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Editorial 

 

Welcome to Volume V of Transactions on Aspect-Oriented Software Development. 
This volume is a combination of three papers submitted through the regular channel, 
and three papers submitted to the special focus area of aspects, dependencies and 
interactions. The first two regular papers are both on applications of AOSD to other 
fields: scheduling of web applications and operations research, while the third paper 
applies the technique of bisimulation to aspect-oriented languages. 

The first paper, “Application-Level Scheduling Using AOP,” by Kenichi Kourai, 
Hideaki Hibino, and Shigeru Chiba is a significant extension of their AOSD 2007 
conference paper. They explore the use of aspects to facilitate application control over 
scheduling policies in web applications, achieving performance improvements 
without compromising modularity. 

The second paper, “An Exploratory Study for Identifying and Implementing 
Concerns in Integer Programming,” by Norelva Niño, Christiane Metzner, Alejandro 
Crema, and Eliezer Correa explores the application of AOSD to integer programming 
problems in operations research. They propose criteria for defining concerns in this 
domain, and report on the refactoring of the implementations of two algorithms in a 
well-known OR library to use aspects. 

The third paper, “Open Bisimulation for Aspects,” by Radha Jagadeesan, Corin 
Pitcher, and James Riely, extends their AOSD 2007 conference paper. It takes the 
coinduction technique, based on bisimulation principles, which has been successfully 
applied for proving program equality in other paradigms, and applies it in the context 
of aspects. The paper shows how bisimulation can be used as a mechanism for 
supporting expressive pointcuts for dynamic aspects. 

The special focus area on aspects, dependencies and interactions was edited by 
guest editors Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, and Arend Rensink, all 
well-known experts in this area, under the management of one of the co-editors-in-
chief, Awais Rashid. This focus area is introduced in their guest editors’ introduction. 
We wish to thank the guest editors for their effort and commitment in producing such 
a high-quality special focus area. 

The next volume will be a special issue on aspects and model-driven engineering, 
with guest editors Jean-Marc Jezequel and Robert France. MDE is an important area 
of Software Engineering in which AOSD can play a significant role, so we eagerly 
anticipate publication of this collection of papers. 

The AOSD field has produced a wealth of research of considerable diversity over 
many years now. There is, therefore, an important place for survey papers covering 
the field as a whole or important sub-areas. A good survey paper has a number of 
important elements, including clear and insightful exposition of the area covered, 
deep technical analysis of similarities and differences leading to useful concepts or 
abstractions, and good coverage of the work in the area with appropriate historical 
perspective and accurate coverage of key contributions. Such papers can be valuable 
introductions to researchers entering the field, or researchers in related fields trying to 
understand AOSD. We strongly encourage submission of survey papers to TAOSD, 
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and have adopted a different means of evaluating them that explicitly takes the criteria 
noted above into consideration. 

As per the journal policy, the remaining founding co-editor-in-chief, Awais 
Rashid, is stepping down after the first four years of the journal. So this is the last 
volume Awais will be co-editing in this role. He has done a truly marvelous job of 
launching the journal successfully, together with his co-founding editor, Mehmet 
Aksit, and of steering its operations to date. He has been invaluable and always 
responsive in helping Harold become oriented to the job. The editorial board thank 
him most sincerely for his devoted service and his many contributions. Fortunately he 
will remain on the editorial board and continue to guide us.  

At the same time, it is with great pleasure that we welcome Shmuel Katz, who will 
be taking over from Awais as co-editor-in-chief. Shmuel is well known both within 
and beyond the AOSD community, especially in the area of formal methods. His 
work on the calculus of superimpositions was a key, early contribution to the formal 
foundations of the AOSD field. We are privileged to have his guidance and leadership 
as we move beyond the startup phase of the journal. 
 
 
February 2009 Awais Rashid  

Harold Ossher 
Co-Editors-in-Chief 
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Application-Level Scheduling Using AOP

Kenichi Kourai�, Hideaki Hibino��, and Shigeru Chiba

Tokyo Institute of Technology
{kourai,hibino,chiba}@csg.is.titech.ac.jp

Abstract. Achieving sufficient execution performance is a challenging
goal of software development. Unfortunately, violating performance re-
quirements is often revealed at a late stage of the development. Fix-
ing a performance problem at such a late stage is difficult in terms of
cost and time. To solve this problem, this paper presents QoSWeaver,
which is a tool suite for developing application-level scheduling using
aspects. QoSWeaver weaves scheduling code written in an aspect into
web application code. The scheduling code gets an application thread to
voluntarily yield its execution to implement a custom scheduling pol-
icy. The idea of scheduling at the application level is not new, but
aspect-oriented programming (AOP) makes it more realistic by sepa-
ration of scheduling code. For fine-grained scheduling, QoSWeaver pro-
vides a profile-based pointcut generator, which automatically generates
appropriate pointcuts. To investigate the ability of QoSWeaver for im-
plementing practical scheduling policies, we used QoSWeaver for tuning
the performance of a river monitoring system named Kasendas, which
is a web application system. For reliable examination, Kasendas was
originally developed by an outside corporation and then it was tuned
by the authors with QoSWeaver. The authors could successfully im-
prove the performance of Kasendas under heavy workload. The cost
of the performance tuning was reasonably small. Furthermore, our ap-
proach achieved better performance than other techniques such as ad-
mission control and priority scheduling provided by the JVM or Linux.
We could implement various policies such as deadlock-aware or adaptive
scheduling.

Keywords: scheduler, aspect, QoS, performance tuning, case study.

1 Introduction

Achieving sufficient execution performance is one of the primary goals of soft-
ware development. However, it is always a challenging goal. For example, a web
application may not satisfy its performance requirement but this fact is often
uncovered when a stress test is performed at the final stage of software develop-
ment or, in a worse case, after the application starts servicing to the users. Of

� Presently with Kyushu Institute of Technology.
�� Presently with Hitachi Software Engineering Co., Ltd.

A. Rashid and H. Ossher (Eds.): Transactions on AOSD V, LNCS 5490, pp. 1–44, 2009.
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2 K. Kourai, H. Hibino, and S. Chiba

course, the performance characteristics of the software should be carefully con-
sidered at the stage of architecture design but estimating the actual performance
is difficult at that stage.

Fixing a performance problem at such a late stage is difficult in terms of cost
and time. Some readers might think that the problem can be fixed by upgrading
hardware, but this approach is the last resort because it needs extra cost. In
the case of web applications, the second-best solution would be to improve the
quality of service (QoS), but it is still a challenge. To exploit schedulers provided
by operating systems or middleware for controlling QoS, developers must modify
web applications, sometimes largely. Such modification may be difficult to finish
within a limited time. If the scheduling policy provided by operating systems
or middleware is not suitable for the web applications, developers can use a
different operating system or middleware. However, changing such underlying
software requires them to test their software again because they must guarantee
that the software system correctly works under the new circumstances. Executing
all the test again would take a long time.

To solve this problem, this paper presents QoSWeaver, which is a tool suite
for developing application-level scheduling using aspects. QoSWeaver enables
changing a scheduling policy for web applications on demand. QoSWeaver weaves
scheduling code written in an aspect into application code. The scheduling code
gets an application thread to voluntarily yield its execution to implement a
new scheduling policy. The idea of scheduling at the application level is not
new, but aspect-oriented programming (AOP) makes it more realistic by sepa-
rating scheduling code from applications. AOP prevents application logic from
being corrupted when scheduling code is added or changed. This has been one
of the major obstacles to adopt application-level scheduling. In addition, QoS-
Weaver provides a profile-based pointcut generator which helps developers write
aspects for fine-grained scheduling. The pointcut generator automatically gener-
ates pointcuts so that the scheduling code is executed at as regular intervals as
possible, according to profile information of the execution of web applications.

To examine that QoSWeaver enables implementing a practical non-toy
scheduling policy, we used a river monitoring system named Kasendas, which
is a web application that periodically collects the water levels of major Japanese
rivers and reports the collected data to the public through the web. We then
executed the performance tuning of Kasendas so that it can periodically collect
water levels at correct intervals even if a large number of clients simultane-
ously send requests to visualize the data of water levels. From the viewpoint of
thread scheduling, we tried to give sufficient CPU time to the thread for period-
ically collecting water levels than the other threads for processing requests from
clients. For reliable examination, we ordered the initial development of Kasendas
to an outside corporation and we only executed performance tuning. We used
QoSWeaver and we could successfully implement a scheduling policy that gives
sufficient CPU time to the thread for collecting water levels. The work of the per-
formance tuning was not large compared with the modification of the software
design of Kasendas.
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Our contributions presented in this paper are the following:

– We propose an AOP-based implementation of application-level scheduling,
which is a new application from the AOP perspective.

– We report our experience of applying the application-level scheduling to a
fairly realistic web application.

– We show that our approach worked well at least in our case study.

Note that this paper does not propose a new scheduling or resource-allocation al-
gorithm. It proposes using AOP for implementing an application-specific sched-
uler. Since AOP makes the implementation easier, the use of such a custom
scheduler is made practical. Although this paper deals with QoS, we imple-
mented proportional-share scheduling; it is not real-time scheduling. It is out of
the scope of this paper whether or not the proposed approach can be used to
implement a real-time scheduler.

This paper is an extended version of our previous paper [1]. A difference
between the two papers is that this paper presents two more scheduling poli-
cies implemented by our QoSWeaver: deadlock-aware and adaptive scheduling.
Another difference is that this paper also shows that our application-level sched-
uler achieved better performance than the priority schedulers included in the
standard Java virtual machine (JVM) and the Linux kernel. This paper also
shows that the use of our pointcut generator makes a non-negligible impact on
the overall performance. Selecting appropriate pointcuts is significant from the
performance viewpoint.

The rest of this paper is organized as follows. Section 2 explains why fixing
a performance problem at a late stage of software development is difficult and
describes related work. Section 3 presents QoSWeaver, which enables application-
level scheduling by using AOP. Section 4 illustrates a river monitoring system
named Kasendas, which is our case study, and shows an applied scheduling
policy. Section 5 reports the results of our experiments to examine the usefulness
of QoSWeaver. Section 6 discusses the applicability of QoSWeaver. Section 7
concludes this paper.

2 Motivation

A web application normally processes various kinds of tasks requested from web
browsers (i.e. users) in parallel. Some kinds of tasks have higher importance
while others have lower importance. The QoS of such a web application is often
kept acceptable if higher-importance tasks obtain more computing resources
such as CPU time than lower-importance tasks. However, this solution is still a
challenge. Since modern operating systems provide a scheduling mechanism for
controlling QoS, some readers might think that what developers should do is only
to slightly modify their web applications to exploit that scheduling mechanism.
Unfortunately, in reality, it is not such a simple thing.

First of all, the software sometimes has to be largely modified to exploit
that scheduling mechanism. Such modification is not easy to finish within a
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limited time before the expected shipping date. For example, to use real-time
scheduling provided by operating systems, developers may have to move a part
of application code into kernel modules. Even if developers just want to use
priority scheduling, which is provided by most operating systems, and raise the
priorities of some threads, they may change their applications so that the threads
will run with the root privilege. This change may cause security problems and
thus the developers must check the entire code of their applications. In addition,
developers cannot exploit the scheduling mechanism of the operating system
if an application (Java) thread is not always bound to a particular operating-
system thread. This depends on the implementation of the application threads.
If the mapping between application threads and operating-system threads may
change, for example, it is difficult to raise the priority of a particular application
thread by changing the priorities of operating-system threads.

Furthermore, scheduling policies provided by operating systems may not be
suitable for web applications. For example, the priority scheduling provided by
some general-purpose operating systems may not allocate sufficient CPU time to
an application thread executing a periodic task with a high priority. If there are
too many low-priority threads, a high-priority thread tends to miss its deadline.
This problem will be avoided if developers use a different operating system,
in particular, a real-time operating system, but changing an operating system
at the final stage of software development is not acceptable. According to our
previous work, the performance behavior of web applications largely changes if
the underlying operating system is changed, even from a general-purpose one to
another [2]. Developers must spend a long time for testing an entire software
system again. They must guarantee that the software system correctly works
under the new circumstances.

Exploiting the QoS mechanism provided by middleware has a similar problem.
The standard JVM supports priority scheduling of Java threads, but it does not
guarantee its effectiveness. Priorities passed from applications to the JVM are
only used as hints. Whether or not the priorities really affect the scheduling de-
pends on the implementation of the JVM and the underlying operating system.
If the scheduling policy provided by the standard JVM is not suitable, develop-
ers can use another implementation of the JVM, for example, a real-time JVM
implementing Real-Time Specification for Java [3]. However, changing the JVM
at the final stage is not acceptable as well as changing the operating system.
Although some web application servers provide built-in mechanisms for control-
ling QoS, those mechanisms are often insufficient. For example, if the maximum
number of threads is limited to avoid excessive concurrency, high-priority threads
cannot start execution when too many low-priority threads are already running.

2.1 Aspect-Oriented QoS Control

Re-QoS [4] uses a QoS aspect package to adapt applications to the real-time
systems. A QoS aspect package is a set of aspects and components that provide
different QoS policies. In their case study, the authors showed that Re-QoS
could control the deadline miss ratio by admission control of requests. Although
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Re-QoS uses aspects to add a new QoS management policy like our QoSWeaver,
it is difficult to use Re-QoS for fine-grained scheduling because the developers
have to find appropriate pointcuts by hand. On the other hand, our QoSWeaver
provides the pointcut generator, which automatically generates pointcuts so that
scheduling code will be executed periodically.

QuO [5] builds a QoS management system as an aspect and weaves it into
the boundary between the application and the middleware. Its aspect language
allows the developers to describe adaptive QoS, which changes the behavior of
applications according to available system resources. QuO supports distributed
object middleware like CORBA and it compiles an aspect into a delegate, which
is a proxy for calls to remote objects (remote method invocation in Java). There-
fore, QoS control is enforced only when an application calls remote objects. This
is not sufficient for applications that do not frequently call remote objects.

Bossa [6] enables a scheduling expert to implement a new scheduling policy
for operating system kernels. It provides a domain-specific language (DSL) to
describe a scheduling policy using high-level abstractions. This DSL simplifies
scheduler programming and allows the formal verification of safety properties.
To make the kernel raise scheduling events to a scheduler compiled as a kernel
module, Bossa inserts the code for raising events into the kernel using AOP
[7]. Using DSL and AOP, Bossa allows web application developers to change
the kernel scheduler without changing the source code of the operating system.
However, if the developers change the kernel scheduler, they need to spend a
long time for examining the scheduling behavior of the entire software system.

2.2 Previous Approaches to Application-Level Scheduling

MS-Manners [8] achieves process scheduling called progress-based regulation at
the application level. It stops low-importance processes when the progress rate
is lower than expected and it gives remaining CPU time to high-importance pro-
cesses. Its platform-independent implementation is to insert calls to the Testpoint
function everywhere in a program. This function examines the progress rate and
blocks the process for a while if necessary. This method is similar to our ap-
proach. However, MS-Manners requires the developers to manually modify the
source code of their applications so that Testpoint will be called. They may also
have to modify the source code of the libraries used by their applications. Oth-
erwise, the developers have to write scheduling code together while they are
writing the application logic. Either way, their productivity will be decreased.
Maintaining the source code becomes difficult because the scheduling code is
directly embedded into the source code. To solve these problems, QoSWeaver
separates scheduling code into an aspect and it automatically inserts scheduling
code at appropriate places in the source code when it performs weaving.

For UNIX processes, several application-level scheduling mechanisms have
been proposed. User-level scheduling [9] and ALPS [10] control UNIX processes
from a scheduler process by using signals such as SIGSTOP and SIGCONT. User-
level sandboxing [11] restricts the CPU usage of processes by changing the priori-
ties of threads. These mechanisms enable more accurate control than QoSWeaver
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because they can perform preemptive scheduling. However, it is difficult to apply
them to threads instead of processes. User-level scheduling and ALPS distinguish
applications by running them with different user accounts. User-level sandbox-
ing enforces a policy by a controller attached to a process. These mechanisms
cannot distinguish or control threads. In addition, preemptive scheduling is dif-
ficult to implement on the standard Java 2 Platform. Its API specification does
not recommend to use APIs for suspending and resuming threads by another
thread. Also, Java provides the API for changing the priorities of Java threads
but its effectiveness is not guaranteed.

Gatekeeper [12] can transparently apply admission control and request
scheduling to servers by using a proxy server. The admission control limits the
number of concurrently processed requests to avoid excessive concurrency. The
request scheduling changes the order of handling requests to improve the re-
sponse time. The proxy analyzes the kinds of requests and schedules the requests
appropriately. Installing the proxy does not need modifying operating systems,
middleware, or applications. However, if there are heavy-weight applications,
which take a long time for processing each request, the threads for those ap-
plications are not controllable once they start the execution. They cannot be
suspended to decrease concurrency. QoSWeaver enables finer-grained control by
weaving scheduling code, for example, at a method-call granularity.

Admission control based on the SEDA architecture [13] enables fine-grained
scheduling by dividing an application into several stages [14]. In SEDA, the
execution of the application is performed by sending a request to the next stage.
Each stage has a queue to receive the request and allows admission control
for each request. If an application is divided into a sufficient number of small
stages, fine-grained scheduling is achievable. The advantage of this architecture
is that there are no threads suspended by a scheduler unlike our approach. Until
a request is admitted, no thread is allocated to it. However, the developers
must re-implement their applications using multiple stages to fix performance
problems if they have already implemented the applications.

3 Aspect-Oriented Application-Level Scheduling

To solve the problem described in the previous section, this paper presents QoS-
Weaver, which is a tool suite for developing application-level scheduling by as-
pects. It enables developers to customize a policy of thread scheduling at the
application level. In this section, we describe how AOP makes application-level
scheduling feasible in practice.

3.1 Application-Level Scheduling

Application-level scheduling is implemented by the cooperation among applica-
tion threads, which voluntarily yield their execution in favor of other threads.
Thus, a thread must periodically invoke a method on a scheduler object. The
scheduler’s method suspends the caller thread according to a specified scheduling
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policy. The suspended thread can be woken up and rescheduled when another
thread calls the scheduler’s method. The scheduler’s method suspends a caller
thread only if the yield flag of the thread is set. Thus, we can control the schedul-
ing by setting and clearing this flag. Suppose that a scheduling policy is that all
other threads are suspended while a particular thread A is running. This policy
is implemented as illustrated in Fig. 1. If the thread A first calls the sched-
uler’s method, the method does not suspend the thread but sets the yield flag
of another thread B. This will suspend the thread B when the thread calls the
scheduler’s method next time. The thread B will not be woken up again until
the thread A finishes its execution and the scheduler clears the yield flag of the
thread B.

1. call
2. set the yield flag
    of thread B

3. call

4. suspend thread B

5. call

6. wake up
    thread B

scheduler
object

thread A

thread B

7. return

Fig. 1. A scheduling method based on thread yielding

Application-level scheduling has several advantages compared with scheduling
at a lower level such as the operating system level or middleware level. One ad-
vantage is to enable developers to implement various scheduling policies without
modifying the underlying systems. Application-level scheduling is independent
of the underlying operating system and middleware and hence it does not need
to change them. It changes only the scheduling policy of the target applications.
Since application-level scheduling affects only the threads of the target applica-
tions, the rest of the threads in the software can obtain at least the same amount
of CPU time as they can when application-level scheduling is not applied. Of
course, application-level scheduling cannot achieve all kinds of scheduling inde-
pendently of the underlying schedulers. For example, time-sharing scheduling
cannot be developed on top of a batch scheduler. Another advantage is to en-
able developers to develop application-specific schedulers. Such schedulers can
use application semantics given by application threads. For example, if applica-
tion threads inform a scheduler of their roles, the scheduler can allocate CPU
time to these threads according to their role. If a low-level scheduler is used, ap-
plication threads must translate such high-level semantics to low-level properties
such as thread priorities.
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3.2 AOP Support for Application-Level Scheduling

The idea of scheduling at the application level is not new but it has not been
practical because the developers have to insert scheduling code into their appli-
cation programs by hand. For example, our web applications presented in Sect. 4
consist of about 10000 lines of our own code and more than 100000 lines of li-
brary code. It is difficult to insert scheduling code at right places, in particular,
for average developers. Hence the code they inserted must be later checked by an
experienced developer. This work is annoying and time consuming. Moreover, if
a scheduling policy requires a thread to frequently yield its execution, developers
must insert scheduling code at a large number of places. This causes the applica-
tion logic to be tangled with scheduling code. Maintaining the tangled scheduling
code is difficult. For example, if developers want to change a scheduling policy,
they may have to remove old scheduling code and insert new scheduling code.
This modification is error-prone and hence developing an appropriate scheduling
policy by a trial-and-error approach is difficult.

QoSWeaver lets developers to write scheduling code as an aspect and weaves
it into application code. AOP makes the idea of the application-level schedul-
ing practical. Since scheduling code is separated from application-logic code, it
can be written by only a few experienced developers. Other average developers
do not have to write scheduling code any more and can concentrate on writ-
ing application-logic code without being aware of scheduling. Writing schedul-
ing code as an aspect also allows developers to take a trial-and-error approach
to develop an appropriate scheduling policy. Developers can easily try various
scheduling policies to find the most appropriate one because an aspect weaver
automatically inserts and removes scheduling code. They never accidentally cor-
rupt their programs when they change a scheduling policy.

Furthermore, QoSWeaver supports creating a scheduling mechanism for
application-level scheduling. Scheduling code written as an aspect consists of a
scheduling mechanism and the implementation of a scheduling policy. A schedul-
ing mechanism for application-level scheduling is a set of method calls on a
scheduler object from various places in application programs as in Fig. 1. This
corresponds to timer interrupts for kernel-level scheduling. A scheduler for kernel-
level scheduling is called periodically from hardware. A scheduler for application-
level scheduling is called from the joinpoints selected by pointcuts. AOP is used
to implement this mechanism.

A pointcut generator provided by QoSWeaver automatically generates a set
of pointcuts to create such an application-specific scheduling mechanism. This
tool helps developers define a right set of pointcuts for getting an application to
call a scheduler at as regular intervals as possible. Calling a scheduler at regular
intervals is desirable for stable control of application threads. In particular, fine-
grained scheduling needs such a tool support because an application needs to
frequently call a scheduler to yield its execution. It is difficult to manually define
pointcuts for fine-grained scheduling because the pointcuts must select a large
number of joinpoints and a thread must reach those joinpoints in regular inter-
vals. Furthermore, the number of the joinpoints selected by pointcuts should be
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minimum; otherwise, a scheduler will be called redundantly. Calling a scheduler
twice within a single interval is useless. The second call is just a performance
penalty.

Figure 2 illustrates the architecture of QoSWeaver. QoSWeaver consists of
two tools: an AOP system and a pointcut generator. QoSWeaver receives a web
application and weaves a profiling aspect, which is provided by QoSWeaver, into
it using the aspect weaver. Then, QoSWeaver deploys the extended web applica-
tion for profiling on a web application server. If developers run it, the profiling
aspect records its execution profile. From the execution profile that the aspect
recorded, the pointcut generator generates appropriate pointcuts for efficient
application-level scheduling. Then, developers write a scheduler aspect by using
the pointcuts. A scheduling policy is implemented as advice, which is executed
at scheduling points specified by the pointcuts. In Fig. 1, it is implemented by
the scheduler object. Finally, QoSWeaver weaves this aspect into the original
web application and deploys the resulting web application on the server.

aspect
weaver

application pointcut
generator

pointcuts

run

scheduler
aspect

aspect
weaver

application
with scheduling

profiling
aspect

scheduling
policy

profile
information

merge

creating a scheduling mechanism

application
with profiling

Fig. 2. The architecture of QoSWeaver

Note that QoSWeaver does not directly support the development of a schedul-
ing policy itself. It only generates appropriate pointcuts for creating a custom
scheduling mechanism. Details of a scheduling policy have to be chosen by de-
velopers. For example, how priorities are assigned to tasks depends on the user
requirements for the web applications. The maximum number of threads concur-
rently running for each task depends on scheduling algorithms. These parameters
should be selected by experiments. QoSWeaver helps developers to select those
parameters by using a trial-and-error approach.

3.3 Profile-Based Pointcut Generator

The pointcut generator generates appropriate pointcuts on the basis of the profile
information of the execution of a target application. The profile data collected by
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QoSWeaver is when a thread reaches each joinpoint. Our current implementation
of the pointcut generator deals with only method calls as joinpoints. QoSWeaver
first weaves a target application with a profiling aspect that records a caller’s
method name, a callee’s method signature (the method name, the parameter
types, and the return type), and the time stamp for each method call. Then,
developers run the target application into which the profiling aspect has been
woven. Since their application is a web application, they also run a client to send
requests to the application. The client sequentially sends requests to minimize
the disturbance by the outside because we want to know when each single thread
calls which method.

The execution profile should be the representative of the behavior of a target
web application. If the behavior of an application is largely different from the
execution profile, the application could not call the scheduler at regular inter-
vals. However, it is difficult to guarantee that the obtained execution profile is
a representative because this fact strongly depends on the characteristics of ap-
plications. A guideline for obtaining a representative execution profile is to send
the most common request to the target web application. The developers should
know what the most common request is for their applications. If the behavior
of the application largely changes by request patterns, they can obtain multiple
execution profiles for all the patterns and merge generated pointcuts. Currently,
QoSWeaver does not provide any support for obtaining a representative execu-
tion profile.

To generate appropriate pointcuts from that execution profile, the pointcut
generator takes two parameters from the developers:

– a target interval between adjacent joinpoints selected by pointcuts, and
– the acceptable maximum occurrences of joinpoints selected by a single point-

cut.

The target interval specifies the time from when an application thread calls a
scheduler until when the thread calls it again, on the profiled execution. The
criterion for the pointcut generator is that the average time elapsed between
adjacent joinpoints selected by pointcuts is close to the target interval t given
from the developers. The pointcut generator generates pointcuts that satisfy this
criterion as much as possible. The maximum occurrence m is used to avoid that
too many joinpoints are selected.

These two parameters should be determined so that QoSWeaver will generate
a scheduling mechanism with acceptable accuracy and overhead for an intended
scheduling policy. The accuracy and overhead of application-level scheduling also
depends on the characteristics of the web application, the patterns of requests to
web applications, and the underlying systems. Therefore, developers should give
different sets of parameters to the pointcut generator and obtain multiple sets of
pointcuts. Then they should choose the best one by changing the sets of pointcuts
and running the web application for evaluation. Our pointcut generator makes
this kind of parameter tuning easy.

Note that the target interval is the interval to be achieved in the same exe-
cution contexts as when we obtained the execution profile. During the profiled
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execution, we ran only one application thread on a server. If production run is
also single-threaded, an observed interval, at which an application thread calls
a scheduler, would be almost the same as the target interval on average. If it is
multi-threaded, however, an observed interval for each application thread would
be longer than the target. In application-level scheduling, the observed interval
largely depends on the patterns of the requests to web applications.

Algorithm for Pointcut Generation. Figure 3 shows our algorithm of point-
cut generation. The inputs to this algorithm are an execution profile and the
two parameters described above. The execution profile consists of the data of
the joinpoints that an application thread reached during the profiled execution.
In our implementation, it is a sequence of the invoked method calls, as in Fig. 4.
According to the time stamps recorded at the joinpoints, the algorithm divides
the sequence into time slots by the target interval t. The aim of this algorithm
is that the generated pointcuts select only one (or as a small number as pos-
sible) joinpoint for each time slot. Since a scheduler is called only at selected
joinpoints, this algorithm enables application threads to call a scheduler at as
regular intervals as possible. The generated pointcuts are chosen among possible
pairs of call and withincode pointcuts. The call pointcut specifies a method by
its name and signature and matches points at which the method is called at run
time. The withincode pointcut limits the scope in which the call pointcut selects
method calls to a specified method body. Thus, each pair of pointcuts selects
joinpoints representing calls to the same method within the same method body.
In this algorithm, no pointcut includes wildcards.

The algorithm first chooses pairs of pointcuts that select a joinpoint occurring
only once in the execution profile. For example, if a method A is called from a
method B only once during the entire profiled execution, the caller and the callee
are used to make a pair of withincode and call pointcuts. Let PC1 be the set of
chosen pointcuts. Then, the algorithm computes a subset of PC1 that covers as
many time slots as possible. Here, covering a time slot means that a joinpoint
selected by a pointcut occurs in that time slot. If there are multiple pointcuts
that cover the same time slot, the algorithm chooses one of them. Let PCgen be
the computed subset of PC1.

Then, for the time slots that have not been covered, which are denoted by
SLOT , the algorithm chooses pointcuts that select joinpoints occurring only
twice in the execution profile. Let PC2 be the set of chosen pointcuts. The
algorithm computes a subset of PC2 that covers as many not-covered time slots
as possible. If there are multiple pointcuts that cover the same time slot, the
algorithm chooses the pointcut that covers the most time slots. The elements
of the computed subset are added to PCgen. If PCgen contains an element that
covers the same time slots as an element newly added to PCgen, then the former
element is removed from PCgen. If the former element covers a time slot that
the latter element does not cover, it is not removed. The algorithm iterates
this choosing process from PC1 to PCm, where m is a parameter given by the
developers. After the iteration, the pointcut generator generates PCgen as its
result.
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t := target interval
m := maximum occurrence
exec time := total execution time

PCall := a set of possible pointcuts
PCgen := {}
SLOT := {0, ..., �exec time/t�}

for each i = 1..m
PCi = {pc ∈ PCall | |select(pc)| = i}
for each j ∈ SLOT

PCij = {pc ∈ PCi | j ∈ cover(pc)}
PCbest = {pc ∈ PCij | |cover(pc) ∩ SLOT | is biggest}
best pc = eval(PCbest)
PCdel = {pc ∈ PCgen | cover(pc) ⊂ cover(best pc)}
PCgen = PCgen − PCdel + best pc
SLOT = SLOT − cover(best pc)

endfor
endfor

Fig. 3. The algorithm for pointcut generation. Function select receives a pair of call
and withincode pointcuts. It returns a set of joinpoints selected by the pair. Function
cover receives a pair of pointcuts and returns a set of time slots covered by the pair.
Function eval receives a set of pairs of pointcuts and returns one of them. |S| is the
size of a set S.
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Fig. 4. An example of pointcut generation. A sequence of method calls invoked during
profiled execution is divided by a target interval. Marked method calls are selected
joinpoints.

For example, suppose that the profiled execution is modeled as a sequence of
invoked method calls, f1() to f6(), in Fig. 4a. For simplicity, we ignore caller’s
methods in this example. The profiled execution consists of five time slots. The
algorithm first chooses a pointcut that selects f1() in time slot 0 and one that
selects f6() in time slot 4. Now, these two pointcuts are in PCgen and the time
slots 0 and 4 are covered (Fig. 4b). Then, the algorithm chooses PC2, which
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contains two pointcuts: a pointcut that selects two f3() and one that selects two
f4(). Since the pointcut that selects f4() covers two new time slots (time slots 1
and 2), the algorithm adds the pointcut that selects f4() to PCgen (Fig. 4c). The
pointcut that selects f3() covers only one new time slot (time slot 1). At the final
iteration, a pointcut that selects three f2() is added to PCgen. At the same time,
the pointcuts that select f1() and f6() are removed from PCgen (Fig. 4d). The
time slots 0 and 4 are covered by the pointcut that selects f2(). The algorithm
results in the pointcuts that select f2() and f4(). In this example, all the time
slots are covered by those pointcuts and each time slot includes only one selected
method call.

3.4 Concerns for Scheduling Policies

Synchronization. Scheduling code woven into applications by QoSWeaver
includes synchronization code for suspending and restarting a thread. We
implemented the synchronization by the Object.wait and Object.notify methods
in Java. Adding such synchronization code may cause deadlocks if the original
applications also include synchronization code. Suppose that threads A and B
running in an application access the same synchronized object in a synchronized
block as shown in Fig. 5. If joinpoints in the block are selected by pointcuts, the
thread B calls the scheduler object and can be suspended in the block to yield the
allocated CPU time. While the thread B is suspended in the block, the thread A
will be blocked if it attempts to enter the block because the thread B does not
release the lock. If the thread A has a role to wake up the thread B within or
after the block, a deadlock occurs. The thread A cannot wake up the thread B
forever. However, typical web applications do not often include synchronization
code. In particular, the Enterprise JavaBeans (EJB) specification [15] prohibits
using thread synchronization. In fact, the web applications that QoSWeaver was
applied to in Sect. 4 did not use thread synchronization although they were not
EJB applications.

If web applications include synchronization code, developers can write
scheduling policies that wake up suspended threads periodically and run ap-
plication code a little. This is implemented by using the Object.wait method
with timeout in scheduler code. As shown in Fig. 5, when the specified timeout
is expired after thread B was suspended, thread B executes the scheduler code,
which checks the progress of the other running threads, in this case, thread A. If
some threads do not make progress for a while, the scheduler decides to restart
thread B temporarily because those threads may make no progress due to dead-
locks. If all threads make progress when thread B calls the scheduler code at
the next joinpoint selected, thread B calls the Object.wait method to suspend
again. It is guaranteed that the applications recover from a deadlock if all the
suspended threads temporarily run, as far as the original applications do not
include deadlocks in their logic. This approach also prevents livelocks, that is, a
restarted thread never suspends instantly again for waiting the same lock. When
a suspended thread is restarted by timeout, it necessarily proceeds to the next
joinpoint selected by pointcuts.
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Fig. 5. A scheduling method for breaking deadlocks

To record the progress of threads for the above method, AOP is also use-
ful. For example, QoSWeaver can weave an aspect for incrementing a progress
counter at various joinpoints in applications. Such joinpoints should be selected
by pointcuts so that a thread will reach them at as regular intervals as pos-
sible and the accurate progress can be monitored. Our pointcut generator can
generate appropriate pointcuts for that purpose.

If applications are written without using thread synchronization, the develop-
ers can write scheduling policies concisely because they do not need to consider
deadlocks. Even when thread synchronization is used, deadlocks are avoidable
if the usage is localized. The pointcut generator can generate pointcuts that do
not select any joinpoints in synchronized blocks.

Some readers may think that using an independent scheduler thread is
straightforward to solve deadlocks because the scheduler thread can always run.
However, it is difficult in Java that such a scheduler thread preemptively sus-
pends other threads. Although Java provides the Thread.suspend and Thread.
resume methods for thread preemption, these methods are not recommended to
use because they are inherently deadlock-prone. If an application thread is sus-
pended within a synchronized method in a system class, the scheduler thread
may block at that method and then a deadlock may occur.

I/O. When a thread blocks for I/O, the schedulers of the underlying operating
system and middleware automatically allocate CPU time to another thread.
An application-level scheduler does not need to reschedule threads whenever a
thread issues blocking I/O. This makes it easy to implement scheduling policies.
This mechanism assumes that the underlying schedulers schedule threads in a fair
manner. This assumption is satisfied in most operating systems and middleware.
If developers want to control threads strictly, they can modify scheduling policies
to make a thread call a scheduler and temporarily run another thread just before
it issues blocking I/O. After the thread completes the I/O, it can immediately
call the scheduler to suspend the temporarily running thread.
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4 Case Study

To examine that QoSWeaver enables implementing practical scheduling policies,
we executed performance tuning of a web application system with QoSWeaver.
The web application that we used is a river monitoring system named Kasendas.
This section describes the overview of the web application and what scheduling
policy we developed for the web application.

4.1 Kasendas: A River Monitoring System

Kasendas is a river monitoring system that collects and reports the water levels of
major rivers in Japan to the public through the web. Figure 6 shows a screenshot
of its client’s view. The web applications that supply such information related
to natural disaster should be carefully implemented to be able to work under a
large number of simultaneous accesses, known as flash crowds. Usually people
will not access such a web application but, once a large typhoon approaches, they
will rush to the web application for making sure that their local rivers are not
flooded. We executed performance tuning so that the software will work under
such heavy workload. We chose this application because this work was done for
demonstrating our AOP technology within the framework of a research project
funded by Japan Science and Technology Agency, which is studying dependable
IT infrastructure for secure life. Since Kasendas is for technology demonstration,
the water levels shown by Kasendas were pseudo data produced by the data
generator, which emulates sensor nodes that measure the water levels of rivers
and provides the data to Kasendas.

To make the results of our experiment reliable, Kasendas was initially devel-
oped by an outside corporation with CMMI level 3 [16]. We only received its
source files and executed performance tuning. Although we told them the aim

Fig. 6. The up-to-date water levels in Tokyo shown by Kasendas
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Table 1. The code size of Kasendas

Server File type Number Lines
Kasendas .java files 82 9238

JSP files 12 1736
dicon files 15 558

Data generator .java files 8 646

of Kasendas, they developed it independently of QoSWeaver. The requirement
from us was to build Kasendas with typical open source middleware: JBoss ap-
plication server [17], the Tomcat web container [18], the Struts framework [19],
and the Seasar2 container [20]. Table 1 shows the code size of Kasendas. JSP
files specify the design of web pages and the dicon files specify the configuration
of components. This table does not include third-party libraries and frameworks.
The development cost of Kasendas was 8.8 man-month, including tests and the
design of web pages.

Figure 7 shows the architectural overview of Kasendas. Kasendas has three
web applications for periodic data collection, chart generation, and water-level
update. One web application collects the water levels of rivers through web ser-
vices provided by the data generator periodically, for example, every 15 s. To
collect the water levels of all rivers, the application sends the same number of
requests as rivers to the data generator. The collected data are stored in the
PostgreSQL database [21] and the latest data are also kept in memory. The
other two applications generate web pages for the users. One generates a web
page showing recent changes of water levels, for example, for the last 12 h. It
reads data from the database and generates a chart of water levels by using the
JFreeChart library [22]. This is a heavy-weight application because it accesses
the database and produces a PNG image of the chart like Fig. 8. The other
generates a web page showing up-to-date water levels. It reads data on memory
and generates an image like Fig. 6.

DB
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application
(chart generation)

application
(water-level update)

application
(data collection)

memory

web
service

store

store

read

read

data
generator

up-to-date
water levels

chart

Fig. 7. The architecture of Kasendas
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Fig. 8. The generated chart of recent changes of water levels in a river

Kasendas executes these three applications as follows. A timer in Kasendas
triggers the execution of the application for periodic data collection. A single
thread allocated by the timer executes the application at regular intervals. On
the other hand, the other two applications for the chart generation and the water-
level update are executed when Kasendas receives requests from the clients. Since
these applications must be able to process a number of simultaneous requests in
parallel, they are multi-threaded. When Kasendas receives a request, it obtains
a thread from the thread pool provided in the web application server and the
thread executes the requested application.

The initial version of Kasendas that we obtained from the outside corporation
was unstable under heavy workload. It frequently failed to collect water levels on
time from the data generator. According to our investigation, it became unstable
when a number of clients simultaneously access the web page showing a chart.
Since generating that page is a heavy-weight task, it consumes a large amount of
CPU time and thus it disturbs another application for periodic data collection.
This collector application will miss its deadline and lose a part of the water levels
at that time. Furthermore, this application continues to collect the rest of the
water levels in the next time period because it is not aware of the deadline miss.
Thus, it fails again to collect the up-to-date water levels in the next time period.

4.2 The Applied Scheduling Policy

To fix this performance problem, we used QoSWeaver. There were two perfor-
mance requirements:

– preventing a deadline miss in the periodic data collection even under heavy
workload, and

– preventing performance degradation of the chart generation.
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Note that true real-time scheduling was not required for this case. These re-
quirements are somewhat vague and they are about user experiences. Our goal
is to satisfy these requirements as much as possible with a minimum software
development cost when we already have a program that mostly works well on a
normal software stack.

Therefore, the scheduling policy applied to Kasendas was proportional-share
scheduling for two groups of threads for the chart generation and a thread for
periodic data collection. The former threads have low importance and the lat-
ter has high importance in this policy. While the high-importance thread does
not run, the scheduling policy runs all the low-importance threads to generate a
chart. When the high-importance thread starts running for periodic data collec-
tion, the scheduling policy quickly limits the number of low-importance threads
to keep the ratio of the number of threads for each group. The scheduling policy
did not consider threads that execute the application for the water-level update.
They did not have high importance and did not make the system load high
because they were lightweight.

The scheduling policy makes a low-importance thread call a scheduler peri-
odically. If the yield flag of the thread is set by the scheduler, the thread is
suspended. On the other hand, the scheduling policy makes a high-importance
thread call the scheduler when the thread starts periodic data collection. At
this time, the scheduler limits the number of running low-importance threads by
setting the yield flags. We experimentally configured the number to one, which
made the behavior of the high-importance thread the stablest. This means that
our scheduling policy gives a share of 50% to each group of threads. We did
not limit the number to zero because we wanted low-importance threads to run
while a high-importance thread was running. The scheduling policy makes a
high-importance thread call the scheduler again when it finishes the execution.
The scheduler removes the limitation on the number of running low-importance
threads, resets the yield flags of the low-importance threads, and wakes up all
the suspended low-importance threads.

To write an aspect that implements this scheduling policy for QoSWeaver, we
used our own AOP system named GluonJ [23]. In GluonJ, an aspect is written
in XML as glue code.1 An aspect is woven into web applications when they are
loaded into a web application server. The aspect we wrote is shown in Figs. 9
and 10.

Figure 9 shows the part of pointcut declaration in our aspect. For simplicity,
we omit package names from class names. A pointcut is declared within the
pointcut-decl tag. It is named with the name tag and specified with the pointcut
tag. In our case, we declared three pointcuts: lowImportance, highImportance,
and controlPoint. The lowImportance and highImportance pointcuts consist of the
execution pointcut, which specifies a method by its name and signature and
matches points at which the method is executed at run time. The lowImportance
pointcut selects the execution of the method starting the chart generation. The

1 In the latest version of GluonJ, an aspect is written in Java. See
http://www.csg.is.titech.ac.jp/projects/gluonj/ .

http://www.csg.is.titech.ac.jp/projects/gluonj/
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<pointcut-decl>

<name> lowImportance </name>

<pointcut>

execution(void PlaceChartCreatePseudActionImpl.execute(..))

</pointcut>

</pointcut-decl>

<pointcut-decl>

<name> highImportance </name>

<pointcut>

execution(void CollectorImpl.doObtain())

</pointcut>

</pointcut-decl>

<pointcut-decl>

<name> controlPoint </name>

<pointcut>

(withincode(Range CategoryPlot.getDataRange(ValueAxis)) ANDAND

call(Range Range.combine(Range,Range)))

OROR

:

</pointcut>

</pointcut-decl>

Fig. 9. The pointcut declaration in our aspect

highImportance pointcut selects the execution of the method starting periodic
data collection. These two pointcuts were written by hand with the knowledge
of the source code of Kasendas.

On the other hand, the controlPoint pointcut was generated by our pointcut
generator. The definition of controlPoint consists of 17 pairs of withincode and call
pointcuts, which are concatenated with OROR. ANDAND and OROR correspond
to && and || in AspectJ [24], respectively. The call pointcut specifies a method
by its name and signature and matches points at which the method is called
at run time, and the withincode pointcut limits a caller’s method within which
the call pointcut matches method calls. The controlPoint pointcut selects various
method calls during the chart generation as far as these methods are called from
the specified caller methods. A scheduling mechanism specific to Kasendas is
constructed from these pointcuts. The pointcuts specify scheduling points in the
source code of Kasendas and its application threads call a scheduler implemented
as advice when they reach the scheduling points at run time.

Figure 10 shows the part of advice declaration in our aspect. Advice is declared
within the behavior tag. It consists of the pointcut tag and the around or before
tag. The pointcut tag specifies a named pointcut declared with the pointcut-
decl tag. The around and before tags specify around advice and before advice,
respectively. The around advice is executed in place of its joinpoints selected
by a pointcut while the before advice is executed before its joinpoints. In the
around tag, proceed() calls the original method selected by a pointcut. A special
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<behavior>

<pointcut> lowImportance() </pointcut>

<around>

PSScheduler.startLowImportance();

$_ = proceed($$);

PSScheduler.endLowImportance();

</around>

</behavior>

<behavior>

<pointcut> highImportance() </pointcut>

<around>

PSScheduler.startHighImportance();

$_ = proceed($$);

PSScheduler.endHighImportance();

</around>

</behavior>

<behavior>

<pointcut> controlPoint() </pointcut>

<before> PSScheduler.yield(); </before>

</behavior>

Fig. 10. The advice declaration in our aspect

variable $$ represents arguments passed to a target method and $ represents a
return value in this context. The advice bodies invoke the methods declared in
the PSScheduler class, which is a support class of our aspect, shown in Fig. 11.
Advice and its support classes are the implementation of a scheduling policy,
which is named a scheduler.

The first around advice is executed when a low-importance thread generates
a chart. It calls the scheduler to register the thread to be controlled before the
selected method execution and to unregister it after that. The second around
advice is executed when a high-importance thread performs the periodic data
collection. It calls the scheduler to control the number of running low-importance
threads before and after the selected method execution. This policy temporar-
ily reduces the number to one and restores it to 40, which was equal to the
maximum number of concurrent requests to a web page showing a chart in our
experiments. While the periodic data collection was not performed, we did not
need to restrict the number of running threads. The last before advice is executed
before a low-importance thread performs the selected method calls during the
chart generation. It calls the scheduler to yield the execution of the thread itself
that executed the advice.

The ThreadController class used in PSScheduler implements our scheduling al-
gorithm. This class is reusable and the code size is 151 lines. The implementation
is as follows:

– The add method puts the current thread into a run queue of a scheduler if
the number of threads in the run queue is under the configured maximum.
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public class PSScheduler {

private static ThreadController controller =

ThreadController.getInstance();

public static void startLowImportance() {

controller.add(Thread.currentThread());

}

public static void endLowImportance() {

controller.remove(Thread.currentThread());

}

public static void startHighImportance() {

controller.schedule(1);

}

public static void endHighImportance() {

controller.schedule(40);

}

public static void yield() {

controller.yield(Thread.currentThread());

}

}

Fig. 11. A support class for our aspect

Otherwise, the method puts the current thread into a wait queue and sus-
pends the current thread by invoking the Object.wait method.

– The remove method removes the current thread from the run queue. If the
number of threads in the run queue is under the maximum, the method
resets the yield flags of some threads in the wait queue and wakes up the
threads by invoking the Object.notify method.

– The schedule method moves some threads in the run queue to the wait queue
if the number of threads in the run queue is above the new maximum spec-
ified by the argument. Then, the method sets yield flags of those threads.
Otherwise, the method moves some threads in the wait queue to the run
queue, resets their yield flags, and wakes up those threads.

– The yield method suspends the current thread, if its yield flag is set, by
invoking the Object.wait method.

We did not specify a timeout for the Object.wait method because the original
Kasendas did not include synchronization code among threads and it was guar-
anteed that suspended threads were always woken up by other threads.

4.3 Our Experiences

Throughout the development of our scheduling policy, we found that QoSWeaver
made the development easy. First, our scheduling policy was not affected by
the modifications of the source code of Kasendas, thanks to aspects and our
pointcut generator. During 1 month before the final release of Kasendas, we
had to develop the scheduling policy for the intermediate version of Kasendas
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in parallel while the development team of Kasendas was still testing and fixing
bugs. This is because we had to demonstrate Kasendas at a symposium held by
our grant sponsor soon after the expected final release date. Since our scheduling
policy was implemented by an aspect and its support classes, we could apply our
scheduling policy to the final version of Kasendas without manual modifications
of the policy. Although pointcut declaration strongly depends on the code of
Kasendas, the pointcut generator automatically generated a new appropriate
controlPoint pointcut for the final version.

Second, an aspect allowed us to change a scheduling policy without affecting
the source code of Kasendas. We developed the best scheduling policy in the
following steps. At the beginning, we tried to cause low-importance threads to
yield their execution by getting them to sleep during a certain period by the
Thread.sleep method. We implemented the scheduling policy that got threads to
sleep at joinpoints except the JFreeChart library. This policy could not control
a system load well because the execution of low-importance threads took a long
time in that library. Next, we changed this policy so as to get threads to sleep at
joinpoints within the library. This policy almost worked well, but it sometimes
failed to collect water levels at correct intervals when many threads were woken
up accidentally at the same time. Finally, we changed this policy so as to use
the Object.wait method for thread yielding. This policy could always control
thread execution properly. While we modified our aspect and its support classes
through these steps, we could not need to modify the source code of Kasendas.
In addition, it was easy to change our scheduling policy to other ones for our
experiments described in the next section.

Third, our pointcut generator enabled us to select the controlPoint pointcut
for periodic thread yielding without examining the source code of Kasendas in
detail. For periodic thread yielding, we had to choose pointcuts that selected
joinpoints that a thread reached at reasonable intervals. However, there were
too many candidates for pointcuts in Kasendas even if we limited pointcuts to
the pair of the withincode and call pointcuts without wildcards. For a web ap-
plication generating a chart, there were 803 candidates of pointcuts even in the
execution profile we obtained. If we did not have the execution profile, there
were much more candidates in the source code of Kasendas. It was impossi-
ble to select appropriate pointcuts among these enormous candidates by hand.
Using our pointcut generator, we only needed to run a target application for
obtaining execution profile, which was used to run the pointcut generator with
several sets of parameters, so that the best set of generated pointcuts would be
experimentally selected.

The development of our scheduling policy was less than one man-month. Our
student, who is one of the authors of this paper, found the condition where
Kasendas became unstable and developed the best scheduling policy by trial
and error. He found the condition in 1 week, developed a scheduling policy in
less than 2 weeks, and tested and modified it in 1 week. For comparison, the de-
velopers of Kasendas proposed 0.9 man-month for modifying Kasendas for poten-
tial performance improvement. Note that the proposed work was not equivalent
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to our work. It did not include the analysis of performance bottlenecks. The
work was only modifying Kasendas to use multiple threads for collecting water
levels in parallel from the data generator. Furthermore, the developers could
not guarantee that their modification prevented data loss under heavy workload
because they did not know the real performance bottlenecks. Since their modifi-
cation would make the software more complicated, estimating the performance
was difficult.

4.4 Additional Scheduling Policies

Deadlock-Aware Scheduling Policy. To examine that QoSWeaver can break
deadlocks introduced by woven scheduling code, we modified Kasendas so that
it would cause a deadlock when it ran with our scheduling policy described
in Sect. 4.2. We added a Logging class including two synchronized methods to
Kasendas. These two methods, writeCollection and writeGeneration, are called by
a high-importance thread for the periodic data collection and low-importance
threads for the chart generation, respectively. When a low-importance thread
is suspended within the writeGeneration method and waits for being woken up
by the high-importance thread, a deadlock occurs if the high-importance thread
calls the writeCollection method. Since the high-importance thread blocks at the
writeCollection method, it cannot wake up the suspended low-importance thread.

An aspect as shown in Fig. 12 records the progress of the high-importance
thread. The advice calls the PSScheduler.setProgress method 100 times during
the execution of the high-importance thread. The pointcut was generated by
our pointcut generator on the basis of the execution profile for the periodic data
collection. The setProgress method increments the value of a progress variable.
In addition, we modified the controlPoint pointcut in our original aspect so that
a joinpoint within the writeGeneration method was selected to yield thread’s
execution.

To enable breaking deadlocks, we also modified the yield method in the PS-
Scheduler class. Within the yield method, a thread calls the Object.wait method
with the timeout of 200ms if its yield flag is set. When the execution of the

<pointcut-decl>

<name> progress </name>

<pointcut>

(withincode(int CollectorImpl.getWaterLevel(int)) ANDAND

call(int Integer.parseInt(java.lang.String)))

</pointcut>

</pointcut-decl>

<behavior>

<pointcut> progress() </pointcut>

<before> PSScheduler.setProgress(); </before>

</behavior>

Fig. 12. The aspect added for measuring a progress
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<pointcut-decl>

<name> midImportance </name>

<pointcut>

execution(ActionForward AbstractMapAction.execute(..))

</pointcut>

</pointcut-decl>

<behavior>

<pointcut> midImportance() </pointcut>

<around>

PSScheduler.startMidImportance();

$_ = proceed($$);

PSScheduler.endMidImportance();

</around>

</behavior>

Fig. 13. The aspect added for the middle-importance task

Object.wait method finishes, the thread checks its yield flag again. If the flag is
reset, the thread finishes the execution of the yield method and executes appli-
cation code because this means that the thread is woken up by the Object.notify
method. Otherwise, the thread compares the current value of the progress vari-
able with the saved previous one to check the progress of the high-importance
thread. If the value is changed, the high-importance thread is running and no
deadlock occurs. Therefore, the thread calls the Object.wait method again. Oth-
erwise, it temporarily executes application code to break potential deadlocks.
During this temporary execution, the yield flag is set.

After that, the low-importance thread checks the progress of the high-
importance thread whenever the yield method is called. If the yield flag is set
and if the high-importance thread makes no progress, the thread skips the rest of
the yield method and continues the temporal execution. If the high-importance
thread makes progress, the low-importance thread finishes the temporal execu-
tion and executes the yield method normally.

Adaptive Scheduling Policy. So far, we considered only the low-importance
threads for the chart generation and the high-importance thread for the periodic
data collection. Kasendas has another web application for the water-level update.
This application is of intermediate importance and should be run by a middle-
priority thread. It is more important than that for the chart generation because,
in the disaster case, the up-to-date water levels are more critical information
than their changes in the past. It is not as important as the application for the
periodic data collection. When we consider such middle-importance threads as
well, they conflict with both low- and high-importance threads. The through-
put of the middle-importance task may decrease due to the low-importance task
when many low-importance threads are running because the chart generation
performed by the low-importance threads is a heavy-weight task. While the pe-
riodic data collection is performed, the time needed for periodic data collection
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may be increased by the middle-importance task. Although the web application
for the water-level update is lightweight, too many requests to the web applica-
tion affect the other applications.

To minimize such conflicts, we extended our scheduling policy described in
Sect. 4.2. The extended policy guarantees the target throughput for the middle-
importance task on average when a high-importance thread does not run. It
adaptively adjusts the number of low-importance threads so that the middle-
importance task achieves the target throughput. While the high-importance
thread is running, the policy limits the maximum throughput of the middle-
importance task. It directly adjusts the execution of the middle-importance
threads because the number of the low-importance threads is limited to one
during data collection by our original policy and it is difficult to be adjusted
furthermore. Figure 13 is an aspect added for the middle-importance task. The
midImportance pointcut selects the execution of the method in the AbstractMa-
pAction class, which is invoked from the ActionServlet class used by the Struts
framework [19]. The around advice is executed when a middle-importance thread
performs the water-level update.

First, we consider only middle- and low-importance tasks when the periodic
data collection is not performed. To calculate the throughput of the middle-
importance task, our scheduler counts the number of pages generated during a
certain period. The number is incremented by the PSScheduler.endMidImportance
method, which is called after the execution of the water-level update. To adjust
the maximum number of low-importance threads, we added the adjust method
to the ThreadController class, which is described in Sect. 4.2. The method is
called in the startMidImportance, endMidImportance, and yield methods of the
PSScheduler class. Thus, the adjust method is frequently called if the middle- or
low-importance threads are running.

The adjust method adjusts the maximum number of low-importance threads
if the specified time elapses since the last adjustment. It does nothing until the
specified time elapses. In the current implementation, the time is 1 s. The adjust
method first calculates the latest throughput of the middle-importance task from
the number of generated pages and the time elapsed since the last adjustment.
Then it calculates the ratio of the observed throughput to the specified target
throughput. If the ratio is less than one, the method decreases the maximum
number of low-importance threads by the ratio to decrease the load by the
low-importance threads. If the ratio is more than one, the method increases the
number by the ratio to suppress the execution of the middle-importance threads.
For example, suppose that the maximum number of low-importance threads is
5. When the observed throughput is 180 pages/s and the target is 150 pages/s,
the ratio is 1.2 and then the maximum number is increased to 6.

Next, we consider three kinds of tasks when the periodic data collection
is performed. To limit the number of requests processed in parallel, our
scheduler maintains the number of running middle-importance threads. The
startMidImportance method increments the number and the endMidImportance
method decrements it. While the high-importance thread is running, the
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startMidImportance method checks the number of running middle-importance
threads. If the number is more than the specified value, the current thread is sus-
pended. When a middle-importance thread finishes the water-level update, the
endMidImportance method wakes up one of the suspended threads. The woken-
up thread waits for the specified time because of adjusting the rate of request
processing. The maximum throughput is determined by the maximum number
of middle-importance threads and the waiting time. When the high-importance
thread finishes the periodic data collection, all the suspended threads are wo-
ken up. At the same time, the maximum number of low-importance threads
is restored to the value just before starting the periodic data collection. This
behavior is changed from the original policy, which restores the number to the
fixed value, 40. This change enables quickly stabilizing the maximum number of
low-importance threads after the periodic data collection.

5 Experiments

Our application-level scheduler successfully improved the execution performance
of Kasendas. Interestingly, we could not achieve this improvement by using exist-
ing schedulers of the underlying software layers such as the JVM and the Linux
operating system. This section illustrates this fact through the results of our
experiments.

5.1 Five Versions of Kasendas

We ran not only our Kasendas tuned with QoSWeaver but also the original
Kasendas without any tuning and other versions of Kasendas tuned with admis-
sion control, Java priority scheduling, and Linux priority scheduling. Admission
control is a simple scheduling technique for limiting the number of threads con-
currently running. Because of its simplicity, it is often used for controlling the
concurrency of web application servers. A web application server adopting ad-
mission control checks the number of running threads when it receives a new
request from a client. If the number exceeds the limit, the server does not start
processing the new request. A main difference between admission control and
our scheduling by QoSWeaver is that admission control can suspend processing
a request only when the server starts processing it. Once it starts processing, a
thread processing the request is not suspended until it finishes processing. It is
never suspended halfway.

The admission control for Kasendas restricts the maximum number of running
low-importance threads for generating a chart. It limits the maximum number
to one while a high-importance thread is collecting water levels. This policy is
the same as the policy of our scheduling except that it is enforced only when a
thread starts. Thus, the comparison between admission control and QoSWeaver
will reveal a performance benefit of enforcing the policy by suspending a thread
halfway through the execution.

The other two versions of Kasendas were tuned by scheduling mechanisms
in the JVM and the operating system. To support our claim in Sect. 2, it is
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important to show that only using such existing scheduling mechanisms is in-
sufficient. Java provides the Thread.setPriority method for priority scheduling.
Using this method, Kasendas sets the priority of the high-importance thread
to high (MAX PRIORITY) while it sets the priority of the low-importance threads
to low (MIN PRIORITY). After the low-importance threads finish to process re-
quests, Kasendas resets their priorities to normal (NORM PRIORITY) because those
threads were reused via a thread pool.

Kasendas tuned with Linux priority scheduling issues the setpriority system
call using a native method in Java when threads start processing requests. Like
the setPriority method in Java, Kasendas sets the priorities of the high- and low-
importance threads to high (-20) and low (19), respectively. However, Kasendas
has to be run with root privilege to raise the priority of the native thread. It has
to change the priority of the high-importance thread from normal (0) to high.
In addition, it has to change the priority of the low-importance thread from low
to normal when it returns the low-importance thread to the thread pool.

We did not change the operating system and the JVM used in Kasendas to
real-time ones because that is not realistic at software development in practice
as described in Sect. 2. If we largely change such underlying software, we may
rewrite our applications. In addition, all of the underlying software need to be
changed to real-time systems, but there existed no real-time JBoss server, which
Kasendas required.

For our experiments, the interval at which Kasendas collects water levels was
15 s. To generate workloads, we used Apache JMeter [25]. JMeter concurrently
sent requests to the web page showing a chart of recent changes for the last 12 h,
except one experiment in Sect. 5.2. The number of concurrent requests was 40,
except one experiment in Sect. 5.3. The number, 40, was the maximum number
of concurrent requests through our experiments because the chart generation
was a heavy-weight task and processing 40 requests in parallel caused overload
in our server. Although more requests may be sent to the server in practice, we
assume that more than 40 requests are discarded by admission control. We did
not send requests to the web page showing the up-to-date water levels, except
one experiment in Sect. 5.5.

To run Kasendas and the data generator, we used two Sun Fire V60x with
dual Intel Xeon 3.06 GHz processors, 2 GB of memory, a gigabit Ethernet NIC.
These machines ran Linux 2.6.8 as the operating systems, Sun JVM 1.4.2 06,
and JBoss 4.0.2 as the J2EE servers. To run JMeter, we used Sun Fire B100x
with a single AMD AthlonXP-M 1.53 GHz processor, 1 GB of memory, and a
gigabit Ethernet NIC. This machine ran the Solaris 9 operating system and Sun
JVM 1.4.2 05. These machines were connected with a gigabit Ethernet switch.

5.2 Effectiveness of Our Scheduling

We examined whether our scheduling could give sufficient CPU time to the
thread executing the application periodically collecting water levels.
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Time for Collecting Water Levels. We measured the elapsed time from
when a high-importance thread starts collecting water levels until it completes
the collection. Since this data collection is performed periodically, data loss oc-
curs if the collection does not finish within its interval, which was 15 s in our
configuration. Our aim is to prevent such deadline misses for the periodic data
collection.

Figure 14 shows the changes of the time needed for collecting water levels
every 15 s and Fig. 15 shows the average collection time. When we used the
original Kasendas, we could measure the collection time only six times during
180 s. This is because each data collection took long time. The average collec-
tion time was 24.8 s and every collection time was more than 15 s, which was a
deadline, except at 30 s. On the other hand, our scheduling reduced the average
collection time to 5.3 s. The collection time was always within 15 s and no data
were lost. In addition, the collection time was the stablest among the five ver-
sions of Kasendas. The variance of our scheduling was the smallest. This is very
important for applications with deadlines because it becomes easier to guaran-
tee that applications do not miss their deadlines. For the admission control, the
average collection time was 10.9 s, but the collection time sometimes exceeded
15 s, for example, at 30 s after the start. This means that the admission control
could not always prevent data loss. Fine-grained scheduling by QoSWeaver could
prevent data loss by giving sufficient CPU time to the thread for collecting water
levels.

Kasendas tuned by Java priority scheduling achieved a little shorter collection
time on average than the original one, but the average was still longer than 15
s. The average collection time of Kasendas tuned by Linux priority scheduling
was 9.0 s. However, Linux priority scheduling was not as good as our schedul-
ing. The collection time was not stable and longer than 15 s at the first data
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Fig. 14. The changes of the time needed for a high-importance thread to collect water
levels
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Fig. 15. The average time needed for a high-importance thread to collect water levels

collection. The cause of this instability is that the execution of the chart gener-
ation has several phases. Since JMeter simultaneously sent 40 requests at time
0, many threads tended to execute the same phase synchronously. Therefore,
the characteristics in each phase affected the performance of the periodic data
collection.

The deadline miss ratio was 0.89 for the original Kasendas, but it was reduced
to zero by our scheduling. The other approaches could not achieve this: 0.31
for the admission control, 0.89 for Java priority scheduling, and 0.18 for Linux
priority scheduling.

Number of Running Low-Importance Threads. To examine the schedul-
ing behaviors in detail, we measured changes of the number of running
low-importance threads for generating a chart. In our configuration, both our
scheduling and the admission control give CPU time to the high-importance
thread for the periodic data collection by suspending all but one low-importance
thread after the data collection is started. The aim of this experiment is to ex-
amine how quickly low-importance threads are suspended. The quickness of the
thread suspension can affect the collection time of water levels.

Figure 16 shows the changes of the number of running low-importance threads.
Our scheduling always suspended all but one low-importance thread just after
the data collection was started every 15 s. The average suspension time was 2.2 s.
The suspension time means the time from when a high-importance thread calls a
scheduler until all but one low-importance thread are suspended. For the admis-
sion control, on the other hand, the number of low-importance threads was not
reduced to one in several intervals, for example, from time 0 s to time 30 s. Even
when all but one low-importance thread were suspended, the average suspen-
sion time was 10.2 s. This suspension time is long, compared with the interval
of 15 s. Since the high-importance thread runs together with low-importance
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Fig. 16. The changes of the number of running low-importance threads

threads, the data collection performed by the high-importance thread tends to
be delayed.

Impact of Changing Workloads. In the above experiments, JMeter sent
requests to a web page showing a chart of recent changes for the last 12 h.
Generating the 12 h chart was the same workload as what we used to obtain
execution profile for our pointcut generator. We changed workloads so that JMe-
ter sent requests to web pages showing charts for the last 24, 12, 6, and 3 h. As
the period of a generated chart becomes smaller, the application generating a
chart obtains the smaller number of water levels from the database and produces
a chart in shorter time. Nevertheless, the system load becomes higher because
Kasendas must process more requests per second. The aim of this experiment is
to examine how well our scheduling can give sufficient CPU time to the thread
for the periodic data collection under different workloads.

Figure 17 shows the average time needed for a high-importance thread to col-
lect water levels when we changed the workloads. Our scheduling, the admission
control, and Linux priority scheduling kept the average collection time to almost
the same under any workloads. On the other hand, when we used the original
Kasendas, the average collection time increased from 23.5 to 49.0 s at maximum
and more data were lost. Kasendas tuned with Java priority scheduling was
worse than the original one for the 24 and 6 h charts. Like Fig. 15, the variance
of our scheduling was the smallest. That of the original Kasendas becomes larger
for the shorter period. On the contrary, that of our scheduling becomes smaller
as the period of the generated chart is decreasing. This indicates that threads
for generating a chart of a shorter period are easier to control under application-
level scheduling because the chart generation becomes relatively lighter-weight
task. Table 2 shows the deadline miss ratios. In our scheduling, the deadline miss
ratio was zero for every case. From these results, it is shown that our scheduling
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Fig. 17. The time needed for collecting water levels when the workload is changed

Table 2. The deadline miss ratios

Period 24 h 12 h 6 h 3 h
Original 0.92 0.89 0.97 0.95
Our scheduling 0.00 0.00 0.00 0.00
Admission control 0.39 0.31 0.28 0.11
Java priority 0.95 0.89 1.00 0.98
Linux priority 0.15 0.18 0.18 0.00

can control Kasendas stably even when the workload is a little different from
that used in the profiled execution.

Influences to Low-Importance Threads. To examine how our scheduling af-
fects the performance of low-importance threads, we first measured the through-
put of the chart generation, which is executed by low-importance threads.
Since our scheduling policy temporarily suspends low-importance threads to give
sufficient CPU time to a high-importance thread, the throughput of the chart
generation would be degraded. Figure 18a shows the throughput of the chart
generation. Compared with the original Kasendas, the performance degrada-
tion under our scheduling was 15.7% and larger than that under the other ap-
proaches. This is because our scheduling gave more sufficient CPU time to the
high-importance thread than the other approaches. In the case of Kasendas, this
level of performance degradation was acceptable because our first priority was
to prevent data loss for providing reliable information.

Next, we measured the response time of a web page showing a chart. Fig-
ure 18b shows the average response time. Compared with the original Kasendas,
the average response time under our scheduling increased by 18%. The 95%
confidence intervals are (17.2, 18.2) and (19.7, 21.2) for the original Kasendas
and our scheduling, respectively. Since these two do not overlap, the increase
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Fig. 18. The throughput of the chart generation and the response time of a web page
showing a chart

is statistically significant. In addition, the variance of our scheduling was larger
than that in the original Kasendas because the low-importance threads were
given a low priority and all but one thread were suspended during periodic data
collection.

Scheduling Overhead. To examine the scheduling overhead, we measured the
throughput of the chart generation without performing the periodic collection of
water levels. In our scheduling policy, low-importance threads execute the chart
generation and periodically call a scheduler’s method. Thus, the chart generation
can cause scheduling overhead. We stopped the periodic data collection to mea-
sure pure overhead because the periodic data collection makes low-importance
threads be suspended.

Compared with the original Kasendas, the throughput was not degraded in
our scheduling and no scheduling overhead was measured. This is because calling
a scheduler’s method was very lightweight and a low-importance thread called
the method at only 17 joinpoints during handling one request in our experiment.
For the admission control, there was also no overhead. On the other hand, the
throughputs were degraded by 3% and 11% with the priority scheduling by the
JVM and by Linux, respectively. This is because priority scheduling gave a low
priority to low-importance threads even while the periodic data collection was
not performed.

