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Abstract. Many applications operate on time-sensitive data. Some of
these data are only valid for certain intervals (e.g., job-assignments, ver-
sions of software code), others describe temporal events that happened
at certain points in time (e.g., a person’s birthday). Until recently, the
only way to incorporate time into Semantic Web models was as a data
type property. Temporal RDF, however, considers time as an additional
dimension in data preserving the semantics of time.

In this paper we present a syntax and storage format based on named
graphs to express temporal RDF. Given the restriction to preexisting
RDF-syntax, our approach can perform any temporal query using stan-
dard SPARQL syntax only. For convenience, we introduce a shorthand
format called 7-SPARQL for temporal queries and show how 7-SPARQL
queries can be translated to standard SPARQL. Additionally, we show
that, depending on the underlying data’s nature, the temporal RDF ap-
proach vastly reduces the number of triples by eliminating redundancies
resulting in an increased performance for processing and querying. Last
but not least, we introduce a new indexing approach method that can
significantly reduce the time needed to execute time point queries (e.g.,
what happened on January 1st).

1 Introduction

Time, intervals, and versioning are central aspects of many applications. People
in organizations, for example, hold many different positions over time, software,
comes in many revisions, or services have temporal constraints (such as guaran-
teed executions times). As a consequence, there exist many data representations
of time. Today’s approaches, however, code temporal information as additional
data inside the data model. Therefore, temporal information is implicit in the
data and only difficult to access by programs. Indeed, the semantics of the tem-
poral information needs to be completely coded in the client programs accessing
the data. The Semantic Web, however, claims the accessibility of semantics by
machines / agents and, therefore, an explicit time representation should support
and preserve this central pillar of the Semantic Web.
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In this paper we propose to use time as an additional semantic dimension
of data. Therefore, it needs to be regarded as an element of the meta model
instead of being just part of the data model. By applying the foundations es-
tablished by Gutierrez et al.[Tl2], our approach proposes to implement, first, an
RDF [3] compatible syntax for temporal data. Second, we provide strategies for
efficiently storing temporal RDF data (including an interval based index struc-
ture). Last but not least, we introduce a temporal extension to SPARQL [4]
called 7-SPARQL and show how 7-SPARQL queries can be automatically trans-
lated to standard SPARQL operating on our storage scheme leveraging existing
RDF/SPARQL infrastructure.

The paper first discusses the relevant related work. Then, it covers the pro-
posed syntax for temporal RDF and 7-SPARQL. After presenting the mapping
of 7-SPARQL to SPARQL it introduces a specialized temporal index structure
for temporal RDF, which significantly improves retrieval performance of some
types of temporal queries. The paper closes with an empirical evaluation of the
introduced techniques and a discussion of the limitations and future work.

2 Related Approaches

The introduction of time into Semantic Web Data structures is not a novel
challenge. In this section we will discuss some of these propositions and highlight
their strengths and weaknesses. Specifically, we will discuss temporal extensions
to OWL and Description Logic, methods for encoding time in the data model,
and maintenance of graph versions.

2.1 Temporal Extensions

Different approaches cope with the temporal extension of Semantic Web or Se-
mantic Web related technologies. For example, Artale and Franconi [5] propose
to extend Description Logics with temporal features, while Welty and Fikes [6],
Kim et al. [7] and the tOWL [8] project aim at introducing temporal entities into
OWL. O’Connor et al.[9] investigated the querying of OWL data from the medi-
cal domain. In their approach, unlike ours, they use SWRL rules to query the KB.
Our goal is to embed time into RDF, i.e., lower Semantic Web layers. We, there-
fore, base our approach on the foundations introduced by Gutierrez et. al. [T2].
Gutierrez and colleagues also present a formal sketch for querying temporally en-
hanced RDF-graphs but did not propose a syntax to be used in, e.g., SPARQL.
Even though temporal query languages have been extensively researched in the
database community and lead to the TSQL2 query language [10], we were not able
to find any analogous extension of the RDF query language SPARQL.

