
Chapter 3
General Oligopolies

In the previous chapter we analyzed concave oligopolies where the best response
functions were monotonic and therefore the local and global analysis of the corre-
sponding dynamic processes were relatively simple. The examples discussed there
have allowed the reader to become familiar with the major concepts and methods
that we shall use in the rest of the book. If we drop the simplifying assumptions of
the previous chapter then more complex dynamics may arise. In this chapter we will
present a collection of such models.

We initiate our discussion in Sect. 3.1 where we consider oligopolies with isoe-
lastic price functions and dynamics in discrete time. We give a detailed analysis
of local and global stability of some particular examples. In Sect. 3.2 we return to
the issue of oligopolies with cost externalities, which may display multiple interior
Nash equilibria. The global analysis of some specific examples indicates how the
oligopoly may converge to particular equilibria.

3.1 Isoelastic Price Functions

In this section we assume that the price function is isoelastic, as in Example 1.5. As
in the previous chapters let N denote the number of firms, let xk be the output of
firm k .k D 1; 2; : : : ; N / andQ D PN

kD1 xk the total output of the industry. Then
the price function is f .Q/ D A=Qwith some positive constantA. If no externalities
are assumed and Ck.xk/ denotes the cost of firm k, then its profit is given as

'k.x1; : : : ; xN / D
8

<

:

�Ck.0/; if xk D 0;
Axk

Qk C xk

� Ck.xk/; if xk > 0;

where we use again the simplifying notationQk D P

l¤k xl so thatQ D Qk Cxk .
In the following discussion we will assume that for all k, Ck is twice continuously
differentiable, increasing and convex, so that for all feasible values of xk ,

(D) C 0
k
.xk/ > 0 and C 00

k
.xk/ � 0.

G.I. Bischi et al., Nonlinear Oligopolies, DOI 10.1007/978-3-642-02106-0 3,
c� Springer-Verlag Berlin Heidelberg 2010

103



104 3 General Oligopolies

We can now calculate the best response of firm k. Assume first thatQk D 0, so that
the other firms do not produce. Then

'k.x1; : : : ; xN / D
(

�Ck.0/; if xk D 0;

A � Ck.xk/; if xk > 0:

In this case firm k has no best choice, however it is in its interest to select a
positive value of xk that is as small as possible. In other words, firm k does not have
a maximum profit forQk D 0, its profit has only a supremum at xk D 0. IfQk > 0,
so that the other firms produce, then

@

@xk

'k.x1; : : : ; xN / D AQk

.Qk C xk/2
� C 0

k.xk/; (3.1)

and
@2

@x2
k

'k.x1; : : : ; xN / D � 2AQk

.Qk C xk/3
� C 00

k .xk/ < 0;

showing that 'k is strictly concave in xk with fixed positive values of Qk . If we
assume again that each firm has a finite capacity limit, Lk , then the best response
exists and is unique for each firm and is given by

Rk.Qk/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

0; if
A

Qk

� C 0
k
.0/ � 0;

Lk ; if
AQk

.Qk C Lk/2
� C 0

k
.Lk/ � 0;

z�
k
; otherwise;

where z�
k
is the unique solution of the strictly monotonic equation

AQk

.Qk C zk/2
� C 0

k.zk/ D 0 (3.2)

in the interval .0; Lk/. The derivative of the best response function is obtained by
implicit differentiation of the equivalent equation

AQk � C 0
k.zk/.Qk C zk/

2 D 0;

from which we have

A � C 00
k R

0
k.Qk C zk/

2 � 2C 0
k.Qk C zk/.1 C R0

k/ D 0

implying that

R0
k.Qk/ D A � 2C 0

k
Q

C 00
k
Q2 C 2C 0

k
Q

: (3.3)
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Here the denominator is always positive but the sign of the numerator is indeter-
minate. Hence, Rk.Qk/ is not necessarily monotonic, which stands in contrast to
the concave case discussed in the previous chapter. If we express the best response
functions in terms of the total output of the industry, then the resulting modified
best response function eRk.Q/ will not be monotonic either. Therefore the existence
and uniqueness of the equilibrium cannot be examined in the same way as was done
for concave oligopolies. However, by using a different approach, the existence of a
unique equilibrium is proved in Szidarovszky and Okuguchi (1997), and this result
is also presented with further details in Okuguchi and Szidarovszky (1999).

Consider now an interior equilibrium, then from (3.2),

A NQk � C 0
k. Nxk/ NQ2 D 0

for all k. The numerator of (3.3) at the equilibrium becomes

A � 2A NQk

NQ D A

NQ. NQ � 2 NQk/;

so R0
k
. NQk/ � 0 if and only if NQ � 2 NQk.

Notice in addition that

R0
k.Qk/ >

�C 00
k
Q2 � 2C 0

k
Q

C 00
k
Q2 C 2C 0

k
Q

D �1: (3.4)

It is interesting to note that this is exactly the same lower bound as in the concave
case. If N D 2, then at a symmetric equilibrium R0

k
D 0 for k D 1; 2: If the equilib-

rium is asymmetric, then R0
k
is positive for one firm and is negative for the other, so

R0
1R

0
2 < 0. Assume next that N � 3; and for all firms, xk � Qk . This condition

means that there is no large firm dominating the rest of the industry. In this case
Q � 2Qk for all k, so �1 < R0

k
� 0 which is similar to the concave case. Notice

that in the general case the condition Q � 2Qk at the equilibrium can be violated
by at most one firm, so there is at most one firm with positive derivative R0

k
at the

equilibrium.

Example 3.1. In Example 1.5 we have already considered the isoelastic case with
p Df .Q/DA=Q and linear cost functionsCk.xk/Ddk Cckxk . There we derived
the equilibrium quantities of the firms which are given by

Nxk D .N � 1/A
P

l cl

� .N � 1/2Ack

.
P

l cl /2
;

for k D 1; 2; : : : ; N , and the total industry output

NQ D .N � 1/A
P

l cl

:



106 3 General Oligopolies

Hence, we obtain

NQk D NQ � Nxk D .N � 1/2Ack

.
P

l cl/2
:

In order to guarantee that Nxk � 0 we have to assume that

ck �
P

l cl

N � 1
or ck �

P

l¤k cl

N � 2
: (3.5)

We can also find conditions such that NQ � 2 NQk for all k implying that�1 < R0
k

� 0

at the equilibrium, so the local asymptotic properties of the equilibrium become the
same as in the concave case. This condition has the special form

.N � 1/A
P

l cl

� 2.N � 1/2Ack

.
P

l cl /2
;

which can be rewritten as

ck �
P

l cl

2.N � 1/
:

Notice that this lower bound is the half of the upper bound given in (3.5). The upper
bound guarantees the non-negativity of the equilibrium outputs and the lower bound
guarantees that the derivatives of the best responses at the equilibrium are between
�1 and 0 as in the concave case. If N D 2, then this is true if c1 D c2, otherwise it
holds for one firm and does not hold for the other. If N � 3, then this condition is
certainly satisfied if none of the firms has very low marginal costs compared to its
competitors.

3.1.1 Discrete Time Models and Local Stability

The local asymptotic behavior of the best reply dynamics with adaptive expectations
and partial adjustment towards the best response with naive expectations (1.28)–
(1.30) are equivalent to each other as has been shown earlier. So similar to the
concave case we will discuss only system (1.30). The Jacobian of this dynamic
system was derived in (2.20), where we did not use any special form of the best
response functions, therefore the nonzero eigenvalues of the Jacobian of the isoelas-
tic case are also the eigenvalues of the matrix NH . Its characteristic equation is also
given by (2.23), or equivalently by (2.24).

In the case when all rk DR0
k
.Qk/ values are non-positive, all local stabil-

ity results remain the same as demonstrated for the concave case. However in
the general case the local asymptotic behavior of the equilibrium becomes more
complicated.

Assume now that for a firm k0, rk0
>0. Then NQ>2 NQk0

or equivalently,
Nxk0

> NQk0
. This condition means that firm k0 produces more than the total output
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of the rest of the industry at the equilibrium, therefore rk > 0 is possible for at most
one firm. Similarly to the concave case we assume that ak D ˛0

k
.0/ > 0 for all k.

Number the firms in such a way that the different ak.1 C rk/ values are

a1.1 C r1/ > a2.1 C r2/ > � � � > as.1 C rs/;

and these values are repeated m1; m2; : : : ; ms times, respectively, among the N

firms. By adding the terms with identical denominators in the bracketed factor of
(2.23) we obtain (2.24), where at most one �j can be positive. If all �j values are
non-positive, then the problem remains the same as in the concave case with the
same stability results. Therefore assume now that there is a j0 such that �j0 >0.
If �j ¤ 0 and mj D 1, then 1 � aj .1 C rj / is not an eigenvalue of the Jacobian.
Otherwise it is, and the other eigenvalues are the roots of the equation

1 C
s
X

j D1

�j

1 � aj .1 C rj / � �
D 0;

where we assume that all �j ¤ 0.
Let g.�/ denote again the left hand side of the last equation. Then clearly

lim
�!˙1

g.�/ D 1;

lim
�!1�aj .1Crj /˙0

g.�/ D
(

�1 if j D j0;

˙1 if j ¤ j0,

however in contrast to the concave case, g0.�/ has no definite sign, that is, g is not
necessarily monotonic. All poles are less than unity. Depending on the value of j0

we have the following cases:-

Case 1. j0 D 1.
The graph of g.�/ for this case is shown in Fig. 3.1. There are s � 2 real roots
between each pair of poles 1 � aj .1 C rj / and 1 � aj C1.1 C rj C1/ for j D
2; : : : ; s � 1. If the other two roots are real and they are between 1 � a1.1 C r1/

and 1 � as.1 C rs/, then the equilibrium is locally asymptotically stable if 1 �
a1.1 C r1/ > �1.

