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Abstract. The purpose of this paper is to present a framework to model
component interfaces and the component connectors that provide the
glue code for the components. Our modeling approach is based on two
input languages which rely on the same automata model. One of them is
a scripting language which can serve to specify exogenous or endogenous
coordination mechanisms. The other one is a guarded command language
which has been designed to specify behavioral component interfaces, but
can also be used to design component connectors. This hybrid approach
allows nesting of the two specification languages, supports compositional
design, modular verification and reusability of components or component
connectors. It yields the input language of our verification toolset Vereofy
which realizes several model checking algorithms for components, com-
ponent connectors, and the composite system.

1 Introduction

The basic principle of component-based software engineering is to fragment a
complex system into logical components with well-defined interfaces. In this
context, a variety of coordination models and languages have been introduced
that support the separation between computations inside the components and
the interactions between the components. Endogenous coordination languages
require to incorporate coordination primitives within the code that specifies the
behavior of the components. A typical example is Linda [11] where components
are described in a computational languages extended by operators to store or
retrieve data objects from a global tuple space. A cleaner separation of compu-
tation and coordination is provided by exogenous coordination models where the
components do not need to be aware of each other. Instead, they are controlled
from “outside” via their interfaces. Several approaches for exogenous coordi-
nation have been suggested, e.g., an aspect-oriented approach [8], a variant of
the π-calculus with anonymous peer-to-peer communication [13], and formalisms
that rely on the construction of component connectors, such as interaction sys-
tems as in [12,17] or the declarative channel-based language Reo [2].

For providing tool support for the verification of systems specified in such coor-
dination formalisms, one needs input languages which on the one hand cover the
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major features of the coordination language and on the other hand have an op-
erational semantics that can easily be implemented. For exogenous coordination
languages, there is an additional aspect that should be taken into account. The
objects specified in an exogenous coordination language typically just formalize
the network that organizes the interactions of black-box components, but they
do not make any restrictions on the behavior of the components. Such restric-
tions, however, might be essential to prove certain functional properties of the
composite system consisting of several components and the network that serves
as a component connector. Thus, what is needed for model checking tools are
input languages that provide coordination primitives to specify the network and
features to model the behavioral interfaces of the components. Beside constraints
on the type of messages that can be send or received via the input and output
ports, such behavioral interfaces can also specify local states of the components
and impose (possibly data-dependent) conditions on the enabledness of sending
and receiving messages via the I/O-ports. In the literature, there are several
automata-based models that can be seen as “light-weight” formalisms for speci-
fying the behavioral interfaces of components. Examples are I/O-automata that
support compositional reasoning about asynchronous concurrent systems [16] or
interface automata that have been introduced for reasoning about compatibility
of components [10,9] or constraint automata which have been developed in the
context of reasoning about exogenous coordination [5].

The goal of this paper is to present the uniform framework for specifying be-
havioral component interfaces and component connectors that we developed in
the context of our toolkit Vereofy [7] (see Fig. 1). The verification constituents of
Vereofy are symbolic BDD-based model checking tools for linear-, branching- and
alternating-time temporal logics with special operators to reason about the data
flow at I/O-ports of components or internal nodes of the network and a bisimu-
lation checker. These logics LTLIO, BTSL, ASL and verification algorithms for
them and the bisimulation checking algorithm, together with some experimen-
tal results performed on the basis of a prototype implementation, have been
presented elsewhere [6,15,4,14]. This work on model checking component-based
systems uses constraint automata [5] as a uniform operational model for com-
ponent connectors, behavioral component interfaces and the composite system.
The focus of this paper is on the modeling approach of Vereofy which supports

network components requirements

CARML specification
library

model checker

for components
RSL specification

constraint automaton

temporal formula
of the network

Fig. 1. Vereofy overview
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exogenous and endogenous coordination. Vereofy deals with the combination of
two languages, both equipped with a constraint automata semantics. One of
them is a guarded command language, called CARML, that mainly serves to
specify the I/O-ports of components and their stepwise “observable” behavior.
The second input language of Vereofy, called RSL, is a scripting language which
combines the major features of the exogenous coordination language Reo [2] with
concepts to specify connectors with dynamically changing network topologies
and some features of other languages (such as shared variables or data types).
Reo’s coordination primitives allow to reason about all kinds of coordination
patterns with an arbitrary mixture of synchronous or asynchronous peer-to-peer
communication. By combining Reo’s coordination primitives with operators for
the instantiation of component connectors or components which are specified
in RSL or CARML, our approach offers an elegant way for the compositional,
hierarchical construction of component connectors and components. While pre-
vious work on Reo and constraint automata relies on the assumption of a global
data domain that serves as data type for all messages that can be send via the
channels, our hybrid modeling approach with RSL and CARML supports the
use of several data types. This allows using standard methods to ensure type
consistency and to check compatibility via type checking.

Organization of the paper. Section 2 summarizes our notations concern-
ing data types and constraint automata. The languages CARML and RSL are
presented in Section 3 and 4, respectively. An example using our hybrid model-
ing approach is provided in Section 5 and experimental results with our toolkit
Vereofy are presented in Section 6. The paper ends with some remarks on related
work and a conclusion (Section 7).

2 Preliminaries

Data types with fixed semantics. Let DT denote a set of data types covering
standard data types, such as Booleans or integers of fixed bit-size, or user-defined
data types with a fixed semantics, such as arrays and unions over elements of
a predefined data type or enumeration types. Let Op denote a set of operators
on the data types in DT such as conjunction, disjunction, negation for Booleans
and arithmetic operations like addition and multiplication for integers. Further-
more, Pred denotes a set of predicates, such as the standard binary comparison
predicates =, <, ≤, and so on. Formally, the elements of DT are fixed finite non-
empty sets and each operator op ∈ Op is a function op : T1× . . .×Tk → T where
(T1, . . . , Tk, T) ∈ DTk+1 and k ∈ N. The tuple (T1, . . . , Tk, T) is called the type
of op, denoted type(op). Each predicate P ∈ Pred is a subset of T1 × . . . × Tk

where k ≥ 1 and T1, . . . , Tk ∈ DT. We write type(P) for the tuple (T1, . . . , Tk).