2.2 Time Encoded in the Data Model

A commonly used alternative to encoding time as a semantic element in the
representation is to express temporal restrictions and validities, time is modeled
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as a part of the user’s data model. Usually, a datatype property is defined with a
range to one of xsd’s date datatypes [I1]. Pursuing this approach, two different
problems arise:

First, we loose the semantics of time. Only a human understands that, e.g.,
the hasBirthday property denotes the start of the validity of an instance of the
Human concept and that the completely different property manufacturingDate
of the concept Car bears semantically comparable information.

Second, temporal properties can only be attached to concepts or instances.
Whenever a relation needs to be annotated with temporal validity information,
work-around solutions such as relationship-reification need to be introduced. As
an example, consider the property isMemberOf, which is valid in a certain time
interval. One work-around would be the reification of the property using a ” Mem-
bership” blank-node with the properties start, end, memberOf, and member.
This is cumbersome and leads to an increased query complexity requiring the
inclusion of the blank-node in the query’s graph pattern.

2.3 Graph Versions and Version Management Systems

Another approach to model time is to maintain multiple versions or temporal
snapshots of the graph. Indeed version management systems are very popular
to track the evolution of files (such as program source code) and their content.
SemVersion [12] is such a version management system with a focus on ontology
evolution management based on named graphs. However, Sem Version uses its
own data model that contains the user’s ontology and its evolution. Our proposi-
tion is not to introduce a new data model, but, storing the elements of the users’
data model inside different named graphs according to their temporal context.

The advantage of versioning graphs is that the data model (usually) stays un-
touched. The major disadvantages are that they (1) limit the temporal seman-
tics to certain time-points (i.e., snap-shots at given points in time) making the
use of even slightly more involved temporal semantics, such as interval queries,
impossible, (2) do not expose time explicitly but implicitly through snapshots
making temporal reasoning complicated, and (3) will force users to access many
snapshots if an interval of interest spans many versions forcing them to incur
a potentially huge overhead due to redundant information in multiple versions.
Our proposed solution will avoid all of these disadvantages.

3 A Temporal Syntax for RDF

In this section we introduce our temporal representations of time. Specifically,
we introduce two different representations. The first is for internal use only and
facilitates the addressing and indexing of temporal entities (e.g. for a triple
store). The second provides the basis for a machine processable exchange format
considering the semantics of time.
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3.1 Internal Representation

As in most of the approaches dealing with temporal entities, we model time as a
1-dimensional discrete value (i.e. no branching time). More formally, each valid
time point is defined as 7 € Ny. A time interval consists of two time points s (for
start) and e (for end) such that s,e € 7|s < e. By allowing s to be equals e, we
are able to express time points as intervals. Consequently, we will henceforth only
use the interval notation. Note that this integer representation is an abstracted,
simplified form of time which looses the exact semantics of time (e.g., whether
it is a year number or version number). For most internal representations this
is sufficient, since we only need to operate on the relative relations of values,
i.e., >, = and <. Furthermore, we allow half-bounded and unbounded intervals.
We employ three special intervals that denote time periods which are open in
at least one direction: [0, €], [s, 00], and [0, 00]. Since we restricted the range of
valid time points to N, 0 denotes the lowest possible value (i.e., the beginning
of time). There are no time points before 0. The maximum time value, different
from what oo might imply, does not lie ahead. It is allocated with the actual
time during execution.

3.2 Exposed Representation

As a machine and human legible exchange format an exposed, semantic rep-
resentation / interpretation is necessary, which may consist of the well-known
xsd datatypes. In this approach we use the OWL-Time [I3] ontology that defines
Timepoints, Intervals and different date formats. However, we extended OWL-
Time with a new date format type called IntegerTime to express non-calendaric
time representations such as version numbers.

Analogous to the internal and conceptual schema of a DBMS the mapping
of the internal to the exposed representation and vice-versa is a storage sys-
tem dependent strategic decision that impacts the storage and retrieval perfor-
mance. To map the above mentioned borderline values 0 and oo to semantically
more expressive external representations, we use the literal values EVER and
NOW. Hence, the internal [0, co] interval is mapped to its semantic counterpart
[EVER,NOW] which refers to a time interval whose elements have always been
valid. Any data set without temporal information will be considered to be valid
in this “eternal” interval.

