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Foreword

This year’s edition of the international federated conferences on Distributed
Computing Techniques (DisCoTec) took place in Lisbon during June 9–11, 2009.
It was hosted by the Faculty of Sciences of the University of Lisbon, and formally
the organized by the Instituto de Telecomunicações.

The DisCoTec conferences jointly cover the complete spectrum of distributed
computing topics, ranging from theoretical foundations to formal specification
techniques to practical considerations. This year’s event consisted of the 11th
International Conference on Coordination Models and Languages (COORDI-
NATION), the 9th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS), and the IFIP International Conference on
Formal Techniques for Distributed Systems (FMOODS/FORTE). COORDINA-
TION focused on languages, models, and architectures for concurrent and dis-
tributed software. DAIS covered methods, techniques, and system infrastructures
for designing, building operating, evaluating, and managing modern distributed
applications in any application environment. FMOODS (the 11th Formal Meth-
ods for Open Object-Based Distributed Systems) joined forces with FORTE (the
29th Formal Techniques for Networked and Distributed Systems), creating a fo-
rum for fundamental research on theory and applications of distributed systems.

Each of the three days of the federated event began with a plenary speaker
nominated by one of the conferences. In addition, there was a joint technical
session consisting of one paper from each of the conferences. The common pro-
gram also included a tutorial series on Global Computing, a joint initiative of the
EU projects Mobius (Mobility, Ubiquity and Security) and Sensoria (Software
Engineering for Service-Oriented Overlay Computers).

There were five satellite events: the Second Workshop on Context-Aware
Adaptation Mechanisms for Pervasive and Ubiquitous Services (CAMPUS 2009),
focusing on approaches in the domain of context-aware adaptation mechanisms
supporting the dynamic evolution of the execution context; the Third Workshop
on Middleware-Application Interaction (MAI 2009), focusing on middleware sup-
port for multiple cross-cutting features such as security, fault tolerance, and dis-
tributed resource management; the 10th International Conference on Feature
Interactions in Telecommunications and Software Systems (ICFI); and meetings
of the EU COST action on Formal Verification of Object-Oriented Software and
the Sensoria project.

I hope this rich program offered every participant interesting and stimulat-
ing events. It was only possible thanks to the dedicated work of the members
of the Organizing Committee—Ana Matos, Carla Ferreira, Francisco Martins,
João Seco and Maxime Gamboni—and to the sponsorship of the Center of Infor-
matics and Information Technology (CITI), the Portuguese research foundation



VI Foreword

Fundação para a Ciência e a Tecnologia (FCT), the Instituto de Telecomunicações
(IT), and the Large-Scale Informatics Systems Laboratory (LaSIGE).

June 2009 António Ravara



Preface

The 11th International Conference on Coordination Models and Languages, part
of the IFIP federated event on Distributed Computing Techniques, took place
in Lisbon, Portugal June 9–11, 2009. Since 1996, COORDINATION has been
a leading forum for researchers and graduate students to present solutions to
problems in distributed and concurrent programming, and to exchange new ideas
and challenges.

COORDINATION 2009 focused on the design and implementation of models
that allow compositional construction of large-scale concurrent and distributed
systems, including both practical and foundational models, run-time systems,
and related verification and analysis techniques. The Program Committee re-
ceived 33 submission, covering a variety of topics, including foundations of dis-
tributed and concurrent interaction; specification, verification, and types; high-
level optimization techniques; quality of service management; distributed soft-
ware deployment and configuration; system support for programming models;
and applications of novel distributed and concurrent techniques.

Each submission was reviewed by at least three Program Committee mem-
bers. The review process included a rebuttal period during which authors were
given the opportunity to react to the reviews. The Program Committee selected
14 papers for publication after a careful and thorough review process, based on
the papers’ significance, originality, and technical soundness.

Manuel Serrano of INRIA Sophia-Antipolis delivered an invited talk; his
contribution “Hop, a Fast Server for the Diffuse Web,” is included in these
proceedings.

The success of COORDINATION 2009 was due to the dedication of many
people. First, we would like to thank the authors for submitting high quality
papers. We would also like to thank the members of the Program Committee and
the external reviewers for their careful reviews and for thorough and balanced
deliberations during the selection process. We are also indebted to the providers
of the EasyChair conference management system, which was used to run the
review process and to facilitate the preparation of these proceedings. Finally, we
thank the Distributed Computing Techniques Organizing Committee.

June 2009 John Field
Vasco T. Vasconcelos
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Hop, a Fast Server for the Diffuse Web

Manuel Serrano

Inria Sophia Antipolis, INRIA Sophia Antipolis 2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex, France

Abstract. The diffuse Web is an alternative way of using the Web 2.0
infrastructure for building personal diffuse applications. Systems that let
users tune the temperature of their house with a cell-phone, check that
the shutters are closed with a PDA, or select the music to be played on
a Hi-Fi system with a PC are examples of the targeted applications.

Diffuse Web applications have similarities with Web 2.0 applications:
i) they rely on fast bi-directional interactions between servers and clients,
and ii) they make extensive use of non-cachable dynamic contents. On
the other hand, diffuse applications have also an important difference
with respect to traditional Web applications: they generally do not need
to deal with a huge number of simultaneous users. That is, diffuse Web
applications are built on top of standard technologies but they use it
differently. Therefore they demand different optimizations and tunings.

Hop (http://hop.inria.fr) is a platform designed for building and
running diffuse Web applications. Its software development kit contains
two compilers, one interpreter, and a bootstrapped Web server. That is,
the Hop Web server is implemented in Hop. This paper shows that this
implementation strategy allows Hop to dramatically outperform the pop-
ular mainstream Web servers for delivering dynamic contents. Contrary
to most servers, Hop delivers static and dynamic contents at a compara-
ble pace. The paper details the implementation of the Hop Web server.

1 Introduction

The Web is the new ubiquitous platform where applications of tomorrow will
be deployed. Though already wide, the Web will eventually become even wider
when it connects all the appliances that surround us. The Web has already
produced amazing new applications such as Google Map but a radically new
way of thinking will be required.

Our answer to the challenge of programming ubiquitous Web applications
relies on a small number of principles [31]. A Web application is not a federation
of dynamic pages but a single, coherent program with multiple projections on
servers or (perhaps roaming) clients. A typical application syndicates multiple
data sources and, at the same time, is driven by multiple event streams.

Managing home appliances and organizing multimedia streams are typical
targets for these new Web applications. Building these applications requires
appropriate programming languages whose semantics, compilation process and

J. Field and V.T. Vasconcelos (Eds.): COORDINATION 2009, LNCS 5521, pp. 1–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Serrano

runtime environment must fit the technologies offered by the Web. This paper
focuses on this latter aspect.

Hop is a platform for programming ubiquitous, or diffuse, Web applications
[31,33,34]. Its development kit contains two compilers, one interpreter, and one
Web server. The first compiler is in charge of generating the native code executed
by the server-side of the application. The second compiler produces JavaScript
code executed by the client-side. The interpreter, which resides on the server, is
used for fast prototyping. It has poor speed performance but since it may call
compiled code and vice versa without any overhead, its speed is generally not a
performance bottleneck.

The Hop Web server has been specially designed and tuned for serving effi-
ciently the HTTP requests needed by diffuse applications. This paper focuses
on studying its performance. It will be shown that using a bootstrapped software
architecture where the server is implemented and executed in the same runtime
environment as that used to execute user programs, may lead to a major speed
improvement in comparison to mainstream Web servers that rely on CGI or
FastCGI protocols. More precisely, it will be shown that for serving dynamic
contents, Hop outperforms traditional generalist Web servers by a factor that
increases with the number of dynamic responses. The paper presents the software
architecture and the implementation techniques deployed in Hop.

1.1 The Context

The diffuse applications targeted by Hop use the Web differently than tradi-
tional Web 1.0 and 2.0 applications. They mostly use HTTP as a general pur-
pose communication channel and they merely consider HTML and JavaScript as
intermediate languages such as the ones used by compilers. The most important
characteristics of diffuse Web applications are as follows.

– Most devices involved in the execution of a diffuse application may both act
as server and as client. For instance, in a multimedia application, a PDA can
be used to control the music being played as it can serve music files itself.
That is, diffuse Web applications do not strictly implement a client-server
architecture. They share some similarities with a peer-to-peer application.

– The applications frequently involve server-to-server, server-to-client, and
client-to-server communications. For instance, a multimedia application
playing music uses these communications for updating the state of all the
GUIs controlling the music being played back.

– Programs are associated with URLs. Programs start when a Web browser
requests such an URL. This generally loads a GUI on that browser. Apart
from that initial transfer, most other communications will involve dynamic
contents which can either be dynamic HTML documents or serialized data
structures.

– The number of simultaneous concurrent requests is small because in general,
only one user raises the temperature of the heating system or raises the
volume of the Hi-Fi system. Hence dealing efficiently with a large number of
connections is not a topmost priority for the servers considered here.
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These characteristics have consequences on the implementation strategy a dif-
fuse Web server should use. For instance, the first one, requires servers to have
a small enough memory footprint to be embeddable inside small devices such
as mobile phones. The second one requires servers to handle persistent con-
nections efficiently. The third one demands short response times for dynamic
documents. The fourth one impacts the concurrency model that should be de-
ployed. Therefore, although diffuse Web applications probably have workloads
that resemble those of Web 2.0 applications [25], they demand dedicated imple-
mentation strategies. In practice, general purpose Web servers that are mostly
optimized for dealing with a large number of simultaneous connections are not
suitable for most diffuse applications.

The vast majority of studies concerning the performance of Web servers con-
centrate on one crucial problem as old as the Web itself: sustaining the maximal
throughput under heavy loads. This problem has been mostly addressed from
a network/system programming perspective. For instance, a paper by Nahum
et al. [26] surveys the impact on the performance of using various system ser-
vices combinations. Another paper by Brech et al. explores and compares the
different ways to accept new connections on a socket [6]. The seminal events-
versus-threads dispute is more active than ever [1,40] and no clear consensus
emerges. Hop is agnostic with respect to the concurrency model. Its software
architecture supports various models that can be selected on demand.

The long debated question regarding kernel-space servers versus user-space
servers seems to be now over. Initially it has been observed that kernel-space
servers outperformed user-space servers [13], independently of the hosting op-
erating systems. Adding zero-copy functions in the system API, such as the
sendfile, has changed the conclusion [29]. In addition, another study [35] has
shown that the gap between kernel-space and user-space that prevailed in older
implementations unsurprisingly becomes less significant when the percentage of
requests concerning dynamically generated content increases. Since Hop is de-
signed mainly for serving dynamic contents, this study is of premium importance.

1.2 Organization of the Paper

Section 2 presents the general Hop’s software architecture. Then Section 3 shows
how the architecture is actually implemented. Section 4 presents the overall
performance evaluation of the Hop Web server and compares it to other Web
servers. It shows that Hop is significantly faster than all mainstream Web servers
for serving dynamic documents. Section 5 presents related work.

2 The Implementation of the HOP Web Server

This section presents the general implementation of the Hop Web server. It first
briefly sketches the Hop programming language and its execution model. Then,
it shows the general architecture of the server.
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2.1 The HOP Programming Language and Its Implementation

Since the Hop programming language has already been presented in a previous
paper [31], only its main features are exposed here. Hop shares many charac-
teristics with JavaScript. It belongs to the functional languages family. It relies
on a garbage collector for automatically reclaiming unused allocated memory. It
checks types dynamically at runtime. It is fully polymorphic (i.e., the univer-
sal identity function can be implemented). Hop has also several differences with
JavaScript, the most striking one being its parenthetical syntax closer to HTML
than to C-like languages. Hop is a full-fledged programming language so it offers
an extensive set of libraries. It advocates a CLOS-like object oriented program-
ming [5]. Finally, it fosters a model where a Web application is conceived as
a whole. For that, it relies on a single formalism that embraces simultaneously
server-side and client-side of the applications. Both sides communicate by means
of function calls and signal notifications. Each Hop program is automatically as-
sociated with an unique URL that is used to start the program on the server.
The general execution pattern of a Hop program is as follows:

– When an URL is intercepted by a server for the first time, the server auto-
matically loads the associated program and the libraries it depends on.

– Programs first authenticate the user they are to be executed on behalf of
and they check the permissions of that user.

– In order to load or install the program on the client side, the server elaborates
an abstract syntax tree (AST) and compiles it on the fly to generate a HTML
document that is sent to the client.

– The server side of the execution can be either executed by natively compiled
code or by the server-side interpreter. If performance matters compiled code
has to be preferred. However, for most applications, interpreted code turns
out to be fast enough.

Here is an example of a simple Hop program.

(define-service (hello)

(<HTML> (<DIV> :onclick ~(alert "world!") "Hello")))

Provided a Hop server running on the local host, browsing the URL http://-
localhost:8080/hop/hello loads the program and executes the hello service.
Contrary to HTML, Hop’s markups (i.e., <HTML> and <DIV>) are node con-
structors. That is, the service hello elaborates an AST that is compiled on-the-
fly into HTML when the result is transmitted to the client. It must be emphasized
here, that a two phased evaluation process is strongly different from embedded
scripting language such as PHP. The AST representing the GUI exists on the
client as well as on the server. This brings flexibility because it gives the server
opportunities to deploy optimized strategies for building and manipulating the
ASTs. For instance, in order to avoid allocating an new AST each time a hello
request is intercepted by the server, the AST can be elaborated at load-time and
stored in a global variable that is reused for each reply.
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(define hello-ast

(<HTML> (<DIV> :onclick ~(alert "world!") "Hello")))

(define-service (hello) hello-ast)

2.2 The Overall HOP Web Server Architecture

As most servers, when Hop intercepts a request it builds a reifying data structure
which contains general informations such as the requested URL, the IP address
of the client, and the date of the connection. In addition, Hop also proceeds to an
early request authentication. That is, using the optional HTTP authorization
field, it automatically searches in its database of declared users one whose lo-
gin matches. If this query fails, a default anonymous user is associated with
the request. This allows Hop to handle all requests on behalf of one particular
user. Permissions to access the file system and to execute programs are granted
individually, user by user.

Once users are authenticated and the request fully reified Hop builds a re-
sponse object. This transformation is accomplished by a Hop program that can
be changed as needed by users [32]. This gives flexibility to Hop that can there-
fore be used in various contexts such as smart proxies, application servers, load
balancers, etc. It also strongly constraints its implementation because it forbids
some classical optimizations. For instance it prevents Hop from re-using already
allocated objects for representing requests because since these objects are used
by user-defined programs they have dynamic extent.

Hop uses a traditional pipeline for processing HTTP requests, whose graphical
representation is given in Figure 1. The advantages of using such an architec-
ture for implementing Web servers have been deeply studied and are now well
understood [42,44,9]. This Section presents the Hop pipeline without addressing
yet the problem of scheduling its execution flow. In particular, it is not assumed
here any sequential or parallel execution of the various stages. The scheduling
strategies will be described in Sections 2.3 and 2.4.

In the Hop’s pipeline, the first stage (“Accept”), establishes connections with
clients. The second stage (“Request”), parses HTTP requests and builds the data
structure reifying the authenticated requests. The stage “Response” elaborates
responses to the requests. As suggested by the work on SEDA [42], provision

Fig. 1. The 4-stage HOP’s pipeline
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is taken to let the Hop scheduler handle static replies and dynamic replies dif-
ferently. This is reflected by the pipeline fork after the “Response” stages. Per-
sistent connections are handled by looping backward in the pipeline after the
“Reply” stages. In order to avoid cluttering the next pipeline figures, keep-alive
connections will be no longer presented.

The last two stages of the pipeline spawn user Hop programs executions.
Services, such as hello defined in Section 2.1, are executed during the “Re-
sponse” stage. For instance, when the server handles the request http://-
localhost:8080/hop/hello the “Response” stage establishes the connection
between the absolute path of the request URL, namely /hop/hello, and the
defined service hello. It then invokes the latter. In this particular case, this
service returns an AST representing a HTML tree. The “Response” stage wraps
the values returned by services into response objects that are used by the final
“Reply” stages. The “Static reply” stage handles static files or constant strings.
It simply sends the characters composing the response to the clients. The “Dy-
namic reply” stage handles all other cases. When a dynamic response is an AST,
this stage traverses the structure for compiling it on the fly into a regular HTML
or XHTML document. That traversal can be controlled by user programs. The
AST is represented by an object hierarchy that can be extended by user programs
and the methods that implement the traversal can be overridden.

Server side executions can either involve compiled codes or interpreted codes.
Server-side interpreted code has not been optimized for performance but for
flexibility. Hence the performance ratio between the two execution modes is
strongly in favor of the former.

Flexibility is the main motivation for separating the elaboration of an AST
and its compilation into a final document. As already mentioned in Section 2.1
this gives users the opportunity to cache ASTs. It also allows programs to re-
use the same tree in different contexts. For instance, a same tree can be once
compiled to HTML 4.01 and once to XHTML 1.0, depending on the capacities
of the requesters that are identified in the HTTP request header.

2.3 HOP Concurrency

Hop aims at alleviating as much as possible the complexity of programming dif-
fuse applications on the Web. This motivation has deeply impacted the overall
design of the language. For instance, the language relies on a garbage collec-
tor, higher order functions, full polymorphism, and transparent serialization for
function calls that traverse the network, because all these features make pro-
grams easier to write and to maintain. Obviously, the concurrency model is
also another fundamental aspect of the language which has been impacted by
the general Hop’s philosophy. The concurrency model has been mainly designed
with expressiveness and simplicity of programming in mind, more than runtime
speed.

In Hop, responses to HTTP requests are all produced by user defined pro-
grams. This characteristic allows users to change the whole behavior of the
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server. This also deeply impacts its implementation because the concurrency
model has to accommodate the spawning of user programs from various pipeline
stages. Since running these programs may be unpredictably long, provisions
have to be taken to execute them without blocking the entire server. That
is, the server must still be able to answer other requests while executing user
programs. This requires the server to be able to process multiple requests in
parallel.

Although some previous studies might lead us to think that avoiding processes
and threads by using an event-driven model can increase the speed [28,42], this
form or concurrency forces programs to adopt a discipline that consists in split-
ting execution into a list of small call-backs that are scheduled by an event loop.
Each of these call-backs must be as fast and short as possible in order to avoid
monopolizing the CPU for too long. We have considered that organizing user
programs into a well balanced list of call-backs was an unacceptable burden for
the programmers. Hence, in spite of any performance considerations, we have
decided to give up with pure event-driven models for Hop.

Currently Hop relies on a preemptive multi-threaded execution for user pro-
grams. However, the server and more precisely, the pipeline scheduler, is inde-
pendent of the concurrency model of user programs, as long as they are executed
in parallel with the stages of the pipeline. Hence, alternative concurrency mod-
els such as cooperative threads or software memory transactions could be used
in Hop. This independence also allows many Web architectures to be used for
scheduling the Hop pipeline. For instance, Hop may use multi-processes, multi-
threads, pipeline [44,9], AMPED [28] or SYMPED [29], or a mix of all of them.
In order to avoid early decisions, we have extracted the Hop scheduler from
the core implementation of the server. That is, when the server is spawned, the
administrator can select his scheduler amongst a set of predefined schedulers or
provide his own. Hop pipeline schedulers are actually regular Hop user programs
because the API that connects the scheduler to the server is part of the standard
Hop library. The rest of this section emphasizes the simplicity of developing and
prototyping new schedulers. In particular, it will be shown that adding a new
scheduler is generally as simple as defining a new class and a couple of new
methods. Using the server interpreter this can even been tested without any
recompilation.

2.4 Hop Pipeline Scheduler

The Hop pipeline scheduler is implemented using a class hierarchy whose root is
an abstract class named scheduler. Three methods accept, spawn, and stage
implement the pipeline machinery. The Hop Web server provides several concrete
subclasses of scheduler that can be selected using command line switches or
by user programs. Extra user implementations can also be provided to Hop on
startup. This feature might be used to easily test new scheduling strategies.
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(abstract-class scheduler)

(define-generic (accept s::scheduler socket))

(define-generic (spawn s::scheduler proc . o))

(define-generic (stage s::scheduler th proc . o))

In this section, the general pipeline implementation is presented, followed by
several concrete schedulers. For the sake of simplicity many details of the actual
implementation are eluded. Exception handling is amongst them.

The pipeline implementation. When the Hop Web server is started, it first
creates a socket that listens to new connections. The function make-server-
-socket of the Hop standard API takes one mandatory argument, a port num-
ber, and one optional argument, a backlog size:

(define-parameter port 8080)

(define-parameter somaxconn 128)

(define socket-server (make-server-socket (port) :backlog (somaxconn)))

Once the command line is parsed and the Runtime Command file loaded, the
pipeline scheduler is created by instantiating the class corresponding to the se-
lected scheduler.

(define-parameter scheduling-strategy ’pool)

(define-parameter max-threads 20)

(define pipeline-scheduler

(case (scheduling-strategy)

((nothread) (instantiate::nothread-scheduler))

((one-to-one) (instantiate::one-to-one-scheduler))

((pool) (instantiate::pool-scheduler (size (max-threads))))

...))

The main server loop is entered with:

(accept pipeline-scheduler socket-server)

The function accept is a generic function function [5]. That is, a function whose
default implementation might be overridden by methods. When a generic func-
tion is called, the actual implementation, i.e., the method to be executed, is
chosen according to the dynamic types of the arguments of the call. The default
implementation of accept is as follows:

1: (define-generic (accept S::scheduler serv)

2: (let loop ()

3: (let ((sock (socket-accept serv)))

4: (spawn S stage-request sock 0)

5: (loop))))
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On line 3 , a new connection is established. The request starts to be processed
on line 4 . The function spawn being also a generic function, its actual imple-
mentation depends on the dynamic type of the scheduler.

The spawn function requires at least two parameters: a scheduler (S) and
a function (stage-request) which can be considered as a continuation. The
function spawn starts an engine which calls the function with the scheduler S, the
engine itself, and all the other optional parameters spawn has received. As it will
be presented in the next sections, the concurrency model used for executing the
pipeline entirely depends on the actual implementation of the scheduler which
may override the definition of spawn. This gives the freedom to each scheduler to
use an implementation of its own for creating and spawning new engines. That is,
one scheduler may implement its engine with sequential functional calls, another
one may implement it with threads, and a third one could implement it with
processes.

The function stage-request implements the second stage of the pipeline. It
parses the HTTP header and body in order to create the object denoting the
HTTP request.

1: (define (stage-request S th sock tmt)

2: (let ((req (http-parse-request sock tmt)))

3: (stage S th stage-response req)))

The request is parsed on line 2 . The function http-parse-request reads the
characters available on the socket sock with a timeout tmt. A value of 0 means
no timeout at all. Parsing the request may raise an error that will be caught
by an exception handler associated with the running thread. This handler is in
charge of aborting the pipeline. Once the request object is created and bound
to the variable req (see on line 2 ), the third stage of the pipeline is entered.
The function stage is the last generic function defined by the scheduler class.
Although its semantics is equivalent to that of spawn there is a point in sup-
porting two different functions. As it will be illustrated in the next sections,
distinguishing spawn and stage is needed for enlarging the scope of possible
scheduler implementations.

The function stage-response creates a response object from a request object.
It is implemented as:

1: (define (stage-response S th req)

2: (let* ((rep (request->response req))

3: (p (if (http-response-static? rep)

4: stage-static-answer

5: stage-dynamic-answer)))

6: (stage S th p req rep)))

The two functions stage-static-answer and stage-dynamic-answer being
similar only one is presented here:

(define (stage-static-answer S th req rep)

(stage-answer S th req rep))
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Using two functions instead of one gives the scheduler the opportunity to deploy
different strategies for dealing with static and dynamic requests [42].

(define (stage-answer S th id req rep)

(let* ((sock (http-request-socket req))

(conn (http-response rep sock)))

(if (keep-alive? conn)

(if (= (scheduler-load S) 100)

;; use a minimal timeout (1mus)

(stage S th stage-request sock 1))

;; use the default timeout (3ms)

(stage S th stage-request sock 3000))

(socket-close sock)))

After this sketch of the pipeline implementation the next sections present several
actual scheduler implementations.

The row pipeline scheduler. Several Hop schedulers execute the stages of the
pipeline sequentially, that is, they associate a new thread or a new process with
each newly established connection that is used all along the pipeline. In order
to alleviate the implementation of new schedulers that belong to this category,
Hop provides a dedicated abstract class, namely row-scheduler, that overrides
the stage generic function.

(abstract-class row-scheduler::scheduler)

(define-method (stage S::row-scheduler t p . o) (apply p S t o))

When no threads are used, jumping from one stage to another is implemented
as a traditional function call. Hence, the implementation of the stage method of
a row-scheduler, just consists in calling the function it has received as second
argument.

The nothread pipeline scheduler. The simplest form of scheduler imple-
ments no parallelism at all. Within an infinite loop, the nothread scheduler waits
for a new connection to be established, it then executes in sequence all the stages
of the pipeline and it loops back, waiting for new connections (see Figure 2).

Implementing the nothread scheduler is straightforward because it only re-
quires to override the generic function spawn with a method that merely calls
the procedure it receives with the optional arguments and a dummy thread that
is created by the scheduler. This thread is never used but it is required for the
sake of compatibility with the other schedulers.

(class nothread-scheduler::row-scheduler)

(define *dummy* #f)

(define-method (spawn S::nothread-scheduler p . o)

(unless (thread? *dummy*) (set! *dummy* (instantiate::hopthread)))

(apply stage S *dummy* p o))
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Fig. 2. The nothread pipeline scheduler

The nothread scheduler is fast but unrealistic since it cannot handle more than
one request at a time. Using such a scheduler would prevent Hop from being
used for serving long lasting requests such as music broadcasting.

The one-to-one scheduler. The one-to-one scheduler creates one new thread
per connection (see Figure 3). Within an infinite loop it waits for connections. As
soon as such a connection is established, it creates a new thread for processing
the request. The main loop starts this new thread and waits for a new socket
again.

Fig. 3. The one-to-one pipeline scheduler

Implementing the one-to-one scheduler is as simple as implementing the
nothread scheduler. It only requires to override the spawn generic function.

(class one-to-one-scheduler::row-scheduler)

(define-method (spawn S::one-to-one-scheduler p . o)

(letrec ((th (instantiate::hopthread

(body (lambda () (apply p S th o))))))

(thread-start! th)))

The one-to-one scheduler supports parallel execution for requests so it over-
comes the major drawback of the nothread scheduler. It is easy to implement
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persistent HTTP connections using this scheduler because after a response is
sent to the client, the same thread can check if new requests are pending on the
socket. However, in spite of this progress, the one-to-one scheduler is still in-
efficient because the system operations involved in creating and freeing threads
are expensive.

The thread-pool scheduler. To eliminates the costs associated with the
thread creation of the one-to-one scheduler, the thread-pool scheduler has
been implemented. It is almost identical to the one-to-one scheduler with two
noticeable differences: i) it uses a pool of early created threads, and ii) the accept
loop is implemented inside each thread loop. That is, all the threads implement
the same loop that executes all the stages of the pipeline (see Figure 4). Per-
sistent connections are handled inside the same thread as the initial request. In
scenarios where HTTP requests are sent to the server in sequence, this scheduler
is able to avoid all context switches because a single thread executes the entire
pipeline, from the “Accept” stage to the “Reply” stage. Context switches only
occur when several requests are accepted in parallel.

Fig. 4. The thread-pool pipeline scheduler

The bookkeeping needed to manage the pool of threads makes the implemen-
tation of the thread-pool scheduler obviously more complex than the previous
ones. As this is a classical problem of concurrent programming it is probably not
useful to present it here. Therefore all the details that are not strictly specific
to Hop are therefore omitted.

The pool-scheduler class inherits from the row-scheduler class which it
extends with two fields for holding the threads of the pool.

(class pool-scheduler::row-scheduler

(threads::list read-only)

(size::int read-only))

Each thread in the pool executes an infinite loop. When its action is completed
a thread goes to sleep state. It will be awaken by the scheduler when a new
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connection will be assigned to this sleeping thread. Two functions implement
this interface: get-thread-pool and resume-thread-pool.

(define-method (spawn S::pool-scheduler p . o)

;; get a free thread from the pool (may wait)

(let ((th (get-thread-pool S)))

(with-access::hopthread th (proc)

;; assign the new task to the thread

(set! proc (lambda (S t) (stage S t p o)))

;; awake the sleeping thread

(resume-thread-pool! th)

th)))

Contrary to other schedulers, the call to socket-accept that waits for new con-
nections is not invoked from the server main loop but inside each thread started
by the scheduler. This is implemented by overriding the generic function accept
for the pool-scheduler class and by creating an new function for implementing
the “Accept” stage.

(define-method (accept S::pool-scheduler serv)

(for (i 0 (pool-scheduler-size S))

(spawn S stage-accept)))

(define (stage-accept S th)

(let loop ()

(let ((sock (socket-accept serv)))

(stage S th stage-request sock 0)

(loop))))

Other schedulers. Other schedulers have been implemented inside Hop. In
particular we have tried a scheduler inspired by the cohort scheduling [16] (see
Figure 5), a scheduler using an accept-many strategy [6], and a scheduler using
a queue of waiting tasks. Early observations yield us to think that none performs
faster than the thread-pool scheduler for our targeted application field.

The cohort scheduling experienced in Hop consists in grouping threads by
tasks rather than by requests. It is hard to implement and even harder to opti-
mize so up to now we have not been able to achieve good performance with it.

The queue strategy consists in associating stages of the pipeline to tasks.
When a task must be executed, one thread is extracted from the pool. When the
task completes, the thread goes back to the pool. A straightforward optimization
of this scheduler removes superfluous queue operations and allows this scheduler
to handle request in a row. When a thread should go back to the queue, if first
checks if is queue of available threads is empty or not. If not empty, the same
thread is used to execute the next stage of the pipeline.

The accept-many strategy consists in modifying the accept stage of the
thread-pool scheduler in order to accept many connections at a time for purging
as quickly as possible the socket backlog. All the connections that are established
at a time are then processed by a pool of threads as the thread-pool scheduler
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Fig. 5. The cohort pipeline scheduler

does. Although the authors of the accept-many technique report significant
speed acceleration when deploying this strategy in mainstream Web servers, it
fails at accelerating Hop. The reason for this different behavior is probably to
be searched in the application field targeted by Hop where massively parallel
requests burst are rare.

3 Optimizations

The online paper Server Design [10] highlights three major reasons for a Web
server to behave inefficiently: i) data copies, ii) memory allocations, and iii)
context switches. According to this paper, an ideal server would be a server that
avoids them all. Of course, this is not practically feasible but still, working as
hard as possible on these issues improves the chances of success in the quest
of a fast server. Section 2.4 has shown that some Hop schedulers are able to
accept, parse, and reply to requests without any context switch. Section 2.4 has
presented an example of such a scheduler. This section shows how Hop addresses
the two other points.

3.1 Limiting the Memory Allocation

High level programming languages such as Hop help programmers by supporting
constructions that abstract low level mechanisms involved at runtime. Providing
high level powerful forms alleviates programmers from tedious tasks but it also
generally comes with a price: it makes writing efficient programs more difficult.
A major reason for this inefficiency is excessive memory allocations.

Excessive memory allocation dramatically limits the performance for two main
reasons: i) programs spend a significant percentage of their execution to allocate
and free memory chunks and, ii) it introduces additional context switches for
parallel executions that run in shared-memory environments. When the heap is
a shared resource, allocating and freeing memory require some sort of synchro-
nization. In general this is implemented with locks that eventually conduct to
context switches. Hence, polishing a thread scheduling strategy can be pointless
if, at the same time, memory allocation is not tamed.
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Version 1.8.7 of Hop allocates 47.5MB for serving 10,000 times a file of 512
bytes. The same test run on the version 1.10.0-pre3 allocates only 4.3MB, that
is 457 bytes per request. This section presents the two transformations that have
lead us to shrink memory by more than 10 times.

BglMem. Contrary to a popular belief, garbage collectors generally used in
high level languages impose no or minor runtime overhead [45]. The inefficiency
of high level languages is more to be searched in the implicit memory allocations
that are potentially hidden everywhere in the programs. For instance, calling
a function might allocate lists if it accepts a variable number of arguments,
declaring a function might yield to creating a closure if it makes use of free
variables, opening a file or a socket might allocate inadequate buffers, etc.

In order to help programmers tame memory allocations, the Hop development
kit provides an exact memory profiler. A dynamic tool keeps trace of the exact
call graph at each allocation points. An offline tool produces histograms that, for
each function of the programs, show: i) the number of data structures that have
been allocated by this function and the overall size in bytes these allocations
represent, and ii) the number of data structures and the size in bytes for all the
functions the function dynamically calls. Using BglMem, we have, for instance,
easily discovered that during a Hop test consisting in replying to 10,000 requests,
the Hop function http-parse-method-request has allocated 60,006 pairs for a
total of 468KB and 30,003 strings for a total of 654KB. In addition, the his-
tograms produced by BglMem show that one of the children of this function has
allocated 10,000 data structures representing the HTTP requests for a total size
of 976KB.

The next sessions shows how BglMem has been used to reduce the Hop allo-
cation and memory footprint.

One transformation. Because of the size constraint of the paper, it is not
possible to present the exhaustive list of optimizations that have been applied to
Hop to reduce its memory allocation. Hence only one exemplar transformations
is presented here. It gets rid of implicit memory allocations that, once spotted
are straightforward to eliminate.

Optimizing IO buffers: The function socket-accept waits for new connec-
tions on a socket. Once established the connection is associated with an input
port for reading incoming characters and an output port for writing outgoing
characters. BglMem reported that with Hop 1.8.7, socket-accept was respon-
sible for allocating about 10MB of strings of characters! These 10MB came from
the default configuration of socket-accept that creates a buffer of 1024 bytes
for the input port associated with a connection. Removing these buffers has
saved 10000 * 1024 bytes of memory.

Hop uses sockets in a way that allows it to use its own memory management
algorithm which is more efficient than any general purpose memory manager.
Hop needs exactly as many buffers as there are simultaneous threads parsing
HTTP requests. Hence, the obvious idea is to associate one buffer per thread
not by socket. This can be implemented more or less efficiently depending on
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the nature of the scheduler. Some schedulers such as the nothread-scheduler
or pool-scheduler (see Section 2.4 and Section 2.4) accept an optimal solution
that totally eliminates the need to allocate buffers when the server is ready to
accept requests. It consists in allocating one buffer per thread when the scheduler
is initialized. These buffers are then simply reset each time the thread they are
associated with is about to parse characters. The modification in the source code
is minor. It only requires one additional line of code:

(define-method (accept S::nothread-scheduler serv)

;; create a buffer before the thread loop

(let ((buf (make-string 1024)))

(let loop ()

;; reuse buffer for each connection

(let ((sock (socket-accept serv :inbuf buf)))

(spawn S stage-request sock 0)

(loop)))))

Wrap up. Memory allocation has been measured on a test that consists in
serving 10,000 a 512 bytes long file, without persistent connection. Each HTTP
request of this memory test contained 93 bytes. Parsing each request produces a
data structure made of strings (for denoting the path of the request, the client
hostname, etc.), lists (for holding the optional lines of the HTTP header), sym-
bols (for the HTTP version, the transfer encoding, the mime type, etc.) and an
instance of the class http-request for packaging the parsed values plus some
extra values such as a time stamp, an authenticated user, etc. In the test this
structure uses the whole 457 bytes allocated per request. That is, applying the
optimizations described in this section has successfully removed all the memory
allocations not strictly needed for representing the HTTP requests. In particu-
lar, all the hidden allocations that can take place in high level languages such as
Hop have been eliminated. The current version of Hop is then close to optimal
regarding memory allocation.

3.2 Persistent Connections

Persistent connections have been one of the main reasons of the creation of
HTTP/1.1. Two early papers report that significant accelerations can be ex-
pected from implementing persistent connections [21,27]. A client has two means
for discovering that it has received the full body of a response: i) the connection
is closed by the server or, ii) the length of the response to be read is explicitly
provided by the server. Persistent connections, of course, can only use the second
method.

Providing the length of a static response, i.e, a file or a string of characters, is
straightforward (although some Web servers, such as Lighttpd, implement caches
to eliminate repetitive calls to the expensive fstat system operation). Providing
the size of a dynamic response is more challenging. One solution consists in
writing the response in an auxiliary buffer first, then getting the length of that
buffer and then writing the length and the buffer to the socket holding the
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connection. This technique is generally inefficient because it is likely to entail
data copies. The characters have to be written to the buffer first which might
need to be expanded if the response is large. Then, this buffer has to be flushed
out to the socket, which is also likely to use a buffer of its own.

Hop uses a solution that avoids auxiliary buffers. It relies on chunked HTTP
responses that break the response body in a number of chunks, each prefixed
with its size. Using chunked responses in Hop is possible because of a dedicated
facility provided by its runtime system. The Hop I/O system allows programs
to associate flush hooks with input and output ports. Output flush hooks are
functions accepting two arguments: the port that is to be flushed and the number
of characters that are to be flushed out. The values produced by calling these
hooks are directly written out to the physical file associated with the port before
the characters to be flushed out.

Using output flush hook, chunked responses can be implemented as:

(define (chunked-flush-hook port size)

(format "\r\n~x\r\n" size))

Using output port flush hooks is efficient because it imposes no overhead to
the I/O system. The written characters are stored in a buffer associated with
the output port, as usual. When the buffer is flushed out, the chunk size is
written by the hook. Writing the chunk size is the only extra operation that has
been added to answering responses. It is thus extremely lightweight and it allows
persistent connections to be implemented efficiently (i.e., without extra copy nor
extra memory allocation) for dynamic documents as well. Chunked HTTP re-
sponses have probably been designed for enabling this kinds of optimization but
we have found no trace of equivalent techniques in the literature.

3.3 Operating System Interface

Implementing fast I/Os with sockets requires some operating system tunings and
optimizations. This section presents two of them.

Non-copying output. Several studies have measured the benefit to be ex-
pected from using non-copying output functions such as the Linux sendfile
facility [26,29]. This system service is supported by Hop. In addition to be fast
because it avoids data copies and user-space/kernel-space traversals, it also sim-
plifies the implementation of servers because it makes memory caches useless for
serving static files. As in a previous study [29], we have noticed no acceleration
when using memory cache for serving files instead of using a pure sendfile-
based implementation. Using sendfile or a similar function actually delegates
the caching to the operating system which is likely to perform more efficiently
than a user-land application.

Network programming. The default setting of sockets uses the Nagle al-
gorithm [24] that is aimed at avoiding TCP packets congestion. We know from
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previous studies that this algorithm combined with the acknowledgment strat-
egy used by TCP may cause an extra 200ms or 500ms delay for delivering the
last packet of a connection [12]. This is called the OF+SFS effect that has been
identified to be due to the buffer tearing problem [22]. Persistent HTTP connec-
tions are particularly keen to exhibit this problem and thus it is recommended to
disable the Nagle algorithm for implementing more efficiently Web servers that
support persistent HTTP connections [27]. Therefore, Hop supports configura-
tion flags that can enable or disable the Nagle algorithm.

The TCP CORK hybrid solution (or a super-Nagle algorithm) is supported by
some operating systems. However, as reported by Mogul & Mingall [22] this
socket option does not solve the OF+SFS problem in presence of HTTP per-
sistent connections. We confirm this result because in spite of several attempts
we have failed to eliminate the 200ms delay it sometimes imposes (in between 8
and 20% of the responses according to Mogul & Mingall, much more according
to our tests) between two persistent connections. Hence, we gave up on using it.

Other configurations impact the overall performance of socket based applica-
tions. For instance, previous studies have suggested that an adequate calibration
on the backlog of a listen socket (controlled by the system limit somaxconn) may
improve significantly the performance [4]. For the workloads used to test Hop
we have found that mid-range values (such as 128) yield better results.

4 Performance Study

Although most HTTP requests involved in diffuse applications address dynamic
contents, they also use static file transfers for cascading style sheets, images,
and client-side libraries. Hence a fast server for the diffuse Web should be able
to deliver efficiently dynamic and static documents. In this section we compare
Hop to other Web servers for serving the two kinds of requests.

4.1 Performance Evaluation Caveat

This paper focuses on the performance evaluation of the Hop Web server, which
is not to be confused with a performance evaluation of the Hop server-side pro-
gramming language. Hop relies on the Bigloo compiler for generating server-side
native code. It has already been shown that this compiler delivers native code
whose performance is only 1.5 to 2 times slower than corresponding C code [30].
That is, the Hop server-side compiled code significantly outperforms the popular
scripting languages such as PHP, Ruby, Python, as well as bytecode interpreted
languages such as Java. In order to avoid overemphasizing the performance of
the Hop programming language against PHP, Ruby, Java, or even C, we have
only used simplistic generated documents that require minimalist computations.
Our typical generated documents only require a few “prints” to be produced.
Restricting to simple documents minimizes the performance penalty imposed by
slow scripting languages implementations and allows us to focus on the evalu-
ation of the mechanisms used by the server for running user programs on the
server-side of the application.
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4.2 Experimental Environment

Our experimental environment consists of three computers connected to a LAN:
i) a server made of a bi-processor Intel PIV Xeon, 3Ghz with 1GB of RAM
running Linux-2.6.27, ii) a first client running Linux-2.6.27 executed by an Intel
Core 2 Duo ULV 1.06Ghz with 1.5GB of RAM, and iii) a second client running
Linux-2.6.27 executed by an Intel Code 2 Duo 2.0Ghz with 2GB of RAM. The
network traffic is ensured by a Cisco Gigabit ethernet router Catalyst 3750G.
Using the Unix tool iperf we have experimentally verified that this setting
indeed permits ethernet frames to be transferred at the pace of one gigabit per
second.

In this paper, the workloads used for our tests are generated by httperf [23]
version 0.9.0, a tool dedicated to measuring the performance of Web servers.

Before concentrating on the actual performance of the servers, we have mea-
sured the requests rate our setting can sustain. Following the protocol suggested
by Titchkosky et al [38], we have observed that our clients can sustain a combined
workload of more than 6,000 requests per second, which is enough to saturate
the tested servers.

4.3 Hop vs. Other Web Servers

There are so many Web servers in vicinity that it is impossible to test them
all1. Hence, we have tried to select a representative subset of existing servers.
We have used two mainstream servers implemented in C, one mainstream server
implemented in Java, and two servers implemented in functional languages:

– Apache-2.2.10, a popular Web server implemented in C. For producing
dynamic documents with Apache, we have measured the performance of
mod perl-2.0.4 and mod php5, which both rely on the FastCGI protocol.

– Lighttpd-1.4.20, another popular Web server implemented in C. It is fre-
quently used as a replacement of Apache on embedded devices such as routers
and NASes.

– Tomcat-5.5.27, the popular Web server implemented in Java that relies on
JSP for producing dynamic documents.

– Yaws-1.77, a small server implemented in Erlang [3].
– PLT Web server-4.1.2, a web server implemented in PLT-Scheme

[14,15,43].

For this experiment all servers are used with their default configuration except for
logging that has been disabled when possible. The Hop default configuration is as
follows: i) use the thread-pool pipeline scheduler with 20 threads, ii) somaxconn
= 128, iii) initial heap size = 4MB, iv) keep-alive timeout = 5 seconds, v) the
socket send buffer size is 12KB (as recommended by [27]).

1 At the time this paper has been written, the wikipedia articles comparing Web
servers described 68 general purpose servers and 79 lightweight Web servers! See
http://en.wikipedia.org/wiki/Comparison of web servers.
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Fig. 6. Server performance. These tests measure the throughput a web server can
sustain when delivering 984 bytes long static files. Each session consists in 5 consecutive
requests that are sent using a single persistent connection.

As much as possible we have tried to write comparable versions of the dynamic
test. That is for each of the tested languages, namely PHP, Perl, JSP, Erlang,
Scheme, and Hop, we have tried to write a fair version of the test, that is a
version as equivalent as possible to the version of the other languages.

Figures 6 and 7 presents the performance evaluation which calls for several
observations:

Observation 1: In the considered application context where only a small
number of users simultaneously connect to the server, Hop is one of the fastest
server for delivering static content. In particular, it is as fast as C servers such as
Apache and Lighttpd. The test presented in the paper involves serving a file of
about 1KB. We have conducted a second test that involves a file of 64KB. This
second test confirms the results presented in Figure 6. The speed hierarchy of
Web servers for serving a 64KB file is roughly the same as the one found when
serving the 1KB file.

Observation 2: Hop is the fastest server for delivering dynamic content.

Observation 3: Hop and Yaws are the only two servers that deliver static
content and dynamic content at approximately the same speed.

Observation 4: Yaws runs remarkably steady. In particular, its performance
seems hardly impacted when the server load increases. Further investigation
would be needed but this early result seems to demonstrate that the advantage
claimed by the Erlang programming language [2] for dealing with massively
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Fig. 7. Server performance. These tests measure the throughput a web server can sus-
tain when delivering dynamic contents. Each session consists in 5 consecutive requests
that are sent using a single persistent connection.

concurrent applications is also observable for Web servers. Those concerned by
overloaded servers should probably consider using message passing as fostered
by Erlang.

Observation 5: PHP and Perl present comparable performance. They are both
significantly slower than Hop.

Tomcat performance drops dramatically around 4000 requests per second be-
cause its memory footprint becomes too large (more than 700MB), which forces
the operating system to start swapping the main memory. It should be noticed
here that none of the servers is stopped and restarted when the load increases.
Hence if a Web server leaks memory its performance will continuously slow down.
The PLT Scheme server suffers from the same problem as Tomcat. Its memory
footprint rapidly approaches 1GB of memory. Hence, very soon it is not able
to do anything useful because it is swapped out. Tomcat and PLT show how
important it is to restrain memory allocation. An excessive memory allocation
dramatically reduces the performance of a server.

From these observations, we can draw some conclusions. The experiment em-
phasizes persistent connections even for dynamic content delivery because each
client emits consecutively 5 requests using the same connection. This corresponds
to a real use-case for the targeted applications but it strongly penalizes all the
systems that are not able to implement them efficiently. This might explain the
poor performance of Apache and Lighttpd servers.
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The file 984 bytes long file used for testing static delivery is exactly the file that
gets generated by the dynamic content test. Hence, the static delivery and the
dynamic delivery end up with the same characters written to the socket. The only
difference between the two tests is the way these characters are obtained: from a
static file in the first case, from an in-memory computation in the second. Hop
and Yaws are the two fastest servers for delivering dynamic contents. They are
both bootstrapped. This might be considered as an indication that bootstrapped
Web servers should outperform other servers for delivering dynamic content.
Tomcat is bootstrapped too but since its performance is deeply impacted by its
excessively large memory footprint, no conclusion can be drawn from studying
its performance.

5 Related Work

Many high level languages have been used to implement Web servers but actually
only a few of them can be compared to Hop. Functional languages have a long
standing tradition of implementing Web servers, probably pioneered by Common
Lisp that, as early as 1994, was already concerned by generating dynamic HTML
content [18]! Today, Haskell seems very active with HWS [19], Wash/CGI [37],
and HSP [7]. HWS is a server that uses a four-stages pipeline and a one-to-one
scheduler. It relies on user-threads instead of system-threads for handling each
requests. User-threads work well as long as no user program can be spawn from
the stages of the pipeline. This probably explains why HWS is not able to serve
dynamic content. HSP is a Haskell framework for writing CGI scripts. It used to
be implemented as an Apache module [20] and but it is now hosted by a dedicated
server HSP(r) based on HWS. Unfortunately HSP(r), as well as Wash/CGI, is
incompatible with the currently released version of GHC, the Haskell compiler.
Hence we have not been able to test any of them.

Smalltalk has Seaside which is one of the precursors in using continuations
for modeling Web interactions [11]. It would have been interesting to measure
its performance because Smalltalk, as Hop is a dynamic programming language
but unfortunately it was not possible to install it on our Linux setting.

The impact of the concurrency model on the performance of the servers has
been largely studied and debated but no clear consensus prevails yet. Some pre-
tend that an event-based model is superior to a thread model. Some pretend the
contrary. A third group claims that blending the two models should be preferred
[41]! Hence, the idea of proposing system independent models of the concurrency
has emerged. Jaws is an adaptive Web server framework that allows program-
mers to implement their own Web server using on-the-shelf components [36].
This framework provides elementary blocks that can manage a pipeline, nor-
malize URLs, support various styles of I/Os, etc. Combining these components
simplifies the development of a server without penalizing its performance.

Flux [8] and Aspen [39] are two programming languages that allow pro-
grammers to choose, at compile-time, the concurrent model used at run-time.
Flux consists in a set of syntactic extensions to C/C++ that are expanded, at
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compile-time, into regular C/C++ programs. Aspen like Erlang [3], eschews
shared memory in favor of message passing. The parallel structure of an Aspen
program is specified independently of its computational logic and, at run-time,
Aspen dynamically allocates threads according to the dynamic workload of the
server. Prototypical Web servers have been implemented in Flux and Aspen that
show performance not significantly better than Apache for static and dynamic
contents.

Saburo is an Aspect Oriented framework for generating concurrent programs
[17]. The PhD thesis introducing Saburo focuses on the performance of Web
servers. Contrary to Hop that relies on a dynamic selection of the concurrency
model (implemented by means of classes and late binding), Saburo as Flux and
Aspen relies on a static model. In theory these systems should then be able
to perform faster than Hop because they have opportunities to optimize the
implementation of the concurrency model at compile-time. In practice, the Hop
implementation of the late binding used in the pipeline scheduler is fast enough
not to impact the overall performance of the server.

6 Conclusion

This paper presents the Hop server that is mainly designed for running diffuse
applications on the Web. The paper presents its versatile architecture that sup-
ports various concurrent programming models as well as significant parts of its
implementation.

The paper shows that programming an efficient server for the diffuse Web is
not only a problem of good system and network practices, although these still
have a large impact on the overall performance. The new problem is to combine,
fast network and system programming and fast interactions between the server
main loop that deals with HTTP requests and the user helper programs that
produce responses.

The solution supported by Hop consists in merging, inside a single runtime
environment, the server main loop and the user programs. This can be build by
using the same programming language for implementing the server itself and the
user programs. Such a bootstrapped Web server can eliminate all communication
costs between the server main loop and user programs. Hence, it can outperform
traditional general purpose Web servers that handle user programs as external
processes. The Hop Web server that delivers dynamic documents significantly
faster than all the other tested servers shows this can achieved using high level
dynamic programming languages.
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Abstract. This paper presents a transactional framework for low-
latency, high-performance, concurrent event processing in Java. At the
heart of our framework lies Reflexes, a restricted programming model for
highly responsive systems. A Reflex task is an event processor that can
run at a higher priority and preempt any other Java thread, including
the garbage collector. It runs in an obstruction-free manner with time-
oblivious code. We extend Reflexes with a publish/subscribe communica-
tion system, itself based on an optimistic transactional event processing
scheme, that provides efficient coordination between time-critical, low-
latency tasks.We report on the comparison with a commercial JVM, and
show that it is possible for tasks to achieve 50 µs response times with
way less than 1% of the executions failing to meet their deadlines.

1 Introduction

Performing real-time processing in a managed language environment, such as
Java, is very appealing but introduces two significant implementation challenges:
memory management and inter-task communication.

Typically, garbage collectors used in commercial Java virtual machines are
designed to maximize the performance of applications at the expense of pre-
dictability. Consequently, with these garbage collectors it is non-deterministic
when and for how long they will run. As a consequence garbage collection in-
troduces execution interference that can easily reach hundreds of milliseconds,
preventing the timeliness requirements of the real-time systems from being satis-
fied. High performance real-time Java virtual machines have somewhat reduced
this challenge through advances in real-time garbage collection algorithms, re-
ducing the latency to approximately 1 ms. However, some applications have
latency/throughput real-time requirements that cannot be met by current real-
time garbage collection technology. For these applications, having scheduling
latency requirements below a millisecond, any interference from the virtual ma-
chine is likely to result in deadline misses.

