
Chapter 1
The Classical Cournot Model

In this chapter we will introduce the classical Cournotmodel, which is also known as
the single-product quantity setting oligopoly model without product differentiation.
In the first section of the chapter the Cournot model will be discussed as an N -firm
static game and the best responses of the firms and the equilibria will be determined
in a series of examples, many of which will be built upon in developing the ideas
in subsequent chapters. Section 1.2 introduces the dynamic adjustment processes
via which we shall assume that firms adjust output over time. We will in particu-
lar discuss expectation formation processes and adaptive adjustments and gradient
adjustments. The final section will illustrate by simple examples the complexity
of the dynamics that can arise in these models due to certain nonlinear features
to be described below. The fundamental techniques for the global analysis of the
dynamics of such models will be explained in Sect. 1.3.

1.1 Introduction

The basic model can be described as follows. Consider an industry of N firms pro-
ducing a homogeneous product. Let k D 1; 2; : : : ; N denote the firms and let xk be
the output quantity of firm k. We assume that the inverse demand (or price) function
depends on the total output level of the industry, so the market price may be writ-

ten p Df
�

PN
kD1 xk

�

. The particular form of the function f can be derived from

microeconomic principles (see for example, Vives (1999)), and several function
types are discussed in the literature.

An important example of an inverse demand function which is linear is obtained
by assuming that the utility function of a typical consumer is quadratic,

U.q/ D aq � 1

2
bq2; .a; b > 0/;

where q is the quantity of the good purchased by the consumer. If we denote the
market price of the good by p, then for a sufficiently large income the consumer
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2 1 The Classical Cournot Model

solves the optimization problem

max.U.q/ � pq/:

Assuming an interior optimum, the first order condition implies that

0 D U 0.q/ � p D a � bq � p;

so that the individual demand at the price p is therefore

q.p/ D a

b
� 1

b
p:

Consider now n heterogenous consumers with quadratic utility and preference
parameters ai and bi . From the previous description we know that for any fixed price
consumer i will buy the amount qi D .ai � p/=bi , so the total demand becomes

D D
n
X

iD1

qi D
n
X

iD1

ai

bi

�
n
X

iD1

1

bi

p;

and hence the relationship between total demand and market price is linear. Notice
that if price increases, demand decreases and that there is a maximum price, usually
referred to as the reservation price, above which demand reduces to zero. If we
denote by Q D PN

kD1 xk the quantity supplied by the N firms in the industry and
we assume that at the price p the market clears, that is D D Q, then it also follows
that the relation between industry output and price is linear. Hence, by inverting this
relationship we finally obtain

p D f .Q/ D A � BQ;

where

A D
n
X

iD1

ai

bi

�

n
X

iD1

1

bi

; B D 1�

n
X

iD1

1

bi

:

Obviously, this representation is only valid for Q � A=B , that is as long as the
industry output is below the market saturation point. Otherwise, we have p D 0.

In the case of a general inverse demand function the profit of firm k .1 � k � N/

is the difference between its revenue and its cost and so is given by

'k.x1; : : : ; xN / D xkf

 

N
X

lD1

xl

!

� Ck.x1; : : : ; xN /; (1.1)

where Ck is the cost function of firm k.1 Our formulation takes into account the fact
that the cost of each firm depends not only on its own output but also on the outputs

1 In the game theory context the profit functions are usually called the payoff functions, and the
firms are called the players. We will occasionally make use of these terms throughout this book.
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of the competitors. The firms have to compete in the secondary market to ensure
capital, manpower, energy, material, etc. for their production processes. The tech-
nological and intellectual spillover between companies is another cost externality
which adds to the interdependence of the firms. In the literature on oligopoly theory
the interdependence of the firms through their cost functions is either ignored by
assuming that the cost of firm k is Ck.xk/; or it is assumed that the cost of firm k

depends on its own production level xk and also on the total production level of the
rest of the industry, which we will denote by Qk D P

l¤k xl so that the cost func-
tion of firm k may be written more generally as Ck.xk ;Qk/. In the rest of the book
we will consider various cases where cost externalities arise. Note that under this
assumption the profit of any firm k just depends on its own output and the output
of the rest of the industry, it does not depend on the individual output level of any
competitor. For this reason it is convenient to rewrite the profit function of firm k as

'k.x1; : : : ; xN / D xkf .xk C Qk/ � Ck.xk ;Qk/: (1.2)

Taken together, the above set-up yields a static N -person game, where the play-
ers are the firms, the strategy set of firm k is the interval Œ0; Lk �, where Lk is the
capacity limit of firm k and its payoff function is given by (1.2). If we assume that
all firms are rational in the sense that they want to maximize their own profits, then
we can derive the firms’ best responses. That is, if firm k knows the total production
Qk of the rest of the industry, then it will select a production level xk that maxi-
mizes its profit (1.2). For each value ofQk let Rk.Qk/ denote the set of all optimal
solutions, that is

Rk.Qk/ D
�

xk j xk D arg max
0�xk�Lk

fxkf .xk C Qk/ � Ck.xk;Qk/g
�

; (1.3)

which is called the best response or best reply mapping of firm k. In the general
case this is a point-to-set mapping, and in this case it is usually called the best
reply correspondence. In the case of a unique optimal solution, Rk.Qk/ is called
the best reply or reaction function of firm k. The Nash equilibrium of the game is
a simultaneous production vector ( Nx1; : : : ; NxN ) which is a best response for each
firm, under the assumption that all others maintain their corresponding equilibrium
production levels. This concept can be mathematically expressed for all k as,

Nxk 2 Rk. NQk/ with NQk D
X

l¤k

Nxl : (1.4)

At the equilibrium all firms simultaneously select their best responses to the cor-
responding equilibrium choices of the competitors. In other words, no firm has any
interest to deviate unilaterally from its equilibrium level.

In the following examples we will show that best responses might have a large
variety of forms, and also, that oligopolies may have no equilibrium at all. Further-
more, in the case of existence there may be multiple equilibria, and the number of
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equilibria may be finite or infinite. In the case of multiple equilibria, the problem
of equilibrium selection arises. In such situations, the non-negativity of the profits
and the dynamic evolution of the oligopoly game, determined by the adjustment
processes and the degree of bounded rationality of the players, can be used to deter-
mine which equilibria are realistic and which are not. We will return to this problem
in later chapters.

Example 1.1. Consider the case of a linear oligopoly where the price function has
the form f .Q/ D maxf0;A � BQg with Q D PN

kD1 xk and Ck.xk/ D dk C
ckxk (1�k �N ) with A, B , ck , dk being all positive. Note that the max operation
ensures that the price is zero for total output above the market saturation pointA=B .
In this case 'k is strictly concave in xk with derivative

@'k

@xk

D
(

A � BQk � 2Bxk � ck if Qk C xk < A
B
;

�ck if Qk C xk > A
B
;

and this derivative does not exist ifQk C xk D A=B .
If for any firm k it is the case thatA�ck � 0, then @'k=@xk is always negative, so

the best response of this firm is always zero, and hence entry for this firm is blocked.
Hence such firms do not participate in production, and therefore we can ignore them
in all further discussions. If for firm k, the capacity limitLk is sufficiently large, then
with A>ck , its monopoly quantity is xM

k
D .A�ck/=.2B/, which can be obtained

from the first order condition with Qk D 0.
In order to determine the best response of the firms, consider firm k and assume

that the total production levelQk of the rest of the industry is fixed. Notice first that
the best response of this firm cannot exceed A=B � Qk , that is, the total industry
output cannot be larger than the market saturation point. In contrast, assume that
xk >A=B �Qk , then the price is zero, and by decreasing the value of xk by a small
amount, the price will be still zero and the cost decreases. So the payoff of this
firm would increase contradicting the assumption that xk is the firm’s best response.
Therefore with fixed values of Qk the best response of firm k is selected in the
interval Œ0; NLk � with NLk D minfLk; A=B � Qkg. If the capacity limits of the firms
are sufficiently small, that is, when

PN
kD1 Lk � A=B , then the zero segment of the

price function cannot occur, so NLk D Lk for all k andQk . For the sake of simplicity
in the following discussion we will assume that this is the case. Since 'k is strictly
concave in xk , the best response of firm k is unique and is given as

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if @'k

@xk
jxkD0� 0;

Lk if @'k

@xk
jxkDLk

� 0;

z�
k

otherwise;

where z�
k
is the solution of

@'k

@xk

D 0;



1.1 Introduction 5

implying in the present case that

z�
k D �1

2
Qk C A � ck

2B
: (1.5)

Straightforward calculations reveal that

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if Qk � .A � ck/=B;

Lk if Qk � .A � ck � 2BLk/=B;

�1
2
Qk C .A � ck/=.2B/ otherwise:

(1.6)

In the case of two firms, whenQ1 D x2 andQ2 D x1, we can illustrate graphically
the existence of a unique equilibrium. Figure 1.1 shows the best response functions
of the two firms in the situation where L1 < xM

1 and L2 < xM
2 . If L1 � xM

1 , then
the vertical segment of R1.x2/ disappears and we simply have R1.0/ D xM

1 . A
similar situation occurs whenL2 � xM

2 . The best replies intersect at a unique point,
which is the Nash equilibrium. It can also be proved that with an arbitrary value of
N , the oligopoly always has a unique equilibrium (see for example Sect. 2.1, and
Okuguchi and Szidarovszky (1999)). If the market saturation point and the capac-
ity limits are sufficiently large, then we can even compute the unique equilibrium.

x1

x2

A�c1
B

xM
2

xM
1

L2

L1

A�c1�2BL1

B

A�c2�2BL2

B
A�c2

B

R1.x2/

R2.x1/

Nash equilibrium

Fig. 1.1 Example 1.1; the Cournot model in the case of duopoly .N D 2/ with linear price and
cost functions. The figure shows the reaction functions R1.x2/ (dashed line), R2.x1/ (solid line)
and the unique equilibrium
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Assume that all equilibrium outputs are positive, the other case can be examined
similarly. The first order conditions imply that

@'k

@xk

D @

@xk

Œxk.A � Bxk � BQk/ � .dk C ckxk/�

D A � 2Bxk � BQk � ck

D A � Bxk � BQ � ck D 0; (1.7)

whereQ is the total output of the industry. So

xk D A � BQ � ck

B
D A � ck

B
� Q: (1.8)

By summing this last equation over all firms we obtain forQ the single equation

Q D NA �PN
iD1 ci

B
� NQ; (1.9)

implying that at the equilibrium

NQ D NA �PN
iD1 ci

.N C 1/B
: (1.10)

Notice that NQ < A=B , so the price is always positive. From (1.8) and (1.10) we can
compute the equilibrium output levels of the firms as

Nxk D A � ck

B
� NA �PN

iD1 ci

.N C 1/B
D A � .N C 1/ck CPN

iD1 ci

.N C 1/B
: (1.11)

The output levels in (1.11) can be an equilibrium only if they are all non-negative
and below the corresponding capacity limits. The equilibrium price is then

Np D A � B NQ D A CPN
iD1 ci

N C 1
:

At the equilibrium, the profit of firm k is given by

N'k D Nxk Np � .dk C ck Nxk/ D Nxk

 

A CPN
iD1 ci

N C 1
� ck

!

� dk

D 1

.N C 1/2B

 

A � .N C 1/ck C
N
X

iD1

ci

!2

� dk:
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Notice that with zero fixed cost the equilibrium profit of firm k is non-negative, and
if Nxk >0 and dk is sufficiently small, then N'k is necessarily positive. If capacity
limits are present and this “unconditional” equilibrium becomes infeasible, then
the “conditional” equilibrium can still be computed, but cannot be represented by
simple equations. Okuguchi and Szidarovszky (1999) discuss algorithms to compute
such equilibria. �

If nonlinearity (which was in the form of capacity constraints in the above exam-
ple) is introduced into the models, then usually numerical methods are required to
compute the equilibrium in the general case. Analytical methods are available in
only very special cases, for example by assuming symmetric or semi-symmetric
firms. If all firms have identical capacity limits and cost functions, and their initial
outputs are also the same, then the oligopoly is called symmetric. If .N � 1/ firms
are identical in this sense and one firm is different, then we have a semi-symmetric
case. We will frequently make use of such special cases in later chapters.