3.3 Storage Format and Syntax

As mentioned before, we use named graphs [14] to enable the temporal data rep-
resentation. We refer to a set of temporally related named graphs as a temporal
graph. Each time interval is represented by exactly one named graph, where all
triples belonging to this graph share the same validity period. To add an element
to a temporal graph, the algorithm shown in Listing [I] is executed.
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# retrieve walidity interval
[start, end] = tripleToAdd.validity
if tripleToAdd containsOneOrMore blankNode

# generate URI for blank-node

tripleToAdd = convertBlankToURI(tripleToAdd)
endif
# 1f mo nmnamed graph for the interval exzists then make one
if !namedGraph[start, end].exists
9 create new namedGraph[start, end]
10 # add the new named graph to directory in default graph
11 namedGraph.defaultGraph += namedGraph[start,end].temporallnfo
12 endif
13 namedGraph[start,end] += tripleToAdd

W ~NOOUd WN -

Listing 1. Pseudo Code for an insert operation into a temporal graph

As the listing shows, we first ascertain the triple’s temporal validity. Note that
the extraction of the validity is dependant on the way time is represented in a
data set. Then, we check, if it contains a blank node. Blank nodes are especially
problematic as their validity is restricted to the node’s parent graph. In our case,
however, where the collection of the interval-representing named graphs logically
form the overall graph, it might make sense to have blank-nodes that span mul-
tiple intervals and, thus, multiple named graphs. This requirement is akin to
the implementation employed by the Intellidimension RDF Gateway’s quad ap-
proach [I4], which deviates from the W3C recommendation in that respect. To
adhere to the W3C recommendation we simply assign a URI to any blank node
circumventing the blank node’s spirit but fulfilling our premise of using off-the-
shelf tools — in our opinion an acceptable compromise between adhering to the
spirit of RDF and practicality. Next, we establish, if a named graph represent-
ing the interval already exists. If not, then we generate a new named graph for
this interval and add information about it to the named graph directory in the
default graph. Finally, we add the triple to the appropriate named graph. Note
that we do not allow the same triple to appear in multiple temporal contexts.
Therefore, a temporal RDF framework needs to take care that a triple only ex-
ists once, but maybe, due to an update of the temporal information travels from
one named graph to another.

As apparent from this procedure we use the default graph as a directory or
container for the semantic information about the intervals. Since every interval
is uniquely identified by the URI of its named graph, vital as well as additional
information can be provided in the default graph. Vital information includes
the start and end time of an interval in any time format allowed by OWL-
Time. Additional information includes relations between intervals such as after,
before, or overlaps. Since the additional information about intervals can be
inferred from the start and end time of an interval, a temporal reasoning system
could entail these relations.

With this approach, we can benefit from well-established, scalable support of
named graphs in storage systems without having to implement any adaption to
temporal RDF. As mentioned above, temporal validity information could also be
provided using reification. However, to express the same amount of information,
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reification would consume 15 times more triples than named graphs seriously
questioning the scalability both in terms of storage space and, more importantly,
in terms of retrieval run-time.

4 The 7-SPARQL Query Language

Having established a storage format in Section B3] in this section we focus on
the retrieval of these triples. It introduces 7-SPARQL, an extended syntax for
SPARQL to express temporal queries. We introduce 7-SPARQL by discussing
its two major usage formats: time point Queries and temporal queries.

4.1 Time Point Queries

Time point queries aim at retrieving information valid at a specified point in
time. This is of special importance whenever a snapshot in the past needs to be
retrieved from a dataset. Similar to the FROM statement in SPARQL to select a
dataset (or graph), we define a FROM SNAPSHOT 7 expression to select a specific
point 7 in time. The FROM SNAPSHOT 7 expression signals the query engine to
evaluate the query’s graph pattern only on graphs-elements valid at the time
point 7, where 7 has to be a literal time value (the literal type is depending on
the underlying time format). The query in Listing 2] for example, retrieves all
foaf :Persons that were valid (i.e. alive) in 1995.