5.3 Usefulness of the Pointcut Generator

We examined the impact of parameters given to our pointcut generator. The
pointcut generator takes two parameters: a target interval between adjacent
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joinpoints selected and the maximum occurrences of joinpoints selected by a
single pointcut. In Sect. 5.2, we used the controlPoint pointcut generated with the
target interval of 10ms and the maximum occurrence of 1. For the experiments
in this section, we changed the target interval to either 10 or 100ms and the
maximum occurrence to 1, 50, 100, or 200.

Generated Pointcuts. Compared with when we used a pointcut that selects
all method calls without the pointcut generator, the pointcut generator dramat-
ically reduced the number of selected joinpoints. Table 3 shows the number of
generated pairs of call and withincode pointcuts and joinpoints selected by them.
The number of joinpoints selected without the pointcut generator was 248661,
but the number was reduced to several hundreds at most by using the pointcut
generator. As the specified target interval got longer or the maximum occur-
rence got smaller, the number of selected joinpoints was reduced more largely.
In addition, the pointcut generator generated the reasonable number of pairs
of pointcuts. The number of possible pairs of pointcuts in the execution of the
application generating a chart was 803 whereas the pointcut generator selected
only 17 pairs of pointcuts from them at maximum.

Table 3. The numbers of generated pairs of pointcuts and joinpoints selected by them
for different sets of parameters

Target Maximum Generated Selected
interval occurrence pointcuts joinpoints

10 ms 1 15 15
50 16 32

100 17 231
200 15 309

100 ms 1 8 8
50 9 13

100 8 83
200 8 83

Random 15 2034
All 803 248661

For comparison, we chose 15 pointcuts from 803 candidates at random without
the pointcut generator. Such random pointcuts become the baseline for examin-
ing the goodness of the pointcuts generated by the pointcut generator. Choosing
pointcuts at random only reduces the number of pointcuts whereas the pointcut
generator minimizes the number of joinpoints selected in a certain period as well.
When we used random pointcuts, the number of selected joinpoints was much
larger than when we used the pointcut generator. This is because some pointcuts
selected too many joinpoints in Kasendas. We should also compare the pointcuts
generated by the pointcut generator with ideal ones, but obtaining ideal ones is
very difficult for non-toy applications.
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The time needed for generating these pointcuts was 20 s even when we speci-
fied 10ms for the target interval and 200 for the maximum occurrence. The time
depends mainly on the number of joinpoints included in execution profile. To
examine the scalability of pointcut generation, we also measured the time needed
to generate pointcuts for the web application generating a chart for the last 24
h. The number of joinpoints was 959148 in its execution profile and the time
needed for pointcut generation was 103 s. Compared with the chart generation
for the last 12 h, the number of joinpoints becomes 3.9 times larger while the
time becomes 5.2 times longer. The increment of the time is not proportional to
that of the number of joinpoints, but the time is not too long.

Influences to Scheduling Intervals. We examined how the parameters given
to the pointcut generator affected the interval at which the scheduler was called
at run time. Since the scheduler is called at joinpoints selected by generated
pointcuts, the interval is the time between adjacent joinpoints selected. For com-
parison, we also examined the interval between all adjacent joinpoints and that
between adjacent joinpoints selected by random pointcuts. First, we measured
these intervals in single-thread execution, which was performed to obtain execu-
tion profile for pointcut generation. Only one low-importance thread ran at the
same time. Figure 19 shows the averages of the observed intervals for different
sets of parameters given to the pointcut generator. When we did not use the
pointcut generator, the observed intervals were too small for application-level
scheduling. The observed interval was 0.01ms when all joinpoints were selected
and was 0.9ms when joinpoints were selected by random pointcuts. When we
gave appropriate parameters, the pointcut generator could generate pointcuts
so that the observed interval approached the target. For example, if the target
interval was 10ms and the maximum occurrence was 100, the average interval
was the nearest to the target one. The observed interval tends to be smaller as
the maximum occurrence became larger.

The variance of observed intervals was very large. The reason is that the
pointcut generator cannot always generate pointcuts so that joinpoints selected
by them occur at regular intervals. It depends on the characteristics of applica-
tions. Figure 20 plots the time when a program flow reached joinpoints selected
by pointcuts. This figure shows that there were no joinpoints in parts of a pro-
gram flow: time 0.0 to 0.2 s, time 0.6 to 0.7 s, and time 1.6 to 1.9 s. In the first
part, the application waited for finishing database accesses. In the second part,
the application created a large buffered image for a chart. In the third part,
the application sent the image for the chart to the client through the network.
The pointcut generator could not generate any pointcuts that selected joinpoints
during these periods. By contrast, there was a part that included too many join-
points: time 1.0 to 1.6 s, for example. In this part, JFreeChart repeated the
same processing to generate a chart too many times. Even the most infrequent
method call was done every 1.8ms. This is too frequent, compared with the time
quantum of 5ms assigned to processes with the lowest priority in Linux. The
pointcut generator could not generate any pointcuts so that the occurrence of
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Fig. 19. The intervals at which the scheduler is called in single-thread execution

joinpoints was within the specified maximum value. Nevertheless, our scheduling
worked well because it did not need to control threads too strictly.

Next, we measured the intervals in multi-thread execution. JMeter sent 10,
20, and 40 requests to a web page showing a chart in parallel. The aim of this
experiment is to examine how a server load affects the observed intervals. Fig-
ure 21 shows the average of the observed intervals. At worst, each low-importance
thread could call the scheduler every 1.9 s on average. For the parameters used
in our experiments in Sect. 5.2, each low-importance thread called the sched-
uler every 1.1 s on average. This enabled stable control as shown in Sect. 5.2.
This figure also shows that the observed interval was proportional to the number
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Fig. 20. The time when a program flow reaches joinpoints selected by generated point-
cuts
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Fig. 21. The intervals at which the scheduler is called in multi-thread execution

of concurrent requests. These results show that we could predict the observed
interval in multi-thread execution from that in single-thread execution.

Influences to Execution Performance. To examine how these parameters
affect execution performance, we first measured the time needed for suspending
low-importance threads and the time needed for periodically collecting water
levels. In this experiment, JMeter sent 40 requests in parallel. The result is shown
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Fig. 22. The time for the thread suspension and the data collection for different sets
of parameters
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in Fig. 22. The time needed for thread suspension was different for each set of
parameters. The time needed for the data collection reflected these differences,
but it was not different as largely as the suspension time. The collection time was
between 4.5 and 5.3 s and sufficient for avoiding deadline misses. On the other
hand, when we used a pointcut that selected all method calls, the suspension
time decreased too much and achieved short collection time. By contrast, when
we used random pointcuts, the suspension time increased by a factor of two and
the collection time became long. Also, its variance of the suspension time became
very large because the scheduler was called at random intervals. The deadline
miss ratio was zero for every case.

Next, we measured the throughput and the response time of the chart gener-
ation. The performance was almost never affected by the parameters. However,
when too many joinpoints were selected due to using no pointcut generator, the
performance was degraded largely. The throughput was degraded by 57% and
the response time was 2.2 times longer. This means that decreasing the number
of selected joinpoints is important in terms of performance.

Finally, we examined scheduling overheads by measuring the throughput of
the chart generation without the periodic data collection. When we did not
use the pointcut generator, the scheduling overhead was 63%. The pointcut
generator reduced the overhead to less than 5 % for every set of parameters. For
our experiments in Sect. 5.2, we experimentally selected the target interval of
10ms and the maximum occurrence of 1 so that the scheduling overhead was
minimized.

5.4 Effectiveness of Deadlock-Aware Scheduling

In this section, we used the Kasendas to which the Logging class described
in Sect. 4.4 was added for introducing synchronization. When we wove the
original aspect into this Kasendas and sent requests, a deadlock always oc-
curred soon as we intended. A thread for collecting water levels blocked at the
Logging.writeCollection method and it was not continued. On the other hand,
when we wove the deadlock-aware version of aspect into the Kasendas, dead-
locks did not occur.

Next, we measured the time needed for collecting water levels when we wove
the deadlock-aware version of aspect. We also measured the times for the other
four versions of Kasendas, which used their own scheduling policies. For them,
we introduced synchronization by adding the Logging class. They did not cause
deadlocks although we did not change their scheduling policies. The results were
almost the same as Fig. 15 and the average collection time by our scheduling
was the shortest (6.1 s). However, this is 0.8 s longer than that shown by the
results in Fig. 15. The increment was caused by the overhead due to checking
progress and the delay for detecting deadlocks.

Figure 23 shows the changes of the number of running low-importance threads.
The result was a little different from that in Fig. 16a. The scheduling policy was
to reduce the number of running low-importance threads to one, but this goal
was often not achieved due to synchronization among low-importance threads.
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Fig. 23. The changes of the number of running low-importance threads for Kasendas
with synchronization

If low-importance threads are blocked at the Logging.writeGeneration method
after another low-importance thread is suspended within the same method, the
blocked threads cannot yield their execution.

The performance of a chart generation under the new scheduling was similar
to that in Fig. 18, but the performance degradation was larger. Compared with
the original Kasendas, the throughput under the new scheduling was degraded
by 20% and the response time was 25% longer. This is caused by the increment
of the collection time. The collection time increased by 0.8 s while the response
time was increased by 1.0 s.

5.5 Effectiveness of Adaptive Scheduling

First, we examined the effectiveness of our adaptive scheduling policy described
in Sect. 4.4 when the periodic data collection was not performed. JMeter sent
requests to both the web page showing a chart of recent changes for the last 12 h
and the web page showing the up-to-date water levels. The number of concurrent
requests was 40 for the former page and 100 for the latter page.

Figure 24 shows the changes of the throughput of the middle-importance task
for the water-level update when we did not apply any scheduling policy. The
dotted line is the observed throughput and the solid line is the average per 5
s. Even the average throughput was very unstable because the execution of the
middle-importance threads was largely affected by that of the low-importance
threads. The cause of the periodic changes is that the execution of the chart gen-
eration had several phases as we explained in the experiment for Linux priority
scheduling in Sect. 5.2.

Figure 25 shows the changes of the throughput when we applied our adaptive
scheduling policy. We set the target throughput of the middle-importance task
to 150 pages/s. The average throughput per 5 s was stabilized and achieved 152
pages/s, which was very near to the target throughput. This figure also shows
the changes of the maximum number of low-importance threads. Our scheduler
frequently adjusted the maximum number of low-importance threads between
one and six. It was almost exactly called every second according to our policy.
In addition, it decreased the number just after the server started processing
requests to the web page for the water-level update and increased the number
just after JMeter stopped sending requests.
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Fig. 24. The changes of the throughput of the middle-importance task under no
scheduling policy
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Fig. 25. The changes of the maximum number of low-importance threads and the
throughput of the middle-importance task under our adaptive scheduling policy

The response time of the water-level update was also improved by a factor of
two. The response time under no scheduling policy was 1.2 s while that under our
scheduling policy was 0.62 s. The variance was also smaller under our scheduling
policy. On the other hand, the throughput of the chart generation was degraded
by adjusting the maximum number of low-importance threads. The throughput
under no scheduling policy was 1.84 pages/s, but that under our scheduling
policy was 1.27 pages/s. This means that the low-importance threads were given
a lower priority than the middle-importance threads.

Figure 26 shows the maximum number of low-importance threads and the
observed throughputs for various target throughputs. We changed the target
throughput from 25 to 250 pages/s. The observed throughput was near to the tar-
get when the target was between 125 and 200 pages/s. For these target through-
puts, the maximum number of low-importance threads was less than ten and the
variance was small. When the target throughput was more than 225 pages/s, the
observed throughput was lower than the target due to the upper limits of the
system. The maximum number of low-importance threads was almost one be-
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Fig. 26. The averages of the maximum numbers of low-importance threads and the
observed throughputs of the middle-importance task for various target throughputs

cause it was the best strategy to minimize the impact by the low-importance
threads in our policy. When the target throughput was less than 100 pages/s,
the observed throughput was higher than the target one. The middle-importance
threads could run too much even if the large number of low-importance threads
simultaneously runs.

Next, we examined the effectiveness of our adaptive scheduling policy when
the periodic data collection was performed. We set the target throughput to
150 pages/s on average when the high-importance thread for the data collection
does not run. While the high-importance thread is running, we set its maxi-
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Fig. 27. The changes of the maximum number of low-importance threads and the
throughput of the middle-importance task with the periodic data collection
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mum throughput to 150 pages/s. To limit the maximum throughput, the maxi-
mum number of middle-importance threads was limited to 15 and each middle-
importance thread waited for 100ms before starting its execution. This means
that the water-level update is performed 10 times at maximum every second for
each middle-importance thread.

Figure 27 shows the changes of the maximum number of low-importance
threads and the throughput of the middle-importance task. The data col-
lection was performed during the periods marked as “C”. When the high-
importance thread did not run, the average throughput was 143 pages/s, which
is near to the target throughput. While the high-importance thread was run-
ning, the average throughput was 122 pages/s, which is less than the spec-
ified maximum throughput. In detail, the throughput was more than 150
pages/s at the beginning of each data collection. Since the number of running
middle-importance threads was decreasing to the specified one in several sec-
onds, many middle-importance threads were running just after the data collec-
tion started. The average collection time was 6.8 s, which is 1.5 s longer than the
result in Fig. 15 due to running middle-importance threads during the periodic
data collection.

6 Applicability of QoSWeaver

QoSWeaver is not appropriate if the application needs accurate scheduling. The
application-level scheduler by QoSWeaver slowly responds to workload changes.
It may take several seconds because application threads are under the control
of the underlying operating-system scheduler and the threads only voluntarily
yields the allocated CPU time. For example, the result of our experiment in
Fig. 16 shows that the number of the running low-importance threads was de-
creased from 40 to 25 in 1 s although it must be decreased to one according to the
scheduling policy. The scheduling accuracy could be improved if the application
program calls a scheduler more frequently. However, the scheduling overheads
would be bigger. In the worst case of our experiment, in which a scheduler was
called at every method call, the throughput was less than the half of the origi-
nal. Thus, QoSWeaver could not be used for implementing real-time scheduling.
Likewise, within a short period such as 1 s, it cannot allocate the exact CPU
time computed from the priority of the thread. It can only allocate so that the
average of the allocated CPU time during several seconds reflects the priority.

QoSWeaver does not work well if the application is I/O intensive and the
threads frequently suspend for long time for waiting until an I/O request is
completed. Since the thread must be running to call a scheduler, every I/O re-
quest should be short and infrequent. Otherwise, the scheduler would not run
frequently enough to implement a specified scheduling policy. Furthermore, QoS-
Weaver does not work well if a small code block is repeatedly executed for long
time. If a pointcut does not select a joinpoint in that code block, a scheduler
will not be called for long time. On the other hand, if it selects, a scheduler will
be called too frequently; the scheduling overheads will be non-negligible.
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QoSWeaver assumes that the behavior of the application does not largely
change for every execution. It must be similar to the behavior of the profiled
execution. If the behavior of the application is categorized into several patterns,
we can obtain execution profiles for each pattern, generate pointcuts for each,
and merge them all. However, the accuracy of the scheduling will be degraded
more as the variation of the application behavior is larger. This fact has been
discussed in Sect. 3.3.

7 Concluding Remarks

In this paper, we presented QoSWeaver, which is a tool suite for developing
application-level scheduling using aspects. The idea of scheduling at the applica-
tion level is not new; it is a useful technique for adjusting execution performance
with a minimum development cost. We showed that AOP makes this technique
more realistic by separating scheduling code from applications. Furthermore,
the pointcut generator provided by QoSWeaver generates appropriate pointcuts
and helps developers create an application-specific scheduling mechanism, which
calls a scheduler from applications periodically.

As a case study, we used a river monitoring system named Kasendas, which is
a web application system initially developed by the outside corporation. Using
QoSWeaver, we could successfully implement three practical scheduling policies
for Kasendas. According to our experiences in the development of Kasendas,
QoSWeaver made it easy to develop the scheduling policies in (1) that the
scheduling policies could be developed independently of Kasendas and (2) that
appropriate pointcuts were automatically generated without examining a large
amount of source code of Kasendas. Through this case study, we also experi-
mentally showed the effectiveness of our scheduling policies and the usefulness
of the pointcut generator under several workloads.

One of our future work is to apply QoSWeaver to other types of applications.
As discussed in Sect. 6, the application classes to which QoSWeaver is applica-
ble are limited from the nature of application-level scheduling and profile-based
pointcut generation. To analyze the applicability quantitatively, we need to ex-
amine whether QoSWeaver is applicable or not to other real applications. An-
other direction is to develop other scheduling policies using QoSWeaver. In this
paper, we have developed three scheduling policies: proportional-share, deadlock-
aware, and adaptive scheduling. To develop scheduling policies that dynamically
change the frequency of calling a scheduler, depending on workload changes, it
would be necessary for QoSWeaver to support dynamic weaving, for example.
We would like to examine that QoSWeaver is useful in practice to achieve other
classes of scheduling.
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Abstract. In this paper, we analyze the suitability of refactoring the integer  
programming algorithms Branch and Bound and Branch and Cut with  
aspects implemented in Computational Infrastructure for Operations Research 
(COIN-OR), an open source library for Operations Research. For identifying 
the concerns in the code, we propose a classification of concerns in terms of  
requirements. We transformed the rules of an existing Aspect-Oriented  
Programming (AOP) refactoring catalog for Java to a corresponding catalog for 
AspectC++ and developed a refactored version of the implemented algorithms 
using our transformed rules. The execution time of Branch and Bound and 
Branch and Cut was measured and the impact of using AOP was analyzed. The 
results are very encouraging and we assess that besides a customizable code, the 
execution time did not degrade with AOP. 

Keywords: Aspect-Oriented Programming, Integer Programming, Refactoring, 
AspectC++. 

1   Introduction 

Aspect-Oriented Programming (AOP) [1] and refactorings are current techniques for 
coping with software evolution. The principle of separation of concerns in software 
systems is not new; Dijkstra [2] considers it as “focusing one’s attention upon some 
aspect which does not mean ignoring the other aspects, it is just doing justice to the 
fact that from one aspect’s point of view, the other is irrelevant.” Parnas [3] considers 
this principle as a way of dealing with complexity guiding the decomposition or 
modularization of a problem. Although separation of concerns was initially used for 
structuring the functionalities of a program, nowadays it enables software reuse and 
evolution through decomposition of distinct software features, themselves overlap-
ping in functionality as little as possible. A software feature can span more than one 
related functionality. 

A Concern is any area of interest that has to be considered during the design or de-
velopment of an application [4]. In Kiczales [5] AOP is presented as a new paradigm 
that considers and solves problems related to crosscutting concerns providing addi-
tional mechanisms to object-oriented languages for modularizing concerns affecting 
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multiple structures in a program. Crosscutting concerns cannot be localized in only 
one program structure or together with other concerns. An aspect is the modular im-
plementation of a crosscutting concern. If a crosscutting concern is implemented with 
traditional object-oriented programming techniques, the corresponding code will be 
scattered in more than one class of the application. By using AOP, the crosscutting 
concerns can be modularized into one aspect. Joinpoints are interesting points in a 
program’s execution to be intercepted by an aspect, they can be data or execution, 
static or dynamic; at these points, new sections of code are executed before, after or 
instead of the original base code. Joinpoints are specified through a special construc-
tor, the Pointcut Designator, used to quantify over programs the set of Joinpoints 
extending, modifying, or deleting behavior. An aspect can also define its own attrib-
utes (state) and behavior or define new attributes and methods in existing classes by 
using intertype declarations. 

Refactoring is a fundamental technique in Software Engineering aimed at improv-
ing the quality of code while preserving its functionalities. The term, introduced by 
Opdyke [6], refers to a redistribution of classes, variables, and methods to facilitate 
future software adaptations and extensions. 

The work presented here is part of an ongoing project dealing with the AOP refac-
toring of an open source library for Operation Research, COIN-OR. This library, 
which is nontrivial in size and complexity, was developed by the “Computational 
Infrastructure for Operations Research Project” (COIN-OR) in an initiative to spur the 
development of open-source software in C++ in the Operations Research community. 
Most integer programming problems in the real world are NP-hard, their time com-
plexity is nonpolynomial; therefore, when using a new technique there should be no 
overhead in execution time due to the technique as in this domain performance is a 
priority. Operation Research experts consider a secondary goal any other product 
quality discussed by the software engineering community; their primary goal is al-
ways performance. 

COIN-OR is used in our academic context by students taking the Operations Re-
search course where they also experience the importance of performance when solv-
ing integer programming problems. In this paper, our approach for identifying 
concerns is exemplified for the integer programming algorithms Branch and Bound 
(B&B) and Branch and Cut (B&C). Some of the concerns were implemented in As-
pectC++, the execution time and some product qualities of both versions were as-
sessed and experimentation and outcomes are discussed. At this point, our primary 
goal is to determine that the average performance will not deteriorate by using AOP 
and our secondary goal is to obtain a code that can be customized and adapted as 
necessary to different strategies used by an integer programming algorithm. Our re-
sults indicate that by using AOP, on average, there is no deterioration in execution 
time, although solving some problems took, in the worst case, some 20% more time 
and that it enables a customizable and evolvable COIN-OR code. A corresponding 
Object-oriented (OO) refactoring using, for example, design patterns without appro-
priate tools would require a considerable amount of effort. The use of AOP allows 
code to be moved to an aspect without necessarily having identified all the sections of 
code were the aspect could be applied. It is to be noted that to the best of our knowl-
edge there are no published experiences of refactorings with AOP in the Operations 
Research domain. 
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The rest of this paper is structured as follows. In Sect. 2, we describe the integer pro-
gramming algorithms B&B and B&C implemented in COIN-OR and we summarize the 
main COIN-OR components for solving problems with these algorithms. In Sect. 3, we 
identify and categorize concerns in the domain of these algorithms, and the process for 
refactoring the code of B&B and B&C with AOP is explained and illustrated with a 
refactoring. The experimentation and discussion of our results are presented in Sect. 4. 
We finalize with our conclusions and ongoing work. 

2   Context 

A variety of techniques and formalisms have been defined and used for refactoring. In 
this paper, we are centered on what steps should be followed in a refactoring process 
and how to refactor. Tourwé and Mens [7] use a semiautomated approach based on 
logic meta programming for detecting when a design should be refactored as well as 
identifying which refactorings could be applied. According to these authors, three 
steps are identified in a refactoring process: 

− Detecting when to refactor: the source code of an application is inspected to  
identify code smells [8], such as arguments in the signature of methods that are not 
used in the body. Code smells are the way Beck and Fowler propose to diagnose 
problems in existing code that could be removed by refactorings [8, chap. 3]. Code 
smells do not aim to provide precise criteria for when refactorings are overdue.  
Instead, they suggest symptoms that may be indicative of something wrong in the 
code. Programmers are required to develop their own sense of when a symptom  
indeed warrants a change. Decisions also depend on the specific aims of the  
programmer and the specific state and structure of the code on which he is working 
[9]. Inspection can be complemented with artifacts describing the architecture and 
design of the application, design guidelines, standards, and metrics. 

− Identifying refactorings that can be applied: knowing which refactorings can be 
applied, where to use them, and having enough information to apply them. During 
refactoring, other refactoring possibilities may be suggested or required––known as 
cascaded refactorings. 

− Do the refactoring (automatically): implement the changes and guarantee behavior 
preservation. This step represents the experimentation in the refactoring process. 
The original definition of behavior preservation by Opdyke states that for the same 
set of input values, the resulting set of output values before and after refactoring 
should be the same [6]. An automatic refactoring tool can reduce the possibility of 
errors; however, we have no knowledge of an automated tool to assist the refactor-
ing C++ code. 

Monteiro and Fernandes [9] propose a catalog of refactorings describing code 
transformations from Java to AspectJ-specific modularization units. The catalog con-
sisting of 27 entries is structured into the following three groups: 

− Extraction of Crosscutting Concerns: refactorings in this group deal with moving 
implementation elements related to crosscutting concerns into aspects. These  
refactorings are the starting point of any refactoring process. Once they have been 
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applied the underlying structure of the resulting aspects can be improved with 
refactorings of the other groups. 

− Restructuring the Internals of Aspects: refactorings in this group deal with improv-
ing the structure (internals) of aspects such as removing duplicate code or needless 
complicated structures that may be a hindrance to reuse. 

− Generalization of Aspects: refactorings in this group deal with the extraction of 
common code in multiple aspects, defining an aspect hierarchy suitable for reuse. 

In the following section, we describe the steps of the B&B and B&C algorithms followed 
by a presentation of the components in COIN-OR implementing these algorithms. 

2.1   The Algorithms 

Through this paper, the canonical statement of the integer linear programming prob-
lem (ILP) is taken to be: 

 
where F(P) is the set of feasible solutions of P defined as follows: F(P) = {x : Ax ≤ b, 
x ≥ 0, x integer} 

where A is a matrix and c, x, and b are vectors of appropriate dimensions. Vector x is 
the vector of decisions variables. 

The general algorithmic framework uses three notions: separation, relaxation, and 
fathoming. 

I. Separation 

Problem P is said to be separated into subproblems P1, P2 if the following condi-
tions hold: (i) every feasible solution of P is a feasible solution of exactly one of 
the subproblems and (ii) a feasible solution of any of the subproblems P1, P2 is a 
feasible solution of P. 

Let F(P1) and F(P2) the feasible solutions sets of P1 and P2 then F(P1) and F(P2) 
is a partition of F(P). 

The subproblems P1, P2 are called descendants of P. Creating descendants of the 
descendants of P is equivalent to refining the partition of F(P). 

The most popular way of separating an ILP is by means of contradictory  
constraints on a single integer variable (the separation or branching variable). For 
example, P can be separated into two subproblems by means of the two mutually 
exclusive and exhaustive constraints x1 ≤ 2 and x1 ≥ 3. 

According to Geoffrion and Marsten [10], “Our interest in separation is that it  
enables an obvious divide-and-conquer strategy for solving any optimization problem 
(P). Leaving aside for a moment the important question of how one separates a prob-
lem that is difficult to solve, we can sketch a rudimentary strategy of this type as fol-
lows. First make a reasonable effort to solve P. If this effort is unsuccessful, separate 
P into two or more subproblems, thereby initiating what will be called a candidate list 
of subproblems. Extract one of the subproblems from this list – call it the current 
candidate problem (CP) – and attempt to solve it. If it can be solved with a reasonable 
amount of effort, go back to the candidate list and extract a new candidate problem to 

)(min ) ( PFxtosubjectxcP t ∈ ,
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be attempted; otherwise, separate CP and add its descendants to the candidate list. 
Continue in this fashion until the candidate list is exhausted. If we refer to the best 
solution found so far to any candidate problem as the current incumbent, then the final 
incumbent must obviously be an optimal solution of P (if all candidate problems were 
infeasible, then so is P).” 

II. Relaxation 

By far the most popular type of relaxation for an ILP is to drop all integrality  
requirements on the variables. The SIMPLEX algorithm [11] is used to solve the 
resulting ordinary linear program. 

The linear relaxation of P is defined as follows: 
. 

We have now that: 

(i) if PR has no feasible solutions, then the same is true for P. 
(ii) the minimal value of P is no less than the minimal value of PR. 
(iii) if an optimal solution of PR is feasible in P, then it is an optimal solution  

of P. 

III. The Fathoming Criteria 

Let CP be a typical candidate problem arising from the attempt to solve P. Let 
CPR be the linear relaxation of CP. 

Candidate problem CP is fathomed if one of the following holds: 

(i) An analysis of CPR reveals that CP has no feasible solution, 
(ii) An analysis of CPR reveals that CP has no feasible solution better than the 

incumbent solution, 
(iii) An analysis of CPR reveals an optimal solution of CP, that is, an optimal 

solution of CPR is found which happens to be feasible in CP. 

Based on this description, the steps for exploring a branch-decision tree in B&B by 
using linear relaxations of the integer programming problem can be resumed as [10]: 

Step 1. Initialize Candidate List: initialize the candidate list with an ILP and the 
value of the incumbent (Z*) to an arbitrarily large number. 

Step 2. Is List Empty: stop if the candidate list is empty. Therefore, if an incumbent 
exists then it must be optimal for ILP, otherwise ILP has no feasible solution. 

Step 3. Select a Candidate Problem: select one of the problems from the candidate 
list as the current candidate problem (CP). A LIFO strategy may be used: the problem 
selected is the last one added to the candidate list. 

Step 4. Solve (CPR ) the Linear Relaxation of CP: CPR is CP without integer  
constraints. 

Step 5. If the outcome of Step 4 is infeasibility of CPR, go to Step 2. 
Step 6. If the outcome of Step 4 shows that CP has no better feasible solution than 

the incumbent, go to Step 2. 
Step 7. If the outcome of Step 4 is an optimal solution of CP, go to Step 9. 
Step 8. Separate: separate CP into subproblems CP1 and CP2 using the constraints 

xj ≤ [xj*] and xj ≥ [xj*] + 1, respectively, with xj* a fractional-valued x-variable in the 

 0,min) ( ≥≤ xbAxtosubjectxcP t
R 



50 N. Niño et al. 

solution found at Step 4. The subproblems CP1 and CP2 are called descendants of CP. 
Add the descendants to the candidate list and go to Step 2. 

Step 9. Update Incumbent If Necessary: a feasible solution of CP has been found; 
if the optimal value of the solution is less then Z*, record this solution as the new 
incumbent and set its value to Z*. Go to Step 2. 

The B&C algorithm is based entirely on successively improved relaxations [10]. 
B&C adds new constraints or cutting planes to the relaxation in the B&B algorithm. 
Cutting planes are linear constraints; each new cut must crop off some feasible region 
of the current linear problem without also lopping off any feasible integer solutions of 
the original one. To use the previous algorithm of B&B, the following step for gener-
ating the cuts is introduced after Step 7: 

Step 7-1. Persist: decide if cutting planes will be added and go to Step 4. Other-
wise, go to Step 8. 

The performance of these algorithms depends on the specific instance of a prob-
lem; for different problem sizes and data, the execution time can vary significantly. 
OR researchers strive to invent new solution methods for solving bigger, more com-
plex models in as short a time as possible. A new solution approach is codified as a 
theoretical, or abstract, algorithm. To validate the approach and compare its perform-
ance against existing methods, the algorithm is implemented in software and compu-
tational studies are conducted. The implementations are usually prototypes written in 
a high-level language and intended for the author's use only. The results of computa-
tional studies are often provided as a complement to theorems, proofs, and algorithms 
in peer reviewed publications. But while the algorithmic theory is peer reviewed and 
openly disseminated, the software is not. 

2.2   The COIN-OR Library 

COIN-OR [12] is a general solver project implementing algorithms such as B&B and 
B&C for ILPs. The software in the COIN-OR repository is organized into individual 
projects, each one managed by a project manager overseeing its development. The 
repository is a library of interoperable software tools for building optimization tools 
as well as a few stand-alone packages. It is not a framework providing extension 
points to developers, although some of its projects such as BPS and OTS are frame-
works. The projects or components used for the experimentation explained in this 
paper are not frameworks. 

COIN-OR is written in C++, a frequently used language in the software industry 
for scientific applications. Although frequently criticized for its complexity, C++ is 
the adequate language for many domains due to the runtime and memory efficiency of 
the generated code and a large existing code base. 

In COIN-OR, the following projects or components collaborate to solve integer-
programming problems with B&C [12]: 

− CLP: COIN Linear Programming (COIN-OR LP) is a Simplex algorithm [11]  
implementation. 

− CGL: Cut Generator Library, a library of cutting-plane generators, provides sev-
eral well-known cut generators such as: simple rounding cut generator, knapsack 
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cover cut generator, generalized odd hole cut generator, Gomory cut generator, lift-
and-project cuts using “norm 1”, probing cuts, and flow cover cut generator. 

− OSI: Open Solver Interface, a uniform (Application Program Interface) API for 
calling embedded linear and mixed-integer programming solvers, defining an  
interface to CLP. Some of the operations available in OSI are: create a linear pro-
gramming problem formulation; modify a formulation by adding rows or columns; 
modify a formulation by adding cutting planes computed by CGL; solve a formula-
tion; extract solution information; and invoke the underlying solver’s B&B  
component. 

− SBB: Simple Branch and Bound is a branch and cut code designed to work with 
any OSI capable solver and in particular with CLP. The concept of branching is 
based on the idea of an "object." An object (i) has a feasible region, (ii) can be 
evaluated for infeasibility, (iii) can be branched on, e.g., a method of generating a 
branching object, which defines an up branch and a down branch, and (iv) allows 
comparison of the effect of branching. SBB has been renamed as CBC, COIN-OR 
Branch, and Cut currently at version 1.01.00, due to people confusing SBB with 
GAMS SBB solver [13]; however, according to the documentation, this is only a 
renaming––the behavior has not been modified and since the version SBB was 
available and well documented at the start of this project, we continued using it. 

The package diagram in Fig. 1 shows these components and their relationships. 

 

Fig. 1. A partial package diagram of components in COIN-OR 

The behavior provided by the classes shown in Fig. 1 is summarized below; it is to 
be noted that in COIN-OR, the naming standard includes prefixing any class name 
with the first three letters of the component it belongs to, such as OsiSolverInterface. 

− ClpModel is the base class for linear and quadratic models. This class has no 
knowledge of the algorithm used to solve a problem. 

− ClpSimplex inherits from ClpModel and implements the Simplex method. Its sub-
classes ClpSimplexPrimal and ClpSimplexDual implement the primal and dual 
Simplex algorithms, respectively. 
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− CglCutGenerator abstract class for generating cuts. 
− OsiSolverInterface defines an interface to a solver. Some of the central methods 

used when working with OSI are: 

• initialSolve: solves an initial linear programming relaxation; 
• resolve: solves a linear programming relaxation after a problem has been modi-

fied; 
• branchAndBound: invoke a solver’s built-in enumeration algorithm; 

Methods for handling data and for retrieving the solution are provided also by this 
class. 

− OsiClpSolverInterface inheriting from OsiSolverInterface is the interface to getters 
and other methods used to solve linear problems with CLP. 

− SbbModel implements a B&B algorithm and provides the following public  
methods: 

• initialSolve: finds an initial solution of the relaxed problem. Invokes an associ-
ated solver using OsiClpSolverInterface; 

• branchAndBound: implements the B&C algorithm. 

A detailed description of all components and classes in COIN-OR can be found in the 
available documentation [12]. 

3   The Refactoring Process 

An important element of modularity in AOP is the definition of the Joinpoints and 
pointcuts where aspectual adaptations will be applied. As any modularization repre-
sents requirements expressed in terms of code, we used a classification of concerns 
based on algorithmic requirements and a set of criteria to achieve each requirement. 
We distinguished the following categories and criteria: 

I. Functional Requirements of Algorithms: behavior with probability to be modi-
fied due to software evolution or user needs is defined as a concern. Those sec-
tions of code are points of variability and they can be detected either by code 
analysis or by domain analysis. If code analysis is used, it is well known that the 
code to be changed has to be understood by whoever is doing the change. In the 
case of software with thousands of lines of code this task is usually complex. Ide-
ally, the segments of code to be changed should be localized in a reduced number 
of modules. However, most of the time this is not the case and code not relevant to 
a change has to be understood too. To identify concerns of this kind, both strate-
gies, code analysis and domain analysis, were used during the B&B and B&C 
refactoring. 

(a) Criterion: Points of Variability in B&B and B&C Algorithms. Behavior 
to be modified or customized to meet algorithmic requirements of COIN-
OR users. As an example, in B&B and B&C, the number of branches for 
the branch-decision tree is hard coded as two branches. If a user needs to  
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change the number of branches, the code has to be changed. A user can 
customize the following strategies in B&B and B&C: 

i. Choosing a subproblem from the list of pending problems. 
ii. Choosing a branching variable after solving a linear relaxation. 

iii. Adding new constraints for partitioning a solution space into  
nonintersecting subspaces in B&B. 

iv. Adding cuts to a relaxed problem in B&C. 

The strategies are interdependent: to partition a solution space (iii), a subproblem 
(i) and a branching variable (ii) have first to be selected. New constraints depend 
on the branching variable.  

These strategies lead to the definition of the following concerns for the functional 
requirements of algorithms category: 

1. Choose Subproblem: select a subproblem from the list of pending subproblems. 
2. Branching: choose a branching variable that has taken a fractional value after 

solving the linear relaxation. 
3. Space Generation: add new constraints to divide the solution space into  

nonintersecting subspaces. 
4. Cuts: add constrains to a relaxed problem. Cuts are linear constraints introduced to 

remove a feasible region without eliminating a feasible integer solution. 
5. Halting: constraints for stopping an execution. 
6. Pre-processing: add new constrains to reduce a problem before using B&B or 

B&C. 

II. Nonfunctional Concerns: concerns regarding quality factors of a product. In this 
category, our main interest is performance and usability; however, any other qual-
ity characteristics may be included. 

(a) Criterion: Performance. A strategy for efficient memory use keeps in 
memory only those objects required at a certain point of execution and 
stores to disk those objects not in use. As the unused objects may be in-
stances of any class, this concern can crosscut any class. 

i. Store to disk unused objects. 

(b) Criterion: Usability 
i. Visualization: a graphical interface for the solution tree helps us-

ers to understand the solution space of a given problem. 
ii. Data input formatting: different formats are used for storing coef-

ficients of an integer problem. Some of frequently used formats 
are: Mathematical Programming System (MPS) and A Mathemati-
cal Programming Language (AMPL). When an algorithm is 
tested, previously generated problems can be used but they may 
not have the adequate format. COIN-OR uses MPS for input data. 

III. Concerns Supporting a Programmer’s Work. These concerns support devel-
opment or modification of a software product. When product is delivered, the lines 
of code introduced for this concern are removed. 
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(a) Criterion: Performance. 

i. Counters: instructions counting elements of interest for a devel-
oper. 

ii. Timing: instructions recording execution time. 

(b) Criterion: Debugging. 

i. Tracing: instructions tracing the flow of execution. 

For the B&B and B&C refactoring, we could only rely on the code and the general 
description of the algorithms implemented in the library. We had no other software 
artifacts for understanding the code. The refactoring discussed in this paper is cen-
tered on category I. Depending on the results, future work eventually will deal with 
all concerns. We explain next how the previously described Tourwé and Mens [7] 
refactoring process was instantiated. 

3.1   Detecting When to Refactor 

To detect when a design should be refactored, Tourwé and Mens [7] indicate  
inspecting the source code to identify code smells looking for symptoms that may be 
indicative of something wrong in the code. The inspection can be complemented with 
artifacts, design guidelines, standards, and metrics. Due to lack of tools for identifying 
code smells, we inspected the source code of the components the hard way––manually, 
and complemented the inspection with size metrics (Table 1). A source code analyzer, 
Understand for C++ [14], was used to collect measures of the program structure and 
traditional metrics, such as number of lines of code and comments. The manual inspec-
tion of code for identifying 14 points of variability in the four aspects analyzed in this 
paper consumed approximately a total of 360 person-hours. However, there are still 
many parts of code in the COIN-OR library to be worked on; only 4 of the 30 currently 
available components have been manually analyzed. 

Table 1. Size metrics for selected components in COIN-OR 

Components 
Metrics 

SBB OSI CLP CGL 

Classes 58 29 70 20 

Files 45 51 132 45 

Functions 894 619 1,811 382 

Lines 25,278 33,151 94,532 28,802 

Lines Blank 2,190 3,134 4,301 2,360 

Lines Code (LOC) 15,161 14,960 65,262 18,912 

Lines Comment 6,139 4,788 15,704 5,171 

Lines Inactive 1,147 9,855 7,687 1,664 

Declarative Statements 4,159 3,619 14,936 4,454 

Executable Statements 8,088 8,067 37,707 11,038 

Ratio Comment/Code 0.40 0.32 0.24 0.27 
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It is to be noted that according to the user guide and reference manual [14], adding 
Lines Code, Lines Comment, and Lines Blank is not equal to Lines. Some lines may 
contain both code and comments. 

To give an idea of the size and complexity of some of the components in the li-
brary, the method chooseBranch of SbbNode in SBB has 412 lines of code, 191 lines 
of comments, a cyclomatic complexity of 71, and 999,999,999 (a possible overflow) 
paths, values exceeding by far the allowable thresholds; they show that this method 
has high risk and low stability indicating it should be refactored. According to the 
Software Engineering institute (SEI) [15]: “A large number of programs have been 
measured, and ranges of complexity have been established that help the software 
engineer determine a program's inherent risk and stability. The resulting calibrated 
measure can be used in development, maintenance, and reengineering situations to 
develop estimates of risk, cost, or program stability. Studies show a correlation be-
tween a program's cyclomatic complexity and its error frequency. A low cyclomatic 
complexity contributes to a program's understandability and indicates it is amenable 
to modification at lower risk than a more complex program. A module's cyclomatic 
complexity is also a strong indicator of its testability. A common application of cyc-
lomatic complexity is to compare it against a set of threshold values. One such 
threshold set is in Table 2”. These metric was useful for finding those sections of code 
that could be improved by refactorings. 

Table 2. Cyclomatic Complexity and Risk 

Cyclomatic Complexity Risk Evaluation 
1–10 A simple program, without much risk 
11–20 More complex, moderate risk 
21–50 Complex, high risk program 
Greater than 50 Un-testable program (very high risk) 

We chose SBB, the component responsible for implementing the branching concern, 
as the first component to be refactored. The strategy used for identifying relevant parts 
of code was rather intuitive both through modeling and detection of code smells. Name 
matching of methods and classes in SBB having explicitly the term branching in their 
definition were our first choice, followed by an examination of methods and objects 
invoked by those. This strategy does not guarantee capturing all the elements related to 
branching, but it provided a starting point for code examination. 

The base code for class SbbIntegerBranchingObject and method branch is shown 
in Fig. 2 involving: 

− SbbBranchingObject: abstract class defining the behavior for how to branch. The 
method numberBranches returns the constant value of 2 as the number of branches 
created for any branching object and numberBranchesLeft returns the number of 
branches left to evaluate. 

− SbbIntegerBranchingObject: concrete subclass of SbbBranchingObject represent-
ing simple branching objects for an integer variable. An object can specify a two-
way branch on an integer variable. For each branch, the upper and lower bounds on 
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the variable can be independently specified. The method branch performs a branch 
by adjusting these bounds. 

The branch method in SbbIntegerBranchingObject with boolean argument nor-
malBranch and returning a double implements the branching concern by adjusting the 
bounds of variable_ the branching variable and returning a change in the guessed ob-
jective on the next branch. Variables down_[0], down_[1], up_[0], and up_[1] are used 
for setting the bounds of a subproblem in the branch-decision tree, and according to our 
categorization, variable_, down_[0], down_[1], up_[0], and up_[1] correspond to points 
of variability in branch. The method also contains processor debugging directives. 

class SbbIntegerBranchingObject : public SbbBranchingObject { 
…
protected: 

  double down_[2];     /// Lower [0] and upper [1] bounds for the down arm (way_ = -1) 
  /// Lower [0] and upper [1] bounds for the up arm (way_ = 1) 
  double up_[2]; 
}; 

double SbbIntegerBranchingObject::branch(bool normalBranch) { 
if (model_->messageHandler()->logLevel()>2&&normalBranch) 
print(normalBranch); 
numberBranchesLeft_--; 
int iColumn = model_->integerVariable()[ variable_ ]; 
if (way_<0)    { 
#ifdef SBB_DEBUG 
{ double olb,oub ; 
olb = model_->solver()->getColLower()[iColumn] ; 
oub = model_->solver()->getColUpper()[iColumn] ; 
printf("branching down on var %d: [%g,%g] =>[%g,%g]\n", iColumn,olb,oub,down_[0],down_[1]);} 
#endif 
model_->solver()->setColLower( iColumn, down_[0]); 
model_->solver()->setColUpper( iColumn, down_[1] );
way_=1; 
}  else    { 

#ifdef SBB_DEBUG 
{  double olb,oub ; 
olb = model_->solver()->getColLower()[iColumn] ; 
oub = model_->solver()->getColUpper()[iColumn] ; 
printf("branching up on var %d: [%g,%g] => [%g,%g]\n", iColumn,olb,oub,up_[0],up_[1]); } 
#endif 
model_->solver()->setColLower(iColumn, up_[0] ); 
model_->solver()->setColUpper(iColumn, up_[1]  ); 
way_=-1; 
}
return 0.0; 
}

Debugging instructions 

Debugging instructions 

 

Fig. 2. Code of branch method in class SbbIntegerBranchingObject 

3.2   Identifying Refactorings That Can Be Applied 

Identification of which refactoring to apply can be highly dependent on the applica-
tion domain. Any appropriate catalog of refactoring can be useful for identifying 
refactoring possibilities as it is an indication of where to look. Considering that the 
language extensions for Java and C++ are grounded on the same AOP concepts and 
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their definition and implementation are equivalent, as shown in Appendix A, Table 
12, we adapted the refactoring rules in the catalog proposed by Monteiro and 
Fernandes [9] to AspectC++. The correspondence of each rule in this catalog to the 
AspectC++ counterpart is summarized in Tables 3, 4, and 5 below. 

Table 3. Refactoring for Extraction of Crosscutting Concerns 

# Rule Name Recommended action (AspectJ) Applies to 
AspectC++? 

Recommended action for 
AspectC++ 

1 Change Abstract Class to 
Interface 

Turn the abstract class into an 
interface and adjust subclasses. 

N C++ has multiple inheritance. 

2 Extract Feature into 
Aspect 

Extract all the implementation 
elements related to a feature into an 
aspect. 

Y Same as for AspectJ. 

3 Extract Fragment into 
Advice 

Create a pointcut capturing the 
Joinpoint and context. Extract the 
code fragment to an advice based on 
the pointcut. 

Y Same as for AspectJ: pointcut, 
Joinpoint and advice are also 
features in AspectC++  

4 Extract Inner Class to 
Stand-alone 

Eliminate dependencies from the 
enclosing class and turn the inner 
class into a stand-alone class. 

Y Same as for AspectJ. The inner 
class turns into a stand-alone 
class. 

5 Inline Class within 
Aspect 

Move the class within the aspect. Y Same as for AspectJ. 

6 Inline Interface within 
Aspect 

Move the interfaces inside the aspect. N Rule 6 equivalent to Rule 5 in 
C++. 

7 Move Field from Class to 
Intertype 

Move the field to the aspect as an 
intertype declaration. 

Y Move the field to aspect by 
using an advice for static 
Joinpoints (introduction). 

8 Move Method from Class 
to Intertype 

Move method into aspect encapsulat-
ing the secondary concern as an 
intertype declaration. 

Y Move method to aspect by using 
an advice for static Joinpoints 
(introduction). 

9 Replace Implements with 
Declare Parents 

Replace implements in the class with 
a declare parents in the aspect. 

Y Introduction of a base class 
using an advice for static 
Joinpoints with base class in the 
aspect. 

10 Split Abstract Class into 
Aspect and Interface 

Move all concrete members from the 
abstract class to an aspect and turn 
class into interface. 

N C++ has multiple inheritance. 

 

For the refactoring of the branch method, the following refactoring rules defined in 
the catalog and belonging to the category “Extraction of Crosscutting Concerns” were 
applied: 

− Rule # 2: “Extract Feature into Aspect”: the rule should be used when the code 
related to a feature is scattered across several methods and classes, tangled with un-
related code; the recommended action is to extract all the implementation elements 
related to the feature into an aspect. 

− Rule # 3: “Extract Fragment into Advice”: the rule should be applied when part of 
a method is related to a concern whose code is being moved to an aspect; the rec-
ommended action is to create a Pointcut capturing the required Joinpoint and move 
the code fragment to an appropriate advice based on the Pointcut. 
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Table 4. Refactoring for Restructuring the Internals of Aspects 

# Rule Name Recommended action  
(AspectJ) 

Applies to  
AspectC++?  

Recommended action for  
AspectC++ 

1 Extend 
Marker1 
Interface with 
Signature 

Add an intertype abstract declaration of 
the specific signature to the interface. 

Y Add an introduction for an abstract 
declaration of the specific signature. 

2 Generalize 
Target Type 
with Marker 
Interface 

Replace references to specific types with 
a marker interface and make the specific 
types implement the marker interface. 

Y Replace references to specific types 
with an abstract declaration imple-
mented by the specific types. 

3 Introduce 
Aspect 
Protection 

Declare the intertype member as public 
and place a declare error preventing its 
use outside the aspect inheritance chain.

Y Declare the member introduction as 
public and use advice around without 
proceed(), indicating by !within(…) 
that the Joinpoint is not in the scope 
of the inheritance chain. In the advice 
body invoke a new aspect method 
displaying a warning message.2 

4 Replace 
Intertype 
Field with 
Aspect Map 

Replace intertype declarations with a 
structure owned by the aspect mapping 
the additional state and target objects. 

Y Replace introduction declarations 
with a structure owned by the aspect 
mapping the additional state and 
target objects. 

5 Replace 
Intertype 
Method with 
Aspect 
Method 

Replace the intertype method with an 
aspect method getting the target object 
as parameter. 

Y Replace method introduction with an 
aspect method getting the target 
object as parameter. 

6 Tidy Up 
Internal 
Aspect 
Structure 

Tidy up the internal structure of the 
aspect by removing duplication and 
dependencies on case specific target 
types. 

Y Tidy up the internal structure of the 
aspect by removing duplication and 
dependencies on case specific target 
types. 

These two refactorings were applied to methods and classes of the SBB component to 
implement the concerns 1–4 identified in category I, using criterion a. Coefficients in 
the ILP (e.g., c, A, b) represent the input data for executing COIN-OR and, therefore, 
refactorings are not applied to an ILP. As described before, the manual inspection of 
the code for identifying 14 points of variability in the four aspects analyzed in this 
paper required a total of approximately 360 person–hours. 

The authors of the catalog, when applying “Extract Feature into Aspect,” directly 
add attributes with no getter/setter methods to the code of a class. Our solution is the 
definition of a new refactoring rule belonging to the group “Restructuring the Inter-
nals of Aspects.” This rule will not alter the base code and is defined as: 

− “Incorporate Getters/Setters using Intertype”: situation arising when the aspect 
code accesses the value of an attribute and the class does not provide methods for 
getting/setting those values. The base code is not to be changed; the recommended 
action is defining an intertype declaration for getter/setter methods in the aspect. 

                                                           
1 Marker interface also called “tag” interface since they tag all derived classes into categories 

based on their purpose. It does not actually define any fields. It is used to "mark" Java classes 
supporting a certain capability––the class marks itself as implementing the interface. For ex-
ample, the java.lang.Cloneable, java.io.Serializable. 

2 In http://www.aspectc.org/pipermail/aspectc-user/2006-January/000874.html a different trans-
lation of "declare error" results in a compile-time error in AspectC++. Such a translation can 
be implemented with a C++ template. 



 An Exploratory Study for Identifying and Implementing Concerns 59 

Table 5. Refactorings for Generalization of Aspects 

# Rule Name Recommended action 
(AspectJ) 

Applies to  
AspectC++? 

Recommended action for AspectC++ 

1 Extract Superaspect Move the common features to 
a super aspect. 

Y Move common features to a super aspect. 

2 Pull Up Advice Move the advice to the super 
aspect. 

Y Move advice to the super aspect. 

3 Pull Up Declare 
Parents 

Move the declare parents to 
the super aspect. 

Y Move the generic advice with base class 
to the super aspect. 

4 Pull Up Intertype 
Declaration 

Move the intertype declara-
tion to the super aspect. 

Y Move member introduction to the super 
aspect. 

5 Pull Up Marker 
Interface 

Move the marker interfaces to 
the super aspect. 

Y Move abstract class to the super aspect. 

6 Pull Up Pointcut Move the pointcut to the super 
aspect. 

Y Move the pointcut to the super aspect. 

7 Push Down Advice Move the advice to the 
subaspects that use it. 

Y Move advice to the subaspects using it. 

8 Push Down Declare 
Parents 

Move the declare parents to 
the subaspects where it is 
relevant. 

Y Move generic advice with base class to 
the subaspects where it is relevant.  

9 Push Down  
Intertype 
Declaration 

Move the intertype  
declaration to the sub aspect 
where it is relevant. 

Y Move member introduction to the sub 
aspect where it is relevant. 

10 Push Down Marker 
Interface 

Move the marker interface to 
those subaspects. 

Y Move abstract class to the sub aspect. 

11 Push Down Pointcut Move the pointcut to those 
subaspects that use it. 

Y Move the pointcut to those subaspects 
that use it. 

3.3   Do the Refactoring 

The “Extract Feature into Aspect” rule moves the code for adjusting bounds to the 
branching aspect. The rule “Extract Fragment into Advice” was used to create a Join-
point intercepting the execution of the method branch; now the aspect can set different 
strategies for the branching variable, depending on user’s requirement. Direct access to 
class attributes variable_, down_[0], down_[1], up_[0], and up_[1] was transformed. 
The advice before allows changing and accessing those bounds through setter / getter 
methods. Reference to an object was retrieved through that(type pattern), and for inter-
cepted methods with arguments, the args(type pattern, …) was used. 

For the refactoring of the code in Fig. 2, we used that(TypePattern) for filtering 
objects depending on the current object type and args(TypePattern) for filtering ob-
jects depending on the arguments types of a dynamic Joinpoint. Instead of TypePat-
tern it is also possible to pass the name of a context variable to which context infor-
mation from the Joinpoint will be bound. 

From the syntactical perspective, an aspect in AspectC++ is very much like a class 
in C++. However, besides member functions and data elements, an aspect can addi-
tionally define advice. Advice defines how an aspect affects the program at a given 
pointcut. Advice for dynamic Joinpoints is used to alter the flow of control when the 
Joinpoint is reached. The following kinds of advice are supported for implementing 
additional behavior: before, after, and around [16]. Advice for dynamic Joinpoints is  
defined with the syntax:  advice <target-pointcut> : (before | after| around) (<argu-
ments>) { <advice-body> } 
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The before and after advice bodies are executed before or after the event described 
by <target-pointcut>. The around advice body is executed instead of the event. 

Pointcut functions can be used to filter or select Joinpoints with specific properties. 
Some of them can be evaluated at compile time while others yield conditions that 
have to be checked at run time. 

After refactoring, the code is basically the same as before refactoring in Fig. 3; it 
still contains the responsibility of the method and debugging instructions. 

Fig. 3. After refactoring branch method in SbbIntegerBranchingObject 

However, now branch can be customized with different strategies without modify-
ing the source code by setting variable_ and bounds down_[0], down_[1], up_[0], and 
up_[1] making the code easier to change when a bound strategy needs to be changed. 
Also, six methods were added to the class SbbIntegerBranchingObject using “Incor-
porate Getters/Setters using Intertype.” The points labeled “A1” in the branching 
aspect in Fig. 4 show the code of the advice. Regarding the debugging instructions 
used in the base code as the one’s shown in Fig. 2, they are defined using processor 
directives; a quite obvious refactoring possibility is to have an exception handling 
aspect dealing with all the exceptions. However, in the code of B&B and B&C and  
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Fig. 4. Branching Aspect 

generally in COIN-OR, there are too many of them scattered in the code to be manu-
ally removed with a reasonable amount of effort; therefore, they were not refactored 
at this point in time. The refactored code is available at <http://baobab.ciens.ucv.ve/ 
refactored_code/> 

The refactored and woven C++ code was evaluated using UnderstandC++ and the 
resulting size measures are shown in Table 6. Each *.cpp file has been woven with the 
aspect code and the AspectC++ code transformed to C++ has been inserted in  
all methods. The size of the measured items––exception made of the number of  
files––has increased considerably; on the other hand, inspection of cyclomatic com-
plexity of classes and methods intercepted by the branching aspect (Table 7) shows a 
reduction in this measure and, therefore, a reduction of risk in those classes. The cyc-
lomatic complexity is reduced as a consequence of moving those parts of the code 
related to a strategy selection to an aspect. These results confirm once more the in-
adequacy of using only size metrics for code assessment: it does not reflect a cleaner 
code and the flexibility gained by allowing changing the strategies in the algorithms. 
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Table 6. Size metrics for C++ and the woven code 

Metrics COIN-OR 
without AOP 

COIN-OR refactored 
with Branching Aspect 

Classes 156 2,829 
Files 194 194 
Functions 3,430 34,309 
Lines 141,899 797,648 
Lines Blank 8,415 81,165 
Lines Code 93,194 328,703 
Lines Comment 29,112 283,828 
Lines Inactive 8,419 67,017 
Declarative Statements 21,537 136,216 
Executable Statements 51,514 115,798 
Ratio Comment/Code 0.31 0.86 

Table 7. Cyclomatic complexity for C++ and woven SBB code 

Class 

Coin-Or 
without 

AOP 

Coin-Or 
with 

branching 
aspect 

 Coin-Or 
without  

AOP 

Coin-Or  
With 

branching  
aspect 

Cyclomatic complexity  

Avg. Max Avg. Max 

Method 
Cyclomatic  
complexity 

SbbBranchDecision 2 5 1 1 bestBranch 5 1 
SbbBranchDefaultDecision 4 22 1 1 betterBranch 22 1 

numberBranches 1 1 SbbBranchingObject 1 2 1 2 
numberBranchesLeft 1 1 

SbbIntegerBranchingObject 1 3 1 3 branch 3 1 
SbbSimpleInteger 1 4 1 4 createBranch 3 1 

branch 1 1 SbbNode 4 71 4 71 
numberBranches 2 1 
numberBranchesLeft 1 1 SbbNodeInfo 2 10 2 10 
branchedOn 1 1 

4   Evaluation and Discussion 

B&B and B&C without aspects and with aspects are evaluated in this section. As the 
computational effort for executing B&B and B&C are highly dependent on the  
data, we generated and selected input data for the trials with an execution time of at 
most 13 h. 

In this section, we describe in detail how the data for experimentation was gener-
ated and how the trials for measurement were setup. All trials were executed in  
AspectC++/C++ on an Intel Pentium 4 processor, 3.0 GHz, 1 GB RAM, with Micro-
soft Windows 2000, Visual Studio .NET 2003 v7.0, and AspectC++ v1.0.0.2. The 
same compiler was used for execution without and with aspects; the static AspectC++ 
weaver ac++ is not a target platform compiler, but a source-to-source weaver that 
transforms AspectC++ code into C++ code. This means, ac++ cannot be called to 
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build an executable, but to build a woven version of the source code. This woven 
version has to be compiled using any standard-compliant C++ compiler as back end, 
in our case the Visual Studio compiler. 

For the trials, 156 classes were used to compile and run problem instances: 34 
classes belonging to the SBB component (7,737 LOC), 14 classes from OSI, (6,395 
LOC), 32 classes from CLP (40,429 LOC), 3 classes from CGL (5,568 LOC), and 73 
classes from COIN (27,627 LOC). 

4.1   Experimental Data Generation 

General solvers, as COIN-OR, are mainly used for solving problems with unknown 
specific structure; however, we chose the Multiconstrained Knapsack Problems 
(MKP) and General Assignment Problems (GAP) to use an appropriate data genera-
tion procedure. MKP and GAP problems are the input data for COIN-OR without and 
with aspects. 

MKP is an NP-hard problem used frequently by the industry and the operations  
research community for formulating problems dealing with resource assignment [11]. 
Improving existing algorithms for solving MKP is an active research topic. MKP can 
be stated as the following general problem: given m quantifiable independent proper-
ties (e.g., weight, volume) with each property having a capacity bi, n items, and a 
knapsack, we want a solution for filling the knapsack with items maximizing the total 
benefit without exceeding the capacity restrictions. Every item has an associated 
benefit cj, and aij is the contribution of item j to the property i. Selection of item  
j is represented by xj = 1; if it is not selected then xj = 0. This is formulated  
mathematically as: 
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In this experimentation, when building random problem instances, the coefficient 
values cj and aij were realizations of Uniform random variables generated according to 
the equations [17] below and obtained using Carnahan’s mathematical library [18]. 
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The values for all the coefficients in each problem were stored in a Mathematical 
Programming System (MPS) file; each file represents one MKP problem instance 
with m restrictions (quantifiable properties) and n variables (items). The test data 
sets used were of size: (20x150), (20x200), (20x250), (20x300), (25x150), 
(25x200), (25x250), and (25x300); four different problems were generated for each 
size and identified in the tables found in the next section as problem number i, with 
i = 1, 2, 3, 4. 
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In GAP, an optimal assignment of m agents to n tasks is to be found such that 
every task will be performed by exactly one agent. Every agent i requires a certain 
quantity rij of a resource to perform task j, subject to the resource availability bi that 
an agent i may use. The mathematical formulation for this problem is: 
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with n’ = m x n, the number of variables and m’= m + n the number of  
restrictions. 

(1) 

In the generation of problem instances, the parameters are calculated as [17]: 
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Each MPS file represents an instance of a GAP problem with m agents and n tasks. 
The test datasets were of size: (30x70), (30x80), (30x90), and (30x100) and four dif-
ferent problems were generated for each size. 

Regarding the availability of data in MPS format the size of the problems could not 
be controlled and in some cases, the problem structure could not be identified or the 
amount of resources required exceeded our computing capacity. The data we gener-
ated and the problem structure used for experimentation is available at <http://baobab. 
ciens.ucv.ve/mps_files/> 

4.2   Experimental Results 

For each problem, five runs were executed without AOP and with AOP using the 
same algorithms/settings. In Tables 8, 9, and 10, the mean execution time of the five 
runs for each problem are shown. It is not relevant to show the time for one execution 
or for five executions. Experimentally, each run has an estimate of the execution time 
for solving an integer problem. The value can be different for different runs; statisti-
cally at least five independent runs for each problem are needed to have a valid result 
of mean execution time. All problems were solved (an optimal solution was found)  
and their mean execution time (in seconds) was calculated. In the tables of this section, 
the following entries are shown: in columns 3, 4, 5, 6, and 7, respectively, the mean 
execution time without AOP and with AOP. Improvement was measured by the As-
pect Performance Improvement (API) and defined as the mean time difference; a 
positive value indicates that mean execution time with AOP is less than mean execu-
tion time without AOP, and a negative value indicates the opposite. API% in 



 An Exploratory Study for Identifying and Implementing Concerns 65 

columns 8, 9, 10, and 11 is the percentage variation in mean execution time with 
respect to the mean execution time without aspects. 

4.2.1   MKP Problems 
For MKP problems with m = 20 restrictions and varying n, the number of variables, 
results are shown in Table 8. 

Table 8. Results for MKP problems with m = 20 

n Pr Mean CPU time (s) Difference API %  

 
 Without 

AOP 
With AOP  

 

  Branching Space Choose 
Sub problem  

Cuts Branching Space Choose Cuts 

150 1 2,322.24 2,141.25 2,267.11 2,182.60 2,138.98 7.79 2.37 6.01 7.89 

150 2 487.72 437.34 513.68 465.00 488.14 10.33 -5.32 4.66 -0.09 

150 3 48.63 45.11 48.09 47.67 45.69 7.24 1.11 1.97 6.05 

150 4 1,033.56 865.70 1,044.19 1,035.01 878.42 16.24 -1.03 -0.14 15.01 

200 1 869.11 747.31 757.07 749.12 735.07 14.01 12.89 13.81 15.42 

200 2 314.02 274.95 291.19 279.32 283.28 12.44 7.27 11.05 9.79 

200 3 721.73 653.33 669.64 650.71 620.10 9.48 7.22 9.84 14.08 

200 4 68.16 57.83 62.22 61.61 58.30 15.16 8.71 9.61 14.47 

250 1 4,195.28 3,655.20 3,770.62 3,684.57 3,764.39 12.87 10.12 12.17 10.27 

250 2 1,827.56 1,598.25 1,675.02 1,673.28 1,657.31 12.55 8.35 8.44 9.32 

250 3 7,632.06 6,678.72 6,636.12 6,610.51 6,478.16 12.49 13.05 13.38 15.12 

250 4 1,682.57 1,438.09 1,513.94 1,503.84 1,421.74 14.53 10.02 10.62 15.50 

300 1 1,961.78 1,594.25 1,636.56 1,619.07 1,652.52 18.73 16.58 17.47 15.76 

300 2 17,146.48 15,172.8 15,910.56 15,866.80 14,480.16 11.51 7.21 7.46 15.55 

300 3 39,055.34 32,258.7 33,588.00 32,794.46 32,329.42 17.40 14.00 16.03 17.22 

300 4 4,486.00 4,197.45 4,238.21 3,913.18 3,760.42 6.43 5.52 12.77 16.17 

Sub problemgeneration generation 

 

The mean execution time with AOP in MKP problems of size (20xn) varying n 
from 150 to 300 in steps of 50 is less than the execution time without aspects. The 
best performance is obtained with Branching being this also the aspect with a pointcut 
execution(…) and the greatest number of advice around providing ten points of vari-
ability. Aspects containing advice with cflow(...), as in Choose Subproblem perform 
worse with a higher mean execution time than those using other kinds of advice such 
as Cuts. This outcome for dynamic pointcuts confirms previously published results by 
Lohmann et al. [19] for the domain of operating systems. The values for API % in-
crease as n increases, as can be seen when n = 250, 300 where API% is best at 
14.53% and 18.73%, respectively. Using aspects is therefore recommended. 

In Table 9, the results for MKP problems with m = 25 restrictions and varying  
n, the number of variables, are shown. Mean execution time with AOP in MKP prob-
lems of size (25xn) with n varying from 150 to 300 in steps of 50 is less than the 
mean execution time without aspects. As n increases API% increases, when n = 200, 
250, 300 the best improvement is about 18% and 22% with Branching and Cuts,  
respectively. 
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Table 9. Results for MKP problems with m = 25 

n Pr  Difference API % 

  Without AOP With AOP  

 

  Branching Space Choose Cuts Branching Space Choose 

 

Cuts 

150 1 11.20 10.37 10.66 10.56 10.77 7.41 4.82 5.71 3.84 

150 2 128.68 129.86 130.54 121.09 125.28 -0.92 -1.45 5.90 2.64 

150 3 171.80 160.69 170.47 172.03 168.17 6.47 0.77 -0.13 2.11 

150 4 238.81 202.94 199.21 197.53 198.59 15.02 16.58 17.29 16.84 

200 1 547.83 483.38 436.45 432.77 432.59 11.77 20.33 21.00 21.04 

200 2 19,552.20 16,765.4 17,181.90 17,007.54 16,668.38 14.25 12.12 13.01 14.75 

200 3 2,160.03 1,807.97 1,885.04 1,855.75 1,863.88 16.30 12.73 14.09 13.71 

200 4 1,530.76 1,258.30 1,256.39 1,246.39 1,250.85 17.80 17.92 18.58 18.29 

250 1 6,290.18 5,434.00 5,563.24 5,485.02 5,476.52 13.61 11.56 12.80 12.94 

250 2 20,608.66 17,275.20 17,130.90 16,771.54 16,559.12 16.18 16.88 18.62 19.65 

250 3 3,773.57 3,083.01 3,160.52 3,131.52 3,051.52 18.30 16.25 17.01 19.13 

250 4 6,724.44 5,600.17 5,801.97 5,753.83 5,689.53 16.72 13.72 14.43 15.39 

300 1 36,004.36 29,699.90 30,112.36 29,674.20 28,125.64 17.51 16.36 17.58 21.88 

300 2 9,105.36 7,420.92 7,487.58 7,456.95 7,319.84 18.50 17.77 18.10 19.61 

300 3 6,215.15 5,115.19 5,214.91 5,164.90 5,221.83 17.70 16.09 16.90 15.98 

300 4 6,573.91 5,469.09 5,570.67 5,451.62 5,335.78 16.81 15.26 17.07 18.83 

Mean CPU time (s) 

generation generation subp roblem subp roblem

 

When m, the number of restrictions, increases API% also increases. In Fig. 5, the 
relation between mean API% and size is shown for the Branching aspect. According 
to these values, the use of aspects is recommended. 