Case 2. j0 D s.
The graph of g.�/ in this case is shown in Fig. 3.2. All roots are real, one is
before the smallest pole, one after the largest pole, and one between each pair of
poles 1� aj .1C rj / and 1� aj C1.1C rj C1/ for j D 1; : : : ; s � 2. All roots are
between -1 and 1 if 1 � a1.1 C r1/ > �1 and g.�1/ > 0 and g.1/ > 0.

Case 3. 1 < j0 < s.
The graph of g.�/ is shown in Fig. 3.3. There are s � 2 real roots. If we assume
that the remaining two roots are real and are between 1 � a1.1 C r1/ and
1 � as.1 C rs/, then all roots are between �1 and 1 if 1 � a1.1 C r1/ > �1

and g.�1/ > 0.



108 3 General Oligopolies

λ
1–a1(1+r1) 1–a2(1+r2) 1–a3(1+r3) 1–as–1(1+rs–1) 1–as(1+rs) 1

Fig. 3.1 The oligopoly with isoelastic price function and convex cost functions with partial
adjustment towards the best response with naive expectations. The graphical determination of the
eigenvalues in the case j0 D 1

λ
1−a1(1+r1) 1−a2(1+r2) 1−aS–2(1+rS–2)1−aS–1(1+rS–1) 1−aS(1+rS)1

Fig. 3.2 The oligopoly with isoelastic price function and convex cost functions with partial
adjustment towards the best response with naive expectations. The graphical determination of the
eigenvalues in the case j0 D s
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λ
1−aS(1+rS)1−aj0(1+rj0)1−a1(1+r1)

Fig. 3.3 The oligopoly with isoelastic price function and convex cost functions with partial
adjustment towards the best response with naive expectations. The graphical determination of the
eigenvalues in the case 1 < j0 < s

Notice that conditions g.�1/ > 0 and g.1/ > 0 can be written as (2.22) and

N
X

kD1

rk

1 C rk

< 1;

respectively.
In the case of complex roots, no similar stability condition can be given. The
possibility of complex roots will be shown later in Example 3.2.

The assumption that Ck is a convex function in its entire domain guarantees the
existence of a Nash equilibrium. However if this condition is not satisfied every-
where and there is an interior equilibrium, then we have to assume that C 0

k
>0 and

C 00
k

� 0 in its neighborhood in order to assure local asymptotic stability of that
equilibrium. As an illustration consider a duopoly with linear cost functions and
isoelastic price function.

Example 3.2. In this example we consider the duopoly case .N D 2/. By using the
notation of Example 3.1 we assume that the cost function of firm k is Ck.xk/ D
dk C ckxk .k D 1; 2/, the price function is f .Q/ D A=Q with some positive con-
stant A and the capacity limits are sufficiently large. The equilibrium is positive,
since condition (3.5), that is ck � c1 C c2, is satisfied for both firms. Furthermore
at the equilibrium
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NQ D A

c1 C c2

and NQk D Ack

.c1 C c2/2
:

From Example 1.5 we know that

Rk.Qk/ D
s

AQk

ck

� Qk;

and so

R0
k.

NQk/ D c1 C c2

2ck

� 1;

therefore
r1 D c2 � c1

2c1

and r2 D c1 � c2

2c2

:

Assume that c1 ¤ c2, and that the firms select identical adjustments, that is,
a1 D a2 � a. The characteristic equation of the Jacobian of the dynamic process
with partial adjustment towards the best response is given in general by (2.23),
which simplifies to

2
Y

kD1

.1 � a.1 C rk/ � �/

�

1 C r1a

1 � a.1 C r1/ � �
C r2a

1 � a.1 C r2/ � �

�

D 0:

This equation reduces to the quadratic

�2 C �.2a � 2/ C .1 � 2a C a2 � a2r1r2/ D 0;

with roots
�1;2 D .1 � a/ ˙ ia

p�r1r2;

since

r1r2 D � .c1 � c2/
2

4c1c2

< 0:

By an appropriate choice of the parameters c1 and c2 the quantity r1r2 can take any
negative value. Clearly if c1 ¤ c2, then both roots are complex, and since

j�1;2j2 D 1 � 2a C a2.1 � r1r2/;

the roots can be both inside and outside the unit circle. The equilibrium is locally
asymptotically stable if

a.1 � r1r2/ < 2;

and unstable if this condition is violated with strict inequality. An analogous condi-
tion for the stability of the equilibrium in the duopoly case with constant adjustment
speeds has been derived by Puu (2003, Chap. 7). With fixed r1 and r2, stability
occurs if the value of a is sufficiently small. With a fixed value of a 2 .0; 1� we
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have stability if the product jr1r2j is sufficiently small, which holds if c1 and c2 are
sufficiently close to each other.

Example 3.3. Next we examine an N -firm semi-symmetric oligopoly with linear
cost functions, so we assume that firms 2; 3; : : : ; N have identical marginal costs,
ck D c2 .k D 2; 3; : : : ; N /, identical capacity limits and common linear adjustment
functions, and their initial outputs are also the same, so that x2.0/ D : : : D xN .0/.
Given these assumptions the entire output trajectories of these firms are the same.
Therefore we get a two-dimensional system with state variables x1 and x2 where
xk Dx2 for k � 2. In this case Q1 D .N � 1/x2 and Q2 D x1 C .N � 2/x2.
Assuming that the capacity limits Lk are sufficiently large the general expressions
for the equilibrium quantities given in Example 3.1 imply for the semi-symmetric
case that

Nx1 D .N � 1/A

c1 C .N � 1/c2

�

1 � .N � 1/c1

c1 C .N � 1/c2

�

D .N � 1/A

c1 C .N � 1/c2

�

.N � 1/c2 � .N � 2/c1

c1 C .N � 1/c2

�

Nx2 D ::: D NxN D .N � 1/A

c1 C .N � 1/c2

�

1 � .N � 1/c2

c1 C .N � 1/c2

�

D .N � 1/A

c1 C .N � 1/c2

�

c1

c1 C .N � 1/c2

�

:

For the total industry output in equilibrium we obtain

NQ D Nx1 C .N � 1/ Nx2 D .N � 1/A

c1 C .N � 1/c2

:

The derivatives of the best replies are obtained from (3.3) as

r1 D R0
1.

NQ1/ D A � 2c1
NQ

2c1
NQ D .N � 1/c2 C .3 � 2N/c1

2.N � 1/c1

;

and

r2 D R0
2.

NQ2/ D A � 2c2
NQ

2c2
NQ D c1 � .N � 1/c2

2.N � 1/c2

:

Conditions (3.5) for k D 1 and k D 2 are of the form

c1 � c1 C .N � 1/c2

N � 1
; c2 � c1 C .N � 1/c2

N � 1
;

where the second inequality always holds and the first one can be written as

	 WD c2

c1

� N � 2

N � 1
;
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where 	 denotes the cost ratio between the firms. In addition,

r1 D .N � 1/	 C .3 � 2N/

2.N � 1/
and r2 D 1 � .N � 1/	

2.N � 1/	
:

The dynamic process can be written as

x1.t C 1/ D .1 � a1/x1.t/ C a1R1..N � 1/x2.t//;

x2.t C 1/ D .1 � a2/x2.t/ C a2R2.x1.t/ C .N � 2/x2.t//;

so the Jacobian has the special form

�

1 � a1 a1r1.N � 1/

a2r2 1 � a2 C a2r2.N � 2/

�

where r1 D R0
1 and r2 D R0

2 at the equilibrium. The characteristic equation of this
matrix can be written as

.1 � a1 � �/.1 � a2 C a2r2.N � 2/ � �/ � a1a2r1r2.N � 1/ D 0;

which can be simplified to

�2 C �.�2 C a1 C a2 C .2 � N/a2r2/ C .1 � a1 � a2 C .N � 2/a2r2

C a1a2.1 C .2 � N/r2 C .1 � N/r1r2// D 0:

Using results from Appendix F we know that the roots are inside the unit circle if
and only if

� a1 C a2..N � 2/r2 � 1/ C a1a2.1 C .2 � N/r2 C .1 � N/r1r2/ < 0; (3.6)

1 C .2 � N/r2 C .1 � N/r1r2 > 0; (3.7)

4�2a1 Ca2.�2C .2N �4/r2/Ca1a2.1C .2�N/r2 C .1�N/r1r2/ > 0: (3.8)

The form of the stability region for .a1; a2/ depends on the number of firms and the
actual values of the derivatives r1 and r2. Inserting the expressions for the derivatives
r1 and r2 given above, the stability conditions can be written in terms of the cost
ratio 	 D c2=c1, the number of firms N , and the adjustment coefficients a1 and a2

as

� 4a1	.N � 1/C a1a2.1C 	.N � 1//2 C 2a2.�2CN.1C 	� 	N// < 0; (3.9)

.1 C 	.N � 1//2 > 0; (3.10)

� 8.�2Ca1/	.N � 1/Ca1a2.1C 	.N � 1//2 C 4a2.�2CN.1C 	 � 	N// > 0:

(3.11)
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It is clear that the second inequality is always fulfilled. The properties of the stability
region for .a1; a2/ depend on the number of firms and the ratio of the firms’ unit
costs.