Example 1.2. Assume again a linear price function f .Q/ D maxf0;A � BQg but
quadratic cost functions Ck.xk/ D ckxk C ekx

2
k
: The profit of firm k now has the

form

'k.x1; : : : ; xN / D
(

xk.A � Bxk � BQk/ � .ckxk C ekx
2
k
/ if xk C Qk � A

B
;

�.ckxk C ekx
2
k
/ otherwise:

For the sake of simplicity we assume again that
PN

kD1 Lk � A=B , that is, the zero
segment of the price function cannot occur.

(i) Assume first that for all k, 0 < ek . Then the cost function is convex, so that
marginal costs are increasing in xk , and the profit is concave in xk . Since

@'k

@xk

D A � 2Bxk � BQk � ck � 2ekxk ;

the best response is unique and has the form

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A � BQk � ck � 0;

Lk if A � 2BLk � BQk � ck � 2ekLk � 0;

.A � BQk � ck/=.2.B C ek// otherwise;

which is piece-wise linear, similar to the case of the previous example where
both demand and cost were linear. Notice that if A � ck , then Rk.Qk/ D 0

regardless of the value of Qk , so we assume that A > ck for all firms. In the
case of duopoly the x1 intercept of R1.x2/ is the monopoly output xM

1 of firm
1, and the x2 intercept of R2.x1/ is the monopoly output xM

2 of firm 2. It can
be proved (see Chap. 2) that there is always a unique Nash equilibrium in this
case.
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x1

xM
1

xM
2

Unique equilibrium

x2

L1

L2

R1.x2/

R2.x1/

xL
1

xL
2

Fig. 1.2 Example 1.2; the Cournot model with linear price function and quadratic cost function in
the case of duopoly .N D 2/. The reaction functions R1.x2/; R2.x1/ and the unique equilibrium.
The figure illustrates case (ii) when B2 < 4.B C e1/.B C e2/ and xL

k > xM
k , k D 1; 2

(ii) Assume next that for all k, �B < ek < 0, then the cost function is concave,
however 'k remains concave in xk , so the best response remains the same as
above. However, this case raises the possibility of multiple equilibria. Consider
a duopoly (N D 2). Figure 1.2 depicts the reaction functions in the case where

B2 < 4.B C e1/.B C e2/;

that is when marginal costs are decreasing but not too strongly.2 Furthermore,
the “limit quantities” xL

k
D .A�ck/=B , that is the corresponding quantity lev-

els which guarantee that the other firm is kept out of the market, are larger than
the monopoly quantities xM

k
D .A� ck/=.2.B C ek//. Under these conditions

there is still a unique interior equilibrium given by

E D . Nx1; Nx2/

D
�

2.B C e2/ .A � c1/ � B.A � c2/

4.B C e1/.B C e2/ � B2
;

2.B C e1/ .A � c2/ � B.A � c1/

4.B C e1/.B C e2/ � B2

�

(1.12)

2 This interpretation is based on the fact that the condition is satisfied if �ek .k D 1; 2/ does not
get too close to B .
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xM
2

xM
1

x1

x2

L1

Boundary equilibria with monopoly outputs

Interior equilibrium

L2

R1.x2/

R2.x1/

xL
2

xL
1

Fig. 1.3 Example 1.2; the Cournot model with linear price function and quadratic cost function
in the case of duopoly .N D 2/. The figure shows case (ii) when B2 > 4.B C e1/.B C e2/ and
xL
k < xM

k , k D 1; 2. Three equilibria occur in this case

and the equilibrium profits are

N'k D .B C ek/. Nxk/
2; k D 1; 2:

If in contrast
B2 > 4.B C e1/.B C e2/;

so that marginal costs are decreasing strongly, then the uniqueness of the
equilibrium is no longer guaranteed. For example, Fig. 1.3 shows a case where

xL
k D A � ck

B
<

A � ck

2.B C ek/
D xM

k ;

so that there is an interior equilibrium and there are also two boundary equilib-
ria given by

E1 D
�

A � c1

2.B C e1/
; 0

�

and E2 D
�

0;
A � c2

2.B C e2/

�

;

where we assume again that A > ck for both firms. Observe in addition, that
Ek includes the monopoly output for firm k (k D 1; 2). At the boundary
equilibrium Ek , the profit of firm k is

.A � ck/
2=.4.B C ek// > 0:

In the borderline case, when

B2 D 4.B C e1/.B C e2/;
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� �

� �
Qk

Rk.Qk/

P

i¤k Li
A�ck

B

Lk

Fig. 1.4 Example 1.2; the Cournot model with linear price function and quadratic cost function
in the case of duopoly .N D 2/. The figure shows the reaction function of a typical firm in case
(iii) when ek D �B . The number of equilibria may be 1; 3 or infinite

the two straight lines either coincide or are parallel. Therefore there are either
infinitely many equilibria, or a unique boundary equilibrium.

(iii) In the case where ek D � B for all k, the profit function assumes the linear
form

'k D xk.A � BQk � ck/;

therefore

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A � BQk � ck < 0;

Lk if A � BQk � ck > 0;

arbitrary xk if A � BQk � ck D 0:

We can assume again that ck <A, otherwiseRk.Qk/D 0 for allQk. This best
response function is illustrated in Fig. 1.4 in the case when

A � ck

B
<
X

i¤k

Li :

In the case when the last inequality becomes an equality, the vertical seg-
ment moves to Qk D P

i¤k Li . If however the above relation is violated with
strict inequality, then Rk.Qk/DLk for all Qk . Depending on the values of
.A � ck/=B and Lk , in the duopoly case the number of equilibria can be 1, 3
or infinite; Fig. 1.5 shows a case where three equilibria exist.

(iv) Assume finally that for all k, ek < � B . In this case 'k is convex in xk , so the
best response is located at an endpoint of the feasible interval [0;Lk] and is of
the form
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x1

x2

L1A�c2
B

A�c1
B

L2

Fig. 1.5 Example 1.2; the Cournot model with linear price function and quadratic cost function
in the case of duopoly .N D 2/. The figure shows case (iii) when ek D �B , and there exist three
equilibria

� �

� �
Qk

Rk.Qk/

P

i¤k Li
A�ck�.BCek /Lk

B

Lk

Fig. 1.6 Example 1.2; the Cournot model with linear price function and quadratic cost function.
The figure shows case (iv) when ek < �B . The best response of the typical firm is determined by
the fact that the profit function is linear in this case

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

Lk if Lk.A � BLk � BQk/ � .ckLk C ekL
2
k
/ > 0;

0 if Lk.A � BLk � BQk/ � .ckLk C ekL
2
k
/ < 0;

f0ILkg if Lk.A � BLk � BQk/ � .ckLk C ekL
2
k
/ D 0:

This function is illustrated in Fig. 1.6 in the case when

0 < .A � ck � .B C ek/Lk/=B <
X

i¤k

Li :
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x1

x2

L1

L2

A�c1�.BCe1/L1

B

A�c2�.BCe2/L2

B

Fig. 1.7 Example 1.2; the Cournot model with linear price function and quadratic cost function in
the case of duopoly .N D 2/. The figure shows case (iv) when ek < �B and the existence of two
equilibria with convex profit functions

In the duopoly case .N D 2/ the Nash equilibrium is at the intersection of
the two best response functions. The number of equilibria can be 1, 2 or 3
depending on the relative order of magnitude of the values (A � ck � .B C
ek/Lk)/B andLl .l ¤ k/. In Fig. 1.7 we show the case of two equilibria .L1; 0/

and .0; L2/.

Notice that in all cases at xk D 0 the profit of firm k is zero, therefore at the best
response it has to be non-negative. Hence, at any equilibrium the profit of each firm
is also non-negative. �
Example 1.3. Consider again the duopoly in which N D 2, furthermore take L1 D
L2 D 1:5, C1.x1/ D 0:5x1, C2.x2/ D 0:5x2 and assume that the price function is
given by

f .Q/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1:75 � 0:5Q if 0 � Q � 1:5;

2:5 � Q if 1:5 � Q � 2:5;

0 if Q � 2:5:

(1.13)

Notice that the cost functions are linear but that the price function is piece-wise
linear. Because of the kink in the price function the profit functions are not differen-
tiable at Q D 1:5. By calculating and comparing the left and right hand derivatives
of the profit function, it is easy to show that there are infinitely many equilibria and
they form the set

NX D f. Nx1; Nx2/j0:5 � Nx1 � 1; 0:5 � Nx2 � 1; Nx1 C Nx2 D 1:5g:

Notice that the total output of the two firms is unique, satisfying x1 C x2 D 1:5,
but this total output can be divided between the two firms in infinitely many
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different ways. At any equilibrium, NQD 1:5; so the equilibrium price is f . NQ/D 1;

and therefore the profit of firm k is always positive, being given by

'k. Nx1; Nx2/ D Nxk �1�0:5 Nxk D 0:5 Nxk: �

Example 1.4. In this example we assume linear cost functions, Ck.xk/ D ckxk

with some positive constant ck , and a quadratic price function where

f .Q/ D
(

A � Q2 if 0 � Q � p
A;

0 if Q >
p
A:

It is also assumed that A > ck for all k. Notice that at the best response of firm k

it is the case that Qk C xk � p
A, otherwise the value of xk can be decreased by a

small amount, when the price is still zero and the cost would decrease. Therefore at
the best response of all firms the total output has to be less than or equal to

p
A. For

the sake of simplicity assume that
PN

kD1 Lk � p
A, the other case can be discussed

in a similar way. By assuming an interior optimum, the first order condition implies
that

@

@xk

Œxk.A � .xk C Qk/
2/ � ckxk � D A � 3x2

k � 4xkQk � Q2
k � ck D 0:

If ck � A, then 'k is strictly decreasing in Qk , so the best response of firm k is
always zero. Therefore we may assume that ck < A for all k. The solution of the
above quadratic equation is

z�
k D 1

3

�
q

Q2
k

C 3.A � ck/ � 2Qk

�

:

Since the payoff function of firm k is strictly concave in xk , the best response
assumes the form

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
k
< 0;

Lk if z�
k
> Lk ;

z�
k

otherwise:

This function is illustrated in Fig. 1.8. Simple differentiation shows that z�
k
is strictly

decreasing and convex in Qk . It can be proved that there is always a unique equi-
librium. Since at xk D 0 the profit of firm k is zero, the profits at the best responses
and therefore the equilibrium profits must be non-negative for all firms. In the case
of an interior equilibrium the equilibrium quantities can be derived in closed-form.
The first order condition may be rewritten as

A � Q2 C xk.�2Q/ � ck D 0;
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Qk

Rk.Qk/

Lk

P

i¤k Li

z�
k

Rk.Qk/

q

A�ck
3

p
A � ck

Fig. 1.8 Example 1.4; the best response function (thick line) of a typical firm k with a linear cost
function and quadratic price function

implying that at the interior equilibrium

Nxk D A � NQ2 � ck

2 NQ :

Summation over all N firms yields

NQ D NA � N NQ2 �PN
lD1 cl

2 NQ ;

and therefore

NQ2 D NA �PN
lD1 cl

N C 2
:

The individual quantities in equilibrium are then obtained as

Nxk D 1

2

q

.NA �PN
lD1 cl/=.N C 2/

 

A � NA �PN
lD1 cl

N C 2
� ck

!