Another source of interference that can easily cause deadline misses, relates
to communication between the time-critical real-time tasks, including any inter-
action they might have with the rest of the application. Typically, time-critical
tasks only account for a fraction of the code of an entire application, the rest
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being either soft- or non-real-time code. For instance, the US Navy’s DD-1000
Zumwalt class destroyer is rumored to have million lines of code in its shipboard
computing system, of which only small parts have real-time constraints. Typical
programming practices for sharing data would involve synchronizing access to the
data. In a real-time system, this might lead to unbounded blocking of the real-
time thread, so-called priority inversion, causing serious deadlines infringements.

One of the key design decisions of the Real-time Specification for Java (RTSJ)
[9] was to address these problems with a programming model that restricts ex-
pressiveness to avoid unwanted interactions with the virtual machine and the
garbage collector in particular. The RTSJ introduced the NoHeapRealtime-
Thread for this purpose, and also proposed solutions to cope with priority
inversion. As we discuss in the related work, however, experience implement-
ing [5,13,21,2] and using [8,20,7,22,24] the RTSJ revealed a number of serious
deficiencies. More recently, alternatives to NoHeapRealtimeThread have been
proposed, such as Eventrons [26] and Exotasks [3] from IBM Research as well
as Reflexes [27] and StreamFlex [28].

This work builds on our experience with Reflexes [27], a simple, statically
type-safe programming model that makes it easy write and integrate simple pe-
riodic tasks observing real-time timing constraints in the sub-millisecond range,
into larger time-oblivious Java applications. Reflex tasks are written in a sub-
set of Java with special features for (1) safe region-based memory management
preventing interference from the garbage collector, (2) obstruction-free atomic
regions avoiding any priority inversion problems when communicating with time-
oblivious code, and (3) real-time preemptive scheduling allowing the Reflex task
to preempt any lower-priority Java thread, including the garbage collector. Fi-
nally, Reflexes rely on a set of safety checks, based on our previous work for
Real-time Java [1,32], to ensure safety of memory operations. These checks are
enforced statically by an extension of the standard Java compiler. The Reflex
safe regions provide better latency than a real-time collector.

In StreamFlex [28], we extended Reflexes to support low-latency stream pro-
cessing by introducing graphs of tasks that communicate through non-blocking
transactional communication channels, allowing tasks to communicate in a zero-
copy fashion. While these transactional channels are effective for communication,
they fall short when it comes to coordination between time-critical tasks. In
particular, coordinating transactions in a multi-core environment turns out to
be challenging when striving for low-latency.

Publish/subscribe systems are a special case of event-based programming
where a number of computational components are allowed to register, or sub-
scribe, to events published by other components in the system [15]. This pro-
gramming model has been applied in different context; in distributed systems,
publish/subscribe is a convenient way to decouple producers from consumers,
and to provide a simple resource discovery protocol via a registration mecha-
nism. On a single node, publish/subscribe offers a convenient way to program
dynamic systems where new rules can be added/removed dynamically and events
processed in parallel. Example of applications can be found in the financial
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sector where events are the movement of stocks and computational elements
implement trading rules. Some examples of event-based systems are Gryphon,
JEDI and JavaSpaces [16,29,14].

This paper presents an extension of the original Reflex programming model
with a publish/subscribe substrate that allows for coordination and communi-
cation between highly time-critical, low-latency Reflex tasks by registering for,
and publishing, user-defined events. This publish/subscribe system is itself built
on top of a transactional tuple space implementation that abides by the se-
mantics described in [17] and uses the data structures described in [30]. While
the original Reflex implementation used a limited form of software transactional
memory based on [18] for the obstruction-free interaction with ordinary Java
threads, in the extension presented in this paper, all the computation performed
by a Reflex task is transactional. Thus, access to the shared space containing
events and subscriptions is transactional, as are the actions performed during
event processing.

Furthermore, the paper reports on a number of encouraging performance re-
sults through a comparison with equivalent executions on a commercial JVM,
and documents the ability for tasks to achieve 50 µs response times with way
less than 1% of the executions failing to meet their deadlines.

Finally, the focus of this paper is on the extended programming model and its
performance characteristics. We explicitly do not address issues of distribution,
fault-tolerance, event correlation and event lifetimes. While these are important
from a usability point of view, we leave their investigation to future work.

2 Programming with Events and Reflexes

Reflexes are small time-critical tasks that are intended to execute free from
interference from their environment. The task is an object of a user-defined
subclass of ReflexTask with its own private memory area and that is executed
by a real-time thread. The main responsibility of a Reflex task is to implement
execute(), a method that will be invoked whenever the Reflex task’s trigger
condition evaluates to true. In this paper we extend the notion of time-triggered
tasks from Reflexes [27] with registration-triggered Reflex tasks. A purely time-
triggered Reflex task is one whose execute() method is executed according to
a period specified at task instantiation. A registration-triggered Reflex task is
released by the scheduler when an event that matches one of the Reflex task’s
registered templates is inserted in the shared space (by another Reflex task).

Fig. 1 illustrates a Reflex application consisting of a time-oblivious part and
three time-critical tasks. A single transactional event space is shared by the
three Reflex tasks (R1, R2, R3). The tasks can register for events, take events
and write events to the shared space. Standard, time-oblivious Java code can
run in the same virtual machine but has restricted ability to interact with Reflex
tasks, see [27] for details.

In order to minimize latency, the Reflex programming model sports a bimodal
distribution of object lifetimes for tasks. An object allocated within a Reflex task
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Fig. 1. Transactional Event Processing with Reflexes. Three Reflex tasks (R1,
R2, R3) are concurrently using a shared event space. Reflex tasks can register for
events, in which case they get to execute as soon as an event matching their registered
template is put in the space (R1). Reflex task can take events from the space (R2)
or put new events into it (R3). Reflex tasks execute in private memory areas and are
unreachable to the public heap garbage collector. They are composed of two parts, a
stable heap that is not reclaimed, and transient storage that is reclaimed after each
invocation of the task.

can be either stable, in which case the lifetime of the object is equal to that of the
task, or it can be transient in which case the object only lives for the duration
of the invocation of the task’s execute method after which the virtual machine
will reclaim it in constant time before the next invocation of the task. Specifying
whether an object is stable or transient is done at the class level. By default, data
allocated by a Reflex thread is transient, while only objects of classes implement-
ing the Stable marker interface will persist between invocations. Stable objects
must be managed carefully by the programmer, as the size of the stable heap is
fixed and the area is not garbage collected. The distinction between stable and
transient objects is enforced statically by a set of static safety checks [27]. It is
noteworthy that code running in transient does not require special annotations,
and we can thus reuse many classes from the standard Java libraries.

Example. Fig. 2 presents a simple Reflex task. The class StockBuyer is declared
to extend the abstract class ReflexTask. As such it has to implement the method
execute(), which runs every time the task is scheduled. The state of the Re-
flex task consists of two fields, maxPrice, a double, and handle, a reference to a
Handle. Being instance fields of the Reflex task, these fields persist across invoca-
tions of the task, they are the roots for its stable data. Primitive types are stable
by default, and object are stable only if their defining class implement the Stable
marker interface (as is the case for Handle). The role of a Handle is to represent
a subscription that has been registered with the event space. In this case, handle
will be notified if an event with the key sell is inserted in the space.
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class StockBuyer extends ReflexTask {
double maxPrice;
Handle handle;

public void initialize() {
handle = subscribe(new Event("sell", null));

}

public void execute() {
for (Event offer : handle) {

if (isExpired(offer.get("expiry")) return;
double price = asDouble(offer.get("price"));
if (price ∗ 2 <= maxPrice)

write(new Event("type", "buy")
.add("price", price));

else
if (price > maxPrice) maxPrice = price;

}
}

}

Fig. 2. Stock Trading with Reflexes

The execute() method is invoked after an event matching the subscription
has been inserted in the space. By the time the Reflex task starts to execute,
more matching events may have become available, or someone else may have
been quicker than the Reflex task and no matching event may be present in the
space any longer. Thus, execute() will iterate over the events that match the
query and, if the price is right, it will write buy the events back to the space.

The transactional infrastructure must keep track of two kinds of events: the
operations on the shared event space, and the mutations of the stable state of
the Reflex task. Each iteration of the loop in execute() performs (1) a test to
see if more data is available, then (2) it does a destructive read, and (3) in some
cases a write into the space. The transactional infrastructure will record all of
these operations, and manage conflict detection and rollback. On the side of the
Reflex task, the only meaningful operation is the possible update to the field
maxPrice, which will be recorded in case a rollback is necessary.

It is useful to consider the potential sources of aborts. The Reflex program-
ming model is such that tasks ’own’ all the data in both stable and transient
state. Thus, all of the objects that make up a Reflex task are guaranteed to be
accessed only by a single thread. This means that there can be no conflict on
task data. Conflicts (and aborts) can come about in only two ways: concurrent
operations on the shared event space, and explicit calls to abort() from a Reflex
task itself.

3 Transactional Reflex API and Semantics

We present here the semantics of the shared event space (Sec. 3.1), and then ex-
plain how the shared space integrates with transactional Reflex tasks (Sec. 3.2).
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3.1 Shared Event Space

An event space is a multiset of events that are shared between Reflex tasks.
An event is a function from keys – represented as interned String objects –
to values – Java objects such as boxed primitives, arrays, and certain user-
defined data structures. The basic operations on a shared space are limited
to three basic, non-blocking, operations: take(), write(), and test(), which
respectively, remove and insert a deep-copied version of the provided event, and
check for the availability of an event in the shared space. The arguments to all
those methods are events; in the case of take() and test(), the argument is
used as a template for finding matching events in the space.

The semantics of matching is the following: a template matches an event if
it contains the same or fewer keys, and for each key it contains a value that is
either the same of the event or null, null being a wildcard. Fig. 3 depicts a few
examples on matching between templates and events.

Template Event

[’stock’:’APPL’, ’value’:3] matches [’stock’:’APPL’, ’value’:3]

[’stock’:null, ’value’:3] matches [’stock’:’APPL’, ’value’:3]

[’stock’:’APPL’] matches [’stock’:’APPL’, ’value’:3]

[’stock’:’APPL’, ’value’:3] !match [’stock’:’APPL’]

Fig. 3. Matching between templates and events

Transactional semantics of the shared space follow from [17]. Informally, a se-
quence of operations performed within a transaction is conflict-free if the same
sequence would succeed at the time of commit.

3.2 Transactional Reflexes

An excerpt of the extended Reflex API supporting transactional event processing
is given in Fig. 4. To implement a Reflex task, the programmer must provide a
subclass of ReflexTask class. The operations available include two versions of
the shared space operations, e.g. write() and writeNow(). The latter bypasses
the transactional layer and updates the space directly. This is a form of open
nesting [19], and is needed in combination with user-initiated abort() to post
an event describing the reasons of the abort or containing partial results.

The semantics of abort() is to discard all changes to the shared space, termi-
nate the current invocation of the execute() method, discard all data allocated
in the transient area and finally rollback all changes in the stable heap.

In order to be notified of the insertion of an event matching some template,
a Reflex task must subscribe() to that event. When it does, it receives an
instance of Handle which is always allocated in stable heap of the task (and thus
can be retained between invocation of execute()). Each handle refers to one
subscription in the shared event space. A Reflex task may have multiple handles
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public abstract class ReflexTask implements Stable {
public ReexTask(int transientSize, int stableSize) {...}
public abstract void execute();
public void initialize() {};

final void write(Event ev) {...};
final void writeNow(Event ev) {...};
final Event take(Event template) {...};
final Event takeNow(Event template) {...};
final boolean test(Event template) {...};
final boolean testNow(Event template) {...};
final Handle subscribe(Event template) {...};
final void unsubscribe(Handle hndl) {...};
final void abort() {...};

}

public final class Handle implements Stable {
Event next();
Event nextNow();
boolean hasNext();
boolean hasNextNow();

}

public class Event {
Event();
Event add(String key, Object value);
Object get(String key);

}

Fig. 4. An excerpt of the extended Reflex API

listening on different kinds of events. When an event is inserted in the space
all Reflex tasks with matching subscription will be notified. Handles support an
iterator interface to query and read matching events. Invoking unsubscribe()
with a provided handle causes for the Reflex task no longer to be notified when
a matching event is inserted.

Reflex tasks can be active or passive. An active Reflex is time-triggered and
has an associated real-time thread with a priority and a period. The semantics
of an active Reflex is that every period, the implementation checks if one of the
handles has witnessed insertion of a matching event. If so, the Reflex’s execute()
method is invoked. A Reflex with a period of 0 does not sleep between invocations
of execute(). If an active Reflex has no subscriptions, the execute() method is
invoked every period. A passive Reflex is event-triggered and run only when an
event is available. Unlike active Reflex tasks, which has its own thread, a passive
Reflex is executed by a thread taken from a thread pool and does not have any
timeliness guarantees.

3.3 Legacy Reflex Communication Schemes

Besides allowing Reflex tasks to communicate and coordinate through the shared
event space, as described so far, the original Reflex model also allows for tasks
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to communicate through static variables and for ordinary Java threads to com-
municate with Reflex tasks.

Communication with ordinary Java threads has to be managed carefully to
avoid introducing execution interferences that could cause the Reflex task to miss
its deadlines. Typical programming practices for sharing data between threads
involve lock-based synchronization. In a real-time system this might lead to
priority inversion and serious deadline misses. To encounter this, Reflexes pro-
pose a scheme based on a limited form of transactional memory in the form of
obstruction-free transactional methods ensuring that the Reflex task meets its
temporal requirements.

In enforcing isolation of a Reflex task, static variables pose a particular type-
safety problem as references to objects allocated in different tasks or on the
heap, could easily pass the isolation boundaries. To circumvent this, Reflexes
restrict the use of static variables to primitive and reference- immutable types.
Informally speaking, an object of reference-immutable type provides access to an
object graph connected by references that cannot change but containing other
fields that can change, i.e., primitive types.

4 Static Safety Issues

To avoid interference from the public heap garbage collector, the Reflex program-
ming model relies on strict isolation between: (1) the Reflex tasks themselves,
and (2) the Reflex tasks and the time-oblivious Java code in which the Reflex
tasks have been integrated and might or might not interact with as described
in [27]. The goal of the safety checks is to statically guarantee this isolation by
restricting unsafe code that would violate the memory integrity and allow ac-
cess to heap-allocated objects in inconsistent states, and dangling pointers to be
observed. These restrictions are enforced by an extension of the standard javac
compiler that is inherited from previous work [28] as, from checking perspective,
events are similar to StreamFlex capsules. The details of the checking process are
unchanged in this implementation. Note, the scope of the restrictions enforced
by the checker only apply to the time-critical parts of the Reflex application, in-
cluding any data shared between the Reflex tasks and time-oblivious Java code;
any legacy Java code is not subject to these restrictions. The details of the sim-
ple set of restrictions that we apply to ensure this isolation are described in [27].
Fig. 5 illustrates how the isolation of Reflex tasks are preserved through static
safety checks that prevent illegal references while permitting valid references.

In terms of function, events described here behave much like capsules used in
StreamFlex [28] in that they are used as units of communication between tasks.
Likewise, as objects they both impose similar safety risk in that references could
leak between tasks and break isolation through these objects. In StreamFlex
these risks are addressed by letting capsules be treated specially (i.e., they are
neither transient nor stable types), and any capsule instances are allocated from
a special fixed size pool. This prevents the StreamFlex task from retaining a
reference to the capsule once the execute method has completed. Furthermore,
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Fig. 5. Reflex Isolation. Illustration showing how Reflex task isolation is enforced
through static safety checks that capture and prevent illegal (red) references (from other
Reflex tasks or time-oblivious Java code) while permitting valid (green) references.

capsules are restricted in the types of fields that they can carry, allowing only
fields of primitive or reference-immutable types. Together, the restrictions ef-
fectively prevents isolation from being violated and at the same time allow for
zero-copy communication between tasks resulting in fast throughput, crucial for
stream-processing applications, as demonstrated with StreamFlex [28].

In the extension described in this paper, the goal is not throughput of data
processing but rather efficient and flexible coordination between time-critical,
low-latency Reflex tasks. With this goal in mind, zero-copy communication is
not strictly necessary, although desirable, from a performance point of view.
Consequently, unlike capsules, events are not restricted in what object types
they can carry. However, to ensure type safety by preventing references from
leaking, when inserted into the shared space, or taken from here, the event ob-
jects (and the entire object graph they hold) are recursively deep-copied between
the memory contexts of the task performing the operation and the shared event
space. Furthermore, to ensure that no tasks retain a reference to an event, which
could only happen if the Event class were to be declared stable, the Event class
is treated as an ordinary transient type. This means that any event instances
will only survive for the duration of the execute method (unlike the deep-copied
event that following completion of the execute method will be present in the
shared space). If events were treated as stable objects, any event ever used by
the Reflex task throughout its lifetime would be allocated in its stable heap, with
the probably risk of eventually running out of memory. Since, from the static
safety checks of Reflexes, stable types are prohibited from referencing tran-
sient ones, an event also cannot be assigned to a field on a Reflex task (as the
ReflexTask is declared stable, see Fig. 4). With the treatment of events as nor-
mal transient types, and the deep-copying of events into the shared space, no
additional static safety checks have to be defined than those specified in [27].



36 A. Cunei et al.

5 Implementation Highlights

Reflexes have been implemented on top of the Ovm [4] real-time Java virtual
machine, which comes with an optimizing ahead-of-time compiler and provides
an implementation of the Real-time Specification for Java (RTSJ). The virtual
machine was designed for resource constrained uni-processor embedded devices
and has been successfully deployed on a ScanEagle Unmanned Aerial Vehicle
in collaboration with the Boeing Company [2]. We leveraged the real-time sup-
port in the VM to implement some of the key features of the API. The virtual
machine configuration here described uses the ahead-of-time compiler to achieve
performance competitive with commercial VMs [24].

ReflexSupport.setCurrentArea(transientArea);

while (true) {
waitForNextPeriod();
if ((subscriptions.size() > 0) &&

(!subscriptions.hasMatch())) continue;

delta = new Transaction(space);
reflex.startLogging();
try {

execute();
}
catch (Abort a) {

reflex.undo();
ReflexSupport.reclaimArea(transientArea);
continue;

}
if (delta.validate(space)) {

delta.commit(space);
reflex.commit();

} else {
reflex.undo();
delta.abort();

}
ReflexSupport.reclaimArea(transientArea);

}

Fig. 6. Time-triggered Reflex (pseudo code)

We outline some of the key implementation issues of Reflexes; a more detailed
description appears in [27]. Reflex tasks are run by real-time threads scheduled
by a priority-preemptive scheduler. For each Reflex task instance, the implemen-
tation allocates a fixed size continuous memory region for the stable heap and
another region for its transient area. The ReflexTask object, its thread, and all
other implementation specific data structures are allocated in the Reflex task’s
stable heap. These regions have the key property that they are not garbage col-
lected. We are in the process of investigating using hierarchical real-time garbage
collector, described in [23], to garbage collect the stable heap. This collector can
collect partitions of the heap independently and, due to the special structure
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of the event space, we expect to have compaction with pause time bounds less
than 100 microseconds. Each thread in the VM has a default allocation area.
This area is the heap for ordinary Java threads and the respective transient area
for all real-time threads executing Reflex tasks. The garbage collector supports
pinning for objects. Pinned objects are guaranteed not to move during a garbage
collection. Thus they can safely be accessed from a Reflex. The allocation policy
for classes and static initializers ensures that all objects allocated at initialization
time are pinned.

Our implementation also relies on a simplified version of the RTSJ region API
to ensure that sub-millisecond deadlines can be met. We depart from the RTSJ
by our use of static safety checks in order to ensure memory safety. That has
the major advantage of avoiding the brittleness of RTSJ applications, and also
brings performance benefits as we do not have to implement run-time checks,
such as read and write barriers, to prevent dangling pointers.

The event space uses an event-tree data structure for fast access based on the
fingerprinting scheme described in [30]. Registrations are maintained by a reverse
event-tree that takes advantage of the duality between templates and events. The
empty template (an event with no fields) is not allowed in a registration.

Fig. 6 shows pseudo code for the implementation of a time-triggered periodic
Reflex task. The implementation of transactions is done at two levels:

– Event space transactions are managed by interposing a Delta between each
Reflex task and the space. The Delta records all operations and will try to
publish the changes when the execute() method returns. In Fig. 6, event
space transaction code is related to the delta object.

– Reflex-level transactions are implemented by logging all memory mutations
in the stable heap (as described in [18]) – transient objects can be ignored
because they will be discarded when the execute() method returns. The
log is used to undo the operations performed during an invocation of the
execute() method. As there can be only one thread executing within a
Reflex task and no other thread may observe the internals of a task (this
is ensured by the static safety checks [27]), memory operations can be per-
formed on the main memory while retaining strong atomicity. In Fig. 6,
Reflex-level transactions code is related to the ReflexTask object.

6 Performance Evaluation

We conducted a number of empirical experiments to evaluate the performance
and behavior of the proposed system. All experiments were performed on an
AMD Athlon 64 X2 Dual Core processor 4400+ with 2GB of physical memory
running Linux 2.6.17 extended with high resolution timer (HRT) patches [25]
configured with a tick period of 1 µs. We used an Ovm build with support for
POSIX high resolution timers, and configured it with an interrupt rate of 1
µs. In addition, we disabled the run-time checks of violations of memory region
integrity (read/write barriers), and configured it with a heap size of 512MB. The
version of the HotSpot client JVM used in our benchmarks is 1.5.0 09.
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6.1 Throughput

We developed some micro-benchmarks to test the raw performance of our system.
Empty. A single Reflex task that just increments a counter. No operations are

performed on the event space.
Solo. A single Reflex task subscribes and takes events it sends to itself. A take()

and a write() are performed during each execute().
Duo. The version of ‘solo’ with two Reflex tasks. Each one subscribes and takes

events it sends to the other one. A take() and a write() are performed
during each execute().

Max. Before starting the Reflex task, the event space is filled with events con-
taining integers. The body of the execute() of the Reflex task takes two
integer events from the space and re-writes the one having the largest value
back into the space.

Table 1 shows the performance of these micro-benchmarks.

Table 1. Execution time for 1 million iterations, and number of take/write operations
per second

Benchmark Time (ms) Operations/ms
Empty 688 —
Solo 4 553 439,000
Duo 5 775 346,000
Max 6 463 464,000

6.2 Scalability

How does a system based on Reflexes scale in the presence of an increasing
number of event processing elements? From a software engineering point of view,
it is advantageous to represent different business rules with different Reflexes as
they execute independently and can be added/removed at any time. But is it
feasible to have hundreds of Reflex tasks in the same JVM? The overheads come
from the memory regions and thread associated to Reflexes.

We set up a benchmark which implements a chained hand-off between Reflex
tasks. Each Reflex task in the benchmark is given a unique identifier, it takes
an event with its id and writes back a copy of the event with the identity of the
next Reflex task. As we increase the number of tasks, the chain gets longer.

Fig. 7 shows the time it takes for an event to travel down the chain. We
compare numbers for HotSpot and Ovm from one to 2,000 threads. As expected,
the execution time increases with the number of Reflexes. In term of numbers of
Reflex tasks, Ovm is limited only by the available memory. Thus, we were able
to run with 2,000 Reflex tasks, while HotSpot fails with a Java exception if we
try to create more than 1,024 threads. Interestingly, in the comparable range
Reflex tasks appear more efficient on Ovm than on HotSpot. The worst case for
Ovm is 1,849 microseconds while it is 2,541 for HotSpot (thus making HotSpot
27% slower for one thousand threads).
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Fig. 7. Execution time as a function of the number of Reflex tasks in the hand-off
chain. The x-axis is the number of executing Reflex tasks, the y-axis is the time in
microseconds for one event to traverse the entire chain.

6.3 Predictability of Event Processing

Predictability is important in applications which require very low-latency re-
sponses to events. There are two challenges for a JVM here: scheduling threads
periodically and preemption of non-critical threads. In this benchmark we
demonstrate that Reflexes can be scheduled with sub-millisecond accuracy with-
out interference from other concurrently running threads. To establish a worst
case scenario, we consider a Reflex with a 50 µs period that performs a take()
followed by a write() of the same event. Concurrently, a low-priority thread
performs reads and writes to the space in a tight loop.

Fig. 8 shows the time between two invocations of the execute() method in
a Reflex. The results are clearly concentrated around the request period with
remarkably few outliers.

Fig. 9 shows that when a Reflex misses a deadline the order of magnitude is
usually less than 50 µs. Interestingly, Fig. 9 also shows a few extreme deadline
misses, some going as high as around 1,500 µs (not shown). We have determined
these problems to be related to two timing bugs (locks being held longer than
they should) that were found in the mainline Ovm code base. In terms of preci-
sion, out of 50,000 iterations only 18 periods were missed, which correspond to
a deadline miss rate of 0.03%.

Fig. 10 shows the inter-arrival and processing time of the Reflex from stock
trade example when executed on Ovm with a period of 80 µs. Specifically, the
Reflex is responsible for generating real-time stock offers in a constant flow and
writing them to the event space. As can be seen from the figure, the processing
time of the stock seller Reflex lies constantly around 10 µs throughout the shown
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Fig. 8. Frequency of inter-arrival time for a Reflex periodically scheduled with a period
of 50 µs when executed (over 50,000 iterations) concurrently with a noise maker thread.
The x-axis is the inter-arrival time of two consecutive executions in microseconds. The
y-axis is a frequency.

execution period. Likewise, the inter-arrival time represents a stable level of
predictability – centered around the scheduled 80 µs period, and with very little
variation. In fact, in our experiments covering 100,000 periodic executions, we
only found 65 deadline misses (equivalent to a 99.93% met deadlines).
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Fig. 9. Deadline misses over time for a Reflex periodically scheduled with a period
of 50 µs when executed concurrently with a noise maker thread. The x-axis depicts
the periodic executions over time whereas the y-axis depicts the logarithm of deadline
misses in microseconds.
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stock seller scheduled with a period of 80 µs. The x-axis shows the periodic executions
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6.4 Reflexes on Multi-core Virtual Machine

A limitation of the Ovm implementation is that it is optimized for uni-processor
systems. In order to validate applicability of our approach we ported much of
the functionality of Reflexes to the IBM WebSphere Real-Time VM, a virtual
machine with multi-processor support and a RTSJ-implementation. The imple-
mentation of transactions in a multiprocessor setting is significantly different.
They use a roll-forward approach in which an atomic method defers all mem-
ory mutations to a local log until commit time. Having reached commit time,
it is mandatory to check if the state of the Reflex has changed, and if so abort
the atomic method. The entries in the log can safely be discarded, in constant
time, as the mutations will not be applied. If the task state did not change,
the transaction is permitted to commit its changes with the Reflex scheduler
briefly locked out for a time corresponding to O(n), where n is the number of
stable heap locations updated. We rely on a combination of program transfor-
mations and minimal native extensions to the VM to achieve this. In short,
the transformations cause for all memory read and writes to be redirected to
the transformation log that is allocated in the native layer on a per task basis.
Other native extensions include code for switching between stable and transient
memory areas.

We evaluate the impact of transactions on predictability using a synthetic
benchmark on an IBM blade server with 4 dual-core AMD Opteron 64 2.4 GHz
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processors and 12GB of physical memory running Linux 2.6.21.4. A Reflex task
is scheduled at a period of 100 µs, and reads at each periodic execute the data
available on its input buffer in circular fashion into its stable state. An ordinary
Java thread runs continuously and feeds the task with data by invoking an
transaction on the task every 20 ms. To evaluate the influence of computational
noise and garbage collection, another ordinary Java thread runs concurrently,
continuously allocating at the rate of 2MB per second.

Fig. 11. Frequencies of inter-arrival times of a Reflex with a period of 100 µs contin-
uously interrupted by an ordinary Java thread. The x-axis gives inter-arrival times in
microseconds, the y-axis a logarithm of the frequency.

Fig. 11 shows a histogram of the frequencies of inter-arrival times of the Reflex.
The figure contains observations covering almost 600,000 periodic executions.
Out of 3,000 invocations of the atomic method, 516 of them aborted, indicating
that atomic methods were exercised. As can be seen, all observations of the
inter-arrival time are centered around the scheduled period of 100 µs. Overall,
there are only a few microseconds of jitter. The inter-arrival times range from
57 to 144 µs.

7 Related Work

The approach presented in this paper is closely related to independent work
carried out at IBM Research, namely the Eventron [26] and Exotask [3] real-time
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programming models. Both models have the goal of extending Java in a non-
intrusive way with real-time features. They differ in the constraints they impose
on programs and the real-time guarantees that can be achieved.

Eventrons provide strong responsiveness guarantees at the expense of expres-
siveness. In the Eventron model, a real-time task cannot allocate new objects
or modify the value of reference variables. Furthermore, they are prevented, by
load-time checks, from reading mutable reference variables. The stringent re-
striction make it safe for an Eventron task to preempt the garbage collector or
any other virtual machine service, and thus make it possible to run with periods
in the microseconds. Reflexes have similar responsiveness but are less restrictive
due to our combination of regions and ownership types.

Exotasks extend Eventrons on a number of accounts. Most importantly, Exo-
tasks are organized in a graph connected by non-blocking point to point commu-
nication channels. As the task are isolated, the collection is task-local and can
usually be carried out in very little time. Tasks communicate by exchanging mes-
sages by deep-copy, whereas StreamFlex adopts the zero-copy communication of
[28]. Whereas the message exchange used in the extension presented in this pa-
per also is based on deep-copy, it is not limited to point-to-point communication
as the shared event space also facilitates one to many communication.

An interesting question is what advantages these programming models bring
compared to RTSJ’s NoHeapRealtimeThread which is, after all, supported by
all RT JVMs. Experience implementing [5,13,21,2] and using [8,20,7,22,24] the
RTSJ revealed a number of serious deficiencies. In the RTSJ, interference from
the garbage collection is avoided by allocating data needed by time critical real-
time tasks from a part of the virtual machine’s memory that is not subject to
garbage collection, dynamically checked regions known as scoped memory areas.
Individual objects allocated in a scoped memory area cannot be deallocated;
instead, an entire area is torn down as soon as all threads exit it. Dynamically
enforced safety rules check that a memory scope with a longer lifetime does not
hold a reference to an object allocated in a memory scope with a shorter lifetime
and that a NoHeapRealtimeThread does not attempt to dereference a pointer
into the garbage collected heap.

Another issue with RTSJ is that, due to a lack of isolation, it is possible
for a NoHeapRealtimeThread to block on a lock held by a plain Java task. If
this ever occurs, all bets are off in term of real-time guarantees as the blocking
time cannot be bounded. Finally, dynamic memory access checks entail a loss
of compositionality. Components may work just fine when tested independently,
but break when put in a particular scoped memory context. This is because
for a RTSJ program to be correct, developers must deal with an added dimen-
sion: where a particular datum was allocated. Design patterns and idioms for
programming effectively with scoped memory have been proposed [22,6,8], but
anecdotal evidence suggests that programmers have a hard time dealing with
NoHeapRealtimeThreads and that resulting programs are brittle.

The static safety checks used by Reflexes to guard against memory error,
presented in [27], is an extension of the implicit ownership type system of [31],
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the latest in a line of research that emphasizes lightweight type systems for
region-based memory [1,32]. Ownership is implicit because, unlike e.g. [12,10,11],
no ownership parameters are needed. Instead, ownership is assumed by default
by using straightforward rules.

8 Conclusion

We have presented a new transactional framework in the context of event-based
programming that builds on our previous work on real-time systems. We extend
Reflexes, a restricted programming model for highly responsive systems, with a
shared event space, that is accessed with transactional semantics, and transac-
tionalize the execution of the Reflexes that operate on the shared space. The
resulting model ensures strong atomicity and very low performance overheads.

Our evaluation is encouraging in terms of performance, scalability and pre-
dictability when comparing to equivalent executions on a commercial JVM. Also,
we have shown that it is possible to achieve 50 µs response times with way less
than 1% of the executions failing to meet their deadlines.

In the future, we plan to enrich the programming model with a language for
expressing complex, and temporal, patterns of events. We also plan to integrate
events with the stream processing paradigm that was explored in [28]. In terms
of implementation, we intend to design a customized real-time garbage collector
to manage the event space and to integrate the multi-processor extensions that
are currently being added to our research infrastructure.
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Abstract. A future is a well-known programming construct used to introduce
concurrency to sequential programs. Computations annotated as futures are ex-
ecuted asynchronously and run concurrently with their continuations. Typically,
futures are not transparent annotations: a program with futures need not produce
the same result as the sequential program from which it was derived. Safe futures
guarantee a future-annotated program produce the same result as its sequential
counterpart. Ensuring safety is especially challenging in the presence of con-
structs such as exceptions that permit the expression of non-local control-flow.
For example, a future may raise an exception whose handler is in its continuation.
To ensure safety, we must guarantee the continuation does not discard this han-
dler regardless of the continuation’s own internal control-flow (e.g. exceptions it
raises or futures it spawns). In this paper, we present a formulation of safe futures
for a higher-order functional language with first-class exceptions. Safety can be
guaranteed dynamically by stalling the execution of a continuation that has an
exception handler potentially required by its future until the future completes. To
enable greater concurrency, we develop a static analysis and instrumentation and
formalize the runtime behavior for instrumented programs that allows execution
to discard handlers precisely when it is safe to do so.

1 Introduction

A future [3] provides a simple way for programmers to introduce concurrency to sequen-
tial programs. When executed, a computation annotated as a future yields a placeholder
and introduces an asynchronous thread of control whose result is stored within the as-
sociated placeholder. When the computation following the future (its continuation) re-
quires the future’s value, it performs a touch or claim operation on the placeholder. A
claim action acts as a synchronization barrier, forcing the continuation to block until
the future yields a result. For programs with no side-effects, a future-annotated pro-
gram exhibits the same observable behavior as the original sequential version. To pre-
serve deterministic behavior equivalent to that of the original sequential program in the
presence of side-effects requires additional machinery.

Consider the code example in Figure 1 written in an ML-like language with mutable
references that has been extended with futures. Function f takes an integer argument x.
If x is even, it returns the result of applying g to the value stored in reference r. If x is
odd, it stores the result of g (x) in r and returns x. Variable a is bound to the result of a
future-annotated computation (line 5). Thus computation f (m) is executed concurrently
with its continuation. The continuation spawns future f (n) to be bound to b (line 6),
which is evaluated concurrently with call f (p) (line 7). Thus, the three calls to function
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f will be executed concurrently. Safe futures require that concurrent execution of these
calls adhere to the dependences imposed by sequential evaluation: a read of reference r
performed in one call must not witness a write to r by a later one, and a write to r by
one call must be witnessed by a read of r in a later call.

1let val g = fn x => (* side-effect free computation *)
2val r = ref 0
3val f = fn x => if ((x mod 2) = 0) then g (!r)
4else (r := g (x); x)
5in let val a = future (f (m))
6val b = future (f (n))
7in f (p)
8end
9end

Fig. 1. Safe futures in the presence of mutable references

Safety can be guaranteed using both dynamic [10] and static [9] techniques. For
example, compiler inserted barriers supported by a lightweight runtime can be used to
enforce dependences defined by the sequential semantics [9]. Figure 2 illustrates how
function f can be rewritten based on an interprocedural control-flow analysis. The read
on line 3 is preceded by barrier ALLOWED(L3), which completes only once all futures
in the logical past have granted permission by performing a GRANT(L3) operation. A
future can grant permission for condition L3 once it has entered a branch in which no
further conflicting write access to r will be performed, or it has completed its final
write to r. Thus in the true branch of function f, the future will immediately grant on
L3 allowing its continuation to read r because the future will not write it. Note that the
GRANT on line 3 does not notify the ALLOWED barrier on line 3; the GRANT is granting
its continuation, which is in its logical future, permission to read r and the ALLOWED
barrier on line 3 is waiting for permission from futures in its logical past. In the false
branch, the future will only grant after it has written to r, ensuring its continuation will
witness its write. Note that similar instrumentation is required to force the write on line
7 to wait for its futures (i.e. computations which execute in the logical past) to read r,
but has been omitted in Figure 2 for brevity.

Given the instrumentation presented in Figure 2, consider the resulting runtime sched-
ule for an execution where m = 13, n = 4 and p = 2. Since m is odd, the call f (m)
will write to r. Both f (n) and f (p) will not write to r, and therefore both immediately
grant on condition L3 notifying their continuations that they will not change the value
of reference r. Before reading the value of r, they perform an ALLOWED operation on
condition L3. The first future computation, f (m) is logically ordered before both com-
putations, and therefore their ALLOWED barriers must wait for the future’s GRANT. The
future computation grants after it has written to r ensuring the currently executing calls
to f read the value of r that is consistent with a sequential execution.

Unfortunately, the presence of mutable references is not the only means by which
sequential behavior can be compromised. Exceptions and related abstractions that
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1val f =
2fn x => if ((x mod 2) = 0)
3then let val tmp = (GRANT(L3); ALLOWED(L3); !r)
4in g (tmp)
5end
6else let val tmp = g (x)
7val _ = (r := tmp; GRANT(L3))
8in x
9end

Fig. 2. Barrier Instrumentation

introduce non-local control-flow introduce challenging complications. In the presence
of exceptional control-flow, a future may raise an exception whose handler is defined in
its continuation. Since the future and continuation are evaluated concurrently, the con-
tinuation must not be allowed to discard a handler that may be required by the future.

Consider the code example presented in Figure 3 written in an ML-like language
extended with futures. The example does not have mutable references. Function f either
returns the result of applying g to argument x if x is odd, or raises an exception if x is
even. Under a sequential evaluation (i.e. one with futures erased), f (m) and f (n) are
evaluated to completion in that order. If future f (m) raises an exception that it does not
internally handle (i.e. an escaping exception), the continuation f (n) is not evaluated.
For example if m = 0 then computation f (m) on line 5 raises an escaping exception
and computation f (n) is not evaluated. Instead the exception raised by the future is
handled by the handler on line 6 and the program evaluates to 0.

1let val g = fn x => (* side-effect free computation *)
2val f = fn x => if ((x mod 2) = 1) then g (x)
3else if (x = 0) then raise ZeroException
4else raise NonZeroEvenException
5in let b = future (f (m)) in f (n) end
6handle ZeroException => 0
7| NonZeroEvenException => 1
8end

Fig. 3. Safe futures in the presence of exception handling

To enforce determinism in the presence of concurrent execution, constraints must
be imposed on what a future’s continuation may do. In a concurrent execution, fu-
ture f (m) and continuation f (n) are evaluated concurrently, but if the future raises an
escaping exception the continuation should have never been evaluated. This imposes
constraints on continuation f (n). For example, if n = 2, then f (n) will raise excep-
tion NonZeroEvenException. If continuation f (n) raises the exception before its fu-
ture completes, the evaluation cannot discard the ZeroException handler and handle
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NonZeroEven-Exception since the handlers may be required by f (m). Furthermore,
even if the continuation does not raise an exception and instead evaluates to a value (i.e.
if n = 3), the continuation is not free to evaluate past the exception handlers because
its future still may raise an escaping exception that requires one of the handlers.

Consider enforcing the safety constraints imposed on the execution of programs that
have futures and first-class exceptions, like the example below, using statically injected
barriers (e.g. GRANT, ALLOWED).

let y = future (f (n)) in c () end handle E => ...

To disallow evaluation of the continuation c () from discarding the handler that may
be required by future f (n), ALLOWED barriers need to be inserted at all exit points in
function c. The exit points consist of program points that signify successful comple-
tion of the function and any raise statement that potentially raises an escaping excep-
tion. GRANT’s would need to be inserted in function f at program points where f is
guaranteed to no longer raise escaping exception E so that future f (n) will notify its
continuation of when it is safe for it to proceed past the handler for E. Necessary impre-
cision in the static analysis to guarantee safety (especially in the presence of non-local
control-flow) can lead to an overly conservative injection of ALLOWED barriers, forcing
continuations to block when it may be safe to proceed, and thus limiting parallelism.

Determining the earliest point during execution for which it is safe for a continuation
to cross a handler boundary (i.e. discard a handler) is the focus of this paper. The context
of our investigation is a higher-order functional language with first-class exceptions. We
omit mutable references from the language to focus on formulating safety for futures
in the presence of non-local control-flow. The treatment of mutable references for safe
futures is orthogonal to the issues raised by exception-handling, and has been studied
in previous work [9,10]. We present an operational semantics that guarantees safety by
stalling a continuation from discarding an exception handler before its future (or any
future it may have created) completes. To enable greater concurrency, we formalize a
flow-sensitive static analysis and instrumentation technique to annotate program points
with possible escaping exceptions that may be reached from that point. We then de-
fine an operational semantics on instrumented programs that allows a continuation to
cross a handler boundary before futures spawned in its try block have completed, if
those futures and the futures they spawn (or may spawn) are guaranteed to not require
the handler, as dictated by the results of the static analysis. Our results are the first to
formalize the integration of safe (deterministic) futures within a language that supports
first-class exceptions.

2 The Language

Figure 4 presents the syntax of a higher-order functional language Λ that has futures and
first-class exceptions. The language is based on the language presented in [1]. It is an
intermediate representation of an idealized functional language with futures. The lan-
guage has been extended with first-class exceptions, an exit primitive that terminates
the computation, and constructs to raise and handle exceptions. Like [1], our language
does not have a touch (or claim) primitive. Instead, the parallel semantics we present
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KERNEL-LANGUAGE Λ:

M ∈ Λ ::= Vl | xl | exitl x | raisel x
| tryl M handle X �→ M
| let x = V in M
| let x = if y then M else M in M
| let x = (y z) in M
| let x = future(M) in M

V ∈ Value ::= c | λ x.M | X
x ∈ V ars := {x, y, z, . . .}
c ∈ Const := {unit, true, false, 0, 1, . . .}

X ∈ Exception ::= Exn1 | Exn2 | . . . | Exnn

Fig. 4. Language Syntax

transparently touch placeholder variables. This makes future annotations truly transpar-
ent relieving the programmer of the burden of inserting touch operations based on the
data flow properties of the program. Although the language does not support dynamic
creation of new exception values, adding such functionality does not introduce any ad-
ditional complexity to our development. We make the usual assumption that all λ- and
let-bound variables are distinct. All other terms in the language (i.e. variables, values,
exit statements, ...) are given unique labels so that the static analysis and instrumentation
presented in Section 4 can uniquley identify program terms.

2.1 Sequential Evaluation Semantics

Figure 5 defines the sequential semantics for programs in Λ. The semantics is defined
by function Fseq that maps a program M to a result R where R is either a constant, a
procedure (i.e., λ-term), an exception value, or error. The semantics erases future an-
notations in a program M with a runtime term that synchronously evaluates the future
computation and binds its result to a variable (resulting in program ˜M ). The evalua-
tion rule N →seq N ′ reduces runtime term N to a new program term N ′. Evaluating
exit V causes evaluation to terminate with result V .

3 Safe (Parallel) Dynamic Evaluation

In the parallel semantics presented in this section, the result of an incomplete future
computation is represented at runtime by a placeholder. The semantics specifies con-
currently evaluating future computations and enforces a global logical order on com-
putations. As demonstrated in the semantics presented in Section 3.1, this ordering is
used when a computation attempts to exit the program and when a future computa-
tion invalidates its continuation by raising an escaping exception. Logically, a future
computation Nf is ordered before the computation Nc associated with its continuation.
Any future computations spawned during the evaluation of Nf are also ordered before
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R ∈ Results ::= c | λ x.M | X | error

N ∈ RTTerms ::= V | x | exit V | raise X | try N handle X �→ N

| let x = if V then N else N in N | let x = (V V ) in N

| let x = N in NfM = M [(let x = future(M ′) in M ′′)/(let x = M ′
in M ′′)]

Fseq(M) =
j

V if fM ⇒∗
seq V

error otherwise

EVALUATION RULES:

ε ∈ EvalCntxt ::= [ ] | try ε handle X �→ N | let x = ε in N

N →seq N ′

ε[N ] ⇒seq ε[N ′] ε[exit V ] ⇒seq V

try V handle X �→ N →seq V (try)
try raise X handle X �→ N →seq N (handle)
try raise X ′

handle X �→ N →seq raise X ′ (tryraise)
let x = V in N →seq N [x/V ] (bind)
let x = raise X in N →seq raise X (bindraise)

let x = if V then N1 else N2 in N →seq

j
let x = N1 in N V = true

let x = N2 in N V = false
(if)

let x = (V V ′) in N →seq let x = N ′[y/V ′] in N V = λ y.N ′ (apply)

Fig. 5. Sequential Evaluation

Nc. This ordering is maintained by assigning each computation an order identifier con-
sisting of a real number r and integer d. A computation with order identifier (r, d) is
logically ordered before a computation with (r′, d′) if r < r′. The integer d in the order
identifier is used to determine how to compute new order identifiers for newly spawned
computations. The primordial main computation is given order identifier (0.0, 0).

Let computation N , with order identifier (r, d), evaluatee the following runtime
term: (let x = future(M) in M ′). The semantics replaces computation N with
two new computations Nf and Nc to evaluate the future computation M and its con-
tinuation M ′, respectively. Nf is given order identifier (r, d + 1) and Nc is given
(r + 0.5d, d + 1). This ordering implies that Nf is logically ordered before Nc because
(r < (r + 0.5d)).

Computations are evaluated in parallel, and each computation may spawn a future
replacing itself with two new computations. An important property of assigning order
identifiers is that all computations transitively spawned by the future computation Nf

are also ordered before the continuation Nc. As explained above, if the spawning com-
putation N has order identifier (r, d), the semantics assigns future Nf order identifier
(r, d + 1) and continuation Nc order identifier (r + 0.5d, d + 1). Suppose computation
Nf spawns another future, Nf ′ with continuation Nc′ . The semantics assigns Nf ′ order
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identifier (r, d + 2) and Nc′ order identifier (r + 0.5d+1, d + 2). Note the following re-
lation holds: (r < (r + 0.5d+1) < (r + 0.5d)). Thus Nf ′ is ordered before Nc′ which
is ordered before Nc. All computations transitively spawned by Nc will be given order
identifiers r′ such that (r′ ≥ r + 0.5d) and will therefore be ordered after Nf ′ and Nc′ .
It is straightforward to see that the demonstrated relation between order identifiers holds
for all futures and their continuations.

3.1 Semantics

The operational semantics (see Figure 6) is defined by function Fsd from program M
to a result R (where R is the same as it was in the sequential semantics). The transition
rule S ⇒sd S′ maps a program state to a new program state. A program state is a
process S which represents a collection of concurrently evaluating runtime terms (i.e.
computations). Each computation maintains a local term context which is a three-tuple
consisting of the placeholder p whose value is being computed by the term, the order
identifier (r′, d′) of the computation that spawned the future, and the computation’s
own order identifier, (r, d). The original program term is the only computation that is
not a future. It is evaluated with term context 〈main, (−1,−1), (0, 0)〉, where main is a
special placeholder value and (−1,−1) signifies that it has no spawning parent.

Any references to a future’s result in its continuation are replaced with a new place-
holder variable. The semantics guarantees safety by preventing unsafe evaluation of the
continuation beyond a ε•p evaluation context. The evaluation context signifies that the
term being evaluated in the hole is a continuation of the future corresponding to place-
holder p. Evaluation of terms with V •p, raise X•p, and exit V •p are restricted. For
example, the term (try V •p handle X �→ V ′) is stuck and cannot discard the handler
because the future corresponding to p, which was spawned inside of the try body, has
yet to complete and may require the handler defined by the try statement.

Runtime terms in a continuation may contain placeholder variables. The introduction
of placeholder variables is discussed below as part of the future rule. In certain cases the
result of a placeholder is required to proceed with evaluation and in other cases it is not.
For example, in the term (let x = (p1 p2) in N ) the abstraction result of p1 is required
for evaluation to proceed, but the result of argument p2 is not required. The placeholder
can simply be substituted into the λ-expression’s body. Given a runtime term N with
placeholder variables, the function R(N) annotates each placeholder variable p whose
result is required with a + superscript. This distinction forces the continuation to per-
form a touch operation only on placeholder variables whose values are necessary to
its evaluation. To guarantee that the program evaluates to a non-placeholder value, the
program M is transformed to (let x = M in exit x). The exit statement forces a
touch operation on variable x. This is necessary in the case that during evaluation x is
replaced by a placeholder variable (e.g. if M is (let x = future(M ′) in x)).

Rule seq states that if N ∈ S and N →seq N ′ then S ⇒sd S′ where in the new
process state S′, term N is replaced by R(N ′). Since variables may be substituted by
placeholders (e.g. under apply rule of →seq), the R function is applied to the new term.
Note that all rules, except for the seq rule, are on terms that contain a •p or a placeholder
variable, and that both •p and placeholders are introduced by the future rule (explained
below). This implies that evaluation under →seq and ⇒sd are trivially equivalent in the
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absence of futures. The let rule allows continuations to proceed past the let evaluation
context. The ε•p evaluation context is only meant to disallow unsafe evaluation (e.g.
discarding of try statements).

Rule future defines evaluation of a future-spawning term. Given term (let x =
future(M) in M ′) ∈ S, the term is replaced in the process state with two new terms-
one to evaluate the future computation M and one to evaluate the continuation M ′.
The continuation is evaluated in the evaluation context of the spawning term which
includes any try statements that contain the spawning term. References to the variable
x in M ′ are replaced by a fresh placeholder p′ and function R replaces placeholders
that need to be touched with p′+. If the term context of the spawning computation
is 〈p, (r, d), (r′, d′)〉, the term context of future computation is 〈p′, (r′, d′), (r′, d′ +
1)〉 and the term context of continuation is 〈p, (r, d), (r′ + 0.5d

′
, d′ + 1)〉. When the

continuation requires the value of p′+ the semantics will know which computation to
synchronize with based on the term context of future computation (via the touch rule).
The continuation term is evaluated in the ε•p′

context so as to block the continuation
from discarding a handler that may be required by the future corresponding to p′. When
the future evaluates to a value, it removes the blocking context from its continuation
(via rule unblock ). For a computation to evaluate to a value (rather than to V •p′′

, for
example) all of its futures must remove their corresponding blocking contexts.

The raise rule defines what happens when a future raises an escaping exception.
Terms in S′ represent valid computations and terms in Sc represent computations that
have been invalidated by this future’s raise. All computations that have been spawned
as a result of evaluating the continuation of the raising future are invalid. All other
computations are valid. Invalidated computations are replaced with ⊥. The term ε•p

in the continuation of the future corresponding to p is replaced with a raise of the
exception from the future, propagating the future’s raise to the context where it was
spawned. By replacing the term and the •p, the semantics ensures that the future’s raise
will never be propagated again. The exit rule requires that all computations that are
logically ordered before the exiting computation have evaluated to values and therefore
cannot invalidate the exiting computation.

3.2 Example

Consider the following program:

1. let x = future(M1) in
2. try let y = future(M2) in
3. let z = future(M3) in M4
4. handle X �→ c

Evaluation begins with a single term in the process state evaluating the above let ex-
pression. The program spawns three futures M1, M2 and M3 resulting in a process state
with four terms. Runtime terms N1, N2 and N3 correspond to program terms M1, M2
and M3, respectively. The continuation of these futures is the following runtime term in
the process state: (try N ′

4
•p3•p2 handleX �→ c)•p1 , where term N ′

4 corresponds to the
evaluation of program term M4. The bulleted evaluation context on term N ′

4 prevents
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N ∈ RTTerms ::= . . . | let x = future(N) in N | ⊥ | p+ | N•p

V ∈ V alue ::= . . . | p

p ∈ PhV ars ::= {main, p1, p2, . . .}

C ∈ TermContext ::= 〈p × (real × int) × (real × int)〉

S ::= {(N1)C1
, . . . , (Nn)

Cn
}

S|NC ::= S ∪ {NC}

R(N) =

8>>>>>>>>>><
>>>>>>>>>>:

V N = V
x N = x
exit p+ N = exit p
raise p+ N = raise p
try R(N ′) handle X �→ R(Nh) N = try N ′

handle X �→ Nh

let x = if p+
then R(N1) else R(N2) N = (let x = if p then N1 else N2

inR(N) in N)
. . .