Uninterpreted data types and signatures. Beside data types with fixed
semantics, our languages also allow for uninterpreted symbols for data types,
operators and predicates. These can be used as parameters for RSL and CARML
specifications which then serve as templates for components or connectors.
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A signature is a tuple Sig = (DT, Op, Pred, Var) where DT ⊆ DT, Op ⊆ Op

Pred ⊆ Pred and Var is a set of typed variables, i.e., for each variable V ∈ Var

its type type(V ) is an element of DT. The uninterpreted symbols for data types,
operators and predicates are then given by the elements of Θ = DT \ DT,
Ω = Op \ Op and Π = Pred \ Pred, respectively. The data type symbols T ∈ Θ
can be seen as placeholders for sets (data types). The operator symbols op ∈ Ω
and predicate symbols P ∈ Π are associated with a type. The type of an op-
erator symbol op ∈ Ω is a tuple type(op) = (T1, . . . , Tk, T ) ∈ DT

k+1 for some
k ∈ N. It declares that op takes as arguments k elements v1, . . . , vk where vi is
of type Ti and returns an element of type T . That is, op stands for a function
op : T1 × . . . × Tk → T . The number k is called the arity of op. Similarly, the
type of a predicate symbol P ∈ Π is a tuple type(P ) = (T1, . . . , Tk) ∈ DT

k for
some k ≥ 1, denoting that P has to be interpreted by a predicate consisting of
tuples (v1, . . . , vk) where vi is an element of data type Ti.

Terms and atomic propositions. Terms over Sig are built by variables, con-
stants, and the operator symbols in a type-consistent manner. Formally, terms
over Sig are defined recursively according to the following statements.

(1) Each variable V ∈ Var is a term of type type(V ) and each constant op ∈ Op

(i.e., 0-ary operator in Op ∪ Ω) is a term of type type(op).
(2) If t1, . . . , tk are terms such that the type of ti is Ti and op ∈ Op with

type(op) = (T1, . . . , Tk, T ) then op(t1, . . . , tk) is a term of type T .

Atomic propositions over Sig are type-consistent expressions stating that a cer-
tain tuple of terms is an element of a predicate in Pred. Formally, if P ∈ Pred

with type(P ) = (T1, . . . , Tk) and t1, . . . , tk are terms over Sig such that ti is of
type Ti then P (t1, . . . , tk) is called an atomic proposition over Sig.

Interpretations of signatures. For the semantics of terms and atomic propo-
sitions over a signature, we have to consider an interpretation I that provides
type-consistent meanings for the uninterpreted data types, operator and predi-
cate symbols and the variables. That is, I assigns a finite set T I �= ∅ to each data
type symbol T , an element of V I ∈ T I to each variable of type T , a function
opI : T I

1 × . . . T I
k → T I to each operator symbol op of type (T1, . . . , Tk, T ) and

a predicate P I ⊆ T I
1 × . . . T I

k to each predicate symbol P of type (T1, . . . , Tk).
(We treat I as an interpretation for all symbols of Sig by putting SI = S for
all predefined symbols S ∈ DT∪Op∪Pred.) The semantics tI ∈ T I of a term of
type T and the truth value P (t1, . . . , tk)I ∈ {true, false} for an interpretation I
and an atomic proposition P (t1, . . . , tk) are defined in the obvious way.

Locations and data-flow vocabulary. Locations are points in the network
where data flow is observable, e.g., the I/O-ports of components or nodes of the
network that serve as a router. In the sequel, L denotes a finite set of locations.
The sets Lsrc and Lsnk are disjoint subsets of L representing different kinds of
locations. Intuitively, Lsrc stands for the set of input ports (sources), Lsnk for
the set of output ports (sinks). A data-flow vocabulary over a signature Sig is
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a tuple Voc = 〈L,Lsrc,Lsnk, λ〉 where L is a set of locations and λ : L → DT is
a function that assigns to each location A its message-type λ(A), i.e., the type
of data items that can be passed via location A.

Concurrent I/O-operations (CIO) and Constraint automata (CA).
Constraint automata [5] serve as a compositional semantics for components and
connectors specified in CARML or RSL. For the syntax of CA we slightly depart
from [5] and use types for the messages that can be received or sent. The observ-
able data flow is formalized in a CA by means of a concurrent I/O-operation.
These can be understood as the potential actions of a component, a connector or
as interactions between several components and the connector in the composite
system. A concurrent I/O-operation specifies the locations where at some spe-
cific time instance data flow is observed simultaneously. In addition, it specifies
the data items that are read or written at the I/O-ports of components or trans-
mitted through locations of the connector. Formally, given an interpretation I
for the signature Sig then a concurrent I/O-operation over I is a function c that
assigns to each location A ∈ L either a data item of type λ(A)I or the special
symbol ⊥ indicating that there is no data flow at A. We write Obs(c) for the set
of locations A ∈ L such that c(A) �= ⊥. Let CIOI , or briefly CIO, denote the
set of all concurrent I/O-operations over I. A CA over an interpretation I for a
signature Sig is a tuple A = (Q, Voc,−→, Q0), where Q is a finite set of states,
Voc a data-flow vocabulary over Sig, →⊆ Q×CIOI×Q the transition relation,
and Q0 ⊆ Q the set of initial states. Obviously, the interpretation I is irrelevant
if all message-types have a fixed semantics, i.e, λ(A) ∈ DT for all A ∈ L.

3 Constraint Automata Reactive Module Language

One of the input languages of Vereofy is a guarded command language, called
CARML (constraint automata reactive module language), that describes the
transitions of constraint automata in a symbolic way, i.e., by means of Boolean
conditions on the states and the enabled concurrent I/O-operations. CARML
provides a convenient way to specify the component interfaces and to provide a
high-level description of the operational behavior of components. CARML sup-
ports channel-based message passing and communication over shared variables.
The latter is irrelevant for exogenous coordination, but can be useful to incor-
porate the coordination primitives of an endogenous approach e.g. for existing
systems where the coordination protocol is given in an imperative language. In
this case, modeling the protocol by means of the coordination language can be
much harder than providing a CARML specification. CARML is even expres-
sive enough to specify complex component connectors. To ease the automatic
translation of CARML specifications into a compact internal BDD-based repre-
sentation, we adapted some concepts of reactive modules [1] for the syntax of
CARML modules.

Standard data types such as Boolean, integers of fixed bit-size, arrays, unions
and enumerations together with the usual operators and predicates on them
can be used as data types for variables and message-types for I/O-ports. As in
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Section 2, these sets of data types, operators and predicates with fixed semantics
are denoted by DT, Op and Pred. CARML modules can also use uninterpreted
symbols for data types, operators and predicates. That is, a CARML module M
can be parameterized by a set Θ of data types, a set Ω of operator symbols, a
set Π of predicate symbols, and a set Υ of variables with types in DT = DT∪Θ.

MODULE M〈type : Θ, op : Ω, pred : Π, var : Υ 〉 {
// interface declaration: source ports

in : T in
1 A1;

... // Ai with message-types T in
i ∈ DT ∪ Θ

in : T in
k Ar;

// interface declaration: sink ports

out : T out
1 B1;

... // Bi with message-types T out
i ∈ DT ∪ Θ

out : T out
� Bs;

// definition of local variables Xi with data types T var
i ∈ DT ∪ Θ

// with initial value init valuei ∈ T var
i (optional)

var : T var
1 X1 init := init value1;

...
var : T var

� X� init := init value�;

// transition definitions

state guards1 −[ I/O guards1 ]→ state assignments1;
...

