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Abstract. Today a large amount of RDF data is published on the Web.
However, the openness of the Web and the ease to combine RDF data
from different sources creates new challenges. The Web of data is missing
a uniform way to assess and to query the trustworthiness of information.
In this paper we present tSPARQL, a trust-aware extension to SPARQL.
Two additional keywords enable users to describe trust requirements
and to query the trustworthiness of RDF data. Hence, tSPARQL allows
adding trust to RDF-based applications in an easy manner. As the foun-
dation we propose a trust model that associates RDF statements with
trust values and we extend the SPARQL semantics to access these trust
values in tSPARQL. Furthermore, we discuss opportunities to optimize
the execution of tSPARQL queries.

1 Introduction

During recent years a large amount of data described by RDF has been published
on the Web; large datasets are interlinked; new applications emerge which utilize
this data in novel and innovative ways. However, the openness of the Web and
the ease to combine RDF data from different sources creates new challenges
for applications. Unreliable data could dominate results of queries, taint inferred
data, affect knowledge bases, and have negative or misleading impact on software
agents. Hence, questions of reliability and trustworthiness must be addressed.
While several approaches consider trustworthiness of potential sources of data
(e.g. [1,2,3]), little has been done considering the actual data itself.

What is missing for is a uniform way to rate the trustworthiness of the data
on the Web and standardized mechanisms to access and to use these ratings.
Users as well as software agents have to be able to utilize trust ratings and base
their decisions upon them. They have to be enabled to ask queries such as:

Q1: Return a list of garages close to a specific location ordered by the trustwor-
thiness of the data.

Q2: Return trustworthy reviews for a specific restaurant.
Q3: Return the most trustworthy review for each hotel in the city of Heraklion.

To ask queries like these this paper presents appropriate extensions for RDF and
its query language SPARQL. Our main contributions are:

– a trust model for RDF data which associates triples with trust values, and
– a trust-aware query language, tSPARQL, which extends SPARQL to describe

trust requirements and to access the trustworthiness of query solutions.
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This paper is structered as follows. First, Section 2 outlines our trust model
for RDF. In Section 3 we informally present tSPARQL by introducting two
new query clauses that enable users to ask queries such as Q1 to Q3. In the
remainder we discuss the necessary extensions for tSPARQL in detail. We present
our approach for trust-aware processing of queries (Section 4); followed by the
extensions for the new clauses (Section 5) and a discussion of opportunities to
optimize the execution of tSPARQL queries (Section 6). An evaluation of our
approach is given in Section 7. Finally, we review related work in Section 8 and
conclude in Section 9.

2 A Trust Model for RDF

As the foundation of a trust infrastructure that considers the trustworthiness
of RDF data we introduce a trust model for RDF. The goal of our trust model
is to rate information expressed in RDF according to trustworthiness. Since
information expressed in RDF is represented by triples our model represents the
trustworthiness of triples. Our fundamental understanding of the trustworthiness
of RDF triples is the subjective belief or disbelief in the truth of the information
represented by the triples. Notice, disbelief is a negative form of belief: disbelief in
the truth of information is belief in the untruth of this information; i.e., disbelief
is the belief that the information is false. Since belief is a personal attitude the
trustworthiness of triples depends on the information consumer.

Fig. 1. Meaning of trust values

To enable machine-based processing we
introduce a quantifiable measure; we rep-
resent the trustworthiness of RDF triples
by a trust value which is either unknown or
a value in the interval [-1,1]. We define the
meaning of these values by a specification
of the interval boundaries: a trust value of
1 represents absolute belief in the infor-
mation represented by the corresponding
triples; -1 represents absolute disbelief; in-
termediary values represent degrees of be-
lief/disbelief. We understand the difference between trust values and the extrema
1 and -1 as uncertainty (cf. Figure 1). For a value of 1 the consumer is absolutely
sure about the truth of the corresponding triples; a positive value less than 1
still represents belief in the truth; however, to a certain degree the consumer is
unsure regarding the assessment. Hence, the lower the trust value, the greater
the uncertainty. A value of 0, finally, represents absolute uncertainty. The same
holds for negative trust values with respect to disbelief: the higher the negative
trust value, the greater the uncertainty. Hence, absolute uncertainty regarding a
truth assessment, i.e. the value 0, is equal to the lack of belief as well as the lack
of disbelief. Furthermore, we permit unknown trust values, denoted by ∅, for
cases where it is impossible to determine the trustworthiness of triples. Please
note the significant difference between a trust value of 0 and an unknown trust
value; while the latter denotes the trust management system has no information,
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a value of 0 represents the expressed lack of belief/disbelief. To determine trust
values we define a trust function.

