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Abstract. In the past, research in ontology learning from text has
mainly focused on entity recognition, taxonomy induction and relation
extraction. In this work we approach a challenging research issue: detect-
ing semantic frames from texts and using them to encode web ontologies.
We exploit a new generation Natural Language Processing technology for
frame detection, and we enrich the frames acquired so far with argument
restrictions provided by a super-sense tagger and domain specializations.
The results are encoded according to a Linguistic MetaModel, which al-
lows a complete translation of lexical resources and data acquired from
text, enabling custom transformations of the enriched frames into mod-
ular ontology components.

1 Introduction

Ontology learning from text has become an important functionality for ontology
design, due to the demand for domain-specific knowledge that supports semantic
solutions scaling from personal knowledge management to large organizations,
without requiring substantial competence from domain experts or expensive as-
sistance from knowledge engineers. This is specially true if we consider the large
number of different domains involved in modelling knowledge at an organization
or even at a Web scale.

The current state of art in ontology learning deals with taxonomical relations
and simple binary domain relations, but research has just started dealing with
more complex domain relations that can be able to answer realistic competency
questions [20], such as who is communicating what to whom and for what reason?.
Complex relations are called semantic frames in linguistics, and show interesting
analogies with other data structures that are known in Al and the Semantic Web,
such as frames, microformats, infoboxes, etc.

In this paper we present a methodology for detecting and learning frames and
situations from textual domain corpora, for using them to generate modules of a
domain ontology, and possibly for populating the ontology with named entities
and facts extracted from the same corpora. The methodology aims at specializing
and/or instantiating a set of frames from the FrameNet lexicon [3], by extract-
ing and filtering configurations of data from text corpora. We want to use the
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Fig.1. A summary of the datasets, components, functionalities, and phases of the
frame-based ontology learning method

extracted data in order to build domain-specific ontologies that show desirable
characteristics such as cognitive and linguistic relevance, density, right granu-
larity level, and inherent capability of being automatically evaluated based on
expert requirements (in the form of competency questions). A previous attempt
to achieve a similar objective has been reported by [4]. In contrast to that work
we have used different text processing technology and knowledge representation
standards.

The natural language processing technology for detecting occurrences of frames
in corpora is presented in section B]), and their representation according to the
FrameNet ontology is presented in section2]). Frame detection learns typical pat-
terns from the occurrences in a corpus, providing raw material to start a domain
adaptation process of frames by means of a WordNet Supersense tagging com-
ponent (see section B:2). The acquired information is then connected to a pile
of reusable ontologies: the lexical ontologies OntoFrameNet [16] and OntoWord-
Net [18], DBpedia [I], and LMM [24I16], which allows a general representation
model for lexical ontologies. The LMM representation is eventually converted
into a regular ontology by means of transformation patterns (see section H).

Results, described in the evaluation section (@) show that our workflow is
sustainable and cost effective, being the speed of the adopted technology fast
enough to work with mid-size corpora in reasonable time, and the accuracy of
the data distilled at the end of the acquisition process good enough to be eas-
ily checked by an expert (or even automatically) with reference to competency
questions. This turns out in a substantial reduction of the manual effort required
for designing domain-specific ontologies that are design-ready to be evaluated
against user requirements. Figure [[l summarizes the main components and func-
tionalities involved in our workflow.
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2 Representing Frames in LMM

Frame Semantics [I5] is a linguistic theory that attempts to represent the concep-
tual interface between linguistic and real-world knowledge in the form of semantic
frames, which are structures that describe particular types of situations, objects,
or events along with the roles of their participating elements. Based on Frame Se-
mantics, FrameNet [3] is a lexical knowledge base, consisting of a set of frames,
which have proper frame elements and lexical units. Frame elements are unique
to their frame, and can be optional (‘non-core’). An occurrence of a frame consists
in some piece of text whose words can be normalized as lezemes, and which have
semantic roles dictated by the elements of that frame. A frame usually has only
some of its roles actually lexicalized in texts. Types of linguistic realizations of a
frame are called lexical units. Frames respectively frame elements are related be-
tween them, e.g. through the subframe relation. For example, a short definition of
CommerceScenario in FrameNet is reported below:

