netherlands. We selected the municipalities such that they
3 http://www.nvvb.nl

http://www.nvvb.nl

492 F. Gottschalk et al.

vary in the size of their population (between 26.000 and 201.000 inhabitants)
and such that they use software from different providers to support the process
execution. Without confronting the process owners of the selected municipalities
with the reference models, we asked them to explain how they execute the various
processes. We then used again Protos to create a separate process model for
each process in each municipality. During this phase, some of the municipalities
provided us with process models which they created to document their processes.
In these cases, we based our models on the models which were provided by
them. We only made modifications where it became clear from our visits to the
particular municipality that a process model did not reflect what was actually
happening. To make sure that we correctly depicted the processes, we asked the
process owners at the end of this phase to validate the models. Figure 4 shows
the four Protos models we derived from the four municipalities for the process
of acknowledging an unborn child. While the control flow of these four processes
is similar, the number of steps taken as well as the concrete order of executing
tasks varies among municipalities.

For each of the four selected business processes we then identified all the
differences among the five process variants (the reference model plus the models
of the four municipalities) by comparing them with each other. Based on this
information, we created for each business process a single Protos model that
incorporates all the variations from the five input models as ordinary runtime
choices. The integrated model derived from the reference model and the four
process variants for acknowledging an unborn child shown in Figure 4 is shown
in Figure 5. Note that out of the four business processes we analyzed in this
case study, the process of acknowledging an unborn child is the simplest, i.e. the
three other combined process models include both more tasks and more arcs.

To be able to configure and execute these models, we then switched to a work-
flow environment that supports both the configuration and execution of Protos
models. In particular we chose YAWL here as our ideas on process configura-
tion [5,8] are implemented in this environment. The translation from Protos to
YAWL was done manually as we not only translated the pure control flow from
the Protos models, but also implemented the data upon which the process relies
and which is only available in a descriptive way in the Protos models. In this
way, we created the basis to route cases through the process model according
to the data collected during the process execution. That means, the resulting
YAWL models are fully executable in the YAWL workflow engine. The YAWL
model for the acknowledgement of an unborn child is shown in Figure 6a.

The resulting four YAWL models integrating all the variations of the processes
were of course far too complex to be used and configured by the stakeholders
of the municipalities. Thus, we also created a questionnaire for each of the four
business processes as explained in Section 2.2. In the questionnaires we addressed
each variation possibility at a particular stage of the process by at least one ques-
tion. The questionnaire model for the process of acknowledging an unborn child
was already shown in Figure 2. The answers to the questions were then mapped
to allowing, hiding, or blocking the process flow through various ports. In this

Configurable Process Models: Experiences from a Municipality Case Study 493

OK

Not OK

Not OK

Citizen

Confirm identi fy

Determine i f
authorisation

Check for
permiss ion

Draw up ackn.
document

Hand over copy

Archive
documents

Dec ide choice
of name

Request
Acknowledgement

Archive

No
acknowledgement

niet akkoord

akkoord

niet akkoord

akkoord

Decide choice
of name (Dutch

Citizen

Determine
nationality

Hand over copy

Archive
documents

Draw up ackn.
certificate

Check for
permission

Request
Acknowledgement

Confirm identify

Determine if
authorisation

Decide choice
of name

No
acknowledgement

Archive

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Unmarried

Not OK

OK

Not OK

Last name
mother

Citizen

Firs t child of the
relation

Decide choice
of name (under

Reques t
Acknowledgement

Both live in the
munic ipality

Identify

Unmarried

Both parents
present

min. 1 person
present

Contact liv ing
munic ipality

No
acknowledgement

Archive

Determine if
authorisation

Draw up ackn.
document

Hand over copy

Process ackn.
at birth

Dec laration
unmarried

Check for
permiss ion

Yes

No

Yes

No

No

Yes

Yes

No

No

Yes

Unmarried

Not OK

OK

Not OK

Citizen

Decide choice
of name (for

Unmarried

Request
Acknowledgement

Both live in the
municipality

Last name
mother

Confirm identify

Draw up ackn.
document

Inform of
authority over

Process ackn.
at birth

Hand over copy

Both parents
present

Firs t child of the
relation

Decide choice
of name (under

Determine
nationality

No
acknowledgement

Contac t liv ing
municipality

Check for
permission

Determine if
authorisation

Dec laration
unmarried

Archive

min. 1 person
present

Fig. 4. The different process variants of how municipalities perform the acknowledge-
ment of an unborn child

494 F. Gottschalk et al.

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No
Unmarried

Not OK

OK

Not OK

OK

Not OK

Last name
mother

Citizen

Confirm
identify

Request
Acknowledgement

First child of
the relation

Both live in the
municipality

Decide choice
of name

Unmarried

Both parents
present

Determine
nationality

Decide choice
of name (for)

No
acknowledgement

Contact living
municipality

Archive

min. 1 person
present

Process ackn.
at birth

Draw up ackn.
document

Hand over
copy

Inform of
authority over

Check
permission

Declaration
unmarried

Determine if
authorisation

Fig. 5. All variants for acknowledging an unborn child integrated into a single Protos
model

way, the configuration of the process model integrating the five process variants
can be done by the stakeholders through simply answering the questionnaire
(see Figure 6b). There is no need for the stakeholders to understand the impli-
cations of blocking or hiding certain ports. In fact, they do not even need to
be confronted with the integrated process models as the configuration decisions
resulting from the answers to the questionnaire can be applied automatically
to this model. For example, the process model we showed in Figure 1 is in fact
derived from the integrated model in Figure 6a using the answers given by one of
the involved municipalities. In our approach, the stakeholders only receive these
individually relevant models which are also directly executable using the YAWL

Configurable Process Models: Experiences from a Municipality Case Study 495

a)

b)

Fig. 6. The model from Figure 5 translated into YAWL (a) and the corresponding
questionnaire in the Questio tool (b) which allows user to configure the model through
the given answers

workflow engine. Then, the users of the model will be filling out forms generated
based on the information of the configured process model. Thus, these users do
not see but benefit from the configured model.

496 F. Gottschalk et al.

3.2 Observations

First of all, it should be noted that for all four business processes we were
able to create integrated process models and questionnaires that allow users to
derive an individual model. For each process and each municipality we were able
to generate a model equivalent to the original Protos model by answering the
questionnaire and applying the resulting configuration to the YAWL model. This
illustrates that it is possible to integrate several process variants such that all
desired individual variants can be derived from it.

Still, we had to master several challenges during the creation of the con-
figurable models. While deriving the individual process variants was straight
forward, the first challenges arose when integrating the different variants into a
single process model as matching identical tasks among the variants was often
only possible after comparing the exact task descriptions. Moreover, during the
manual compilation of the integrated model some paths, i.e. process flows, of
the individual models were easily overlooked, and thus not incorporated into the
integrated model. Only by carefully “re-playing” the processes of the individual
models in the combined models these forgotten arcs were discovered.

Due to the extensive support of control flow patterns, translating the control
flow from the Protos models to YAWL models was easy. Tricky was however the
implementation of the data perspective for determining the precise runtime rout-
ing of cases through the integrated process model. This was especially the case
when a choice between various options was introduced in the integrated model
while in fact there is no such run-time decision in any of the municipalities. The
variation is thus a pure configuration decision based on the difference between
the municipalities. For example, this applies for the task Confirm identity in
Figure 6 which uses an OR-split to branch into four outgoing paths. The de-
cision, which combination of paths should be triggered after the completion, is
partly a run-time decision and partly a configuration decision. During run-time it
is decided if the identification was successful or not. If not, the process completes
immediately. However, the decision which combinations of the remaining three
arcs are triggered in case the identification was successful is already a configura-
tion decision (it might be desired to transform this into a run-time decision, but
this was not the case in any of the involved municipalities). A correct definition
of the process flow details in such situations requires the implementation of a
“default” decision as well as a very good anticipation of the implications when
this default decision has to change due to a configuration decision.

Questions in the questionnaire abstract from the control flow of the process
and usually address larger process parts. Thus, the interdependencies between
the answers that can be given in the questionnaire are not always obvious or im-
mediately derivable from the process’s control flow. Hence, ordering of questions
and the definition of constraints between the answers turned out to be challeng-
ing and required a good anticipation of the desired impact of the configuration
decisions which becomes more difficult the more complex the model is.

This phase was mainly performed by one core project member and took,
including his familiarization with the used techniques, approximately six months.

Configurable Process Models: Experiences from a Municipality Case Study 497

4 Evaluation of the Approach

To get insights into the practical applicability of the models we derived, we
performed an additional analysis using three approximately two-hour-long focus
group interviews with one to three employees of the following three organizations:

– Pallas Athena as the supplier of Protos which is actively used by over 250 of
the in total 441 Dutch municipalities,

– PinkRoccade Local Government who provides a software to execute munic-
ipality processes used by more than 50% of the Dutch municipalities, and

Interview
partner

Potential applications and advantages (+) as well as concerns (-)

Pallas Athena (+) Configurable Process models would have been useful for the de-
velopment of a “one point of contact” workflow product for munici-
palities developed based on a new law that requires municipalities to
re-structure the customer interaction of their business processes
(+) Potential applications in highly regulated, publicly documented
and accessible, or non-core business processes like HR processes.
(-) The integrated model must be complete. Is this possible and how
can this information be derived from existing processes?

PinkRoccade
Local
Government

(+) Questionnaire answers can be linked to other configurable ele-
ments, like the configuration of software screens and windows as well
as data fields.
(+) Configuration through questionnaires enables software providers
to create applications that prevent that users can fail during the pro-
cess configuration.
(+) A user sees in the questionnaire the configuration freedom she
has rather than the limitations the configuration is subject to.
(+) Clients often ask for software adaptation and modifications for a
better support of their desired business processes which is currently
expensive due to the need for external consultants. Currently, this
often results into workarounds.
(-) A configuration of the resources that are involved in a process is
not possible.

Consultancy
Firm

(+) Best-practice reference models are often not sufficient: there is no
single best-practice.
(+) It would have been useful in a world-wide role-out of new business
processes where it was a headquarter policy that 80 % of the processes
needed to remain conform to the global process while it was allowed
to deviate by 20 % to make the process compliant to local regulations.
(+)In some industries production processes are so standardized that
the technique might here even be applicable to core processes.
(-) The creation of such models seems to require big efforts, sponsoring
for this might be difficult to find.
(-) The identification of variations between processes is difficult, i.e.
tools are necessary for this.

Fig. 7. The main comments of the interviewed stakeholders

498 F. Gottschalk et al.

– a world-wide operating consultancy firm who adapts their own reference
process models during process implementations for their clients.

All interview partners were first given a presentation on the techniques we used
during this project as well as on details of how we created the four configurable
models and their questionnaires. Afterwards, the interview partners had the
opportunity to derive their own executable process models through answering the
questionnaires. The models resulting from the answers given in the questionnaire
during the interview were immediately presented to them. Not all the interview
partners were domain experts for the given processes. Thus, it was possible for
them to ask questions on the implications of the various possible configuration
decisions in the questionnaire.

Subsequently, we triggered a discussion with the interview partners focussing
on potential practical needs for adaptable process models, on the feasibility of
creating such configurable models in real-life environments, and on the prac-
tical usefulness of applying such configurable models. Key results from these
interviews are summarized in Figure 7. In general, we can summarize that all
interview partners immediately saw a potential value of the technique of con-
figurable process models for past or current projects. The steering of the actual
process configuration is seen as a useful tool to assist end users, but even without
this support, direct process configuration might prove to be beneficial in various
projects where process adaptation is necessary. The main concerns raised by the
interview partners were the efforts necessary to create questionnaires and estab-
lishing the links between the potential answers and all the ports as well as the
incorporation of resource assignments to tasks during the configuration process.

5 Related Work

The case study reported on in this paper uses our earlier work on process con-
figuration [5,7,8]. Similar techniques for adapting process models were suggested
by Becker et al. [3,4]. Their approach links adaptation parameters and their
possible values to model elements to indicate which sections of the model are
relevant or not to a specific application scenario. Thus, a user can configure a
process model by setting parameters, i.e. the process model does not need to be
consulted. Compared to the approach used here, the approach of Becker et al.
is applied to Event-driven Process Chains instead of YAWL, i.e. to a notation
that is mostly used for process visualization (like the Protos models we created)
and not for the enactment of these processes. Moreover, it lacks steering of the
parameter setting through an interactive questionnaire.

The use of questionnaires to guide the configuration of process models is in-
spired by similar configuration processes for software applications. For example,
the CML2 language, designed to capture configuration processes for the Linux
kernel, guides the configuration process through a structured set of questions
that lead to a given symbol being given a value [10]. Also, in CML2 the valid-
ity of these values can be ensured by constraints. More generally, variability of

Configurable Process Models: Experiences from a Municipality Case Study 499

large software systems has been studied in the field of Software Product Line
Engineering (SPLE) [9].

Algermissen et al. performed a case study with municipalities to identify best-
practice in public administration [2]. Similar to our approach, they initially vis-
ited a number of municipalities to observe and depict their business processes.
Different from our approach, they do not focus on providing a model with var-
ious configuration options, but rather aim at deriving a single, “ideal” process
model from these variants. Thus, their approach is similar to the one taken by
the NVVB, whose best-practice recommendation we incorporated in our models.

Karow et al. provide guidelines specifically for the construction of reference
models in public administration [6]. While our goal here was to test the feasibility
and identify the opportunities of using configurable process models in a reference
modeling context, we would need to address such guidelines more rigorous if we
want to extend our work to providing a complete reference model in the future.

Best-practice reference models have been investigated in several other case
studies. For example, Thomas et al. developed a reference model for event man-
agement [13], and Scheer designed a reference model for industrial enterprizes
[11]. A case study on developing a business process reference model for the
screen business was performed by Seidel et al. [12]. Also template repositories
as provided by vendors of BPM solutions like the ones of SAP and IBM can be
considered as such best-practice reference models.

6 Conclusions

In this case study, we developed configurable process models for four business
processes of municipalities based on information from four different municipal-
ities and a corresponding reference model. Afterwards, we performed expert
interviews with various stakeholders about the potential use of these models and
the underlying techniques.

During the case study, the suggested techniques proved to be suitable for
the intended purposes: we achieved our goal to be able to derive all the initial,
individual models of the various municipalities as well as further model variants
from the integrated models by answering simple questionnaires. Despite that,
the creation of the configurable models required significant efforts, modeling
experience, and domain knowledge. Thus, the simplified adaptation of process
models is at the expense of a complex creation of the configurable model.

It was obvious during the case study that many issues that arose during the
model creation could be improved or even avoided by further tool support, e.g.
ensuring consistent identifiers or automatically identifying and integrating process
variations. Thus, all interview partners were also interested in techniques that can
help here. In general, they all saw potential value for themselves in the technique,
which they stressed by mentioning current or past projects where configurable
process models could have provided additional benefits. But the interviewees also
made clear that process configuration should not be restricted to the control flow
perspective of business processes, but should also be integrated with the resource
and data perspectives to provide a strong and universal configuration tool.

500 F. Gottschalk et al.

Acknowledgements. We would like to thank the NVVB, Pallas Athena, and
PinkRoccade Local Government as well as the municipalities, consultants, and
software developers involved in this project for their input and feedback.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

2. Algermissen, L., Delfmann, P., Niehaves, B.: Experiences in Process-oriented Re-
organisation through Reference Modelling in Public Administrations — The Case
Study Regio@KomM. In: Proceedings of the 13th European Conference on Infor-
mation Systems (ECIS), Regensburg (2005)

3. Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., Kuropka, D.: Configurative
Process Modeling – Outlining an Approach to increased Business Process Model
Usability. In: Proceedings of the 15th IRMA International Conference, New Or-
leans. Gabler (2004)

4. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modelling: Integrat-
ing Configurative and Generic Adaptation Techniques for Information Models. In:
Becker, J., Delfmann, P. (eds.) Reference Modeling. Efficient Information Systems
Design Through Reuse of Information Models, pp. 27–58. Springer, Heidelberg
(2007)

5. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Con-
figurable Workflow Models. International Journal of Cooperative Information Sys-
tems (IJCIS) 17(2), 177–221 (2008)

6. Karow, M., Pfeiffer, D., Räckers, M.: Empirical-Based Construction of Refer-
ence Models in Public Administrations. In: Proceedings of the Multikonferenz
Wirtschaftsinformatik 2008. Referenzmodellierung, pp. 1613–1624 (2008)

7. La Rosa, M., Gottschalk, F., Dumas, M., van der Aalst, W.M.P.: Linking Domain
Models and Process Models for Reference Model Configuration. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 417–430. Springer, Heidelberg (2008)

8. La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.:
Questionnaire-based Variability Modeling for System Configuration. Software and
Systems Modeling (forthcoming) (2008)

9. Pohl, K., Böckle, G., van der Linden, F.: Software Product-line Engineering –
Foundations, Principles and Techniques. Springer, Berlin (2005)

10. Raymond, E.S.: The CML2 Language (2000),
http://catb.org/esr/cml2/cml2-paper.html

11. Scheer, A.-W.: Business Process Engineering, Reference Models for Industrial En-
terprises. Springer, Berlin (1994)

12. Seidel, S., Rosemann, M., ter Hofstede, A.H.M., Bradford, L.: Developing a Busi-
ness Process Reference Model for the Screen Business - A Design Science Research
Case Study. In: Proceedings of the 17th Australasian Conference on Information
Systems (ACIS 2006), Adelaide, Australia (2006)

13. Thomas, O., Hermes, B., Loos, P.: Towards a Reference Process Model for Event
Management. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM
Workshops 2007. LNCS, vol. 4928, pp. 443–454. Springer, Heidelberg (2008)

http://catb.org/esr/cml2/cml2-paper.html

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 501–514, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Business Process Modeling:
Current Issues and Future Challenges

Marta Indulska1, Jan Recker2, Michael Rosemann2, and Peter Green1

1 UQ Business School, The University of Queensland, St Lucia, QLD, 4072, Australia
{m.indulska, p.green}@business.uq.edu.au

2 Business Process Management Group, Faculty of Science and Technology,
Queensland University of Technology, Brisbane, QLD, 4000, Australia

{j.recker,m.rosemann}@qut.edu.au

Abstract. Business process modeling has undoubtedly emerged as a popular
and relevant practice in Information Systems. Despite being an actively
researched field, anecdotal evidence and experiences suggest that the focus of
the research community is not always well aligned with the needs of industry.
The main aim of this paper is, accordingly, to explore the current issues and the
future challenges in business process modeling, as perceived by three key
stakeholder groups (academics, practitioners, and tool vendors). We present the
results of a global Delphi study with these three groups of stakeholders, and
discuss the findings and their implications for research and practice. Our
findings suggest that the critical areas of concern are standardization of
modeling approaches, identification of the value proposition of business process
modeling, and model-driven process execution. These areas are also expected to
persist as business process modeling roadblocks in the future.

Keywords: business process modeling, Delphi study, issues, challenges.

1 Introduction

Business process modeling – an approach to graphically display the way
organizations conduct their business processes – has emerged as an important and
relevant domain of conceptual modeling [1]. It is considered a key instrument for the
analysis and design of process-aware Information Systems [2], organizational
documentation and re-engineering [3], and the design of service-oriented architectures
[4]. To that end, business process models typically describe in a graphical way at least
the activities, events/states, and control flow logic that constitute a business process.
Additionally, the models may also include information regarding the involved data,
organizational and IT resources, and potentially other artifacts such as external
stakeholders, goals, risks and performance metrics (e.g., [5]).

While much academic literature is dedicated to various topics related to business
process modeling, indications exist that practitioners struggle with various process
modeling aspects and find limited support from academic literature in guiding their
efforts. Overall, there is a lack of empirical studies in business process modeling that
guide future research directions [6]. In line with this observation, the main goal of the

502 M. Indulska et al.

study reported in this paper is to identify and explore the core issues with business
process modeling as they are perceived by the three main stakeholder groups, i.e.
practitioners, vendors and academics. In addition to the identification of the current
issues, we aim to explore the upcoming issues, i.e., the process modeling challenges
that are expected to be problematic in the future. In reaching such a goal, we are able
to present those items that are perceived as most critical for the further development
of process modeling. Accordingly, our study is based on the following two main
research questions:

R1. What are the current business process modeling issues?; and
R2. What are the challenges in business process modeling likely to be in 5 years

time?

We choose to explore the two research questions in a Delphi study setting with
three separate groups of participants, viz., academics in the business process modeling
domain, business process modeling practitioners, and vendors of business process
modeling tool and consultancy offerings. Our objective is to identify and prioritize the
most significant issues and future challenges of business process modeling, reach
consensus about these, and compare the issues and challenges across the three distinct
stakeholder groups.

We proceed as follows. Sections 2 and 3 detail the research design and
methodology, the selection of the three groups of participants, and the specifics of the
three rounds of the Delphi study. Section 4 presents a discussion of the top issues in
business process modeling. Similarly, Section 5 presents the expected business
process modeling challenges. In Section 6, we discuss the results from our study and
detail implications for practice and research. We conclude in Section 7 with a
summary of our findings.