Definition 1. Let T be the set of all RDF triples. A trust function tvC for
RDF triples is a mapping tvC : T → {tv | tv ∈ [-1, 1]} ∪ {∅} which assigns
every triple in T a subjective trust value that represents the trustworthiness of
the triple specific to an information consumer C.

Our trust model does not prescribe a specific implementation of determining
trust values. Instead, we allow each system to provide its own, application-
specific trust function. Determining trust values may be based on provenance
information [4] as in the Inference Web trust component [5]; the TRELLIS sys-
tem [6] additionally considers related data; the FilmTrust application [7] com-
bines provenance information and recommendations from other consumers.

We refer to an RDF graph with triples that are all associated with trust values
for a specific information consumer as a trust weighted RDF graph.

Definition 2. A trust weighted RDF graph ˜GC for information consumer
C is a pair (G, tvC) consisting of an RDF graph G and a trust function tvC .

Fig. 2. A trust weighted RDF graph

Example 1. Figure 2 depicts a
trust weighted RDF graph; The
edges represent the predicates of
triples. They are annotated with
the predicate identifier as usual
and with an additional label for
the consumer-specific trust value
of the corresponding triple. One
of the triples in the graph asserts
that resource ex1:Kastro is a ho-
tel building; this triple is associ-
ated with a trust value of 0.95. �
In addition to the trustworthiness of single triples we represent the trustworthi-
ness of sets of triples, i.e. of whole RDF graphs. The trustworthiness of an RDF
graph is an aggregation of the trustworthiness of its triples. Hence, we introduce
a trust aggregation function to calculate the trust value for RDF graphs.

Definition 3. A trust aggregation function for trust weighted RDF graphs
is a function ta which assigns each trust weighted RDF graph ˜GC an aggregated
trust value ta

(

˜GC
)

that represents the trustworthiness of ˜GC .

As with the trust function we do not prescribe a specific aggregation function.
Applications have the freedom to choose a function that fits their use cases. The
minimum, for instance, is a cautious choice; it assumes the trustworthiness of a
set of triples is only as trustworthy as the least trusted triple. The median, a
more optimistic choice, is another reasonable trust aggregation function. How-
ever, each trust aggregation function must process unknown trust values in a
meaningful way. A possible approach is to return an unknown value if an input
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value is unknown. We will investigate aggregation of trust values more closely
in the future.

Please notice, we see the primary usage of trust values for triples within
the trust component of a system; trust values are parts of data structures that
represent trust weighted RDF graphs. However, to explicitly assert the trust-
worthiness of RDF data we provide a trust vocabulary1.

3 Accessing Trust Values in Queries

Trust ratings for RDF data add little value if they cannot be utilized while
accessing the data. Therefore, we propose tSPARQL as an extension to the
RDF query language SPARQL [8]. SPARQL is of declarative nature; evaluation
is based on graph patterns that must match subgraphs in the queried RDF
graphs. With tSPARQL users can additionally access trust values that represent
the trustworthiness of matching subgraphs. This additional expressivity allows
for queries such as Q1 to Q3. To express these queries we add a TRUST AS clause
to the query language. Consider the query in Figure 3 which expresses Q1 in
tSPARQL. The query contains a TRUST AS clause with a new variable ?t which
allows access to the trust values of the subgraphs that match the query pattern.

1 SELECT ? garage ? t WHERE {
2 ? garage a <http :// umbel . org /umbel/ sc /AutoRepairShop >;
3 geo : l a t ? l a t ; geo : long ? long .
4 FILTER ( ex : d i s t an c e (? la t , ? long , 3 5 . 3 3 , 2 5 . 1 3 ) < 10 .0 )
5 TRUST AS ? t
6 }
7 ORDER BY ? t

Fig. 3. tSPARQL representation of query Q1 (prefix declarations omitted)

The TRUST AS clause offers the following novel features: i) the new variable can
become part of the query result, ii) it can be used for sorting the results, iii) it can
be associated with parts of the query pattern, and iv) two variables that represent
trust values of different query pattern parts can be compared. This approach can
even be used for expressing requirements regarding the trustworthiness of query
results as in query Q2: in addition to the TRUST AS clause users simply add
a FILTER clause which restricts the new variable. However, for convenience we
propose another new clause for these cases, namely the ENSURE TRUST clause
which includes a pair of numbers that denote a lower bound and an upper
bound, respectively. Figure 4 depicts the tSPARQL representation of Q2; due to
the ENSURE TRUST clause only those solutions become part of the result where
the trust value of the matching subgraph is at least 0.5 and at most 1.0.