...
...

state guardsn −[ I/O guardsn ]→ state assignmentsn; }

Fig. 2. Schema of a CARML module

The general schema of a CARML module is shown in Fig. 2. It consists of
a (possibly empty) parameter list, the interface declaration where the source
and sink ports of a component and its local variables are defined followed by the
transition definitions specifying the behavioral interface. The shorthand notation
“type : Θ, op : Ω, pred : Π” in Fig. 2 refers to a list where all uninterpreted
symbols S ∈ Θ∪Ω∪Π are encountered together with the corresponding keyword
type, op or pred and their types in case of the operator and predicate symbols.
Similarly, var : Υ stands short for an enumeration of all variables in Υ together
with the keyword var and their types. All variables in Υ are passed according
to the concept “call-by-value”.

Let M be the name of the CARML module in Fig. 2. The data types with
fixed semantics together with the parameters Θ, Ω, Π , Υ and the set VarM of
variables that can be used in M (see below) constitute the signature of M which
is given by SigM = (DT, Op, Pred, VarM) where DT = DT∪Θ, Op = Op∪Ω
and Pred = Pred ∪ Π . The variables that can be used in a CARML module M
are local variables and the variables in Υ . The local variables together with their
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type have to be listed in the declaration part of M. Thus, the CARML module
in Fig. 2 has the local variables X1, . . . , X�. The type of local variable Xi is
type(Xi) = T var

i which has to be an element of DT. The specification of an
initial value for the local variables is optional.

With our hybrid modeling approach where CARML specifications can be
embedded in the scripting language RSL (see Section 4) a CARML module can
also use global variables which have to be declared in the RSL (main) program.
Let VarM be the set of all local variables of M, all variables in Υ and all
global variables. We refer to the elements of VarM as accessible variables of M.
The interface declaration in Fig. 2 induces the data-flow vocabulary VocM =
〈LM,Lsrc

M ,Lsnk
M , λM〉 where Lsrc

M = {A1, A2, . . . , Ar}, Lsnk
M = {B1, B2, . . . , Bs},

and LM = Lsrc
M ∪ Lsnk

M . The type of source port Ai is λM(Ai) = T in
i , while sink

port Bj is of type λM(Bj) = T out
j . Again, the types T in

i and T out
j are elements

of DT. The sets Lsnk
M and Lsrc

M are supposed to be disjoint.
Each transition definition consists of local conditions on the current state (a

state guard), conditions on the concurrent I/O-operations to be fired (an I/O-
guard) and the effect of firing such an I/O-operation on the states (formalized
by the state assignments). A state guard is a (possibly empty) conjunction of
atomic propositions P (t1, . . . , tk) over SigM. An I/O-guard is a condition on
the observable data flow, formalized by a Boolean combination of atomic propo-
sitions over an extended signature Sig

L
M that allows to reason about the data

items that are observable at the locations in L. Formally, Sig
L
M denotes the

signature that results from SigM by adding

– a special type TI/O that serves for a characterization of the I/O-ports,
– a new monadic predicate symbol active with type(active) = TI/O,
– constant symbols dataA with type(dataA) = λM(A) for all A ∈ LM.

The special type symbol TI/O is needed for technical reasons only. (Note that
the location-symbol A is of type TI/O, while its message-type is λM(A) =
type(dataA).) For the interpretations I of Sig

L
M we require that T I

I/O = LM.
The intuitive meaning of the atomic proposition active(A) is a port activity flag
which indicates that data flow at location A is observed. To avoid an overlap
with state guards, we require that all atomic propositions P (t1, . . . , tk) in an
I/O-guard contain at least one subterm dataA for some A ∈ LM.

A state assignment is a (possibly empty) sequence of assignments for accessi-
ble variables, i.e., state assignments have the form V1 := t1 ; . . . ; Vp := tp where
V1, . . . , Vp are pairwise distinct variables in VarM and tj are terms over the ex-
tended signature Sig

L
M. Intuitively, when firing a transition via a concurrent

I/O-operation c with a state assignment as above as then in the next state the
value of the variables Vi agrees with the value of the term ti under the interpre-
tation given by the current state and the c. Variables V ∈ VarM \ {V1, . . . , Vp}
keep their value after the transition has been taken.

Example 1 (A railway track). The CARML module in Fig. 3 serves as a proto-
type definition for a railway track where trains may either pass or stop. It can
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be instantiated providing a data type for the trains and an element of that type
indicating that there is no train in the track. The component has one source port
A and one sink port B. Local variable “stat” keeps track of the status (free or
occupied), while local variable “train” serves to remember which train actually
stopped on the track when occupied by a train. �

MODULE track〈type : TrainType, var : TrainType no train 〉{
in : TrainType A; // A is a source with type(dataA) = TrainType
out : TrainType B; // B is a sink with type(dataB) = TrainType
var : enum{free, occupied} stat := free;
var : TrainType train := no train;
stat = free−[ active(A) ∧ active(B) ∧ dataA = dataB ]→;
stat = free−[ active(A) ∧ ¬active(B) ]→ stat := occupied ; train := dataA;
stat = occupied−[ active(B) ∧ ¬active(A) ∧ dataB = train ]→

stat := free ; train := no train; }

Fig. 3. CARML module for a railway track

Semantics of a CARML module. The intuitive operational meaning of the
transition definitions is as follows. Suppose that q is the current state, which
means an evaluation of all accessible variables. Then, nondeterministically a
concurrent I/O-operation c and one of the transition definition is chosen such
that the state guard holds for q and the I/O-guard is fulfilled by c. The next
state is then obtained by modifying q according to the state assignments of
the chosen transition definition. This intuitive behavior can be formalized by
means of constraint automata. As a CARML module M as in Fig. 2 serves as
a template for components (or connectors), the constraint-automata semantics
of M relies on an interpretation J for all parameters in Θ, Ω, Π, Υ . For all
predefined symbols S ∈ DT ∪ Op ∪ Pred we write SJ = S.

The constraint automaton AM,J = (Q, VocM,−→, Q0) over DT = DT ∪ Θ
is defined as follows. The data-flow vocabulary of AM,J is VocM. The state
space of AM,J is the set Q consisting of all evaluations of the variables that are
accessible for M, i.e., Q is the set of functions q that assign to each variable
V ∈ VarM a data item in q(V ) in type(V )J . The set Q0 of initial states consists
of all q0 ∈ Q such that q0(Xi) = init valuei for each local variable Xi where
an initial value has been specified in the declaration part of M. For all other
variables V , q0(V ) is an arbitrary element in type(V )J .