1 SELECT ?person FROM SNAPSHOT 1995 WHERE{
2 ?person a foaf:Person .
3

¥
Listing 2. 7-SPARQL: Time point query

4.2 Temporal Queries

Complementing time point queries that query the graph valid at a given point
in time, temporal queries allow the usage of wild card intervals and time points.
These wild cards can be used to bind a variable to the validity period of a triple or
to express temporal relationships between between intervals. 7-SPARQL allows
one form of temporal wildcards, [?s,7e], which binds the literal start and end
values. Note that whilst 7-SPARQL explicitly binds the two variables ?7s and 7e
that can be used elsewhere in the query, a third implicit variable 7g is internally
bound to the URI of the named graph that represents the interval defined by
[?s,?e]. Hence, the expression used in the interval context [?s, ?e/ is bound to the
named graph URI while the partial variables ?s and e are standard SPARQL
variables which are bound to the literal start and end value of the interval’s
validity. Therefore, ?s and 7e can occur in any part of the query specified by
the SPARQL syntax, e.g. in FILTER or ORDER BY expressions. In Listing [3 an
example query is shown, which retrieves a person’s URI and the start of the
validity period (i.e. the person’s birthday). Since a temporal annotation is based
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on triple level, the interval variables (or specifications) could be defined before
or after each subject, predicate, or object. For the sake of consistency, we define
that a temporally annotated triple pattern (i.e., quad pattern) must always start
with the temporal variable part.

1 SELECT ?s ?person WHERE{
2 [?s,?e] ?person a foaf:Person .
3

}

Listing 3. 7-SPARQL: Selection of validity period

To query for relations between intervals, two interval wildcards can be connected
with the properties defined by the OWL-Time ontology. These properties are the
well-know Allen Interval Relations [I5]. Listing H] shows a query to retrieve all
the foaf :Persons that could have known Albert Einstein because their lifespan
overlaps with Einstein’s. In literature, this kind of patterns are referred to as
temporal join [10].

1 <PREFIX time: http://www.w3.o0org/2006/time#>

2 <PREFIX foaf: http://xmlns.com/foaf/0.1/#>

3 SELECT ?s2 ?7e2 ?person WHERE{

4 [?s1,?el] 7einstein foaf:name "Albert Einstein" .
5 [?7s2,7e2] time:intervalOverlaps [?sl1,7el]

6 [?s2,7e2] ?person a foaf:Person .

7

Listing 4. 7-SPARQL: Interval relations

5 Mapping 7-SPARQL to Standard SPARQL

In this section we show, that the 7-SPARQL syntax extension can be rewritten
without any loss of expressivity to standard SPARQL. Therefore, 7-SPARQL
offers an intuitive syntax for the composition of queries (for human consump-
tion), while the rewritten form can be evaluated as standard SPARQL using
any query engine supporting named graphs using their built-in standard query
optimization and storage formats scalability.

5.1 Mapping Time Point Queries

Rewriting a time point query requires three steps: First, the respective intervals
for a time point needs to be determined. Second, the elements belonging to
these intervals need to be combined to a new, virtual data set. Finally, the
graph pattern needs to be matched against this new data set.

As described above, the information about the validity of an interval is en-
coded in the default graph of the named graph set. To extract the intervals valid
at a given time point, the partial query shown in Listing Bl has to be added to
the initial query in the WHERE clause.
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7g time:hasBeginning 7start .

?start time:[inInteger|inXsdDateTimel...] 7s .
FILTER(?s <= <TP> || ?start = NOW) .

?g time:hasEnd 7end .

?end time:[inInteger|inXsdDateTimel|...] ?e .
FILTER(?e >= <TP> || 7end = EVER) .

G WN -

Listing 5. Partial query to determine valid intervals at a given time point

The pattern in Listing B will bind variable ?g to all the named graphs
containing triples valid in time point <TP>. The expression [inInteger |
inXsdDateTime | ...] is evaluated according to the literal type of <TP>. If it
is a xsd:Integer, then the time:inInteger property is selected. Analogously,
a xsd:dateTime will be represented by the inXsdDateTime property. Note that
both the 7-SPARQL query language and the representation format are open
to additional time formats as long as the rewriting algorithm is aware of the
acceptable correct formats and their respective mappings.