CommerceScenario
Core Elements: Buyer, Goods, Money, Seller
non-Core Elements: Manner, Means, Purpose, Rate
Subframes: CommercialTransaction

The intuition underlying Frame Semantics is not very dissimilar from that
described in [22], but the latter developed in the AI context, and eventually
acquired a formal semantics, as in [7]. [16] is a reconstruction of different seman-
tics of frames, and how they can be reconciled. As an assumption that can be
adopted for all different approaches to frame semantics, [16] suggests that frames
can be represented as (intensional) n-ary relations, with typed arguments (either
mandatory or optional). For example,

Desiring(x,y,e) — Agent(x) A Agent(y) A Event(e) (1)

An occurrence of a frame can be straightforwardly treated as an instance of an
n-ary relation, e.g.:

Desiring(Susan, Marko, ListeningToHer) (2)

The logical representation of frames as n-ary relations is easily generalizable and
clear, but hardly manageable by automated reasoners on large knowledge bases.
A hard design problem is constituted by the polymorphism of many frames/n-
ary relations, which can vary in number of the arguments that can be taken by
the relation. For example, the same frame Desiring can be assumed with four
arguments:

Desiring(x,y,e,t) — Agent(x) A Agent(y) A Event(e) A Time(t) (3)

This problem was originally evidenced by Davidson with reference to a logic
of events [I2]. A neo-davidsonian approach is actually taken by [6], where an
attempt is made to reconstruct FrameNet in terms of DRT (Discourse Rep-
resentation Theory), with events being the DRT correlate of frames, and se-
mantic roles being generic correlates for equivalence classes of frame elements.
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A limitation found by [0] lies in the fact that DRT semantic primitives are tightly
associated with elements having a given syntactic category (e.g. it assumes that
an event cannot be expressed by an adverb), while FrameNet semantics only
requires that any grammatical construction expresses a frame, independently
from its syntactic category. The DRT approach has anyway the advantage of
simplifying some assumptions of Frame Semantics, for example the uniqueness
of frame elements to their frame. A formal semantics for frames that is also com-
putationally manageable has been provided by Description Logics (DL) [2], such
as OWL(DL). Due to their limited expressive power, description logics represent
frames as classes, with roles (binary relations) that link a class to the types of
the arguments of the original n-ary relation. Those types are classes as well, so
that a graph of frames emerges out of this semantics. The example in @) can be
reengineered in DL as follows:

T CV Ry.Agent, T CV R .Desiring (4)
T CV Rp.Agent, T CV R, .Desiring (5)
T CV Rz.Event, T CV R; .Desiring (6)
T CV R4.Time, T CV R; .Desiring (7)
Desiring L[ (=1R; M =1Ry M =1R3 M =1R4) (8)

The computational features of description logics make them a reasonable choice
to formally represent linguistic frames, and this is the approach followed e.g.
by [27]. On the other hand, description logics cannot be used to formalize the
meta-level part of the intended semantics of frames: relations between frames, be-
tween frame elements, and between frames and frame elements, lexical units, and
lexemes can be hardly represented in a DL[] The Lexical Meta-Model (LMM)
[24] contains a viable solution to keep both the (reified) meta-level constructs
of FrameNet in an OWL(DL) ABox, and to deliver custom views of frames in
an OWL(DL) TBox when needed. LMM provides a formal semiotic represen-
tation of lexical knowledge. It is implemented in OWL(DL. LMM facilitates
the integration of heterogeneous lexical knowledge resources, such as WordNet
[14] and FrameNetE7 as well as of other semi-formal resources (thesauri, sub-
ject directories, etc.), with regular ontologies expressed in a formal language like
OWL. LMM can be considered as a semiotic fagade enabling the reengineering
of any lexically-based resource to an ontology resource [16]. In the methodol-
ogy reported in this paper, it is used to make different lexical data interop-
erable, and to transform the output of the three learning components frame
detector, super-sense tagger, and distiller (see next sections) into an OWL on-
tology. The core LMM elements are 1mm:Expression, which can lmm:express
a lmm:Meaning (that is lmm:conceptualizedBy lmm:Agent), and which can

! F-logic |21] is another alternative that however has no direct correspondence to
current standard semantic web languages.

