Benchmarking Fulltext Search Performance
of RDF Stores

Enrico Minack, Wolf Siberski, and Wolfgang Nejdl

L3S Research Center
Leibniz Universitat Hannover
30167 Hannover, Germany
lastname@L3S.de

Abstract. More and more applications use the RDF framework as their
data model and RDF stores to index and retrieve their data. Many
of these applications require both structured queries as well as full-
text search. SPARQL addresses the first requirement in a standardized
way, while fulltext search is provided by store-specific implementations.
RDF benchmarks enable developers to compare structured query perfor-
mance of different stores, but for fulltext search on RDF data no such
benchmarks and comparisons exist so far. In this paper, we extend the
LUBM benchmark with synthetic scalable fulltext data and correspond-
ing queries for fulltext-related query performance evaluation. Based on
the extended benchmark, we provide a detailed comparison of fulltext
search features and performance of the most widely used RDF stores.
Results show interesting RDF store insights for basic fulltext queries
(classic IR queries) as well as hybrid queries (structured and fulltext
queries). Our results are not only valuable for selecting the right RDF
store for specific applications, but also reveal the need for performance
improvements for certain kinds of queries.

1 Introduction

Since the emergence of the Semantic Web [I], more and more data is stored
in semi-structured form, using the RDF frameworll. This annotated data be-
comes easier processable, or even “understandable” by machines. However, the
data on the Semantic Web is frequently related to textual human-readable infor-
mation (e.g., publication metadata). Therefore, most applications that provide
their users access to RDF data also need support for fulltext search. This was
confirmed in the Semantic Web Survey [2], where all 35 studied semantic search
applications index textual data, and most of them provide fulltext search.
Whereas structured query languages such as SQL or SPARQL [3] provide
a high expressivity regarding the structure of the data, fulltext queries tar-
get at the content. Integrating fulltext search (IR) [4] with structured search
(DB) [5] is an actively discussed undertaking [6/7]. A lot of research has been

! Resource Description Framework: http://www.w3.org/RDF/

L. Aroyo et al. (Eds.): ESWC 2009, LNCS 5554, pp. 81[95] 2009.
© Springer-Verlag Berlin Heidelberg 2009

82 E. Minack, W. Siberski, and W. Nejdl

conducted in DB fields such as relational DBMS [8l9], XML databases [10], and
RDF databases [11I12], to name only some. Fulltext search clearly adds a large
set of rich features to SPARQL, e.g. boolean, phrase, wildcard, and proximity
queries [4]. A score that represents the relative relevance of matching resources
can also be obtained. Further, the so called snippet generation provides a small
summary of the text around the matching keywords.

While SPARQL [3] offers a high expressivity with respect to structured queries,
fulltext-related queries are not well supported. The only feature being targeted
on fulltext search is regular expression evaluation against string values. Inter-
estingly, none of the widely used RDF stores support the standardized regular
expressions efficiently, i.e., with the help of fast index structures [I3J14]. The
reason is probably that regular expressions are much more expressive than re-
quired, and thus much more difficult to implement in an efficient manner, than
the usual keyword search. In contrast, all RDF store implementations support
efficient keyword search, putting significant effort in a feature that is not part
of the W3C Recommendation. Some RDF indexing systems even consider the
combination of inverted keyword indices and statement indices as fundamental
building blocks for efficient RDF indexing [I5]. This investment signifies the high
demand of Semantic Web applications for support of fulltext search or hybrid
queries which combine structured and fulltext queries [I1].

For benchmarking RDF stores, a number of benchmarks have been proposed
which evaluate performance regarding structured queries [T6/T7/I8]. However,
none of them addresses fulltext search capabilities. Therefore, RDF store devel-
opers test their fulltext search implementations with their own ad-hoc bench-
marks [I5T2/T9], rendering efficiency evaluations difficult to be repeated or
compared. A commonly available RDF fulltext benchmark is still missing.

In this paper, we propose such a benchmark that measures performance and
feature richness of fulltext search facilities of RDF stores3. More precisely, we ex-
tend the well-known and widely used Lehigh University Benchmark (LUBM) [16]
with fulltext content and hybrid queries. Using this new benchmark, we eval-
uate the most widely used open-source RDF stores and discuss the results. In
particular, our work makes the following contributions:

1. We identify properties of datasets needed for an RDF fulltext benchmark,
taking into account real fulltext characteristics such as term distribution.

2. We extend the LUBM benchmark dataset accordingly, and propose an algo-
rithm for scalable generation of synthetic fulltext literals.

3. We design RDF fulltext queries to investigate different aspects of fulltext
search on RDF, and evaluate well-known open-source RDF stores with our
benchmark (in alphabetical order): Jena, Sesame2, Virtuoso, and YARS.