2 Research Approach

2.1 Delphi Study Design

The technique chosen to facilitate the collection of, and consensus on, the key issues
and challenges in process modeling was the Delphi technique [7] – a multiple-round
approach to data collection. Delphi studies are useful when seeking consensus among
experts, particularly in situations where there is a lack of empirical evidence [8]. The
anonymous nature of a Delphi study can lead to creative results [9], reduces common
problems found in studies that involve large groups [8] and allows for a wider
participant scope due to the reduction of geographic boundaries [10]. In the case of
our study, the Delphi technique is appropriate for three main reasons:

1. It facilitates obtaining expert consensus on current issues and future challenges of
process modeling (and their definitions);

2. it facilitates the involvement of a large number of expert participants, in a short
period of time, across many geographical boundaries and time zones; and

3. the objective of the study aligns with the general application area of the Delphi
technique, which is that of forecasting and issue identification.

 Business Process Modeling: Current Issues and Future Challenges 503

One of the main determinants of success of a Delphi study is the selection of the
expert panel, i.e., the study participants [11]. Instead of utilizing a statistical,
representative sample of the target population, a Delphi study requires the selection
and consideration of qualified experts who have deep understanding of the domain or
phenomenon of interest [10]. It also requires consideration of required levels of
agreement. Moreover, careful planning of the schedule of contact with participants is
also required to keep the study within a relatively short period of time so as to reduce
non-response.

2.2 Participant Selection

To understand the perceived issues and future challenges of business process
modeling, it is important to acknowledge different key stakeholders. The nature, or
criticality, of any business process modeling issue may vary considerably depending
upon the perspective taken by the respondent. We identify three groups of
stakeholders: first, the practitioners of business process modeling, that is, the business
analysts, system designers and other staff that actively use business process modeling
approaches in their organizations. Second, the vendors of business process modeling
tools and consulting solutions providing support to the end users. Third, the
academics in the business process modeling domain, who develop next generation
business process modeling artifacts and provide educational services.

Acknowledging these three groups, we designed a Delphi study that was conducted
in three rounds separately for each of these stakeholder groups. The risk of being
unable to obtain consensus between heterogeneous panelists [12] was further
motivation to divide the study into the three related groups of stakeholders. Invitations
were based on the expertise of the potential participants. For academics, we screened
the program committee of the Business Process Management conference series
(www.bpm-conference.org), the most reputable conference in this area. Key selection
criterion was the related research track record of a PC member. For vendors, we
contacted key management staff from leading tool and methodology providers, as
reported in current market studies (e.g., [13, 14]). For practitioners, we contacted the
process managers, and similar positions, of large international corporations, who the
research team knew through previous collaborations.

Regarding an appropriate panel size per expert group, typically, involvement rates
of 10 participants are recommended [15] to overcome personal bias in consensus
seeking. Seeking to surpass this recommendation, overall, invitations to the study
were sent to 134 carefully screened experts (40 practitioners, 34 vendors, 60
academics), including 11 invitations based on referrals from invited participants. Of

Table 1. Response rates across all rounds of the Delphi study

Panel group Response to
initial contact

1st round
response

2nd round
response

3rd round
response

Academics 28 26 26 25
Vendors 21 21 18 18
Practitioners 24 23 22 19
Total 73 70 66 62

504 M. Indulska et al.

these, initially 73 experts agreed to participate, a 54.48% response rate. Table 1 shows
the ongoing response rates over the three rounds of the Delphi study. By the 3rd
round of the study, 62 experts were involved – an 84.93% ongoing participation rate.

3 Study Conduct

3.1 Delphi Study Rounds

Our objective in conducting the Delphi Study was three-fold: First, to identify the key
issues and future challenges of business process modeling, as perceived by the
different panels. Second, to establish consensus on the issues and challenges. Third, to
obtain and compare the rankings of the issues and challenges based on their perceived
relative importance. According to our three objectives, our study was carried out over
three rounds, matching recommendations for a relatively complete Delphi study [16].

In the first round, each participant was asked to list five current issues and five
future challenges in business process modeling, together with a brief description of
each issue/challenge. Overall, we received 70 (participants) x 2 (issues/challenges) x
5 (items) = 700 individual response items. To overcome challenges related to the
number of response items, differences in terminology, term connotation and writing
styles, we then codified each response item into higher level categories. For instance,
we received two separate issue response items “No universal standard, and / or not
knowing which standard to use, e.g. UML, BPMN, XPDL, etc.” and “Lack of a
standard modeling language”. Both items can be coded to a higher-order issue
“standardization of modeling notations, tools, and methodologies”.

In ensuring reliability and validity of this coding, we performed the exercise in
multiple rounds. First, three researchers independently coded each of the 700 response
items into a higher level category. In a second round, two researchers independently
were exposed to the three codifications from the 1st coding round, and created
individual, revised 2nd round coding drafts. In a third round, the fourth research group
member consolidated the revised codifications and resolved any classification
conflicts. We believe that through this multi-round approach we ensured inter-coder
reliability as well as validity of the codification exercise.

The second round of the study was designed to obtain consensus from the
participants on the codified issues and challenges, as well as on the definitions of the
new higher-order categories. The communication for this round provided each
participant with a personalized email containing his or her original responses, the
agreed classifications per response item, and descriptions of the classifications. The
participants were asked to indicate their level of satisfaction with the classification of
their responses and the definitions of the classifications, and to provide additional
information or suggestions if they were not satisfied with the classification. We
received mostly positive responses on our codification (e.g., “Your categorization is
close to the mark.”) as well as a small number of coding and/or definition
improvement suggestions (e.g., “Tool support is misleading. I think something like
tool complexity would be more appropriate.”).

It has been recognized that there are times when consensus between panelists is not
possible [12]. However, there is also a lack of indication in the literature as to possible

 Business Process Modeling: Current Issues and Future Challenges 505

Table 2. Satisfaction ratings for response codification

 Academics Vendors Practitioners
Issues
Average satisfaction score 8.338 9.000 8.791
Standard deviation 1.853 1.185 1.143
Challenges
Average satisfaction score 8.442 8.638 8.883
Standard deviation 1.520 1.468 1.150

measures for determining consensus. A recent Delphi study [17] utilized a satisfaction
rating of 7.5 (out of 10). In our study, we asked the participants to rate their
satisfaction on a scale of 1 to 10 (10 being highest) and assumed consensus at an
average satisfaction level of 8 and a standard deviation below 2.0. As shown in
Table 2, average satisfaction scores ranged from 8.338 (Issues, Academics) to 9.000
(Issues, Vendors), with standard deviations ranging from 1.853 (Issues, Academics)
to 1.143 (Issues, Practitioners).

While our initial study plan allowed for multiple rounds of consensus building
during this second stage of the study, the results obtained indicate that our multiple-
coder approach to data classification resulted in the participants achieving the
required consensus levels at the first iteration of the second round, which, in turn,
allowed us to stop the consensus-building process at this stage. At the end of round
two, and after making required changes to categories and/or definitions, where
appropriate, all response items were ranked in descending order of ‘frequency of
occurrence’, with items such as value of business process modeling (15 times),
training (13 times), standardization (11 times) and model-driven process execution (9
times) being most frequently mentioned.

We recognize that frequency of occurrence is not an accurate measure of criticality,
importance or priority. Accordingly, in the third round of the Delphi study, the
experts were asked to assign to the response items a weighting that reflects the
respondent’s relative importance of the particular item. In this round, data collection
was carried out via a study website, with separate log-ins for the different expert
panels. The participants were provided with the list of frequently mentioned issues
and a separate list of frequently mentioned challenges (we defined ‘frequently
mentioned’ as each item that was mentioned more than once in the first two rounds),
together with their definitions. Overall, practitioners received a list of 14 issues and
13 challenges, while academics received lists of 21 and 16 items, and vendors
received lists with 13 and 10 items. Each participant was given 100 points to assign
across any of the issues, and 100 points to assign across any of the future challenges.
The participants were free to assign the 100 points in any distribution, with the only
condition being that exactly one hundred points were assigned across each of the lists.
The online submission was only enabled when the participant met this condition for
each of his/her two lists.

The collected data was then analyzed, and the average weightings of each issue and
challenge were derived. From these calculations, we were able to derive top 10 lists,
based on the average weightings, for process modeling issues and challenges for each
of the three Delphi study groups. The results are listed in the Appendix.

506 M. Indulska et al.

3.2 Classification of Results

To better understand the nature, and implications, of the issues and challenges, we
were interested in identifying the key capability area to which an issue or challenge
applies. For instance, a challenge, ‘tool support’, clearly pertains to the availability (or
lack thereof) of appropriate IT-based solutions to support the act of modeling, while a
challenge ‘governance’ pertains to the establishment of appropriate organizational
roles, duties and responsibilities for business process modeling.

In order to identify to which capability area the issues and challenges relate, we
adopted a well-established and empirically tested model of the capability areas that
are required to establish, and progress, Business Process Management (BPM) in an
organization (e.g., [17, 18]). This model informs six capability areas, viz., strategic
alignment, governance, method, IT, people, and culture. With business process
modeling being an essential component of BPM, we adopted the capability area
definitions to the more specific business process modeling context as follows (scope
modifications highlighted in italic):

− Strategic Alignment is the continual tight linkage of business process modeling to
organizational priorities and processes, enabling achievement of business goals.

− Governance establishes relevant and transparent accountability and decision-
making processes to align rewards and guide actions in business process modeling.

− Methods are the approaches and techniques that support and enable consistent
business process modeling actions and outcomes.

− Information Technology is the software, hardware and information management
systems that enable and support business process modeling activities.

− People are the individuals and groups who continually enhance and apply their
business process modeling-related expertise and knowledge.

− Culture is the collective values and beliefs that shape business process modeling-
related attitudes and behaviors.

This model allowed us to map each of the top ten issues and challenges to one of
the six capability areas, and, in turn, to provide a clear representation of which aspects
of process modeling are considered by the respective panel groups. Similar to the
coding exercise reported above, the mapping of the top 10 lists of issues and
challenges to the capability areas utilized a multi-coder approach in order to reduce
bias in the classification. Three members of the research group separately classified
the issues and challenges lists for each of the three study groups. The classifications
were consolidated and agreement statistics were calculated. We calculated an inter-
rater agreement using Cohen’s Kappa [19] and achieved average Kappas of 0.809 for
issues and 0.872 for challenges, indicating ‘excellent’ inter-rater agreement [20].

4 Business Process Modeling Issues

In a first analysis, we consider the current issues in business process modeling, as
perceived by the three expert panels in our study. The Appendix lists the three top ten
lists derived, and displays the rankings of the items as per their perceived relative
importance. Visual inspection of these lists confirms our expectation that indeed the
three stakeholder groups differ in terms of their perceived issues. Most notably,

 Business Process Modeling: Current Issues and Future Challenges 507

1

2

3

4

5

6

7

8

9

10

Strategic Alignment Governance Method Information Technology People Culture

Value of Process Modeling
Value of Process Modeling

Business-IT-Divide

Expectations Management

Standardization
Model-driven Process Ex.

Service Orientation

Flexibility

Methodology

Modeling Views

Model Management

View Integration

Ease of Use

Standardization

Model-driven Process Ex.

Standardization

Governance

Model Management

Multi-perspective Modeling

Methodology

Model Management

Modeling Level of Detail

Process OrientationTraining

Buy-in

Adoption

Model Integration

Governance

Modeling Level of Detail

Compliance

Fig. 1. Business process modeling issues, mapped to capability areas. Academic issues are
highlighted dark grey, vendor issues highlighted black and practitioner issues light grey.

practitioners ranked ‘Standardization’ as the most significant issue (mean rating
14.316), while vendors ranked ‘Model-driven process execution’ (mean rating
12.222) most important, with academics perceiving ‘Service orientation’ (mean rating
8.440) as most important. It is further interesting to note that the number one issue for
practitioners (Standardization) overall received the highest average rating of relative
importance across all three lists. In contrast, the number one issue voiced by
academics (Service orientation), on average, was only the tenth most important issue
when considering all three lists combined. In relation to the different capability areas
relevant to process modeling, Fig. 1 shows how we mapped each of the thirty issues
to the capability areas as per the model by de Bruin and Rosemann [17].

Several interesting observations can be drawn. First, overall 36% of the identified
top issues address methodological aspects of business process modeling. Second, five
of the ten issues voiced by academics fall into this area, indicating a strong focus on
the methodology of modeling. Third, the ten practitioner and vendor issues cover all
six capability areas, while academics’ issues do not address strategic alignment or
culture. These findings suggest that vendors and practitioners are concerned with
issues related to the purpose and adoption of process modeling while academics tend
to concentrate on issues related to the development and evaluation of artifacts.

Regarding similarities in perceived issues across the three groups, we note that of
the overall thirty top issues, the three lists contain 21 unique items, with five issues
appearing in two lists (e.g., ‘model-driven process execution’, ‘value of process
modeling’) and ‘Standardization’ and ‘Model management’ being the two issues that
appear in each of the three top ten lists. In Table 3 we present a consolidated ordered
list of perceived issues, determined by the combined average rating of each issue.

Computation of the data displayed in Table 3 allowed us to identify the most
important issue in process modeling across all stakeholder groups. As can be seen,

508 M. Indulska et al.

Table 3. Overall top 10 business process modeling issues

Rank Issue Description Mean
Rating

Std.
Dev.

1 Standardization Issues related to the standardization of modeling
notations, tools, and methodologies.

9.525 4.465

2 Value of
process
modeling

Issues related to the value proposition of process
modeling to the business.

8.091 7.007

3 Model-driven
process
execution

Issues related to the model-driven development of
executable process code and the lifecycle of
process modeling to execution.

6.874 6.252

4 Model
management

Issues related to the management of process
models such as publication, version, variant or
release management.

5.729 0.666

5 Modeling level
of detail

Issues related to the definition, identification or
modeling of adequate levels of process abstraction.

4.934 4.351

6 Methodology Issues related to the process of process modeling. 4.690 4.202
7 Governance Issues related to the governance of process

modeling efforts or projects.
4.192 3.727

8 Buy-in Issues related to the acquisition or ongoing
assurance of buy-in and commitment from process
modeling sponsors.

3.167 5.485

9 Business-IT-
divide

Issues related to the use of process modeling in IT
versus business scenarios, application areas or
communities.

2.944 5.100

10 Process
orientation

Issues related to the development or education of a
process-aware perspective in relevant stakeholders
or organizational units.

2.889 5.004

standardization is the most significant issue in business process modeling, followed
by its value, and model-driven development of executable process code. Interestingly,
standardization (e.g., [21]) and model-driven process execution (e.g., [22]) are topics
fervently debated in academia at present, while the value of business process
modeling has attracted only little academic attention as yet.

5 Business Process Modeling Challenges

In a second analysis, we considered the future challenges in business process
modeling, defined as issues emerging over the next five years. The Appendix lists the
three top ten lists derived, and displays the rankings of the items as per their perceived
relative importance. Again we note interesting results. Similar to the case of the
perceived issues, the three lists contain overall 22 different challenges. However, it
would appear vendors and academics perceive similar challenges. Most notably, both
groups voice ‘Model-driven process execution’ to be the number one challenge in the
future (average ratings 16.222 and 10.960), with practitioners perceiving the
establishment of a business value proposition as the key future challenge (average
rating 16.632). Again, the number one item of the practitioners’ lists is the overall
most important item as per the average rating.

 Business Process Modeling: Current Issues and Future Challenges 509

1

2

3

4

5

6

7

8

9

10

Strategic Alignment Governance Method Information Technology People Culture

Business-IT-Alignment

Value of Process Modeling

Value of Process Modeling

Expectations Management

Buy-in

Model-driven Process Ex.
Model-driven Process Ex.

Service Orientation

Value of Process Modeling

Model Management

Data-centric Modeling

Tool Support

Compliance

Standardization

Methodology

Ease of Use

Ontology

Model Management

Service Orientation
Model Integration

Training

Collaborative Modeling

Governance

Standardization

Adoption

Re-use

Training

Process Architecture

View Integration

Standardization

Fig. 2. Business process modeling challenges, mapped to capability areas. Academic challenges
are highlighted dark grey, vendor challenges highlighted black and practitioner challenges light
grey.

Regarding the capability areas addressed, Fig. 2 shows the results from our
mapping of the challenges to the six business process modeling capability areas.

We again identify a number of interesting observations. Most notably, the
challenges of the different stakeholder groups, while overlapping to some extent,
pertain to different areas of business process modeling capability. Three of the
practitioners’ ten challenges (buy-in, adoption and re-use) address the organizational
culture, while neither academics nor vendors perceive this area to be problematic in
the future. Instead, a combined seven challenges of academics and vendors address
methodical aspects of business process modeling – an area apparently not expected by
practitioners to be problematic. Also, while a ‘people’ focus is apparent in some of
the challenges voiced by vendors and practitioners (‘training’, most notably), this
capability area is not perceived as a critical challenge by academics. This group
focuses its perceived challenges on the areas of method and IT, with seven of the top
ten challenges falling into these two capability areas. In contrast, only one practitioner
challenge (Model integration) falls in this area, with the remaining nine challenges
addressing all other capability areas.

Considering a holistic view of process modeling challenges, Table 4 shows a
consolidated list of the top ten future challenges across all participant groups. Similar to
the case of current process modeling issues, we found that four items (Model-driven
process execution, Service orientation, Model management, and Training) appeared in
two of the lists, and two challenges (Value of process modeling and Standardization)
were perceived as critical by all three expert panels. Interestingly, comparison of Table
3 and Table 4 shows that the overall top three issues and challenges are the same, with
only the ranking as first, second or third, differing between the current state of process
modeling and the future state in five years time. This finding suggests the key criticality
of these current and future issues, and presents a strong call for increased attention to
these aspects both in industry practice, and in process modeling research.

510 M. Indulska et al.

Table 4. Overall top 10 business process modeling challenges

Rank Issue Description Mean
Rating

Std.
Dev.

1 Value of
process
modeling

The establishment of a business value proposition
of process modeling.

12.893 5.041

2 Model-driven
process
execution

The support for process enactment, automation or
execution based on process models.

9.061 8.276

3 Standardization The standardization of process modeling
approaches, methodologies, tools, methods,
techniques or notations.

8.340 1.221

4 Business-IT-
alignment

The use of process modeling to support alignment
between business and IT stakeholders, viewpoint
or approaches.

5.111 8.853

5 Service
orientation

The support for aspects relevant to the
management of web services, service-oriented
architectures or quality of services.

5.039 4.477

6 Training The establishment of process modeling expertise. 4.543 3.936
7 Model

management
The management of process model variants,
versions, releases, changes etc.

4.264 3.736

8 Buy-in The acquisition or ongoing assurance of buy-in
and commitment from process modeling
sponsors.

4.114 7.126

9 Ease of use The complexity or easiness of process modeling
methodologies, tools or notations.

3.648 6.319

10 Collaborative
modeling

The involvement of multiple people in the
modeling of processes.

3.000 5.196

6 Discussion and Implications

6.1 Discussion

Through the analysis presented above, we identify zones of concordance and
disconcordance between key stakeholder groups in business process modeling. Our
findings suggest that the endeavors of academics and vendors are not always aligned
to current or future needs of industry.

Notably, our study identified that the top three issues in business process modeling
at the moment, considering rankings from all three participant groups, are those of
standardization of process modeling, identification of the value of process modeling,
and also model-driven process execution. Interestingly, the participants felt that these
issues were so significant that they will still be challenges in five years to come. Our
study also identified that the three groups of process modeling stakeholders have
different opinions of the critical issues and challenges in the business process
modeling domain. For example, while practitioners rank standardization of modeling
notations to be the top critical current issue, academics perceive service-orientation as
the main issue, despite the standardization issue still being largely unsolved.

 Business Process Modeling: Current Issues and Future Challenges 511

While we would agree that to a large extent the endeavors of academics and tool
vendors should be visionary in nature, i.e., setting the ground work for solving
challenges that practitioners are likely to face in the future, our study finds only
limited indication of this situation occurring in actual industry practice. The
practitioners consider their current top three issues viz. standardization, value of
process modeling, and buy-in, to still be the top three challenges in five years time
(albeit in a different order). This situation indicates that these issues are indeed critical
and more guidance is expected on how to proceed. On the flip side, the academics
consider service-orientation, model-driven process execution, and flexibility to be the
current top three issues. If we consider that research takes a few years to be
assimilated into industry and products, none of those issues are mentioned at all in the
top ten current issues, nor future challenges, by the practitioners. The vendors have
somewhat better alignment with practitioners in terms of the perceived most critical
issues, with value of process modeling being the #2 current issue. Even consideration
of some of the lower ranked issues still shows lack of alignment between the current
foci of the academics and vendors, as compared to the future challenges identified by
practitioners. Standardization, for example, which is ranked only #7 on the current
critical issues list for academics, is the #3 expected future challenge for practitioners.

Another interesting situation emerges when analyzing the differences within the
same group of stakeholders in terms of current critical issues and future challenges.
Eight of the current issues for practitioners are still expected to persist as top ten
challenges in the future. The situation for academics, while considering a different set
of topics, is similar, with seven current issues still expected to be in the top ten
challenges in five years time.