(1.14)

D 2A CPN
lD1 cl � .N C 2/ck

2

q

.N C 2/.NA �PN
lD1 cl /

:

For positivity of all equilibrium quantities, additional conditions are required,
namely that

ck <
2A CP

l¤k cl

N C 1
for all k:
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Obviously, if firm k’s unit costs ck are too high (for a given number of firms N ),
production might not be feasible (so that firm k offers xk D 0). Furthermore, for
increasing N (and given unit costs) some (high-cost) firms might drop out of the
market. The equilibrium price is given by

Np D 2A CPN
lD1 cl

N C 2
> 0

and the equilibrium profit of firm k is

N'k D .2A CPN
lD1 cl � .N C 2/ck/

2

2.N C 2/

q

.N C 2/.NA �PN
lD1 cl/

: �

Example 1.5. Assume again linear cost functions, Ck.xk/ D dk C ckxk , but isoe-
lastic (hyperbolic) price function, f .Q/DA=Q. The form of the profit of firm k

depends on whetherQk is positive or zero. IfQk > 0; then

'k.x1; : : : ; xN / D Axk

xk C Qk

� .dk C ckxk/;

and ifQk D 0; then

'k.x1; : : : ; xN / D
(

A � .dk C ckxk/ if xk > 0;

�dk if xk D 0;

where we assume that firm k cannot exit the market, so with zero production level
it must face fixed costs. Notice that if Qk D 0, then with any xk >0, the revenue
of firm k is always A. In this case firm k has no best response and its interest is to
select a very small output level, since the supremum of its profit occurs at xk D 0.
Assume next thatQk > 0: In maximizing 'k , the first order condition is

AQk

.xk C Qk/2
� ck D 0:

Since 'k is strictly concave in Qk , the best response of firm k is

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if
q

AQk

ck
� Qk � 0;

Lk if
q

AQk

ck
� Qk � Lk ;

p

AQk=ck � Qk otherwise:

This function is illustrated in Fig. 1.9. We note that the best response is first increas-
ing and then decreasing. This is in contrast to the examples considered previously,
where the best responses were decreasing everywhere. Some authors consider
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Qk

Rk.Qk/

Lk

A
4ck

A
ck

P

i¤k Li

Fig. 1.9 Example 1.5; the best response function (thick line) of a typical firm k with a linear cost
function and hyperbolic price function

Nx1 D � � � D NxN D 0 as a trivial equilibrium in a limiting sense.3 In a non-trivial
equilibrium, when NQ > 0; still some equilibrium outputs might be zero, when the
marginal costs, ck , for some firms are very large. By assuming that the value of
Lk is sufficiently large for all firms, the positive equilibrium can be computed as
follows. Since for all k,

xk D
s

A.Q � xk/

ck

� .Q � xk/;

we have
ckQ

2 D A.Q � xk/;

implying that

xk D AQ � ckQ
2

A
:

Summing this equation over all N firms, we obtain

Q D NAQ � Q2
PN

kD1 ck

A
:

So the total output of all firms is

NQ D .N � 1/A
PN

kD1 ck

;

3 See Agliari et al. (2005, 2006), Agliari (2006) and Matsumoto and Serizawa (2007).
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and by substituting it into the above expression for xk , the equilibrium output of
firm k is given by

Nxk D .N � 1/A
PN

lD1 cl

� A.N � 1/2ck
�

PN
lD1 cl

�2
;

and the equilibrium profit of firm k is given by

N'k D A Nxk

NQ �ck Nxk �dk D
 

PN
lD1 cl

N � 1
� ck

!

Nxk �dk D A

 

1 � .N � 1/ck
PN

lD1 cl

!2

�dk:

In order to guarantee that all equilibrium outputs of the firms are positive, we have
to assume that

ck <

P

l¤k cl

N � 2
;

that is, the marginal costs cannot be too high. �

The examples above considered the case in which the cost function of a firm
depends only on its own output. We will next present two particular examples
including cost externalities, with linear price and cost functions, where the fixed
costs are equal to zero and the marginal cost of each firm depends on the output of
the rest of the industry.

Example 1.6. In the case ofN firms assume a linear price function f .Q/DA�BQ,
and furthermore assume that the marginal cost of each firm is a function of the
output of the rest of the industry, Mk.Qk/: If zero fixed cost is assumed, then the
cost function of firm k is given as (see Howroyd and Russell (1984), Russell et al.
(1986) and Furth (2009))

Ck.xk ;Qk/ D xkMk.Qk/;

so the profit of firm k is

xk.A � Bxk � BQk/ � xkMk.Qk/;

by assuming that xk C Qk � A=B . Notice that this function is strictly concave in
xk , so in the case of sufficiently small capacity limits there is a unique best response
function given by

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if A � BQk � Mk.Qk/ � 0;

Lk if A � 2BLk � BQk � Mk.Qk/ � 0;

z�
k

otherwise;
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where z�
k
is the solution of the equation

A � 2Bzk � BQk � Mk.Qk/ D 0

inside the interval .0; Lk/. That is,

z�
k D A � BQk � Mk.Qk/

2B
:

We mention here that for an arbitrary value of Qk , the profit of each firm k is zero
with xk D 0, so the payoff at the best response also must be non-negative. Hence at
any equilibrium the firms have non-negative profit values.

If Mk.Qk/ is a linear function, then z�
k
is also linear in Qk , so Rk.Qk/ is a

piece-wise linear function similar to Example 1.1. If we assume that Mk.Qk/ is a
quadratic function, then z�

k
is also quadratic in Qk . Thus if we write

Mk.Qk/ D ˛k C ˇkQk C �kQ
2
k;

then

z�
k D .A � ˛k/ C .�B � ˇk/Qk � �kQ

2
k

2B
:

Let �k > 1 be a given constant and select

˛k D A; ˇk D �B.1 C 2�k/ and �k D 2B�k;

then we have the relatively simple form

z�
k D �kQk.1�Qk/: �

Example 1.7. Consider again the oligopoly of the previous example with the only
difference being that the marginal cost of each firm k is a hyperbola of the form

Mk.Qk/ D ck

1 C �kQk

:

In this case Rk.Qk/ has the same structure as in the previous example with

z�
k D A � BQk � Mk.Qk/

2B
D 1

2B

�

A � BQk � ck

1 C �kQk

�

:

In Chap. 3 we will give a detailed analysis of this example. �

In our last example we show an oligopoly for which no equilibrium exists.

Example 1.8. Consider the case of two firms,N D 2, with capacity limitsL1DL2D
0:5, linear price function f .Q/D 1�Q withQ D P2

kD1 xk , and discontinuous cost
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functions

Ck.xk/ D
(

10 if xk D 0;

10xk C 5 if 0 < xk � 1
2
:

(1.15)

The higher costs at zero reflect exit barriers, which do not occur when the firms start
producing. We will show that this oligopoly has no equilibrium. On the contrary,
assume that . Nx1; Nx2/ is an equilibrium. Assume first that x1 > 0; then

'1.x1; Nx2/ D x1.1 � x1 � Nx2/ � .10x1 C 5/ D �x2
1 � .9x1 C x1 Nx2 C 5/

with derivative
@'1

@x1

.x1; Nx2/ D �2x1 � 9 � Nx2 < 0:

Therefore'1 is strictly decreasing in x1. Assume next that x1 D 0. Then '1.0; Nx2/ D
�10 with limx1!0C '1.x1; Nx2/ D 0 � f .Q/ � 5 D �5 > '1.0; Nx2/ showing that at
Nx2, firm 1 has no best response. Hence no equilibrium exists. �

1.2 Dynamic Adjustment Processes

In this section dynamic adjustment processes in the Cournot model will be intro-
duced. If all firms simultaneously select the corresponding output levels of an
equilibrium, then none of the firms can change unilaterally its output level and
increase profit. So without coordination and cooperation between the firms, the out-
put level of all firms will remain steady at the equilibrium levels. If the selected
output levels do not form an equilibrium, then at least one firm is able to increase
its profit by changing its output level unilaterally. Since the firms are rational, all
firms will do the same. Since the firms change their output levels simultaneously,
they cannot reach their best response levels, because the competitors simultaneously
move away from their previously assumed output levels at the same time. In this way
the firms usually would not reach an equilibrium, so output changes are again under-
taken, and a dynamic process develops. The model of the resulting process depends
on the assumed nature of the time scales and on the way the firms adjust output
levels, which in turn depends on their expectation formation.

In the discrete time case let t D 0; 1; 2 � � � denote the time periods, then here
we shall assume that in each time period each firm changes its output level to the
best response based on its latest belief of the total production level of the rest of the
industry. This process can be written as

xk.t C 1/ D Rk

�

QE
k .t C 1/

�

; (1.16)

where QE
k
.t C 1/ is the total output of the rest of the industry expected by firm

k for the next time period t C 1. We emphasize here the fact that expectation is
not meant in its probabilistic sense, rather it is a deterministic predicted value. The
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most simple expectation scheme is the one in which the firms use the latest available
information,

QE
k .t C 1/ D

X

l¤k

xl .t/; (1.17)

which is sometimes called the static, or naive, or Cournot expectation.
The firms are also able to develop certain learning procedures based on earlier

data. The most popular such learning scheme is obtained when the firms adjust their
expectations adaptively according to

QE
k .t C 1/ D QE

k .t/ C ak

0

@

X

l¤k

xl.t/ � QE
k .t/

1

A ; (1.18)

with ak being a positive constant known as the speed of adjustment of firm k. It is
usually assumed that 0<ak � 1 for all k. The interpretation of this dynamic learning
scheme is that, if firm k underestimated (overestimated) the output of the rest of the
industry in the previous time period, then in the next time period this firm wants
to increase (decrease) its estimate. This increase (decrease) is represented by the
second term, and the coefficient ak determines the speed (or rate) of adjustment. If
the expectation of a firm were correct in the previous time period, then there would
be no need to change the expectation, in this case the second term would be zero.
Notice that the special case of ak D 1 reduces to the static or Cournot expectation.

Mathematically, the dynamic process (1.16), together with naive expectations
(1.17) form the N -dimensional dynamical system

xk.t C 1/ D Rk

0

@

X

l¤k

xl.t/

1

A .k D 1; 2; : : : ; N /; (1.19)

to which we will refer as best response dynamics with naive expectations.
Under the adaptive expectations scheme (1.18), the dynamic process (1.16)

becomes the 2N -dimensional dynamical system

xk.t C 1/ D Rk

0

@ak

X

l¤k

xl.t/ C .1 � ak/Q
E
k .t/

1

A ; (1.20)

QE
k .t C 1/ D ak

X

l¤k

xl .t/ C .1 � ak/Q
E
k .t/; (1.21)

for k D 1; 2; : : : ; N . We will refer to this process as the best response dynamics
with adaptive expectations.

In the latter formulation we have formally 2N state variables, however it is easy
to show that the best response dynamics with adaptive expectations are actually
driven by the N expectation variables and the production outputs can be computed
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directly from them. In fact, for all k, (1.18) can be written as

QE
k .tC1/ D ak

X

l¤k

xl.t/C.1�ak/Q
E
k .t/ D ak

X

l¤k

Rl

�

QE
l .t/

�

C.1�ak/Q
E
k .t/:

(1.22)
The dynamic process now reduces to an N -dimensional dynamical system in the
expected variables QE

1 .t/; : : : ;QE
N .t/, and at each time period t the output of firm

k is given as

xk.t/ D Rk

�

QE
k .t/

�

;

which is a static mapping from beliefs to realizations in the sense that both sides of
the mapping are computed at the same time t .

In most industries any increase of the output level of any firm requires time, new
hirings, purchase of new machinery, or sometimes even the opening up of a new
plant. Therefore output changes are made gradually. For example, in the case of
the dynamic process (1.19) instead of selecting the best response directly, the new
output level of firm k is selected somewhere in between the current level and the best
response to ensure that the output level change occurs in the right direction. This
concept of partial adjustment towards the best response with naive expectations can
be described by the modified N -dimensional dynamical system

xk.t C 1/ D akRk

0

@

X

l¤k

xl .t/

1

AC .1 � ak/xk.t/; (1.23)

for some ak 2 .0; 1�. In the case of ak D 0 the output level would never change,
therefore this value is excluded. Notice that in the case of ak D 1, the partial adjust-
ment towards the best response with naive expectations (1.23) reduces to best
response dynamics with naive expectations (1.19).

In the special case of two firms .N D 2/ both dynamical systems (1.22) and
(1.23) have the common form

y1.t C 1/ D a1R1 .y2.t// C .1 � a1/y1.t/;

y2.t C 1/ D a2R2 .y1.t// C .1 � a2/y2.t/

with y1 D x1 and y2 D x2 in (1.23), and y1 D QE
2 , y2 D QE

1 and a1 and a2 being
interchanged in (1.22). If N > 2, then systems (1.22) and (1.23) are equivalent if

Rk

�

P

l¤k yl .t/
�

D P

l¤k Rl .yl.t// holds for all k. In the symmetric case (when

Rk � R), this condition holds if R.Qk/ D rQk with some constant r .
It is important to realize that dynamic adjustment processes of the kind con-

sidered above are defined on the action space …N
kD1

Œ0; Lk� and incorporate only
the firms’ quantity decision. In order to obtain economically feasible trajectories,
we need to keep in mind the fact that prices (and profits) have to be non-negative
in the long run, though it is possible (as we shall indeed find) that over some
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periods negative profits may occur. In some of the models we study it will be possi-
ble to ensure non-negative prices simply by selecting suitable parameter values. For
example, for theN -firm oligopoly model with linear inverse demand function a suf-
ficient condition for non-negative prices is

PN
kD1 Lk � A=B (see Example 1.1) and

for the model with quadratic price function and linear costs, we can simply select
PN

kD1 Lk � p
A (see Example 1.4).