The paper is structured as follows. In section 2l we define objectives and de-
sired features of an RDF fulltext benchmark, and describe our extension of the
LUBM benchmark. Section Bl presents our evaluation of popular RDF stores
against our proposed RDF fulltext benchmark. Relevant related work is dis-
cussed in section [@l We close with a conclusion.

2 LUBMft: http://www.13s.de/%7eminack /rdf-fulltext-benchmark/

Benchmarking Fulltext Search Performance of RDF Stores 83

2 A Fulltext Extension for LUBM

2.1 LUBM Overview and Discussion

The Lehigh University Benchmarifl (LUBM) is a very frequently used syn-
thetic benchmark for RDF stores [20/I5J12]. It provides the Univ-Bench Artifi-
cial data generator (UBA) and a set of 14 test queries. Its dataset complies to
the Univ-Bench ontologgﬂ describing universities. It contains 43 classes, such as
ub:University, ub:Department, ub:Professor, and ub:Publication. It fur-
ther contains 25 object properties (pointing to resources), as well as 7 datatype
properties (pointing to literals), such as ub:name and ub:publicationAuthor.
Datasets are generated using a scaling factor N which determines the size of the
generated dataset and serves to investigate RDF store scalability. In addition, a
seed M for the random number generator can be specified to allow repeated re-
generation of the same synthetic dataset. These generated datasets are referred
to as LUBM(N, M). The notation LUBM(N) indicates that M is set to 0.

Even though this benchmark was primarily designed to evaluate OWL and
DAML+4OIL capabilities of RDF stores, it was also very often used to bench-
mark RDF stores and RDF related systems without OWL or DAML4OIL sup-
port [200T5/12]. This may be due to the very easy generation of arbitrary size
RDF datasets and the familiar ontology domain. As LUBM, our benchmark
works perfectly on stores without any kind of reasoning.

. Term Probability (ub:name) . Term Probability (real names)
(ll) E A T T T AN | QI) E T AL T
- LUBM(1) —— —F female first names
A LUBM(5 X male first names
oy ?‘, N LUBM(10) === oy ?‘, surnames ------
e \ e T
) e g o :
i \' —
o @ 3
A A
=1 10 100 1000 =1 10 100 1000
Top k'th Term Top k'th Term

Fig. 1. (Left) Term distribution of the ub:name predicate. (Right) Term distribution
of first names and surnames provided by the 1990 U.S. Census.

During the generation process, instances and relations are created on the
basis of uniform distributions. For instance, a university contains 15 to 25 de-
partments, each employing 7 to 10 full professors, whereas each authored 15 to
20 publications. This gives the LUBM datasets quite a complex structure with
well defined connectivity properties. However, the literal values lack such sophis-
ticated characteristics. The name of a person, for instance, is a one term literal
like "FullProfessor0". A fulltext search for this term would have exactly one

3 Lehigh University Benchmark (LUBM): http://swat.cse.lehigh.edu/projects/lubm/
4 Throughout this paper we refer to the Univ-Bench namespace using ub, which re-
solves to http://www.lehigh.edu/%7Ezhp2/2004/0401/univ-bench.owl

84 E. Minack, W. Siberski, and W. Nejdl

match for each department of each university. In addition, the ub:name property
unfortunately is used to label all kinds of resources. Therefore, the terms of this
predicate follow a mixture of uniform distributions, a highly unrealistic setting.
Figure [M shows the distribution of the ub:name terms (left-hand side), and, as
an example, a real world distribution of first names and surnames (right-hand
side). One can see that surnames and male first names are even power law dis-
tributions, as most real-world term distributions. We provide further details on
first name and surname distributions in section 2211

2.2 Fulltext Content Generation

The proposed fulltext extensions modifies the LUBM dataset in two places.
First, names are generated such that they follow realistic term distributions.
Second, to measure performance on large text literals, fulltext content is added
to the publication instances created by LUBM. To realize this extension, we
add two sources of literals to the LUBM data generator, 1) the Name Generator
adding real person names and 2) the Document Generator providing publication
content. The enhanced datasets contain the same statements as the original
LUBM datasets, extended by the ub:firstname, ub:surname, ub:fullname, as
well as the ub:publicationText predicate, containing the respective content.
Whereas the original LUBM dataset is referred to as LUBM(N), the fulltext
extended dataset is denoted as LUBMIft(N).

2.2.1 Name Generatator

The first new source of literals we add is the Name Generator which produces
random names consisting of a first name and a surname. The generated terms
follow a real distribution of names. As input for the term frequencies we use the
data provided by the U.S. Census Bureau from the 1990 censudd. This dataset
provides probabilities for the top &~ 1,200 male, and for the top = 4, 300 female
first names. It also contains the top ~ 89,000 surnames, but due to rounding
errors, only the top ~ 19,000 surnames have sufficiently accurate frequency
information.