6.2 Implications for Practice and Research

Our study provides implications for the industry ecosystem of end user organizations
as well as vendors of tools and consultancy offerings. Through the presentation of the
current issues, these stakeholder groups are informed about the key critical factors
that could potentially undermine success or value generation of business process
modeling projects. The identified issues also help to channel attention to the major
obstacles persisting in process modeling practice (e.g., model management and
standardization), and should motivate practitioners and vendors to consider
appropriate solutions or at least workarounds to some of the issues. Most notably, the
standardization of process modeling appears to be top on the agenda for process
modeling stakeholders. For end users, this finding implies setting up, and using, an
appropriately standardized modeling environment and available standards (e.g.,
BPMN, BPEL etc.), while for vendors it implies importance to adapt their offerings
so as to incorporate existing standards.

In addition to the insights we provide to the practice of business process modeling,
our work also informs a research agenda for process modeling-related research. On
the basic assumption that research should consider relevant topics of future interest to
practitioners, the contrast between future challenges identified by business process
modeling practitioners and the current issues of interest to academics identifies a
number of areas that are of interest to practitioners but do not appear as yet on the
radar screen of BPM scholars. Such areas include, for instance:

512 M. Indulska et al.

− Value of business process modeling: Research that studies the value proposition,
the net benefits or the cost drivers associated with business process modeling.

− Expectations management: Research that examines the expectations and pre-
conceptions, and the (dis-) confirmation of those, of different stakeholder groups
involved in business process modeling.

− Training: Research that studies different approaches to building business process
modeling expertise, the effects of expertise on the quality of business process
modeling, or the key factors determining process modeling expertise.

− Process architecture: Research that examines the development, use, composition,
or value of architectural models to guide the act of business process modeling.

− Adoption: Research that studies the key determinants and impediments associated
with the adoption and continued use of business process modeling on an individual
or organizational level.

We note that some of these areas of concern to practitioners appear to be similar in
nature to a range of the established streams of research in Information Systems in
general. For example, adoption [23], expectation [24] or value [25] of Information
Technology are well-established domains of IS research. However, it would appear
that these areas have, to date, been under-researched in the domain of business
process modeling and management. This situation brings forward a challenge as well
as an opportunity. Future research in these areas could build upon the body of
knowledge existent in the IS domain, and extend or amend existing theories to fit the
specific context of business process modeling. Some examples of how such work
could be carried out already exist (e.g., [26]).

7 Conclusions

Business process modeling is a foundational requirement in many management and IS
projects, yet it still represents a significant challenge to many organizations. This
paper presents the results of the first global large-scale Delphi study on the current
issues and future challenges in the business process modeling domain. The
identification of the most critical issues and challenges – from three separate
perspectives of academics, practitioners and vendors – enables us to develop deeper
insights into the interplay of research and practice, and to propose a set of industry-
relevant topics for the research community. Indeed, on the basis of our findings, we
would argue that increasing the synergy between the three groups will lead to: (a)
industry-relevant research that facilitates increased business process modeling
maturity in organizations, in turn generating the need for research in novel modeling
approaches, and, (b) the development of tools and supporting methodologies that are
better suited to the needs of the market.

We identify the Delphi study approach as a potential limitation in our work. Delphi
studies are said to be susceptible to a number of weaknesses including (1) the flexible
nature of study design [9], (2) the discussion course being determined by the
researchers [7], and (3) accuracy and validity of outcomes [27]. In our study,
measures were taken to minimize their potential impact. Such measures included: (1)
establishing assessment criteria for measuring inter-rater agreements; (2) use of a

 Business Process Modeling: Current Issues and Future Challenges 513

multiple coders; (3) using multiple coding rounds and (4) following established
methodological guidelines for the conduct of Delphi studies (e.g., [10, 11, 16]).

In our future work we seek to provide a detailed analysis of additional qualitative
responses gathered in a later fourth round of the study, which exposed the top 10 lists
to all participant groups and elicited the comments of the participants. In a related
stream of research, we will complement this Delphi study with a similar study on the
perceived benefits of business process modeling, to provide a balanced perspective.

References

1. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do Practitioners Use
Conceptual Modeling in Practice? Data & Knowledge Engineering 58, 358–380 (2006)

2. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.): Process Aware
Information Systems: Bridging People and Software Through Process Technology. John
Wiley & Sons, Hoboken, New Jersey (2005)

3. Davenport, T.H., Short, J.E.: The New Industrial Engineering: Information Technology
and Business Process Redesign. Sloan Management Review 31, 11–27 (1990)

4. Erl, T.: Service-oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Upple Saddle River (2005)

5. Scheer, A.-W.: ARIS - Business Process Modeling, 3rd edn. Springer, Berlin (2000)
6. Eikebrokk, T.R., Iden, J., Olsen, D.H., Opdahl, A.L.: Exploring Process-Modelling

Practice: Towards a Conceptual Model. In: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, vol. 376. IEEE, Waikoloa (2008)

7. Dalkey, N., Helmer, O.: An Experimental Application of the Delphi Method to the Use of
Experts. Management Science 9, 458–467 (1963)

8. Murphy, M.K., Black, N.A., Lamping, D.L., McKee, C.M., Sanderson, C.F.B., Askham,
J., Marteau, T.: Consensus Development Methods, and their Use in Clinical Guideline
Development. Health Technology Assessment 2, 1–88 (1998)

9. van de Ven, A.H., Delbecq, A.L.: The Effectiveness of Nominal, Delphi, and Interacting
Group Decision Making Processes. Academy of Management Journal 17, 605–621 (1974)

10. Okoli, C., Pawlowski, S.D.: The Delphi Method as a Research Tool: an Example, Design
Considerations and Applications. Information & Management 42, 15–29 (2004)

11. Powell, C.: The Delphi Technique: Myths and Realities. Journal of Advanced Nursing 41,
376–382 (2003)

12. Richards, J.I., Curran, C.M.: Oracles on “Advertising": Searching for a Definition. Journal
of Advertising 31, 63–76 (2002)

13. Hall, C., Harmon, P.: The 2007 Enterprise Architecture. Process Modeling, and Simulation
Tools Report. BPTrends.com (2007)

14. Blechar, M.J.: Magic Quadrant for Business Process Analysis Tools. Gartner Research
Note G00148777. Gartner, Inc., Stamford, Connecticut (2007)

15. Cochran, S.W.: The Delphi Method: Formulation and Refining Group Judgments. Journal
of Human Sciences 2, 111–117 (1983)

16. Linstone, H.A., Turoff, M. (eds.): The Delphi Method: Techniques and Applications
[Online Reproduction from 1975]. Addison-Wesley, London (2002)

17. de Bruin, T., Rosemann, M.: Using the Delphi Technique to Identify BPM Capability
Areas. In: Toleman, M., Cater-Steel, A., Roberts, D. (eds.) Proceedings of the 18th
Australasian Conference on Information Systems, The University of Southern Queensland,
Toowoomba, Australia, pp. 643–653 (2007)

514 M. Indulska et al.

18. de Bruin, T.: Insights into the Evolution of BPM in Organisations. In: Toleman, M., Cater-
Steel, A., Roberts, D. (eds.) Proceedings of the 18th Australasian Conference on
Information Systems, The University of Southern Queensland, Toowoomba, Australia, pp.
632–642 (2007)

19. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement 20, 37–46 (1960)

20. Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categorical Data.
Biometrics 33, 159–174 (1977)

21. Recker, J.: Opportunities and Constraints: The Current Struggle with BPMN. Business
Process Management Journal 15 (in press, 2009)

22. Ouyang, C., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Mendling, J.: From
Business Process Models to Process-Oriented Software Systems. ACM Transactions on
Software Engineering Methodology 19 (in press, 2009)

23. Venkatesh, V., Davis, F.D., Morris, M.G.: Dead Or Alive? The Development, Trajectory
And Future Of Technology Adoption Research. Journal of the Association for Information
Systems 8, 267–286 (2007)

24. Bhattacherjee, A.: Understanding Information Systems Continuance: An Expectation-
Confirmation Model. MIS Quarterly 25, 351–370 (2001)

25. Mukhopadhyay, T., Kekre, S., Kalathur, S.: Business Value of Information Technology: A
Study of Electronic Data Interchange. MIS Quarterly 19, 137–156 (1995)

26. Recker, J.: Understanding Process Modelling Grammar Continuance: A Study of the
Consequences of Representational Capabilities. Faculty of Information Technology,
Queensland University of Technology, Brisbane (2008)

27. Ono, R., Wedemeyer, D.J.: Assessing the Validity of the Delphi Technique. Futures 26,
289–304 (1994)

Appendix

Practitioners Vendors AcademicsRank
Issue Mean

Rating
Issue Mean

Rating
Issue Mean

Rating
1 Standardization 14.316 Model-driven process execution 12.222 Service orientation 8.440
2 Value of process modeling 12.105 Value of process modeling 12.167 Model-driven process execution 8.400
3 Buy-in 9.500 Business-IT-divide 8.833 Flexibility 7.480
4 Expectation management 8.474 Standardization 8.778 Compliance 6.880
5 Training 8.316 Process orientation 8.667 Methodology 5.960
6 Governance 7.132 Modeling level of detail 8.222 Modeling views 5.880
7 Modeling level of detail 6.579 Methodology 8.111 Standardization 5.480
8 Model management 6.368 Multi-perspective modeling 7.333 Model management 5.040
9 Adoption 6.263 Model management 5.778 Ease of use 4.920
10 Model integration 5.632 Governance 5.444 View integration 4.640

Practitioners Vendors AcademicsRank
Challenge Mean

Rating
Challenge Mean

Rating
Challenge Mean

Rating
1 Value of process modeling 16.632 Model-driven process execution 16.222 Model-driven process execution 10.960
2 Buy-in 12.342 Business-IT-alignment 15.333 Methodology 8.800
3 Standardization 8.632 Value of process modeling 14.889 Service orientation 8.560
4 Expectations management 7.842 Ease of use 10.944 View integration 8.560
5 Governance 7.079 Standardization 9.389 Value of process modeling 7.160
6 Training 6.684 Collaborative modeling 9.000 Standardization 7.000
7 Process architecture 6.316 Training 6.944 Model management 6.960
8 Model integration 6.289 Service orientation 6.556 Data-centric process modeling 6.560
9 Adoption 6.132 Model management 5.833 Compliance 6.160
10 Re-use 5.868 Ontology 4.889 Tool support 6.080

Deriving Information Requirements from
Responsibility Models

Ian Sommerville, Russell Lock, Tim Storer, and John Dobson

School of Computer Science, University of St Andrews, St Andrews, Scotland
ifs@cs.st-andrews.ac.uk

http://www.cs.st-andrews.ac.uk/~ifs

Abstract. This paper describes research in understanding the require-
ments for complex information systems that are constructed from one or
more generic COTS systems. We argue that, in these cases, behavioural
requirements are largely defined by the underlying system and that the
goal of the requirements engineering process is to understand the in-
formation requirements of system stakeholders. We discuss this notion
of information requirements and propose that an understanding of how
a socio-technical system is structured in terms of responsibilities is an
effective way of discovering this type of requirement. We introduce the
idea of responsibility modelling and show, using an example drawn from
the domain of emergency planning, how a responsibility model can be
used to derive information requirements for a system that coordinates
the multiple agencies dealing with an emergency.

1 Introduction

There has been an accelerating trend for information systems development to
be based on commercial off-the-shelf (COTS) products or Enterprise Resource
Planning systems (ERP). Such systems may incorporate or link with existing
information systems, operated by different parts of a business or by different
agencies. Examples of such systems include medical records systems, ‘enter-
prise systems’ that integrate the functions of an enterprise and coordination sys-
tems that support different organizations who are working together on a shared
problem.

The requirements for these information systems are significantly constrained
by the system or systems on which they are based. Rather than focus on function-
ality and behavioural characteristics, requirements engineering for such systems
should be concerned with how they can be configured and used to support the
work of an organisation.

Our current research focuses on the engineering of these large-scale, infor-
mation systems and their use in an organisational environment. The aspect of
this research described here is concerned with discovering and understanding
the requirements for information systems that coordinate the work of multiple
cooperating agencies. The novel features of the work include:

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 515–529, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

516 I. Sommerville et al.

1. A focus on information requirements as the most significant type of require-
ments for complex organizational systems.

2. The use of models of the responsibilities in organizations to support the
process of information requirements discovery.

We argue that the key requirements for many organizational systems are ‘in-
formation requirements’, i.e. requirements that define the information provided
to stakeholders to help them do their work, requirements for information sharing
and access control and requirements for the information that is generated. These
are an essential basis for system configuration and for defining the information
in different databases that has to be shared.

In this paper, we discuss what we mean by information requirements and
introduce the concept of responsibility as a natural abstraction that supports the
discovery of information requirements. We discuss how a model of responsibilities
in a system can help understand and analyze these information requirements.

Our approach is illustrated using several models of civil emergency planning.
We show how information requirements for a coordination system can be dis-
covered from the models. This responsibility-based approach to requirements
discovery is compared with viewpoint-oriented and goal-based approaches and
we present a qualitative evaluation of the work.

2 Information Requirements

Current requirements engineering methods that support requirements discovery,
by and large, assume that the outcome of the process is a behavioural descrip-
tion of the proposed system. The resulting requirements document describes the
system’s functionality and sets out how the system should behave in response
to events and user inputs. However, we have found that there are circumstances
where a behavioural approach to requirements description is inappropriate:

1. When the system is constructed using COTS products or ERP systems.
Here, the planned system behaviour is determined to a large extent by the
underlying generic system.

2. When the requirements are for a system of systems, or where there are
existing systems that must integrate with a new system. These constrain the
behaviour of any new system. This is particularly true where the different
systems are owned by different agencies, who may be reluctant to make
changes to them.

3. When the requirements have to reflect the social and organizational context
of a system rather than its operational use. The social and organizational
context establishes the rules, regulations and policies that apply to a system
as well as organization-specific requirements that reflect the power struc-
tures, culture and ethical values of an organization.

One motivation for introducing COTS and ERP systems is to support new
business processes that reduce information processing inefficiencies by sharing

Deriving Information Requirements from Responsibility Models 517

of information across business units. For example, information about students
who apply to a university may be captured on application and automatically
made available to other functions such as examination, assessment and alumni
tracking. Systems may then be configured to ensure that the people involved in
the business processes have access to the information that they need.

The key problem for such systems is understanding the information needs of
the people in the organization who are responsible for the different functions
of the system. These ’information requirements’ are used as a basis for defining
the system data models, business rules, information flows and generated reports.
They should also include knowledge of who needs what information and when
it is required to help avoid information overload and to configure the access
controls of the system.

The term ‘information requirements’ is not widely used. Here, we refer to those
requirements concerning information to be provided to system stakeholders in-
cluding where and how that information is used; or the information that they are
expected to create using the system. These are distinct from both presentation
requirements, which reflect how that information is delivered to different stake-
holders, and processing requirements, which define the automated information
processing carried out by the system.

Organizations installing new enterprise information systems usually define
new business process models and attempt to derive the information requirements
by analyzing these models. However, there have been many anecdotal reports of
major problems with such systems; they have often failed to deliver the expected
improvements. While there are many different reasons for the problems, one
important factor is that too many organizations rely on a simplistic notion of
business processes:

1. Defined business processes are rarely followed by the people doing the work
in an organization. Almost without exception, ethnographic studies of work
have revealed that business process models are not a good description of
actual operational activities [1,2]. Individuals and teams modify and extend
their processes to cope with deficiencies in the systems that they use, to adapt
these processes to local circumstances and to simplify exception handling.

2. Business processes are not an appropriate way of representing some kinds of
work. For professionals, much of their work is knowledge-based and reflects
their professional discipline, training and culture. Rather than follow a stan-
dard process, individuals decide how to organize and record their work, with
different people, doing the same job, working in different ways.

3. Business process descriptions do not (and cannot) define all possible excep-
tions and failures that may occur. Exception handling is left to individuals,
who use their detailed knowledge and local information to deal with prob-
lems.

Business process modeling are effective in eliciting the minimal set of infor-
mation required to produce an output. Our own observations, over more than 15
years [3,4,5], suggest that local process changes involve maintaining additional,

518 I. Sommerville et al.

sometimes redundant, information to that provided by a computer-based system
or using the affordances of the information representation to support collabora-
tion and communication. These support resilience, allowing work to continue in
the event of system failure and make it easier for people to help others if staff
are busy or unavailable.

We argue then that information requirements cannot just be derived from
business process models. They also require a detailed understanding of how
work is actually done and how information is acquired, used and generated in
its undertaking.

Information requirements, as discussed here, are also profoundly influenced by
a wider class of requirements on a socio-technical system. These were first iden-
tified by the ORDIT project [6] as ‘organisational requirements’. We now prefer
the term ‘enterprise requirements’ so as to avoid any possible confusion with
‘business requirements’, which reflect the functions and goals of the business.

Enterprise requirements are those requirements on a socio-technical system
that are derived from the system being placed in a particular social and or-
ganisational context rather than from functions to be performed or tasks to
be supported. Examples of sources of such requirements are power structures,
responsibilities and obligations, control and autonomy, values and ethics. Re-
quirements of this kind are embedded in organisational structure and policies,
often in a way that cannot be directly observed or easily articulated. Therefore,
these requirements are not so much captured as debated.

To illustrate what we mean here, consider the situation in hospitals where
there is perennial (and probably inevitable) tension between the hospital ad-
ministrators and the senior doctors. Information that is required to support
administration is inevitably different from clinical information and providing
that information often requires doctors to do extra work. If doctors are in a
strong position within the organization, they may simply refuse to provide that
information, thus constraining the information system. On the other hand, if
the power struggle favours the hospital managers, then the doctors may comply
with the demands to change the way they capture patient information. The in-
formation requirements depend on the power relationships in the organization
rather than prioritizing stakeholder needs.

We believe that for a large class of systems, information requirements are the
most important requirements because it is often difficult to devise work arounds
to cope with omissions and inadequate information. Problems are particularly
acute where the information requirements of one stakeholder group are based on
information that should be produced by some other group. If there is a mismatch
here, then it may be very difficult or impossible to recreate the information
required.

For example, in studies of a patient information system, built using a COTS
product, it was found that the information requirements of clinicians were quite
distinct from the information requirements of hospital managers. Managers re-
quired information about why patients were referred for treatment using stan-
dard classifications. However, these were quite different from the classifications

Deriving Information Requirements from Responsibility Models 519

used by the clinicians working in that domain. Reconciling these turned out to
be very difficult indeed, partly because of the tensions discussed above [7].

We argue then, that where there are significant pre-existing limitations on
system behaviour, the RE process should focus on understanding the information
that needs to be provided to stakeholders to allow them to do their job, the
‘enterprise requirements’ that constrain the way that this information is used
and the information that is generated. The focus is not ‘what should the system
do’ but ‘what do the stakeholders need and produce’.

3 Responsibility

For some time, our interests have been in the interaction between humans, or-
ganisational structures and software systems which form constituent parts of
broader socio-technical systems. In particular, we are interested in the influence
which such issues have on the dependability of systems [8].

As part of this work, we have investigated how we can use an understanding
of the responsibilities of agents in a socio-technical system to discover potential
system vulnerabilities that can lead to system failure. In particular, we have been
interested in highlighting the potential for ‘responsibility failure’ where an agent
cannot properly discharge its assigned responsibilities, or where responsibilities
are inappropriately assigned to agents in the system [9]. By a ‘responsibility’,
we mean:

A duty, held by some agent, to achieve, maintain or avoid some
given state, subject to conformance with organisational, social and cul-
tural norms.

The key points in this definition are that a responsibility is a duty, which im-
plies that the agent holding the responsibility is accountable to some authority
for their actions, that responsibilities may be concerned with avoiding unde-
sirable situations and not just with accomplishing some actions and that, in
discharging responsibilities, agent behaviour is constrained by laws, regulations
and social/cultural conventions and expectations.

The notion of a responsibility includes the specification of objectives (goals)
to be achieved in discharging the responsibility. However, there is also an ac-
knowledgment that in complex socio-technical systems, the achievement of an
objective is subject to a range of constraints, that are often implicit. For exam-
ple, doctors discharge responsibilities subject to ethical constraints, companies
operate subject to the financial regulations of their host country. The notion of
responsibility as a duty includes an embedded assumption that it is how an agent
acts and not just what is achieved that is important. This affects the information
requirements, particularly those requirements that define the information that
must be recorded when a responsibility is discharged. There may also be require-
ments to record information, in some critical contexts, about options considered
and rejected so that the agent holding the responsibility may be held to account.

In some cases, responsibilities may be procedural, where the agent follows
a defined process. However, many responsibilities are knowledge-based and the

520 I. Sommerville et al.

agent assigned the responsibility decides how to discharge that responsibility,
based on their knowledge and experience, local circumstances and other factors.
Even for procedural responsibilities, agents may have discretion in how to cope
with exceptions, busy periods of work and so on.

One important reason for using responsibilities as an abstraction is that they
are a natural notion that people can relate to. Work is often defined in terms of
responsibilities and, if you ask people what their responsibilities are, they can
usually tell you. People can usually separate their responsibilities at work from
their responsibilities in other areas (e.g. as a parent).

Responsibilities serve as an effective basis for focusing the requirements de-
bate, because of their ubiquity and naturalness. Different stakeholders may have
quite different views about particular responsibilities and by making these re-
sponsibilities explicit, we provide a means to stimulate that debate.