2 http://www.ontologydesignpatterns.org/ont/lmm/lmm1 . owl

3 The OWL ontology that encodes the alignment of OntoFrameNet to LMM can be
downloaded at http://www.ontologydesignpatterns.org/ont/lmm/ofn2lmm. owl
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Fig. 2. OntoFrameNet: A full-fledged metamodel for FrameNet

1lmm:denote a lmm:Reference; in addition, any entity can have a 1mm:Context
and can be lmm:representedBy a 1mm:FormalExpression. Expressions can be
any information object, and lexical items in particular; references can be any
entity; meanings can be any information or conceptual entity that is used to
describe or encode the (informal, natural) semantics of an expression, i.e. other
expressions, concepts from a thesaurus, frames, topics, etc. A rich set of relations
is defined in LMM to associate meanings between them, as well as to associate
expressions, meanings, and references to formal constructs. A complete reengi-
neering of FrameNet as a plugin to LMM can be found in the OWL version of
OntoFrameNetH[w] (Fig.2)). A ofn:Frame has some ofn:FrameElement, is lex-
ically realized by some ofn:LexicalUnit, and all these can be evoked by some
ofn:Lexeme, and can have some ofn:SemanticType. Since semantic types do
not cover all frame elements and lexical unitSE we use the super-sense tagger
component (section [B2) to infer WordNet wn:SuperSenses as additional types
for frame elements. All mentioned classes and relations are aligned to LMM; an
excerpt of alignments is included herefd

ofn:Lexeme rdfs:subClass0Of 1lmm:Expression (9)
ofn:Frame rdfs:subClassOf lmm:Meaning (10)
ofn:FrameElement rdfs:subClassOf lmm:Meaning (11)

4 http://www.ontologydesignpattern.org/ont/ofn/ofntb. owl

® Currently the majority of frames (719 out of 795) has types for one or more of their
frame elements (4187 out of 7124), while no lexical unit (about 10000) has semantic
types assigned to the application of frame elements in their context.

5 http://www.ontologydesignpattern.org/ont/lmm/ofn21lmm. owl



Frame Detection over the Semantic Web 131

ofn:evokes rdfs:subClass0Of lmm:expresses (12)

ofn:FramedSituation rdfs:subClassOf lmm:Reference (13)

A thorough discussion on alternative formal translations of FrameNet is con-
tained in [16].

3 The Frame Learning Components

In this section, we propose an ontology learning method aimed at acquiring
frames and situations from text. This is a novel method involving challenging
parsing capabilities. Ontology learning from text is usually performed with three
components: a text corpus of an arbitrary size, a set of lexical resources, and
some algorithms to extract, rank, and reengineer selected invariances from texts.
Preliminary text classification may be also performed [5]. In the literature, most
of the effort has concentrated in learning the terminology for a specific domain,
taxonomies of concepts and their instances, relations between instances, trying
to augment and adapt the information contained in e.g. WordNet with domain
specific data. Unfortunately, this is not enough for our purposes, since we are
trying to learn structures with multiple related elements in the context of a
frame, as occurring in a particular situation. Therefore, we need text processing
components that are able to identify occurrences of frames in text, and to rec-
ognize the corresponding frame elements and their types, also allowing for the
learning of domain-specific specializations and instantiations.

To this aim, we have integrated two advanced text processing components: a
frame detector and a super-sense tagger, described in the following subsections.
As a result, portions of text corresponding to lexical units and frame elements
are collected for each frame, which describe particular framed situations within
a text.

As an example of the workflow, we use here the JudgmentCommunication
frame. A sample annotated sentence follows:

(S383) Public opinion and the press nowadays accuse us of being
unavailable to give a response.