2.2.2 Document Generator

The second source of literals with realistic term distributions is the Document
Generator. Since LUBM is a synthetic benchmark that produces data of any
specified size, the content generation also needs to scale. Therefore, we can’t
directly use a real-world document collection as content. Instead, we use a Prob-
abilistic Topic Model [21] to learn features that characterize such a collection.
We then generate a synthetic set of documents which exhibit the learned real-
world characteristics. This approach preserves the desired scalability feature of
LUBM and at the same time ensures realistic term frequency distributions of
the generated collection.

5 Frequently Occurring First Names and Surnames From the 1990 Census:
http://www.census.gov/genealogy /names/

Benchmarking Fulltext Search Performance of RDF Stores 85

To model a realistic topic distribution of documents, we apply Latent Dirichlet
Allocation (LDA) [21] where a document is the result of a mixture of topics, and
a topic is a distribution over words. We reuse the Matlab® implementation of
the LDA model provided by the Steyvers and Griffiths [21]. As training set we
employ the NIPS document collectiorﬁ, consisting of 1,740 papers, written by
2,037 authors with a total of 2,301,375 terms, out of 13,649 unique terms. From
the topic distribution of documents, we derive a topic cooccurrence probability:
when a topic has a high probability for a document, then it also gets a higher
cooccurrence probability with all other topics of this document.

Given the topics and their cooccurrence, we first assign a dedicated topic to
each department. Then, we distribute topics cooccurring with the department
topic among the faculty staff of the department, according to their probabilities.
Together with the department topic, the topics of the authors determine the topic
mixture of a publication. This topic assignment algorithm leads to publications
that cluster around departments by means of used terms: each department and
author has its own specific vocabulary. This better reflects term usage among
universities, departments, and authors than one global term distribution. Table[]]
gives an overview of the resulting LUBMft datasets.

Table 1. Statistics of the LUBM fulltext datasets

LUBMIft(1) LUBMft(5) LUBMft(10) LUBMft(50) LUBMIft(100)

Universities 1 5 10 50 100
Person Names 8,330 51,955 106,409 555,815 1,120,834
Publications 5,999 37,854 76,529 402,142 808,741
Unique Terms 17,611 28,171 32,438 36,456 36,518
Terms 6,032,320 38,061,820 76,954,636 404,365,260 813,224,336
Statements 134k 840 k 1.7M 8.96 M 18 M
Size (XML) 56 MB 356 MB 719 MB 3.8GB 7.6 GB

2.3 Fulltext Test Queries

The fulltext dataset generated needs to be complemented with related queries to
form a complete benchmark. The goal is to design these queries that evaluating
them against the LUBMft datasets provides insights in the strengths and weak-
nesses of RDF stores regarding fulltext search. We deem query plan optimization
an integral part of an efficient query evaluation. Therefore, we follow the same
principle as LUBM where query patterns are stated in descending order, w.r.t.
their cardinality. This gives RDF stores the maximum possible opportunity to
optimize the query plan, and reduces the probability that a store just by chance
executes a better query plan than another store.

Our benchmark queries are subdivided into three sets, each targeting a dif-
ferent area:

5 Author-Topic Model: NIPS: http://www.datalab.uci.edu/author-topic/NIPs.htm

86 E. Minack, W. Siberski, and W. Nejdl

1. Basic IR performance: These queries are equivalent to classic IR queries,
i.e., keyword queries without any semantic relations.

2. Semantic IR performance: This set of queries targets at the performance of
the combination of keyword queries and semantic relations. These are hybrid
queries. Furthermore, the quality of integration of fulltext search into the
SPARQL evaluation process is investigated.

3. Advanced IR features: Finally, this set of queries explores advanced IR fea-
tures like boolean, phrase, or wildcard queries, score or snippet retrieval.

Queries. In the following, we present the three query sets, in which the queries
get more and more complex, and where subsequent queries build on the results
of previous ones. Note that some queries have variants, e.g. Query 1 is evaluated
with different keywords to investigate the impact of those different keywords for
the same dataset size. The two variants are denoted as Query 1.1 and 1.2.

All queries focus on fulltext performance, their combination with structured
queries and their integration into the query evaluation process. We do not in-
vestigate the performance of the structural part of the queries. The performance
of the structured query parts is sufficiently investigated by RDF benchmarks
discussed in section [l

2.3.1 Basic IR Performance

The first set of queries that we design will only contain queries that can equiv-
alently be expressed in pure IR queries as well. Further, only those IR features
are exploited that are expected to be the minimum set of features all RDF stores
with fulltext search do support, namely keyword and phrase queries.