A valid question, of course, is how do you discover and understand the respon-
sibilities in a complex work setting? So far, our understanding of responsibilities
has been based on three complementary approaches:

1. Document analysis. Documents that describe the work of a business such
as plans or process descriptions often, explicitly or implicitly, discuss the
responsibilities of the agents involved.

2. Stakeholder interviews. As discussed above, it is natural for people to talk
about their own and other people’s responsibilities.

3. Field observations. Ethnographic studies of work settings reveal how respon-
sibilities are played out in practice and, in particular, how responsibilities
may be delegated, transferred and shared. We have been involved in such
studies in four areas - hospital administration [9], emergency planning [10],
election systems [11] and, more recently, university administration.

These techniques elicit both planned and operational responsibilities. Planned
responsibilities are anticipated by an organisation and describe expectations as
to how responsibilities are or will be assigned. On the other hand, operational
responsibilities refers to the dynamic assignment of responsibility in response
to actual events, and may result in rather different responsibility structures
than those anticipated by the organisation. Document analysis is effective for
eliciting planned responsibilities, but plans will incorporate changes as a result
of observations of responsibility assignment and discharge in practice.

4 Responsibility Modelling

A responsibility model is a succinct description of the responsibilities in a system,
the agents who have been assigned these responsibilities and the resources that
should be available to these agents to assist them in discharging their responsi-
bilities. Although we will explain the models illustrated here, a more complete
description of the notation can be found in [12].

Deriving Information Requirements from Responsibility Models 521

The domain in which we are currently working is that of civil emergency
management. This involves the emergency services and local and national gov-
ernment working together to cope with some emergency, such as flooding, ter-
rorist attack, aircraft accident, etc. We have been investigating how we can use
a model of responsibilities as a way of revealing planning vulnerabilities and the
requirements for systems support by the emergency coordination centres. The
case studies that we have used have been based on emergency plans for dealing
with extensive flooding.

The role of the emergency coordination centres in the UK is to coordinate
the ‘work on the ground’ of the different agencies involved. This involves pri-
oritizing actions, maintaining an overview of the situation, facilitating informa-
tion exchange across agencies and communicating with the media. The agencies
involved (fire, police, ambulance, etc.) have their own command and control
systems and information systems. Communication between agencies is normally
managed by liaison officers within the coordination centre.

In this case, the requirements are for an information management system that
allows information to be shared across agencies, that facilitates the transmission
of information to people dealing with the emergency and that logs decisions
taken by coordinators. Logging is critical both as a means of learning from
experience after the recovery phase of the emergency has been completed and
as an accountable record of actions.

Figure 1 is a model of the responsibilities involved in evacuating an area in the
face of an imminent or actual threat (from flooding). Responsibilities are denoted
by round-edged rectangles and agents are named in angle brackets. Dependen-
cies between responsibilities (such as decomposition into sub-responsibilities) are
indicated by links between the responsibility icons.

Responsibilities have a set of attributes and an associated description that
can take several forms, depending on the type of responsibility [13]. For respon-
sibilities that are normally discharged in the same way, the description can be a
work flow model. For knowledge-based responsibilities, the description is usually

Fig. 1. Responsibility model of evacuation coordination

522 I. Sommerville et al.

Fig. 2. Resources associated with a responsibility

textual. Attributes may include the goal or goals associated with the responsi-
bility, the context where it is normally discharged, and pre and post-conditions
defining assumptions.

To explain Figure 1, Silver Command (the name given to the coordination cen-
tre) initiates an evacuation given situation information (flood warnings, weather
forecasts, etc.) and a risk analysis. The police coordinate the evacuation process
and are responsible for safety and security during the evacuation. If people are
trapped, the fire service are responsible for search and rescue but they may not
be involved if the evacuation is in advance of a predicted flood. Two levels of
local authority are also involved. The district council must provide transport for
the evacuees and the county council must provide safe accommodation, food and
water, etc. Other agencies, such as the ambulance service, may also be called
on if there are ill or infirm people to be evacuated, but we have simplified our
model to exclude these.

Notice that the responsibility ‘Collect Evacuee Information’ does not have
an agent associated with it. Drawing up the responsibility model revealed this
vulnerability in the emergency plan, since it was not explicit which agency should
collect this information.

We can also associate resources with responsibilities as shown in Figure 2. A
resource can be information or some physical entity such as a flood barrier, vehi-
cle, etc. In this case, the responsibility ‘Initiate Evacuation’ requires information
resources (named between vertical bars) in order to discharge that responsibility.
The Environment Agency must provide a flood warning (which indicates when
local rivers may flood in the near future) and a risk assessment, which shows the
areas that would be affected by a flood and so should be evacuated.

5 Responsibility and Requirements Engineering

We are currently exploring how responsibilities can be used to support the early
stages of the RE process, namely the discovery and analysis of requirements from
multiple stakeholders. There are three areas where our work suggests they are
useful: understanding enterprise requirements; information requirements discov-
ery; and stakeholder identification. Here, we focus on the use of responsibility
models in discovering information requirements.

We believe that for enterprise information systems, the critical requirements
are information requirements. In the case of emergency management, different
agencies maintain different types of information. The most important system

Deriving Information Requirements from Responsibility Models 523

requirements are to identify the information that has to be shared and how it
will be communicated to the people who need that information.

The nature of emergency management is such that the people involved react
to the situation on the ground in order to discharge their responsibilities; it
is impossible to define an evacuation ‘process’. The information they require
normally comes through liaison officers based in a coordination centre.

To help us understand the information requirements, we ask a range of ques-
tions, prompted by the responsibility model. These are:

1. What information is required to discharge this responsibility?
2. What channels are used to communicate this information?
3. Where does this information come from?
4. What information is recorded in the discharge of this responsibility and why?
5. What channels are used to communicate this recorded information?
6. What are the consequences if the information required is unavailable, inac-

curate, incomplete, late, early?

To see how these questions are used, let us focus on the coordination of evac-
uation of people, which in the UK is the responsibility of the police, working
through a local, mobile coordination centre. When we applied the above ques-
tions to the emergency flood plan for Cumbria (in the north of England), we
derived the following:

1. What information is required to discharge this coordination responsibility?
– A map of the area that is threatened by the emergency.
– A list of ’priority premises’ to be evacuated. These are premises that

are evacuated first because they include people who may not be able to
evacuate themselves. hospitals, schools, care homes, etc.

– A list of assembly points where people should gather. The evacuation
involves people being directed (or if necessary helped) to these local
assembly points from where they are picked up and transported to a
safe location.

– Information about known, unsafe routes in the area.
– Information about premises that are known to have been evacuated.
– Information about the emerging threat situation (e.g. predictions of how

long until flooding occurs).
– Information about the capacity and availability of transport from the

assembly points.
– Information about the number of police available to assist with evacua-

tion and the availability of personnel from other emergency services. If
the emergency is predicted and has not yet happened, there may be no
need for support from other services.

2. Where does this information come from?
– Area map: County council
– Priority premises: District council
– Assembly points: District council

524 I. Sommerville et al.

– Known, unsafe routes: Police
– Evacuated premises: Police, Fire service
– Threat situation: Environment agency
– Transport information: District council
– Personnel available: Police, Other services

3. What channels are used to communicate this information?
– Area map: Radio data link to printers in local mobile command centre
– Priority premises: Radio data link to printers in local mobile command

centre
– Assembly points: Radio data link to printers in local mobile command

centre
– Known unsafe routes: Radio from Silver command
– Evacuated premises: Radio from Silver command
– Threat situation: Radio from Silver command
– Transport information: Radio from Silver command

4. What information is recorded and why?
– Information about premises evacuated, area evacuation times, units re-

sponsible for evacuation. (for accountability)
– Information about unchecked premises. (in case of future emergency

calls)
– Information about unsafe routes (to assist evacuation)

5. What channels are used to communicate this information?
– Radio from ground units to local control centre. Email to Silver command

if available, otherwise radio.
– Word of mouth local reporting

6. What are the consequences if the information required is unavailable, inac-
curate, incomplete, late, early?
To assess this, we need to look at each information item in turn. Take, for
example, the list of priority premises to be evacuated.
– Unavailable: Manual premises check required to see if vulnerable people

to be evacuated.
– Inaccurate: Manual premises check may be necessary. Possible delay in

evacuation of vulnerable people. People may be left behind.
– Incomplete: Possible delay in evacuation.
– Late: Information has to be communicated to units in the field rather

than at local coordination centre.
– Early: No consequence.

The information derived from discovering the information required to dis-
charge a responsibility may then be recorded in a responsibility model, using
the approach shown in Figure 2. This may then be used as a basis for debate
and discussion about the information.

The final stage in the process is to translate the information requirements
into system requirements for supporting information sharing. We do not have
space to discuss this in any depth here but simply provide some examples of
requirements (with associated rationale) below:

Deriving Information Requirements from Responsibility Models 525

1. The coordination centre system shall be able to import textual information
from the District Council planning system, the Police emergency system and
the Fire Service emergency system. (Different types of information needs to
be shared and this allows for information transfer between agencies).

2. The coordination centre system shall maintain a list of priority premises to
be evacuated for each town in the local area. This shall be updated by the
local council when the coordination centre is established. (The premises list
is maintained by the local government authority but may not be immediately
available outside of normal working hours; While a central list may be out
of date, it is better than nothing.)

3. The coordination centre system shall maintain a list of premises evacuated
along with the time of evacuation and the units involved in the evacuation.
(Allows units involved in the evacuation to be coordinated. Maintains an
audit trail of who did what and when.)

4. The coordination centre system shall notify all liaison officers of new infor-
mation about the threat situation as it becomes available. (Different services
may respond differently to changes in the threat situation e.g. local govern-
ment may withdraw from a situation because they are not equipped to deal
with search and rescue.)

6 Related Work

Models of responsibility were first proposed by Blyth et al. in the ORDIT
methodology [6,14], a graphical notation for describing the responsibilities that
agents hold with respect to one another. Dobson and Strens have also explored
the use of responsibilities in requirements engineering [15,16]. Dewsbury and
Dobson have edited a collection of papers that describe much of the research
undertaken on responsibility, presenting analyses of inappropriate responsibility
allocation in socio-technical systems [17]. In particular, the work includes pro-
posals for graphical responsibility modelling and pattern-based responsibility
definition [9,13].

Responsibilities provide a basis for deriving system requirements from differ-
ent perspectives and, in that respect, have something in common with viewpoint-
based approaches to RE. Viewpoints were probably first proposed by Schoman
and Ross in SADT under a different name [18] and the first use of the term
‘viewpoint’ was in Mullery’s paper on CORE [19]. CORE is based on infor-
mation flow so is useful as a means of analyzing information requirements, once
they have been discovered. Other researchers took on the general notion of view-
points as a means to discover, organize and analyse requirements from different
perspectives, using different approaches [20,21,22,23].

Responsibility-based approaches are perhaps closest to goal-based modelling
approaches, such as i* [24] and KAOS [25]. These are intended to expose high
level dependencies between the goals associated with agents in a given system.
Sub-goals may be derived from higher level objectives and assigned to agents
for completion. Goals are achieved through the recursive achievement of some or

526 I. Sommerville et al.

all sub-goals. Relationships between sub-goals express (and, or etc.) the possible
ways in which the super-goal may be achieved. Analysis of such models can
examine, for example, whether a super-goal may fail due to the failure of a
single sub-goal (brittleness), or whether a particular agent has been overloaded
with too many goals to achieve.

In a review of research on goal-oriented approaches, Lapouchnian [26] rightly
states “Identifying goals is not an easy task”. He states that goals are normally
derived from other information that is discovered from stakeholders. Responsi-
bilities are, we believe, a more natural abstraction than goals for requirements
discovery for a number of reasons:

1. Job specifications are often expressed in terms of responsibilities. Therefore,
responsibilities are a common notion across all stakeholders in an enterprise.
While managers and system operators (say) may not necessarily interpret
responsibilities in the same way, they can both, at least, talk about them.

2. Business goals are often not effectively communicated to the workforce in
an organization. Hence they may find it very difficult to distinguish between
professional and personal goals. There is often widespread scepticism in or-
ganizations about business goals.

3. Goals are not, in our view, a natural way to express what we call ‘avoiding
responsibilities’. They imply positive action to achieve the goal. A sentence
such as ‘my goal is to ensure that the pressure does not become dangerously
high; a much more likely way to express this is, ‘my responsibility is to ensure
that the pressure does not become dangerously high’.

Responsibility modelling complements goal-based approaches by providing a
higher level of abstraction for the modelling of socio-technical systems. Respon-
sibility modelling could be used as a starting point for more concrete goal or
task identification.

7 Evaluation

Evaluating any proposals for novel approaches to requirements engineering is
difficult. There are practical and methodological problems in comparative evalu-
ation, as the baseline knowledge of stakeholders changes as soon as they become
involved in a trial. Even when requirements have been discovered, we have no
way of telling, until the system has been implemented, if these requirements re-
flect the real needs of stakeholders. We may have developed an effective new way
of discovering requirements but unless these are the right requirements, then our
approach is not much use. We cannot therefore clearly demonstrate that focus-
ing on responsibilities leads to better requirements. We can however say that
responsibility modelling is a good way of stimulating requirements discussions
and hence reduce the possibility that requirements are inappropriate.

We can consider the effectiveness of our responsibility-based approach from
several perspectives:

Deriving Information Requirements from Responsibility Models 527

Naturalness: Can stakeholders without experience of requirements engineering
relate to the approach? In this respect, our responsibility-based approach scores
highly. In emergency management, plans are usually expressed in terms of re-
sponsibilities so it is straightforward to understand the concept of a responsi-
bility model. The notion of responsibility and responsible behaviour is widely
used in everyday discourse so people can readily discuss their responsibilities
in a given situation. The questions used to discover information requirements
relate directly to the stakeholder’s job and are therefore easy to understand. By
contrast, notions such as viewpoints are not particularly easy to explain and, as
already discussed, it is not easy to elicit stakeholder goals.

Applicability: How widely applicable is an approach? Because of the pervasive
notion of responsibilities, we believe that this responsibility-based approach may
be used in most socio-technical systems which involve multiple agencies or several
units within the same organisation. So far, we have developed responsibility
models in the domains of hospital administration, voting systems and emergency
planning and are working on models of university administration.

Scalability: Can the approach be used with real rather than simple example sys-
tems? All RE methods suffer from the danger of information explosion where
an immense amount of information is generated. In some cases, this makes it
practically impossible to scale these up to practical systems. As our approach
has been derived from our experience with large-scale socio-technical systems,
we have never started with ’toy’ examples; we have only ever used this to help
us analyse existing, large-scale systems. Of course, the natural structure of re-
sponsibilities helps here - it is everyday practice to decompose and delegate
responsibilities.

User involvement: Have end-users users been involved in the research? In terms
of buy-in from end-users, we are currently working with the Scottish Environ-
mental Protection Agency in developing our approach to responsibility models.
They are particularly interested in developing simple support systems for use in
the field, which reduce the problems of getting the right information to the right
person and at the right time.

Complementarity: Does the proposed approach complement other methods of re-
quirements engineering? We believe that a responsibility-based approach can be
used alongside goal-based and viewpoint-based approaches. Responsibilities can
be identified at an early stage in the process and used as a basis for discovering
information requirements. By identifying the agents who hold responsibilities,
stakeholders can be identified and involved in the RE process for the discovery
of more detailed behavioural system requirements.

8 Conclusions

Relatively few complex information systems are now built from scratch but
rather are assembled from existing and off-the-shelf systems. This means that

528 I. Sommerville et al.

behavioural requirements of the system are constrained and that the key re-
quirements are those that relate to the information provided to and generated
by system stakeholders.

We have proposed an approach based on the notion of modelling respon-
sibilities in an enterprise that supports the discovery of these information re-
quirements. We argue that responsibilities are a natural abstraction to use in
stakeholder communication and that stakeholders are readily able to articulate
the information they require to discharge their responsibilities. Models of respon-
sibility in a system provide a basis for stakeholders, potentially from different
organizations, to discuss the information that the need to do their job. Hence,
these models can support the discovery of information requirements.

We are in the process of using and evaluating these techniques to support
emergency management. Here, a coordination system is required to ensure that
information is exchanged between the different agencies involved in a timely way.
Our initial discussions with end-users suggest that they can easily relate to a
responsibility based approach and appreciate responsibility models as a succinct
summary of who does what in emergency situations. They have proved to be an
effective way of discovering and analysing information requirements.

References

1. Suchman, L.A.: Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge University Press, Cambridge (1987)

2. Myers, M.D.: Investigating information systems with ethnographic research. Com-
munications of the Association for Information Systems 23(2), 1–20 (1999)

3. Bentley, R., Hughes, J.A., Randall, D., Rodden, T., Sawyer, P., Shapiro, D., Som-
merville, I.: Ethnographically-informed systems design for air traffic control. In:
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW 1992), pp. 123–129. ACM Press, New York (1992)

4. Clarke, K., Hartswood, M., Procter, R., Rouncefield, M., Slack, R.: “minus nine
beds”: Some practical problems of integrating and interpreting information tech-
nology in a hospital trust. In: Proceedings of the BCS Conference on Healthcare
Computing: Current Perspectives on Healthcare Computing, Harrogate, UK, pp.
205–211 (2002)

5. Hughes, D.R.J.A., O’Brien, J., Rodden, T., Rouncefield, M., Sommerville, I.,
Tolmie, P.: Banking on the old technology: understanding the organisational con-
text of legacy systems. Communications of the Association for Information Systems
2(8), Article 8 (1999)

6. Blyth, A.J., Chudge, J., Dobson, J.E., Strens, M.R.: ORDIT: A new methodology
to assist in the process of eliciting and modelling organisational requirements.
In: Kaplan, S. (ed.) Proceedings on the Conference on Organisational Computing
Systems, Milpitas, California, USA, pp. 216–227. ACM Press, New York (1993)

7. Hardstone, G.: d’ Adderio, L., Williams, R.: Standardization, trust and depend-
ability. In: [8], ch., 5, pp. 105–122

8. Clarke, K. (ed.): Trust in Technology: A Socio-Technical Perspective. Springer,
Heidelberg (2006)

9. Sommerville, I.: Models for responsibility assignment. In: [17] ch., 8

Deriving Information Requirements from Responsibility Models 529

10. Sommerville, I., Storer, T., Lock, R.: Responsibility modelling for contingency plan-
ning. In: Workshop on Understanding Why Systems Fail, Contingency Planning
and Longer Term Perspectives on Learning from Failure in Safety Critical Systems
(June 2007)

11. Lock, R., Storer, T., Harvey, N., Hughes, C., Sommerville, I.: Observations of
the Scottish elections. Transforming Government: People, Process and Policy 2(2),
104–118 (2007)

12. Storer, T., Lock, R.: Modelling responsibility. Project Working Paper 7, InDeED
Project (April 2008)

13. Sommerville, I.: Causal responsibility models. In: [17], ch., 9
14. Dobon, J.E., Blyth, A.J., Chudge, J., Strens, R.: The ORDIT approach to organiza-

tional requirements. In: Jirotka, M., Goguen, J.A. (eds.) Requirements Engineering,
Social and Technical Issues, pp. 87–106. Academic Press, London (1994)

15. Dobson, J.E., Strens, M.R.: Responsibility modelling as a technique for require-
ments definition. Intelligent Systems Engineering 3(1), 20–26 (1994)

16. Dobson, J.E., Strens, M.R.: Organizational requirements definition for information
technology systems. In: Proceedings of the IEEE International Conference on Re-
quirements Engineering (ICRE 1994), Colorado Springs, pp. 158–165. IEEE Press,
Los Alamitos (1994)

17. Dewsbury, G., Dobson, J. (eds.): Responsibility and Dependable Systems. Springer,
London (2007)

18. Ross, D.T., Schoman Jr., K.E.: Structured analysis for requirements definition.
IEEE Transactions on Software Engineering 3(1), 6–15 (1977)

19. Mullery, G.P.: CORE: A method for controlled requirement expression. In: Pro-
ceedings of the 4th International Conference on Software Engineering, Munich,
Germany, pp. 126–135. IEEE Computer Society Press, Los Alamitos (1979)

20. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: A framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering 2(1),
31–57 (1992)

21. Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition
in requirements elicitation. In: Proceedings of the Sixth International Workshop
on Software Specification and Design, pp. 14–21. IEEE Computer Society Press,
Los Alamitos (1991)

22. Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. BCS/IEE
Software Engineering Journal 11(1), 5–18 (1996)

23. Sommerville, I., Sawyer, P.: Viewpoints: Principles, problems and a practical ap-
proach to requirements engineering. Annals of Software Engineering 3, 101–130
(1997)

24. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE International Symposium on Requirements Engineering
(RE 1997), pp. 226–235. IEEE Computer Society Press, Los Alamitos (1997)

25. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Science of Computer Programming 20, 3–50 (1993)

26. Lapouchnian, A.: Goal-oriented requirements engineering: An overview of the
current research. Depth report, Department of Computer Science, University of
Toronto (June 2005)

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 530–545, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Communication Analysis: A Requirements Engineering
Method for Information Systems*

†

Sergio España1, Arturo González2, and Óscar Pastor1

1 Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia

{sergio.espana,opastor}@pros.upv.es
2 Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
agdelrio@dsic.upv.es

Abstract. Developing Information Systems (ISs) is a hard task for which Re-
quirements Engineering (RE) offers a good starting point. ISs can be viewed as
a support for organisational communication. Therefore, we argue in favour of
communication-oriented RE methods. This paper presents Communication
Analysis, a method for IS development and computerisation. The focus is put
on requirements modelling techniques. Two novel techniques are described;
namely, Communicative Event Diagram and Communication Structures. These
are based on sound theory, they are accompanied by prescriptive guidelines
(such as unity criteria) and they are illustrated by means of a practical example.