The transition relation → is defined as follows. Let q, q′ ∈ Q and c ∈ CIOJ .
Let I = (q,J ) be the interpretation for SigM that agrees with q for all vari-
ables V ∈ VarM and assigns to the symbols in the parameter list of M the
same meaning as J . The pair (I, c) denotes the interpretation for the extended
signature Sig

L
M that agrees with I = (q,J ) on the symbols in SigM, inter-

prets the type symbol TI/O by T I,c
I/O = LM = {A1, . . . , Ar, B1, . . . , Bs}, and

assigns activeI,c = Obs(c) = {D ∈ LM : c(D) �= ⊥} to the activity predicate.
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For D ∈ Obs(c) the interpretation of dataD is the data element dataI,c
D = c(D).

For E ∈ LM with c(E) = ⊥, the interpretation dataI,c
E is irrelevant.

Then, q
c−→ q′ iff there is a transition definition state guardsi −[ I/O guardsi ]→

state assignmentsi in M such that the following conditions (1), (2) and (3) hold.

(1) state q fulfills the state guard, i.e., state guardsi evaluates to true under I
(2) the concurrent I/O-operation c satisfies the I/O-guard, i.e., I/O guardsi eval-

uates to true when interpreted over (I, c)
(3) the next state q′ arises from q via executing the state assignments, i.e.,

if state assignmentsi has the form V1 := t1 ; V2 := t2; . . . Vp := tp then
q′(Vj) = tI,c

j for 1 ≤ j ≤ p and q(V ) = q′(V ) for V ∈ VarM \ {V1, . . . , Vp}.

stat = free
train = no train

stat = occupied
train = train1

stat = occupied
train = train2

[A → train1, B → ⊥]

[A → ⊥, B → train1]

[A → train2, B → ⊥]
[A → ⊥, B → train2]

[A → no train, B → no train]

[A → train1, B → train1]

[A → train2, B → train2]

The picture on the right shows
the reachable part of the CA
for the railway track from Ex-
ample 1 and interpretation J
where TrainTypeJ is the set
{train1, train2, no train} and
no trainJ = no train.

4 Reo Scripting Language

While the main purpose of CARML is to specify the behavioral interfaces of
components, Reo scripting language (RSL) mainly serves to specify networks
that provide the glue code for components. RSL is inspired by the exogenous
coordination language Reo [2] which yields an elegant declarative framework for
the compositional construction of connectors by creating channels and glueing
their channels ends, the I/O-ports of components, or sub-connectors together.
This is done via join-operations, resulting in a network called Reo circuit. The
semantics of a Reo circuit is a CA which can be constructed in a compositional
way by providing constraint automata models for each channel and component
and mimicking Reo’s operators by corresponding operators for CA [5].

The language RSL combines the Reo operators with operators for the instan-
tiating of components, channels, and component connectors – that are either
given by a parameterized CARML module or specified in RSL – and features
to specify dynamic reconfigurations of the network topology. Indeed, RSL treats
components, channels and component connectors in the same way. This means,
that a channel is viewed as a primitive component connector and any compo-
nent connector can use components or other connectors as “subroutines” via the
instantiation mechanism. In what follows, the notion “module” will be used as
an umbrella term for component, channel or component connector.

RSL programs. On the top-level, an RSL program consists of (1) a declaration
part, (2) a list of include-instructions to access modules from a library, (3) a list
of the CARML modules and RSL scripts that might be instantiated in the main
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system, and optionally (4) an instantiation of an RSL script that serves as the
main system. When omitting (4), a non-parameterized module called “main” is
required to be contained in (3). The declaration part of an RSL program contains
the declarations of global variables and the definition of user-defined data types
(like enumerations, arrays and unions over predefined or previously user-defined
data types) as well as constants, operators of arity ≥ 1 and predicates. These
together with the predefined data types and built-in operators and predicates
constitute the sets DT, Op, Pred of data types, operators and predicates with
fixed semantics and only these can be passed as meanings for the uninterpreted
symbols (elements of Θ, Ω, Π, Υ ) in the parameter list of the instantiated mod-
ule in (4). This ensures that the instantiation in (4) yields an interpretation
for all free symbols in the RSL script for the main system. In (2) the library
contains the CARML or RSL code for several predefined basic channel types,
such as synchronous channels, FIFO channels, and so on, but also components
connectors that serve as coordination units in many situations, like an exrouter
or sequencer. It can be extended by user-defined modules.

CIRCUIT C 〈type : Θ, op : Ω, pred : Π, var : Υ 〉 {
stmt; // stepwise construction of a Reo circuit
interface decl // declaration of the I/O-ports of the Reo circuit

}

Fig. 4. Schema of an RSL circuit

RSL scripts for networks with static topology. The schema for the RSL
script of a Reo circuit without dynamic reconfiguration is shown in Fig. 4 where
the parameterization by uninterpreted symbols for data types, operators, pred-
icates and variables is as for CARML modules. The body of an RSL circuit
consists of a statement that describes the stepwise construction of a Reo circuit
and an interface declaration where the exported I/O-ports are specified.
Statements. The statement in the body of an RSL circuit is build by basic oper-
ations and control flow instructions (sequential composition, conditional branch-
ing and for-loops). The abstract syntax for statements is given by the grammar

stmt ::= instantiation
∣
∣ Reo operation

∣
∣ assignment

∣
∣ stmt ; stmt

∣
∣

if (bexpr) {stmt} else {stmt} ∣
∣ for (i = j, . . . , k) {stmt}

Instantiation. The instantiation of a module (i.e., a component, a channel or a
complex connector) specified in CARML or by a RSL circuit is performed via
instructions of the form

new module template〈Θ′, Ω′, Π ′, Υ ′〉(A1, . . . , Ar; B1, . . . , Bs)

where Θ′, Ω′, Π ′, Υ ′ are lists of data types, operators, predicates and variables or
constants that provide meanings for the parameters in the CARML or RSL code
for the module template. The elements of Θ′, Ω′, Π ′, Υ ′ have to be contained
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in the signature of C which is given by SigC = (DT, Op, Pred, VarC) where
DT = DT ∪ Θ, Op = Op ∪ Ω, Pred = Pred ∪ Π and VarC = Υ .1 Optionally, the
list of meanings for the uninterpreted symbols in the template for some module
M is followed by a list (A1, . . . , Ar; B1, . . . , Bs) of names for the source and sink
ports of M. Thus, Ai will serve as name for the i-th source port of the gener-
ated instance of M, and Bj as name for the j-th sink port of that instance. The
names Ai and Bj have to be pairwise distinct. They can be fresh names or can
represent an existing location, in which case consistency of the message-types is
required. If Ai is an already existing location then the message-types of Ai and
the i-th source port of M must agree, and from now on location Ai is joined
with the i-th source port of the created instance of M. Analogous conditions are
required for B1, . . . , Bs and the sink ports of the created instance of M.