Instead of giving a complete analysis in general we reconsider the duopoly case
of Example 3.2, where a1 D a2 D a. In this special case the conditions (3.6)–(3.8)
further simplify to

�2a C a2.1 � r1r2/ < 0;

1 � r1r2 > 0;

and
4 � 4a C a2.1 � r1r2/ > 0:

The second and third inequalities are always satisfied, since in Example 3.2 we have
shown that r1r2 < 0: The first relation holds if and only if

a.1 � r1r2/ < 2:

This condition is the same as the one that was obtained earlier in Example 3.2.

The case of linear cost functions is examined in detail in the book of Okuguchi
and Szidarovszky (1999) and Puu (2003).

3.1.2 Global Dynamics of Discrete Time Models

As we have seen in the discussion in Chap. 2 on concave oligopolies, the conditions
for global asymptotic stability are very restrictive. In most cases of isoelastic price
functions this is true as well.

Under condition (D) of Sect. 3.1, for at most one firm rk >0, and for all other
firms, �1< rk � 0. If all rk values are non-positive, then the global stability condi-
tions are still given by (2.31). However if one rk is positive, this condition can no
longer be used, it has to be modified accordingly.

We also notice that the global stability condition given in Theorem B.3 cannot
be applied either. At Qk D 0, firm k has no best response, which is clear from its
definition given in Example 1.5 and in the first part of Sect. 3.1. Therefore the set
where the dynamical system

xk.t C 1/ D xk.t/ C ˛k.Rk.Qk.t// � xk.t//; .k D 1; 2; : : : ; N /;

is defined is not closed, so the contraction mapping theorem (upon which the proof
of Theorem B.3 relies) cannot be used. If we consider the continuous extension
by defining Rk.0/ D 0, then in addition to the Nash equilibrium the zero output
vector also becomes a steady state of the above dynamical system, so the presence
of multiple steady states excludes the possibility of global asymptotic stability.



114 3 General Oligopolies

In this subsection we start to investigate the kinds of dynamic behavior that
we can observe when the restrictive conditions for global stability are not satis-
fied. A characterization of the global dynamics is not trivial, since we are dealing
with an N -dimensional piecewise differentiable dynamical system. Therefore, our
study is based on a combination of analytical, geometrical and numerical arguments.
As has been demonstrated in previous chapters, qualitative changes of the dynam-
ics are often caused by contacts between singularities known as critical sets (see
Appendix C), lines of non-differentiability, and basin boundaries. In general such
contacts can only be revealed numerically, since the equations of the curves which
are involved in such contacts cannot be analytically expressed in terms of elemen-
tary functions. Hence, an analysis of global bifurcations is, in general, carried out by
using both theoretical and numerical methods. The occurrence of such bifurcations
is shown by computer-assisted proofs, and is based on the knowledge of the prop-
erties of the singularities involved and their graphical representation (see Mira et al.
(1996) for many examples and see also Brock and Hommes (1997)). This “modus
operandi” is quite common in the study of the global properties of nonlinear two-
dimensional discrete dynamical systems. However an extension of such methods
to higher-dimensional dynamical systems is obviously limited. A practical problem
which arises is that the visualization of objects in a phase space of dimension greater
than two and the detection of contacts between surfaces may become very difficult.
Consequently, in the examples that follow we will (again) restrict ourselves to the
case of duopoly or the semi-symmetric case of an oligopoly. It should be mentioned
that in the case of isoelastic demand, the non-negativity of prices is always guar-
anteed. So, in contrast to the oligopolies with for example linear or quadratic price
functions as considered before, we do not need to ensure this property by selecting
the values of the model parameters carefully. On the other hand, we still need to
look at the profits along the sequence of quantity decisions in order to see if the
long-run dynamics are viable from an economic point of view. Although the prob-
lem of negative profits is regularly neglected in the literature on complex dynamics
in oligopolies, it is a crucial element of the analysis of an adjustment type model.
The dynamical system just represents the firms’ individual production decisions,
but does not directly tell us if the firms are profitable as a result of the collective
outcome.

Example 3.4. We consider again the reaction functions in the model with isoelastic
demand and linear cost functions derived at the beginning of this chapter, which in
the current example becomes

Rk.Qk/ D

8

ˆ

<

ˆ

:

0 if z�
k � 0, i.e.,Qk � A

ck
;

Lk if z�
k � Lk , i.e.,Q2

k C
�

2Lk � A
ck

�

Qk C L2
k � 0;

z�
k D

q

AQk

ck
� Qk otherwise;

(3.12)
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where k D 1; : : : ; N . Notice that the constraint z�
k

D Lk is ineffective if Lk �
A=.4ck/, otherwise we have Rk D Lk for

Qk 2
h

�

A

2ck

� Lk

�

� 1

2ck

p

A .A � 4ckLk/;

�

A

2ck

� Lk

�

C 1

2ck

p

A .A � 4ckLk/
i

(see Fig. 1.9). In the duopoly case,N D 2, already considered in Example 3.2, partial
adjustment towards the best response is governed by the discrete time dynamical
system

x1.t C 1/ D .1 � a1/x1.t/ C a1R1.x2/; (3.13)

x2.t C 1/ D .1 � a2/x2.t/ C a2R2.x1/;

and the unique Nash equilibrium is given by

Nx D . Nx1I Nx2/ D
�

Ac2

.c1 C c2/2
I Ac1

.c1 C c2/2

�

: (3.14)

The local stability properties of Nx in the duopoly case have already been derived in
Example 3.2. For identical adjustment coefficients, a1 D a2 D a, the equilibrium is
locally asymptotically stable if a.1 � r1r2/ < 2, where rk D R0

k
.Qk/ D .c1 C

c2 � 2ck/=.2ck/. Inserting these expressions for the derivatives of the best replies
allows us to express the stability condition in terms of the cost ratio 	 D c2=c1 (cf.
also Example 3.3 for the semi-symmetric case). Hence, in this case local asymptotic
stability of the equilibrium given in (3.14) is ensured if

a.1 C 	/2

4	
< 2:

Consequently, for any given a 2 .0; 1�, as long as

	 2
 

4 � a � 2
p
4 � 2a

a
;
4 � a C 2

p
4 � 2a

a

!

holds, the equilibrium is stable. Note that since 	 D 1 is always inside this interval
for all adjustment coefficients a 2 .0; 1�, the equilibrium is always stable if firms
have identical marginal costs. It is also worth pointing out that the cost difference
between the firms has to be quite strong in order to render the equilibrium unstable.
To demonstrate this, we look at a particular case of the best reply dynamics, namely
a1 D a2 D 1. Here the Nash equilibrium (3.14) is stable if and only if the cost ratio
	 D c2=c1 2 .3�2

p
2; 3C2

p
2/ ' .0:17; 5:83/ (see also Puu (1991, 2003)). If, for

example, c1 D 1; this result shows that the unit cost of firm 2 has to be either at least
almost 6 times higher than firm 1’s unit cost or less than about 1=6 of it in order that
instability occurs. If the cost ratio c2=c1 exits this interval, then the Nash equilibrium
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Fig. 3.4 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the duopoly case. The cost ratio 	 D c2=c1 D 0:16. (a) The chaotic attractor in the .x1; x2/ plane
and the dividing line between regions of negative and positive profits for firm 1. (b) Time series of
a portion of the chaotic attractor

loses stability via a period doubling bifurcation. For values of the cost ratio outside
the interval .3� 2

p
2; 3C 2

p
2/ the asymptotic dynamics may converge to periodic

cycles or even exhibit chaotic motion around the Nash equilibrium. A numerically
computed chaotic trajectory is shown in Fig. 3.4, obtained for A D 1, a1 D a2 D 1,
c1 D 1, c2 D 0:16. It can be noticed that the chaotic area is quite large, hence
we expect no correlations between x1.t/ and x2.t/, in the sense that high values
of x1.t/ are associated either with high or with low values of x2.t/ in the same
time period; see Fig. 3.4b, where a portion of the chaotic trajectory of Fig. 3.4a is
represented for the time periods t 2 Œ300; 370�. Note that the profits for the firms are
non-negative only if x1 C x2 � A=ck; k D 1; 2. In Fig. 3.4a we depict the line of
zero profits for firm 1, which is represented by the equation x1 C x2 D A=c1 D 1.
Notice that the zero profit line of firm 2, x1Cx2 D 6:25, is outside the area shown in
the figure. This indicates that the profits for the low-cost firm 2 are always positive,
whereas firm 1 makes a loss in some periods along any trajectory which describes
the long-run dynamics. The latter point becomes even more obvious if we consider
other kinds of long-run dynamics for the duopoly with best reply dynamics. For
example, let c2 D 0:161, with all other parameter values as before. The cost ratio
is now outside the stability region, and the disequilibrium dynamics in this case are
described by a 4-cyclic chaotic attractor1 (see Fig. 3.52). Of course, even if in this
case chaotic dynamics are observed, the time series are much more regular, since
they are characterized by a quasi-cyclic behavior (Fig. 3.5b). Furthermore, the zero

1 An n-cyclic chaotic attractor consists of n separate pieces that are visited cyclically in a given
order.
2 The particular “rectangular shape” of the attractors shown in Figs. 3.4 and 3.5 is related to the
particular structure of the map in the case of best reply dynamics, see for example, Bischi et al.
(2000b) and Agliari et al. (2002a)
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Fig. 3.5 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the duopoly case. The cost ratio 	 D c2=c1 D 0:161. (a) A 4-cyclic chaotic attractor in the .x1; x2/
plane and dividing line between regions of positive and negative profits for firm 1. (b) Time series
of a portion of the chaotic attractor. Note how they are more regular than those in Fig. 3.4b

profit line for firm 1 depicted in Fig. 3.5a indicates that the high-cost firm 1 would
make a loss after every fourth period with certainty, and potentially also makes a
loss after every third period. Consequently, given the regularity of the trajectories in
this situation and the possibility of losses following a regular pattern, it seems that
the assumption of naive expectations would be more plausible in the former case,
where the chaotic attractor extends over a larger portion of the phase space.