Keywords: Communication Analysis, requirements engineering, communica-
tion theory, enterprise information systems, requirements structure.

1 Introduction

Information Systems (ISs) development and computerisation is a wicked problem1.

‡. To a large extent, this is due to their socio-technical nature [27] and to the interven-
tion of multiple stakeholders with often conflicting needs and world views. To over-
come conflicts and to reach agreement, stakeholders’ perceptions have to be placed in
a knowledge base that is shared with IS developers. Requirements Engineering (RE)
facilitates this process by offering techniques for the discovery and description of
stakeholders’ needs. However, there exist many different explanations of what a re-
quirement is and what it is not (e.g. what vs. how [10], why [35]). The authors’ stance
in this matter is summarised as follows (for more reasoned arguments see [20]):

− A requirements engineering method should prescribe a requirements structure that
fits the problem trying to be solved, it should offer contingent and prescriptive
methodological guidance and it should be illustrated with representative examples.

* Research supported by the Spanish Ministry of Science and Innovation (MICINN) project
SESAMO (TIN2007-62894), the MICINN FPU grant (AP2006-02323), and FEDER.

1 Among other characteristics, wicked problems do not have a unique solution and their state-
ment is not clear until they are solved (in part due to stakeholder discrepancies) [34].

Communication Analysis: A Requirements Engineering Method for Information Systems 531

− Requirements specifications should offer an external view of the system under de-
velopment. In case internal details are included, the requirements structure should
clearly differentiate the problem space (external) from the solution space (internal).

Attending to academic literature and industrial practice, various conceptions of ISs
are found. Some authors consider ISs as a mere representation of reality [40]. Under
this perspective, ISs can be described following an ontological approach; that is, fo-
cusing on the objects perceived in the universe of discourse (e.g. OO-Method [32]).
Other perspectives focus on organisational intentions (e.g. Maps [35]), value object
exchanges (e.g. e3-value [23]), etc. The authors view an IS as a support for organisa-
tional communications [26, 27]. Therefore, a communicational approach to ISs analy-
sis is necessary; that is, we claim that ISs requirements engineering should take into
account users’ communicational needs.

We propose Communication Analysis as a method for the development and com-
puterisation of enterprise Information Systems. This method focuses on communica-
tive interactions that occur between the IS and its environment. The method stems
from IS foundations academic research [22, 31] and it evolves by means of the
collaboration with industry. Communication Analysis is currently being used by im-
portant Spanish enterprises and governmental institutions. The communicational
perspective of the method has been overviewed in a previous publication [20]. This
paper presents with greater detail the modelling techniques that Communication
Analysis proposes for requirements specification. The main contributions of this
paper are the following:

• Communicative Event Diagram is presented – a business process modelling tech-
nique that adopts a communicational perspective and facilitates the development of
an IS that will support those business processes.

• Communication Structures are presented – a modelling technique for the specifica-
tion of messages communicated with (and within) the organisation.

• Both modelling techniques fit well into a requirements structure, and they are both
soundly founded on concepts borrowed from diverse disciplines (e.g. Systems
Theory, Communication Theory, Information Systems Theory). Methodological
guidance is based on sound criteria and illustrative examples are offered.

The rest of the article is structured as follows. Section 2 presents an overview of
the approach, highlighting the proposed requirements specification structure and the
method workflow. Section 3 describes the case that is used to illustrate the proposal.
Section 4 describes Communication Analysis modelling techniques, paying special
attention to Communicative Event Diagram and Communication Structures, and illus-
trating them. Section 5 presents a review of related works. Section 6 presents conclu-
sions and future works.

2 Overview of the Approach

From a systemic point of view, the kind of problem that we are confronting involves
at least three systems. The Organisational System (OS) is a social system that is inter-
ested in observing, controlling and/or influencing a portion of the world [27]. We

532 S. España, A. González, and Ó. Pastor

refer as Subject System (SS) to the portion of the world in which the OS is interested
(a.k.a universe of discourse). An Information System (IS) is a socio-technical system,
a set of agents of different nature that collaborate in order to support communication
between the OS and its environment (and also within the OS) [27]. We refer as Com-
puterised Information System (CIS) to the part of the IS that is automated.

Therefore, we argue that systemic principles need to be applied to IS requirements
engineering. Quite often, the set of requirements are organised as plain enumerated
lists. We claim that a requirements structure suited to ISs development is more appro-
priate than a list. Communication Analysis proposes a requirements structure that al-
lows a stepwise refinements approach to ISs description (by following systemic
principles). Also, the proposed method allows tackling with static and dynamic per-
ceptions of reality (by giving support to discovering and describing that duality).
Figure 1 shows the first dimension of the proposed requirements structure and the ac-
tivities that are related to each requirements level. The structure and the method flow
of activities have been overviewed in a previous publication [20].

The first dimension concerns several (systemic) requirements levels.
L1.System/subsystems level refers to an overall description of the organisation and its
environment (OS and SS, respectively) and also involves decomposing the problem in
order to reduce its complexity. L2.Process level refers to business process description
both from the dynamic viewpoint (by identifying flows of communicative interac-
tions, a.k.a. communicative events) and the static viewpoint (by identifying business

Fig. 1. Communication Analysis requirements levels and workflow

Communication Analysis: A Requirements Engineering Method for Information Systems 533

objects). L3.Communicative interaction level refers to the detailed description of each
communicative event (e.g. the description of its associated message) and each busi-
ness object. L4.Usage environment level refers to capturing requirements related to
the usage of the CIS, the design of user interfaces, and the modelling of object classes
that will support IS memory. L5.Operational environment level refers to the design
and implementation of CIS software components and architecture.

Levels L1, L2 and L3 belong to the problem space, since they do not presuppose
the computerisation of the IS and they aim to discover and describe the communica-
tional needs of users. Levels L4 and L5 belong to the solution space, since they spec-
ify how the communicational needs are going to be supported. This paper focuses on
the problem space and it describes in detail some of its modelling techniques.

3 Illustration Case Description

In order to exemplify the application of the method, we use an illustration case.
A photography agency manages illustrated reports (a.k.a. reports) and distributes

them to publishing houses. Freelance photographers apply to work for the agency.
The agency management board decides whether the photographer is accepted or not,
and which quality level is assigned to them. Accepted photographers provide reports
to the agency. Publishing houses buy reports from the agency catalogue and, some-
times, they request an exclusive report (a.k.a. exclusive) on a particular subject. Each
exclusive is assigned to an interested photographer, as long as they do not have any
other pending exclusive. Reports and exclusives are sent to publishing houses through
a courier company, along with a delivery note. Then the messenger returns to the
agency the delivery note, signed by the publishing house. Monthly, the agency issues
publishing house invoices and photographers cheques.

4 Communication Analysis Modelling Primitives and Guidelines

Before describing Communication Analysis requirements levels, it is worth enumerat-
ing three functions of communication defined by Jakobson [25]. These functions al-
low us to structure requirements and to underpin the concepts underlying the method:

− Phatic: it aims to establish, maintain contact, and ensure operation of the (physical
or psychological) communication channel between the addresser and the addressee.

− Referential: the purpose of this function is to convey context-related information.
− Connative: it aims to convey commands, to (attempt to) transform reality or peo-

ple, to affect the course of events or behaviour of individuals.

4.1 L1. System/Subsystems Level

On the first requirements level, the analyst describes the OS from the strategic point
of view. On the one hand, when the organisation is complex, it is advisable to decom-
pose the problem into subsystems or organisational areas. On the other hand, the
analyst elicits requirements related to strategic-level business indicators.

534 S. España, A. González, and Ó. Pastor

The photography agency case is of manageable size. Even though, three subsys-
tems can be distinguished: Customer Service Department (it serves publishing
houses), Production Department (it deals with photographers and manages reports),
Accounting Department. With regard to strategic business indicators, the management
board is interested in growth indicators that serve as a scorecard; e.g. increase in the
number of photographers, increase in the number of exclusives, cash flow.

4.2 L2. Process Level

On this requirements level, Communication Analysis proposes describing business
processes from a communicational perspective. The aim is to discover communica-
tive interactions between the IS and its environment, and to describe them taking
into account their dynamic and static aspects; that is, creating the Communicative
Event Diagram and the Business Objects Glossary, respectively. In the following,
a series of definitions clarify the concepts upon which the modelling techniques are
built.

We refer as communicative interaction to an interaction between actors with the
aim of exchanging information. FRISCO report [16] presents a generic model of ISs
that considers an IS as a support for communicative interactions. In a previous publi-
cation, the authors extend this model in order to deepen the communicative point of
view [31]. Depending on the main direction of communication, the following types of
communicative interactions can be distinguished:

− Ingoing communicative interactions primarily feed the IS memory with new mean-
ingful information. These interactions often appear in the shape of business forms.

− Outgoing communicative interactions primarily consult IS memory. These interac-
tions often appear in the shape of business indicators, listings and printouts.

Industrial experience has shown us that ingoing communicative interactions entail
more analytical complexity. Therefore, we advise the analyst to focus, first of all, on
ingoing communicative interactions2.§.

A communicative event is a set of actions related to information (acquisition, stor-
age, processing, retrieval and/or distribution), which are carried out in a complete and
uninterrupted way, on the occasion of an external stimulus [22].

Communication Analysis offers unity criteria to allow identifying communicative
events, also facilitating the determination of their granularity. This way, a communi-
cative event can be seen as an ingoing communicative interaction that fulfils the unity
criteria. Each unity criterion is related to a communication function. Table 1 summa-
rises unity criteria and their application, see [21] for detailed information.

Communication Analysis proposes to specify the flow of communicative events by
means of the Communicative Event Diagram (CED). The primitives of this model-
ling technique are shown at the bottom of Figure 2 and explained next.

2 Communication Analysis also takes into account outgoing communicative interactions. How-

ever, when the OS needs complex indicators for performance management, techniques such
as the Balanced Scorecard are recommended.

Communication Analysis: A Requirements Engineering Method for Information Systems 535

Table 1. Unity criteria to identify and encapsulate communicative events

Criterion (Communication function) Definition
Trigger unity (Phatic function)

Trigger responsibility is external. The event occurs as a response to an external
interaction and, therefore, some actor triggers it. This (primary) actor is the one
that provides the information that is conveyed in the event.
Communication unity (Referential function)

Each and every event involves providing new meaningful information. Thus, an
interaction needs to provide new facts in order to be considered an event. Input
messages are representations of something that happens in the IS environment.
Reaction unity (Connative function)

The event is a composition of synchronous activities; thus, these activities can
communicate the information they need from each other. Events are asynchronous
among each other; thus, events need a shared IS memory to communicate.
An example of their application.
According to the unity criteria, two communicative events are identified with re-
gard to photographer subscriptions: PHO 1 and PHO 3 (see Figure 2). Both events
fulfil the three unity criteria: both have an external actor that triggers them (a pho-
tographer and the management board, respectively), both result in the provision of
new meaningful information (the application and the resolution, respectively), and
both are compositions of synchronous activities. Considering them to be only one
communicative event would result in violating the trigger criteria (each has a dif-
ferent primary actor) and the reaction criteria (they are asynchronous: PHO 1 can
occur at any moment during office hours, PHO 3 occurs Monday mornings).

Each communicative event is represented as a rounded rectangle and is given an

identifier and a descriptive name. The identifier serves for traceability purposes and it
is usually a code composed of a mnemonic (related to the system to which the event is
ascribed) and a number (e.g. PHO 3). With regard to the name, we recommend to
consistently use either an external nomination (primary actor + action + object +
qualifier; e.g. “Photographer submits an application”) or an internal nomination (sup-
port actor + action + object + qualifier; e.g. “Clerk receives a photographer applica-
tion”). For instance, in the illustration case we have opted for an external nomination.
For each event, involved actors are identified. Communication Analysis distinguishes
several roles (see theoretical basis in [31]):

− The primary actor triggers the communicative event by establishing contact with
the OS and provides the conveyed input information. Therefore, primary actors are
modelled as senders of ingoing communicative interactions. For instance, the man-
agement board is the primary actor of event PHO 3.

− The support actor is in charge of physically interacting with the IS interface in or-
der to encode and edit input messages. Support actors are specified at the bottom of
the event rounded rectangle. Sometimes the primary actor and the support actor are
different persons (e.g. photographer and clerk, respectively, in event PHO 1). Other
times both roles are played by the same person (e.g. the salesman in event PHO 2).

536 S. España, A. González, and Ó. Pastor

− Receiver actors are those who need to be informed of the occurrence on an event.
In order to truly understand the meaning of messages in organisations, it is neces-
sary to analyse these actors. They are modelled as receivers of outgoing communi-
cative interactions (e.g. in PHO 3 the photographer is informed of the resolution).

− Reaction processors are those in charge of performing the IS reaction to the mes-
sage. This role is not depicted in the CED.

The messages associated to communicative events are conveyed via ingoing com-
municative interactions and outgoing communicative interactions. In the CED,

Fig. 2. Communicative Event Diagram of the photography agency3
**

3 Note that the labels of Photographer actors (to the right) and Publishing house actors (to the

left) are omitted for reasons of space. Also, some communicative interaction labels have been
abbreviated (e.g. SIG.D.N. stands for SIGNED DELIVERY NOTE).

Communication Analysis: A Requirements Engineering Method for Information Systems 537

messages are given a name (by labelling communicative interactions)4
††. Communica-

tive interactions are modelled as arrows placed in the horizontal axis. The vertical
axis is reserved for precedence relations among communicative events, which are
also modelled as arrows5.‡‡. E.g. PHO 3 requires the previous occurrence of PHO 1 and
PHO 2.

Communicative events are specialised whenever each specialised variant leads to a
different temporal path (i.e. distinct precedence relations). It must be avoided special-
ising an event as a result of different communication channels, since the message re-
mains the same (e.g. a publishing house can order a report in person or by telephone).

This requirements level also provides a static perspective of business processes, by
means of business objects. We refer as business objects to the conceptions of those
entities of the Subject System in which the OS is interested. Frequently, stakeholders
describe business objects as complex aggregates of properties. Business objects are
identified and described in a Business Object Glossary. Also, users are asked to hand
out business forms to the analysts, who catalogue them for later form analysis. For in-
stance, the photography agency manages the following business objects: photographer
records, publishing house records and reports6

§§. Static analysis also implies eliciting
business indicators that are associated to subsystems or processes. For instance, the
photography agency is interested in business indicators related to its three subsystems:

− Customer Service Department requires payments and takings indicators that allow
them monitoring debts (e.g. publishing house indebtedness).

− Production Department requires productivity and profitability indicators (e.g. de-
livery performance to customer, photographer productivity).

− Customer Service Department requires client-related indicators that allow them to
monitor customer loyalty (e.g. consumption rates).

4.3 L3. Communicative Interaction Level

Communicative events that appear in the CED need to be described in detail. Re-
quirements associated to an event are structured by means of an Event Specification
Template. The template is composed by a header and three categories of require-
ments: contact, communicational content and reaction requirements. These categories
are related to phatic, referential and connative communication functions, respectively.

The header contains general information about the communicative event; that is,
the event identifier, its name, a narrative description and, optionally, an explanatory
diagram. The event identifier and name come from the CED; event identification
needs to be kept consistent throughout the entire analysis and design specification in
order to enhance requirements traceability. Since requirements specifications is
meant, first of all, to facilitate problem understanding, a narrative description of the
event is strongly advised. Also, whenever the event is complex, an explanatory
diagram illustrating its associated flow of tasks shall be included.

4 Message structure is specified in detail in a later activity (see Section 4.3).
5 Complex business processes may require other operators. Start and end symbols can also be

used. Besides, loops appear in many business processes.
6 The description of business objects is omitted for the sake of brevity.

538 S. España, A. González, and Ó. Pastor

Table 2. Primitives and grammar of Communication Structures modelling technique

CSs primitives EBNF grammar for Communication Structures7

Aggregation
A = < a + b + c >
A is composed of
fields a and b and c.
Alternative
A = [a | b | c]
A is either composed
of field a or b or c,
(only one of them).
Iteration
A = { B }
A is composed of
several substructures
of type B.
Identification
a(id)
Field a identifies an
object that is already
known by the IS.

communication structure
= structure name, ’=’, initial substructure;
initial substructure
= aggregation substructure
| iteration substructure;
aggregation substructure
= ’<’, substructure list, ’>’;
iteration substructure
= ’{’, substructure list, ’}’;
specialisation structure
= ’[’, substructure list,
 { ’|’, substructure list },’]’;
substructure list
= substructure, { ’+’, substructure };
complex substructure
= aggregation substructure
| iteration substructure
| specialisation structure;
substructure
= substructure name, ’=’, complex substructure
| identifier field
| field;

Contact requirements are related to the conditions that are necessary in order to es-

tablish communication. For instance8,†††the primary actor, possible communication
channels (e.g. fax, email, in person), availability and temporal restrictions (e.g. office
hours for order reception), authentication requirements (e.g. in Spain, bureaucratic
proceedings often require showing an identity card).

Communicational content requirements specify the message conveyed in an event
and related restrictions (e.g. reliability: certifying that a diploma provided by a student
is not fraudulent). With regard to the message, both metalinguistic aspects (e.g. mes-
sage field structure, optionality of fields) and linguistic aspects (e.g. field domains,
example values) need to be specified. Communication Analysis proposes a message
modelling technique. Communication Structure (CS) is a modelling technique that
is based in structured text and allows specifying the message associated to a commu-
nicative event. The structure of message fields lies vertically and many other details
of the fields can be arranged horizontally; e.g. the information acquisition operation,
the field domain, the link with the business object, an example value provided by us-
ers. A communicative event can not be fully understood until its CS is defined in
detail. Specifying with precision an event CS forces and helps analysts and users to
appropriately mark the event boundary and meaning. Table 2 shows the Communica-
tion Structures grammar. On left-hand side column, the primitives are informally

7 This table summarises the main syntactical rules of the grammar. The elements structure
name, substructure name, identifier field and field can be considered
character strings.

8 For reasons of space, not all kinds of requirements in each category are included.

Communication Analysis: A Requirements Engineering Method for Information Systems 539

explained; on the right-hand side column, an EBNF grammar [24] that allows ex-
pressing CSs is presented.

Reaction requirements describe how the IS reacts to the communicative event oc-
currence. Typically, the IS stores new knowledge, extracts all the necessary conclu-
sions that can be inferred from new knowledge, and makes new knowledge and
conclusions available to the corresponding actors. Therefore, this category of re-
quirements includes business objects being registered and outgoing communicative
interactions being generated by the event, among other requirements.

A simplified Event Specification Template of event PHO 3 is shown next.

PHO 3 Management board resolves applications
Goals: The IS aims to obtain a response to outstanding photographer applications.
Description: Monday mornings, the management board holds a meeting. A mem-
ber of each department is present. A Production Department clerk has prepared a
list of outstanding (pending) photographer applications and a résumé of each appli-
cant. Management board proceeds to evaluate and resolve each application. De-
pending on the documentation, a photographer is either accepted or rejected.
Accepted photographers are classified into a quality level (this level will determine
their rates). After the meeting, the list of resolved applications is returned to Pro-
duction Department.
Explanatory diagram: (Not included)
Contact requirements
Primary actor: Management board. Communication channel: In person.
Temporal restrictions: This communicative event occurs Monday mornings.
Frequency: Of the 10-20 monthly applications, around 5 are accepted.
Communicational content requirements
Support actor: Production Department clerk
Communication Structure: (See some comments below)

RESOLUTIONS =
{ Application ()=

< ID card # +
Name +
Address +
Postcode +
City +
Phone # +
Equipment +
Experience +
Portfolio +
Resol. date +
Decision +
[Accepted =
< Level >]

>
}

i
d
d
d
d
d
d
d
d
i
i

i

text
text
text
text
text
text
text
text
document
date
[acc|rej]
Decision=acc
Rate<level>

PHOTOGRAPHER
(ID card #)=
<

resol date +
decision +

level
>

19.345.631-Q
Sergio Pastor González
Camino de Vera s /n
46022
Valencia
9638700000 ext 83534
Canon A 1 w. telemacro
Worked for Mangum Ph
N/A (sample of work)
November 21, 2008
acc

1 (highest quality level)

FIELD OP DOMAIN BUSINESS OBJ. EXAMPLE VALUE LEGEND

CSs Primitives

<+> aggregation
{ } iteration
[|] alternative
() selection

Information
aquisition
operations

d derivation
i input

Management board resolves each application (see the iteration of applications).
Note that, for each application (identified by the ID card #), the only fields that
constitute new information are the decision on whether to accept or reject the
photographer (Decision field) and, in case of acceptance (message alternative and
associated condition Decision=acc), the assigned quality level (Level field). The

540 S. España, A. González, and Ó. Pastor

rest of the fields are derived from the IS memory (these data is introduced by a
previous event; namely, PHO 1 Photographer submits an application). The business
object column links dynamic perspective (communicative interaction description)
with the static perspective (Business Object Glossary). Note that only new facts are
stored in the IS memory. Example values enhance user-analyst communication.
Reaction requirements
Business object: If the application
is accepted, the photographer be-
comes part of the agency. The clerk
creates a photographer record that
includes photographer’s personal
and contact details (See scanned
form at the right-hand side).