Fsd(M) =

8<
:

V if {(let x = M in exit x)〈main,(−1,−1),(0,0)〉} ⇒∗
sd

{(N1)C1
, . . . , (Nn)

Cn
, (V )〈main,(−1,−1),(r,d)〉}

error otherwise

EVALUATION RULES:

ε ∈ EvalCntxt ::= [ ] | try ε handle X �→ N | let x = ε in N | exit ε | raise ε

| let x = if ε then Nt else Nf in N | let x = (ε V ) in N | ε•p

N →seq N ′

S|(ε[N ])C ⇒sd S|(ε[R(N ′)])C

(seq)

let x = N in N ′ →seq N ′′

S|(ε[let x = N•p1...•pn in N ′])
C
⇒sd S|(ε[N ′′•p1 ...•pn ])

C

(let)

C = 〈p, (r, d), (r′, d′)〉 p′ fresh

Cf = 〈p′, (r′, d′), (r′, d′ + 1)〉 Cc = 〈p, (r, d), (r′ + 0.5d′

, d′ + 1)〉
S|(ε[let x = future(N) in N ′])C ⇒sd S|(N)

Cf
|(ε[R(N ′[x/p′])•p′

])
Cc

(future)

(V )〈p,(r,d),(r′,d′)〉 ∈ S

S|(ε[p+])C ⇒sd S|(ε[V ])C

(V )〈p,(r,d),(r′,d′)〉 ∈ S

S|(ε[N•p])C ⇒sd S|(ε[N ])C

(touch) (unblock)

Cf = 〈p, (r, d), (r′, d′)〉
S′ = {(N ′)〈pi,(ri,di),(r

′

i
,d′

i
)〉 | (N

′)〈pi,(ri,di),(r
′

i
,d′

i
)〉 ∈ S, (r′i < r′ or r′i ≥ (r + 0.5d−1))}

Sc = {(⊥)
C
| (N ′)

C
∈ S, (N ′)

C
/∈ S′} S′′ = S′ ∪ Sc

S|(raise X)
Cf

|(ε[N•p])
Cc

⇒sd S′′|(raise X)
Cf

|(ε[raise X])
Cc

(raise)

C = 〈p, (r′, d′), (r, d)〉
(Ni)〈pi,(r′

i,d′

i),(ri,di)〉
/∈ S ri < r Ni 
= V ′

S|(ε[exit V ])C ⇒sd {(V )〈main,(−1,−1),(r,d)〉}
(exit)

Fig. 6. Safe Dynamic Evaluation

the continuation from discarding the handler, because the futures corresponding to p2
and p3 (i.e. N2 and N3) may require it.

Consider what happens if term N2 raises exception X without handling it inter-
nally. The raise rule will propagate the exception into its continuation and invali-
date all futures spawned by its continuation (i.e. N3). N3 is replaced with ⊥, and
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the term N ′•p3•p2
4 is replaced with the raise of exception X , resulting in term

(try raise X handle X �→ c)•p1 .
The continuation is now free to use the handler and evaluate to c. Note that the

continuation still has the blocking context for p1 from the first future preventing it from
completing with value c. This is because N1 may exit the program or raise an escaping
exception invalidating its continuation’s computation. Once N1 evaluates to a value it
notifies the continuation by removing the p1 blocking context, allowing the main thread
to complete with value c.

3.3 Semantic Equivalence

In this section we provide a proof sketch proving that the result of evaluating program
M under safe dynamic semantics is the same as evaluating M under sequential seman-
tics. For the proof, we define a transform function T to map a process state S in the safe
dynamic semantics to a runtime term N in the sequential semantics. We use the trans-
form function to show that for any process state S, if S ⇒∗

sd V then T (S) ⇒∗
seq V .

Given a process state S, the transform function T first identifies the computation Nf

in the process state which is logically ordered before all other computations (i.e. the
computation with the smallest r as its order identifier). If the continuation of Nf has
not spawned any new computations, then the transform function will combine the future
computation and its continuation to build runtime term (let x = future(Nf ) in N),
where N is the continuation of Nf . If the continuation has split its computation by
spawning futures, which also may have spawned other futures, then the transform func-
tion is recursively applied to all computations that have been spawned as a result of
evaluating Nf ’s continuation to construct Nf ’s continuation term. The computations’
order identifiers are used to identify which computations have been spawned from a
given continuation. The transform function also replaces runtime terms that may ap-
pear in the safe dynamic semantics but not in the sequential semantics with equivalent
terms. For example, invalidated computations represented as ⊥ in the sequential seman-
tics are replaced with (exit − 1) which is safe because those computations will never
be reached in the evaluation of the runtime term due to an exception raise. The transform
function and proof details are presented in an accompanying technical report [8].

Lemma 1. If S is a final state that evaluates to V then T (S) ⇒∗
seq V .

The lemma states that if a final process state S reached by evaluation under safe dy-
namic semantics evaluates to V , then the transform of the process state evaluates to V
under sequential semantics.

Lemma 2. If S ⇒sd S′, then T (S) ⇒∗
seq N ′ and T (S′) ⇒∗

seq N ′.
The lemma states that given an evaluation rule S ⇒sd S′, if the transform of S (i.e.
T (S)) yields runtime term Ns and the transform of S′ (i.e. T (S′)) yields runtime term
Ns′ then there exists a sequence of ⇒seq rules from Ns, and a sequence of ⇒seq rules
from Ns′ that result in a common term N ′. The lemma is proved by a case analysis on
evaluation derivations S ⇒sd S′.

Theorem 1. If Fsd(M) = R, then Fseq(M) = R.
The result of evaluating program M under the safe dynamic semantics is guaranteed to



Exceptionally Safe Futures 57

be the same as the result of evaluating M under the sequential semantics. The proof is
by induction on the length of ⇒sd evaluation sequences. The base case is demonstrated
by instantiating Lemma 1 and 2 and the inductive case is demonstrated by instantiating
the inductive hypothesis and Lemma 2.

4 Instrumented Evaluation

The operational semantics defined thus far prevents a continuation from executing past a
try expression if a future spawned within the try block has yet to complete. In this sec-
tion, we present a flow-sensitive static analysis, program instrumentation, and a refined
operational semantics that extracts more parallelism than this conservative treatment
while still guaranteeing determinism. Informally, our solution is based on the observa-
tion that if a future reaches a point in its execution where it will no longer raise escaping
exception X , then its continuation can proceed past a handler for exception X .

In the instrumented semantics, the blocking evaluation context is of the form ε•(p,Σ).
The evaluation context signifies that the term being evaluated in the whole is a contin-
uation of the future that corresponds to placeholder p and that the evaluation of the
future may result in a raise of escaping exception X ∈ Σ or may exit the program if
exit ∈ Σ. A continuation evaluating runtime term (try V •(p,Σ) handle X �→ Nh),
where X /∈ Σ may proceed past the try expression (unlike in the previously presented
semantics), thus discarding the handler. Static instrumentation specifies which escaping
exceptions an evaluating future computation may raise and whether or not it may exit
the program. We present an operational semantics that leverages the instrumentation so
that a future computation notifies its continuation immediately when its computation
and the futures it creates may no longer raise an escaping exception or perform an exit
operation (by removing elements from Σ in the blocking context of its continuation).

4.1 Static Analysis and Program Instrumentation

Our instrumentation assumes the presence of control-flow analysis FlowP (x) [6,7]
which maps variable x to all possible values it may be bound to during the evalua-
tion of program P . Program term M is instrumented with a grant set Σ (represented
by superscript �Σ) and a nogrant set Σ′ (represented by subscript �Σ′). The grant set
Σ includes all escaping exceptions that may be raised by the instrumented term, and a
special exit element if the term may exit the program. The nogrant set Σ′ includes all
escaping exceptions that may be raised after evaluation of the instrumented term by the
enclosing term and the exit element if the enclosing term may exit the program after
evaluation of the instrumented term. The nogrant set ensures a computation does not
prematurely notify its continuation that it cannot reach an escaping exception or exit.
Term M is transformed to the instrumented term ˜T defined by the following grammar:

T ∈ InstT erms′ ::= Vl | xl | exitl x | raisel x

| tryl
˜T handle X �→ ˜T | . . .

˜T ∈ InstT erms ::= T �Σ
�Σ′
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When a future f is spawned its continuation is evaluated in context: ε•(p,Σ), where Σ
is initially equal to f ’s grant set. Let f be the following future computation:

(let x = if y then raise z else Mf in M)

If FlowP (z) = {X} and computations Mf and M do not raise an escaping exception
X (or exit), then the continuation of f may discard X’s handler as soon as control
enters the false branch during the evaluation of f . Static instrumentation allows the
instrumented semantics to notify f ’s continuation when control enters the false branch.
In the instrumented term below Σ and Σf are the grant sets (i.e. the sets of possible
escaping exceptions and exit that may be reached) of M and Mf , respectively.

(let x = if y then (raise z)�{X}
�Σ else Mf

�Σf

�Σ in M�Σ
�{})

�{X}∪Σf∪Σ

�{}

As mentioned above Mf and M do not raise X (i.e. X /∈ (Σf ∪ Σ)). The grant set
of the entire term captures all escaping exceptions that may be raised by the future
(i.e. {X} ∪ Σf ∪ Σ). The nogrant set is empty; the term represents the entire future
computation and therefore has no enclosing term. If f computes placeholder p, the
continuation of f evaluates in context ε•(p,Σ′), where Σ′ = ({X} ∪ Σf ∪ Σ). When
f ’s evaluation enters the false branch of the if-then-else statement, f will remove
those escaping exceptions it can no longer reach from Σ′ in the evaluation context of
its continuation. Since both the false branch and the body of the statement do not raise
X , the future will remove element X from Σ′. The result is that f ’s continuation will
evaluate in the following evaluation context: ε•(p,Σf∪Σ).

Relation I( ˜T ) defines constraints on instrumented terms ˜T (see Figure 7). Variable
and value terms are uniquely labeled with their static location, and each term has its own
nogrant set depending on its context. Of course, value and variable occurrences may not
raise exceptions or exit the program so their grant sets are always empty. An exit state-
ment obviously exits and therefore has grant set {exit}, and a raise statement clearly
raises an exception. Since exceptions are first-class, the raise statement’s grant set con-
tains all exceptions it may raise (i.e. the grant set for term (raisel x) is FlowP (x)).
A try expression’s grant set includes all exceptions (and exit) that escape from the
try block except the handled exception, and all escaping exceptions from the handler
block. Thus, the continuation of a future f will not be forced to wait for a grant on an
exception that is handled internally by f . The nogrant set for the try expression’s try
block includes the try expression’s nogrant set, all escaping exceptions raised by the
handler block, and the handled exception. Computing the grant and nogrant sets for the
try’s handler block is straightforward, as is the case for value binding let-expressions
and if-then-else expressions.

Since abstractions are first-class, the grant set of an application term with abstrac-
tion variable y is the union of grant sets for ˜Ti where λ z.˜Ti ∈ FlowP (y) and the
grant set for the body of the let-expression. An abstractions may appear in different
contexts; therefore, the body of a λ-expression must be instrumented with a conserva-
tive approximation for its nogrant set. The nogrant set is the union of nogrant sets for
each context the abstraction may be applied. This is demonstrated in the instrumentation
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I(Vl
�{}
�Σ ) I(xl

�{}
�Σ ) I((exitl x)�{exit}

�Σ )
Σ = F lowP (x)
I((raisel x)�Σ

�Σ′)

I(T �Σ
�Σ′∪Σh∪{X}) I(Th

�Σh
�Σ′ )

I((tryl T �Σ
�Σ′∪Σh∪{X} handle X �→ Th

�Σh
�Σ′ )

�(Σ\{X})∪Σh

�Σ′
)

I(T �Σ
�Σ′)

I(let x = V in T �Σ
�Σ′)

�Σ

�Σ′

I(Tt
�Σt
�Σ′′∪Σ

) I(Tf
�Σf

�Σ′′∪Σ
) I(T �Σ

�Σ′′)

I((let x = if y then Tt
�Σt
�Σ′′∪Σ

else Tf
�Σf

�Σ′′∪Σ
in T �Σ

�Σ′′)
�Σt∪Σf∪Σ

�Σ′′
)

F lowP (y) = {λ z1.T1, . . . , λ zn.Tn} I(T1
�Σ1
�Σ′

1
), . . . , I(Tn

�Σn
�Σ′

n
)

I(T �Σ
�Σ′) Σ′

i ⊆ (Σ ∪ Σ′) Σ′′ =
Sn

(i=1)Σi

I((let x = (y z) in T �Σ
�Σ′)

�Σ∪Σ′′

�Σ′ )

I(Tf
�Σf

�{}
) I(T �Σ

�Σ′)

I((let x = future(Tf
�Σf

�{} ) in T �Σ
�Σ′)

�Σf∪Σ

�Σ′
)

Fig. 7. Instrumentation Constraints

constraints presented in Figure 7 by requiring that the nogrant sets associated with the
bodies of each potential abstraction is a subset of the set of exceptions for the current
context. This overly conservative nogrant set disallows grants that are safe. The dis-
allowed grants that should have been granted during evaluation of the application are
applied at runtime after evaluating the application (see Figure 8). The grant set for a
term that spawns a future consists of the grant set of the future term and the continua-
tion. Thus if the term itself is spawned as a future, its continuation will need to wait for
both the (sub) future and the original future to grant on exceptions and exit. A future
computation has an empty nogrant set because it is evaluated as a separate computation.

4.2 Semantics

Terms instrumented with grant and nogrant sets are evaluated using the semantics de-
fined in Figures 8 and 9. In Figure 8 we omit instrumentation that is not relevant to
evaluation. A local evaluation rule ˜N →is 〈 ˜N ′, Σ〉 reduces an instrumented runtime
term ˜N to a new instrumented runtime term ˜N ′ and a grant effect Σ. The grant ef-
fect represents the escaping exceptions (and exit) that were reachable by ˜N but not
reachable by ˜N ′.

For the
−→
try rule, the try block evaluates to a value and thus does not require the excep-

tion handler. The →is evaluator will compute a grant effect consisting of those elements
in the handler’s grant set that are not in its nogrant set. If the body of the try statement
raises the handled exception (i.e. rule

−−−−→
handle), the →is evaluator grants exceptions
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N ∈ RTTerms′ ::= V | exit V | raise X | try eN handle X �→ eN | let x = if V then eN else eN in eN | . . .eN ∈ RTTerms ::= N�Σ
�Σ | ⊥ | p+ | eN•(p,Σ) | 〈 eN, Σ〉

V ∈ V alue ::= . . . | p

p ∈ PhV ars ::= {main, p1, p2, . . .}

C ∈ TermContext ::= 〈p × (real × int) × (real × int)〉

S ::= {(gN1)C1
, . . . , g(Nn)

Cn
}

S| eNC ::= S ∪ { eNC}

A•( eN) =
j
{(p, Σ)} ∪ A•(ε[ eN ′]) if eN = ε[ eN ′•(p,Σ)]
φ otherwise

Fis(M) =

8>>><
>>>:

V if {(let x = eT in exitl x)〈main,(−1,−1),(0,0)〉} ⇒∗
sd

{( eN1)C1
, . . . , ( eNn)

Cn
, (V �{}

�{} )
〈main,(−1,−1),(r,d)〉

}

where eT is instrumented version of M
error otherwise

EVALUATION RULES:

ε ∈ EvalCntxt ::= [ ] | try ε handle X �→ eN | let x = ε in eN | exit ε | raise ε

| let x = if ε then eNt else eNf in eN | let x = (ε V ) in eN | ε•(p,Σ)

try V handle X �→ N�Σh
�Σ′ →is 〈V, Σh\Σ

′〉 (
−→
try)

try (raise X)�Σr
�Σ′

r
handle X �→ eN →is 〈 eN, Σr\Σ

′
r〉 (

−−−−→
handle)

try (raise X ′)�Σr

�Σ′

r
handle X �→ N

�Σh
�Σ′ →is 〈(raise X ′)�Σr

�Σ′

r
, Σh\Σ

′〉 (
−−−−−→
tryraise)

let x = V in N�Σ
�Σ′ →is 〈(N [x/V ])�Σ

�Σ′ , φ〉 (
−−→
bind)

let x = (raise X)�Σr
�Σ′

r
in N�Σ

�Σ′ →is 〈(raise X)�Σr
�Σ′ , Σ\(Σ′ ∪ Σr)〉 (

−−−−−−→
bindraise)

let x = if V then Nt
�Σt
�Σ′′∪Σ

else Nf
�Σf

�Σ′′∪Σ
in N�Σ

�Σ′′

→is

8>>><
>>>:

〈(let x = Nt
�Σt
�Σ′′∪Σ

in N�Σ
�Σ′′)

�Σt∪Σ

�Σ′′
,

Σf\(Σt ∪ Σ′′ ∪ Σ)〉
V = true

〈(let x = Nf
�Σf

�Σ′′∪Σ
in N�Σ

�Σ′′)
�Σf∪Σ

�Σ′′
,

Σt\(Σf ∪ Σ′′ ∪ Σ)〉
V = false

(
−→
if )

(let x = (V V ′) in N�Σ
�Σ′)

�Σ′′

�Σ′ →is 〈(let x = N ′�Σ1
�Σ′

1
[y/V ′] V = λy.(N ′�Σ1

�Σ′

1
) (

−−−→
apply)

in 〈N�Σ
�Σ′ , Σ′

1\(Σ ∪ Σ′)〉)Σ1∪Σ

Σ′ , Σ′′\(Σ1 ∪ Σ ∪ Σ′)〉

Fig. 8. Local Evaluation Rules for Instrumented Semantics

in the raise statement’s grant set (i.e. the static approximation of which exceptions
may have been raised by this statement), that are not in its nogrant set. Note that the
instrumentation constraints ensure the exception being handled, which is clearly in the
grant set, is also in the nogrant set disallowing the rule to grant on the raised exception.
This is correct because the instrumentation constraints ensure that a continuation of a
future does not wait for exceptions internally handled by its future. If another exception
is raised in the try block (i.e.

−−−−−→
tryraise rule), the exception is propagated and since the

handler is not invoked, the →is evaluator will grant elements in the handler’s grant set
that are not in its nogrant set.

The grant effect computed by rule
−−→
bind for a value-binding let-expression is empty,

because the new runtime term may raise the same set of escaping exceptions as the
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eN →is 〈 eN ′, Σ〉

S|(ε[ eN ])
C
⇒is S|(ε[〈R( eN ′), Σ〉])

C

(local)

(let x = eN in N ′) →is 〈 eN ′′, Σ〉

S|(ε[let x = eN•(p1,Σ1)...•(pn,Σn) in eN ′])
C
⇒sd S|(ε[〈 eN ′′•(p1 ,Σ1)...•(pn,Σn), Σ〉])

C

(let)

C = 〈p, (r, d), (r′, d′)〉 p′ fresh

Cf = 〈p′, (r′, d′), (r′, d′ + 1)〉 Cc = 〈p, (r, d), (r′ + 0.5d′

, d′ + 1)〉

S|(ε[let x = future(N
�Σf

�{} ) in eN ′])C ⇒sd S|(N
�Σf

�{} )
Cf

|(ε[R( eN ′[x/p′])•(p
′,Σf )])Cc

(future)

(V �{}
�{} )

〈p,(r,d),(r′,d′)〉
∈ S

S|(ε[p+])C ⇒sd S|(ε[V ])C S|(ε[ eN•(p,φ)])C ⇒is S|(ε[ eN ])C

(touch) (unblock)

Cf = 〈p, (r, d), (r′, d′)〉
S′ = {( eN ′)〈pi,(ri,di),(r

′

i,d′

i)〉
| ( eN ′)〈pi,(ri,di),(r

′

i,d′

i)〉
∈ S, (r′i < r′ or r′i ≥ (r + 0.5d−1))}

Sc = {(⊥)
C
| ( eN ′)

C
∈ S, ( eN ′)

C
/∈ S′} S′′ = S′ ∪ Sc

S|((raise X)�Σf

�Σ′

f
)
Cf

|(ε[N�Σc
�Σ′

c

•(p,Σ)
])

Cc

⇒sd S′′|((raise X)�Σf

�Σ′

f
)
Cf

|(ε[(raise X)�Σf

�Σ′

c
])

Cc

(raise)

C = 〈p, (r′, d′), (r, d)〉
( eNi)〈pi,(r′

i,d′

i),(ri,di)〉
/∈ S ri < r eNi 
= V ′�{}

�{}

S|(ε[(exit V )�{exit}
�Σ ])

C
⇒sd {(V �{}

�{}
)〈main,(−1,−1),(r,d)〉}

(exit)

C = 〈main, (−1,−1), (r, d)〉
S|(ε[〈 eN, Σ〉])

C
⇒is S|(ε[ eN ])

C

(grantmain)

Cf = 〈p, (r, d), (r′, d′)〉 A•(ε[N
�Σf

�Σ′

f
]) = {(p1, Σ1), . . . , (pn, Σn)}

Σ′′ =
Sn

(i=1) Σi Σg = Σ\(Σ′′ ∪ Σf )

S|(ε[〈N�Σf

�Σ′

f
, Σ〉])

Cf

|(ε[ eN•(p,Σ′)
c ])

Cc
⇒is S|(ε[N�Σf

�Σ′

f
])

Cf

|(ε[〈 eN•(p,Σ′\Σg)
c , Σg〉])Cc

(grant)

(try eN handle X �→ eN ′) →is 〈 eN ′′, Σ′〉 Σ′′ =
Sn

(i=1) Σi X /∈ Σ′′

S|(ε[try eN•(p1,Σ1)...•(pn,Σn) handle X �→ eN ′])
C
⇒is S|(ε[〈 eN ′′•(p1 ,Σ1)...•(pn,Σn), Σ′〉])

C

(try)

Fig. 9. Global Evaluation Rules for Instrumented Semantics

reduced term. If the expression being bound results in a raise of an exception, rule−−−−−−→
bindraise will compute a grant effect that includes escaping exceptions that may be
raised by the body of the let-expression, which will never be reached, (i.e. Σ) as
long as those exceptions may not be raised by the raise statement (i.e. Σr) or by the
computation following the entire term (i.e. Σ′). The rule also computes the new nogrant
set that results from propagating the raise without evaluating the let-expression body.
The new nogrant set is equal to the nogrant set of the let-expression body.

The
−→
if rule computes the grant effect resulting from taking a branch of an if-then-

else statement, and recomputes the grant set of the entire term based on the branch
taken. If the true (false) branch is taken, the grant set of the entire term is the union of
the true (false) branch’s grant set and the grant set of the let-body. The grant effect
consists of exceptions raised (and exit) by the false (true) branch that cannot be raised
by the true (false) branch, the let-body, or the computation that follows.
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Rule
−−−→
apply computes the grant effect for an application term. The nogrant set of the

abstraction body (i.e. Σ′
1) may be overly conservative, not allowing the evaluation of

the body to grant on certain exceptions. Thus the runtime will grant all exceptions in
the nogrant set of the abstraction body that are not raised by the rest of the term (i.e.
Σ′

1\(Σ ∪Σ′)) as soon as the application has completed evaluation. This is achieved by
replacing the body of the let-expression with a grant effect causing the grant effect to
be applied before evaluating the body. The grant effect immediately computed by the
rule consists of those exceptions in the let-expression’s grant set modulo those in the
grant set of the abstraction’s body (i.e. Σ1), those that are reachable from the let-body
(i.e. Σ) and those associated with the computation following the let-body (i.e. Σ′).
Note that the grant effect will include exceptions added to the grant set based on the
static approximation of which abstractions may have been bound to V as long as the
exceptions may not be raised by the rest of the term or by the abstraction value actually
bound to V at runtime.

The global evaluation rules are mostly analogous to the evaluation rules for the safe
dynamic semantics. The unblock rule is worth noting because it removes the blocking
evaluation for future f from a continuation as soon as f reaches a point where it has
granted everything that was in its grant set. This allows a future computation to eval-
uate to a value (rather than a blocked value) before its futures complete, if they are
guaranteed to not invalidate its evaluation by exiting or raising an escaping exception.
Thus unlike the safe dynamic semantics, in the instrumented semantics a continuation
touching a placeholder corresponding to future f does not need to block until all of
f ’s futures complete. Three new rules are also defined: grantmain , grant and try . The
first two deal with grant effects and the try allows computation within a continuation
to discard an exception handler if its future indicates it is safe to do so.

The grantmain rule ignores grant effects from the main computation, because it is
not a future of any continuation. When a local evaluation reduces to a term and grant
effect 〈 ˜N ,Σ〉 the grant rule will grant elements in Σ that are safe to grant. An element
is safe to grant if the granting computation cannot reach the element (i.e. it is not in Σf )
and the granting future is not a continuation of another future that still may reach the
element (i.e. it is not in Σ′′). To compute Σ′′, we use function A•, which computes the
set of futures a given term is a continuation of. The grant action is reflected in the grant
rule by removing elements Σg from Σ′ in the continuation’s ε•(p,Σ′) context. The grant
effect is then propagated to the continuation which may itself be a future.

The try rule exploits concurrency that could not be availed in the absence of instru-
mentation. A continuation may proceed past a try statement before its futures complete
if the futures and all the futures they spawn will not require the handler defined by the
try expression. This rule is similar to the let rule which allows evaluation of a con-
tinuation to proceed past a let term, except the try rule is conditional on the blocking
instrumentation indicating it is safe to discard the handler.

4.3 Example

The following example shows how the instrumented semantics allows for greater par-
allelism than the safe dynamic semantics. For brevity we have omitted the instrumen-
tation from the example, but we assume the program has been instrumented to satisfy
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the instrumentation constraints presented in Figure 7. We explain in the text any instru-
mentation that is relevant to the evaluation of the program.

1. let x = future(˜T1) in
2. try let y = future(˜T2) in
3. let z = future(let w = if false then raise X

4. else ˜T3 in ˜T ′
3)

5. in raise X ′

6. handle X �→ c

Let ˜N1 and ˜N2 be runtime terms in the process state corresponding to instrumented
terms ˜T1 and ˜T2, respectively, ˜N3 be the runtime term for the if-then-else expression
on line 3, and ˜N4 be the following runtime term:

(try (raise X ′)•(p3,Σ)•(p2,Σ2) handle X �→ c)•(p1,Σ1)

In the above runtime term, Σ is the grant set for the if-then-else expression, Σ1
is the grant set for ˜N1 and Σ2 is the grant set for ˜N2. Assume that X /∈ Σ2 (i.e. ˜T2
may not raise escaping exception X). Since X ∈ Σ due to the raise in the true branch
of the future computation, the try rule does not hold for ˜N4 and the handler cannot
be discarded. Once control enters the false brach during the evaluation of ˜N3, the →is

evaluator will compute a grant effect that includes elements in the grant set of the true
branch (i.e. {X}) that are not in the grant and nogrant sets of the false branch. Let Σ3

and Σ′
3 be the grant and nogrant sets of ˜T3 and assume that X /∈ (Σ3 ∪ Σ′

3) (i.e. the
false branch and the body of the if expression do not raise an escaping exception X).
According to the

−→
if rule, the grant effect Σg contains X . The grant rule removes X

from Σ of the blocking evaluation context associated with p3 in term ˜N4. The grant
would be propagated but since ˜N4 is not a future computation (i.e. its term context is
〈main, (−1,−1), (r, d)〉), the grantmain rule applies. Since X is no longer in Σ the
try rule applies for term ˜N4 allowing evaluation to proceed past the handler even though
the future computations corresponding to p2 and p3 have yet to complete.

4.4 Semantic Equivalence

In this section we provide a proof sketch proving that evaluating program M under the
instrumented semantics has the same result as evaluating M under the safe dynamic
semantics. For the proof, we define a transform function U to map a process state Si

in the instrumented semantics to a process state Ss in the safe dynamic semantics. The
transform function U simply erases instrumentation, replaces evaluation context •(p,Σ)

with •p and replaces instrumented runtime term 〈 ˜N, Σ〉 with runtime term N . We use
the transform function U to prove that for state Si, if Si ⇒∗

is V then U(Si) ⇒∗
sd V .

The proof details are presented in an accompanying technical report [8].

Lemma 3. If Si is a final state with result R then U(Si) ⇒∗
sd Ss, and Ss is a final state

in the safe dynamic semantics with result R.
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The proof states that if the final process state Si reached by evaluation under instru-
mented semantics results in R, then the transform of the process state evaluates under
safe dynamic semantics to a final state Ss with result R.

Lemma 4. If Si ⇒is S′
i, then U(Si) ⇒∗

sd Ss and U(S′
i) ⇒∗

sd Ss.
The lemma states that given an instrumented evaluation rule Si ⇒is S′

i the transform of
Si and S′

i are equivalent process states in the safe dynamic semantics. In other words,
under ⇒sd there exists a sequence of rules starting from U(Si) and a sequence start-
ing from U(S′

i), such that both sequences result in a common state Ss. The proof is
by case analysis on evaluation derivations Si ⇒is S′

i. In most cases, this property
is straightforward because most the rules in the safe dynamic and instrumented se-
mantics are analogous. Thus for analogous rule Si ⇒is S′

i, we show that applying
the analogous rule in the safe dynamic semantics to the transform of Si results in
the transform of S′

i (i.e. U(Si) ⇒1
sd U(S′

i)). The following rules are not analogous:
unblock , grantmain, grant , try .

The unblock rule in the instrumented semantics unblocks a computation before its
future completes as long as the computation’s future is guaranteed not to raise an
escaping exception or exit the program. Our proof leverages this guarantee. While
the unblock rule of the safe dynamic semantics may not apply to U(Si), evaluat-
ing the future computation under a sequence of ⇒sd rules to a value will result in
a state Ss, such that the unblock rule to applies to Ss. Rules grantmain and grant
are trivial because under both rules if Si ⇒is S′

i, then U(Si) = U(S′
i). Proving the

try rule is similar to the unblock rule. Intuitively, the proof demonstrates that run-
time term (try let x = future(N) in N ′ handle X �→ . . .) and runtime term
(let x = future(N) in try N ′ handle X �→ . . .) are equivalent as long as N and
any future spawned from N do not raise escaping exception X . The instrumented se-
mantics allows hoisting a future from a try block’s evaluation context only when the
static instrumentation and runtime determine it will not require the handler.

Theorem 2. If Fis(M) = R, then Fsd(M) = R.
Evaluating program M under the instrumented semantics will have the same result
as evaluating M under the safe dynamic semantics. The proof is by induction on the
length of ⇒is evaluation sequences. The base case is demonstrated by Lemma 3 and 4.
Instantiating the inductive hypothesis and Lemma 4 proves the inductive case.

5 Related Work and Conclusions

Futures were first introduced in Multilisp [3] as a high level concurrency abstraction
for functional languages. Implementation of futures has been well-studied in the con-
text of functional languages [4,5] and future-like concurrency constructs have emerged
in many multithreaded languages. Recent proposals [13,14] that have future-like con-
structs do not guarantee safety of the kind provided by our solution.

In [10], deterministic execution of Java programs equipped with futures is enforced
using a dynamic analysis that tracks accesses and updates by futures and their continu-
ations; while this techniques deals with side-effects to shared fields, it does not enforce
equivalence between a sequential and future-annotated Java program in the presence
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of exceptions. In [9], a static analysis and program transformation to provide coordi-
nation between futures and their continuations is given. [11] is closest in spirit to our
work; their implementation is similar to the safe dynamic semantics presented here, but
significantly less precise than the instrumented semantics.

The formal semantics of futures have been studied in [1,2]. Their work develops a se-
mantic framework for an idealized language with futures, but the results do not consider
how to enforce safety (i.e. determinism) in the presence of exceptions. More recently,
a formal semantics for an object-oriented language with active objects, asynchronous
method calls and futures was presented in [12], but this presentation does not consider
enforcing determinism or deal with exceptions.

This paper presents a formulation of safe futures for a higher-order language with
first-class exceptions, via a combination of a static analysis to instrument programs
with information about when exceptions may or may not be raised, and an operational
semantics that leverages this instrumentation to extract concurrency without violating
safety. We believe our results provide a precise basis for implementations of safe futures
in realistic languages that support expressive control-flow abstractions.
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Abstract. Many applications operate in heterogeneous wireless sensor networks,
which represent a challenging programming environment due to the wide range
of device capabilities. Servilla addresses this difficulty in developing applications
by offering a new middleware framework based on service provisioning. Using
Servilla, developers can construct platform-independent applications over a dy-
namic and diverse set of devices. A salient feature of Servilla is its support for
the discovery and binding to local and remote services, which enables flexible
and energy-efficient in-network collaboration among heterogeneous devices. Fur-
thermore, Servilla provides a modular middleware architecture that can be easily
tailored to devices with a wide range of resources, allowing resource-constrained
devices to provide services while leveraging the capabilities of more powerful de-
vices. Servilla has been implemented on TinyOS for two representative hardware
platforms (Imote2 and TelosB) with drastically different resources. Microbench-
marks demonstrate the efficiency of Servilla’s implementation, while an applica-
tion case study on structural health monitoring demonstrates the efficacy of its
coordination model for integrating heterogeneous devices.

1 Introduction

Wireless sensor networks (WSNs) [17] are becoming increasingly heterogeneous due
to two primary reasons. First, heterogeneity allows a network to be both computation-
ally powerful and deployed in high densities. Powerful devices can perform complex
operations, but are more expensive and power-hungry. Conversely, weak WSN devices
enable higher deployment densities and increase network lifetime as they are cheaper
and consume less power. By integrating devices with different resources and capabil-
ities, a heterogeneous WSN can combine the advantages of both powerful and weak
devices. Second, network heterogeneity follows from the natural evolution of WSNs.
WSN devices can be embedded in the environment and remain operational for a long
time. For example, due to its high deployment cost, a WSN embedded in civil infrastruc-
ture for structural health monitoring must operate over several years to be economically
acceptable [24]. Similarly, many urban sensing systems [48] must also remain opera-
tional for multiple years. During the lifetime of a WSN, new devices may be developed
and deployed, resulting in network heterogeneity.

Network heterogeneity presents a formidable problem for application developers.
Since the target platform may consist of many different devices, the application must
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be platform-independent to avoid having to custom-tailor it to each device. Yet, the ap-
plication must still be able to access platform-specific capabilities like sensing and com-
puting to make full use of the underlying hardware. Furthermore, the application must
accommodate diverse device capabilities and resources. These seemingly contradictory
requirements complicate application development and motivates a new programming
model.

To address the challenges of programming heterogeneous WSNs, we developed
Servilla, a middleware framework supporting a novel coordination model. Servilla’s
coordination model makes three important contributions. First, applications are struc-
tured in terms of platform-independent tasks and expose platform-specific capabilities
as services. This ensures that applications remain platform-independent, which is criti-
cal as WSNs become increasingly heterogeneous. It also enables applications to access
resources on a device without having active processes, or agents, on the device itself.
This reduces the system’s minimum resource requirements, increasing the range of de-
vices that can be supported. Second, Servilla provides a specialized service description
language, which enable application tasks to selectively but flexibly access services that
exploit the capabilities of the hardware available at a particular time and place. This
allows better adaptation to network heterogeneity, and facilitates for the first time in-
network collaboration between heterogeneous WSN devices, achieving higher levels of
efficiency and flexibility. Finally, Servilla provides a modularized middleware architec-
ture and enables asymmetry in the middleware among WSN devices. This widens the
scope of hardware devices that can be integrated.

Servilla’s coordination model is inspired by the concept of Service-Oriented Com-
puting (SOC) [45], which provides loose and flexible coupling between application
components. It is used on the Internet and has recently been explored in the context of
WSNs. Two systems in particular are Tiny Web Services (TWS) [47] and PhyNetTM [6].
TWS implements an HTTP server on each device and enables applications outside of
the WSN to invoke services over the Internet using HTTP requests. PhyNetTMprovides
a central gateway that exposes WSN capabilities as web services. Unlike these sys-
tems, Servilla uniquely takes the SOC programming model inside a WSN. It exploits
the loose coupling between service consumers and providers to separate application-
level platform-independent logic from the low-level software components that exploit
platform-specific capabilities. Furthermore, by allowing application logic to execute
inside a WSN, higher levels of efficiency are obtainable via in-network coordination
and collaboration [28]. For example, in a structural health monitoring application, a
low-power device may use a simple threshold-based algorithm to detect shocks that are
potentially damage-inducing, and only activate more powerful devices that perform the
complex operations to localize damage when necessary [24]. Or, in a surveillance ap-
plication, low-power devices may sense vibrations from an intruder and activate more
powerful devices with cameras [26]. The ability to support collaboration among het-
erogeneous devices inside a WSN is a key feature that distinguishes this work from
existing SOC middleware for WSNs.

The remainder of the paper is organized as follows. Section 2 presents Servilla’s
programming model. Section 3 presents Servilla’s programming languages. Section 4
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service service
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WSN Device (TelosB)

Task

service service
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Task

service service

Remote
Invoke

Local
Invoke

bind
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Fig. 1. Servilla targets heterogeneous WSNs in which different classes of devices provide services
that are used by application tasks either locally or remotely. Services are platform-specific while
tasks are platform-independent.

presents Servilla’s middleware architecture and implementation. Section 5 presents an
empirical evaluation on two representative sensor platforms with diverse resources. Sec-
tion 6 evaluates the efficacy of Servilla by using it to implement a structural health mon-
itoring application. Section 7 presents related work. The paper ends with conclusions
in section 8.

2 Programming Model

An overview of a WSN using Servilla is shown in Figure 1. Servilla is meant for ap-
plications that run in WSNs with multiple classes of devices. It is not intended for flat
WSNs composed entirely of resource-poor devices. Typical applications are long-lived,
widespread, and involve many different tasks that vary in complexity and scale. They
are expected to be written once, but continuously used despite hardware changes. For
example, environmental monitoring or target tracking applications are long-lived and
usually involve both widespread, but simple sensing tasks, and less widespread, but
complex computational tasks, that process the data. By integrating both resource-poor
and resource-rich devices, Servilla provides an ideal platform on which to build these
types of applications. Specifically, resource-poor devices are less costly and more en-
ergy efficient, meaning they can be deployed in greater numbers at higher densities.
Meanwhile, resource-rich devices are more expensive and limited in quantity, but offer
computational power and advanced sensing capabilities.

Applications are implemented as tasks, which are platform-independent applica-
tion processes that contain code, state, and service specifications. To ensure platform-
independence, the code cannot directly access platform-specific capabilities like
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sensors. Instead, these capabilities are accessed as services that are provided by a ser-
vice provisioning framework. The service provisioning framework takes a task’s service
specifications and finds services that match them. The service specifications describe
both the service’s interface and non-functional properties like energy consumption. This
enables tasks, for example, to selectively use the most energy-efficient sensors.

Services expose platform-specific capabilities, are implemented natively, and can,
thus, be fine-tuned for maximum efficiency. They provide a description that can be
compared with a task’s service specification. Services are able to maintain state, pro-
vide multiple methods, and have their own thread of control, enabling them to operate in
parallel with tasks. This enables higher degrees of concurrency and efficiency. For ex-
ample, in a structural health monitoring application, a service provided by a low-power
device can continuously monitor an accelerometer and set a flag if the vibrations exceed
a threshold. A task executing on a more powerful device can mostly remain asleep, only
periodically checking for potential damage.

Tasks communicate via localized tuple spaces that are structured in the same man-
ner as that in Agilla [19]. For brevity, they are not shown in Figure 1 since service
provisioning is the focus and main contribution of this paper. Tuple space coordination
facilitates decoupled communication, allowing better adaptation to a changing network.
They serve as a flexible means of communication between application processes and are
orthogonal to service provisioning. While service provisioning messages could be sent
using tuple spaces, they are sent in an RPC-like fashion in the current implementation.

Tasks remain platform-independent by delegating all platform-specific operations to
services. There are two essential steps for this to occur: binding and invocation. Binding
is the process of discovering and establishing a connection to the service. Invocation is
the process of accessing a service.

Service binding consists of three-steps: discovery, matching, and selection. Discov-
ery involves finding available services. In many traditional SOC frameworks, this is
done by querying a central service registry. While this is sufficient in traditional net-
works, it is not appropriate in WSNs for a couple reasons. First, since most WSN de-
vices operate on batteries, accessing a distant registry is not energy efficient and can
unacceptably reduce network lifetime. Second, the spatial aspect of WSNs are relevant
since closer services are usually preferred, e.g., if a task wants to know the temperature,
it usually wants to know the ambient temperature rather than a distant location’s. For
these reasons, Servilla is optimized for localized coordination and does not rely on a
centralized service registry. Instead, each device has its own registry containing only
the services that it provides.

During the service discovery process, the local registry is first checked for a match. If
no match is found, neighboring devices are checked. This increases a network’s flexibil-
ity by allowing tasks to run on devices that do not fully satisfy the service requirements,
since missing services can be provided by neighboring devices. Furthermore, although
accessing a remote service requires wireless communication, energy efficiency can be
increased overall by allowing high-power devices to use low-power ones, enabling the
high-power devices to remain asleep longer.

Service matching involves finding a service that fulfills a task’s requirements. Re-
call that tasks include specifications that can be compared to descriptions provided by
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services. The matching process must be flexible since the service and tasks are usu-
ally developed separately. Yet, it must be semantically correct to ensure that the ser-
vice behaves in a predictable manner. A service is minimally described by its interface.
Ideally, the names of the methods, the order, number, and types of their parameters, and
even the return types should not require an exact match for service binding for max-
imum flexibility. To achieve this, large amounts of meta-data must be included in the
specification that describe the method names, input parameters, and return values. Un-
fortunately, such a specification is verbose and requires a complex parser, both of which
consume sizable computational resources that are not available on many WSN devices.
To account for this, Servilla compromises by dividing specifications into functional and
non-functional properties. Functional properties include the interface and require an ex-
act match. Nonfunctional properties describe attributes like power consumption and do
not require an exact match. For example, suppose a FFT-calculating service has a non-
functional attribute specifying that it is version 5. Such a service can be bound to a task
that specifies it requires at least version 4. By enforcing an exact match between func-
tional properties and an inexact match between non-functional ones, Servilla provides a
degree of flexibility when binding services while still maintaining reasonable resource
requirements.

Once a matching service is found, the binding process is completed by selecting it.
Selection consists of informing the task of the chosen service, and is accomplished by
informing the task of the provider’s network address. Once done, the task can access
the service by invoking it. Note that the provider’s address is hidden from the applica-
tion developer, who is able to invoke the service based on its name, a process that is
described next.

Service invocations are analogous to remote procedure calls (RPCs). The task pro-
vides the name of the service, the method to execute, and the input parameters. After the
service executes, the results are returned to the task. Since the task and service may be
located on different devices, the process may fail, e.g., due to message loss. To account
for this, Servilla provides a mechanism that notifies a task when and why an invocation
fails. This is necessary because service invocations may fail in many ways depending
on whether the service is local or remote, and tasks may want to handle various error
conditions differently. For example, local invocations may fail because the service is
busy, in which case the task may try again later, while remote invocations may fail due
to disconnection, in which case the task may want to abort.

3 Programming Language

Servilla provides two light-weight programming languages tailored to support service
provisioning in WSNs. The first, ServillaSpec, is used to create service specifications
and descriptions that enable flexible matching between tasks and services. The second,
ServillaScript, is used to create tasks and is compiled into bytecode that runs on a Vir-
tual Machine. Services are implemented in NesC [21] on TinyOS [27] and compiled
into native binary code for run-time efficiency. Servilla’s specialized languages are now
described.
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NAME = fft
METHOD = fft-real
INPUT = {int dir, int numSamples, float[] data}
OUTPUT = float[]
ATTRIBUTE Version = 5.0
ATTRIBUTE MaxSamples = 5000
ATTRIBUTE Power = 10

Fig. 2. A specification describing a FFT service

1. uses Temperature; // declare required service
2.
3. void main() {
4. int count = 0; float temp;
5. bind(Temperature, 2); // bind service within 2 hops
6. while(count++ < 10) {
7. temp = invoke(Temperature, “get”); // invoke service
8. send(temp);
9. }
10. unbind(Temperature);
11. }

Fig. 3. A task that invokes a temperature sensing service 10 times

3.1 ServillaSpec

ServillaSpec is used to describe services and is needed to match services required
by tasks to those provided by devices. To support resource-constrained devices, the
service specification language must be compact and should not require an overly com-
plex matching algorithm. As such, standard specification languages used on the Inter-
net like WSDL [49] are avoided due to their relative verboseness and highly complex
parsers. ServillaSpec avoids verbose syntax and limits the types of properties that can
be included in a service specification. An example is shown in Figure 2. The first line
specifies the name of the service. It is followed by three-line segments each specifying
the name, input parameters, and output results of a method provided by the service. The
remainder of the specification is a list of attributes that specify non-functional proper-
ties of the service. They enable flexibility in matching by defining a name, relation, and
value. Using attributes, a task can, for example, require a floating point FFT service that
consumes at most 50mW. Such a specification would match a service whose description
is shown in Figure 2.

By limiting the property types to be only the five shown in Figure 2 (i.e., NAME,
METHOD, INPUT, OUTPUT, and ATTRIBUTE), and arranging them to always be in the
same order, the specification can be greatly compressed. For example, since the ser-
vice’s NAME property always appears first, the property’s identifier, NAME, can be omit-
ted. Thus, the NAME property in the specification shown in Figure 2 can be compressed
to just 4 bytes, “fft” followed by a null terminator. This compression saves memory and
enables greater matching efficiency.
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Servilla Middleware

Virtual
Machine

Service Provisioning Framework

Consumer Provider

Fig. 4. Servilla’s middleware consists of a virtual machine and a service provisioning framework
(SPF). The SPF consists of a consumer and provider.

3.2 ServillaScript

ServillaScript is used to create application tasks. Its syntax is similar to other high
level languages like JavaScript [18], but with key extensions for service provisioning.
An example, shown Figure 3, implements an application that periodically takes the
temperature and sends the reading to the base station. It declares the name of the file
containing the specification of the required service on line 1, which in this case is a
temperature sensing service. The task initiates the service binding process on line 5. The
first parameter specifies which service to bind and the second specifies that registries
within two hops should be searched. The task then loops ten times invoking the service
on line 7 and sending the temperature to the base station on line 8. The task ends by
disconnecting from the service on line 10.

The example above illustrates how ServillaScript enables tasks to 1) indicate which
services are needed, 2) initiate the service discovery process, 3) invoke services, and
4) disconnect from services. Aspects not shown for brevity include checking whether
a service is bound, and, if so, how far away the service is in terms of network hops.
This will allow the task to throttle how often it invokes the service based on its dis-
tance. Another aspect not shown is error handling code. If an error occurs due to a
service becoming unavailable, the invocation will return an error indicating the cause,
as discussed in Section 2.

4 Middleware

Servilla’s middleware architecture, as shown in Figure 4, consists of a virtual machine
(VM) and a service provisioning framework (SPF). The VM is responsible for executing
application tasks. The SPF consists of a consumer (SPF-Consumer) that discovers and
accesses services, and provider (SPF-Provider) that advertises and executes services.

A VM is used because WSN devices contain processors with varying instruction sets.
Application tasks are compiled into the VM’s instruction set, which is uniform across
all hardware platforms, ensuring that tasks are platform-independent. Furthermore, the
VM enables the dynamic deployment of application tasks, justifying the need for dy-
namic service binding. The VM is based on Agilla [19] though with major extensions
to support services and the SPF. Specifically, whenever a task performs an operation
involving a service, the VM passes the task to the SPF-Consumer, which is described
next.
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Fig. 5. The detailed architecture of the Service Provisioning Framework

4.1 SPF-Consumer

The SPF-Consumer is responsible for discovering, matching, and invoking services on
behalf of tasks. As shown in Figure 5 the SPF-Consumer consists of a Service Finder,
Binding Table, and Service Scheduler. The Service Finder is responsible for finding
services that match a task’s specifications. It first searches locally and, if no matches
are found, searches one hop neighbors. Note that while this increases the likelihood of
selecting a local service, it does not necessarily select the most energy efficient provider.
If a task wanted to bind to an energy efficient provider, it can include an energy attribute
in its service specification, thus enabling energy efficient service provisioning. When a
provider is selected, its address is stored in the Binding Table. The Binding Table maps
the task’s service specification to the provider that will perform the service. It is updated
when the Service Finder discovers a better provider and when a task explicitly unbinds
from a service. A task can query a Binding Table to determine whether it has access to
a particular service.

The Service Scheduler carries out the actual invocation. It takes the input parameters
provided by the task, sends them to the provider, and waits for the results to arrive.
Once the results arrive, it passes them to the task which can then resume executing. If
the results do not arrive within a certain time, the Service Scheduler aborts the operation
and notifies the task of the error.

4.2 SPF-Provider

The SPF-Provider is responsible for providing and executing services. Its architecture,
shown in Figure 5, consists of a Service Registry, Matchmaker, Remote Invocator,
and Service Discovery component. The Service Registry contains the specifications
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Table 1. WSN devices vary widely in computational resources

TelosB Imote2
Processor 8MHz 16-bit TI MSP430 13-416MHz 32-bit Intel PXA271 XScale
Radio IEEE 802.15.4 IEEE 802.15.4
Memory 48KB Code, 10KB Data 32MB Shared
Price $99 $299

of all locally-provided services. The Matchmaker is used to determine whether a ser-
vice meets the requirements of a task. When the SPF-Consumer tries to find a service,
the Matchmaker is used to determine whether a matching service exists. Note that in
this architecture, the task’s specification must be sent from the SPF-Consumer to the
SPF-Provider. This is because the Matchmaker is located on the SPF-Provider. Alter-
natively, the Matchmaker can be moved onto the SPF-Consumer to reduce the footprint
of the SPF-Provider. However, this requires that all specifications be sent to the SPF-
Consumer, a process that may incur higher communication cost.

4.3 Middleware Modularity

WSNs are becoming extremely diverse consisting of devices with resources that dif-
fer by several orders of magnitude [46,15]. This is true even as technology improves,
since cost constraints ensure the continued presence of resource-limited devices. To ac-
commodate the wide range of devices, Servilla’s middleware is modularized and con-
figurable such that a device need not implement every module to participate in the
network. For example, the middleware can be configured in the following ways:

– VM + SPF: The full Servilla framework.
– VM + SPF-Consumer: Executes tasks and provides access to remote services only.
– SPF-Provider: Provides services for neighboring tasks to use.

A detailed analysis of the memory consumed by each configuration is given in Sec-
tion 5.1. The configuration containing only the SPF-Provider is particularly interesting
because it allows resource-weak, but energy efficient, devices to provide services to
more powerful devices. This can result in greater overall energy efficiency and, assum-
ing the weak devices are less costly and more numerous, increase sensing density while
achieving greater sensing coverage.

The various middleware configurations are transparent to tasks due to the decoupled
nature of the SOC model. For example, a task need not know whether there is a local
SPF-Provider. If a task requires a service, it will be bound either locally or remotely
depending on availability.

4.4 Implementation

Servilla has been implemented on TinyOS 1.0 and two representative hardware plat-
forms shown in Table 1. It is divided into two levels as shown in Figure 6: a lower
level consisting of shared components and a higher level consisting of Servilla’s VM
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Fig. 6. Servilla’s middleware components

and SPF. This section first discusses the lower level followed by the upper level. It ends
with a discussion of Servilla’s programming languages.

The shared components implement low-level mechanisms needed by most high-level
components. The dynamic memory manager makes more efficient use of memory. This
is important because Servilla has several components that require varying amounts of
memory over time. The dynamic memory manager provides just enough memory for
each higher-level component to complete their function and reclaims the memory when
it is no longer needed. It is shared by most components in Servilla’s middleware, max-
imizing the flexibility of memory allocation. To aid in debugging, Servilla provides an
error manager that detects and sends summaries of problems to the base station. The
error manager is shared by all other components in Servilla’s middleware.

The SPF is implemented natively using NesC and is divided into two modules, the
SPF-Consumer and SPF-Provider, as shown in Figure 6. In the SPF-Consumer, the im-
plementation of the Service Scheduler is simplified by serializing service invocations.
This has the added benefit of avoiding saturating the wireless channel. To increase en-
ergy efficiency, the Service Finder first searches the local Service Repository, if one
exists, before searching one-hop neighbors. In the SPF-Provider, the Service Registry
is able to support up to 256 local services.