10

7

13
15

13
16

14

18

0

5

9

14

18

API %

n=150 n=200 n=250 n=300

Size

API % for m = 20 and m=25

m=20

m=25

 

Fig. 5. Size vs. Improvement with aspect Branching 

4.2.2   GAP Problems 
The results for GAP problems with m = 30 agents and varying n, the number of tasks, 
from 70 to 100 in steps of 10 are shown in Table 10; according to Eq. 1 the values for 
the number of variables n’ = 2100, 2400, 2700, 3000 and the number of restrictions 
m’ = 100, 110, 120, 130 can be derived. 
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As can be seen from Table 10, the API% for Branching is between -7.06% and 
7.40%; for Space Generation, API% is between -5.14% and 8.03%; for Choose Sub 
Problem API% is between -4.43% and 8.62%; and for Cuts, API% is between -4.56% 
and 6.93%; this indicates that there is practically no gain (or loss) in using aspects. 
However, it is to be noted that the execution time does not deteriorate either. 

In summary, for GAP problems of size (30xn) with n varying from 70 to 100, ei-
ther execution time decreases using aspects or execution time is almost the same 
when compared to the version without aspects. 

Table 10. Results for GAP problems with m = 30 

n  Pr  Difference API % 

 
 Without 

AOP 
With AOP  

 

  Branching Space Choose Cuts Branching Space Choose 

 

Cuts 

70 1 24,879.20 24,692.8 24,964.94 24,803.68 25,043.72 0.75 -0.34 0.30 -0.66 

70 2 45.46 45.50 43.74 43.47 43.54 -0.09 3.78 4.38 4.22 

70 3 1,382.59 1,404.86 1,406.19 1,393.32 1,360.42 -1.61 -1.71 -0.78 1.60 

70 4 2,380.38 2,337.97 2,353.87 2,337.55 2,358.38 1.78 1.11 1.80 0.92 

80 1 145.38 155.64 146.27 145.39 145.52 -7.06 -0.61 -0.01 -0.10 

80 2 30.02 29.74 28.99 28.79 28.81 0.95 3.43 4.10 4.03 

80 3 10,033.54 10,556.30 10,356.56 10,272.24 10,406.58 -5.21 -3.22 -2.38 -3.72 

80 4 465.22 430.78 427.87 425.14 432.96 7.40 8.03 8.62 6.93 

90 1 202.27 200.91 204.82 203.46 203.29 0.67 -1.26 -0.59 -0.50 

90 2 304.23 298.80 303.25 301.02 303.52 1.79 0.32 1.06 0.23 

90 3 64.96 66.89 68.30 67.84 67.92 -2.97 -5.14 -4.43 -4.56 

90 4 2,962.63 2,903.00 2,915.04 2,887.33 2,922.98 2.01 1.61 2.54 1.34 

100 1 1,838.05 1,823.88 1,922.04 1,904.59 1,900.22 0.77 -4.57 -3.62 -3.38 

100 2 187.01 180.66 183.13 181.75 181.87 3.40 2.07 2.81 2.75 

100 3 413.66 415.27 405.13 402.03 401.93 -0.39 2.06 2.81 2.84 

100 4 46,238.90 46,136.70 46,140.38 45,831.46 46,038.84 0.22 0.21 0.88 0.43 

Mean CPU time (s) 

generation generation subp roblem  subp roblem

 

During experimentation, one of the questions asked was how much of the im-
provement in API% was caused by the transformation of the advices into inline func-
tions by AspectC++. This was tested and the results showed that the difference in  
API% was not due to inline functions. 

The original and aspect versions were compiled using the same compiler Visual 
Studio .NET 2003 v7.0. The profiler AQtime version 5.0––a 30-day trial version––was 
used to gain insight into the performance of COIN-OR with and without AOP.  
For each problem of size m, n a problem Pr was chosen from the one’s shown in  
Tables, 8 and 9 with a higher API (%) value. Besides a tremendous increase in  
execution time (e.g., for a problem normally requiring an average of 25 min, the  
execution time with the profiler increases to 6 h), the profiler shows that on average the 
number of soft page faults without aspects doubles the number of soft page faults with 
AOP. The page faults occur when creating objects using the default constructor new 
and the operating system function _heap_alloc_base is invoked in malloc 
(_nh_malloc_dbg). The number of hard page faults is very low (2) in both versions.  
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Table 11. Execution time using a profiler for MKP problems with m = 20 and 25 

m=20 Elapsed time Results in Table 8 

n Pr COIN-OR

COIN-OR

COIN-OR

COIN-OR

COIN-OR

COIN-OR

COIN-OR

COIN-OR

Branching API(%) Branching API(%) Branching API(%) Branching API(%) 

150 4 1.647,68 1.499,63 8,99 1.184,63 1.203,73 -1,61 1.248,90 1.274,17 -2,02 1.033,56 865,70 16,24

200 4 96,85 78,49 18,96 89,00 74,72 16,04 92,76 77,14 16,84 68,16 57,83 15,16

250 4 2.204,07 2.014,93 8,58 1.554,61 1.478,89 4,87 1.695,45 1.617,91 4,57 1.682,57 1.438,09 14,53

300 1 2.527,07 2.116,25 16,26 1.863,85 1.634,39 12,31 4.337,52 2.066,79 52,35 1.961,78 1.594,25 18,73

m=25 Elapsed time Results in Table 9 

n Pr Branching API(%) Branching API(%) Branching API(%) Branching API(%) 

150 4 298,23 308,53 -3,45 275,20 291,30 -5,85 288,44 301,91 -4,67 238,81 202,94 15,02

200 4 2.185,61 1.959,63 10,34 1.631,40 1.502,15 7,92 2.128,03 2.832,12 -33,09 1.530,76 1.258,30 17,80

250 3 4.571,48 4.066,42 11,05 3.433,58 3.037,89 11,52 3.468,27 3.145,51 9,31 3.773,57 3.083,01 18,30

300 2 11.169,48 9.436,20 15,52 7.880,67 6.946,14 11,86 7.771,94 7.189,27 7,50 9.105,36 7.420,92 18,50

User + Kernel time 

User + Kernel time 

User time 

User time 

 

This means that the compiler sometimes allocates the pages "better" when using AOP. 
Table 11 shows the Elapsed time, User time, and User plus Kernel time provided by 
the profiler. For most of the sizes and problems the API% changes significantly. In 
only one problem (m = 20; n = 200; Pr = 4) the value of API% is approximately the 
same as the one’s shown in Tables 8 and 9. 

The call graph for Pr = 4, m = 20, n = 200 in Fig. 7 shows the time consumed  
by _heap_alloc_base in the original version, and in Fig. 6, the partial call graph with 
aspect Branching is shown. The reduction in time for de _heap_alloc_base can be 
appreciated. 

 

Fig. 6. Partial call graph using aspect Branching 

The _heap_alloc_base function was identified when the method createBranch cre-
ates an instance of SbbIntegerBranchingObject, that is a branching object, create-
Branch is intercepted by aspect Branching. 

In the aspect version, _heap_alloc_base consumes 38,29% (28.61 segs) of the total 
execution time (user time = 74.72 segs), the number of All Memory Page Faults 
counter calculated by the profiler is 599.025, # routine call is 787.146.261 and the 
number of page faults when executing _heap_alloc_base is 598.773. In the original 
version, _heap_alloc_base consumes 38,61% (34.36 segs) of the total execution time  
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Fig. 7. Partial call graph for COIN-OR without aspects 

(user time=89.00 segs), the number of All Memory Page Faults counter is 1.337.606, 
# routine call is 785.589.703 and the number of page faults when executing 
_heap_alloc_base is 1.337.362. 

5   Conclusions and Future Work Direction 

This paper proposes criteria to define concerns for the integer programming domain. 
We classified concerns according to three different criteria: functional requirements 
of algorithms, nonfunctional concerns, and concerns supporting a programmer’s 
work. Furthermore, we have explored the use of AOP with two integer programming 
algorithms and compared their performance solving MKP and GAP problems using 
our refactored version, and to this end, we adapted the Monteiro and Fernandes’ cata-
log defined for AspectJ modularization units to C++. Besides a cleaner implementa-
tion of B&B and B&C, the results indicate that execution time with AOP either de-
creases or stays more or less the same, specifically: 

− A reduction of approximately 18% and 22% was obtained in the best case to solve 
the selected MKP problems with aspects Branching and Cuts. For the problems in 
the test, the execution time is always better with aspects. 

− For GAP problems of the sizes used in the experimentation, the execution time 
does not deteriorate, in some cases it improves slightly. 

These results show that using AOP in integer programming, at least in the algo-
rithms B&B B&C, does not increase execution time. 

Considering the results obtained with the profiler AQtime version 5.0, the compiler 
Visual Studio .NET 2003 v7.0 sometimes allocates the pages "better" when using AOP 
thereby reducing the number of page faults by half. Even though our results might not 
be conclusive to explain why the AOP-refactored COIN-OR has performance benefits 
over the original code, they may be a motivation for a more in-depth exploration for 
other researchers. 
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Our aim was to provide a glimpse of the relevant results we have found in this on-
going research. In summary, three of the most significant lessons learned and rein-
forced in this investigation are: 

1. The convenience of identifying categories of concerns prior to an imple-
mentation of refactoring with aspects. 

2. The inadequacy or lack of existing tools for reverse engineering C++ 
code and recognize behavior to refactor it with aspects. As there exists 
millions of lines of working C++ code for solving real-life scientific 
problems these applications can be improved or at least customized using 
AOP; the lack of tools make this goal almost impossible to accomplish at 
this point. 

3. The need to adapt and work with metric tools to find measures for specific 
situations. 

Further investigation is needed and will eventually include new refactorings to be 
applied to other components in COIN-OR and an evaluation of structural characteris-
tics of the refactored code. We hope that our experience will encourage the use of 
AOP in integer programming, a domain were the implementation techniques are usu-
ally conventional. 

Acknowledgments. This work is supported by project No. PI-03-13-5198-2005, 
Consejo de Desarrollo Científico y Humanístico, Universidad Central de Venezuela. 
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Appendix A 

Table 12. AOP features in AspectJ and AspectC++ 

Concepts  AspectC++ AspectJ 

aspect Module implementing a crosscutting concern. A crosscutting type encapsulating pointcuts, advices, and static 
crosscutting features. 

advice Is used either to specify code that should run 
when the Joinpoints specified by a pointcut 
expression are reached or to introduce a new 
method, attribute, or type to all Joinpoints
specified by a pointcut expression.

Code that executes at each Joinpoint in a pointcut defined by 
before, after, and around declarations. While before advice is 
relatively unproblematic, there can be three interpretations of 
after advice: After the execution of a Joinpoint completes 
normally, after it throws an exception, or after it does either 
one. Methods, attributes, or types are added using intertype 
declarations. 

Joinpoint Denotes specific points in the base code where 
aspects can interfere. 

A well-defined point in the execution of a program. 

pointcut Set of Joinpoint described by a pointcut 
expression.

A pointcut picks out Joinpoints and exposes some of the 
values in the execution context of those Joinpoints. There are 
several primitive pointcut designators and others can be named 
by the pointcut declaration. 

introduction If an advice is not recognized as being of a 
predefined kind (before, after and around), it 
is regarded as an introduction of a new 
method, attribute, or type to all Joinpoints in 
the pointcut. 

Intertype declarations form AspectJ’s static crosscutting 
features, that is, code that may change the type structure of a 
program, by adding to or extending interfaces and classes with 
new fields, constructors, or methods. 
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Abstract. We define bisimilarity for an aspect extension of the untyped lambda
calculus and prove that it is sound and complete for contextual reasoning about
programs. The language we study is very small, yet powerful enough to encode
mutable references and a range of temporal pointcuts. We extend formal studies
of Open Modules to this more general setting. Examples suggest that aspects
are amenable to techniques developed for stateful higher-order programs. To our
knowledge, this is the first study of coinductive reasoning principles for aspect
programs.

1 Introduction

Aspects have emerged as a powerful tool in the design and development of systems [1,
2, 3, 4, 5, 6]. A standard example from the AspectJ tutorials suffices to introduce the
basic vocabulary: Suppose class � realizes a useful library, and we want to obtain tim-
ing information about a method � of �. With aspects this can be done by writing advice
specifying that, whenever � is called, the current time should be logged, � should be
executed, and then the current time should again be logged. Aspects permit the pro-
filing code to be localized in the advice, transferring the responsibility for coordinat-
ing the advice and base code to a compiler or runtime environment. In writing the
logging advice, one must identify the pieces of code, using pointcuts, that need to be
logged—in [7] this is called quantification. Furthermore, the developer of the library
does not need explicit knowledge about advice that may be written in the future—this
is called obliviousness in [7]. Aspect orientation is paradigm independent and has been
realized in object-oriented [3, 8], imperative [9], and functional languages [10, 11].

Our focus in this paper is on the intersubstitutivity of programs written in an aspect-
oriented extension of a functional language: when can one program fragment be substi-
tuted for another without altering the observable behavior of the program? A basic tool
that has been used to address this question for other programming paradigms has been
coinduction, in the form of bisimulation principles. While the origins of bisimulation
trace back to concurrency theory (see [12, 13] for a comprehensive historical survey and
detailed bibliography), bisimulation principles have proven to be quite useful to address
program equality in several paradigms, e.g., higher-order languages (see [14, 15] for a
detailed treatment with historical context), even in the presence of existential types [16]
or state [17, 18], and object-oriented languages [19, 20].

� Based on an extended abstract published in AOSD 07, March 12–16, 2007, Vancouver,
Canada, 1-59593-615-7/07/03.

A. Rashid and H. Ossher (Eds.): Transactions on AOSD V, LNCS 5490, pp. 72–132, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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This paper brings aspect-based languages within the ambit of this technique. Our
formal techniques and results suggest that aspects are no more intractable than state-
ful higher-order programs. In first-order languages with first-order references, when
reasoning about programs, the environment has only two ways to interact with a pro-
gram: either via global shared variables or by invoking the program (that can of course
result in changes in encapsulated private state of the program). In higher-order lan-
guages with higher-order references, a program can also “leak” local state externally via
higher-order mechanisms providing the environment a third way to interact with a pro-
gram. Our results suggest that mechanisms that address this feature of higher-order
languages with state may be adapted to an aspect framework with dynamic aspects.

Bisimulation. We study a core untyped lambda calculus, enhanced with aspects and
named functions. Advice is first class in our calculus: it can be created and added dy-
namically while a program is running. The language can code mutable higher-order
references and expressive pointcuts such as ���� and regular event patterns.

We describe a bisimulation principle based on a labeled transition system for aspect
programs. We show that bisimulation is sound and complete for contextual equivalence.

We demonstrate the usability of the bisimulation principle via examples using the en-
coding of mutable variables—we show that several of the program equalities suggested
by Meyer and Sieber [21] are validated by our bisimulation principle.

Application to Open Modules. Aspect–Aware Interfaces [22] enhance the usual sig-
nature information of modules with the pointcuts that are exported by the module and
visible to the clients of the module. This enhancement of traditional signatures facili-
tates extra reasoning by providing bounds on the use of advice. An Open Module [23]
delineates conditions about when it is permissible to replace the implementation of a
module with another.

The formal treatment of Open Modules [23] only permits ���� pointcuts, whereas the
implementation of Open Modules in AspectJ [24] also permits ���� pointcuts. Recent
research has explored more expressive pointcut languages, such as those which match
the entire computation history using regular patterns [25] or nested word languages [26,
27]. We use our bisimulation principle to bridge this expressiveness gap.

Our core calculus supports mechanisms to delimit the scope of the program where a
function can be advised. We do this by providing named primitive pointcuts. Each func-
tion and advice declaration is associated with a primitive pointcut. Advice applies to a
function only if its associated primitive pointcut is the same as that of the function. We
use normal scoping mechanisms to control the knowledge of primitive pointcuts. The
use of named primitive pointcuts as a separate construct permits the scope of the “ad-
vise” access to vary separately from the standard scope of direct access to the function
reference.

This framework permits the use of our bisimulation principle to establish conditions
under which implementations can be changed without affecting clients, even in the
presence of dynamic aspects and an expressive collection of history-sensitive pointcuts.

Organization of this paper. After a discussion of related work, we present the core
language in Sect. 3, including a definition of contextual equivalence and examples. In
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Sect. 4, we describe the LTS and our notion of bisimulation; this section also contains
examples that illustrate the use of the bisimulation. In Sect. 5, we state the foundational
properties that hold. The bulk of the proofs are deferred to the appendices.

2 Related Work

Core calculi for aspect-based languages have been explored in a variety of settings. For
example, [28, 29] are based on class-oriented calculi; in [30], a parametric description
of a wide range of aspect languages is based on the object calculus [31]; and [32]
integrates aspect and object-oriented languages. Our calculus builds on descriptions of
aspects in higher-order functional languages [10, 11].

[33] provides a denotational semantics for a calculus with dynamic joinpoints, point-
cut designators and advice. Our focus is on operational reasoning and proof rules. We
refer the reader to [18] for a comparison of the operational and denotational approaches
to stateful higher-order languages.

[34] provides the semantics of dynamic joinpoints by translating into a core func-
tional language with simple matching features. Our approach complements this work
by providing reasoning tools for a core functional language with aspects.

Formal static reasoning via type systems has been explored for functional [35] and
object-oriented [36] aspect languages. Typing considerations are orthogonal to our pri-
mary focus, and we elide them to lighten the presentation.

Model-checking techniques have been explored to analyze the behavior of individual
aspect programs [37, 38, 39]. Our paper is complementary to this research. Our study
provides formal foundations for compositional proof principles that are of use in model-
checking aspect programs. The utility of this approach is already suggested in [37].

There has also been research into facilitating reasoning by controlling obliviousness.
For example, information flow methods have been used to create type systems that en-
sure that aspects do not affect the return value [40]—for some security applications,
these superficially drastic sounding restrictions are appropriate. In this general spirit,
albeit with less impact on obliviousness, the named primitive pointcuts of our calculus
can be viewed as ways to control interference between aspects and between aspects
and other code. Our primitive pointcuts are directly inspired by Open Modules [23]
(see also [41]) and are a formal device to model some features of Aspect–Aware Inter-
faces [22]. There are two different views about where such names can originate: (a) as
programming annotation, written by the programmer (a view arguably in tension with
uninhibited obliviousness) or (b) a tool-derived annotation, derived from an analysis of
the context of the program. In this paper, we do not take a viewpoint on this debate;
instead, we focus on the support to reasoning that is afforded by such annotations.

Broadly speaking, bisimulation approaches to higher-order languages fall into the
following main categories, depending on the kinds of tests that are permitted.

The first approach is usually termed applicative bisimulation. Some of the histori-
cal landmarks on this route are the initial definition of applicative bisimulation for lazy
lambda calculus [42], the presentation using a labeled transition system [43], and a gen-
eral method to show that applicative bisimulation is a congruence [44]. In this approach,
two terms, say M1 and M2, that agree on convergence behavior are tested for bisimilarity
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by providing them identical arguments and testing the resulting computation (M1 N and
M2 N) coinductively for bisimilarity. Extensions to account for imperative features were
developed in [17].

In the second approach, the tests are enhanced. So, two lambda terms (say M1 and
M2) are tested by providing them arguments that are derived from identical contexts (say
D[·]) with holes filled by bisimilar terms (say N1 and N2) and testing the resulting com-
putation (M1 D[N1] and M2 D[N2]) coinductively for bisimilarity. The complexity and
number of tests is controlled by restricting attention to value contexts, i.e., D[·] such that
D[N1] and D[N2] are values. [45] introduced this approach for untyped lambda-calculus
with sealing/encryption, and [16] adopts it for polymorphic lambda-calculus with ex-
istential types. [18] develops this general framework for a higher-order language with
imperative features. Class equivalences [46] and the object calculus [20] are also tack-
led by these methods. This general approach is now termed environmental bisimulation
and its metatheory has been studied recently [47].

Our approach is inspired by open bisimulation [48], and ENF-bisimulation [49, 50].
In this approach, two lambda terms (say M1 and M2) are tested by providing them ar-
guments that are symbolic names (say φ ) and testing the resulting computation (M1 φ
and M2 φ ) coinductively for bisimilarity. Any two terms with different symbols in the
primary function position (say φ M and ψ N, where φ �= ψ for arbitrary M and N) are
considered different. Our approach to stateful programs is in particular closely related
to the concurrently and independently developed treatment of sequential control and
state [51] following this approach. Furthermore, the precise relationship of this style to
game-theoretic semantics of programming languages [52, 53] has by now been formal-
ized [54].

In comparison to applicative bisimulation, the more elementary congruence proofs
of our approach suggest that our open-bisimulation based approach addresses stateful
features more directly. In contrast to the environmental approaches to higher-order lan-
guages, our methods do not need to address the contextual closure of programs and
equivalences of values in this closure. However, the price paid by our approach is the
explicit maintenance of extra contexts and transitions for book-keeping mechanisms.
We develop congruence results and bisimulation-upto results to lighten this burden. In
Sect. 4, we present a detailed comparison of our definitions with the two approaches.

In summary, the examples in this paper suggest that our treatment is good enough to
capture and formalize intuitions crystallized by observation of the source code. How-
ever, we do not have any results that support the (semi-)automatic derivation of witness-
ing relations. That investigation remains open to future study.

3 Language

Our calculus builds on descriptions of aspects in higher-order functional languages [10,
11]. Advice may be loaded dynamically; several recent aspect language implemen-
tations support such dynamic aspects, e.g., [55]. Primitive pointcuts are named and
scoped: a programmer may limit the scope over which a function is advisable by con-
trolling the scope of the associated primitive pointcut. In this respect, our language
has some of the expressiveness of the module language of [23] in a simpler setting.
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Each function declaration is associated with a primitive pointcut and advice applies to
a function only if its associated primitive pointcut is that of the function. One may view
possession of the name of a function as a form of read access and possession of the
primitive pointcut of a function as a form of write access. We formalize this intuition
when encoding references in Example 7.

The language is an untyped lambda calculus extended with function declarations in
the style of ML and with advice over declared functions. The difference between ab-
stractions and declared functions can be detected contextually. For example, consider
(λ��	) and (��� ��
 �λ��	� �), which declares � at primitive pointcut 
 and returns
�. The first expression results immediately in an abstraction. The second results in the
name �, which is only resolved to an abstraction when applied. The difference is ob-
servable when the primitive pointcut 
 is used to declare advice, as, for example, in the
context (��� 
�λ���� [–] ��); here [–] is the “hole” to be filled by a term. The context
declares advice at 
 then applies the hole to the unit value; evaluation results in 	 when
the hole is filled with (λ��	), but � when filled with (��� ��
�λ��	� �). A function
declared at a bound primitive pointcut is unadvisable outside the scope of the binder;
thus, (λ��	) and (��� 
���� ��
�λ��	� �) are contextually indistinguishable.

In the rest of this section, we formalize the syntax (Sect. 3.1) and dynamics
(Sects. 3.2 and 3.3) of this core calculus. Section 3.4 defines contextual equivalence.
Section 3.5 provides simple examples to illustrate the definitions. Section 3.6 discusses
Open Modules and temporal pointcuts.

3.1 Syntax

We divide names into two countably infinite and mutually disjoint sets: variables and
primitive pointcuts. In this study, primitive pointcuts are second-class entities; we dis-
cuss the motivation for this decision in Example 11.

SYNTAX

f ,g,h,x,y,z,φ ,ψ ,θ Variable Names
p,q,r Primitive Pointcut Descriptors

A,B ::= Declarations
pcd p Primitive Pointcut Descriptor (dn = {p})
fun f�p�U Function (dn = {f})
adv p�λ z�U Advice (dn = {}, z bound in U)

U,V,W ::= Values
x Variable
λ x�M Abstraction (x bound in M)

M,N,L ::= Terms
U Value
A�M Declaration (dn(A) bound in M)
let x�M�N Sequence (x bound in N)
U V Application
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The name declared by a declaration is given by the function dn, defined in the syntax
table above. We assume the usual notion of free names, recovered by the function fn.
While recursive uses of f are not allowed in fun f�p �U , this is not a limitation; see
Example 6. We identify terms up to renaming of bound names and write M[x :�U ] for
the capture-avoiding substitution of U for x in M, and similarly for M[p :� q]. Thus,
pcd p�M is identical to pcd q�M[p :� q] for any q �∈ fn(M).

We use the following discipline for variable names, when feasible. (The distinctions,
while useful in many cases, are blurred when discussing congruence.)

– z is used for proceed variables bound in the body of advice;
– x-y are used for variables bound in abstractions and let-expressions, other than as a

proceed variable;
– f -h are used for variables bound by function declarations; and
– φ -θ are used for free function variables.

Variables x-y are resolved, in the standard way, during evaluation (Sect. 3.3). Variables
z and f -h are resolved during function lookup (Sect. 3.2). The variables φ -θ are unre-
solvable; these are used in the LTS semantics (Sect. 4).

In examples, we use the unit value ��, booleans (tru and fls), integers and pairs
of values. These represent the standard Church encodings [56] (where �� is any value);
thus 	, tru and fst are encoded as the combinator (λ��λ��), fls and snd are (λ��λ�),
and � is (λ��λ� �). The Church-encoded constants may not satisfy all the equations
one would like; we use them only for parsimony. Primitive constants may be added
to the definition of the labeled transition system in Sect. 4 in the standard way [57].
We also use other well-known combinators, such as the divergent term Ω �= (λ��� �)
(λ��� �).

We use syntax sugar for application in the style of Moggi [58]; for example, (M N) �=
(let x�M� let y�N�x y), where x /∈ fn(N). We adopt the same convention for operators
on booleans, naturals and pairs. We write � for a bound variable that does not occur free
in its scope; we abbreviate (let ��M�N) as (M�N) and (λ��M) as (λ�M).

In examples, we sometimes write (fun f �U) as shorthand for (pcd p� fun f�p�U),
when p is not of interest. We also occasionally write declarations as terms, with the
meaning that A, as a term, abbreviates (A���).

3.2 Lookup

In this subsection, we describe function lookup, which determines the body of an
advised function from a declaration sequence (notation �A(f) = U). We write �A for dec-
laration sequences, with “·” representing the empty sequence and “�” the element sepa-
rator. An evaluation configuration is a pair of a declaration sequence and a term, written
�A/M. To motivate the formal definition of lookup, we first present a few examples.

Example 1. Let �� be defined as follows.

��= ��� 
�λ���� � = λ�(� )+�
��� ��
��� where �= λ��
��� 
�λ��� � = λ��(� �)∗�.
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When one looks up � in the context of ��, the result is
��(�) = �

[
� :� �[� :��]

]
= λ��((λ�((λ��) )+�) �)∗�.

The top-level term is �: the last (or most recently) declared advice which affects � (via
the primitive pointcut 
). The proceed variable � of � is bound to the rest of the advice
which effects �, in this case �. Substitutions layer in this way to the last piece of advice,
which proceeds to the function body, in this case �.

Evaluation of ��� proceeds as follows.

·/��� ���−���/((λ�((λ��) )+�)��)∗�
−���/(((λ��)��)+�)∗�
−���/��.

Lookup is a partial function on names. For example, using the declarations above,��(�)
is undefined, and thus the evaluation configuration��/��� is stuck. ��
Example 2. Note that advice may ignore the definition of the underlying function or of
other advice—both referenced via �. As an example, consider

��= ��� 
�λ���� � = λ��
��� ��
��� where �= λ��
��� 
�λ��� � = λ��(� �)∗�.

In this case
��(�) = �

[
� :� �[� :��]

]
= λ��((λ��) �)∗�

and evaluation of ��� proceeds as follows.

·/��� ���−���/((λ��)��)∗�−���/�� �

Lookup is defined using two auxiliary functions: body and advise. Whereas we identify
terms up to renaming of bound names, the same does not hold for names declared
in a declaration sequence. (This treatment is motivated by the definition of body, by
which a primitive pointcut may escape its scope.) Instead, we require that declaration
sequences be well formed, i.e., that each name be declared at most once. For example,
the declaration sequence (��� ��
��� ��� �����) is not well formed.

Definition 3 (Wellformedness). A declaration sequence “�A�B” is well formed if dn(B)
does not occur in �A and �A is well formed. The empty sequence is also well formed.

An evaluation configuration �A/M is well formed if �A is well formed. ��
Note that in a well-formed evaluation configuration �A/M, there may be names that
occur free in M that are not declared in �A (cf. Example 1).

The partial function body(f , �A) is defined whenever f is declared in �A; when defined,
body returns both the value of the function and the primitive pointcut at which f is
declared in �A.

body(f , ·) �= undefined
body(f , pcd · · ·��A) �= body(f , �A)
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body(f , fun f�p�U��A) �= 〈p, U〉
body(f , fun g�p�U��A) �= body(f , �A), where f �= g

body(f , adv · · ·��A) �= body(f , �A)

The total function advise(p, U, �A) returns a value that applies to U the advice de-
clared in �A for p.

advise(p, U, ·) �= U
advise(p, U, pcd q��A) �= advise(p, U, �A), where p �= q

advise(p, U, fun · · ·��A) �= advise(p, U, �A)
advise(p, U, adv p�λ z�V��A) �= advise(p, V [z :�U ], �A)
advise(p, U, adv q�λ z�V��A) �= advise(p, U, �A), where p �= q

Finally, the partial function �A(f) is defined as follows.

�A(f) �=

{
advise(p, V, �A) if body(f , �A) = 〈p, V 〉
undefined otherwise

3.3 Dynamics

Following [59], reduction is defined using evaluation contexts, defined as follows.

E ,F ,G ::= [–] | let x�E �N

As usual, [–] is the “hole” to be filled by a term. Reduction is defined inductively as a
binary relation between well-formed configurations, using four axiom schemas.

REDUCTION (�A/M −→ �A′/M′)
�A/E [B�M] −→ �A�B/E [M] if dn(B) /∈ dn(�A)∪ fn(E )
�A/E [let x�U�N] −→ �A/E

[
N[x :�U ]

]
�A/E [ f V ] −→ �A/E

[
U V

]
if �A(f) = U

�A/E [(λ x�M) V ] −→ �A/E
[
M[x :�V ]

]

The first axiom is structural, regulating the scope of declarations. Recall that we
allow renaming of bound variables in terms, but not declaration sequences. Since the
set of names is infinite, evaluation configurations of the form �A/E [B�M] may always
reduce, fixing a “fresh” name for dn(B).

The axiom for sequencing is standard, reducing let x�M�N only when M is a value.
The use of contexts makes structural rules unnecessary. For example, if �A/E [ f V ] −→
�A/U V , then �A/let x�E [ f V ]�N −→ �A/let x�E [U V ]�N by choosing the context E ′ =
let x�E �N.

There are three possibilities for an application �A/E [U V ]: (1) If U is a function
name f and �A(f ) is defined, then evaluation proceeds to �A/E [�A(f ) V ]; (2) If U is
an abstraction then evaluation proceeds call-by-value using U ; this is the standard
beta-reduction axiom; and (3) Otherwise evaluation is stuck.

Write −� for the reflexive transitive closure of −→.
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Example 4 Consider the following evaluation configuration.

·/��� ���
�λ������� 
�λ��λ�� � �(λ ��� �) ��.

Using the axiom for declarations twice this reduces to

−� ��� ���
�λ������� 
�λ��λ�� � /(λ ��� �) ��

which the axiom for application further reduces to

−→ ��� ���
�λ������� 
�λ��λ�� � /�� �.

Note that �� is treated as a pure name when passed as an argument; it is only resolved
at the point of application, where the axioms for lookup and beta-reduction yield

��� ���
�λ������� 
�λ��λ�� � /(λ�(λ���) (λ���) ) �
−→ ��� ���
�λ������� 
�λ��λ�� � /(λ���) (λ���) �
−→ ��� ���
�λ������� 
�λ��λ�� � /(λ���) �
−→ ��� ���
�λ������� 
�λ��λ�� � /�. �

3.4 Contextual Equivalence

Contextual equivalence is defined with respect to a primitive notion of observation; two
terms are related if they yield the same observations in all contexts. Following [60, 61],
we assume a distinguished function name signal and take a call to this function to be a
primitive observation.

Definition 5. A (general) context is any term with a single hole:

C ::= [–] | A�C | let x�C �N | let x�M�C | C N | M C .

Write M� if M −� E [signal U ] for some evaluation context E and value U . For terms
M and N in which signal does not occur, define M � N if for every context C ,

C [M]� implies C [N]�.

Two terms M and N are contextually equivalent (M ≡ N) if M � N and N � M. ��
For lambda calculi, the primitive observation for contextual equivalence is usually taken
to be termination [62]. Because our language includes side effects, however, a finer ob-
servation is necessary for completeness (Appendix E). For example, there is no context
which, on the basis of termination alone, can distinguish ((��� 
 � λ�λ��)� ����Ω)
from ((��� 
�λ�λ��)� ����Ω), since both terms are divergent. (Ω is defined toward
the end of Sect. 3.1.) Using signal, these can be distinguished by the context

(��� ��
�λ�	)�(��� � �λ�	� ������ 
��� signal�� ��� Ω)� [–].
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3.5 Simple Examples

Example 6 (Recursive use of function names). Note that in a function definition (fun
f�p �U), the function name f is not bound in U . Recursive uses of f in U may be
accommodated by writing the definition as

(fun f�p�V )�(adv p�λ�U),

where V is “dummy” value; the advice on f does not proceed and therefore V is ignored.
For example, one definition of Ω is “poisonpill ��”, where poisonpill is the divergent

function “��� poisonpill�λ�poisonpill ��”. This may be written in our language as

(��� poisonpill�
�λ���)�(��� 
�λ�λ�poisonpill ��),

where we have chosen “λ���” as the dummy value. ��
Example 7 (References). We show how to code ML-style references as syntax sugar in
the language of terms. The example demonstrates the unsurprising fact that dynamically
loaded advice is a form of mutability.

We model references as a pair of functions, where the first is used for reading and
the second for writing; the first is locally advisable, whereas the second is not. If p and
f do not occur free in U , then define the following.

ref U
�= pcd p�(fun f�p�λ�U)��f�λ x�adv p�λ�λ�x�

	U
�= (fst U)��

U 
�V
�= (snd U) V���

We can code the imperative factorial as

��� ���� (λ��(�
 � ref �)�(��� ���
��)� ���
 �), where
�= λ��	� (�≤ �) 
��� (	) ��� (
�	 ∗ �� ���
 (�−�)).

Eliding the definitions of ���, ���
, and 
, ��� � evaluates as

·/��� �−� ��� ��
�λ��/���
 �
−� ��� ��
�λ������ 
�λ��/���
 �
−� ��� ��
�λ������ 
�λ��/���
−� ��� ��
�λ������ 
�λ��/�.

The result is �, as expected. ��
Example 8 (Contexts may need to test a value more than once). It is important that
a context may store a value and test it more than once. For example, the terms (λ�	),
which always returns 	, and

�
 �� ref tru�(λ�	� 	� 
��� (�
�fls�	) ��� �),

which returns 	 exactly once, can be distinguished by the context

�
 �� [–]����� 	� ���= 	 
��� signal�� ��� Ω . �
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Example 9 (Contexts can observe advice order). To show some of the subtleties of
contextual reasoning, here is an example where a context inserts itself in the middle of
an advice list.

E = �
 �� [–]���� 
�λ�������
Consider

E [��� ��
�λ��	���� 
�λ�����(λ�(��� 
�λ����� � 	))]

which evaluates to

· · ·���

[
� :� �[� :� ��[� :� λ��	]]

]
.

Here the context has inserted the advice � between two bits of user advice �� and ��.
Using � = (λ��	� �= � 
��� signal�� ��� Ω ), the context can distinguish the follow-
ing pairs of advice, which cannot be distinguished without advising 
.

�� = λ��� (�+	) �′
� = λ��� (�+�)

�� = λ��� (�+�) �′
� = λ��� (�+	)

When composed, both pairs of advice add � to the function’s argument. The advice �
observes the intermediate result of the computation. ��

Example 10 (Indistinguishability of functions). Functions with the same body declared
at the same primitive pointcut are indistinguishable. The following terms are contextu-
ally equivalent for any M.

��� ��
�λ��M� ��� ��
�λ��M������

��� ��
�λ��M������

One can prove the equivalence using the method presented in the Sect. 4. ��

3.6 Open Modules and Temporal Pointcuts

In this subsection, we consider encodings of Open Modules as proposed by Aldrich
[23]. Open Modules extend ML-style modules to support two methods for controlling
aspects:

– a distinction between internal and external function calls—only external calls are
advisable from outside the module; and

– explicit pointcut declaration in module interfaces—only declared pointcuts may be
used externally.

The first feature is handled in the operational semantics of [23] by renaming the function
and creating a fresh declaration of the original name to invoke it. This kind of renaming
can be achieved in compilation; here, we write programs directly in the form such a
compiler would produce.
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The second feature is more subtle, and we address it in two ways.

– We provide distinct binders for functions and primitive pointcuts; these may be
viewed, respectively, as read and write capabilities, which may be handled inde-
pendently. We treat primitive pointcuts as second class, since they are intended to
delimit the static scope of mutability.

– We allow dynamically loaded advice. In addition to encoding state (Example 7),
dynamically loaded advice allows us to create expressive “pointcuts” and to com-
municate them selectively as abstractions (Examples 13 and 14).

Example 11 (Open Modules). To get a sense of our approach, consider a concrete
example: a math module with one advisable function ���. Internal and external calls to
��� are distinguished so that only external calls may be advised.

����� 
��� �� ! � �	�

�� ��� " �#$ � �#$
��	�
��
 
��� " �#$ � �#$

���%%
����� ��$� " �� ! � �
���


�
 ��� ��� � ��� # � 	� #�� 
��� � ��� #����&#�'
��	�
��
 
��� � ����&���'

���%%
���� ��$�%%
�
 (��# � �)# �� ��� �%%

We view the module as providing two functions: the first is ��� itself and the second is
the pointcut 
���. A call to 
��� will place advice on external calls to ���. In a module
system, the calls to 
��� occur in the compiler rather than at runtime, but this phase
distinction is an implementation convenience rather than a necessity.

The example can be coded in our language as follows. (Recall from Section 3.1 that
(��� � ��) is syntactic sugar for (��� 
� ��� ��
 ��), where 
 is a fresh primitive
pointcut descriptor.)

��� ��$��λ�
��� ���′ �λ#�	� #�� 
��� � ��� #����′(#�)�
��� 
���′�
��� ����
���′ � ���′�
�����λ���� 
���′ �λ��λ�� � ���

�
 (���,
���)���$� ���
��� (��#�λ���� �

The functions ��� and 
���, recovered from ��$�, correspond exactly to the functions
provided by the module above. For example, to count the number of calls to ��� using a
reference �, one might proceed as follows.

�
 �� ref 	�

��� (λ��λ���
�	����� �) �
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Remark 12 (Modularity results). In the above example, whereas ��� is publicly ad-
visable, ���′ is private to ��$�. To see that internal calls to ���′ are unadvisable, note
that one could exchange the body of ���′ given here with that from Example 7 and the
result would be contextually equivalent to the original (compare with Sect. 5.2 of [23]).
In fact, the following general result holds. Let

C = ��� 
� ��� ��
� [–]� �
D = ��� ���� [–]��

for any �. Then,

C [�] ≡ C [�] implies D
[
C [�]

] ≡ D
[
C [�]

]
.

This follows immediately from the fact that ≡ is a congruence (Sect. 5). This general
result allows any function to be defined in such a way that external calls are advisable,
while internal ones are not. The remarkable power of contextual reasoning guarantees
that the internal body can be substituted with any locally equivalent body without ef-
fecting the overall observable behavior. ��
The previous encoding can be extended to richer pointcut languages, while still main-
taining the modularity results.

Example 13 (����). The AspectJ pointcut ����&�' �� ����&�' detects calls to � in
the context of a call to �. Such a pointcut is exported from the following module.

��� *����+�λ�
��� 
�� ��� ��
� � · · ·�
��� 
����� ��
�� · · ·�
�
 �� ref fls� // call to � active
��� 
��λ��λ���
 �′ �	���
� tru� �
 � � ���
��′��
�����λ���� 
� �λ��λ��	� 	� 
���  � � ��� � ���

�
 (�,�,
��������)�*����+ ���

The local boolean reference � is used to record whether a call to � is active. Whenever
� is called, the advice at 
� sets � to tru, proceeds to the body of �, and then resets �.
Whenever � is called, the advice at 
� first checks � before proceeding to the body of �.

A user may advise “� in the context of �”, by calling the 
�������� with advice
λ��λ��· · ·. However, no other pointcuts are exposed. This generalizes the technique
of Aldrich, and indeed, the congruence results (c.f. Remark 12) apply equally to such
terms. ��
Nested word languages [26, 27] are a subset of context-free languages with good closure
properties that capture sensitivity to both the call stack (as in ����) and other history
(as in regular patterns [25]). Pointcuts based on nested word languages arise naturally
in examples in security (access control) and document processing (XML transducers).
Since the operational semantics of nested word languages pushes exactly one stack
symbol upon reading a call symbol and pops exactly one stack symbol upon reading
a return symbol, such pointcut languages are addressable by implementation methods
developed for ���� and regular patterns. The next example illustrates the ingredients
of a translation from temporal pointcuts specified via nested word languages.
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Example 14 (History-sensitive access control). Abadi and Fournet [63] argue for
history-sensitive access control mechanisms more expressive than the stack inspection
mechanisms found in Java and C#. For example, consider a policy stating that advice on
a sensitive function ,( (e.g., for file deletion) should be executed only if an (untrusted)
function )# has never been invoked in the past, and no call to � is still active. This policy
for an access control failure is specified as a nested word language over symbols drawn
from calls to, and returns from, )#, ,(, and �. Using EBNF syntax, let ����#�-� and
�
-#����. be defined as follows.

����#�-� ::=
(
(call(.) ����#�-� ret(.))

)
�

�
-#����. ::=
(
����#�-� | call(.)

)
�

The property of interest can then be written as

(
(�� call()#) ��︸ ︷︷ ︸

�� called

) | (�
-#����. call(�) �
-#����.︸ ︷︷ ︸
call(�) active

)
)

call(,().

Following Example 13, we can export a pointcut matching the negation of this property
of the call history.

��� !.���λ�
��� 
)#� ��� )#�
)#� · · ·�
��� 
�� ��� ��
� � · · ·�
��� 
,(� ��� ,(�
,(� · · ·�
�
 �� � ref fls� // call to � active
��� 
� �λ��λ���
 �′ �	����� 
� tru� �
 � � ���� 
��

′��
�
 �� � ref fls� // call )# occurred
��� 
)#�λ��λ���� 
� tru�� ��

���)#�,(�λ���� 
,(�λ��λ��	� 	�� �� 	�� 
��� � � ���  � ���
�
 (�,)#, ,(,
���.��)�!.�� ���

Advice attached using 
���.�� applies only in the specified conditions, and no other
pointcuts are exposed. Again, the congruence results (c.f. Remark 12) apply equally to
such terms. ��

3.7 Access Control and Type Enforcement

We demonstrate how Type Enforcement (TE) [64, 65] policies—a form of history-
sensitive mandatory access control popularized in the NSA’s Security-Enhanced Linux
(SELinux) [66]—can be encoded as temporal advice. TE policies associate types with
code and other resources to be protected; henceforth, we call these “TE types” to avoid
confusion with the usual notion of type found in programming languages. Also, the
runtime system associates a current TE type with running code, which determines its
privileges: access control decisions are based upon the current TE type and the TE type
associated with the resource being accessed. The current TE type evolves as new code
is invoked based upon (1) the current TE type, (2) the TE type associated with the new
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code, (3) the TE policy, and (4) constraints imposed by the caller. The mechanism per-
mits access control policies that are sensitive to the history of the code that has been
executed and constraints imposed by that code.

Example 15 (Web server). As an example policy, consider a web server permitted to
listen on ports 80 and 8080 if run by a system administrator, but only upon port 8080
if executed by an ordinary user. In this scenario, access privileges depend on both the
original identity (system administrator or user) and the code (the web server) that is
running.

To encode this policy, we allow the current TE type to range over {adm, usr,
ws�adm, ws�usr}, the TE type for the web server code is ws�exe, and the TE types
associated to the ports are {port80,port8080}. Initially, the current TE type is adm or
usr, then when the web server is executed, the policy causes the current TE type to
change from adm to ws�adm or from usr to ws�usr. In addition, the policy permits

– adm and usr to execute code of TE type ws�exe;
– ws�adm to access ports of TE type port80,port8080;
– ws�usr to access ports of TE type port8080.

With this policy, the desired security property is a noninterference property, namely that
the code running as usr cannot be influenced by new connections on port 80, even after
executing other code. ��
The TE mechanism can be implemented with advice, where protected resources are
modeled as functions that can be advised. To define the advice, we require:

– A finite set of current TE types T and a finite set of TE types E for executable code,
not necessarily disjoint.

– An “allow” relation allow ⊆ T ×E × T describes when code can execute/access
a function and transition to a new TE type, i.e., if the current TE type is t then a
function marked with TE code type e can be invoked successfully and transition to
current TE type t′ if allow(t,e, t′).

– An “automatic transition” map auto : T ×E → T describes TE type transitions that
occur automatically when a new function is executed, i.e., if the current TE type
is t and a function marked with TE code type e is invoked successfully, then it is
executed with TE type auto(t,e).

– A finite set of primitive pointcuts Q and a map type : Q → E.

Although we do not do so here, it is straightforward to also incorporate nonautomatic
transitions (c.f. the SELinux function .-$-�-���#) that allow a caller to choose, subject
to allow, a TE type other than the default “automatic” TE type.

We consider declarations Acurr(t) representing a private variable curr storing the cur-
rent TE type initialized with t. The scope of the private variable curr extends over advice
Aq, one for each primitive pointcut q, which checks whether a call to a function at q is
permitted and updates the current TE type before the call takes place. A free variable
fail is invoked when an access control check fails. The coding for updating the current
TE type uses the same strategy adopted for ���� in Example 13, i.e., the caller’s current
TE type is stored before proceeding and restored afterward.

Acurr(t)
�= pcd p� fun curr�p�λ�t
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�AQ
�= (Aq |q ∈ Q)

Aq
�= adv q�λ z�λ x�Lz,x,q

Lz,x,q
�= let next�auto(	curr, type(q))�

if allow(	curr, type(q),next) then
let prev�	curr�curr 
�next�
let y� z x�curr
�prev�y

else fail ��

With the TE policy described in Example 15, and using TE code types as primitive
pointcuts, suppose we are given a function webserver�ws�exe that starts a web server
on a port given as an argument and functions listen80�port80, listen8080�port8080 that
create listening sockets on ports 80 and 8080, respectively. We have:

T
�= {adm,usr,ws�adm,ws�usr,sys,port80,port8080,}

E
�= {ws�exe,port80,port8080}

With the allow relation specified by:

allow(adm,ws�exe,ws�adm) allow(usr,ws�exe,ws�usr)
allow(ws�adm,port80,sys)

allow(ws�adm,port8080,sys) allow(ws�usr,port8080,sys)

Here the auto type transitions are exactly those allowed by allow. In the general type
enforcement model, auto type transitions need not be the same as those allowed by
allow, because allow can include nonautomatic transitions.

Now, in the absence of allow(ws�usr,port80,sys), the advice implementing the TE
policy prevents the web server from accessing port 80 when invoked with a current TE
type of usr, i.e., if webserver attempts to invoke listen80 in the following program, the
advice implementing the TE policy will cause fail to be invoked instead, because the
invocation of webserver will cause the current TE type to change to ws�usr.

Acurr(usr)��AQ�webserver (80)

In this example, we see that the body of listen80�port80 is irrelevant to computation
beginning with TE type usr. To formalize this noninterference property, we first define
reachability reach(t,e) of a TE type e from a TE type t to be the least relation such that:

– ∃t′. allow(t,e, t′) implies reach(t,e)
– ∃t′,e′. allow(t,e′, t′) and reach(t′,e) implies reach(t,e)

Reachability reach(t,q) of a primitive pointcut from a TE type t is then defined to hold
exactly when reach(t, type(q)). In the example above, the TE code type port80 is not
reachable from usr.

The desired noninterference property is that we can take a program that declares
functions at public primitive pointcuts, impose advice for type enforcement on those
public primitive pointcuts, then arbitarily change the bodies of functions declared at
primitive pointcuts unreachable from the initial TE type without changing the behavior
of the program. In this already long paper, we elide the treatment and formal proof of
this property for our encoding.
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4 Labeled Transition System and Bisimulation

In this section, we present the bisimilarity relation following the LTS style pioneered
by Gordon [14, 43], in particular in the style of presentation of Jeffrey and Rathke for
Concurrent ML [17]. In contrast to this prior work, our intuitions are guided by open
bisimulation and address aspect features. The technical consequence of this difference is
that our proof that bisimilarity is a congruence is a direct proof based on a direct analysis
of substitutions rather than following these papers in being based on Sangiorgi [67] or
Howe [44].

The rest of this section is organized as follows. In Section 4.1, we describe the ideas
of our LTS for the restricted case of the pure untyped lambda calculus without aspects
or declarations. This treatment of a familiar calculus is intended to motivate the use of
symbolic functions and advice in the LTS and to provide core intuitions for the follow-
ing subsections. In Sect. 4.2, we adapt the operational semantics of earlier sections to
deal with symbolic data such as functions and advice. In Sect. 4.3, we provide a de-
scription of the LTS for the full calculus, and follow with a definition of the bisimilarity
relation in Sect. 4.4. Section 4.5 makes the intuitions of our model concrete by a series
of examples.

4.1 An Introduction to Open Bisimulation

In this Subsection, we provide an snapshot of our approach by briefly describing an
LTS for the pure untyped call-by-value lambda calculus.

We briefly recall the LTS approach [43] to applicative bisimulation for the pure un-
typed call-by-value lambda calculus

– A nonvalue term M has a τ transition to M′ if M reduces in one step to M′.
– A value U (e.g., λ x�M) has a transition labeled U ′ to the application U U ′.

Two terms are bisimilar if the associated transition systems are bisimilar, i.e., reduction
of one term terminates iff reduction of the other term terminates, and, if the terms reduce
to values, then the results of applying both values to the same value are again bisimilar.

Our approach is inspired by open bisimulation [48] and ENF-bisimulation [49, 50].
(The reader can view this subsection, in isolation, as a presentation of ENF-bisimula-
tion-upto-η using an LTS.) Following our conventions, we use φ and ψ for variables
that occur free in terms.

– A nonvalue term M has a τ transition to M′ if M reduces in one step to M′.
– Values U have transitions labeled app φ (where φ is fresh) to the application U φ .
– Terms can now be of the form E [φ U ], for some evaluation context E , where φ is

an uninterpreted symbol. These terms have additional transitions (similar to ENF-
bisimulation [49, 50]):
• A transition labeled fcall φ to U .
• Transitions labeled ret ψ to E [ψ ] for a fresh environment variable ψ .

Again, two terms are bisimilar if the associated transition systems are bisimilar.
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The fcall φ transitions ensure that if the application E [φ U ] is bisimilar to the appli-
cation E ′[φ ′ U ′] then φ = φ ′ and U is bisimilar to U ′. Similarly, the ret ψ transitions
ensure that if E [φ U ] is bisimilar to E ′[φ ′ U ′] then E [ψ ] is bisimilar to E ′[ψ ].

We extend this approach to open bisimulation by adding the features required to
accommodate state and symbolic advice.

4.2 Symbolic Functions and Symbolic Advice

The LTS must allow functions and advice to be defined by the environment, influenc-
ing a term. To accommodate context functions, we need only to extend our notion of
wellformedness to allow occurrences of free variables representing these functions. As
noted earlier, we use φ , ψ to indicate these free variables; we sometimes refer to these
as symbolic function names because they are uninterpreted in the term.

To accommodate context advice, we assume a countably infinite set of symbolic
advice names, α , β , disjoint from the sets of variable names and primitive pointcuts.

SYMBOLIC ADVICE

α,β Symbolic Advice Names

A,B ::= · · · | adv p�α Symbolic Advice Declaration

U,V,W ::= · · · | α�U� Symbolic Advice Call

A symbolic advice call α�U� binds the proceed variable for α to U . Symbolic advice
call typically occurs with a further application to the argument of the function being
advised. Thus, α�U� V indicates that the context is executing advice α with proceed
value U and argument V .

Note that if A = fun f�p�φ , then by our previous definition of lookup�A(f) = 〈p, φ〉;
thus no extensions are required to handle symbolic functions. For symbolic advice, we
extend the definition of advise as follows.

advise(q, U, adv p�α��A) �=

{
advise(q, α�U�, �A) if p = q

advise(q, U, �A) otherwise

Example 16 (Evaluation with symbolic names). Let

��= ��� 
���� ��
�φ���� 
�α���� 
�λ��λ��(� �)∗�.
Evaluation of ��� proceeds as follows.

��/���−���/(λ��(α�φ� �)∗�)��
−���/(α�φ���)∗�

Evaluation is now stuck; intuitively, control is given to the context that defined α .
Note that if evaluation arrives at an application ���, then the result is φ ; again evalu-

ation is stuck, this time giving the context control through the undefined body of φ . ��
The following special form of substitution is used in proofs.
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Definition 17 Substitution of an abstraction for symbolic advice “M[α :� λ z�U ]” is
defined homorphically over terms, with the only interesting case being for calls to sym-
bolic advice:

(α�V�)[α :� λ z�U ] �= U [z :� (V [α :� λ z�U ])] �

4.3 The LTS

We now define the states of the LTS. For namespace management, these include a sym-
bol environment, which binds all symbolic function and advice names, and a symbol
declaration, which may declare primitive pointcuts, functions, and advice.

LTS SYNTAX

M,N ::= �A/�E /M/�U Configuration

Γ ::= · | φ ,Γ | α,Γ Symbol Environment

Δ ::= · | A,Δ Symbol Declaration

In a configuration �A/�E /M/�U , we refer to M as the active term.
With respect to evaluation configurations, the new elements are the list of contexts

�E and the list of values �U . The contexts �E model the call stack: it will be used in a
manner consistent with the stack discipline. The list �U includes all values that have
been released/leaked to the environment during evaluation of the term. Thus, the values
in �U are available for the environment to inspect and use. Formally, �U is a way to
account for the imperative/state features of the calculus. These modeling ideas follow
prior research [17, 18, 61].

We define the LTS relative to a symbol environment Γ and symbol declaration Δ . In
Sect. 4.4, we will define bisimilarity as Γ ;Δ � M ∼ N. The symbol environment is used
to manage names in the LTS, in particular to ensure two bisimilar terms may always
make transitions with the same labels. The symbol declaration, likewise, ensures that
both contexts in a bisimulation have the same observation power. (We describe how to
derive an initial state from a term in Definition 20.)

The target symbol environment/declaration of a transition is determined by the
source symbol environment/declaration and the label of the transition.

Definition 18 (LTS state). In a configuration �A/�E /M/�U , dn(�A) are bound in �E /M/�U .
(The let binders in �E are not in scope in M or �U and thus are not binding.)

A state of the LTS is a triple Γ ;Δ � M, where the names listed in Γ are bound in Δ
and M and dn(Δ) are bound in M. A state is well formed if no name occurs free, and
no name is declared more than once in Γ ,Δ ,�A. ��
By way of contrast with evaluation configurations, note that we require a well formed
LTS state to be closed. In the sequel, we assume that all LTS states are well formed.

Names introduced by the context appear on the left side of the turnstile. Advice
is unnamed, and thus advice introduced by the context appears on the right side of
the turnstile in �A. Declarations introduced dynamically by the context appear on the
right side of the turnstile in �A. Thus, �A will include symbolic advice laid down by the
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environment—so, in general, it can be an interleaving of definitions of advice placed by
the term and by the context.

We now present the labels used in the LTS.

LTS LABELS

κ ::= τ | κ All Labels

κ ::= Visible Labels
fcall φ Term calls context function φ
acall α Term calls context advice α
ret φ Context returns to term with result φ (dn = {φ})
app φ Context calls term with argument φ (dn = {φ})
put Context saves value
get i Context restores value
fun f�p�φ Context declares function (dn = {f ,φ})
adv p�α Context declares advice (dn = {α})

In Gordon’s terminology [43], the visible labels fcall and acall are active (representing
actions initiated by the term), whereas the remaining visible labels are passive (repre-
senting actions initiated by the environment). The choice of labels is determined by the
possibilities available to the context to interact with the term. The examples in this sec-
tion show how the labels correspond precisely to such contexts—an informal argument
that underlies the completeness theorem (Appendix E).

LTS

Γ ;Δ � �A/�E /M/�U τ−→ Γ ;Δ � �B/�E /N/�U if Δ ,�A/M −→ Δ ,�B/N

Γ ;Δ � �A/�E /F [φ V ]/�U fcall φ−−−→ Γ ;Δ � �A/�E ,F/V/�U

Γ ;Δ � �A/�E /F [α�V�W ]/�U acall α−−−−→ Γ ;Δ � �A/�E ,F/W/�U ,V

Γ ;Δ � �A/�E ,F/V/�U ret φ−−−→ Γ ,φ ;Δ � �A/�E /F [φ ]/�U

Γ ;Δ � �A/�E /V/�U app φ−−−→ Γ ,φ ;Δ � �A/�E /V φ/�U

Γ ;Δ � �A/�E /V/�U put−−→ Γ ;Δ � �A/�E /V/�U ,V

Γ ;Δ � �A/�E /V/�U get i−−→ Γ ;Δ � �A/�E /Ui/�U if 1 ≤ i ≤ |�U |
Γ ;Δ � �A/�E /V/�U fun f�p�φ−−−−−−→ Γ ,φ ;Δ , fun f�p�φ � �A/�E /V/�U , f if p ∈ dn(Δ)

Γ ;Δ � �A/�E /V/�U adv p�α−−−−−→ Γ ,α;Δ � �A�adv p�α/�E /V/�U if p ∈ dn(Δ)

The fact that configurations must be well formed ensures that, in the rules for ret and
app, the name φ must be fresh (i.e., must not occur in Γ ∪dn(Δ)∪dn(�A); likewise for
the names φ and f in the rule for fun and α in the rule for adv. Wellformedness also
ensures that in the rules for fcall and acall, φ and α must occur in Γ .

The LTS has several significant properties:

Call-by-value invariant. The LTS rules enforce a call-by-value invariant. This is seen
by noting that precedence is afforded to internal reductions of the term. So, all rules
except the first three are applicable to a state Γ ;Δ ��A/�E /M/�U only if M is a value.
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Applicative tests. app φ performs applicative tests. Rather than providing a term as an
argument for the applicative test, this rule provides a fresh symbolic argument φ .

Stack of evaluation contexts. In the pure lambda calculus setting of Section 4.1, the
rules for fcall and ret reflect the absence of interference between the caller and the
callee in a purely functional language—the testing of the evaluation context and the
callee argument is done separately. Thus, there was no need to track the evaluation
context in the LTS for the pure lambda calculus.

In contrast, the LTS for the full calculus has to permit the environment an op-
portunity to inspect the arguments before the term continues evaluation—this is
meaningful for the full calculus because of state changes caused by the dynamic
laying down of advice. This is done in our LTS by the use of the stack of evaluation
contexts E .

fcall φ pushes the current evaluation context into E . The active term becomes
the argument to the call V . The transition ret φ returns a symbolic value φ to the
top evaluation frame, F , of the stack �E ,F and moves it into the current-term
position, popping F from the top of the stack. (This stack discipline would have to
be liberalized to address a language with control operators.)

Note that calls to signal (from Section 3.4) are treated like any other call, and
thus generate labels of the form fcall signal.

Symbolic advice tests. In the rule for acall, the argumentV is added to the list of values
that are available for the environment to inspect and use. As in the case for fcall,
the active term is changed to the argument, in this case W .

Environment value tests. put and get enable the movement of values between �U , the
list of values leaked to the environment, and the active position of the configuration.
put permits an evaluated value to be saved for use by the environment. get permits
the environment to interact with a saved argument by moving it into the active term
position. This rule leaves a copy of the restored term in �U . The label on this rule
carries the position i in �U that is being restored. Conceptually, put and get ensure
that �U is closed under structural rules.

New name tests. The rules for fun and adv permit the environment to add new function
names and new advice. The first rule is necessary for bookkeeping; it allows the
context to create an unbounded number of new function names; new names are
added to the list of values �U to maintain the invariant that functions declared in
Δ can be inspected by the environment. The second rule is needed for more than
bookkeeping. Since the order of advice matters, the rule for adv p �α also has to
insert it into the list of advice declarations being carried in �A.

4.4 Bisimulation

Define −� to be the reflexive transitive closure of τ−→. On visible labels define the
weak-labeled transition relation κ−� as −� κ−→.

Note in the definition of the LTS (Γ ;Δ � M κ−→ Γ ′;Δ ′ � M′) that the symbol envi-
ronment and declaration in the residual (Γ ′;Δ ′) are uniquely determined by the initial
state (Γ ;Δ ) and label (κ). This leads us to define bisimilarity as a family of relations be-
tween configurations, written Γ ;Δ � M ∼ N. It is technically convenient to require that
bisimilar configurations have equal length lists of contexts and values. (Alternatively,
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we could prove that these invariants hold for bisimulations derived from the initial con-
figurations of Definition 20.)

Definition 19. We say that a configuration �A/�E /M/�U has sort 〈Γ ,Δ ,m,n〉 if Γ ;Δ �
�A/�E /M/�U is well formed, the length of �E is m, and the length of �U is n.

We define similarity, �, as the largest family of 〈Γ ,Δ ,m,n〉-indexed relations over
configurations such that

Γ ;Δ � M � N and Γ ;Δ � M κ−� Γ ′;Δ ′ � M′

imply that for some N′

Γ ;Δ � N κ−� Γ ′;Δ ′ � N′ and Γ ′;Δ ′ � M′ � N′.

Γ ;Δ -bisimilarity, ∼ is defined as two way similarity:

Γ ;Δ � M ∼ N if Γ ;Δ � M � N and Γ ;Δ � N � M. �

For a fixed sort, 〈Γ ,Δ ,m,n〉-indexed relations over configurations form a lattice or-
dered by set inclusion. The product of all these lattices over all sorts yields a lattice
structure on sort-indexed families of relations. Indexed (bi)similarity can also be for-
malized as the greatest fixed point of a monotone operator on this lattice. As is standard,
Definition 19 describes � (resp. ∼) as the prefixed point of this monotone operator.

Relational composition of two sort-indexed families of relations is defined by
pointwise composition. For example, let R = {R〈Γ ,Δ ,m,n〉} and S = {S〈Γ ,Δ ,m,n〉} then
R ◦S is the sort-indexed family {R〈Γ ,Δ ,m,n〉 ◦S〈Γ ,Δ ,m,n〉}. Since the tests of open
bisimilarity are only names, standard proofs for first order calculi [68] apply here to
yield that � (resp. ∼) is closed under composition. Thus, � (resp. ∼) is a preorder
(resp. an equivalence relation).

Bisimilarity is insensitive to the addition of irrelevant new names to Γ , i.e., if Γ ;Δ
� M ∼ N and Γ ′ ∩Γ = /0, then Γ ,Γ ′;Δ � M ∼ N. Symmetrically, bisimilarity is also
insensitive to the removal of irrelevant new names from Γ , i.e., names in Γ that are not
free in the rest of the configuration can be removed. The proofs follow by noting that
the names in Γ are only typing constraints; so, addition or removal of names does not
alter the transition capabilities of a configuration.

Bisimilarity on configurations relates to terms as follows.

Definition 20. Write “Γ ;Δ � M ∼ N” if Γ ;Δ � (·/·/M/�f)∼ (·/·/N/�f), where�f are the
function names bound in Δ , in declaration order.

Write “M ∼N” if (�φ ,�α);(pcd �p�adv �p��α) �M ∼ N, where fn(M,N) = {�φ ,�p}. ��

The function symbols �φ detect function calls by the term. The primitive pointcut dec-
larations pcd �p bind the free primitive pointcuts in the term. The advice declarations
adv �p��α detect any call to a new function declared at a visible primitive pointcut (by
the term). Functions can be introduced by fun transitions to detect any new advice de-
clared at a visible primitive pointcut (by the term).
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4.5 Simple Examples

The first examples show that bisimilarity yields a βv, ηv theory, i.e., that the call-by-
value versions of β - and η-equality preserve bisimilarity.

Example 21 (βv preserves bisimilarity). A standard LTS proof shows that prefixing by
τ preserves bisimilarity. So, since:

Γ ;Δ � �A/�E /(λ x�M) U/�U τ−→ Γ ;Δ � �A/�E /M[x :�U ]/�U,

and there are no other transitions to consider, we have

Γ ;Δ � �A/�E /(λ x�M) U/�U ∼ �A/�E /M[x :�U ]/�U .

Thus, βv preserves bisimilarity. ��
Example 22 (ηv preserves bisimilarity). ηv holds, i.e., in the case where x is not free
in U , we have

Γ ;Δ � �A/�E /U/�U ∼ �A/�E /λ x�Ux/�U .

The key case in establishing the above bisimulation is to note that the transition

Γ ;Δ � �A/�E /U/�U app φ−−−→ Γ ,φ ;Δ � �A/�E /U φ/�U

on the LHS is matched by the following sequence from the RHS, starting

Γ ;Δ � �A/�E /λ x�Ux/�U app φ−−−→ Γ ,φ ;Δ � �A/�E /(λ x�Ux) φ/�U

and continuing

Γ ,φ ;Δ � �A/�E /(λ x�Ux) φ/�U τ−→ Γ ,φ ;Δ � �A/�E /U φ/�U . �

The other cases are addressed by a simple bisimulation relation that relates configura-
tions that are identical except that the occurrences of U in the active term and the value
list can be replaced by (λ x�Ux).

Bisimilarity is not a trivial relation: for example, it distinguishes the Church booleans
from one another, and likewise the Church numerals.

Example 23 (Bisimulation is sensitive to advice order). We revisit Example 9, noting
that � and �′ are distinguished by bisimilarity, where

�= ��� ��
�λ��	���� 
�λ�����(λ�(��� 
�λ����� � 	))
�′ = ��� ��
�λ��	���� 
�λ���′

��(λ�(��� 
�λ���′
�� � 	))

and

�� = λ��� (�+	) �′
� = λ��� (�+�)

�� = λ��� (�+�) �′
� = λ��� (�+	).
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The term � can perform the following transitions in the LTS, whereas �′ can make
all transitions but the last one. The transitions correspond to the context presented in
Example 9.

τ Term places advice �� and returns (λ�(��� 
�λ����� � 	))
adv 
�α Context defines advice
app φ Context calls (λ�(��� 
�λ����� � 	)) with ignored argument φ
τ∗ Term places advice �� and calls � with argument 	
acall α Term calls α with argument with argument �
app ψ���� Context provides first argument to Church encoding of �
app ψ�	
� Context provides second argument to Church encoding of �
fcall ψ���� Church encoding of � identifies itself by calling back to ψ���� �

As demonstrated in Example 21, the order of evaluation and multiplicity of use of “in-
ternal” functions are not necessarily detectable. Bisimilarity can, however, detect the
order and multiplicity of calls to symbolic functions created by the environment. This
corresponds to the opponent (the context) having state.

Example 24 (Detecting order). Consider the following terms.

�
 x�φ��� �
 y�ψ�����

�
 y�ψ��� �
 x�φ�����

The LTSs for these terms are immediately distinguished by the initially enabled transi-
tion, namely fcall φ for the first term and fcall ψ for the second. ��
Example 25 (Detecting multiplicity). Consider the following terms.

�
 x�φ��� �
 y�φ�����
�
 y�φ�����

The LTSs for the first term may perform the following sequence of transitions: fcall φ ,
ret ψ , and fcall φ . The second term can match the first two of these transitions, but not
the third. ��
The distinctions made in Examples 24 and 25 (which are necessary in the full language
with imperative features) hold even if all of the terms involved are purely functional,
i.e., have no aspects.

Example 26 (The use of get and put rules). Consider the following terms.