Let us now turn to the semi-symmetric case obtained by assuming c2 D � � � D cN ,
a2 D � � � D aN , L2 D � � � D LN and x2.0/ D � � � D xN .0/. This particular situa-
tion, which has been already studied in Example 3.3, allows us to get some insight
into the effects of increasing the number of competitors. As we have seen already in
the previous chapters, if the firms partially adjust their production quantities towards
the best replies, then the decisions made by firm 1 and the identical firms 2; : : : ; N
are captured by the two-dimensional dynamical system

T W
�

x1.t C 1/ D .1 � a1/x1.t/ C a1R1..N � 1/x2/;

x2.t C 1/ D .1 � a2/x2.t/ C a2R2.x1 C .N � 2/x2/:

Assuming an interior equilibrium, it is given by

Nx1 D .N � 1/A

c1 C .N � 1/c2

�

.N � 1/c2 � .N � 2/c1

c1 C .N � 1/c2

�

;

Nx2 D ::: D NxN D .N � 1/A

c1 C .N � 1/c2

�

c1

c1 C .N � 1/c2

�
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and it is locally asymptotically stable if

� 4a1	.N � 1/ C a1a2.1 C 	.N � 1//2 C 2a2.�2 C N.1 C 	 � 	N// < 0

� 8.�2 C a1/	.N � 1/ C a1a2.1 C 	.N � 1//2C4a2.�2CN.1 C 	�	N// > 0;

(3.15)

where 	 D c2=c1 denotes the cost ratio between firms (see Example 3.3; recall that
the other stability condition derived there is always fulfilled). For given adjustment
coefficients and unit costs, these conditions tell us for which number of firms the
equilibrium becomes unstable. Consider for example AD 16, a1 D 0:4, a2 D 0:3,
c1 D 5, c2 D 6, L1 DL2 D 2. Then it is easy to see that the first condition holds
always for N >2, so we do not consider it in the following analysis. The second
inequality becomes �88N 2 C 1246.N � 1/>0, and it holds as long as the number
of firmsN � 13. So in these cases the equilibrium is stable. ForN D 14 this inequal-
ity is violated, showing that the equilibrium becomes unstable. Figure 3.6 shows a
bifurcation diagram for N in the range Œ2; 30�. As expected, the Nash equilibrium
Nx is stable as long as the number of competitors is less than 13, and then it loses
stability through a period doubling bifurcation. For even higher values of N other
bifurcations occur leading to more complicated kinds of asymptotic behavior. Since
more detailed results can be easily derived on the basis of a standard local stability
analysis, we now turn to the more interesting investigation of the global properties
of our model.

In order to explain what kind of bifurcations and global dynamic properties are
involved in the qualitative changes of the dynamics observed in Fig. 3.6, we study
the properties of the piecewise smooth map T . We first divide the strategy space

0

146 10 18 22 262 30
0

0.6

x1

N

x2

0.8

Fig. 3.6 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the semi-symmetric case. Bifurcation diagrams of outputs x1; x2 with respect to the number of
firms
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D D Œ0; L1� � Œ0; L2� into regions D
.k/ where the map T has different expressions.

As observed in Chap. 2, the curves that divide these regions are curves of non-
differentiability, and these curves may play the role of folding curves (or critical
curves, following the terminology used in Mira et al. (1996)). In order to write the
expression of the map T in the different regions D

.k/, notice that for the set of
parameters considered, in the expression of the reaction curve (3.12) of firm 1 we
have

z�
1 < 0 for x2 >

16

5 .N � 1/
;

whereas the constraint z�
1 >L1 is ineffective since L1 >A=.4c1/. Likewise, for the

reaction function R2 of firms 2; : : : ; N , we have

z�
2 < 0 for x1 C .N � 2/ x2 > 8=3

and the constraint z�
2 > L2 is ineffective since L2 > A=.4c2/. The lines x2 D

16
5.N �1/

and x2 D 8�3x1

3.N �2/
divide the strategy space D into 4 regions. In region D

.1/,

where x2 < 16
5.N �1/

and x2 < 8�3x1

3.N �2/
, we have

T j
D.1/ W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/ C a1

�
q

16.N �1/x2.t/
5

� .N � 1/x2.t/

�

;

x2.t C 1/ D .1 � a2/x2.t/ C a2

h
q

16.x1.t/C.N �2/x2.t//
6

� x1.t/

�.N � 2/x2.t/
i

:

In region D
.2/, where x2 < 16

5.N �1/
and x2 > 8�3x1

3.N �2/
, the map is

T j
D.2/ W

8

<

:

x1.t C 1/ D .1 � a1/x1.t/ C a1

�
q

16.N �1/x2.t/
5

� .N � 1/x2.t/

�

;

x2.t C 1/ D .1 � a2/x2.t/:

In region D
.3/, where x2 > 16

5.N �1/
and x2 > 8�3x1

3.N �2/
, the map is

T j
D.3/ W

�

x1.t C 1/ D .1 � a1/x1.t/;

x2.t C 1/ D .1 � a2/x2.t/:

In region D
.4/, where x2 > 16

5.N �1/
and x2 < 8�3x1

3.N �2/
, we have

T j
D.4/ W

8

ˆ

ˆ

<

ˆ

ˆ

:

x1.t C 1/ D .1 � a1/x1.t/;

x2.t C 1/ D .1 � a2/x2.t/ C a2

h
q

16.x1.t/C.N �2/x2.t//
6

� x1.t/

�.N � 2/x2.t/
i

:
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The positive equilibrium

Nx D
�

16 .N � 1/ .N C 4/

.6N � 1/2
;
80 .N � 1/

.6N � 1/2

�

is in region D
.1/, whereas no equilibria exist in regions D

.k/, k D 2; 3; 4. In order
to study the local stability of the positive fixed point Nx, we consider the Jacobian
matrix

J.1/ D
0

@

1 � a1 a1

h

2.N �1/p
5.N �1/x2

� .N � 1/
i

a2

h p
2p

3Œx1C.N �2/x2�
� 1

i

1 � a2 C .N � 2/a2

h p
2p

3Œx1C.N �2/x2�
� 1

i

1

A

(3.16)

computed at Nx. Using the characteristic equation, the stability condition �88N 2 C
1246.N � 1/>0 given before follows after some calculation. As noticed above,
the equilibrium Nx undergoes a flip (or period doubling) bifurcation for increasing
N . After the first flip bifurcation, occurring at N ' 13, further period doublings
occur and a route towards chaotic behavior is observed for increasing values of
N . However, it is obvious from the stability conditions in (3.15) that the values of
the two speeds of adjustment also play an important role. Stability of the positive
equilibrium is always ensured for appropriately selected low values of the adjust-
ment speed a2. This can also be confirmed by numerical simulations. In Fig. 3.7 we
show a bifurcation diagram obtained with N D 23, where all the other parameters
are chosen as in Fig. 3.6 and with the bifurcation parameter a2 spanning the whole
range .0; 1�. For low values of a2 the equilibrium is stable. For increasing values
of a2 several sudden transitions between chaotic and periodic behavior characterize
the asymptotic dynamics.Many of these bifurcations are different from the common
bifurcations observed for smooth dynamical systems as the reader might notice. The
reason is that the bifurcations observed here are strongly influenced by the pres-
ence of the lines of non-differentiability. As already stressed in Chap. 2, these can
be often classified as border collision bifurcations, occurring when an equilibrium
point (or a periodic point) of a piecewise differentiable dynamical system crosses
a curve of non-differentiability. Such a contact may produce many kinds of effects
(transition to another cycle of any period or a sudden transition to chaos) depend-
ing on the eigenvalues of the two Jacobian matrices on the two adjacent sides of
the curve of non-differentiability involved in the contact (see for example, Banerjee
et al. (2000b)). Moreover, as we have shown in Chap. 2 (see also Appendix C) the
lines of non-differentiability may represent “folding lines,” and consequently they
have a role similar to that of the critical curves, where the latter are defined as sets
of points where the Jacobian determinant vanishes. In other words, candidates for
the “folding curves” F .i/ in the particular example we are considering are:

1. The curves of non-differentiability, that is the lines x2 D 16
5.N �1/

and x2 D 8�3x1

3.N �2/
;

2. The curves of vanishing Jacobian, where the Jacobian matrices in the regions
D

.k/, k D 1; : : : ; 4, are respectively J .1/, given in (3.16),
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Fig. 3.7 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions –
the semi-symmetric case. Bifurcation diagrams of outputs x1; x2 with respect to a2 with the number
of firms held fixed at N D 23. The parameters are otherwise as in Fig. 3.6

J .2/ D
 

1 � a1 a1

�

2.N �1/p
5.N �1/x2

� .N � 1/
�

0 1 � a2

!