Queries Q1 and Q2 access the trust values of the subgraphs that match the
whole query pattern. Query Q3, in contrast, compares the trustworthiness of
different parts of each query result. Hence, for Q3 we must limit the scope of

1 http://trdf.sourceforge.net/trustvocab
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1 SELECT ? r ? t ex t WHERE {
2 <http :// dbpedia . org / r e s ou r c e /The Cherry Street Tavern>
3 rev : hasReview ? r .
4 ? r rev : t ex t ? t ex t .
5 ENSURE TRUST ( 0 . 5 , 1 .0 )
6 }

Fig. 4. tSPARQL representation of query Q2 (prefix declarations omitted)

1 SELECT ?h ? txt1 WHERE {
2 ?h rd f : type <http :// umbel . org /umbel/ sc /Hote lBui ld ing> ;
3 p : l o c a t i o n <http :// dbpedia . org / r e s ou r c e /Heraklion> .
4 { ? ho t e l rev : hasReview [ rev : t ex t ? txt1 ]
5 TRUST AS ? t1 }
6 OPTIONAL { ?h rev : hasReview [ rev : t ex t ? txt2 ]
7 TRUST AS ? t2 FILTER ( ? t2 > ? t1 ) }
8 FILTER ( ! BOUND (? txt2 ) )
9 }

Fig. 5. tSPARQL representation of query Q3 (prefix declarations omitted)

TRUST AS clauses to subgraphs that match only parts of the whole query pattern.
This limitation can easily be expressed by associating the clause with a specific
part of the query pattern as the tSPARQL representation of Q3 in Figure 5
illustrates. The TRUST AS clause in line 6, for instance, solely binds variable ?t1
with trust values of subgraphs that match the graph pattern in line 5. Hence,
the position of TRUST AS clauses in the query pattern matters; the same holds
for ENSURE TRUST.

To enable the proposed extensions we must enhance SPARQL in two ways.
First, we extend the query language with the new clauses and define opera-
tions for them. Second, since trust values are currently not part of SPARQL we
also extend the processing of SPARQL queries to consider trust values. In the
remainder of this paper we describe the details of our extensions.

4 Trust in SPARQL Query Processing

The semantics of SPARQL do not consider trust values. To implement trust-
aware query processing we redefine parts of the semantics for tSPARQL. In
this section, we first take a brief look at SPARQL query processing and query
evaluation; afterwards we present our adaptations.

The SPARQL specification [8] gives an operational definition of the seman-
tics of SPARQL. In brief, the specification defines a grammar for the query
language, a translation from a parse tree to an abstract syntax tree (AST), a
transformation from an AST to an abstract query with an algebra expression,
and an operation to evaluate abstract queries based on algebra operators. The
algebra is defined to calculate query solutions and operate on them. Finally, a
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result form definition specifies how to create the query result from the solutions.
This operational definition of the semantics forms the basis for query processing.

To consider trustworthiness during query processing and to enable operators
to access trust values we extend query evaluation for tSPARQL. First, we redefine
the notion of solutions because the trust values have to become part of the
solutions. Second, we specify how the algebra operates on the extended solutions.

4.1 Trust-Aware Basic Graph Pattern Matching

SPARQL is based on graph patterns and subgraph matching. The elementary
graph pattern is called a basic graph pattern (BGP); it is a set of triple patterns
which are RDF triples that may contain variables at the subject, predicate, and
object position. During evaluation values are bound to the variables according
to the subgraphs that match BGPs. These variable bindings are called solution
mapping. Besides variables SPARQL permits blank nodes in triple patterns.
Blank nodes have to be associated with values during pattern matching similiar
to variables. Hence, the SPARQL specification additionally introduces RDF in-
stance mappings that map blank nodes to values. A solution for a BGP is each
solution mapping which, in combination with an RDF instance mapping, maps
the BGP to a subgraph of the queried RDF graph. The result of BGP matching
is a multiset (or bag) of solution mappings; a solution mapping can be combined
with different RDF instance mappings to map the BGP to different subgraphs.

We adapt the definitions for tSPARQL. However, we associate each solution
mapping with a trust value.

Definition 4. A trust weighted solution mapping μ̃ is a pair (μ, t) consist-
ing of a solution mapping μ and a trust value t. We denote the cardinality of μ̃
in a multiset ˜Ω of trust weighted solution mappings with card

˜Ω(μ̃).