FRAME: JudgmentCommunication
Communicator: "Public opinion" noun.cognition Concept
"and the press" noun.group-Concept”
Target: "accuse" verb.communication
Evaluee: "us"
Reason: "of being" verb.stative "unavailable"
"to give" verb.possession "a response" noun.phenomenon-Concept”

The Target frame element is present in all FrameNet frames, and refers to
the lexical unit (e.g. accuse.v in the previous example) that abstracts from the
words that realize the frame in a particular text occurrence. This is actually
used to assign that particular occurrence to one of the frames in FrameNet.

The remaining slots describe the frame elements identified in a text, and their
corresponding types, as recognized by the super-sense tagger. We eventually
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learn domain frames by matching the frame element names to the corresponding
super-senses, and by filtering out low-ranked results. This process is described
in subsection

3.1 The Frame Detection System

The Frame Detection component takes care of analyzing plain English input
text, locating possible candidate frames invoked along by the terms in a text,
and then tagging individual Frame Element instances of such frames. Tagging
involves both locating the exact text boundary of each Frame Element, and
assigning its correct semantic label.

The Berkeley FrameNet Project currently includes the definitions of nearly
800 Frames, 4,000 Frame Elements, and 135,000 annotated English sentences.
An example of sentence annotation for the CommerceScenario is reported
hereafter:

Ralemberg said [he]saun already had  a [buyer]pom [for the wine|coons

where the underlined word buyer is the target word (or lexical unit or predicate)
which plays the role of evoker for this particular Frame.

To implement a FrameNet parsing system we adopted a multi-stage classifica-
tion approach over natural language. Foundational studies in this area generally
refer to Semantic Role Labeling [I9]. In particular, our strategy extends the
approaches in [23] to FrameNet and it is thoroughly described in [II]. Shortly,
moving from previous pattern-based approaches [28], we exploit Support Vector
Machines (SVMs) as a general statistical machine learning framework, in which
we plug in Tree Kernels to obtain a similarity measure capable of working over
structured objects as syntactic trees. Our strategy includes (1) Target Word
Detection, where the semantically relevant words bringing predicative infor-
mation are detected; (2) Frame Disambiguation, where the correct Frame for
any target word has to be selected among several candidates; (3) Boundary
Detection, where the sequences of words constituting the Frame Elements (ar-
guments) are detected; and (4) Role Classification, which assigns semantic
labels to the Frame Elements detected in the previous stage.

3.2 The Super-Sense Tagger

In this work, we exploit the Super-Sense Tagger (SST) described in [9] for a
deeper semantic interpretation of texts finalized to the acquisition of structured
knowledge in a frame-based representation. Supersenses are lexicographer’s cat-
egories, used to provide an initial broad classification for the lexicon entries in
WordNet [T4]. Although simplistic in many ways, the supersense ontology has
several attractive features for ontology engineering. In fact, supersenses corre-
spond to the typical high level classes of most ontologies, reflecting distinctions
between persons, locations, organizations, acts, etc. In this work we use super-
senses to characterize the type of Frame Elements. Exploiting SST, we identify
types in frame occurrences by filling the frame slots that are identified by the
frame detection component.
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SST has been implemented using the SemCor corpus (a fraction of the Brown
corpus annotated with WordNet word senses) and can be used for annotating
large collections of English texts [§] The tagger implements a Hidden Markov
Model, trained with the perceptron algorithm introduced in [I0]. The tagset
used by the tagger defines 26 supersense labels for nouns and 15 supersense
labels for verbs. The tagger outputs named entity information, but also cov-
ers other relevant categories and attempts lexical disambiguation at the super-
sense level. In recent work, we have extended the tagset by subdividing each
category into two sub-categories, Instance and Concept so that now the term
“president” is tagged as noun.person Concept and the term “Bill Clinton” as
noun.person Instance. An example of the output of this tagger is reported below.