;

J .3/ D
�

1 � a1 0

0 1 � a2

�

;

and

J .4/ D
 

1 � a1 0

a2

� p
2p

3Œx1C.N �2/x2�
�1
�

1�a2 C .N�2/ a2

� p
2p

3Œx1C.N �2/x2�
�1
�

!

:

Notice that only in regions D
.1/ and D

.4/ may we have points at which the Jacobian
determinant vanishes.

After the foregoing preparations, we are now in a position to describe some bor-
der collision bifurcations as well as some methods to bound chaotic attractors that
involve the lines of non-differentiability for a specific numerical example. Let us
start from the set of parameters used to obtain the bifurcation diagram Fig. 3.7, that
is N D 23, AD 16, a1 D 0:4, c1 D 5, c2 D 6, L1 DL2 D 2. From the second sta-
bility condition in (3.15) we can deduce that at a2 D 21120

127781
' 0:165 the Nash

equilibrium Nx loses stability through a flip bifurcation, at which it becomes a saddle
point, and a stable cycle of period 2 is created around it. Just after this bifurcation,
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Fig. 3.8 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions.
Global dynamics in the semi-symmetric case. (a) At a2 ' 0:2466 a border collision bifurcation
occurs when one of the two periodic points intersects the “folding line” F and a 4-piece chaotic
attractor is born. (b) As a2 increases to a2 D 0:26 the chaotic attractor intersects a “folding line”

the two periodic points are close to the saddle point Nx, hence they belong to region
D

.1/. As the parameter a2 is further increased, the two periodic points move away
from the fixed point, and one of them intersects the boundary of regionD

.1/, denoted
as “folding line” F in Fig. 3.8. This first border crossing may produce many kinds
of effects. However, in this case there are no evident effects: if one of the peri-
odic points moves into region D

.2/ (while the other remains in region D
.1/), the

2-cycle remains attracting. This is an example of a border collision without any
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change in the qualitative dynamics. At a2 ' 0:2462 the 2-cycle undergoes a flip
bifurcation and a stable cycle of period 4 appears. As before, just after the bifurca-
tion the four periodic points are close to the 2-cycle saddle, and far from the lines
of non-differentiability. However, as the parameter a2 is further increased, one of
the periodic points moves towards the folding line F , and at a2 ' 0:2466, a peri-
odic point intersects the boundary of region D

.1/, that is the “folding line” F (see
Fig. 3.8a). This marks the occurrence of a true border collision bifurcation, with the
effect of a transition to a 4-piece chaotic attractor (see Fig. 3.8b with a2 D 0:26).

As can be seen, the chaotic attractor crosses the folding line F . Hence, it is
bounded by the images of this line, denoted as T .i/.F /, i D 1 : : : ; 8, in Fig. 3.8b.
This suggests that when a chaotic attractor intersects a folding line F , the boundary
of the chaotic area includes points belonging to images of increasing rank of F .
This is a well-known property of the critical lines of smooth noninvertible maps
(see Appendix C), which is here extended to the lines of non-differentiability of a
piecewise differentiable map (see Mira et al. (1996)). As a2 is further increased,
the 4-cyclic chaotic attractor becomes wider (see Fig. 3.9a) until the merging of the
pieces occurs. This merging leads to a 2-cyclic chaotic attractor (this occurs at a2 '
0:2765/ and then a unique large chaotic attractor emerges (see Fig. 3.9b), obtained
for a2 ' 0:2965). Also in this case, the boundary of the chaotic area is given by the
images of a suitable portion of the folding line F . Finally, we once again point out
that in the two cases shown in Fig. 3.9, the upper portion of the chaotic attractors
is included in the region with negative profits, that is above the lines representing
the equation x1 C .N � 1/x2 DA=ck , k D 1; 2. This means that along the chaotic
trajectories that describe the long run time evolution of the production decisions of
the firms, some periods with negative profits are involved.

3.1.3 Continuous Time Models and Local Stability

In this section model (1.31), describing the continuous time dynamics of par-
tial adjustment towards the best response with naive expectations, is examined in
the isoelastic case. The Jacobian of the system again has the form (2.46), and
its characteristic equation has the special form of (2.47). We assume again that
ak D ˛0

k
.0/>0 for all k. Here either all rk values are in the interval .�1; 0 �, or

exactly one rk value is positive. If none of the rk values is positive, then the local
asymptotic behavior of the equilibrium is the same as in the concave case. By adding
up the terms with identical denominators in the bracketed factor of (2.47) we obtain
(2.48), where at most one �j >0. If all �j � 0, then the problem is the same as in the
concave case, so the equilibrium is always locally asymptotically stable. Therefore
we may assume that �j0 >0 for some j0. If �j ¤ 0 and mj D 1, then �aj .1 C rj /

is not an eigenvalue of the Jacobian. Otherwise it is, and the other eigenvalues are
the roots of the equation
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Fig. 3.9 Example 3.4; discrete time oligopoly with isoelastic demand and linear cost functions.
Global dynamics in the semi-symmetric case. Parameters are the same as in Fig. 3.8. (a) As a2
increases further to a2 ' 0:2765 the pieces of the chaotic attractor merge into a 2-cyclic chaotic
attractor. (b) At a2 ' 0:2965 a unique large chaotic attractor emerges

1 �
s
X

j D1

�j

aj .1 C rj / C �
D 0;

where we assume again that �j ¤ 0 for all j , ak > 0 for all firms, and

a1.1 C r1/ > a2.1 C r2/ > : : : > as.1 C rs/:
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If g.�/ denotes again the left hand side of the above equation, then

lim
�!˙1

g.�/ D 1;

lim
�!�aj .1Crj /˙0

g.�/ D
(

�1 if j D j0;

˙1 if j ¤ j0.

However similarly to the discrete time case, g0.�/ has no definite sign. The graph
of g.�/ is the same as shown earlier in Figs. 3.1–3.3 with the only difference being
that the poles are all negative and given by �a1.1Cr1/; : : : ;�as.1Crs/. Therefore
we have again three cases.

Case 1. If j0 D 1, then there are s�2 real roots between each pair of poles �aj .1C
rj / and �aj C1.1 C rj C1/ for j D 2; : : : ; s � 1. If the other two roots are real
and are between �a1.1 C r1/ and �as.1 C rs/, then the equilibrium is locally
asymptotically stable.

Case 2. If j0 D s, then all roots are real and are negative if g.0/ > 0. This condition
can be rewritten as

N
X

kD1

rk

1 C rk

< 1:

Case 3. If 1<j0 <s, then there are s � 2 real roots, one before �a1.1 C r1/,
and one in between each pair of poles �aj .1 C rj / and �aj C1.1 C rj C1/ for
j D 1; : : : ; j0 � 2, j0 C 1; : : : ; s � 1. If we assume that the remaining two roots
are real and between �a1.1 C r1/ and �as.1 C rs/, then all roots are negative.

The possibility of complex roots will be shown later in Example 3.6. If there are
complex roots, then no simple stability conditions can be given. We will next return
to the case of Example 3.3, but under the assumption of continuous time dynamics.

Example 3.5. Consider again the N -person semi-symmetric oligopoly of Exam-
ple 3.3, now under the assumption of continuous time adjustment of the outputs of
the firms of the oligopoly. Assume again that c2 D ::: D cN . ThenQ1 D .N �1/x2

and Q2 Dx1 C .N � 2/x2 by assuming that firms 2; : : : ; N select identical lin-
ear adjustment function and initial outputs. From Example 3.3 we know that at the
interior equilibrium

NQ D .N � 1/A

c1 C .N � 1/c2

;

r1 D R0
1.

NQ1/ D .N � 1/c2 C .3 � 2N/c1

2.N � 1/c1

;

r2 D R0
2.

NQ2/ D c1 � .N � 1/c2

2.N � 1/c2

:
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Condition (3.5) for k D 1 and k D 2 is

c1 � c1 C .N � 1/c2

N � 1
; c2 � c1 C .N � 1/c2

N � 1
:

The second inequality always holds, the first can be rewritten as

c2

c1

� N � 2

N � 1
: (3.17)

By introducing again the notation 	 D c2=c1 we have

	 � N � 2

N � 1
;

r1 D .N � 1/	 C .3 � 2N/

2.N � 1/
and r2 D 1 � .N � 1/	

2.N � 1/	
:

The two-dimensional system for the adjustment of firms’ outputs has the form

Px1 D a1.R1..N � 1/x2/ � x1/;

Px2 D a2.R2.x1 C .N � 2/x2/ � x2/;

with Jacobian matrix

��a1 a1r1.N � 1/

a2r2 a2.r2.N � 2/ � 1/

�

:

The characteristic equation can be written as

.�a1 � �/.a2.r2.N � 2/ � 1/ � �/ � a1a2r1r2.N � 1/ D 0

or

�2 C�Œa1 Ca2.1Cr2.2�N//�Ca1a2Œ1C .2�N/r2 � .N �1/r1r2� D 0: (3.18)

Clearly,

r2 �
1 � .N � 1/

N � 2

N � 1
2.N � 1/	

D 3 � N

2.N � 1/	
:

Notice first that the linear coefficient of (3.18) is always positive since r2 � 0. With
the new variableK D .N �1/	, the multiplier of a1a2 in the constant term of (3.18)
has the form

1 C .2 � N/
.1 � K/

2K � .N � 1/
.K C .3 � 2N//

2.N � 1/

1 � K
2K

D 1

4K Œ4K C .4 � 2N/.1 � K/ � .1 � K/.K C 3 � 2N/� D .K C 1/2

4K > 0:
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Then Lemma F.2 implies that the equilibrium is always locally asymptotically
stable.