Following the definition from the SPARQL specification, we define solutions
for a BGP over a trust weighted RDF graph. Every solution mapping that is
a solution to a BGP represents one matching subgraph; the trust value of this
solution mapping must represent the trustworthiness of the subgraph; hence, the
trust value can be calculated by a trust aggregation function (cf. Definition 3):

Definition 5. Let b be a BGP; let ˜GC = (G, tvC) be a trust weighted RDF
graph. The trust weighted solution mapping (μ, t) is a solution for b in ˜GC if
there is an RDF instance mapping σ such that i) μ (σ(b)) is a subgraph of G, ii)
μ is a mapping for the query variables in b, and iii) t = ta(˜SC) is the aggregated
trust value of the trust weighted RDF graph ˜SC =

(

μ (σ(b)) , tvC
)

calculated by
trust aggregation function ta. For each solution μ for b card

˜Ω(μ̃) is the number
of distinct RDF instance mappings σ such that μ (σ(b)) is a subgraph of G.

With our definition of solution the result of BGP matching is a multiset of
trust weighted solution mappings. Since the solutions are calculated for a trust
weighted RDF graph they are calculated in the context of a specific information
consumer. BGP matching in the context of another consumer may yield solutions
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with different trust values because assessing the trustworthiness of matching
subgraphs is subjective; hence, the trust values associated with the triples of
matching subgraphs are consumer-specific.

Fig. 6. Trust weighted solution

Example 2. When we apply the BGP in line 5
of Figure 5 to our sample trust weighted RDF
graph in Figure 2 we find two matching sub-
graphs resulting in the two solutions shown in
Figure 6. μ1 maps ?h to ex1:Kastro and ?txt1
to the literal “A surprisingly ...”; μ2 maps ?h to ex1:Kastro and ?txt1 to “What
a lovely ... .” To determine the trust values for both, μ1 and μ2, we choose the
minimum as our application-specific trust aggregation function. The subgraph
for μ1 consists of two triples with trust values 0.86 and 0.9. Hence, our first
solution is the trust weighted solution mapping μ̃1 = (μ1, 0.86). For μ2 we have
the two trust values 0.86 and 0.1; our second solution is μ̃2 = (μ2, 0.1). �

4.2 Enhanced SPARQL Algebra

After defining trust weighted solution mappings we now explain how these
mappings are combined in more complex queries. Besides BGPs, the SPARQL
specification introduces other graph patterns. During query evaluation they are
represented by algebra operators which operate on multisets of solution mappings.
For our new clauses (cf. Section 3) we need new types of operators. To enable these
new operators to access the trust values in solutions all operators have to consider
the trust values. Hence, for tSPARQL we redefine the conventional SPARQL al-
gebra operators to operate on multisets of trust weighted solution mappings. In
the following we exemplarily present the redefined join operator.

The conventional join operator represents a group graph pattern. The two
operands of the operator are multisets of solution mappings. Every mapping from
one operand is merged with every mapping from the other if they are compatible.
Solution mappings are compatible if all variables specified in both mappings are
bound to the same values. Merging two solution mappings combines all variable
bindings from both mappings in a new one.

A join operator that operates on trust weighted solution mappings has to
consider the trust values while merging solutions. The trust value of a merged
solution mapping is an aggregation of the trust values associated with the indi-
vidual mappings that has been used for merging. For this purpose we introduce
another aggregation function which we call trust merge function.

Definition 6. A trust merge function for two trust weighted solution map-
pings μ̃1 and μ̃2 is a commutative and associative function tm that determines
a merged trust value tm(μ̃1, μ̃2).

We notice that trust merge functions must be commutative and associative be-
cause the join operator is a commutative and associative operation. Using trust
merge functions we redefine the join operator.
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Definition 7. Let ˜Ω1 and ˜Ω2 be multisets of trust weighted solution mappings;
let merge be the merge operation for solution mappings [8]. The result of a join
operator is a multiset of trust weighted solution mappings which is defined as

Join(˜Ω1, ˜Ω2) =
{(

merge(μ1, μ2), tm(μ̃1, μ̃2)
) ∣

∣ μ̃1 = (μ1, t1) ∈ ˜Ω1 ∧
μ̃2 = (μ2, t2) ∈ ˜Ω2 ∧
μ1 and μ2 are compatible

}

with

card
Join

(

˜Ω1,˜Ω2

)(μ̃) =
∑

μ̃1∈˜Ω1

μ̃2∈˜Ω2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

card
˜Ω1

(μ̃1) · card
˜Ω2

(μ̃2) if μ̃ = (μ, t) with
t = tm (μ̃1, μ̃2) and
μ = merge(μ1, μ2)
where μ̃i = (μi, ti)

0 else

where tm is an application-specific trust merge function.