In a last step of the rewriting process, the initial graph pattern of the query
needs to be restricted to the intervals bound in ?7g. SPARQL offers this function-
ality with the GRAPH keyword. This is done by extracting the pattern inside the
WHERE clause of the query and inserting it enclosed by GRAPH 7g {<pattern>}.

5.2 Mapping Temporal Queries

To map the queries that select the validity of a triple pattern and/or relations
between validities, the rewriting process is slightly more complex. We define
that all classic SPARQL variables ?7v belong to a set C'. The intervals [?s,7e]
to belong to the set of intervals I, and ?s and 7e to belong to the set of point
variables P. For each ¢ € I there exists exactly one URI g belonging to the set
of URIs of named graphs G and a pair of time points ?s and 7e, which mark its
start and end. Any pair of time points ?s and 7e can be mapped to an interval i,
which in turn can be mapped to a URI from G. Consequently, a quad pattern in
the form [?s,?7e] <triple pattern> can be rewritten as GRAPH ?x{<triple
pattern>} where 7x is the URI € G that corresponds to the interval defined by
[?s,7e]. Note, that a new variable “?x” needs to be chosen for every rewrite.
Please note that temporal variables are not allowed in the predicate part.

<PREFIX time: http://www.w3.o0org/2006/time#>
<PREFIX foaf: http://xmlns.com/foaf/0.1/#>
SELECT ?s2 ?7e2 ?person WHERE{
GRAPH g1 { ?7einstein foaf:name "Albert Einstein" .}
?7g2 time:intervalOverlaps ?7gl .
GRAPH g2 { ?person a foaf:Person }.
?7g2 time:hasBeginning ?start .
?start time:inlInteger 7s2 .
7g2 time:hasEnd 7end .
?end time:inInteger 7e2 .

P O OWOWON®U S WN -

o

Listing 6. Rewritten 7-SPARQL query
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It is important that whenever a temporal variable is used outside the inter-
val context (i.e., outside a GRAPH ?x{<triple pattern>}) then it needs to be
treated like a time point statement. Hence, the partial query shown in Listing
needs to be added to the rewritten 7-SPARQL query.

As an example, Listing [B] shows the rewritten standard SPARQL syntax of
the query in Listing [4]

6 An Index Structure for Time Intervals

In the previous section we demonstrated how to rewrite -SPARQL time point
queries to standard SPARQL. However, the performance of time point queries
can be raised by providing a dedicated index structure. Temporal index struc-
tures have been discussed extensively in the database community. In a recent
publication, [I6] proposes the tGRIN index structure for temporal RDF w.r.t.
the temporal as well as the structural neighborhood of triples. Our requirement,
however, is the retrieval of intervals valid in a certain time instant. Therefore, we
propose such an index structure that supports the efficient retrieval of intervals
valid in certain time instants. This is not a base index of triples, it is rather a
meta-index containing named graphs which, by themselves, have indices of their
triples.

Specifically, we use a tree-based index structure which stores the validity start
and end values in an ordered manner. To achieve a fast retrieval of all valid inter-
vals at a specified time point we would need to store each interval multiple times
into this index: in each time point of its validity. E.g., an interval [0,100] would
appear 100 times in the index. This is an unpractical approach as it requires
a large amount of space. Similar to the mpeg [I7] compression algorithm we
apply the concept of key frames (more precisely: I frames) to our interval index
structure. Similar to a key frame, a key index element stores all the intervals
valid at this time point. Between the key indices only the deltas are stored. We
refer to this index structure as keyTree index. This index structure is very simi-
lar to the Time Index proposed by [18]. The Time index maintains incremental
buckets which refer to the deltas between two index elements. However, unlike
our keyTree, the Time Index does not allow to select a key index distance, it
rather selects the key indexing points whenever an interval starts or ends. This
can lead, in datasets with very dense intervals, to oversized indices. Our index
offers the parameter key index distance which permits a storage system to adapt
to different temporal kinds of datasets, e.g., whether the time intervals distri-
bution is dense or sparse. The retrieval strategy of the keyTree index can be
summarized as follows:

— if the asked time instant coincides with a key index, return all elements in
the key index

— if the asked time instant does not coincide with a key index, go back to the
immediately preceding key index. From there, walk forward and apply all
the deltas until the asked index element is reached and return the set with
the applied deltas.
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We will show an evaluation of this index structure in the next section with a
comparison to an alternative index.