Table 2. Basic IR Queries

Q1: “All resources matching the keyword k”. k € {"engineer’, 'network’}
: resources matching k; in ub:publicationText”. k € {’engineer’, 'networ
2: “All tching k; in ub:publi ionText”. k ‘engi ’, 'network’
3: “All resources matching 'network’ or ’engineer’ in ub:publicationText”.
g g p
Q4: “All resources matching the phrase 'network engineer’ in ub:publicationText”.
5: “All resources matching keyword ’smith’ / having literal ”Smith” in ub:surname”.
g key g

We start with a simple one-keyword query. Its performance is of interest,
since in the more complex benchmark queries the evaluation of keyword query
conditions produces equivalent intermediate result sets with a proportional per-
formance and scalability impact. We use one infrequent term, ’engineer’, and
one very frequent term, 'network’, to investigate influence of result set cardinal-
ity. For LUBMft(1), the result set cardinality for these terms is 40 and 1,013,
respectively.

In Query 2, we restrict the terms to match in the ub:publicationText pred-
icate. The result set is the same, so the difference in performance compared
to Query 1 is caused by this additional constraint. This query is equivalent to
fielded keyword search in IR. Result sets of two keywords have to be looked

Benchmarking Fulltext Search Performance of RDF Stores 87

up and merged to evaluate Query 3, which is the union of both result sets. To
evaluate a phrase query of the two keywords, the position information of each
occurrence of both keywords have to be processed by the fulltext search engine.
Query 5 finally let us compare keyword lookup performances with literal lookup,
since both queries are semantically equivalent and have the same result set.

2.3.2 Semantic IR Performance

The following queries contain structural conditions to investigate their impact on
the query evaluation performance. These queries show the quality of integration
of IR features with general SPARQL query processing.

Table 3. Semantic IR Queries

: ub:Publications matching ‘engineer’ in ub:publicationText”.
6 “All ub:Publi i tching ’engi 7 b:publi ionT ”
H ub:Publications an elr ub:title matching ‘engineer’ in
7 “All ub:Publi i d their ub:titl tching ’engi 7
predicate ub:publicationText”.
Q8: “All ub:Publications, their ub:titles, and

the ub:FullProfessor author’s ub:fullname,
matching ’engineer’ in ub:publicationText”.
Q9: “All resources matching ’engineer’ in ub:publicationText and
all resources matching ’smith’ in ub:fullname, being connected
via the predicate ub:publicationAuthor”.
Q10: “All resources matching 'network’ in ub:publicationText and all
resources matching ’engineer’ in ub:publicationText, that are both
connected via ub:publicationAuthor to the same ub:FullProfessor”.
Q11: “All distinct ub:FullProfessors matching ’smith’ in ub:fullname
that authored both, resources matching 'network’ and resources
matching ’engineer’ in the ub:publicationText property”.

From Query 6 to 8, we increase the number of structural constraints of
the query. The result set of the keyword condition of the query has to be
joined with more and more triple patterns. This allows us to evaluate the im-
pact of structural parts of the query. The next step is the extension to two-
keyword queries, where each keyword matches a different resource in the query
graph. In Query 9, both matching resources are tested to be connected via a
ub:publicationAuthor predicate. Query 10 interconnects both matching re-
sources via a ub:FullProfessor resource. Finally, we extend our query to three
keywords, where the intermediate full professor additionally has to match the
third keyword. This requires three result sets of the fulltext search to be joined
via structural restrictions.

2.3.3 Advanced IR Features

In our final query set we investigate the existence of certain advanced IR features.
In contrast to the feature evaluated by Query 1 to 5, the advanced features are
not expected to be supported by all RDF stores offering fulltext search.

88 E. Minack, W. Siberski, and W. Nejdl

Table 4. Advanced IR Queries

Q12: “All resources matching 'network’ and ’engineer’ in ub:publicationText”.
Q13: “All resources matching 'network’, but not ’engineer’ in ub:publicationText”.
Q14: “All resources matching 'network’ and ’engineer’ in ub:publicationText, both
keywords appearing within a distance of at most 10 words of each other”.
Q15: “All resources matching wildcard keyword ’engineer®’ in ub:publicationText”.
Q16: “All resources matching wildcard keyword ’engineer?’ in ub:publicationText”.
Q17: “All resources matching fuzzy keyword ’engineer 0.8’ in ub:publicationText”.

Q18: “All resources and their relevance to the keyword
‘engineer’ in predicate ub:publicationText”.
Q19: “All resources and a snippet matching keyword ’engineer’
in predicate ub:publicationText”.
Q20: “The top-10 resources with their relevance to the keyword 'network’

in ub:publicationText”.
Q21: “The resources and their relevance to 'network’ in predicate
ub:publicationText, that have a relevance of > 0.75”.