If the time scales are continuous, then output changes are made continuously,
without direct jumps to the best response levels. It is always assumed that in each
time period the output level moves in a direction towards the best response. This
concept is modeled by an N -dimensional system of ordinary differential equations
of the form

Pxk.t/ D ak

0

@Rk.
X

l¤k

xl.t// � xk.t/

1

A .k D 1; 2; : : : ; N /: (1.24)

Here ak >0 is a given constant and also called the speed of adjustment of firm k.
This is the continuous time counterpart of the discrete system (1.23), which is also
called the partial adjustment dynamics.

Example 1.9. Consider again the case of linear oligopolies with linear inverse
demand and linear cost functions, which was discussed earlier in Example 1.1. By
ignoring the non-negativity condition of the outputs and assuming that Lk D 1 for
all k, the best reply of firm k is given as (see (1.6))

Rk.Qk/ D �1

2
Qk C A � ck

2B
:

Since for all k, Rk.Qk/ is linear with identical derivative, the dynamical systems
(1.22) and (1.23) have the same coefficient matrix, so the asymptotic behavior of
the discrete dynamics with adaptive expectations and with adaptive adjustments are
equivalent. The dynamical system (1.23) for partial adjustment towards the best
response can be written as

xk.t C 1/ D ak

0

@�1

2

X

l¤k

xl .t/ C A � ck

2B

1

AC .1 � ak/xk.t/; (1.25)

which is a linear system with coefficient matrix

0

B

B

B

@

1 � a1 � a1

2
: : : �a1

2

� a2

2
1 � a2 : : : �a2

2
:::

:::
: : :

:::

� aN

2
� aN

2
: : : 1 � aN

1

C

C

C

A

:
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In Chap. 2 (Theorem 2.1) we will see that the eigenvalues of this matrix lie inside
the unit circle if and only if ak < 4 for all k, and

N
X

kD1

ak

4 � ak

< 1:

In the case of linear systems local and global asymptotic stability are the same, so
the equilibrium is globally asymptotically stable if and only if the above conditions
are satisfied.

In the case of continuous time scales the dynamical system for partial adjustment
(1.24) can be written as

Pxk.t/ D ak

0

@�1

2

X

l¤k

xl .t/ C A � ck

2B
� xk.t/

1

A ; (1.26)

which is again a linear system with coefficient matrix

0

B

B

B

@

�a1 � a1

2
: : : � a1

2

� a2

2
�a2 : : : � a2

2
:::

:::
:::

� aN

2
� aN

2
: : : �aN

1

C

C

C

A

:

In Chap. 2 (Theorem 2.2) we will see that all eigenvalues of this matrix always have
negative real parts so the equilibrium is locally asymptotically stable. The linear-
ity of the system implies that the Nash equilibrium is also globally asymptotically
stable. �

Introducing the non-negativity conditions and the capacity limits into the model
makes the best reply functions nonlinear. Nonlinearity can also occur by assum-
ing nonlinear cost or price functions. Then the corresponding dynamical systems
become nonlinear, and local asymptotic stability does not imply global asymptotic
stability. This observation points to the need to perform detailed global analysis of
the dynamical behavior. The next section will present the foundation of the relevant
methodology.

In models (1.20)–(1.21), for the best response dynamics with adaptive expec-
tations, and (1.23) and (1.24) for the dynamics of partial adjustment towards the
best response with naive expectations, we have used simple linear adjustment rules.
However these can be easily extended to the nonlinear case by introducing sign-
preserving adjustment functions. A real-variable, real-valued function ˛ W R ! R

is called sign-preserving, if ˛.x/ has the same sign as x, that is,



24 1 The Classical Cournot Model

˛.x/

8

ˆ

ˆ

<

ˆ

ˆ

:

> 0 if x > 0,

D 0 if x D 0,

< 0 if x < 0.

(1.27)

Assume now that for all k, ˛k is a sign-preserving function, then the dynam-
ical system (1.20)–(1.21) for the best response with adaptive expectations can be
extended to

xk.t C 1/ D Rk

0

@QE
k .t/ C ˛k.

X

l¤k

xl .t/ � QE
k .t//

1

A ; (1.28)

QE
k .t C 1/ D QE

k .t/ C ˛k

0

@

X

l¤k

xl .t/ � QE
k .t/

1

A : (1.29)

Similarly the discrete time dynamical system (1.23) for the dynamics of partial
adjustment towards the best response with naive expectations becomes

xk.t C 1/ D xk.t/ C ˛k

0

@Rk.
X

l¤k

xl .t// � xk.t/

1

A ; (1.30)

whilst the continuous time dynamical system (1.24) for the same process becomes

Pxk.t/ D ˛k

0

@Rk.
X

l¤k

xl.t// � xk.t/

1

A : (1.31)

Another important class of adjustment processes that has been investigated in the
literature on dynamic oligopolies by many authors is that of the gradient adjustment
process. This adjustment process is based on the observation that if for firm k at a
certain time period, @'k=@xk is positive, then it is in firm k’s interest to increase
the output level, if @'k=@xk is negative, then the firm wants to decrease it, and if
@'k=@xk D 0, then firm k believes that it is already at its maximum level, so it wants
to maintain the same output level. This idea can be mathematically realized in the
gradient adjustment processes

xk.t C 1/ D xk.t/ C ˛k

�

@'k.x1.t/; : : : ; xN .t//

@xk

�

.1 � k � N/; (1.32)

in discrete time and

Pxk.t/ D ˛k

�

@'k.x1.t/; : : : ; xN .t//

@xk

�

.1 � k � N/; (1.33)
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in continuous time, where ˛k is a sign-preserving function. Notice that dynamic pro-
cesses based on best response functions require the solution of optimization prob-
lems in order to determine the best responses. In contrast gradient adjustment
processes do not need the computation of best responses, rather they need only local
information about the profit functions. Therefore the uniqueness of best responses
is not an issue with gradient adjustment processes. Observe, however, that in the
case of gradient adjustment, we need to check whether the obtained quantity is
non-negative and also whether it is below the capacity limit.

Clearly the steady states of the dynamic processes (1.28)–(1.29), for the gen-
eralised best response with adaptive expectations, and (1.30)–(1.31) for the gener-
alised partial adjustment towards the best response with naive expectations, are the
Nash equilibria. However only interior equilibria can be the steady states of the
gradient adjustment processes (1.32)–(1.33). Therefore boundary equilibria can be
obtained as the limits of the trajectories as t ! 1 only in special cases. The forego-
ing reasoning is based on the fact that a point is a steady state of best response based
adjustment if and only if the output levels equal the best responses for all firms, that
is, when they are at an equilibrium. However in the case of gradient adjustment a
point is a steady state if and only if all partial derivatives are zero, which is not the
case if the equilibrium lies on the boundary. Therefore even in the case of asymp-
totic stability the trajectory does not need to converge to the equilibrium, since the
solutions of the first order conditions may lie outside the feasible region, so they
are not necessarily steady states. This behavior may be regarded as a drawback of
gradient adjustment processes.

Example 1.10. In the case of linear oligopoly, discussed in Example 1.9, we can
calculate

@'k

@xk

D @

@xk

�

xk

�

A � Bxk � B
X

l¤k

xl

�

� .ckxk C dk/

�

D A � 2Bxk � B
X

l¤k

xl � ck ;

so the gradient adjustment dynamical system (1.32) in discrete time with linear sign-
preserving functions (˛k.x/ D akx with ak > 0) can be written as

xk.t C 1/ D xk.t/ C ak

�

� 2Bxk.t/ � B
X

l¤k

xl .t/ C A � ck

�

D 2Bak

�

� 1

2

X

l¤k

xl .t/ C A � ck

2B

�

C .1 � 2Bak/xk.t/;

which is the same as the dynamical system (1.25) for partial adjustment towards the
best response, with ak replaced by 2Bak . The continuous time system (1.33) with
linear sign-preserving functions now assumes the form
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Pxk.t/ D ak

�

� B
X

l¤k

xl .t/ � 2Bxk.t/ C A � ck

�

D 2Bak

�

� 1

2

X

l¤k

xl .t/ � xk.t/ C A � ck

2B

�

;

which is the same as system (1.26) with ak replaced by 2Bak . �
The dynamical behavior of these adjustment process systems largely depends on

the type and the parameters of the adjustment schemes as well as on the analytical
properties of the best response functions, which in turn depend on the shapes of the
price and cost functions.

There has been some criticism of the modeling of boundedly rational firms in
dynamic oligopoly models using the previously discussed adjustment processes (see
for example, Friedman (1977, 1982)). The essence of the criticism is that the firms
ignore the fact that their current actions will have an impact on the future actions
of the competitors (that is the limit of the adjustment process itself may not be an
equilibrium of the repeated game). Therefore, it has been suggested that it would be
more reasonable to assume that firms operating in markets over many time periods
would seek to maximize a discounted stream of profits over a finite or infinite time
horizon taking the strategic behavior of their competitors into account. Beside the
fact that such an approach necessarily assumes a high degree of information and
rationality on the part of the firms, one justification for the interest in models of
the type studied in this book is given by more recent results demonstrating that
myopic play is (approximately) optimal if the discount factor is very small (see Dana
and Montrucchio (1986, 1987)). Moreover, non-equilibrium adjustment processes
like the adjustment processes presented above can be shown to implicitly rely on a
combination of “lock-in” and impatience, and this may serve as a further explanation
for the players’ myopia (see Fudenberg and Levine (1998), and Tirole (1988)). In
any case, in this book we follow the argument that the kind of adjustment processes
introduced above can “... be interpreted as a crude way of expressing the bounded
rationality of agents” (Vives (1999), p. 49). Readers interested in dynamic games
where players are more rational and forward-lookingmight want to consult the book
by Dockner et al. (2000) who present a variety of models and summarize many
interesting results. In this book we will mainly concentrate on best response based
dynamic processes.

1.3 An Introduction to the Analysis of Global Dynamics

The purpose of this section is to introduce the main concepts and tools for the analy-
sis of the global properties of a discrete time dynamical system. In order to do so we
will use the example of a simple Cournot oligopoly with linear inverse demand and
quadratic costs. This example has already been introduced in Sect. 1.1 (see Exam-
ple 1.2), where we denoted the linear price function as p D f .Q/ D A � BQ and
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the quadratic production cost functions as Ck.xk/ D ckxk Cekx
2
k
. In order to avoid

trivial best responses we assume again that A > ck for k D 1; 2.

1.3.1 A Cournot Duopoly Game

We first consider a duopoly game (N D 2), where the firms use partial adjustment
towards the best response. The reaction functions in this case become

R1.x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
1 < 0;

L1 if z�
1 > L1;

z�
1 otherwise;

(1.34)

and

R2.x1/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
2 < 0;

L2 if z�
2 > L2;

z�
2 otherwise;

(1.35)

where z�
k

D A�ck�BQk

2.BCek/
.k D 1; 2/ with Q1 D x2 and Q2 D x1. If the duopolists

partially adjust their quantities towards the best replies (based on naive expectations)
and if the speeds of adjustment are constant, the dynamical system is generated by
the iteration of the map Ta W Œ0; L1� � Œ0; L2� ! Œ0; L1� � Œ0; L2�, where

Ta W
�

x1.t C 1/ D .1 � a1/x1.t/ C a1R1 .x2.t//

x2.t C 1/ D .1 � a2/x2.t/ C a2R2 .x1.t//
; (1.36)

with 0<ak � 1. Recall from Sect. 1.2 that the best reply dynamics with naive
expectations is obtained as a special case with ak D 1 for k D 1; 2. We have also
shown in Sect. 1.2 that in a duopoly partial adjustment towards the best response
and the best reply dynamics with adaptive expectations are equivalent. Hence, the
results obtained in this section also describe what happens if best reply dynamics
with adaptive expectations are considered. Using (1.36) together with the steady
state conditions xk.t C 1/Dxk.t/, k D 1; 2, leads to the equations x1 DR1.x2/,
x2 D R2.x1/, which shows that the steady states of this dynamical system coincide
with the Cournot–Nash equilibria of the underlying game and that they are located
at the intersections of the reaction curves. Clearly, the steady states do not depend
on the adjustment speeds ak . As demonstrated in Sect. 1.1, the number of equilibria
depends on the marginal costs. If marginal costs are increasing or even decreasing
but not too strongly such that B C ek > 0 and