Servilla’s compiler can compile ServillaScript and ServillaSpec into a compact bi-
nary format. For example, the task shown in Figure 3 is compiled into 181 bytes of code
and 30 bytes of specifications, and the specification shown in Figure 2 is compiled into
just 64 bytes. Both the Servilla middleware and compiler have been released as open-
source software at http://mobilab.wustl.edu/projects/servilla/.

5 Evaluation

This section presents empirical measurement of the code size and performance over-
head of Servilla on both the TelosB [46] and Imote2 [15] platforms. The efficacy of the
Servilla programming model is demonstrated through an application case study in the
next section.
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5.1 Memory Footprint

An Imote2 has sufficient memory (32MB) to hold the entire Servilla middleware. Com-
piled for the Imote2, the total size of the middleware without services is a mere 318KB.
This is only about 1% of the total, leaving plenty for services. In contrast, TelosB de-
vices only have 48KB of code memory. While TelosB does not have enough memory
to hold every component, it can support the SPF-Provider configuration which only
consumes 32 KB of code memory. This capability allows TelosB to join and con-
tribute to a WSN as providers of services to more powerful devices. As shown in
previous work [22] and our case study presented in Section 6, effective integration of
resource-constrained and more powerful devices can combine the advantages of per-
vasive low-power sensing and computational resources, and enhance energy efficiency.
This example shows how Servilla’s modular architecture enables support of diverse
hardware platforms.

5.2 Efficiency of Service Binding

Service binding consists of three parts: discovery, matching, and selection. This study
first focuses on discovery followed by matching and selection. Recall that the current
implementation requires the Service Finder to query each neighbor individually for a
match. This is because Servilla uses a reliable network interface that does not support
wireless broadcasts. To optimize the selection, the Service Finder first searches locally
before remotely. Since the latency of a local search is negligible, we evaluate the latency
of a remote search.

The latency of a remote search depends on the number of neighbors, the percentage
of them that provide a matching service, and the order in which they are queried. At a
minimum, one neighbor will be queried. This study evaluates only a single query, since
each additional query will proportionately increase the latency. An Imote2 is used to
query a TelosB to determine whether the TelosB provides a particular service. In this
case, the service being queried is FFT and the specification is shown in Figure 2. It
is compiled into 64 bytes, which must be sent from the Imote2 to the TelosB. Due to
various bookkeeping variables, the size of the query message is 72 bytes, and the reply
message is 16 bytes. The time between sending the query to receiving a reply is mea-
sured by toggling a general I/O pin before and after the query, and capturing the time
between toggles using an oscilloscope. Averaged over 100 trials, the latency and 90%
confidence interval is 245.6 ± 1ms. This latency is acceptable to many WSN applica-
tions. Moreover, it may be amortized over multiple invocations of the same service after
it is bound to the task.

To evaluate the efficiency of service matching, the Matchmaker is used to compare
two copies of FFT, shown in Figure 2. This incurs the worst-case latency since ev-
ery property within the specification must be compared. Each experiment is repeated
twenty times on both TelosB and Imote2 platforms running at all possible CPU speeds
and the average latency is calculated. The results are shown in Table 2.1 They indicate
that the TelosB takes about 92ms to perform a match, while the Imote2 is at least ten

1 The confidence intervals are negligible since the experiment runs locally and the measurements
exhibit very low variance.
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Table 2. Service matching latency when comparing two FFT-real service specifications

device CPU Speed Bus Speed Sig. Attr. 1 Attr. 2 Attr. 3 Other Total Units

TelosB 8MHz 8MHz 18 14 24 29 8 92 ms

Imote2 13MHz 13MHz 1569 1421 2642 3272 784 9688 µs

Imote2 104MHz 104MHz 198 180 330 408 94 1209 µs

Imote2 208MHz 208MHz 99 89 165 204 47 604 µs

Imote2 416MHz 208MHz 71 62 113 136 31 413 µs

Fig. 7. The latency of comparing a specification vs. its size

times faster. The latencies are small compared to the execution times of certain VM in-
structions. Note that while service matchmaking does introduce overhead, it is usually
done infrequently relative to service invocation.

To determine how the specification’s size affects matching latency, FFT is compared
to versions of itself with one, two, and all three of its attributes removed. The matching
latencies is plotted against their sizes and the results are shown in Figure 7. For brevity,
only the Imote2 running at 13MHz is shown. The latency when the Imote2 is running at
higher frequencies is significantly lower. The results indicate that the latency is roughly
proportional to its size. It is not exactly proportional because of the additional over-
head incurred with the addition of each attribute, as indicated by the “other” column in
Table 2.

6 Application Case Study

This section evaluates Servilla using an application case study, specifically one designed
to localize damage in structures (e.g., a bridge). The application enables real-time eval-
uation of a structure’s integrity, reducing manual inspection costs while increasing
safety. WSNs have recently been used to successfully localize damage to experimen-
tal structures using a homogeneous network of Imote2 devices [24]. In this case, the
algorithm, called Damage Localization Assurance Criterion (DLAC), was written us-
ing NesC specifically for the Imote2. The implementation using Servilla generalizes
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NAME = AccelTrigger
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ATTRIBUTE power = ...
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(a) The specification of service
AccelTrigger provided by Imote2
and TelosB devices. The power attribute
specifies the amount of power the service
consumes. It is 145mW on the Imote2,
and 9mW on the TelosB.

NAME = AccelTrigger
...
ATTRIBUTE power < 50

Interface
Attributes

Name

(b) The specification of a low-power ver-
sion of service AccelTrigger, which
is provided by the application task. Its in-
terface is omitted since it is the same as
the one in Figure 8(a). A high-power ver-
sion has attribute power ≥ 50 mW.

NAME = DLAC
METHOD = find
INPUT =
OUTPUT = float[25]

Interface

Name

(c) The specification of service DLAC
provided by Imote2 devices.

Fig. 8. The services used by the damage localization application

and improves upon the original by making it platform-independent and increasing its
overall energy efficiency by exploiting network heterogeneity.

The heterogeneous WSN used in this study consists of TelosB and Imote2 devices.
DLAC can only run on the Imote2 due to insufficient memory on the TelosB. However,
Imote2 devices consume significantly more energy than TelosB devices. Thus, using
Servilla, the application can combine the advantages of both platforms by using the
TelosB devices to monitor the ambient vibration levels, allowing the Imote2 devices to
sleep longer. Ideally, the Imote2 devices should only be activated to perform the DLAC
algorithm when the TelosB devices detect that the ambient vibration levels exceed a
certain damage-inducing threshold. The dual-level nature of this configuration is com-
mon to other applications like surveillance [26], and is essential for conserving energy
and increasing network lifetime.

The Servilla implementation relies on two services: AccelTrigger and DLAC.
Ambient vibrations are monitored by AccelTrigger, which sets a flag when a thresh-
old is exceeded. Its specification is shown in Figure 8(a). The service has three methods:
start, stop, and check. Methods start and stop control when the service mon-
itors the local accelerometer. The status of the flag is obtained by invokingcheck. Both
the Imote2 and TelosB devices provide AccelTrigger. They differ in their power at-
tribute, since the Imote2 consumes more power than the TelosB (145mW vs. 9mW).

The specification of service DLAC is shown in Figure 8(c). It contains a single
method, find, that takes no parameters and returns an array of floating-point num-
bers that are used to localize damage to the bridge [24].
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1. uses AccelTiggerHP;
2. uses AccelTiggerLP;
3. uses DLAC;
4.
5. void main() {
6. bind(DLAC, 0); // bind DLAC service
7. if(!isBound(DLAC)) exit(); // failed to bind DLAC
8. bind(AccelTriggerLP, 1); // bind low-power AccelTrigger service
9. if(isBound(AccelTriggerLP)) {
10. invoke(AccelTriggerLP, “start”);
11. waitForTrigger(1);
12. } else {
13. bind(AccelTriggerHP);
14. if(isBound(AccelTriggerHP)) {
15. invoke(AccelTriggerHP, “start”);
16. waitForTrigger(0);
17. }
18. }
19. }
20.
21. void waitForTrigger(int useLowPower) {
22. int vibration = 0;
23. while(vibration == 0) {
24. if (useLowPower)
25. vibration = invoke(AccelTriggerLP, “check”);
26. else
27. vibration = invoke(AccelTriggerHP, “check”);
28. if (vibration == 1) {
29. if (useLowPower)
30. invoke(AccelTriggerLP, “stop”);
31. else
32. invoke(AccelTriggerHP, “stop”);
33. doDLAC();
34. }
35. sleep(1024*60*5); // sleep for 5 minutes
36. }
37. }
38.
39. void doDLAC() {
40. float[25] dlac data;
41. dlac data = invoke(DLAC, “find”);
42. send(dlac data); // send DLAC data to base station
43. }

Fig. 9. The damage localization application task

The application’s task is shown in Figure 9. The first three lines specify the
names of the files containing the required service specifications. The content of
AccelTriggerLP is shown in Figure 8(b), and the content of DLAC is shown
in Figure 8(c). Notice that AccelTriggerLP matches the TelosB version of the
AccelTrigger service shown in Figure 8(a) because its power attribute is less than
50mW. AccelTriggerHP contains the same specification as AccelTriggerLP
except its power attribute is ≥ 50 mW, which matches the service provided by the
Imote2.

The application attempts to reduce energy consumption by preferentially binding to
an Acceltrigger service that consumes less power. It does this by first attempting
to bind using the specification within AccelTriggerLP on line 8, before using
the specification within AccelTriggerHP on line 13. Once an AccelTrigger
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service is bound, the task periodically queries it to determine if the acceleration readings
are above a certain threshold (lines 21-37). If it is, DLAC is invoked and the results are
sent to the base station (lines 39-43).

To evaluate the benefit of exploiting network heterogeneity on Servilla, the task
shown in Figure 9 is injected into two WSNs: a homogeneous network consisting
of only Imote2 devices, and a heterogeneous network consisting of both Imote2 and
TelosB devices. Since the application is written using Servilla, it is able to run on
both types of networks without modification. In both cases, DLAC is executed by the
Imote2, meaning the power consumption of performing damage localization is con-
stant. However, the power consumption of AccelTrigger varies because Servilla’s
service provisioning framework enables an application to exploit more energy-efficient
services when possible in a platform-independent and declarative fashion. Specifically,
if TelosB devices are present, the service will be executed on a TelosB device since its
AccelTrigger service consumes less power, otherwise it will be executed on the
Imote2. We compare the power consumption of invoking AccelTrigger in different
network configurations.

Since invoking AccelTrigger on the TelosB requires a remote invocation, the
amount of energy saved depends on the invocation and sensing frequencies. If the
service is invoked too often, more energy will be spent on wireless communication.
Likewise, if the sensor is accessed very infrequently, the benefits of the TelosB is dimin-
ished since the devices will remain asleep a larger percentage of the time. To determine
how much energy savings is possible, an oscilloscope is used to measure the time each
platform spends computing, communicating wirelessly, and sensing, in both a homoge-
neous and heterogeneous network. The sensing frequency is varied between 15Hz and
55Hz (the maximum sampling frequency of the TelosB), and the service invocation
frequency is varied between 50 seconds to 35 minutes. The percent savings of using a
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heterogeneous network relative to a homogeneous network is then calculated and the
results are shown in Figure 10.

The results show that the heterogeneous implementation using Servilla achieves up
to 52% power savings, and the savings increase with sensing frequency. They also show
that invoking the service too frequently will reduce the amount of power saved since
doing so incurs more network overhead. There is a limit to the amount of energy that can
be saved as the service invocation period increases since it approaches the difference
between the sensing energy consumed by the Imote2 versus the TelosB.

This case study demonstrates how Servilla enables platform-independent applica-
tions that operate over a heterogeneous WSN, and how Servilla facilitates in-network
collaboration between different types of devices to attain higher energy efficiency.
Moreover, it demonstrates that Servilla enables an application to bind to a more energy-
efficient service through service specification.

7 Related Work

SOC has long been used on the Internet to enable independently-developed applications
to interoperate. There are many SOC systems including SLP [30], Jini [31], OSGi [44],
CORBA, and Web Services [2]. Servilla has three salient features that distinguish it
from these SOC frameworks. First, it focuses on how service-provisioning language
and middleware can be made extremely lightweight. This is necessary due to the lim-
ited resources available on many WSN devices. Many previous SOC systems have been
ported to PDA-class devices, which are more powerful than the low-power sensor de-
vices supported by Servilla. Second, Servilla is specifically designed for localized ser-
vice binding which is a common case in WSNs due to limited energy resources. Finally,
Servilla provides a modular middleware architecture that can be configured for devices
with a wider range of resources.

SOC is a topic of interest in the coordination community. For example, new lan-
guages have been developed that enable formal reasoning about complex service in-
teractions and compositions [8,1,38,3]. Calculi have been developed to model sessions
and multi-party dynamic interactions between service users and providers [39,13]. New
ways of specifying quality-of-service requirements and achieving higher levels of reli-
ability have been proposed [4,10,12,42,9]. SOC has also been used in non-traditional
environments like mobile ad hoc networks [25]. Recently, there has been increased in-
terest in context-aware applications [43,20,16]. WSNs, being embedded and able to
sense the environment, are inherently context-aware. This paper takes the natural next
step of applying SOC principles to WSNs. The key distinguishing feature of Servilla
lies in its capability to support both resource-constrained devices and more powerful
devices, and its light-weight language and middleware tailored for in-network coordi-
nation among sensors.

Efforts to bring SOC technologies into the WSN domain include Tiny Web Ser-
vices [47] and Arch Rock’s PhyNetTM [6]. Both optimize existing Internet protocols
to function under the severe resource constraints of WSNs. Unlike Servilla, they do
not provide a mechanism for service discovery or the flexible matching of service con-
sumers to providers within the WSN. Instead, they enable language-independent com-
munication between services inside the WSN and applications outside of the WSN.
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In addition to SOC, Servilla shares the common approach of using scripts in a
WSN, though for different reasons. Some scripting systems, including Maté [34],
ASVM [35], SwissQM [40], and Agilla [19], enable reprogramming. Other systems, in-
cluding Melete [51] and SensorWare [11], enable multiple applications to share a WSN.
All of these systems come with different scripting languages [33,23,37,50]. Servilla dif-
fers by focusing on challenges due to network heterogeneity and dynamics. Unlike other
systems, Servilla allows scripts to remain platform-independent and dynamically find
and access platform-specific services. One scripting system, DVM [7], explores the sim-
ilar idea of integrating platform-independent scripts with native services. It features a
dynamically extensible virtual machine in which services can register extensions. While
this enables tuning the boundary between interpreted and native code, DVM does not
support flexible matching between scripts and services.

Servilla introduces the idea of a modular and configurable platform in which ex-
tremely resource-poor devices only implement a fraction of the entire framework. This
enables a hierarchy in which weak devices serve more powerful devices. The idea of
having a hierarchy within a WSN is promoted by other systems. Tenet [22] creates a
two-tired WSN in which the lower tier consists of resource-poor devices that can ac-
cept tasks from higher-tier devices. It differs from Servilla in that it does not support
service discovery and dynamic binding between different devices. SONGS [36] is an
architecture for WSNs that allows users to issue queries that are automatically decom-
posed into graphs of services which are mapped onto actual devices. SONG does not
provide service binding among heterogeneous devices.

8 Conclusions

The increasing difficulty of developing applications for heterogeneous and dynamic
WSNs demands a new coordination model. Servilla provides this by introducing a novel
service provisioning framework that enables applications to be platform-independent
while still able to access platform-specific capabilities. A salient feature of Servilla lies
in its capability to support coordination and collaboration among heterogeneous devices
inside a WSN. A specialized service description language is introduced that enables
flexible matching between applications and services, which may reside on different
devices. Servilla provides a modular middleware architecture to enable resource-poor
devices to participate by contributing services, facilitating in-network collaboration
among a wide range of devices. The efficiency of Servilla’s implementation is estab-
lished via microbenchmarks on two representative classes of hardware platforms. The
effectiveness of Servilla’s programming model is demonstrated by a structural health
monitoring application case study.
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Fairness for Chorded Languages
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Abstract. Joins or chords is a concurrency construct that seems to fit
well with the object oriented paradigm. Chorded languages are presented
with implicit assumptions regarding the fair treatment of processes by
the scheduler. We define weak and strong fairness for the Small Chorded
Object-Oriented Language (lSCHOOL) which allows the classification of
executions as fair. We investigate the liveness behaviour of programs and
establish worst-case behaviours in terms of scheduling delays.

We discover that weak fairness, although giving the scheduler im-
plementer greater freedom in selecting the next process which is to be
executed, is harder to implement than strong fairness; strong fairness
benefits from a straightforward implementation, however, imposes many
more constraints and limits the selection function of a scheduler.

1 Introduction

The chord construct is a concurrency mechanism inspired by the join from the
Join-Calculus [1,2]. Its use should raise the level of abstraction concurrent pro-
grams are written in, making development of correct programs easier. Its sim-
plicity is appealing and recently languages have been extended to include chords
or joins: C� [3], Concurrent Basic [4] an extension of Visual Basic, Cω [5,6],
JoCaml [7], and Scala [8].

Generally, programmers assume that a concurrent execution environment will
benefit from a “fair” scheduler, in the sense that execution of their programs will
not be arbitrarily delayed, nor that some components of their program will be
treated more favourably than others. However, this assumption is not typically
reflected in the formalisms which describe concurrent languages and the selection
function of the scheduler is left unspecified.

Notions of fairness evolved from the observation that legal executions allowed
lack of progress for some components of concurrent systems. We aim to determine
what makes a fair chorded implementation. To achieve this we start by defining
a small calculus (lSCHOOL) that is object oriented with chords.

Two fundamental concepts in scheduling are liveness and fairness, here in the
sense of relative allocation (fairness) of execution time and message consumption
among interacting processes which are capable of executing (liveness). There are
many notions of fairness depending on the kinds of guarantees one wishes to give.
We investigate two primary notions of fairness, weak and strong, and describe
abstract schedulers with weak and strong fairness guarantees.

The rest of the paper is organised as follows: In section 2 we introduce both
chords and fairness for earlier concurrent programming languages, showing some
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of the problems that arise from non-deterministic choice in programming lan-
guage constructs, and the kinds of properties schedulers handling such choice
may be required to guarantee. In section 3 we introduce our calculus. Fairness
is investigated in sections 4,5, and 6. Finally, we conclude in section 7.

2 Background

Chorded programs [9] consist of classes which define chords. A chord consists of
a header and a body. The header consists of at most one synchronous method
signature and zero or more asynchronous method signatures, while the body
consists of the expressions to be executed.

The body of a chord executes when an object has received an invocation for
each of the method (signatures) in its header. In general, multiple invocations
are required to execute the body. The simultaneous presence of invocations for
each of the methods enables the chord to join [1,2]. Hence a chord header can
be seen as a guard for the execution of the body.

When a join occurs the participating asynchronous methods’ invocations are
consumed, and their arguments are passed to the body of the chord. When
multiple invocations of the same method are present there is a non-deterministic
choice as to which invocation is consumed.

A method can appear at most once in any chord header, but, methods can
participate in multiple chord headers. If multiple chords can join by consuming
the same method invocation, then the choice of which chord joins is unspecified.

The invocation of a synchronous method results in the invoking thread block-
ing until a suitable join occurs. Again, there may be a choice of which chord
will join and unblock the thread if the method participates in more than one
chord. Once the join occurs the invoker thread is unblocked and executes the
chord body, potentially resulting in a return value.

Asynchronous methods return immediately, and their return type must be
async, a subtype of void . A chord without a synchronous method is called asyn-
chronous, and when it is capable of joining we call it strung; such chords will not
have an invoking blocking thread. When an invocation for each of their asyn-
chronous methods is present, the chord can join and its body is executed in a
new thread. The following chord implements an unbounded buffer:

Object get( ) & async put( Object o ) { return o; }

Invoking get, which is synchronous, will result in the invoker blocking until
a value is returned. The body of the chord will execute only when the chord
joins, which requires an invocation of put to be present. When a join occurs, the
invocation of put is consumed. Multiple invocations of put are “queued”.

The primary work on fairness in concurrent programming languages was for
CCS by Costa and Stirling [10] who developed weak and strong fairness for CCS.
Their approach is to augment CCS with an appropriate labelling mechanism
which deals with the non-deterministic choice operator +, as well as restriction
and communication. The CCS operational semantics are extended so that only
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weakly-fair execution sequences are admitted in contrast with an approach where
all executions are generated and unfair ones are then eliminated.

Weak fairness prohibits executions where a process remains enabled through-
out but does not get a chance to proceed, or remains enabled almost always;
in other words, weak fairness requires that if a component is enabled continu-
ously from some point onwards, then it eventually proceeds. This implies that if
a process is continuously enabled, then it proceeds infinitely often.

The resulting system allows for a “local” characterisation of weakly-fair ex-
ecutions, in the sense that finite sequences are shown to be weakly fair, and a
continuous concatenation of such locally weakly-fair sequences produces a glob-
ally weakly-fair execution.

Strong fairness relaxes the assumption of weak fairness for a component be-
coming continuously enabled from some point onwards to becoming enabled in-
finitely often, and hence requires that if a component is infinitely often enabled
it proceeds infinitely often. Therefore, strong fairness prohibits exactly those ex-
ecutions which contain components which become enabled infinitely often but
proceed only a finite number of times.

Similarly to their presentation of weak fairness, a positive approach is used by
which CCS is appropriately labelled and the operational semantics are extended
in order to admit exactly the strongly-fair executions. In contrast with weak
fairness, however, strongly-fair execution sequences cannot be characterised “lo-
cally”, as there is a family of systems of processes which are strongly-fair for an
indefinite number of steps, yet then become inadmissible under strong fairness.

Strong fairness implies weak fairness, and if components which become dis-
abled never become enabled again, the two coincide [11]. An implementation of
strong fairness always requiresusing queues [11].

3 lSCHOOL

lSCHOOL is a small object-oriented language. The constructs of the language
are limited to classes which define chords, and object instantiations of these
classes which reside in a heap. Classes exist within a simple, single-inheritance
hierarchy, and methods and chords can be overridden.1

The chord description of the previous section is based on Polyphonic C�,
which features the async return type, a subtype of void , to indicate asynchronous
methods; this is not necessary for implementing asynchronous methods, as all
methods of return type void can be executed asynchronously. lSCHOOL does
not feature the async type; instead, a method which has a return type of void
can be invoked either synchronously or asynchronously. Furthermore we require
exactly one argument for each method m, which we call m x. The value of the
last expression evaluated in a body becomes the return value of the chord.

The granularity level of lSCHOOL is at the individual expressions, which
are either live or non-live, depending on whether they can participate in an
evaluation through one of the rules. Individual expressions are annotated with
1 The full set of definitions and lemmas for lSCHOOL can be found in the appendix.
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Abstract Syntax

e ∈ Expr ::= null | this | x | new c | e.m(e) | e; e
MethSig ::= t m(c)
t ∈ Type ::= void | c

x, c, m ∈ Id

Program Representation

Program = (Idc → Idc) × (Idc × Idm → MethSig) × (Idc → P(Chord))
Chord = (Idm ∪ {ε}) × P(Idm) × Expr

Runtime Entities

Configuration = RExpr� × Heap
Heap = N → Idc

re ∈ RExpr ::= voidValue | null | ι | new c | re.m(re) | re; re
ι ∈ N

Labelled Runtime Entities

lre ∈ LRExpr ::= voidValuel | ιl | new cl | re.m(re)l | re; rel | nulll

l ∈ Lε

Fig. 1. lSCHOOL overview

unique labels, and then transitions are annotated with collections of labels which
correspond to those expressions participating in an evaluation. The use of labels
thus enables us to observe execution traces, and classify these as admissible or
inadmissible under particular notions of fairness.

Figure 1 provides an overview of syntax and program representation. The
syntax of lSCHOOL expressions, Expr, consists of method calls e.m(e), variables
x, object creation new c, sequential composition, the special receiver this , and
the null value. We use Idm for the set of method names, Idc for the set
of class names, and Idx for the set of variable names. lSCHOOL programs
are represented using tuples of mappings. Programs consist of three mappings:
inheritance, method signatures, and chords. We typically define a globally fixed
variable P which contains the program, as described below.

The first component maps a class name to its direct superclass: Idc → Idc and
the superclass of a class c is P↓1(c). The second component maps a class name
c and a method name m to the method’s signature: Idc × Idm → MethSig
and the method signature is P ↓ 2(c, m). The signature consists of a return
type, a name, and the class type of the single argument: t m(c). The third
component maps a class name to the set of chords defined in the class: Idc →
P(Chord); to obtain the chords of class c we use P↓3(c). We encode chords as
triplets (Idm ∪ {ε})×P(Idm)×Expr. The first element is either the name of a
synchronous method, or the symbol ε if there aren’t any. The second element is
a set of asynchronous method names. The third is the body of the chord.

Each expression is annotated with a distinct label which is a runtime entity.
Expressions which are ground values, so not considered during future evaluation
steps, are each labelled with a special empty label.
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Evaluation Contexts

E[�] ::= [�] | E[�].m(e) | ι.m(E[�]) | E[�]; e

Evaluation Rules

h(ι) is undefined l′ is fresh
New

E[new c]l, h
{l}−−−→ E[ι]l

′
, h[ι �→ c]

l′ is fresh
Seq

E[z; e]l, h −→ E[e]l
′
, h

h(ι)=c m ∈
[

χ∈P ↓3(c)

χ↓2 E[�] 	= [�] l
′
, l

′′ are fresh

Async

E[ι.m(v)]l, h
{l}−−−→ E[voidValue]l

′
, ι.m(v)l′′ , h

h(ι)=c (m, {m1, . . . , mk}, e) ∈ P↓3(c) l′0 fresh

∀ i ∈ 1..k : ∃ l′i ∈ Lε : l′i =

(
ε if Ei[�] = [�]
l ∈ L, l fresh otherwise

Join

E[ι.m(v)]l0 , E1[ι.m1(v1)]l1 , . . . , Ek[ι.mk(vk)]lk , h
{l0,l1,...,lk}−−−−−−−−−−→

E[e[ι/this, v/m x, v1/m1 x, . . . , vk/mk x]]l
′
0 , E1[voidValue1]l

′
1 , . . . , Ek[voidValuek]l

′
k , h

h(ι)=c (ε, {m1, . . . , mk}, e) ∈ P↓3(c) l fresh

∀ i ∈ 1..k : ∃ l′i ∈ Lε : l′i =

(
ε if Ei[�] = [�]
l′ ∈ L, l′ fresh otherwise

Strung

E1[ι.m1(v1)]l1 , . . . , Ek[ι.mk(vk)]lk , h
{l1,...,lk}−−−−−−−−→

E1[voidValue1]l
′
1 , . . . , Ek[voidValuek]l

′
k , E[e[ι/this, v1/m1 x, . . . , vk/mk x]]l, h

el ∼= e′′l′′e′′′′l′′′′ e′′l′′ , h
µ−−→ e′′′l′′′′ , h′ e′′′l′′′e′′′′l′′′′ ∼= e′l′

Perm

el, h
µ−−→ e′l′ , h′

Fig. 2. SCHOOL operational semantics

Only top-level run-time expressions, RExpr, are annotated, forming the la-
belled run-time expressions, LRExpr, and so all sub-expressions come directly
from the lSCHOOL runtime expressions RExpr and have no labels.

Execution of lSCHOOL expressions is described by a term rewriting system
in which a configuration, consisting of a collection of expressions, ei, and a heap,
h, evaluate into a new configuration:

e1, . . . , en, h −→ e′1, . . . , e
′
m, h′

where the heap is a mapping of object addresses to their class names:

h : N → Idc

and the number of expressions may change from n to m, as new expressions are
spawned when asynchronous chords join and their bodies execute. Furthermore,
threads never terminate in the sense that ground expressions are not removed
from the execution, so m ≥ n.
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We also use the shorthand e for several, concurrent expressions, and thus we
also have:

e, h −→ e′, h′

We describe lSCHOOL using operational semantics found in figure 2; we use
the variable v to designate acceptable values for arguments to method calls,
which consist of all expressions other than voidValue, and the variable z to
designate all irreducible values (null , ι, voidValue). The evaluation rules are:

• New: creates a new object of a given class and allocates a previously unde-
fined heap address which now maps to the object; returning the new address.

• Seq: discards an irreducible value and enables the evaluation of the next
expression in a sequential composition; the final value in a sequential com-
position cannot be discarded, and this allows the final value of a chord’s
body to become the return value of the chord’s synchronous method.

• Async: places an asynchronous invocation of a method (of void type and
appearing in at least one asynchronous part of a chord header) into the
execution, available for joining later. The invocation immediately returns
voidValue. The condition E[�] �= [�], requiring the evaluation context to not
be empty, is necessary so that we avoid infinite reductions of the form:

ι.m(v), h −→ voidValue, ι.m(v), h −→
voidValue, voidValue, ι.m(v), h −→ . . .

• Join: selects a chord in with a live synchronous method and joins this chord,
consuming the corresponding asynchronous invocations (and replacing each
by voidValue). The actual arguments are mapped to the formal arguments
of the chord’s body, which becomes the new evaluating expression.

• Strung: selects an asynchronous chord which is strung, i.e can join. Similar
to the Join rule, all the asynchronous invocations are consumed, and actual
arguments are mapped to the formal arguments of the chord’s body, which
will execute concurrently with the rest of the expressions.

• Perm enables the non-deterministic selection of expressions to evaluate and
the reordering of expressions in the execution. The notation e ∼= e′ means
that e′ is a permutation of e.

The selection of which strung chord to join happens at two levels: multiple
receiver objects may have asynchronous invocations enabling the joining of a
chord, and an object may feature multiple chords which currently can join.

At each step there is a set of labels for the expressions affected by the rule
used, the participating labels. Ground values become annotated with the empty
label, and each changed or new expression gets a fresh label. Labels which may
participate in an evaluation step are termed active. The freshness of a label is
a property of the entire execution sequence up to the first appearance of the
label. The participating labels, µ, form a set. Furthermore, the participating
labels cannot be emptybecause each rule changes at least one expression from
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1 class LabelledExample {

2 void f() & async a() { b(); }

3 void g() & async b() { print "Hi"; }

4 }

Listing 1.1. Example class for semantics

e
l0
0 , h0 ≡ ι.f()l1 , ι.g()l2 , ι.a()l3 , ι.a()l4 , h

Join
µ0={l1,l3}−−−−−−−−−→

e
l1
1 , h1 ≡ E[ι.b()]l5 , ι.g()l2 , voidValueε, ι.a()l4 , h

Async
µ1={l5}−−−−−−−→

e
l2
2 , h2 ≡ E[ ]l6 , ι.g()l2 , voidValueε, ι.a()l4 , ι.b()l7 , h

Join
µ2={l2,l7}−−−−−−−−−→

e
l3
3 , h3 ≡ E[ ]l6 , E[print ′′Hi′′]l8 , voidValueε, ι.h()l4 , voidValueε, h

Fig. 3. An execution of the LabelledExample class in lSCHOOL

the initial configuration. Also, the empty label cannot be a participating label.
Finally, participating labels are consumed.

Consider an example of an execution in figure 3 using the class
LabelledExample from listing 1.1 with two chords: the first requires an asynchro-
nous invocation of a in order to join with a synchronous invocation of f, while the
second requires an asynchronous invocation of b in order to join with a synchro-
nous invocation of g. Initially there exists a sole object of class LabelledExample
at address ι, and four invocations of methods f, g and two of a respectively.

The first step of evaluation joins the first chord using the Join rule on the
labels l1 and l3, which form the participating labels of this step, µ0. These labels
were consumed. The consuming of the asynchronous invocation of a results in its
replacement with voidValue, and its annotation with the empty label. The body
of the chord forms a new expression, and is annotated with the new label l5. The
label l2, which did not participate in the evaluation step, appears in the resulting
configuration. The next two steps of evaluation result in the second chord joining,
and thus the eventual participation of l2. The second invocation of a, labelled
l4, never participated in the execution, and so the label remains. The labels
of a configuration remain finite,and there is an upper bound on the creation
of new expressions, and hence new labels. The live labels of a configuration,
el1
1 , . . . , eln

n , h, are those labels which can participate in the next evaluation step,
µ−−→ . A label is live when there is at least one rule through which it can

participate in the next evaluation step.
An evaluation rule may be applicable for several sets of participating labels,

more than one of which may contain the live label under consideration. Also,
more than one rule through which the label can participate may be applicable.
The former case would hold if the label’s underlying expression is a method
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1 class LivenessExample {

2 void f() & async a() { b(); }

3 void g() & async b() { print "Hi"; }

4 void h() & async b() { print "I feel ignored"; }

5 }

Listing 1.2. Example class for lieveness of labels

e
l0
0 , h0 ≡ ι.f()l1 , ι.g()l2 , ι.h()l3 , ι.a()l4 , h

Join
µ0={l1,l4}−−−−−−−−−→

live = {l1, l4} ignored = ∅

e
l1
1 , h1 ≡ E[ι.b()]l5 , ι.g()l2 , ι.h()l3 , voidValueε, h

Async
µ1={l5}−−−−−−−→

live = {l5} ignored = ∅

e
l2
2 , h2 ≡ E[ ]l6 , ι.g()l2 , ι.h()l3 , voidValueε, ι.b()l7 , h

Join
µ2={l2,l7}−−−−−−−−−→

live = {l6, l2, l3, l7} ignored = {l6, l3}

e
l3
3 , h3 ≡ E[ ]l6 , E[print ′′Hi′′]l8 , ι.h()l3 , voidValueε, voidValueε, h

live = {l6, l8}

Fig. 4. An execution of the LivenessExample class in lSCHOOL

invocation which can currently participate through the Join rule in two different
chords. The latter case would hold if the expression can currently participate
either through the Join rule or the Strung rule, again in two different chords.

At each step of an execution, if a label, l, is live, but is not in the participating
labels, µ, then we say it is ignored. A label loses its liveness when it participates
in a step of evaluation. However, a label can also lose its liveness due to another
label being consumed (such as two labels competing for a sole third label in
order to join). Conversely, a label may become live due to a newly created label
(such as a method invocation to join).

Consider an example of liveness in figure 4 using the class LivenessExample
from listing 1.2, which features three chords. The second and third chord both
require an invocation of b in order to join, and hence will compete for such
an invocation. Initially there exists a sole object of class LivenessExample at
address ι, and four invocations: three synchronous invocations of f, g and h
respectively, and an asynchronous invocation of a.

We notice that after two steps of evaluation both the second and third chords
can join, as both their synchronous method invocations, g and h, respectively,
can participate through the Join rule and consume the invocation of b; however,
during the third step the invocation of g was selected to participate, and the
invocation of h was ignored, resulting in loss of liveness (as there are no more
asynchronous invocations of b).
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Fig. 6. Liveness behaviour of a label: worst case for the number of configurations which
occur before a label alternates for the last time – label live at grey circles

The losing and regaining of liveness of a label (its liveness behaviour) is sub-
ject to the selection of evaluation rule applied at each step of an execution.
It is possible to classify liveness behaviour in terms of patterns exhibited, and
accordingly make observations on the properties of these patterns.
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Table 1. Summary of worst-case calculations for number of steps which occur when
ignoring a label is maximised

l ∈ live

„
e

li
i

«
α Worst Case Number of Steps

no even i + (α/2) ∗ (θ + 1)
no odd i + �α/2� ∗ (θ + 1) − 1
yes even i + (α/2) ∗ (θ + 1)
yes odd i + �α/2� ∗ (θ + 1) + 1

S f f f

Figure 5 illustrates the possible liveness behaviours of a label: always alter-
nating, alternating α times and then remaining always non-live or always live,
and the two special cases when α = 0.

We are interested in establishing the worst case for the number of configura-
tions - or steps - which occur after a given number of alternations. Hence, if we
assume that each θm is equal to θ, then we know that in the worst case, and
assuming that l starts out as non-live, the last alternation will occur before the
i+α ∗ θ configuration. The bottom example execution of figure 6 illustrates this
pattern for l starting out as non-live and after α alternations remaining always
live; the same calculation of the worst case holds for other combinations of initial
and final liveness of l.
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1 class WeakFairnessExample {

2 void f() & async a() { b(); a(); f(); }

3 void g() & async b() { print "Oh, dear..."; }

4 void h() & async a() { print "Help!"; }

5 void k() & async c() { print "Ha!"; }

6 }

Listing 1.3. Example class for weak fairness

e
l0
0 , h0 ≡ ι.f()l1 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.a()l5 , ι.c()l6 , h

Join
µ0={l1,l5}−−−−−−−−−→

live = {l1, l3, l4, l5, l6} ignored = {l3, l4, l6}

e
l1
1 , h1 ≡ E[ι.b(); ι.a(); ι.f()]l7 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , h

Async
µ1={l7}−−−−−−−→

live = {l7, l2, l4, l6} ignored = {l2, l4, l6}

e
l2
2 , h2 ≡ E[ι.a(); ι.f()]l9 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , ι.b()l8 , h

Async
µ2={l9}−−−−−−−→

live = {l9, l2, l3, l4, l6, l8} ignored = {l2, l3, l4, l6, l8}

e
l3
3 , h3 ≡ E[ι.f()]l11 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , ι.b()l8 , ι.a()l10 , h

Join
µ3={l11,l10}−−−−−−−−−−−→

live = {l11, l2, l3, l4, l6, l8, l10} ignored = {l2, l3, l4, l6, l8}

e
l4
4 , h4 ≡ E[ι.b(); ι.a(); ι.f()]l12 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , ι.b()l8 , h

Async
µ4={l12}−−−−−−−−→

live = {l2, l4, l6, l8, l12} ignored = {l2, l4, l6, l8}
...

Fig. 8. An execution inadmissible under weak fairness

Furthermore, we are interested in the worst case for the number of configura-
tions - or steps - which occur when we maximise the number of times a label is
ignored during finite alternating behaviour. In order for l to be ignored it must be
live, and hence we consider the case where l is live for only one configuration be-
fore it alternates to non-live again, and each sequence of configurations at which
l is non-live is equal to the maximum, θ. In order to consider the worst case,
however, we have to take into account whether α is even or odd, and whether
l starts out as live non-live. Figure 7 illustrates the four cases which arise, and
table 1 summarises the calculations.

4 Definitions of Weak and Strong Fairness

Since a label is ignored only when it is live and does not participate in the
current step of evaluation, and only active labels can become live, the following
definitions of fairness are stated in terms of live labels, ignoring empty labels.
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Definition 1 (Weak Fairness)
An execution is weakly-fair iff no process remains ignored continuously. In other
words, no process remains live continuously. [10,11,12]

From this definition, every label must cease to be live after a finite number
of steps. The following definition requires that for every label appearing in an
execution, there exists some configuration at which the label is not live.

Definition 2 ( Weakly-Fair Execution )
el0
0 , h0

µ0−−−→ el1
1 , h1

µ1−−−→ el2
2 , h2

µ2−−−→ . . .
µn−1−−−−→ eln

n , hn
µn−−−→ . . . =⇒

∀ i ∈ N : ∀ l ∈ labels
(

eli
i

)

: ∃ k � i : l �∈ live
(

elk
k

)

Consider an example execution inadmissible under weak fairness using the class
from listing 1.3 and the initial configuration from figure 8. The class features four
chords: the first and third require the joining, respectively, of the synchronous
methods f and h with the asynchronous method a, the second chord requires the
joining of the synchronous method g with the asynchronous method b, and finally
the fourth chord requires the synchronous method k to join with the asynchro-
nous method c. Initially, there exists a sole object of class WeakFairnessExample
at address ι, and six invocations of the methods f, g, h, k, a and c respectively
(there is no invocation of b).

In the initial configuration all invocations except that of g, labelled by l2, are
live. The first invocation, labelled l1, is selected to join with l5, and hence the
rest (l3, l4, l6) are ignored. At the second configuration the sole invocation of a
has been consumed, and hence the third chord cannot join any more, resulting
in l3 losing its liveness. Furthermore, the invocation of g becomes live now, as
now it is possible to apply the Join rule with the invocation of b from within the
evaluation context of l7; instead, l7 is selected to execute via the Async rule,
resulting in b entering the configuration in the next configuration with label l8.

At this point (configuration 2) l3 becomes live again, as it is possible to apply
the Join rule; once again, the Async is chosen with l9 and the invocation of a
enters the configuration with label l10. The fourth chord is ignored for a third
consecutive time. At this point, it is possible for the execution to repeat itself in
this pattern indefinitely, resulting in l4 and l6 being ignored continuously, and
hence making the execution unfair under weak fairness. Label l2 became live
in the second step and remains live; so after the second step, execution is not
weakly fair for l2. A weakly-fair execution sequence will print both “Ha!” and
“Oh, dear...”, although “Help!” has no guarantee of ever printing.

Definition 3 (Strong Fairness)
An execution is strongly-fair iff no process is ignored infinitely-often. In other
words, no process loses and regains its liveness an infinite number of times.
[10,11,12]

From definition 3 every label must cease to be live after a finite number of steps,
and never regain its liveness. The following definition requires that for every
label appearing in an execution, there exists some configuration such that the
label is not live at that and all further configurations.
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1 class StrongFairnessExample {

2 void f() & async a() { b(); f(); }

3 void f() & async b() { b(); f(); }

4 async b() { a(); }

5 void g() & async a() { print "Help"; }

6 }

Listing 1.4. Example class for strong fairness.

e
l0
0 , h0 ≡ ι.f()l1 , ι.g()l2 , ι.a()l3 , h

Join
µ0={l1,l3}−−−−−−−−−→

live = {l1, l2, l3} ignored = {l2}

e
l1
1 , h1 ≡ E[ι.b(); ι.f()]l4 , ι.g()l2 , h

Async
µ1={l4}−−−−−−−→

live = {l4} ignored = ∅

e
l2
2 , h2 ≡ ι.f()l5 , ι.g()l2 , ι.b()l6 , h

Join
µ2={l5,l6}−−−−−−−−−→

live = {l5, l6} ignored = ∅

e
l3
3 , h3 ≡ E[ι.b(); ι.f()]l7 , ι.g()l2 , h

Async
µ3={l7}−−−−−−−→

live = {l7} ignored = ∅

e
l4
4 , h4 ≡ ι.f()l8 , ι.g()l2 , ι.b()l9 , h

Join
µ4={l8,l9}−−−−−−−−−→

live = {l8, l9} ignored = ∅

e
l5
5 , h5 ≡ E[ι.b(); ι.f()]l10 , ι.g()l2 , h . . . −−→

live = {l10} ignored = ∅
...

e
l6
6 , h6 ≡ ι.f()l11 , ι.g()l2 , ι.b()l12 , h

Strung
µ4={l12}−−−−−−−−→

live = {l11, l12} ignored = {l11}

e
l7
7 , h7 ≡ ι.f()l11 , ι.g()l2 , E[ι.a()]l13 , h

Join
µ4={l11,l13}−−−−−−−−−−−→

live = {l11, l2, l13} ignored = {l2}

e
l8
8 , h8 ≡ E[ι.b(); ι.f()]l14 , ι.g()l2 , h

live = {l14}

Fig. 9. An execution inadmissible under strong fairness

Definition 4 ( Strongly-Fair Execution )
el0
0 , h0

µ0−−−→ el1
1 , h1

µ1−−−→ el2
2 , h2

µ2−−−→ . . .
µn−1−−−−→ eln

n , hn
µn−−−→ . . . =⇒

∀ i ∈ N : ∀ l ∈ labels
(

eli
i

)

: ∃ j � i : ∀ k � j : l �∈ live
(

elk
k

)

Consider an example execution inadmissible under strong fairness using the class
from listing 1.4 and the initial configuration from figure 9. The class features four
chords: the first two require the joining of the synchronous method f with the
asynchronous methods a and b respectively, the third chord is asynchronous
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and requires only the method b, and finally the fourth chord requires the syn-
chronous method g to join with a. Initially, there exists a sole object of class
StrongFairnessExample at address ι, and three invocations of the methods f,
g, and a respectively.

In the initial configuration the invocation of g, labelled l2, is live. However, the
first invocation, labelled l1, is selected to join with l3, and hence l2 is ignored. In
the second configuration l2 has lost its liveness. The execution now continues for
an unspecified number of steps during which the second chord joins repeatedly.
Newly created labels which become live participate immediately, and since there
is no availability of an invocation of a, l2 does not regain its liveness. It is not
possible, however, to claim that such an execution is strongly-fair because it
is still possible for l2 to regain its liveness. Label l2 could lose and regain its
liveness infinitely often, and hence be ignored infinitely often. Thus, a strongly-
fair execution prohibits this example execution. If, however, l2 were to participate
in the step after the configuration indexed by 7 then the sequence would be
admissible under strong fairness.

5 Weak Fairness

We describe a mechanism to realise weak-fairness constraints for lSCHOOL,
showing how the exampleof our execution inadmissible under weak fairness needs
to be constrained. Since no label remains live throughout a weakly-fair execution,
starting from a configuration, each of its live labels must eventually lose its
liveness. So we can consider a localised definition of weak fairness: a sequence is
locally weakly fair for the initially live labels only if each of the labels is not live
in at least one future configuration. Once the initial configuration’s live labels
have lost their liveness, we get a locally weakly-fair execution.2

The next locally weakly-fair execution uses the previous final configuration
as the new initial configuration. The concatenation of two locally weakly-fair
execution sequences is weakly fair. Also, for any locally weakly-fair execution
sequence which does not result in termination, it is always possible to continue
execution, and thus obtain a weakly-fair execution. Since executions can have an
infinite length, a weakly-fair execution is then defined as the maximal sequence
of concatenated locally weakly-fair executions.

One way to generate locally weakly-fair executions is to keep track of the
serviced labels, those which have lost their liveness.Once all initially live labels
are included in the set of serviced labels, we have obtained a locally weakly-
fair execution sequence and begin anew. Therefore, our mechanism consists of
a selection rule which allows one to freely select any applicable evaluation rule
while keeping track of the serviced labels, and a concatenation mechanism which
allows the construction of a weakly-fair execution sequence.

We define a weakly-fair execution as the maximal sequence of locally weakly-
fair execution sequences; a locally weakly-fair execution sequence consists of
weakly-fair evaluation steps, which are obtained through the Weak selection
2 Definitions, lemmas, and theorems for weak fairness can be found in the appendix.
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el, h
µ−−→ e′l′ , h′

L′ largest subset of live
“

el
”

:

L ∩ L′ = ∅ ∧ L′ ∩ live
“

e′l′
”

= ∅
Weak

el, h, L
µ

==⇒ e′l′ , h′, L ∪ L′

Fig. 10. Weakly-fair selection rule

e
l0
0 , h0 ≡ ι.f()l1 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.a()l5 , ι.c()l6 , h

Join
µ0={l1,l5}−−−−−−−−−→

live = {l1, l3, l4, l5, l6} ignored = {l3, l4, l6}
L0 = ∅

e
l1
1 , h1 ≡ E[ι.b(); ι.a(); ι.f()]l7 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , h

Async
µ1={l7}−−−−−−−→

live = {l7, l2, l4, l6} ignored = {l2, l4, l6}
L1 = {l1, l3, l5}

e
l2
2 , h2 ≡ E[ι.a(); ι.f()]l9 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , ι.b()l8 , h

Async
µ2={l9}−−−−−−−→

live = {l9, l2, l3, l4, l6, l8} ignored = {l2, l3, l4, l6, l8}
L2 = {l1, l3, l5, l7}

e
l3
3 , h3 ≡ E[ι.f()]l11 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , ι.b()l8 , ι.a()l10 , h

Join
µ3={l11,l10}−−−−−−−−−−−→

live = {l11, l2, l3, l4, l6, l8, l10} ignored = {l2, l3, l4, l6, l8}
L3 = {l1, l3, l5, l7, l9}

e
l4
4 , h4 ≡ E[ι.b(); ι.a(); ι.f()]l12 , ι.g()l2 , ι.h()l3 , ι.k()l4 , ι.c()l6 , ι.b()l8 , h

Join
µ4={l4,l6}−−−−−−−−−→

live = {l2, l4, l6, l8, l12} ignored = {l12, l2, l8}
L4 = {l1, l3, l5, l7, l9, l10, l11}

e
l5
5 , h5 ≡ E[ι.b(); ι.a(); ι.f()]l12 , ι.g()l2 , ι.h()l3 , print“Ha!”l13 , ι.b()l8 , h

live = {l2, l8, l12, l13}
L5 = {l1, l3, l5, l7, l9, l10, l11, l4, l6}

Fig. 11. A locally weakly-fair execution

rule of figure 10. The rule allows us to select any lSCHOOL evaluation rule
which is applicable, while maintaining the set L of serviced labels. This set is
built at each step by adding those labels which have lost their liveness; labels
which have already been serviced are not placed into L again. The largest subset
of live labels in the initial configuration is considered, resulting in a notion of
completeness for the recording process.The Weak is useful because it allows us
to non-deterministically generate all weakly-fair schedules from a given initial
configuration, some of which may have no finite upper bound on their length.

Each locally weakly-fair execution sequence, of some length k, begins with a
finite configuration and an empty set of serviced labels L0 and a finite set of
initially live labels; at the final configuration all initially live labels are included
in Lk. The sequence of participating labels is recorded in M . The size of Li is
a function of the number of labels which participate in the evaluation steps 0
through i− 1; although there is an upper bound λ on the number of new labels
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e
l5
5 , h5 ≡ E[ι.b(); ι.a(); ι.f()]l12 , ι.g()l2 , ι.h()l3 , print“Ha!”l13 , ι.b()l8 , h

Join
µ5={l2,l8}−−−−−−−−−−−→

live = {l2, l8, l12, l13} ignored = {l12, l13}
L0 = ∅

e
l6
6 , h6 ≡ E[ι.b(); ι.a(); ι.f()]l12 , print“Oh, dear...”l14 , ι.h()l3 , print“Ha!”l13 , h

Async
µ6={l12}−−−−−−−−−−→

live = {l12, l14, l13} ignored = {l14, l13}
L1 = {l2, l8}

e
l7
7 , h7 ≡ E[ι.a(); ι.f()]l15 , print“Oh, dear...”l14 , ι.h()l3 , print“Ha!”l13 , ι.b()l16 , h

Print
µ7={l13}−−−−−−−−−−→

live = {l15, l14, l3, l13} ignored = {l15, l14, l3}
L2 = {l2, l8, l12}

e
l8
8 , h8 ≡ E[ι.a(); ι.f()]l15 , print“Oh, dear...”l14 , ι.h()l3 , ι.b()l16 , h

live = {l15, l14, l3}
L3 = {l2, l8, l12, l13}

Fig. 12. Next locally weakly-fair execution to be concatenated

which can be created at each step,and hence the number of labels whichbe added
to each L, the size of Lk has no upper bound.

We use the original example of weak fairness with the program of listing 1.3
and the initial configuration from figure 8. In figure 11 we generate a locally
weakly-fair execution which is the same as the original execution up to the
configuration indexed by 4; each Li is recorded, with added labels underlined.
L0 begins empty, and L1 contains labels l1, l3 and l5, as the first and third have
lost their liveness by participating in the first evaluation step, and l3 has lost its
liveness because the only label that could join with it, l5, was consumed. The
execution then continues up to configuration 4 as in the original example.

At this point we see from the set of serviced labels L4 that all original live
labels except l4 and l6 have been serviced; furthermore, both these labels are
live, and hence we may chose to apply the Join rule with the labels and obtain
the last configuration, indexed by 5, in the figure. Now, all original live labels
are contained in L5, and hence the execution sequence is locally weakly fair.
Notice that we could have continued executing in the initial pattern an indefinite
number of times before choosing to join l4 and l6.

Starting from the last configuration (indexed by 5) of the locally weakly-fair
execution sequence from above, we can begin a new locally weakly-fair execution
sequence by aiming to service the live labels {l2, l8, l12, l13}; an example such
sequence is in figure 12 where the second chord joins (labels l2 and l8), then the
invocation of b from the context labelled by l12 is placed into the configuration
through the Async rule, and finally the print command, labelled by l13, is
executed via an unspecified but obvious Print rule. The last set of serviced
labels, L3, is the set of original live labels, so this sequence is locally weakly-fair.
The execution sequence indexed by 5 through 8 is also locally weakly-fair, and
so their concatenation is weakly-fair. The message “Ha!” was printed and the
message “Oh, dear...” will eventually print if we continue execution with the next
locally weakly-fair sequence, however, the message “Help!” may never print.