�=���� ��= ��� 
� ��� ��
�λ�fls�

� = λ�tru �= λ��
 x���
(� ��)�(��� 
�λ�λ�x)�x

� is a function that always returns tru, whereas � (the function returned by �) will
alternately return tru and fls, because of the state changes caused by the aspect in �.
The terms can be distinguished by the context

E = �
 y� [–]�y���y��

since E [�] yields tru and E [�] yields fls.
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Clearly, this distinction relies crucially on the use of � twice. In the following exam-
ple, we essentially show that the LTS is expressive enough to code the distinguishing
context E by using put,get tests to permit multiple tests of terms.

Using the definitions above, the behavior of E can be simulated in the LTS using the
put,get rules as follows. Consider the initial configuration ·; · � ·/·/�/·, which has τ
transitions to ·; · ���/·/�/·. This configuration in turn has a put labeled transition to

·; · ���/·/�/�,

which in turn has an app φ labeled transition to

φ ; · ���/·/� φ/�.

A few τ transitions from this configuration yields

φ ; · ������� � �λ�λ�tru/·/tru/�.

To reevaluate �, we use a get � transition to get

φ ; · ������� � �λ�λ�tru/·/�/�.

An app ψ labeled transition yields

φ ,ψ ; · ������� � �λ�λ�tru/·/� ψ/�.

This second evaluation of � takes place in the context of the aspect that has been laid
down. A few τ transitions from this configuration yields

φ ,ψ ; · ������� � �λ�λ�tru���� � �λ�λ�fls/·/fls/�. �

Much of the related work is formalized in terms of references, rather than advisable
functions. In the next example, we discuss some of the subtleties, using the work of
Meyer and Sieber [21] as the basis for comparison.

Example 27 (Primitive references versus advisable functions). For a free reference
variable x, Meyer-Sieber [21] validate the equivalence 	x�	x

MS= 	x. In our encoding
of references, this translates roughly to the inequivalence demonstrated in Example 25.
The difference arises from the weak assumptions one can make about functions relative
to references; indeed the equivalence is valid in our language for bound references,
where stronger assumptions are manifest:

�
 x� ref 	�	x�	x ∼ �
 x� ref 	�	x.

Unwinding the definition of references, this is roughly

��� 
���� ��
�λ�	� ���� ���∼ ��� 
� ��� ��
�λ�	� ���.

But the equivalence does not hold when 
 is available to the context, since calls to � are
then observable. Let Δ = ��� 
, ��� ��
�λ�	. Then

·;Δ � ���� ��� �∼ ���.
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Interestingly, the equivalence does hold after an assignment, i.e., declaration of
nonproceeding advice. Let �= ��� 
�λ�λ��, then

·;Δ � �� ���� ���∼ �� ���

which corresponds to (�
���	��	�) MS= (�
���	�).
Note also that for pure references 	��Ω MS= Ω , whereas the corresponding result for

functions does not hold: ����Ω �MS= Ω . ��

4.6 A Reasoning Principle

To simplify reasoning about bisimilarity, we develop an upto principle that eliminates
the need to:

– Replicate values in bisimulations, e.g., arising from a get 1 then a put transition.
– Include terms that do not interact with the state if they occur in the same position

on each side of the bisimulation.

The following definition formalizes the above notion of replicated values.

Definition 28. R•
dup is the least relation such that R ⊆ R•

dup and if

Γ ;Δ � �A/�E /M/U,�U R•
dup

�B/ �F/N/V,�V
then

Γ ,Γ ′;Δ � �A/�E /M/U,�U ,U R•
dup

�B/ �F/N/V,�V ,V , and

Γ ,Γ ′;Δ � �A/�E /M/�U R•
dup

�B/ �F/N/�V �

We say that a term (resp. evaluation context) is state free over a symbol environment
(Γ ;Δ) if every free name is contained in Γ and the term (resp. evaluation context)
contains no declaration subterms. The following definition formalizes the addition of
identical state-free evaluation contexts (or values) to a relation on configurations.

Definition 29. R•
sf is the least relation such that R ⊆ R•

sf and, for L (resp. W , E ) a
state-free term (resp. value, context) for (Γ ,Γ ′;Δ), we have that if

Γ ;Δ � �A/�E /M/�U R•
sf

�B/ �F/N/�V

then the following hold.

Γ ,Γ ′;Δ � �A/�E /M/W,�U R•
sf

�B/ �F/N/W,�V
Γ ,Γ ′;Δ � �A/E , �E /M/�U R•

sf
�B/E , �F/N/�V �

Moreover, if M and N are values:

Γ ,Γ ′;Δ � �A/�E /L/�U R•
sf

�B/ �F/L/�V

Let R• = R•
dup∪R•

sf. Let �� be the reflexive, transitive closure of the least symmetric
relation containing τ−→. The following upto-technique is used to prove equivalences in
Sect. 4.7.
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Lemma 30. Let R be a 〈Γ ,Δ ,m,n〉-indexed relation on configurations. Suppose that

Γ ;Δ � M R N and Γ ;Δ � M κ−� Γ ′;Δ ′ � M′

implies there exists N′ such that

Γ ;Δ � N κ−� Γ ′;Δ ′ � N′ and Γ ′;Δ ′ � M′ (��;R•;��) N′.

Then (��;R•;��) ⊆∼.

Proof Sketch. The complex statement of the lemma masks its simple (but lengthy)
proof. As we have discussed already in Example 21, a simple and standard LTS proof
shows that prefixing by τ preserves bisimilarity. So, (��;∼;��)⊆∼. Thus, the essence
of the above lemma is that R• ⊆ ∼. The proof formalizes the following intuitive
observations:

– Transitions from duplicated values are already available in the starting configura-
tion. So, duplicating values in the value list does not alter bisimilarity reasoning.

– State-free terms are “functional” in the sense that transitions from state-free terms
are not dependent on the configuration. So, addition of identical state-free terms to
the value list does not alter bisimilarity reasoning. ��

One very useful consequence of the lemma is that ∼• ⊆∼. The results of Sect. 5 imply
that ∼ is sound for a more general version of Definition 29: i.e., if fn(U) and fn(E ) are
bound by Γ and Δ and if Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V then,

Γ ;Δ � �A/E , �E /M/U,�U ∼ �B/E , �F/N/U,�V .

However, this more general property of ∼ is not necessarily sound as part of an
upto-proof technique.

4.7 Examples with Local Store and Higher-Order Functions

Examples 31 and 32 illustrate equivalences involving local state and higher-order
functions—originally due to Meyer and Sieber [21]. The proofs provided here exem-
plify the techniques needed to address Examples 1–5 and Example 7 from [21]. Their
Example 6 involves the equality of locations, and the encoding used here does not ac-
commodate such tests. To better illustrate the LTS, examples are written in our language
directly rather than using the syntactic sugar for references in Example 7. We use the
standard Church numerals for encoding natural numbers and operators in the lambda
calculus. In the bisimulation candidate relation, we explicitly describe these arithmetic
encodings to avoid addressing issues of normal forms of Church numerals. In a larger
application, the systematic way to proceed would be to move to a typed setting and
enrich the transition system (and hence the bisimulation relation) with new constants.

Example 31 (Local store). This example shows that local declaration of a primitive
pointcut and function at that primitive pointcut (providing local store) does not affect
computation. Consider the following terms.

�= x /= ��� 
� ��� ��
�λ�	�x
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We wish to prove that λx��∼ λx�/. By congruence (Theorem 36) it suffices to show
�∼ /. Define the relation R as

x; · � (·/·/x/·) R (��/·/x/·)
where ��= (��� 
� ��� ��
�λ�	).

The only possible transition labels are app φ and put.

x; · � ·/·/x/·
R

��
��
��

app φ
�� x,φ ; · � ·/·/x φ/·

R•
sf��

��
��

x; · ���/·/x/· app φ
�� x,φ ; · ���/·/x φ/·

x; · � ·/·/x/·
R

��
��
��

put
�� x; · � ·/·/x/x

R•
sf��

��
��

x; · ���/·/x/· put
�� x; · ���/·/x/x

By Lemma 30, x; · � (·/·/x/·) ∼ (·/·/���x/·). ��
Example 32 (Higher-order functions). This example demonstrates reasoning about a
call to an unknown procedure. Define � and / as follows.

�= x (λ���)���
/= ��� 
� ��� ��
�λ�	�

x (λ�(�
 y� � ���(��� 
�λ�λ�y+�)���))�
	� ((� ����� �)�	) 
��� �� ��� Ω

In �, the external procedure x is invoked with a functional argument without side
effects. In /, x is invoked with an argument that advises the local function
�—corresponding to incrementing a local reference by two—thus, maintaining the in-
variant that a call to � yields an even number.

In our proof, we prove the local invariant of evenness separately, without referring
to the external function call. The bisimulation principle allows us to modularly add the
external function.

To prove λx��∼ λx�/, it suffices to show that �∼ / (as before, by congruence).
We use the following definitions.

�= λ���
E = [–]���
��= ��� 
� ��� ��
�λ�	
� = λ�(�
 y� � ���(��� 
�λ�λ�y+�)���)

F = [–]� 	� ((� ����� �)�	) 
��� �� ��� Ω
��0 is the empty advice list
��n =��n−1�(��� 
�λ�λ�Dbl�)

Dbl� = λ ��λx�x

Dbl�+� = λ ��λx��(�(Dbl� � x))

Here, the term Dbl� represents �#, although it is not syntactically identical to the Church
numeral for �#, and we are making use of the convention mentioned earlier for ap-
plication of a term (rather than application of a value). So, � = E [x �] and / = ���
F [x �]. We first prove two purely local results without the external call to show that the
tests under consideration (as given by E ,F ) do not distinguish (��,��m) and (��,��n) for
any m,n.
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(1) ·; · ���,��m/E /�/� and ·; · ���,��n/F/�/� are bisimilar, for all m,n.
(2) ·; · ���,��m/E /�/� and ·; · ���,��n/E /�/� are bisimilar, for all m,n.

We address (1); the proof for (2) is identical and omitted.
Let m,n range over all nonnegative integers. Define R as follows.

·; · � (��,��m/F/�/�) R (��,��n/E /�/�)

There are three possibilities for the transition system labels. Let κ=⇒ be the sequential
composition of κ−→ and ��.

Case put,get �: For put, we have the following.

·; · ���,��m/E /�/�

R
��
��
��

put
�� ·; · ���,��m/E /�/�,�

R•
dup��

��
��

·; · ���,��n/F/�/�
put

�� ·; · ���,��n/F/�/�,�

Similarly for get �.
Case app φ : Using the operational semantics,

·; · ���,��m/E /�/� app φ−−−� ·; · ���,��m+1/E /��/�

·; · ���,��n/F/�/� app φ−−−� ·; · ���,��n+1/F/��/�

and thus we have the following.

·; · ���,��m/E /�/�

R
��
��
��

app φ �� φ ; · ���,��m+1/E /��/�

R•
��
��
��

·; · ���,��n/F/�/�
app φ�� φ ; · ���,��n+1/F/��/�

Case ret φ : Use the invariant that for any (, the function call � �� in advice context
��,��m evaluates to an even number.

·; · ���,��m/E /�/�

R
��
��
��

ret φ �� φ ; · ���,��m/·/��/�
R•

��
��
��

·; · ���,��n/F/�/�
ret φ �� φ ; · ���,��n/·/��/�

This concludes the case analysis. Therefore, by Lemma 30, R•, and hence R also, is
contained in bisimilarity.

Now, using transitivity of bisimilarity on (1) and (2) yields

·; · � (��/E /�/·) ∼ (��/F/�/·).
Since x is not free in either configuration, we have

x; · � (��/E /�/·) ∼ (��/F/�/·).
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From Example 31, since we have that ∼•
sf ⊆∼ and that E and � are state free for x:

x; · � (��/E /�/·) ∼ (·/E /�/·).
Using transitivity of ∼

x; · � (��/F/�/·) ∼ (·/E /�/·).
Since

(x; · � ·/·/E [x �]/·) fcall x−−−� (x; · � ·/E /�/·), and
(x; · � ·/·/���F [x �]/·) fcall x−−−� (x; · ���/F/�/·),

the required result,

x; · � (·/·/���F [x �]/·) ∼ (·/·/E [�]/·),
follows since both sides have only weak fcall x transitions to bisimilar targets. ��

5 Results

Bisimilarity is sound and complete relative to observational congruence. Completeness
is discussed in Appendix E. Here, we sketch a proof of soundness, focusing on the
technical novelties of our analysis; details are deferred to the appendices.

In the rest of this section, we show that ∼ is a congruence. From this it is
straightforward to establish soundness, i.e., that M ∼ N implies M ≡ N.

The key component of the proof is a substitution lemma that validates substitution
of equals-for-equals for contexts that do not capture variables: the reader might want
to view this semantically as an instance of the composition principles underlying game
semantics [52, 53], and syntactically as our variant of the delayed substitutions of the
SECD machine [69]. This is stated and proved in Appendix A.

5.1 Bisimulation Is a Congruence

The following notion of compatibility captures some useful properties of the initial
configurations of Definition 20 and those reachable from them.

Definition 33. LTS configurations Γ ;Δ � �A/�E /M/�U and Γ ;Δ � �B/ �F/N/�V are com-
patible if the following hold.

– All advice in Δ is symbolic advice of the form adv p�α .
– If pcd p ∈ Δ , then there exists adv p�α ∈ Δ .
– For each adv p�α ∈ Δ , it is the sole occurrence of α in Δ .
– If fun f�p�φ ∈ Δ , then there exists 1≤ i ≤min(|�U |, |�V |) such that �Ui =�V i = f ��

The next two lemmas provide the infrastructure required to reason separately about
the active term and the remaining pieces of a configuration. Lemma 34 permits the
substitution of identical terms for values in the active term spot of bisimilar configura-
tions, while maintaining bisimilarity. Lemma 35 is dual.
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Lemma 34 (Inclusion of identical terms). Consider compatible configurations Γ ;Δ �
�A/�E /U/�U and Γ ;Δ � �B/ �F/V/�V and a term L such that fn(L) ⊆ Γ ∪dn(Δ). Then

Γ ;Δ � �A/�E /U/�U ∼ �B/ �F/V/�V
implies

Γ ;Δ � �A/�E /L/�U ∼ �B/ �F/L/�V .

Proof. See Appendix B. ��
Lemma 35 (Inclusion of identical contexts). Consider compatible configurations
Γ ;Δ � ·/·/M/�U and Γ ;Δ � ·/·/N/�V and a well-formed LTS configuration Γ ;Δ �
�A/�E /��/�W, where no symbolic advice occurs in M, �U, N, �V. Then

Γ ;Δ � ·/·/M/�U ∼ ·/·/N/�V
implies

Γ ;Δ � �A/�E /M/�U , �W ∼ �A/�E /N/�V , �W .

Proof. See Appendix C. ��

Given this machinery, the proof that bisimulation is a congruence (and is therefore
sound for contextual equivalence) is quite routine.

Theorem 36 (Congruence of bisimilarity). Consider values U1 ∼U ′
1, U2 ∼U ′

2 and U ∼
U ′ and terms M ∼ M′, M1 ∼ M′

1 and M2 ∼ M′
2 that contain no symbolic advice. Then

we have the following.

U1 U2 ∼U ′
1 U ′

2 λx�M ∼ λx�M′

let x�M1�M2 ∼ let x�M′
1�M′

2 fun f�p�U�M ∼ fun f�p�U ′�M′

pcd p�M ∼ pcd p�M′ adv p�λ z�U�M ∼ adv p�λ z�U ′�M′

Proof. See Appendix D. ��

6 Conclusion

This paper is a step towards leveling the formal playing field between aspects and other
programming paradigms. To our knowledge, we have presented the first description
of bisimilarity for aspect languages. We contribute new operational techniques to show
that bisimilarity is a congruence. Our results complement ongoing research in the aspect
community on the design and implementation of aspect languages.

On one hand, our methods and techniques are those that are needed to address state-
ful higher-order programming languages. This is already seen in the basic format of
our transition systems. Just as the interface of a (perhaps higher order) stateful pro-
gram includes the global variables that are being used in the program, our LTS embod-
ies the distinction between external (visible and advisable) pointcuts and the internal
(hidden and unadvisable) pointcuts. Building further on analogies with higher-order
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stateful computation, our bisimulation principle combines techniques used to address
mobile processes (open bisimulation), names in the nu-calculus (via tracking leaked se-
crets in the LTS) and the lambda calculus (ENF-bisimulation). Our results suggest that
from a purely theoretical viewpoint of studying general properties of the programming
language, aspects are no more difficult to address formally than well-studied classical
issues of higher-order imperative programs. We demonstrate the utility of our results by
bridging the formal gap that exists between the foundations and the realizations of Open
Modules. In particular, bisimulation is a congruence for a rich collection of temporal
pointcuts including those that are realized in current implementations of Open Modules
in aspect languages.

On the other hand, this message is tempered by its applicability to individual pro-
grams. Even theoretically speaking, our results do not directly yield a compositional
translation of aspect programs into a higher order imperative language that preserves
and reflects program equality. Our results are only a first step in terms of the practically
important task of reasoning about concrete programs. We hope that they will serve as
the conceptual infrastructure required to develop and validate “reasoning patterns” to
address the common idioms of aspect-oriented programs.
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A Substitution Lemma

This appendix develops the proof of Theorem 49, which states that substitution pre-
serves bisimilarity. The substitutions that we consider provide two kinds of substitution
information on a LTS configuration:

– Which value from the list of values in a configuration is substituted for a variable?
This information is indicated by the positional index in �U in a LTS configuration.

– Which contexts in the list of evaluation contexts are composed with other evaluation
contexts and the active term? This information is specified by an integer stack.

Definition 37. An extended substitution σ consists of a partial function from variables
(symbolic function names or symbolic advice names) to integers, a total order upon the
domain of the partial function, and a nonempty stack of natural numbers.

Let ξ range over symbolic function names (metavariable φ ) and symbolic advice
names (metavariable α). If ξ is in the domain of the partial function of σ , we use σ(ξ )
for the value of the partial function of σ . We use (ξ �→ k)�σ for the operation of
extending the domain of the partial function of σ to include ξ and placing ξ at the
bottom of the total order on the domain of the new partial function. This operation is
undefined if ξ is already in the domain of the original partial function σ .

In the nonempty stack of natural numbers, written (�m,m) with m at the top, we
require that mi > 0, for all 1 ≤ i ≤ |�m|, but allow m = 0. We write |σ | for the length
of the stack and sum(σ) for the sum of the values on the stack. We sometimes regard
a nonempty stack of natural numbers as the corresponding extended substitution with
that stack and an empty partial function. ��

Definition 38 . Given contexts E and F , define E ◦F as E [F ]. Observe that ◦ is
associative, with [–] as a left and right identity. Define:

Z(E1, . . . ,En)
�= E1 ◦ · · · ◦En

Zm1,...,mk (E〈1,1〉, . . . ,E〈1,m1〉, . . . , E〈k,1〉, . . . ,E〈k,mk〉)
�= Z(E〈1,1〉, . . . ,E〈1,m1〉), . . . ,

Z(E〈k,1〉, . . . ,E〈k,mk〉)

Finally, define Zσ (�E ) �= Z(�m,m)(�E ) when σ ’s stack is (�m,m). ��

Note that Z( · ) = [–] and that Zσ (�E ) returns a sequence of contexts of length |σ |.
Given that all but the rightmost element of σ must be nonzero, we may conclude that
|Zσ (�E )| ≤ |�E |+ 1.

Definition 39. σ is valid for Γ ;Δ � �A/�E /M/�U if the following hold.

– The domain of σ is a subset of Γ .
– If α is an advice variable in the domain of σ , Uσ(α) is of the form λ z�U .
– If the total order for the domain of σ is ξ1, . . . ,ξn, then, for all 1 ≤ k ≤ j ≤ n, we

have ξk is not free in Uσ(ξ j).

– sum(σ) equals the length of �E . ��
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Definition 40. If σ is valid for Γ ;Δ � �A/�E /M/�U , we define:

[Γ ;Δ � �A/�E /M/�U ]σ
�= Γ ′;Δ ′ � �A′/�E ′′/E ′′[M′]/�U ′′

where the primed elements on the right-hand side are derived as follows.

– Γ ′ is obtained from Γ by deleting every variable in the domain of σ .
– For every other metavariable χ , the single-primed version χ ′ is derived by substi-

tuting Uσ(φ) for φ in the configuration. The substitution is carried out following the
total order of the variables given by σ (the least variable substituted first).

– �E ′′,E ′′ = Zσ (E ′).
– �U ′′ is obtained from �U ′ by deleting all values at positions in the substitution within

σ .

In addition, we write [�A/�E /M/�U ]σ when the context is uninteresting. ��
For example, if M =�A/E1,E2,E3,E4,E5/M/�U then [M]3,2,0 =�A/E1[E2[E3]],E4[E5]/M/
�U , and [M]2,1,2 = �A/E1[E2],E3/E4[E5[M]]/�U .

Definition 41. Write Γ ;Δ � M ≈σ N if there exists Γ ′;Δ ′ � M′ ∼ N′ such that σ is
valid for both Γ ′;Δ ′ � M′ and Γ ′;Δ ′ � N′, and we have Γ ;Δ � M = [Γ ′;Δ ′ � M′]σ and
Γ ;Δ � N = [Γ ′;Δ ′ � N′]σ . ��
Two configurations are related by ≈σ if they are in the σ -image of configurations that
are related by ∼. Theorem 49 formalizes the claim that bisimilarity is closed under
substitution by stating that the relation ≈ =

⋃
σ ≈σ is a bisimulation.

To prove the substitution result, we first note that reduction is preserved by an ex-
tended substitution.

Lemma 42. Given an extended substitution σ valid for Γ ;Δ � M, if:

Γ ;Δ � M τ−→ Γ ;Δ � M′

then:
[Γ ;Δ � M]σ τ−→ [Γ ;Δ � M′]σ

Proof. Reduction is preserved by substitution of values for variables in Γ , and by the
addition of an evaluation context to a term (reduction is specified in terms of evaluation
contexts).

Next we prove two lemmas that are used to choose bisimilar configurations in certain
forms. Lemma 43 is used to eliminate trivial evaluation contexts (of the form [–]) from
the evaluation context stack when they are applied directly to a value. Lemma 46 is used
to remove substitutions that substitute one variable for another.

More specifically, Lemma 43 shows that for any ≈-related configurations, if the un-
derlying pair of bisimilar configurations has a value on the left-hand side configuration,
then there is another underlying pair of bisimilar configurations where the first nontriv-
ial evaluation context from the evaluation context stack has been moved to the active
term (to cause a reduction), or there is no nontrivial evaluation context. This manipula-
tion is limited to the right-most m evaluation contexts when the stack from the extended
substitution is (�m,m). To indicate when a reduction is possible, we write Δ ,�A/M −→
when there exist �B, N such that Δ ,�A/M −→ Δ ,�B/N.
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Lemma 43. Given an extended substitution σ valid for Γ ;Δ � �A/�E /U/�U ∼ �B/ �F/N/
�V, there exist Γ ′, �A′, �E ′, M′, �U ′, �B′, �F ′, N′, �V ′ and an extended substitution σ ′ valid
for Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼ �B′/ �F ′/N′/�V ′ such that:

1. [�A/�E /U/�U]σ = [�A′/�E ′/M′/�U ′]σ ′
2. [Γ ;Δ � �B/ �F/N/�V ]σ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
3. One of the following holds:

(a) Reduction: Δ ,�A′/M′ −→.
(b) Value: The σ ′ stack has the form (�m,0) and M′ is a value.

Proof. The proof is by induction on m, where the stack from σ is (�m,m). If m = 0 the
original extended substitution and configurations satisfy requirements (1)–(3), and we
are done. If m > 0 then �E can be decomposed as �E = (�E ′′,E ′′), and the bisimilarity Γ ;Δ
��A/�E /U/�U ∼ �B/ �F/N/�V yields the existence of �C and V such that Δ ,�B/N −� Δ ,�C/V
and Γ ;Δ � �A/�E /U/�U ∼ �C/ �F/V/�V . Now applying put then ret φ transitions to both
sides (φ fresh), where �F = ( �F ′′,F ′′), we have:

Γ ,φ ;Δ � �A/�E ′′/E ′′[φ ]/�U ,U ∼ �C/ �F ′′/F ′′[φ ]/�V ,V

We obtain the extended substitution σ ′′ by replacing the stack of (φ �→ |�U |+1)�σ with
(�m,m− 1). Then [�A/�E ′′/E ′′[φ ]/�U ,U ]σ ′′ = [�A/�E /U/�U]σ and [�C/ �F ′′/F ′′[φ ]/�V ,V ]σ ′′
= [�C/ �F/V/�V ]σ . There are two cases depending on whether or not E ′′ = [–].

Case E ′′ �= [–]. When E ′′ �= [–] there exists E ′′′ such that E ′′ = E ′′′[let x� [–]�M′′], so
we have the reduction:

Δ ,�A/E ′′[φ ] = Δ ,�A/E ′′′[let x�φ�M′′] −� Δ ,�A/E ′′′[M′′[x :� φ ]]

Thus, we define σ ′ = σ ′′, Γ ′ = (Γ ,φ), and:

(�A′/�E ′/M′/�U ′) = (�A/�E ′′/E ′′[φ ]/�U ,U)
(�B′/ �F ′/N′/�V ′) = (�C/ �F ′′/F ′′[φ ]/�V ,V )

Requirements (1) and (3)(a) are satisfied immediately. Using Lemma 42 and the earlier
reduction Δ ,�B/N −� Δ ,�C/V , we deduce that (2) is also satisfied:

[Γ ;Δ � �B/ �F/N/�V ]σ
τ−→∗ [Γ ;Δ � �C/ �F/V/�V ]σ
= [Γ ,φ ;Δ � �C/ �F ′′/F ′′[φ ]/�V ,V ]σ ′′
= [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′

Case E ′′ = [–]. Now E ′′[φ ] = φ is a value and the top element of the stack of σ ′′
is strictly smaller than that of σ , so the induction hypothesis can be applied to σ ′′ and
Γ ,φ ;Δ ��A/�E ′′/φ/�U ,U ∼ �C/ �F ′′/F ′′[φ ]/�V ,V to yield σ ′ valid for Γ ′;Δ ��A′/�E ′/M′/
�U ′ ∼ �B′/ �F ′/N′/�V ′ such that:

– [�A/�E ′′/φ/�U ,U ]σ ′′ = [�A′/�E ′/M′/�U ′]σ ′
– [Γ ,φ ;Δ � �C/ �F ′′/F ′′[φ ]/�V ,V ]σ ′′ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
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– • Either Δ ,�A′/M′ −→.
• Or the σ ′ stack has the form (�m,0) and M′ is a value.

For (1), by transitivity of equality, we have [�A/�E /U/�U]σ = [�A′/�E ′/M′/�U ′]σ ′ . For (2),
using Lemma 42 and the earlier reduction Δ ,�B/N −� Δ , �C/V , we deduce that:

[Γ ;Δ � �B/ �F/N/�V ]σ
τ−→∗ [Γ ;Δ � �C/ �F/V/�V ]σ
= [Γ ,φ ;Δ � �C/ �F ′′/F ′′[φ ]/�V ,V ]σ ′′
τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′

Finally, (3) is satisfied immediately by the results of the induction hypothesis above.
This completes the proof of Lemma 43.

To prove that substitutions of variables for variables can be eliminated, we introduce
the notion of a variable chain length in a substitution and value list. This measures
sequences of substitutions of a variable with another variable in the value list. Such
sequences transfer control between values without making reductions. We formalize
the notion of variable chain length as follows.

Definition 44. Given σ valid for Γ ;Δ � �A/�E /M/�U , and ξ ∈Γ , define the natural num-
ber varchain(ξ ,σ , �U) by:

varchain(ξ ,σ , �U) �=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + varchain(ψ ,σ , �U) if (ξ = φ ∧Uσ(φ) = ψ)
∨ (ξ = α ∧Uσ(α) = λx�ψ)

1 + varchain(β ,σ , �U) if (ξ = φ ∧Uσ(φ) = β�U�)
∨ (ξ = α ∧Uσ(α) = λx�β�U�)

0 otherwise

To simplify arguments about the two different kinds of call transitions, we introduce
new terminology.

Definition 45. We say that Γ ;Δ � M has a call transition on ξ if either Γ ;Δ � M fcall ξ−−−→
or Γ ;Δ � M acall ξ−−−−→.

Lemma 46 shows that for any ≈-related configurations, if the underlying pair of bisim-
ilar configurations has a call transition on the left-hand side configuration, then there is
another underlying pair of bisimilar configurations where the call transition has turned
into a reduction (due to substitutions from the value list for the variable in the call), or
the call transition is unaffected by the substitution.

Lemma 46. Consider an extended substitution σ valid for Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/
N/�V. If Γ ;Δ � �A/�E /M/�U has a call transition on ξ then there exist Γ ′, �A′, �E ′, M′,
�U ′, �B′, �F ′, N′, �V ′ and an extended substitution σ ′ valid for Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼
�B′/ �F ′/N′/�V ′ such that:

1. [�A/�E /M/�U ]σ = [�A′/�E ′/M′/�U ′]σ ′
2. [Γ ;Δ � �B/ �F/N/�V ]σ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
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3. One of the following holds:
(a) Reduction: Δ ,�A′/M′ −→.
(b) Call: Γ ′;Δ � �A′/�E ′/M′/�U ′ has a call transition on ξ ′ and ξ ′ �∈ dom(σ ′).

Proof. If ξ �∈ dom(σ), the original extended substitution and configurations satisfy re-
quirements (1)–(3), so there is nothing to prove. Otherwise ξ ∈ dom(σ), and we proceed
by induction on varchain(ξ ,σ , �U). The bisimilarity Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V
allows us to deduce the existence of �C and L such that Δ ,�B/N −� Δ , �C/L, the configu-
ration Γ ;Δ � �C/ �F/L/�V has a call transition on ξ , and Γ ;Δ ��A/�E /M/�U ∼ �C/ �F/L/�V .
There are two cases to consider: ξ may be an ordinary variable φ or an advice
variable α .

Case ξ is an ordinary variable. If ξ is an ordinary variable φ , the call transition is
fcall φ , and there exist evaluation contexts E , F and values U , V such that M = E [φ U ],
L = F [φ V ], and we have the following sequence (where ψ is fresh):

Γ ;Δ � �A/�E /M/�U
= Γ ;Δ � �A/�E /E [φ U ]/�U

fcall φ−−−→ Γ ;Δ � �A/�E ,E /U/�U
put−−→ Γ ;Δ � �A/�E ,E /U/�U,U

get σ(φ)−−−−−→ Γ ;Δ � �A/�E ,E /Uσ(φ)/�U ,U
app ψ−−−→ Γ ,ψ ;Δ � �A/�E ,E /Uσ(φ) ψ/�U ,U

Since Γ ;Δ � �A/�E /M/�U ∼ �C/ �F/L/�V and L = F [φ V ], there is a corresponding se-
quence from Γ ;Δ � �C/ �F/L/�V that yields:

Γ ,ψ ;Δ � �A/�E ,E /Uσ(φ) ψ/�U,U ∼ �C/ �F ,F/Vσ(φ) ψ/�V ,V

We obtain the extended substitution σ ′′ by replacing the stack of (ψ �→ |�U |+ 1)�σ
with (�m,m+ 1), where the stack from σ is (�m,m). Then:

[�A/�E ,E /Uσ(φ) ψ/�U ,U ]σ ′′ = [�A/�E /E [Uσ(φ) U ]/�U]σ
= [�A/�E /E [φ U ]/�U ]σ
= [�A/�E /M/�U ]σ

Similarly, [�C/ �F ,F/Vσ(φ) ψ/�V ,V ]σ ′′ = [�C/ �F/L/�V ]σ . There are two subcases, de-
pending on whether or not the value Uσ(φ) is a λ -abstraction. In the first subcase, if
Uσ(φ) = λx�M′′ is a λ -abstraction, then Δ ,�A/(Uσ(φ) ψ) −� Δ ,�A/(M′′[x :� ψ ]). There-
fore, we set σ ′ = σ ′′, Γ ′ = (Γ ,ψ), and:

(�A′/�E ′/M′/�U ′) = (�A/�E ,E /Uσ(φ) ψ/�U ,U)
(�B′/ �F ′/N′/�V ′) = (�C/ �F ,F/Vσ(φ) ψ/�V ,V )

Requirements (1) and (3) are immediately satisfied. Requirement (2) follows using
Lemma 42 and the earlier reduction Δ ,�B/N −� Δ ,�C/L:

[Γ ;Δ � �B/ �F/N/�V ]σ
τ−→∗ [Γ ;Δ � �C/ �F/L/�V ]σ
= [Γ ,ψ ;Δ � �C/ �F ,F/Vσ(φ) ψ/�V ,V ]σ ′′
= [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
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This completes the first subcase. For the second subcase, since Uσ(φ) is not a λ -abstrac-
tion, it must be either a variable x or a symbolic advice call α�U ′′�. We define ξ ′′ by
either ξ ′′ = x or ξ ′′ = α as appropriate. Then, Γ ,φ ;Δ � �A/�E ,E /Uσ(φ) ψ/�U ,U has a
call transition on ξ ′′. Moreover, the variable chain length for ξ ′′ is strictly smaller than
that for φ because:

varchain(φ ,σ , �U) = 1 + varchain(ξ ′′,σ , �U) = 1 + varchain(ξ ′′,σ ′′,(�U ,U))

Applying the induction hypothesis to σ ′′ and:

Γ ,ψ ;Δ � �A/�E ,E /Uσ(φ) ψ/�U,U ∼ �C/ �F ,F/Vσ(φ) ψ/�V ,V

yields σ ′ and: Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼ �B′/ �F ′/N′/�V ′ such that:

– [�A/�E ,E /Uσ(φ) ψ/�U ,U ]σ ′′ = [�A′/�E ′/M′/�U ′]σ ′
– [Γ ,ψ ;Δ � �C/ �F ,F/Vσ(φ) ψ/�V ,V ]σ ′′ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
– • Either Δ ,�A′/M′ −→.

• Or Γ ′;Δ � �A′/�E ′/M′/�U ′ has a call transition on ξ ′ and ξ ′ �∈ dom(σ ′).

Hence, requirement (3) is satisfied immediately, and requirement (1) follows by:

[�A/�E /M/�U ]σ = [�A/�E ,E /Uσ(φ) ψ/�U ,U ]σ ′′ = [�A′/�E ′/M′/�U ′]σ ′

Requirement (2) follows using Lemma 42 and the earlier reduction Δ ,�B/N −� Δ ,�C/L:

[Γ ;Δ � �B/ �F/N/�V ]σ
τ−→∗ [Γ ;Δ � �C/ �F/L/�V ]σ
= [Γ ,ψ ;Δ � �C/ �F ,F/Vσ(φ) ψ/�V ,V ]σ ′′
τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′

This completes the second subcase (when Uσ(φ) is not a λ -abstraction), and also the
case when ξ is a variable φ .

Case ξ is an advice variable. In the second case, ξ is an advice variable α , so the
call transition is acall α , and there exist evaluation contexts E , F and values U , V
such that M = E [α�W1� U ] and L = F [α�W2� V ]. In addition, σ is valid for both
configurations, so both Uσ(α) and Vσ(α) must be abstractions with bodies that are also
values, i.e., there exist W3 and W4 such that Uσ(α) = λx�W3 and Vσ(α) = λx�W4. Thus,
we have the following sequence (where ψ1, ψ2 are fresh):

Γ ;Δ � �A/�E /M/�U
= Γ ;Δ � �A/�E /E [α�W1�U ]/�U

acall α−−−−→ Γ ;Δ � �A/�E ,E /U/�U,W1
put−−→ Γ ;Δ � �A/�E ,E /U/�U,W1,U

get σ(α)−−−−−→ Γ ;Δ � �A/�E ,E /Uσ(α)/�U ,W1,U
app ψ1−−−−→ Γ ,ψ1;Δ � �A/�E ,E /Uσ(α) ψ1/�U ,W1,U

= Γ ,ψ1;Δ � �A/�E ,E /(λx�W3) ψ1/�U ,W1,U
τ−→ Γ ,ψ1;Δ � �A/�E ,E /W3[x :� ψ1]/�U ,W1,U

app ψ2−−−−→ Γ ,ψ1,ψ2;Δ � �A/�E ,E /(W3[x :� ψ1]) ψ2/�U ,W1,U
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In the above we use the fact that W3[x :� ψ1] is a value to justify the app ψ2 transition.
Since Γ ;Δ � �A/�E /M/�U ∼ �C/ �F/L/�V and L = F [α�W2�V ], there is a corresponding
sequence from Γ ;Δ � �C/ �F/L/�V , and because reduction is deterministic we conclude:

Γ ,ψ1,ψ2;Δ � �A/�E ,E /(W3[x :� ψ1]) ψ2/�U ,W1,U
∼ �C/ �F ,F/(W4[x :� ψ1]) ψ2/�V ,W2,V

We obtain the extended substitution σ ′′ by replacing the stack of the following extended
substitution with (�m,m+ 1), where the stack from σ is (�m,m):

(ψ2 �→ |�U |+ 2)� ((ψ1 �→ |�U |+ 1)�σ)

The extended substitution σ ′′ is valid for the configurations above because ψ1, ψ2 were
fresh. With this substitution we have:

[�A/�E ,E /(W3[x :� ψ1]) ψ2/�U ,W1,U ]σ ′′
= [�A/�E ,E /(W3[x :�W1]) U/�U,W1,U ]σ ′′
= [�A/�E /E [(W3[x :�W1]) U ]/�U]σ
= [�A/�E /E [(W3[x :� (W1[α :� λx�W3])]) U ]/�U]σ
= [�A/�E /E [α�W1�[α :� λx�W3] U ]/�U]σ
= [�A/�E /E [α�W1�[α :�Uσ(α)] U ]/�U]σ
= [�A/�E /E [α�W1�U ]/�U]σ
= [�A/�E /M/�U ]σ

Similarly:

[�C/ �F ,F/(W4[x :� ψ1]) ψ2/�V ,W2,V ]σ ′′ = [�C/ �F/L/�V ]σ

There are two subcases, depending on whether or not the value W3[x :� ψ1] is a λ -
abstraction. Both subcases use the same reasoning as the corresponding subcases when
ξ is an ordinary variable, i.e., when W3[x :� ψ1] is a λ -abstraction, a beta reduction
applies immediately and we are done; and when W3[x :� ψ1] is not a λ -abstraction, the
induction hypothesis is applied to σ ′′ and the bisimilar pair of configurations above,
yielding the desired results by transitivity. This completes the case when ξ is an advice
variable, and completes the proof of Lemma 46.

We now have an immediate corollary that is used to provide a suitable underlying bisim-
ilar configuration when given a ≈-related configuration.

Corollary 47. Given an extended substitution σ valid for Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/
N/�V, there exist Γ ′, �A′, �E ′, M′, �U ′, �B′, �F ′, N′, �V ′ and an extended substitution σ ′ valid
for Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼ �B′/ �F ′/N′/�V ′ such that:

1. [�A/�E /M/�U ]σ = [�A′/�E ′/M′/�U ′]σ ′
2. [Γ ;Δ � �B/ �F/N/�V ]σ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
3. One of the following holds:

(a) Reduction: Δ ,�A′/M′ −→.
(b) Value: The σ ′ stack has the form (�m,0) and M′ is a value.
(c) Call: Γ ′;Δ � �A′/�E ′/M′/�U ′ has a call transition on ξ ′ and ξ ′ �∈ dom(σ ′).
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Proof. Consider Γ ;Δ � �A/�E /M/�U . If Δ ,�A/M −→, the original extended substitution
and configurations satisfy requirements (1)–(3), and we are done. Otherwise, M is a
value or Γ ;Δ � �A/�E /M/�U has a call transition on some ξ . In the first case, the result
follows immediately by Lemma 43. In the second case, the result follows immediately
by Lemma 46. This completes the proof of Corollary 47.

Note that underlying reductions in (3)(a) of Corollary 47 can arise in three different
ways. This corresponds to the different ways in which ≈-related configurations may
have reductions.

Lemma 48 provides the core of the substitution result in Theorem 49. It shows that
a weak transition from one side of a ≈-related configuration is matched by a weak
transition from the other side, and the results are also ≈ related.

Lemma 48. Given an extended substitution σ valid for Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/
�V, if there is a weak κ(�= τ) transition to a configuration M:

[Γ ;Δ � �A/�E /M/�U ]σ κ−� Γ1;Δ1 � M

then there exists a configuration N such that:

[Γ ;Δ � �B/ �F/N/�V ]σ κ−� Γ1;Δ1 � N

and:
Γ1;Δ1 � M ≈ N

Proof. By induction on the length of the reduction sequence in [Γ ;Δ � �A/�E /M/�U ]σ
κ−� Γ1;Δ1 � M. Using Corollary 47, there exists an extended substitution σ ′ valid for

Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼ �B′/ �F ′/N′/�V ′ such that:

– [�A/�E /M/�U ]σ = [�A′/�E ′/M′/�U ′]σ ′
– [Γ ;Δ � �B/ �F/N/�V ]σ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
– One of the following holds:

• Reduction: Δ ,�A′/M′ −→.
• Value: The σ ′ stack has the form (�m,0) and M′ is a value.
• Call: Γ ′;Δ � �A′/�E ′/M′/�U ′ has a call transition on ξ ′ and ξ ′ �∈ dom(σ ′).

Then we have:

[Γ ′;Δ � �A′/�E ′/M′/�U ′]σ ′ = [Γ ;Δ � �A/�E /M/�U ]σ κ−� Γ1;Δ1 � M

We now consider the three possibilities given by Corollary 47: Reduction, Value, and
Call. The Reduction case uses the induction hypothesis, and the Value and Call cases
are the base cases where there are no reduction steps.

Case: Reduction. If Δ ,�A′/M′ −→ Δ ,�A′′/M′′ for some �A′′ and M′′, then by Lemma 42
we have:

[Γ ′;Δ � �A′/�E ′/M′/�U ′]σ ′ τ−→ [Γ ′;Δ � �A′′/�E ′/M′′/�U ′]σ ′

Moreover, reduction is deterministic, and the previous weak transition may be factored
as:

[Γ ′;Δ � �A′/�E ′/M′/�U ′]σ ′ τ−→ [Γ ′;Δ � �A′′/�E ′/M′′/�U ′]σ ′ κ−� Γ1;Δ1 � M
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Since reduction is contained in bisimilarity, we also deduce Γ ′;Δ � �A′′/�E ′/M′′/�U ′ ∼
�B′/ �F ′/N′/�V ′ from Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼ �B′/ �F ′/N′/�V ′. Thus, we may apply the
induction hypothesis to the strictly shorter reduction sequence:

[Γ ′;Δ � �A′′/�E ′/M′′/�U ′]σ ′ κ−� Γ1;Δ1 � M

This yields a configuration N such that:

[Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′ κ−� Γ1;Δ1 � N

and:
Γ1;Δ1 � M ≈ N

The result follows from the previous reduction sequence by transitivity:

[Γ ;Δ � �B/ �F/N/�V ]σ τ−→∗ [Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′ κ−� Γ1;Δ1 � N

This completes the Reduction case.

Case: Value. If the σ ′ stack has the form (�m,0) and M′ is a value, then there exist �C′
and V ′ such that Δ ,�B′/N′ −� Δ , �C′/V ′ and:

Γ ′;Δ � �A′/�E ′/M′/�U ′ ∼ �C′/ �F ′/V ′/�V ′

Next, define:

Γ ′′;Δ ′′ � �A′′/�E ′′/M′′/�U ′′ �= [Γ ′;Δ � �A′/�E ′/M′/�U ′]σ ′
Γ ′′;Δ ′′ � �B′′/ �F ′′/N′′/�V ′′ �= [Γ ′;Δ � �C′/ �F ′/V ′/�V ′]σ ′

Now the top of the stack of σ ′ is empty and M′, V ′ are values, so M′′ and N′′ are also
values. Therefore, κ must be a transition label with one of the following forms: ret φ ,
app φ , put, get i, fun f�p�φ , adv p�α (where all names other p are fresh).

Subcase: κ = ret φ . In this subcase, we must have the decomposition �E ′′ = (�E ′′′,E ′′′),
for some �E ′′′, E ′′′, so that:

Γ ′′;Δ ′′ � �A′′/�E ′′/M′′/�U ′′ ret φ−−−→ Γ ′′,φ ;Δ ′′ � �A′′/�E ′′′/E ′′′[φ ]/�U ′′ = Γ1;Δ1 � M

Similarly, we must also have �F ′′ = ( �F ′′′,F ′′′), for some �F ′′′, F ′′′, as well as the
following transition:

Γ ′′;Δ ′′ � �B′′/ �F ′′/N′′/�V ′′ ret φ−−−→ Γ ′′,φ ;Δ ′′ � �B′′/ �F ′′′/F ′′′[φ ]/�V ′′

We then define N �= (�B′′/ �F ′′′/F ′′′[φ ]/�V ′′). To establish Γ1;Δ1 � M ≈ N, we also use
ret φ transitions on the underlying bisimilar configurations. Since |�E ′′|= |(�E ′′′,E ′′′)|>
0, the stack of σ ′ must have the form ((�m,m),0), where m > 0 by definition, so |�E ′| =
sum(σ ′) > 0. Hence, �E ′ = ( �G 1,G1), for some �G 1, G1, and we have the transition:

Γ ′;Δ � �A′/�E ′/M′/�U ′ ret φ−−−→ Γ ′,φ ;Δ � �A′/ �G 1/G1[φ ]/�U ′
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By bisimilarity, we have �F ′ = ( �G 2,G2), for some �G 2, G2, and the transition:

Γ ′;Δ � �C′/ �F ′/V ′/�V ′ ret φ−−−→ Γ ′,φ ;Δ � �C′/ �G 2/G2[φ ]/�V ′

such that:
Γ ′;Δ � �A′/ �G 1/G1[φ ]/�U ′ ∼ �C′/ �G 2/G2[φ ]/�V ′

We obtain a new extended substitution σ ′′ from σ ′ by changing the stack from ((�m,m),
0) to (�m,m − 1) (recall that m > 0 so m − 1 ≥ 0). The extended substitution σ ′′ is
valid for the pair of bisimilar configurations above because sum(σ ′) = sum(σ ′′) + 1
and |�E ′| = | �G 1|+ 1, | �F ′| = | �G 2|+ 1. With the extended substitution σ ′′ we have:

M
= (�A′′/�E ′′′/E ′′′[φ ]/�U ′′)
= [�A′/ �G 1/G1[φ ]/�U ′]σ ′′
≈ [�C′/ �G 2/G2[φ ]/�V ′]σ ′′
= (�B′′/ �F ′′′/F ′′′[φ ]/�V ′′)
= N

Finally, by Lemma 42 and Δ ,�B′/N′ −� Δ ,�C′/V ′:

[Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
τ−→∗ [Γ ′;Δ � �C′/ �F ′/V ′/�V ′]σ ′
= Γ ′′;Δ � �B′′/ �F ′′/N′′/�V ′′

ret φ−−−→ Γ1;Δ1 � N

Together with Γ1;Δ1 � M ≈ N, this completes the subcase.

Subcases: κ ∈ {app φ ,put,get i, fun f�p�φ ,adv p�α}. In each of these subcases, sim-
ilar reasoning to that for the ret φ subcase above applies. The (simplifying) difference
is that these transitions leave the evaluation stack unchanged, and so σ ′′ �= σ ′.

We illustrate with the case for κ = (adv p � α). We have for p ∈ dn(Δ ′′) and
fresh α:

Γ ′′;Δ ′′ ��A′′/�E ′′/M′′/�U ′′ adv p�α−−−−−→Γ ′′,α;Δ ′′ ��A′′�adv p�α/�E ′′/M′′/�U ′′ = Γ1;Δ1 �M

Similarly, we define N �= (�B′′�adv p�α/ �F ′′/N′′/�V ′′), so:

Γ ′′;Δ ′′ � �B′′/ �F ′′/N′′/�V ′′ adv p�α−−−−−→Γ ′′,α;Δ ′′ � �B′′�adv p�α/ �F ′′/N′′/�V ′′ = Γ1;Δ1 � N

Since M′ and V ′ are values, and α is fresh, the same transition also applies to the
underlying configurations:

Γ ′;Δ � �A′/�E ′/M′/�U ′ adv p�α−−−−−→ Γ ′,α;Δ � �A′�adv p�α/�E ′/M′/�U ′
Γ ′;Δ � �C′/ �F ′/V ′/�V ′ adv p�α−−−−−→ Γ ′,α;Δ � �C′�adv p�α/ �F ′/V ′/�V ′

yielding bisimilar configurations:

Γ ′,α;Δ � �A′�adv p�α/�E ′/M′/�U ′ ∼ �C′�adv p�α/ �F ′/V ′/�V ′
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The substitution σ ′ preserves the advice variable declaration and the symbolic advice:

Γ1;Δ1 � M = Γ ′′,α;Δ ′′ � �A′′�adv p�α/�E ′′/M′′/�U ′′

= [Γ ′,α;Δ � �A′�adv p�α/�E ′/M′/�U ′]σ ′

Γ1;Δ1 � N = Γ ′′,α;Δ ′′ � �B′′�adv p�α/ �F ′′/N′′/�V ′′

= [Γ ′,α;Δ � �C′�adv p�α/ �F ′/V ′/�V ′]σ ′

Hence, Γ1;Δ1 � M ≈ N. Finally, by Lemma 42 and Δ ,�B′/N′ −� Δ ,�C′/V ′:

[Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′
τ−→∗ [Γ ′;Δ � �C′/ �F ′/V ′/�V ′]σ ′
= Γ ′′;Δ � �B′′/ �F ′′/N′′/�V ′′

adv p�α−−−−−→ Γ1;Δ1 � N

Together with Γ1;Δ1 � M ≈ N, this completes the subcase for κ = (adv p�α).
This completes the Value case.

Case: Call. Γ ′;Δ � �A′/�E ′/M′/�U ′ has a call transition on ξ ′ and ξ ′ �∈ dom(σ ′). The
subcases when κ = fcall φ and κ = acall α are very similar. We present the latter
subcase and omit the former.

Subcase: κ = acall α . Since there is a call transition on ξ ′ = α , we have M′ =
E ′[α�W1�W ′

1] and:

Γ ′;Δ � �A′/�E ′/M′/�U ′ acall α−−−−→ Γ ′;Δ � �A′/�E ′,E ′/W ′
1/�U ′,W1

By bisimilarity we have Δ ,�B′/N′ −� Δ ,�C′/L′, for L′ = F ′[α�W2�W ′
2], and:

Γ ′;Δ � �B′/ �F ′/N′/�V ′ acall α−−−−� Γ ′;Δ � �C′/ �F ′,F ′/W ′
2/�V

′,W2

such that:
Γ ′;Δ � �A′/�E ′,E ′/W ′

1/�U ′,W1 ∼ �C′/ �F ′,F ′/W ′
2/�V

′,W2

Now suppose that the stack of σ ′ is (�m,m) and that Zσ ′(�E ′) = (�E ′′,E ′′). We write (·)†

for the result of applying the σ ′ substitutions from �U ′ on a term, value list, evaluation
context list, and declarations list. We obtain the new extended substitution σ ′′ from σ ′
by modifying the stack from (�m,m) to ((�m,m + 1),0), so Zσ ′′(�E ′,E ′) = (�E ′′,E ′′[E ′],
[–]). The extended substitution σ ′′ is valid for the bisimilar configurations above. Now,
since α �∈ dom(σ ′), we have for some Γ1 (and with Δ1 = Δ †):

[Γ ′;Δ � �A′/�E ′/M′/�U ′]σ ′

= Γ1;Δ1 � �A′†/�E ′′†/E ′′[M′]†/�U ′†

= Γ1;Δ1 � �A′†/�E ′′†/E ′′[E ′[α�W1�W ′
1]]

†/�U ′†
acall α−−−−→ Γ1;Δ1 � �A′†/�E ′′†,(E ′′[E ′])†/W ′

1
†/(�U ′,W1)

†

= [Γ ′;Δ � �A′/�E ′,E ′/W ′
1/

�U ′,W1]σ ′′
= Γ1;Δ1 � M

Similarly, with the additional use of Lemma 42:

[Γ ′;Δ � �B′/ �F ′/N′/�V ′]σ ′ acall α−−−−� [Γ ′;Δ � �C′/ �F ′,F ′/W ′
2/�V

′,W2]σ ′′
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Thus, we set N �= [Γ ′;Δ � �C′/ �F ′,F ′/W ′
2/

�V ′,W2]σ ′′ and we know Γ1;Δ1 �M≈N from:

Γ ′;Δ � �A′/�E ′,E ′/W ′
1/�U ′,W1 ∼ �C′/ �F ′,F ′/W ′

2/�V
′,W2

This completes the acall α subcase, the Call case, and the proof of Lemma 48.

Finally, we state and prove the substitution result.

Theorem 49 (Substitution). The relation ≈ =
⋃

σ ≈σ is a bisimulation.

Proof. We show that ≈ is a bisimulation by coinduction. Consider Γ ;Δ � M ≈ N. For
the left-to-right direction, if there is a weak transition Γ ;Δ �M κ ′−� Γ ′;Δ ′ �M′ for κ ′ �=
τ , then, by Lemma 48, there exists a configuration N′ such that: Γ ;Δ �N κ ′−� Γ ′;Δ ′ �N′
and Γ ′;Δ ′ � M′ ≈ N′. For the right-to-left direction, since bisimilarity is symmetric, ≈
is also symmetric. Hence, if there is a weak transition Γ ;Δ � N κ ′′−� Γ ′′;Δ ′′ � N′′ for
κ ′′ �= τ , then, by Lemma 48 and two uses of symmetry, there exists a configuration M′′

such that: Γ ;Δ � M κ ′′−� Γ ′′;Δ ′′ � M′′ and Γ ′′;Δ ′′ � M′′ ≈ N′′.

B Identity Extension for Terms

This section sketches the proof of Lemma 34. We first sketch an auxiliary lemma con-
cerning the addition of a fresh public PCD and initial advice to bisimilar configurations.

Lemma 50. If Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V and p, α are fresh, then:
Γ ,α;Δ ,pcd p,adv p�α � �A/�E /M/�U ∼ �B/ �F/N/�V.

Proof. A straightforward bisimulation proof using Lemma 30. The bisimulation con-
tains not only the configuration with the addition of α and pcd p,adv p �α but also
functions and advice (at p) that can be added by the environment. The values result-
ing from looking up those functions are identical on both sides and state free, and thus
Lemma 30 allows them to be safely ignored. ��
For the proof sketch of Lemma 34 in the rest of this section, we assume that:

– Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V
– M,N are values.
– All names in fn(L) are bound in Γ ;Δ .
– Γ ;Δ � �A/�E /M/�U and Γ ;Δ � �B/ �F/N/�V are compatible.

The proof proceeds by structural induction on L.

Case x, x not bound in Δ . Already established in Lemma 30, which, among other
things, shows that bisimilarity is closed under replacement of the active term by a state
free term with free variables bound in Γ . The variable x is such a state-free term.

Case f , f bound in Δ . Γ ;Δ � �A/�E /M/�U and Γ ;Δ � �B/ �F/N/�V have no τ-reductions.
The configurations are compatible, so let i be the index of the value list that has f in

�U and �V . Using transition get i, we get:

Γ ;Δ � �A/�E /f/�U ∼ �B/ �F/f/�V
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Case U V. The induction hypothesis on U yields:

Γ ;Δ � �A/�E /U/�U ∼ �B/ �F/U/�V

and hence using put:

Γ ;Δ � �A/�E /U/�U,U ∼ �B/ �F/U/�V ,U

Using induction hypothesis on V yields:

Γ ;Δ � �A/�E /V/�U ,U ∼ �B/ �F/V/�V ,U

and hence using put

Γ ;Δ � �A/�E /V/�U ,U,V ∼ �B/ �F/V/�V ,U,V

The term x1 x2 is state free, so Lemma 30 yields:

Γ ,x1,x2;Δ � �A/�E /x1 x2/�U ,U,V ∼ �B/ �F/x1 x2/�V ,U,V

Consider substitution σ with stack ((1, . . . ,1),0) and partial function given by {xi �→
i+ |�U| | i = 1,2}. Using Theorem 49 yields the required result.

Case pcd p�L. Applying Lemma 50 to:

Γ ;Δ � �A/�E /U/�U ∼ �B/ �F/V/�V

gives:
Γ ,α;Δ ,pcd p,adv p�α � �A/�E /U/�U ∼ �B/ �F/V/�V

By the induction hypothesis on L:

Γ ,α;Δ ,pcd p,adv p�α � �A/�E /L/�U ∼ �B/ �F/L/�V

A bisimulation proof establishes:

Γ ,α;Δ � �A,pcd p,adv p�α/�E /L/�U ∼ �B,pcd p,adv p�α/ �F/L/�V

And, with W = λ z�λx�z x, a second bisimulation proof using Lemma 30 yields:

Γ ,α;Δ � �A,pcd p,adv p�α/�E /L/�U ,W ∼ �B,pcd p,adv p�α/ �F/L/�V ,W

Substitution of W for α using Theorem 49 gives:

Γ ;Δ � �A,pcd p,adv p�W/�E /L/�U ,W ∼ �B,pcd p,adv p�W/ �F/L/�V ,W

A final bisimulation proof shows:

Γ ;Δ � �A/�E /pcd p�L/�U ∼ �B/ �F/pcd p�L/�V
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Case fun f�p�U�L. Using induction on U we deduce that:

Γ ;Δ � �A/�E /U/�U ∼ �B/ �F/U/�V

and hence:
Γ ;Δ � �A/�E /U/�U,U ∼ �B/ �F/U/�V ,U

Using fun f�p�φ on both sides, then the induction hypothesis on L, we get:

Γ ,φ ;Δ , fun f�p�φ � �A/�E /L/�U ,U ∼ �B/ �F/L/�V ,U

Consider substitution σ with stack ((1, . . . ,1),0) and partial function given by {φ �→
1 + |�U |}. Using Theorem 49, and a simple bisimulation proof to move the function
declaration to the active term, yields the required result.

Case adv p �U�L. Similar to above, but using adv p � α transitions instead of
fun f�p�φ .

Case let x � L1�L2. For a fixed L2, define a bisimulation candidate R to be the least
relation containing bisimilarity and such that:

1. If Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V , then
Γ ;Δ � �A/�E /let x�M�L2/�U R �B/ �F/let x�N�L2/�V .

2. If Γ ;Δ � �A/�E ,E , �E ′/M/�U ∼ �B/ �F ,F , �F ′/N/�V , and |�E |= | �F |, |�E ′|= | �F ′|, then
Γ ;Δ � �A/�E , let x�E �L2, �E

′/M/�U R �B/ �F , let x�F�L2, �F ′/N/�V .

We sketch the argument that R is in fact a bisimulation.
For (1), if Δ ,�A/M −� Δ ,�A′/U , then we can deduce Δ ,�B/N −� Δ ,�B′/V , for some

�B′, V , and so we have both Δ ,�A/let x�M�L2 −� Δ ,�A′/L2[x :�U ] and Δ ,�B/let x�N�
L2 −� Δ ,�B′/L2[x :�V ]. We also have a bisimilarity Γ ;Δ � �A′/�E /U/�U ∼ �B′/ �F/V/�V ,
and via introduction of x (assumed fresh, otherwise rename bound variables) and cor-
responding put transitions, we have Γ ,x;Δ � �A′/�E /U/�U,U ∼ �B′/ �F/V/�V ,V . Apply-
ing the induction hypothesis for L2 yields Γ ,x;Δ � �A′/�E /L2/�U ,U ∼ �B′/ �F/L2/�V ,V .
Consider substitution σ with stack ((1, . . . ,1),0) and partial function given by {x �→
1 + |�U|}. Using Theorem 49 yields Γ ;Δ � �A′/�E /L2[x :�U ]/�U ∼ �B′/ �F/L2[x :�V ]/�V .

For (1), when a call transition with evaluation context E occurs during the reduction
of Δ ,�A/M, there is a corresponding call transition (possibly after some reduction) with
evaluation context F from Δ ,�B/N due to the underlying bisimilarity. To reflect, in R,
the corresponding call transitions that take place for Δ ,�A/let x�M�L2 and Δ ,�B/let x�
N�L2, (2) is used with evaluation contexts let x�E �L2 and let x�F�L2, respectively.

For (2), the interesting case is for ret φ transitions when �E ′ = �F ′ = (). In this case,
the let x�E �L2 and let x�F�L2 contexts are restored and (1) is used to continue.

Finally, once R is known to be a bisimulation, we note that the induction hypothesis
for L1 yields:

Γ ;Δ � �A/�E /L1/�U ∼ �B/ �F/L1/�V

and so:
Γ ;Δ � �A/�E /let x�L1�L2/�U R �B/ �F/let x�L1�L2/�V

Since R is a bisimulation, we conclude:

Γ ;Δ � �A/�E /let x�L1�L2/�U ∼ �B/ �F/let x�L1�L2/�V
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Case λx�L. Consider the relation that consists of all compatible pairs of configurations
(Γ ;Δ � �A/�E /M′/�U ,Γ ;Δ � �B/ �F/N′/�V) such that there exists:

Γ ;Δ � �A/�E /L1/�U ′ ∼ �B/ �F/L2/�V
′

such that:

– �U ′ (resp. �V ′) is obtained from �U (resp. �V ) by deleting all occurrences of λx�L.
– The possibilities for L1,L2 are as follows

• L1 = M′ and L2 = N′
• Both M′,N′ are values, and one of the following holds:

* L1 = L2 = λx�L

* L1 = L2 = L[x :� φ ]

The required result follows from showing that this relation is a bisimulation. The
straightforward proof to show this uses the induction hypothesis on L at all configura-
tions having L1 = L2 = L[x :� φ ] in the active term position.

Inclusion of identical values and identical evaluation contexts. Since the first time
when values from the value list (or contexts from the context list) can be moved into
active position is when the term in the active position has become a value, and hence
in the realm of applicability of Lemma 34, the addition of identical contexts and values
can be performed in slightly more general situations.

Corollary 51 (to Lemma 34). If:

– Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V
– All names in fn(U),E ,E ′ are bound in Γ ,Δ
– Γ ;Δ � �A/�E /M/�U and Γ ;Δ � �B/ �F/N/�V are compatible.

then:
Γ ;Δ � �A/E ′, �E ,E /M/�U ,U ∼ �B/E ′, �F ,E /N/�V ,U

Corollary 51 is used in the proof of Lemma 35 given in Appendix C.

C Inclusion of Identical Contexts

In this section, we prove Lemma 35. The proof relies on the following auxiliary lemma
that allows the addition of new common symbolic advice adv p � β before existing
common symbolic advice adv p�α .

Lemma 52. If:

– Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V
– Γ ;Δ � �A/�E /M/�U and Γ ;Δ � �B/ �F/N/�V are compatible.
– Δ = Δ1,adv p�α,Δ2.
– α does not occur in Δ1, Δ2, �A/�E /M/�U, �B/ �F/N/�V.
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Then, for fresh β :

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � �A/�E /M/�U ∼ �B/ �F/N/�V

Proof. By bisimulation. We first define a function {||} that replaces occurrences of
α�U� with α�β�U�� in terms, values, contexts, and declarations, i.e., {||} is the ho-
momorphic, capture-avoiding extension of:

{|α�U�|} = α�β�{|U |}��
Although {|α|} = α this fact is not needed in the sequel because of the restrictions on
occurrences of α . Consider �C and L such that all occurrences of α in �C and L have the
form α�U� and where there are no occurrences of β . Then the reduction:

Δ1,adv p�α,Δ2,�C/L −→ Δ1,adv p�α,Δ2,�C
′/L′

holds iff the following reduction holds:

Δ1,adv p�β ,adv p�α,Δ2,{|�C|}/{|L|} −→ Δ1,adv p�β ,adv p�α,Δ2,{|�C′|}/{|L′|}
The interesting case is for lookup of a function f defined at p, i.e., if the first lookup
yields W , then the second lookup yields {|W |}:

(Δ1,adv p�β ,adv p�α,Δ2,�C)(f ) = {|(Δ1,adv p�α,Δ2,�C)(f )|}
We also define a relation R between pairs of pairs of terms by:

R((M′,N′),(M,N)) ⇔ (M′ = M∧N′ = N)∨
(M and N are values∧M′ = β�M�∧N′ = β�N�)∨
(M and N are values∧M′ = β�M� φ ∧N′ = β�N� φ)

Now define the bisimulation candidate R by:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � ({|�A|}/{|�E |}/M′/�U ′) R ({|�B|}/{| �F |}/N′/�V ′)

whenever:

1. Γ ;Δ1,adv p�α,Δ2 � �A/�E /M/�U ∼ �B/ �F/N/�V
2. Γ ;Δ1,adv p �α,Δ2 � �A/�E /M/�U and Γ ;Δ1,adv p �α,Δ2 � �B/ �F/N/�V are com-

patible.
3. R((M′,N′),({|M|},{|N|})) and R((U ′

i ,V
′
i ),({|Ui|},{|Vi|})), for all 1 ≤ i ≤ |�U | = |�V |

= |�U ′| = |�V ′|.
4. β does not occur in Δ1, Δ2, �A/�E /M/�U , �B/ �F/N/�V , and α only occurs in the form

α�U�.