The second type of instantiation is the creation of an entity that is called a
Reo node [2] which plays a crucial role for the join-operation (explained below).
A Reo node can combine zero or more channel ends or I/O-ports of components
with the same message-type. Reo nodes can be understood as routers with a
special routing strategy. The intuitive meaning is a merger semantics of all read
operations performed at the sinks combined in a Reo node N and a replicator
semantics of the write operations at the sources of N . That is, all pending read
operations at the sinks of N are scheduled in an interleaved way and executed
synchronously with writing the received value to all sources of N . The effect of
an instantiation of a Reo node via the instruction node〈type : T 〉 is the creation
of a fresh Reo node N without any channel end or I/O-port. The message-type
of N is T ∈ DT which indicates that only data items v ∈ T can flow through N .
Reo operations. RSL supports Reo’s main operations for the composition of com-
plex circuits. The join operation join(N1, . . . , Nn) in RSL takes a list N1, . . . , Nn

of at least two I/O-ports or Reo nodes of the same message-type T ∈ DT as ar-
guments. It creates a new Reo node N of message-type T where all I/O-ports
and channel ends of N1, . . . , Nn are combined. If all Ni are sources then the
resulting node N is called source (node). Similarly, N is called sink (node) if all
Ni’s are sinks. There are more operations offered by Reo, but any circuit which
can be constructed by the complete list of Reo operations can also be obtained
by a sequence of instantiations and join operations. Thus we omit explanations
of additional Reo operations.

Script variables and assignments. I/O-ports, nodes created by a join-operation
as well as the result of an instantiation (either a Reo node or module) can be
stored into local script variables. Script variables can also be used to hold values
of predefined data types (typically an integer value). The script variables are
“dynamically typed” and do not have to be declared in advance. An assignment
for a script variable sv has the syntax sv := V where
1 There are the obvious side-constraints. If type : Θ stands for type : T1, . . . , type : Tn

then Θ′ must be a list U1, . . . , Un of elements in DT. If op : Ω encounters m operator
symbols then Ω′ must be a list of m elements in Op, and if the i-th element in op : Ω
is op : (Ti1 , . . . , Tik , Tj) f then the i-th element of Ω′ has to be an element f ′ ∈ Op

of the type (Ui1 , . . . , Uik , Uj). Analogous conditions are required for Π ′ and Υ ′.
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V ::= instantiation
∣
∣ join(N1, . . . , Nn)

∣
∣ expression

∣
∣ script variable

and expression is a term over the signature induced by the predefined data types
and the variables V ∈ Υ (typically arithmetic expressions). Script variables are
dynamically sized arrays, with sv being shorthand for sv [0]. A script variable sv
referring to an instantiated module M provides access to the interface I/O-ports
via sv .source [i] and sv .sink [j]. An RSL circuit can refer to its own source and
sink ports via source[i] and sink[j] (see the explanations below).

Control flow instructions. The control flow features (sequential composition, con-
ditional and repetitive commands) have the standard meaning. These and the
script variables serve for the stepwise construction of a Reo circuit, and should
not be confused with the operational behavior of the network given by the CA
for the Reo circuit that results from executing the RSL script. The control flow
statements make use of Boolean expressions (bexpr) that impose conditions on
the values of script variables and variables in Υ . In the sloppy notation provided
for the syntax of for-loops, we assume that i is an integer script variable and j
and k are either integer script values or constants.
Interface declaration. In the schema sketched in Fig. 4, the body of an RSL cir-
cuit ends with a definition of the nodes that are exported to the higher level as
source and sink ports. This can be done in an analogous way as in CARML via
“in: A1; . . . ; in: Ar; out: B1; . . . ; out: Bs” to specify that the i-th source port
is Ai and the j-th sink port is Bj . It is required that the Ai’s are sources and the
Bj ’s are sinks (I/O-ports or Reo nodes) that have been defined in stmt via an
assignment or module instantiation. Furthermore, the Ai’s and Bj ’s are required
to be pairwise distinct. Alternatively, one may depart from the schema in Fig. 4
and define the interface ports in stmt via the references source[i] and sink[j], ei-
ther by assignments (“source [i] := . . .” and “sink [j] := . . .”) or instantiations
(“new module( . . . , source[i], . . . ; . . . , sink[j], . . .)”). The indices i and j for the
exported source and sink ports have to be consecutive starting with 0. If there
are two or more assignments for, e.g., source [i] then the last one declares the
i-th source port.

Semantics of an RSL circuit. Let C be an RSL circuit with the parameters
Θ, Ω, Π and Υ as in Fig. 4. To provide an operational semantics for C, we fix
an interpretation J for the symbols in the parameter list of C (which yields
an interpretation for the induced signature SigC) and then construct a Reo
circuit RC,J for C by means of the instructions given in stmt. Finally, we can
apply the machinery presented in [5] to construct a constraint automaton AC,J
from RC,J . The data-flow vocabulary VocC of this constraint automaton AC,J
is defined according to the interface declaration, i.e., VocC = (LC ,Lsrc

C ,Lsnk
C , λC)

where Lsrc
C = {A1, . . . , Ar} and Lsnk

C = {B1, . . . , Bs} if the interface declaration
specifies A1, . . . , As as source ports and B1, . . . , Bs as sink ports. The function
λC is the obvious one and assigns the message-type of Ai to the i-th source port
(source[i−1]) and the message-type of Bj to the j-th sink port (sink[j−1]).
The set of all observable locations of C is LC = Lsrc

C ∪ Lsnk
C .
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The Reo circuit RC,J is obtained by executing the RSL script given by the
instructions in the body of C. When instantiating a module the meanings of the
uninterpreted data types, operator or predicate symbols are taken according to
J . The instantiation of a CARML module M(Θ0, Ω0, Π0, Υ 0) with n sources
and m sinks via the instruction comp := newM(Θ′, Ω′, Π ′, Υ ′)(D1, . . . , Dn, E1,
. . ., Em) means binding an instance comp of M where the i-th source of comp is
identified with the possibly already existing node Di and the j-th sink of comp
with Ej . In the Reo circuit RC,J , comp is viewed as a black-box component.
However, by applying the algorithm of [5] (extended to handle global variables)
to construct a constraint automaton from RC,J we use a constraint automaton
Acomp,J as specification for the behavioral interface of that instance comp of M.
Automaton Acomp,J can be obtained as follows. Let J0 be the interpretation that
arises from J by the substituting Θ0 with Θ′ (i.e., if the i-th data type symbol
in Θ0 is T and the i-th element of Θ′ is U then TJ0 = UJ ) and substituting Ω0

with Ω′, Π0 with Π ′, and Υ 0 with Υ ′. We now regard the constraint automaton
AM,J0 and replace the i-th source port of M with Di and the j-th sink port
of M with Ej in the data-flow vocabulary of AM,J0 and the concurrent I/O-
operations that appear as labels for the transitions of AM,J0 . The resulting
automaton is Acomp,J . The meaning of an instantiation of another RSL script
C′ via the instruction comp := new C′(Θ′, Ω′, Π ′, Υ ′)(D1, . . . , Dn, E1, . . . , Em)
is analogous. It has the effect of including the Reo circuit associated with the
generated instance of C′.