Example 3.6. Assume in the previous example that N D 2, a1 D a2 D a. Then
(3.18) simplifies to

�2 C 2a� C a2.1 � r1r2/ D 0:

From Example 3.2 we know that r1r2 < 0 if c1 ¤ c2. In this case both the linear and
constant coefficients are positive (as in the general case of the previous example),
and the discriminant is

4a2 � 4a2.1 � r1r2/ D 4a2r1r2 < 0:

So both roots are complex, showing that there is no guarantee that the eigenvalues
are real, contrary to the case of concave oligopolies discussed in Sect. 2.5.

The book by Okuguchi and Szidarovszky (1999) contains some stability results
in the case of linear cost functions. A detailed stability analysis is presented by
Chiarella and Szidarovszky (2002) for the general nonlinear case. Models with con-
tinuously distributed time lags are identical to the concave case, so the derivations
and the similar results are not duplicated here.

3.2 Cost Externalities and Multiple Interior Nash Equilibria

In Chap. 2 we demonstrated that under some standard assumptions on the demand
function and on the cost functions of the oligopolists, the reaction functions of
the firms are decreasing. However, there are several situations where the microe-
conomic fundamentals of an oligopoly model lead to reaction functions which
are non-monotonic. For example, in the previous subsection we have shown that
with isoelastic price functions the reaction functions are increasing over the range
where the expected aggregate quantity of the other players is small, otherwise it is
decreasing (see also Example 1.5 and Bulow et al. (1985b)). Using non-monotonic
reaction functions, several authors have considered the best response dynamics and
the partial adjustment towards the best response and have demonstrated that such
adjustment processes may lead to non-convergence with complicated, but bounded
fluctuations of the production sequences (for example, Rand (1978), Dana and
Montrucchio (1986), Witteloostuijn and Lier (1990) and Puu (1991)). The focus of
these contributions has been mainly towards questions of local stability of the Nash
equilibria and the creation of complex attractors if convergence to an equilibrium
fails. The emphasis of the analysis is, in this case, on the delineation of a trapping
region in the space of production quantities, where the asymptotic dynamics of the
oligopoly game are ultimately bounded.

In the present subsection we will turn our attention to externalities in the cost
functions, which might also give rise to non-monotonic reaction functions (see
Example 1.6, Kopel (1996), Puhakka and Wissink (1995), Bischi and Lamantia
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(2002) and Furth (1986, 2009)). We will consider a duopoly market and we will
show that in a simple model with cost externalities we obtain several coexisting
equilibria. Since an equilibrium point can be considered as a convention that arises
among firms interacting repeatedly, stability arguments are often used to solve
this coordination problem. See for example, Van Huyck and Battalio (1998) and
Van Huyck et al. (1984, 1997). If a stability argument selects a single equilibrium,
this point can be considered as the solution of the oligopoly game. However, as we
will see, in the model with cost externalities multiple equilibria survive this type
of refinement and several (locally) stable equilibria coexist. Each of these equilibria
has its own basin of attraction and, consequently, the dynamic process becomes path
dependent. The long run outcome of the players’ myopic output decisions crucially
depends on the initial production quantity. Hence, in such a situation it is not suffi-
cient to analyze the local stability properties. In order to be able to give some insight
into the long run market outcome, it is important to gain some knowledge about the
boundaries that separate the basins of attraction of the various coexisting equilibria,
and to study the role of these boundaries in the occurrence of global bifurcations
that drastically change the topological structure of the basins.

Recall from Example 1.6 that if the inverse demand function is linear, p D
f .Q/DA � BQ, and the cost functions of the oligopolists are characterized by
interfirm externalities, that is Ck.xk ;Qk/DxkMk.Qk/withMk.Qk/DA�B.1C
2�k/Qk � 2B�kQ

2
k
, then the best response of firm k is given by

Rk.Qk/ D
8

<

:

0 if �kQk.1 � Qk/ � 0;

Lk if �kQk.1 � Qk/ � Lk ;

z�
k
otherwise;

where z�
k

D�kQk.1 � Qk/ and Lk denotes the capacity of firm k. The parameters
�k measure the intensity of the interfirm cost externality (see Kopel (1996)). In what
follows we consider a duopoly market (N D 2), so that Q1 Dx2 and Q2 D x1. We
let �k 2 .1; 4� and for simplicity we assume that Lk D 1. Under these assumptions
the reaction functions reduce to

R1.x2/ D �1x2.1 � x2/; R2.x1/ D �2x1.1 � x1/: (3.19)

The Nash equilibria of this duopoly are located at the intersections of the two
reaction curves x1 DR1.x2/ and x2 DR2.x1/. The reaction functions are shown
in Fig. 3.10, where the two panels illustrate that beside the trivial Nash equilibrium
O D .0; 0/, multiple interior Nash equilibria can exist depending on the level of the
cost externalities. For example, for �1 D 3; �2 D 3:5 there is just one interior Nash
equilibrium ES (part (a)), whereas for �1 D 3:7; �2 D 3:5 there are two additional
interior Nash equilibriaE1 andE2 (part (b)). Analytically, the interior equilibria are
obtained as the real solutions of the fourth degree algebraic system

x1 D �1x2.1 � x2/; x2 D �2x1.1 � x1/;

and this system can have up to four solutions.
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Fig. 3.10 Oligopolies with linear inverse demand function and cost externalities. The case of
duopoly, multiple Nash equilibria become a possibility. (a) A unique interior Nash equilibrium
occurs when�1 D 3,�2 D 3:5. (b) Three interior Nash equilibria occur when�1 D 3:7,�2 D 3:5

In order to keep the following analysis tractable, we make the (rather reasonable)
assumption that the influence of each firm’s action on the marginal costs of the
competitor is identical for both firms, that is

�1 D �2 D �: (3.20)
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In the case of � > 1 there is always an interior Nash equilibriumES which belongs
to the diagonal� D f.x; x/ ; x 2 Rg. Its coordinates are given by

ES D
�

1 � 1

�
; 1 � 1

�

�

;

and it is characterized by identical production quantities of the two firms. At � > 3

two further Nash equilibria exist. They are given by

E1 D
 

� C 1 Cp

.� C 1/ .� � 3/

2�
;
� C 1 �p

.� C 1/ .� � 3/

2�

!

;

E2 D
 

� C 1 �p

.� C 1/ .� � 3/

2�
;
� C 1 Cp

.� C 1/ .� � 3/

2�

!

;

(3.21)

and they are located in symmetric positions with respect to the diagonal �. Notice
that for �D 3, E1; E2 and ES coincide. These Nash equilibria are characterized by
different production quantities of the two players. It is easy to see that the market
share of firm 1 (firm 2) is larger in E1 (E2). Obviously, in a situation where multi-
ple Nash equilibria coexist, a coordination problem for the two firms arises. It is not
clear which of the Nash equilibria the firms can agree upon as an outcome of the
game. One possibility to discriminate among the equilibria is to assume that players
start with quantity pairs out of equilibrium and adjust their production decision to
evolving changes in their environment, for example, using their best replies or esti-
mates of the gradient of the profit functions. Then we can use local stability, global
dynamics, or for example, the extent of the basins of attraction in the case of mul-
tiple locally stable equilibria to obtain insights into the question about which of the
equilibria is more likely to be a long run outcome of the game (see Kopel (2009)
and Cox and Walker (1998)).

We will assume that in order to update their production decisions, the duopolists
use partial adjustment towards the best response with naive expectations. Recall,
however, that in Chap. 1 we have shown that in the duopoly case the best reply
dynamics with adaptive expectations is identical to the dynamical system obtained
by partial adjustment towards the best response with naive expectations (see (1.20)
and (1.21)). Consequently, for our duopoly model with symmetric cost externalities,
in either case the dynamical systems which generates the sequences of (expected)
production quantities is given by

x1.tC1/ D .1�a1/x1.t/Ca1R1.x2.t//D .1� a1/ x1 .t/ C a1�x2.t/ .1 � x2.t// ;

x2.tC1/ D .1 � a2/x2.t/Ca2R2.x1.t// D .1�a2/x2 .t/ C a2�x1.t/ .1�x1.t// :
(3.22)
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3.2.1 Identical Speeds of Adjustment

We first assume that the speeds of adjustment are identical for the two firms, that is

a1 D a2 D a:

Under this assumption, in contrast to the previous examples, the singularities that
are involved in global bifurcations can be given in closed form. Moreover, the
exact values for the parameters at which global bifurcations occur can be explicitly
determined (see Bischi and Kopel (2001) for further details).