It can be verified that R is a bisimulation. We present the three nontrivial cases. For the
first case, consider M′ = G ′

1[α�W ′
1�W ′

2], so the only transition possible is:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |}/G ′
1[α�W ′

1�W ′
2]/�U ′ acall α−−−−→

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |},G ′
1/W ′

2/
�U ′,W ′

1
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Since G ′
1[α�W ′

1�W ′
2] is not a value, we know that G ′

1[α�W ′
1�W ′

2] = {|M|}, so M must
have form G1[α�W1� W2] and G ′

1 = {|G1|}, W ′
1 = β�{|W1|}�, and W ′

2 = {|W2|}. The
transition above is thus:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |}/{|G1|}[α�β�{|W1|}� {|W2|}�]/�U ′
acall α−−−−→
Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |},{|G1|}/{|W2|}/�U ′,β�{|W1|}�

In addition, we have the transition:

Γ ;Δ1,adv p�α,Δ2 � �A/�E /G1[α�W1�W2]/�U acall α−−−−→
Γ ;Δ1,adv p�α,Δ2 � �A/�E ,G1/W2/�U ,W1

By assumption:

Γ ;Δ1,adv p�α,Δ2 � �A/�E /G1[α�W1�W2]/�U ∼ �B/ �F/N/�V

Hence, there exist G2, W3, and W4 such that:

Γ ;Δ1,adv p�α,Δ2 � �B/ �F/N/�V acall α−−−−�
Γ ;Δ1,adv p�α,Δ2 � �B1/ �F ,G2/W4/�V ,W3

And:
Γ ;Δ1,adv p�α,Δ2 � �A/�E ,G1/W2/�U ,W1 ∼ �B1/ �F ,G2/W4/�V ,W3

The preservation of reduction by {||} yields:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�B|}/{| �F |}/{|N|}/�V ′ acall α−−−−�
Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�B1|}/{| �F |},{|G2|}/{|W4|}/�V ′,β�{|W3|}�

Finally, the fact that R allows introduction of β around top-level values establishes the
case:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � ({|�A|}/{|�E |},{|G1|}/{|W2|}/�U ′,β�{|W1|}�)
R({|�B1|}/{| �F |},{|G2|}/{|W4|}/�V ′,β�{|W3|}�)

For the second case, suppose M and N are values and M′ = β�{|M|}�, N′ = β�{|N|}�.
The nontrivial transition is:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |}/β�{|M|}�/�U ′ app φ−−−→
Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |}/β�{|M|}� φ/�U ′

There is a similar transition for N′ = β�{|N|}�, and the targets are in the bisimulation R
by definition of R. For the third case, suppose M and N are values and M′ = β�{|M|}� φ ,
N′ = β�{|N|}� φ . The only possible transition is:

Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |}/β�{|M|}� φ/�U ′ acall β−−−−→
Γ ,β ;Δ1,adv p�β ,adv p�α,Δ2 � {|�A|}/{|�E |}, [−]/φ/�U ′,{|M|}

There is a similar transition for N′ = β�{|N|}� φ . By assumption:

Γ ;Δ1,adv p�α,Δ2 � �A/�E /M/�U ∼ �B/ �F/N/�V
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Using the definition of bisimulation in conjunction with Corollary 51, we can deduce:

Γ ;Δ1,adv p�α,Δ2 � �A/�E , [−]/φ/�U ,M ∼ �B/ �F , [−]/φ/�V ,N

It follows that:

Γ ;Δ1,adv p�β ,adv p�α,Δ2 � ({|�A|}/{|�E |}, [−]/φ/�U ′,{|M|})
R({|�B|}/{| �F |}, [−]/φ/�V ′,{|N|})

Hence R is a bisimulation. The result follows immediately from the original hypothesis
preventing occurrences of α , and that {||} is the identity on such terms, values, contexts,
and declarations. ��

Proof of Lemma 35. For the proof of Lemma 35 in the rest of this section, a sim-
ple bisimulation proof allows us to assume without loss of generality that in Γ ;Δ �
�A/�E /��/�W , that is to be added to Γ ;Δ � ·/·/M/�U ∼ ·/·/N/�V , the declarations �A have
the form �A1,�A2,�A3 where (�q and�r may be bound in �A1 or Δ ):

�A1 = pcd �p
�A2 = fun�f��q� �W ′
�A3 = adv�r � �W ′′

Repeated use of Lemma 50 and a simple bisimulation to move primitive pointcuts to the
left of the common declaration list, allows �A1 to be added along with initial symbolic
advice �A4 = (adv �p��α) (where �α are fresh):

Γ ,�α;Δ ,�A1,�A4 � ·/·/M/�U ∼ ·/·/N/�V

Note that this pair of configurations is also compatible. The next steps of the proof
introduce symbolic function and advice bodies first, and then substitute their actual
bodies from �A2 and �A3. First, function definitions with fresh symbolic bodies can be
added using fun f�p �φ transitions since the primitive pointcuts �p are public, so with
�A5 = (fun�f��q��φ):

Γ ,�α ,�φ ;Δ ,�A1,�A4,�A5 � ·/·/M/�U ,�f ∼ ·/·/N/�V ,�f

Again the configurations are compatible. Next, we know there is no symbolic advice
in M, �U , N, �V ,�f , so for each adv r �W ′′ ∈ �A3 we successively apply Lemma 52 to the
rightmost (necessarily symbolic) advice declaration for r in either Δ (if pcd r ∈ Δ ) or
�A4 (if pcd r ∈ �A1). With variable renaming and declaration reordering, this yields fresh
�β and symbolic advice declarations �A6 = (adv�r ��β ) such that:

Γ ,�α ,�φ ,�β ;Δ ,�A1,�A4,�A5,�A6 � ·/·/M/�U ,�f ∼ ·/·/N/�V ,�f

Since the free names of �E , �W , �W ′, �W ′′ are bound in the context, we can use Corollary 51
to add values and evaluation contexts, yielding:

Γ ,�α,�φ ,�β ;Δ ,�A1,�A4,�A5,�A6 � ·/�E /M/�U ,�f , �W , �W ′, �W ′′ ∼ ·/�E /N/�V ,�f , �W , �W ′, �W ′′
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The symbolic function declarations �A5 and advice declarations �A6 can be moved to the
private declaration lists, simultaneously removing the�f value lists, by a straightforward
bisimulation proof to give the compatible bisimilar configurations:

Γ ,�α,�φ ,�β ;Δ ,�A1,�A4 � �A5,�A6/�E /M/�U , �W , �W ′, �W ′′ ∼ �A5,�A6/�E /N/�V , �W , �W ′, �W ′′

Then the real function and advice bodies �W ′ and �W ′′ can be substituted for �φ and �β ,
respectively, by Theorem 49 to recover �A2 and �A3:

Γ ,�α ;Δ ,�A1,�A4 � �A2,�A3/�E /M/�U , �W ∼ �A2,�A3/�E /N/�V , �W

Now �A1, �A4 can be moved to the private declaration lists by a bisimulation proof:

Γ ,�α ;Δ � �A1,�A4,�A2,�A3/�E /M/�U , �W ∼ �A1,�A4,�A2,�A3/�E /N/�V , �W

Using Corollary 51 to add |�A4| copies of λ z�z to both value lists, and Theorem 49 to
substitute those advice bodies for �α , we have:

Γ ;Δ � �A1,adv �p�λ z�z,�A2,�A3/�E /M/�U , �W ∼ �A1,adv �p�λ z�z,�A2,�A3/�E /N/�V , �W

However, it can be shown that the presence of advice declarations of the form adv pi �

λ z�z does not alter the result of advice lookup, so a bisimulation proof eliminates them
to give:

Γ ;Δ � �A1,�A2,�A3/�E /M/�U , �W ∼ �A1,�A2,�A3/�E /N/�V , �W

This completes the proof of Lemma 35.

D Bisimulation Is a Congruence

This section contains the proof of Theorem 36 and shows that bisimulation is a
congruence.

Application. Let U1 ∼U ′
1 and U2 ∼U ′

2. We need to show that U1 U2 ∼U ′
1 U ′

2. From:

Γ ;Δ � ·/·/U2/�g ∼ ·/·/U ′
2/�g

where �g consists of the function names declared in Δ , and fn(U1 U2)∪ fn(U ′
1 U ′

2) ⊆
Γ ∪dn(Δ), we deduce from put transitions that:

Γ ;Δ � ·/·/U2/�g,U2 ∼ ·/·/U ′
2/�g,U ′

2

From this, we deduce:

Γ ,x1,x2;Δ � ·/·/U2/�g,U2 ∼ ·/·/U ′
2/�g,U ′

2

and using Lemma 34:

Γ ,x1,x2;Δ � ·/·/x1 x2/�g,U2 ∼ ·/·/x1 x2/�g,U ′
2



126 R. Jagadeesan, C. Pitcher, and J. Riely

Now, using Corollary 51 with a simple bisimulation proof to reorder value lists yields:

Γ ,x1,x2;Δ � ·/·/x1 x2/�g,U ′
1,U2 ∼ ·/·/x1 x2/�g,U ′

1,U
′
2

Similarly, from Γ ;Δ � ·/·/U1/ ∼ ·/·/U ′
1/· we get:

Γ ,x1,x2;Δ � ·/·/x1 x2/�g,U1,U2 ∼ ·/·/x1 x2/�g,U ′
1,U2

Combining with transitivity:

Γ ,x1,x2;Δ � ·/·/x1 x2/�g,U1,U2 ∼ ·/·/x1 x2/�g,U ′
1,U

′
2

Consider the substitution σ with stack ((1, . . . ,1),0) and partial function given by {xi �→
|�g|+ i}. Theorem 49 yields:

Γ ;Δ � [·/·/x1 x2/�g,U1,U2]σ ∼ [·/·/x1 x2/�g,U ′
1,U

′
2]σ

and finishes the proof.

Function declaration. Let U ∼U ′ and M ∼ M′, where f occurs in neither U nor U ′. We
need to show that fun f�p�U�M ∼ fun f�p�U ′�M′.

We start with compatible LTS configurations:

Γ , f ;Δ � ·/·/U/�g ∼ ·/·/U ′/�g (1)

Γ , f ;Δ � ·/·/M/�g ∼ ·/·/M′/�g (2)

Using put transitions with Eq. 1, we derive:

Γ , f ;Δ � ·/·/U/�g,U ∼ ·/·/U ′/�g,U ′

Apply Lemma 34 with term M to get:

Γ , f ;Δ � ·/·/M/�g,U ∼ ·/·/M/�g,U ′

Next, adding the value U ′ to both sides of Eq. 2 using Corollary 51 yields:

Γ , f ;Δ � ·/·/M/�g,U ′ ∼ ·/·/M′/�g,U ′

By transitivity, we have:

Γ , f ;Δ � ·/·/M/�g,U ∼ ·/·/M′/�g,U ′

We can add a fresh variable φ :

Γ , f ,φ ;Δ � ·/·/M/�g,U ∼ ·/·/M′/�g,U ′

Moreover, M, M′, U , U ′ contain no symbolic advice by hypothesis, so Lemma 35 can
be used to add the function declaration fun f ′�p�φ (where f ′ is fresh) and the value f ′
to both sides:

Γ , f ,φ ;Δ � fun f ′�p�φ/·/M/�g,U, f ′ ∼ fun f ′�p�φ/·/M′/�g,U ′, f ′
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Using Theorem 49 with substitution σ with stack ((1, . . . ,1),0) and partial function
given by {φ �→ |�g|+ 1, f �→ |�g|+ 2} (using the fact that there are no occurrences of f in
U , U ′) gives:

Γ ;Δ � fun f ′�p�U/·/(M[f :� f ′])/�g ∼ fun f ′�p�U ′/·/(M′[f :� f ′])/�g

Since f ′ was fresh, there are no occurrences of f ′ in M or M′. Therefore, renaming the
bound variable f ′ to f yields:

Γ ;Δ � fun f�p�U/·/M/�g ∼ fun f�p�U ′/·/M′/�g

Now the function declarations can be moved into the term positions with a simple bisim-
ulation:

Γ ;Δ � ·/·/fun f�p�U�M/�g ∼ ·/·/fun f�p�U ′�M′/�g

Thus, we have:
fun f�p�U�M ∼ fun f�p�U ′�M′

Advice declaration. Let U ∼ U ′ and M ∼ M′. We need to show that adv p �U�M ∼
adv p�U ′�M′.

We start with compatible LTS configurations:

Γ ;Δ � ·/·/U/�g ∼ ·/·/U ′/�g

Γ ;Δ � ·/·/M/�g ∼ ·/·/M′/�g

where Δ contains the declaration pcd p. As in the function declaration case, we derive:

Γ ;Δ � ·/·/M/�g,U ∼ ·/·/M′/�g,U ′

Moreover, M, M′, U , U ′ contain no symbolic advice by hypothesis, so a fresh α can
be added to the context and Lemma 35 used to add the symbolic advice declaration
adv p�α to both sides:

Γ ,α;Δ � adv p�α/·/M/�g,U ∼ adv p�α/·/M′/�g,U ′

A simple bisimulation shows that the advice declarations can be moved into the terms:

Γ ,α;Δ � ·/·/adv p�α�M/�g,U ∼ ·/·/adv p�α�M′/�g,U ′

Finally, Theorem 49 with substitution σ with stack ((1, . . . ,1),0) and partial function
given by {α �→ |�g|+ 1} gives:

Γ ;Δ � ·/·/adv p�U�M/�g ∼ ·/·/adv p�U ′�M′/�g

Hence:
adv p�U�M ∼ adv p�U ′�M′
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Lambda abstraction. Given L ∼ L′, we wish to establish λx�L ∼ λx�L′. The proof that
the latter terms are bisimilar proceeds by a direct bisimulation argument.

Define a relation R between pairs of pairs of terms by:

R((M′,N′),(M,N)) ⇔ (M′ = M∧N′ = N)∨
(M and N are values∧M′ = λx�L∧N′ = λx�L′)∨

And define the bisimulation candidate R by:

Γ ;Δ � (�A/�E /M′/�U ′) R (�B/ �F/N′/�V ′)

whenever:

1. (fn(L)∪ fn(L′))\ {x} ⊆ Γ ∪dn(Δ).
2. Γ ;Δ � �A/�E /M/�U ∼ �B/ �F/N/�V
3. Γ ;Δ � �A/�E /M/�U and Γ ;Δ � �B/ �F/N/�V are compatible.
4. R((M′,N′),(M,N)) and R((U ′

i ,V
′
i ),(Ui,Vi)), for all 1 ≤ i ≤ |�U |= |�V |= |�U ′|= |�V ′|.

It can be verified that R is a bisimulation. The key case is for app φ transitions from:

Γ ;Δ � (�A/�E /λx�L/�U ′) R (�B/ �F/λx�L′/�V ′)

where we know that there exist values W , W ′ with compatible bisimilar configurations:

Γ ;Δ � �A/�E /W/�U ∼ �B/ �F/W ′/�V

such that R((U ′
i ,V

′
i ),(Ui,Vi)), for all 1 ≤ i ≤ |�U | = |�V | = |�U ′| = |�V ′|. We have to show

that:
Γ ;Δ � (�A/�E /(λx�L) φ/�U ′) R (�B/ �F/(λx�L′) φ/�V ′)

Applying Lemma 34 to Γ ;Δ � �A/�E /W/�U ∼ �B/ �F/W ′/�V and L[x :� φ ], we get:

Γ ;Δ � �A/�E /L[x :� φ ]/�U ∼ �B/ �F/L[x :� φ ]/�V (3)

In addition, by hypothesis and renaming variables, we have: L[x :� φ ]∼ L′[x :� φ ]. With
Γ and Δ as above, the definition of ∼ implies, for function names�g defined in Δ :

Γ ;Δ � ·/·/L[x :� φ ]/�g ∼ ·/·/L′[x :� φ ]/�g

Applying Lemma 35, to these compatible bisimilar configurations and the well-formed
LTS configuration Γ ;Δ � �B/ �F/��/�V , together with a simple bisimulation to remove
duplicated copies of �g, we have:

Γ ;Δ � �B/ �F/L[x :� φ ]/�V ∼ �B/ �F/L′[x :� φ ]/�V (4)

Combining Eqs. 3 and 4 by transitivity yields:

Γ ;Δ � �A/�E /L[x :� φ ]/�U ∼ �B/ �F/L′[x :� φ ]/�V

Hence:
Γ ;Δ � (�A/�E /L[x :� φ ]/�U ′) R (�B/ �F/L′[x :� φ ]/�V ′)

Finally, we have the reductions Δ ,�A/(λx�L) φ −→ Δ ,�A/L[x :� φ ] and Δ ,�A/(λx�L′) φ
−→ Δ ,�A/L′[x :� φ ], and reduction is deterministic, so:

Γ ;Δ � (�A/�E /(λx�L) φ/�U ′) R (�B/ �F/(λx�L′) φ/�V ′)

Thus, R is a bisimulation. It follows immediately that λx�L ∼ λx�L′.
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Let. Given L1 ∼ L′
1 and L2 ∼ L′

2, we must show that let x�L1�L2 ∼ let x�L′
1�L′

2. We
do this in two stages and then use the transitivity of ∼:

let x�L1�L2 ∼ let x�L′
1�L2

let x�L′
1�L2 ∼ let x�L′

1�L′
2

For the first stage, we use the bisimulation constructed in the Let case of the proof of
Lemma 34 to deduce let x�L1�L2 ∼ let x�L′

1�L2 from L1 ∼ L′
1.

For the second stage, a bisimulation proof establishes:

let x�L′
1�L2 ∼ let x�L′

1�(λx�L2) x

let x�L′
1�L′

2 ∼ let x�L′
1�(λx�L′

2) x

Now we know from the previous case that L2 ∼ L′
2 implies λx�L2 ∼ λx�L′

2. After saving
those values into the value lists, use Lemma 34 to add let x�L′

1�y x in the term position
in both configurations. Substitution (Theorem 49) establishes the relationship between
configurations with (let x�L′

1�y x)[y :� λx�L2] and (let x�L′
1�y x)[y :� λx�L′

2] in the
term positions.

Primitive pointcuts declaration. Given L ∼ L′, we must show that pcd p�L ∼ pcd p�
L′. From L ∼ L′ we know:

Γ ,α;Δ ,pcd p,adv p�α � ·/·/L/· ∼ ·/·/L′/·
A straightforward bisimulation shows that the declarations pcd p and adv p�α can be
moved to the front of the terms L and L′. Then the advice adv p�α can be eliminated
by substitution of λ z�λx�z x for α and a bisimulation proof, to leave:

Γ ;Δ � ·/·/pcd p�L/· ∼ ·/·/pcd p�L′/·

E Completeness

We show completeness (M ≡ N implies M ∼ N) by demonstrating the contrapositive
(M �∼ N implies M �≡ N). The proof is a definability argument: we show that for every
distinguishing trace, we can construct a context that witnesses the trace. This construc-
tion proceeds via an analysis of normal forms for such traces.

We first define normal traces and demonstrate that they are sufficient to distinguish
nonbisimilar terms. (Because the language is deterministic, bisimilarity coincides with
trace equivalence, which simplifies the argument.)

Let s, t range over traces of visible labels s, t ::= κ1, . . . ,κn, with empty trace ε .

Definition 53. A complete normal trace is a trace that is generable by the following
grammar over labels:

START ::= TERM�,put, CTXT�

TERM ::= fcall φ ,put,CTXT�, ret ψ | acall α,put,CTXT�, ret ψ
CTXT ::= get i,app φ ,TERM�,put | fun f�p�φ | adv p�α

A normal trace is a prefix of a complete normal trace. ��
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Proposition 54. If Γ ;Δ � M � N and Γ ;Δ � M s−� then Γ ;Δ � N s−�.

Proof By induction on the length of the trace. ��
Proposition 55. If Γ ;Δ � M �� N then for some normal trace s and label κ ∈ {fcall,
acall}: Γ ;Δ � M s−� κ−� and Γ ;Δ � N s−� κ−�−�.

Proof By an analysis of the commutativity of various labels and the resulting config-
urations. The essential observation is that the following categories of LTS states are
disjoint:

– Write Γ ;Δ � M ⇑ if Γ ;Δ � M −→ω .
– Write Γ ;Δ � M ⇓ TERM if Γ ;Δ � M κ−� for κ ∈ {fcall,acall}.
– Write Γ ;Δ � M ⇓ CTXT if Γ ;Δ � M κ−� for κ ∈ {put,get, ret,app, fun,adv}. ��
Completeness indicates that bisimilarity is not too fine a relation. If two terms are

not bisimilar, completeness requires that there be some context that distinguishes them.
Following Definition 5, the context must signal in one case, but not the other (by calling
the distinguished function signal). Recall that we write M� if M −� E [signal U ] for
some evaluation context E and value U .

Given a distinguishing trace t, we show how to create a context Ct [–], such that
Ct [Γ ;Δ � M] will signal exactly when Γ ;Δ � M can perform trace t. The inductive
argument requires that we define contexts of the form C

s
t [–], where actions s are com-

pleted and t have yet to be performed. We define the contexts to have the following
properties.

Proposition 56. Let s,κ ,t be a normal trace. If Γ ;Δ � M κ−� Γ ′;Δ ′ � M′ then:

C
s
κ ,t [Γ ;Δ � M] −� C

s,κ
t [Γ ′;Δ ′ � M′]

Proposition 57. Let s,κ be a normal trace, where κ ∈ {fcall,acall}, and let Γ ;Δ � M
be an LTS state in which signal does not occur. (a) If Γ ;Δ � M κ−� then C

s
κ [Γ ;Δ � M]�.

(b) If Γ ;Δ � M κ−�−� then ¬(Cs
κ [Γ ;Δ � M]�) .

Starting from Definition 20, completeness follows by induction on the length of trace s
from Proposition 55, using Propositions 56 and 57.

In rest of this appendix, we describe the strategy for building contexts to satisfy
the requirements of Propositions 56 and 57 (up to a structural equivalence that allows
reordering of unrelated declarations). Since we are concerned only with normal traces,
we adopt the following abbreviations,

getapp i φ �= get i,app φ
fcallput φ �= fcall φ ,put

acallput α �= acall α,put

with completed normal traces formed by the following grammar.

START ::= TERM�,put,CTXT�

TERM ::= fcallput φ ,CTXT�, ret ψ | acallput α, CTXT�, ret ψ
CTXT ::= getapp i φ ,TERM�,put | fun f�p�φ | adv p�α
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We divide labels into three groups: return labels (ret), call labels (fcallput and acallput),
and context labels (getapp, put, fun, and adv). A call label is unreturned in a normal
trace s if the matching ret is not included in s (due to truncation); similarly, a getapp
label is unreturned if the matching put is missing. A return label is uncalled in a suffix
of a normal trace if the matching call label is not included.

Recalling Definition 38, Z(�E )[M] is the term created by iteratively expanding the
context stack �E and filling the hole of the resulting context with M.

Fix s, t, Γ , Δ , and M = �A/�E /M/�U . We show how to build term

C
s
t [Γ ;Δ � M] = C [Z( �H )[M]].

We refer to as C as the ambient context, which is defined below. We refer to the list of
contexts �H as the stack. The stack �H alternates contexts from the term stack �E , which
is given by the state of the LTS, with those from a context stack �F , which is defined
below.

We need to only consider the case where |�E | is greater than the number of unre-
turned call labels in s which have returns in t; otherwise, the final return in t could not
occur (by the definition of the LTS). By construction, | �F | is the number of unreturned
calls in s.

We now define the ambient context C . The ambient context includes function decla-
rations for each name in Γ ∪dn(s,t) as well as the declarations Δ and �A. The ambient
context also includes the following mutable structures.

– The vector values keeps track of the stored values in a configuration. put(values, V )
pushes V onto the end of the vector; get(values, i) returns the ith value from the vec-
tor; these functions have standard encodings in the lambda calculus with references.
In C

-
-[�/�/�/U1, . . . ,Un], get(values, i) returns Ui.

– The reference callcount holds the number of call labels occurring in t; thus, the
value of 	callcount is 0 in C

s
ε [–].

The functions for Γ ∪dn(s, t) are unadvisable, i.e., declared at a fresh primitive pointcut.
(Symbolic advice and functions are treated similarly; to simplify the presentation, we
abuse notation to allow function declarations at symbolic advice names.) The basic
structure of a function body is a case structure on callcount.

fun φ �λx�callcount�put(values, x)�
case 	callcount of · · · default ⇒ Ω

fun α �λz�λx�callcount�put(values, z)�put(values, x)�
case 	callcount of · · · default ⇒ Ω

We generate additional cases for these function bodies by working through the trace s, t.
The context stack �F , mentioned above, contains “suffixes” of these function bodies that
have been called (in s) but have not yet returned (reading s forward); the context stack
includes the actions yet to be performed by these functions (generated by analyzing
t). The term stack �E includes the suffixes of functions interrupted by a call label; the
context stack �F includes the suffixes of functions interrupted by a getapp. Call labels
that do not have matching returns in s,t will end in Ω , both in the function declaration
and in the context stack.
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The last element of the trace is treated specially, as initialization. From
Proposition 57, we can assume that the last element is a call label. Suppose it is
fcallput φ (acallput is similar). Then, we add case “0 ⇒ signal ��” to the definition
of φ , and the definition becomes

fun φ �λx�callcount�put(values, x)�
case 	callcount of · · · 0 ⇒ signal ���default ⇒ Ω .

Now that we have initialized the function declaration, we can begin to generate new
cases by working backwards through s, t. We generate these using a stack of contexts,
called the generating stack. When we reach the beginning of t (before getting to the
end of s), we record the generating stack, which becomes the context stack �F . We
continue the backwards processing of s to generate the remaining function body cases;
this continued processing is performed only to guarantee that function bodies do not
change from C

s
κ ,t [–] to C

s,κ
t [–].

Initially the generating stack contains a context “[–]�Ω” for every unreturned call
label in s, t. Labels are processed as follows:

Return Labels: We push a new context “[–]�ψ” onto the generating stack for every
label ret ψ that we process.

Call Labels: We pop a context G and add a case “⇒ G [��]” to φ for every label
fcallput φ , and similarly for acallput α . The guard on the case is derived by count-
ing the number of call labels that have been processed.

Context Labels: As we process context labels, we replace the top context of the gener-
ating stack G with a new one, as dictated by the following table. (We use the name
y for the variable holding the return value from all calls to term functions; using a
single variable name simplifies code generation.)

getapp i φ let y� (get(values, i)) φ�G

put put(values, y)�G

fun f�p�φ fun f�p�φ�G

adv p�α adv p�α�G

This strategy generates contexts that satisfy the requirements. We elide further details.
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Editorial for Special Section on Dependencies and 
Interactions with Aspects 

As the use of aspects spreads, it is becoming common to weave multiple aspects into 
a system, treating different concerns. In this special section, we present three papers 
that deal with the issue of how aspects may interact, and in particular how they may 
interfere with each other. Aspect interactions can arise at all stages of software 
development, including requirements, design, and implementation. The issues 
somewhat differ at each stage, and in fact for interference itself several definitions are 
in use.  

Interference is sometimes connected to multiple aspects being applied at the same 
joinpoint, especially when a fixed ordering is not determined using program 
directives. In that case its detection coincides with determining whether there is 
overlap in the definitions of pointcuts for different aspects. Another possible 
definition, seen in the first paper described later, is that one aspect changes the set of 
joinpoints of another, either adding new ones or deleting ones that previously were in 
the system. Yet, another type of interference involves name and type conflicts in 
introductions of fields or methods from different aspects. All of these definitions have 
the advantage of not requiring specifications of the aspects. That is, it is not necessary 
to know the intended effect of the aspect.  

However, interference can also arise between aspects that do not have common 
joinpoints, or even common variables. If the intent of the aspects is known, then 
interference could be defined as a contradiction between the requirements of one 
aspect and those of another. This could arise already at the level of natural language 
requirements or when formalizing them into specifications in a logical formalism. The 
most general semantic definition of interference is that one aspect prevents another 
from fulfilling its specification, even though each aspect alone woven into a system is 
correct. Under this definition, even if the requirements of two aspects are in no way 
contradictory, their implementations may use and modify shared data in a way that 
one causes the other to operate incorrectly. 

This multitude of possible definitions is reflected in the papers in the special 
section, which each treat somewhat different types of interference. 

In the paper Detection and Resolution of Weaving Interactions by Günter Kniesel, 
weaving strategies are shown to influence interaction and interference among aspects, 
according to the definition above where joinpoints are added or removed. A 
methodology is given to detect problematic weavings, and to resolve interferences 
that arise from the weaving strategies themselves. Precise definitions of all of the 
terms are given, using a first-order logic notation. 

The paper AspectOptima: A Case Study on Aspect Dependencies and Interactions, 
by Jörg Kienzle, Ekwa Duala-Ekoko, and Samuel Gélineau, presents a collection of 
aspects that can be combined in various ways to form different implementations of a 
transaction manager. The possible conflicts and dependencies provide illuminating 
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examples of aspect interactions and interferences. These further demonstrate the 
possible interferences among aspects at the code level that can arise in realistic 
systems or libraries of aspects and are recommended as a testbed for approaches to 
aspect interference. 

Finally, the paper Formal Analysis of Aspect-Oriented Models, by Katharina 
Mehner, Mattia Monga, and Gabriele Taentzer, deals with interferences among 
aspects in the requirements stage, providing a formal analysis using a graph 
transformation analysis tool. Here, of course, only the requirements of each aspect are 
available, so the possible interferences relate to one preventing another from fulfilling 
its requirements.  

The articles presented here represent a subset of the work currently undertaken on 
aspects and interactions. However, this is a very young and dynamic field, with a 
number of most fundamental questions still waiting to be resolved. For instance, as 
noted above, the community in this field has not even yet agreed on the definition of 
an aspectual interference/interaction, or whether aspects do cause new types of 
interference and interaction at all. On the one hand, if, upon weaving, the aspect is 
dispersed in the modules of the extended paradigm (e.g., in OO classes), then 
reasoning used to resolve OO-specific interference should suffice to resolve also 
aspect interaction problems. On the other hand, since aspects provide additional 
abstraction and composition mechanisms, new reasoning elements reflecting the 
characteristics of aspects may be needed. This and other equally important questions 
must be discussed and resolved in order to establish better understanding and 
acceptance of AOSD. We hope to foster this discussion through this special section as 
well as with a series of workshops on Aspects, Dependencies, and Interactions held 
annually with the ECOOP conference. 

Finally, we would like to thank all of the authors and referees who have helped in 
the preparation of this special section. The following three papers provide a cross 
section of possible approaches to interference, and we hope that they will stimulate 
additional interest and work on this vital topic. 
 

Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, Arend Rensink 
Guest co-editors 

 



Detection and Resolution of Weaving
Interactions

Günter Kniesel

Universität Bonn
Institut für Informatik III
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Abstract. Jointly deployed aspects may interact with each other. While
some interactions might be intended, unintended interactions (interfer-
ences) can break a program. Detecting and resolving interferences is par-
ticularly hard if aspects are developed independently, without knowledge
of each other.

Work on interference detection has focused so far on the correct-
ness of weaved programs. In this paper, we focus on the correctness
and completeness of aspect weaving. We show that a large class of in-
terferences result from incorrect or incomplete weaving and present a
language-independent analysis of correctness and completeness of
weaving.

For certain types of interactions automatic resolution is possible. In
this case, our algorithm computes a “weaving schedule” that ensures
correctness and completeness of the weaving process. This is possible
without special purpose program annotations or formal specifications of
aspect semantics. Our technique can check weaving interferences inde-
pendently of any base program and is applicable to aspects that contain
implicit mutual dependencies in their implementation.

1 Introduction

“Power is nothing without control.”

Aspect-oriented software development (AOSD) is a powerful new paradigm for
separation of concerns. Filman and Friedman [1] characterize AOSD as a mod-
ularization concept with two desirable properties: quantification, the ability to
declare changes to be applied consistently to many places of a program, and
obliviousness, which means that the extended entities do not need to be
aware of being extended and do not need to provide special hooks for enabling
extension.

Obliviousness significantly eases unanticipated software evolution and is there-
fore highly desirable. On the flip side, it makes it hard to compose independently
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developed software modules without breaking implicit assumptions that they
make about their environment [2–4]. This dilemma is known in the component
community as the independent extensibility problem [5]. In the context of AOSD,
unfortunately, the problem is much harder since aspects can impact code much
more strongly than component composition does. Component composition must
only guarantee that the interaction of a component with its environment ad-
heres to the participating components’ expectations. Since aspects can change
the internal logic of existing components, they additionally risk breaking the
assumptions that a component makes about itself.

Different facets of this specific independent extensibility problem of AOSD
have been described as conflicts [6–8], feature interactions [9–11], aspect inter-
actions [6, 7, 9, 12–15], or aspect interferences [6, 16–20].1 The severity of the
problem is directly reflected in the considerable attention that it receives in
AOSD literature. Many authors consider aspect understandability and verifica-
tion as one of the main challenges of AOSD [6–9, 12–26].

1.1 Aims

In this paper, we address the problem of unanticipated joint deployment of
independently developed aspects. Our aim is to achieve a solution that

– does not compromise obliviousness in any way,
– is applicable to black box aspects, possibly provided by a third party,
– does not require programmers to annotate their programs or write semantic

specifications of program behavior (neither for the base nor for the aspect
parts),

– is independent of the aspect language and base language and
– is independent of the programs to which the analyzed aspects are applied.

Note that unanticipated composition of black box aspects means that lan-
guage constructs for specifying an explicit ordering of aspects are not sufficient.
Because of unanticipated composition neither of the jointly deployed aspects can
already contain such a specification. Because we want to be able to treat aspects
as black box components, we cannot assume that the programmers that deploy
the third-party aspects know enough of their internal working to determine such
an order. Thus, an automated analysis and computation of the “right” order is
required.

Independence of base programs means that the analysis should be able to
prove that a given set of aspects will not interfere on any base program and
otherwise should identify potential interactions or interferences. In addition, it
should be able to decide whether potential interactions actually occur on a par-
ticular base program by including that base program into the analysis. However,
the application of a technique that is dependent on the base program must not
be a prerequisite, but just an option for increasing the precision of the analysis.
1 There is no consistent use of these terms. Some authors distinguish them, others

use them interchangeably. We introduce the difference informally in Sect. 1.3 and
provide formal definitions as we elaborate our approach (see Definitions 5 and 23).
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1.2 Contributions

Our work achieves all the above aims in the context of weaving interactions and
interferences (as opposed to semantic interactions within woven programs). In
addition, it provides the following novel contributions to the state of the art:

Identification of weaving interactions and interferences. Weaving inter-
actions and weaving interferences are identified as basic problems that have
a wide ranging and often subtle impact on woven programs but have not
been recognized before.

Formal foundations. The difference between interactions and interferences is
explained by precise, formal definitions for both concepts.

Weaving interaction detection. An algorithm for the fully automated de-
tection of weaving interactions is presented.

Problem category diagnosis. Based on a graph representation of all detected
interactions, an analysis is presented that is able to identify subgraphs that
represent different problem categories and to determine the required treat-
ment.

Static resolution of weaving interactions. For acyclic parts of the interac-
tion graph, we present an algorithm for computing the “right” weaving order.

Dynamic resolution of weaving interactions. We show that some types of
cyclic subgraphs can be treated by “iterative weavers” that are able to per-
form at run time certain corrective actions.

Weaving interference detection and diagnosis. The proposed analysis de-
tects all interferences, that is, all cyclic subgraphs for which complete and
correct weaving is definitely not possible (conflict) or cannot be guaranteed
without additional information (ambiguous program). The algorithm diag-
noses and reports the precise cause of the interference.

Interleaved weaving. We show that problems that cannot be treated at the
level of aspects can be solved at a finer-grained level. We identify the proper
granularity for weaving and introduce the concept of interleaved aspect
weaving.

1.3 Approach Overview

We started from a declarative definition of weaving constraints that express what
we expect from a weaver: structurally complete and correct woven programs.
These guarantees are fundamental in the sense that any higher-level analysis of
semantic interferences is prone to fail or produce false diagnostics if applied to
a program that differs from the one that the programmer expects as a result of
weaving.

The definition of correct and complete weaving tells us what is expected
from a weaver, but not yet how to achieve it. To derive an algorithm that
enforces correctness and completeness or otherwise diagnoses the cause of er-
rors, it is necessary to understand the mechanisms that collaborate in producing
errors: weaving candidates, their selections, weaving interactions, and weaving
interferences.



138 G. Kniesel

Weaving candidates are aspect language elements at the granularity level of
individual introductions and advices that should be woven jointly. A discussion
and analysis at the level of complete aspects would be too coarse grained, failing
to explain the mechanics of weaving and to resolve problems that can be resolved
at the level of individual candidates.

Selections generalize the notion of selected joinpoints. An element of a selec-
tion is a tuple consisting of a selected joinpoint together with the context infor-
mation justifying its selection or is necessary for performing the proper action at
that joinpoint. This is necessary to capture also generic aspect languages, which
are able to perform different effects at different selected joinpoints, depending
on each joinpoint’s context [27]. In addition, it helps understand that modifying
any part of this information might result in not selecting this tuple any more or
in selecting another tuple. This is important for understanding how candidates
interact.

Weaving interactions arise if weaving of a candidate adds, deletes, or modifies
program elements thus modifying the (future or past) selections of other candi-
dates. The candidate that performs such actions is called the affecting candidate,
the one whose selection is changed (extended or reduced) is called the affected
candidate.

Weaving interferences arise if the candidate affected by a weaving interaction
is executed before the affecting one. This change of a past selection invalidates the
assumptions about the program made by the affected candidate. The invalidated
assumptions can be positive (that is, it was assumed that a particular program
element exists) or negative (if it was assumed that an element does not exist).

Both types of assumptions might have been the basis for performing or not
performing certain actions. Therefore, invalidated assumptions require corrective
actions to be performed for the affected candidates. If the selection is extended,
correction consists of applying their actions at the additional joinpoints. If the
selection is reduced, correction undoes actions of the affected candidate at the
corresponding joinpoints. A weaver that is able to perform corrective actions is
said to support repair of interferences.

Weaving errors are caused by weaving interferences that are not repaired. The
possible weaving errors are erroneous effects applied at the wrong joinpoints and
missing effects, not applied where they should have.

Unfortunately, existing weavers do not support repair. It is therefore essential
to prevent interferences. This is possible by detecting interactions in advance
and scheduling the execution of candidates such that affected ones are always
executed after all those that affect them.

Going beyond our novel problem analysis, we present algorithms for the de-
tection of weaving interactions, prevention of interferences by “proper” ordering
and if prevention is not possible, detection of weaving interferences and pre-
cise diagnosis of their causes. In this paper, we focus on their application to
static joinpoints, that is to joinpoints that do not refer to the run time state or
execution history of a program.
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Our approach is based on a representation of programs as logic fact bases and
a representation of weaving candidates as conditional transformations of fact
bases. Conditional transformations (CTs) are a declarative, logic-based, formal
model of program transformations [28, 29]. CTs can be implemented efficiently,
as demonstrated by their incarnation in JTransformer [30] and the Conditional
Transformation Core (CTC) system [31]. The implementation of the uniformly
generic [27, 32] aspect language LogicAJ [33, 34] demonstrates the effectiveness
of CTs as a formal model for aspects and target language for aspect compilation.

A CT consists of a precondition and a transformation that is executed on the
program elements for which the precondition is true. The assumptions of a CT
about the transformed program are captured by its precondition. From the pre-
condition and the transformation it is possible to derive the CTs postcondition,
the weakest formula that is guaranteed to be true after the execution of the CT.
It captures the state of the program after execution of the CT.

Our analysis leverages on this formal basis by showing that a comparison of
pre- and postconditions suffices to detect all potential or concrete weaving inter-
actions. Any modification of a CT’s assumptions by the effects of another CT
corresponds to a pair of unifiable literals2: one in the precondition of the affected
CT and one in the postcondition of the affecting CT. If both unifiable literals
are positive or if both are negative, the affecting CT’s postcondition contributes
to making the affected CT’s precondition true on some additional program ele-
ments; thus, it potentially triggers the second one. Otherwise, the violating CT’s
postcondition contributes to invalidating the violated CT’s precondition on some
program elements; thus, it potentially inhibits the second one.

The graph of triggering and inhibition relations provides a precise character-
ization of the interactions of different weaving candidates. We show that acyclic
graphs correspond to programs whose interactions can be resolved automatically,
preventing interferences. Graphs with cycles define different problem categories
depending on the structure of the cycle. The problems range from the need to
use weavers that support interference repair (repairable interference), to the need
for additional user input (incomplete program), and, finally, to the impossibility
to weave this set of aspects correctly and completely (conflict).

1.4 Paper Overview

In Sect. 2, we illustrate the problem of incorrect and incomplete weaving on
an example. In Sect. 3, we analyze the problem, providing informal definitions
of the main concepts (weaving correctness and completeness, interaction, and
interference) and sketching the two possible solutions (repair and prevention).
In Sect. 4, we introduce conditional program transformations, which are a logic-
based, formal model for weaving candidates. In Sect. 5, we show how to derive

2 A literal is a positive or negated predicate symbol applied to n argument terms. For
instance, if X and Y are logic variables, a and b are constants, and p is a predicate
of arity 2, then p(X,Y), p(a,X), ¬p(a, b) and ¬p(X,Y ) are examples of literals for p.
Unification makes two literals equal. For details see Appendix 11.
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their effects on a woven program (even if the program is yet unknown). In Sect.
6, we show how potential weaving interactions between CTs can be detected
independently of a base program to which they are applied. Section 7 describes
the construction of a graph of potential interactions and its use for determining
an interference-free weaving order or identifying interferences and diagnosing
their cause. This section also shows how iterative weaving can be used to treat
certain classes of cyclic weaving dependencies and how our analysis can construct
“weaving schedules” also for cyclic cases. Section 8 discusses the applicability
of our approach to two semantically equivalent weaving techniques: inlining and
use of forwarding methods. Merits, limitations, and extensions of the approach
are discussed in Sect. 9. The approach is compared to related work in Sect. 10.
Section 11 summarizes our results and concludes.

This paper is a revised version of [35]. In particular, we have added the sects.
3, 7, 8, 9, and 10 and have substantially extended all the others.

2 Problem

Because our work is the first that pinpoints weaving interferences, we must first
raise the awareness of the problem and explain how it differs from semantic
interferences. In this section, we do it on an example, motivating the need for
the deeper problem analysis in the next section.

2.1 An Example: Counters and Getters

This section presents an example adapted from [3] that illustrates how incom-
plete and incorrect weaving can occur in the case of joint application of inde-
pendently developed correct aspects.

Assume that a programmer is responsible for tuning an application. She might
want to identify hot spots by counting accesses to variables (or method invoca-
tions). This could be implemented by a Counter aspect that

– extends every class by a specific counter field for each field in that class and
– adds code to increment the associated counter prior to each direct read access

to a field that is not itself a counter field.

Assume further, that another programmer is responsible for ensuring thread
safety. She might decide that her task will be easier to fulfill if she could rely
on the invariant that every variable access is via accessor methods that can be
synchronized. She might thus decide to implement an Getter aspect that

– extends every class by access methods for each of its fields and
– replaces all direct accesses to these fields by calls of the respective access

methods (except for direct read accesses within the access methods them-
selves).

These are two simple aspects that would typically be developed independently
since thread safety and optimization are conceptually independent concerns. Still
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they often occur jointly in the same application. It would then be natural to
expect that the available aspects can be used together, even if deployed by a
programmer that did not develop any of them. This is the scenario that serves
as the running example in this paper.

2.2 Waving Interferences in AspectJ

AspectJ and other aspect languages that only support wildcards instead of ex-
plicit metavariables can only express instances of the counter-getter example
specialized on particular, statically known fields. This section demonstrates that
weaving problems occur even in such a restricted setting.

Figure 1a shows the base program used for testing. It consists only of the
class Base and does nothing except that it accesses the field f. The class Base is
the common joinpoint for the introductions, and the access to f is the common
joinpoint for the advices of the Counter and Getter aspect.

Figure 1b shows the Counter aspect. It introduces the counter f count for
the field f to the class Base and increments it before each access to f. A user of
this aspect would expect that the counter counts one field access in the above
program.

Figure 1c shows the Getter aspect. It introduces the getter method getf for
the field f to the class Base and enforces its use instead of direct accesses to
f. A user of this aspect would expect that its application does not change the
observable behavior of the base program or of any other aspect. Indeed, the
Getter aspect implements a refactoring, that is, a behavior-preserving change.

Considering the combination of the invariants that the two aspects should
enforce, the result of their joint application should be that

– each access to f is via the accessor method,
– the access to f in the accessor method is counted,
– the direct access that was replaced by the accessor method invocation is not

counted, since it does not exist anymore.

Accordingly, the counter should be incremented once, as part of the execution
of the getter method that is used for the only access to f.

Figure 1d shows that after weaving the aspects in the order Counter, Getter
with AspectJ 1.5.2, the counter wrongly counts twice: before the invocation of
the getter and in the invocation of the getter.

How could this happen? Obviously, the counter, which has been woven first,
has inserted a counting statement before the access to f in the run method of
class Base and in the method added by the Getter. Then the getter replaced
the field access in the run method by the invocation of the counter. However,
the already inserted counting statement was not removed, although the joinpoint
that justified its insertion does not exist anymore. This is a weaving interference.

Weaving interferences result from weaknesses of existing weavers, but not
from errors in the woven aspects or base programs. They manifest themselves as
weaving errors, that is, erroneous effects that appear at the wrong joinpoints or
missing effects that do not appear where they should have.
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a) The base program:

public class Base {
1 public static void main(String[] args) { new Base().run(); }

2 private int f = 0;

3 void run() {
4 int temp = f; // An access to f
5 }
6 }

b) The Counter aspect: c) The Getter aspect:

public aspect Counter {

1 public int Base.f count = 0 ;

2 // Count direct accesses to ’f’
3 before(Base t) :
4 get(int Base.f) && target(t) {
5 t.f count++;
6 System.out.println(
7 "Set f count to " + t.f count
8 );
9 }

10 }

public privileged aspect Getter {

1 public int Base.getf() {
2 System.out.println("In getter");
3 return f;
4 }

5 // Enforce use of getter
6 int around(Base t) :
7 get(int Base.f) && target(t) {
8 return t.getf();
9 }

10 }

d) Result of weaving order Counter,
Getter for AspectJ 1.5.2:

e) Result of weaving order Getter,
Counter for AspectJ 1.5.2:

Set f count to 1
1 In getter
2 Set f count to 2

In getter
1 Set f count to 1

f) Result of weaving order Counter,
Getter for AspectJ 1.5.3 to 1.6.3:

g) Result of weaving order Getter,
Counter for AspectJ 1.5.3 to 1.6.3:

Set f count to 1
1 In getter

In getter

Fig. 1. Weaving interferences in AspectJ: (d) Double counting, (e) Correct be-
havior: Counting in the getter only, (f) Counting at the wrong place but
not in the getter, (g) No counting at all. The full code of the figure can
be downloaded from http://roots.iai.uni-bonn.de/research/condor/downloads/pub/
Demo AJ WeavingInterference.zip

The erroneous effect illustrated in Fig. 1d for AspectJ 1.5.2 also appears in
Fig. 1f for AspectJ 1.5.3 to 1.6.3. All versions exhibit the same weaving error
if the two aspects are woven in the order Counter, Getter. Note that in the
scenarios where Getter is executed first (Fig. 1e, g), Counter is activated at a
time when the field access joinpoint in run has already disappeared. Thus, the
counting statement is not added in the wrong place.

The difference between AspectJ versions up to 1.5.2, an versions newer than
1.5.3 (the newest verified version was 1.6.3), is that the Counter’s advice is not
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applied to the getter method, irrespective of the aspect precedence (see Fig. 1f,
g). This appears to be a bug.3 Therefore, we disregard in the following version
1.5.3 and newer releases up to 1.6.3, which exhibit the same bug.

We conclude that weaving interferences occur in AspectJ, raising a few inter-
esting questions:

– Will interferences occur in any weaver or are they specific to AspectJ?
– How can we distinguish weaving interferences from plain bugs, such as the

one discussed above?
– Can we prove that the behavior illustrated in Fig. 1e is the “correct” one?
– Can we determine automatically that the order Counter, Getter leads to

problems whereas Counter, Getter yields the correct behavior?
– Would a more powerful language than AspectJ exhibit less or more interfer-

ences?

2.3 General Weaving Interferences

This section shows that on more complex examples additional weaving errors
can occur and that the problem of weaving errors is independent of AspectJ.

Instead of extending our example, we simply analyze it in its full generality
introduced in Sect. 2.1, that is we consider what happens if the Counter counts
and the Getter encapsulates all field accesses in a program. Corresponding ver-
sions of the two aspects can be expressed in uniformly generic aspect languages
[27, 32] such as LogicAJ [33, 34] or Sally [36]. These languages replace wildcards
by explicit metavariables that can be uniformly used in pointcuts, introduc-
tions, and advice as place holders for (almost) arbitrary base program elements.
Thus, they go beyond type genericity and can express heterogeneous context-
dependent actions (e.g., the creation of a different getter method for each field,
with field-dependent result type and body).

In order not to tie our discussion to a particular aspect language, we present
the generic aspects just via their effects, described informally in Sect. 2.1 and
illustrated in Fig. 2.

To show first that incorrect or incomplete weaving does not mean that the
aspects are buggy or that the weaving engine is buggy, the behavior of each
aspect when woven separately is illustrated in Fig. 2c, d. Part (c) shows the
result of weaving only the Counter aspect and (d) the result of weaving only the
Getter aspect. These figures show that each aspect is semantically correct and
that the weaver is correct and complete when weaving the aspects separately.
Still, the remainder of this section shows that weaving errors will occur if the
aspects are woven together.

Missing Effects. Figure 2c shows that weaving of Counter adds the definition
of b counter in line 3 and the access to b counter in line 5, which are both can-
didates for being encapsulated by Accessor. Similarly, Accessor adds a direct
3 Thanks to Andrew Clement for his quick confirmation that this is not an intended

behavior.
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(G) marks lines with effects of Getter
(C) marks lines with effects of Counter

(C,G) marks lines with cumulated effects
of weaving Counter and Getter (in this

order).
Underlining / boxing marks relevant

join points added / modified by the last
woven aspect.

1 public class C {
2 public B b = new B();

3 public void useB() {
4 b.doSth();
5 }
6 }

a) Legend b) Initial program

1 public class C {
2 public B b = new B();
3 (C) private int b cnt = 0;

4 public void useB() {
5 (C) b cnt = b cnt+1;
6 b.doSth();
7 }
8 }

1 public class C {
2 public B b = new B();

3 (G) public B getB() {
4 (G) return b;
5 (G) }

6 public void useB() {
7 (G) getB() .doSth();

8 }
9 }

c) Result of weaving Counter. d) Result of weaving Getter.

1 public class C {
2 public B b = new B();
3 (C) private int b cnt = 0;

4 (G) public int getB counter() {
5 (G) return b cnt;
6 (G) }

7 (G) public B getB() {
8 (G) return b;
9 (G) }

10 public void useB() {
11 (C,G) b cnt = getB counter() +1;

12 (G) getB() .doSth();

13 }
14 }

1 public class C {
2 public B b = new B();
3 (C) private int b cnt = 0;

4 (G) public B getB() {
5 (C) b cnt = b cnt+1;
6 (G) return b;
7 (G) }
8 public void useB() {
9 (G) getB() .doSth();

10 }
11 }

e) Result of weaving first Counter, then
Getter: Counting happens in line 11

(where there is no subsequent access to b)
and is missing in line 8.

f) Result of weaving first Getter, then
Counter: the access to the counter in line

5 is not encapsulated.

Fig. 2. Result of weaving generic versions of Counter and Getter either separately
(c, d) or jointly (e, f)
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access to b in line 4 of (d), which must be counted by Counter. Obviously, each
aspect adds joinpoints (marked by underlining) that are relevant for the other
one when the aspects are woven together.

The Fig. 2e, f presents the result of weaving Counter and Getter resp. Getter
and Counter, in this order. It shows that the aspect that comes second processes
the joinpoints from the original program and the joinpoints added by the first
aspect. In addition, the respective second aspect creates new joinpoints for the
first aspect. In (e), Getter adds the getB method that contains a yet uncounted
access to the variable b in line 8. In (f), Counter adds line 5, which contains a
not-yet encapsulated variable access.

Thus, the Fig. 2e, f demonstrates that, no matter in which order we apply
the two aspects in our example, we will miss some effects. The invariant that
all field accesses should be counted is violated in (e) and the invariant that all
field accesses should be through accessor methods is violated in (f). Depending
on the weaving order, either thread safety breaks optimization or optimization
compromises thread safety.

Erroneous Effects. Case (e) illustrates that the erroneous effect that occurs
in the AspectJ case also occurs with the generic version of the example: An
aspect effect (the counter increment in line 11) occurs in a place where there is
no suitable joinpoint any more. The increment was added by Counter based on
the existence of the access to the field b in line 6 of Fig. 2c. This field access was
removed in step (e) when Getter replaced it by an invocation of getB (see box
in line 12).

Scope of Weaving Interferences. So far we have demonstrated that weav-
ing interferences occur independent of the employed aspect language and affect
AspectJ-like languages as well as uniformly generic languages. Note that the
problems of missing effects and mutual dependencies also occur in nongeneric
languages. With respect to weaving interferences, the only differences between
generic and nongeneric aspect languages are that generic languages provide more
opportunities for interferences and their aspects contain less hard-coded infor-
mation about a particular base program, making interference detection that is
independent of any base program more difficult.

2.4 Malignity of Weaving Interferences

In general, weaving interferences can

– cause semantic problems,
– undermine nonfunctional properties,
– violate structural assumptions about a program in the sense that program

elements are missing or in the wrong place.

Semantic problems are the least harmful ones. They are most likely detected
first, for instance, by failed unit tests. However, the causes of such problems are
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difficult to trace since neither of the participating aspects can be blamed, each
being correct on its own.

If nonfunctional properties are undermined, the problem will most likely pass
unnoticed for a while. It might surface much later and in circumstances that
might make it very hard to trace the cause back to a missed or erroneous join-
point. For instance, program shown in Fig. 2f behaves correctly from a purely
functional point of view. Nevertheless, the incomplete weaving in line 5 of (f)
compromises the thread safety of the program, since the access to the b counter
field is not synchronized.

The third category is the nastiest because it only manifests itself indirectly,
during weaving of further aspects. For instance, in case (e), we get the intended
functional behavior and the intended thread safety. Still, this apparently correct
behavior is the result of the interplay of two different errors, which perfidiously
mask each other as long as we only observe the program’s behavior but not its
structure. The counting of variable accesses does not happen before the variable
is accessed (in the getB method), but before the getB method is invoked. This
unexpected structure will lead to subtle followup problems, if more aspects are
woven. For instance, a program optimization aspect might later be woven dy-
namically to optimize hot spots where the counters exceed a certain threshold.
It will partly fail because it will not find the expected sequences of counter in-
crement and counted variable access. Tracing the cause of this failure back to
an apparently correct prior weaving step will be extremely hard.

So far we have introduced the problem of weaving interferences and have
explained why their detection and prevention is an important challenge for aspect
analysis.

3 Problem Analysis

In this section, we analyze the problem in detail, explain the causes of interfer-
ences and sketch two solution approaches. We start by defining informally some
language-independent terms for the main aspect concepts relevant for our work.
Then, we introduce informally the notion of weaving constraints, weaving inter-
actions, weaving interferences, and conflicts and illustrate these concepts with
an example. Formal definitions of these notions are provided in Sect. 6 based on
the formal foundations introduced in Sect. 4.

3.1 Aspect Terminology

In the remainder of this paper, we use the following language-independent
terminology:

Aspect effect. An aspect effect is a set of changes that an aspect performs on
a program. Effects are the addition or deletion of program elements, e.g., the
addition of a method to a class or of a statement sequence within a method.

Element. We use the term element to refer to any element of a program.
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Aspect predicate. An aspect predicate is a predicate that selects elements.
Predicates correspond, for instance, to the pointcuts of AspectJ [37, 38] and
filter conditions of Composition Filters [39–41].

Joinpoint. A joinpoint is an element selected by an aspect predicate.
Effect specification. An aspect effect specification (AES) associates an aspect

predicate to an aspect effect such that the effect is executed on the joinpoints
selected by the predicate. Effect specifications correspond, for instance, to
advice and intertype declarations in AspectJ, filter types in Composition
Filters, or composition specifications in Hyper/J [42, 43].

The predicate of an AES can contain conditions that state that some element
must not exist. In such a case, we say that the effect is negatively guarded.
Otherwise, the effect is positively guarded.

We distinguish base-language elements and aspect-language elements. When
we talk about the base language, we mean the sum of base-language elements
(e.g., the pure Java part of AspectJ). Correspondingly, the aspect language is the
sum of aspect language elements (e.g., the filter specification, selection, and su-
perimposition constructs in Compose* [39]). Because it simplifies the discussion,
this distinction makes sense even in languages that do not make it explicitly,
such as Composition Filters [39], Classpects [44], and Sally [36].

3.2 Interactions and Interferences

Aspects can interact with base-level modules or with each other. In general,
aspect interactions are nothing bad. On the contrary, interactions are necessary.
Proper modularization of multiple concerns into multiple aspects depends on
the ability of aspects to interact with each other and with the base program to
establish the desired overall behavior.

If not detected and treated properly interactions can give rise to interferences.
Interferences are interactions that violate specified constraints. Depending on
the violated constraints, we distinguish the following classes of interferences:

Weaving interference. An aspect’s effects violate generic constraints, that de-
fine the semantics of aspect weaving.

Semantic interference. An aspect’s effects violate application-level constra-
ints.

This paper focuses on weaving interactions and weaving interferences, which
have not been addressed previously. Weaving interferences violate the generic
constraints that weaving must be correct and complete. They are fundamental
in the sense that analysis of semantic interferences depends on the assumption
that weaving constraints are not violated. Enforcement of weaving constraints
guarantees a structurally correct and complete woven programm, which in turn
is a prerequisite for any analysis of semantic correctness. If the possibility of
incorrect or incomplete weaving is ignored, semantic analyzes will wrongly report
semantic problems of the application that are actually problems of the employed
weaver.
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3.3 Weaving Constraints

In this section, correctness and completeness are defined first for a single AES
and then generalized to the case of multiple specifications, which can be part of
multiple, possibly independently developed, aspects. The separation allows us
to distinguish two causes for incorrectness or incompleteness: Wrong implemen-
tation of the weaver’s joinpoint matching and effect execution functions, on one
hand, and weaving interferences, on the other. We are only interested here in
the latter.

Weaving a Single AES. A weaver that must only weave individual AESs
must provide the following guarantees for any AES aes and any program P :

Local completeness. Weaving of aes must apply the effect of aes at all the
joinpoints matched in the original program by the predicate of aes. For
instance, code added by a before advice for the purpose of counting field
accesses must appear before each field access matched by the associated
pointcut.

Local correctness. Weaving of aes must apply the effect of aes only at the
joinpoints matched in the original program by the predicate of aes. For
instance, the effect of the counter advice must not be applied in places of
the woven program where there is no following field access that should be
counted.

Local incorrectness or incompleteness can only arise from a wrong imple-
mentation of one of the core functions of the weaver: either the evaluation of
predicates that selects joinpoints or the execution of effects must be incorrect.

In this paper, we are only interested in the cases when global weaving er-
rors occur although the weaver guarantees local correctness and completeness.
This scenario characterizes the state of the art of current aspect weavers.4 It
can occur as a consequence of aspect interactions if multiple AESs are woven
simultaneously.

Weaving Multiple AESs. In this section, we analyze the case when multiple
AESs are woven “simultaneously,” without a global ordering imposed by the
programmer. This is the typical scenario when independently developed black
box aspects whose joint use had not been anticipated are deployed together (see
Sect. 1.1).

If multiple AESs are woven “simultaneously” it is natural to require that
the expectations of each of them are not violated. Each was written with the
intention that it will be applied at all the matching joinpoints (completeness)
and only there (correctness). Because of the universal quantification property of
aspect predicates, this intention applies not just to the joinpoints of the origi-
nal program but also to joinpoints added, deleted, or modified by the weaving
4 In spite of occasional bug reports, we assume that existing weavers are locally correct

and complete.
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of other effect specifications. This is consistent with known formal models of
aspects. For instance, in the aspect sandbox [45], the need to apply an effect
specification also to the result of weaving other effect specifications is expressed
by defining weaving as a fix point operator.5 The definition of completeness and
correctness presented in this section makes this explicit.

The notation and terminology introduced in Definition 1 helps explaining the
relevant issues precisely.

Definition 1 (Candidates, original program, intermediate programs, woven pro-
gram). The set AES = {1, ..., n} of AESs that are to be woven jointly by a locally
correct and complete weaver is called the candidate set. Each element is a can-
didate.

P0 denotes the original program into which the candidates should be woven.
Pi, for i = 1, ..., n, denotes the intermediate result obtained after weaving the

candidate i into P0 or another intermediate result.
Π = {P0, P1, ...Pn} denotes the set of all intermediate results plus the original

program.
The woven program is the final result of weaving all the candidates. The woven

program is one of the intermediate results.

Note that we cannot say which of the intermediate results is the final result,
because we do not know the order in which the candidates are woven. In the
above definition, the indices only serve to distinguish the individual candidates
and programs—they do not express an order. It is the task of the weaver to
determine a (parallel or sequentially ordered) schedule for the execution of the
candidates that ensures correctness and completeness.

Depending on the chosen schedule for weaving AES, joinpoints that are se-
lected by a candidate, say x, can be removed by the effects of other candidates.
The nonremoved ones are called the surviving selections of x. They correspond
to the “grand total” of original joinpoints plus joinpoint additions and removals
during weaving that is relevant for x.

Definition 2 (Surviving selections). Let aes be a candidate (see Definition 1)
and AES′ = AES / {aes} be the rest of the candidates. The selections of aes
that survives AES′ in Π are the joinpoints selected by aes in any of the programs
Pi ∈ Π and not removed by the effect of any element of AES′. We denote them
by surviving(aes, AES′, Π).

The definition ignores joinpoint removal by the same effect specification. This
is because an effect specification can still be applied, even if it removes the
5 Some language mechanisms violate this principle, providing ways to exclude appli-

cation of aspects to joinpoints originating from advice, e.g., the adviceexecution

pointcut in AspectJ or the silent weaver in [13]. We think that these mechanisms
should be generally avoided, since hiding aspect effects from other aspects provokes
mutual constraint violations. For instance, if we hide the counter’s effects from the
accessor, counting will always undermine thread safety, since the assumption that
all accesses, including those to the counter, are via synchronized accessor methods
will necessarily be violated (Sects. 2 and 3).



150 G. Kniesel

joinpoint that triggered its application. Examples are around advices that do
not call proceed in AspectJ [37] and error filters in the Composition Filters
approach [39]. We come back to this issue when discussing “self-inhibition” in
Sect. 7.3.

With the above terminology, we can define that weaving is complete and
correct if and only if each candidate performs its effects precisely at its surviving
selections:

Definition 3 (Constraints: Global completeness and correctness). For any can-
didate set AES and any initial program P0 the effect of each aes ∈ A must be
applied

– at all the surviving selections of aes (global completeness) and
– only at the surviving selections of aes (global correctness).

The following examples illustrate the implications of the above constraints.

Example 1 (Global completeness). Assume that AES = {cnt, add acc}, cnt
counts accesses to the field f , and add acc adds a getter method for f .

Then global completeness requires that counting by cnt must be performed
also for the access to f in the body of the method introduced by add acc. The
access to f in the body of the method introduced by add acc is part of the
surviving selections of cnt because it is part of Pcnt, selected in Pcnt by cnt and
clearly not removed by any other candidate (since in this case the only other
candidate is add acc, which added the access).

Example 2 (Global correctness). Assume that AES = {cnt, use acc}, cnt is the
one from Example 1, and use acc replaces field accesses with accessor method
invocations.

Then, global correctness requires that counting of accesses to f by cnt must
not be performed in places where the accesses to f have been replaced with
accessor method invocations by use acc. The replaced accesses to f are not part
of the surviving selections of cnt because they have been removed by use acc.

Example 3 (Interplay of global correctness and completeness). Assume that AES
= {cnt, add acc, use acc} with cnt and add acc defined as in Example 1 and
use acc defined as in Example 2.

Then, global completeness requires that counting of accesses to f by cnt is
performed also in the body of the accessor method added by add acc. Global
correctness requires that counting must not be performed in places where the
accesses to f have been replaced with accessor method invocations by use acc.
Thus, the woven program will correctly count the accesses to f .

Note how correctness and completeness play together in to enforce a weaving
result whose behavior matches the intuitive expectations of the programmer.
Without correctness, we would accept that counting is performed not just in
the accessor methods but also at the place of their invocations, resulting in
twice as high counter values as correct. Without completeness, we would accept
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that counting is neither performed at the place of accessor method invocations
nor in the accessor methods; thus, not counting at all. If both, completeness and
correctness, would be violated counting would happen at the place of the accessor
invocations but not in the accessor methods. This would yield the expected
counter value but would produce a program that is structurally incorrect leading
to subtle follow-up problems (see Sect. 2.4).

Complete and correct weaving are necessary and sufficient conditions for a
complete and structurally correct woven programm, which in turn is a prerequi-
site for any analysis of semantic correctness.

3.4 Weaving Errors

The definition of correct and complete weaving6 tells us declaratively what we
expect from a weaver, but not how to achieve it. To derive an algorithm that
enforces correctness and completeness or otherwise diagnoses the cause of errors
we need in the first place define the errors and identify their causes.

There are two types of weaving errors corresponding to the two types of
violated weaving constraints: incorrect weaving results in erroneous effects and
incomplete weaving results in missing effects.

Definition 4 (Missing and erroneous effects). Let aes be a candidate (see Def-
inition 1).

A missing effect of aes is an effect of aes that has not been applied at one of
its surviving selections. An erroneous effect of aes is an effect of aes that has
been applied at a joinpoint that is not among the surviving selections of aes.

3.5 Weaving Interactions

Both kinds of errors are effects that had (or had not) been applied based on
assumptions that have been invalidated later. The invalidated assumptions are
either the existence or nonexistence of elements. The invalidating actions are
the subsequent removal or addition of these elements by the effect of another
candidate.

Please recall that the assumptions of a candidate are expressed by its predicate
and, more precisely, the set of successful substitutions for the variables of the
predicate.7 Thus, invalidated negative or positive assumptions correspond to
additional or lost successful substitutions. This is expressed by the notion of
triggering and inhibition introduced in this section. They capture the weaving
interactions that can occur between candidates.

Definition 5 (Triggering and Inhibition). The following two kinds of weaving
interactions can occur among any two jointly woven candidates a and b:
6 Henceforth, we always mean “globally correct,” etc., although we simply write “cor-

rect,” for brevity.
7 Successful substitutions are substitutions that make the predicate true (see also

Appendix 11).



152 G. Kniesel

Triggering. The candidate a triggers or enables b for a substitution θ if it adds,
removes, or modifies elements such that b’s predicate additionally succeeds
for at least one previously false substitution.

Inhibition. The candidate a inhibits or disables b for a substitution θ if it
adds, removes, or modifies elements such that b’s predicate becomes false for
at least one previously successful substitution.

If a triggers or inhibits b we say that a affects b and call a the affecting and b
the affected partner of the interaction.

Positively guarded effect specifications (Sect. 3.1) can be triggered by the ad-
dition of an element and inhibited by the deletion of an element. Negatively
guarded specifications can be triggered by the deletion of an element and inhib-
ited by the addition of an element.

Example 4 (Triggering). For the weaving candidates described in Example 1, we
can observe that add acc triggers cnt since it adds an element (an access to the
field f) that lets the predicate of cnt succeed for one additional substitution.

Let us additionally consider the use acc candidate from Example 2. A sensible
implementation of use acc will check in its predicate that the methods that it
should invoke exist. Thus, add acc also triggers use acc since it adds the methods
that are to be invoked by use acc thus making its predicate true.

Example 5 (Inhibition). For the weaving candidates described in Example 2,
we can conclude that use acc inhibits cnt since it removes elements (accesses
to the field f) invalidating the predicate of cnt for many previously successful
substitutions.

3.6 Weaving Interferences

Whether an interaction leads to an interference depends on the order of execution
of the two interacting candidates. An interference is an interaction whose affected
partner is executed before the affecting one.

Definition 6 (Interference: Missed trigger and missed inhibition). Let a affect b
for the substitution θ. An interference occurs if a is executed before b. If a triggers
b the interference is called a missed trigger. If a inhibits b the interference is
called a missed inhibition.

Example 6 (Missed Triggering). Continuing Examples 1 and 4, we can observe
that if cnt (the affected partner) is executed before add acc (the affecting part-
ner) then cnt will fail to notice the field access added by add acc. This will result
in a missing effect.

Example 7 (Missed Inhibition). Continuing Examples 2 and 5, we can observe
that if cnt (the affected partner) is executed before use acc (the affecting part-
ner) then cnt will count at all the field accesses that will subsequently be removed
by add acc. This will result in many erroneous effects.
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3.7 Prevention and Repair

So far we have analyzed the problem, identifying the constraints that we want
to enforce, the errors that occur if they are violated, and the possible causes
of the errors. Understanding that the causes of errors are missed interactions
due to “wrong” execution order of candidates immediately suggests two possible
solutions: prevention and repair.

Prevention. Prevention means determining in advance an order that ensures
correct and complete weaving. The main idea is to statically analyze the candi-
date set for potential triggering and inhibition relations and to order it such that
each candidate is executed after all the candidates whose effects could trigger or
inhibit it. Ordering is possible if the weaving interactions build an acyclic graph,
which corresponds to a partial order.

Definition 7 (Required Weaving Order). Let AES be a candidate set and let a
and b be any two elements of AES. The required weaving order is a partial order
on the candidates defined as:

a before b ≡ a triggers b ∨ a inhibits b

Theorem 1 (Prevention). Any total order that is consistent with the required
weaving order is guaranteed to ensure correctness and completeness of weaving.

Proof outline: Any total order that is consistent with the required weaving order
guarantees that each candidate x is executed after all the candidates whose effects
could trigger or inhibit it. Thus, the effects of all the triggers and inhibitions that
affect x are already part of the intermediate result on which x is executed. Hence,
x cannot miss any relevant triggers or inhibitions. Thus, weaving errors result-
ing from weaving interferences cannot occur. Since we assumed a locally correct
and complete weaver local errors will not occur either. Absence of any weaving
errors is equivalent to correctness and completeness. Thus, we have proved the
claim. ��
Example 8 (Prevention). Assume the scenario of Example 3 where {cnt, add acc,
use acc} are to be woven together. Because of their weaving interactions dis-
cussed in Examples 4 and 5, these candidates exhibit the following ordering
constraints:

– add acc before use acc because add acc triggers use acc,
– add acc before cnt because add acc triggers cnt,
– use acc before cnt because use acc inhibits cnt.