Outgoing communicative interac-
tion: After this communicative
event, a letter informing of the reso-
lution is sent to the photographer9.‡‡‡

Fig. 3. Event Specification Template of communicative event PHO 3

5 Related Works

There exist distinct orientations with regard to requirements elicitation for IS devel-
opment. Goal-oriented approaches intend to identify stakeholders’ necessities, mod-
elling them as goals, where a “a goal is an objective the system under consideration
should achieve” [39]. E.g. Map [35], i* [43] and KAOS [9]. Among agent-oriented
approaches, which design the system as a set of autonomous and automatable agents,
Tropos includes a goal-oriented requirements stage [6]. Usage-based approaches
describe the interaction between the user and the software system under development.
E.g. Use Cases [30] and Info Cases (an extension of the former) [18]. Value-oriented
approaches identify and model value object exchanges [41]. E.g. e3-value [23]. As-
pect-oriented approaches apply the separation of concerns principle [14] to RE. E.g.
Early Aspects [33] and Theme/DOC [3]. Some organisational modelling approaches
propose modelling and integrating multiple views of the system [5, 36, 11]. There
also exist communicational approaches. In this field, a widely extended orientation is
the Language Action Paradigm (LAP) [17, 42], which is mainly based on the work of
Austin [1] and Searle’s speech act classification [37]. Communicative Action Para-
digm (CAP) is an evolution of LAP that extends the paradigm to non-verbal commu-
nication [13]. Several approaches stem from LAP, such as Action Workflow [28],
SAMPO [15], Business Action Theory [19], DEMO [12] and Cronholm and Gold-
kunhl’s Communication Analysis [8]. SANP [7] adopts a similar approach, but it is
based on Ballmer and Brennenstuhl’s speech act classification [2]. Semiotic ap-
proaches to organisational modelling have also been proposed [38].

9 This communicative interaction is a printout and it is not described in detail for the sake of

brevity.

Communication Analysis: A Requirements Engineering Method for Information Systems 541

This paper presents a communicational approach. Communication Analysis does
not consider goal modelling, but the industrial projects in which the authors have been
involved (which have contributed to consolidate the method) did not require it. Like-
wise, value network modelling has not been considered, but the method is usually put
into practice in existing organisations with well established businesses, not with the
intention to support an “innovative e-commerce idea” [23]. In any case, IS develop-
ment is better tackled with a contingent approach, so we are open to integrating these
or other perspectives with Communication Analysis (see Section 6).

Some features give advantage to our proposal over other methods. The actor roles
argued in Section 4.2 distinguish Communication Analysis from other approaches.
Many business process modelling techniques use support actors and/or reaction
processors as criteria for organising processes in swimlanes but primary actors are
disregarded (e.g. [11]). However, primary actors are central to our approach10.§§§ Fur-
thermore, most RE approaches do not specify communicational content of interac-
tions (or message specification is mixed with system usage description, as in Use
Cases). Info Cases is an exception, since this technique proposes a structured text
specification of messages. However, Communication Structures have greater expres-
siveness (e.g. alternative, iteration, information acquisition operation)11.****

With regard to communicational approaches, we share with them the communica-
tional perspective and many foundations borrowed from Communication Theory.
However, Communication Analysis does not necessarily preconceive a specific
speech acts classification nor assumes conversational patterns, as LAP-based ap-
proaches do. An analyst following our approach does not impose patterns on the
organisation, but confines to discovering the communication needs of the organisa-
tional stakeholders, shedding light on their work practice and identifying possible im-
provements. Our proposal coincides with the one by Cronholm and Goldkuhl in the
communicational perspective. Also, both proposals consider organisational docu-
ments (e.g. business forms) invaluable sources of information. However, Cronholm
and Goldkuhl choose existing documents as a starting point in RE process and their
modelling notation (the Document Activity Diagram) is document-centred; that is,
communicative interactions are subordinate to documents. We choose communicative
interactions as a starting point and the modelling notation that we propose in this pa-
per (the Communicative Event Diagram) is communicative interaction-centred. We
argue that communicative events represent pure work practice and that it is possible to
discover and describe them independently of their associated documents. Documents
are a specific technological support12

†††† (solution space) for a communicative event
(problem space); that is, documents are the result of a previous IS implementation.

With regard to the conceptual framework for understanding business processes by
Melão and Pidd [29], our proposal combines two of the four perspectives; namely the
constructivist and mechanistic perspectives.

10 Organisations can replace many support agents with computer interfaces (e.g. clerks vs. web-

based forms) and IS reaction processors are typically automated. Primary actors, however,
are irreplaceable because they are the ultimate source of information.

11 Making an in-depth comparison of our proposal with regard to other methods (e.g. feature
comparison, performance evaluations) can not be dealt with in one single paper; we are cur-
rently working on empirical validation and results will be available as part of future works.

12 We do not necessarily refer to computer technology; paper is an ancient form of technology.

542 S. España, A. González, and Ó. Pastor

− In order to discover business processes, a constructivist stance is adopted: business
processes are considered a social construct that is agreed among stakeholders, and
the requirements engineer acts as facilitator in this agreement.

− In order to describe business processes, a mechanistic stance is adopted: the use of
models that are based on actors, events and messages allows creating a require-
ments specification that serves as a starting point for later software design.

Discovering requirements allows their description and, conversely, IS description
provides feedback to discovery by allowing new interactions with stakeholders (e.g.
to formulate new questions). Both perspectives are intertwined. The combination of
hard (mechanistic) and soft (constructivist) approaches is not new to the ISs scene [4],
but Communication Analysis contributes a requirements structure and communica-
tion-oriented modelling techniques that do not appear in previous proposals.

One last remark. The proposed business process modelling technique consists of a
set of interrelated concepts, criteria plus other methodological guidance, and a nota-
tion. We believe that, in general, it is concepts and criteria that matter the most (not
notations). We also acknowledge that some practitioners would be more comfortable
using other notations for business process modelling (e.g. BPMN, Activity Diagrams,
Use Cases). There is no problem with that, as long as the notation is adapted to sup-
port the communicational perspective. In fact, this has been done before.

6 Conclusions and Future Work

To sum up, Communication Analysis is an Information Systems (ISs) development
method that proposes a flow of activities and a requirements structure. It is founded
on Systems Theory and Communication Theory, among other scientific fields. An
overview of Communication Analysis can be found elsewhere [20]. This paper
focuses on the requirements elicitation stage and describes in detail several communi-
cation-based modelling techniques. The Communicative Event Diagram specifies
business processes from a communicational point of view. In order to guide the ana-
lyst in identifying and determining the proper granularity of communicative events,
unity criteria are proposed. Each communicative event is later specified by means of a
template. Messages associated to communicative events are specified by means of
Communication Structures, a notation based on structured text. The approach is
exemplified using an illustration case (a photography agency).

Communication Analysis is currently being applied to big projects in industrial en-
vironments; e.g. the integration of Anecoop S.Coop (a Spanish major distributor of
fruit and vegetables) with its associated cooperatives (>100). We plan to describe our
industrial experience by means case study reports. Laboratory experiments have been
carried out to test the benefits of the unity criteria; resulting models correction and
data analysis is now being undertaken. Future work also involves developing a CASE
tool that supports the method, researching how other perspectives (e.g. goal or value
orientation) may extend our approach under certain project circumstances, and the in-
tegration of Communication Analysis and the OO-Method, an MDA-based method
with software generation capabilities.

Communication Analysis: A Requirements Engineering Method for Information Systems 543

References

1. Austin, J.L.: How to do things with words. Oxford University Press, Oxford (1962)
2. Ballmer, T.T., Brennenstuhl, W.: Speech act classification: A study of the lexical analysis

of English speech activity verbs. Springer, Berlin (1981)
3. Baniassad, E., Clarke, S.: Theme: an approach for aspect-oriented analysis and design. In:

26th International Conference on Software Engineering (ICSE 2004), pp. 158–167. IEEE
Computer Society Press, Los Alamitos (2004)

4. Brown, J., Cooper, C., Pidd, M.: A taxing problem: the complementary use of hard and
soft OR in the public sector. Eur. J. Oper. Res. 172(2), 666–679 (2006)

5. Bubenko, J.A., Brash, D., Stirna, J.: EKD User Guide. Dept. of Computer and Systems
Science tech. report, Stockholm University (1998)

6. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems 27, 365–389 (2002)

7. Chang, M.K., Woo, C.C.: A speech-act-based negotiation protocol: design, implementa-
tion, and test use. ACM Trans. Inf. Syst. 12(4), 360–382 (1994)

8. Cronholm, S., Goldkunhl, G.: Communication Analysis as perspective and method for re-
quirements engineering. In: Mate, J.L., Silva, A. (eds.) Requirements engineering for
socio-technical systems, pp. 340–358. Idea Group Inc. (2004)

9. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Sci. Comput. Program. 20(1-2), 3–50 (1993)

10. Davis, A.M.: Software Requirements: Analysis and Specification. Prentice-Hall, Engle-
wood Cliffs (1990)

11. de la Vara, J.L., Sánchez, J., Pastor, O.: Business process modelling and purpose analysis
for requirements analysis of information systems. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074. Springer, Heidelberg (2008)

12. Dietz, J.L.G.: Understanding and modelling business processes with DEMO. In: Akoka, J.,
Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp.
188–202. Springer, Heidelberg (1999)

13. Dietz, J.L.G., Goldkuhl, G., Lind, M., van Reijswoud, V.E.: The Communicative Action
Paradigm for business modelling - a research agenda. In: 3rd International Workshop on
the Language Action Perspective on Communication Modelling (LAP 1998). Jönköping
International Business School (1998)

14. Dijkstra, E.W.: A discipline of programming. Prentice-Hall, Englewood Cliffs (1976)
15. Esa, A., Lehtinen, E., Lyytinen, K.: A speech-act-based office modeling approach. ACM

Trans. Inf. Syst. 6(2), 126–152 (1988)
16. Falkenberg, E., Hesse, W., Lindgreeen, P., Nilsson, B., Oei, J.L.H., Rolland, C., Stamper,

R., Van Assche, F., Verrijn-Stuart, A., Voss, K.: FRISCO. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group Report (1998)

17. Flores, F., Ludlow, J.: Doing and speaking in the office. In: Fick, G., Sprague, R.H. (eds.)
Decision Support Systems: issues and challenges, NY, USA, pp. 95–118. Pergamon Press,
Oxford (1980)

18. Fortuna, M., Werner, C., Borges, M.: Info Cases: integrating use cases and domain models.
In: 16th International Requirements Engineering Conference (RE 2008), Barcelona, Spain,
pp. 81–84. IEEE, Los Alamitos (2008)

19. Goldkuhl, G.: Generic business frameworks and action modelling. In: International work-
shop on the Language Action Perspective on Communication Modelling (LAP 1996). Til-
burg, The Netherlands (1996)

544 S. España, A. González, and Ó. Pastor

20. González, A., España, S., Pastor, O.: Towards a communicational perspective for enter-
prise Information Systems modelling. In: IFIP WG 8.1 Working Conference on the Prac-
tice of Enterprise Modeling (PoEM 2008), Stockholm, Sweden. LNBIP, vol. 15, pp.
63–77. Springer, Heidelberg (2008)

21. González, A., España, S., Pastor, O.: Unity criteria for Business Process Modelling: a theo-
retical argumentation for a Software Engineering recurrent problem. In: 3rd Intl. Conf. on
Research Challenges in Information Science (RCIS 2009), Fes, Morocco. IEEE, Los
Alamitos (2009)

22. González, A.: Algunas consideraciones sobre el uso de la abstracción en el análisis de los
sistemas de información de gestión. Ph.D thesis (in Spanish). Departamento de Sistemas
Informáticos y Computación. Universidad Politécnica de Valencia (2004)

23. Gordijn, J., Wieringa, R.J.: A value-oriented approach to e-business process design. In:
Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 390–403. Springer, Hei-
delberg (2003)

24. ISO/IEC 14977: Information technology - Syntactic metalanguage - Extended BNF (1996)
25. Jakobson, R.: The speech event and the functions of language. In: Monville-Burston, M.,

Waugh, L.R. (eds.) On language, pp. 69–79. Harvard University Press, Cambridge (1990)
26. Langefors, B.: Theoretical analysis of Information Systems, 4th edn. Studentlitteratur,

Lund (1977)
27. Lockemann, P.C., Mayr, H.C.: Information System Design: Techniques and Software Sup-

port. In: Kugler, H.-J. (ed.) IFIP 1986, North-Holland, Amsterdam (1986)
28. Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The action workflow approach to

workflow management technology. In: ACM conference on Computer-Supported Coop-
erative Work (CSCW 1992), Toronto, Ontario, Canada, pp. 281–288. ACM, New York
(1992)

29. Melão, N., Pidd, M.: A conceptual framework for understanding business processes and
business process modelling. Inform. Syst. J. 10(2), 105–129 (2000)

30. OMG: Unified Modeling Language: Superstructure version 2.0,
http://www.omg.org/docs/formal/05-07-04.pdf (accessed 11, 2008) (2005)

31. Pastor, O., González, A., España, S.: 31. Pastor, O., González, A., España, S.: Conceptual
alignment of software production methods. In: Krogstie, J., Opdahl, A.L., Brinkkemper, S.
(eds.) Conceptual modelling in Information Systems engineering, pp. 209–228. Springer,
Berlin (2007)

32. Pastor, O., Molina, J.C.: Model-Driven Architecture in practice: A Software Production
Environment Based on Conceptual Modeling. Springer, New York (2007)

33. Rashid, A., Sawyer, P., Moreira, A., Araújo, J.: Early Aspects: a model for aspect-oriented
requirements engineering. In: 10th Anniversary IEEE Joint International Conference on
Requirements Engineering, pp. 199–202. IEEE Computer Society, Los Alamitos (2002)

34. Rittel, H., Webber, M.: Dilemmas in a general theory of planning. Policy Sciences 4, 155–
169 (1973)

35. Rolland, C.: Capturing system intentionality with Maps. In: Krogstie, J., Opdahl, A.L.,
Brinkkemper, S. (eds.) Conceptual modelling in Information Systems engineering, pp.
141–158. Springer, Heidelberg (2007)

36. Scheer, A.-W.: ARIS - Business Process Modeling, 3rd edn. Springer, New York (2000)
37. Searle, J.R., Vanderveken, D.: Foundations of illocutionary logic. Cambridge University

Press, Cambridge (1985)
38. Stamper, R.K.: Organizational semiotics. In: Stowell, F., Mingers, J. (eds.) Information

Systems: an emerging discipline, London, pp. 267–283. McGraw Hill, New York (1997)

Communication Analysis: A Requirements Engineering Method for Information Systems 545

39. van Lamsweerde, A.: Goal-oriented Requirements Engineering: a guided tour. In: 5th
IEEE International Symposium on Requirements Engineering (RE 2001), Toronto, Can-
ada, pp. 249–262. IEEE Computer Society Press, Los Alamitos (2001)

40. Wand, Y., Weber, R.: On the deep structure of information systems. Inf. Syst. J. 5, 203–
223 (1995)

41. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma,
T.: On the notion of value object. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 321–335. Springer, Heidelberg (2006)

42. Winograd, T., Flores, F.: Understanding computers and cognition: A new foundation for
design. Addison-Wesley, Reading (1987)

43. Yu, E., Mylopoulos, J.: From E-R to "A-R" - Modelling strategic actor relationships for
business process reengineering. In: Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881, pp.
548–565. Springer, Heidelberg (1994)

Spectrum Analysis for Quality Requirements
by Using a Term-Characteristics Map

Haruhiko Kaiya1,2, Masaaki Tanigawa1, Shunichi Suzuki1,
Tomonori Sato1, and Kenji Kaijiri1

1 Dept. of Computer Science, Shinshu University, Nagano 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp

2 GRACE Center, National Institue of Informatics (NII), Tokyo 101-8430, Japan
http://grace-center.jp/

Abstract. Quality requirements are scattered over a requirements specification,
thus it is hard to measure and trace such quality requirements to validate the
specification against stakeholders’ needs. We have already proposed a technique
called “spectrum analysis for quality requirements” which enables analysts to
sort a requirements specification to measure and track quality requirements in the
specification. However current spectrum analysis largely depends on expertise
of each analyst, thus it takes a lot of efforts to perform the analysis and is hard
to reuse experiences for such analysis. We introduce domain knowledge called
term-characteristic map (TCM) to improve current spectrum analysis for quality
requirements. Through several experiments, we evaluated the improved spectrum
analysis.

Keywords: Requirements Analysis, Quality Requirements, Non-functional
Requirements.

1 Introduction

Software quality requirements of a system are specifications for defining how well func-
tions of the system are accomplished. Defining quality requirements has more problems
than defining functional ones, and there was a special issue about quality requirements
in IEEE Software. In its guest editors’ introduction [3], the following three problems are
mentioned: implicit understanding of quality requirements by stakeholders, trade-offs
among quality requirements and difficulty of measuring and tracking quality require-
ments.

There are several techniques for resolving one or more problems above, and we
proposed a simple and general technique called “spectrum analysis for quality require-
ments” [15] for measuring and tracking quality requirements. A wave such as sound
or light can be decomposed into several regular (or sine) waves each of which has dif-
ferent cycle (or wavelength) and power (or amplitude). Spectrum analysis in optics is
based on this fact. In spectrum analysis for quality requirements, a quality characteris-
tic such as suitability, accuracy, and interoperability is regarded as wavelength, and the
power of the characteristic as its importance as shown in Figure 1. By using a quality
requirements spectrum of a system, stakeholders can identify relative attention to qual-
ity requirements in a software engineering artifact such as a requirements specification

P. van Eck, J. Gordijn, and R. Wieringa (Eds.): CAiSE 2009, LNCS 5565, pp. 546–560, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Spectrum Analysis for Quality Requirements 547

A Software
Spectrum
Analyzer

a quality characteristic

a software
engineering artifact

quality char.

im
po

rt
an

ce importance
spectra

quality char.

im
po

rt
an

ce importance
spectra

Fig. 1. Basic idea of spectrum analysis for quality requirements

or a design document. Such relative attention enables stakeholders to validate quality
requirements defined in such software engineering artifact. Suppose a power of security
is larger than one of usability in a quality spectrum of a requirements document for a
system. If a stakeholder regards usability is more important than security, he can easily
suspect one of his quality requirements could not be reflected in the document.

There are two systematic comparative analyses for quality spectrum analysis. One
is comparison among spectra of similar systems to identify mandatory and optional
quality characteristics. There are a lot of similar systems for each application domain,
e.g., a lot of web browsers, painting tools, e-learning systems and so on. Systems in the
same domain usually have similar quality spectrum, and such similarity shows manda-
tory quality requirements in such a domain [15]. On the other hand, differences among
spectra of the systems in the same domain show optional or specific features of each
system. Although different segments or different price ranges of the same domain do
not always have similar spectrum, we may regard each segment or each range as a
sub-domain and may compare spectra of parts in a segment or spectra systems in a
range with each other. Another is comparison among spectra of a system in different
development phases, e.g., requirements, design, implementation and so on. Quality re-
quirements should be inherited along the progress of development, but it is not easy to
track such inheritance during the progress of such development. Quality requirements
spectrum enables developers to track such inheritance.

However, there is a serious problem in the current quality spectrum analysis [15]. As
shown in Figure 2, the power of each quality characteristic is calculated based on the
number of relationships between an element of an artifact, e.g., a sentence in a require-
ments document, and each quality characteristics. Making such relationships largely
depends on the expertise and subjective decision of an analyst. Therefore, it takes a
lot of efforts to perform quality spectrum analysis and is hard to perform the analysis
(semi-) automatically. In this paper, we will introduce an improved version of quality
spectrum analysis for resolving this problem. In addition, we show a prototype of a
CASE tool that supports quality spectrum analysis.

The rest of this paper is organized as follows. In the next section, we briefly ex-
plain the original quality spectrum analysis method (called “the old method” in this

548 H. Kaiya et al.

paper) [15], and clarify its problem. We then introduce the improved method (called
“TCM method” in this paper) by using domain knowledge called term-characteristic
map (TCM). In section 3, we evaluate TCM method with respect to the following three
points: results of TCM method inherit those of the old method, domain specific spec-
trum can be found by using TCM method and results of TCM method are objective,
i.e., results of TCM method do not depend on analyst’s subjective decision. In section
4, we will show a supporting tool to perform TCM method. Finally, we briefly review
related works, summarize our current results and show the future issues.