Again, the definition does not prescribe a specific trust merge function; thus giv-
ing applications a choice (insofar as the function is commutative and associative).
Possible choices are the minimum or the arithmetic mean.

Fig. 7. Operator tree with solutions

Example 3. The group graph pattern
{
{ ?h rdf:type umbel:HotelBuilding;

p:location dbpedia:Heraklion. }
{ ?h rev:hasReview [rev:text ?txt1] }
}

groups two BGPs. Figure 7 depicts the
corresponding algebra expression as an
operator tree. The tree is annotated with
trust weighted solution mappings that
are solutions for our sample graph in Figure 2. The two tables near the bot-
tom of Figure 7 contain the solutions for the BGPs. Joining the solutions from
both multisets results in the solutions represented by the upper table. The trust
merge function applied is the minimum function. �
Similiar to the join operator we adapted all algebra operators for tSPARQL [9].

5 SPARQL Extension for Trust Requirements

Section 3 gives a high-level overview of tSPARQL and the new clauses TRUST AS
and ENSURE TRUST. In this section we provide a more formal description.

5.1 Accessing Trust Values

The TRUST AS clause permits access to the trust values associated with solutions.
This is impossible with conventional SPARQL queries since conventional query
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evaluation does not consider trust values. To process TRUST AS clauses we extend
the grammar of the query language, adapt the translation to an abstract syntax
tree (AST) as well as the transformation from an AST to an abstract query; we
define a new algebra operator and we extend the operation to evaluate abstract
queries. Due to the limited space we only give a brief informal description of
the grammar extension and present the algebra operator here. The tSPARQL
specification [9] covers all necessary extensions in detail.

The TRUST AS clause is denoted by the keywords TRUST AS which are followed
by a query variable. This variable must not be contained in any other pattern of
the query. A TRUST AS clause can occur at any position in a query where FILTER
clauses are permitted. The corresponding algebra operator, called project trust
operator, operates on a multiset of trust weighted solution mappings. For every
mapping it accesses the trust value, creates a new variable binding which maps
the specified variable to an RDF literal that represents the trust value, and adds
the new binding to the mapping.

Definition 8. Let ˜Ω be a multiset of trust weighted solution mappings; let v be
a query variable which is not bound in any μ̃ ∈ ˜Ω. The result of a project trust
operator is a multiset of trust weighted solution mappings which is defined as

PT
(

v, ˜Ω
)

=
{

(μ′, t)
∣

∣ (μ, t) ∈ ˜Ω ∧ μ′ = μ ∪ {(v, t)}}

with cardPT(v, ˜Ω)(μ̃) = card
˜Ω(μ̃).

The following example illustrates query evaluation with a project trust operator.

Example 4. Consider a group graph pattern similar to the pattern in Example 3
where the second BGP is associated with a TRUST AS clause. Figure 8(a) depicts
an operator tree, annotated with sample solutions, for this pattern. Compare the
solutions consumed and provided by the project trust operator. Every solution
provided by this operator contains an additional binding for variable ?t1. This
binding maps ?t1 to a value that corresponds to the trust value associated with
the respective solution when the project trust operator is evaluated (e.g. 0.86
for the first solution). Note, we used the trust merge function tmmin for the
join operation. Thus, the trust value of the first solution after the join is 0.8.
However, the value bound to variable ?t1 has not changed; it is still 0.86. This
can be attributed to the limited scope of the trust projection and reflects the
intention of the TRUST AS clause and its position in the query. To illustrate
the role of the limited scope consider a slight variation of the query where the
TRUST AS clause has been defined for the whole group graph pattern (i.e. before
the last closing brace in the pattern of Example 3). Figure 8(b) depicts the
corresponding operator tree with sample solutions. Notice, the solutions from
BGP matching are the same as in Figure 8(a). Even so, the first of the overall
resulting solutions differ for ?t1 because the project trust operator is applied
after joining the solutions. Obviously, the position of a TRUST AS clause in a
query pattern matters. �
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(a) (b)

Fig. 8. Project trust operators in an operator tree with sample solutions

5.2 Expressing Trust Requirements

To express trust requirements as in query Q2 we propose the ENSURE TRUST
clause. Conventional FILTER clauses are not defined for trust weighted solution
mappings and, thus, are inapplicable to filter solutions by restricting trust values
directly. This holds for application-specific extension functions too. Instead of
attempting to redefine FILTER we introduce the new clause as a clear separation
between restricting with respect to variable bindings and associated trust values.