Indeed, if the candidates are woven in the order add acc, use acc, cnt global
completeness and correctness is preserved because use acc cannot miss the ac-
cessor method added by add acc and cnt can neither miss the field access in the
accessor method nor can it add erroneous counting statements (the field accesses
have already been removed by use acc).
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Unfortunately, the prevention approach is not applicable if the interaction graph
is cyclic, hence does not define an order. This scenario would occur if we extended
our example by considering that the counting of field accesses by cnt needs itself
a counter field and an access to this counter field. For completeness, this access
must also be performed via an accessor method. Thus, cnt triggers use acc.
Because use acc inhibits cnt we would have a cycle.

In cases when prevention of weaving interferences is not possible, there is still
the option to repair interferences.

Repair. Repair means employing a weaver that monitors the weaving process,
notices weaving interferences after the fact, and performs the following corrective
actions :

– Redo applies a previous candidate’s effect at joinpoint jp when elements
that trigger the candidate for jp are added or elements that inhibited the
candidate for jp are removed.

– Undo rolls back a previous candidate’s effect at joinpoint jp when elements
that inhibit that candidate for jp are added or elements that triggered that
candidate for jp are removed.

Note that in addition to the above systematic repair, some interferences can
be repaired accidentally by further interferences. This happens when other can-
didates remove or add again some of the triggering or inhibiting elements. This
would also be a legal repair, since only the surviving selections are relevant for
correctness and completeness (see Definitions 2 and 3). Accidental repair is cer-
tainly not a solution for interferences. However, proper understanding of this

Weaving
constraint

Complete-
ness

Correct-
ness

violates producesWeaving
errorr

Missing
effect

Erroneous
effect

Weaving
interference

Missed
triggering

Missed
inhibition

Effect precisely at 
surviving selections! 

Weaving
interaction

Triggering Inhibition

is a

Weaving
candidate

Aspect Effect
Specification

Predicate

Action

is a

to be jointly 
woven with

Weaving
interaction

affecting

affected

only at
surviving
selection

at all
surviving
selection

at non-
surviving
selection

missing at 
surviving
selection

missed
deletion of
selection

missed 
addition of  

selection

if not 
repaired

lost
selection

new
selection

Weaving order:
'affected', 'affecting'

Action of 'affecting' changes 
selection of 'affected'

Fig. 3. Summary of problem analysis: weaving constraints are violated by weaving
errors that arise when weaving interferences are not repaired. Weaving interferences
arise if the weaving candidate affected by a weaving interaction is executed before the
affecting one.
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issue helps to refine the precision of interference analysis by excluding accidental
repair scenarios from the set of reported interferences.

Prevention Versus Repair. Prevention enables use of a simple linear weaver
that applies every aspect effect only once to all the matching joinpoints. Thus,
prevention is compatible with existing weavers. Being a purely static approach,
prevention is also efficient since it does not require any additional run time
actions.

Repair requires extension of existing weavers into weavers that include moni-
toring and corrective actions. Because corrective actions might cascade, we call
these cascading weavers. Cascading weavers require a more complex infrastruc-
ture than linear ones. Their weaving process can take significantly longer or not
terminate at all in certain cases of cyclic interactions.

So prevention, if applicable, is clearly the preferred strategy. However, pre-
vention depends on the ability to compute in advance a weaving order based on
a static analysis of the weaving candidates that identifies their potential inter-
actions. Showing how this can be achieved is the main topic of the remainder of
this paper.

3.8 Summary

This section has presented a thorough problem analysis leading to a sketch of two
solution approaches, prevention and repair. A summary of the problem domain
is expressed as an UML diagram in Fig. 3.

We started from a declarative definition of weaving constraints that express
what we expect from a weaver: structurally complete and correct woven pro-
grams. Weaving errors are programs that violate these constraints. The possible
weaving errors are erroneous and missing effects. Their cause is the occurrence
of weaving interferences that had not been repaired. Weaving interferences arise
if the weaving candidate affected by a weaving interaction is executed before the
affecting one. Executing the interacting partners in the opposite order prevents
interferences and errors. Interactions are effects of one weaving candidate that
modify the selection of another candidate.

In addition to the problem analysis, this section provided an almost complete
overview of our approach at an informal level. The remainder of this paper can
provide the formal foundation for the analysis and fully automated solutions to
the addressed problems.

4 Conditional Transformations

In this section, we provide the formal foundations for the concepts introduced
in the previous section. Table 1 summarizes the correspondence of the informal
terms from Sect. 3 to their formal counterparts. We define a logic-based represen-
tation of programs and conditional transformations (CTs) on this representation,
explain the relation of CTs to aspects, and show how the example introduced
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Table 1. Correspondence of informal and formal terms

Informal Formal

Program element Logic term
Program Logic fact base

Aspect predicate Condition C

Joinpoint Substitution θ

Selection Substitution set Θ

Aspect effect Transformation T

Effect specification Conditional transformation CT ≡ C → T

Aspect Set of conditional transformations

informally in the previous section can be expressed with CTs. CTs are the basis
for the weaving interaction analysis in the next section. We only introduce here
the parts of the CT concept relevant for this paper. A complete treatment can
be found in [29] and [28]. CTs can be implemented efficiently, as demonstrated
by their incarnation in JTransformer [30] and the Conditional Transformation
Core (CTC) system [31]. The implementation of the uniformly generic [27, 32]
aspect language LogicAJ [33, 34, 46] demonstrates the effectiveness of CTs as a
formal model for aspects and target language for aspect compilation.

Aspect weaving is a transformation of programs. From the point of view
of weaving, an aspect can be interpreted as the specification of what is to be
transformed and how it should be transformed. This can be generalized as the
specification of conditions and transformations. Conditions correspond to aspect
predicates and transformations correspond to aspect effects (3.1).

4.1 Logic Language

Programs, conditions, and transformations are represented symbolically as atoms
and terms in a first-order logic language LL consisting of

– the predefined predicates exists(Elem) (for checking that a program element
exists), A = B (unification), and concat(A, B, AB) (concatenation) plus an
arbitrary set of programmer-defined, possibly recursive, predicates built on
the basis of the predefined ones,

– function symbols representing program element types,
– constants, and
– the logic symbols ∧,∨,¬, =, ∀, and ∃.8

4.2 Base Language: Logic Terms

A program element is represented by a variable-free logic term. The function
symbol represents the element type. The first argument of each term repre-
sents the identity of the element. All other arguments represent the values of its
8 For brevity of notation, we suppress quantifiers in formulas. Variables that occur in

positive atoms are universally quantified. Variables in negated atoms that do not
occur in any positive atom are existentially quantified.
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Table 2. Sample term representation of AST elements

class(id, name) A class named name
field(id, class, name, type) A field in class
method(id, class, name, type) A method in class
getfield(id, meth, field) An access to field in meth
call(id, meth,m2) Call of m2 in meth
incr(id, meth, field) An increment of field in meth
return(id,meth, expr) A return of expr in meth

components. Components can be either attributes or edges. An attribute has a
value from a primitive domain (boolean, numerical, or string). The value of an
edge is the identity of the element to which the edge points.

A particular choice of function symbols and constants defines a particular
base language.

Definition 8 (Base language). The base language Σ is the set of all possible
terms that can be built from the chosen function symbols and constants. In logic
programming terminology, this corresponds to the Herbrand universe of the logic
language (see Appendix 11).

Table 2 presents a selection of function symbols that we use in our subsequent
examples along with an informal explanation of the meaning of each term. Note,
however, that their meaning is relevant only for the translation of a concrete
language to our term representation and back again. During the analysis, the
terms are treated as symbolic information that is not interpreted; therefore, our
analysis is independent of the base language.

The representation in Table 2 is only meant to illustrate a principle. For
brevity, the used terms are strongly simplified. A complete term representation
of the abstract syntax tree (AST) for Java 1.4 is described on the JTransformer
website [30]. JTransformer is our Eclipse plugin for converting Java programs into
a logic-based representation, applying conditional transformations, converting
the result back to Java, and incrementally synchronizing the logic representation
with changes of the Java source.

4.3 Base Programs: Logic Facts

The following definition expresses that an original program is represented by a
set of ground (variable-free) atoms for the “exists” predicate.

Table 3. Logic fact representation of the program from Fig. 2b

exists(class(c1,‘C’)). // class C

exists(field(f1,c1,b,‘B’)). // B b;
exists(method(m1,c1,useB,void)). // void useB()

exists(return(ret1,m1,get1)). // return b

exists(getfield(get1,m1,f1)). // b
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Definition 9 (Program). Let LLcore be a version of the logic language LL de-
fined in Sect. 4.1 restricted to contain only the predicate “exists”. The set Π
of all programs for LL is the power set of the Herbrand base of LLcore (see
Appendix 11). A program is an element of Π.

A correct and complete representation contains the atom exists(n) if and only if
the program element represented by n exists in the original program. Henceforth,
we assume correct and complete representations.

Example 9 (Program as logic factbase). The factbase shown in Table 3 represents
the program from Fig. 2b using the terms defined in Table 2.

4.4 Pointcut Language: Conditions

Any condition about a program can be expressed by a condition about the
existence of particular elements and their properties. To express constraints on
the properties of elements, the condition language includes unification (A = B),
the test for nonunifiability (A �= B), and concatenation (concat(A, B, AB)).
The concat predicate is included to express naming patterns commonly used
in aspect languages. If the third argument is a free variable it is bound to the
concatenation of the first two. If the third argument is nonvariable then it is
split, binding the first two arguments to a suitable prefix and postfix. When
used with all arguments bound to nonvariable terms, the predicate simply works
as a check. Cond is the set of all formulas that can be built in the logic language
introduced in Sect. 4.2.

Formulas can contain variables, denoted by leading capital letters and italic
font, e.g., Class . The underscore, , represents anonymous variables. Different
occurrences of represent different variables. Constants start with a small letter
and are set in roman font, e.g., myField. If constants must start with a capital
letter they are enclosed in quotes, e.g., “MyClass”.

The following examples show how some of the conditions relevant for our
counter-getter example from Sect. 2 can be expressed in the mini-language de-
fined in Table 2.

Example 10 (Field without getter). Assuming that getter methods have the same
type as the respective field, are defined in the same class as the field, and the
name of the getter method is the name of the field with the added prefix “get,”
the following condition selects “all fields that have no getter method”:

exists(field( , C, N, T ))∧ concat(get, N, GetN)∧¬ exists(method( , C, GetN, T ))

The next two examples show how the condition language can be extended by
own predicates, enabling modularization and reuse of conditions.

Example 11 (Fields without counter). Assuming that counter fields are marked
by the suffix “ cnt” added to the name of the counted field, we can represent “all
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fields F that are not themselves counter fields and do not have a counter field”
by the predicate:

fieldWithoutCounter(F, C, CntN) ≡
exists(field(F, C, N, )) // F is a field named N

∧ ¬ concat( , cnt, N) // F is no counter
∧ concat(N, cnt, CntN) // CntN is the name of F ’s counter
∧ ¬ exists(field(Cnt, C, CntN, int)) // F has no counter

Example 12 (Uncounted field access). “All uncounted read accesses to a field
that has a counter field and is not itself a counter field” can be expressed as

uncountedFieldAccess(Acc, M, Cnt) ≡
exists(getfield(Acc, M, F )) // Method M contains an access
∧ exists(field(F, C, N, )) // ... to the field F of class C
∧ ¬ concat( , cnt, N) // F is no counter
∧ concat(N, cnt, CntN) // CntN is the name of F ’s counter
∧ exists(field(Cnt, C, CntN, int)) // Cnt is F ’s counter defined in C

∧ ¬ exists(incr( , M, Cnt)) // Cnt is not incremented in M

Conditions that contain variables can be true for different substitutions of
values for the variables. In the context of aspects, we are typically interested
in the set of all the substitutions that make a condition true with respect to a
particular program.

Definition 10 (Substitution Set, Success, Failure). We write P � CΘ to indi-
cate that Θ is the nonempty set of all most general substitutions for variables of
C that make C true in the interpretation induced by the program P . If there is
no such substitution, we write P �/ C and say that C failed in P . Otherwise, we
say that C is succeeded.

Note that the empty substitution set differs from the substitution set containing
only an empty substitution. The former indicates failure, the later indicates
success of a variable-free condition.

Example 13 (Substitutions). Let P be the program from Table 3. Then

– P � fieldWithoutCounter(F, C, N){[F ← f1, C ← c1, N ← b cnt]}
– P �/ uncountedFieldAccess(A, M, Cnt) because P contains no field that has

a counter field.

Note that in this example a condition has only one successful substitution and the
other one has none. Later we will see how additional substitutions will “appear”
as a result of interactions.



160 G. Kniesel

4.5 Aspect Effects: Transformations

Our transformation language consists of just four basic operations: adding an
element, deleting an element, creating a new element identity, and executing a
sequence of such operations9:

Definition 11 (Transformation Language). The following grammar defines the
set τ of all well-formed transformation expressions that can be built from Σ (see
Sect. 4.2) and the additional function symbols {add, del, newId, ◦}.

T → ET

| ET ◦ T

ET → add(elem) : elem ∈ Σ

| del(elem) : elem ∈ Σ

| newId(var) : var is a logic variable

The newId operation is used to create a new, unique identity (see Sect. 4.2)
for each new element added to a program. The transformation engine within an
aspect weaver can be defined concisely as the following interpreter that consumes
an expression of the transformation language and a program and produces a new
program.

Definition 12 (Transformation Engine). Let n, n1, n2 be variable-free atoms
from Σ (representing AST nodes), e1, e2 be transformation language expressions
from τ , and let P be a program. The transformation interpreter is defined by the
function transform:

transform : τ × Π −→ Π

transform(add(n), P ) =
{

P ∪ {exists(n)} : exists(n) /∈ P
P : otherwise

transform(del(n), P ) =
{

P \ {exists(n)} : exists(n) ∈ P
P : otherwise

transform(e2 ◦ e1, P ) = transform(e2, transform(e1, P ))

The constraint that the arguments to add and del must be variable free ensures
that the transformation does not produce incomplete programs.

4.6 Effect Specifications: Conditional Transformations

Definition 13 (Conditional transformation). A conditional transformation
CT ≡ c → t is a pair consisting of a formula C ∈ Cond and a transforma-
tion expression T ∈ τ such that every variable V from T that is not contained
in C is contained in a newId(V) operation. The formula C is called the precon-
dition of the CT.
9 For brevity, we omitted the replacement operation described in [47]. It can be rep-

resented by deletion and immediate addition.
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The constraint that all variables in T must be bound either by the condition or
a newId operation ensures that the transformation does not produce incomplete
programs.

The following two CTs implement the generic version of the Counter aspect
introduced in Sect. 2.

Example 14 (AddCnt: Add counter fields). The CT AddCnt extends every class
by a specific counter field for each field of that class that is not itself a counter
field and does not yet have a counter field. Its precondition is defined in Example
11. The transformation just adds the counter field with a new identity:

AddCnt(F, C, Cnt) ≡
fieldWithoutCounter(F, C, CntName)
−→
add(field(Cnt, C, CntName, int)) ◦ newId(Cnt)

Example 15 (UseCnt: Count field accesses). The CT UseCnt adds code to incre-
ment the associated counter before each read access to a field that is not itself a
counter field. The uncountedFieldAccess condition is defined in Example 12.

UseCnt(F, C, Cnt) ≡
uncountedFieldAccess(Acc, Meth, Cnt))
−→
add(incr(Inc, Meth, Cnt)) ◦ newId(Inc)

The process of determining joinpoints and applying the specified effects at every
joinpoint corresponds to the application of a conditional transformation to a
program.

Definition 14 (CT application). Application of a conditional transformation
CT ≡ c → t to a program P consists in

1. determining Θ, the set of all substitution for the variables in C that make C
true in P ,

2. applying each of the computed substitutions to T , and
3. executing all the resulting transformations on P .

Each computed substitution corresponds to a joinpoint together with all the con-
text information necessary to establish validity of the joinpoint and to perform
the associated transformation.

The introduction of logic-based conditional transformations given here suffices
for the purpose of this paper. For additional information see [28, 29].

4.7 Aspects: Sets of CTs

An aspect is just a set of conditional transformations. For instance, the Counter
aspect is implemented by the AddCnt and UseCnt CTs introduced above. The
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getter aspect also corresponds to a pair of CTs: GetI performs changes at
interface level (addition of method), and GetC performs changes at code level
(replacement of field access by method invocation). Their interaction-related
parts are shown in Fig. 4.

Sets of CTs can be used as an intermediate representation for the compi-
lation of aspects. For instance, in LogicAJ [33, 34] aspects are compiled to
CT sets reducing them to their essence that is relevant to a weaver. This ap-
proach has many advantages. First, it simplifies the language implementation
by separating the parsing and compilation concern from the weaving concern.
Second, it reduces weaving to the execution of a small and highly efficient
generic transformation engine. Last, but not least, the logic-based interme-
diate representation enables various analyzes and optimizations. In this pa-
per, we demonstrate one of them: the ability to determine weaving interac-
tions and derive automatically the order in which the weaver has to process
individual CTs.

A set of aspects is the union of the CT sets representing the individual aspects.
Hence, ordering CT’s from different aspects is the same as ordering the CTs of
one aspect. Both require to determine an order between the elements of a CT
set. This is the topic of Sect. 6.

5 Derivation of Effects

The CT formalism enables different static analyzes and operations on CTs. In
this section, we introduce the calculation of the cumulated effect of a CT, which
is the basis for the interaction detection presented in the next section.

The cumulated effect of a CT is the weakest formula that is guaranteed to
be true after successful application of the CT to any program P . “Weakest”
indicates that we disregard any conditions that were true when the execution of
the CT started. In the following, the calculation of a CT’s cummulated effect is
split into the following steps:

– calculation of the effect of an individual transformation,
– calculation of the invariant part of a precondition that is still true after a

transformation,
– calculation of the postcondition that is true after execution of a single trans-

formation in a state where a certain precondition was true before execution,
– calculation of the cumulated postcondition of a transformation sequence for

a given precondition, and
– calculation of the cumulated effect and cumulated postcondition of a CT.

5.1 Elementary Transformation Effects

The effect of adding an element to a program is existence of the element in the
transformed program. The effect of deletion is that the deleted element will not
exist in the transformed program.
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Definition 15 (Elementary Transformation Effect)

effect : T → Cond

effect(add(elem)) = exists(elem) : elem ∈ Σ

effect(delete(elem)) = ¬ exists(elem) : elem ∈ Σ

effect(newId( )) = true

Example 16 (Elementary Transformation Effect). For t1 = del(field(F, C, N,
int)), effect(t1) = ¬ exists(field(F, C, N, int)). For t2 = add(method(M, C, N,
void)), effect(t2) = exists(method(M, C, N, void)).

Individual transformation effects are independent of any program that existed
or any condition that was true before the transformation was executed. Given a
precondition c that was true before the execution of an elementary transforma-
tion t, we can calculate the invariant of c and t, that is a condition that expresses
what will still be true after execution of t.

5.2 Invariants

The invariant of c and t can be derived by considering that execution of t can
invalidate previously successful substitutions for some literals of c. The affected
literals are those that are unifiable with the negation of t’s effect. For each
affected literal l and effect e, the invalidated substitutions are instances of θ =
mgu(l,¬e), the most general unifier of l and ¬e (see Appendix 11). The invariant
can be obtained from c by adding the negation of the unifier conjunctively to
the respective affected literal. This addition acts as a filter that excludes the
invalidated substitutions.

Definition 16 (Invariant). Let c, c1, c2 denote conditions and let e be an ele-
mentary transformation effect.

invar : Cond × Cond −→ Cond

invar(c1 ∨ c2, e) = invar(c1, e) ∨ invar(c2, e) (1)
invar(c1 ∧ c2, e) = invar(c1, e) ∧ invar(c2, e) (2)
invar(c, e)) = c : ¬∃θ : θ = mgu(c,¬e) (3)
invar(c, e) = c ∧ ¬ eq(θ) : ∃θ : θ = mgu(c,¬e) (4)

The first two equations just express the recursive descent into every part of a
condition, down to the level of individual literals. The third equation says that
literals that are not unifiable with the negation of the effect remain unchanged.
The last equation adds the negation of the unifier θ conjunctively to the affected
literal. For this, the invocation eq(θ) represents the unifier as the conjunction of
unifications that it imposes. This is illustrated in Example 17 below.
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Definition 17 (Unifiability constraints). For each binding vi ← ti in θ, the
conjunction contains the constraint vi = tiθ:

eq(θ) =

⎧⎨
⎩

v1 = t1θ ∧ . . . ∧ vn = tnθ
: θ = {v1 ← t1, . . . , vn ← tn}

true : θ = {}

Example 17 (Invariant). Let t = del(field(Field, C, Name, int)), c = l1 ∧ l2,
l1 = exists(class(C, CN)) and l2 = exists(field(F, C, FN, T )). Then

e = effect(t) = ¬ exists(field(Field, C, Name, int))
mgu(l2,¬e)) = {F ← Field, FN ← Name, T ← int}
invar(c, e) = l1 ∧ l2 ∧ ¬ eq(mgu(l2,¬e)))

= l1 ∧ l2 ∧ ¬(F = Field ∧ FN = Name ∧ T = int)

This invariant expresses what will be true after the removal of one or many fields
about which we know statically only that their type is int and that they are from
the same class as the fields addressed by the precondition c. ��

5.3 Postconditions

The elementary effect expresses what will additionally be true after a transfor-
mation whereas the invariant expresses what will still be true, given that the
precondition c was true before. Taken together, the effect and the invariant cap-
ture the postcondition of the transformation, that is, everything we know to be
true after the transformation.

Definition 18 (Elementary Postcondition). Let t be an elementary transforma-
tion and c be a condition that must be true immediately before t is executed. The
postcondition of c and t is the disjunction of the invariant of c and t with the
effect of t.

postET : Cond × ET −→ Cond

postET (c, t) = effect(t) ∨ invar(c, effect(t))

The disjunction expresses that each part, elementary effect and invariant, pro-
vides an independent contribution to the elementary postcondition. If the in-
variant is false, the effect might still hold and vice versa.

For transformation sequences, we must additionally take into account that
later transformations are applied to the result of previous ones.

Definition 19 (Cumulated Postcondition). Let t be a transformation sequence
and c a condition that must be true immediately before t is executed. The cumu-
lated postcondition of t and c is the postcondition of every transformation in the
sequence applied to the postcondition of the preceding transformation.

post : Cond × T −→ Cond

post(c, t) =
{

post(post(c, t1), t2) : t = t2 ◦ t1
postET (c, t) : t ∈ ET
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5.4 Cumulated Effect of a CT

The above general definition of cumulated postconditions is the basis for defining
the cumulated effect and the cumulated postcondition of a CT.

Definition 20 (Cumulated Effect and Postcondition of a CT). Let CT ≡ c → t.
The cumulated postcondition of CT is the cumulated postcondition of T and C.
The cumulated effect of CT is the cumulated postcondition of T and true.

post(CT ) = post(C, T )
effect(CT ) = post(true, T )

The cumulated postcondition captures everything that we can derive about the
state of a program after application of a CT. In contrast, the cumulated effect
tells us the net effect of the CT’s transformation on the program, ignoring what
we can deduce from its precondition. This is important for interaction detection.
There, we need to deduce how a CT’s transformation influences other CTs.

Example 18 (Cumulated effect). Figure 4 illustrates all the CTs of our running
example, depicting each CT as a stack of light boxes representing its precon-
dition literals, above a stack of darker boxes representing its cumulated effect
literals. Note that, for readability, “true” literals representing the individual ef-
fects of “newId” operations have been eliminated from the cumulated effects.
Also, “concat(A, B, AB)” literals have been eliminated from the preconditions,
replacing every occurrence of AB by the function term A&B, denoting concate-
nation of A and B.

6 Interaction Detection

In this section, we introduce the notion of potential weaving interactions and
show how their detection can be performed on the basis of CTs and CT effects.
Our approach consists of a three-step process: creation of a graph of potential
weaving interaction, its analysis for conflicts and insufficient information, and
its topological sorting. If sorting is possible, it creates a weaving schedule that is
guaranteed to preserve correctness and completeness of weaving (see Sect. 3.7).

6.1 Potential Weaving Interactions

According to the informal definition of weaving interactions in Sect. 3, the de-
cision whether triggering or inhibition actually occurs can only be done with
respect to a particular base program. This is too specific if we aim to verify
whether a set of aspects is always interference free, no matter to which base
programs it is applied. Aiming at a solution that is independent of any base
program, we only check for potential triggering and inhibition.

Informally, CT1 ≡ c1 → t1 potentially interacts with CT2 ≡ c2 → t2 if
execution of CT1 on any program P might add, remove, or modify elements
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such that c2 additionally succeeds (or fails) for at least one previously false (or
true) substitution.

For instance, the “uncountedFieldAccess” predicate (Example 12) in the pre-
condition of UseCnt (Example 15) asks for field accesses and the existence of
related counter fields. Thus, addition of a field access can potentially trigger this
CT. However, if a suitable counter field is not added at the same time, we can-
not know whether the CT is really triggered. The required counter field might
or might not exist in the base program.

6.2 Deriving Potential Weaving Interactions from CTs

Detection of potential interactions requires one to determine whether a CT makes
literals of another CT true (or false) by looking only at the CTs themselves but
not at the programs they transform. This in turn requires the ability to determine
which literals in the precondition of a CT change their truth values depending
on whether another CT is executed before.10.

Given a set of CTs {CT1 ≡ c1 → t1, ..., CTn ≡ cn → tn} representing our
weaving candidates, the construction of the weaving interaction graph starts by
calculating the cumulated effect ei = effect(CTi) for each i = 1...n, as explained
in the previous section.

The positive literals in each cumulated effect ei correspond to joinpoints po-
tentially added by CTi to a program. The negative literals correspond to po-
tentially removed joinpoints. To derive potential triggering and inhibition, we
compare each ei with the preconditions of every candidate CT.

Definition 21 (Potential triggering). CT1 ≡ c1 → t1 potentially triggers CT2 ≡
c2 → t2 iff effect(CT1) contains literals that are unifiable with literals from c2:

triggerspot(CT1, CT2) ≡ ∃l1, l2 : l1 ∈ effect(CT1) ∧ l2 ∈ c2 ∧ ∃mgu(l1, l2)

Definition 22 (Potential inhibition). CT1 ≡ c1 → t1 potentially inhibits CT2 ≡
c2 → t2 iff effect(CT1) contains literals whose negation is unifiable with literals
from c2:

inhibitspot(CT1, CT2) ≡ ∃l1, l2 : l1 ∈ effect(t1) ∧ l2 ∈ c2 ∧ ∃mgu(¬l1, l2)

In the above two definitions, containment of a literal in a condition is to be
understood recursively, that is, as if all literals for programmer-defined predicates
had been replaced by their definitions.

Example 19 (Potential weaving interactions). Continuing Example 18, Fig. 4
illustrates the interactions detected by applying the above principles to our run-
ning example. The arcs represent the detected triggering (solid) and inhibition
(dashed) interactions.

Note that a CT can potentially trigger and inhibit another one in multiple ways
because of multiple pairs of unifiable literals.
10 More precisely, we need to determine for which literals of the affected CT we get

new substitutions (or lose substitutions)
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7 Interference Prevention and Interference Diagnosis

In this section, we show how the information gained from the previous interaction
analysis is used to diagnose weavability or different problem scenarios.

Diagnosis is performed on the basis of a weaving interaction graph. It contains
a node for each candidate CT, labeled with the name of the CT, and an edge
for each detected interaction, labeled with the action (addition or removal) and
element that causes the interaction. Figure 5a shows a the weaving interaction
graph created for the example from Fig. 4.

AddGetter(C,F,Getter)

UseGetter(C,F,Getter)

AddCntC,F,Cnt)

UseCnt(C,F,Cnt)

incr(_,M,Cnt)

field(Cnt,C,N&cnt,int) 

field(F,C,N,_) N _&cnt

getfield(Acc,M,F)field(F,C,FN,T)

getfield(Get,Meth,F)

method(Getter,C,get&FN)

field(Cnt,C,N&cnt,int) 

field(F,C,N,_) N _&cntfield(F,C,N,T)

method(_,C,get&N,T)

method(Meth,_,MN,_)

MN get&FN

field(Cnt,C,N&cnt,int)method(Getter,C,get&N,T)

getfield(Get,Getter,F)

getfield(Get,Meth,F)

call(Get,Meth,Getter)

add( incr(Inc,M,Cnt) ) 

Fig. 4. Potential interactions for our running example: triggering (solid arcs) and in-
hibition (dashed arcs). Light boxes are condition literals, gray ones are effect literals.
A&B denotes concatenation of A and B.

7.1 Interference Prevention

First of all, it is checked whether the interaction graph contains cycles. If not,
the graph is sorted topologically. Figure 5b shows the total order computed
for our example by topological sorting. Topological sorting yields an order that
guarantees correctness and completeness of weaving (see Sect. 3.7). In particular,
it guarantees that

– missed joinpoints (incomplete weaving) cannot occur because all CTs that
potentially trigger others are executed before the triggered ones and

– erroneous joinpoints (incorrect weaving) cannot occur because all CTs that
potentially inhibit others are executed before the inhibited ones.
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a) Complete graph b) Topologically sorted

Fig. 5. Weaving interaction graph. (a) The symbol ‘+’ indicates addition and the
symbol ‘–’ indicates deletion of an element. (b) The numbers 1–4 indicate the order
determined by topological sorting, which guarantees complete and correct weaving.

7.2 Resolution of Semantic Interferences and Optimization

In our example, the weaving interaction graph defines a total order. However, in
general, the graph can define a partial order and topological sorting can produce
various total orders that respect the partial order. This enables use of additional
criteria for determining a total order. In particular, the CTs that have no mutual
order dependency can be ordered or parallelized based on

– criteria for resolving semantic interferences between them and
– criteria for optimization of weaving performance.

This provides a well-defined interface for integrating weaving interaction analysis
with approaches for semantic interaction analysis and optimization.

7.3 Treatment of Cyclic Interactions

If the interaction graph contains cycles, we classify them according to the types
of edges that they contain as inhibition cycles, triggering cycles, or mixed cycles:

Inhibition cycle. An inhibition cycle is a cycle consisting only of inhibition
edges. A self-inhibition cycle is an inhibition cycle of length 1 (that is an
inhibition edge whose source and target node are the same).

Triggering cycle. A triggering cycle is a cycle consisting only of triggering
edges. If all arcs of a triggering cycle have the same kind of transformation
literal as a source—in the expanded view of the dependency graph (Fig. 4)—
we say that the cycle is monotonic. Otherwise, the triggering cycle is mixed.
A monotonic cycle is additive (destructive) if the source literals of all arcs
of the cycle are addition (deletion) operations.
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Mixed cycle. A mixed cycle contains inhibition and triggering edges.

Each of these categories have different implications for the weaving process.
They are explained below and summarized in Fig. 6. Figure 7 summarizes how
the graph structure influences the required type of weaver.

Self-Inhibition. Self-inhibition indicates that the respective CT is written such
that after it has been applied once to a certain joinpoint, it will not be applicable
again to the same joinpoint. For instance, the self-inhibition of the UseGetterCT
results from the fact that it adds a getter method but checks in its precondition
that a getter method does not exist already. Since every CT should be written
such that it is not infinitely applicable at the same joinpoint, self-inhibition is a
highly desirable property of every node. If a node has no self-inhibition edge, we
can issue a warning asking the programmer to add a suitable check to the CTs
precondition.

Long Inhibition Cycles. Inhibition cycles of length greater than one indicate
a conflict. No matter with which CT in the cycle we start we will get a different
weaving result. Long inhibition cycles result from an improper joint use of mul-
tiple CTs. They are plain errors that are reported to the programmer asking to
change the definition of some CTs or their composition.

However, change of individual CTs/aspects might not be possible, for instance,
because they are from a third party. Change of the composition might not be
possible because no functionally similar CTs are available that could be used
instead of the ones that cause problems. If the conflict cannot be resolved, the
program is not weavable.

Mixed Cycles and Mixed Triggering Cycles. This category corresponds to
cases where we cannot make any prediction. Iterative weaving with a weaver that
is able to react to the type of events in the cycle can or cannot terminate, and

CT2CT1

Inhibition

CT2CT1 ?

Mixed

CT2CT2 ∞
+

+

Triggering (addititive)

CT2CT2

_

_

Triggering (destructive)

? CT2CT2

_

+

Triggering (mixed)

∞
?

Conflict

Unique fixpoint

Possibly nonterminating

Ask user

Fig. 6. Types of cycles and their implications on weavability. The ‘+’ and ‘–’ sym-
bols attached to the arcs indicate the type or operations (additions or deletions) that
produce the respective dependency.
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Fig. 7. Implication of graph structure on required type of weaver (the symbols are the
same as in the previous figure

if it terminates, it can or cannot lead to a unique fixpoint that is independent
of where in the cycle we started.

In contrast to the previous category which indicated plain errors, these cases
indicate incomplete programs in the sense that there is not enough information
available to decide automatically. This is where research on language features
that provide additional information to the analysis will be useful.

Monotonic Triggering Cycles. Provided that the weaving process termi-
nates, an additive triggering cycle is guaranteed to produce a unique fixpoint,
no matter where in the cycle we started. A destructive triggering cycle addi-
tionally guarantees termination. Both cycles can be woven using a monotonic
iterative weaver that is able to react to the respective events.

These cases are neither errors nor do they require additional specifications in
the program. However, they require a more powerful weaving infrastructure.

Cycle Summary. The categorization introduced above enables precise defini-
tion of interferences and conflicts in contrast to “normal” interactions.

Definition 23 (Interference, Conflict, Incomplete Program, Weavability). An
interference is any cycle in the interaction graph. A conflict is an inhibition cycle
of length greater than 1. A set of candidate CTs is incomplete if its interaction
graph contains a mixed cycle or a mixed triggering cycle. It is unweavable if it
is incomplete or the graph contains a conflict.

7.4 Creation of a Weaving Schedule

The analysis of the interaction graph stops if it detects that the candidate set is
unweavable. Because the interaction graph contains information about the action
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and element that caused each of its arcs, it is possible to issue error messages
that contain precise diagnostics about the source of a problem.

For weavable graphs, the algorithms proceeds to the creation of a weaving
schedule. A weaving schedule specifies the execution of a candidate CT set. It
can specify that certain candidates may be executed in parallel and that others
must be executed in a specific order. In addition, it can specify that certain parts
of the schedule must be iterated.

The weaving schedule is constructed in three steps. First, monotonic trigger-
ing cycles are collapsed into a single metanode. The metanode is annotated with
the type of the cycle, which determines the type of the required weaving algo-
rithm. Then, self-inhibition cycles are deleted from from the graph since they
have no meaning at weave time. Finally, the resulting acyclic graph that possi-
bly encapsulates monotonic cycles in its metanodes is sorted topologically. This
step can exploit additional criteria for scheduling CTs with no mutual order
dependencies (see Sect. 7.2).

If the graph contains no metanodes, topological sorting yields an order that
guarantees correctness and completeness of weaving even when executed with
a simple, linear weaver. If the graph contains metanodes, the weaving sched-
ule interleaves the overall linear weaving with iterative weaving phases for the
metanodes.

Note that in contrast to the ad-hoc interference repair via complex cascad-
ing weavers (Sect. 3.7), our analysis enables weaving of monotonic triggering
cycles on a much simpler infrastructure. Iterative weavers only need the ability
to repeatedly execute a portion of the schedule. They do not need the expen-
sive monitoring infrastructure for detecting interferences at run time, since they
work based on the statically created schedule. Furthermore, they do not need
the ability to undo preceding actions, since, for monotonic cycles, iteration is
guaranteed to achieve a fix point. Last, but not least, they are much more ef-
ficient since any action that they perform in addition to what a linear weaver
would do are confined to the subgraph that really needs them.

8 Inlining Versus Forwarding

In this section, we discuss how our analysis applies to the two semantically
equivalent implementation techniques that can be used by a weaver: inlining
and forwarding (Fig. 8). Inlining is the weaving technique analyzed so far. It
performs each aspect action precisely a the related joinpoint. For instance, line
1 of Fig. 8c shows how the body of the advice from Fig. 8b is inlined before the
joinpoint in line 2.

In contrast, forwarding is based on weaver-generated methods that encap-
sulate the advice body and the joinpoint to which the advice is applied. All
occurrences of the original joinpoint are replaced by invocations of the respec-
tive forwarding method. Figure 8d shows in line 1 and 3 the invocations of
the forwarding method defined in lines 4–6. Forwarding is used extensively in
AspectJ.
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a) Excerpt of base program: b) Advice:

1 temp = f;
2 ...
3 if (m().f == null) ...

1 before(Base t) : get(int *.f) {
2 while (...) ...;
3 }

c) Inlined weaving: d) Forwarding-based weaving:

1 while (...) ...; // inlining
2 temp = f;
3 ...
4 if (m().f == null) ... // inapplicable

1 temp = $$$ forw f();
2 ...
3 if (m().$$$ forw f() == null) ...

4 int $$$ forw f() {
5 while (...) ...; // advice body
6 return f; // join point f
7 }

Fig. 8. Weaving by inlining or forwarding

Note how both weaving techniques implement the same semantics. They differ,
however, in their applicability, run time efficiency, and their influence on the
occurrence of weaving interferences.

The main argument for inlining is efficiency. Pawlak [48] compares the runtime
of AspectJ forwarding methods and inlined advice for a normal method call, for
code accessing the static joinpoint context, and for code accessing the dynamic
joinpoint context. He demonstrates that inlined weaving needs 83 ms in all three
cases whereas AspectJ’s forwarding needs 193, 787, and 8570 ms, respectively.

The main argument for forwarding is generality. It is also applicable in cases
where joinpoints occur in expressions, e.g., in the condition of an if statement,
as in line 3 of Fig. 8d. Inlining is not applicable in such a case (see line 4 of
Fig. 8c) because in most object-oriented languages (e.g., Java, Eiffel, C++) it
is not possible to inline a statement into an expression. Note that here it is not
possible to inline the while statement before the if statement because that would
also be before the invocation of the method m in line 4.

Joinpoint Addition Versus Erasure. Regarding weaving interactions, each
block of inlined code can add further joinpoints to the program. The implications
of such added joinpoints have been analyzed in the previous sections.

Forwarding does not add joinpoints because the weaver-generated forwarding
method names are chosen so that they cannot be matched by pointcuts, as indi-
cated in Fig. 8d by the $$$ prefix of the forwarding method. Thus, forwarding
effectively erases all matching joinpoint occurrences in the base program and in
other forwarding methods, replacing them by a single joinpoint occurrence in
the body of the forwarding method (Line 6 of Fig. 8d. Therefore, we say that
forwarding has the effect of joinpoint erasure.

Joinpoint erasure has an interesting implication on weaving interactions. Be-
cause it prevents addition of new joinpoints, it prevents occurrence of interfer-
ences based on triggering cycles. Indeed, missed triggering does not occur in
AspectJ, which uses forwarding extensively. Unfortunately, forwarding does not
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a) An aspect: b) Another aspect:

1 aspect BeforeF1 {
2 before(Base t) : get(int *.f1) {
3 f2;
4 }
5 }

1 aspect BeforeF2 {
2 before(Base t) : get(int *.f2) {
3 f1;
4 }
5 }

c) BeforeF1 woven with forwarding: d) BeforeF2 woven with forwarding:

1 int $$$ forw f1() {
2 $$$ forw f2();
3 return f1;
4 }

1 int $$$ forw f2() {
2 $$$ forw f1();
3 return f2;
4 }

Fig. 9. StackOverflowExceptions can be caused by forwarding cycles spanning an ar-
bitrary number of advices and aspects

really solve the problem of missed triggering, it just promotes weaving problems
to run time problems. This is easy to see if we assume that the advice body
in line 2 of Fig. 8b contains itself an access to f. Then, line 5 of Fig. 8d would
contain a recursive invocation of $$$ forw f. Thus, after an apparently successful
weaving, the woven program’s execution would lead to an infinite loop.

Indeed, this problem is known and documented in the “5. Pitfalls” section
of the AspectJ programming guide, claiming that “the overall problem is advice
applying within its own body. There’s a simple idiom to use if you ever have
a worry that your advice might apply in this way. Just restrict the advice from
occurring in joinpoints caused within the aspect.” Unfortunately, this explanation
attempt is wrong. The problem is not restricted to advice applying within its
own body. Figure 9 shows that it can be caused by forwarding cycles spanning
two advices in two aspects which is straightforward to generalize to an arbitrary
number of advices and aspects. For uniformly generic aspects that do not encode
hardwired assumptions about the base program [27], scenarios as the one in
Fig. 9a and b are common.

For this general problem, the suggestion to “restrict the advice from occurring
in joinpoints caused within the aspect” does not help. To prevent the loop manu-
ally by extending the pointcut specification, one would need to know in advance
all the other aspects contributing to the cycle. This typically is not the case in
the open-world scenario that was the motivation for our work (see Sect. 1.1).
Even if we operated in a closed world, a manual extension of pointcuts would
be a very bad idea since it would hardwire previously implicit dependencies into
the aspect code and would make the pointcuts unreadable, hiding their true
meaning behind much noise.

Conclusion. We can conclude that forwarding trades a potentially nontermi-
nating weaving process caused by cyclic triggering for a definitely nonterminating
invocation loop at run time caused by mutually recursive method invocations.
Therefore, our analysis is equally essential for systems that perform forwarding
as it is for systems based on inlining.
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Our technique guarantees completeness and correctness of weaving (Theorem
1), not just for forwarding based but also for inlined weaving. Thus, it opens the
door for weavers that produce interference-free, yet highly efficient, inlined aspect
code. For forwarding based weavers, our analysis helps to statically diagnose and
reject forwarding cycles that will lead to infinite recursion at run time. Detection
of inhibitions is essential for forwarding based weaving too because forwarding
does not prevent erroneous joinpoints, as demonstrated by the experiment with
AspectJ reported in Sect. 2.2.

9 Discussion and Extensions

In this section, we discuss

– the concept of interleaved aspect weaving enabled by our approach,
– its implications on language design,
– the relation of our work to the often-discussed “shared joinpoint” problem,

and
– the complexity and experimental run time performance of our approach.

9.1 Interleaved Aspect Weaving

An analysis at the level of aspects would have failed in our example. As shown
in Fig. 10a, aspect-level analysis yields an unweavable cyclic dependency. If we
insist on executing all CTs of one aspect together, the example cannot be woven
correctly and completely.

The only solution in this case is interleaved weaving of the aspects, illustrated
in Fig. 10b. The weaving order computed by our approach starts with a CT of
the counter (AddCounter), continues with the two CTs of the getter, and, finally,
executes the second part of the counter (UseCounter).

9.2 Language Design Issues

The need for interleaved aspect weaving shows that analysis at aspect level is too
coarse grained. The same is true for any language elements that define ordering

p
CountGetter

p
CountGetter

12

3 4

a) Granularity = Aspect . . b) Granularity = CT

Fig. 10. Analysis at aspect level yields unweavable cyclic dependencies. Analysis at CT
level resolves the cycle, producing an order that interleaves CTs from different aspects.
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of aspects. Instead, we need explicit language elements that define ordering of
AESs, that is, of CTs.

To limit the assumptions that aspects make about other aspects, the ordering
statements must only define relative ordering of two AESs. The sum of such
relative declarations defines a partial order that can be extended to total order
by the weaver, as we have shown. Relative ordering also avoids to needlessly
constrain the joint deployment of multiple aspects.

Programmer-specified ordering statements can provide missing information
that we cannot infer from the minimalist assumptions that we made, be redun-
dant to our inferred ordering, or be inconsistent with it. In the case of inconsis-
tencies, the analysis can issue warnings that the aspect’s implementation does
not comply with its stated intention.

9.3 Shared Joinpoints

Most work on aspect interactions and interferences has focuses on interactions
of advice at shared joinpoints. This is too narrow since it fails to identify the
real cause of many errors.

Some papers even claim that interactions and interferences can only happen
at shared joinpoints [13, 49]. This is wrong. An AESs that triggers or inhibits
another by adding elements never acts at the same joinpoint as the affected one
(see the examples analyzed in this paper). At joinpoint a it adds an element b
that might be a joinpoint or contribute to the selection of a joinpoint c by another
aspect.

The situation is more subtle if an aspect removes joinpoints. Then it always
selects the joinpoint that it removes. An aspect that is affected by the removal
necessarily selects the same joinpoint. Since in this case both aspects select the
same joinpoint it appears that this is an instance of the often-cited “shared
joinpoint” problem. However, we think it is not. Most papers that talk about
interferences at shared joinpoints mean interferences at a semantic level, arising
from the fact that multiple aspects or the aspects and the base share and jointly
modify part of the program’s state. This is very different from modifying the
program’s structure. Correctness and completeness of weaving ensures proper
structure. This in turn is a necessary but not sufficient condition for proper
behavior.

These two levels need to be clearly separated to properly understand the
mechanics of interferences. We have that

– weaving interferences can arise between weaving candidates that select the
same or different joinpoints,

– interferences at shared joinpoints can have a structural and a semantic facet.

9.4 Detection of Violated Ordering at Shared Joinpoints

The structural facet of the shared joinpoint problem is a special case of weaving
interference. It arises from the fact that aspects make assumptions not just
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about the existence of joinpoints in a program but also about their order. In
this section, we show that a slight extension of our condition language suffices to
detect ordering conflicts at shared joinpoints with the mechanisms introduced in
the previous section. If ordering information for the statements of a program is
available it turns out that interference at shared joinpoints actually burns down
to a long inhibition cycle caused by conflicting ordering assumptions.

We represent explicit ordering information by a binary predicate “before”
that takes program element identities as arguments. A fact before(First, Second)
states that the element with identity First comes immediately before the element
with identity Second. Note that if the semantics would be “somewhere before”
instead of “immediately before” then any order of multiple advices for the same
joinpoint would be acceptable. A conflict between different advices that specify
an action before the same joinpoint can only be derived if each advice assumes
that its effects come immediately before the joinpoint. Note further, that from
a semantic point of view, interferences could arise even between statements that
are not immediately before. Again, it is important to always be aware of the
level (structural or semantic) of the discussion.

A before advice is translated to an order-sensitive CT by using the before
predicate in two ways11:

– To avoid infinite application of the advice, the condition must state that the
effect of the advice must not already be present before that joinpoint. This
would typically involve a negated literal, ¬before(Stment, JoinPoint).

– The transformation part must state the precise location of the effect relative
to the joint point. This is done by adding a before(Stment, JoinPoint) fact.

Figure 11 shows an order-sensitive definition of the CT UseCnt. Compared to
the definition from Sect. 4.6, its precondition is refined to state that the CT is
only applied if there is not already an increment before the field access, and the
transformation is extended to include the information that the increment of the
counter is added immediately before the access to the field F .

Translation of any other order-sensitive aspect language elements to CTs will
have the same structure: the CTs always refer to a joinpoint using negated
before(Statement, JoinPoint) literals in the precondition and positive ones in
the transformation.12 Thus, our analysis will detect a mutual inhibition (conflict)
of such CTs.

Note that different “before” literals that contain only variables will always
unify with each other. Thus, an analysis that is independent of any base pro-
gram would just detect that all order-sensitive actions might potentially interfere
with all other, which is not really helpful information. Therefore, an analysis of
interactions between CTs that contain “before” literals should preferably be
performed with reference to a specific base program, that is, after computing
substitutions for the variables of each CT by evaluating the CT’s preconditions
on the base program.
11 Translation of after advice is possible using the “before” predicate with reversed

argument order, before(JoinPoint, Statement).
12 Or vice-versa, if the aspect can delete program elements.
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UseCnt(F, C, Cnt) ≡
exists(getfield(Acc, M, F )) // Method M contains an access

∧ exists(field(F, C, N, )) // ... to the field F of class C

∧ ¬ concat( , cnt, N) // F is no counter

∧ concat(N, cnt, CntN) // CntN is the name of F ’s counter

∧ exists(field(Cnt, C, CntN, int)) // Cnt is F ’s counter defined in C

∧ ¬
(

exists(incr(Inc, M, Cnt)) // Cnt is not incremented in M

∧ before(Inc, Acc))
)

// ... before the field access Acc

−→
◦ add(incr(Inc, Meth, Cnt)) // add an increment of Cnt

◦ add(before(Inc, Acc)) // ... immediately before Acc

newId(Inc)

Fig. 11. A version of the CT UseCnt from Sect. 4.6 that represents statement order
information via the “before” predicate

9.5 Run Time Efficiency

Our analysis compares the precondition of every CT and the effect of every CT.
If the total number of CTs to which an aspect program translates is N , then our
algorithm performs N2 comparisons. Prior to each comparison, we must calculate
the effect of a CT. This is linear in the number of literals in the transformation
of the CT. Each comparison means attempting to unify every literal of the
transformation effect with some literal of another CT’s precondition. Assuming
that the maximum number of literals in any precondition or transformation is
M , the number of attempted unifications is clearly bounded by M2. Unification
is linear in the number of variables of the unified literals.

Thus, if we consider the assignment of a variable to another as the smallest
step in our algorithm and assume that V is the maximum number of variables
in any literal, we can state that the number of steps performed for analyzing
an aspect program is in the order of O(N2) ∗ O(M2) ∗ O(V ) in the worst case.
Since M and V are typically low, the complexity is dominated by the O(N2) part.
Thus, we can conclude that, in the average case, our algorithm is quadratic in the
number of advices and introductions in an aspect program. These results are very
good, given that many other analyzes have inherently exponential complexity
(see section on related work). Note also that the complexity of our algorithm is
independent of the size of the base program.

The good performance expected from the complexity analysis is confirmed by
run time measurements of the implementation of our approach in the Condor
tool [50]. In cases where we analyzed “real” CTs, the analyzes were carried out
in less than a second, including the computation of all interference-free orders
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(if possible) or the detection and categorization of all cycles [51]. To verify the
scalability of our algorithm, we randomly generated nontrivial CTs and run the
analysis on several hundreds of them. The total run time remained below 1 min
although the implementation of our algorithm in Condor is rather straightfor-
ward and still provides many opportunities for optimization.

10 Related and Future Work

In this section, we discuss the relation of our approach to other work in this
domain and related open issues.

Aspect and feature interactions and interferences have been described by many
authors [2, 4, 6–10, 12–20, 24–26, 52–55]. Still, we are not aware of any previous
discussion of the completeness and correctness of aspect weaving and of the
related weaving interactions and interferences.

In many related approaches, conflicts are at a semantic level and are consid-
ered to be unordered executions of advice at shared joinpoints. We refute the
claim that non-shared joinpoints are sufficient to ensure that aspects do not
interact, address the overlooked issue of weaving interferences, and show that
part of the shared joinpoint problem is a special case of weaving interferences
(see Sect. 9.3).

Kienzle et al. [14] also investigate dependencies and weavability. However,
their dependencies relate to the use of names from other modules, not to weaving
dependencies. Their notion of weavability is defined at aspect level and excludes
cyclic dependencies whereas ours is able to detect that aspect-level cycles can be
resolved at the finer-grained level of aspect effects. Moreover, we allow weaving
of certain kinds of cyclic dependencies at the fine-grained level.

Havinga et al. [56] address dependencies that can be caused by using point-
cut languages combined with the introduction of elements (e.g., annotations) in
the structure that is queried by the pointcut language. Although the issue of
weavability is not addressed explicitly, this approach shares some of our ideas.
Our analysis is more general since it is equally applicable to introductions and
advice. To identify an order that resolves potential ambiguities [56], apply their
analysis to all possible orders of introductions. This results in O(N !) complexity,
if N is the number of introductions in a program. Our approach is quadratic in
the number of CTs to which a set of aspects translate (see Sect. 9.5).

In [57], Havinga et al. propose a refined analysis that uses graph transfor-
mations and the GROOVE (Graphs for Object-Oriented Verification) tool set
[58, 59]. Although the approach is still very different from ours, the graph based
formalization makes a lot of remarkable parallels explicit. Investigating the cor-
respondence of logic and graphs in this particular context will be a rewarding
topic for future work.

Significant advances have been achieved regarding the detection and resolu-
tion of semantic interferences [6, 7, 12, 13, 16, 17, 22, 24, 52, 60–63]. Many of
these approaches use heavyweight techniques (model checking, state machines,
logics of time and events, formal verification of constraints, or exploration of
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the entire space of possible aspect orderings). Some require additional behav-
ioral specifications or language extensions. Our approach is rather lightweight,
requiring none of the above. A worthwhile topic of future work will be the explo-
ration of how our technique can be gradually combined with more heavyweight
ones to cover also semantic interactions.

Another domain that requires additional exploration is the impact of weaving
interactions to dynamic weaving. Because the added power of dynamic weaving is
the ability to weave based on dynamic state and event history, this will be closely
related to the previously mentioned investigation of the relation to semantic
interferences.

Dürr et al. [60, 61, 64] present an approach to the analysis of interferences
among composition filters that requires no additional specifications in the aspect
program. The relevant information is automatically derived from specifications
of the effects of the different composition filter types. However, when applied to
other languages, the approach requires explicit inclusion of additional specifica-
tion (e.g., in the form of annotations).

Our analysis differs from many others in that it is independent of the base
program, making positive analysis result generally applicable.13 In addition, it
makes the analysis independent of the size of the base program, thus enabling
faster analyzes than in the case where program-specific techniques are used (e.g.,
program slicing as used by Blair and Monga [9]). We are aware of only three
other approaches that perform interference analysis independently of any base
program (reviewed next).

Douence et al. [13, 49] present a logic-based approach that works equally well
in a base program-independent and base program specific mode. They provide an
expressive dynamic crosscut language and propose linguistic support for conflict
resolution. Their approach is extended to stateful aspects in [7]. The discussion
in [13, 49] includes a “silent” weaver that makes aspect effects invisible to other
aspects. We discuss the case when aspect effects are visible to other aspects. Our
discussion shows that hiding aspect effects from other aspects does not prevent
but provokes mutual constraint violations. For instance, if we hide the counter’s
effects from the accessor, counting will always undermine thread safety, since the
assumption that all accesses, including those to the counter, are via synchronized
accessor methods will necessarily be violated (Sects. 2 and 3).

Krishnamurthi et al.[24] propose an analysis of aspect-base interactions using
model-checking techniques. A set of properties that should be preserved in a
base program is the pointcut descriptor of an advice, the advice is checked in
isolation, without needing access to the base program. The analysis does not
need to be repeated if the implementation of the advice changes.

A somehow similar approach is presented by Goldman and Katz [65]. Their
model-checking approach is able to generically verify that an aspect will not
interfere with any program that fulfills a set of assumptions. Aspects and
assumptions expressed in LTL are represented as state machines. Like the ap-
proach of [65] and ours, the method of Goldman and Katz lets the base program

13 Aspects that have no potential interferences will not interfere on any base program.
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be oblivious [1] of aspects. Unlike our approach, it analyzes aspect-base interfer-
ences and restricts the aspects to be weakly invasive [66].

Our weaving interferences correspond in a more general setting to inter-
ferences between program transformations. We are aware of only one other
tool with the ability to perform transformation dependency analysis in a
language-independent manner: AGG [67], a system based on graph transforma-
tions. In [51], AGG is compared to Condor, our implementation of the principles
explained in this paper. The comparison showed that CTs are more expres-
sive than graph several orders of magnitude faster. In AGG, it took more than
15 minutes to compute results for which Condor required less than a second. It
will be interesting to transfer the analysis functionality of AGG to the GROOVE
tool set [58, 59] and repeat the comparison. GROOVE uses algorithms that can
do graph matching and isomorphism detection in polynomial time in most cases.

With the exception of the JMangler system [3, 68], it seems that there has
been no prior discussion of the option to use iterative weaving mechanisms for
interference repair. Discontinuous weaving is proposed for morphing aspects [69].
However, the incremental weaving steps used there are motivated by the desire
to gain efficiency via lazy dynamic weaving. They do not target the repair of
weaving interferences.

11 Conclusions

In this paper, we have addressed the problem of interferences between inde-
pendently developed but jointly deployed, black-box aspects. We have defined
the notion of complete and correct aspect weaving and have demonstrated that
weaving interactions (triggering and inhibition) can give rise to interferences
(missed joinpoints and erroneous effects) that compromise the correctness and
completeness of weaving. We have shown that weaving interferences can lead to
hard-to-trace semantic misbehavior, violations of nonfunctional requirements,
and incorrect program structure.

As a first step toward a solution, we have introduced a representation of as-
pect effects (advice and introductions) as conditional program transformations
(CTs). CTs are a logic foundation for program transformations that are guarded
by preconditions. Based on this representation, we have developed an efficient,
automated solution to weaving interaction detection, weaving interaction reso-
lution, and weaving interference detection.

In addition, we have pointed out that the prevention of interferences by com-
puting a suitable weaving order in advance is not the only possible option. We
have introduced different weaving strategies (linear, monotonic, nonmonotonic)
for interference repair at run time. Our analysis generates a precise weaving
plan and identifies the least complex class of weaver that suffices for weaving a
particular subset of a given set of aspects.
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Our technique is able to detect and automatically resolve problems that are
not addressed by any other aspect interference analysis approach that we know
of. This has been demonstrated on the example of two mutually interdependent
aspects for which our technique is able to compute an interference-free weaving
plan. In this context, we have introduced the idea of interleaved weaving of
aspects and have shown that it enables weaving in scenarios that have been
previously considered to be unweavable. If necessary, for interaction resolution,
our analyzes compute interleaved weaving plans.

Last, but not least, we have shown that the complexity of the proposed algo-
rithm is quadratic in the number of analyzed conditional transformations and
have reported the result of concrete run time measurements. Beyond being itself
efficient, our analysis technique enables use of an efficient linear weaver when-
ever an interference-free order can be computed. In addition, it is the basis for
weavers that generate high-performance code by extensive inlining of aspect ef-
fects. For weavers that use forwarding instead of inlining, we have shown how
to detect statically infinite forwarding cycles. The analysis is independent of the
base programs to which the analyzed aspects are applied, making the results
reusable in arbitrary contexts.
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pectJ. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 150–165. Springer,
Heidelberg (2003)

[27] Günter Kniesel, T.R.: A definition, overview and taxonomy of generic aspect lan-
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Appendix: Basics of First-Order Logic

Our approach is based on first-order logic (FOL). This appendix provides a
summary of FOL notions and notations used in this paper. A first-order logic
language consists of predicate symbols, function symbols, constants, variables,
and the logic symbols ∧,∨,¬,⇒, =, ∀, ∃. A formula is an atom or the connection
of formulas by the logic symbols ∧,∨,¬,⇒. An atom is an n-ary predicate symbol
applied to n argument terms. A literal is a positive or negated atom. A term
is either a constant, a variable (indicated by italics and an initial capital letter,
e.g.Class), or a compound term. A compound term is an n-ary function symbol
applied to n argument terms, e.g. f (1 ,X , g(Z )).

The Herbrand universe of a language is the set of all the terms that can be
built from its function symbols and constants. The Herbrand base is the set of
all ground atoms that can be formed from predicate symbols and terms from the
Herbrand universe. A ground term (or atom) is one that contains no variables.

http://www.cs.iastate.edu/~leavens/FOAL/index-2006.shtml
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A substitution specifies a replacement of variables by terms. Substitutions are
denoted here by lower case Greek letters θ, γ, and substitution sets by upper
case letters, Θ, Γ . Application of a substitution θ = [V1 ← t1, . . . , Vn ← tn] to a
term t, written tθ, replaces all the occurrences of Vi in t by tiθ for i = 1...n. For
instance, f(X, 1)[Y ← 2, X ← g(Y )] = f(g(2), 1). A renaming substitution is
one where t1, ..., tn are variables distinct from v1, ..., vn. A ground substitution
is one where t1θ, . . . , tnθ are variable free.

A unifier is a substitution that makes two or more terms equal. If θ is a unifier
for a set of terms containing t and for every other unifier θ′ of the same set there
is a substitution γ that is not a renaming substitution such that tθγ = tθ′ then θ
is a most general unifier. We write θ = mgu(t1, t2) to express that t1 is unifiable
with t2 by the most general unifier θ.
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Abstract. This paper presents AspectOptima, a language indepen-
dent, aspect-oriented framework consisting of a set of ten base aspects—
each one providing a well-defined reusable functionality—that can be
configured to ensure the ACID properties (Atomicity, Consistency, Iso-
lation, and Durability) for transactional objects. The overall goal of
AspectOptima is to serve as a case study for aspect-oriented software
development, particularly for evaluating the expressivity of AOP lan-
guages and how they address complex aspect interactions and depen-
dencies. The ten base aspects of AspectOptima are simple, yet have
complex dependencies and interactions among each other. To implement
different concurrency control and recovery strategies, these aspects can
be composed and assembled into different configurations; some aspects
conflict with each other, others have to adapt their run time behav-
ior according to the presence or absence of other aspects. The design
of AspectOptima highlights the need for a set of key language fea-
tures required for implementing reusable aspect-oriented frameworks.
To illustrate the usefulness of AspectOptima as a means for evaluating
programming language features, an implementation of AspectOptima
in AspectJ is presented. The experiment reveals that AspectJ ’s lan-
guage features do not directly support implementation of reusable aspect-
oriented frameworks with complex dependencies and interactions. The
encountered AspectJ language limitations are discussed, workaround so-
lutions are shown, potential language improvements are proposed where
appropriate, and some preliminary measurements are presented that
highlight the performance impact of certain language features.

Keywords: aspect dependencies, aspect collaboration, aspect interfer-
ence, reusability, aspect-oriented language features, aspect binding, inter-
aspect ordering, inter-aspect configurability, per-object aspects, dynamic
aspects.

1 Introduction

Aspect orientation [1] has been accepted as a powerful technique for modularizing
crosscutting concerns during software development in so-called aspects. Research
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has shown that aspect-oriented programming (AOP) is successful in modulariz-
ing even very application-independent, general concerns such as distribution [2],
concurrency [3, 4], persistency [2, 5], and failures [4].

However, the complexity of aspect-oriented software development increases
exponentially when aspects are used in combination with each other. Dependen-
cies between aspects raise the question of how to express aspect configurations,
aspect interactions, conflicts among aspects, and aspect ordering. One way to
find answers to these questions is to investigate non-trivial and realistic case
studies, in which an application with many different concerns is implemented
using many interacting aspects.

To this intent we designed AspectOptima [6], a language independent, aspect-
oriented framework consisting of a set of ten base aspects—each one providing
a well-defined reusable functionality—that can be assembled in different config-
urations to ensure the ACID properties (Atomicity, Consistency, Isolation, and
Durability) for transactional objects. The primary objective of AspectOptima
is to provide the aspect-oriented research community with a language indepen-
dent framework that can serve as a case study for evaluating the expressivity
of AOP languages, the performance of AOP environments, and the suitability
of aspect-oriented modeling notations, aspect-oriented testing techniques and
aspect-oriented software development processes. The aspects that make up As-
pectOptima are simple, yet have complex dependencies and interactions among
each other. The aspects can be composed and assembled into different config-
urations to achieve various concurrency control and recovery strategies. This
composition is non-trivial; some aspects conflict with each other, others cannot
function without the support of other aspects, and others have to adapt their
run time behavior according to the presence or absence of other aspects.

We believe that studies such as this one are essential to discover key lan-
guage features for dealing with aspect dependencies and interactions. The ex-
perience gained allows researchers to evolve aspect-oriented languages to even
better modularize crosscutting concerns, reason about composition, and, most
importantly, provide powerful and elegant ways of reuse. The second part of the
paper demonstrates this by showing an implementation of AspectOptima in As-
pectJ. The goal of this effort was not to implement AspectOptima in an elegant
way using the most appropriate AOP language. The idea was rather to show
how the exercise of implementing AspectOptima can highlight the elegance or
the lack of programming language features that can appropriately address as-
pect dependencies and interference in a reusable way. We have chosen to perform
our implementation in AspectJ since it is currently one of the most popular and
stable AOP languages, and not because of the features it provides.

The paper is structured as follows: Section 2 describes the context of the
case study, namely transactional systems, the ACID properties of transactional
objects, concurrency control, and recovery strategies. We present the design of
AspectOptima in Sect. 3; it details the design of the 10 well-defined, reusable
base aspects, and provides a description of three aspects that implement various
concurrency control and recovery strategies by composing the base aspects in
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different ways. This design highlights the need for a set of key language fea-
tures required for implementing reusable aspect-oriented frameworks. In Sect. 4,
we describe how we used AspectOptima to evaluate the expressiveness of the
language features offered by the AOP language AspectJ. We present parts of
our implementation to demonstrate that AspectJ provides sufficient (but cer-
tainly not ideal or elegant) support for dealing with mutually dependent and
interfering aspects, discuss the encountered language limitations, suggest pos-
sible language improvements where appropriate, and present some preliminary
performance measurements. Section 5 comments on related work and the last
two sections present the conclusions and future work.

2 Background on Transactional Systems

We present the context of our case study in this section of the paper. The
concepts of transactional systems, concurrency control, and recovery strategies
relevant to this work are presented in Sects. 2.1, 2.2, and 2.3, respectively.

2.1 Transactional Objects

A transaction [7] groups together an arbitrary number of operations on trans-
actional objects, which encapsulate application data, ensuring that the effects of
the operations appear indivisible with respect to other concurrent transactions.
The transaction scheme relies on three standard operations: begin, commit, and
abort, which mark the boundaries of a transaction. After beginning a new trans-
action, all update operations on transactional objects are done on behalf of that
transaction. At any time during the execution of the transaction it can abort,
which means that the state of all accessed transactional objects is restored to
the state at the beginning of the transaction (also called rollback). Once a trans-
action has completed successfully (is committed), the effects become permanent
and visible to the outside.

Classic transaction models typically assume that each transaction is exe-
cuted by a single thread of control. In recent years, however, advanced multi-
threaded transaction models have been proposed. Our case study implements
the Open Multithreaded Transaction model [8, 9], which allows several partici-
pants (threads or processes) to enter the same transaction in order to perform
a joint activity.

The ACID Properties. Transactions focus on preserving and guaranteeing
important properties of application data, assuming that all the information is
properly encapsulated inside transactional objects. These properties are referred
to as the ACID properties : Atomicity, Consistency, Isolation, and Durability [7].

Atomicity ensures that from the outside of a transaction, the execution of the
transaction appears to jump from the initial state to the result state, without any
observable intermediate state. Alternatively, if the transaction cannot be com-
pleted for some reason, it appears as though it had never left the initial state.
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This all -or -nothing property is unconditional, i.e., it holds whether the trans-
action, the entire application, the operating system, or any other components
function normally, function abnormally, or crash.

The consistency property states that the application data always fulfill the
validity constraints of the application. To achieve this property, transaction sys-
tems rely on the application programmer to write consistency preserving trans-
actions. In this case, a transaction starts with a consistent state, and recreates
that consistency after making its modifications, provided it runs to completion.
The transaction system guarantees only that the execution of a transaction will
not erroneously corrupt the application state.

The isolation property states that transactions that execute concurrently do
not affect each other. In other words, no information is allowed to cross the
boundary of a transaction until the transaction completes successfully.

Durability guarantees that the results of a committed transaction remain avail-
able in the future: the system must be able to re-establish a transaction’s results
after any type of subsequent failure.

Atomicity and isolation together result in transaction serializability [10], guar-
anteeing that any result produced by a concurrent execution of a set of transac-
tions could have been produced by executing the same set of transactions serially,
i.e., one after the other, in some arbitrary order.

When a participant calls a method on a transactional object, the underlying
transaction support must take control and perform certain actions to ensure that
the ACID properties can be guaranteed. Traditionally, this activity has been
divided into concurrency control and recovery activities, which are described in
the next two sections.

2.2 Concurrency Control

Concurrency control is that part of the transaction runtime that guarantees the
isolation property for concurrently executing transactions, while preserving data
consistency. In order to perform concurrency control, conflicting operations, i.e.,
operations that could jeopardize transaction serializability when executed by
different transactions, have to be identified.