B2 < 4.B C e1/.B C e2/; (1.37)
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then for xL
k
> xM

k
.k D 1; 2/ we have a unique interior equilibrium. The quantities

at this interior equilibrium are given by

E D . Nx1; Nx2/

D
�

2.B C e2/ .A � c1/ � B.A � c2/

4.B C e1/.B C e2/ � B2
;
2.B C e1/ .A � c2/ � B.A � c1/

4.B C e1/.B C e2/ � B2

�

:

On the other hand, if �B < ek < 0, xL
k
< xM

k
.k D 1; 2/ as before, but

B2 > 4.B C e1/.B C e2/; (1.38)

then a situation of multiple equilibria might be obtained. This is the situation
depicted in Fig. 1.3, where in addition to the interior equilibrium there also appear
two boundary equilibria. The two coexisting boundary equilibria are given by

E1 D .xM
1 ; 0/I E2 D .0; xM

2 /;

where

xM
1 D A � c1

2.B C e1/
I xM

2 D A � c2

2.B C e2/
;

are the monopoly quantities.
Let us first try to give conditions for the global asymptotic stability of an equi-

librium, which would also imply its uniqueness. We recall that an equilibrium is
globally asymptotically stable if any trajectory starting from an initial condition in
the strategy space converges to the equilibrium as t ! 1. In the case of the model
(1.36) the strategy space is given by the trapping region D DŒ0; L1�� Œ0; L2�. How-
ever the map (1.36), whose iteration gives the time evolution of the duopoly game,
is not differentiable in the whole strategy space D because the reaction functions are
piecewise differentiable functions defined by

Rk.Qk/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if Qk � A�ck
B

;

Lk if Qk � A�ck�2.BCek /Lk

B
;

.A � ck � BQk/=
�

2.B C ek/
	

otherwise:

Accordingly, the phase space D can be subdivided into nine regions defined by the
break points of the reaction functions (see Fig. 1.10), such that the map Ta is dif-
ferentiable (indeed linear in this case) inside each of them, it is defined differently
in each region and it is not differentiable on the boundaries between the regions.
Depending on the possible combination of the reaction functions the different
components of the map are given by

Taj
D.1/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1.A � c1 � Bx2/=
�

2.B C e1/
	

;

x2.t C 1/ D .1 � a2/x2.t/ C a2.A � c2 � Bx1/=
�

2.B C e2/
	

;
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1L

D

Fig. 1.10 Phase space regions for the Cournot duopoly game where firms use partial adjustment
towards the best response

Taj
D.2/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1.A � c1 � Bx2/=
�

2.B C e1/
	

;

x2.t C 1/ D .1 � a2/x2.t/ C a2 � L2;

Taj
D.3/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1 � 0;
x2.t C 1/ D .1 � a2/x2.t/ C a2 � L2;

Taj
D.4/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1 � 0;
x2.t C 1/ D .1 � a2/x2.t/ C a2.A � c2 � Bx1/=.2.B C e2//;

Taj
D.5/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1 � 0;
x2.t C 1/ D .1 � a2/x2.t/ C a2 � 0;

Taj
D.6/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1.A � c1 � Bx2/=
�

2.B C e1/
	

;

x2.t C 1/ D .1 � a2/x2.t/ C a2 � 0;

Taj
D.7/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a2 � L1;

x2.t C 1/ D .1 � a2/x2.t/ C a2 � 0;

Taj
D.8/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1 � L1;

x2.t C 1/ D .1 � a2/x2.t/ C a2.A � c2 � Bx1/=
�

2.B C e2/
	

;

Taj
D.9/ W

�

x1.t C 1/ D .1 � a1/x1.t/ C a1 � L1;

x2.t C 1/ D .1 � a2/x2.t/ C a2 � L2:

The derivative of the best response function of firm k is either zero or�B=.2.BC
ek//, or does not exist in the cases when Qk D .A � ck/=B and Qk D .A � ck �
2.B C ek/Lk/=B .
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Hence we need to consider the four different Jacobian matrices given by

J.1/ D
 

1 � a1 � a1B
2.BCe1/

� a2B
2.BCe2/

1 � a2

!

I J.2/ D J.6/ D
0

@

1 � a1 � a1B
2.BCe1/

0 1 � a2

1

A I

J.4/ D J.8/ D
 

1 � a1 0

� a2B
2.BCe2/

1 � a2

!

I

J.3/ D J.5/ D J.7/ D J.9/ D
0

@

1 � a1 0

0 1 � a2

1

A :

Select a diagonal matrix P D
�

x 0

0 1

�

with x > 0, then the row norms of these

Jacobians generated by the matrix P are bounded by the row norm of the matrix

 

x 0

0 1

! 

1 � a1
a1B

2.BCe1/
a2B

2.BCe2/
1 � a2

! 

1
x
0

0 1

!

D
 

1 � a1
a1Bx

2.BCe1/
a2B

2.BCe2/x
1 � a2

!

; (1.39)

which is below one if and only if

1 � a1 C a1Bx

2.B C e1/
< 1;

and

1 � a2 C a2B

2.B C e2/x
< 1:

Since we assume that 0 < ak � 1 .k D 1; 2/, these relations can be rewritten as

B

2.B C e2/
< x <

2.B C e1/

B
;

and a feasible x exists if and only if B2 < 4.B C e1/.B C e2/.
Hence under this condition the equilibrium is unique and is globally asymptoti-

cally stable regardless of whether it is interior or not. (See Appendix B, TheoremB.3
for the relevant theoretical background.)

Next we will examine the local asymptotic stability of an interior steady state E.
Let us consider the Jacobian matrix evaluated at the steady state,

J D
 

1 � a1 �a1
B

2.BCe1/

�a2
B

2.BCe2/
1 � a2

!

:
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The characteristic equation of this Jacobian is given by �2 C p� C q D 0, where
p D �2 C a1 C a2 and q D .1 � a1/ .1 � a2/ � a1a2B

2= .4 .B C e1/ .B C e2//.
The necessary and sufficient conditions for the eigenvalues to be located inside the
unit circle, which are conditions for the local asymptotic stability of the interior
Nash equilibrium E, are given by the inequalities (see Appendix F, Lemma F.1)

1 C p C q > 0 ; 1 � p C q > 0 ; q < 1: (1.40)

These inequalities, respectively, reduce to

B2

4 .B C e1/ .B C e2/
< 1;

B2

4 .B C e1/ .B C e2/
< 1 C 2

2 � a1 � a2

a1a2

;

B2

4 .B C e1/ .B C e2/
> 1 � a1 C a2

a1a2

:

Observe that the first stability condition coincides with condition (1.37) under which
this is the only equilibrium and so is globally asymptotically stable. The other
conditions do not affect the stability properties, because the second condition is
implied by the first one (since 0<ak � 1) and the last condition is always satis-
fied (since the left hand side is positive, whereas the right hand side is negative).
If B2 >4.B C e1/.B C e2/, then the interior equilibrium is unstable. This is the
situation in case (ii) of Example 1.2, where we might have three equilibria with an
unstable interior equilibrium.

Consider now the case shown in Fig. 1.3 and the monopoly equilibrium .0; xM
2 /.

In the neighborhood of this equilibrium xL
2 <x2 <L2, so R1.x2/D 0. Furthermore

x1 D 0 or a small positive value. Notice that the segments where R1.x2/DL1, or
R2.x1/DL2 are empty, which implies that the sets D

.k/ for k D 3; 2; 9; 8; 7 are also
empty. Therefore any point in a small neighborhood of the equilibrium .0; xM

2 / is
in the region D

.4/ where the Jacobian matrix is

 

1 � a1 0

� a2B
2.BCe2/

1 � a2

!

: (1.41)

Let

P D
�

x 0

0 1

�

(1.42)

be a diagonal matrix with x > 0. Then the row norm generated by this matrix is
bounded by the row norm of the matrix

 

x 0

0 1

! 

1 � a1 0
a2B

2.BCe2/
1 � a2

! 

1
x
0

0 1

!

(1.43)
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which is below one if

1 � a2 C a2B

2.B C e2/x
< 1;

since 0 < ak � 1 for k D 1; 2. This relation can be rewritten as

x >
B

2.B C e2/
;

so a feasible positive x exists. From the local stability result of Appendix B we
conclude that the monopoly equilibrium .0; xM

2 / is locally asymptotically stable.
The stability of the other monopoly equilibrium .xM

1 ; 0/ can be proved similarly.
This provides a first conclusion with regard to the equilibrium selection problem,

because even if we obtain three Nash equilibria, from an evolutionary perspective
a stability argument suggests that the interior equilibrium will not be selected. It
remains an open question, however, as to which one of the two monopoly equi-
libria is more likely to be observed in the long run. The situation is even more
intricate, since in addition to the two asymptotically stable boundary equilibria, in
the strategy space another attracting set might coexist. This can be demonstrated by
considering the best reply dynamics obtained for ak D 1, k D 1; 2. In the case when
xM

2 > .A � c1/ =B and xM
1 > .A � c2/ =B we have .R1.0/; R2.0// D .xM

1 ; xM
2 /

and
�

R1.x
M
2 /; R2.x

M
1 /
	 D .0; 0/. Therefore, under best reply dynamics the peri-

odic cycle C2 D ˚

.0; 0/ I �xM
1 ; xM

2

	


coexists with the two stable monopoly equi-
libria. It is also easy to see that C2 is stable, so it may even occur that an adjustment
process fails to converge towards any Nash equilibrium in the long run. In such a
situation, where several attractors coexist, the question of which attractor will be
reached in the long run crucially depends on the initial conditions and the observed
outcome becomes path dependent. Each of these long run outcomes has its own
basin of attraction (see Appendix C for definitions of these concepts from the qual-
itative theory of dynamical systems) and any external random factor (a so-called
“historical accident”) that causes a displacement of some of the initial outputs may
cause the trajectory to move across a basin boundary and, consequently, it will
converge to a different attractor.

We can shed some light on this issue by using a mixture of analytical, geometrical
and numerical methods, an approach which is typically used in the study of the
global dynamical properties of nonlinear systems of dimension greater than one
(see for example Mira et al. (1996), Brock and Hommes (1997) and Puu (2003)).

To get a better feeling for the global dynamics of our duopoly game where firms
use partial adjustment towards the best response, we numerically compute the basins
of attraction for the coexisting attractors. Let the reservation price be AD 450 and
the slope of the linear inverse demand function be B D 30. For the sake of sim-
plicity, we consider identical firms with cost parameters c1 D c2 D c D 275 and
e1 D e2 D e D � 17, so that production costs are increasing, but marginal costs are
decreasing. (Similar values were chosen by Cox andWalker (1998) in an experimen-
tal setup). In order to guarantee non-negativeprices, we selectL1 DL2 D 7:5, which
ensures thatL1CL2 � A=B . For these parameter values condition (1.38) is fulfilled
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and the interior equilibrium is unstable. In addition, A � ck � 2.Bk C ek/Lk <0

implying that the output space Œ0; L1� � Œ0; L2� is divided into only four regions
rather than the nine shown in Fig. 1.10).

� In Fig. 1.11a the basins of attraction of E1; E2; and the coexisting 2-cycle C2

are shown for the best reply dynamics, namely for a1 D a2 D 1. The basin of
attraction of E1 is represented by the light-grey region, the basin of E2 by the
dark-grey region, and the basin of the cycle C2 by the white region. The peculiar
rectangular-shaped structure of the basins is related to the particular structure of
the best reply process, x1.tC1/ D R1.x2.t//, x2.tC1/ D R2.x1.t//, where next
period’s output of firm i only depends on the current output of the other firm. This
implies that the eigenvectors associated with the unstable equilibrium E (that
belongs to the basin boundaries) are parallel to the coordinate axes. Moreover,
the map which generates the dynamics transforms vertical lines into horizontal
lines and vice versa. Hence, the invariant sets associated with the unstable node
E, that form the boundaries of the basins, are formed by vertical and horizontal
lines (on this point see also Bischi et al. (2000b)).