7 Evaluation

For the evaluation of our approach we are using two different data sources. We
used the EvoOnt data [19J20] that consists of software source code information.
Specifically, we used information about the source code of the org.eclipse.compare
plugin of the Eclipse Project. 306 releases created in the period between 2001
and 2007 were available. The second data source is a data set describing Swiss
parliamentarians (with information about year of birth and death as well as start
and end of service periods) between 1848 and 2008. The latter data has to be
seen, for this approach, as a worst case, as almost every triple is defined in its
own time interval. Table [I lists the characteristics of the data sources.

Table 1. Datasets

Data Source Time Model Data Period # Triples # Intervals
EvoOnt Versioned graphs 2001 - 2007 22 millions 2505
Parliamentarians Encoded in data model 1848 - 2008 50’000 38182

All evaluations in this section were computed on in-memory graphs using the
ng4j [21] named graph API. To ensure that we compare different approaches
rather than the quality of the implementation of the RDF APIs, we also load
the comparison data sets into one single named graph and run queries against
the ng4j implementation (which is based on Jena [22]). All the evaluations were
executed on an Intel Core2 Duo 1.6 GHz system with 4 GB of RAM running
Windows Vista.

7.1 Dataset Conversion

Our first evaluation covers the conversion from the respective time representation
format into temporal RDF according to the method presented in this work. First,
we converted the EvoOnt data set into a temporal graph. Figure shows the
vast reduction of triples in the temporal graph approach due to the reduction of
redundancies. Having a graph that contains the information about all the 306
versions, the number of triples reduce from 22 millions in the versioned graph
approach to 385’000 in the temporal graph. The reason for this huge reduction
is depicted in Figure The fraction of triples changing between versions of
the graph (i.e. between the software versions) is usually very small (far below
5%). As a consequence, 95% of the graph (i.e., the unchanged triples) are stored
redundantly.
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Fig. 1. Conversion from graph versions to a temporal graph

7.2 keyTree Index

To evaluate the efficiency of our keyTree index structure introduced in
Section Bl we compared our index structure to an in-memory ordered list (Java’s
TreeList implementation) that contains the intervals’ start and end times. Addi-
tionally, we added three special sets of intervals containing the borderline values
[EVERX], [x,NOW] and [EVER,NOW] to this baseline implementation.

We evaluated two different scenarios on our datasets. The first is the build
up time for the indices with different values for the keyTree index’ parameter
key index distance (i.e. the number of time instants between two key indices).
Secondly, we measured the retrieval time for the set of valid intervals in a certain
time instant. The following figures show the build and retrieval times for the
Parliamentarians (Figure ) and EvoOnt (Figure B]) datasets. All values were
calculated by running each operation 100 times and plotting the average time of
these runs.

M ey Tree build up
-

03

Fig. 2. keyTree index build up and retrieval of the Parliamentarians dataset
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Fig. 3. keyTree index build up and retrieval of the EvoOnt dataset

The figures show, that the keyTree index structure never outperforms the
baseline implementation in terms of build time. However, when amortizing the
build time over multiple retrievals the use of the more sophisticated keyTree
seems to pay off. As a conclusion, the keyTree index is at least three times faster
than a “standard” one. The reason for the decreased performance of the baseline
is that for each retrieval request the whole index needs to be traversed to check
whether there are elements that are valid during the asked time point.

7.3 Timepoint Queries

Next, we run time point queries using both, the Parliamentarians and EvoOnt
data sets. Since a time point in the EvoOnt dataset is represented by a snapshot
graph, we equate the time to load the graph into memory with the querying time.
We also compare the querying time for the temporal graph with the 7-SPARQL
triple pattern approach to determine the valid intervals. The evaluated query
consisted of retrieving all the triples in a defined time instant (Parliamentari-
ans dataset: 1995, EvoOnt: 5). Additionally we queried the datasets using our
keyTree index. Figure [d] shows the execution times of the queries in the different
setups and datasets.