GunSBfnoun.group instance andlfnoun.group instance Roseslfnoun.group instance
playSB7verb.communication ato theO Stadlumenoun.location concept

3.3 Distilling Knowledge from Tagged Frames

The output of the frame detector component provides a shallow semantic parsing
of text, where text fragments are associated with frame elements and the lexical
units are identified. After joining these data along with the tagging provided by
the SST, the final output of the text processing components is illustrated in the
example below:

FRAME: CommerceScenario
Buyer:"People_noun.group_Instance who
read_verb.cognition this warning_noun.communication"
Target:"buy_verb.possession"
Goods:"these toys_noun.artifactInstance"
Recipient:"for their children_noun.person_Concept or
grandchildren_noun.person_Concept"

The next step consists in converting this format into a formal representation. To
this aim, the distiller component involves both semantic and statistical criteria:

Syntactic constraints. Occurrences of frame elements should only be nomi-
nals or noun phrases, while target lexemes can be verbs, nouns or adjectives

Type constraints. Most of the occurring elements that are recognized by the
frame detector belong to a rather small number of super-senses (e.g. in a
given domain buyers are either persons or groups, less likely they could be
animals)

Redundancy constraints. Redundancy helps in recognizing fine-grained re-
strictions for frame elements with very high accuracy. Only those concepts
occurring in the context of a particular frame with a certain degree of re-
dundancy can be regarded as “valid” subtypes.

" The tagger is publicly available at:
http://sourceforge.net/projects/supersensetag/
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At this stage, we have implemented a simple thresholding mechanism on frequency-
based countings in order to model those assumptions, and in particular:

— The implementation of the syntactic constraints directly comes from the SST
annotation, which distinguishes nouns, verbs and adjectives, and recognizes
compound terms.

— Concerning type constraints, for each occurrence of a frame element, we count
the occurrences of all different super-senses associated with the matched argu-
ments, and we filter out those having less that 10 occurrences. For example,
for the frame KILLING the possible types of the element VicTiM are as fol-
lows: group concept: 90, person concept: 79, person instance: 41.

— Concerning redundancy constraints, for any occurrence of the frame ele-
ments, we keep the terms belonging to the super-senses selected at the first
step. Since the SST distinguishes between concepts and instances, we select
only those terms belonging to the concept types having more than three oc-
currences. For example, we have found that occurrences of the frame element
VIicTIM belonging to the person concept super-sense include notions like
child, woman and civilian, while occurrences categorized by the noun.state
super-sense, e.g. recognition, have a sensibly lower frequency, and are most
likely to be errors.

The result of the three steps above is a list of “qualified”, domain-oriented se-
mantic types for domain-specific frame element that can be easily leveraged to
improve the quality of the frame representation. As a final step, we are inter-
ested in detecting specializations of frames. To this aim, we can adopt the results
of the frame detector component, applying each of the cleaning steps described
above. Among all possible occurrences of a certain frame in the corpus, we se-
lect only those having at least three of their element occurrences satisfying the
constraints above, and we regard them as candidate domain-specific frames, like
in the following case, accompanied by its generalization:

FRAME: Killing : Victim:smoker ; Killer:tobacco
FRAME: Killing : Victim:person ; Killer:artifact

The described procedure is fully automatic, and we have adopted the same
threshold uniformly for three case study frames under analysis in this paper
(Section L2)). The results of this method include a set of domain-specific frames
that can be candidate data for answering a competency question, and therefore
for implementing an ontology that fits the user requirements.

4 Empirical Evaluation
4.1 NLP evaluation

Frame Detection Evaluation. We have tested the Frame Detection Compo-
nent in the natural setting of the FrameNet Corpus. Version 1.3 of FrameNet was
used for both learning and test. After preprocessing and parsing with the Char-
niak’s constituency-based syntactic parser we obtained 135,293 annotated and
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parsed sentences. We split the data considering the part of speech of predicates,
ending up with 782 different frames. The overall dataset was then partitioned
into 90% training set and 10% test set.

We tested the plain polynomial kernel (poly, with a degree of 3) and the SubSet
Tree Kernel (SST) respectively over standard [19] and structured features [23].
Also, their combination was tested. Please see [I1] for full details.