� If the speeds of adjustment are smaller than 1, important differences can be
observed in the global dynamics. For example, Fig. 1.11b has been obtained with
a1 D 0:97, a2 D 0:98, leaving all the other parameters unchanged. Now the stable
2-cycle has both periodic points characterized by positive coordinates, namely
C2 D f.0:19; 0:13/ I .6:39; 6:38/g, and the structure of the basins is different, in
particular the basin of the cycle C2 is smaller. The rectangular shape of the basins
is lost since in the case of partial adjustment the eigenvectors associated with E

are no longer parallel to the coordinate axes.
� If the speeds of adjustment are even further decreased, the basin of the cycle C2

shrinks; see Fig. 1.11c obtainedwith a1 D 0:93; a2 D 0:95. The periodic points of
C2 approach the boundary of its basin and after a contact with such a boundary,
the cycle C2 becomes unstable. As a consequence, the whole strategy space is
shared by the basins of the two asymptotically stable boundary Nash equilibria
E1 and E2, as depicted in Fig. 1.11d obtained with a1 D 0:9, a2 D 0:92.

Our analysis suggests the following insights. First, the basins of the Nash equi-
libriaE1 andE2 are always simply connected.We emphasize this fact since later on
we will encounter examples where the basins will not have such a simple structure.
Second, whereas the local asymptotic stability of the boundary Nash equilibria does
not depend on the adjustment speeds, the shape of the basins changes significantly
when adjustment speeds become smaller. If the players’ speeds of adjustment are
lower, then the size of the basins of the equilibria is larger. As far as local asymptotic
stability is concerned, it is well-known in the literature that decreasing the speeds of
adjustments usually stabilizes the system (see for instance Fisher (1961), McManus
and Quandt (1961) and some results to be presented in Chap. 2). Here, however,
we emphasize that (in the present example) this also holds for the global dynam-
ics. Finally, since the firm with the smaller adjustment speed has the larger basin,
this firm is more likely to achieve the role of the monopolist, if initial production
quantities are selected randomly from a close to uniform distribution.
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Fig. 1.11 Basins of attraction for the Cournot duopoly when firms use partial adjustment towards
the best response with linear demand/quadratic cost. Light grey basin of E1; dark grey basin of
E2; white basin of the 2-cycle C2. (a) Full adjustment, a1 D a2 D 1. The basins are rectangular.
(b) Partial adjustment, a1 D 0:97, a2 D 0:98. The basins lose their rectangular shape. (c) Partial
adjustment, a1 D 0:93, a2 D 0:95. The basin of C2 shrinks. (d) Partial adjustment, a1 D 0:9,
a2 D 0:92. The 2-cycle C2 has become unstable, and its basin has disappeared

As a final remark we note that although the cyclic outcome C2 is an attrac-
tor from a mathematical point of view, it has several shortcomings as a potential
description of real-world economic behavior. First, whereas convergence to a steady
state implies that the players’ naive expectations are fulfilled at least in the long
run, a sustained low-periodic oscillation implies that the players’ expectations are
permanently wrong. It seems plausible that in such a situation the players would
learn how to improve their forecasts. Second, although profits are always positive
in all Nash equilibria, this is not necessarily true in general for the cycle C2. As an
example consider again the best reply dynamics, where C2 D ˚

.0; 0/ I �xM
1 ; xM

2

	


.
The corresponding profits along the 2-cycle are 'k .0; 0/ D 0 for firm k, with
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'1

�

xM
1 ; xM

2

	 D .A � c1/ Œe2 .A � c1/ C B .c2 � c1/�=.4 .B C e1/ .B C e2//, and
'2

�

xM
1 ; xM

2

	 D .A � c2/ Œe1 .A � c2/ C B .c1 � c2/� = .4 .B C e1/ .B C e2//.
This shows that for at least one of the firms, profits are negative along the cycle.
Moreover, if �B < ek < 0 and c1 D c2, then we have negative profits for both firms,
a situation which is not sustainable for any firm. As a consequence of these consid-
erations, what our analysis of the global dynamics reveals is that for some initial
production choices an economically infeasible situation will emerge for the firms.
Notice that this important result can only be obtained through a global study of the
structure of the basins of attraction.

We also would like to draw the reader’s attention to a global bifurcation which is
responsible for the drastic change in the dynamics obtained in this simple duopoly
model. In a situation where marginal costs are decreasing strongly and xM

k
< xL

k
,

we obtain three coexisting attractors: two boundary equilibria and a 2-cycle. Notice
that the limiting quantities xL

k
are located on a line where the map is not differen-

tiable. Consider now what happens if marginal costs increase. At a certain point, a
boundary equilibrium xM

k
will collide with xL

k
, and if marginal costs are increased

even further, then the interior equilibrium becomes globally stable. This is actu-
ally a first example of a border collision bifurcation, a global bifurcation occurring
whenever a qualitative change in the phase diagram (that is, creation/destruction of
invariant sets and/or stability change of existing ones) is due to a contact (and cross-
ing) of an invariant set with a border where the map is not differentiable separating
regions where it is differentiable. In this case the boundary that separates regions
D

.5/ and D
.1/ is the one involved in the contact, and such a border is due to the

presence of non-negativity constraint. This kind of global (or contact) bifurcations,
specific to piece-wise differentiable dynamical systems, will be examined in more
detail in Chap. 2, in particular in Examples 2.3 and 2.4.

1.3.2 A Cournot Oligopoly Game

In his seminal paper, Theocharis (1960) studied the asymptotic stability of the
Cournot–Nash equilibrium under discrete-time best reply dynamics with naive
expectations. For this quantity-setting model with linear demand and linear costs,
he found that the (unique) equilibrium is asymptotically stable only in the case of
two competitors. It is marginally stable (see definition (A.1) in Appendix A) for
three firms and unstable for more than three firms. Among others, McManus and
Quandt (1961) and Fisher (1961) demonstrated that this result depends on the type
of adjustment process the firms use to determine their production quantities. They
showed that for certain adjustment processes in continuous-time the equilibrium is
stable no matter what the number of firms is. These facts will be later discussed
in Chap. 2. Despite this result Fisher (1961, p.125) notes that “... the tendency to
instability does rise with the number of sellers for most of the processes consid-
ered”. These early papers gave rise to a lively discussion that has endured until the
present day. One of the main topics in this body of literature is the relation between
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the following issues: the quasi-competitiveness of the economy, that is the question
as to whether output increases and the market price decreases with an increasing
number of firms in the industry; the asymptotic stability of the equilibrium if entry
occurs; the question as to whether perfect competition is obtained in the limit as the
number of competitors is increased. The interested reader should consult for exam-
ple Frank (1965), Ruffin (1971), Howrey and Quandt (1968), Okuguchi (1976), or
more recently, Seade (1980) and Amir and Lambson (2000) to get an impression
of the variety of interesting results obtained concerning this issue. In this section
we focus on asymptotic stability issues and we try to answer the question: is local
asymptotic stability obtained when the number of firms increases? Furthermore, we
also address the topic of global dynamics, that is we look at the changes in the basins
of attraction of the stable equilibria. Clearly, a discussion of these issues becomes
more complicated when the model is nonlinear, since increasing the number of play-
ers means increasing the dimension of the dynamical system. This is so since such
increases lead to greater complexity in the dynamics of nonlinear systems, whereas
in the case of linear systems no new dynamic phenomena arise.

In order to keep the mathematical analysis tractable, but at the same time to
also shed some light on the relation between asymptotic stability and the number
of firms, in what follows we will consider both the symmetric and semi-symmetric
models. Recall that in the symmetric case it is assumed that all firms are identi-
cal, so that they have identical cost functions and all firms start from the same
initial production quantities. Since the cost and demand parameters are identical
for all firms, the reaction functions Rk will be identical, say Rk DR for each k.
Consequently, the quantities will be identical for all periods, and the dynamics are
governed by a 1-dimensional system. If we let x.t/ denote the common output of
the representative firm, then the one-dimensional model in the symmetric case is
obtained by settingQk D .N �1/x for each k. It is worth noting that the symmetric
case may be structurally unstable, that is the outcome obtained for the representa-
tive firm in the symmetric case may be completely different from the outcome of the
model with almost identical, but nevertheless heterogeneous firms (the firms might
differ in their production costs or might select slightly different initial quantities).
Therefore, the insights obtained from the symmetric model need to be accepted with
some caution. In order to derive some results which can be compared with the exist-
ing literature, we reconsider the partial adjustment towards the best response process
given by (1.23).

The symmetric case is obtained if we assume N players with identical quadratic
cost functions (as in Example 1.2), that is c1 D c2 D � � � D cN D c and e1 D
e2 D � � � D eN D e, identical adjustment speeds, that is a1 D a2 D : : : ; aN D a,
and identical capacity limits L1 D L2 D � � � D LN D L. It is also assumed that
BCe > 0, so the payoff functions of the firms are strictly concave in their strategies.
Then from (1.23) the 1-dimensionalmodel which summarizes the common behavior
of all identical firms starting from identical initial condition x1.0/ D x2.0/ D � � � D
xN .0/ D x.0/ is

x.t C 1/ D T .x.t// � .1 � a/ x.t/ C aR ..N � 1/ x.t// ;
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where (see the reaction function in case (i) of Example 1.2)

R..N � 1/x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z� < 0;

L if z� > L;

z� otherwise;

with z� D �

A � c � B.N � 1/x
	

=
�

2.B C e/
	

:

Observe that the number of firms N enters as a parameter, so we can study the
stability conditions as N is increased. The positive equilibrium is given by

Nx D A � c

B.N C 1/ C 2e

and the map T is a contraction provided that jT 0.x/j < 1, that is

0 < a
BN C B C 2e

2.B C e/
< 2.

This implies that the positive equilibrium is always asymptotically stable for suffi-
ciently small values of the adjustment speed a. Moreover, given 0<a� 1, asymp-
totic stability is obtained for

N <
.4 � a/B C 2 .2 � a/ e

aB
:

In the case of best reply dynamics, a D 1, the stability condition reads N < .3B C
2e/=B . In the case of linear costs, e D 0, we obtain the result by Theocharis stating
that asymptotic stability is obtained for N < 3.

In the semi-symmetric case .N � 1/ firms are assumed to be identical, whereas
one firm differs with regard to its production costs and/or initial production quantity.
Let firms 2; : : : ; N be identical, then their production choices will coincide in each
period, that is xk D x2 for all k � 2. Let us denote the production quantity of firm
1 by x1, then

Q1 D .N � 1/x2 andQ2 D x1 C .N � 2/x2: (1.44)

By using the reaction functions R1 and R2 D � � � D RN , we obtain a two-
dimensional system with state variables x1 and x2. In (1.23) we set c2 D � � � D cN ,
e2 D � � � D eN ; a2 D � � � D aN , and L2 D � � � D LN : Then the 2-dimensional
model that governs the behavior of firm 1 and the common behavior of the identical
firms 2; : : : ; N becomes

TN W
�

x1.t C 1/ D .1 � a1/ x1.t/ C a1R1 ..N � 1/ x2.t// ;

x2.t C 1/ D .1 � a2/ x2.t/ C a2R2 .x1.t/ C .N � 2/ x2.t// ;

where (again refer to the reaction function in case (i) of Example 1.2)
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R1..N � 1/x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
1 < 0;

L1 if z�
1 > L1;

z�
1 otherwise;

with z�
1 D �

A � c1 � B.N � 1/x2

	

=
�

2.B C e1/
	

and

R2.x1 C .N � 2/x2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if z�
2 < 0;

L2 if z�
2 > L2;

z�
2 otherwise;

with z�
2 D �

A � c2 � B .x1 C .N � 2/x2/
	

=
�

2.B C e2/
	

:

The interior equilibrium is independent of ak , k D 1; 2, but depends on the
number of firms N . It is given by E D . Nx1.N /; Nx2.N // with

Nx1.N / D A.B C 2e2/ � 2c1e2 C B .c2.N � 1/ � c1N/

2B.N � 2/.B C e1/ C 4.B C e1/.B C e2/ � B2.N � 1/
;

Nx2.N / D 2.B C e1/.A � c2/ � B .A � c1/

2B.N � 2/.B C e1/ C 4.B C e1/.B C e2/ � B2.N � 1/
:

The Jacobian matrix computed at the interior equilibrium is

 

1 � a1 � a1
B.N �1/
2.BCe1/

�a2
B

2.BCe2/
1 � a2 � a2

B.N �2/
2.BCe2/

!