In order to show correctnessfor weakly-fair executions, we first establish cor-
rectness for locally weakly-fair executions, in the sense that a locally weakly-fair
execution, for each initially live label, contains at least one configuration at
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el, h
µ−−→ e′l′ , h′

∀ l ∈ live
“

el
”

: ∃ l ∈ live
“

el
”

: l �Q l ∧ l ∈ µ

Q′ = Q � active
“

e′l′
”
◦ active

“
e′l′

”
\ active

“
el

”
Strong

el, h, Q
µ

==⇒ e′l′ , h′, Q′

Fig. 13. Strongly-fair selection rule

which the label is not live. A weakly-fair execution sequence corresponds to a
sequence of locally weakly-fair execution sequences, which in turn corresponds
to an lSCHOOL execution sequence.

6 Strong Fairness

We describe a mechanism that realises lSCHOOL strong fairness constraints.
The example from section 4 of an execution inadmissible under strong fairness
is altered by imposing these constraints. We also present worst-case calculations
for the liveness behaviour of labels under strong fairness.3

An execution sequence is strongly-fair when no label becomes live infinitely
often. Since executions can be infinite, it is not possible to first generate all
valid executions and then select those which are strongly-fair; so we employ a
mechanism which maintains a strongly-fair execution as it is being generated.

For each application of an evaluation rule constraints are imposed on future
selections, and accumulate throughout. To keep track of these constraints we
introduce a queue of labels, which is modified at each evaluation step and passed
to the next. Strong fairness is maintained by imposing constraints through the
selection rule Strong in figure 13: all new labels are appended to the queue,
the order of labels remains unchanged, labels which participate in an evaluation
are removed from the queue, and at each step the first live label in the queue
always participates in the next evaluation step.

Starting from a finite initial configuration, a label which is repeatedly ignored
will eventually reach the head of the queue. Once a label is at the head of the
queue, it will be selected for participation the next time it becomes live. Since
all labels are added to the queue, all labels eventually lose their liveness forever.

A queue Q is denoted by 〈l1 ◦ . . . ◦ lk〉, and its size k is denoted by |Q|. The
relation l �Q l′ between two labels, l and l′, appearing in a queue, Q, is defined
either when l = l′, or when l appears before l′ in Q.

Two operations are defined on queues: removing and appending labels – nei-
ther operation affects the order. Removal uses the retain operator �, which is
applied to a queue Q and a set of labels S as Q � S, and results in Q′, where
all those labels in Q which are not in S have been removed, and the remaining
labels have not changed order. Appending a queue of labels 〈lk+1 ◦ . . . ◦ lk+h〉
to Q, written as Q ◦ 〈lk+1 ◦ . . . ◦ lk+h〉, results in a new queue, Q′, where the

3 The full set of definitions for strong fairness can be found in the appendix.
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e
l0
0 , h0 ≡ ι.f()l1 , ι.g()l2 , ι.a()l3 , h

Join
µ0={l1,l3}

=========⇒
live = {l1, l2, l3} ignored = {l2}
Q0 = 〈bl1 ◦ l2 ◦ l3〉

e
l1
1 , h1 ≡ E[ι.b(); ι.f()]l4 , ι.g()l2 , h

Async
µ1={l4}

=======⇒
live = {l4} ignored = ∅
Q1 = 〈l2 ◦ bl4〉

e
l2
2 , h2 ≡ ι.f()l5 , ι.g()l2 , ι.b()l6 , h

Join
µ2={l5,l6}

=========⇒
live = {l5, l6} ignored = ∅
Q2 = 〈l2 ◦ bl5 ◦ l6〉

e
l3
3 , h3 ≡ E[ι.b(); ι.f()]l7 , ι.g()l2 , h

Async
µ3={l7}

=======⇒
live = {l7} ignored = ∅
Q3 = 〈l2 ◦ bl7〉

e
l4
4 , h4 ≡ ι.f()l8 , ι.g()l2 , ι.b()l9 , h

Strung
µ4={l9}

=======⇒
live = {l8, l9} ignored = {l8}
Q4 = 〈l2 ◦ bl9 ◦ l8〉

e
l5
5 , h5 ≡ ι.f()l8 , ι.g()l2 , E[ι.a()]l10 , h

Join
µ4={l2,l10}

==========⇒
live = {l8, l2, l10} ignored = {l8}
Q5 = 〈bl2 ◦ l8 ◦ l10〉

e
l6
6 , h6 ≡ ι.f()l8 , E[print “Help”]l11 , h

live = {l11}
Q6 = 〈l8 ◦ cl11〉

Fig. 14. A strongly-fair execution

appended labels appear rightmost and the existing labels have not changed or-
der: Q′ = 〈l1 ◦ . . . ◦ lk ◦ lk+1 ◦ . . . ◦ lk+h〉.Appending a set of labels, S, to a queue,
Q, written as Q ◦ S, results in the set being treated as a queue where the order
of the labels is unspecified.

To establish a notion of completeness for the recording of strong fairness
constraints, the definition of strongly-fair executions below requires a finite initial
configuration and an initial queue which contains all initially active labels.

Consider the example of a strongly-fair execution in figure 14using the class
StrongFairnessExample from listing 1.4, with the same initial configuration
consisting of two synchronous method invocations f and g, and an asynchronous
invocation of method a. The first live label in the queue is denoted with a hat.

The first four evaluation steps coincide with the original example. At this point
we assumed an indefinite repetition of the following pattern: the second chord
always joins through the evaluation rule Join and consumes the asynchronous
invocation of method b, with the latest synchronous invocation of method f
participating in the join. Were this pattern to continue forever, l2 would never
regain its liveness, and each of the newly created labels would be consumed
by the subsequent joining of the second chord; since no label would be ignored
infinitely often, the execution would be admissible as strongly-fair.
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If the execution ever involved the evaluation rule Strung with the current
asynchronous invocation of method b, then l2 would regain its liveness. If we
were to allow l2 to be ignored for the second time (as in the original example),
the entire pattern of execution up to now could be repeated infinitely often, and
thus l2 could be ignored infinitely often, making the execution not strongly-fair.

Therefore, if after the fourth evaluation, the label l9 is placed before the label
l8 in the queue Q4, at the fifth evaluation step Strong will select l9 to partic-
ipate, indeed resulting in l2 regaining its liveness in the resulting configuration
(indexed by 5). Now, however, l2 is the earliest live label in the queue (Q5), and
thus must be selected to participate in the next evaluation step (µ5).

Were there two invocations of the method g in the initial configuration, both
could have been ignored in the first step and placed in the queue. Following a
similar pattern of execution, they would both regain their liveness at the sixth
configuration. The one closest to the head of the queue would be selected to
participate, while the other would be ignored a second time. If the pattern were
to repeat, the remaining invocation of method g would regain its liveness, but
now be the first live label in the queue, participating in the next evaluation step.

Although a label can be ignored a finite number of times it is not possible to
determine how many times a label will be ignored as this is a consequence of its
placement in the queue and its relative order to other competing labels, which
is unspecified.

7 Conclusions

From the various implementations of chords, both language-based and library-
based, we noticed an implicit design assumption with regards to scheduling: the
scheduler is assumed to treat processes (or threads) in a “fair” way, or to not
arbitrarily delay a process capable of evaluating.

We define a small labelled calculus lSCHOOL, and then weak and strong
fairness for it, enabling the creation of abstract schedulers for chorded languages
which satisfy the two notions of fairness. The labelling mechanism gives us a
basis for stating the aforementioned fairness notions, as well as properties such
as liveness and liveness behaviours, such as worst-case and alternating liveness.

Our weakly-fair scheduler solves the problem of processes being arbitrarily
ignored continuously; the mechanism consists of tracking those processes which
have been given a chance to evaluate, or have been “serviced”, and attempts to
eliminate all outstanding non-serviced labels. Weakly-fair executions are stated
in terms of local finite sequences, and such sequences, once generated, can be
freely appended.

Our strongly-fair scheduler solves the problem of processes being arbitrarily
infinitely-often ignored; the mechanism consists of a priority queue which records
all fresh processes, and forces the selection of a process after a finite delay in
such a way as to guarantee that all executions of arbitrarily large size result in
processes which eventually either execute or terminate.
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We observed the possible liveness behaviours of chorded programs, and ob-
tained a notion of liveness alternation which we used to show worst-case delays
of processes under strong fairness. As the underlying priority queue for strong
fairness is bound by the number of concurrent processes, these worst-case calcu-
lations are also relevant to the running size of the scheduler’s queue.

Our belief is that schedulers tend to be written using queues, so if fair, they
are strongly-fair. Strongly-fair schedulers have a central point of control, so they
are not suited to parallel or multi-core execution. As our treatment of fairness
for chorded programs focussed on processes rather than something completely
chord specific, it is likely that similar results would also hold true for schedulers
for other concurrency constructs.

Acknowledgements

We would like to thank Neil Datta, Anastasia Niarchou, Sebastian Hunt, Maribel
Fernández, and Sophia Drossopoulou for their comments.

References

1. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, St. Petersburg Beach, Florida, United States, pp. 372–385. ACM
Press, New York (1996)

2. Fournet, C., Gonthier, G.: The join calculus: a language for distributed mobile
programming, pp. 1–66. Applied Semantics Summer School (2008)

3. Chrysanthakopoulos, G., Singh, S.: An asynchronous messaging library for C�.
In: Synchronization and Concurrency in Object-Oriented Languages (SCOOL)
Workshop, OOPSLA (October 2005)

4. Russo, C.: Join patterns for visual basic. In: OOPSLA (2008)
5. Russo, C.: The joins concurrency library. In: Hanus, M. (ed.) PADL 2007. LNCS,

vol. 4354, pp. 260–274. Springer, Heidelberg (2006)
6. Benton, N., Bierman, G., Cardelli, L., Meijer, E., Russo, C., Schulte, W.: Cω (2004),

http://research.microsoft.com/Comega/
7. Fournet, C.: The jocaml language (2008), http://jocaml.inria.fr/
8. Cremet, V.: Join definitions in scala,

http://lamp.epfl.ch/∼cremet/join in scala/
9. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C�.

In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 415–440. Springer,
Heidelberg (2002)

10. Costa, G., Stirling, C.: Weak and strong fairness in ccs. Information and Compu-
tation 73(3), 207–244 (1987)

11. Kwiatkowska, M.Z.: Survey of fairness notions. Information and Software Technol-
ogy 31(7), 371–386 (1989)

12. Francez, N.: Fairness. ACM Press, New York (1986)

Appendix

The appendix can be found on the web at:
slurp.doc.ic.ac.uk/chords/fairness/

http://research.microsoft.com/Comega/
http://jocaml.inria.fr/
http://lamp.epfl.ch/~cremet/join_in_scala/


Mobility Models and Behavioural Equivalence
for Wireless Networks

Jens Chr. Godskesen1,� and Sebastian Nanz2

1 IT University of Copenhagen
jcg@itu.dk

2 Technical University of Denmark
nanz@imm.dtu.dk

Abstract. In protocol development for wireless systems, the choice of
appropriate mobility models describing the movement patterns of devices
has long been recognised as a crucial factor for the successful evaluation
of protocols. More recently, wireless protocols have also come into the fo-
cus of formal approaches to the modelling and verification of concurrent
systems. While in these approaches mobility is also given a central role,
the actual mobility modelling remains simplistic since arbitrary node
movements are allowed. This leads to a huge behavioural overapproxima-
tion that might prevent a successful reasoning about protocol properties.
In this paper we describe how to extend a process calculus by realistic
mobility models in an orthogonal way. The semantics of our calculus in-
corporates a notion of global time passing that allows us to express a
wide range of mobility models currently used in protocol development
practice. Using the behavioural equivalence and pre-order of our calcu-
lus, we are furthermore able to compare the strength of these models in
our approach.

1 Introduction

As a result of the availability and popularity of mobile devices with networking
capabilities, the use of wireless communication has seen a tremendous increase in
recent years. The applications of this technology are broad and include wireless
local area networks, cellular and ad-hoc networks, and have a further growth
potential in the area of ubiquitous computing.

Naturally, the interest in modelling and formal reasoning about wireless net-
works has risen as well, for example using process algebra as a specification
formalism. Process algebra itself has proved to be a versatile formalism for mod-
elling various kinds of concurrent systems. This versatility is needed to model
wireless networks, since there are a number of key differences to other network be-
haviour typically modelled in process calculi. A number of works [10,7,4,11,15,8]
have stressed two of the main differences: the prevalent mode of communication
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in wireless networks is broadcast, and the network topology can change sponta-
neously. The latter point implies that there is a strict separation between process
actions and the mobility modelling, since changes in connectivity are influenced
by environment conditions (such as node movement), but not by the actions of
a protocol process.

In the works mentioned above, a simplistic view of mobility is taken by assum-
ing that connectivity develops completely arbitrarily over time. Hence, erratic
behaviour with respect to connectivity breaking and establishing is part of the
model. This contrasts with the approach taken by protocol developers, where
more realistic mobility models (the survey paper [2] provides a fairly compre-
hensive overview) are seen as a key ingredient for producing meaningful protocol
evaluations using simulation. Realistic mobility models should however play an
important role for formal reasoning as well because, by excluding all erratic be-
haviour, they can limit the size of the state space to be reasoned about, which
is an important prerequisite for verification. For the same reason, stronger prop-
erties should be provable for the system.

In this paper, we provide a general model of mobility to parametrise a sim-
ple calculus with broadcast capabilities. The calculus is equipped with a notion
of global time passing, such that movement trajectories of nodes can be deter-
mined explicitly via a mobility model. The general model is shown to instantiate
to widely used concrete mobility models for network simulation. We develop a
behavioural equivalence and pre-order that allow us to compare the strength of
these mobility models in our formal setting.

The remainder of the paper is structured as follows. In Section 2 we give an in-
troduction to a number of mobility models typically used in network simulators,
and describe our general model of mobility and broadcast. We evaluate related
work on modelling wireless mobility and time passing in Section 3. The syntax
and semantics of our calculus are presented in Section 4. In Section 5 we develop
a behavioural equivalence and apply it in order to evaluate the strength of the
mobility models we have instantiated our calculus to. We give an outlook on the
development of a discrete version of the semantics in Section 6 and conclude in
Section 7.

2 Mobility Models for Wireless Networks

When evaluating protocols for wireless networks with respect to performance or
functional correctness, a variety of assumptions has to be decided upon. Such
assumptions may for example include the size and shape of the area used by
the wireless devices, their transmission ranges, and their movement patterns
including allowed speeds and directional changes [2]. In every case, careful choices
have to be made by the analyst to ensure that the evaluation results apply in
practice.

As a specific protocol may be targeted to various environment conditions, dif-
ferent choices of assumptions may be in order, and therefore it is important that
simulation tools (such as the network simulator ns-2 [12]) or indeed verification
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Fig. 1. Node movements described by mobility functions with timeouts

tools are parametric in these assumptions. In the following we develop such a
parametric framework for use with a process algebraic approach.

We thus assume that wireless devices (“nodes”) move in a global area A that
is bounded and convex (this ensures that the definitions of the most commonly
used mobility models are well-defined). The boundary of A is denoted by bd(A).
We assume to have a global clock t ∈ �+

0 , such that the location �l ∈ A of a node
n at time t can be determined by its associated mobility function f : �+

0 → A

as f(t) = �l.
We furthermore assume that each mobility function has a timeout T ∈ �+

0 ∪
{∞, �}. If T ∈ �+

0 , this means that f describes the trajectory of n for t ≤ T , and
has to be replaced by a new mobility function f ′ at time t = T . If T = ∞ the
timeout never occurs and the current mobility function is always valid. We use
the special symbol � to express that no timeout is set, i.e. the mobility function
may be replaced at any time. We write a node n with mobility function f and
timeout T as nT

f .
The choice of a new mobility function is determined by a mobility model M,

a function that takes a pair (�l0, t0) of a current location and a current time
as input and returns, for these parameters, a set of pairs (f ′, T ′) of admissible
mobility functions and their timeouts. For example, at time t0 = T , node nT

f

may become nT ′
f ′ where (f ′, T ′) ∈ M(f(t0), t0). It is important to note at this

point that this allows that two nodes who happen to be at the same location
at same time may take different movement trajectories: the set M(f(t0), t0) has
more than one element in general, and elements (f ′, T ′) are nondeterministically
chosen for each node.

Example 1. Consider the illustration in Figure 1, which describes the movement
of two nodes m and n within the one-dimensional area A = [0, 4]. We use a
mobility model Mob defined as follows:

Mob(�l0, t0) = {(g, T ) | g(t) = �l0 + v · (t− t0) · α ∧ T ∈ [t0, t0 + 2], where
v ∈ [0, 2], α ∈ {1,−1}, g(t) �= bd(A) for t ∈ [t0, T ]}

In this model, node movement is continuous in the sense that f(T ) = f ′(T ),
where T is the timeout of f , and f ′ replaces f . Furthermore, movement takes
place at constant speed v ∈ [0, 2] and both in forward and backward direction
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Fig. 2. Movement patterns of a node according to three mobility models

α ∈ {1,−1}, a timeout occurs at least every 2 time units, and nodes never leave
the area A.

In Figure 1, node m moves initially according to the mobility function g1

with timeout Tg1 , hence m = m
Tg1
g1 . At time t = 0 node m

Tg1
g1 is at location

g1(0) = 3.5 ∈ A and then moves with constant speed to location g1(Tg1) = 1
where its mobility function g1 is timing out, t = Tg1 . Because of the timeout, a
new mobility function g2 with new timeout Tg2 is chosen from Mob(g1(Tg1), Tg1)
and the node thus becomes m

Tg2
g2 . The further movements of m and those of n

can be described similarly.

The proposed framework allows to describe a variety of concrete mobility models
which we outline in the following.

Stationary Nodes Nodes are assumed to be stationary.

Stat(�l0, t0) = {(g,∞) | g(t) = �l0}

Arbitrary Movement Nodes can change their location arbitrarily and instan-
taneously.

Arb(�l0, t0) = {(g, �) | g(t) = �l where �l ∈ A}

Random Walk Nodes choose randomly a speed v ∈ Vel and a direction �α ∈
Dir and travel in direction �α at the chosen speed for a fixed time interval ∆.

RWalk∆(�l0, t0) = {(g, t0 + ∆) | g(t) = �l0 + v · (t− t0) · �α where v ∈ Vel,
�α ∈ Dir, g(t) �= bd(A) for t ∈ [t0, t0 + ∆]}

(Note that in the classical model a node’s trajectory is “reflected” according
to �α when reaching the boundary of A. While this can be expressed in our
model, we modify the definition for simplicity to say that a trajectory that
would reach the boundary is never chosen.)

Random Waypoint Nodes choose randomly a speed v ∈ Vel and a destination
�d ∈ A and travel to �d at the chosen speed, where they pause for a fixed time
interval p. In the following definition, t1 is the time when the destination will
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be reached and �α is the direction in which to travel (both easily calculated
from �l0, �d, v).

RWayp(�l0, t0) = {(g, t1 + p) | g(t) =

{

�l0 + v · (t− t0) · �α if t0 ≤ t ≤ t1
�d if t1 < t ≤ t1 + p

where v ∈ Vel and �d ∈ A}

Random Direction Nodes choose randomly a speed v ∈ Vel and a direction
�α ∈ Dir and travel in direction �α at the chosen speed until they reach the
boundary, where they pause for a fixed time interval p. In the following
definition, t1 is the time when the boundary will be reached and �d is the
point reached on the boundary (both easily calculated from �l0, �α, v).

RDirp(�l0, t0) = {(g, t1 + p) | g(t) =

{

�l0 + v · (t− t0) · �α if t0 ≤ t ≤ t1
�d if t1 < t ≤ t1 + p

where v ∈ Vel, �α ∈ Dir, g(t1) = �d ∈ bd(A)}

The Random Walk, Random Waypoint, and Random Direction models are
classical models used to realistically represent the movement of mobile nodes [2],
e.g. in network simulation tools. Figure 2 depicts possible movements of a node
in a two-dimensional area according to these three models, where for the Ran-
dom Waypoint and Random Direction models pause times are expressed using
small circles on trajectories. The Random Walk and Random Waypoint models
also count as the two most commonly [2] used mobility models in research on
wireless networks, and all models shown can be classified as so-called entity mo-
bility models (where nodes move completely independent of each other). Group
mobility models (where multiple nodes move together) are beyond the scope of
this paper.

In contrast to the classical simulation models, the stationary model and
the model of arbitrary movement have predominantly been used in formal ap-
proaches to the evaluation of wireless networks. In the next section we review
these approaches.

3 Mobility and Time in Process Calculi

An important feature of the wireless medium is that all message transmissions
are broadcasts, and may thus be received by several nodes. A suitable model for
wireless networks must thus also determine which nodes may receive a broadcast
message. In our approach, this is straightforwardly modelled by providing a
function arean(�l) that defines the transmission area of a node n at location �l.
Hence, if a node nT

f transmits at a time t, then nodes mT ′
g with g(t) ∈ arean(f(t))

may receive the transmission. Note however that transmissions may fail in reality
even though nodes are within radio range, e.g. due to hidden terminal effects;
this leads us later in Section 4 to an operational semantics that incorporates
message loss. In all our examples we assume that arean describes a circular
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Fig. 3. Changes in the network topology due to node movement

transmission area, but differently shaped areas or even a realistic modelling of
radio attenuation may be handled using a similar choice of representation.

The set of all nodes together with the transmission links between senders and
receivers as edges then determines a graph, called the network topology, which
may change over time depending on node movements. The network topology is
in general given by a directed graph: unidirectional links can occur if there are
different transmission radii (in our examples we assume bidirectional links to
simplify presentation). An example for the change of network topology is given
in Figure 3, where the moving node nT

f with circular transmission area first
establishes one connection with one of the stationary nodes at time t1, and then
breaks the connection again and has established two new links at time t2. In the
figure, the bold solid lines correspond to the node connectivity at time t1, and
the bold dashed lines to the node connectivity at time t2.

In the following we describe related approaches to studying mobile wireless be-
haviour in a process algebraic setting. Process calculi with broadcast behaviour
were first studied by Prasad [13] in the Calculus of Broadcasting Systems (CBS)
and Ene and Muntean [3] in the bπ-calculus. These approaches are not directly
suitable to describe wireless communication, since in their model all nodes in
the network receive a broadcast message (global broadcast), whereas, as dis-
cussed above, the transmission ranges of nodes naturally introduce a kind of
locality for broadcast actions (local broadcast). A number of process calculi that
take this consideration into account have been proposed recently [10,7,4,11,15,8].
The approaches differ in the way the network topology is specified. Nanz and
Hankin [10,9] have introduced CBS� where the topology modelling takes place
at the semantic level: every sending step in the semantics is parametrised by
a directed graph that determines which nodes are connected at that moment.
These connectivity graphs are nondeterministically chosen from a predefined set
of graphs, hence modelling spontaneous topological changes. As node movements
are otherwise unrestricted, this corresponds in our classification to the model of
arbitrary movement. Based on the same principle Nanz, Nielson, and Nielson [11]
have defined bKlaim which uses a coordination model where nodes communicate
by placing message tuples into tuple spaces and retrieving them again; the same
mobility model is used as in CBS�.
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In contrast to [10,11], other approaches attempt connectivity modelling at the
syntactic level. The Calculus for Mobile Ad Hoc Networks (CMAN) by Godske-
sen [4] focuses on behavioural equivalences for the purpose of security modelling.
The connectivity of nodes is determined by examining the set of neighbouring
nodes, associated with each node. Since these sets can change arbitrarily, node
movement has no restrictions. In a more recent work [5] CMAN is equipped with
a static location binding operator that limits the arbitrary mobility to happen
only within the scope of the binder. Singh, Ramakrishnan, and Smolka [15] define
the ω-calculus and use it for protocol analysis. Their connectivity modelling is
based on connected groups in the connectivity graph. Each process is associated
with the set of groups it belongs to, and change of group membership may be
forced to comply with graph invariants. While this approach is able to restrict
arbitrary movement, which we also strive to do, our model emphasizes more the
importance of realistic transitions between connectivity graphs.

It is interesting to note that the approaches to connectivity modelling de-
scribed above are just variations on traditional ways to describe ordinary graphs:
using node and edge sets as in [10], adjacency lists as in [4], and maximal cliques
as in [15]. One could imagine an alternative approach where connectivity and
movements are coded into a distinguished process which acts as network medium.
Our modelling using the area function for computing transmission areas strives
instead to be a close model of real networks. This type of modelling can also
be understood as a generalisation of the approach of Mezzetti and Sangiorgi [8],
who equip each node with a location and a sending radius. Assuming a distance
function, possible receivers can thus be determined from this data, together with
the receivers’ locations. In [8] only stationary nodes are considered, and the cal-
culus aims at modelling MAC layer protocols (medium access control), where
wireless interferences play a central role, while the other calculi mentioned here
abstract from these physical complications and are suited for modelling Network
layer protocols (routing). Merro [7] has used the location/radius approach in the
Calculus of Mobile Ad Hoc Networks (CMN) with a special focus on defining
appropriate behavioural equivalences in the wireless setting (again abstracting
from MAC-problems). In terms of mobility modelling, CMN is restricted to the
model of arbitrary movement, but introduces a switch to make selected nodes
stationary.

The overview shows that current approaches to modelling mobile wireless
networks have focused on stationary nodes and nodes with arbitrary movement
patterns. While considering arbitrary movement seems compelling for formal
verification (“all behaviour is included”), it is also limiting in many respects. For
example, in security analysis one might want to establish a robustness property
of a network against the influence of a single attacker. The attacker might only be
able to influence nodes it can connect to, and as arbitrary movement essentially
enables the attacker to be in all locations of the network simultaneously, it may
be impossible to establish this property under this model. Also for properties of
functional correctness the model of arbitrary movement seems inadequate, for
example one would not expect a routing protocol to be able to handle completely
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different network topologies at every sending step. Our approach addresses this
issue by offering the usage of realistic mobility models.

Lastly, we consider time passing in conjunction with wireless behaviour. While
timing aspects are well-known to be essential in evaluating wireless protocols,
they have not been considered for wireless calculi so far. There is however a
variety of classical calculi that have been extended with time, for example TCCS
[16], Timed ACP [1], TCSP [14], to mention only a few (and omitting stochastic
calculi [6] where timing is determined by random variables). In [16,14], a delay
action is considered to let processes idle until they can perform an action, and
the maximal progress assumption is used to ensure that τ -actions cannot be
delayed. In [1], time is absolute and each action is associated with a time stamp
at which it should be performed. In our approach, time is also global as it is
used to determine the positions of the nodes, and we consider a minimal calculus
around this idea. However, our calculus is not a genuine timed calculus in that
the process part does not contain operators dealing with time, only the mobility
part is time dependent. Extensions of the calculus that also tag actions with
delays may be considered in future work.

4 A Simple Calculus for Wireless Networks

In this section we introduce the syntax and the operational semantics of a cal-
culus for wireless networks. The process part is deliberately chosen to be very
simple and more or less standard for wireless process calculi and is not our contri-
bution, but for the network part we add mobility functions and their timeout for
individual nodes as a new feature. While we use a minimal operator set to make
for a concise presentation, the process part can be extended with conditional
expressions and name creation as expected, and we have proved our results for
this larger set.

The labelled transition system semantics for our calculus is equipped with a
notion of global time such that the mobility of nodes can be determined explicitly
via a mobility function that is chosen from a mobility model parametrising the
operational semantics.

4.1 Syntax

We assume to have infinite sets of names N , variables X , identities I, as well
as process constants (ranged over by A). The sets of processes and networks is
defined as:

u, v ::= n | x where n ∈ N , x ∈ X

P, Q ::= 0 | 〈v〉.P | (x).P | A(ṽ)

N, M ::= a[P ]Tf |M ‖ N where a ∈ I

The terminated process is represented by 0. Output of a name v is described
by the process 〈v〉.P , input and binding of the received name to the variable
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x by (x).P . Note that the output is on a wireless channel, i.e. it has a broad-
cast semantics. Furthermore we are not distinguishing between multiple wireless
channels (the number of these is fixed in real systems) which would be a straight-
forward extension if needed. We write A(ṽ) to denote a process defined via a
(possibly recursive) process definition A(x̃) � P . Processes are assumed to be
sequential only.

Networks can be composed in parallel via M ‖ N , and consist of nodes of the
form a[P ]Tf . A node consists of a process P that runs at an identified container
a, where the identity a is unique in a network and represents an address of some
sort. Furthermore, nodes move in a global area A according to their mobility
function f , which yields a location f(t) when applied to a point in time t. The
timeout T determines until when the mobility function will be valid as spelled
out in Section 2.

4.2 Operational Semantics

We equip the calculus with a parametrised operational semantics where transi-
tion rules are of the form:

M � (t, M) λ−→ (t′, N) where λ ::= τ | ∆ | 〈m〉@A! | (m)@A?

i.e. the parameter is M and configurations are pairs (t, M) of global time t and
network M . Transition labels can either refer to change of mobility function (τ)
or a time delay (∆ ∈ �+

0 ), or it may refer to output of a message in some area
(〈m〉@A!) or to input of a message ((m)@A?) send out in some area. We always
assume a configuration (t, M) to be well-formed, i.e. for all timeouts T ∈ �+

0 in
M it must be that t ≤ T .

The overall intuition of our semantics is that we let time proceed globally for
a network and furthermore network execution not only depends on the global
time but also on the mobility model M.

We change the movement trajectories of nodes using the mobility rule:

(mobility)
(f ′, T ′) ∈ M(f(t), t)

M � (t, a[P ]Tf ) τ−→ (t, a[P ]T
′

f ′ )
if T = � or T = t

The rule of time passing tells when a network may let time progress:

(time) M � (t, N) ∆−→ (t + ∆, N) if t + ∆ ≤ T for all timeouts T ∈ �+
0 in N

Sending and reception is described by the following rules

(send) M � (t, a[〈m〉.P ]Tf )
〈m〉@A!−−−−−→ (t, a[P ]Tf ) areaa(f(t)) = A

(receive1) M � (t, a[(x).P ]Tf )
(m)@A?−−−−−→ (t, a[P{m/x}]Tf ) f(t) ∈ A

(receive2) M � (t, a[0]Tf )
(m)@A?−−−−−→ (t, a[0]Tf ) f(t) ∈ A
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where the operator areaa(�l) computes the sending area of node a at location �l
as described in Section 3. Note that we assume that the time for transmission
of messages is negligible compared to the time it takes for a node to move
(for example, transmitting 100 kB with 11 Mbit/s bandwidth takes less than
0.1 s, in which a node moving at 50 km/h will move about 1 meter); therefore
transmissions have no duration in our semantics.

Synchronisation of sending actions is done via the following two rules.

(synch1)
M � (t, N)

〈m〉@A!−−−−−→ (t, N ′) M � (t, M)
(m)@A?−−−−−→ (t, M ′)

M � (t, N ‖ M)
〈m〉@A!−−−−−→ (t, N ′ ‖ M ′)

(synch2)
M � (t, N)

(m)@A?−−−−−→ (t, N ′) M � (t, M)
(m)@A?−−−−−→ (t, M ′)

M � (t, N ‖ M)
(m)@A?−−−−−→ (t, N ′ ‖ M ′)

The rule (synch1) and (synch2) are similar to the rules in [13] for dealing with
broadcast: a broadcast message continues to be distributed, and several nodes
may agree on simultaneous reception of a message. Here we note that there are
two symmetric rules to the two before, where the order of the parallel networks
is switched (we do not have a structural congruence).

It is important to note that we do not intend that local broadcasts are actually
received by all nodes that are located in the sending area. This is because in
reality, as mentioned earlier in Section 3, message loss may occur even though
nodes are within radio range. The following rule for (par) expresses this situation
by allowing to be concerned with only a subset of the nodes in the network. We
assume again that there is a symmetric rule available.

(par)
M � (t, N) λ−→ (t, N ′)

M � (t, N ‖ M) λ−→ (t, N ′ ‖ M)
λ �= ∆

The rule for recursion is standard.

(rec)
M � (t, a[P{ṽ/x̃}]Tf ) λ−→ (t, a[P ′]T

′
f ′ )

M � (t, a[A(ṽ)]Tf ) λ−→ (t, a[P ′]T
′

f ′ )
A(x̃) � P

4.3 Semantic Characteristics

As pointed out in Section 3, the labelled transition semantics of our calculus
differs much from the semantics of classical timed calculi: process actions are not
time dependent, only the mobility part is. In the following we describe some of
the semantic characteristics of change of mobility function and progress of global
time, which can however be related to concepts known from timed calculi.

Like many timed calculi our calculus also gives priority to τ -actions over
time delays. However, since only the mobility rule gives rise to τ -actions, this
does not force transmitters to send instantaneously (as the “maximal progress”
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assumption of some timed calculi does). Instead, this condition translates to our
setting in that we may only let time progress if no mobility function has timed
out:

Proposition 1. If M � (t, M) τ−→ (t, M ′) for some M ′ then M � (t, M) �∆−→ .

Another important timed property possessed by timed calculi is time deter-
minism, meaning that when time progresses the same configuration is always
reached. Actually, since we have no explicit delay operators in our calculus it
holds that a network does not change (syntactically) after a delay.

Proposition 2 (Time Determinism). If M � (t, M) ∆−→ (t′, M ′) and M �
(t, M) ∆−→ (t′′, M ′′) then t′ = t′′ = t + ∆ and M = M ′ = M ′′.

As corollaries we obtain that all nodes in a network must agree to let time
progress (and hence all nodes must move on according to their mobility function)

Corollary 1 (Time Synchronisation). M � (t, M ‖ N) ∆−→ (t′, M ‖ N) iff
M � (t, M) ∆−→ (t′, M) and M � (t, N) ∆−→ (t′, N).

and that any delay can be divided into sub-delays:

Corollary 2 (Time Additivity). If M � (t, M) ∆+∆′
−−−−→ (t+∆+∆′, M) then

M � (t, M) ∆−→ (t + ∆, M) and M � (t + ∆, M) ∆′
−−→ (t + ∆ + ∆′, M)

Observe that our calculus as a natural consequence does not support the property
of time persistency i.e.

if M � (t, M) λ−→ and M � (t, M) ∆−→ then M � (t + ∆, M) λ−→

simply because it would be unreasonable to expect due to the interplay between
time and mobility that a node after some time progress will continue broadcast-
ing in the same area.

5 A Framework for Comparing Mobility Models

In order to be able to compare the strengths of the various mobility models we
provide standard behavioural pre-order and equivalences. Since we do not want
to take the actual shift of mobility functions as an observable into account, these
turn out to be weak simulations and bisimulations in our case.

5.1 Behavioural Pre-order and Equivalence

We consider relations R containing pairs ((M, t, M), (M′, t, M ′)) consisting of
two networks with identical timing information but where the networks may
choose mobility functions from (in principle) different mobility models; R is said
to be well-formed whenever for all such pairs (t, M) and (t, M ′) are well-formed.
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Moreover, for ease of notation we write (M, M)R t(M′, M ′) if (M, t, M)R
(M′, t, M ′) and M RM

t M ′ if (M, M)R t(M, M ′).
Next we define weak simulation and bisimulation. In order to define weak

labelled transitions, for each label λ, we shall write P
λ=⇒ Q iff either λ �= τ

and there exist P ′ and Q′ such that P ( τ−→ )∗P ′ λ−→ Q′( τ−→ )∗Q or λ = τ and
P ( τ−→ )∗Q.

Definition 1. A well-formed relation R is a weak simulation if (M, N)R t

(M′, M) implies

1. M � (t, N)
〈m〉@A!−−−−−→ (t, N ′) implies M′ � (t, M)

〈m〉@A′!
=====⇒ (t, M ′) for some

M ′ and A′ such that A ⊆ A′ and (M, N ′)R t(M′, M ′).

2. M � (t, N)
(m)@A?−−−−−→ (t, N ′) implies M′ � (t, M)

(m)@A′?
=====⇒ (t, M ′) for some

M ′ and A′ such that A′ ⊆ A such that (M, N ′)R t(M′, M ′).
3. M � (t, N) τ−→ (t, N ′) implies M′ � (t, M) τ=⇒ (t, M ′) for some N ′ such

that (M, N ′)R t(M′, M ′).
4. M � (t, M) ∆−→ (t′, M) implies M′ � (t, N) ∆=⇒ (t′, N) and (M, N)R t′

(M′, M).

R is a weak bisimulation if R and R−1 are weak simulations.

We let � denote the largest weak simulation and≈ the largest weak bisimulation.
It is immediate that ≈ is an equivalence relation.

Notice the asymmetry in our definition of weak simulation. A network where a
node may broadcast a message m within some area A is simulated by a network
at least as powerful that broadcasts m in an area containing A. Dually, a network
where nodes receive within some area A must be simulated by a network where
nodes are capable of receiving in an area A′ contained in A. Notice that a network
receiving in some area can always receive in a larger area but not the other way
around. The two last clauses in Definition 1 are standard.

It turns out that our bisimulations are closed by parallel composition of net-
works that are well-formed with respect to the current time:

Theorem 1. N ≈M
t N ′ implies N ‖ M ≈M

t N ′ ‖ M for all (t, M).

As we would expect our behavioural theory satisfies the following commutativity
and associativity laws:

Proposition 3. M ‖ N ≈M
t N ‖ M

Proposition 4. (M ‖ M ′) ‖ M ′′ ≈M
t M ‖ (M ′ ‖ M ′′).

Comparing a network across mobility models we can infer that

Proposition 5. (M, M) �t (M ∪M′, M) �t (Arb, M)

because whatever M can do choosing from a mobility model M clearly it can do
choosing from a larger set of mobility functions (and from the most powerful set
of mobility functions Arb), but not necessarily the other way around.
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When comparing networks within the same mobility model, we can infer that
bisimulation equivalence gets stronger if more mobility functions are available
to choose from:

Proposition 6. ≈Arb
t ⊆ ≈M∪M′

t ⊆ ≈M
t

This means, if M ≈M∪M′
t N then also M ≈M

t N because in the former case all
possible behaviours for M can be matched by N (and vice versa) when choosing
mobility functions from both M and M′, but then clearly with a limited choice
of mobility functions M and N are still equivalent. A similar argument holds
when comparing ≈Arb

t and ≈M∪M′
t because whatever a mobility function from

M ∪M′ causes can be matched by mobility functions in Arb.
Finally, we observe that if a pair of networks with all timeouts being infinite

belongs to ≈M
t then it also belongs to ≈M′

t for any M′ because the possible
choices of new mobility functions are irrelevant.

5.2 Comparing Mobility Models

Our main motivation for introducing the weak behavioural simulation and equiv-
alence is to be able to compare mobility models, and to demonstrate formally
that the choice of mobility function matters for reasoning. The latter point can
be shown with the following simple example, where two networks are distin-
guished under the Random Walk model, but found equivalent using arbitrary
movement.

Example 2. Consider the three mobility functions f , g1, and g2, and assume that
g1(t0) ∈ areaa(f(t0)) and g2(t0) /∈ areaa(f(t0)). Furthermore, let networks N1
and N2 be defined as follows:

Ni = a[A]Tf ‖ b[B]�gi
where A � 〈m〉.(x).A and B � (x).〈x〉.B

Then the following results hold:

N1 �≈RWalk∆
t0 N2 and N1 ≈Arb

t0 N2

Proof. To see that the inequation holds, we have for network N1 that

RWalk∆ � (t0, N1)
〈m〉@A!−−−−−→ (t0, a[(x).A]Tf ‖ b[〈m〉.B]�g1

)
〈m〉@A′!−−−−−→ (t0, N1),

however for network N2, since b is not in range of a,

RWalk∆ � (t0, N2)
〈m〉@A!
=====⇒ (t0, a[(x).A]Tf ‖ b[(x).〈x〉.B]�g2

) �〈m〉@A′!
=====⇒ .

In particular τ -transitions using (mobility) cannot change this situation, because
in the model RWalk∆ an amount of time δ > 0 would have to pass to allow for
node b to move into the range of a.

To see that the equation holds, note that the two networks differ only in the
initial mobility function of node b. Furthermore the model Arb allows every
node to move instantaneously to any location �l:

Arb � (t0, b[B]�g2
) τ−→ (t0, b[B]�

λx.�l
)
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Thus it is easy to establish b[B]�g1
≈Arb

t b[B]�g2
and therefore the equation holds

by Theorem 1.

The next proposition is about comparing the mobility models of Section 2. As
expected, the model of arbitrary movement can simulate all other models, Ran-
dom Waypoint can simulate Random Direction, and all other pairs of models
are incomparable.

Proposition 7. Assume that all nodes in the network N initially have timeout
t0. Then the following results hold for ∆ > 0 and p > 0:

1. (M, N) �t (Arb, N) for all M ∈ {Stat,Arb,RWalk∆,RWayp,RDirp}
2. (RDirp, N) �t (RWayp, N)
3. All other model pairs in {Stat,Arb,RWalk∆,RWayp,RDirp} are incom-

parable with respect to weak simulation.

Proof (sketch). The first part of the proposition follows directly from Proposi-
tion 5. Conversely, Arb cannot be simulated by any other model, because it
is the only model where movement does not take time. RWayp can simulate
RDirp as it can choose the point on the boundary of A that a node under
RDirp would reach as a waypoint, and has pause times. Stat cannot compare
with any model model except Arb, because it can always let time pass with-
out movement. RWalk∆ cannot compare with either RWayp or RDirp because
it has no notion of pause times. The remaining incomparability results can be
established similarly.

6 Discretising Time Delay

The operational semantics defined in Section 4.2 is infinite state because of its
real-time delay transitions, and thus there will be no hope for the immediate
algorithm underlying our weak bisimulation behavioural equivalence (or weak
simulation pre-order) to be decidable.

In this section we hint at future work where a finite state operational se-
mantics and a decidable behavioural equivalence that is a sound and complete
characterisation of weak bisimulation should be defined. Clearly such a decid-
ability result relies on the process language of our calculus, but as our exposition
in this paper is focused on the semantics of mobility and not on the process part
we leave the discussion of an appropriate process fragment for future work.

A Discrete Time Semantics. One may observe that a time delay ∆ may be safely
carried out without side effects on the capability of a network configuration
(t, M) if the following holds:

– No mobility function in M must timeout in the interval [t, t + ∆), and
– No potential receiver of a broadcast message m must leave the broadcasting

area of the node in M broadcasting m.
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Fig. 4. Node movements and time discretisation in Example 3

To formalise these requirements let (t, M) be a well-formed network configura-
tion, let ai with i ∈ I be all identifiers in M and let fi and Ti be the mobility
function and its timeout for ai.

Then let ∆t
timeout be the maximal delay ∆ such that t + ∆ ≤ Ti for all i ∈ I

with Ti �= �, or if Ti = � for all i then ∆t
timeout = ∞.

Next, for all node identities ai we need to keep track of all node identities
that at time t lie within the transmission range of ai, i.e. let

It
ai

= {j ∈ I | fj(t) ∈ areaai(fi(t))}

Then let ∆t
leave be the smallest delay ∆ such that It

ai
�= It+∆

ai
, or if It

ai
= It+∆

ai

for all i then ∆t
leave = 0.

We may now define a new time rule based on the definitions above such that:

(time) M � (t, N) ∆−→ (t + ∆, N) if ∆ = min{∆t
timeout , ∆

t
leave}

Observe that if always ∆ = 0 when applying the rule above then time can be
completely abstracted away in the semantics.

Example 3. To illustrate our ideas, assume for simplicity the same one-dimensio-
nal area, A = [0, 4], as in Example 1, and consider a network M consisting of
two nodes with identities a and b respectively.

Also, suppose a mobility model M with just two mobility functions f and g
defined by f(t) = 2 and by g(t) = t if t ≤ 4, and g(t) = 8 − t otherwise (see 4).
Suppose that the timeout for both f and g is 8.

If the two nodes initially possess the very same mobility function the net-
work may from its initial state (0, M) delay 8 time units, i.e. until the mobility
functions time out.

Suppose instead that the two nodes initially contain different mobility func-
tions, and assume for simplicity that both a and b have the same transmission
radius 1. In that setting we obtain that the ∆ in rule (time) defined above must
be chosen according to the following sequence: 1, 2, 2, 2, 1. That is, first delay is
one time unit, then follow three delays of two time units, and finally a delay of
one time unit. This situation is depicted in Figure 4.

In future research we want to identify under what restrictions the sampling
points for time delays may always be precompiled from a mobility model and
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the broadcast area of any node. Furthermore, we aim to show that our discre-
tised model may be preferable to models currently used as input to automatic
verification tools: as our more realistic handling of connectivity change considers
fewer possible connections, it may thus set more effective limits on the size of
the state space to be considered.

7 Conclusion

In this paper we have described how to extend a simple process calculus with
realistic mobility models. The semantics of our calculus incorporates a notion of
global time passing that allows us to express a wide range of mobility models
currently used in protocol development practice. Using the behavioural equiva-
lence and pre-order of our calculus, we have been able to compare the strength
of these models. Finally, we have briefly touched upon the issue of making the
real-time semantics symbolic and finite, thereby giving hope for verification of
wireless protocols modelled in our approach. In addition, our approach is a step
towards bridging the gap between protocol development efforts and formal veri-
fication, since it allows to use identical mobility models for both simulation and
formal reasoning.

Acknowledgements. We would like to thank the anonymous reviewers for their
valuable comments on an earlier version of the paper.
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for Spatial Mobility
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Abstract. Parametrised replication and replication are common ways
of expressing infinite computation in process calculi. While parametrised
constants can be encoded using replication in the π-calculus, this changes
in the presence of spatial mobility as found in e.g. the distributed π-
calculus and the calculus of mobile ambients. Here, processes are located
at sites and can migrate between them.

In this paper we say that an encoding is local if it does not intro-
duce extra migration. We first study this property for the distributed
π-calculus where locations can be dynamically created. If the set of reach-
able sites is static an encoding exists, but we also show that parametrised
constants can not be encoded in the full calculus. The locality require-
ment supplements widely accepted encoding criteria. It appears to be a
natural property in spatial calculi where links and locations can fail.

The versions of the distributed π-calculus with parametrised constants
and replication are incomparable. On the other hand, we shall see that
there exists a simple encoding of recursion in mobile ambients.

1 Introduction

Many programs are intended to run indefinitely. Common examples are text-
editors, web-browsers, e-mail clients, and operating systems. Unless specifically
instructed, such programs should not terminate. Thus, programming languages
must contain constructs for such behaviour which are typically realised in terms
of various loop constructs. However many times these are essentially syntactic
variations of the same semantical construct.

In the setting of process calculi differences between language constructs be-
comes clear. Here replication, recursion, and parametrised constants are three
common operations for expressing infinite process behaviour. We regard it as
important both from a theoretical and a practical point of view to understand
the relative expressive power of these language constructs, since this has impor-
tant consequences. An example is that termination is decidable for CCS with
replication, but not for CCS with parametrised constants [1]. This might occur
surprising since the difference is not present in the π-calculus [2].

In this paper we study the relative expressive power of parametrised constants
and replication in the Dπ-calculus [3] which extends the π-calculus by adding
primitive language constructs for locations and process migration. That makes
it a member of the class of process calculi for spatial mobility.

J. Field and V.T. Vasconcelos (Eds.): COORDINATION 2009, LNCS 5521, pp. 123–142, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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One of the characteristic operators in the Dπ-calculus is the process migration
prefix go?k.P . The reduction axiom for migration is simply,

l[go?k.P ] −−−→ k[P ] , (1)

where the redex as well as the reduct are processes located at l and k respectively.
Migration is not an observable operation, i.e. it does not depend on the presence
of action and co-action pairs. We consider a modified version of the axiom in (1)
where migration has been made observable using actions and co-actions. The
consequence is that new locations can not be spawned at runtime as in (1). We
show that parametrised constants can then be encoded using replication in the
modified version of the Dπ-calculus which we call Dπ�. Our encoding uses the
same idea as the encoding of parametrised constants in the π-calculus [2]. Unlike
the encoding of recursion in Dπ proposed in [4], our encoding avoids introducing
additional migration.

However, encoding parametrised constants and recursion becomes difficult in
the full Dπ-calculus (Dπfull) where (1) holds. Consider the definition A = go?l.A
and the process k[A]. Now k[A] can reduce to l[A], and A can execute its body
again, this time from l. Contrast this to a replicated process k[�P ]. Here we must
first unfold the replication to obtain a redex, k[P | � P ] where the process P
not under � can now start executing. However in doing so we no longer have the
original process, so if P is go?l the reduction sequence terminates as soon as the
migration has happened since the replicated process �P is still located at k.

Despite the example given above one can not rule out that an encoding
can exist. Our next section shows that we can indeed not use the encoding
of parametrised constants in Dπ� and then encode everything into Dπfull. We do
this by showing that there can not exists any sensible encoding of Dπ� in Dπfull.
We also show the opposite implication, that Dπfull can not be encoded in Dπ�
thus making the two calculi incomparable.

We then prove our main result. There is no encoding, subject to certain natural
requirements, of replicated constants using replication in the Dπfull-calculus. The
idea is that it is not possible to ensure that the definitions of the processes are
always available at arbitrary locations since locations can be created dynamically.
For this purpose we introduce the notion of a local encoding. A local encoding is
basically one which prohibits the encoded process from having more migrations
than the original process.

Our locality requirement is related to the issue of failure in spatial networks.
In [5] the authors study link and location failure in Dπ. When links or locations
fail they become inert and can no longer take part in further reduction steps.
Arguably failure characteristics is a fundamental property of many spatial net-
works that must be expressible in process calculi. It is important to note that
the essence of our result is not the comparsion by encoding itself, but rather
that an implementation of replicated constants by means of replication cannot
be done in a decentralized way if new locations can be created dynamically.

Having identified the locality requirement in Dπfull we then apply it to another
calculus with spatial mobility, the calculus of mobile ambients (MA) [6]. It turns
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out that even though MA allows for hierarchical location structures in which
ambients may move freely around, in contrast to the flat location structure of
Dπ, we can in fact obtain a local encoding of parametrised constants using
replication. The reason is that creation of new locations in MA, where recursive
definitions should be placed, can be dealt with statically.

Related work: Sangiorgi and Walker show in their book on the π-calculus [2],
that parametrised constants can be encoded in terms of replication. The encoding
they use is similar to the one we use for encoding parametrised constants in Dπ�.

Ravara et.al [7] defined lsdπ; a variant of Dπ with lexical scoping, but without
the go-operator. Channels in lsdπ are local, and migration is a consequence of
triggering communication on non-local channels.

Aranda et.al [1] summarise known results for the π-calculus and discuss fur-
ther replication vs. constants vs. parametrised constants vs. recursion in CCS.
Compared to our results which relies on characteristics of spatial mobility, their
results are based on subtle differences between dynamic and static name binding.

Hennessy and Hym gave an encoding of recursion using replication in the
Dπ-calculus [4]. Their encoding uses added process migration, and hence is not
local. They state that the encoding could fail if locations could fail.

The idea of enriching the semantics of unobservable reductions with actions
and co-actions is due to Levi and Sangiorgi who extended MA in [8] and obtain
the calculus of Safe Ambients. Their focus is on controlling interference in MA
processes and in doing so obtaining a richer semantic theory.

Structure of the paper: In Section 2 we give the reduction semantics and a
labelled transition semantics for Dπfull and show that strong and weak barbed
congruence coincide with strong and weak bisimilarity. In Section 3.1 we dis-
cuss the encoding from [4]. In Section 3 we define the calculus Dπ� and show
that parametrised constants can be encoded using replication. In Section 4 we
show that Dπ� is incomparable to Dπfull. In Section 5 we show that there is
no local encoding of parametrised constants in Dπfull. In Section 6 we encode
parametrised constants in MA. Finally Section 7 concludes the paper.

2 The Dπ-Calculus

We give an overview of the variant of the Dπ-calculus we use. Details on Dπ can
be found in [3]. Other sources on Dπ are [9,10,11,3], and [5]. (The latter deals
with location and link failure in Dπ.)