To process ENSURE TRUST clauses we extend the query language similar to our
extensions for the TRUST AS clause. We refer to the tSPARQL specification [9]
for the details and confine ourself here to present the new algebra operator.

Definition 9. Let l, u ∈[-1,1] be lower and upper bound values, respectively; let
˜Ω a multiset of trust weighted solution mappings. The result of an ensure trust
operator is a multiset of trust weighted solution mappings which is defined as

ET
(

l, u, ˜Ω
)

=
{

(μ, t)
∣

∣ (μ, t) ∈ ˜Ω ∧ l ≤ t ≤ u
}

with cardET(l,u, ˜Ω)(μ̃) = card
˜Ω(μ̃).

The ensure trust operator accepts only those trust weighted solution mappings
that have a trust value within a specified interval, i.e., it eliminates any solutions
with trust values lesser than the lower bound or larger than the upper bound.
As for the TRUST AS clause the position of an ENSURE TRUST clause in a query
pattern matters.

Please notice, the results of a tSPARQL query may differ for different users.
As discussed in Section 2, trustworthiness of triples is a subjective judgment.
Hence, the trust values associated with query solutions depend on the informa-
tion consumer. For this reason, each tSPARQL query must be executed in the
context of a specific consumer in order to determine consumer-specific results.

6 Optimization of tSPARQL Query Execution

A well-known heuristic to optimize query execution in relational database sys-
tems is selection push-down. Algebra expressions are being rewritten to push
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down selections in the operator tree in order to reduce intermediary solutions
and, thus, evaluate queries more efficiently. We adapt this heuristic to tSPARQL.
In this section we present rewrite rules to push down trust constraints.

Enforcing trust constraints as early as possible may reduce query execution
costs by reducing the number of trustweighted solution mappings that have to be
processed. However, pre-drawing the evaluation of trust constraints is not as sim-
ple as pushing down ensure trust operators: this transformation may modify the
semantics of the query unintentionally. In particular, pushing trust constraints
in join operations may result in algebra expressions not equivalent to the original
expressions. The soundness of rewrite rules that incorporate join operators de-
pends on the trust merge function employed for joins. In the following we focus
on rewrite rules that are only valid for the minimum trust merge function tmmin.

Let ˜Ω1 and ˜Ω2 be multisets of trust weighted solution mappings. For join
operators that employ tmmin the following equivalence of algebra terms holds:

ET
(

l, u, Join
(

˜Ω1, ˜Ω2

)

)

≡ ET
(

l, u, Join
(

ET (l, 1, ˜Ω1), ET (l, 1, ˜Ω2)
)

)

(1)

Due space limitation we do not proof the equivalence. Instead, we refer to the
tSPARQL specification [9] which contains proofs for all equivalences presented
here. Based on (1) we propose to rewrite algebra expressions by replacing terms
of the form on the left hand side of (1) by the corresponding term of the form
on the right hand side of (1). Furthermore, for left-join operators that employ
tmmin we propose a similar rewrite rule based on the following equivalence:

ET
(

l, u, LJoin
(

˜Ω1, ˜Ω2, ex
)

)

≡ ET
(

l, u, LJoin
(

ET (l, 1, ˜Ω1), ˜Ω2, ex
)

)

(2)

To enable an even more extensive push-down of trust constraints we introduce
the following equivalences and propose to apply the corresponding rewrite rules.

ET
(

l, u, F ilter(ex, ˜Ω)
)

≡ Filter
(

ex, ET (l, u, ˜Ω)
)

(3)

ET
(

l, u, PT (v, ˜Ω)
)

≡ PT
(

v, ET (l, u, ˜Ω)
)

(4)

ET
(

l1, u1, ET (l2, u2, ˜Ω)
)

≡ ET
(

max(l1, l2), min(u1, u2), ˜Ω
)

(5)

In contrast to (1) and (2), the equivalences (3) to (5) hold for all trust merge
functions. Applying all the proposed rewrite rules during the optimization of
tSPARQL queries reduces query execution times significantly (cf. Section 7.3).