We test for conjunction and negation of fulltext related conditions, for a prox-
imity query, where both keywords have to appear in a distance of at most 10
words, and for wildcard queries. Query 17 matches all terms that have a similar-
ity of 0.8 to the given keyword. The similarity measure is application dependent,
so for different implementations, different similarity values may be used to re-
trieve a comparable result set size. The relevance score and a snippet is retrieved
by Query 18 and 19, respectively. Some RDF stores allow to limit the results of
a fulltext search to the top-k, or to all results that exceed a certain relevance
score threshold. These features are tested by Query 20 and 21. If these features
are not supported, then they can be mimicked by a SPARQL LIMIT or FILTER
operation. In that case, a similar performance to Query 2.2 is expected.

3 Evaluation

After generating the enhanced LUBMft dataset and designing 21 queries, we
now evaluate a number of well-known open-source RDF stores using our RDF
fulltext benchmark. We decided for the following RDF stores (in alphabetical
order): Jena [22], Sesame2 [23], Virtuosd], YARS [20]. Since Jena provides a large
number of different backend stores, we performed preliminary tests to identify the
fastest configuration, where Jena+TDB performed best. We used the following
configurations, which we will further refer to using these abbreviations:

Jena: Jena 2.5.6, ARQ 2.5.0, Lucene 2.3.1, TDB 0.6.0

Sesame?2: Sesame 2.2.1, NativeStore, LuceneSail (Hits-Set) 1.3.0, Lucene 2.3.2
Virtuoso: Virtuoso 5.0.9

YARS: YARS post beta 3, Lucene 1.9.1

" Virtuoso Open-Source Edition: http://virtuoso.openlinksw.com /wiki/main/Main/

Benchmarking Fulltext Search Performance of RDF Stores 89

All Java-based RDF stores employ the Lucendd full-featured text search engine
Java library, the state-of-the-art Java implementation for Information Retrieval.

3.1 Evaluation Methodology

The evaluation is conducted over LUBMft(N) with N € {1, 5,10, 50}. We reused
the LUBM benchmark test tool (UBT) in version 1.1 to perform the tests. We
modified its program sequence towards the following behavior:

Since we have designed our queries in an incremental manner, subsequent
queries build on findings of previous queries. This means, that the result set of
an early query is sometimes the intermediate result set of a later query. Due to
RDF store specific caching mechanisms and filesystem cache managed by the
operating system, subsequent executions of the same query, as well as similar
queries (as described above), will benefit from those “warmed up” caches. In
order to surpress these side-effects, we clear the RDF store caches by restarting
it for each query, and clear the filesystem cache. We then evaluate each query
six times, where the first duration is considered as “uncached”, while the subse-
quent durations are considered as “cached”. This will provide us insights in the
performance of each store in the two cases of insufficient and sufficient memory
for caching. Queries that exceed a limit of 1,000s are not evaluated any further.
As a duration of a query we define the time that passes from parsing the query
until no more results are provided by the RDF store.

For each RDF store and each LUBMft dataset, all defined 21 queries are
evaluated in this manner. This whole process is repeated 5 times. In the end we
have 5 evaluation times for each query referring to the “uncached“ case, as well
as 25 times under the presence of ”warmed up* caches.

For the evaluation we use a GNU/Linux machine with a 2 GHz AMD Athlon”
64bit Dual CorgMProcessor, 3 GByte RAM, and a RAID 5 array. The UBT Tester
runs with Java SE Runtime Environment 1.6.0 10 and 2 GB Memory.

3.2 Evaluation Results

In the following, we present the results of our benchmark evaluation. For eas-
ier comparison, all figures will share the same layout. Each figure depicts one
benchmark query and aggregates all RDF stores. Along the x-axis the different
datasets are aligned by increasing scaling factor N. The logarithmic y-axis de-
picts the evaluation time of a query in milliseconds. The bars of the RDF stores
are subdivided into two parts: the whole bar represents the evaluation time with
cleared caches, whereas the lower part of the bar illustrates the evaluation per-
formance under the existence of “warmed up“ caches.

3.2.1 Basic IR Performance
Figure[depicts the one-keyword Queries 1.1 and 1.2, which represent the basis of
fulltext search. For Query 1.1, Jena is slower than Sesame2, but Jena can better

8 Apache Lucene: http://lucene.apache.org/

90 E. Minack, W. Siberski, and W. Nejdl

deal with the larger result set of Query 1.2, and can therefore exhibit a little
performance advantage. Virtuoso, which is very fast for the smallest dataset,
performs worse than Jena and Sesame2 with increasing dataset size for small
result sets (Query 1.1), but performs better for larger result sets (Query 1.2). For
both queries, YARS reveals the worst performance. For all queries, Virtuoso has
an impressive performance with "warmed up“ caches. The results of Query 2.1
and 2.2 exhibit for all stores the same performance as for the Queries 1.1 and 1.2.
We therefore omitted the figures of Query 2.1 and 2.2 due to space limitations.