2.1 The Dπfull-Calculus

We define Dπfull, a version of Dπ without types or network environments, but
otherwise similar to Dπ in terms of its operations. Whereas the Dπ-calculus
allows for transmission of composite values and use patterns at the receiving end
for decomposing these patterns, we only allow polyadic values in communication,
like in the polyadic π-calculus.
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Syntax: The syntax of Dπfull consists of two categories, processes and networks.
Let N be an infinite countable set of names. Let a, b, c, . . . ,k, l,m, . . . ,x, y,z, . . .
range over N . We write ũ for a possibly empty sequence of names. The syntax
is given by the following grammar.

Definition 1 (Dπfull-syntax). Processes and networks are defined by:

P,Q ::= a!〈ṽ〉.P | a?(x̃).P | [a = b].P,Q | recX.P | P | Q
go?k.P | stop | � P | A〈ṽ〉 | X | (νu)P

M,N ::= k[P ] | N |M | (νu)N | 0

At the process level the constructs are in order: input– and output prefixing,
if-then-else, recursion, parallel composition, migration, the nil-process, replica-
tion, parametrised constants, recursion variables, and restriction. Specific to
the Dπfull-calculus, and of particular interest for us, is the migration opera-
tor go?k.P . When the go?k-capability is exercised the process P moves from its
present location to the location k. Networks are located process l[P ], parallel
compositions of networks, and restriction.

Names are bound by restriction and input-prefixing and recursion variables are
bound by the operator recX.P . The sets of free and bound names and recursion
variables are defined accordingly. Given a process P and network N , fn(P ) and
fn(N) denote the set of free names and bn(P ) and bn(N) the set of bound names.
We assume that α-conversion on names and recursion variables holds.

For parametrised constants we suppose that each A〈v1, . . . , vk〉 has a corre-
sponding defining equation A(x1, . . . , xk) = P given such that {x1, . . . , xk} ⊆
fn(P ) and whenever we speak of processes and networks we assume that these
equations can be looked up in a set denoted ∆.

The following syntactic conventions are assumed. Input a?(x̃), output a!〈ṽ〉,
restriction (νv), and recursion recX binds stronger than parallel composition.
E.g. go?k.P | Qmeans (go?k.P ) | Q and similarly for the other constructs. More-
over trailing occurrences of stop are omitted, (νv1) . . . (νvk)P is written (νṽ)P
and we sometimes write a!.P for a!〈ṽ〉.P and a?.P for a?(x̃).P if ṽ, respectively
x̃ are empty sequences.

Definition 2 (Dπfull network contexts). Network contexts are defined by:

N ::= (νn)N | (−) | N | N | (−) | l[P ] | (−) .

As usual different networks can be defined by e.g. changing the ordering of
parallel components. Structural equivalence abstracts from such differences.

Definition 3. Structural equivalence is the least equivalence relation on net-
works closed under N and satisfying the abelian monoid laws with respect to |
and following axioms:

(s-scope) (νn)(N |M) ≡ N | (νn)M,n /∈ fn(N)
(s-res-nil) (νn)0 ≡ 0
(s-flip) (νn)(νm)N ≡ (νm)(νn)N .
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Reduction semantics and barbed bisimulation:

Definition 4. The reduction relation is a binary relation over networks defined
by the rules in Table 1 and axioms in Table 2.

Table 1. Contextual rules

(r-struct) N ′ ≡ N N −−−→M M ≡M ′
N ′ −−−→M ′

(r-Res) N −−−→ N ′
(νn)N −−−→ (νn)N ′

(r-Par) N −−−→ N ′
N |M −−−→ N ′ |M

Table 2. Dπfull reduction axioms

(r-Com) l[a!〈ṽ〉.P ] | l[a?(x̃).Q] −−−→ l[P ] | l[Q{ṽ/x̃}]
(r-Rep) l[�P ] −−−→ l[P ] | l[�P ]

(r-Rec) l[recX.P ] −−−→ l[P{recX.P}/X]

(r-Const) l[A〈v1, . . . , vn〉] −−−→ l[P{v1, . . . , vn/x1, . . . , xn}]
if A(x1, . . . , xn) = P ∈ ∆

(r-Eq) l[[u = u]P,Q] −−−→ l[P ]

(r-Neq) l[[u = v]P,Q] −−−→ l[Q] if v �= u
(r-Split) l[P | Q] −−−→ l[P ] | l[Q]

(r-Go) l[go?k.P ] −−−→ k[P ]

(r-New) l[(νn)P ] −−−→ (νn)l[P ] if n �= l

The rules in Table 1 are standard contextual rules yielding reductions in var-
ious contexts and closure under ≡. Table 2 shows the axioms that defines the
behaviour of located processes. The (r-Com) axiom expresses communication.
Its characterising property is that in addition to the names of the communi-
cation channels, the names of the locations must also be equal. In the reduct
Q{ṽ/x̃} denote the process Q with all free occurrences of x̃ replaced by ṽ us-
ing α-conversion to avoid capturing names. (r-Rep), (r-Rec), and (r-Const)
activates, or unfolds the three different operators for infinite behaviour. These
axioms together with (r-Split) and (r-New) are sometimes included as part
of the ≡-relation. We represent them by a reduction step as this gives a simpler
correspondence with the transition relation.

The (r-Split) axiom is worth pointing out. It implies that l[P | Q] and
l[P ] | l[Q] are identified up to weak process equivalence. The (r-Go)-axiom ex-
presses process mobility. Some of its properties are relevant for our work. Firstly
the location l from which P moves disappears after the reduction has taken
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place. Moreover the target location k is dynamically created by the reduction.
This happens independently of whether k and l already exist as in e.g.

l[go?k.P ] | l[R] | k[R′] −−−→ k[P ] | l[R] | k[R′] .
Let −−−→∗ denote the reflexive and transitive closure of −−−→.

Next we define strong and weak barbed bisimulation and congruence.

Definition 5 (Strong and weak barbs). Define strong and weak barbs on
networks as follows.

– A network N has a strong barb on channel a at location l, denoted N ↓a@l,
if N ≡ (ñ)(M | l[a!〈ṽ〉.Q]) for some M,Q, a, ñ, and ṽ such that l, a /∈ ñ.

– A network N is said to have a weak barb on channel a at location l, denoted
N ⇓a@l, if there is some N ′ such that N −−−→∗ N ′ and N ′ ↓a@l.

The definition of barbs captures the idea that a communication requires the
observable presence of a location as well as a channel. For instance if

P = (νa)(l[a?(x).Q]) | k[a?(x).Q] | k[a!〈v〉.b!〈v〉.Q] .

Then P ↓a@k, P ⇓b@k, but P 	↓a@l.
Definition 6 (Strong barbed bisimulation and congruence). A binary
symmetric relation R is called a barbed bisimulation if whenever (N,M) ∈ R
the following holds.

(i) N ↓a@l implies M ↓a@l.
(ii) N −−−→ N ′ implies that M −−−→M ′ such that (N ′,M ′) ∈ R.

Networks M and N are called barbed bisimilar, denoted N ·∼b M if they are
related by some barbed bisimulation. Networks N and M are called barbed con-
gruent, denoted M ∼b N if for all network contexts N , N (M) ·∼b N (N).

Definition 7 (Weak barbed bisimulation and congruence). A binary
symmetric relation R is called a barbed bisimulation if whenever (N,M) ∈ R
the following holds.

(i) N ⇓a@l implies M ⇓a@l.
(ii) N −−−→ N ′ implies that M −−−→∗ M ′ such that (N ′,M ′) ∈ R.

Networks M and N are weak barbed bisimilar, denoted N
·∼=b M , if they are

related by some barbed bisimulation. Networks N and M are weak barbed con-
gruent, denoted M ∼=b N if for all network contexts N , N (M)

·∼=b N (N).

Transition semantics and bisimulation: We define the labelled transition
semantics in terms of an early-style semantics. The labelled transition relation
is a ternary relation over networks N and M and labels. Labels are on the form
(m̃)l : a!〈ṽ〉, a?(x̃), or τ . We let µ range over labels.
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Definition 8 (Labelled transition system). The labelled transition relation
is the smallest binary relation over networks satisfying the axioms and rules
in Table 3 below in addition to the rules in Table 1 and (r-Rep), (r-Rec),
(r-Const), (r-Eq), (r-Neq), (r-Split), (r-Go), and (r-New) with −−−→ re-
placed by τ−−−→ and renamed by using the (lt-) prefix instead of (r-).

Table 3. Dπfull-specific transition rules

(lt-Out) l[a!〈ṽ〉.P ] l:a!〈̃v〉−−−−−→ l[P ]

(lt-In) l[a?(ṽ).P ] l:a?(̃v)−−−−−→ l[P{ṽ/x̃}]

(lt-Open) N
(m̃)l:a!〈̃v〉−−−−−−−→ N ′

(νn)N (nm̃)l:a!〈̃v〉−−−−−−−−→ N ′
where n /∈ {l, a} and n ∈ ṽ

(lt-Comm-L) M
l:a?(̃v)−−−−−→M ′ N

(̃n)l:a!〈̃v〉−−−−−−−→ N ′
M | N τ−−−→ (νñ)(M ′ | N ′)

(lt-Comm-R) N
(̃n)l:a!〈̃v〉−−−−−−−→ N ′ M

l:a?(̃v)−−−−−→M ′
N |M τ−−−→ (νñ)(N ′ |M ′)

The rules in Table 3 are straightforward extensions of the transition rules for
the π-calculus [2] accounting for the presence of locations.

Let τ−−−→∗ denote the reflexive and transitive closure of τ−−−→. Moreover ε===⇒ is
defined as τ−−−→∗, and we write µ̂===⇒ for ε===⇒ if µ = τ and ε===⇒ ◦ µ−−−→ ◦ ε===⇒ otherwise.

Definition 9 (Early strong bisimulation). A binary symmetric relation R
is called a (early) strong bisimulation if whenever (N,M) ∈ R the following
holds.

– N µ−−−→ N ′ implies that there is some M ′ such that M µ−−−→M ′ and such that
(N ′,M ′) ∈ R

Networks N and M are called strong bisimilar, denoted N ∼M , if there is some
strong bisimulation R such that (N,M) ∈ R.

Definition 10 (Early weak bisimulation). A binary symmetric relation R
is called a (early) weak bisimulation if whenever (N,M) ∈ R the following holds.

– N µ−−−→ N ′ implies that there is some M ′ such that M µ̂===⇒M ′ and such that
(N ′,M ′) ∈ R

Networks N and M are called weak bisimilar, denoted N ≈M , if there is some
weak bisimulation R such that (N,M) ∈ R.
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Some properties of Dπfull-calculus: Bisimulation in the π-calculus is not
a congruence [12]. The reason is that bisimulation is not closed with respect
to arbitrary name-substitutions. This in turn means that bisimulation is not
closed with respect to input contexts. However in Dπfull we only require closure
under application of network contexts, which we recall from Definition 2 does
not include input prefixing. It is therefore easy to show that strong and weak
bisimulation as defined in Definition 9 and Definition 10 are in fact congruences.

Proposition 1. We have N −−−→ N ′ iff N τ−−−→≡ N ′

Theorem 1. We have ∼b=∼ and ∼=b=≈.

3 A Migration Preserving Encoding

In preparation of presenting the encoding of parametrised constants we start by
recalling the encoding in the π-calculus [2]. Our encoding is a natural extension
of this encoding. We nevertheless preffer to give it in full details since it has not,
to our knowledge, previously been done in calculi with spatial mobility.

3.1 On Encoding Parametrised Constants

We refrain from defining the formal semantics of the polyadic π-calculus, but
recall that the process-terms are essentially the same as the process-terms in
Dπfull without the go?-prefix. The main reduction axiom is similar to the
(r-Com)-axiom but without the location,

a?(x̃).P | a!〈ṽ〉.Q −−−→ P{ṽ/x̃} | Q .
In the π-calculus parametrised constants are encoded using replication in the
following manner. A mapping κ : P −−−→ P is said to act homomorphic on
an n-ary operator × if κ(×(P1, . . . , Pn) = ×(κ(P1), . . . , κ(Pn)). E.g. if κ( ) is
homomorphic on | , then κ(P | Q) = κ(P ) | κ(Q). Define a mapping � �

′

from process-terms to process-terms which is homomorphic in all except the
following case. Let �A〈ṽ〉�′ = a!〈ṽ〉. Then extend � �

′ to the equations defining
the constants by letting �A(x̃) = P �′ = �a?(x̃). �P �′ for each defining equation
A(x̃) = P . The full encoding is given by placing the encoding of the equations
and processes in parallel. Consider the equation A(x̃) = P and a simple call,
A〈ṽ〉 −−−→ P{ṽ/x̃}. The encoding is,

�A〈ṽ〉�′ def= (νa)(a!〈ṽ〉 | � a?(x̃). �P �
′) .

In the encoded process we can unfold the replication once and perform the
recursive call by sending the parameters ṽ on the channel a. I.e.

(νa)(a!〈ṽ〉 | a?(x̃). �P � | �a?(x1, . . . , xk). �P �)−−−→ (νa)(�P � {ṽ/x̃} | �a?(x̃). �P �]).

Full details of this encoding as well as the π-calculus can be found in e.g. [2].
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Consider what would happen if we attempted to apply the same approach on
the following Dπfull-network.

N1 = l1[A | s!.b!〈l2〉] | l2[s!.b!〈l3〉] | l3[s!.b!〈l4〉] | · · · ,
where A = s?.b?(x). go?x.A. The network N1 synchronises on s, gets the name
of a neighboring location l2 and migrates to l2. At l2 the protocol starts over
again, by synchronising on s, and getting the name of l2’s neighboring location
l3. Thus N1 reduces to lk[A] | lk[s!.b!〈lk+1〉].

Suppose we wanted to use the encoding outlined above to express N1 using
replication in place of parametrised constants. We get

�N1�
′ = l1[a! | � a?.s?.b?(x). go?x.a! | s!.b!〈l2〉] | l2[s!.b!〈l3〉] | l3[s!.b!〈l4〉] | · · · .

�N1�
′ can reduce to l2[a!] | l2[s!.a!〈l3〉] | l3[s!.a!〈l4〉] | · · · . But now the network is

stuck since the encoding of the equation A(x̃) = P is not accessible, but remains
at the location where the initial recursive call was made.

A solution to this problem is proposed by Hennessy and Hym [4] who encode
recursion in terms of replication. The idea is that whenever a recursive call is
made, a process migrates to a special home-location where the body is fetched.
This encoding is proven correct in [4], but relies on introducing extra migrations.

3.2 The Dπ�-Calculus

We now define the Dπ�-calculus in which we encode parametrised constants.
Compared to Dπfull, Dπ� is a rather restricted calculus. The restriction we im-
pose is that the target location of a migration must exist, and moreover it must
also accept entry by the migrating process. This restriction in fact renders the
location structure in Dπ� static (see Lemma 5).

Definition 11 (Dπ�-syntax). The processes and networks of the Dπ�-calculus
are given by the following two grammars

P ::= as in Definition 1 . . . | go!v.P | go?v.P .

The grammar for networks is identical to the one in Definition 1.

Structural equivalence is defined as in Definition 3. The reduction semantics is
essentially obtained from that of Dπfull with a few modifications.

Definition 12 (Reduction relation for Dπ�). The reduction relation, −−−�,
is a binary relation over networks satisfying the rules in Table 1 and Table 2
with the following modifications.

– Replace all occurrences of −−−→ with −−−�.
– Replace the rule (r-Go) with

(lt-Go) l[go?k.P ] | k[go!k.Q] −−−� k[P ] | k[Q] .
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We leave the names of the rules unchanged; it should be clear from the use
of either −−−→ or −−−� whether we are speaking of Dπfull or Dπ�. Early strong
and weak barbed bisimulation and congruence is defined as in Definition 6 and
Definition 7 by replacing −−−→ with −−−�.

The labels are as in Dπfull in addition to labels for migration actions– and
co-actions, (ñ) go?k, P , where ñ ⊆ fn(P ) and go!k, P respectively. The former
means that P is being sent to the destination k while exporting the private
names ñ. The latter means that the location k can receive P .

Definition 13 (Labelled transition relation for Dπ�). The labelled transi-
tion relation,

µ−−−�, is defined in the same way as for Dπfull, with the following
modifications to the SOS-rules.

– Replace all occurrences of µ−−−→ with
µ−−−�.

– Replace the rule (lt-Go) with the following two rules.

(lt-Go?) l[go?k.P ]
go?k,P−−−−−� l[stop]

(lt-Go!) k[go!k.Q]
go!k,P−−−−−� k[P ] | k[Q] .

– Add the rules

(lt-MigOpen) N
(ñ) go?k,P−−−−−−−→ N ′

(νn)N (nñ) go?k.P−−−−−−−−→ N ′
where n ∈ fn(P )

(lt-Go) M
(ñ) go?k,P−−−−−−−�M ′ N

go!k,P−−−−−� N ′
N |M τ−−−� (νñ)(N ′ |M ′)

.

The transition semantics makes explicit that migration is in essence a higher-
order operation. Thus the definitions of strong and weak barbed bisimilarity are
not as simples as for Dπfull. The challenges with higher-order communication
are discussed in [13] and we follow [13] and use a notion of contextual bisim-
ulation. Despite the added complexity following with contextual bisimulation
the semantic theory for Dπ� remains quite manageable. The reason is that we
do not have full higher-order communication where process variables can occur
as arbitrary subprocesses and multiple times. In fact, a received process always
occurs exactly once as a parallel network in the receiving context. Due to space
constraints the definitions are omitted, but it is relatively straightforward to
prove that the results stated in Section 2.1 also hold in Dπ�.

3.3 Encoding Parametrised Constants in Dπ�

The encoding is defined for finite sets of constants. The main encoding function is
given in terms of auxiliary encodings; P �·� encodes processes and N �·� encodes
networks. Let I be an index set for ∆ and ã a set of fresh names (wrt. to the
encoded network) such that the set ã is in one-to-one correspondence with I.
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Definition 14 (Encoding of processes). Let a mapping P � � from process
terms to process terms be given by the following clauses

P �stop�
ã

=stop
P �Ai〈ỹi〉�ã =ai!〈ỹi〉 for ai ∈ ã ,

and by asserting that P � � is a homomorphism on all other operators.

The names ã on which the encoding depends are the names on which recursive
calls are invoked, similar to what we saw in Section 3.1.

Definition 15 (Encoding of networks). The encoding of networks is ho-
momorphic on restriction and parallel composition and defined as follows on
locations,

N �l[P ]�
ã

= l[P �P �̃
a
] |
∏

ai,i∈I
l[P �Ai�ai ] .

The full encoding, � �, is defined as: �N� = (νã)N �N �̃
a
, where ã is restricted at

the top-level to prevent contexts from interfering with the protocol. Note that
this encoding does not introduce extra migration. In the sequel we write l[P �∆�̃

a
]

in place of
∏

ai,i∈I l[P �Ai�ai ]. With these definitions we can show operational
correspondence and full abstraction with respect to barbed congruence.

Before stating these results we make a few remarks on some characteristics
of the encoding. The encoding in the π-calculus is not compositional up to =
but it is compositional up to ∼=b. By compositional we mean that �M | N� �	
�M� | �N� for some equivalence relation �	. Our encoding is not compositional
up to = or ≡. Consider the encoding of the network l�P � | l�Q�

�l�P � | m�Q�� = (νã)
(

l�P �P �
ã
� | l[P �∆�̃

a
] | m�P �Q�̃

a
� | m[P �∆�̃

a
]
)

.

On the other hand

�l�P �� | �m�Q�� = (νã)
(

l�P �P �
ã
� | l[P �∆�̃

a
]
) | (νã′)(m�P �Q�̃

a′� | l[P �∆�
ã′ ]
)

.

Thus �l�P � | m�Q�� 	≡ �l�P �� | �m�Q��. However our encoding is not even
compositional up to ∼=b. Suppose in the example above that P = go?m.B, Q =
go!m.stop, and B def= b!. Now �(l[P ] | m[Q])� ⇓b@m, but (�l[P ]� | �m[Q]�) 	⇓b@m.
In particular this means that the encoding can not be applied to subnetworks
and subsequently assembled to form a larger network.

Theorem 2 (Full abstraction). We have that N ∼=b M iff �N� ∼=b �M�.

By looking at the encoding a tempting alternative, which also avoids introducing
extra migration, could be to use the following as the defining clause for migration,
�go?k.P � = go?k.(�∆ | P �). However, this is not a well-defined encoding since
there can be occurrences of go in definitions in ∆.
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4 Dπ� Is Incomparable to Dπfull

In this section we show that Dπ� is incomparable to Dπfull. We use Gorla’s ob-
servations in [14] and [15] in order to establish parts of this result. The following
lemmas are immediate.

Lemma 1. Let N | M be a Dπfull-term and suppose N | M τ−−−→. Then one of
the following conditions holds.

– N τ−−−→ or M τ−−−→
– N (ñ)l!a〈ṽ〉−−−−−−→ and M l?a(̃v)−−−−−→ (or the roles of N and M are switched)

Lemma 2. Let N | M be a Dπ�-term and suppose N | M τ−−−�. Then the fol-
lowing holds.

– N
(ñ) go?k,P−−−−−−−� and M

go!k,P−−−−−� (or the roles of N and M are switched),

together with the assertions in Lemma 1.

Lemma 3. If N µ−−−→, then fn(µ) ⊆ fn(N).

Let L be a calculus defined using names from N . A permutation σ is a bijective
mapping from N to itself. In the following Definition 16, Proposition 2, and
Definition 17 are adapted from [15].

Definition 16 (Sensible encoding). Let A and B be calculi and �·� an en-
coding from A to B. Then �·� is a sensible encoding if the following holds:

1. Permutation preserving: �Nσ� = �N�σ for every permutation σ.
2. Homomorphic: �N |M� = �N� | �M� and �(νn)N)� = (νn) �N�.
3. Barb preserving: N ⇓α implies �N� ⇓α.
4. Operational correspondence: If N τ−−−→ N ′ then there is N ′′ such that �N�

τ−−−→∗
N ′′ and �N ′� ≈ N ′′. Conversely if �N�

τ−−−→ N ′ then there is N ′′ such that
N

τ−−−→∗ N ′′ and N ′ ≈ �N ′′�.
5. Termination preserving: N terminates iff �N� terminates.

Proposition 2. Let A and B be calculi, and let �·� be a sensible encoding from
A to B. Assume there is some term N in A such that N 	 τ−−−→, while �N�

τ−−−→.
Then �·� introduces divergence.

Lemma 4. The Dπ�-calculus can not be encoded in Dπfull.

Proof. Let n[go!n] | n[go?n] be a Dπ�-network and assume �·� is an encoding
into Dπfull. If �·� is a sensible encoding, its encoding is

�n[go!n] | n[go?n]� = �n[go!n]� | �n[go?n]�

Since the original network can reduce and by operational correspondence, the
encoding must also reduce. This implies, by Lemma 1, that one of the following
must hold
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(i) �n[go!n]� τ−−−→ or �n[go?n]� τ−−−→ or

(ii) �n[go!n]� (ñ)l:a!〈ṽ〉−−−−−−−→ and �n[go?n]� l:a?(̃v)−−−−−→ for some a, l, ñ and ṽ.

The third case where the roles are switched is handled in the same way as (ii)
and therefore omitted. Now if either reduction in (i) is the case, then clearly the
encoding diverges by Proposition 2. The cases (ii) and (iii) all fails for the same
reason. Consider the transition �n[(ñ) go!n]� l:a!〈v〉−−−−−→. By Lemma 3, l and a must

be free in �n[go!n]�. Let σ permute a and l. Then �n[go!n]�σ (ñ)a:l!〈v′〉−−−−−−−→ for some

v′. If n = l or n = a then �n[go!n]σ� (ñ)l:l!〈v′〉−−−−−−−→ or �n[go!n]σ� (ñ)a:a!〈v′〉−−−−−−−−→. In either
case �n[go!n]σ� 	= �n[go!n]�σ. If n 	= l 	= a, then �n[go!n]σ� = �n[go!n]� for all σ,
which contradicts the fact that �·� is permutation preserving. ��
In order to prove the opposite direction we argue by contradiction using that
new locations can not be dynamically created Dπ�. In addition to being sensible
we shall in the following require the encoding to be location preserving in the
sense that �l[P ]� = l[�P �]. This is part of our notion of a local encoding which
discuss in more detail in Section 5.

Lemma 5. Let N be a Dπ�-network and assume the set of locations in N is L.
Then whenever N τ−−−→∗ N ′ we have that the set of locations in N ′ is L.

In Lemma 5 L contains all all names l such that l[P ] is a subnetwork of N .

Lemma 6. The calculus Dπfull can not be encoded in Dπ�.

Proof. Suppose � � is an encoding from Dπfull to Dπ� and consider the network
N = l[go?n.a! | a!]. This N can now reduce to N ′ = n[a!] | l[a!]. The set of
locations in N is the singleton {l}. Since the encoding is location preserving we
then have that the set of locations in �N� must be {l}. Moreover by operational
correspondence we know that there is M such that �N� reduces to M and M ≈
�N ′�. Finally the encoding must preserve barbs, in particular �N ′� has a a@n-
barb and hence so mustM . But this contradicts Lemma 5 as the set of locations
in M must be {l}. ��
Definition 17. Two calculi A an B are incomparable if there is no sensible
location preserving encoding from A to B and vice versa.

5 There Is No Local Encoding in Dπfull

A better encoding would be one that avoided the need for the requirements
introduced by our encoding and by the encoding of Hennessy and Hym [4]. We
call an encoding with this property a local encoding.

In the discussion in Section 3.1 we gave an example of a parametrised process
which can not be encoded in Dπfull using the same idea as in the π-calculus. The
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problem is that we need access to the definitions at all locations. This is possible
if the set of locations is static. However in Dπfull we can easily define a process
that creates arbitrarily many locations.

A = (νb)a!〈b〉.c!〈b〉 | a?(x). go?x.A (2)

Now

l[A] −−−→∗(νb)l[a!〈b〉.c!〈b〉 | a?(x). go?x.A]
−−−→∗(νb)(l[c!〈b〉] | b[A])
−−−→∗(νb)(l[c!〈b〉] | (νb′)(b[c!〈b′〉] | b′[A]))

...

For proof technical reasons we need to keep track of migration. We do this
by annotating reductions that are migrations. Formally the reduction relation
becomes either −−−→∅ or −−−→go?k for some go?k and depending on whether the
(r-Go) axiom has been used in the derivation. Then replace the (r-Go) axiom
in Section 2.1 with the axiom l[go?k.P ] −−−→go?k k[P ] and all other axioms with
N −−−→∅ N ′. Moreover the contextual rules and rule for structural congruence
are adapted to allow for the information in the annotation to flow from the
premise to the conclusion. If in an annotated reduction −−−→go?k the name k is
α-converted in the corresponding process we must also update the annotation.
Note that (r-Res)-rule is replaced by the rule

N −−−→go?k N ′

(νn)N −−−→go?k (νn)N ′
,

regardless of whether k=n thus go?k-marked reductions behave like τ -transitions.

Lemma 7. N −−−→ N ′ iff N −−−→∅ N ′ or N −−−→go?k N ′ for some go?k.

In the rest of this section we simply write −−−→ for −−−→∅.
Definition 18 (Local encoding). An encoding is local if it satisfies the fol-
lowing properties:

1. The encoding respects locations, i.e. �l[P ]� = l[�P �].
2. Homomorphic with respect to | .
3. If �l[P ]� −−−→go?k N , then l[P ] −−−→∗−−−→go?k N ′ for some N ′ such that �N ′� ∼=b
N . If l[P ] −−−→go?k N ′, then �l[P ]� −−−→∗−−−→go?k N for some N ′ such that
�N ′� ∼=b N .

4. Property 4 of Definition 16.

Property 2 says that the encoding is homomorphic with respect to parallel com-
position. Here we emphasise that no new parallel components are added. Prop-
erties 1 and 3 are new and deserve some explanation.

Property 1 asserts that we can not add processes when encoding locations.
Note that it does not ensure that new locations and migrations are not added.
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For instance the encoding �l[0]� = l[go?k] satisfies property 1. Property 1 is
related to property 2, i.e. we can not add something in parallel with neither
P inside l or in parallel with l itself. The latter is not strictly necessary. In
Dπ, l[P | Q] is weakly barbed bisimilar to l[P ] | l[Q] so we could have allowed
some l[R] to be added in parallel. The proof of the negative result still works.
The encoding in Section 3.3 fails to be local on exactly this account. However
it seems more general to keep it this way since not all calculi identify parallel
compositions of equal location names. Moreover allowing for an extra parallel
component implies some technical difficulties since we must also handle the case
when such a process is not added.

One half of Property 3 prevents the encoding from introducing extra mi-
grations involving dynamically created locations (recall that by property 1 the
encoding can not itself introduce new locations). The other half of Property 3
requires the encoding to have at least the same migrations as the original process.

We have already seen that the encoding in Section 3.1 is not local. We now
show that there cannot exist a local encoding of parametrised constants in terms
of replication in Dπfull.

Definition 19. Let r(P ) denote the replication depth of a process P defined
inductively by the following clauses

r(stop) = 0 r(P1 | P2) = max(r(P1), r(P2))
r(�P ) = 1 + r(P ) r(N |M) = max(r(N), r(M)) ,

and by asserting that r( ) is a homomorphism on all other operators.

Definition 19 simply enables us to count the nesting depth of the �-operator in
a process. We are not interested in the global total, but the maximum number
in any parallel component. Hence we take the maximum in the clauses for par-
allel composition and if-then-else. E.g. if P = �Q, where Q = �Q′ | � Q′′ and
Q′′ = �Q′′′, then r(P ) = 3. First we note that any process which does not use
replication must indeed terminate. This does not in general hold in higher-order
calculi and is therefore a point which needs to be checked in Dπ because of the
higher-order flavour of the migration operation.

Lemma 8. Let P be a Dπfull-process such that r(P ) = 0

{P ′ | P −−−→∗ P ′}/≡ is finite .

Corollary 1. Let P be a Dπfull-process such that r(P ) = 0. Then any reduction
sequence starting from P can only contain finitely many go?k labelled reductions
(up to ≡).

Next, we characterise those migrations that appear within a replicated process.
Let Qn denote Q composed n times by | .
Definition 20. A reduction N −−−→∗−−−→go?k (νñ′)(k[Q′] | l[P ′] | M ′) is �-
released if there is some ñ, and P such that

N −−−→∗ (νñ)(l[P ] |M) −−−→∗−−−→go?k (νñ′)(k[Q′] | l[P ′] |M ′) .
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and the following holds. P = �Q and for some n ≥ 1 we have

(νñ)(l[Qn] |M) −−−→∗−−−→go?k (νñ′)(k[Q′] |M ′) .

where P ′ = �Q and the go?k-marked reduction came from Qn. We call P the
�-source of N .

The idea with �-released reductions is to identify those go?k-reductions that are
generated by replicated go?k-prefixed processes. An example of a network with
�-released reductions is N = l[(νk) � (a?(x). go?k | a!〈v〉) | P ].

N −−−→l[(νk) � (a?(x). go?k | a!〈v〉)] | l[P ]
−−−→(νk)(l[�(a(x). go?k | a!〈v〉] | l[P ])
−−−→∗(νk)(l[go?k] | l[�(a?(x). go?k | a!〈v〉)] | l[P ])

−−−→go?k(νk)(k[stop] | l[�(a?(x). go?k | a!〈v〉)] | l[P ])

The �-source is the replicated process on the l-location in the second reduct. On
the other hand there are no �-released reductions from l[go?k. � a(x).P ].

Lemma 9. If N −−−→∗−−−→go?k (νñ′)(k[Q′] | l[P ′] |M ′) such that the reduction is
�-released and P is the �-source of N , then r(Q′) < r(P ).

Proof. (Sketch) By definition there is ñ and P such that

N −−−→∗ (νñ)(l[P ] |M) −−−→∗−−−→go?k (νñ′)(k[Q′] | l[P ′] |M ′) .

If r(M) > r(P ) the assertion clearly holds. If M ≤ r(P ) we also see that the
assertion holds since Q′ is a subprocess of P with a go?k-prefix consumed ��
A process must have a finite description. Hence a direct consequence of Lemma 9
is that no reduction sequence can containing infinitely many �-released reduc-
tions. On the other hand we have the following lemma.

Lemma 10. A reduction sequence with infinitely many go?k reductions must
also contain infinitely many �-released reductions.

Proof. Suppose for a contradiction that the reduction sequence contains only
finitely many �-released reductions. Then there must be a last such reduction.
Since by assumption there are infinitely many go?k reductions there must be
more go?k reductions following the last �-released. This reduction must have
been caused by a go?k prefix not under � (because otherwise the reduction
would be �-released). If the reduction was caused by some go?k.P and r(P ) = 0,
then the reduction sequence would terminate by Lemma 8. On the other hand
it might be the case that r(P ) > 0 but none of the go?k reductions can come
from unfolding, because then they would be �-released. ��
Theorem 3. There is no local encoding of parametrised constants using repli-
cation in Dπfull.
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Proof. Assume that an encoding satisfying the properties of Definition 18 exists.
We are going to show that if the encoding of a parametrised constantA〈x̃〉 admits
an infinite sequence of migrations satisfying certain conditions, then every newly
created sublocation will have lower replication depth. This then means these
locations cannot contain a copy of the recursive definition. This then leads to a
contradiction of Property (2) of Definition 18.

We consider a processA〈x̃〉 with a definition, A(ỹ) = P satisfying the following
properties:

1. The body P does not contain more than one occurrence of A〈x̃〉.
2. There are no subprocesses on the form B(z̃) in P .
3. There exists a R such that the only reduction sequence involving migration

is an infinite reduction sequence with initial segments on the form

l[A〈x̃〉] −−−→∗−−−→go?k1−−−→∗ · · · −−−→go?kn (ν˜k)
(

l[P ′] |
n−1
∏

i=1
ki[P1] | kn[R]

)

. (3)

where neither P1 nor P ′ calls on parametrised constants and ˜k = k1, . . . , kn.

We know from Equation (2) that such a process exists.
Now consider the encoding of the defining process for A〈x̃〉, �P �. By our

assumptions about the encoding, we must have that the encoding permits a
reduction sequence with initial segments on the form

�l[A〈x̃〉]� −−−→∗−−−→go?k1−−−→∗ · · · −−−→go?kn

�

(ν˜k)
(

l[P ′] |
n−1
∏

i=1
ki[P1] | k[R])

�

. (4)

This process must contain instances of replication, for otherwise �l[A〈x̃〉]� would
terminate. Let d = r(�P �). Moreover, it is the case that infinitely many go?ki-
reductions in the infinite reduction sequence (4) must be �-released.

Since P does not contain parallel occurrences of A〈x̃〉, at most one call of
A(ỹ) can exist in R. A〈x̃〉 must appear in R, if the reduction sequence is to be
infinite. However, by Lemma 9, the replication depth of �R� is strictly smaller
than that �P �. If we choose n = d, we see that �R� will have replication depth
0. But then �R� cannot contain an encoding of �P � as a subprocess. ��

6 Encoding in Mobile Ambients

An interesting question is what it is that makes local encodings of parametrised
constants impossible in Dπfull? We can obtain some insight into this by a com-
parison with MA. We shall show that parametrised constants can in fact be
encoded using replication in MA. The complete MA calculus is defined in [6]. In
this section ! denotes replication as usual in MA.
Definition 21. The terms of the MA-calculus are given as follows:

P ::= 0 | P | Q | (νx)P | !P | x[P ] | A〈x̃〉 | M.P | 〈˜M〉
M ::= inx | outx | openx | (x̃) .
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Definition 22 (Partial). Redution axioms:

x[in y.P | Q] | y[R] −−−→ y[x[P | Q] | R] openx.P | x[Q] −−−→ P | Q
y[x[out y.P | Q] | R] −−−→ x[P | Q] | y[R] 〈˜M〉 | (x̃).P −−−→ P{˜M/x̃}

There are contextual rules and closure under ≡ [6] on MA terms. ≡ is basically
defined in the same way as in the π-calculus with the addition of scope extrusion
on locations. Locations in MA [6] can be nested and form hierarchical structures.
On the other hand in MA a single ambient can not non-deterministically spawn
new locations as in Dπ. Rather the ambient targeted by the migration must
already exist. Recall that ∆ denotes the set of parametric constant definitions
and define an encoding as following:

Definition 23. The encoding of parametrised constants is homomorphic on all
except the following operators:

A �∆� =
∏

i∈I
ai[!open bi.(x̃).start[outai.A �P �]]

A �x[P ]� =x[∆ | A �P �] , where ∆ = A �∆� | !openstart.0
A �A〈x̃〉� =bi[in ai.〈x̃〉]

The full encoding is: �P � = (νã,˜b, start)
(A �P �

)

, where ã,˜b and start are fresh.

Proposition 3. Operational corresondence holds as follows:

– Suppose P −−−→ P ′. Then �P � −−−→∗ �P ′�.
– If �P � −−−→ P ′, then either
• P −−−→ P ′′, and �P ′′� = P ′
• P −−−→ P ′′ and for some P ′′′, P ′ −−−→ P ′′′ such that �P ′′� = P ′′′.

7 Conclusion

In this paper we discussed the expressiveness of parametrised constants versus
replication in a version of the Dπ-calculus we called Dπfull and the MA-calculus.
Dπfull as well as MA are spatial calculi with process migration. It has been
shown that an encoding of parametrised constants using replication exists in
Dπ�, a restricted version of Dπfull in which the location structure is static. We
introduced the notion of a local encoding and showed that there is no local
encoding of parametrised constants using replication in the Dπfull-calculus. On
the other hand a simple encoding of the same constructs is possible in MA.

A possible interpretation of our results is that the granularity of migration
is governing for the implementability of parametrised constants. In MA entire
ambients move, thus bringing along the encoding of the defining equations. This
in contrast to Dπfull where only processes move.

Moreover, whereas the location structure in Dπfull is flat, the MA calculus
allows for nesting of locations and is in that respect more expressive than Dπfull.
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The positive result can then be interpreted as an indication that the complexity
of the spatial location structure does not affect implementability of parametrised
constants. Conversely the negative results may indicate that even in the presence
of a simple flat spatial structure, the ability to spawn new locations dynamically
prevents distributed implementations of parametrised constants. We believe this
is useful knowledge in e.g. distributed implementations spatial process calculi.

We also showed that Dπ� can not be encoded in Dπfull and vice versa, ren-
dering the calculi incomparable. In the introduction we mentioned that the first
result can be thought of as a confirmation that it is not possible to encode
parametrised constants in Dπfull by first encoding into Dπ� and then encode
the resulting processes in Dπfull. On the other hand the opposite assertion, that
Dπfull can not be encoded in Dπ�, can be viewed as a indication that imposing
a static location structure indeed implies a loss in expressive power.

Another aspect we believe is important, is our new notion of a local encoding.
The incomparability result relies on a number of requirements defining a sensible
encoding. Most of them are widely accepted as reasonable in the process calculi
community. Many date back to work relating to the notion of syntactic sugar in
the λ-calculus and can be found in[16] albeit in more general formulations and
primarily discussed in the context of functional languages.

We believe that the locality requirement could be a candidate for addition
to the existing set of widely accepted encoding criteria. Firstly it is simple and
can be formulated without using complicated difficult to understand techniques.
In fact the formulation on surface resembles e.g. the criteria for homomorphism
with respect to parallel composition. This has the benefit that it does not rely on
too many specifics of the calculi, but rather just on the existence of the location
primitive (which is present in many spatial calculi). Secondly it is motivated by
issues related to failures in distributed networks. I.e. it seems natural for an en-
coding intended to work in a spatial network in the presence of failures to require
that it can not rely on migrating between possibly remote locations. Again we
believe that the locality principle captures this idea nicely. One criticism is that
it is not very fine grained. I.e. one could envision parts of the network such as
the LAN being more reliable than the WAN. This is not currently possible to
express. Moreover although the idea appears intuitively easy to understand, we
have not developed any formal framework for evaluating its applicability.

In future work it would be highly relevant to investigate how recursion fits
into this picture. The results in Section 3 and Section 6 are established in terms
of parametrised constants. It is plausible that they hold for recursion as well.
Assume x̃ def= fn(P ). There is then a simple encoding of recursion.

�recX.P �
def= �P � , ∆ def= ∆ ∪ {AX(x̃) = P} , and �X�

def= AX(x1, . . . , xn) .

At least this encoding is not sensitive to the issue of localeness since ∆ is glob-
ally available. Another highly relevant direction is to apply our notion of local
encoding in other process calculi with spatial mobility. Finally this is initial work
using local encodings. It could be interesting to see if the encoding criteria could
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be reffined. A concrete refinement could be to adopt the work of Gorla in [14]
which for instance could enable us to encompass the top-level restrictions used
in the encoding in Section 3.3.

Acknowledgments. We deeply thank the anonymous reviewers for useful
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References

1. Aranda, J., Di Giusto, C., Palamidessi, C., Valencia, F.D.: On Recursion,
Replication and Scope Mechanisms in Process Calculi. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709,
pp. 185–206. Springer, Heidelberg (2007)

2. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

3. Hennessy, M.: A Distributed Pi-Calculus, 1st edn. Cambridge University Press,
Cambridge (2007)

4. Hym, S., Hennessy, M.: Adding Recursion to Dpi. Theoretical Computer Sci-
ence 373(3), 182–212 (2007)

5. Francalanza, A., Hennessy, M.: Location and Link Failure in a Distributed
π-calculus. Sussex Technical Report 2005:01, University of Sussex (January 2005)

6. Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Sci-
ence 240(1), 177–213 (2000)

7. Ravara, A., Matos, A.G., Vasconcelos, V.T., Lopes, L.: Lexically scoped distri-
bution: what you see is what you get. Electronic Notes in Theoretical Computer
Science 85(1), 61–79 (2003)

8. Levi, F., Sangiorgi, D.: Controlling Interference in Ambients. In: Symposium on
Principles of Programming Languages, pp. 352–364 (2000)

9. Hennessy, M., Riely, J.: Resource Access Control in Systems of Mobile Agents.
Information and Computation 173, 82–120 (2002)

10. Ciaffaglione, A., Hennessy, M., Rathke, J.: Proof Methodologies for Behavioural
Equivalence in DPI. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 335–350.
Springer, Heidelberg (2005)

11. Hennessy, M., Merro, M., Rathke, J.: Towards a Behavioural Theory of Access and
Mobility Control in Distributed Systems. Theoretical Computer Science 322(3),
615–669 (2004)

12. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II.
Information and Computation 100, 1–77 (1992)

13. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D thesis, University of Edinburgh, Dept. of Computer Science
(1993)

14. Gorla, D.: Towards a Unified Approach to Encodability and Separation Results for
Process Calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 492–507. Springer, Heidelberg (2008)

15. Gorla, D.: On the Relative Expressive Power of Asynchronous Communication
Primitives. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921,
pp. 47–62. Springer, Heidelberg (2006)

16. Felleisen, M.: On the Expressive Power of Programming Languages. Science of
Computer Programming 17(1-3), 35–75 (1991)



Biochemical Tuple Spaces for Self-organising
Coordination

Mirko Viroli and Matteo Casadei

Alma Mater Studiorum – Università di Bologna
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Abstract. Inspired by recent works in computational systems biology
and existing literature proposing nature-inspired approaches for the co-
ordination of today complex distributed systems, this paper proposes a
mechanism to leverage exact computational modelling of chemical reac-
tions for achieving self-organisation in system coordination.

We conceive the notion of biochemical tuple spaces. In this model:
a tuple resembles a chemical substance, a notion of activity/pertinency
value for tuples is used to model chemical concentration, coordination
rules are structured as chemical reactions evolving tuple concentration
over time, a tuple space resembles a single-compartment solution, and
finally a network of tuple spaces resembles a tissue-like biological system.

The proposed model is formalised as a process algebra with stochastic
semantics, and several examples are described up to an ecology-inspired
scenario of system coordination, which emphasises the self-organisation
features of the proposed model.

1 Introduction

The characteristics of the ICT landscape – yet notably changed by the advent
of ubiquitous wireless connectivity – will further re-shape due to the increasing
deployment of computing technologies like pervasive services and social networks:
new devices with increasing interaction capabilities will be exploited to create
services that inject and retrieve data from any location of the very dynamic
and dense network that will pervade our everyday environments. Addressing
this scenario calls for finding infrastructures promoting a concept of eternality,
namely, changes in topology, device technology, and continuous creation of new
services, have to be dynamically tolerated as much as possible, and incorporated
with no significant re-engineering costs at the middleware level [30]. As far as
coordination is concerned, this means that coordination models will increasingly
be required to tackle self-adaptation, self-management, self-optimisation – in one
word, full self-organisation – as inherent system properties rather than peculiar
aspects of individual coordinated components.

The concept of self-organising coordination then enters the picture, which
is based on the idea of structuring local coordination rules – which are possi-
bly stochastic and timed – so as to make interesting global properties appear

J. Field and V.T. Vasconcelos (Eds.): COORDINATION 2009, LNCS 5521, pp. 143–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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by emergence [28]. As typical in self-organising computational mechanisms, the
most promising direction so far to design such coordination behaviour is to take
inspiration from natural systems, where self-organisation is intrinsic to the basic
“rules of the game”. Nature-inspired solutions have already been studied in the
area of distributed computing in general [1], and also in coordination models
like e.g. Tota [19] (in which tuples model computational fields distributed in the
network) and SwarmLinda [20] (where tuples act like ants in a colony to diffuse
in the system).

Among the others, the chemical metaphor appears particularly interesting
for the simplicity of its foundation. Chemistry has been proposed as a source
of inspiration for works in distributed computing and coordination since many
years, like in the Gamma language [5] and the chemical abstract machine [3]. The
basic idea of these models is to coordinate components (programs and data) like
they were molecules floating in the distributed system, with chemical rules (that
consume and produce sets of components) driving the coordination process—
also framed as transactions as in the Swarm language in [14]. Although this
metaphor of coordination is enlightening, we observe that this is not brought
to its full realisation, since it does not capture a key issue of chemistry that
is responsible of its intrinsic self-organisation properties, namely, the concept
of chemical rate and its underlying impact on chemical system dynamics. As
many chemical reactions can occur at a given time, system evolution is driven
by their chemical rate, probabilistically discharging unlikely behaviour paths
while promoting those actually observed in practice. Not by chance, quantitative
aspects like probability recently entered the picture of computational models [6],
and coordination in particular [7,12,24], as a way of providing a more refined
view of non-determinism so as to better model (and simulate) the behaviour of
highly dynamic and open systems.

Following results developed in the context of computational systems biology
[15], where exact modelling of chemical reactions – given in [16] – is the corner-
stone for applying computer models to the analysis of biological systems, in this
paper we aim at evolving existing chemical metaphors for coordination, so as to
leverage the self-organisation character of exact chemical behaviours.

The concept of biochemical tuple spaces is introduced. In this model, tuples
are always associated with an activity/pertinency value (related to tuple weights
in the probabilistic extension of Linda introduced in [7]), which resembles chem-
ical concentration and measures the extent to which the tuple can influence the
coordination state—e.g., a tuple with low concentration would be rather inert,
hence taking part in coordination with very low frequency. Chemical-like laws,
properly installed into the tuple space, evolve concentration of tuples over time
exactly in the same way chemical substances would behave into a solution [16],
hence promoting the exploitation of chemical patterns that make interesting
self-organisation properties emerge. Additionally, such laws are extended with
a mechanism of tuple diffusion that models chemical substances crossing the
boundary of biological compartments. Accordingly, our model allows us to draw
a conceptual bridge between a network of tuple spaces and a whole biological



Biochemical Tuple Spaces for Self-organising Coordination 145

system—a multi-compartment system, a tissue of cells, up to envisioning connec-
tions with full organs, embryos, or organisms. Studying how biological patterns
can be usefully exploited to build computing systems is a subject of ongoing
and future investigations (see e.g. [8]): still, we show that simple artificial laws
make interesting properties of self-adaptation, self-optimisation, and openness
uniformly emerge into tuple space systems, like (to the best of our knowledge)
in no other existing coordination models.

The remainder of this paper is organised as follows. Section 2 provides a back-
ground discussion for this paper clarifying related approaches. Section 3 describes
the proposed model informally first, and then formally by relying on a process-
algebraic approach in the standard style of several coordination models languages
[29]. Section 4 provides a number of examples that show the behaviour of the
introduced coordination primitives and of the chemical reactions model. Section
5 goes into the details of the self-organisation character of our framework, illus-
trating a case study of “service ecosystems” [30], where the coordination space
is shown to intrinsically support spatial competition of services implemented by
external agents. Finally Section 6 concludes providing final remarks.

2 Background and Related Work

Our work focusses on a stochastic extension of the basic Linda framework,
likewise e.g. [7,24]: this is motivated by the need of reifying the state of system
components into a space (and evolving such a state chemically), hence the tuple
space model provides a simple and coherent foundation. In [7] a probabilistic
extension of Linda is introduced where tuples are equipped with weights that
affect the probability of their retrieval: in our work we have a similar notion
of tuple concentration, though it is used not only for stored tuples, but also in
templates to be searched. In [24] an extension of Klaim is described in which
choices and parallel composition can have probabilities, and nodes have rates
that model their activity. While we could have adopted some of these features
more systematically, the focus of this paper is elsewhere, namely, in the idea of
evolving the weight/concentration of tuples over time by chemical-like laws.

The techniques used to realise this mechanism are inherited from works in
Computational Systems Biology (CSB) and other related areas [15], like e.g. the
well-known stochastic π-calculus [25]. In this language, molecules are modelled
as protocol-based processes, while instead we directly model them as atomic
data structures (tuples) that change state by rewriting transition rules as in
[13]—interestingly, and as will be clarified later, we could use a tuple space as
a real-time chemical simulator, observed/affected by coordinated components.
Similarly to mobile ambients [9], we model a system as a network of compart-
ments that may allow molecules to cross their boundaries—in future works, also
dynamic and mobile networks can be devised as studied in [9]. Tuple diffusion is
achieved by an enhanced form of chemical law, which on the right-hand side can
also have “actions” that send a tuple/molecule in a neighbouring compartment—
such an approach is typical in contexts like membrane computing [23].
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Likewise most works in CSB, our model is based on the framework of CTMC
(Continuous-Time Markov Chains). A CTMC is basically a graph where nodes
represent system states, and edges represent system transitions and are tagged
with positive real numbers called rates. A rate represents the average frequency of
the transition, assuming that the temporal distance between two occurrences of
the transition follows a negative exponential probability distribution. This model
is a variation/extension of DTMC (Discrete-Time Markov Chains), where edges
are labelled with probabilities instead of rates, and transitions do not require a
continuous time to occur but are rather discrete—in this model the sum of exit
probabilities from a node should be 1.

The motivation for using this particular stochastic meta-model comes from
the work of Gillespie in [16], which argued that a stiff solution of chemical reac-
tions can be simulated as a CTMC computational system. Suppose a solution of
substances X, Y and Z, with nx, ny and nz molecules each, and a chemical law of
kind X+Y

r−→ Z, meaning that with chemical rate r one molecule of X binds with
one of Y, transforming into a single new molecule of Z. The effect of the transi-
tion is to decrease nx and ny and increase nz; moreover, the transition dynamics
is as in CTMC with rate equals to r ∗ nx ∗ ny, i.e., the chemical rate multiplied
by the number of possible combinations of molecules that cause the reaction—
this number would be nx for rule X

r−→ Z, nx ∗ ny ∗ nz for rule X + Y + Z
r−→ W,

nx ∗ (nx−1)/2 for rule X + X
r−→ Z (since the order of molecules when colliding is

not relevant), and so on. In [16], an algorithm for simulating chemical reactions –
and hence CTMCs – has been proposed, that is commonly used in CSB. At each
step, compute the markovian rate of all chemical laws as seen above, let them be
r1, . . . , rn and their sum be S, and apply one of them probabilistically, namely,
the probability of picking law i is ri/S. The whole process is executed again
and simulation time is increased by ∆t time-units (i.e., seconds), computed as
log(1/τ)/R where τ is a random number in between 0 and 1.