The simplest form of concurrency control among operations of a transactional
object is strict concurrency control. It distinguishes read, write, and update op-
erations. Reading a value from a data structure does not modify its contents,
writing a value to the data structure does. Reading and subsequently writing a
data structure is called updating. The conflict table of read, write, and update
operations is shown in Table 1. There exist more advanced techniques of con-
structing a conflict table that take into account the semantics of operations [11],
but they are out of the scope of this paper.

At run time, concurrency control is performed by associating a concurrency
manager with each transactional object. The manager uses the conflict table to
isolate transactions from each other. This can be done in a pessimistic (conserva-
tive) or optimistic (aggressive) way, both having advantages and disadvantages.
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Table 1. Strict Concurrency Control Conflict Table

read write/update
read No Yes

write/update Yes Yes

Pessimistic Concurrency Control. The principle underlying pessimistic con-
currency control schemes [7] is that, before attempting to perform an operation
on any transactional object, a transaction has to get permission to do so from the
concurrency control manager. The manager then checks if the operation would
create a conflict with other uncommitted operations already executed on the
object on behalf of other transactions. If so, the calling transaction is blocked or
aborted.

Optimistic Concurrency Control. With optimistic concurrency control
schemes [12], transactions are allowed to perform conflicting operations on ob-
jects without being blocked, but when they attempt to commit, the transactions
are validated to ensure that they preserve serializability. If a transaction passes
validation successfully, it means that it has not executed operations that conflict
with operations of other concurrent transactions. It can then commit safely. A
distinction can be made between optimistic concurrency control schemes based
on the validation technique used in determining conflicts. Forward validation
ensures that committing transactions do not invalidate the results of other trans-
actions still in progress. Backward validation ensures that the result of a commit-
ting transaction has not been invalidated by recently committed transactions.

Concurrency Control and Versioning. In order to avoid rejecting oper-
ations that arrive out of order, several concurrency protocols have been pro-
posed that maintain multiple versions (copies of the state) of objects [13–15].
For each update or write operation on an object, a new version of the object
is produced. Read operations are performed on an appropriate, old version of
the object, thereby minimizing the interactions between read-only transactions
and write/update transactions. Versions are transparent to transactions: objects
appear to them as only having a single state.

Concurrency Control and Multithreaded Transactions. Advanced trans-
action models such as Open Multithreaded Transactions allow several
threads to perform work within the same transaction. These threads should
not be isolated from each other. On the contrary, they should be allowed to
see each other’s state changes. However, concurrency control must still guaran-
tee data consistency by ensuring that all modifications are performed in mutual
exclusion.

2.3 Recovery

Recovery takes care of atomicity and durability of state changes made to trans-
actional objects by transactions in spite of sophisticated caching techniques and
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system failures. In other words, recovery must make sure that either all modi-
fications made on behalf of a committing transaction are reflected in the state
of the accessed transactional objects or none is, which means that any partial
execution of state modifying operations has to be undone.

Recovery actions have to be taken in two situations: on transaction abort
and in case of a system failure. Recovery strategies are either based on undo
operations or redo operations, or both. Supporting both operations allows the
cache management to be more flexible.

In order to be able to recover from a system failure, the recovery support must
keep track of the status of all running transactions and of the modifications that
the participants of a transaction have made to the state of transactional ob-
jects. Depending upon the meta-data available about the performed operations,
whether a simple read/write classification or a more thorough semantic descrip-
tion, different kind of information will need to be kept. This so-called transaction
trace must be stored in a log, i.e., on a stable storage device [16] that is not af-
fected by system failures. Once the system restarts, the recovery support can
consult the log and perform the cleanup actions necessary to restore the system
to a consistent state.

In-place Update and Deferred Update. There exist two different strategies
for performing updates and recovery for transactional objects, namely in-place
update and deferred update.

When using in-place update, all operations are executed on one main copy
of a transactional object. The effects of the operation invocation are therefore
potentially visible to all following operation invocations, even those made on
behalf of other transactions. In order to be able to undo changes in case of
transaction abort, a backup copy, snapshot or checkpoint of an object is made
before a transaction modifies the object’s state.

When using deferred update, each modifying transaction executes operations
on a different copy of the state of a transactional object. Therefore, until it
commits, a transaction’s changes are not visible to other transactions. When it
does commit, the effects of its operations are applied to the original object either
by explicitly copying the state or by reapplying the transaction’s operations on
the main copy.

2.4 Putting Things Together

In order to guarantee the ACID properties, each time a method is invoked on a
transactional object the following actions must be taken:

1. Concurrency Control Prologue: The concurrency control associated with the
transactional object has to be notified of the method invocation to come.
Pessimistic concurrency control schemes will use this opportunity to block
or abort the calling transaction in case of conflicts.

2. Recovery Prologue: The recovery manager has to be notified in order to
collect information for undoing the method call in case the transaction aborts
later on.
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3. Method Execution: The actual method call is executed.
4. Recovery Epilogue: The recovery manager has to be notified to gather redo

information, if necessary.
5. Concurrency Control Epilogue: The concurrency control has to be notified

that the method execution is now over.

Every transaction has to also remember all accessed transactional objects. When
a transaction commits or aborts, it has to notify the concurrency control and
recovery managers of each object of the transaction outcome.

3 The AspectOptima Framework

As shown in [4], transactions cannot be transparently added to an application.
Yet, once the programmer has decided to use transactions in his application,
and decided upon transaction boundaries, and determined the state that has
to be encapsulated in transactional objects, it is possible to provide a middle-
ware/framework/library that provides the run time support for transactions.
Optima (OPen Transaction Integration for Multi-threaded Applications) [9, 17]
is an object-oriented framework providing such support.

In this paper, we present the design of AspectOptima, a purely aspect-
oriented framework ensuring the ACID properties for transactional objects. We
present the design rationale of our framework in Sect. 3.1; Section 3.2 describes
each of the ten base aspects of AspectOptima and Sect. 3.3 describes how these
aspects can be combined to implement different concurrency control and recov-
ery strategies for transactional objects.

3.1 Design Rationale

At a higher level, concurrency control and recovery can be seen as two completely
separate concerns. As explained in the previous section, there are different ways
of performing concurrency control and recovery, and, depending on the applica-
tion, a developer might want to choose one technique over the other to maxi-
mize performance. Based on our experience of implementing the object-oriented
Optima, we know that, at the implementation level, concurrency control and
recovery cannot be separated completely from each other. There may be con-
flicts between the two, since not all combinations of concurrency control and
recovery techniques mentioned before successfully provide the ACID properties.
For example, most optimistic concurrency control techniques do not work with
in-place update. There is also overlap between the two, since both techniques
have to gather similar run time information in order to correctly perform con-
currency control and recovery. For example, they both need to distinguish read
from write/update operations.

Motivated by this incomplete separation of concerns, we applied aspect-
oriented reasoning to decompose concurrency control and recovery further, and
identified a set of ten aspects, each providing a specific sub-functionality. We
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did not follow any particular aspect-oriented design technique to determine the
functionality and scope of each aspect. Instead we relied on our object-oriented
experience in implementing the ACID properties to identify and modularize
reusable crosscutting functionality within aspects. Each of these aspects provides
a well-defined common functionality, which, as it turns out, is often needed in
non-transactional applications as well. In order to allow the aspects to be used
in other contexts, they have been carefully designed to be reusable.

3.2 Ten Individually Reusable Aspects

This section describes each of the ten base aspects of AspectOptima. The moti-
vation for each aspect is given, together with a brief summary of its functionality.
Then the dependencies of the aspect are listed, i.e., what other base aspects the
current aspect depends on, and to what other aspects the current aspect provides
essential functionality. Situations of aspect interference, i.e., aspects that have
to modify their behavior in order to continue to provide their functionality in
the presence of other aspects, are pointed out. Finally, at the end of each aspect
description, we sketch examples of how the aspect could be used in a stand-alone
way to convince the reader of its reuse potential.

AccessClassified

Motivation. Concurrency control and recovery can be done more efficiently if
the operations of transactional objects are classified according to how they affect
the object’s state: read operations (observers)—operations that do not modify
the state of an object, write operations, and update operations (modifiers)—
operations that read and write the state of an object.

The AccessClassified aspect provides this classification for methods of an ob-
ject. Ideally, the classification of the operations should be done automatically.
However, some implementations might require assistance from the developer.
In such a case, the aspect should detect obvious misclassifications and output
warnings.

Summary of Functionality of AccessClassified
• Every method of the object must be classified as either a read, write, or

update operation. This functionality can, for instance, be provided by an
operation Kind getKind(Method m).

Dependencies of AccessClassified
• Depends on: –
• Interferes with: –
• Is used by: Shared, Tracked, AutoRecoverable, Concurrency Control, Recov-

ery
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Reusability of AccessClassified. The information provided by AccessClassified is
very useful in many contexts. It could be exploited in multi-processor systems
to implement intelligent caching strategies, or help to choose among different
communication algorithms and replication strategies in distributed systems.

Named

Motivation. One of the fundamental properties of an object is its identity. Iden-
tity is the property that distinguishes an object from all other objects. It makes
the object unique. At run time, a reference pointing to the memory location at
which the state of an object is stored is often used to uniquely identify an object.

The lifetime of transactional objects, however, is not linked to the lifetime
of an application, even less to a specific memory location. Since the state of a
transactional object survives program termination, there must be a unique way
of identifying a transactional object that remains valid during several executions
of the same program. This identification means must allow the run time support
to retrieve the object’s state from a storage device or database. Also, depending
on the chosen concurrency control and recovery techniques, there might exist
multiple copies of the state of a transactional object in memory at a given time.
These multiple copies, however, represent in fact one application object.

Previous work [18] has shown that an object name in the form of a string is
an elegant solution for uniform object identification. We can therefore define a
Named property or aspect for objects. A named object has a name associated
with its identity. A name must be given to the object at creation time. The name
remains valid throughout the entire lifetime of the object. At any time it should
be possible to obtain the name of a given object, or retrieve the object based on
its name.

Summary of Functionality of Named
• All creator operations must associate a unique name with the object that

is created.
• Object getObject(String s) and String getName(Object o)

operations map from an object to a name and vice versa.

Dependencies of Named
• Depends on: –
• Interferes with: –
• Is used by: Tracked, Persistent

Reusability of Named. Named can be used as a stand-alone aspect whenever
the logical lifetime of an object does not coincide with the actual lifetime of its
pointer into memory. For instance, one might like to destroy large, referenced
but empirically unused objects and recompute them if needed. A name can also
be used as a key to retrieve the state of an object from a database.
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Shared

Motivation. Transactional objects are shared data structures. To conserve data
consistency, it is important to prevent threads from concurrently modifying an
object’s state. Such a situation could arise when participants of the same trans-
action want to simultaneously access the same object.1

The Shared aspect ensures multiple readers/single writer access to objects—
all modifications made to the state of a shared object are performed in mutual
exclusion.

Summary of Functionality of Shared
• Before executing the method body of a shared object, a read lock or write

lock has to be acquired.
• When returning from the method, the previously acquired lock has to be

released.

Dependencies of Shared
• Depends on: AccessClassified
• Interferes with: –
• Is used by: Concurrency Control, Recovery
In order to maximize throughput and hence optimize performance, Shared needs
the semantic information of each method of the object provided by AccessClas-
sified. If this information is not available, Shared must make worst case assump-
tions, i.e., assume that all methods of the object are in fact write or update
operations.

All concurrency control schemes rely on Shared to provide consistency of
data updates in spite of simultaneous accesses made by participants of the same
transaction.

Reusability of Shared. Shared can be used as a stand-alone aspect in any con-
current application to guarantee data consistency of shared objects.

Copyable

Motivation. An object encapsulates state. The state of an object is initialized
at creation time and can be altered by each method invocation. In a sense, the
state of an object is its memory.

Sometimes it is necessary to duplicate an object, or replace an object’s state
with the state from another object. This functionality is offered by Copyable.
1 The functionality offered by Shared is not to provide isolation among threads run-

ning in different transactions, but mutual exclusion among threads of the same
transaction. This functionality is transaction specific and can be implemented in
many different ways. We will show later how isolation can be achieved by combining
several of the ten base aspects, such as demonstrated in LockBased, MultiVersion,
and Optimistic (see Sect. 3.3).



AspectOptima: A Case Study on Aspect Dependencies and Interactions 197

Summary of Functionality of Copyable
• Object clone() creates an identical copy of the object.
• replaceState(source) copies the state of source over the state of the

current object.
There is no obvious answer to the question whether to perform a deep copy or
a shallow copy of the state of an object. When an object A stores in its state
a reference to an object B, deep copy also clones/replaces the state of B when
cloning/replacing the state of A. Recursively, if B refers to other objects, they are
cloned/replaced as well. Shallow copy, on the other hand, only clones/replaces
the state of A. Which technique is ideal depends on the application. Sometimes
an application might even want to handle different classes/objects in different
ways. A flexible implementation of Copyable should therefore provide a default
technique, but allow the user to override the default behavior if needed.

Dependencies of Copyable
• Depends on: –
• Interferes with: Shared
• Is used by: Serializable, Versioned
Copyable should detect the presence of Shared. In a multi-threaded environ-
ment, the state of a shared object can only be copied when no other thread is
modifying it.

Reusability of Copyable. Copyable is used whenever an object’s state must be
copied into another object of the same class. This situation arises whenever an
object needs to be duplicated, e.g. for caching or replication. It is so often encoun-
tered that most programming languages provide the functionality of Copyable
within the language (e.g. the Java Object clone() method that can be invoked
on all objects that implement the Cloneable interface).

Serializable

Motivation. When an object is created, its state is in general stored in main
memory. Whenever the object’s state has to be moved to a different loca-
tion, e.g. to a file, a database, or over the network to a different machine, the
in-memory representation of the state of the object has to be transformed to
suit the representation required by the destination location.

Serializable provides this functionality. A serializable object knows how to
read its state from and write its state to backends requiring varying data repre-
sentation formats. It is an incarnation of the Serializer pattern described in [19].
Just like with Copyable, serialization can be deep or shallow. Again, the ideal way
of performing serialization is application-dependent. Serializable should there-
fore be customizable to specific application needs.
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Summary of Functionality of Serializable
• readFrom(reader) restores the state of the object by reading it from a

back end.
• createFrom(reader) creates a new object and initializes it with the state

read from a back end.
• writeTo(writer) saves the state of the object to a back end.

Dependencies of Serializable
• Depends on: Copyable
• Interferes with: Shared, Named
• Is used by: Persistent
Serializable should detect the presence of Shared. In a multi-threaded environ-
ment, a shared object should only be serialized when no other thread is modifying
it. Serializable should also detect the presence of Named, and serialize the name
together with the object’s state.

Reusability of Serializable. Serializable can be used in many situations, e.g.,
for writing an object’s state to a file, sending the state over the network, or
displaying an object’s state. Serialization is so handy that modern programming
languages usually provide a default serialization implementation for objects. The
default serialization can usually be overridden with customized serialization, if
needed.

Versioned

Motivation. During execution, each transaction must have its own view of the
set of objects it accesses. Every thread participating in a transaction should see
updates made by other participants, but not updates made from within other
transactions. This is why multi-version concurrency control strategies, as well as
snapshot-based recovery techniques, have to create multiple copies of the state
of a transactional object in order to isolate state changes made by different
transactions from each other.

This functionality is provided by Versioned. A Versioned object can encap-
sulate multiple copies—versions—of its state. Versions are linked to views, one
of which is the default main view. If a main view is not explicitly designated,
the original state of the object when it was created becomes the default view. A
thread can subscribe to a view, and any method call made subsequently by the
thread is directed to the associated version. A call coming from a thread that is
not part of a specific view is forwarded to the main view.

Summary of Functionality of Versioned
• Version newVersion() creates a new version. The returned Version object

is a “handle” to the newly created version.
• deleteVersion(Version v) deletes the version v.
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• View newView(), joinView(View v), leaveView(), and deleteView(View
v) allow a thread to create, join, leave, or delete a view. Views are nestable,
meaning that if a thread joins view A and then later creates a new view B,
and then leaves view B, it should end up back in view A.

• Version getCurrentVersion() queries the current version assigned to the
view of the calling thread.

• setCurrentVersion(Version v) assigns the version v to the view of the
calling thread.

• setMainView(View v) designates a view to be considered the main one.
• Any method invocation on the transactional object are directed either to

the version of a particular view, if the calling thread has joined a specific
view, or else by default to the main view.

Dependencies of Versioned
• Depends on: Copyable
• Interferes with: –
• Is used by: Recoverable, Concurrency Control
Versioned requires the presence of Copyable in order to duplicate the object’s
state when a version is created. Versioned interferes with Shared : only when
no other thread is currently modifying the object’s state a new version can be
created. Fortunately, Copyable should take care of this interference already, and
therefore the interference between Versioned and Shared is only indirect.

Versioned is used by multi-version and optimistic concurrency control
schemes, as well as by Recoverable for snapshot-based recovery. The optimistic
concurrency control presented in Sect. 3.3, for instance, updates the main ver-
sion of a Versioned object after successful validation of a committing transaction
and deletes all non-main versions created by this transaction.

Reusability of Versioned. Versioned can be used as a stand-alone aspect in any
application requiring transparent handling of multiple instances of an object’s
state. For instance, if an editor is extended to support different views for a single
document, Versioned can be used to make different instances of the toolbar act
on the correct view even though the toolbar source code refers to a single global
variable.

Tracked

Motivation. To guarantee the ACID properties, the transaction runtime has
to keep track of state access. The Tracked aspect provides the functionality to
monitor object access in a generic way. It allows a thread to define a region in
which object accesses are monitored. The region is delimited by begin and end
operations. At any given time, the thread can obtain all read or modified objects
for the current region.
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Summary of Functionality of Tracked
• TrackedZone beginTrackedZone(), joinTrackedZone(TrackedZone z),
leaveTrackedZone(), and endTrackedZone() operations are provided
that delimit the regions in which object access is to be monitored. Just
like views, zones should be nestable. When a thread joins zone A, and then
later zone B, and then leaves B, it should end up back in A.

• All accesses to a Tracked object from within a zone is monitored.
• Object[] getAccessedObjects(), Object[] getReadObjects(), and
Object[] getModifiedObjects() operations that return the set of ac-
cessed, read, or modified objects of the current zone. Note that if nesting of
zones is supported, then read or modified objects of a child zone have to be
included when returning the set of read or modified objects of the parent.

Dependencies of Tracked
• Depends on: AccessClassified, Named
• Interferes with: Versioned
• Is used by: Concurrency Control, Recovery
In order to distinguish observer and modifier methods, Tracked depends on the
presence of AccessClassified. Since it is not necessary to track accesses to different
copies of the same application object, Tracked should detect the presence of
Versioned. Using Named it is possible to compare the object names instead of
object references to avoid duplicate counting.

Tracked is used by the transaction support run time to notify the concurrency
controls of all accessed objects when a transaction commits or aborts. The recov-
ery manager uses Tracked to identify all objects whose state has been modified
and therefore must be made persistent (or rolled back in case of an abort). In
this case, the tracked zone begins when the transaction begins, and ends when
the transaction ends.

Reusability of Tracked. Tracked can be used in a stand-alone way to monitor
object access made by arbitrary pieces of code, for instance, for the sake of
logging and debugging. As another example, an implementation of the model-
view-controller pattern [20] could use Tracked to maintain a dirty list of the
parts of the model which changed since the view was last redrawn.

Recoverable

Motivation. The transaction runtime must be able to undo state changes made
on behalf of a transaction when it aborts. Recoverable provides that functionality.

A recoverable object [21] is an object whose state can be saved and later
on restored, if needed. Saving is sometimes also referred to as establishing a
checkpoint; it is usually performed when the object is in a consistent state. Once
saved, the state of the object can be restored at any time. It is possible to
establish multiple checkpoints of the state of an object.
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To implement checkpointing, this version of Recoverable takes a snapshot of
the state of an object. In the future we might want to support logical recovery
as well (see Sect. 7).

Recoverable should support both in-place and deferred update strategies (see
Sect. 2.3). To support nested transactions it must be possible to establish mul-
tiple checkpoints for a single object. In case of in-place update, this creates a
“sequence” of checkpoints, i.e., each checkpoint has at a given time at most one
predecessor and one follower. In case of deferred update, a “tree” of checkpoints
is created.

Summary of Functionality of Recoverable
• Checkpoint establishCheckpoint() creates a checkpoint. Depending on

the chosen update strategy, Recoverable either makes sure that all views
continue to point to the original copy of the object (in-place update) or
creates a new version of the object and assigns it only to the view associated
with the calling thread (deferred-update).

• restoreCheckpoint(Checkpoint c) restores the object’s state to the state
of a previously established checkpoint c. If no checkpoint is given as a
parameter, then strict nesting of checkpoints is assumed, and the latest
checkpoint is discarded.

• discardCheckpoint(Checkpoint c) discards a checkpoint c. If no check-
point is given as a parameter, then strict nesting of checkpoints is assumed,
and the latest checkpoint is discarded.

• setDeferred(boolean On) switches between in-place and deferred-update
mode.

Dependencies of Recoverable
• Depends on: Versioned
• Interferes with: –
• Is used by: AutoRecoverable, Recovery
Recoverable depends on Versioned to provide snapshot-based checkpointing. It
indirectly interferes with Shared : only when no other thread is currently modify-
ing the object’s state, a checkpoint should be established. Fortunately, Versioned
should take care of this interference already.

Reusability of Recoverable. Recoverable can be used in any application that wants
to be able to recover a previous state of an object. For instance, it can be used
to implement a simple undo functionality.

AutoRecoverable

Motivation. In order to be able to rollback the state of an application when a
transaction aborts, all accesses to transactional objects have to be monitored,
and when an object is going to be modified for the first time from within the
transaction, a checkpoint has to be established.
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The AutoRecoverable aspect provides such region-based recovery. It allows
a thread to define a region in which object access is monitored. The region is
delimited by begin and end operations. Within a region, before any modifications
are made to an object’s state, a checkpoint is established automatically.

Summary of Functionality of AutoRecoverable
• beginRecoverableZone(), joinRecoverableZone(RecoverableZone z),
leaveRecoverableZone(), and endRecoverableZone() operations that
delimit the regions in which object access is to be monitored for the current
thread. Zones should be nestable.

• Whenever an auto-recoverable object is modified for the first time from
within a zone, a checkpoint of the object has to be established.

Dependencies of AutoRecoverable
• Depends on: Recoverable, AccessClassified
• Interferes with: –
• Is used by: Recovery
AutoRecoverable depends on Recoverable to provide undo functionality for the
object. It also depends on AccessClassified to determine if an operation is mod-
ifying the object’s state or not.

Reusability of AutoRecoverable. AutoRecoverable can be used in any application
that wants to be able to recover state changes made by arbitrary pieces of code.
For instance, it can be used to undo the operations of a user-defined command
manipulating an unknown subset of the application objects.

Persistent

Motivation. Persistent objects are objects whose state survives program termi-
nation. To achieve this, persistent objects know how to write their state to stable
storage [16], i.e., a reliable secondary storage such as a mirrored hard disk or a
database. Subsequently, it is possible to reinitialize the object’s state based on
the content of the storage device.

Summary of Functionality of Persistent
• All creator operations (constructors) of the object must associate a

well-defined location on a storage device with the object.
• Operations to load/save the state of the object from/to the associated stor-

age device.
• An operation to destroy a persistent object. When the object ceases to

exist, the space on the associated storage device has to be freed as well.

Dependencies of Persistent
• Depends on: Serializable, Copyable, Named
• Interferes with: Versioned, Recoverable
• Is used by: Recovery
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Persistent requires the presence of Serializable in order to transform the object’s
state into a flat stream of bytes. Persistent requires the presence of Named. It
assumes that the object’s name designates a valid location on a secondary storage
device. Persistent should know how to handle the presence of Versioned, since,
in general, there is a “main” version that contains the state of the object that
is currently considered the correct one. Persistent should know how to handle
the presence of Recoverable. When a recoverable object is made persistent, all
checkpoints have to be made persistent as well. Persistent indirectly interferes
with Shared. Only when no other thread is modifying the state of the object,
Persistent should load or save the state of the object. Fortunately, Serializable
should take care of this interference already.

Persistent is used by the recovery manager to write the old and new state of
a transactional object to stable storage before the transaction commits. It is also
used by the recovery manager to write information used to achieve tolerance to
crash failures to the system log.

Reusability of Persistent. Persistent can be used in any application where an
object’s state has to survive program termination and hence has to be stored
on some non-volatile storage device. To support many different storage devices,
Persistent should be used in combination with a persistence framework such
as [18].

Comments on Persistent. The Persistent aspect on its own only supports explicit
persistence, i.e., the Persistent aspect has to be explicitly applied to every object
that is to be made persistent. Also, loading and saving of the state of the object
has to be done explicitly by invoking the corresponding method.

In a programming language providing orthogonal persistence [22], persistent
data are created and used in the same way as non-persistent data. Loading and
saving of values does not alter their semantics, and the process is transparent to
the application program. Whether or not data should be made persistent is often
determined using a technique called persistence by reachability. The persistence
support designates an object as a persistent root and provides applications with
a built-in function for locating it. Any object that is “reachable” from the per-
sistent root, for instance by following pointers, is automatically made persistent.
Providing orthogonal persistence and persistence by reachability is out of the
scope of the AspectOptima framework.

Dependency and Interaction Summary. Figure 1 shows a UML class dia-
gram that depicts the different relationships among the ten base aspects. Depen-
dencies between aspects are shown on the left and interference between aspects
on the right. The aspects that have to intercept calls to objects are stereotyped
< <i> > (for interceptors). They all apply to the same joinpoints, i.e., they have
to intercept all public method calls to the object they apply to. As mentioned
before, the order in which they intercept is important.

The right-hand side of the diagram also shows two UML notes labeled Con-
currency Control and Recovery. These show how the ten base aspects relate to
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Fig. 1. Aspect Dependencies and Interferences

concurrency control and recovery strategies. The aspects that have italic names
are those aspects that are used directly or indirectly by both concurrency con-
trol and recovery. They represent the implementation overlap between the two
high-level concerns mentioned in Sect. 3.1.

3.3 Aspect Compositions

This section describes how the aforementioned base aspects can be combined to
implement different concurrency control and recovery strategies for transactional
objects. Each of the following aspects requires that all transactional objects
are AccessClassified, Named, Copyable, Serializable, Shared, Versioned, Tracked,
Recoverable, AutoRecoverable, and Persistent.2 The aspects also assume that the
transaction runtime creates a tracked zone, a recoverable zone, and a new view
when a transaction begins, and ends the tracked zone, the recoverable zone, and
the view when a transaction commits or aborts.

Pessimistic Lock-Based Concurrency Control with In-Place Update.
This section describes the design of the LockBased aspect, which implements
pessimistic lock-based concurrency control. Lock-based protocols use locks to
implement permissions to perform operations. When a thread invokes an oper-
ation on a transactional object on behalf of a transaction, LockBased intercepts
the call, forcing the thread to obtain the lock associated with the operation. The
kind of lock—read, write, or update—is chosen based on the information pro-
vided by AccessClassified. Before granting the lock, LockBased verifies that this
new lock does not conflict with a lock held by a different transaction in progress.
If a conflict is detected, the thread requesting the lock is blocked and has to wait
for the release of the conflicting lock. Otherwise, the lock is granted. LockBased
then makes sure that in-place update has been selected for this object by calling
Recoverable, and allows the call to proceed.

The order in which locks are granted to transactions imposes an execu-
tion ordering on the transactions with respect to their conflicting operations.
Two-phase locking [23] ensures serializability by not allowing transactions to ac-
quire any lock after a lock has been released. This implies in practice that a
2 The functionality provided by Persistent is not used in the examples shown in this

section. Actually, persistency is mostly required at commit time of a transaction as
shown in Sect. 4.3.
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Fig. 2. Aspect Interactions for LockBased Objects

transaction acquires locks during its execution (1st phase) and releases them at
the end once the outcome of the transaction has been determined (2nd phase).

To release all acquired locks when a transaction ends, all transactional objects
that are accessed during a transaction have to be monitored. To this end, Lock-
Based depends on Tracked to intercept the call and record the access. Obviously,
an object should be tracked only after a lock has been granted.

Next, LockBased depends on AutoRecoverable to intercept the call and to
checkpoint the state of the transactional object, if necessary, before it is modified.
Since we are using in-place update, Versioned then directs the operation call to
the main copy of the object. Finally, Shared intercepts the call and makes sure
that no two threads running in the same transaction are modifying the object’s
state concurrently.

After the method has been executed, Shared releases the mutual exclusion
lock. The transactional lock, however, is held until the outcome of the transaction
is known. Figure 2 illustrates this interaction; the sequence diagram depicts how
a call to a transactional object is intercepted, and how the individual aspects
collaborate to provide the desired functionality.

Comments on LockBased. The design of LockBased is currently very simple. It
does not support upgrading or downgrading of locks. Also, LockBased currently
does not detect deadlock. Deadlock situations can happen with any blocking
pessimistic concurrency control in case there are circular dependencies between
transactions. Deadlock detection can therefore be seen as a crosscutting function-
ality, and could therefore be added as yet another base aspect to AspectOptima.
Starvation is prevented in LockBased if the locks are granted in a strict FIFO
ordering.
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Pessimistic Multi-version Lock-Based Concurrency Control with In-
Place Update. One drawback of standard lock-based concurrency control is
that read-only transactions, i.e., transactions that only invoke observer meth-
ods on transactional objects, can be blocked by update transactions. This is
especially annoying in applications where there are many short-lived read-only
transactions, but only a few long-lived update transactions.

The MultiVersion aspect addresses this problem by implementing multi-
version lock-based concurrency control with in-place update. MultiVersion relies
on the fact that the transaction runtime knows how to classify transactions
into read-only transactions and update transactions, i.e., transactions that write
(and potentially read) the state of an object. MultiVersion also assumes that it
is possible to assign timestamps with transactions.

MultiVersion keeps multiple versions of the state of a transactional object
in memory—the “history” of committed states of an object, so to speak. Each
version is annotated with a logical time interval during which that state was
valid.

Update transactions are handled just as in LockBased. First, MultiVersion
tries to acquire a write lock on the object. If no other transaction is currently
modifying the object’s state, then the lock is granted; otherwise, the calling
thread is suspended. Once the lock is granted, MultiVersion relies on Tracked to
record the access. If this is the first write performed on behalf of the transaction,
AutoRecoverable checkpoints the object’s state using in-place update, creating
a new version. Versioned then directs the call to the new copy of the object,
and finally Shared intercepts the call and makes sure that no two threads are
modifying the object’s state concurrently.

After the call has been executed, Shared releases the mutual exclusion lock.
Future updates performed by the same transaction are automatically directed
by Versioned to this version.

When an update transaction commits, MultiVersion assigns it a new logical
timestamp, and adds the new committed state to the history of states, annotated
with the new timestamp.

Read-only transactions are handled differently. They are assigned logical
timestamps at creation time. They do not have to acquire any locks. MultiVer-
sion nevertheless has to intercept the call and look at the transaction timestamp.
It then finds the version with the highest timestamp that is lower than the trans-
action timestamp and assigns this version to the view of the transaction using
Versioned. The call then proceeds to Tracked, where the read access is recorded.
Then Versioned directs the call to the selected version. There is no need for
AutoRecoverable or Shared, since only read requests are directed to this version.

Figure 3 illustrates the control flow through the aspects when a read or update
operation is invoked on a transactional object. The versions old1, old2, old3, and
old4 represent previously committed states of the transactional object. Since
they are only accessed by read operations, the Shared aspect is not needed
anymore. To optimize performance, the Shared aspect should be removed from
the main version as soon as an update transaction commits.
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Fig. 3. Control Flow for Multi-Version Concurrency Control

Optimistic Concurrency Control with Deferred Update and Backward
Validation. The aspect Optimistic implements optimistic concurrency control
with deferred update and backward validation. When using optimistic concur-
rency control, the execution of each transaction is split into a read phase, a
validation phase, and a write phase. When a transaction starts, it remembers
the timestamp of the most recently committed transaction (Tstart). If and only
if a transaction passes the validation phase, it receives a timestamp of its own
and commits.

During the read phase, the transaction always reads the most recently commit-
ted states of transactional objects. Optimistic intercepts method calls to trans-
actional objects and queries AccessClassified to classify the call.

In case of a read, Optimistic passes the call along to Tracked to record the read
access. Versioned forwards the call to the current main version that contains the
most recently committed state. There is no need for AutoRecoverable to do any
work, nor is the presence of Shared required, since the call is read-only.

In case of a write or update operation,3 Optimistic makes sure that deferred
update is selected by calling Recoverable, and then passes the call to Tracked.
Next, AutoRecoverable creates a new version of the transactional object, but
this time using deferred update. This ensures that subsequent reads made by
other transactions are still forwarded to the most recently committed version.
Versioned forwards the call to the newly created version, and Shared takes care
of ensuring mutual exclusion.

In case of a concurrent write made by a different transaction, AutoRecoverable
creates yet another version. Therefore, at a given time, there might exist multiple
uncommitted versions of a transactional object, each one belonging to a different
transaction.

The UML 2.0 communication diagram shown in Fig. 4 illustrates the control
flow through the aspects for read and update operations. In the depicted situ-
ation, there are currently four active update transactions, each one having its
own local version of the transactional object’s state. Read access to the main
version does not flow through AutoRecoverable or Shared.

In optimistic concurrency control schemes, a transaction has to pass validation
before it can commit. During validation, Optimistic looks at the timestamp of
the most recently committed transaction (Tend). Optimistic then calculates the

3 Note that we are still in the read phase of the transaction!
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Fig. 4. Control Flow for Optimistic Concurrency Control

union of all transactional objects updated by transactions Tstart+1 to Tend
using Tracked and intersects it with the set of objects read by the validating
transaction (backward validation).

If the intersection is non-empty, validation fails and the transaction has to
abort. Optimistic tells Recoverable to restore the checkpoints of all modified
objects, which results in deleting the local versions of the transaction.

If the intersection is empty, validation is successful. The transaction receives a
timestamp and proceeds to the write phase, in which Optimistic tells Recoverable
to discard the checkpoints of all modified objects. This results in committing the
local versions of the transaction and discarding the previous one.

3.4 Summary

Transaction systems in general implement the ACID properties by performing
concurrency control and recovery, each of which can be done using different
techniques. This separation of concerns is, however, not very clean. Concurrency
control and recovery can benefit from sharing parts of their implementation,
and certain combinations of concurrency control techniques conflict with certain
recovery techniques.

AspectOptima shows how aspect-oriented techniques can help to decompose
the implementation of the ACID properties into a set of fine-grained aspects.
The decomposition exhibits the following properties:

• Clear Separation of Concerns: Each aspect provides a well-defined func-
tionality. For example, Shared takes care of ensuring mutual exclusion of
state updates.

• High Reusability: Each aspect can be used in other applications in a stand-
alone way to implement similar functionalities. For example, Recoverable
can be used to implement “undo” functionality.

• Complex Aspect Dependencies: Some aspects cannot function properly
without the functionality offered by other aspects. For example, Persistent
depends on the presence of Named. It uses the object’s name to designate
a valid location on a secondary storage device.

• Complex Aspect Interference: Some aspects have to adapt their functional-
ity in the presence of other aspects. For example, Copyable has to detect the
presence of Shared, and make sure that it only makes a copy of an object
when no other thread is modifying the object’s state.
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4 Evaluating the Expressiveness of AO Languages with
AspectOptima

In this section, we demonstrate how AspectOptima can be used to evaluate the
expressiveness of the language features of an AOP language, particularly those
features concerned with aspect reuse, aspect dependencies and interference. The
language under study in our case is AspectJ [24]. The goal of this effort was
not to implement AspectOptima in an elegant way using the most appropriate
AOP language. The idea was rather to show how the exercise of implementing
AspectOptima can highlight the elegance or the lack of programming language
features that can appropriately address aspect dependencies and interference
in a reusable way. We have chosen to perform our implementation in AspectJ
since it is currently one of the most used languages with a mature and reliable
compiler, and not because of the features it provides.

This section is structured as follows. We outline the language requirements
necessary for implementing AspectOptima in Sect. 4.1; a brief overview of the
AspectJ is presented in Sect. 4.2. We present an AspectJ implementation of
AspectOptima in Sect. 4.3, discuss the encountered language limitations of As-
pectJ, present some suggestions for language improvements in Sect. 4.4, and
finally show some preliminary measurements that highlight the performance im-
pact of certain language features in Sect. 4.5.

4.1 AspectOptima Implementation Language Requirements

One of the goals of AspectOptima is to define a framework that can be used to
evaluate and compare the expressiveness of language features of AOP languages,
particularly with respect to how they deal with complex aspect dependencies
and interactions in a reusable way. The key questions an implementation has to
address are:

• Can each of the aspects be implemented in a modular, stand-alone way? To
be considered modular, the implementation of an aspect should be packaged
in such a way that the package contains all the code needed to implement
the functionality. This simplifies adding and removing of an aspect for appli-
cation developers, and improves readability and maintainability for aspect
developers.

• Can each of the aspects be implemented in a reusable way? To be considered
reusable, a developer that needs a functionality offered by one of the aspects
in his application should be able to integrate the functionality with minimal
effort into his implementation by simply deploying the aspect.

• Does the AOP language allow to specify different aspect configurations and
compositions of the ten base aspects? Can different combinations be used
within the same application? In aspect frameworks it is likely that different
aspect combinations are possible, and could be useful at different places in
the application.
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• Is aspect configuration safe? Aspect deployment should not be error-prone,
i.e., it should not happen that an application developer can make mistakes
when deploying the aspect in his application.

• Can dependencies between aspects be handled in a transparent way? To
be considered transparent, a developer that needs a functionality offered
by one aspect should not have to explicitly deal with aspect dependencies,
i.e., when deploying an aspect A, all aspects that A depends on should be
automatically deployed as well.

• Can interferences between aspects be dealt with in such a way that the
aspect implementations are still individually reusable, i.e., there are no
direct dependencies among the aspect implementations due to aspect in-
terference? When two aspects interfere and additional behavior is required
to address the interference, can this be dealt with in a transparent way
without bothering the application developer at configuration time?

Based on our experience, the following list summarizes what features an AOP
language and environment has to offer to make the implementation of As-
pectOptima possible:

• Separate Aspect Binding: In order to support reusability, reusable aspect
implementations should not contain explicit bindings to application ele-
ments. An application developer has to be able to specify where an aspect
is to be applied when he composes his application.

• Inter-Aspect Configurability: Some aspects have to be able to express their
dependence on other aspects. For example, Versioned can only be applied
to objects that are also Copyable.

• Inter-Aspect Ordering: Some aspects need to specify the order in which other
aspects get applied. For example, the aspect LockBased has to make sure that
Tracked records the object access only after a lock has been acquired.

• Per-Object (Per-Instance) Aspects: An application programmer might want
to use different concurrency control or recovery implementations for differ-
ent objects of the same class. It should therefore be possible to associate
LockBased, MultiVersion, and Optimistic to objects, not to classes. As a
consequence, LockBased, MultiVersion, and Optimistic have to be able to
apply the aspects they depend on to their object, not to the class.

• Dynamic Aspects: In order to support flexible reuse, support for dynamic
aspects is required, i.e., it should be possible to apply aspects to and remove
aspects from objects at run time. In AspectOptima, for example, in multi-
version concurrency control, the Shared aspect should be removed from a
version of a transactional object when it becomes read-only.

• Thread-Aware Aspects: In order to support flexible reuse in multi-threaded
applications, it should be possible to activate aspects on a per-thread basis.
In AspectOptima, several aspects provide functionality based on the con-
text of the current thread. For instance, Tracked only tracks object accesses
if the current thread has previously started a tracked zone. AutoRecoverable
only checkpoints objects if the current thread is within an auto-recoverable
zone.
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Most of these requirements have been mentioned in the aspect-oriented literature
before (the interested reader is referred to the proceedings of the SPLAT (Soft-
ware Engineering Properties of Languages and Aspect Technologies) [25] and
FOAL (Foundations of Aspect-Oriented Languages) [26] workshops). The main
contribution here is that AspectOptima requires all of the features in order to
be implemented in an elegant reusable way.

4.2 AspectJ

We decided to validate the design of AspectOptima and test its effectiveness in
evaluating AOP language features by an implementation in AspectJ [24]. AspectJ
is an aspect-oriented extension of the Java [27] programming language. It was
conceived by a team of researchers at Xerox Parc and is probably currently the
most popular AOP language. The version used for our experiments is version
1.5.2.

In AspectJ, crosscutting behavior is encapsulated in a class-like construct
called an aspect. Similar to a Java class, an aspect can contain both data mem-
bers and method declarations, but it cannot be explicitly instantiated. Four new
concepts introduced in AspectJ are relevant to this work: joinpoints, pointcuts,
advice, and inter-type declarations.

Joinpoints are well-defined points in the execution of a program. These include
method and constructor calls, their executions, field accesses, object and class
initializations, and others. Only call and execution joinpoints were essential in
our current implementation of AspectOptima.

A pointcut is a construct used to designate a set of joinpoints of interest and to
expose to the programmer the context in which they occur, such as the current
executing object (this(ObjectIdentifier)), the target object of a call or execution
(target(ObjectIdentifier)), and the arguments of the a method call (args(..)).

An advice defines the actions to be taken at the joinpoint(s) captured by
a pointcut. It consists of standard Java code. AspectJ supports three types of
advice: the before, the after, and the around advice. The before advice runs
just before the captured joinpoint; the after advice runs immediately after the
captured joinpoint; the around advice surrounds the captured joinpoint and has
the ability to augment, bypass, or allow its execution.

Finally, inter-type declarations allow an aspect to define methods and fields
for other classes.

The following paragraphs of this subsection present techniques and work-
arounds that can be used in AspectJ to achieve some of the requirements pre-
sented in Sect. 4.1. It should be noted here that we did not choose AspectJ be-
cause we expected it to be the ideal language for implementing AspectOptima.
To the contrary, there exist many other AOP languages that provide more ad-
vanced features and hence are probably more suitable. CaesarJ [28], for instance,
defines Aspect Collaboration Interfaces, which among many other benefits nicely
decouple aspect implementations from aspect bindings. Initial experiments with
CaesarJ however showed that the current compiler is not stable enough to build
a complex aspect framework such as AspectOptima.
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Separate Aspect Binding and Inter-aspect Configurability. In AspectJ,
the abstract introduction idiom (also known as indirect introduction) [29, 30] can
be used to achieve separate aspect binding and inter-aspect configurability. The
abstract introduction idiom allows us to “collect several extrinsic properties from
different perspectives within one unit and defers the binding to existing objects”
[29]. In orderwords, the target classes of the static anddynamic crosscutting behav-
ior are unknown until weave-time. This strategy has three participants (see Fig. 5):

• Introduction container : a construct used as the target for the inter-type
member declarations.

• Introduction loader : the aspect that introduces crosscutting behaviors and
ancestors to the introduction container.

• Container connector : the aspect used for connecting the introduction con-
tainer to the base application classes.

IntroductionContainer
(class or interface)

<<aspect>>
IntroductionLoader

<<introduction&advice>>

ApplicationClass
(class or interface)

<<aspect>>
ContainerConnector

<<bind>>

Fig. 5. Abstract Introduction Idiom

The introduction container serves a dual purpose in the context of our imple-
mentation. First, it enables the aspects (i.e., both static and dynamic crosscut-
ting behaviors) to be reused in different contexts; second, it helps in identifying
the classes to which the crosscutting behaviors of an aspect should be applied.

The introduction container can either be a class or an interface in AspectJ.
Since multiple inheritance is not supported in Java, our implementation cannot
use a class as introduction container: it would prohibit several aspects to be
applied to the same application object. Consequently, dummy interfaces are used
as the introduction container for each of the aspects. For instance, the interface
IShared is associated with the aspect Shared, IAutoRecoverable is associated with
AutoRecoverable, and so on. Each of the AspectOptima aspects, playing the role
of the introduction loader aspect, is then implemented to apply its functionality
to all the classes that implement its associated interface (e.g., the Shared aspect
is applied to all classes that implement the IShared interface).

Since all AspectOptima aspects declare dummy interfaces, separate aspect
binding can be achieved using the declare parents construct of AspectJ. The first
aspect in Fig. 6 brands the Account class as IShared ; hence, the crosscutting
behavior of the Shared aspect is applied to all instances of the Account class.

Inter-aspect configurability is achieved by having the associated interface of
an aspect implement the interfaces of the aspects it depends on. For instance,
the AutoRecoverable aspect declares IAutoRecoverable to implement IAccess-
Classified and IRecoverable as illustrated in the second aspect of Fig. 6. Hence,
an AutoRecoverable object is by default Recoverable and AccessClassified. This
technique to achieve separate aspect binding and inter-aspect configurability
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public aspect Binding {
declare parents: Account implements IShared;

}
public aspect AutoRecoverable{

declare parents: IAutoRecoverable implements IRecoverable, IAccessClassified;
}

Fig. 6. Separate Aspect Binding and Inter-aspect Configurability in AspectJ

public aspect LockBased {
declare precedence: LockBased,AutoRecoverable,Tracked,Versioned,Shared;

}

Fig. 7. Inter-aspect Ordering in AspectJ

makes reuse very easy. Application developers do not have to modify their base
classes to apply aspects to them.

Inter-Aspect Ordering. Inter-aspect ordering is supported in AspectJ by the
declare precedence construct. Figure 7 illustrates how the LockBased aspect spec-
ifies its execution order relative to that of the aspects it depends on.

AspectJ precedence declarations are application-wide. It is hence not possible
to declare, for instance, two different orderings of the same set of aspects for two
different pointcuts. In the current version of AspectOptima, however, such a
functionality is not necessary since MultiVersion and Optimistic depend on the
exact same ordering as LockBased. However, it is not guaranteed that this would
also be the case if the ten base aspects are reused within other applications.

Per-Object Aspects, Dynamic Aspects, and Per-Thread Aspects. As-
pectJ does not support per-object aspects or dynamic weaving. run time enabling
and disabling of aspects (i.e., advice within an aspect) can be simulated by in-
troducing a boolean field into each advised object. At each pointcut occurrence,
the field is checked to verify that the aspect is actually enabled (see Sect. 4.3 for
example code using this technique).

Per-thread aspects can be simulated by using the ThreadLocal class provided
by the Java standard library. Using ThreadLocal, it is possible to associate an
object with each thread instance. Within this object, boolean attributes can be
stored that can be consulted by the advice of an aspect in order to determine if
the aspect is enabled for the currently executing thread or not.

4.3 AspectJ Implementation of AspectOptima

In this section, we present a detailed description of the implementation of some of
the AspectOptima aspects in AspectJ. Due to space constraints, only the aspects
necessary to discuss the encountered AspectJ limitations, namely AccessClassi-
fied, Copyable, Shared, Tracked, and LockBased, are presented. The interested
reader is referred to [31] for a complete description of the implementation.
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@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@Inherited public @interface Read {}

public aspect AccessClassified {
public enum Kind {READ, WRITE, UPDATE);
boolean found = false;
public Kind IAccessClassified.getKind(String methodName)
throws MethodNotAnnotatedException, MethodNotFoundException{
for (Method m : this.getClass().getMethods()) {
if((methodName.trim()).equalsIgnoreCase(m.getName())) {

found = true;
if (m.isAnnotationPresent(Read.class)) return READ;
else if (m.isAnnotationPresent(Write.class)) return WRITE;
else return UPDATE;

}
}
if (!found) throw new MethodNotFoundException(".."); } }

Fig. 8. AspectJ implementation of AccessClassified

AccessClassified Implementation. In our AspectJ environment (based on
the ajc compiler), it is not possible to statically determine if a method poten-
tially reads, writes, or updates the fields of an object. Therefore, our implemen-
tation of AccessClassified (see Sect. 3.2) relies on the application developer to tag
every method of an object with marker annotations, such as the Read annota-
tion defined in the top lines of Fig. 8. The annotations have a run time retention
policy (i.e., they are retained by the virtual machine so that they can be read
reflectively at run time), can be inherited (i.e., annotations on superclasses are
automatically inherited by subclasses), and have to be applied to methods.

The AccessClassified implementation aspect shown in Fig. 8 introduces a
method (getKind(String methodName)) to every IAccessClassified object that
examines these annotations by reflection at run time and classifies each opera-
tion accordingly. Non-annotated methods are treated as modifier operations to
guarantee system consistency. For an example of how a developer can classify
the operations of a class, see Sect. 4.3.

Another interesting possibility is to determine the access kind automatically
at run time by tentatively executing the method and by intercepting all field
modifications (see [31] for details). It might also be possible to extend the flexible
AspectJ compiler abc [32] to perform an automatic classification based on static
code analysis.

Copyable Implementation. The Copyable aspect (Fig. 9) introduces state re-
placement and cloning functionality to all classes that implement the ICopyable
interface. Java already provides a default clone() method for objects that im-
plement the Cloneable interface. However, this default method only implements
shallow cloning. To provide deep cloning, some additional work is needed. The
replaceState(Object src) method enables an object to swap its state with
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public aspect Copyable {
declare parents: ICopyable implements Cloneable;
public void ICopyable.replaceState(Object src) {
try {
copyFields(this,src);

} catch (SourceClassNotEqualDestinationClass e) {}
}
public Object ICopyable.clone() {
Object deepCopyOfOriginalObject = super.clone();
deepCopyOfOriginalObject.replaceState(this);
return deepCopyOfOriginalObject; } }

Fig. 9. AspectJ implementation of Copyable

that of another object of the same class. The copyFields(this, src) helper
method performs a field-by-field deep-copy of the state (inherited, declared, and
introduced) of the source object to the invoking object (code not shown here for
space reasons).

Shared Implementation. The implementation of the Shared aspect is pre-
sented in Fig. 10. This aspect depends on the method classification provided
by the AccessClassified aspect to determine the appropriate lock to be acquired
for a given operation. The declare parents construct used in line 2 illustrates
inter-aspect configuration by declaring all Shared objects to be AccessClassified
as well.

Lines 3–5 define a boolean field and two methods for supporting
run time disabling and enabling of advice on a per-object basis. The
if(isEnabled(shared)) pointcut modifier on line 9 checks the field before ex-
ecuting the functionality provided by Shared.

Lines 6 and 7 allocate a lock for each Shared object. The pointcut on line 8
makes sure that all public or protected method executions of a Shared object
are intercepted. The around advice on line 9 obligates every thread executing a
method on a Shared object to acquire the appropriate lock before proceeding.
After the operation is executed, the lock is released again.

Tracked Implementation. Figure 11 presents an implementation of the
Tracked aspect. It depends on the AccessClassified aspect to distinguish be-
tween read, write, and update operations, and on the Named aspect to avoid
tracking different copies of the same transactional object (see line 2). Inherita-
bleThreadLocal, a class provided by the standard Java API, is used to associate a
thread with a zone. The Zone class is a simple helper class that maintains three
hash tables to keep track of read, written, and updated objects. The code of the
Zone class is not shown due to space constraints. Tracked zones are requested by
executing the aspect method beginTrackedZone(), and terminated by executing
the aspect method endTrackedZone() (see lines 11–14).4

4 For space reasons, the code dealing with joining and leaving, as well as nested zones,
has been omitted.
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1 public aspect Shared {
2 declare parents: IShared implements IAccessClassified;

//Introduce variable and methods for run time disabling/re-enabling of advice
3 private boolean IShared.Enabled = true;
4 private boolean IShared.getEnabled() { return Enabled; }
5 static boolean isEnabled(IShared object) { return object.getEnabled(); }

//Introduce the variable and method for enforcing synchronization
6 private Lock IShared.threadLock = new Lock();
7 private Lock IShared.getSharedLock() { return threadLock; }
8 pointcut methodExecution(IShared ishared): target(ishared) &&

(execution(public * IShared+.*(..))||execution(protected * IShared+.*(..)));
9 Object around(IShared shared) : methodExecution(shared) &&

if(isEnabled(shared)) {
10 Object obj;
11 Kind accessType = shared.getKind(getMethodName(thisJoinPoint));
12 // Get the appropriate lock
13 if (accessType == READ) shared.getSharedLock().getReadLock();
14 else if (accessType == WRITE) shared.getSharedLock().getWriteLock();
15 else shared.getSharedLock().getUpdateLock();
16 obj = proceed(shared);

// Release previously acquired lock
...
20 return obj; } }

Fig. 10. AspectJ Implementation of Shared

The pointcut at line 4 makes sure that all public method calls to tracked
objects are intercepted. The before advice (lines 5–10) only executes if the call
is made from within a tracked zone thanks to the if pointcut modifier. Line 6
shows how Tracked calls getKind, a functionality provided by AccessClassified.
Likewise, line 8 calls getName, a functionality provided by Named, to obtain the
object’s identity. If the object has not been associated with the zone yet, the
advice records the access according to its category (lines 9 and 10). Finally, lines
15–20 implement operations that provide the set of objects read or modified
from within a zone.

LockBased Implementation. The LockBased aspect provides support for
pessimistic lock-based concurrency control with in-place update (Fig. 12). To
accomplish this, it depends on the following aspects: AccessClassified (to de-
termine the appropriate transactional lock to acquire for a given transaction),
Shared (to prevent threads within a transaction from concurrently modifying an
object’s state), AutoRecoverable (to gather undo information in case a transac-
tion aborts), Tracked (to keep track of the transactional objects that participate
in a transaction), and Persistent (to store the state of the object on stable stor-
age when a transaction commits). The inter-aspect configuration is done using
the declare parents statement of line 2.

The execution order of these aspects is crucial. An unspecified ordering could
result in bad performance, deadlock or, in the worst case, even break the ACID
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1 public aspect Tracked {
2 declare parents: ITracked implements INamed, IAccessClassified;
3 private static InheritableThreadLocal myZone = new InheritableThreadLocal();
4 pointcut methodCall(ITracked track) : target(track) &&

call(public * ITracked+.*(..));
5 before(ITracked track) : methodCall(track) && if(myZone.get()!= null) {
6 Kind type = track.getKind(getMethodName(thisJoinPoint.toShortString()));
7 Zone z = (Zone)myZone.get();
8 String myName = ((ITracked)thisJoinPoint.getTarget()).getName();

//Place the target object in the appropriate category
9 if (type == READ && !z.readObjects().containsKey(myName))

z.addReadObject(thisJoinPoint.getTarget());
10 else if (!z.writeObjects().containsKey(myName))

z.addWriteObject(thisJoinPoint.getTarget());
}

11 public static synchronized void beginTrackedZone(){
12 if (myZone.get() == null) myZone.set(new Zone());

}
13 public static synchronized void endTrackedZone() {
14 myZone.set(null);

}
15 public static Vector getReadObjects() throws NoZoneFoundException{
16 if (myZone.get() == null) throw new NoZoneFoundException("..");
17 return ((Zone)myZone.get()).getReadObjects();

}
18 public static Vector getModifiedObjects() throws NoZoneFoundException{
19 if (myZone.get() == null) throw new NoZoneFoundException("..");
20 return ((Zone)myZone.get()).getModifiedObjects(); } }

Fig. 11. Implementation of Tracked

properties. The desired execution order is LockBased, AutoRecoverable, Tracked,
Versioned, and Shared. LockBased first has to acquire the transactional lock
and set the update strategy in-place before AutoRecoverable executes, the ob-
ject is then Tracked, the operation directed to the main version by Versioned,
and mutual exclusion to the state of the object ensured by Shared as shown
in Fig. 2. This ordering is configured using the declare precedence statement
in line 3.

Lines 4 and 5 allocate an instance of TransactionalLock for each lockbased ob-
ject. The TransactionalLock class is a helper class that implements transaction-
aware read/write locks. The acquire method suspends the calling thread if some
other transaction is already holding the lock in a conflicting mode.

The pointcut in line 6 makes sure that all public method calls to a LockBased
object are intercepted. The before advice first queries the current transaction in
line 8 (details on transaction life cycle management are out of the scope of this
paper). In line 10, the functionality of AccessClassified is used to classify the
operation that is to be invoked. Line 11 attempts to acquire the transactional
lock for the current transaction in the corresponding mode. If successful, line 12
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1 public aspect LockBased {
2 declare parents: ILockBased implements

IAccessClassified, IShared, IAutoRecoverable, ITracked, IPersistent;
3 declare precedence: LockBased, AutoRecoverable, Tracked, Versioned, Shared;
4 private TransactionalLock ILockBased.lock = new TransactionalLock();
5 private TransactionalLock ILockBased.getLock() { return lock; }
6 pointcut methodCall(ILockBased lb) : target(lb) &&

call(public * ILockBased+.*(..));
7 before (ILockBased lb) : methodCall(lb) {
8 Transaction t = getCurrentTransaction();
9 if (t != null) {
10 Kind accessType = lb.getKind(getMethodName(thisJoinPoint.toShortString()));
11 lb.getLock().acquire(t, accessType);
12 lb.setDeferred(false);

} }
13 before (Transaction t) : call(public void Transaction.commit()) && target(t) {
14 for (ILockBased lb : Tracked.getModifiedObjects()) {
15 lb.saveState();

} }
16 after (Transaction t) : call(public void Transaction.commit()) && target(t) {
17 for (ILockBased lb : Tracked.getModifiedObjects()) {
18 lb.discardCheckpoint();
19 lb.saveState(); }
20 for (TransactionalLock l : Tracked.getAccessedObjects()) {
21 l.releaseLock(t);

} }
22 after (Transaction t) : call(public void Transaction.abort()) && target(t) {
23 for (ILockBased lb : Tracked.getModifiedObjects()) {
24 lb.restoreCheckpoint(); }
25 for (TransactionalLock l : Tracked.getAccessedObjects()) {
26 l.releaseLock(t);

} } }

Fig. 12. AspectJ Implementation of LockBased

sets the update strategy by using functionality provided by Recoverable (which
is configured to apply to the target object by AutoRecoverable).

Unlike Shared, LockBased follows the two-phase locking protocol, and there-
fore holds on to the transactional locks until the outcome of the transaction is
known. In case of transaction commit, LockBased performs the two-phase com-
mit protocol. The first phase is done by the before advice on lines 13–15. It
obtains all modified objects of the transaction by using the functionality pro-
vided by Tracked and saves all pre- and post-states to stable storage using the
functionality provided by Persistent. The second phase is handled by the after
advice in lines 16–22. It discards the checkpoints of all modified objects using the
functionality provided by Recoverable, saves their final states to stable storage
using the functionality of Persistent, and then releases the transactional locks of
all accessed objects.
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1 public class Account implements ILockBased {
2 private float balance;
3 @Read public float getBalance() { return balance; }
4 @Update public void credit(float amount) {balance += amount; }

}

Fig. 13. A Lockbased Account

The after advice on lines 22–26 handles transaction abort. It first rolls back all
changes made to modified objects using the functionality provided by Recoverable
and then releases the transactional locks.

Using AspectOptima. Line 1 of Fig. 13 shows how a programmer can de-
clare an application class, in this case the class Account, and apply the Lock-
Based aspect to it by simply declaring the class to implement ILockBased. The
getBalance and credit methods are classified as read and update operations
respectively using the marker annotations of AccessClassified in lines 3 and 4.

4.4 Encountered AspectJ Limitations and Possible Improvements

We provide a discussion of the encountered AspectJ limitations, possible work-
around solutions, and suggestions for improvements to the AspectJ language
features in this section.

Weak Aspect-to-Class Binding. An object in an AspectJ environment could
have three types of methods: those inherited from superclasses and superinter-
faces, those declared by the class, and those introduced by aspects through direct
or indirect introductions. As explained in Sect. 4.2, our implementation achieves
aspect reusability, separate aspect binding, and inter-aspect configurability by
using the abstract introduction idiom [29, 30]. Extrinsic static crosscutting be-
haviors are collected in dummy interfaces (via the inter-type member introduc-
tion) and these interfaces are later bound to application classes using the de-
clare parents construct. For instance, declaring an Account class as implementing
ICopyable introduces two additional public operations: replaceState(SrcObj) and
clone() into every Account object.

As described in Sect. 3.2, Copyable interferes with Shared, in the sense
that it should not be possible to copy or clone an object while it is being
modified. Assuming that the previous Account class also implements IShared
(such as, for instance, required by the LockBased aspect), it seems logi-
cal to assume that the call and execution of Account.replaceState(SrcObj)
will be captured by the pointcuts call(public * IShared+.*(..)) and execu-
tion(public * IShared+.*(..)) of the Shared aspect, since the method replaceS-
tate(SrcObj) is defined for the Account class. This is not the case; the
actual call and execution joinpoints are call(ICopyable.replaceState(..)) and
execution(ICopyable.replaceState(..)), respectively; i.e, AspectJ associates the
call and the execution joinpoints of indirectly introduced methods with the intro-
duction container not the application class. As a result, Shared does not intercept
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1 placeholder PCopyable {
2 public void clone() {...}
3 public void replaceState(Object o) {...}
}

4 aspect Copyable {
5 apply PCopyable to Account; }

Fig. 14. Proposed “placeholder” Construct

calls to replaceState(SrcObj), which may lead to state inconsistencies if a thread
executes a write or update operation while a different thread tries to copy the
state of the object. This deficiency is not unique to AspectOptima—any two
aspects that interfere and work at the granularity of methods could suffer from
the weak aspect-to-class binding problem.

In our case, a possible work-around is to declare the ICopyable interface as
implementing IShared . In this case, the replaceState and clone method calls
are intercepted by Shared as desired. An unfortunate side effect though is that
Copyable is not individually reusable anymore: all Copyable objects are now also
Shared , even if the application is single-threaded. This proposed work-around
cannot solve the problem for circularly interfering aspects.

Language Improvement Suggestion: The weak aspect-to-class binding problem
could be overcome by adding a new class-like construct to AspectJ that we called
a placeholder. A placeholder can define fields and methods, but these members
should not be structurally bound to the placeholder. Its functionality should ex-
clusively be to hold static crosscutting behavior that, at weave time, is bound to
the target class it is applied to. A placeholder should not be instantiable, should
never have a superclass, superinterface, or be part of an inheritance hierarchy.

Figure 14 shows a potential declaration of PCopyable, a placeholder to be used
in the implementation of the Copyable aspect. Lines 1–3 define the placeholder
and the replaceState and clone methods. Line 5 suggests a new construct for
binding the fields and methods of a placeholder to the target class, in this case
Account. As opposed to indirect introduction, this direct introduction associates
the call and execution joinpoints of fields and methods with the target class.
As a result, the use of an interface as an introduction container is no longer
necessary. However, in order to use polymorphic calls, an interface declaration
for Copyable is still needed.

The placeholder concept may sound much like mixins [33], but it is fundamen-
tally different. In mixins, the call and execution of a mixin method is delegated to
the mixin class, not the target class, and hence the weak aspect-to-class binding
problem can occur.

Reflection/Superclass Method Execution Dilemma. The enforcement of
the ACID properties of transactional objects occurs at the level of method invo-
cations. To achieve this, the AspectOptima aspects, for instance Shared, must
rigorously intercept every method invocation on a transactional object to per-
form the appropriate pre- and post-actions before allowing the call to proceed.
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AspectJ provides two pointcut designators for intercepting the call and execution
of a method: call(MethodPattern) and execution(MethodPattern).

The method call pointcut can intercept non-reflective calls to declared and in-
herited methods of an object, but not reflective calls, i.e., calls using the Java re-
flection API. For instance, the pointcut call(public * SavingAccount.*(..)) would
intercept the method call SavingAccount.debit(..) but not debit.invoke
(SavingAccountObject, ..)—a conscious design decision made by the AspectJ
team not to “delve into the Java reflection library to implement call seman-
tics” [34].

The method execution pointcut is typically used to address this deficiency.
This pointcut can intercept the execution (both reflective and non-reflective) of
declared and “overridden-inherited” methods of an object, but unfortunately not
the execution (both reflective and non-reflective) of “non-overridden-inherited”
methods, because in this case the execution joinpoint occurs in the super class.
For instance, the pointcut execution(public * SavingAccount.*(..)) intercepts
both the reflective and non-reflective execution of SavingAccount.debit(..),
but not SavingAccount.getBalance(), assuming that the getBalance method
is defined in Account and not overridden in the child class SavingAccount.

Composing the call and execution pointcuts with an or operator is not a
feasible solution either, because reflective invocations of getBalance can still
not be intercepted.

One possible work-around is to require the application programmer to man-
ually override all the inherited methods from a super class in the subclass, in
which case the execution pointcut can be used to capture all calls. This solution
is however undesirable: the code reuse benefits of inheritance are diminished,
methods introduced by aspects cannot be handled without introducing explicit
dependencies of the base on the aspect, and there is always the danger that an
application programmer forgets to override some of the methods.

Another work-around is to use a pointcut that explicitly names the super
class: target(SavingAccount) && execution(public * Account+.*(..)). This point-
cut intercepts the execution of the methods of an Account object when the
target is SavingAccount. It intercepts both reflective and non-reflective execu-
tions of SavingAccount.getBalance() and SavingAccount.debit(..). It also
correctly excludes the execution of operations on other subclasses of account, e.g.
CheckingAccount. Unfortunately, this solution is application specific and cannot
be reused in a generic context. In order to write the pointcut, the exact superclass
and target subclass have to be known.

The only fully generic and reusable solution for the aspect Shared would be
to write: target(IShared) && execution(public * *.*(..)). This pointcut always
works, but can result in a significant performance overhead, since a dynamic
check has to be performed at every public method execution of any class.

Language Improvement Suggestion: We propose the addition of an
inheritance-conscious method execution pointcut to AspectJ : superexecu-
tion(MethodPattern). Given a class with no superclasses, this pointcut be-
haves exactly as the execution(MethodPattern) pointcut (i.e., it intercepts both
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declare dependencies: LockBased requires
AccessClassified, Shared, AutoRecoverable, Tracked;

Fig. 15. Proposed “declare dependencies” Construct

reflective and non-reflective execution of declared methods). When used on a
class with superclasses, it automatically overrides all non-overridden inherited
methods, in our case getBalance(), within the body of the target class, in our
case SavingAccount , with dummy methods that simply call the method in the
superclass. It then applies the standard execution(MethodPattern) pointcut to
the class. This ensures that the execution joinpoints of non-overridden inher-
ited methods occur in the target subclass, eliminating the reflection/superclass
method execution dilemma problem.

Lack of Support for Explicit Inter-Aspect Configurability. The aspects
in AspectOptima exhibit complex aspect dependencies and interferences. As-
pectJ has no construct that enables developers to express inter-aspect configu-
rations. Ideally, an aspect should be able to express the need of functionality
offered by other aspects, or adjust its functionality if interfering aspects are ap-
plied to the same pointcuts. Also, it should be possible to specify incompatible
aspect configurations.

Our AspectJ implementation achieves rudimentary inter-aspect configura-
bility by declaring dummy interfaces for each aspect. Aspects express the
dependency on other aspects by having their associated interface implement
the interfaces of the aspects they depend on using the declare parents construct
(see, for example, line 2 of Fig. 12). However, this does not guarantee that the
aspects are applied to the same joinpoints.

Language Improvement Suggestion: We propose the addition of a new declare
dependencies construct to AspectJ, which would allow inter-aspect configura-
bility to be expressed as proposed in Fig. 15. The desired effect of this line of
code is that AccessClassified, Shared, AutoRecoverable, and Tracked should be
applied to all the joinpoints picked out by LockBased. However, general applica-
tions might require more fine-grained control over joinpoints in case of complex
aspect configurations. Ideally, an aspect should be able to selectively decide to
what pointcuts each of the aspects it depends on is to be applied, and on the
order in which the advice are to be executed.

Lack of Support for Per-Object Aspects. In systems with many objects,
such as in transactional systems, the ability to selectively apply different aspects
to different objects of the same class is crucial. For instance, one might want to
use pessimistic concurrency control for heavily used Account objects, and use
optimistic concurrency control for less frequently used instances of the Account
class. Unfortunately, AspectJ does not permit a developer to selectively decide
to which instances of a class an aspect should be applied to.