7 Evaluation

In this section we evaluate the impact of our trust extension on query execution
times. We implemented a tSPARQL query engine which extends the SPARQL
query engine ARQ2. Our engine is available as Free Software from our project
website3. For the evaluation we use a simple provenance-based trust function that
2 http://jena.sourceforge.net/ARQ
3 http://trdf.sourceforge.net/tsparql
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assumes the existence of trust assessments for RDF graphs; these assessments
associate a consumer-specific trust value with each graph. The trust function
simply adopts these trust values for all triples in a graph. For our tests we use an
extended version of the Berlin SPARQL Benchmark (BSBM) [10]. The BSBM
executes a mix of 12 SPARQL queries over generated sets of RDF data; the
datasets are scalable to different sizes based on a scaling factor. The generated
data is created as a set of named graphs [11]. We extend the BSBM by trust
assessments. Our extension, available from the project website, reads the named
graphs-based datasets, generates a consumer-specific trust value for each named
graph, and creates an assessments graph. The assessments graph is an additional
RDF graph with statements that assign the generated trust values to the named
graphs; for these statements we use our trust vocabulary (cf. Section 2). The
proposed trust function determines the trust value for a triple by querying the
assessments graph for the trust value associated with the graph that contains
the triple. For all tests we use the minimum function to aggregate and to merge
trust values. We conduct our experiments on a Intel Core 2 Duo processor with
2 GHz and 2 GB main memory. Our test system runs a recent 32 bit version
of Gentoo Linux with Sun Java 1.6.0. In the following we, first, investigate how
processing trust values impacts query execution time; we analyze the impact of
determining trust values during query execution; and, finally, we evaluate the
benefits of query rewriting as presented in the previous section.

7.1 The Impact of Processing Trust Values

As presented in Section 4.2 tSPARQL redefines the algebra of SPARQL in order
to consider trust values during query execution. To measure the impact of this
extension on query execution times we compare the results of executing our
extended version of the BSBM with ARQ and with our tSPARQL query engine.
To eliminate the effects of determining trust values in our engine we precompute
the trust values for all triples in the queried dataset and store them in a cache. We
execute the usual BSBM query mix for datasets generated with a scaling factor
of 100, 200, 300, and 400; these datasets have the size of 31800, 60424, 92337, and
124305 triples, respectively. For each dataset we run the query mix 10 times for
warm up and 50 times for the actual test. Figure 9(a) depicts the average times
to execute the query mix with ARQ and with our engine, respectively. The main
additional tasks performed by our engine, in contrast to ARQ, are accessing
the trust value cache and aggregating trust values during BGP matching as
well as merging trust values during join operations. Naturally, this additional
functionality comes not for free. Nonetheless, the processing of trust values does
not increase query execution times to a significant extent, especially for larger
datasets, as can be seen in Figure 9(a).

7.2 The Impact of Determining Trust Values

While we analyze the processing of trust values in the previous experiment we
focus on determining trust values during the execution of queries in the following.
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Fig. 9. Average times to execute the BSBM query mix for datasets of different sizes
measured for ARQ and for the tSPARQL engine with and without a trust value cache

To measure how determining trust values may impact query execution times we
use our tSPARQL query engine with a disabled trust value cache to execute the
extended BSBM. During query execution the engine determines trust values with
the simple, provenance-based trust function introduced before. For this setting,
the chart in Figure 9(b) depicts the average times to execute the BSBM query
mix; furthermore, the chart puts the measures in relation to the times obtained
for our engine with a trust value cache in the previous experiment. As the chart
illustrates, determing trust values during query execution dominates the query
execution time. Thus, we strongly suggest to make use of trust value caches in a
tSPARQL engine. As a future work we will look deeper into the topic of caching
trust values.

7.3 The Impact of Query Rewriting
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Fig. 10. The impact of rewrite rules

In Section 6 we propose rewrite rules
that push down trust constraints in
order to execute tSPARQL queries
more efficiently. To evaluate the po-
tential impact of the application of
these rules we implemented them
in our tSPARQL query engine. Fur-
thermore, we developed a mix of
six tSPARQL queries. The queries
are in line with the BSBM mix of
SPARQL queries and with the BSBM
e-commerce use case that considers
products as well as offers and reviews for these products. Due to space lim-
itations, we do not present our queries in detail; we refer the reader to the
tSPARQL specification instead. However, to give an impression the following
list shows two of the queries in their textual form:

– For all products of a specific type return the cheapest offer, respectively;
ensure all information can at least moderately be trusted.
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– Return reviews and the trustworthiness of these reviews for products of a
specific type; ensure trustworthy information.