CIRCUIT buffered replicator 〈type : T, var : integer k〉 {
// create channels

F := new FIFO1〈T 〉(A; R[0]);
for (i = 1, . . . , k){ new SYNC〈T 〉(R[i]; B[i]); }

// join channel-ends in a node N
N := node〈T 〉;
for (i = 0, . . . , k){ join(R[i], N); }

// define the interface of the circuit
source[0] := A;
for (i = 0, . . . , k−1){ sink[i] := B[i + 1]; }

}

...A

B[1]

B[2]

B[k]

source[0]

sink[0]

sink[1]

sink[k-1]

Fig. 5. RSL code for a Reo circuit for a buffered replicator of size k

Example 2. Fig. 5 shows the RSL code and its Reo circuit for a buffered replica-
tor with k output ports where k is an integer variable passed in the parameter list.
It uses modules FIFO1〈type : T 〉 and SYNC〈type : T 〉 from a built-in library that
model a FIFO channel with one buffer cell and a synchronous channel, respec-
tively, where both the input and output port of that channel have (uninterpreted)
message-type T . For the instantiation of a buffered replicator circuit one has to
provide an interpretation TJ for the data type symbol T to fix the type of data
that may flow through the connector and an integer kJ for variable k which
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A B[2]

B[1]
R[0]

R[1]

R[2]

F

source[0]

sink[0]

sink[1]
B[2]

B[1]F

A

R[1], R[2]
N,R[0],

Fig. 6. Three phases for creating a buffered replicator of size 2. (a) create channels,
(b) join channel ends, and (c) export the interface

determines the number of sink ports. (We assume here that kJ ≥ 1.) Fig. 6
illustrates the three phases in the construction of Rrepl,J (instantiation, compo-
sition via the join operations, and interface declaration) for kJ = 2. In the first
phase of the execution of the RSL script, a FIFO channel with one buffer cell
and two synchronous channels are created. In a second phase the source ends
of the synchronous channels are joined with the sink of the buffer in a new Reo
node N . In the last phase the interface of the connector is defined by exporting
the source end of the buffer and the sink ends of the synchronous channels.

// include predefined modules and prototype definition for a replicator and module M:
#include ”builtin”, ”buffered replicator.rsl”, ”some component.carml”

CIRCUIT main{
repl := new buffered replicator〈Boolean, 2〉(C; D1, D2);
S[0] := new SYNC〈Boolean〉(B1; C);
S[1] := new SYNC〈Boolean〉(D1; A1);
S[2] := new SYNC〈Boolean〉(D2; E2);
comp := new M〈Boolean〉(A1, E1; B1);
in : E1; out : E2; // equivalent to source[0] := E1; sink[0] := E2;

}

Fig. 7. RSL program for the circuit Rmain depicted in Fig. 8

The replicator can be instantiated in another context like the RSL program
in Fig. 7. The instantiation of the buffered replicator yields the interpretation
TJ = Boolean and kJ = 2. Thus, the first step in the construction of the Reo
circuit Rmain for the RSL program in Fig. 7 is running the script for the buffered
replicator which yields the (sub)circuit Rrepl,J . Then, the three synchronous
channels S[0], S[1], and S[2] arise by the instantiation of the CARML module
SYNC〈type:T 〉 taken from the built-in library. Finally, an instance comp of a
CARML module M (also taken from a library) is created. We assume here that
M’s parameter list consists of an uninterpreted data type symbol and that M
has two input ports and one output port. The first input port of comp is identified
with node A1, the output port of comp with B1, while the second input port
E1 of comp is a fresh node. Fig. 8 shows the resulting Reo circuit Rmain, where
comp is treated as a black-box component. The constraint automaton Acomp

for the behavioral interface of comp is obtained from the constraint automaton
AM,J0 of its prototype module M and the interpretation J0 that assigns the
type Boolean to the data type symbol T (i.e., TJ0 = Boolean) and replacing
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E1

A1

B1 C

D1

D2 E2

instance comp of M〈T〉
instance repl of

buffered replicator〈T,k〉

Fig. 8. Reo circuit Rmain for the RSL program in Fig. 7

the names of the I/O-ports of M by the ones provided during the instantiation.
The constraint automaton Amain for the RSL program in Fig. 7 is then obtained
by using the algorithm of [5] to construct a constraint automaton A for the
circuit Rmain (where comp is treated as a black-box component), constructing
the constraint automaton Acomp = AM,J0 [source[0]/A1,

source[1]/E1,
sink[0]/B1], and

finally building the product of A and Acomp as described in [5]. �

Dynamic reconfiguration. RSL provides support for specifying component
connectors with multiple network topologies. The interface of a dynamic con-
nector C contains a special input port C.reconf, called reconfiguration port.

CIRCUIT C 〈type : Θ, op : Ω, pred : Π, var : Υ 〉 {
stmt; // construction of a common sub-circuit
interface decl // declaration of the exported source/sink ports
TOPO(id1 ) = {stmt1} // additional sub-circuit for topology id1

...
TOPO(idt) = {stmtt} // additional sub-circuit for topology idt

}

Fig. 9. Schema for RSL scripts with dynamic reconfiguration

The schema of RSL scripts with dynamic reconfigurations is shown in Fig. 9.
The parameter list is the same as before. The body of a dynamic RSL circuit C
consists of statement stmt that specifies a common (static) sub-circuit Cstmt of
all network topologies, followed by the interface declaration and instructions of
the form topo(idi){stmti} for i = 1, . . . , t. Here, idi denotes an identifier for the
i-th network topology and stmti is a statement. The network topology with an
identifier idi is generated by the composite statement stmt ; stmti, resulting in the
(static) Reo circuit C′