However, the if(BooleanExpression) pointcut of AspectJ can be used to sim-
ulate per-object aspects. An aspect can introduce a field into the target class,
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and then test for specific values of that field in the pointcut. For example, an
enumeration field usage could be introduced into the Account class, with possi-
ble values of heavy and normal. The if pointcut could inspect the value of the
usage field to decide if an advice is to be applied to the object or not.

Lack of Support for Run time Disabling and Enabling of Pointcuts.
Aspects are statically deployed in AspectJ ; i.e., the crosscutting behaviors speci-
fied in the aspects become effective in the base applications once they are woven
together and these crosscutting behaviors cannot be altered at run time. This
limitation is encountered, for instance, in multi-version concurrency control (see
Sect. 3.3). After an object’s state has been committed to history, it does not
need to be AutoRecoverable and Shared anymore, since only read transactions
are going to access the object’s state in the future. To maximize system perfor-
mance, it should be possible to disable the AutoRecoverable and Shared aspect
for this object.

As shown in the implementation of the Shared aspect in Sect. 4.3, the
if(BooleanExpression) pointcut of AspectJ can be used to simulate run time
disabling and enabling of aspects. Unfortunately, this only disables the ad-
vice associated with a joinpoint. This implies that the target-joinpoint will al-
ways be intercepted but the execution of its associated advice is conditional
on the value of BooleanExpression—resulting in performance loss, since op-
erations of read-only transactions are still unnecessarily intercepted, and a
run time check has to be performed on every operation invocation. Reference
[35] reports that the if(BooleanExpression) pointcut (where BooleanExpression
is a single static method call) introduces a 22% performance overhead.

Language Improvement Suggestion: Some AOP languages, e.g. JBossAOP [36], al-
ready support dynamic weaving of aspects as a whole. One could imagine an even
more fine-grained feature that would allow enabling and disabling of pointcuts.
For instance, aspects could define static methods enablePointcut(Pattern)
and disablePointcut(Pattern) that would support run time disabling and re-
enabling of named pointcuts whose name matches Pattern. For instance, the
call Shared.aspectOf(obj).disablePointcut(methodExecution) would dis-
able the method execution interception specified by the Shared aspect for the ob-
ject obj, eliminating/reducing the performance overhead.

4.5 Initial Performance Evaluation

We conducted several preliminary performance measurements on our implemen-
tation of AspectOptima in order to determine the performance of the aspect-
oriented framework, and the performance impact that the lack of support of some
of the key language features presented in Sect. 4.1 can have. The measurements
are preliminary in the sense that far more measurements would be needed in
order to accurately determine the performance impact of aspect-oriented frame-
works and language features. In order to compare the performance of differ-
ent aspect-oriented execution environments, thorough benchmarks should be
defined. This is, however, out of the scope of the paper and left for future work.
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Table 2. Comparing Object-Oriented and Aspect-Oriented Performance

OO-read OO-update AO-read AO-update
Time (seconds) 382.897 447.284 1871.734 1945.0231

Overhead (factor) 1 1 4.88 4.35

All our experiments were run on a 3 GHz Intel-based laptop with 512 MB of
RAM running Windows XP home edition, Eclipse 3.2.0, Java 1.5, and AspectJ
1.5.2. The measurements were obtained using the Eclipse Test and Performance
Tools Platform [37]. All measurements execute operations on a simple bank
account class that encapsulates a balance field and provides the methods int
getBalance() and deposit(int).

Aspect-Oriented Implementation vs. Object-Oriented Implementa-
tion. This section compares the performance of a purely object-oriented
implementation of lock-based concurrency control with our aspect-oriented
implementation LockBased. To perform the object-oriented measurements, we
wrote a wrapper class for the bank account class that overrides getBalance
and deposit, and then calls Optima [9, 17] (the object-oriented version of our
framework) to execute the same functionality as LockBased and the ten low-level
aspects before forwarding the call to the actual account.

The performance measurements are given in Table 2. We performed 50,000
getBalance (read) operations and 50,000 deposit (update) operations. The
overall slowdown of the aspect-oriented implementation is around 1490 s for
both read and update operations, which represents 30 ms per operation.

The fact that the aspect-oriented implementation is slower is not surprising.
Each of the low-level aspects is individually reusable and does not know about
the specific context in which it is used. This independence makes it impossible
to share run time information among aspects. For instance, LockBased has to
query the access kind of the method to be called from AccessClassified. But so
does AutoRecoverable, Tracked, and Shared (see Fig. 2). The object-oriented im-
plementation however can optimize: it calls AccessClassified only once, and then
passes the access kind as a parameter to the different components implementing
2-phase locking, recovery, and mutual exclusion.

This is of course not a problem of aspect-orientation as such, but rather a prob-
lem of separation of concerns in general. Since each aspect should be individually
reusable, it cannot depend on other aspects to classify the operation. It is fore-
seeable, however, that this slowdown in the future will become less significant
thanks to advances in compiler and weaving technology. For instance, LockBased,
AutoRecoverable, Tracked and Shared all apply to the same joinpoint. An ad-
vanced weaver, such as found in the abc [32] compiler or the Steamloom environ-
ment [38], might be able to detect this situation and perform context-dependent
optimizations. To make this possible, the compiler would have to detect that the
result returned by getKind(String methodName) of AccessClassified is constant
for a given method name. It always returns the same meta-information.
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Table 3. Performance Overhead due to Lack of Dynamic Aspects

not shared shared & not enabled shared (no if) shared & enabled
Time (seconds) 0.586430 8.755212 54.023821 63.328594
Overhead factor 1 15 92 108

Performance Impact of Simulating Per-Object Aspects. The need for
per-object aspects and dynamic aspects, i.e., runtime disabling and re-enabling
of aspects, is motivated by the multi-version concurrency control example. Once
an object’s state is committed, it is inserted into the history and is subsequently
only ever accessed by read-only transactions. Hence, the functionality provided
by the Shared aspect is not needed anymore, since no transaction will ever modify
that particular version of the object’s state in the future. In AspectJ it is not
possible to disable the pointcut defined in the Shared aspect at runtime. An
if(BooleanExpression) pointcut modifier has to be used to simulate the disabling
as shown in lines 3–5 and 9 of Fig. 10. Since the AspectJ rules forbid the use
of non-static function calls within the boolean expression, an additional static
version of the getEnabled() method that simply forwards the call to the target
object had to be created.

To measure the performance overhead incurred, we performed three experi-
ments, in which the read-only operation getBalance was called 1,000,000 times.
The results of the experiment are presented in Table 3.

The first column shows the time spent inside getBalance for a standard bank
account object. The third column shows the time spent inside getBalance when
Shared has been applied to the bank account object (but in this case without an
if pointcut modifier in the pointcut). This includes the call to AccessClassified
and the acquisition of the read lock. Obviously, the time spent in the method
is considerably bigger—in our case by a factor of 92. The overhead of the if
pointcut modifier is apparent in the second and the last column. They show
the time it takes to check if the shared aspect is enabled for a particular bank
account object. Our experiments show a slowdown of 8.2 s (a factor of 15!) when
shared is disabled, and a slowdown of 9.3 s when it is enabled.

An aspect-oriented environment that supports dynamic aspects can there-
fore achieve significantly better performance. Of course, the actual activa-
tion/deactivation of aspects at runtime might also be costly. However, very often
activation and deactivation are rare events, and their overhead can be safely ig-
nored. In the case of multi-version concurrency control, the Shared aspect is
deactivated once and for all when the object’s state is inserted into the history
of states.

Performance Impact of Writing Reusable Pointcuts. The last experi-
ment we conducted aimed at evaluating the performance loss incurred in AspectJ
due to having to work around the reflection/super class execution dilemma. In
Sect. 4.4, we described that with a targeted call pointcut we cannot handle
reflective calls, whereas with a targeted execution pointcut we cannot handle



226 J. Kienzle, E. Duala-Ekoko, and S. Gélineau

Table 4. Comparing Application-Specific and Reusable Pointcuts

targeted read targeted update generic read generic update
Time (seconds) 40.210723 29.900585 65.503984 52.767678

Overhead (factor) 1 1 1.63 1.76

executions of methods defined in the super class. The only way to achieve full
functionality and reusability is to write a generic pointcut that intercepts all
public method executions occurring in the application and dynamically check
for the specific target at runtime.

To evaluate the performance loss we again ran 1,000,000 getBalance and
deposit operations on a shared bank account object, once using the tar-
geted, application-specific execution pointcut target(SavingAccount) && exe-
cution(public * Account+.*(..), and once with the generic, reusable execution
pointcut target(IShared) && execution(public * *.*(..)). The results are pre-
sented in Table 4.

The table shows that read operations are slower than update operations. This
results from the fact that acquiring a read lock takes in general more time than
acquiring a write lock.

The results also show that the slowdown resulting from a generic pointcut is
not too significant: less than a factor of 2. This result must however be interpreted
carefully. The performance loss measured here is the loss that is incurred due to
the generic pointcut when calling a Shared object. But the generic pointcut will
slow down every public method execution in the system, regardless of whether
the object is shared or not, and therefore results in huge runtime overhead for
an application with many calls to methods of non-shared objects.

5 Related Work

The ideas and techniques investigated in this paper intersect with a broad spec-
trum of research projects on transactional systems and aspects, reusable aspect-
oriented frameworks, and aspect dependencies and interactions. We present the
most relevant related work in this section.

5.1 Aspects Implementing General Application Concerns

Aspects for Concurrent Programming. Cunha et al. [3] investigated tech-
niques for implementing reusable aspects for high-level concurrency mechanisms
in AspectJ. The authors illustrated how abstract pointcut interfaces and an-
notations can be used to implement one-way calls, synchronization barriers,
reader/writer locks, and schedulers. The performance overhead and reusabil-
ity of an object-oriented implementation of these mechanisms was compared to
their aspect-oriented implementation. They concluded that the AspectJ imple-
mentation is more reusable and pluggable, but incurs a noticeable performance
overhead. However, AspectJ was found to have a limitation in acquiring local
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joinpoint information in concrete aspects: when a superaspect defines an abstract
pointcut, the subaspects cannot change the pointcut’s signature.

Similar to our work, Cunha et al. used annotations to denote methods that
require special processing at run time. However, their work did not address the
issue of aspect dependencies and interactions that may occur when these concur-
rency mechanisms are applied to a common method. In addition, their technique
used in supporting aspect reusability is different and requires additional code. In
their case, developers must provide concrete pointcuts and advice for each of the
abstract pointcuts, which can be error-prone if done incorrectly. Conversely, the
declare parents construct used by our AspectOptima implementation to bind
the aspects to application classes is safe: the correct pointcuts are hardcoded in
the aspects.

Persistence Aspects. Rashid et al. [5, 39] have worked extensively on tech-
niques which apply AOP concepts to database systems. In [5], the authors ex-
plored three issues in the context of AOP and data persistence: the possibility
of using AOP techniques in aspectizing persistence, the reusability of persis-
tence aspects, and whether persistence aspects could be developed independently
of an application. Using a relational database application as an example, they
demonstrated incrementally how reusable aspects for database connections, data
storage and updates, data retrieval, and data deletion can be implemented in
AspectJ. It was concluded that persistence can indeed be aspectized in a reusable
way, but can only be partially developed independently of an application since
operations such as data retrieval and deletion must be explicitly considered.

Rashid et al. achieved reusability by requiring all classes whose instances
are to be made persistent extend a common base class. Since Java does not
support multiple inheritance, classes that already extend other classes cannot
be made persistent without some degree of code restructuring. In contrast, reuse
in AspectOptima is achieved through marker interfaces—aspects are applied to
classes that implement their associated interfaces—eliminating concerns about
multiple inheritance support. In addition, our Persistence aspect is built upon
reusable aspects that can be useful in non-transactional contexts too, whereas
their implementation uses database specific code that cannot be reused in other
contexts. On the other hand, our Persistence aspect currently does not support
databases.

Aspects for Distributed Applications. In [40], the authors proposed JAC,
an AOP-based middleware for building distributed Java applications. JAC sep-
arates aspect binding and crosscutting code into two different modules, respec-
tively aspect components and dynamic wrappers, facilitating aspect reuse. Sup-
port for run time aspect deployment is achieved through load-time transfor-
mations, whereas our aspects must all be weaved in at compile-time and then
selectively enabled or disabled. To achieve aspect distribution, JAC offers a con-
tainer mechanism that hosts both application objects and aspect component
instances and makes them remotely accessible using either CORBA or RMI.
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Similar to our transaction aspect, developers can reuse the aspects that
come with the JAC framework (e.g., tracing, persistence, authentication, session,
load-balancing, to name a few) easily within their application. Configuration is
achieved through a separate configuration file. JAC differs from AspectOptima
because the functionality that JAC provides is not achieved by composing indi-
vidually reusable base aspects, and hence aspect dependencies and interferences
also are not addressed in a general and reusable way. The JAC documentation
does not explicitly mention aspect dependencies and interferences, but it is safe
to assume that they are handled internally for every possible aspect combination.

5.2 Aspects and Transactions

The work of Fabry et al. [41, 42] applies AOP concepts to advanced transaction
models, e.g. nested and long running transactions. The authors argued that the
high complexity and inadequate separation of concerns in these models impedes
their use by application programmers. In order to encourage the use of these
models, they proposed a domain-specific aspect language called KALA for mod-
ularizing the concepts of advanced transaction models into aspects. KALA is
based on the ACTA formalism [43].

The main goal of our work is to define an aspect framework with many
individually reusable aspects that can be combined in several ways according
to the application developers needs. AspectOptima is not meant to be used
in a high-performance transactional application, but rather serves as a real-
world aspect framework for experimenting with intricate aspect dependencies
and interactions. While KALA aims at synthesizing new transaction models
and at providing an elegant interface for defining transaction boundaries to an
application programmer, our framework simply aims at implementing several
concurrency control and recovery strategies by combining individually reusable
aspects in different ways.

5.3 Reusable Aspect Design Frameworks

Our ten aspects can be combined in different ways to implement different con-
currency control and recovery strategies. A few design frameworks promise this
kind of customizable composability, and we present some of them later. This
version of our design did not follow any particular methodology, so it would
be interesting future work to compare it with similar designs obtained through
some of the following frameworks.

FODA. Feature-Oriented Domain Analysis (FODA) [44] is a domain analy-
sis method for product line development, i.e., a family of systems in a domain,
rather than a single system. Domain products, representing the common func-
tionality and architecture of applications in a domain, are produced from domain
analysis. Specific applications in the domain may be developed as refinements of
the domain products.

As part of the process, FODA prescribes the creation of a feature model.
Features are defined as attributes, properties, functions, capabilities, or services
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of a system that directly affect end-users. The feature interaction model allows
the developer to specify dependencies among features, such as specialization,
optional, requires, mutually exclusive with. When building a concrete application,
the developer has to specify which features the final application should contain.

FODA is a domain analysis method, and hence very different from aspect
frameworks such as AspectOptima. An interesting experiment would be to ap-
ply FODA to the transaction domain and compare the user-oriented features
identified in the FODA feature model with the AspectOptima aspects.

Framed Aspects. In [45] the authors propose framed aspects, an approach that
uses AOP to modularize crosscutting and tangled concerns and frame technol-
ogy [46] to allow aspect parameterization, configuration, and customization. In
framed aspects, the identification of features (here called feature aspects), and
detection of dependencies and interferences, is performed following the high-level
feature interaction approach promoted by FODA. Once this is done, the features
are modularized within framed aspects, together with their dependencies.

Framed aspects are made up of three distinct modules: the framed aspect
code (normal and parameterized aspect code), composition rules (aspect de-
pendencies, acceptable and incompatible aspect configurations), and specifica-
tions (user-specific customization). These modules are composed to generate
customized aspect code using a frame processor. Framed aspects achieve sep-
arate aspect bindings and aspect dependencies through parameterization and
composition rules respectively. Composition rules can also be used for specify-
ing acceptable and incompatible aspect configurations. The above mentioned
constructs enable framed aspects to be reused in contexts other than that for
which they were implemented.

It would be very interesting to attempt an implementation of AspectOptima
using framed aspects in order to investigate how well this approach supports the
language features presented in Sect. 4.1.

Ahead. Reference [47] describes a generic mechanism to generate a group of
artifacts (code, documentation, makefiles, uml diagrams...) which, together, de-
scribe a program implementing a given subset of the available features. To do
so, they first choose a labelled-tree representation for each artifact, and they
interpret the resulting structure as a hierarchy of objects containing other ob-
jects. They then label the containment relationships according to the features
they implement, extracting similarly purposed relationships into independently
injectable mixins, and grouping the mixins into “layers” representing the features.

This mixin-based strategy is strikingly similar to CaesarJ’s collaboration com-
position mechanism [28], and quite different from AspectJ’s strategy. Attempting
an implementation with this kind of language should be especially insightful.

6 Conclusions

Designing and implementing the ACID properties of transactional objects is
a simple, but non-trivial, real-world example to which aspect-oriented tech-
niques can be applied. The first part of the paper presents AspectOptima, a



230 J. Kienzle, E. Duala-Ekoko, and S. Gélineau

language-independent, aspect-oriented framework that ensures the ACID
properties for transactional objects. The framework consists of ten base aspects
at the lowest level, each one providing a well-defined reusable functionality. The
base aspects are simple, yet have complex dependencies among each other. We
demonstrated how the base aspects can be configured and composed in different
ways to implement different concurrency control and recovery strategies. This
composition is delicate: some aspects conflict with each other or require a specific
invocation ordering, others have to be reconfigured dynamically at run time.

All of the above, and the fact that AspectOptima has not been invented to
promote a particular aspect-oriented system, makes it an ideal challenge case
study for the aspect-oriented community. In particular, we believe that it can be
used to evaluate:

• Aspect-Oriented Software Development Processes: We performed our de-
composition into aspects based on our previous implementation experience.
How does an AOSD process perform when applied to this case study? Is
the resulting decomposition equally simple, modular, and reusable? Can
the process identify aspect dependencies and conflicts?

• Aspect-Oriented Modeling Notations: Can an AOM notation capture the
complex structural and behavioral dependencies of the aspects in this
case study? Are the resulting models easy to understand? Are the mod-
els reusable? Can aspect dependencies and conflicts be expressed?

• Aspect-Oriented Validation and Verification: Can AO formal methods and
AO testing techniques be used to individually validate and verify each as-
pect in a stand-alone way? Can these methods detect conflicts between
aspects?

• AOP Implementations: How do different AOP implementations compare
with respect to performance and memory footprint? How do they com-
pare to standard OO implementations? Is run time weaving to implement
dynamic AOP faster than static weaving with run time checks?

• Aspect-Oriented Language Features: What are the features that an AO pro-
gramming language must provide in order to implement this case study?
What features can promote good software engineering properties such as
encapsulation, modularization, testability, maintainability, and reusability?
What features are required to support aspect dependencies and resolution
of conflicts in a reusable way?

In order to give an idea on how AspectOptima can be used to evaluate the
expressiveness of aspect-oriented languages, we presented in the second part of
this paper an implementation of AspectOptima in AspectJ. We identified six
key language features that an aspect-oriented language must provide in order
to implement AspectOptima in a satisfactory way: separate aspect binding,
inter-aspect configurability, inter-aspect ordering, per-object aspects, dynamic
aspects, and per-thread aspects. We then showed parts of our implementa-
tion to demonstrate that AspectJ provides sufficient, but certainly not ideal
or elegant, support for implementing reusable aspect frameworks and dealing
with mutually dependent and interfering aspects. We discussed the encountered



AspectOptima: A Case Study on Aspect Dependencies and Interactions 231

language limitations, suggested possible language improvements where appro-
priate, and presented some preliminary measurements that highlight the perfor-
mance impact of certain language features.

7 Future Work

We have demonstrated how AspectOptima can be used to evaluate the language
features of AspectJ, and intend to do the same for other AOP languages in the
immediate future. We intend to define different benchmarks that can be used to
compare the performance of these AOP environments, and run these benchmarks
on our implementations to obtain reference measurements. We also plan to run
the benchmarks on the object-oriented implementation of Optima [9, 17] and
compare the results.

We are also working on extending AspectOptima. First of all, concurrency
control and recovery can be further enhanced when more information about the
semantics of operations is available. We intend to define a SemanticClassified
aspect that defines forward and backward commutativity for all operations of
an object, and maps every operation to a corresponding inverse operation. Such
semantic information opens the door to semantic-based concurrency control [11]
and logical recovery based on intention lists.

The work described in this paper has focused on the identification and im-
plementation of aspects that crosscut objects. However, the Versioned, Tracked,
and AutoRecoverable aspects share a common need for a well-defined region
of computation (zone/view) that threads can be associated with, and during
which certain actions (such as object accesses) are to be monitored. This is
a crosscutting concern of threads of computation, rather than a crosscutting
concern of objects. We have already started to extend AspectOptima beyond
object-centered aspects, implementing transaction life-cycle management with
aspects. Initial results can be found in [48].
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Abstract. Aspect-oriented concepts are currently exploited to model
systems from the beginning of their development. Aspects capture po-
tentially crosscutting concerns and make it easier to formulate desir-
able properties and to understand analysis results than in a tangled
system. However, the complexity of interactions among different aspec-
tualized entities may reduce the benefit of aspect-oriented separation of
crosscutting concerns. Some interactions may be intended or may be
emerging behavior, while others are the source of unexpected inconsisten-
cies. It is therefore desirable to detect inconsistencies as early as possible,
preferably at the modeling level.

We propose an approach for analyzing interactions and potential in-
consistencies at the level of requirements modeling. We use a variant of
UML to model requirements in a use case driven approach. Activities
that are used to refine use cases are the joinpoints to compose crosscut-
ting concerns. The activities and their composition are formalized us-
ing the theory of graph transformation systems, which provides analysis
support for detecting potential conflicts and dependencies between rule-
based transformations. This theory is used to effectively reason about
potential interactions and inconsistencies caused by aspect-oriented com-
position. The analysis is performed with the graph transformation tool
AGG in order to get a better understanding of the potential behavior
of the composed system. In addition, the activity control flow of the
aspect/base specification and the composition operators are taken into
account to identify the relevant interactions.

1 Motivation

Aspect-oriented programming promises to provide better separation and
integration of crosscutting concerns than plain object-oriented programming.
Aspect-oriented concepts are currently introduced in all phases of the software
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development life cycle with the aim of reducing complexity and enhancing main-
tainability already early on.

On the requirements level, crosscutting concerns, i.e., concerns that affect
many other requirements, cannot be cleanly modularized using object-oriented
and view-point-based techniques. Several approaches have been proposed to
identify crosscutting concerns already at the requirements level and to provide
means to modularize, represent, and compose them using aspect-oriented tech-
niques, e.g., for use case-driven modeling in [1–4].

A key challenge is to analyze the interaction and consistency of crosscutting
concerns with each other and with affected requirements. It is in particular the
quantifying nature [5] of aspect-oriented composition that makes the detection
of interactions and inconsistencies difficult. When composing aspect-oriented
and object-oriented models, there are two sources of interactions, and thus of
potential inconsistencies.

1. Intended or unintended overlap of concepts in these models can be the source
of inconsistencies. Depending on the composition, these inconsistencies be-
come effective or are avoided.

2. Aspect-oriented composition specifies where and when an aspect is applied
and how the control flow is augmented or changed. It can be used to solve some
of the above-mentioned inconsistencies, e.g., by replacing object-oriented be-
havior consistently with aspect-oriented behavior. However, it might create
inconsistencies by accidentally duplicating or suppressing behavior.

Requirement engineers should identify aspect interactions and potential incon-
sistencies since they could compromise the feasibility of the system. However,
it is worth noting that not all identified interactions are necessarily inconsis-
tencies. Some of them may be intended or emerging collaborations. Until now,
approaches to analyzing the aspectual composition of requirements have been
informal [3, 4, 6]. Formal approaches for detecting inconsistencies have been pro-
posed only for the level of aspect-oriented programming, e.g., model checking [7],
static analysis [8], and slicing [9, 10].

Techniques proposed for the programming level cannot be used for require-
ments because they rely on the operational specification of the complete behavior
as given by the code, while requirements abstract from these details. On the re-
quirements level, a commonly used, but often informal, technique is to describe
behavior with pre- and post-conditions, e.g., using intentionally defined states
or attributes of a domain entity model. This technique is, e.g., used for defin-
ing UML use cases, activities, or methods. In order to allow a more rigorous
analysis of behavior, this approach has to be formalized and also extended to
aspect-oriented units of behavior.

In this paper, we investigate the use of an existing model analysis technique
based on graph transformations [11] for analyzing interactions and inconsis-
tencies of an aspect-oriented composition of object and aspect models. The
rule-based paradigm of graph transformation can be used as a formal model
for behavior specifications with pre- and post-conditions. The theory provides
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results for detecting potential interactions and inconsistencies among behavioral
specifications using a technique called critical pair analysis.

We illustrate our approach with a use case-driven modeling approach using
UML [12] use case, activity, and class diagrams. We specify aspect-oriented com-
positions for use cases using their refining activities as joinpoints. The composi-
tion is formally defined as model weaving on the level of activity diagrams using
graph transformation techniques. Activities are rigorously defined with pre- and
postconditions using a variant of UML and subsequently analyzed for conflicts
and dependencies with the tool AGG [13], an environment for specifying, ana-
lyzing, simulating, and executing graph transformation systems. Since the graph
transformation system is not aware of aspects, the results have to be interpreted
according to the aspect-oriented composition specification and according to the
control flow between the activities of the aspect/base use case.

This paper takes the ideas presented in [14] a step further. Here, we present a
formalization of the aspect-oriented composition that was only informally intro-
duced in our previous work. We also give more details on how to use the conflicts
and dependencies computed with AGG in order to formally reason about inter-
actions on the level of aspect-oriented composition. In our previous work, this
was introduced only by an example.

The paper is organized as follows. Section 2 describes the formally enhanced
use case-driven approach using an example and introduces the notion of con-
flicting and depending behavioral interactions. In Sect. 3, we introduce graph
transformations and their analysis facilities. The aspect-oriented composition as
model weaving using graph transformations is formalized in Sect. 4. Section 5
explains how to use critical pair analysis to formally analyze interactions in
aspect-oriented models. In Sect. 6, we apply the analysis to the example and
interpret results with respect to aspect-oriented composition. Related work is
discussed in Sect. 7. Section 8 contains our conclusion and outlook.

2 Aspect-Oriented Requirements Modeling

Several authors have proposed extending a use case-driven requirements mod-
eling approach by aspects [1, 6, 15, 16]. Aspects can represent functional and
non-functional crosscutting requirements. In [17], functional aspects are iden-
tified at the level of use case relationships. The joinpoints, i.e., the points of
aspect-oriented composition, are activities or groups of activities, as in [6]. We
present a subset of these techniques in order to demonstrate how such approaches
can be enhanced by a formalization and a formal analysis.

2.1 A Use Case-Driven Approach

Central to our approach is the notion of use case diagrams which serves as an
overview on functionality. In addition, a use case is at least specified by a trigger,
an actor, a pre-, a post-condition, main scenario(s), and exceptional scenario(s).
Scenarios can be specified with UML activity diagrams. Here, we only present
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Fig. 1. Use Cases in the Travel Agency Example

scenarios since they are the ones which will be formalized. In addition, the do-
main model class diagram plays an important role, because we refer to it in the
formalization.

We illustrate the approach using a model of a travel agency offering flights
reservation, car rental, and using a bonus scheme.

Use Cases. For purchasing travel items, the system offers the use cases “buy
flight” and “rent car” (Fig. 1). The use cases “earn bonus” and “redeem bonus”
offer a bonus program. A staff member is involved as an actor in all use cases
but this does not imply that the actor always triggers the use case.

Domain Model Class Diagram. The class diagram specifies the structure of
the domain (Fig. 2). A Customer may book and pay for a Travel item, either a
Flight or a Rental, sold by an Agency. Each travel item can be booked at most

Fig. 2. Domain Model Class Diagram
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Fig. 3. Activity Diagrams

once. A Flight is composed of one or more legs, denoted by “leg of”. A Ticket
“refers to” a Customer and a Flight. A Rental “engages” one Car. A Car can
be engaged in different Rentals. A Customer who “owns” a BonusAccount may
earn and redeem bonus for Travel items.

Activities. The steps of the main scenario of each use case are described using
activity diagrams. The use case “buy flight” is refined in Fig. 3a. After condition-
ally creating a customer, the flight and all its legs are booked. Then the flight is
paid for and a ticket issued. The use case “rent car” is specified analogously in
Fig. 3b. Bonus use cases are independent of the kind of travel. To earn a bonus,
a bonus account must exist. A bonus is earned for all travel items (Fig. 3c). For
redeeming a travel item, one uses the bonus (Fig. 3d).

Pre- and Post-conditions. The domain model can be more tightly integrated
with activities by specifying the pre- and post-conditions of each activity using
prototypical instances. An object diagram, i.e., the structural part of a UML
collaboration diagram, is naturally complemented by a diagrammatic description
of such a pre- or post-conditions. This has also been advocated by object-oriented
methods like Fusion [18] or Catalysis [19]. The pre- and post-conditions serve to
specify the intended behavior of an activity. The semantics of the pre-condition is
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Fig. 4. Activity Pre- and Post-Conditions
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that when the pre-condition is violated, the activity cannot be executed. Instead,
an exceptional state is reached. In the following, we present the technical details.

The pre- and post-conditions specify arbitrary but fixed instances. Instance
identity is given by a natural number. A post-condition can refer to the same
instance as the pre-condition by referring to the same number. Also, for links,
numbers are required. Here, we have omitted them to make it easier to read the
conditions. Links between two instances that have the same identity in the pre-
and post-condition also have the same identity. Attributes can be matched with
values. An attribute to be changed in a post-condition has to be instantiated in
the pre-condition. Creation is specified by introducing a new instance or link in
a post-condition. Deletion is specified by omitting an instance or a link present
in a pre-condition in the corresponding post-condition. A pair of pre- and post-
conditions can be parameterized and the parameter can be used in the pre- and
in the post-condition (Fig. 41). Pre-conditions can include negative conditions,
which are often used to specify that a created element does not yet exist. Negative
links and instances are drawn using a dashed (out)line using a notation coming
originally from graph transformation. If there are several negative elements, each
of them is prohibited, i.e., several negative elements have an AND-semantics.
(OR-semantics is also possible, but not discussed here.)

Figure 4 gives the pre- and post-conditions of all activities. In Fig. 4(1),
the pre-condition checks that a customer named “n” does not exist. The post-
condition ensures that this customer is created. In Fig. 4(2), neither a “books”
link exists, nor is the flight a “leg of” another flight. A link “books” is inserted. In
Fig. 4(3), attributes are matched with value parameters that are used to calcu-
late the post-condition values. In the pre-condition, a constrained on the values
“t<s” is used. The other pre- and post-conditions are constructed in a similar
way. When specifying these conditions, the formal analysis of the tool AGG
and its simulation capabilities (Sect. 3) already helped in identifying unintended
imprecisions.

2.2 Aspect-Oriented Composition

Until now, we have left the specification of aspect-oriented relationships between
use cases open. The notion of aspect-oriented composition is analogous to As-
pectJ [20]:

– An advice is modeled by a use case and subsequently specified using activity
diagrams and pre- and post-conditions.

– The pointcuts, i.e., the matching specifications, refer to activities. Each ac-
tivity can thus be a joinpoint. A pointcut can refer explicitly to an activity
or a list of activity. In order to support crosscutting, activities can be tagged
with an additional classification label that can be used in a pointcut.

– The modifiers before, after and replace indicate that the advice use case
is executed before, after, or instead of each activity matched.

– A condition specifies when the aspect activity diagram can be executed. If
the condition is not fulfilled, the aspect activity is not executed and the base
behavior is left unchanged.
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We have chosen not to use lexical patterns (as used in previous work [14]) in
activity matching as names of activities are often given in a natural language and
as they often contain short phrases and not only a single word. This impedes the
lexical matching approach. The classification can be implemented, for instance,
using UML tagged values or even stereotypes.

It is also conceivable to have more complex joinpoints. In [6], in addition,
groups of activities, e.g., an entire use case, can be matched. Here, we do not
consider the proceed -mechanism [20] inside the replace advice, which allows the
behavior associated with a joinpoint (here it is an activity) to be used inside the
advice. This would require to introduce a special place holder activity that is
used in the aspect activity diagram to mark the place holder activity identified
by a pointcut.

The condition of the aspect-oriented composition does specify the condition
under which an aspect activity diagram can be executed. If the condition is not
fulfilled, the aspect activity is not executed. In case of before or after, the
ordinary base activity is always executed. In case of a conditional replace, the
base activity is executed instead. Thus, this condition has an effect on the control
flow of an activity diagram.

In the example of the travel agency use cases (Fig. 1), crosscutting behavior
is exhibited by the use case “earn bonus”. It augments the use cases “buy flight”
and “rent car”. Thus, the activity diagram specifying “earn bonus” is composed
with the other activity diagrams. It should take place after booking is completed,
i.e., before the following activity “Pay flight” or “Pay rental”.

In order to support the crosscutting idea, the two pay activities are grouped
in a classification labeled “Pay”, to this end a new tagged value or a new stereo-
type could be added to the UML models for the flight booking. The pointcut
matches activities that belong to the classification “Pay” (Table 1) using the
modifier before. “Redeem bonus” should take place instead of “pay flight” or
“pay rental”(Table 1). The composition will be formalized in Sect. 4.

Table 1. Aspect-Oriented Composition

Use Case Modifier Pointcut Condition
(Activity/Classification)

Earn bonus before –/Pay Customer requests bonus
Redeem bonus replace –/Pay Customer wants to redeem

2.3 Interactions in Aspect-Oriented Composition

During aspect-oriented modeling, one needs to understand the effects of an as-
pect model on the model of the rest of the system, i.e., other aspect models and
object models, but also how the aspect model is affected by them. The speci-
fied aspect-oriented composition should be feasible and should not violate other
behavioral constraints. This issue has been further analyzed by Katz [21], who
distinguishes the following desirable properties of aspect-oriented composition:
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– Specified properties of the existing system are preserved (apart from replaced
behavior).

– The aspect adds desired new properties.
– Different aspect behaviors do not interfere.

These desirable properties are affected by the two sources of interactions iden-
tified in Sect. 1, interactions directly between behavior and interactions estab-
lished through the aspect-oriented composition. We can identify these interac-
tions based on the activities specified with pre- and post-conditions.

An activity A impedes an activity B if B cannot take place after activity A
because the pre-conditions of B are violated by the post-conditions of A. An
activity A enables an activity B if A produces something needed by the activity
B or deletes something forbidden by B. These interactions might arise between
an activity from the object model and between an activity from the aspect model
in both directions or between activities of different aspect models.

In the following, we analyze all the interactions which become effective with
regard to aspect-oriented composition. Some of them may be tolerable or even
needed as a function of the application domain; however, our formal analysis
helps in making them explicit.

Through the aspect-oriented composition two control flows are merged, and
activities from different models become direct or indirect successors or predeces-
sors of each other or replace each other. All the interactions should be taken into
account in order to determine if the merge is successful, i.e., if the additional
behavior is enabled and not prevented by conflicts and if it does not change the
existing behavior.

We illustrate the typical scenario with the use case “redeem bonus” (Fig. 1).
The aspect-oriented composition (Table 1) specifies that its activities (Fig. 3) can
replace an activity classified as “Pay” (Fig. 3). To check that the composition can
work, we have to compare the pre- and post-conditions of the activities involved
in order to establish potential interactions between activities. In the example,
one would try to find out whether “Redeem” can occur after “Book flight” and
“Book rental”. This is possible because it depends on them.

Manually identifying all the interactions from pre- and post-conditions is in-
efficient and error-prone. In the next section (Sect. 3), we describe how the
detection of interactions can be automated using existing technologies and tool
support. We therefore introduce the basics of graph transformation theory which
are used to formalize pre- and post-conditions of behavioral models.

3 Graph Transformation

The UML variant presented in Sect. 2 is a modeling approach for requirements
which can be precisely defined by the theory of graph transformation. While class
structures are formalized by type graphs, pre- and post- conditions of activities
are mapped to graph rules. The formalization functions as the necessary basis for
analyzing interactions in aspect-oriented composition precisely. The calculus of
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graph transformation has a sound background dating back to the early seventies:
the interested reader is referred to seminal work in this area [11]. In this paper,
we present the theoretical background in an almost informal way.

3.1 Attributed Typed Graph

Graphs can be used as an abstract representation of diagrams. A graph is defined
by the sets of its vertices and edges as well as two functions, source and target,
that map edges on vertices. According to this definition, more than one edge
can exist between two given vertices. When formalizing object-oriented model-
ing, graphs occur at two levels: the type level (defined based on class diagrams)
and the instance level (given by all valid object diagrams). This idea is described
by the concept of typed graphs, where a fixed type graph TG serves as an abstract
representation of the class diagram. Moreover, both vertices and edges may be
decorated by a number of attributes, i.e., names with a value and type. As in
object-oriented modeling, types can be structured by an inheritance relation. In-
stances of the type graph are object graphs equipped with a structure-preserving
mapping to the type graph, i.e., a mapping that preserves the source and target
functions for edges. A class diagram can thus be represented by a type graph,
plus a set of constraints over this type graph, expressing multiplicities and per-
haps further constraints.

In our running example, the type graph (Fig. 5) represents the domain model
of the system, equivalent to the UML class diagram in Fig. 2. However, the in-
heritance relationship was rendered by flattening all the associations of Travel to
Flight and Rental. This is necessary because all the edges of a graph should have
the same semantics (a relationship between two nodes) to be used consistently
during the analysis. Figure 6 shows an instance graph consistent with the type
graph.

3.2 Attributed Typed Graph Transformations

Basically, a graph transformation is a rule-based modification of a graph G into
a graph H . Rules are expressed by two graphs (L, R), where L is the left-hand
side of the rule and R is the right-hand side, and a mapping between objects in
L and R. The left-hand side L represents the pre-conditions of the rule, while
the right-hand side R describes the post-conditions. L ∩R (the graph part that
is not changed) and the union L ∪ R should form a graph again, i.e., they must
be compatible with source, target and type settings, in order to apply the rule.
Graph L \ (L ∩ R) defines the part that is to be deleted, and graph R \ (L ∩ R)
defines the part to be created.

Figure 4(3) shows pre- and post-conditions of the activity “Book leg”, which can
be interpreted as a graph rule. The numbers indicate the mapping between left-
and right-hand sides. The attribute conditions are interpreted as an instantiation
of variables on the left-hand side, and attribute assignment on the right-hand side.

A graph transformation step G
r,m �� H between two instance graphs G, H is

defined by first finding a match m of the left-hand side L of a rule r in the current



Analysis of Aspect-Oriented Model Weaving 245

Fig. 5. Type Graph of the Travel Agency Example

Fig. 6. Instance Graph

instance graph G such that m is structure-preserving and type-compatible. If a
vertex embedded into the context is to be deleted, edges that would not have
a source or target vertex after rule application might occur: these are called
dangling edges. There are mainly two ways to handle this problem: either the
rule is not applied at match m or it is applied and all dangling edges are also
deleted. In the sequel we adopt the former strategy.

Performing a graph transformation step that applies rule r at match m, the
resulting graph H is constructed in two passes: (1) build D := G\m(L\(L∩R)),
i.e., delete all graph items that are to be deleted; (2) H := D ∪ (R \ (L ∩
R)), i.e., create all graph items that are to be created. A graph transformation,
more precisely a graph transformation sequence, consists of zero or more graph
transformation steps.

The applicability of a rule can be further restricted by additional applica-
tion conditions. The left-hand side of a rule formulates some kind of positive
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condition. In certain cases, negative application conditions (NACs), which are
pre-conditions prohibiting certain graph parts, are also needed. If several NACs
are formulated for one rule, each of them has to be fulfilled (AND-semantics).
See, e.g., rule “Pay flight” in Fig. 4(5), which has two NACs, one forbidding the
flight to be paid for to be a leg of another flight and one checking if the payment
has already been recorded.

As an example of a graph transformation step, we consider again the rule
“Book leg” in Fig. 4(3) and the host graph in Fig. 6. There are different ways
of matching the rule to the host graph, depending on which flight leg is used.
Choosing the left flight leg, the NAC (indicated by dashed lines in Fig. 4) is not
fulfilled. Thus, the rule can only be applied to the right flight leg. The result is
the host graph in Fig. 6 with an additional “books”-edge to the right flight leg.

A set of graph rules, together with a type graph, is called a graph transfor-
mation system (GTS). A GTS may show two kinds of non-determinism: (1) For
each rule several matches may exist. (2) Several rules might be applicable. There
are techniques to restrict both kinds of choices. The choice of matches can be
restricted by either letting the user specify part of the match using, e.g., input
parameters, or by explicitly defining a control flow over rule application.

The tool environment AGG (Attributed Graph Grammar System) [13] can be
used to specify graph transformation systems and analyze their rules. Moreover,
the rules can be tested by applying them to possible instance graphs.

3.3 Conflict and Dependency Analysis

One of the main static analysis facilities for GTSs is the check for conflicts and
dependencies between rules and transformations, both supported in AGG. This
conflict and dependency analysis is based on critical pair analysis. The main
result of this analysis is the Critical Pair Lemma which states that local conflu-
ence of all graph transformations can be gained if all critical pairs (presenting
conflicts in minimal context) are local confluent. The critical pair analysis is part
of the comprehensive theory on algebraic graph transformation, summarized in
[11]. First results on critical pair analysis for graph transformation, especially
hypergraph rewriting, were given in [22].

The dependency analysis and a critical pair visualization for algebraic graph
transformation have been investigated recently, partly motivated by the aspect-
oriented composition analysis presented in this paper. The conflict analysis
has been applied, e.g., to identify conflicts in functional requirements in [23].
In this paper, we argue that the existing theoretical results for graph trans-
formation can be used for analyzing potential conflicts and dependencies in
aspect-oriented modeling.

As discussed in the previous section, graph transformation systems can show
certain kinds of non-determinism. Considering the case where two graph trans-
formations can be applied to the same host graph, the result might be the
same, regardless of the application order. Otherwise, if one of two alternative
transformations is not independent of the second, the first will disable the sec-
ond. In this case, the two rules are in conflict. Conversely, two transformations
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are said to be parallel independent if they modify different parts of the host
graph. Instead, sequential independence guarantees that the order of application
in a transformation sequence does not matter, i.e., performing the first transfor-
mation does not disable the second.

Analyzing the conflicts and dependencies of concrete graph transformations
can be compared to testing a program at run time. The analysis would have
greater value if conflicts and dependencies could be detected during compile
time by a static analysis. A promising approach in this direction is the analysis
of potentially conflicting situations by critical pairs. A critical pair is a pair of

transformation steps G
p1,m1 �� H1, G

p2,m2 �� H2 that are in conflict in a minimal
context, identified through matches m1 and m2. Host graph G is constructed
based on overlapping L1 and L2, the left-hand sides of rules p1 and p2. The
set of critical pairs represents precisely all potential conflicts, i.e., there exists
a critical pair as above if and only if p1 may disable p2 or, conversely, p2 may
disable p1. Conflicts can be of the following types:

delete/use: The application of p1 deletes a graph object that is used by the
match of p2.

produce/forbid: The application of p1 produces a graph structure that a NAC
of p2 forbids.

change/use: The application of p1 changes an attribute value of a graph object
that is used by the match of p2.

Critical pair analysis can also be used to find all potential dependencies among
rules. In fact, a rule p1 is a dependency for p2 if and only if there exists a critical
pair between p−1

1 (obtained by exchanging the left and right-hand sides of p1)
and p2. Consequently, the following dependencies are possible:

produce/use: The application of p1 produces a graph object that is needed by
the match of p2.

delete/forbid: The application of p1 deletes a graph objects that a NAC of p2
forbids.

change/use: The application of p1 changes an attribute of a graph object that
is used by the match of p2.

We use critical pair analysis to detect potential conflicts and dependencies
among crosscutting specifications. Before describing our analysis approach in
detail in Sect. 5, we will formalize the weaving of crosscutting specifications in
Sect. 4.

4 Model Weaving

In this section, we formalize the aspect-oriented composition informally intro-
duced in Sect. 2. We use again the graph transformation approach that was
presented in the previous section. We give the semantics of the composition of
an aspect use case with a base use case by constructing an activity diagram
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that results from composing the base activity diagram with the aspect activity
diagram according to the pointcut specification.

Since its coining, the term aspect-oriented programming has always been a
synonym for implementing aspects using weaving, i.e., for a transformation of the
source code which inserts the aspect code in all places specified by a pointcut.
Here, we apply the same concept to the activity diagram of the aspect-oriented
use case. This diagram is woven into the activity diagram of the base use case
following the specification of the pointcut that was introduced in Sect. 2.

In our modeling approach, a pointcut specifies all activities that have to be
augmented by an aspect, either by a list of activities or by annotations. Any
activity can be a joinpoint. The pointcut specifies a certain mode, i.e., before,
after, or replace. This determines where the activity diagram is woven in with
respect to an activity specified in the pointcut. In addition, a condition controls
the dynamics of the activation of aspect activities.

Thus, we can formalize the weaving by a transformation that inserts the con-
ditional branching for a selected activity. For specifying this kind of transforma-
tion, graph transformations are suitable. Graph transformations as introduced
in the last section are intended to work on the abstract syntax. The abstract
syntax of any visual language can be defined in terms of nodes and edges. Here,
we consider activity diagrams that consist of

– activity nodes, start nodes, ends nodes,
– fork and join nodes,
– decision and merge nodes,
– flow edges, and the special flow edges labeled with decision (yes, no).

For these kinds of activity diagrams it is feasible to specify the transformations
on the abstract syntax. To specify the transformation, a corresponding type
graph and rules based on this type graph have to be defined. Both will be
presented in the following.

4.1 Type Graph

In the type graph a super type Node subsumes all nodes in the activity diagram
(Fig. 7). This allows rules that apply to all kind of nodes to be defined for the
super type. Fork, join, start, stop, and merge nodes do not carry any addi-
tional information. A node for an activity has an attribute for the name and
for the annotation. The latter was introduced in Sect. 2 to support crosscutting
by means of annotating a classification. A node for a decision contains the
predicate for the condition.

An edge is formalized as a Transition node that is linked by source and
target edges to that nodes the edge connects. A transition node can exist
between any two nodes with the exceptions that start and end nodes have no
incoming rsp. outgoing edges. These constraints can be formalized as graph con-
straints in the graph transformation formalization. All other constraints address
other well-formedness issues and are not further discussed here. A transition node
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Fig. 7. Type graph for activity diagrams

connected via its source to a decision node is labeled by Yes or No. All other
nodes have empty labels.

4.2 Transformation Rules

We specify a weaving rule for each of the modifiers that can be used in an aspect-
oriented composition. Graph transformation rules as introduced in Sect. 3 can
transform graph structures with a pre-defined number of elements only. If we
want to adapt an activity identified by a pointcut, this activity can have an
arbitrary number of incoming edges. In order to capture an arbitrary number of
elements in a rule, we introduce the concept of amalgamated rules.

Rule Amalgamation. Here, we can only give a short overview on amalgama-
tion of rules. We will focus on the way how an amalgamation is defined. We
will not give details on its formalization in the graph transformation approach,
which are given in [24–26]. An amalgamated rule can have multi-nodes in ad-
dition to ordinary nodes. While each ordinary node has to be matched exactly
once, multi-nodes are matched as often as possible. Thereby, a rule can match
an arbitrary number of nodes of the same type linked by the same edge type to
the context. An example will be given in the following.

Composition Using the before, after and replace Modifiers. In the
following we show how to specify a rule for each modifier. Each rule is param-
eterized with the classification of the activities that can be matched and the
condition. Rules for pointcuts matching concrete activities are analogous. The
aspect activity diagram is not given as a parameter but can be specified as a
partial match when applying this rule. A partial match can be specified for a
rule application to constrain rsp. control the match of the rule application. The
reason is that in the underlying formalism parameters cannot be graphs.

The before composition is specified in Fig. 8. The left-hand side of the rule
specifies the match of the activity that is augmented (on the left) and the match
for an activity diagram (on the right), which can be given as a partial match
through its start and end node. The start node has one outgoing transition,
while the end node can have multiple incoming transitions. The node after the
start node can be an activity, a fork, or decision. The activity specified in the
pointcut can have an arbitrary number of incoming edges, here transition nodes,
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Fig. 8. Before composition

that have to be redirected. The corresponding multi-node is linked to the newly
created decision node. The label of this decision node is given the parameter
CONDITION. The label �n indicates that the number of objects matched is
preserved.

The activity diagram to be woven with the matched activity has start and
end nodes that have to be deleted. The first node linked with the start node is
preserved. However, its incoming edge, depicted as transition node, has to be
replaced by a transition node that carries the label Yes. The end node may have
an arbitrary number of transition nodes for incoming edges that also have to
be redirected. This is captured by a multi-object whose number of instances is
preserved. Its outgoing links are attached to the activity matched. Note that
we have omitted the numbers of the edges. The rule for after is constructed
analogously and is not shown here.

The rule for replace composition is given in Fig. 9. Also, the replacement is
conditional. This transformation has to redirect the edges going into the stop
node to the node that is the successor of the replaced activity. Again, this situ-
ation is captured by rule amalgamation. Also, note that the link of the matched
activity to its m successor nodes is preserved.

4.3 Weaving Example

We apply the rule Before Composition to weave the activity diagram for the use
case “earn bonus” with the activity diagram for use case “pay rental” (Fig. 3b,c).
The weaving follows the composition specified in Table 1.

The rule requires two parameters and a partial match for the aspect activity
diagram which is woven into the base activity diagram. The parameters are given
in the composition specification in Table 1. The annotation string “Pay” is passed
to the parameter CLASS. The condition string “Customer requests bonus”
is passed to the parameter CONDITION. When applying the parameterized
left-hand side of the rule to the abstract syntax of the activity diagram for “pay
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Fig. 9. Replace composition

rental”, the match found is given on the left in Fig. 10. The activity that is
matched through the annotation “Pay” hat the name “Pay rental”. The multi-
node for incoming transitions matches two incoming transitions, one with a
label “no” that originates in a decision node and one with no label that orig-
inates in an activity node. That is the minimal context needed for a precise
match. Note that applying the rule would also result in a match of the activity
“Pay flight” of the activity diagram for use case “pay flight”. This effect is not
shown here.

The rule also needs a partial match for the activity diagram that is to be
woven. The partial match is given by the start node context and the end note
context of the activity diagram to be woven. The partial match for the ac-
tivity diagram for use case “earn bonus” is given on the right in Fig. 10. It
consists of the start node and of the one transition leaving the start node
and of the successor node. Here, the successor is a decision node with the
condition “Exists account?”. The other part of the partial match is given
through the end node and its potentially multiple incoming transitions. Here,
the end node has one incoming transition labeled “no” because it originates in a
decision node.

The rule preserves all nodes from the match in the base activity diagram
and it deletes the start and end node from the activity diagram to be woven.
It adds a decision node and puts together both diagrams by adding required
transition nodes and edges. The final result is shown on the level of concrete
syntax in Fig. 11. The activity diagram for earning bonus is inserted before
the the activity “Pay rental” using a decision node with the label “Customer
requests bonus”. The newly created elements are highlighted.
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Fig. 10. Example weaving match

Fig. 11. Example weaving result

5 Applying Critical Pair Analysis

Critical pair analysis can be exploited to discover dependencies among activities.
In particular, it is possible to check if a given activity B cannot take place
immediately after an activity A. In this case we say that A impedes B. We
assume (see Section 2.1) that activities are specified by expressing their pre- and
post-conditions as graphs: an activity is modeled by a production rule that has
the pre-condition as the left-hand side and the post-condition as the right-hand
side. Let A and B be two activities specified respectively by the rules pA and pB.
If the rule pA is in conflict with the rule pB, the application of pA (corresponding
to the execution of A) makes pB inapplicable, i.e., at least one of the constraints
imposed by the left-hand side of pB cannot be satisfied.

A delete/use conflict is shown, e.g., in Fig. 12. Applying “Pay flight” to the
host graph shown at the bottom of the figure, rule “Redeem flight” becomes
non-applicable, because “Pay flight” deletes the “books”-edge which is needed
for the application of “Redeem flight”.

Another conflict occurs if a Customer has booked both a Flight and a Rental
and wants to redeem loyalty points from her/his BonusAccount for both. The
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Fig. 12. Critical Pair “Pay flight”, “Redeem flight” in AGG

rules “Redeem flight” and “Redeem rental” change the same attribute “bonus”.
(See the pre- and post-conditions in Fig. 4(9) and imagine corresponding rules
for the instantiation of “Travel” to “Flight” and to “Rental”, respectively.)

Conversely, if pB depends on pA, this is equivalent to a conflict between pA
−1

and pB. Therefore, a hypothetical application of A−1 would make pB inapplica-
ble, i.e., at least one of the constraints imposed by the left-hand side of pB could
not be satisfied when all the constraints of the left-hand side if A hold. If, in
addition, A does not impede B, this means that immediately after the execution
of A some preconditions of B that were false before A execution are currently
true, i.e., A enables B. For example, applying “Book flight” to a host graph
without a “books” edge makes the rule “Pay flight” potentially applicable. In-
stead, “Pay flight” does not enable “Book leg”, since—while it had a potential
dependence—it also conflicts with it.

5.1 Analysis of Composition

Impediments and enablements can be used to better understand the coherence
of the system specification. In this section, we suggest some constraints that
should be satisfied by any consistent system even if some of them cannot be
checked completely automatically. Our heuristics assume that the composed ac-
tivities work in the same context, i.e., the pre- and post-conditions use the same
entities, i.e., nodes in the objects graph. In general, a potential conflict might
not lead to a concrete conflict; this is especially true in the case of change/use
conflicts which often indicate a collaboration: an activity uses attributes changed
by another activity. As in Sect. 4, we consider activities connected by flow, fork,
join, decision, and merge edges. We adopt the following semantics:
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– A flow B: the post-condition of A holds before B starts;
– A fork B, C: the post-condition of A holds before B and C start;
– A decision B, C: the post-condition of A and the decision condition hold

before B starts; the post-condition of A and the negation of the decision
condition hold before C starts;

– A, C join B: the post-conditions of A and C hold before B starts (i.e., A
and C act in parallel and they do not interfere);

– A, C merge B: merge edges are normally used to resume sequential flow after
the branching decision. The post-condition of A or C holds before B starts:
i.e., we do not know which one between A and C finishes before B.

A flow between A and B is possible only if A does not impede B. Simi-
larly, A fork B, C is possible only if A does not impede B and C. A decision
is analogous to a fork when—as it is in most cases—the condition is not on
matching constraints; otherwise one should consider the conjunction between
the post-conditions of A and the condition decision (or its negation). A, C join
B is in general possible only if A does not impedes B and C does not impede
B. A, C merge B is likely to have some problems if A impedes B or C impedes
B: however, the branching condition could resolve the conflict in some cases.

Aspect-oriented composition creates new flow edges in the system. If more
than one piece of advice insists on the same joinpoint which are not in conflict,
one should safely consider them as in fork-join relation. If, instead, they inter-
fere, the designer should specify deterministically the order of composition. Let
J be the joinpoint activity where an aspect activity A is advised, I its direct
predecessor and K its direct successor; the heuristics for the weaving operations
described in Sect. 2.2 is the following:

– For before J , A must not impede J and must not be impeded by I. If I
enabled J , the same enablements should be provided by A.

– For after J , A must not be impeded by J and they must not impede K. If
J enabled K, the same enablements should be provided by A.

– For replace J , A must not be impeded by I and must not impede K. If J
enabled K, the same enablements should be provided by A.

– In all cases, the aspect activities may only be impeded by indirect predeces-
sors if other indirect predecessors provide corresponding enablements after
disablements. Similarly, aspect activities may impede indirect successors if
these are enabled by other successors. Aspect activities do not have to be
completely enabled by the use case with which they are composed.

6 Analysis of the Travel Agency Example

In the previous sections, we introduced graph transformation as the theoretical
foundation for detecting conflicts and dependencies between activities specified
graph with pre- and post-conditions. We computed automatically all potential
conflicts and dependencies for the travel agency example using AGG. The results
are presented with a conflict (Fig. 13) and a dependency (Fig. 14) matrix. The
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first column and first row contain the list of all rules. The entry is a number
specifying how many different conflicts/dependencies (critical pairs) were found.
An entry in light color (green) contains a zero. An entry in dark color (red or
blue) contains a number different from zero; here, it can range from one to four.

– Conflict matrix: a positive entry indicates that column entry A disables row
entry B ; B is in conflict with A.

– Dependency matrix: a positive entry means that column entry A is a depen-
dency for row entry B ; B is dependent on A.

Fig. 13. Conflict Matrix in AGG

By using these matrices one can reason about impediments and enablements.
In the conflict matrix, each activity is in at least one conflict with itself, which
is typical for changes effected once. They can be ignored in the following. Many
conflicts and dependencies that are caused by changes to attributes will not be
considered in the following since they do not cause any effect. The matrices can
be used for validating the internal consistency of a single use case. For example,
“Add insurance” is impeded by “Pay rental” but never occurs thereafter in use
case “Buy flight”.

Because of flattening the typing relation, we have to look at four concretely
typed compositions. We describe results related to flights; rentals are similar.
For ease of analysis a graph depicting impediments and enablements can be
used (Fig. 16). It contains a directed edge A to B if A impedes (solid red) B or
A enables B (dashed blue). Undirected edges represent mutual conflicts. AGG is
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Fig. 14. Dependency Matrix in AGG

able to generate automatically the graph of conflicts and dependencies and the
user may hide irrelevant edges or nodes in order to focus on specific concerns.

Before-Composition: Consider the use case “Earn bonus” (Fig. 3c) before
any “Pay” activity. This use case contains “Earn flight” (flattened) and “Cre-
ate account”. “Earn flight” is impeded by “Pay flight” but never occurs after it.
After the composition, “Earn flight” could happen after a “Book leg” activity
that has a potential impediment on it; however, the study of the critical pair be-
tween “Earn flight” and “Book leg” (see Fig. 15) reveals that the conflict is not
critical (it is in fact desired: earning the bonus is influenced by cost of the flight).
“Pay flight” is not impeded by “Earn flight”. “Earn flight” is impeded by “Re-
deem flight”, which is, however, not part of the composed use cases. “Pay flight”
was enabled by “Book flight”, and it still is, since “Earn flight” does not interfere
with the “book” edge added by “Book flight”.

“Earn flight” is enabled by “Book flight” and occurs after it. “Earn flight”
has also a dependency on “Book leg” (see Fig. 14). Thus, a bonus is earned for
the flight and each leg. This inconsistency is a kind of jumping aspect problem
[27]. A negative condition can be added to prevent earn from being applied to a
leg. “Create account” is enabled by “Create customer” that occurs before it.

Replace-Composition: Consider the use case “Redeem bonus” (Fig. 3c) that
replaces “Pay” activities. This use case contains “Redeem flight” (flattened).
“Pay flight” impedes “Redeem flight” and vice versa. Using the graph, one
can easily find activities depending on “Pay flight”. “Ticket flight” is depen-
dent on “Pay flight” but not on “Redeeming flight”. “Redeem flight” states its
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Fig. 15. Change/use conflict between “Earn flight” and “Book leg”

Fig. 16. Impediments (solid red) and enablements (dashed blue)

post-condition in its own domain, i.e., it inserts an edge “redeems”. Note that
this is a semantic conflict although there is no edge corresponding to it in the
graph.

“Redeem flight” depends on “Book flight” and “Book leg”. It requires only an
edge “books”. Thus, the bonus is paid for the flight and each leg, which is unde-
sirable as discussed above. Also, “Redeem flight” depends on “Create account”,
an activity outside both use cases.

The problem that redeem disables ticketing has its origin in the co-existence
of the paying domain and the bonus system. A quick fix would be that redeem
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also state side effects in terms of the paying domain of flight booking. In its
post-condition an edge “pays” could be inserted. A more sophisticated and more
maintainable solution would be to keep redeem free of the paying. Instead, an
adaption could be added to the ticketing, in order to enable ticketing for re-
deemed flights. Here, a new aspect could specify the production of a ticket that
has no price but to the bonus that was used to redeem it. This aspect would
have to be used as a replace aspect.

Applying a heuristic such as the last one can turn out to be a hard prob-
lem. The general question is whether the overall activity diagram resulting from
the weaving conforms with the overall conflict and dependency graph. In fact,
conditional branching and cycles in activity diagrams (and in the graph) make
it impossible to determine statically every enabling or disabling action. AGG
provides formal support to our approximate solution of this hard problem.

7 Related Work

Conflict analysis based on graph transformation has been applied in several con-
texts in software engineering. The detection of conflicts in functional requirement
specifications was investigated in [23], where we considered requirement speci-
fications developed with the use case-driven approach. The motivation of this
work was the early detection of conflicts within the software engineering process.
Another application in this area is the detection of conflicts and dependencies
in software evolution, more precisely between several software refactorings [28].
Both investigations use the critical pair analysis of AGG for detection. Closely
related to this work is the stratification approach for relational graph rewrite sys-
tems in [29]. Considering rewriting of labeled graphs by a special kind of rules,
different kinds of dependencies are identified and summarized in a dependency
graph, similar to our approach. In contrast to the graph rewriting approach in
[29] based on labeled graphs, we use the algebraic approach to graph transfor-
mation for typed, attributed graphs. For the analysis of aspect interactions, we
use the comprehensive theory of algebraic graph transformation summarized in
[11]. Especially useful is the Critical Pair Lemma which states that local conflu-
ence of all graph transformations can be gained if all critical pairs (presenting
conflicts in minimal context) are local confluent.

In our approach, we use graph transformation twice: First for formally defin-
ing the semantics of pre- and post-conditions for activities and second on the
metamodeling level to precisely define aspect weaving on the basis of activity
diagrams. This second way has already been followed by Aßmann [30] in a simi-
lar approach. The conflict and dependency analysis is performed on graph rules
of the first kind only, since they are the ones which present the formal seman-
tics of aspects. Whittle et al. [31] use graph transformations to weave together
behavioral UML models (expressed by using a Role-Based Metamodeling lan-
guage): behaviors can be composed as alternatives, parallel interleaving and plain
sequence.

A clustering of individual requirements within the specification of the be-
havioral characteristics of a system is often called a feature [32]. The notion
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of feature, while natural in the “problem domain”, is not always present in the
“solution domain”. In fact, researchers in feature engineering propose promoting
features as “first-class objects” within the software process in order to bridge the
gap between the user needs and design or implementation abstractions. However,
in general, features are not independent of each other nor necessarily consistent.
Finkelstein et al. [33] proposed a framework for tracking relationships among
different viewpoints of a system, according to the goals pursued by the different
stake-holders involved in the system development. By contrast, our analytical
approach aims to detect inconsistencies and interactions as early as possible in
order to avoid them.

In [2], Araújo et al. describe non-aspectual requirements as sequence diagrams
and aspectual requirements with interaction pattern specifications, which are
both woven together in state machines that can be simulated. No support for
static conflict detection is provided.

Nakajima and Tamai [34] use Alloy [35] to analyze interactions among role
models, taking into account object-oriented refinement and aspect-oriented
weaving. A similar approach is taken by Mostefoaoui and Vachon [36] who use
an aspect-oriented extension of UML to model the system under analysis. Alloy
is able to check properties of relational models by exploiting SAT solving algo-
rithms. The tool enumerates coherent problem instances (under a given scope
assumption) and search for counterexamples that disprove the desired proper-
ties. Critical pair analysis, instead, focuses only on graph transformation rules:
specific problem instances are abstracted away and therefore are more suitable
to be used at requirement level and during the very early stages of development.

Several researchers are working to find interactions at the programming level,
normally in AspectJ code. Specific program analysis techniques for AspectJ pro-
grams were proposed [9, 10] in order to determine whether two aspects inter-
fere. Clifton and Leavens [37] propose classifying aspects in observers, which do
not change the system behavior, and assistants, which participate actively in
the global computation. Similarly, Katz [7] proposed using data-flow analysis to
identify spectative, regulative, and invasive aspects. These techniques can be used
to automatically extract models of the code, which can be used to verify that
expected properties of the system hold [8, 38–40]. Douence et al. [41] introduced
a generic framework for aspect-oriented programming supporting pointcuts with
explicit states, and they provided an abstract formal semantics of their aspect
language: this allows the detection of aspect interference.

8 Conclusion

A key problem of aspect-oriented composition is the use of quantification, which
makes it more difficult to reason about than in purely object-oriented models.
On the other hand, identifying aspects already on the requirements level and
supporting them in the sequel throughout the entire life cycle makes it easier
to understand and analyze desirable properties of a system. They can be easier
conceived and formulated than in a tangled system.
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In this paper, we present an approach for detecting conflicts and dependencies
in behavioral specifications of aspects. It is based on use cases refined by activity
diagrams. We use pre- and post-conditions for activities to make the modeling
more rigorous. Specifying pre- and post-conditions may require an additional
effort but pays off if an early formal analysis is required. We think that this
is the case when developing frameworks or product lines with aspect-oriented
techniques. In this situation, the behavior of modules is specified more rigorously
and potential compositions of aspectual and non-aspectual components can be
checked in advance with the benefit that for a larger number of products the
consistency has been analyzed. The number of activities used to refine use cases
highly depends on the process and the context in which the software is developed.
However, the analysis of pre- and post-conditions is not restricted to activities,
but can also be applied to methods and to a wide range of aspect-oriented
modeling techniques if they are enhanced by pre- and post-conditions, which are
a universally applicable technique.

In our approach, we use graph transformation as a formal technique to give
a formal semantics to the chosen UML variant and to analyze it rigorously.
Detected conflicts and dependencies are potential ones that might occur in the
system but do not have to. Nevertheless, the formal technique helps to make the
problems explicit. It directs the developer to the problematic parts of a model.
It helps in understanding aspect-oriented compositions and also in reasoning
effectively about the crosscutting. Graph transformation also allows us to reason
uniformly about object and aspect models.

On the meta level, we use graph transformation to formalize the composition
of aspect use cases with base use cases by specifying a set of transformations
that weave aspect use cases into the base use cases according to the composition
operators. This formalization provides the basis for the interaction analysis as
it provides the overall control flow based on which pre- and post-conditions of
activities can be compared.

Support for analysis of the conflict and dependency graph is definitely needed
in order to apply the ideas to larger examples. The analysis of conflicts and de-
pendencies can be carried out with the tool AGG, a tool for specifying and ana-
lyzing rule-based transformations of typed attributed graphs. Since the analysis
functions are provided with a Java API, AGG is ideal for use with existing UML
CASE tools. Furthermore, incremental analysis would be desirable and feasible in
such a setting. AGG can also support the formalization of the weaving.

The presented approach can be applied in two ways. It can be used to validate
an aspect-oriented design by comparing operators with conflicts as demonstrated
in this paper. It can also be used to propose aspect-oriented compositions by
deriving them from conflicts and dependencies.

9 Outlook

To consolidate our approach and to assess its usefulness in practice, we want to
apply the interaction analysis to one of the case studies that was conducted in
the TOPPrax project [42]. In this case studies, a security product line has been
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developed using the aspect-oriented language ObjectTeams/Java [43–45]. The
different features that can be chosen for a concrete product line instance can be
checked for their compatibility.

While specifying the pre- and post-conditions with object diagrams over do-
main classes has been advocated by many object-oriented methods [18, 19, 23],
the UML primarily proposes another solution. Conditions over model instances
are specified using OCL [12]. It is up to future work to analyze aspect interaction
on the basis of OCL. One possible solution could be to transform them to graph
rules, as presented in [46]. But we have to be aware of the fact that single rules
cannot represent all kinds of constraints.

One feature that can be extremely useful for reasoning about aspect-oriented
models is unification of types. Often, a reusable aspect model does use its own
types which are not necessarily the same as those used in the domain class
diagram. Future work on interaction analysis should incorporate type unification
facilities as well. Currently, AGG is integrating object-orientation also into the
analysis facilities. So far, it has not yet integrated aspect-oriented facilities.
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