Query 1.1
— O - 9
g 3 T T T T g 3
() ()
£ E
F oo [_ oo [_
g~ 5"
5 5
[v] (]
= 2
2 3 s 3
s 50 Hoe 10 50
Jena PO Sesame2 [] Virtuoso [YARS

Fig. 2. Single keyword queries without predicate binding

With Query 3 we did not significantly increase result set size compared to
Query 1.2 and 2.2, but we use multiple keywords in a boolean OR semantic.
As we can see in Figure [B] all three stores that use Lucene exhibit exactly the
same performance for Query 3 and 1.2. Note that Virtuoso does not support
this query. Compared to Sesame2, Jena also yields a better performance for
Query 4. Here, Virtuoso is even slower than Sesame, but it shows impressive
response times in case of "warmed up“ caches. YARS does not allow for phrase
query articulation. Looking at Query 5.1 and 5.2, all RDF stores have a better
performance evaluating the latter one.

Discussion. From Query 1 and 2 we can see that none of the stores has a
problem with missing predicate bindings for the fultext search, nor does it gain
performance when it is given. The implementations are robust in both situations.

Regarding basic IR queries, Jena is slightly faster than Sesame2. Both use
Lucene as their fulltext search engine, so the overhead of the integration of the
IR engine into the RDF evaluation might be a little higher in Sesame2. YARS
also uses Lucene, but is much slower. This may be due to the outdated lucene
version they use. Virtuoso is for all but one cases the slowest RDF store. Further,
it does only support a subset of the basic IR features.

3.2.2 Semantic IR Performance
With our semantic IR queries depicted in Figure @l we tested for the perfor-
mance of fulltext search combined with structural queries. From Query 6 to 8

Benchmarking Fulltext Search Performance of RDF Stores 91

Query 3 Query 4

o % T T T T o % T T T T
g — g ~
() ()
E - 13 -
F o F o -— 1
s AT HN Te~Inn dl -
§ : § %]

- 1 5 10 50 - 1 5 10 50

Query 5.1 Query 5.2

o ‘8 T T T T o ‘8 T T T T
g ~ g ~
() ()
£ E M
oo [F o _
5 5~
=] =]
S 3
© ©
e g o
oo 10 50 e 10 50
Jena DO Sesame2 [] Virtuoso [\ YARS

Fig. 3. Multiple-keyword, phrase, and keyword vs. literal queries

Query 6 Query 7 Query 8
w7 = 9 = 9
£ - T T T T £ — T T T £ — T T T]
) Md) H) [il
E I+ E E -
F o : - = o
5~ 1 8 1 8°[1]
- T E=} E=} N
[(] (] |
3 {1 3 | -
[o «© «© o A
a2 i o3 o
Query 10

—_ — o — Q9
E 9 g ° T T T E °
o 1))
E {1 E £
F oo i F oo F ol 4
6 — g — g —
=] b = =
@ [[
| {1 3 3
© N 4 A © © \
¢ o) N [1 S o)) S o))]
w9 o 9 o 9

- 1 5 10 50 - 1 5 10 50 - 1 5 10 50

Jena DO\ Sesame2 [] Virtuoso [YARS

Fig. 4. Semantic IR queries combining fulltext search with structured queries

an increasing amount of structural information around the resources that match
the fulltext search are retrieved. For Query 6, all stores have similar performance
and scaling properties, but Jena always performs best. In Query 7 and 8, Virtu-
0s0 has significant scaling problems, while all other stores exhibit quite the same
performance as for Query 6.

With multiple keywords (Query 9 to 11), Jena is completely overloaded. Vir-
tuoso exceeds our query evaluation limit for the second smallest dataset already.
Sesame?2 scales up best with multiple keywords. Note that YARS is not capable
of retrieving the correct results for queries with multiple fulltext searches.

92 E. Minack, W. Siberski, and W. Nejdl

Query 12 Query 13 Query 14

= 8 o 8 = 8

g S T T T T g S T T T T g S T T T T

() - (] (]

£ o £ S £

= 9] [o L] [9 N

5 1 & 7 [HHf EHH?JS} ,

=1 =] =] —

(] (1] (1]

3 { 3 E - NN

© © © N

> 2 > D >

o o1 5 10 50 S 1 5 10 50

Query 16 Query 17

—_— O -_— 0 -—_ O

g 3 g 3 T T T T g 3 T T T T

o 11T o [}

E N E E .