Table [l reports Precision, Recall and F; measure of our classifiers over differ-
ent tasks. The four rows in the table show in turn: (1) the “pure” performance of
the Boundary Detection (BD) classifier, i.e. considering correct the classification
decisions also when a correctly classified tree node does not exactly correspond
to a valid sentence constituent. Such mismatch frequently happens when the
parse tree (which is automatically generated) includes incorrect nodes and at-
tachments; (2) the performance of the BD classification “projected” on the tree
leaves, i.e. when matching not only the constituent node as in 1, but also the
selected words (leaves) with those in the FrameNet gold standard. This implies
an exact syntactic analysis being realized in the subtree; (3) the same as 1, with
the argument role classification (RC) also performed (i.e. Frame Element labels
must match as well); (4) the same as 2, with RC also performed.

As shown in the table, the SST+ poly kernel achieves 1.0 Precision, 0.732 Recall
and 0.847 F; on NS. These figures can be compared to 0.855 Precision, 0.669
Recall and 0.751 F; of the system described in [I3], achieved with the same
amount of training data. In conclusion, our best learning scheme is currently
capable of tagging FrameNet data from noisy syntax with exact boundaries and
role labels at 0.63 F;.

Table 1. Results for Frame Detection on the FrameNet dataset. SST+poly with 90%
training and 10% test data.

Enhanced SST + poly

Eval Setting P R F
BD (nodes) 1.0 .732 .847
BD (words) .963 .702 .813

BD+RC (nodes) .784 .571 .661
BD+RC (words) .747 .545 .630

Super-Sense Tagger Evaluation. We evaluated the performances of SST by
adopting a n-fold cross validation strategy on the SemCor corpus exploited for
training. Results for the chosen categories are illustrated in Table 2] reporting
Precision, Recall and F; for any Supersense. Looking at the table we can notice
that for some categories the Fy is exceptionally high. Some of those best classi-
fied categories are really essential for ontology learning. For example, important
labels such as noun.person, noun.group or noun.location achieve results higher
than 0.70. We obtained a general F'; of 0.76. For some categories we got a F'; over
0.80: e.g. noun.person Instance: F1 0.90) or noun.person Concept: F1 0.81, etc.
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Table 2. Super-Sense Tagger Evaluation Results: Recall, precision and F1 for each
classification category

Category Recall Precision F;
noun.animal Concept 0.712 0.766 0.738
noun.animal Instance 0.416 0.793  0.545
noun.artifact Concept 0.726 0.737 0.731
noun.artifact Instance 0.596 0.646 0.620

noun.food Concept 0.687 0.720 0.703
noun.food Instance 0.444 0.500 0.457
noun.group Concept 0.729 0.731 0.730
noun.group Instance 0.683 0.703  0.693
noun.location Concept 0.682 0.653 0.667
noun.location Instance 0.752 0.800 0.775
noun.person Concept 0.838 0.804 0.821
noun.person Instance 0.927 0.881 0.904

4.2 Knowledge Engineering Evaluation

We have tested our methods on the Europarl corpuﬁ, comprising about 30
million documents, extracted from the proceedings of the European Parliament.
It includes 11 official languages of the European Union. For our experiments, we
have used the English part, including 1,461,429 sentences and 39,618,240 words.
In step 1, sentences from the text corpus are annotated with super-senses by the
SST, and with frames, frame elements, and lexical units by the Frame Detector
component. For the sake of this experiment, we focused on the annotation of
three frames: Killing, JudgmentCommunication, and Commerce. Results
for each frame have been collected in tables reporting, for each frame occurrence
recognized in the corpus, all the frame elements and their types, as recognized
by SST. Occurrences of core frame elements show meaningful frequency in the
corpus, so confirming the hypothesis that some elements are more central than
others in the conceptualization of frames. About 1000 occurrences for each frame
have been collected after step 1.