For our test we enable the trust value cache in our tSPARQL engine and compare
query execution times when query rewriting is enabled and disabled. For both
cases we run our query mix 10 times for warm up and 50 times for the actual
test; we use four datasets (scaling factor: 100, 200, 300, and 400). As can be
seen in Figure 10 the average execution times for a query mix differ drastically
depending on the application of our rewrite rules. Hence, rewriting tSPARQL
queries may reduce the execution time significantly.

8 Related Work

Formalizing trust and trust in the Web is a topic of research since several years.
For instance, Marsh [12] analyzes trust as a computational concept. This work
influenced our approach to measure the trustworthiness of triples by a trust
value in the interval [-1,1].

The basic idea of expressing trust requirements in a query language, as in our
proposal, has also been presented by Bizer et al. [13]. They propose an extension
to a query language for RDF, namely TriQL.P, to express trust-policies within
queries. This approach is based on additional RDF statements that explicitly
describe provenance and trustworthiness of information or information sources.
Additionally TriQL.P permits a METRIC clause as “an open interface for different
trust metrics and algorithms” which “are implemented as plug-ins for the query
engine.” In contrast to our approach, Bizer et al. do not explicitly provide a
trust model for RDF data and their approach requires annotations regarding
provenance and trustworthiness.

The most common approach to address trustworthiness on the Web are trust
infrastructures based on a Web of trust (e.g. [1,2,3]). These Web of trust ap-
proaches consider the trustworthiness of members of the web. In contrast to
these approaches, we focus on the trustworthiness of the data published on the
Web, instead of the publishers. To the best of our knowledge, only Mazzieri
and Richardson et al. propose trust models with an intention similar to ours.
Mazzieri [14] introduces fuzzy RDF; a membership value associated with each
triple represents the likelyhood the triple belongs to the RDF graph. By equating
those membership values with trustworthiness of triples Mazzieri inappropriately
mixes two different concepts; trustworthiness is not the same as a fuzzy notion
of truth nor is trustworthiness of RDF triples tied to a specific RDF graph.
Richardson et al.’s [15] approach is very close to ours; they represent a user’s
personal belief in a statement by a value in the interval [0,1]. What is missing
in their approach is a possibility to finally utilize the ratings, e.g. in queries.

Other systems that consider trust in content are TRELLIS, IWTrust, and
FilmTrust. The TRELLIS [6] system assesses the truth of statements by con-
sidering their provenance and related statements. Users can rate information
sources and follow the assessments that are presented with the corresponding
analysis and the influencing facts. The information assessed in TRELLIS is not
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as granular as the single triples in our approach and there is no trust model
that rates the information directly. However, the presented possibility to assess
information based on corresponding statements can be used to determine trust
ratings of triples or sets of them. IWTrust [5], the trust component of the Infer-
ence Web answering engine, understands trust in answers as the trust in sources
and in users. Similarily, FilmTrust [7] represents the trustworthiness of movie
reviews by a user’s trust in the reviewer and in other users’ competence to rec-
ommend movies. These provenance-based notions of content trust may guide the
development of trust functions.

9 Conclusion

In this paper we present a trust model for RDF data and tSPARQL, a trust-
aware extension of the query language SPARQL. Our model associates every
triple with a trust value. To access and use the trust values and to describe trust
requirements we propose the TRUST AS and ENSURE TRUST clauses as extensions
for tSPARQL. To enable tSPARQL we developed concepts for a trust-aware
query processing. Conceptually, our solution is entirely independent from the
applied methods to determine trust values; e.g. by not prescribing a specific
trust function the two tasks, determining trust values and BGP matching, are
clearly separated. Our approach can even be adapted for other trust models with
a different definition of the trust values for triples; users merely have to provide
trust functions and aggregation functions for their settings.

As future work, we plan to integrate tSPARQL in applications that process
RDF data from the Web. Today, a majority of these applications do not con-
sider the trustworthiness of the data. With tSPARQL we provide an easy tool to
enhance these applications and make them more trust-aware. One of the require-
ments for integrating our concepts in applications is the existence of application-
specific trust functions. For this reason, we will research different possibilities to
determine trust values and we will integrate them in the tSPARQL query engine.
In addition to trust functions applications require a method to aggregate trust
values. We will develop trust aggregation functions and analyze their suitability
for different applications and scenarios. Furthermore, we will develop concepts
to enhance the trust value cache in our engine because efficient query execution
benefits from caching trust values as our evaluation illustrates.
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