Again, the versioned graph approach does not allow to run time point queries,
instead, we listed the time needed to load the graph into memory which is
the equivalent task needed to select the valid triples in a specific time instant.
The results shown in Figure @ reflect the different nature of the datasets. The
Parliamentarian data consists of many different time intervals with relatively few
triples in each interval whereas the EvoOnt dataset has less intervals but many
more triples per interval. On this note, the keyTree index structure can greatly
reduce the query execution time in the EvoOnt dataset because the query engine
encounters a vastly reduced number of triples to run the pattern against. The
long query execution time for the non-temporal query on the Parliamentarians
dataset is mostly due to the complex query pattern using UNIONSs to retrieve
all elements valid at the desired time point.
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Fig. 4. Execution times of time point queries using different datasets and query
strategies

7.4 Temporal Queries

In a final set of evaluations we cover temporal queries. Since such queries (e.g. af-
ter, overlaps) are not possible to run against a dataset that uses versioned graphs,
we only used the Parliamentarians dataset. The query we evaluated was to re-
trieve all the parliamentarians complete service periods while “Kurt Furgler”
was alive (1924-2008). The 7-SPARQL query uses the time:intervalDuring
relation, while the classical SPARQL comparison query checks every service pe-
riod whether it is enclosed by the life time of “Kurt Furgler”. Figure [l shows
the execution times of the two queries. Again, it can be seen, that the temporal
approach is performing (almost 50%) better because of the reduced complex-
ity of the query pattern. However, the execution time increases whenever all
the interval relations are entailed and written into the default graph. For the
query, we only entailed the interval relations asked by the query and omitted
additional ones. But, as mentioned above, this can be absorbed by using a tem-
poral reasoner that provides the interval relations without materializing them
into triples.

Classic Dataset

Temporal Dataset|

Time {seconds) 0 0.05 0.1 0.15 0.2 0.25 03 0.35

Fig. 5. Execution times of temporal queries using temporal and non-temporal query
strategies
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8 Conclusion, Limitations and Future Work

We presented an applied temporal RDF using named graphs. In detail, we pre-
sented a syntax as storage format which allows the annotation of RDF triples
with temporal validity intervals. This approach is as minimally invasive as possi-
ble to preexisting storage and querying systems. Furthermore, we introduced T-
SPARQL, an extension to express temporal queries. We showed, that 7-SPARQL
can be directly mapped to standard SPARQL. Additionally we presented a spe-
cific index structure for temporal intervals which improves the retrieval time of
time point queries. Finally we evaluated our approach comparing our approach
to classical graph versioning and time representation and could show that our
temporal RDF and 7-SPARQL approach enables queries that are either impos-
sible (versioned graph) or only achievable with very complex query patterns
(time in data model) resulting in increased performance in terms of answering
time of queries. We showed cases where our approach outperforms existing ones
and circumstances where our approach does not completely outperform existing
ones. However, we showed, that a combination with our keyIndex structure can
overcome this lack of performance. Moreover, when using temporal RDF, the
total number of triples can be largely reduced by removing redundancies which
releases resources in each of the storage, reasoning and querying systems. This
has a positive effect on disk space usage and response time.

As a limitation we have to mention the lacking availability of temporal reason-
ers. When materializing the interval relations such as overlaps, meets, or before,
the number of temporal relations grows exponentially which makes the mate-
rialization in triple form unpractical. Furthermore, our approach performs best
on data that has multiple data elements valid within the same interval. If each
triple’s validity is distinct then one named graph needs to be defined for each
triple, which can lead to a decreased performance. However, we believe that
many application scenarios exist, where such an extreme interval mapping is not
the case.

Our future work will have to concentrate at addressing the current limitations.
One possibility is to explore the the entailment of new temporal relations based
on our keyTree index. Additionally, we plan to further evaluate our approach
with more complex query patterns from different domains of application.
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