In step 2, the raw frame occurrence data have been filtered by applying the
procedure described in section B3] consisting of identifying the most frequent
super-senses for each frame element, in order to learn more specific types (e.g.
Person or Group, and to filter out instances having different types (all super-
senses can be assumed as disjoint classes of synsets). After applying the auto-
matic distiller procedure based on combined frequency thresholds, data from only
about 100 frame occurrences have been retained as candidate domain-specific
frames for each generic frame. In addition to types, step 2 allows to learn sensible
lexemes for the domain specialization of frame elements (e.g. people), and sensi-
ble lexical units (e.g. Accuse for the candidate frame specializations. An example
of the outcome of the distiller after evaluation is shown in Table[Bl Each distilled

8 http://www.iccs.inf.ed.ac.uk/~pkoehn/publications/europarl-mtsummit05.
pdf
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Table 3. A sample output of the distiller with manual evaluation

Communicator TargetVerb Evaluee Reason  Validity
people accuse european union - ok
- accused security violations ok
member states blame  problems - ok
- blamed fishermen negotiations ok
companies charge price - no
amnesty international  cited - torture ok
commission charged - failure ok
- charged authorities crime ok
- charged group report ok
employment charged - - no

domain frame is formalized as an owl:Individual rdf:type ofn:Frame, thus
resulting to be also rdf:type lmm:Meaning, according to the guidelines pro-
vided in section 2l For example, in one filtered occurrence we first specialize
the generic frame (I4)), and then add a new super-sense typing over its frame
elements (3.

europarl:Accuse0fViolation lmm:specializes

ofnabox: JudgmentCommunication (14)

ofnabox:Communicator ofn:hasSemType europarl:People) (15)

After a manual evaluation on the domain-specific frames detected for the three
generic frames chosen, 62% of distilled domain-specific frames resulted to be
valid, where validity is assumed as respecting the conceptualization of the generic
frame, in terms of extensional interpretation of the classes derived from target
verbs, and of properties derived from frame elements. In this section we explain
the workflow used to make this interpretation viable.

In this rapid ontology design process, an ontology designer is only asked to
validate the detected frames that present a desirable design property, density i.e.
the resulting ontology corresponding to each domain-specific frame is a labeled
connected graph with nodes labeled by owl:Class names and edges labeled by
owl:ObjectProperty names. Density helps preserving the conceptual structure of
the generic frame, which is known to feature cognitive relevance and linguistic
appropriateness. Notice that typical ontologies produced by traditional learning
methods result to lack density and do not feature the expected formal structure
implicit in experts’ conceptualization of their domain.

Besides desirable design properties, we are interested in designing ontolo-
gies that work. Quality is therefore evaluated in terms of fitness to competency
question-based (or task-based) ontology design [20], as assessed in the ontology
evaluation framework described in [I7]. We notice that frame-based ontology
learning has also this very desirable property. Since frames are formally equiva-
lent to n-ary relations at design time (section [), and competency questions can
be formalized as n-ary relations at query time [25], it is straightforward to match
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a linguistic competency question like: what are the reasons for those events? to
the knowledge base of domain-specific frames [

Domain frames can be used for two different design tasks: the first one is
producing a traditional TBox domain ontology, e.g. consisting of OWL classes
like AccuseOfViolation; the second one is to classify named entities that in-
stantiate the domain frame (framed situations), which are formalized as OWL
individuals.

The generation of a TBox from the LMM-encoded domain frame and framed
situations is performed by means of customizable transformation patterns [25],
which contain rules for translating each instance of an LMM type (Meaning,
Expression, etc.) into an OWL element.

An additional advantage of frame-based ontology learning is the ability to
generate small ontologies that respect the characteristics of highly-reusable con-
tent ontology design patterns [26)25]: small size, density, inherent task-based
evaluability, cognitive and linguistic relevance.

As a concrete example, we show a diagram depicting a proposed design pat-
terns that has been derived from the domain-specific frame AccuseOfViolation
(Fig. B). The transformation patterns adopted are exemplified here as a set of
OWL(Full) axioms over the OntoFrameNet TBox, and the OWL metamodel{td

ofn:Frame rdfs:subClassOf

(owl:Restriction(owl:onProperty trans:transformableTo)
(owl:allValuesFrom owl:Class)) (16)

ofn:FrameElement rdfs:subClassO0f

(owl:Restriction (owl:onProperty trans:transformableTo)
(owl:allValuesFrom owl:0ObjectProperty)) (17)

ofn:SemanticType rdfs:subClassOf

(owl:Restriction (owl:onProperty trans:transformableTo)
(owl:allValuesFrom owl:Class)) (18)

ofn:hasFE rdfs:subClass0f

(owl:Restriction (owl:onProperty trans:transformableTo)
(owl:allValuesFrom owl:Restriction)) (19)

ofn:hasSemType rdfs:subClassOf

(owl:Restriction (owl:onProperty trans:transformableTo)

(owl:allValuesFrom rdfs:range)) (20)

9 Several domain-specific frames can be retrieved which have evidence in the cor-
pus: AccuseOfViolation, BlameNegotiation, ChargeForFailure, ChargeFor-
Crime, etc.