This algorithm is typically used to perform experiments, namely, to find actual
instances of system behaviour by simulation. In this paper we propose a different
approach, where this algorithm defines an on-line behaviour of the coordination
“machine” that runs tuple spaces—it would be the program of a programmable
tuple space, e.g., in TuCSoN [21]. Observing a tuple space equipped with chem-
ical rules reveals exactly a chemical solution spontaneously evolving, or when
broadly observing a network, a biochemical-like system dynamics. Hence, we
are promoting here a view of coordination through a biochemical-like medium,
envisioning the possibility of enjoying the typical self-organisation patterns of
biochemistry—self-regulation, self-adaptiveness, and so on.

For instance a law of the kind X+Y
r−→ X+X can be used to model a predator

X that eats a prey Y, and accordingly generates a son. As a result, program-
ming coordination rules in terms of chemical-like reactions can also be viewed
as describing the behaviour of an “ecology” of tuples, from which we might ex-
pect behaviours like partial/global diffusion, competition, extinction, survival,
and the like, that can find interesting applications in the context of pervasive
computing as suggested in [30]. In a sense, the proposed model could also be
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named “ecological tuple spaces”—depending on whether transformation laws
are designed based on ecological considerations rather than biochemical ones—
but when describing our model we mostly refer to biochemistry due to the above
background in CSB.

Finally, it is worth noting that our work belongs to a research thread trying to
use exact biochemical behaviours to design computing systems, like the study of
expressiveness and termination in [10,31], the calculus of nano devices in [13], and
the identification of biochemical computing patterns in [8]—in our work however
some of our chemical laws are synthetic for they have no natural counterpart.

3 The Coordination Model

Informal description. The proposed model of chemical tuple spaces is an ex-
tension of standard Linda settings with multiple tuple spaces. In Linda a tuple
space acts as a repository of tuples (structured data chunks like records), which is
used as a coordination medium provided to external “agents”: such agents coor-
dinate their behaviour by accessing tuple spaces through primitives out , rd and
in, used to insert, read, and remove a tuple, respectively. Operations rd and in
can specify a tuple template – a tuple with wildcards in place of some of its argu-
ments –, and their execution blocks until a matching tuple is found. This model
is used in distributed systems to provide agents with mediated interaction, sup-
porting spatial and temporal uncoupling, and is the basic model upon which full-
featured coordination infrastructures have been introduced: industrial-oriented
ones like JavaSpaces and GigaSpaces, and research-oriented ones like TuCSoN
[21] and Tota [19] just to mention a few.

The basic idea of the proposed model is to attach to each tuple an inte-
ger value called “concentration”, which can be seen as a measure of the perti-
nency/activity of the tuple—the higher it is, the more likely and frequently the
tuple will influence system coordination. Concentration of tuples is dynamic (as
pertinency/activity typically is), and evolves using a chemical-like behaviour,
namely, chemical rules can be installed into the tuple space which affect con-
centrations over time precisely in the same way chemical substances evolve into
chemical solutions. This will ultimately allows us to inject self-organising be-
haviour in the tuple space.

Primive out can now be used to inject a tuple with any initial concentration:
if the same tuple was already occurring in the space, the two tuples will join and
their concentrations summed—chemically speaking, out amounts to injecting a
chemical substance into a solution. Primitive in can be either used to entirely
remove a tuple (if no concentration is specified), or to decrease the concentration
of an existing tuple—in amounts to removing (partially or entirely) a chemical
substance from a solution. Primitive rd is similar to in but it just reads tuples
instead of removing them—rd amounts to observing a chemical substance in a
solution, in order to know its concentration. Note that, if t is a tuple specified
by in or rd operations, a tuple existing in the space is looked that match t as in
Linda: differently from Linda, matching function is here application-dependent
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and can be continuous as in [20,27]—stronger matching implies higher probabil-
ity of finding a certain tuple.

A coordination system is deployed as a set of tuple spaces, with a concept
of topological structure—each tuple space has a set of tuple spaces in its neigh-
borhoud. Interaction between tuple spaces follows the linkability model [26], and
is achieved through a special kind of chemical law that, other than just chang-
ing tuple concentration, fires some tuples to a tuple space in the neighbour-
hood picked probabilistically. This mechanism mimics the concept of biological
compartment (i.e. ambient as in [9]), whose boundary can be crossed by chem-
ical substances, and allows us to conceive systems as biological-like networks of
nodes—ultimately justifying the term “biochemical tuple spaces”.

Syntax. We present the biochemical tuple space model by means of a calculus
with operational semantics in the style of other works in coordination [29]. Let
meta-variable σ range over tuple space identifiers, τ over first-order terms, v over
logic variables, r over positive real numbers including 0, and n, m over natural
numbers; real and natural numbers, as well as literals, can be used as constants
for building terms. A substitution of variables v1, . . . , vn to terms τ1, . . . , τn is
expressed by notation {v1/τ1, . . . , vn/τn}, and is applied to a term τ by syntax
τ{v1/τ1, . . . , vn/τn}, e.g., a(v, 1){v/2} evaluates to a(2, 1). The notation is then
abused writing {τ/τ ′} for a minimal substitution such that τ{τ/τ ′} = τ ′. If τ ′ is
not a logic instance of τ , i.e., it cannot be obtained from τ by any substitution,
then {τ/τ ′} =⊥—i.e. the result makes no sense as in partial functions, hence it
cannot be used to make substitutions.
The syntax of the model is expressed by the following grammar:

t ::= τ〈n〉 Tuple
T ::= 0 | t | t� | (T | T ) Tuple set
L ::= [Ti

r�−→ To] Chemical Law
S ::= 0 | T | L | (S | S) Space
A ::= wait(r) | out(σ, t) | in(σ, t) | rd(σ, t) Actions
P ::= 0 | A.P | call D(τ1, . . . , τn) Process
C ::= 0 | �S�σ | σ

r�σ | P | (C | C) Configuration

Term τ〈n〉 represents a tuple with content τ and concentration value n. Syntax
〈1〉 is considered optional, so that tuple τ actually means τ〈1〉. Note that to
represent tuples we rely on first-order terms rather than mere lists of values and
wildcards as in Linda—similarly to [21].

T is a composition (by operator “|”) of tuples residing in the space (t) and
tuples to be sent outside the tuple space (t�), called firing tuples. L is a chemical-
like law, expressing transformation of tuple set Ti (reactants) into To (effects)
with chemical rate r; note that although not explicitly prevented here, laws
whose reactants include firing tuples seem not useful—and hence they might be
excluded from a surface language for chemical laws. A is the set of agent actions,
including a primitive to wait a delay time with markovian rate r, as well as the
set of primitive Linda operations for inserting (out), removing (in) and reading
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(rd) tuples to/from a given tuple space with identifier σ. P defines protocols
of agents in a process-algebraic style: 0 is the completed process, A.P means
executing action A and then behaving like P , and finally call D(τ1, . . . , τn) is
invocation of a process definition as in π-calculus, namely, a definition of the
kind “def D(v1, . . . , vn) := P” should be provided to give semantics to symbol
D. Finally, C is a system configuration, which is modelled as a flat composition
of processes P , tuple spaces �S�σ (σ is the space identifier), and links between
tuple spaces σ

r�σ′ (markovian rate r here represents the average frequency at
which tuples can move from σ to σ′).

Note that all the above elements are considered as terms, e.g., “.〈.〉” is con-
sidered as a binary functor, and similarly for all the other constructs: hence,
substitutions can be applied to any of them.

We assume the existence of a matching function for terms, µ(., .), that is
not fixed in our model, but can be application-specific. Matching function µ
should be such that µ(τ, τ ′) ∈ [0, 1]: intuitively, matching gives 0 if τ and τ ′ do
not match, 1 if they completely match, and any value in between to represent
partial matching. Matching function is in principle orthogonal to the concepts
of logic instance and substitution: though, in our calculus the result of µ(τ, τ ′)
is used only if notation {τ/τ ′} makes sense. This abstraction over µ is meant to
take into account different matching scenarios that can occur in practice: purely
structural ones as in Linda where there is no concept of partial match, those
providing partial matching [18] (as envisioned e.g. for SwarmLinda [20,11]), or
semantic matching [2] as would be proper in the domain of pervasive computing.

As typical in process algebras, we find it useful to introduce a congruence
relation “≡”, stating when two configurations are to be considered syntactically
equal, and hence can be used one in place of the other:

0 | S ≡ S S | S′ ≡ S′ | S (S | S′) | S′′ ≡ S | (S′ | S′′)
0 | C ≡ C C | C′ ≡ C′ | C (C | C′) | C′′ ≡ C | (C′ | C′′)

call D(τ1, . . . , τn) ≡ P{v1/τ1, . . . , vn/τn} if def D(v1, . . . , vn) := P
τ〈n〉 | τ〈m〉 ≡ τ〈n + m〉 τ〈0〉 ≡ 0 τ〈n〉� | τ〈m〉� ≡ τ〈n + m〉� τ〈0〉� ≡ 0

The former two lines state that operator “|” is associative, commutative, and
absorbs 0 (both in tuple sets and in system configurations): this is used to
mean that tuple sets and system configurations are actually multisets. Third
line contains the classical rule for process definitions as in π-calculus. Fourth
line states that a tuple (even a firing one) can be either seen as joined into a
single term, representing the whole substance in the solution, or splitted in two
(or recursively more) terms down to tuples with concentration 1. Accordingly, to
actually read the overall concentration of a tuple in a system, a partial operator
“⊕” is introduced, which takes a tuple t and a space S, and yields a space as
follows

τ〈n〉 ⊕ S =
{

τ〈n〉|S if τ〈m〉 /∈ S
⊥ otherwise
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namely, when a space S is unified with τ〈n〉⊕S′ it means that tuple τ has overall
concentration n in S, since we are sure that S′ does not include any tuple with
content τ .

Operational semantics. The operational semantics of this calculus is given
as an hybrid CTMC/DTMC model, since we need to specify probabilities that
should not involve duration as in DTMC, other than a CTMC model for chem-
ical rules. A transition system (C,→, λ) is defined where transitions are of the
kind C

λ−→ C′, meaning that system configuration C moves to C′ with dynam-
ics/likelihood expressed by label λ; a label is either (i) of kind r, modelling a
continuous-time transition with markovian rate r, or (ii) of kind r, modelling
a discrete (immediate) transition with likelihood r—namely, the former is con-
tinuous as in CTMC, the latter is discrete as in DTMC. More precisely, given a
system state C0, let {(λ1, C1), . . . , (λn, Cn)} be the set of distinct couples (λi, Ci)
such that C0

λi−→ Ci, then we have three different cases:

– if all λi are of kind ri, then the transition at C0 is given a CTMC model;
– if all λi are of kind ri, then the transition at C0 is given a DTMC

model where probabilities are obtained by normalising rates, namely,
pi = ri/

∑n
i=1 ri;

– otherwise, elements of kind ri are ignored, hence second case applies.

Essentially, this is a CTMC model where labels r actually have priority: they
define instantaneous transitions that might be in critical race with each other,
in which case they are chosen probabilistically. Practically, this model can be
approximated as a pure CTMC model where  represents a very high multiplica-
tive factor—a programming pattern typically used in stochastic languages such
as stochastic π-calculus—and hence standard analysis tools can be used.

Transition relation is defined by the rules in Figure 1. Rule (PAR) gives se-
mantics to parallel composition: any subsequent rule is actually local, since any

(PAR) C | C′ λ−−−−→ C | C′′ if C′ λ−→ C′′

(OUT) out(σ, τ 〈n〉).P | �S�σ
1�−−−−−→ P | �τ 〈n〉 | S�σ

(RDV) rd(σ, τ 〈v〉).P | �τ ′〈n〉 ⊕ S�σ
µ(τ,τ ′)�−−−−−→ P{τ/τ ′}{v/n} | �τ ′〈n〉 | S�σ

(RD) rd(σ, τ 〈n〉).P | �τ ′〈n+m〉 ⊕ S�σ

n+m
n

µ(τ,τ ′)�−−−−−−−−−→ P{τ/τ ′} | �τ ′〈n+m〉 ⊕ S�σ

(INV) in(σ, τ 〈v〉).P | �τ ′〈n〉 ⊕ S�σ
µ(τ,τ ′)�−−−−−→ P{τ/τ ′}{v/n} | �S�σ

(IN) in(σ, τ 〈n〉).P | �τ ′〈n+m〉 ⊕ S�σ

n+m
n

µ(τ,τ ′)�−−−−−−−−−→ P{τ/τ ′} | �τ ′〈m〉 ⊕ S�σ

(W) wait(r).P r−−−−→ P

(LNK) �τ 〈n+1〉�⊕ S�σ| �S′�σ′| σ
r�σ′ r(n+1)−−−−−→ �τ 〈n〉�| S�σ| �τ 〈1〉 | S′�σ′| σ

r�σ′

(CHM) �[Ti
r	−→ To] | T | S�σ

µ(Ti ,T )G(r,T,T |S)−−−−−−−−−−−−→ �[Ti
r	−→ To] | To{Ti/T} | S�σ

Fig. 1. Operational Semantics
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subsystem C′ is allowed to move to a subsystem C′′. Rule (OUT) states that as
long as a process wants to perform an out over space σ, the tuple is immediately
inserted in that space, and the process continuation P can carry on.

Rule (RDV) handles rd operations that specify a variable v as concentration,
which reads any matching tuple τ ′ with concentration n: the process continuation
P carries on after applying substitution {τ/τ ′} and {v/n}. This transition is
discrete and its likelihood is given by µ(τ, τ ′)—in particular, the transition is
impossible if τ and τ ′ do not match, hence the rd operation is blocked until a
matching tuple is found. Rule (RD) defines an alternative reading style, where
tuple concentration is actually specified: in this case, any matching tuple with
greater concentration can be read, and the likelihood also depends on the ratio
between concentrations of τ ′ and τ—in particular, the higher the concentration of
the searched tuple, thehigher the probability for the tuple to be retrieved. Rules
(INV) and (IN) are similar to (RDV) and (RD), but they extract tuples instead
of just reading them, namely, they decrease their concentration. Rule (W) states
that an agent executing a wait(r) simply waits a timeout with markovian rate
r, that is, with an average 1/r elapsed time according to negative exponential
probability distribution.

Rule (LNK) is used when a firing tuple exists in a space σ, in which case this
tuple can be sent to any space σ′ in the neighbourhood, using the link’s rate as
markovian rate of the transition, multiplied by the firing tuple concentration.
Finally, rule (CHM) transforms tuple concentrations by a chemical law: roughly,
if the precondition Ti is found in the space, then the rule can be applied that
removes Ti and replaces it with To. In the general case where a tuple set T is
found that is not equal to Ti, but it rather matches Ti, note that {T/Ti} could
provide more solutions. For instance {t(X)|t(Y ) / t(1)|t(2)} could yield substi-
tutions {X/1, Y/2} or {X/2, Y/1}. Note that in rule (CHM) one transition is
allowed for each different solution of substitution {Ti/T }, hence one will be cho-
sen probabilistically depending on the matching function. The markovian rate
of rule (CHM) is given by µ(Ti, T ) ∗ G(r, T, T |S), which computes the tran-
sition rate according to Gillespie’s algorithm. The right factor is obtained by
r ∗ count(T, T |S), where function count(T, S) counts how many different combi-
nations of tuples in T actually occur in S, namely:

count(0, S) = 1, count(τ〈n〉⊕T, τ〈m〉⊕S) =
m(m−1) . . . (m−n+1)

n!
∗count(T, S)

4 Examples

Here we discuss some basic examples of interactions between agents and tu-
ple spaces, with the goal of showing some basic features of the model as well
as explaining design choices applied in operational semantics. In the following
examples, tuples are written using typetext font, and literals starting with an
uppercase are supposed to be variables.
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Linda default behaviour. First of all, it is interesting to notice that the
model presented in this paper is indeed an extension of Linda. By applying the
following constraints we obtain a model that is comparable to standard tuple
space models: (i) no chemical laws are to be installed into the tuple space; (ii)
agents execute primitives out, rd, and in by specifying tuples with concentration
1; (iii) matching and substitution comply with Linda template mechanism; and
(iv) probabilistic information about likelihood of transitions is neglected. As a
simple example, consider a system configuration of the kind

out(σ, t(a)).out(σ, t(b)).0 | in(σ, t(X)).in(σ, t(X)).0 | �0�σ

and remember that when concentration is not specified, 1 is assumed—e.g.
out(σ, t(a)) would mean out(σ, t(a)〈1〉). This configuration models an initially
empty tuple space σ and two processes: one willing to insert tuples t(a) and
then t(b), the other willing to remove two tuples matching template t(X). By
rule (OUT), tuple t(a) is inserted in the space moving configuration to:

out(σ, t(b)).0 | in(σ, t(X)).in(σ, t(X)).0 | �t(a)�σ

Next, either (OUT) fires again or (IN)—(INV) cannot fire since here concentra-
tion is 1 by default, it is not a variable. If (IN) fires first, system configuration
moves to

out(σ, t(b)).0 | in(σ, t(a)).0 | �0�σ

since substitution {X/a} propagates to the continuation of the second process.
Now, by an (OUT) even tuple t(b) is inserted in the space: first process is
terminated, while second one gets stuck for there is no match for its in operation.

According to our semantics, all transitions in this example are labelled 1,
but this information is neglected in this initial view. The resulting behaviour is
hence comparable to Linda model—though formally proving equivalence is out
of the scope of this paper.

Probabilistic observation. If we relax fourth constraint above, our model
turns into the description of a probabilistic version of Linda, where reading and
removing tuples is performed taking into account the concentration of tuples
similarly to [7]. Consider system configuration:

�t(a)〈2〉 | t(b)〈1〉�σ | in(σ, t(X)).0

Only rule (IN) applies and two transitions are accordingly allowed, one moving
configuration to t(a)〈1〉 | t(b)〈1〉 with label 2, the other to t(a)〈2〉 with la-
bel 1: this means that the probability of the two transitions is 2/3 and 1/3,
respectively.

Differently from [7], in our model in and rd operations can even specify a
concentration greater than 1, which can be used to extract a whole set of identical
tuples. In the case of system configuration

�t(a)〈20〉 | t(b)〈10〉 | t(c)〈5〉�σ | in(σ, t(X)〈10〉).0
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two transitions are allowed, one decreasing by 10 concentration of t(a) with
label 2, the other decreasing by 10 concentration of t(b) with label 1—there
is not sufficient concentration of t(c) to match the request.

A final observation style is the one where an agent wants to know the con-
centration of a tuple (RDV), or wants to entirely remove a tuple by moving its
concentration to 0 (INV), which is achieved specifying a tuple whose concentra-
tion is a variable. The second case for instance is exemplified in this configuration

�t(a)〈20〉 | t(b)〈5〉�σ | in(σ, t(X)〈v〉).0

where it is equally probable to entirely remove t(a) unifying v with 20 and X
with a, or to remove t(b) unifying v with 5 and X with b.

Alternative matching mechanisms. We now suppose that, for the appli-
cation at hand, a more complex matching function is provided—the details on
how a matching function can be imposed/changed into a tuple space are not
discussed here. Finding a general-purpose matching function in the domain of
open systems (e.g. in the Web) is the subject of many ongoing research efforts in
different contexts [27,22,2,17]: we here consider a simplified example for the sake
of clarity. Consider a matching function such that µ(τ, τ ′) still yields 0 if τ ′ is not
an instance of τ , but in the opposite way it does not just yield 1 as in previous
cases, but rather a number in between 0 and 1. The matching function could be
based on the idea that each variable more suitably binds with a subset of terms,
namely, µ(X, τ) measures the extent to which τ corresponds to the concept that
variable X means to represent—this mechanism would resemble is-of concept in
ontology-based matching [2]. As an example, suppose configuration

�t(a)〈20〉 | t(b)〈10〉 | t(c)〈10〉�σ | in(σ, t(X a-otherwise-b)).0

and suppose that matching t(X a-otherwise-b) with t(a) gives 1, with t(b)
gives 0.5, and with t(c) gives 0. Then, formula n+m

n µ(τ, τ ′) associates label
20 to removal of t(a), 5 to removal of t(b), and 0 to t(c)—hence resulting
probabilities would be 0.8, 0.2 and 0.

Matching is quite orthogonal to the definition of our coordination model, yet
it enables interesting application scenarios based on semantic coordination [27].

Observing a chemical reaction. It is now time to describe what happens when
chemical reactions are installed into the tuple space. The idea is that, though all
coordination primitives seen above are still supported, the concentration of tuples
does not only depend on agent interactions, but it varies “spontaneously” due to
an inner behaviour of the tuple space—as typical in self-organising coordination
[28], like e.g. in [12]. Suppose an agent is defined in terms of the following protocol

def D(vt, vn) := out(σ, vt〈vn〉).call D′(vt)
def D′(vt) := wait(1).rd(σ, vt〈vn〉).call D′(vt)

and let the initial system state be:

call D(t(a), 1000) | �0�σ
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Fig. 2. (a) Example of tuple decay, with initial concentration 1000 and decay rate
0.01; (b) Example of tuple diffusion, from one space (s) to another (s1), with initial
concentration 1000, diffusion rate 0.01, and link rate 0.01

Process call D(t(a), 1000) is equivalent to out(σ, t(a)〈1000〉).callD′(t(a)),
hence the agent first inserts tuple t(a)〈1000〉 and then, at an average of 1 time
per time unit, it reads the concentration of t(a), recursively and indefinitely—
how it uses the result of observations is not modelled. Without any other agent
existing in the system, and any chemical law installed, the agent will perceive
such a concentration as being fixed to 1000.

We now repeat the experiment by first installing in σ the most simple case
of chemical system as described in [16], namely the single chemical reaction
[t(X) 0.01�−−→ 0], which makes any tuple t(X) decay like in radioactivity. As tuple
t(a)〈1000〉 is inserted in the space, two transitions can fire: the former is (W)
with markovian rate 1, the latter is (CHM) that has markovian rate 0.01 ∗
1000 = 10 and that leads to a system state where concentration of t(a) decreases
to 999. According to the Markov memoryless property, the agent and tuple
space activities proceed in parallel without influencing each other. On the one
hand, tuple concentration fades with negative exponential distribution, up to
completely vanishing; on the other hand, the agent keeps cyclically reading such
a concentration value, observing its decreasing dynamics. For instance, in the
simulation of Figure 2 (a), tuple t(a) disappears after about 700 time units1.

This basic example finds applications in enhancing tuples with a time-
pertinency, namely, they exist in the space only for limited time—depending on
initial concentration and decay rate. Note that this idea is a fundamental brick
of typical nature-inspired self-organisation mechanisms, like digital pheromones
and computational fields [19]—others examples will be shown in Section 5.

Multiple tuple spaces and tuple diffusion. In our approach, the distributed
system is dipped with tuple spaces, each residing in a (physical or virtual) node
and connected to others according to the topological structure of the network;
1 A tuple space evolution can in principle be simulated using any of the available

frameworks for continuous-time Markov chains. For the sake of our explorations we
developed a prototype ad-hoc simulator directly implementing Gillespie’s algorithm,
and charted results using gnuplot (2D) and Matlab (3D).
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agents interact with tuple spaces specifying their unique identifier—the actual
position of the agent is of no interest here for we focus on the coordination side.
Interaction between tuple spaces in our model is achieved with chemical laws that
produce firing tuples. Consider a very simple example of system configuration:

�t(a)〈1000〉 | [t(X) 0.01�−−→ t(X)�]�σ | �0�σ′ | σ rl�σ′

Two tuple spaces σ and σ′ exist and are interconnected with link rate rl, the
former has tuple t(a) with concentration 1000 and a law to diffuse such a tuple,
the latter is empty. One transition here is allowed which, with rate 10, applies
the chemical law turning the system in:

�t(a)〈999〉 | t(a)〈1〉� | [t(X) 0.01�−−→ t(X)�]�σ | �0�σ′ | σ rl�σ′

Now another transition is also enabled (due to rule LNK) which transfers the
firing tuple to σ′ with rate rl. This would lead to:

�t(a)〈999〉 | [t(X) 0.01�−−→ t(X)�]�σ | �t(a)〈1〉�σ′ | σ rl�σ′

Note that in case more connected spaces would exist, one is chosen probabilisti-
cally based on link rates.

The overall observed behaviour, e.g. from the simulation in Figure 2 (b),
shows that the concentration of the tuple in σ decreases as in decay: all tuples
get transferred to σ′, though with a small time delay due to the link. When
more articulated topologies are set up, it is possible to leverage spatial diffusion
of tuples—as in self-organisation patterns of the Tota middleware.

5 A Case Study of Service Ecosystems

As discussed in Introduction, nature-inspired metaphors are promising ap-
proaches to tackle the characteristics of modern computer systems, and in par-
ticular, self-organisation. Independently of the abstraction level considered in
nature (physical, chemical, biological, or social), one can always recognize that
above a spatial environmental substrate, individual “components” of different
kinds interact, compete, and combine with each other according to complex
patterns, but in respect of very basic laws: what is eventually perceived is al-
ways a sort of natural “ecosystem” (of particles, molecules, cells, animals, and
so on). A similar schema could be used to enact computing systems, through
an infrastructure substrate conceived as the space in which bringing to life a
sort of “ecosystem of services”, intended as spatially-situated individuals whose
computational activities, while serving to own specific purposes, are subject to
a limited set of basic laws of the ecosystem. The dynamics of the ecosystem,
as determined by the enactment of proper laws, will provide for spontaneously
enforcing features of self-organisation as endogenous properties of the ecosystem.

Turned in our context, this amounts to disseminate the network with biochem-
ical tuple spaces with proper, general-purpose chemical rules. Services, users,
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and devices – seen as the individuals of the ecosystem – interact with each other
through such distributed coordination medium. Each of them, located in a re-
gion of the network, will reify its relevant information through proper tuples
placed into the local tuple space, and which will be subject to an evolution of
concentration (i.e. activity/pertinency level) that will ultimately result in the
survival/extinction of certain services – but also composition, aggregation, dif-
fusion, and evolution can be envisioned – and in general to the enactment of an
ecological dynamics to the overall system.

Although deeply discussing and evaluating this idea is out of the scope of
this paper, we here present a simple scenario of service spatial competition,
which will provide a further contribution to understanding the expressiveness
and opportunities of the proposed coordination model.

An example scenario. We start considering a simple scenario in which a
single tuple space mediates the interactions between services and users in an
open and highly-dynamic system—this examples will later be evolved to multiple
tuple spaces. In this context there is no knowledge about which services will be
deployed and how much they will be used – i.e. whether and how much they
will successfully attract client needs or not – hence semantic matching will be
needed to dynamically bind services and clients—following e.g. the approaches
in [2,27] based on ontological reasoning.

We aim at building a system manifesting an ecological behaviour, namely:
(i) services that do not attract clients fade until eventually disappearing from
the system, (ii) successful services will more and more attract new clients, and
accordingly, (iii) overlapping services compete with each other for survival, some
of them eventually extinguishing. Example protocols for services and clients are
as follows:

def Ds := out(σ, publish(service(ids,desc))).call D′
s

def D′
s := in(σ, toserve(service(ids,desc),request(Idc,Req))).

out(σ, reply(Idc,Rep)).call D′
s

def Dc := out(σ, request(idc,req)).in(σ, reply(idc,Rep))

A service agent call Ds first declares its role by publishing its service description
through an out; from then on, cyclically, it will consume requests for its service
and then insert a tuple representing a reply. Dually, a client call Dc inserts a
request as a tuple request(idc,req), and accordingly retrieves a reply. Note
that the tuple space is charged with the role of binding a request with a reply,
creating tuple toserve where the request is matched with the service that is
chosen to serve it—much like in service matchmaking [22]. Most notably, the
outcome of such matching will ultimately determine successfull services—some
services might end up being never exploited, some others may become intensively
used.

This behaviour can be automatically enacted by installing in the tuple space
the rules shown in Figure 3 and by a proper matching function that – other
than binding requests and replies – properly tunes chemical rates. Such rules are
described in the following by examples.
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(DECAY) DECAY
rdec	−−→ 0

(FEED) publish(SERVICE)
rfeed	−−−→ SERVICE | publish(SERVICE)

(USE) SERVICE | REQUEST ruse	−−→ SERVICE〈2〉 | toserve(SERVICE,REQUEST)
(DIFFUSE) SERVICE

rdiff	−−→ SERVICE�

Fig. 3. Chemical-like Laws for Ecological Services

(a) (b)

(c) (d)

Fig. 4. (a) Service publishing, (b) Service permanent use, (c) Service symmetric com-
petition, (d) Service asymmetric competition

Publishing services. Chemical rule (DECAY) states that any tuple τ will
possibly fade with negative exponential dynamics (since DECAY is a variable): the
idea is that µ should tune the overall decay rate, which is µ(DECAY, τ) ∗ rdec—it
can give perfect match to tuples that should more quickly decade like those of
services, or give no match as in the case, e.g., of requests or replies.

Chemical rule (FEED) is used to insert a service(ids,desc) tuple in the
space, and to keep increasing its concentration: this process will stop when the
publish tuple decays. Again, the rate will depend on the matching function,
and accordingly we denote as feed rate of a service s the chemical rate of the
(FEED) rule when applied to s. Figure 4 (a) shows an example run with a
service inserted into a system with decay rate 0.01 and feed rate 10 (note the
concentration shortly finds an equilibrium around the ratio value 1000), and
where the decay rate of feeding tuple is 0.001 (feeding ends at about 1000 time
units). As feeding completes, and without clients around as seen later, the service
inevitably fades until vanishing.
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Decay/Service equilibrium. While the publishing mechanism can be use-
ful to bootstrap a service, it is later necessary that clients start exploiting the
service, providing a positive feedback that increases and then sustains service
concentration. Rule (USE) provides this mechanism along with service-client
binding [2]: it takes a service and request tuple that match, and provides
a toserve tuple as well as increasing service concentration by one—this rule
resembles prey-predator system of Lotka-Volterra equations [4,16]. Function µ
can be built to give this rule higher rates if service and request strongly match
based on some semantic-based criterion, e.g. how specialised is a service with
respect to the request, or which portion of an articulated request it can serve.
As an example, suppose that while a service has concentration 1000 and decay
rate 0.01, requests keep arriving at rate 50, and (USE) law matches service and
request with markovian rate 0.00005: a resulting behaviour is shown in Figure
4 (b). The system reaches a new equilibrium, where service has concentration
5000 (the ratio between rate of requests arrival and service decay rate), and
unserved requests stabilise to few hundreds. Namely, after an initial bootstrap,
the service concentration is proportional to the rate at which it serves requests,
while the use rate is responsible of the service reactiveness, hence of the number
of unserved requests—with use rate 0.05 unserved requests remain bounded to
few units.

Service competition. The laws seen so far intrinsically support service com-
petition. Consider the above scenario, now with two services that match the
same requests: both with decay rate 0.01 and use rate 0.05, but initially having
concentration 2000 and 3000. From the example run in Figure 4 (c) we can see
that they remain in equilibrium at the initial state.

This equilibrium is however unlikely in practice, unless the two services are
really identical, namely, two instances of the same service. In fact, if the services
have even a slightly different use rate, then one of the two will loose competition
and fade until vanishing, as show in Figure 4 (d) where the two use rates are
0.06 and 0.04.

Competition in a spatial system. Now suppose that instead of a single
tuple space, we actually have a network of tuple spaces, all programmed with
the chemical laws in Figure 4, namely, laws for competition as seen above as
well as a diffusion law for tuples (DIFFUSE). We also suppose that such a law
diffuses only service tuples, which is achieved by a matching function such that
µ(SERVICE, τ) yields 1 for service tuples, and 0 for other tuples. The resulting
system can be used to support a pervasive computing scenario in which the
infrastructure coordinates users and services, and such that when a service is
injected into one node of the network (i.e. the node in which the developer
resides), it starts diffusing around on a step-by-step basis, until possibly covering
the whole network—hence moving from a local to a global service. Such diffusion
would resemble e.g. how chemical substances diffuse into tissues of cells.

We consider as a reference a torus-like network of 15 × 15 nodes—namely, a
grid where nodes on the boundary are actually connected with nodes on the other
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Fig. 5. Spatial competition between two services in a torus-like network: 4 snapshots

side, so that all nodes have 4 neighbouring nodes. In all nodes, requests for using
a service arrive at fixed rate, and a service called s1 is the only one available
that match them. Hence, in all nodes we have the situation exemplified in Figure
4 (b) where s1 has approximately concentration 5000, in spite of diffusion – we
use a high link rate equal to 106.

Another service s2 is at some point developed that can serve requests with
use rate 0.1 instead of 0.05 like s1 does, namely, it is a service developed to more
effectively serve those requests. This service is injected into a random node of
the network with very low concentration (10 in our experiments). The situation
is depicted in the first row of Figure 5, where on left we have concentration of
s1 in all nodes, and on right concentration of s2. As shown in the second row,
service s2 starts diffusing, and where it diffuses concentration of s1 decreases—
we could expect this behaviour from the experiment in Figure 4 (d), showing
that the best service tends to win in spite of initial concentration. After about
1500 time units, s2 is prevailing on s1 as shown in third row, until in fourth row
(time 3900) the situation is completely inverted with respect to the initial state:
service s2 completely faded away and was replaced by s1.

Discussion. This example emphasises the fact that tuples in our model
are used to reify the interaction state of each individual (e.g. service tuples
are used as a reification of the service state), and more generally, the set of tuples
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in the network represents the current “ecological” state of the system, evolved by
agent interactions, but also by chemical stochastic behaviour. This state highly
affects agent behaviour: for instance, as soon as a service tuple vanishes, its
service would be allowed to process requests with decreasing frequency, until
being completely unused. Although a service might be willing to increasingly
serve requests, it is our coordination infrastructure that binds requests and ser-
vices, possibly preventing such a service from achieving its goal when implicitly
selected for extinction.

In particular, compared to a traditional solution based on standard non-
deterministic tuple spaces, we support a significant extent of the following self-
organisation properties: (self-adaptation) the best service is actually selected
for survival, though this choice depends on the dynamics of incoming requests
and can change over time; (spatial-sensitiveness) the diffusion mechanism makes
competition be a spatial notion, possibly regionalising the network into ecologi-
cal niches where different services develop; (self-optimisation) the mechanism by
which not all injected services remain active can be seen as a sort of garbage col-
lection that is key to support long-term evolution; and (openness) the same set
of basic laws are expected to work in spite of the unpredictable incoming of new
types of services and request. Other properties that we expect to support by more
advanced laws, without changing the model, include: (self-aggregation) services
automatically compose to better serve incoming requests; (context-awareness)
services automatically match local contextual information to provide a more
specific (context-aware) service; and (self-healing) specialised services can be in-
jected in the system with the goal of protecting/repairing the ecology, e.g., to
quickly extinguish a malevolent service. To the best of our knowledge, no exist-
ing coordination model can tackle these properties in a uniform and coherent
way as the biochemical tuple space model does.

6 Conclusions

The coordination model described in this paper can be the basis for building
coordination infrastructures for open service systems, where self-organisation
policies can be enacted through eco-inspired chemical laws. This infrastructure
can be seen as a distributed virtual machine playing the role of an exact bio-
chemical simulator [16], which enacts chemical-laws as if they were a “declarative
program” to be executed.

Future work will be devoted to provide a prototype implementation first: a
candidate underlying infrastructure is TuCSoN [21], featuring tuple centres that
can be programmed so as to handle (i) the notion of concentration, (ii) the
new coordination primitives, and (iii) the inner behaviour driven by chemical
laws [28]. Other than implementation, we will study the introduction of new
self-organisation patterns, like the possibility for services to autonomously com-
pose, aggregate and evolve to win competition, getting inspiration from both
the biochemical and ecological metaphors, with the goal of finding applications
in pervasive service ecosystems as envisioned in [30]. It is worth noting that
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in our model designing chemical rules and their rates is a quite critical task,
since a slightly wrong design could end up in unusable systems: this is why ex-
tensive simulations of selected use scenarios are in general to be conducted at
design-time, possibly coupled by some form of automatic adjustment of chemi-
cal rates depending e.g. on the system load, which will be subject of our future
investigations.
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Abstract. Process-oriented programming is a design methodology in
which software applications are constructed from communicating concur-
rent processes. A process-oriented design is typically composed of a large
number of small isolated concurrent components. These components al-
low for the scalable parallel execution of the resulting application on both
shared-memory and distributed-memory architectures. In this paper we
present a runtime designed to support process-oriented programming by
providing lightweight processes and communication primitives. Our run-
time scheduler, implemented using lock-free algorithms, automatically
executes concurrent components in parallel on multicore systems. Run-
time heuristics dynamically group processes into cache-affine work units
based on communication patterns. Work units are then distributed via
wait-free work-stealing. Initial performance analysis shows that, using
the algorithms presented in this paper, process-oriented software can ex-
ecute with an efficiency approaching that of optimised sequential and
coarse-grain threaded designs.

1 Introduction

Interest in concurrent programming techniques is growing as a result of the
increasing ubiquity of multicore systems on the desktop, and in mobile and em-
bedded systems. Designing applications which can scale to not only the current
generation of multicore systems, but also the next, is an important research
topic. Process-oriented programming is one concurrency paradigm available for
creating such scalable software.

Process-oriented programming employs concurrency as a design tool for con-
structing software applications. Small independent concurrent processes are com-
posed to form larger components, which through continued composition form the
application as a whole. The developer is dissuaded from using forms of sharing
which may introduce race-hazards and aliasing errors; they may even be pre-
vented from doing so by the compiler [44]. Instead interaction between processes
takes place via explicit communication and synchronisation primitives. These
expose dependencies at the design level and permit diagrammatic representa-
tions such as Figure 12. While in the past message-passing concurrency mapped
processes one-to-one to processors [21, 42], process-oriented designs are intended
to be architecture independent [9, 17, 25, 32].
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Parallel execution potential is inherent in a process-oriented design, and is
bounded only by the number of ready processes. While the size of components
varies with the design style chosen, a typical process-oriented design can have
thousands of processes. Furthermore, as processes are created and connections
between them made at runtime, truly dynamic systems can be modelled directly
as process networks [34, 45]. The explicit transfer of state using communica-
tion allows unmodified designs to be serialised for a single processor [39], and
parallelised across shared-memory and distributed-memory multiprocessor sys-
tems [41, 43].

We would like process-oriented software to execute with comparable perfor-
mance to a sequential implementation in the absence of hardware parallelism,
and automatically scale when multiple processors are available. To make this
possible, scheduling and communication overheads must be minimised. Com-
munication between processes must have an overhead comparable to calling a
procedure, or invoking a method on an object. Runtime implementations which
build communication upon common locking and operating system synchronisa-
tion primitives do not provide sufficient performance. Process-oriented software
also requires functionality not provided by many lightweight threading frame-
works (see section 6).

In this paper we present implementation details of our runtime kernel for re-
alising scalable process-oriented programming on multicore systems. Specifically
we contribute:

– Wait-free algorithms for process migration via work stealing [12, 14].
– Automatically grouping communicating processes into cache-affine work

units at runtime.
– Multiprocessor-aware interprocess communication with an average overhead

of only 140 cycles on modern commodity hardware.
– A mechanism for choice over a set of communication channels inspired by

that available on the INMOS Transputer [11, 27], but made multiprocessor-
safe.

Our runtime is a C library and provides a C API. It can also be used through
occam-π, a concurrent programming language which supports process-oriented
design. The occam-π language extends original occam [32] with channel, process
and data mobility. It is rooted in the formalisms of Hoare’s CSP [26, 39], and
Milner’s π-calculus [34].

occam-π is being used as an implementation language for complex systems
research [7]. A complex system can be modelled as agents, each of which is a
composition of concurrent processes. Agents move through and interact with
their environment by communicating with it. The environment itself is also a
composition of concurrently executing processes. Simulations can scale up to
hundreds of thousands of processes [38]. Using the runtime presented in this pa-
per, these simulations can be executed in real time on commodity workstations,
utilising all processing resources available.

The rest of the paper is as follows. In section 2 we introduce our light-
weight processes and a system for scheduling them across multiprocessors while
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attempting to enhance cache utilisation. Section 3 describes communication
channels, which can be used to pass information between processes executing
on the same processor or separate processors in a shared-memory system. Prim-
itives for choice, protecting shared resources and synchronising large numbers
of processes are discussed in section 4. Finally an evaluation of performance
comparing a sample set of applications implemented using other concurrency
frameworks is presented in section 5. Related work is presented in section 6. Our
conclusions and details of possible future work are in sections 7 and 8.

2 Processes

In this section we describe our runtime’s cooperative scheduling model for
concurrent processes. As the fundamental building blocks of process-oriented
software, processes must be lightweight. Our design is intended to minimise
context-switch times and memory usage, as well as exploit cache affinity and
hardware parallelism.

For reference in later sections we must first describe how processes are rep-
resented by the scheduler kernel. Each process has a process descriptor used to
store state when descheduled or performing certain kernel calls. The descriptor
can be allocated statically on the process stack, or when state does not need to
persist across kernel calls it may be allocated dynamically at the point of call. In
either case, the size of the process descriptor is eight machine words (32 bytes on
a 32-bit machine). This minimal memory overhead makes the creation of very
large numbers of processes practical.

The process descriptor contains the following elements:

Alternation State Priority and Affinity Mask

Communication Data Pointer Stored Instruction Pointer

Queue Link Pointer Stored Stack Pointer

2.1 Scheduling

Our scheduling model is divided into uniprocessor and multiprocessor compo-
nents. In the next three sections we focus on uniprocessor scheduling. We also
explain how processes can be grouped to enhance cache-affinity.

For each physical processor in the host system a scheduler instance, a logical
processor, is started. The logical processor contains a run queue, which is a
linked list of batches. Batches are in turn linked lists of process descriptors,
linked using the Queue Link Pointer field. An overview of this structure can be
seen in Figure 1.

The scheduler executes each batch by moving the processes it contains to its
active queue. A dispatch count is calculated based on the number of processes in
the batch (multiplied by a constant) and bounded by the batch dispatch limit.
The dispatch count is decremented each time a process is taken from the active
queue and executed. When the dispatch count reaches zero, and the active queue
is not empty, the current active queue is stored in to a new batch which is added
to the end of the run queue.
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Fig. 1. A logical processor instance schedules batches of processes on each physical
processor. Batches in the migration window can be stolen by other logical processors.

Batching. As outlined above, batches are the base unit of work stored in sched-
uler data structures, and also for migration (see section 2.2). Batches address
the issue of cache thrashing which can occur with process-oriented designs. It is
highly probable that with a large number of processes switched frequently, the
working set will exceed the processor’s cache size. Processes and their data will
be drawn into cache only to be rapidly evicted again, serving few or no hits. Mod-
ern processor architectures rely on cache to compensate for the high-latency of
system memory, so sidelining the cache will severely restrict performance. The
solution is to reduce the size of the working set by minimising the memory
overheads on processes and partitioning the run queue. Vella proposed and ex-
perimented with dividing the run queue into batches of processes [14, 43]. Each
batch is executed multiple times before moving on to the next. Relatively small
batches fit well within the processor cache. Successive executions permit cache
utilisation, thus improving performance.

Our scheduler attempts to group processes into the same batch when they
communicate or synchronise with each other. By forming batches in this way, pro-
cesses which communicate frequently are scheduled on the same processor, reduc-
ing interprocessor traffic. This is an improvement to Vella’s techniques which used
fixed-size batches determined by the developer and compile-time analysis. Our
variable-size batches are formed and split automatically using runtime heuristics.

Following a context switch, if the dispatch count is not zero, then the next
process on the active queue is dispatched. If not, then the scheduler restarts with
a new batch. Context switches occur under two conditions. Most commonly, the
current process blocks on a communication or synchronisation primitive and is
descheduled. Alternatively, a process may cooperatively yield to the scheduler, in
which case it is placed at the end of the active queue. With the exception noted
below, processes rescheduled by the currently executing process, for example by
the completion of communication, are also placed on the end of the active queue.
It is this action which draws related processes into the same batch.
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Fig. 2. A fixed-size migration window array allows one logical processor to “steal”
batches from another

Batch Size. If processes are always drawn into a batch during creation and com-
munication, then one batch will eventually grow to encompass all processes in the
system. This will prevent batching from having caching benefits as the working
set will contain all active processes. Therefore a mechanism is required to prevent
batches growing too large and to separate processes which lose association.

We observe that in high valency subgraphs of a process-oriented program net-
work, there will be points when only one process in the subgraph is active. This
process reschedules other processes in the subgraph which may then in turn be-
come the only active process. Based on this observation we state that if while
executing a batch there is a point at which only one process is active then that
batch is probably optimal, i.e. contains only one subgraph. Conversely batches
which never meet this condition during execution should be split. Batches are
split by placing the head process of the active queue in one batch, and the re-
mainder in another. This is a unit-time operation, and so can be carried out
frequently. Repeated execution and split cycles quickly reduce large and unre-
lated batches to small related process subgraphs. Erroneous splits will quickly
reform based on the other scheduling rules.

Additional mechanisms to control batch size can be introduced by modifying
the dispatch count in response to specific events. Process creation is one example.
During process creation the new process is placed on the end of the active queue.
Process creation does not cause a context switch; however, the runtime kernel
decrements and tests the dispatch count. This prevents the batch size exceeding
the dispatch count. Furthermore, if the dispatch count reaches zero and the
aforementioned conditions for batch splitting are met, then the process creating
new processes will be split into a separate batch from the newly created processes.
The newly created batch is then free to migrate. Thus a process spawning a large
number of children may continue to execute while its children begin execution
on other logical processors in the system.

2.2 Process Migration

In this section we describe how logical processors interact as part of a multipro-
cessor system. In particular, we give details of our algorithms for wait-free work
stealing.
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Amdahl’s law [6] states that for a fixed problem size, the total parallel speed
up is limited by the sequential overhead. Hence when scheduling large numbers of
processes on a multicore system, a single locked run queue represents a scalability
bottleneck [28]. For this reason we do not use a global run queue in our runtime
design.

Work is distributed between logical processors via migration. Processes are
free to migrate between logical processors, except where restricted by an explicit
affinity setting. Migration occurs in two circumstances:

1. A process which blocks during communication or synchronisation and is
descheduled on one logical processor can be rescheduled by a process ex-
ecuting on a different logical processor. Unless prohibited by affinity set-
tings, the rescheduled process continues execution on the rescheduling logical
processor.

2. A logical processor which runs out of batches to execute may steal batches
from other logical processors [12, 14].

The first case occurs as part of the communication and synchronisation algo-
rithms outlined in sections 3 and 4. The second case is the mechanism by which
work is spread across the system. It is further underpinned by the observation
that independent long-running subgraphs of processes will tend to be split into
separate batches, which can be stolen by idle logical processors.

The run queue of each logical processor is private and cannot be accessed by
other scheduler instances. To allow batch migration, a fixed-size window onto the
end of each run queue provides access to other logical processors. The fixed size
of the window allows it to be manipulated using wait-free algorithms [23, 24].
These provide freedom from starvation and bounded completion when contention
arises, improving scalability over locks.

Lock-free and wait-free algorithms are often complex to implement and rely
on expensive atomic memory operations such as compare-and-swap [10]. Despite
this, efficient lock-free algorithms are more scalable than their lock-based coun-
terparts [18]. Hence our decision to refine existing wait-free work-stealing for
using in our scheduler [12, 14].

Figure 2 shows the relationship of the migration window to the run queue.
There are three algorithms for accessing the migration window: local enqueue,
local dequeue, and remote dequeue.

Local Enqueue. Figure 3 shows the algorithm used to place a batch onto the
run queue of a logical processor and make it visible in the migration window.

Typically, internal operations on the window will be more common than exter-
nal operations, therefore we decided to optimise for this case rather than the con-
tended case. The effect of this optimisation is that the final step of the algorithm
can produce corruption of the window state word. In the event of corruption the
window will appear to external logical processors to contain more batches than
it does; however, this does not affect correct operation of the external dequeue
algorithm (only its operating efficiency). The result is an algorithm with a deter-
ministic execution time and only one expensive atomic operation.
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1. Link the batch into the run queue linked list.
2. Load the window state word (see Figure 2).
3. Generate a new offset by incrementing the last offset, handling roll over where

appropriate.
4. Record the generated offset into the batch data structure.
5. Atomically swap the batch pointer with the window entry at the generated offset.
6. If the result of the swap is not null, then a batch has been knocked out of the

window; clear its stored offset to indicate it is no longer part of the window.
7. Update the window state word with the generated offset and active bitmap. This

update is done with a blind write, and thus may overwrite updates from external
dequeues.

Fig. 3. Migration window local enqueue algorithm

1. Remove the head batch from the run queue linked list.
2. If the batch has no stored window offset then the dequeue is complete (the batch

is not in the window).
3. Atomically swap null with the migration window entry associated with the batch.
4. If the result is null then the batch has been stolen by an external scheduler. It is

placed on a laundry queue on the logical processor for later cleanup. Dequeue of
this batch fails, and we must restart the algorithm at step 1.

5. The bitmap in the window state word is updated to clear the associated bit. As
with the enqueue algorithm, this occurs via a blind write.

Fig. 4. Migration window local dequeue algorithm

Local Dequeue. To dequeue a batch from its run queue, a logical processor
uses the algorithm in Figure 4.

While the dequeue algorithm may fail and have to restart, it is bounded by
the number of batches enqueued on the logical processor. In the worst case, every
batch may have been stolen and the scheduler must scan every batch to discover
this. Local scanning does not, however, create contention with other logical pro-
cessors, except for underlying system resources such as the memory bus.

Remote Dequeue. When one logical processor attempts to steal work from
the migration window of another, it does so using the algorithm in Figure 5.
This algorithm requires only two atomic operations in the optimal case.

Having migrated a batch the logical processor copies the contents to a new
local batch data structure and marks the original batch as clean and discards the
pointer to it. The originating logical processor will later collect the original batch
structure and reuse it. This allows each logical processor to maintain its own pool
of batch structures, and minimises cache ping-pong (inverting the scheme creates
higher cache traffic).
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1. Load the window state word, creating a local copy.
2. Rotate the active bitmap by the last offset.
3. Scan the bitmap to select an entry to steal. If the bitmap is empty, migration fails.
4. Atomically swap the window entry with null.
5. If the result is null, clear the associated bitmap bit and restart at step 3.
6. Atomically clear the window state word bitmap bit; dequeue succeeds and the

result of the atomic swap is the stolen batch.
7. A local copy of the stolen batch is created, and the original batch marked clean

and its reference discarded.

Fig. 5. Migration window remote dequeue (theft) algorithm

3 Communication

Interprocess communication is central to process-oriented programming, for
sharing state and synchronising computation. The efficiency of communication
therefore directly affects the performance of process-oriented designs.

Our runtime kernel provides a single basic communication primitive for
processes to exchange data: point-to-point synchronised channels. Synchronised
channels require no buffers and data is copied or moved (depending on the mode of
operation) directly between the source and destination processes. Buffered chan-
nels can be constructed efficiently by placing buffer processes between communi-
cating processes. Transactions involving may parties sharing a channel are imple-
mented by associating the channel with a mutual exclusion lock (see section 4).

1. Read the channel word.
2. If it is null or the alternation bit is set (the other party is waiting on multiple

channels):
(a) Store the process state in the process descriptor (instruction pointer, etc).
(b) Store the destination or source buffer pointer in the process descriptor

(Communication Data Pointer).
(c) Atomically swap the process descriptor with the channel word.
(d) If the result is not null, and the alternation bit is not set, then the read at step

1 was stale; jump to step 3.
(e) If the alternation bit is set on the result, then trigger the event (using algorithm

in Figure 10).
(f) A context switch occurs and a new process to execute is selected as described

in section 2.
3. The channel word is not null, hence a process is blocked on it.
4. Load the destination or source buffer pointer from the blocked process descriptor.
5. Copy data or move references and ownership.
6. Reset the channel word to null.
7. Reschedule the process blocked on the channel.

Fig. 6. Channel communication algorithm
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Operations for channel input and output take a source or destination buffer
and a size in bytes to copy. Alternatively the source and destination may be
a reference to a memory object allocated through the runtime kernel, in which
case the reference is moved between the processes together with ownership of
the object.