;

from which the stability conditions can be obtained by applying conditions (1.40).
Interesting stability results are obtained for the boundary equilibria, in the case when
B2 > 4.B C e1/.B C e2/ (illustrated in Fig. 1.3 for one possible situation). The
Jacobian evaluated in the neighborhood of E1 is either

 

1 � a1 � a1
B.N �1/
2.BCe1/

0 1 � a2

!

or

�

1 � a1 0

0 1 � a2

�

or both, if the equilibrium is on the boundary between the two regions, sinceR2 � 0

here. The Jacobian evaluated in the neighborhood of E2 is either

 

1 � a1 0

�a2
B

2.BCe2/
1 � a2 � a2

B.N �2/
2.BCe2/

!

or

 

1 � a1 0

0 1 � a2 � a2
B.N �1/
2.BCe2/

!

or both, because R2 � 0 here.
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As before, let P D
�

x 0

0 1

�

, then the row norms of the Jacobians around E1

generated by the matrix P are bounded by the row norm of the matrix

 

x 0

0 1

! 

1 � a1 a1
B.N �1/
2.BCe1/

0 1 � a2

! 

1
x
0

0 1

!

D
 

1 � a1 a1
Bx.N �1/
2.BCe1/

0 1 � a2

!

(1.45)

which is below one if

1 � a1 C a1

Bx.N � 1/

2.B C e1/
< 1;

that is, when

x <
2.B C e1/

B.N � 1/
:

Hence the equilibrium E1 is locally asymptotically stable for all values of N .
Similarly, E2 is locally asymptotically stable if there is a positive x such that

a2B

2x.B C e2/
C
ˇ

ˇ

ˇ

ˇ

1 � a2 � a2

B.N � 2/

2.B C e2/

ˇ

ˇ

ˇ

ˇ

< 1

which occurs if

�1 < 1 � a2

�

1 C B.N � 2/

2.B C e2/

�

< 1:

Therefore,E2 is stable provided that

0 < a2

B.N � 2/ C 2.B C e2/

2.B C e2/
< 2:

From this stability condition we can now derive several interesting results. First,
as already shown before, in the case of duopoly .N D 2/ the boundary equilibrium
E2 is also always stable, like E1. Moreover, the boundary equilibrium E2 is stable
provided that a2 is sufficiently small, which means that firms 2; : : : ; N have a high
inertia in adjusting their quantities toward the best responses. Finally, increasing the
number of firms has a destabilizing role. In fact the stability condition can be written
as

N < 2 C 2 .2 � a2/ .B C e2/

Ba2

;

so that for given cost parameters and adjustment speeds asymptotic stability is lost
when the number of firms reaches a certain size.

To conclude this section, we study the global dynamics of the semi-symmetric
model. Consider again the parameter values AD 450, B D 30 and c1 D c2 D : : : D
cN D 275, e1 D e2 D � � � D eN D �17. For the adjustment speeds of the two
firms we select a1 D 0:6 and a2 D � � � D aN D 0:45. For these parameter values
the stability condition derived in the previous paragraph tells us that the boundary
equilibriumE2 is asymptotically stable if N < 4. In Fig. 1.12a we depict the basins
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x2
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x1 L1
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E2

L2
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0 E1x1 L1
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Fig. 1.12 The Cournot oligopoly with linear demand/quadratic cost. Firms use partial adjustment
towards the best response. Basins of attraction of the various equilibria for different values of the
number of firms N . (a) The 3-firm case. Here both E1 and E2 are stable. Dark grey basin of E2;
light grey basin of E1. (b) The 5-firm case. Now E1 is stable, E2 is unstable. Light grey basin of
E1; white basin of the two cycle

of the two boundary equilibria E1 and E2 for N D 3 firms. To guarantee non-
negative prices, we have selected L1 D 7 and L2 D L3 D 4. Both boundary
equilibria are asymptotically stable, each with its own basin of attraction represented
by the different shadings of grey. In Fig. 1.12b we show the situation for N D 5

firms where L1 D 7 and L2 D � � � D L5 D 2. Now only the boundary equilibrium
E1 is asymptotically stable, and its basin is represented by the light grey region.
Points located in the white region converge to the 2-cycle represented by the two
dots.

1.3.3 Cournot Duopoly Revisited: A Gradient Type
Adjustment Process

The local stability of an equilibrium and the global dynamics depend on the
adjustment mechanism the firms use to update their production choices. We now
reconsider the duopoly case analyzed in Sect. 1.3.1, but instead of assuming partial
adjustment towards the best response, we now consider a discrete time adjustment
process based on marginal profits, similar to the gradient adjustment process dis-
cussed in Sect. 1.2 (1.32). However we assume now that the relative variation in
production quantities is proportional to the marginal profits, that is firm i adjusts its
output according to

xi .t C 1/ � xi .t/

xi .t/
D ai

�

@'i

@xi

�

with ai > 0. With these assumptions, the dynamics are now governed by the discrete
time system
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Tg W
8

<

:

x1.t C 1/ D x1 .t/ C a1x1 .t/ ŒA � c1 � 2.B C e1/x1 .t/ � Bx2 .t/� ;

x2.t C 1/ D x2 .t/ C a2x2 .t/ ŒA � c2 � 2.B C e2/x2 .t/ � Bx1 .t/� :
(1.46)

It is easy to see that the interior steady state of the adjustment process based on
marginal profits coincides with the unique interior Nash equilibrium E D . Nx1; Nx2/

given in (1.12). To study the local asymptotic stability of E, we consider the
Jacobian matrix of (1.46). Since the Nash equilibrium is located at the intersec-
tion of the two reaction functions given in (1.34) and (1.35), we have B Nxi D
A � cj � 2

�

B C ej

	 Nxj (i; j D 1; 2, i ¤ j ). Therefore, the Jacobian matrix
evaluated at the interior equilibrium E can be written as

�

1 � 2a1.B C e1/ Nx1 � a1B Nx1

�a2B Nx2 1 � 2a2.B C e2/ Nx2

�

: (1.47)

We can check the stability conditions by use of the relations (1.40) with

q D .1 � 2a1.B C e1/ Nx1/.1 � 2a2.B C e2/ Nx2/ � a1a2B
2 Nx1 Nx2;

and
p D �2 C 2a1.B C e1/ Nx1 C 2a2.B C e2/ Nx2:

By assuming that B C ek > 0 for k D 1; 2, clearly q < 1. Notice that

p C q C 1 D 4a1a2.B C e1/.B C e2/ Nx1 Nx2 � a1a2B
2 Nx1 Nx2;

which is positive if B2 < 4.B C e1/.B C e2/. Similarly,

�pCqC1 D 4�4a1.BCe1/ Nx1 �4a2.BCe2/ Nx2 C4a1a2 Nx1 Nx2.BCe1/.BCe2/;

so this is positive, if

.4.B C e1/.B C e2/�B2/ Nx1 Nx2a1a2 � 4.B C e1/ Nx1a1 � 4.B C e2/ Nx2a2 C 4 < 0 :

(1.48)
If B2 < 4.B C e1/.B C e2/ and the equilibrium E is positive, then this additional
condition can be used to determine a region of stability in the .a1; a2/-plane. In con-
trast to the adjustment process where firms partially adjust their quantities towards
the best reply, here the speeds of adjustment are crucial for local asymptotic stabil-
ity of the Nash equilibrium. As remarked earlier, the stabilizing role of sufficiently
small values of the adjustment speeds has been observed before by many authors
(see for example Fisher (1961), McManus and Quandt (1961), and Flam (1993)). In
Fig. 1.13 we depict the stability region (shaded) in the .a1; a2/ plane obtained for the
parameter values A D 450, B D 30, c1 D c2 D 275, e1 D e2 D �11. For values
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a1

0.025
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Fig. 1.13 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. The hashed area indicates the stability region of the interior Nash
equilibrium E in the .a1; a2/ plane of adjustment speeds

of .a1; a2/ inside the stability region, the Nash equilibrium E is an asymptotically
stable node. The boundary of this region represents a bifurcation curve at which
E loses asymptotic stability through a flip (or period doubling) bifurcation (see for
example Guckenheimer and Holmes (1983), or Lorenz (1995)). This bifurcation
curve intersects the axes in the points

A1 D
�

1

.B C e1/ Nx1

; 0

�

and A2 D
�

0;
1

.B C e2/ Nx2

�

;

fromwhich further information on the effects of the model’s parameters on the local
asymptotic stability of E could be derived by further analysis.

So far we have only considered questions related to local asymptotic stability of
the interior equilibrium. But what can we say about the global dynamics? That is,
given that the interior Nash equilibrium is locally asymptotically stable, what can
be said about its basin of attraction, defined as the set of feasible initial conditions
which generate bounded and positive trajectories converging to E? In Fig. 1.14,
obtained with parameters AD 450, B D 30, c1 D c2 D 275, e1 D e2 D � 11 and
speeds of adjustment a1 D 0:01, a2 D 0:012, the Nash equilibriumE D .2:57; 2:57/

is locally asymptotically stable and its basin of attraction (or feasible set) is rep-
resented by the white area. The region in grey represents the basin of infinity,
denoted B .1/, that is the set of initial conditions that generates unbounded (and
negative), therefore “infeasible”, trajectories. The interior Nash equilibrium is not
globally asymptotically stable since not all initial conditions in the strategy space
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Fig. 1.14 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. The white region is the basin of attraction of the Nash equilibrium E ,
the dark grey region is B.1/. The basin of E is bounded by the two segments !1, !2 and their
rank-1 preimages .!1/�1, .!2/�1

are economically feasible. For all quantity choices in the basin of E, we obtain
x1 Cx2 < A=B . Therefore, non-negativity of prices is guaranteed. Note that for the
set of parameters we have selected here, the interior equilibrium would be globally
stable with respect to partial adjustment towards the best response.

For the set of parameters used to obtain Fig. 1.14, the set of initial conditions
which lead to convergence to the Nash equilibrium E is the interior of the quadri-
lateral OO

.1/
�1O

.3/
�1O

.2/
�1 , where O D .0; 0/ denotes the origin and the other three

vertexes are the rank-1 preimages ofO , meaning that for these points Tg.O
.i/
�1/DO

holds for i D 1; 2; 3 (Note that the mapping Tg was defined in (1.46)). These points
are given by

O
.1/
�1 D .

1 C a1.A � c1/

2a1.B C e1/
; 0/ ; O

.2/
�1 D .0;

1 C a2.A � c2/

2a2.B C e2/
/ (1.49)

and

O
.3/
�1 D

�2a2.B C e2/ .1 C a1.A � c1// � a1B .1 C a2.A � c2//

3B2a1a2 C 4a1a2.e1 C e2/ C 4a1a2e1e2

;

2a1.B C e1/ .1 C a2.A � c2// � a2B .1 C a1.A � c1//

3B2a1a2 C 4a1a2.e1 C e2/ C 4a1a2e1e2

�

; (1.50)
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which can be obtained by solving the fourth degree algebraic system (1.46) for
xi .t/, upon setting xi .t C 1/ D 0, (i D 1; 2). A simple strategy for obtaining the
preimages of O is to start from the dynamics of Tg restricted to the axes. Since
xi .t/ D 0 implies xi .t C 1/ D 0, starting from an initial condition on a coordinate
axis, the dynamics are “trapped” on this axis for all t . In other words, a monopoly
prevails over time and the one-dimensional “monopoly dynamics” is obtained from
(1.46) with xi D 0, namely

xj .t C 1/ D .1 C aj .A � cj //xj .t/ � 2.B C ej /aj x
2
j .t/: (1.51)

We also note that this map is conjugate to the standard logistic map x.t C 1/ D
�x.t/ .1 � x.t// through the linear transformation xj D 1Caj .A�cj /

2aj .BCej /
x, from which

the relation � D 1 C aj .A � cj / can be obtained. The following results for our
map can be directly derived from the properties of the logistic map, which is well-
studied in the literature; see for example, Devaney (1989). The rank-1 preimages
O

.j /
�1 given in (1.49) can now be easily derived from (1.51). Along the xj -axis (j D

1; 2), the one-dimensional restriction (1.51) gives bounded dynamics for aj .A �
cj / � 3 provided that the initial conditions are taken inside the segment !j D
OO

.j /
�1 . Observe that divergent trajectories along the invariant xj axis are obtained

if the initial condition is out of the segment !j (j D 1; 2). Let us now turn to
the quadrilateral region bounded by the two segments !1 and !2 and their rank-
1 preimages, say .!1/�1 and .!2/�1 respectively (see Fig. 1.14). The preimages
.!1/�1 and .!2/�1 can be analytically computed as follows. Let X D .x; 0/ be a
point of !1. Its preimages are the real solutions .x1; x2/ of the algebraic system

8

<

:

x1 Œ1 C a1.A � c1/ � 2a1.B C e1/x1 � a1Bx2� D x;

x2 Œ1 C a2.A � c2/ � a2Bx1 � 2a2.B C e2/x2� D 0 :

(1.52)

From the second equation it is easy to see that the preimages of the points of !1

are either located on the same invariant axis x2 D 0 or on the line represented by
the equation

a2Bx1 C 2a2.B C e2/x2 D 1 C a2.A � c2/: (1.53)

Analogously, the preimages of a point of !2 belong to the same invariant axis
x1 D 0 or to the curve represented by equation

2a1.B C e1/x1 C a1Bx2 D 1 C a1.A � c1/: (1.54)

It is now straightforward to see that the line (1.53) intersects the x2 axis in the
point O.2/

�1 and the line (1.54) intersects the x1 axis in the point O.1/
�1 . Moreover,

the two lines intersect at the point O.3/
�1 . A summary of these observations leads to

the following description of the basin of the asymptotically stable Nash equilibrium
E as shown in Fig. 1.14. The rank-1 preimages of the origin are the vertexes of the
quadrilateralOO

.1/
�1O

.3/
�1O

.2/
�1 . The sides of this region are given by !1, !2 and their
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respective rank-1 preimages .!1/�1 and .!2/�1 respectively. All points inside this
quadrilateral region lead to convergence, all points outside cannot generate feasi-
ble trajectories. Points located to the right of .!2/�1 are mapped into points with
negative value of x1 after one iteration, as can be easily deduced from the first com-
ponent of (1.46). Points located above .!1/�1 are mapped into points with negative
value of x2 after one iteration, as can be deduced from the second component of
(1.46). The expressions in (1.53) and (1.54) can be used to determine the impact
of parameter changes on the basin. Finally, observe that for these values of the
parameters the basin of the unique interior Nash equilibrium is a rather simple and
connected set.