= o 1 F o 7 | oo [N |

5 & 8 5 S E:I 5 & E:‘ R

5 JH =] F L B

@] @ @

3 NHH 2 FHNT 3

a N [O

> Q) > 3 > 3

oo 10 50 BT 5 10 50 ST 5 10 50
Query 19 Query 20 Query 21

= 8 = 8 w9 = 9

g 3 T T T g S T T T g 3 T T T g S T T T

(] [0} ‘U (]

£ 1 E E E N

F o F o n.H F o i F oln

5 S E:I A N 5 < 5 < H:I Tm 5 < 4 H

5 AVIEN 1 S L 5 A B = i

[} (v} @ (1]

RS 1 3 5 H {3 M

@ © a SEENENN [

] > 2 > 9 2 9

® = 1 51050 Y= 1 51050 Y= 1 51080 H = 1 51050

Jena DO Sesame2 [] Virtuoso [\ YARS

Fig. 5. Advanced IR feature queries: boolean, proximity, wildcard, and fuzzy queries,
score and snippet retrieval, result and relevance score limitation queries

Discussion. By evaluating the semantic IR queries, we could recognize that
Jena and Virtuoso have scalibility problems for hybrid queries in general, and
in particular with those containing multiple fulltext queries assigned to different
resources in the query. YARS could also not properly evaluate these queries.
Further investigations on Jena showed that this is highly influenced by the very
simple query optimizer provided by TDB. With an optimized query planning,
Jena could potentially outperform Sesame2. This class of queries seems not to
be considered by the evaluated RDF stores (except by Sesame2), however, it is
an important class of queries in the field of semantic keyword queries.

3.2.3 Advanced IR Features

Finally, we tested for the advanced IR features. Virtuoso only supports one
out of ten queries, but this one with the smallest response time of all RDF
stores. YARS only supports a subset of five queries. Jena and Sesame2 both
have similar performance, but Jena is always faster. For Query 20 one can see
that the response time is quite constant for all datasets, whereas for Query 21,
this only holds for Jena.

Benchmarking Fulltext Search Performance of RDF Stores 93

Discussion. Looking at advanced IR features, Sesame2 stands out by supporting
all features. For those supported by Jena, its overall performance is better. The
result set limitation feature of Query 20 perfectly works for both. The evaluation
time neither grows with the dataset size nor with the correlating complete result
set size. Limiting the results yields to an almost constant response time. Due to
the fact that Sesame2 does not support the relevance score limitation feature of
Query 21, this feature has to be achieved using a SPARQL FILTER. This, first
evaluates the query completely and then filters all results that match the score
limit. Jena provides this feature with its fulltext querying facility and therefore
performs as expected.

Summary. For basic or advanced IR queries, Jena and Sesame2 are the best
choices. Considering complex semantic IR queries, Sesame2 is the only RDF
store sufficiently solving the tasks of fulltext search on RDF data. With ”warmed
up “ caches, Virtuoso yields an impressive performance, but does only supported
a small subset of queries.

4 Related Work

In software engineering domains, benchmarks are used to assess the relative
performance and absolute feature-richness of a target system [24]. For this, well
designed standard tasks mimic a particular type of workload. The Full-Text
Document Retrieval Benchmark [24, ch. 8] (FTDR) generates as workload a
mixture of searching and retrieving documents from the system, as well as adding
documents. In contrast, our benchmark only investigates search.

In the area of relational databases, the TEXTURE benchmark [25] investi-
gates performance of combining text processing with relational workload. As the
FTDR Benchmark, it randomly generates queries based on certain term occur-
rence characteristics, whereas we intend to provide fixed queries that can be
repeatably evaluated and studied for different RDF stores and hardware config-
urations. Similarily to our benchmark, they synthetically generate fulltext, but
they only maintain one global word distribution.

In the area of RDF stores, a number of benchmarks are available. The Berlin
SPARQL Benchmark [I7] (BSBM) also generates fulltext content and person
names. The SP2Bench [I8] uses a dataset that refers to the structure of the DBLP
Computer Science Bibliographyﬁ. Both benchmarks pick terms from dictionaries
with uniform distribution. The SP?Bench and BSBM were not considered for our
RDF fulltext benchmark simply due to the fact of their very recent publication.
Enriching these benchmarks with real world fulltext content and fulltext queries
is very much in our favor. To the best of our knowledge, the presented fulltext
extension to the LUBM is the first fulltext Benchmark for Semantic Web systems.

Due to the lack of RDF fulltext benchmarks, the authors of [I9] employed
the RDF version of Wordnef™ and queried for randomly selected terms. How-
ever, this dataset does not simply scale up to an arbitrary size. Similarily to

9 DBLP Computer Science Bibliography: http://dblp.uni-trier.de/
19 Wordnet RDF: http://www.semanticweb.org/library/

94 E. Minack, W. Siberski, and W. Nejdl

our approach, the authors of [I5] generated a LUBM(50,000) dataset, where
literals were generated by keywords randomly selected from a dictionary. Unfor-
tunately, the authors did neither sufficiently report on this benchmark in order to
reproduce results or reuse the benchmark, nor did they apply that benchmark
on other RDF stores. Further, our benchmark provides more realistic content
characteristics.