In this case, it is obvious that the steady states of this system correspond to the
Nash equilibria of the game and are independent of the adjustment speed a. A proper
study of the two-dimensional map T W .x1; x2/ ! �

x0
1; x

0
2

	

defined by

T W
�

x0
1 D .1 � a/ x1 C a�x2 .1 � x2/ ;

x0
2 D .1 � a/ x2 C a�x1 .1 � x1/ ;

(3.23)

should provide some answers to the questions stated above. Since we restrict our-
selves to � 2 .1; 4�, the strategy space S D fŒ0; 1� � Œ0; 1�g is trapping for each
value of a 2 .0; 1� and for each initial value of production quantities in S.3 In other
words, any sequence of production quantities which starts inside S remains feasible
for all t � 0.

We first turn to the question of local stability of the interior Nash equilibria and
provide a characterization of the corresponding stability regions (see also Fig. 3.11).

Proposition 3.1. Let 
 D ˚

.�; a/ 2 R
2j1 < � � 4; 0 < a � 1




denote the appro-
priate region in the parameter space. Then the following holds.

(i) The symmetric Nash equilibriumES D f1 � 1=�; 1 � 1=�g exists for all .�; a/
2 
. It is locally asymptotically stable for .�; a/ 2 
, if 1 < � < 3.

(ii) The Nash equilibria Ei , i D 1; 2, given in (3.21) exist for � > 3. They are
locally asymptotically stable for .�; a/ 2 
; if a < ah .�/ D 2=.�2 � 2� � 3/.

(iii) In the set


s.Ei ; C2/D
(

.�; a/2
 j� > 3; ah .�/ > a>ap .�/ D 6 �p

12� .� � 2/

3 C 2� � �2

)

;

(3.24)
the two stable Nash equilibria Ei , i D 1; 2, given in (3.21) coexist with a stable
cycle of period two

3 This is so since the maxima of the reaction functions Rk occur at �k=4, and here we have �1 D
�2 D � with 0 < � � 4.
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Fig. 3.11 Oligopolies with linear inverse demand function and cost externalities. The case of
duopoly with identical speeds of adjustment. Multiple Nash equilibria in the .�; a/ plane. Note
that ES is unique and stable for � < 3. For � > 3 ES becomes unstable and two stable equilibria
E1;E2 occur

C2 D f.p1; p1/ ; .p2; p2/g 2 �; (3.25)

with coordinates

p1 D
a .� � 1/ C 2 �

q

a2 .� � 1/2 � 4

2a�
;

and

p2 D a .� � 1/ C 2 C
q

a2 .� � 1/2 � 4

2a�
:

For the interested reader it should be mentioned that for .�; a/ 2 
 with
a>ah .�/, more complicated dynamicsmight be observed. The proof of this propo-
sition is based on a standard analysis of the eigenvalues of the Jacobian matrix and
is given in detail in Bischi and Kopel (2001).
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The results given in this proposition show that for a large set of values of the
cost externality � and the adjustment speed a, multiple stable Nash equilibria are
obtained (see the shaded area in Fig. 3.11). Additionally, for sufficiently high values
of the adjustment coefficient a in this area, namely for a > ap .�/, a stable 2-cycle
C2 coexists with the two stable equilibria E1 and E2. This latter point seems to be
important for the following reason. If the adjustment process converges to the equi-
libria only if initial conditions are chosen from a certain subset of S and otherwise
it cannot be observed, it becomes crucial to obtain information on the relative size
of the set of initial conditions from which players can eventually coordinate their
actions (see Mailath (1998), Fudenberg and Levine (1998)).

We will now turn to the analysis of the global dynamics of the model. Since we
are not able to discriminate among the equilibria E1 and E2 on the basis of the
local stability properties, to obtain further information on the stability properties of
the Nash equilibria we will study their basins of attraction. Figure 3.12 depicts the
basins of the locally stable equilibria E1 and E2 for two quite distinct situations.
In Fig. 3.12a, obtained with �D 3:4 and aD 0:2<1=.1 C �/ D 0:2273, the basins
have a quite simple structure. For initial production quantities in S with x1.0/ >

x2.0/ the adjustment process (3.23) converges to the equilibrium E1. On the other
hand, if the reverse inequality holds, then the process converges to the equilibrium
E2. Therefore, if firm 1 (firm 2) initially dominates the market in terms of market
share, this property prevails throughout and the equilibrium E1 (equilibrium E2)
is eventually selected. In contrast to this, the situation shown in Fig. 3.12b, is quite
different. It is obtained with the same value of the cost externality�, but with higher
values of the adjustment coefficients, namely aD 0:5 > 1=.1 C �/ D 0:2273. In
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0

x2

(a)

LC(b)

LC(a)
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1E
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K
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Z0

Z4

Δ−1

Δ−1

x1

1

0

x2
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Fig. 3.12 Oligopolies with linear inverse demand function and cost externalities. The case of
duopoly with identical speeds of adjustment. Basins of attraction of the multiple Nash equilibria
(a) Simple structure for � D 3:4 and a D 0:2. Convergence to eitherE1 orE2 depending on which
firm dominates initially. (b) Non-connected basins for � D 3:4 and a D 0:5, now convergence to
E or E2 cannot be determined on the basis of which firm dominates initially



134 3 General Oligopolies

this case the basins are no longer simply connected sets, and portions of each basin
are present both in the region above and below the diagonal �. The basins are now
disconnected sets, and the adjustment process starting from initial conditions below
or above the diagonal may lead to convergence to either E1 or E2.

The transition from simply connected basins to disconnected basins is caused
by a global bifurcation. We will now describe the mechanism which causes this
bifurcation in more detail. The argument begins by noticing that the map T defined
in (3.23) is noninvertible. Given a point

�

x0
1; x

0
2

	 2 S, its preimages are computed
by solving with respect to x1 and x2 the algebraic system

8

<

:

.1 � a/x1 C a�x2.1 � x2/ D x0
1;

.1 � a/x2 C a�x1.1 � x1/ D x0
2:

(3.26)

As noticed before, this is a fourth degree algebraic system, which may have four
or two real solutions, or no real solution at all. Hence, the strategy set S can be
subdivided into the regions Z4, Z2, and Z0, separated by branches of the critical
curve LC . For the differentiable map (3.23) the curve LC�1 coincides with the set
of points at which the determinant of the Jacobian matrix vanishes (see Appendix C)
so that

�

x1 � 1

2

��

x2 � 1

2

�

D .1 � a/2

4a2�2
: (3.27)

Equation (3.27) represents an equilateral hyperbola. The curve LC�1 is formed
by the union of two disjoint branches, say LC�1 D LC

.a/
�1 [ LC

.b/
�1 , which are

depicted in Fig. 3.13a. Also its imageLC D T .LC�1/ is the union of two branches,
LC .a/ D T .LC

.a/
�1 / and LC .b/ D T .LC

.b/
�1 /. This is shown in Fig. 3.13b. The

branch LC .a/ separates the region Z0, whose points have no preimages, from the
region Z2, whose points have two distinct rank-1 preimages. The other branch
LC .b/ separates the region Z2 from the region Z4, whose points have four distinct
preimages.4 In order to give a geometrical interpretation of the “unfolding action”
of the multivalued inverse T �1, it is useful to consider a region Zk as the super-
position of k sheets, each associated with a different inverse. Such a representation
is known as Riemann foliation of the plane (see for example, Mira et al. (1996)).
Different sheets are connected by folds joining two sheets, and the projections of
such folds on the phase plane are arcs of LC . The foliation associated with the map
(3.23) is qualitatively represented in Fig. 3.13c. It can be noticed that the cusp point
of LC .b/ denoted byK is characterized by three merging preimages at the junction
of two folds.

This cusp point K of LC .b/ plays a crucial role in the analysis, since when K

enters the strategy set S (for a .� C 1/ > 1, see below), suddenly points of S have

4 Following the terminology of Mira et al. (1996), we say that the map (3.23) is a noninvertible
map of Z4 > Z2 � Z0 type, where the symbol “> ” denotes the presence of a cusp point in the
branch LC.b/.
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Fig. 3.13 Oligopolies with linear inverse demand function and cost externalities, the case of
duopoly with identical speeds of adjustment. (a) The two disjoint branches, LC.a/

�1 and LC
.b/
�1

of the curve LC�1. (b) The critical curves LC D T .LC�1/. Note the cusp at K . (c) Illustrating
the Riemann foliation of the .x1; x2/ plane

a higher number of preimages then before. The unfolding process of the inverse of
the map T then causes the creation of disconnected components of the basins. The
bifurcation occurring at a .� C 1/ D 1 is a global (or contact) bifurcation, which
is characterized by a contact between the stable set of ES along the diagonal �
and a critical curve LC . The coordinates of the cusp point of LC .b/ can be easily
computed in our case. Using (3.27) it is easy to see that the intersection of LC .b/

�1

with the diagonal� occurs at

K�1 D LC
.b/
�1 \ � D .k�1; k�1/ with k�1 D a .� C 1/ � 1

2a�
:
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Then the coordinates of the cusp point of the curveLC .b/ D T .LC
.b/
�1 / are given by

KDLC .b/ \ �D .k; k/ with k D f .k�1/ D .a .� C 1/ � 1/ .a� C 3.1 � a//

4a�
;

where the one-dimensionalmap f .x/ D .1 C a .� � 1// x�a�x2 is the restriction
of the map T to the diagonal. It now becomes obvious that at a .� C 1/ D 1 the cusp
point K enters the strategy set S and that after this bifurcation there are points in
the strategy set that have a higher number of preimages.