i. The interface declaration specifies the input and output
ports of C, except for the reconfiguration port circ.reconf of the instances of
the circuit C in Fig. 9. No special declaration is required for the reconfiguration
port. The assignments in the interface declaration can only refer to the nodes
and ports that appear in stmt, but not to entities created in stmt1, . . . , stmtt.
Any other RSL circuit circ′ creating an instance circ of the circuit C in Fig. 9
can access the reconfiguration port circ.reconf as any port in the interface
of circ. Hence, any module that is connected in circ′ to the reconfiguration
port circ.reconf can serve as a driver and trigger switches in the topology of circ
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by sending the identifier of the new topology. The constraint automaton AC,J
for a dynamic connector C as in Fig. 9 can be seen as a complete hyper-graph
with t hyper-vertices (one hyper-vertex for each topology). Each hyper-vertex
stands for a constraint automaton for one of the circuits C′

i. The edges of this
hyper-graph represent the switch from one topology to another one by receiving
a signal on the reconfiguration port. The formal definition of AC,J is as follows.
The data-flow vocabulary VocC is defined according to the interface declaration
completed with the reconfiguration port C.reconf which is a source port of
message-type {id1, . . . , idt}. We use the aforementioned construction for each
constraint automaton A′

i = Astmt;stmti,J = (Q(i), VocC ,→i, Q
(i)
0 ) for the circuit

C′
i induced by the statement stmt ; stmti. The states in Q(i) can be written in

the form 〈q, q(i)〉 where q stands for a state in the constraint automaton Astmt,J
for the (static) common subcircuit Cstmt of all circuits C′

1, . . . , C′
t and q(i) a state

of constraint automaton Astmti,J for the subcircuit induced by stmti. W.l.o.g.
we can assume that Q(i) ∩Q(j) = ∅ for 1 ≤ i < j ≤ t. The constraint automaton
AC,J = (Q, VocC ,→, Q0) for the dynamic connector C is then obtained by
combining A′

1, . . . ,A′
t as follows. The state space Q of AC,J is the disjoint union

of the state spaces of A′
1, . . . ,A′

t, that is, Q = Q(1) ∪ . . . ∪ Q(t). The set Q0 of
initial states in AC,J is the set of all states 〈q, q(i)〉 where q is an initial state
in the constraint automaton Astmt,J for stmt and q(i) an initial state in the
constraint automaton Astmti,J for stmti. The transitions → of AC,J are given
by the following two rules, where the first stands for the receipt of the signal to
switch to the j-th network topology and the second rule stands for the execution
of a concurrent I/O-operation in the i-th topology:

q(j) initial state of the CA Astmtj ,J for stmtj

〈q, q(i)〉 C.reconf?idj−−−−−−−−→ 〈q, q(j)〉
〈q, q(i)〉 c−→i 〈q, p(i)〉
〈q, q(i)〉 c−→ 〈q, p(i)〉

where C.reconf?idj denotes the unique concurrent I/O-operation c with L(c) =
{C.reconf} and c(C.reconf) = idj .

5 Modeling a Railway Network

We demonstrate our hybrid approach with Vereofy’s input languages CARML
and RSL by means of a toy example modeling a simple railway network, com-
posed out of basic building blocks (tracks, stations, switches). Trains are rep-
resented by unique identifiers and travel of a train is modeled by data flow of
its identifier. We use the CARML module track (Fig. 3) as the basic (unidirec-
tional) railway track, allowing a train to stop or to pass through instantaneously.
A CARML module track with train is a variant of this basic track, initially occu-
pied by a train. It has an additional parameter (var:TrainType initial train)
used to specify the identifier of this train and can be derived from track by set-
ting the initial values of variables “stat := occupied” and “train := initial train”.
A CARML module for a train station (train station) is obtained from track by
removing the transition for an instantaneous pass-through.



A Uniform Framework for Modeling and Verifying Components 263

Railway switches come in two variants, left-hand-side (lhs) with k entries and
one exit and right-hand-side (rhs) with k exits and one entry. In Fig. 10, we
show how to model two variants of right-hand-side switches with nondetermin-
istic choice between the possible exits, one as a CARML module with two exits
(simple rhs switch) and one as a RSL script with a parameterized number of k
exits (rhs switch), recursively built out of simpler switches. As an example for a
left-hand-side switch, Fig. 10 also shows the RSL script for a switch with two
entries, using dynamic reconfiguration (reconf lhs switch).

The CARML module for simple rhs switch ensures that a train leaves via
exactly one exit and serves as the basic building block for the more general
rhs switch. Its RSL script has a parameter k specifying the number of exits (sink
ports). The first two lines handle the base cases, by instantiating either a built-in
synchronous channel or a simple rhs switch and exporting their ports. For k > 2,
two instances of rhs switch with half the number of exits are recursively instan-
tiated (r1,r2) and a simple rhs switch (l) switches between r1 and r2. In the last
three lines, the interface with one source port (that of l) and k sink ports (those
of r1 and r2) is generated.

The RSL script for reconf lhs switch declares two sources and one sink as the
common interface. In both topologies (having identifiers 0 and 1), one of the
sources is connected via a synchronous channel to the sink, the other source is
left unconnected (and thus blocks data flow). Upon receipt of topology identifier
i at the reconfiguration port, the switch reconfigures to topology i, letting trains
pass only from source i to the sink port.

The RSL program in Fig. 11 composes a simple railway network. A set of
train identifiers is defined and the building blocks are included. In the RSL
script main, instances of the building blocks are created and connected at the
nodes Li to yield the depicted network. To provide reconfiguration signals, an
instance of the CARML module driver is connected to the reconfiguration port
of sw1, alternately sending the topology identifiers 0 and 1.

The given model of the railway example may now serve as input for our
verification toolkit Vereofy. The tool allows to check safety or liveness conditions
specified by temporal formula with classical modalities, but also to argue about
the observable data flow at the locations of the network [4].

6 Implementation

Our toolkit Vereofy (see Fig. 1 and www.vereofy.de) supports modeling using
RSL and CARML. Vereofy can be used as stand-alone tool or as an Eclipse plugin
for the Eclipse Coordination Tools (ECT) [19] which allow to specify connec-
tors in a graphical way. It currently supports all language features explained in
Sections 3 and 4, except for the parameterization by uninterpreted symbols for
data types, operators and predicates. Furthermore, global variables and locations
of different message-types are not yet supported2. For model checking purposes,
2 In Sections 3 and 4 we focused on a clear presentation of the core features of CARML

and RSL and slightly departed from the syntax used in our implementation.
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MODULE simple rhs switch〈type : TrainType〉 {
in : TrainType A;
out : TrainType B; out : TrainType C;
−[ active(A) ∧ active(B) ∧ ¬active(C) ∧ dataA = dataB ]→;
−[ active(A) ∧ ¬active(B) ∧ active(C) ∧ dataA = dataC ]→;

} CIRCUIT rhs switch〈type : TrainType, var : integer k〉 {
if(k = 1){new SYNC〈TrainType〉(source[0]; sink[0]); }
if(k = 2){new simple rhs switch〈TrainType〉(source[0]; sink[0], sink[1]); }
if(k > 2){
l := new simple rhs switch〈TrainType〉;
r1 := new rhs switch〈TrainType, �k