5 Conclusion

The work presented in this paper fulfills the strong need of application and RDF
store developers for an RDF fulltext benchmark. With the provided dataset and
hybrid queries, fulltext capabilities of any RDF store can be evaluated and com-
pared. Our evaluation shows that on the one hand basic as well as advanced IR
features are already sufficiently supported by today’s RDF stores. On the other
hand, it also uncovered several areas where performance needs to be improved.
This holds primarily for complex hybrid queries that contain more than one full-
text search condition. The evaluation results also show that a good query plan
optimization is crucial for competitive performance, as well as a tight integration
of fulltext search features into this planning phase. We are convinced that the
availability of a standard fulltext benchmark for RDF data stores will foster the
development of more efficient hybrid query processing algorithms.

Acknowledgement

This work was supported by the European Union IST fund (Grant FP6-027750,
Project NEPOMUK).

References

1. Berners-Lee, T\, et al.: The Semantic Web. Scientific American 279(5) (May 2001)

2. Hildebrand, M., et al.: An analysis of search-based user interaction on the Semantic
Web. Report, Centrum Wiskunde & Informatica (2007) INS-E0706, ISSN 1386-
3681

3. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (January
2008)

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

5. Garcia-Molina, H., et al.: Database Systems: The Complete Book. Prentice Hall,
Englewood Cliffs (2008)

6. Chaudhuri, S., et al.: Integrating DB and IR Technologies: What is the Sound of
One Hand Clapping? In: CIDR, pp. 1-12 (2005)

7. Amer-Yahia, S., et al.: Report on the db/ir panel at sigmod 2005. SIGMOD
Rec. 34(4), 71-74 (2005)

8. Hristidis, V., et al.: Efficient IR-Style Keyword Search over Relational Databases.
In: VLDB, pp. 850-861 (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Benchmarking Fulltext Search Performance of RDF Stores 95

. DeFazio, S., et al.: Integrating IR and RDBMS Using Cooperative Indexing. In:

SIGIR, Seattle, Washington, USA, July 9-13, 1995, pp. 84-92. ACM Press, New
York (1995)

Consens, M.P., et al.: XML Retrieval: DB/IR in Theory, Web in Practice. In:
VLDB, University of Vienna, Austria, September 23-27, 2007, pp. 1437-1438.
ACM, New York (2007)

Bhagdev, R., et al.: Hybrid Search: Effectively Combining Keywords and Semantic
Searches. In: ESWC, Tenerife, Canary Islands, Spain, June 1-5, 2008, pp. 554-568
(2008)

Zhang, L., et al.: Semplore: An IR Approach to Scalable Hybrid Query of Semantic
Web Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I1., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825. Springer, Heidelberg (2007)
Baeza-Yates, R.A., Gonnet, G.H.: Fast Text Searching for Regular Expressions or
Automaton Searching on Tries. Journal of the ACM 43(6), 915-936 (1996)

Cho, J.: A fast regular expression indexing engine. In: Proceedings of the 18th
International Conference on Data Engineering (2002)

Harth, A., et al.: YARS2: A Federated Repository for Querying Graph Structured
Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I.,
Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 211-224.
Springer, Heidelberg (2007)

Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics 3(2), 158-182 (2005)

Bizer, C., Schultz, A.: Benchmarking the Performance of Storage Systems that
expose SPARQL Endpoints. In: Proceedings of the 4th International Workshop on
Scalable Semantic Web knowledge Base Systems (SSWS 2008) (2008)

Schmidt, M., et al.: An Experimental Comparison of RDF Data Management Ap-
proaches in a SPARQL Benchmark Scenario. In: ISWC, October 26-30 (2008)
Minack, E., et al.: The Sesame LuceneSail: RDF Queries with Full-text Search.
Technical Report 2008-1, NEPOMUK (February 2008)

Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the
Web. In: Proceedings of the 3rd Latin American Web Congress. IEEE Press, Los
Alamitos (2005)

Steyvers, M., Griffiths, T.: Probabilistic Topic Models. Lawrence Erlbaum, Mah-
wah (2006)

Carroll, J.J., et al.: Jena: Implementing the Semantic Web Recommendations. In:
WWW Alternate track papers & posters, pp. 74-83. ACM, New York (2004)
Broekstra, J., et al.: Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

Gray, J. (ed.): The Benchmark Handbook For Database and Transaction Process-
ing Systems. Morgan Kaufmann, San Francisco (1993)

Ercegovac, V., et al.: The TEXTURE Benchmark: Measuring Performance of Text
Queries on a Relational DBMS. In: VLDB, Trondheim, Norway, pp. 313-324 (2005)

	Benchmarking Fulltext Search Performance of RDF Stores
	Introduction
	A Fulltext Extension for LUBM
	LUBM Overview and Discussion
	Fulltext Content Generation
	Fulltext Test Queries

	Evaluation
	Evaluation Methodology
	Evaluation Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