To elaborate a little further on the workings of the mechanism which transforms
the basins from simply connected sets to disconnected sets, consider the originO D
.0; 0/. If 0 < a < 1= .� C 1/, thenO 2 Z2 and there are just two rank-1 preimages
of O . Both belong to the diagonal �, with one preimage is O itself (since O is a
fixed point), and the other preimage is

O
.1/
�1 D

�

1 C a .� � 1/

a�
;
1 C a .� � 1/

a�

�

:

This can be easily seen by using the restriction of the map T to the diagonal. The
situation is depicted in Fig. 3.14a, where for the sake of mathematical exposition we
show the whole extent of the basins of attraction of the locally stable equilibria E1

and E2 (and not just the region belonging to the strategy space S as in Fig. 3.12).
Observe that as long as the cusp point is outside the basins of attraction, the basins
are simple and connected sets. If however a > 1= .� C 1/, then the origin O 2 Z4

since the cusp point has entered S, and two more rank-1 preimages ofO exist. These
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Fig. 3.14 Linear inverse demand function and cost externalities. The case of duopoly with identi-
cal speeds of adjustment - basins of attraction of the two equilibria E1 and E2. (a) Here � D 3:4,
a D 0:2 < 1=.�C1/, and the basins of attraction are simple and connected sets. (b) Here � D 3:4,
a D 0:5 < 1=.� � 1/, and the basins of attraction become disconnected
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two further preimages, O.2/
�1 and O.3/

�1 , are located on the line ��1 of the equation5

x1 C x2 D 1 C 1

�

�

1 � 1

a

�

:

in symmetric positions with respect to � (see Fig. 3.14b). Hence

O
.2/
�1 D

 

a .� C 1/ � 1 Cp

a2�2 C 2a� .1 � a/ � 3 .a2 C 1/ C 6a

2a�
;

a .� C 1/ � 1 �p

a2�2 C 2a� .1 � a/ � 3 .a2 C 1/ C 6a

2a�

!

(3.28)

and the symmetric point O.3/
�1 is obtained from O

.2/
�1 by swapping the two coordi-

nates.
To conclude this subsection, we would like to reflect on several issues. First, the

occurrence of the bifurcation which transforms the basins from simply connected to
disconnected sets causes a loss of predictability concerning the long-run outcome of
the adjustment process. The presence of many disjoint components of both basins
causes a sensitivity with respect to the initial production quantities, in the sense that
a small perturbation may lead to a crossing of the boundary which separates the two
basins and, consequently, the trajectory may converge to a different Nash equilib-
rium. Second, for increasing values of the adjustment coefficient a, as the line ��1

in Fig. 3.14b moves upwards, certain connected parts of the basins of the equilibria
come closer to the corresponding other equilibrium. That is, initial production quan-
tities which eventually lead to convergence toEi are located close to the equilibrium
Ej ; i ¤ j , and vice versa. In contrast to a global analysis, a study based only on
the local properties of the process around the equilibria would not have been able
to provide us with information on the size of the neighborhood from which conver-
gence to the corresponding equilibrium is achieved. Finally, our global analysis also
reveals that for .�; a/ 2 
s .Ei ; C2/ three coexisting attractors are present6. Hence
the outcome of the oligopoly game is highly path dependent and could end up at any
of the attractors depending on the initial conditions.

3.2.2 Non-Identical Speeds of Adjustment

We now turn to the case of different speeds of adjustment. In contrast to the previous
situation, a rigorous mathematical analysis cannot be provided. However, guided by

5 This can be seen by setting x0
1 D x0

2 in (3.26) and adding or subtracting the two symmetric
equations.
6 We remind the reader that the stability region of E1, E2 and C2 is defined in Proposition 3.1.
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the knowledge of the critical curves, we can still analyze the structure of the basins
of the two coexisting stable Nash equilibria and we can characterize the bifurcations
that cause their qualitative changes using numerical and graphical procedures.

As in the case of identical speeds of adjustment, there exists a rather large set of
parameter values for �; a1, and a2 for which two stable equilibria exist. Moreover,
it is easy to realize that small differences between the two adjustment coefficients do
not cause significant changes in the local stability properties, that is in the modulus
of the eigenvalues. On the other hand, as will be demonstrated below, such small
differencesmay cause drastic effects with regard to the structure of the basins. Many
of the arguments given in the previous section for the study of the boundaries of the
basins and their global bifurcations continue to hold for non-identical adjustment
speeds. However, there are some important differences.

� The main difference is that the diagonal � is no longer invariant. Even if
the fixed points remain the same, the basins are no longer symmetric with respect
to �.

� The preimages of the unstable fixed point O belong to the boundary of the set
of points which generate bounded trajectories, but a simple analytical expression
of the preimages of O cannot be obtained. Since they are solutions of a fourth
degree algebraic equation, they can be computed by standard numerical routines.

� For increasing values of � or ai the point O enters the region Z4. However
the exact values of the parameters at which this occurs cannot be computed
analytically.

� Although the boundary which separates the basins of E1 and E2 is still formed
by the whole stable set of ES , in the case of a1 ¤ a2 the local stable set of ES

is not along the diagonal �. The contact between the stable set of ES and the
critical curveLC .b/, which causes the transition from simple to complex basins,
does not occur at the fixed point O (since now the origin O does not belong to
the stable set of ES ) and no longer involves the cusp point of LC .b/. Again, the
parameter values at which such contact bifurcations occur cannot be computed
analytically. However, the bifurcation is always caused by a contact betweenLC
and a basin boundary.

We will finally demonstrate that the occurrence of these bifurcations can be
detected by computer-assisted proofs, based on the knowledge of the properties
of the critical curves and their graphical representation. As mentioned before, this
“modus operandi” is typical in the study of the global bifurcations of nonlinear
two-dimensional maps. Figure 3.15a shows the situation obtained for � D 3:6 and
a1 D 0:55, a2 D 0:7. The stable set of ES forms the boundary of the basin of E1.
On the one hand, the effect of such a small asymmetry in the adjustment speeds on
the local stability properties is negligible. The eigenvalues of the two fixed points are
exactly the same and are very close to the eigenvalues obtained for identical adjust-
ment speeds with the same value of � and with, for example, a D .a1 C a2/ =2. On
the other hand, as far as the global dynamics is concerned, non-identical adjustment
speeds have a strong effect on the structure of the basins of attraction of the Nash
equilibriaE1 andE2. Our numerical simulations show that in general the Nash equi-
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Fig. 3.15 Linear inverse demand function and cost externalities. The case of duopoly with differ-
ent speeds of adjustment. (a) Here � D 3:6, a1 D 0:55, a2 D 0:7 - the basin of E1 forms an island
inside the basin of E2. (b) Here � D 3:6, a1 D 0:59, a2 D 0:7 - a contact bifurcation has occurred
and the basin of E2 becomes a set of disjoint islands inside the basin E2

librium Ei dominates Ej in terms of the size of the basin if ai >aj . Figure 3.15a
shows that although the basin of E1 is a simply connected set, the basin of E2 is
now multiply connected. The basin of E1 forms a big “hole” (or “island,” to use the
term of Mira et al. (1996)) inside the basin of E2. The stable set of ES , that is the
boundary which separates the two basins, is entirely included inside the regionsZ2

and Z0. Note, however, that the stable set of ES is close to the critical curve LC ,
which is a signal for the occurrence of a global bifurcation. If a change in parame-
ters causes a contact between the stable set of ES (a basin boundary) and LC , then
this contact marks a bifurcation which normally causes a qualitative change in the
structure of the basins.

This is demonstrated in Fig. 3.15b, where � D 3:6 and a1 D 0:59, a2 D 0:7.
Such a small change in the adjustment speed of player 2 causes a portion of the
basin of E1 to enter the region Z4 (denoted by H0 in the figure). Consequently,
new rank-1 preimages of that portion will appear near LC .b/

�1 , and such preimages

must belong to the basin ofE1. These rank-1 preimages, denoted byH .1/
�1 andH .2/

�1 ,

are located at opposite sides with respect to LC
.b/
�1 and merge onto it. Obviously,

the set H�1 D H
.1/
�1 [ H

.2/
�1 constitutes a disconnected portion of the basin of E1.

Moreover, since H�1 belongs to the region Z4, it also has four rank-1 preimages.
Two of them are located in the strategy space S and are denoted byH .j /

�2 , j D 1; 2.
Points belonging to these “islands” are mapped intoH0 in two iterations of the map
T . Indeed, infinitely many higher rank preimages of H0 exist, even if only some of
them are inside the strategy space S D Œ0; 1� � Œ0; 1�, thus giving smaller disjoint
“islands” of the basin of E1. Hence, at the contact between the stable set of ES and



140 3 General Oligopolies

the critical curve LC , the basin of E1 is transformed from a simply connected set
into a disconnected set.

In summary, in the case of non-identical adjustment speeds, parameter changes
may also result in global bifurcations. Such bifurcations are related to a contact
between a basin boundary and critical curves and change the qualitative structure of
the basins. Since the whole basin of E1 is given by the union of the infinitely many
preimages of its immediate basin B0 .E1/, that is B .E1/ D S

k�0 T
�k .B0 .E1//,

the unfolding action of the inverses of the map T can result in disconnected por-
tions of the basin which are quite far away from the Nash equilibrium. In a sense,
this gives rise to a higher degree of uncertainty with respect to the possibility of pre-
dicting the effects of any small change in the initial market share of the competitors
on the long-run outcome of the duopoly game.
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