2
�〉;

r2 := new rhs switch〈TrainType, k − � k
2
�〉;

join(l.sink[0], r1.source[0]); join(l.sink[1], r2.source[0]);
source[0] := l.source[0]; out := 0;
for(i = 1, . . . , �k

2
�) {sink[out ] := r1.sink[i − 1]; out := out + 1; }

for(j = 1, . . . , k − � k
2
�) {sink[out ] := r2.sink[j − 1]; out := out + 1; }

}
} CIRCUIT reconf lhs switch〈type : TrainType〉 {

source[0] := node〈TrainType〉; source[1] := node〈TrainType〉;
sink[0] := node〈TrainType〉;
TOPO(0) = {new SYNC〈TrainType〉(source[0]; sink[0]); }
TOPO(1) = {new SYNC〈TrainType〉(source[1]; sink[0]); }

}

Fig. 10. Specifications for three variants of railway switches

TYPE Trains = enum{T1, T2, no train};
#include “builtin”,“railway building blocks”
MODULE driver {

out : int(0, 1) B; var : int(0, 1) s := 0;
−[ active(B) ∧ dataB = s ]→ s := (s + 1) mod 2;

}
CIRCUIT main {

t1 := new track with train〈Trains, no train, T1〉(L6; L1);
t2 := new track with train〈Trains, no train, T2〉(L5; L3);
t3 := new track〈Trains, no train〉(L2; L4);
st := new station〈Trains, no train〉(L4; L7);
sw1 := new reconf lhs switch〈Trains〉;
sw2 := new rhs switch〈Trains , 2〉;
join(L1, sw1.source[0]); join(L3, sw1.source[1]);
join(L2, sw1.sink[0]);
join(L5, sw2.sink[0]); join(L6, sw2.sink[1]);
join(L7, sw2.source[0]);
d := new driver; Lr = join(d.sink[0], sw1.reconf);

}

T
1

T
2

Lr

d

sw1

sw2

st

t 1 t 2

t 3

L1 L2

L3

L4

L5

L6 L7

Fig. 11. Example RSL program for a railway network with two trains
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RSL programs are translated into a symbolic BDD-based representation as pre-
sented in [6] of the corresponding constraint automaton. The translation is done
by constructing the Reo circuit and applying the machinery presented in [5] and
the enhancements for dynamic connectors explained in Section 4.

number reachable BDD building
of phils states nodes time (s)

100 1, 89 · 1038 15618 7, 29

200 3, 59 · 1076 31418 31, 15

400 1, 29 · 10153 63018 148, 87

600 4, 62 · 10229 94618 364, 35

800 1, 66 · 10306 126218 706, 12

1000 > 10308 157818 1157, 25

Fig. 12. Dining philosophers results

number of reachable BDD building reachable
processes states nodes time (s) time (s)

(50, 29) 2, 54 · 1021 2652 8, 76 0, 46

(50, 50) 7, 54 · 1028 5298 10, 13 0, 95

(100, 61) 1, 22 · 1045 8412 160, 59 4, 72

(100, 100) 6, 78 · 1058 18123 192, 61 13, 25

(120, 79) 5, 00 · 1056 12807 743, 17 12, 57

(120, 120) 6, 81 · 1070 25353 785, 89 164, 97

Fig. 13. Mutual exclusion results

We illustrate the scalability of our approach by two examples. The first is a
variant of a dining philosophers example [14]. The table in Fig. 12 shows the time
in seconds needed to synthesize the scenario for a given number of philosophers,
the number of reachable states as well as the number of BDD nodes necessary
to store the composite system. Computing the reachable fragment of the state
space finishes within one second for all depicted sizes. The second example is a
mutual exclusion protocol using exogenous coordination, where n processes are
present and k are allowed to enter their critical section at the same time. The
table in Fig. 13 shows the time for the synthesis of the system and the time
for computing the reachable fragment of the state space for different values of
(n, k). The results for both examples have been achieved on a 2,2GHz CPU and
2GB memory.

7 Related Work and Conclusion

Related work. For the design of our languages RSL and CARML we bor-
rowed ideas from many other modeling and coordination languages. We argue
that there are rather natural transformations of many other languages into our
hybrid modeling approach. Several formalisms have been embedded into Reo,
such as Petri nets [20], the actor-based language Rebeca [21] or UML sequence
diagrams [3], which can immediately encoded in RSL. The main features of pro-
cess algebras can be mimicked by Reo operations and encoded in RSL. E.g.,
CCS-like parallel composition with synchronization over complementary actions
can be modeled by synchronous channels and the join-operation. Nondetermin-
istic choice operators can be modeled by a (RSL script for a) Reo circuit for an
exrouter [2]. The concept of name-passing as in the π-calculus [18] is not yet
supported by RSL, but intended for a future extension of RSL.

Interaction systems were introduced in [12] as a general model for component-
based systems. In this approach, the behavioral interfaces of components are
modeled by labeled transition systems and they offer ports to communicate
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with each other. Up to some syntactic adaptions for communication actions,
they can easily be specified in CARML. Connectors of an interaction system are
used to glue ports of different components together by enforcing some actions
to be synchronized. They have a natural representation by an RSL script which
instantiates several synchronous channels and performs several join operations
on their channel ends.

Although the syntax of CARML is inspired by reactive modules [1] there are
some crucial differences concerning the interactions of modules. Communication
of reactive modules has to be realized via interface variables and the parallel
composition of reactive modules is defined in terms of rounds. This round-based
coordination principle of reactive modules can be modeled by a Reo circuit spec-
ified by an RSL script.

Conclusion. The presented approach is based on two modeling languages RSL
and CARML which together permit formal reasoning about component-based
systems relying on endogenous and exogenous coordination, possibly with dy-
namic reconfigurations of the network topology. It allows for compositional and
hierarchical design and reusability of components and coordination units. In our
opinion, our hybrid approach yields a good compromise between (1) the elegance
and expressiveness of coordination languages and (2) meta-languages supporting
an efficient generation of a compact system-representations that yield the basis
for applying model checking routines.

To illustrate the main features of our hybrid approach, we presented a toy
example and experimental results for the model generation with Vereofy for
academic case studies. We are currently working on the modeling and verifica-
tion of larger examples with our tool set, such as a peer-to-peer protocol with a
dynamic network manager and a bio-medical sensor network. The embeddings
of other languages as sketched in Section 7 together with the wide range of ap-
plication areas of Reo (such as modeling of compliance-aware business processes,
long-run business transactions, and orchestration of web services [19]) makes our
modeling and verification approach with the tool set Vereofy applicable for many
purposes.
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