2 A Method for Generating Quality Spectrum

2.1 The Old Method and Its Problems

As mentioned in introduction, we call the procedure to generate quality spectrum in
our previous paper [15] as “the old method” in this paper. Figure 2 shows a typical
application of the old method. Inputs of the old method are a list of requirements and
a list (catalog) of quality characteristics. In Figure 2, five requirements are listed in
the list and quality factors in ISO9126 [14] are used for the catalog. ISO9129 contains
one of the famous catalogs of quality characteristics. Such kind of catalogs helps re-
quirements analysts to find missing quality requirements. A quality model in ISO9126
categorizes software quality attributes into six characteristics (functionality, reliability,
usability, efficiency, maintainability and portability), which are further subdivided into
subcharacteristics such as resource efficiency, changeability and so on in Figure 2.

An analyst then makes relationships between a requirement and a characteristic sub-
jectively. To make such relationships, the analyst takes into account whether a quality
characteristic is mentioned in a requirement. In this figure, four characteristics, resource
efficiency, changeability, interoperability and security are related to three, one, one and
one requirement(s) respectively. Finally, the number of requirements related to each
characteristic is counted respectively, and the numbers are normalized into 0 to 1 based
on the total number of requirements. The normalized result is visualized as a bar chart
at the bottom right in Figure 2, and this kind of vector value is called “quality spectrum”
in our previous paper [15]. As mentioned in the first section, quality spectrum tells us
which quality characteristics are more important than the others.

One of the serious problems of the old method is the step to make relationships be-
tween requirements and characteristics. The old method largely depends on the exper-
tise of an analyst performing the method. As a result, it takes a lot of hours to perform
the old method even if the analyst has enough expertise such as domain knowledge
of both the application and the quality characteristics. In addition, it is hard to reuse
experiences performing the old method.

2.2 TCM Method

To overcome the problem in the old method, we introduce a term-characteristic map
(TCM) as domain knowledge for making relationships between documents and charac-
teristics. Figure 3 shows an extended example of Figure 2. TCM is a simple mapping

Spectrum Analysis for Quality Requirements 549

RL of a browser

1. bookmark shall be
supported.

2. offline browsing
shall be supported.

3. fonts shall be able to
be changed.

4. printing shall be
supported.

5. digital signature
shall be accepted.

ISO9126 characteristics

........
• Resource efficiency
• Changeability
• Interoperability
• Security
…….

0

1

Resource Change Interop. Security

Requirements List (RL) Quality Characteristics

3/5
1/5 1/5 1/5

Fig. 2. An Example of the Old Method

RL of a browser

1. bookmark shall be
supported.

2. offline browsing
shall be supported.

3. fonts shall be able to
be changed.

4. printing shall be
supported.

5. digital signature
shall be accepted.

ISO9126 characteristics

........
• Resource efficiency
• Changeability
• Interoperability
• Security
…….

0

1

Resource Change Interop. Security

Requirements List (RL) Quality Characteristics

3/5
1/5 1/5 1/5

resource ef. changeability interoperability security compliance
bookmark 1
offline 1
fonts 1 1
printing 1 1
digital signature 1
change 1
......

term-characteristic map (TCM)

Fig. 3. An Example of TCM Method

550 H. Kaiya et al.

between terms and characteristic, that tells potential relationships between them. In
Figure 3, terms in “RL of a browser” can be looked up in TCM, and an analyst can
easily make relationships between requirements and characteristics. TCM merely tells
potential relationships. In addition, the possibility whether a term is related to a char-
acteristic depends on the contexts of the term usage. Therefore, relationships between
requirements and characteristics cannot be made automatically and the analyst should
make some subjective choice. In this example, the analyst does not use some mappings
between several terms and a characteristic “compliance”. Currently, we simply fill 1 or
0 value (blank if the value is 0 in Figure 3) in cells of TCM to show whether there is
potential relationship or not, but we would like to introduce some ordinal or ratio values
to show the degree of its potential.

Although some domain expert or an analyst himself should develop TCM before-
hand, TCM will be able to be reused and be improved among similar systems in the
same application domain. We would like to confirm this point in the future.

3 Evaluation

We evaluate TCM method mentioned in the last section with respect to the following
three points.

– Results of TCM method inherit those of the old method.
– Domain specific spectrum can be found by using TCM method, i.e., spectra of

several different systems in the same domain are similar with each other.
– Results of TCM method are objective, i.e., different analysts can generate similar

spectra of a system.

3.1 Data Gathering and Evaluation Method

To evaluate TCM method with respect to three points above, we need the following
kinds of spectra: a spectrum generated by using the old method, a spectrum generated
by using TCM method, a spectrum generated by another analyst using TCM method
with the same TCM and a spectrum by the analyst with his own TCM. Figure 4 shows
the outline how to gather such spectra data for our evaluation. This figure is written in
data flow diagram, where boxes and notes correspond to data and ovals correspond to
processes. We had two subjects called subject A and B, and we asked them perform
spectrum analysis to documents of three browsers, Internet Explorer (IE), Fire Fox (FF)
and Opera (OP), respectively. Subject A well knew this application domain as a user,
and subject B was an average user. At the left side of Figure 4, subject A generated
a spectrum without TCM. Note that this spectrum was generated before TCM method
was proposed. Subjects A and B developed TCM of web browsers’ domain respectively
by using documents of web browsers. Subjects A and B then performed TCM method
respectively by using the same TCM developed by subject A as shown in the middle
of Figure 4. Subject B also developed another spectrum by using his own TCM as
shown in the right side of Figure 4. Subject A developed spectra of another types of
systems mentioned in the next sub section. Both subjects used general spreadsheet to

Spectrum Analysis for Quality Requirements 551

spectrum by B
with TCMB

spectrum by B
with TCMB

spectrum by B
with TCMA

spectrum by B
with TCMA

spectrum by A
with TCMA

spectrum by A
with TCMA

spectrum by A
without TCM

spectrum by A
without TCM

doc. of
IE, FF, OP
doc. of

IE, FF, OP
doc. of

IE, FF, OP

create TCM
by A

create TCM
by B

TCM
by A TCM

by B

analysis by A
with TCMA

analysis by B
with TCMA

analysis by B
with TCMB

analysis by A
without TCM

spectrum by A
without TCM

spectrum by A
with TCMA

spectrum by B
with TCMA

spectrum by B
with TCMB

the old
method

Fig. 4. Data Gathering

perform old or TCM method. Especially, subjects performing TCM method did not use
a supporting tool mentioned in the next section because we decided to develop the tool
based on the results of this evaluation.

Because a quality spectrum is a kind of vector, we use cosine similarity (cossim)
to decide whether two spectra are similar with each other. The definition of cosine
similarity between a and b is as follows.

cossim(a, b) =
a1 ∗ b1 + a2 ∗ b2 + · · · + an ∗ bn√

a2
1 + a2

2 + · · · + a2
n ∗

√
b2
1 + b2

2 + · · · + b2
n

When two vectors are completely the same, the value is one. Because quality spectrum
never has negative value in its vector, cosine similarity between two quality spectra
varies from 0 to 1. Therefore, we may regard two quality spectra are similar if their
cosine similarity is close to 1. For example, cossim(a, b) is 0.99 when a is (0.00 0.08,
0.15, 0.25, 0.00, 0.00, 0.01, 0.15, 0.20, 0.85, 0.04, 0.09, 0.01, 0.25, 0.00, 0.00, 0.01,
0.00, 0.01, 0.01) and b is (0.00, 0.05, 0.18, 0.21, 0.00, 0.00, 0.01, 0.18, 0.12, 0.86,
0.02, 0.08, 0.01, 0.18, 0.00, 0.00, 0.03, 0.00, 0.00, 0.02). Note that a corresponds to a
spectrum by A with TCM A in Figure 5, and b corresponds to a spectrum by B with
TCM A in the same figure.

3.2 Inheritance from the old method

Because TCM method is one of the improved version of the old method in our previous
paper [15], a quality spectrum generated by the method should be similar to one by the

552 H. Kaiya et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1AccuracyInteroperability
Compliance

Security

M
aturityFault toleranceRecoverability

Understandability
Learnability
OperabilityTime behavior

Resource behaviorAnalysabilityChangeability

Stability
Testability

Adaptability
InstallabilityConformanceReplaceability

by A
 w

ithout T
C

M
 (the old m

ethod)

by A
 w

ith T
C

M
 A

by B
 w

ith T
C

M
 A

by B
 w

ith T
C

M
 B

Fig. 5. Four Spectra from the old method, TCM method by subject A and B

Spectrum Analysis for Quality Requirements 553

old method. Figure 5 shows four quality spectra corresponding to the outputs in Figure
4. Note that each spectrum in Figure 5 is the average of spectra of three web browsers;
IE, FF and OP. Horizontal axis of this figure shows quality characteristics used in our
quality spectrum analysis. Because we have no explicit users of web browsers, we can-
not identify objectives of such users. Therefore, we do not use a quality characteristic
“suitability” in ISO9126 during this evaluation. Vertical axis shows the values of spec-
trum for each quality characteristic. Because documents of web browsers are analyzed
and browsers are highly interactive system, “operability” has the highest value in a
spectrum. “Security” has also higher value because of a lot of threats over the Internet.
According to the definition of cosine similarity, similarity value between first and sec-
ond spectra is 0.91, and the value between first and third spectra is 0.92. Therefore, we
may regard TCM method inherits analytic ability from the old method.

3.3 Different Systems in The Same Domain

Quality spectrum is used to identify mandatory and optional quality requirements in
an application domain, and this usage is based on the fact that different systems in the
same domain have similar quality spectrum [15]. We confirm this fact by using TCM
method.

Figure 6 shows three spectra for each browser by subject A (“spectrum by A with
TCMA” in Figure 4). Figure 7 shows three spectra by subject B (“spectrum by B with
TCMA” in Figure 4). As mentioned in last subsection, A and B used the same TCM
developed by subject A. As shown in these figures, the spectra for each subject are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Acc
ura

cy

In
ter

op
er

ab
ilit

y

Com
plia

nc
e

Sec
ur

ity

M
atu

rit
y

Fau
lt t

oler
an

ce

Rec
ov

era
bil

ity

Und
er

sta
nd

ab
ilit

y

Lea
rn

ab
ilit

y

Ope
ra

bil
ity

Tim
e b

eh
av

ior

Res
ou

rce
 be

ha
vio

r

Ana
lys

ab
ilit

y

Cha
ng

ea
bil

ity

Stab
ilit

y

Tes
tab

ilit
y

Ada
pta

bil
ity

In
sta

lla
bilit

y

Con
fo

rm
an

ce

Rep
lac

ea
bil

ity

IE

FF

OP

Fig. 6. Three Quality Spectra for each browser by Subject A

554 H. Kaiya et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Acc
ura

cy

In
ter

op
er

ab
ilit

y

Com
plia

nc
e

Sec
ur

ity

M
atu

rit
y

Fau
lt t

oler
an

ce

Rec
ov

era
bil

ity

Und
er

sta
nd

ab
ilit

y

Lea
rn

ab
ilit

y

Ope
ra

bil
ity

Tim
e b

eh
av

ior

Res
ou

rce
 be

ha
vio

r

Ana
lys

ab
ilit

y

Cha
ng

ea
bil

ity

Stab
ilit

y

Tes
tab

ilit
y

Ada
pta

bil
ity

In
sta

lla
bilit

y

Con
fo

rm
an

ce

Rep
lac

ea
bil

ity

IE
FF
OP

Fig. 7. Three Quality Spectra for each browser by Subject B

similar. In the case of subject A in Figure 6, cosine similarity between two out of three
browsers are 0.99, 0.98 and 0.98. In the case of subject B in Figure 7, cosine similarity
between two out of three browsers are 0.98, 0.97 and 0.99.

We also have quality spectra of software systems other than browsers, and we show
bar charts of both browsers and other types of systems in Figure 8. A system labeled
“NEWS” is a kind of a proxy system for feeding news articles to a specific intranet, and
another system labeled “DB” is a kind of a document management system. Documents
for both systems were published by our government [18]. Both systems are neither
browsers nor interactive systems. Therefore, the spectra of NEWS and DB should be
different from spectra of browsers. As shown in Figure 8, spectra of NEWS and DB
are clearly different from spectra of browsers. Cosine similarity between NEWS or DB
and each browser is almost 0.5. Therefore, we may regard different systems in the same
domain have similar quality spectrum generated by TCM method. In addition, different
types of systems have different quality spectrum.

As shown in figures 6 and 7, the power (amplitude) of some characteristics is dif-
ferent within three browsers. For example, powers of “interoperability” and “change-
ability” are different with each other. Because these three browsers are different with
respect to its license (open source software or not), its platform (multi-platform includ-
ing mobile devices or not) and so on, quality characteristics such as “interoperability”
and “changeability” will be differently focused. On the other hand, powers of “oper-
ability” are similar because this characteristic is important for interactive systems such
as browsers in general.

Spectrum Analysis for Quality Requirements 555

3.4 Different Analysts

Because one of the expected advantages of TCM method is that the result is more
objective than the old method. To confirm this advantage, we compare a spectrum by
subject A with TCMA and another by B with TCMA in Figure 5. Because cosine
similarity between these two spectra is 0.99, we may regard results by using TCM
method is almost the same. On the other hands, cosine similarity between a spectrum
by B with TCMA and another spectrum by B with TCMB is 0.75. We may also regard
these two spectra are slightly different with each other. As a result, sharing TCM seems
to help analysts to analyze requirements documents objectively. As mentioned in 3.2,
subjects performing TCM method only use general spreadsheet. Therefore, they have to
achieve tedious tasks that can be performed automatically because no supporting tools
existed.

4 A Supporting Tool for TCM Method

Through evaluation in the last section, we can confirm TCM method seems to work
well. To improve the efficiency of the task using TCM method, we are developing a
supporting tool as shown in Figure 9. In an example in this figure, NEWS system men-
tioned in Figure 8 is analyzed. As stated in subsection 2.2, TCM method includes both
subjective and automatic tasks. Therefore, its supporting tool should be interactive one.

Before performing quality spectrum analysis, someone especially domain expert has
to perform the following task.

1. To create TCM of a domain.

An analyst then analyzes requirements with the help of following automatic tasks.

2. To look up terms appearing in each requirement in TCM, and to look up character-
istics related to each term.

3. To generate quality spectrum by counting the number of requirements related to
each quality characteristic.

The analyst finally performs the following tasks.

4. To choose quality characteristics actually related to each requirement based on
TCM, contexts of each term and his expertise.

The tool in Figure 9 supports its users to perform four tasks above in the following
ways.

1. The domain analyst can manually generate TCM by using “Term Characteristic
Map (TCM)” tab in this figure (the contents of the tab are not shown in this figure).
He first enumerates terms usually appearing in an application domain, and fill the
checkboxes corresponding to quality characteristics for each term. By using this
tool, candidates of terms can be automatically extracted and enumerated in “Term
Characteristic Map (TCM)” tab from text documents. Therefore, the analyst can
pick terms out from such candidates.

556 H. Kaiya et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1Accuracy
InteroperabilityCompliance

Security
M

aturity
Fault tolerance
Recoverability

UnderstandabilityLearnabilityOperability
Time behavior

Resource behavior
Analysability
Changeability

StabilityTestabilityAdaptabilityInstallability
Conformance

Replaceability

IE
 A

IE
 B

FF A

FF B

O
P A

O
P B

N
E

W
S

D
B

Fig. 8. Quality Spectra of browsers and other types of software

Spectrum Analysis for Quality Requirements 557

Fig. 9. A Snapshot of A Supporting Tool

558 H. Kaiya et al.

2. As shown in the center area “Detail of Selected Spec” of the figure, terms are au-
tomatically identified according to the terms in pre-loaded TCM. A subset of the
TCM is then shown at the bottom table “Related TCM” in the figure. In this ex-
ample, five terms “correctly”, “without”, “modification”, “amount” and “data” are
looked up.

3. According to the checks on the table “Related TCM” in the figure, related quality
characteristics are automatically accumulated at the top table of this figure “Spec
Sheet Evaluations”. Based on the checks of characteristics for each requirement
(wrote “sentence” in this tool), the tool will visualize or output quality spectrum.

4. An analyst may freely change the value of checkboxes on the table “Related TCM”
in this figure. Because this table is a copy of original TCM (generated in the first
task), the original TCM gets no effects according to the changes.

5 Related Works

There are several studies how to define each quality requirement. In ISO25021 [13],
concrete examples how to measure quality requirements are shown, and these examples
help analysts to make quality requirements measurable. Donald Firesmith gives some
format to specify quality requirements rigorously [10]. In ATAM (Architecture Tradeoff
Analysis Method) [16,2], a template for quality requirements called “quality attribute
scenario” is provided to support stakeholders writing quality requirements.

Studies mentioned above focus on the micro-view of quality requirements because
they focus on each requirement. Quality spectrum analysis [15] and its extension in this
paper rather focus on the macro-view because it focuses on distribution of quality re-
quirements in an artifact such as a requirements specification. We think both views are
important to improve the quality requirements analysis, but there are few studies with
macro-view. Studies (e.g., [4]) about the quality of requirements documents, e.g., com-
pleteness, correctness, and so on mentioned in IEEE 830 [1], also focus on the macro-
view, but this kind of studies is not directly related with studies of quality requirements.

In an article by Ozkayad et al. [19], an empirical data of the most common quality at-
tributes was shown based on the ATAM. The idea to analyze this kind of data is similar
to quality spectrum analysis [15], but comparative analysis mentioned in introduction
is not proposed in the article [19]. In DDP (defect detection prevention) [7,9], the rela-
tionships among requirements, risks and their mitigations are visualized. Although this
visualization shows a macro-view of quality requirements, trade-offs between risks and
their mitigation costs are mainly focused.

Basic idea about relationships between requirements and quality characteristics
seems to be imported from QFD (Quality Function Deployment) [12]. TCM as do-
main knowledge is imported from a probabilistic model among terms, documents and
queries in a paper by Cleland-Huang et al. [6].

6 Conclusion

In this paper, we improved quality requirements spectrum analysis proposed in our pre-
vious paper [15] by introducing term-characteristic map (TCM) as domain knowledge.

Spectrum Analysis for Quality Requirements 559

Quality requirements spectrum analysis is a technique for measuring and tracking qual-
ity requirements over a requirements document written in natural language. TCM helps
analysts to derive amplitude of each characteristic in a quality spectrum because TCM
plays a role of domain knowledge for finding quality characteristics related to each re-
quirements statement. Through several experiments, we evaluate quality requirements
analysis method with TCM, and confirmed TCM method inherited some features of the
old method in our previous paper [15] and results by TCM method became more objective.

Even if TCM for a domain can be reused, it is still hard to develop and maintain
TCM for each domain. A technique called LSA (Latent Semantic Analysis) [8] seems
to be used for developing and maintaining TCM because terms with the similar meaning
can be found automatically by using LSA. In addition, LSA seems to be used to look
up quality characteristics in TCM because the semantic similarity of a requirement
sentence and a quality characteristic with its description can be calculated based on
term occurrences in such sentences and descriptions.

Requirements documents written in natural languages are only analyzed now, but
we would like to apply quality spectrum analysis to other types of artifacts. In a paper
by Zhang et al. [20], UML notation is extended for representing quality attributes. In a
paper by Chowdhury et al. [5], detailed characteristics about security in source codes are
identified. These studies can be used to develop methods for quality spectrum analysis
for design and source codes.

As mentioned in 2.2, we do not specify the degree of relationships between terms and
characteristics. In the same way as shown in a paper by Cleland-Huang [6], frequency
of relationships among requirements documents in the same domain can be used for
specifying such a degree. We do not also specify the degree of relationships between
requirements and characteristics. Frequency of terms in each requirement can be used
for specifying such a degree. In addition, types of requirements representation can be
used. In an article by Glinz [11], several different types of representations, e.g., quali-
tative, by example, quantitative and so on, are proposed. By using such types, we can
give higher degree to a requirement sentence if a quality requirement is represented not
qualitatively but quantitatively, for instance.

Currently, we only focus on coarse-grained quality as characteristics in a system, but
we may use another kind of characteristics scattered over the system, e.g., fine-grained
quality or an attention for each type of stakeholders. In an article by Ozkayad et al. [19],
fine-grained quality characteristics about security can be found, and they can be used
for quality spectrum analysis. In a book by Macaulay [17], types of stakeholders are
shown such as designer, financial person, maintainer and users, and each stakeholder
is interested in different part of requirements. We can perform “stakeholder spectrum
analysis” over a document based on such types. That is the reason why we regard spec-
trum analysis over software artifacts is general.