10 Transformation patterns are based on alignments between OntoFrameNet and
LMM (cf. section ), and between LMM and the FormalSemantics vocabulary:
http://ontologydesignpatterns.org/ont/dul/FormalSemantics.owl
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I M Communicator : People
Sqmmunicatas \Reason M Evaluee
Ml Reason : Violation

[ @ AccuseOfviolation
M Communicator : People
M Evaluee :[0.]

Ml Reason : Violation

Fig. 3. A content ontology design pattern derived from the domain-specific frame Ac-
cuseOfViolation, based on the transformation patterns

For example, given the previous axioms [I4] and [I5 and the following axioms
extending OntoFrameNet ABox:

europarl:AccuseOfViolation ofn:hasFE ofnabox:Communicator (21)
europarl:Accuse0fViolation ofn:hasFE ofnabox:Reason (22)
ofnabox:Reason ofn:hasSemType europarl:Violation (23)

we obtain the following TBox axioms after applying the transformation pat-
terns:

europarl:AccuseOfViolation rdfs:subClassOf
(owl:Restriction (owl:onProperty ofnowl:Communicator)
(owl:allValuesFrom europarl:People)) (24)
europarl:AccuseOfViolation rdfs:subClassOf
(owl:Restriction (owl:onProperty ofnowl:Reason)

(owl:allValuesFrom europarl:Violation)) (25)

Task-based fitness can be proved by launching a unit-test that contains data
about the europarl:AccuseOfViolation competency question: what accuses of
violation any people has made for what reason?. From the n-ary relation hypoth-
esis, we know that a frame has direct translations into competency questions,
queries, and ontologies: if the TBox produced is able to support the proper
queries, then the TBox fits the task. This is the case actually, since the classes
and properties that have been built (Fig.[B]) are able to encode the query derived
from the competency question:

SELECT DISTINCT ?x ?y 7z WHERE {?x a Accuse.

7y a People . ?z a Violation . 7x :Communicator ?y . ?x :Reason 7z} (206)

" http://www.ontologydesignpatterns.org/ofnframes/accuseofviolation.owl
2 http://www.ontologydesignpatterns.org/owlframes/accuseofviolation.owl
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5 Conclusions

In this paper we have presented an implemented method for frame-based ontol-
ogy learning by using components for frame detection and super-sense tagging
on a text corpus, the FrameNet and WordNet lexical knowledge bases, and the
LMM metamodelling framework.

The method can be used to generate candidate domain-specific frames sug-
gested by qualified corpus evidence, and to populate an ontology with complex
facts extracted from the corpus. The method fits a task-based analysis and eval-
uation of ontologies, as it is being developed in the NeOn project, where we are
implementing novel functionalities for pattern-based design.

The method presented shows some significant improvements in terms of func-
tionalities and technology with respect to existing ontology learning components,
not only because are we acquiring more advanced knowledge structures (i.e.
frames, instead of simple taxonomies or binary relations) but also do we provide
an easier alignment to existing semantic web resources: the use of LMM makes
the results more easily mappable to different kinds of data, such as datasets from
Linking Open Data.

Our experiment proves that we can build a resource of reusable design pat-
terns also by learning them from domain text corpora. There are challenging
research issues in this area of ontology design. An important one is: since the
amount of domain-oriented patterns can be huge, and FrameNet alone provides
less than 1000 generic frames, are they complete, so that all domain patterns spe-
cialize them? Should we consider a procedure to learn patterns without previous
knowledge of generic ones?
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