1.3.4 Simple Basins and Critical Curves

In this subsection we introduce the concept of critical curves (see also Appendix C).
This subsection uses many concepts about dynamical systems that may not be famil-
iar to some readers (such as noninvertible maps, critical sets, preimages of various
ranks and so on). These concepts are reviewed in Appendix C, which the reader may
need to study before working through this subsection.

Recall that in the previous subsection we have demonstrated how to obtain the
boundaries of the feasible region by taking the preimages .!i /�1 .i D 1; 2/ of the
coordinate axes. Since the map Tg in (1.46) is a noninvertiblemap, as can be readily
deduced from the fact that the origin has four preimages, there might be further
preimages of .!i /�1 .i D 1; 2/, which have to be also considered in order to obtain
the whole boundary of the feasible region. In order to determine if .!i /�1 .i D 1; 2/

have further preimages, we can use the critical curves of the map which can be used
to identify regions in the feasible set (or strategy space) with a different number of
preimages.

To begin with, let us consider a given point
�

x0
1; x

0
2

	

in the strategy space. Then
its preimages can be calculated by setting x1.t C 1/ D x0

1; x2.t C 1/ D x0
2 in (1.46)

and solving with respect to x1 and x2 the fourth degree algebraic system,

8

ˆ

ˆ

<

ˆ

ˆ

:

x1 Œ1 C a1 .A � c1 � 2.B C e1/x1 � Bx2/� D x0
1;

x2 Œ1 C a2 .A � c2 � 2.B C e2/x2 � Bx1/� D x0
2:

(1.55)

Clearly, this algebraic system may have up to four real solutions, which are the
rank-1 preimages of

�

x0
1; x

0
2

	

. We can now use this information to subdivide the
strategy space into regions characterized by a different number of preimages. This
is shown in Fig. 1.15a, which is obtained with the same parameters as Fig. 1.14. The
regions Zk denote the sets of points which have k real and distinct rank-1 preim-
ages. For example, as shown above, the originO D .0; 0/ 2 Z4, because it has four
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Fig. 1.15 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. Illustrating the regions of preimages of different ranks, the sets of points
where the Jacobian vanishes (LC.a/

�1 and LC
.b/
�1 ) and the critical curves LCa and LCb . (a) The

parameters are the same as in Fig. 1.13. (b) The speeds of adjustment are slightly higher, E
becomes unstable and a strange attractor emerges, but the basic structure of the basin remains
the same as in (a). Note however that the critical curve LC.b/ in now quite close to the boundary
of the white and grey regions

rank-1 preimages, given by O itself (since Tg.0; 0/D .0; 0/) and O
.i/
�1, i D 1; 2; 3

(since Tg.O
.i/
�1/D .0; 0/ as well). The regions Zk are separated by segments of

critical curves denoted as LC .a/ and LC .b/ in Fig. 1.15a.
An intuitive understanding of the importance of critical curves can be obtained

by referring to the folding or unfolding mechanism of a map. The map (1.46) is
noninvertible, which means that distinct points in the action set can be mapped into
the same point by Tg . This can be geometrically envisioned by imagining a process
which folds the action space onto itself (so that points which are in different loca-
tions are folded onto each other). A result from algebraic geometry tells us that the
folding process can be characterized by a change of sign of the determinant of the
Jacobian of the map: if the sign is positive, then the map is orientation preserving,
whereas it is orientation reversing otherwise.4 The folding curves where the sign
change occurs is the locus of points where the determinant of the Jacobian of the
map vanishes. Its image gives the so-called critical curve, which separates zones
or regions with different numbers of preimages (this indicates the importance of
the unfolding action of the map). To sum up, the following numerical procedure

4 Consider a one-dimensional, continuously differentiable map g.y/. If g0.y/ > 0, then for x < y,
it follows that g.x/ < g.y/. If, on the other hand, g0.y/ < 0, the orientation is reversed. Obviously,
the change of signs occurs exactly at the point where the derivative vanishes.
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(see also Appendix C) can be used to obtain the critical curves (for a given set of
parameters):

1. The map (1.46) is continuously differentiable, so the (folding) set LC�1 can
be obtained numerically as the locus of points .x1; x2/ for which the Jacobian
determinant of Tg vanishes.

2. The critical curves LC , which separate the regionsZk , are obtained by comput-
ing the images of the points belonging to LC�1, that is LC D Tg.LC�1/.

In Fig. 1.15a the set of points at which the Jacobian vanishes gives the curves
denoted by LC

.a/
�1 and LC

.b/
�1 . It is formed by the union of the two branches of a

hyperbola. Also the critical curve LC D Tg.LC�1/ is formed by two branches,

denoted by LC .a/ D Tg.LC
.a/
�1 / and LC .b/ D Tg.LC

.b/
�1 /. The curve LC

.b/ sep-
arates the region Z0, whose points have no preimages, from the region Z2, whose
points have two distinct rank-1 preimages. The curveLC .a/ separates the regionZ2

from Z4, whose points have four distinct preimages.
Our analysis based on the critical curves of the map now reveals why the set

of initial conditions that lead to convergence to the Nash equilibrium, bounded by
!1, !2 and its preimages .!1/�1 and .!2/�1, is a rather simple set. It is due to the
fact that only preimages of rank-1 of !1 and !2 exist. Note that .!1/�1 and .!2/�1

are entirely included in Z0, that is a region of the feasible set whose points have no
preimages. Therefore, the preimages .!i /�1 .i D 1; 2/ of the invariant axes, have
no preimages of higher rank. Consequently, the whole boundary that separates the
basin B.E/ and the infeasible set B.1/ is

F D �[1
nD0T

�n
g .!1/

	
[
�[1

nD0T
�n
g .!2/

	

; (1.56)

that is, the union of all the preimages of the segments !1 and !2 (see Appendix C),
which is a rather simple set.

To conclude this subsection, we would like to stress the fact that the properties of
the basin boundaries are related to the global dynamics of our duopoly model. Such
a simple structure of the basin may be also maintained when the Nash equilibrium
loses stability due to local (period-doubling) bifurcations. In Fig. 1.15b, obtained
with the same parameters as before except that a1 D 0:015 and a2 D 0:0165, we
depict a situation where (after the usual period-doubling sequence) a chaotic attrac-
tor describes the long run evolution of the production decisions of the duopolists.
Despite the fact that the dynamic behavior can be considered as complex, the basin
boundaries are still given by the same quadrilateral.

The reader should notice, however, that basins are not always as simple as in the
examples presented so far in this book. Indeed, a closer look at Fig. 1.15b reveals
that the critical curve LC .b/ is rather close to a basin boundary. This indicates that
a small shift of this curve due to a parameter variation may cause a contact, after
which a portion of the set of infeasible points B.1/ crosses the critical curve and,
consequently, enters the region Z2. In the next subsection we will show that such
contact bifurcations may have a considerable impact on the topological structure of
the feasible set.
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1.3.5 Disconnected Basins

In all the examples encountered up to now, the basins of the corresponding attractor
were rather simple and were connected sets. As we shall now demonstrate, basins
can have a quite complicated structure. For example, they can be pierced by many
holes or may consist of areas without any connection. In such situations predicting
the long run outcome of the duopoly game where players use certain adjustment
processes to determine their production quantities over time is quite difficult. This
becomes particularly relevant when stochastic influences play a role.

In Fig. 1.16a we depict the situation after an increase in the adjustment speeds
from a1 D 0:015, a2 D 0:0165 (the values in Fig. 1.15b) to a1 D 0:015; a2 D 0:017.
After the contact of the curve LC .b/ with the boundary of B .1/, a set indicated as
H0 which belongs to the infeasible set B .1/ enters Z2 (see the region indicated
by the arrow in Figs. 1.16a, b).

This means that points belonging to H0 have two distinct preimages, say H
.1/
�1

andH .2/
�1 , which are located on opposite sides of the curveLC

.b/
�1 (the preimages of

points exactly on the curve LC .b/ inside B .1/ are located on LC
.b/
�1 ). Obviously,

since H0 belongs to the set B .1/, initial conditions belonging to H
.1/
�1 and H

.2/
�1

also lead to infeasible trajectories, since they are mapped into the infeasible set after
one iteration. The rank-1 preimages of H0 constitute a so-called hole of B .1/

which is located entirely inside the feasible set (this hole is also called a “lake” in
Mira et al. (1996)). Since this hole, also referred to as themain hole, again lies inside
the region Z2, it also has two preimages. These smaller holes, denoted as H .1/

�2 and

LC (b)

LC (a)

(1)
H−1

(2)
H−1

(2)H−2

(1)H−2

E2

Z4

Z0

Z2

H0

0

6

x2

6x1E1

(a)

0

6

4
21

1 1( )ω −

( )bLC

(1)
2H−

0H

x

2E

2x

(b)

Fig. 1.16 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. Slightly higher speeds of adjustment than in the case of Fig. 1.15. The
critical curve LC.b/ has crossed the basin boundary and a disconnected basin of attraction now
results. (a) The entire region. (b) A close up of the set H0 and its preimages
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LC(b)

LC(a)

E2

6

x2

0 6E1
x1

Z4

Z0

Z2

Fig. 1.17 The Cournot duopoly with a gradient type adjustment process and linear
demand/quadratic cost. The same situation as in Fig. 1.16, but with slightly higher speeds of
adjustment. Note how the holes have become larger and connected along the vertical axis

H
.2/
�2 , contain initial conditions which are mapped into the main hole and then into

the infeasible set. The sets H
.1/
�2 and H

.2/
�2 are bounded by preimages of rank 3

of !1. Since these smaller holes are again both inside Z2, each of them has again
two further preimages inside Z2, and so on. Summarizing, we can conclude that
the global bifurcation which we have just described transforms a simply connected
basin into a multiply connected basin. The latter set has a countably infinite number
of holes, called an arborescent sequence of holes, which belong to the infeasible
set B .1/. As the speeds of adjustment are further increased, the holes become
more pronounced and they become connected along the vertical axis as shown in
Fig. 1.17.

Our numerical results show that the structure of the basins may become consider-
ably more complex as the adjustment speeds are increased. The transition between
qualitatively different structures of the boundary occur through so called contact
bifurcations (see for example Mira et al. (1996)) and these bifurcations can be
described in terms of contacts between the basin boundaries and arcs of the crit-
ical curves. To conclude this chapter, we would like to stress that in general there
is no relation between the bifurcations which change the qualitative properties of
the basins (global bifurcations) and the bifurcations which change the qualitative
properties of the attractor (sequences of local bifurcations). The former is related to
the global dynamics, whereas the latter focuses on the local (stability) properties.
In later chapters we will encounter situations where the attractor is a rather sim-
ple set (that is, an equilibrium), but the structure of its basin is quite complex. As
demonstrated above, in other situations exactly the opposite might be the case.
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