References

1. IEEE Recommended Practice for Software Requirements Specification (October 1998) IEEE
Std 830-1998 (ISBN 0-7381-0332-2 SH94654) (Print)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

560 H. Kaiya et al.

3. David Blaine, J., Cleland-Huang, J.: Software Quality Requirements: How to Balance Com-
peting Priorities. IEEE Software 25(2), 22–24 (2008)

4. Bucchiarone, A., Gnesi, S., Pierini, P.: Quality Analysis of NL Requirements: An Industrial
Case Study. In: IEEE International Requirements Engineering Conference (RE 2005), pp.
390–394 (2005)

5. Chowdhury, I., Chan, B., Zulkernine, M.: Security Metrics for Source Code Structures. In:
International Workshop on Software Engineering for Secure Systems (SESS 2008), pp. 57–
64 (2008)

6. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-
Centric Traceability for Managing Non-Functional Requirements. In: International Confer-
ence on Software Engineering (ICSE) (2005)

7. Cornford, S.L., Feather, M.S., Kelly, J.C., Larson, T.W., Sigal, B., Kiper, J.D.: Design and
Development Assessment. In: Proceedings of the Tenth International Workshop on Software
Specification and Design (IWSSD 2000), pp. 105–114 (2000)

8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
Latent Semantic Analysis. Journal of the Society for Information Science 41(6), 391–407
(1990)

9. Feather, M.S., Cornford, S.L., Hicks, K.A., Kiper, J.D., Menzies, T.: A Broad, Quantitative
Model for Making Early Requirements Decisions. IEEE Software 25(2), 49–56 (2008)

10. Firesmith, D.: Quality Requirements Checklist. Journal of Object Technology 4(9), 31–38
(2005)

11. Glinz, M.: A Risk-Based, Value-Oriented Approach to Quality Requirements. IEEE Soft-
ware 25(2), 35–41 (2008)

12. Herzwurm, G., Schockert, S., Pietsch, W.: QFD for Customer-Focused Requirements Engi-
neering. In: Proceedings of 11th IEEE International Requirements Engineering Conference,
pp. 330–338 (September 2003)

13. International Standard ISO/IEC 25021. Software engineering - Software product Quality
Requirements and Evaluation (SQuaRE) - Quality measure elements (October 2007)

14. International Standard ISO/IEC 9126-1. Software engineering - Product quality - Part 1:
Quality model (2001)

15. Kaiya, H., Sato, T., Osada, A., Kitazawa, N., Kaijiri, K.: Toward Quality Requirements Anal-
ysis based on Domain Specific Quality Spectrum. In: Proc. of the 23rd Annual ACM Sym-
posium on Applied Computing 2008, Fortaleza, Ceara, Brazil, vol. 1(3), pp. 596–601. ACM,
New York (2008) (Track on Requirements Engineering)

16. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The Architecture
Tradeoff Analysis Method. In: IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), p. 68 (1998)

17. Macaulay, L.A.: Requirements Engineering. In: Applied Computing. Springer, Heidelberg
(1996)

18. Minister of Economy, Trade and Industry, Japan (in Japanese),
http://www.meti.go.jp/feedback/data/i30728aj.html

19. Ozkayad, I., Bass, L., Sangwan, R.S., Nord, R.L.: Making Practical Use of Quality Attribute
Information. IEEE Software 25(2), 25–33 (2008)

20. Zhang, Y., Liu, Y., Zhang, L., Ma, Z., Mei, H.: Modeling and Checking for Non-Functional
Attributes in Extended UML Class Diagram. In: Annual IEEE International Computer Soft-
ware and Applications Conference (COMPSAC 2008), pp. 100–107 (2008)

http://www.meti.go.jp/feedback/data/i30728aj.html

Author Index

Aalst, Wil M.P. van der 2, 425, 486
Andersson, Birger 410
Andrikopoulos, Vasilios 290
Antonellis, Valeria De 334

Barone, Daniele 171
Belhajjame, Khalid 79
Benbernou, Salima 290
Bergholtz, Maria 410
Bianchini, Devis 334
Blanc, Xavier 32
Borgida, Alex 171

Cabot, Jordi 125
Cao, Jinli 305
Cappiello, Cinzia 334

Dalpiaz, Fabiano 246
de Spindler, Alexandre 275
Dobson, John 515
Dubois, Eric 319

Easterbrook, Steve 141
Eder, Johann 349
España, Sergio 530

Fernandes, Alvaro A.A. 79
Franch, Xavier 201

Gailly, Frederik 395
Ghazarian, Arbi 156
Giachetti, Giovanni 110
Giorgini, Paolo 246
Godart, Claude 364
Gómez, Cristina 125
González, Arturo 530
Gottschalk, Florian 486
Green, Peter 501
Grossniklaus, Michael 275
Guermouche, Nawal 364
Guerriero, Annie 319
Guizzardi, Giancarlo 94

Halin, Gilles 319
Haller, Klaus 63

Hao, Yanan 305
Hornung, Thomas 440
Huang, Tao 455

Indulska, Marta 501

Jansen-Vullers, Monique H. 486
Jiang, Lei 171
Johannesson, Paul 410
Jurjens, Jan 231

Kaijiri, Kenji 546
Kaiya, Haruhiko 546
Kubicki, Sylvain 319

La Rosa, Marcello 486
Lausen, Georg 440
Liang, Senlin 455
Liu, Jie 455
Liu, Lin 216
Lock, Russell 515

Ma, Wenting 216
Mao, Lu 79
Maŕın, Beatriz 110
May, Wolfgang 440
Mens, Tom 32
Metzger, Andreas 11
Mougenot, Alix 32
Mounier, Isabelle 32
Mouratidis, Haralambos 231
Mutschler, Bela 379
Mylopoulos, John 141, 171, 186, 246

Noda, Kazuhide 17
Norrie, Moira C. 275

Otsubo, Genya 17

Paalvast, Edwin 8
Papazoglou, Mike P. 290
Pastor, Óscar 110, 530
Paton, Norman W. 79
Pernici, Barbara 334
Pichler, Horst 349
Planas, Elena 125
Poels, Geert 395
Pohl, Klaus 11

562 Author Index

Queralt, Anna 47

Recker, Jan 501
Reichert, Manfred 379
Reiff-Marganiec, Stephan 261
Reijers, Hajo A. 470
Rosemann, Michael 501

Salay, Rick 141, 186
Sato, Tomonori 546
Shadbolt, Nigel 1
Sidorova, Natalia 425
Simone, Mark de 6
Sommerville, Ian 515
Storer, Tim 515
Sunyaev, Ali 231
Suzuki, Shunichi 546

Tanigawa, Masaaki 546
Teniente, Ernest 47
Trčka, Nikola 425

Ubayashi, Naoyasu 17

Wagemakers, Teun A.C. 486
Weber, Barbara 470
Wei, Jun 455
Weigand, Hans 410
Wenger, Michaela 349
Wiederhold, Gio 9
Wild, Werner 470

Xie, Haihua 216

Ye, Dan 455
Yin, Jinglei 216
Yoshida, Jun 17
Yu, Hong Qing 261

Zhang, Hongyu 216
Zhang, Yanchun 305
Zugal, Stefan 470

	Title Page
	Preface
	Organization
	Table of Contents
	Keynotes
	The Science of the Web
	TomTom for Business Process Management (TomTom4BPM)
	The Need for Process Navigation
	Process Mining
	References

	Computer-Centric Business Operating Models vs. Network-Centric Ones
	The IT Dilemma and the Unified Computing Framework
	Tutorial: How to Value Software in a Business, and Where Might the Value Go?
	Towards the Next Generation of Service-Based Systems: The S-Cube Research Framework
	Motivation
	The S-Cube Research Framework
	Envisioned Interactions between the Framework Elements
	Conclusions
	References

	Model Driven Engineering
	An Extensible Aspect-Oriented Modeling Environment
	Introduction
	Motivation
	Core AspectM
	Problems in Core AspectM
	MMAP
	Challenges in MMAP Implementation

	Reflective Model Editor
	Concept
	Metamodel Extension Procedure
	Implementation

	Verifying Model Weaver
	Model Weaving
	Model Verification

	Case Study and Evaluation
	DSL Construction
	Model Weaver Construction
	Evaluation

	Related Work
	Conclusion
	References

	Incremental Detection of Model Inconsistencies Based on Model Operations
	Introduction
	Detection of Inconsistencies
	Inconsistency Rules
	Incremental Checking

	Detection of Inconsistencies Based on Model Construction
	Operation-Based Model Construction
	Inconsistency Detection Rules

	Incremental Checking Based on Model Operations
	Partitioning of Operations
	Impact Matrix
	Example

	Validation
	Prototype Implementation
	Case Study

	Related Work
	Conclusion
	References

	Reasoning on UML Conceptual Schemas with Operations
	Introduction
	Basic Concepts
	Translation of the Conceptual Schema into Logic
	Deriving Instances from Operations
	Constraints Generated

	Our Approach to Validation
	Is the Conceptual Schema Right?
	Is It the Right Conceptual Schema?

	Implementing Our Approach within an Existing Method
	Variable Instantiation Patterns

	Related Work
	Conclusions and Further Work
	References

	Conceptual Modelling 1
	Towards the Industrialization of Data Migration: Concepts and Patterns for Standard Software Implementation Projects
	Motivation
	Related Work
	Generic Migration Architecture
	Programming Paradigms
	The Row-Oriented Implementation Paradigm
	The Set-Oriented Implementation Paradigm
	ETL-Tool-Based Implementation Technique

	Extract Step Patterns
	Transformation Implementation Patterns
	Pattern Group {\it Mapping}
	Pattern Group {\it Restructuring}

	Load Patterns
	Technical Migration Verification
	References

	Defining and Using Schematic Correspondences for Automatically Generating Schema Mappings
	Introduction
	Schematic Correspondences
	Relation Correspondences
	Attribute Correspondences

	Mapping Generation
	Using Schematic Correspondences for Deriving Mappings Between Proteomics Data Sources
	Related Work
	Conclusions
	References

	The Problem of Transitivity of Part-Whole Relations in Conceptual Modeling Revisited
	Introduction
	Background: An Ontological Analysis of Relations
	Functional Complexes and Functional Dependence
	A Typology of Functional Part-Whole Relations and Visual Patterns for Isolating the Scope of Transitivity
	Final Considerations
	References

	Conceptual Modelling 2
	Using UML as a Domain-Specific Modeling Language: A Proposal for Automatic Generation of UML Profiles
	Introduction
	Background
	A Process to Integrate a DSML into UML
	Definition of the Integration Metamodel

	Automatic Generation of the UML Profile
	Comparison of Metamodels
	Transformation of the Integration Metamodel

	Applying the Integration Process
	Conclusions and Further Work
	References

	Verifying Action Semantics Specifications in UML Behavioral Models
	Introduction
	Action Semantics in the UML
	Syntactic Correctness
	Computing the Execution Paths
	Weak Executability
	Computing the Dependencies
	Mapping the Dependencies
	Algorithm to Determine the Weak Executability of a Path

	Completeness
	Related Work
	Conclusions and Further Work
	References

	Using Macromodels to Manage Collections of Related Models
	Motivation
	Framework Description
	Formalization
	Macromodels
	Macromodel Syntax and Semantics

	Prototype Implementation: MCAST
	A Detailed Example
	Related Work
	Conclusions and Future Work
	References

	Quality and Data Integration
	A Case Study of Defect Introduction Mechanisms
	Introduction
	Case Study
	Context of the Case Study
	Description of the Case
	Case Study Process and Data Collection
	Results
	Summary of the Results
	Implications of the Findings
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

	Measuring and Comparing Effectiveness of Data Quality Techniques
	Introduction
	Main Concepts
	DQ Techniques
	Effectiveness of DQ Techniques
	Effectiveness Measures, Scores and Formulas

	Effectiveness Measures
	Basic Definition
	Extensions

	Estimating and Comparing Expected Effectiveness Scores
	Formal Approach
	What-If Analysis

	Related Work
	Conclusion
	References

	Improving Model Quality Using Diagram Coverage Criteria
	Motivation
	Diagram Coverage Criteria
	Parameterized Coverage Criteria

	Formalization
	Application to the PUMR Example
	Related Work
	Conclusions and Future Work
	References

	Goal-Oriented Requirements Engineering
	A Method for the Definition of Metrics over ${i}^\ast$ Models
	Introduction
	Background and Previous Work
	Quantitative Analysis of ${i}^\ast$ Models
	iMDF: A Framework for ${i}^\ast$ Metrics

	$iMDF_M$: A Method for Defining Metrics over ${i}^\ast$ Models
	Step 1: Domain Analysis
	Step 2: Domain Metrics Analysis
	Step 3: ${i}^\ast$ Metrics Formulation
	Step 4: iMDF Update

	Applying $iMDF_M$ on a Business Process Modeling Metrics Suite
	Step 1: Domain Analysis
	Step 2: Domain Metric Analysis
	Step 3: ${i}^\ast$ Metrics Formulation
	Step 4: {\it i}MDF Update

	Observations
	Step 1: Domain Analysis
	Step 2: Domain Metrics Analysis
	Step 3: ${i}^\ast$ Metrics Formulation
	Step 4: {\it i}MDF update

	Conclusions and Future Work
	References

	Preference Model Driven Services Selection
	Introduction
	Setting Up Services Selection Criteria with Annotated NFR
	An Upper Ontology for Services Selection Based on NFR Framework
	Source of Lower Ontology –A Service Example from the Logistics Domain
	Multiple Criteria Correlation Analysis Using Conventional NFR Model
	Preference Annotated Hierarchical NFR Model

	Services Selection Based on Preferences Modeling
	Weighted Set-Valued Statistics Approach to Calculate the Contribution of Candidate
	Services Selection Based on Single Criterion
	Multi-criteria Decision Making
	Sensitivity Analysis of the Decision Result

	Related Work and Discussion
	References

	Secure Information Systems Engineering: Experiences and Lessons Learned from Two Health Care Projects
	Introduction
	Secure Tropos meets UMLsec: A Model-Based Security Aware Framework
	Case Study
	Reflection
	Framework Development
	Lessons Learned
	Improvements

	Conclusions
	References

	Requirements and Architecture
	An Architecture for Requirements-Driven Self-reconfiguration
	Introduction
	Baseline: Requirements Models
	System Architecture
	External Components
	Self-reconfiguration Component

	Creating the Architecture for an Existing System
	Monitoring and Diagnosis Mechanisms
	Case Study: Smart Homes
	Related Work
	Discussion and Conclusion
	References

	Automated Context-Aware Service Selection for Collaborative Systems
	Introduction
	User Context Modelling
	Context-Aware Criteria Generation
	Services Categories with Meta Data
	Automated Criteria Generation

	The TLE Service Selection Method
	Type-Based Evaluation Process
	Extended LSP Aggregation Function

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Development Framework for Mobile Social Applications
	Introduction
	Background
	Framework
	P2P Collections
	Event Processing
	Collaborative Filtering
	Conclusions
	References

	Service Orientation
	Evolving Services from a Contractual Perspective
	Introduction
	Service Specifications
	Exposition/Expectation View
	Required/Provided View
	Combining the Views

	Contracts
	Contract Definition
	Contract Formulation and Management

	Contract-Controlled Service Evolution
	Contract Invariance
	Contract Evolution

	Related Work
	Conclusions and Future Work
	References

	Efficient IR-Style Search over Web Services
	Introduction
	Related Work
	Desired Properties for Service Rank
	Service Relevance
	Service Importance
	Web-Service Operation Modeling
	Connectivity of Web Service Operations
	Importance of Web Service Operations

	Algorithm for Ranking Web Services
	Computing Connectivity Using Schema Tree Matching
	The CompImp Algorithm
	Combining Service Relevance with Importance

	Experiments and Evaluations
	Conclusions
	References

	Towards a Sustainable Services Innovation in the Construction Sector
	Introduction
	Electronic Cooperation in the Construction Sector
	Cooperative Practices in AEC
	A Methodological Approach of Cooperation Support

	Towards a Sustainable Service Innovation Process (S2IP)
	An Introduction to the S2IP
	Applying the S2IP Value Proposition Process to the Building Construction Sector

	A Model-Driven Service Design Approach to a Document Management IT Service in AEC
	Document Management Business Services
	Development of the Demonstrator
	Validation of the Demonstrator

	Applying a Sustainable Service Innovation in AEC
	Conclusion and Future Work
	References

	Web Service Orchestration
	P2S: A Methodology to Enable Inter-organizational Process Design through Web Services
	Introduction
	Basic Definitions
	Case Study

	Methodology
	Phase 1: Semantic Process Annotation
	Phase 2: Identification of Candidate Services
	Phase 3: Evaluation of Service Cohesion/Coupling
	Phase 4: Refinement of Process Decomposition

	Related Work
	Conclusion
	References

	Composing Time-Aware Web Service Orchestrations
	Introduction
	Related Work
	Process Representations
	BPEL Representation
	Process Graph
	Temporal Information
	Transformation

	Timed Graph Calculation and State Assessment
	Interventions
	Generation of a Time-Aware Process Definition
	Process-Level Extension
	Generation of Intervention Logic

	Prototypical Implementation and Complexity Considerations
	Conclusions
	References

	Asynchronous Timed Web Service-Aware Choreography Analysis
	Introduction
	Case Study: e-Government Application
	Modeling Timed Behavior of Web Services
	Timed Compatibility Problem
	Formal Compatibility Analysis
	Building the Timed Choreography Interaction Schema
	Making Explicit the Implicit Timed Constraints Dependencies
	Characterization of Compatibility Classes

	Illustrative Example
	Related Work
	Conclusion
	References

	Value-Driven Modelling
	Evaluation Patterns for Analyzing the Costs of Enterprise Information Systems
	Introduction
	The EcoPOST Cost Analysis Methodology - A Brief Summary
	Evaluation Models
	Understanding Model Dynamics through Simulation
	Applying EcoPOST in Practice: Experiences and Lessons Learned

	EcoPOST Evaluation Patterns
	ResearchMethodology and Pattern Identification
	Primary Evaluation Patterns
	Secondary Evaluation Patterns

	Working with Patterns: Customization and Composition
	Related Work
	Summary and Future Work
	References

	Using the REA Ontology to Create Interoperability between E-Collaboration Modeling Standards
	Introduction
	Ontology-Based Model Interoperability in the E-Collaboration Domain
	The Resource Event Agent Enterprise Ontology
	E-Collaboration Modeling Standards
	ISO/IEC 15944 Standard
	UN/CEFACT’s Modeling Methodology

	E-Collaboration Model Interoperability via the REA Ontology
	Conclusions and Future Work
	References

	Value-Based Service Modeling and Design: Toward a Unified View of Services
	Introduction
	Business Modeling and Service Systems
	Business Modeling
	Service Systems
	Running Example

	A Unified Service Model
	Service Ontology
	Service Classification
	Service Layer Architecture

	Service Identification – A Method Proposal
	A Service Design Method
	Example: XYZ Financial Services

	Conclusion
	References

	Workflow
	Data-Flow Anti-patterns: Discovering Data-Flow Errors in Workflows
	Introduction
	Related Work
	Workflow Nets with Data
	Data-Flow Anti-Patterns
	Formalization and Implementation
	Temporal Logic CTL^\ast
	Unfolding of WFD-Net
	Formalization of Anti-patterns
	Tool Support

	Conclusion
	References

	Process Algebra-Based Query Workflows
	Introduction
	RelCCS: The Relational Dataflow Process Language
	The Process Model: Processes and Their Constituents
	State, Communication, and Data Flow via Variable Bindings
	Syntax and Semantics of RelCCS
	Recursive Processes in RelCCS
	Data-Oriented RelCCS Operators
	Embedding Algorithmic Webservices
	Technical Realization

	Application Scenario: Travel Planning
	Related Work
	Conclusion
	References

	ETL Workflow Analysis and Verification Using Backwards Constraint Propagation
	Introduction
	One Motivating Example
	ETL Workflow Analysis and Verification
	BCP Framework
	ETL Graph
	Constraint Propagation
	Correctness and Complexity

	Related Works
	Conclusions
	References

	Business Process Modelling
	The Declarative Approach to Business Process Execution: An Empirical Test
	Introduction
	Background
	Planning Approaches
	Dealing with Uncertainty by Deferring Decisions
	Declarative Processes
	The Alaska Simulator

	Experiment Definition and Planning
	Experiment Setup
	Experiment Design
	Risk Analysis and Mitigations

	Performing the Experiment
	Experimental Operation
	Data Analysis
	Discussion of Results

	Related Work
	Summary and Outlook
	References

	Configurable Process Models: Experiences from a Municipality Case Study
	Introduction
	Background
	Configurable YAWL
	Steering Process Configuration through Questionnaires

	Creating Configurable Process Models
	Building the Models
	Observations

	Evaluation of the Approach
	Related Work
	Conclusions
	References

	Business Process Modeling: Current Issues and Future Challenges
	Introduction
	Research Approach
	Delphi Study Design
	Participant Selection

	Study Conduct
	Delphi Study Rounds
	Classification of Results

	Business Process Modeling Issues
	Business Process Modeling Challenges
	Discussion and Implications
	Discussion
	Implications for Practice and Research

	Conclusions
	References

	Requirements Engineering
	Deriving Information Requirements from Responsibility Models
	Introduction
	Information Requirements
	Responsibility
	Responsibility Modelling
	Responsibility and Requirements Engineering
	Related Work
	Evaluation
	Conclusions
	References

	Communication Analysis: A Requirements Engineering Method for Information Systems
	Introduction
	Overview of the Approach
	Illustration Case Description
	Communication Analysis Modelling Primitives and Guidelines
	L1. System/Subsystems Level
	L2. Process Level
	L3. Communicative Interaction Level

	Related Works
	Conclusions and Future Work
	References

	Spectrum Analysis for Quality Requirements by Using a Term-Characteristics Map
	Introduction
	A Method for Generating Quality Spectrum
	The Old Method and Its Problems
	TCM Method

	Evaluation
	Data Gathering and EvaluationMethod
	Inheritance from the old method
	Different Systems in The Same Domain
	Different Analysts

	A Supporting Tool for TCM Method
	Related Works
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