A channel is represented by a single machine word. The word stores a pointer
to the process descriptor (section 2), a structure guaranteed to be word-aligned.
The lowest order bits of the word also carry state information about the process
descriptor. For the algorithm which follows only the alternation bit is relevant.
It indicates whether the process descriptor stored in the channel is blocked on
this channel or waiting on a number of channels and events (see section 4.1).

Basic channel communication, regardless of direction, is performed using the
algorithm in Figure 6. Using this algorithm the second process to reach the
channel completes the synchronisation and thus the communication. This re-
sults in, typically, only one of the two processes performing an expensive atomic
operation.

4 Synchronisation

In addition to communication, processes often need to synchronise in ways which
do not involve data exchange. This section describes additional synchronisation
primitives supported by our runtime.

4.1 Alternation

For many purposes, blocking channel communication is sufficient; however, pro-
cesses often need to choose between a number of channels and other events. Our
runtime kernel supports choice over a number of channels and timer events: we
call this alternation. occam-π supports this via an ALT language construct.

Alternation allows a process to wait for one or more of a set of channels to
become ready. When an element of the waited set becomes ready, the process is
rescheduled and can make a choice as to which channel to communicate with.
This is similar to the POSIX select system call.

In this section we present algorithms designed for one process waiting on a set
of channels, while other processes sharing those channels commit. This constraint
is enforced by the present version of the occam-π language and inherited from
the original occam language. More general synchronisation algorithms are part
of our ongoing research.

Alternation consists of the following steps:

Initialisation. The Alternation State field of the process descriptor is ini-
tialised. The alternation state consists of:

– flags indicating what stage of alternation the process is in. The initial flags
are enabling and not ready.
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1. Read the channel word.
2. If the channel word is not null, then atomically clear the not ready flag of the

alternation state. The enable operation completes indicating the channel is ready.
3. Atomically swap a pointer to the process descriptor with the alternation bit set

into the channel word.
4. If the result is not null, then the value in step 1 was stale. Write the result back

to the channel word and continue as in step 2.
5. Atomically increment the alternation state reference count.

Fig. 7. Channel enable algorithm

1. Read the channel word.
2. If it does not contain a pointer to the process descriptor of the alternating process,

then the channel is ready. The operation returns indicating the channel is ready.
3. Atomically compare-and-swap null to the channel, if this fails then the channel

just became ready; the algorithm completes as in step 2.
4. Channel is not ready, decrement the reference count in the Alternation State.
5. Return value indicates channel not ready.

Fig. 8. Channel disable algorithm

1. Read the reference count of the Alternation State.
2. If the reference count is one then alternation is finalised; leave algorithm.
3. Save the process state as if to context switch.
4. Atomically decrement and test the reference count.
5. If the reference count does not reach zero then context switch.

Fig. 9. Alternation finalisation algorithm

1. Read the Alternation State of the process descriptor to trigger.
2. Generate a new state with the not ready and waiting flags cleared, and the

reference count decremented by one.
3. Use a compare-and-swap operation to replace the Alternation State.
4. If the operation fails restart at step 1.
5. If the original state had the waiting flag set, or the new reference count is zero,

then reschedule the process.

Fig. 10. Event trigger algorithm

– a reference count which tracks the number of pointers to the process de-
scriptor, initially one. When a logical processor triggers an event which is
part of an alternation it takes one of these references. The alternation only
completes when all references have been counted back through the disable
algorithm or via event triggers.
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Channel Enabling. Each channel a process alternates over is enabled using
the algorithm in Figure 7.

Waiting for Events. Once the process has enabled all the events it makes a
kernel call to wait. An atomic compare-and-swap is used to clear the enabling

and not ready flags, and set the waiting flag. If the compare-and-swap succeeds
then the process is descheduled and a context switch occurs. Failure indicates
that an event has become ready, in which case the enabling flag is atomically
cleared and execution of the process continues.

Channel Disabling. Having been woken up, the process disables channels
using the algorithm in Figure 8.

Finalisation. Having disabled all channels, the alternation is finalised using
the algorithm in Figure 9. This completes the alternation and communication
with any ready channels may take place.

Event Trigger Algorithm. Whenever a logical processor needs to signal an
alternating process that an event has become ready, it executes the event trigger
algorithm in Figure 10. This is the algorithm referenced at step 2(e) of the basic
channel communication algorithm in Figure 6.

4.2 Mutual Exclusion

Section 3 describes communication channels capable of synchronous point-to-
point exchanges involving a pairs of processes. As developers, we often need to
have multiple communication peers using the same channel. This is particularly
useful for implementing the deadlock-free client-server design pattern [47], in
which a number of clients communicate with a single server over channels.

To support this functionality our runtime provides mutual exclusion locks,
which can be associated with the channel directions. This allows ordered multi-
access channels to be constructed. The lock claim and release algorithms are non-
blocking and prevent starvation using FIFO queuing. Importantly, the occam-π
compiler enforces claim and release semantics on these locks, so that an appli-
cation developer cannot forget to release the channel lock.

4.3 Barriers

Our runtime also supports a barrier synchronisation type. Processes can enroll,
resign and synchronise on such barriers. Processes synchronising on a barrier
are blocked until all other processes enrolled on the barrier are also synchronis-
ing. Barriers may also be communicated by reference over channels, atomically
enrolling the receiver as part of the communication; this permits semantics such
as those described by Welch and Barnes [46].

Barriers of this type are useful in implementing agent simulations. Each agent
is enrolled on a barrier and synchronises on it to maintain time-step with the
other agents in the simulation. With many thousands of agents synchronising,
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the performance of barrier operations is critical. It is also important to minimise
the time between barrier completion and returning to the state where all enrolled
processes are scheduled for execution across available logical processors.

5 Performance

In this section we present preliminary results from a number of benchmarks we
have developed to test and compare the performance of our runtime. The source
codes for these benchmarks are publicly available [2].

All our benchmarks were performed on an eight core Intel Xeon workstation
composed of two E5320 quad-core processors running at 1.86GHz. Pairs of cores
share 4MiB of L2 cache, giving a total of 16MiB L2 cache across eight cores. For
all tests the workstation ran Linux 2.6.25 (with Gentoo r7 patches). Where ap-
propriate, the maxcpus boot time flag was used to control the number of available
processor cores.

Comparison of our results was performed by close reimplementation of our
benchmarks using multiple languages and concurrency frameworks:

– CCSP C - our runtime programmed using its C API.
– CCSP occam-π - our runtime programmed using the occam-π.
– Erlang - a functional programming language with asynchronous message

passing 1. We used version 5.6.3 with HiPE [35].
– Haskell - a functional programming language with lightweight threads and

one-place buffered channels provided by the MVar primitive. We used GHC
version 6.8.2 [22].

– pthread C - POSIX threads accessed via the GNU C library. Mutual exclu-
sion (pthread_mutex_t) and condition variables (pthread_cond_t) are use to
construct one-place buffered communication channels.

5.1 Process Ring

To examine communication overheads, we construct a ring of n element pro-
cesses, and one initiator process. Element processes loop: they receive an integer
token from the previous process in the ring, increment it, then send it on to
the next process. The initiator, adds tokens, counts them passing and after a
given count removes them from the ring. By increasing the number of tokens
“in flight” around the ring, we increase the number of potentially concurrently
executing processes.

Given the time taken for a single token to circulate the ring we can estimate
the average communication time of each language runtime as time÷((elements+
1)×roundtrips). For all our examples, there are 255 element processes and tokens

1 We have not forced synchronised communications, but instead we coerced our designs
to function with asynchronous messaging. This should be a performance benefit for
Erlang.
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Table 1. Communication times, calculated using process ring results

Implementation 1-core (ns) 8-core (ns)
CCSP C 73 75
CCSP occam-π 46 39
Erlang 1697 1675
Haskell 269 9892
pthread C 5013 3485
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Fig. 11. With 64 tokens in the process ring, we increase the number of processor cores

make 1024 round trips. With 255 elements it is likely that all processes will fit
within the processor caches, allowing us to examine the best-case communication
time.

Table 1 shows communication times in nanoseconds. These are based on the
circulation of a single token when one core or eight cores enabled.

The communication time for Erlang and our runtime are relatively unaffected
by the number of processor cores. While both CCSP C and CCSP occam-π
implementations use the same runtime, the occam-π compiler caches scheduling
pointers in registers, reducing the kernel call overhead. This explains the 30ns
difference in the results.

POSIX threads performance is noticeably improved by more cores. We spec-
ulate that threads are being given processor affinity by the Linux scheduler.
This then improves performance as interprocessor communication via processor
caches is faster than Linux’s context-switch.

Haskell performance degrades significantly with the addition of cores. We
suspect this reflect internal contention exposed by multiple processors accessing
the Haskell runtime in parallel.

The plot in Figure 11 shows the time taken for 1024 circulations of 64 con-
current tokens as the number of processor cores is increased. With the exception
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of POSIX threads, all the implementations show decreased performance with
increasing numbers of cores. This reflects the fact that, for user processes, com-
municating between processor cores is more expensive than simulated communi-
cation on the same core. As the number of concurrent processes increases, they
are scheduled on to separate cores, increasing the communication costs.

Our runtime, while not performing as in the optimal case (single-core ex-
ecution), does control the slow down with increasing numbers of cores. We
would not expect performance to degrade below interprocessor communication
time.

Erlang and Haskell performance also degrades with increasing numbers of
cores, Haskell more notably so. POSIX threads performance improves, again we
suspect this is for the reasons previously stated.

5.2 Agent Simulation

As previously mentioned, occam-π is being used for complex systems modelling
as part of the CoSMoS project [1]. The investigators are exploring using process-
oriented methodologies for building models of emergent behaviour, and creating
a generic toolkit for doing so. One of the early models investigated by the group
was a process-oriented implementation of Craig Reynolds’ boids, a simulation of
flocking behaviour [37]. The CoSMoS project’s implementation, occoids, employs
agent processes with internal concurrency to implement the boids and their
behaviour rules [7]. Agent processes move through a grid of location processes,
connecting and reconnecting as they go. The topology of space can be modified
by adjusting the underlying network connections, and this technique has been
exploited to build an implementation which spans a network of computers with
only minor changes to the code base.

We have constructed a benchmark based on occoids. Our benchmark is de-
signed to be easy to implement in other languages, and produces results which
allow the verification of an implementation’s correctness. The simulated space is
a two-dimensional torus, and agent positions are represented as integers relative
to the centre of their present location. The occoids simulation uses floating-point
variables so as not to unduly quantise space; however, integers allow us to easily
verify the simulation output and avoid any associated variations in floating point
support.

With reference to the process diagram in Figure 12. Location processes, acting
as servers, maintain a data structure containing all agents presently in their grid
area. View processes act as servers to clients, but also clients to the location pro-
cesses, building aggregate lists of all agents within nine adjacent locations each
simulation step. Agent processes query a view process, and calculate a repulsive
force from other visible agents, applying an internal bias. Having determined
the force, the agent signals movement to its location, reconnecting to a new lo-
cation if appropriate. Agents maintain a consistent sense of time using barrier
synchronisations between activity phases.

The bias is updated based on the position of the agent and the number of other
agents seen. In effect the bias produces randomised behaviour in the agents. The
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Fig. 12. Simplified occoids process diagram. Boxes represent concurrent processes. Ar-
rows represent two-way client-server channel connections, with the arrow pointing at
the server. Agent processes connect to their present location, and “see” other agents
via the location’s view.
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Fig. 13. Increasing the number of cores applied to the agent simulation. The simulation
is a 10x10 grid and 1200 agent processes.

initial position of all other agents in the simulation acts as the seed, and hence
can be easily reproduced.

As a comparison to the process-oriented design, we implemented a hand-
optimised data parallel version using POSIX threads. Only one thread is used
per processor core, and each thread executes a fixed number of agents. Data
updates are performed in parallel using fine-grain locking of location data struc-
tures. This version represents the optimal case and appears as pthread DP C in
Figures 13 and 14.

Figure 13 shows comparative results as we increase the number of available
processor cores with a fixed-size world grid and number of agents. With refer-
ence to the process-oriented implementations, our runtime provides a marked
improvement in performance and scalability. Erlang and Haskell fail to achieve
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Fig. 14. Simulation time for agents benchmark with increasing grid size. Each grid
location has 12 initial agents. The x-axis is the number of locations in each axis.

more than 50% speed up, even with eight available processors. In particular Er-
lang performance begins to degrade beyond three cores. POSIX threads achieve
approximately a 100% speed up over eight cores, while our runtime achieves
350%. Comparing with the optimal case, which has a 575% speed up, there
clearly is still room for improvement in our scheduler.

The overall performance of the C version using our runtime is 50% of the
optimal case. Assuming this performance loss is communication and schedul-
ing overhead then further refinements of our scheduler and compiler integration
should be able to bring performance closer to the optimal case. The reduced
performance of occam-π compared to C is due to more efficient optimisation
of serial code by the GNU C compiler than the occam-π compiler. We plan to
overcome this by targeting GNU C as part of a new compiler we are developing.

Figure 14 shows results when scaling the simulation size with eight cores. Sim-
ulation size is controlled by increasing the grid size and number of agents. In this
test our runtime also outperforms other process-oriented implementations. The
other process-oriented implementations increasingly diverge from the optimal
case with increasing problem size. The similarity of our runtime’s scaling curve
to the optimal suggests that refining of our existing runtime may be sufficient
to achieve near optimal performance.

6 Related Work

Many frameworks and languages provide concurrency primitives beyond those
supported by OS threads and locks. This stems from a desire make concur-
rent programming easier, and to avoid common errors associated with locks and
shared-memory [40]. For example message-passing frameworks such as PVM [19]
and MPI [21] provide primitives similar to those presented in this paper, but do
so for a course-grain network environment.
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It is also desirable to provide lightweight concurrency primitives when the
number of concurrent elements is high [15], or the application has more com-
plete information on how they interact and should be scheduled. Of particu-
lar relevance to our work are lightweight runtimes for task parallelism such as
Cilk [13], OpenMP [4] and Intel’s Thread Building Blocks (TBB) [3]. These run-
times employ modern work-stealing scheduler designs similar to our own, but do
not provide primitives suitable for implementing process-oriented designs.

OpenMP and Intel’s TBB emphasize the data parallelism of tasks, and only
provide for communication of data asynchronously via shared memory. Neither
framework provides constructs for communicating data with synchronisation.
OpenMP’s mutual exclusion locks can be used to implement communication
channels. However, unlike POSIX threads, there is no conditional variable which
can be used to efficiently implement resume on data or buffer space availability.
While TBB’s concurrent_queue provides a communication channel like interface,
TBB only permits parallel tasks over ranges of data and does not support the
spawning of continuously running tasks.

Programming environments such as Cilk [13] and Java’s Fork/Join frame-
work [30] focus on scheduling finite tasks with well-structured computational
dependencies (directed acyclic graphs). Within these frameworks the dependency
graph provides the scheduling scope and the depth of the graph can be used to
bound the number of active tasks and memory utilisation. These bounding guar-
antees are based on the space requirements of the serial execution of the same
program. Our process-oriented programs do not necessarily have a serial exe-
cution, so this model of space bounding is not applicable. Furthermore, as the
lifetime of individual tasks is bounded, a LIFO scheduling order is appropriate.
Lock-free operations on LIFO stacks are simpler than those on a FIFO queue.
The processes we define in this paper have unbounded lifetimes and hence FIFO
scheduling ensures all processes are serviced. A FIFO scheduling order distin-
guishes the scheduling algorithms presented in this paper from those of other
work-stealing schedulers.

Process-oriented programming is very similar to the stream programming
paradigm. Stream programs consist of graphs of concurrent communicating ele-
ments which transform input to output. Process-oriented programming is
distinguished from stream programming in that it permits the dynamic cre-
ation of processes and their runtime reconnection, whereas a stream program’s
data graph is fixed which allows compile-time and instruction-level scheduling
strategies [29].

In the benchmarks presented in this paper (section 5) we have focused on lan-
guages with clear support for implementing process-oriented designs, examining
both Erlang and Haskell. Erlang provides asynchronous message passing, which
can simulate communication channels, and has a shared-memory multiproces-
sor runtime [8]. Haskell as a pure functional language focuses on deterministic
parallel graph reduction rather than task interaction, but does provide a MVar

primitive akin to a one-place buffered communication channel [22]. However,
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while both Erlang and Haskell provide support for lightweight concurrency, nei-
ther runtime (as tested), employs a work-stealing scheduler or lock-free algo-
rithms between communicating concurrent elements.

Concurrent ML (CML) is another functional language which provides light-
weight concurrency primitives [36]. It implements channels and message passing
using continuations on top of Standard ML. We excluded it from our comparisons
as CML was not originally intended for multiprocessor execution. A successor
language to CML, Manticore, attempts to address heterogeneous parallelism [16].
Manticore is still in the design and implementation phases and this prevented
us making any performance comparisons.

In summary, the runtime presented in this paper provides multi-core schedul-
ing for lightweight concurrent communicating processes which can be defined and
reconnected at program run time. In doing so it provides support for process-
oriented programming multi-core systems not provided by other frameworks for
lightweight concurrency.

7 Conclusions

We have implemented a multicore scheduler for fine-grain concurrent software
developed using process-oriented programming. Process-oriented designs have a
high degree of inter-process communication, and involve many more processes
than physical processors. We address this in our runtime design by ensuring that:

– The serialisation bottleneck of a global run queue is avoided by scheduling
processes independently on each core.

– Cache utilisation is improved by batching communicating processes.
– No programmer intervention is required to achieve multicore execution of

process-oriented designs. Processes and batches are automatically distributed
and migrated between processor cores.

– Contention within the scheduler is reduced using lock-free algorithms.
– Lock-free algorithm performance is optimised by minimising the number of

atomic instructions, particularly in hot paths.

The performance results presented in this paper show that by addressing these
points our runtime has significantly better performance than a number of other
frameworks for implementing process-oriented designs. Specially, our runtime
brings the performance of process-oriented software close to that of optimised
multithreaded implementations.

Using the runtime presented in this paper, process-oriented design can be ap-
plied to develop software for multicore systems without the associated complex-
ities and hazards of threads, locks and shared-memory. Furthermore, we expect
refinements of our runtime design to be able to allow unmodified process-oriented
software to fully utilise hardware parallelism in future generations of multicore
processors [5, 31, 33, 43].
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8 Future Work

As presented, our runtime does not provide any asynchronous communication
mechanism. Instead, we implement asynchronous messaging using buffer pro-
cesses on synchronous channels. While this design decision was influenced by the
target occam-π, a language with no asynchronous communication primitives, it
may be that asynchronous communication warrants direct implementation. An
investigation of the impact of asynchronous communication on the performance
and expressibility of complex systems simulations is required. It should also be
noted that there is an argument for synchronous channels being easier for devel-
opers to reason about and formally verify.

Further benchmark comparisons of our work are required to provide a com-
prehensive picture of performance. In particular, research into process-oriented
implementations of other common benchmark suites is part of our future work.
One possibility is to reimplement benchmarks developed for stream programs,
such as the StreamIt benchmark suite [20, 29] - although, as noted in section 6,
these do not deal with the dynamic nature of process creation and communica-
tion in process-oriented programs.
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Abstract. Recent approaches to component-based software engineer-
ing employ coordinating connectors to compose components into soft-
ware systems. For maximum flexibility and reuse, such connectors can
themselves be composed, resulting in an expressive calculus of connec-
tors whose semantics encompasses complex combinations of synchroni-
sation, mutual exclusion, non-deterministic choice and state-dependent
behaviour. A more expressive notion of connector includes also context-
dependent behaviour, namely, whenever the choices the connector can
take change non-monotonically as the context, given by the pending ac-
tivity on its ports, changes. Context dependency can express notions of
priority and inhibition. Capturing context-dependent behaviour in for-
mal models is non-trivial, as it is unclear how to propagate context in-
formation through composition. In this paper we present an intuitive
automata-based formal model of context-dependent connectors, and ar-
gue that it is superior to previous attempts at such a model for the
coordination language Reo.

1 Introduction

The holy grail of component-based software engineering is to develop truly
reusable software components which can be sold off-the-shelf and reused to
build software systems [31]. Research on software composition plays a key role
in this quest, as it offers flexible ways of plugging together components. Some
approaches to software composition use textual glue code [15,26,28], usually in a
scripting language, whereas others offer a more visual approach, where ‘channels’
or ‘connectors’ are used to compose components into a system [1,9,14,17].

Connectors play the role of coordinating software systems, yet their function-
ality is traditionally more limited than scripting languages. This trend has been
reversed with investigation into the notion of compositional connectors [1,26].
In such a setting, connectors are formed by composing simpler connectors such
as channels together. These ‘languages’ express various coordination patterns
exhibiting combinations of synchronisation, mutual exclusion, non-deterministic
choice, and state-dependent behaviour. A number of component connector
models exist, including Reo [1], Ptolemy [23], Ptolemy II [24], MoCha [17], Man-
ifold [5], pipe and filter architectures [30]. Although these overlap in philoso-
phy and functionality, Reo is the only one that enables synchrony and mutual
exclusion to propagate through connectors.
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The trend is to increase (or improve) the expressiveness of such coordina-
tion models by investigating features such as dynamic reconfiguration [21], data
sensitive operations such as data filtering and transformation [10], and context-
dependent behaviour [11]. The latter feature is characterised by behaviours which
depend upon both the positive and negative occurrences of I/O requests on the
boundary ports of the connector. This paper follows this trend, by investigat-
ing the notion of context dependency in the setting of the coordination lan-
guage Reo [1]. Context dependency enables connectors to be more responsive to
changes in their environment, and thus increases the expressiveness of connectors
enabling them to express, for example, priority and inhibition. Our primary goal
is twofold, namely to produce a model of context-dependent connectors which
avoids a number of the problems of previous such models for Reo, in a manner
which can be implemented efficiently.

Context-dependent behaviour has already been studied in the context of non-
monotonic concurrent constraint programming [13] and generative communica-
tion [16], where operators are defined with the ability of observing the absence of
data. The extra difficulty present in connector-based models is how to propagate
context-dependent behaviour properly.

Contributions. This paper presents a compositional automata model for ex-
pressing context-dependent connectors. Following intensional automata [12], the
model expresses context dependency by modelling both the I/O requests from
the environment and the firings of the connector. It is a simple and intuitive
model, in the sense that automata corresponding to basic connectors have a small
number of states and transitions, compared to intensional automata. Moreover,
because our automata are partial, the model overcomes a problem with totality
preservation present in connector colouring [11].

Connector plugging is achieved by a novel two-step composition operation con-
sisting of a product, modelling the independent execution of distinct connectors,
plus a synchronisation operation. Composition propagates context information,
which contains both positive and negative information. Using this we define a
previously elusive notion of enabledness and show that it is also appropriately
propagated through composition. We also formally define the notion of context
dependency, which had never been formalized for any of the other existing mod-
els of Reo. The presented automata model also enables an efficient implemen-
tation of context dependent Reo connectors, combining the benefit of previous
automata-based implementations [25] with the context dependency originally
developed in the connector colouring model [11].

Organisation. Section 2 describes the Reo coordination language and highlights
problems with its models with regard to context dependency. Section 3 describes
guarded strings, the formal basis for traces of context dependent connectors.
Section 4 describes guarded automata, the basis of our formalism, along with its
product and synchronisation operations, and the additional conditions required
for modelling Reo connectors. Section 5 describes and justifies various technical
conditions present in our model, including giving properties. Section 6 concludes.
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2 The Coordination Language Reo and Its Models

Reo [1] is a model of component coordination wherein component connectors
are constructed by composing more primitive connectors, such as channels, data
replicators, stream mergers and routers. Primitives express state-dependent syn-
chronisation and mutual exclusion constraints on their ports, along with the
data flow between the ports that synchronise. Primitives can exhibit different
behaviours in terms of synchronisation and mutual exclusion of their ports, the
direction of data flow, the presence of buffering, state, and whether or not data
can be lost. Composition of connectors is achieved by plugging ports together
(one-to-one, in the direction of data flow, is sufficient). Composition imposes the
constraint that the two ports plugged together synchronise, and hereby synchro-
nisation and mutual exclusion constraints propagate through a connector.

A number of Reo’s primitive connectors are depicted in Fig. 1. These form
quite an expressive set of connectors (most connectors appearing in the literature
use these or their close relatives). Their semantics are presented later in Fig. 3.

a b a b ||a b a b a b

Sync(a, b) LossySync(a, b) AsyncDrain(a, b) SyncDrain(a, b) Fifo1 (a, b)

a

b

c

a

b

c
!

a

b

c

Merger (ab, c) PriorityMerger (ab, c) Rep(a, bc)

Fig. 1. Basic Reo channels

The interaction model presupposed by Reo is that components try to write
or take data from the ports it is connected to. The connector then determines
when the write or take ‘fires’, together with passing data along through the
channels of the connector. The notion of synchrony is equated with the ports
that fire together, and mutual exclusion is when ports cannot fire together. Most
existing formal models of Reo express only the sets of write/take actions which
can fire together, dubbed as firing. Context-dependent behaviour goes beyond
this: such behaviour differs depending upon both the positive and negative oc-
currences of I/O requests on the boundary ports of the connector. Using this
request information as well, connectors can express a notion of priority, when
two or more choices are possible, and a notion of inhibition wherein attempts by
the components to perform operations blocks (certain) firings from occurring.

Informal accounts of Reo give a localised description of the context-dependent
nature of certain connectors. For instance, the LossySync channel (with ports a
and b) has the behaviour that if a write request and a take request are present on
a and b, respectively, then data flows from a to b (synchronously). If, however,
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no take on b is present, then data may flow at a, but it is lost in the channel. In
contrast, the Sync channel (with ports a and b) is not context dependent: data
must only flow synchronously. In fact, we will show in the sequel that this channel
behaves as identity when composed with other channels. Notions of priority can
also be described in this fashion, by using the context (boundary I/O requests)
to break any non-determinism.

The problem with this kind of description, first identified by Clarke et al. [11],
is that it relies on the presence of requests on the ports of primitives, but after
composition these ports are generally no longer on the boundary of a connector,
but made internal, and informal accounts do not provide a precise enough de-
scription of how context-dependent behaviour propagates through composition.
This is a consequence of the impedance mismatch resulting from the plugging
together two ports: both ports are expecting some environment to initiate inter-
action, but the environment (some component) is not present at the point where
two ports are joined. Arbab [1] describes how offers of data (writes) and will-
ingness to accept data (takes) propagate through channels, but unfortunately,
this description is incomplete and imprecise, in particular with regard to how
context propagation interacts with non-deterministic choice. Clarke et al. [10]
goes as far as arguing that there are no natural intuitive models for Reo, hence
no natural or obvious way of implementing it, as our intuition about data flow
networks is insufficient to determine how connectors behave. Two consequences
of this are, firstly, that the semantics of any Reo connector can only be under-
stood in terms of a specific semantic model and appropriate translation into the
model, and, secondly, that the only effective implementations of Reo have been
direct implementations of some semantic model; no reference model exists.

2.1 Formal Models of Reo

Numerous models have been proposed in the literature to capture the state-
dependent, synchronisation and mutual exclusion constraints imposed by a Reo
connector over its ports. Providing a semantic model which captures the desired
context-dependent nature of Reo connectors in a compositional manner has,
however, been a challenge. Models either express no context dependency or are
inadequate at doing so.

Constraint automata [7] have transitions whose labels capture the synchroni-
sation (and data flow) between ports, implicitly expressing mutual exclusion, by
describing the sets of ports that fire together (the ‘firing set’) at the exclusion
of the ports not mentioned in the set. In their basic form, however, constraint
automata cannot express context dependency.

A coalgebraic model of Reo [6] was provided in terms of relations on timed
data streams (so-called Abstract Behaviour Types [2]). These were shown to
be more or less equivalent to constraint automata, and thus unable to express
context dependency. Moreover, the underlying time streams are infinite, so the
model excludes not only finite behaviour, but also connectors which exhibit finite
behaviour on any of their ports.
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Connector colouring [11] describes the behaviour of a connector in a composi-
tional fashion by colouring the parts where data flows and where it does not flow
with different colours, requiring simply that colours match at connected ports.
The model also captures context-dependent behaviour by propagating negative
information about the absence of data flow through the connector. This model
was extended to cover both state changes and the passing of data using tile
logic [3]. Nonetheless, this model and its extension suffer from a number of prob-
lems. The first is that some colourings are non-causal, but this can easily be fixed
by tracking the causality relation [12].1 The second problem is that degenerate
behaviour can arise in certain circumstances (see Section 5). Colouring tables
normally are defined to give a colouring for all possible boundary conditions.
However, this totality property is not preserved by composition. Furthermore,
composition with a non-total colouring table can result in no behavioural de-
scription for connectors, whereas often the semantics should be that no flow is
possible. (By analogy, this is the difference between ∅ and {∅}.) When com-
posed with any other connector (even when the two parts are not connected),
the resulting composite has no behaviour.

Intentional automata [12] express context dependency by labelling transitions
with a request set and a firing set, where the request set models the context
and the firing set models the subsequent behaviour. In addition, states record
pending requests—namely, requests that have arrived but have not fired. This
means that there are quite a large number of states in the automata managing
the buffering and firing of such requests, and automata rapidly become diffi-
cult to manipulate and not suitable for model checking purposes. For example,
one Sync channel requires 3 states, and 2 disconnected Sync channels require 9
states. In constraint automata and our model, only 1 state is required in both
cases.

The Büchi automata model of Reo [18,19] assigns to connectors infinite fair
behaviours. In this model, τ -transitions capture the arrival of requests, which
are recorded in states. In this model, there are two different non-equivalent ways
of modelling something as simple as a Sync channel. Thus the model differs
significantly from other approaches.

Mousavi et al. [27] describe Reo’s semantics using structural operational se-
mantics. To capture context-dependent behaviour (of lossy synchronous chan-
nels) a global maximal progress rule is employed to remove undesired behaviours.
This was subsequently encoded into Alloy [20]. The kind of context-dependent
behaviour which can be captured by this rule is limited, as it cannot express the
preference between two unrelated behaviours.

Barbosa et al. [8] present models of Reo-like connectors. The semantics is
given by process algebra expressions, where both the presence and absence of
signals can be specified. Complex connectors are then built from simpler ones
using one of five combinators: parallel composition, interleaving, hook, right and
left join. However, these composition operations increases the complexity of the
model without gaining any expressiveness.

1 Our model also does not deal with causality issues; Costa’s fix is applicable here [12].
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Unlike constraint automata, our model can express context dependency us-
ing a request and firing set, as in intentional automata. We abstract away from
data flow constraints, but indicate how to add them back into the model in Sec-
tion 6. Our model is significantly more compact than intentional automata, in
terms of both the number of states and transitions, as information about pend-
ing requests is not stored in states—it can easily be calculated. In contrast to the
Büchi model, our model expresses only finite behaviours and records request sets
in transition labels along with the firing sets, instead of in the states, resulting
in more intuitive models. Furthermore, our model expresses only the positive
behaviour, and does not rely crucially on the Büchi acceptance criteria to rule
out unwanted ‘paths’ in automata. The semantics of our model is based on finite
strings, which are much simpler than relations on timed data streams under-
lying the coalgebraic model. Our model also overcomes the totality problem of
connector colouring by, ironically, not insisting that the transition relation is
total, and by interpreting the absence of a transition simply as no behaviour for
the given context. In contrast to Mousavi et al.’s model, our approach achieves
an expressive notion of context dependency in a compositional manner without
recourse to a global rule. Our composition operation is a compact two-step oper-
ation, much simpler than the five operations proposed by Barbosa et al.. As far
as we can tell, merely just adding information recording the absence of signals
is insufficient to adequately deal with context dependent behaviour.

Overall, we claim that our automata are simpler and more intuitive than
existing models of context dependent connectors. In addition, we prove numerous
relevant properties about our model, not even considered by others.

3 Preliminaries: Guarded Strings

Let Σ = {σ1, . . . , σk} and BΣ be the free Boolean algebra generated by the
following grammar:

g :: = σ ∈ Σ | � | ⊥ | g ∨ g | g ∧ g | g

We refer to the elements of the above grammar as guards and in its represen-
tation we frequently omit ∧ and write g1g2 instead of g1 ∧ g2. Given two guards
g1, g2 ∈ BΣ, we define a (natural) order ≤ by putting g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1.
The intended interpretation of ≤ is logical implication—g1 implies g2.

Given a guard g there exists an equivalent guard norm(g) =
∨∧

a, where
a ∈ Σ ∪ Σ, with Σ = {σ | σ ∈ Σ}, and

∨

and
∧

the extensions of ∨ and ∧,
respectively, to sets of guards. The guard norm(g) is usually called the disjunc-
tive normal form of g. Since norm(g) can be written as a disjunction, we use the
notation g′ ∈ norm(g) to refer to an arbitrary disjunct of norm(g).

An atom of BΣ is a guard a1 . . . ak such that ai ∈ {σi, σi}, 1 ≤ i ≤ k. We
can think of an atom as a truth assignment. We denote atoms by Greek letters
α, β, . . . and the set of all atoms of BΣ by AtΣ . Every element of a finite Boolean
algebra can be written as a disjunction of atoms. Given S ⊆ Σ, we define ̂S ∈ BΣ

as the conjunction of all elements of S. For instance, for S = {a, b, c} one has
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̂S = abc. We define the atom associated with a set S in the expected way —

αS = ̂S ∧ Σ̂ \ S. For example, if Σ = {a, b, c}, then α{a,b} = abc. Conversely, the
set associated with an atom α is defined as α+ = {σ ∈ Σ | α ≤ σ}.

A guarded string over Σ is a sequence x = 〈α1, f1〉〈α2, f2〉 . . . 〈αn, fn〉, where
n ≥ 0 and each αi ∈ AtΣ and fi ⊆ Σ. Thus, a guarded string is an el-
ement of (AtΣ × 2Σ)∗. For simplicity, we drop the brackets and write x =
α1f1α2f2 · · ·αnfn.

To understand the intuition behind guarded strings, imagine that Σ contains
the names of all doctors in a hospital. Every hour there is a meeting to distribute
the incoming patients. Each atom αi describes the definite presence or absence
of every doctor in the meeting at hour i and f contains the doctors that got
a patient. Thus, the guarded string 〈α1, f1〉〈α2, f2〉 . . . 〈αn, fn〉 will contain the
activity of the doctors from hours 1 to n.

4 Guarded Automata

In this section, we define a new automata model for context-dependent connec-
tors. We start by introducing a generic automata, acceptor of guarded strings
and we define a product operation. Then, suitable restrictions are introduced
to single out the class of Reo automata, i.e., automata that are valid models of
context-dependent connectors, for which a synchronization operation is defined.

Definition 1 (Guarded automaton). A guarded automaton over an alphabet
of ports Σ is a non-deterministic (and possibly partial) automaton with transition
labels BΣ × 2Σ. Formally, a guarded automaton is a triple (Σ, Q, δ) where Q is
a (finite) set of states and δ ⊆ Q× BΣ × 2Σ ×Q is the transition relation.

We use the following notation in the representation of guarded automata:

q
g|f �� q′ ⇐⇒ 〈q, g, f, q′〉 ∈ δ

If there is more than one transition from state q to q′ we often just draw one

arrow and separate the labels by commas. Intuitively, a transition q
g|f �� q′

denotes that the actions in f will occur if the guard g is true.
Example guarded automata over the alphabet {a, b} are depicted in Fig. 2.
A guarded automaton can be seen as an acceptor of guarded strings as follows.

Given a guarded string α1f1α2f2 · · ·αnfn and a state q in the automaton the

q q q q′ab|a a|ab, ab|ab

a|a

b|b
Fig. 2. Examples of guarded automata over the alphabet {a, b}
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string is accepted in state q if there exists q
g|f1 �� q′ ∈ δ such that α1 ≤ g and

α2f2 · · ·αnfn is accepted in q′. The empty string ε is accepted in any state. We
denote by Lq the set of guarded strings accepted in a state q. Note that our
definition of acceptance implies that Lq is always non-empty and prefix-closed.

Another way to compute the language Lq would be to first write every guard
g as a disjunction of atoms

∨

I αi (for instance a = ab∨ab), replace the transition

q
g|f1 �� q′ ∈ δ by the transitions q

αi|f1 �� q′ and then compute the accepted
language of the automata in the standard way. An interesting remark is that
if one writes the automaton only using atoms, as described above, and then
determinizes it using a subset construction, the resulting automata will have a
transition function of type Q → (1 + Q)AtΣ×2Σ

[22]. It is then well-known [29]
that such automata have as final semantics precisely the non empty and prefix
closed languages L ⊆ 2(AtΣ×2Σ)∗ .

Two automata are equivalent if they accept the same language. We also in-
troduce a novel notion of bisimulation, which implies language equivalence.

Definition 2 (Bisimulation). Given guarded automata A1 = (Σ, Q1, δ1) and
A2 = (Σ, Q2, δ2). We call R ⊆ Q1 ×Q2 a bisimulation iff for all 〈q1, q2〉 ∈ R:

1. For all q1
g|f �� q′1 ∈ δ1 and α ∈ AtΣ such that α ≤ g, there exists a

q2
g′|f �� q′2 ∈ δ2 such that α ≤ g′ and 〈q′1, q′2〉 ∈ R;

2. For all q2
g|f �� q′2 ∈ δ2 and α ∈ AtΣ such that α ≤ g, there exists a

q1
g′|f �� q′1 ∈ δ1 such that α ≤ g′ and 〈q′1, q′2〉 ∈ R.

We say that two states q1 ∈ Q1 and q2 ∈ Q2 are bisimilar if there exists a
bisimulation relation containing the pair 〈q1, q2〉 and we write q1 ∼ q2. Two
automataA1 andA2 are bisimilar if there exists a bisimulation relation such that
every state of one automata is related to some state of the other automata and
we write A1 ∼ A2. The automata depicted in the following figure are bisimilar.

q q1 q2a|a a|a
ab|a, ab|a

Theorem 1. Let A1 = (Σ, Q1, δ1) and A2 = (Σ, Q2, δ2) be guarded automata
and q1 ∈ Q1, q2 ∈ Q1. Then, q1 ∼ q2 ⇒ Lq1 = Lq2 .

4.1 Product

In this section we define a product operation for guarded automata. This defini-
tion differs from the classical definition of product for automata: the automata
have disjoint alphabets and they can either take steps together or independently.
In the latter case the transition explicitly encodes that the other automaton can-
not perform a step in the current state, using the following notion:
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Definition 3. Given a guarded automaton A = (Σ, Q, δ) and q ∈ Q we define

q� = ¬
∨

{g | q
g|f �� q′ ∈ δ}.

This captures precisely the conditions in which A cannot fire in state q. Note
that if q has no outgoing transitions then q� = � and if q has a transition defined
for every g ∈ BΣ then q� = ⊥. Intuitively, if q� = � (resp. q� = ⊥) then the
state can never (resp. always) inhibit the step of a state in another automaton,
in the context of the product, defined below. For instance, in the automata

q1 q2ab|a ab|ab, ab|ab

one has q�
1 = a ∨ b and q�

2 = a.

Definition 4 (Product). Given two guarded automata A1 = (Σ1, Q1, δ1) and
A2 = (Σ2, Q2, δ2) such that Σ1 ∩ Σ2 = ∅, we define the product of A1 and A2
as A1 ×A2 = (Σ1 ∪Σ2, Q1 ×Q2, δ) where

δ = { (q, p)
gg′|ff ′

�� (q′, p′) | q
g|f �� q′ ∈ δ1 and p

g′|f ′
�� p′ ∈ δ2} (1)

∪ { (q, p)
gp�|f �� (q′, p) | q

g|f �� q′ ∈ δ1 and p ∈ Q2} (2)

∪ { (q, p)
gq�|f �� (q, p′) | p

g|f �� p′ ∈ δ2 and q ∈ Q1} (3)

Here and throughout, we use ff ′ as a shorthand for f ∪ f ′. Case (1) accounts
for when both automata fire in parallel. Cases (2) and (3) account for when one
automata fires and the other is unable to (given by p� and q�, respectively).

The following is an example of the product of two automata.

q1 × q2 = (q1, q2)ab|ab cd|cd, cd|c

abcd|abcd

abcd|abc
abc|ab

cd(a ∨ b)|cd
cd(a ∨ b)|c

Observe that the automaton 1 = (∅, {·}, ∅) is a neutral element for product.
The product operator satisfies expected properties such as commutativity and
associativity. The first property follows directly from the definition. The second
one follows from the definition and the fact that (q1, q2)� = q�

1 ∧ q�
2.

4.2 Reo Automata

In this section we focus on a subclass of guarded automata that constitutes an op-

erational model for context dependency. Intuitively, every transition q
g|f �� q′
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in an automaton corresponding to some Reo connector represents that, if the con-
nector is in state q and the boundary requests present at the moment, encoded
as an atom α, are such that α ≤ g, then the ports f will fire and the connector
will evolve to state q′. Not all guarded automata correspond to valid Reo con-
nectors. We are interested only in automata where each guard g|f satisfies two
criteria: reactivity—data flows only on ports where a request is made, capturing
Reo’s interaction model; and uniformity—which captures two properties, firstly,
that the request set corresponding precisely to the firing set is sufficient to cause
firing, and secondly, that removing additional unfired requests from a transition
will not affect the (firing) behaviour of the connector. These two properties are
captured in the following definition.

Definition 5 (Reo automaton). A Reo automaton over an alphabet Σ is a

guarded automaton (Σ, Q, δ) such that for each q
g|f �� q′ ∈ δ:

– g ≤ ̂f (reactivity)

– ∀g ≤ g′ ≤ ̂f · ∀α ≤ g′ · ∃ q
g′′|f �� q′ ∈ δ · α ≤ g′′ (uniformity)

Among the guarded automata depicted in Fig. 2 only the third one is a Reo
automaton (in fact, it models a FIFO1 channel). The first automaton is not
uniform, because ab ≤ a ≤ a and there is no transition whose guard g is such
that ab ≤ g. The second automaton in not reactive: ab �≤ ab.

q1

ab|ab

q1

ab|ab

ab|a

q1

ab|b
ab|a

q1

ab|ab

e f

a|a

b|b
Sync(a, b) LossySync(a, b) AsyncDrain(a, b) SyncDrain(a, b) Fifo1(a, b)

q1

ac|ac
bc|bc

q1

ac|ac
abc|bc

q1

abc|abc

Merger(ab, c) PriorityMerger (ab, c) Rep(a, bc)

Fig. 3. Guarded automata for basic Reo channels

In Fig. 3 we depict the guarded automata for the basic channel types listed in
Fig. 1. Here it is worth remarking that the automata for LossySync, AsyncDrain
and PriorityMerger contain negative information in some of their guards. As
we will show later this is the key to represent and propagate context-dependent
behaviour, which all these channels exhibit.
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Lemma 1. Reo automata are closed under product, i.e., product preserves reac-
tivity and uniformity.

4.3 Synchronization

We now define a synchronization operation which corresponds to connecting two
ports in a Reo connector. In order for this operation to be well-defined we need
that the transition labels in the automata are normalized (the formal justification
for this is presented in Section 5.1). More precisely, we need each guard in a label
to be a conjunction of literals. Note that in the automata presented in Figure 3
for basic Reo channels this is already the case.

Definition 6. Given a guarded automaton A = (Σ, Q, δ) we define the normal-
ization of A as norm(A) = (Σ, Q, norm(δ)) where

norm(δ) = { q
g′|f �� q′ | q

g|f �� q′ ∈ δ and g′ ∈ norm(g)}

Lemma 2. Reo automata are closed under normalization, i.e., normalization
preserves reactivity and uniformity. Moreover, A ∼ norm(A).

Now we are ready to define the synchronization operation of two ports a and
b (that are then made internal). In the new automaton only transitions where
either both a and b or neither a nor b fire are kept—that is, a and b synchronize.
In order to propagate context information (requests), we require that the guard
contains either a or b, expressed by the condition g �≤ ab, which more or less
corresponds an internal node acting like a self-contained pumping station [1],
meaning that an internal node cannot actively block behaviour. This also corre-
sponds to the condition in connector colouring [11] that the reason for no flow
on a node must come from an external place (see Section 5.5).

Definition 7 (Synchronization). Given a guarded automaton A = (Σ, Q, δ).
We define the synchronization of a and b (a, b ∈ Σ) as ∂a,bA = (Σ, Q, δ′) where

δ′ = { q
g\ab|f\{a,b} �� q′ | q

g|f �� q′ ∈ norm(δ) s.t. a ∈ f ⇔ b ∈ f and g �≤ ab}

Here, g\ab is the guard obtained from g by deleting all ocurrences of a and b.

Lemma 3. Reo automata are closed under synchronization, i.e., synchroniza-
tion preserves reactivity and uniformity.

The product and synchronization operations can be used to obtain, in a com-
positional way, the guarded automaton of a Reo connector built from primitive
connectors for which the automata are known. Given two Reo automata A1 and
A2 over disjoint alphabets Σ1 and Σ2, {a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2
we construct ∂a1,b1∂a2,b2 · · · ∂ak,bk

(A1 ×A2) as the automaton corresponding to
a connector where port ai of the first connector is connected to port bi of the
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second connector, for all i ∈ {1, . . . , k}. Note that the ‘plugging’ order does
not matter because of ∂ is commutative and it interacts well with product. In
addition, the sync channel Sync(a, b) acts as identity (modulo renaming). These
properties are captured in the following lemma.

Lemma 4. Given Reo automata A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2).
Then:

1. ∂a,b∂c,dA1 = ∂c,d∂a,bA1, if a, b, c, d ∈ Σ1.
2. (∂a,bA1)×A2 ∼ ∂a,b(A1 ×A2), if a, b ∈ Σ1 and Σ1 ∩Σ2 = ∅.
3. ∂a,c(A1 × Sync(a, b)) ∼ A1[b/c], if a, b /∈ Σ1 and c ∈ Σ1.

where A[b/c] is A with all occurrences of c replaced by b.

Moreover, we remark that ∼ is a congruence with respect to the product and
synchronisation operations.

5 Discussion

The model presented above contains many technical details. In order to justify
them, we present a theorem and/or counter-example to illustrate their purpose.
In the examples we mark in bold transitions in the product automaton which
are deleted in the synchronization step because the condition b ∈ f ⇔ c ∈ f
fails, and we mark in gray the transitions that are removed because g ≤ bc.

The following definition will come in handy.

Definition 8 (Firings). Let A = (Σ, Q, δ) be a guarded automaton. Given
q ∈ Q and α ∈ AtΣ define the set of possible firings in q induced by α as

firingsA(q, α) = {(f, q′) | q
g|f−−→ q′ ∈ δ ∧ α ≤ g}.

We will drop the subscript A whenever the automaton is clear from the context.

5.1 Uniformity, Normalization and the Sync Channel

A desirable property of a model of (context-dependent) connectors is that the
Sync channel acts like an identity (modulo port renaming) whenever plugged
into another connector (Lemma 4). The following example demonstrates that this
property fails to hold without the uniformity property of Definition 5. Consider a
channel Loser(a, b) which fires port a only if a request of port b is also present. Its
guarded automaton is non-uniform, as it should have transition a|a. Composing
with a synchronous channel gives an automaton which should be Loser(a, d) if
Sync behaved like the identity:

Loser(a, b) = q1 ∂b,c(Loser(a, b) × Sync(c, d)) = (q1, q1)ab|a a|a
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A similar reason justifies the fact that we have to normalize the automaton
before applying the synchronization operator. Suppose we want to compose a
lossy synchronous channel with a synchronous channel. The automaton for the
product LossySync(a, b)× Sync(c, d) is:

q1 × q2 = (q1, q2)
ab|ab

ab|a cd|cd

abcd|abcd

abcd|acd
acd|cd

ab(c ∨ d)|ab

ab(c ∨ d)|a

Now applying ∂b,c with and without normalizing results in different automata:

(q1, q2)

(q1, q2)

(q1, q2)

(q1, q2)

abcd|abcd

abcd|acd
acd|cd

ab(c ∨ d)|ab
ab(c ∨ d)|a

normalization

abcd|abcd

abcd|acd
acd|cd
abc|ab
abd|ab
abc|a
abd|a∂b,c

ad|ad

a ∨ ad|a

∂b,c

ad|ad

ad|a

The Sync channel behaves like an identity only in the second case.

5.2 Totality and Inhibition

Two notions of totality can be defined for connectors. We phrase them in terms
of guarded automata, although they apply to other models too.

Definition 9 (Totality). A guarded automaton A = (Σ, Q, δ) is said to be
total if and only if for all states q ∈ Q and for all α ∈ AtΣ, firings(q, α) �= ∅.

The presentation of connector colouring [11] requires that the colouring tables
are total. Unfortunately, composition does not preserve totality. Consider the
Rep-AsyncDrain in Fig. 4. In the connector colouring model its colouring table
is not total, which might lead to unexpected behaviours during composition. For
example, when a FullFifo1 is plugged into the Rep-AsyncDrain, the composite
has an empty colouring table, corresponding to “no behaviour possible.” If this
is further composed with other connectors, the colouring table remains empty,
even if no connection is made with the FullFifo1-Rep-AsyncDrain composite.

We do not require totality, and due to the use of negative information in the
product, composition with Rep-AsyncDrain causes no problems, as its automata
is one with no transitions (Fig. 4), which behaves neutrally in the composition
(since (q1, q2)� = �).

We also find it unnecessary to specify any behaviour that does not result in
a firing (though we do permit τ -transitions, represented by �|∅). The following
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||

a

b

c

d

e

q1 × q2 =

(q1, q2) (q1, q2)
∂b,d∂c,e

abc|abc
de|d
ed|e

abcde|abcd

abced|abce

abc(de ∨ de)|abc

de(a ∨ b ∨ c)|d
ed(a ∨ b ∨ c)|e

Fig. 4. Guarded automaton for ∂b,d∂c,e(Rep(a, bc) × ASyncDrain(d , e))

definition captures a sensible notion, which is weaker than totality. It states that
if some request set α causes a firing, then all larger request sets also cause a
firing (though not necessarily the same one).

Definition 10 (Firing upclosed). A guarded automaton A = (Σ, Q, δ) is said
to be firing upclosed if and only if for all states q ∈ Q and for all α ∈ AtΣ, if
firings(q, α) �= ∅, then for all α1 such that α+ ⊆ α+

1 we have firings(q, α1) �= ∅.
This is a nice property, but it turns out that, in general, composing Reo automata
does not preserve firing upclosure. Consider the following example connector
∂b,b′∂c,c′PriorityMerger (ab, c) × Rep(c′, b′d) and its accompanying automaton,
where a is the higher priority port: 2

b

c

a d

c'

!

b'

qad|d

This automaton is not firing upclosed, as although d|d produces a firing, ad
does not. In fact, a request on a acts to inhibit the firing of d, without itself being
fired. This kind of behaviour was not considered in previous models of Reo. We
tried to find an alternative definition of synchronisation, ∂̂, which preserved
Firing upclosed. Unfortunately, all our attempts failed to satisfy the required
equivalence ∂̂a,b∂̂c,dA ∼ ∂̂c,d∂̂a,bA. Embracing partiality—that is, the absence
of firing upclosure—open the door to connectors which act as request-based
inhibitors, as in the previous example.

5.3 Context Dependency and Negative Guards

We now formally define the notion context-dependency. This has never been
formalized for any of the other existing models of Reo.
2 Note that this connector contains a causal loop, which should produce no data. A

more complex variant without the causality problem can be easily produced, by
inserting a SyncSpout(a, b) plugged to a SyncDrain(b′, c) between b and b′.
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Definition 11 (Firing Monotonic). Let A = (Σ, Q, δ) be a guarded au-
tomaton. A is firing monotonic if and only if for all states q ∈ Q and for
all α1, α2 ∈ AtΣ if α+

1 ⊆ α+
2 , then firings(q, α1) ⊆ firings(q, α2). That is,

firings(q, ) is monotonic for all q ∈ Q.

Definition 12 (Context Dependent). A guarded automaton A is context
dependent if and only if it is not firing monotonic.

Thus an automaton exhibits context dependent behaviour in state q whenever
there exist α1, α2 ∈ AtΣ such that α+

1 ⊆ α+
2 and firings(q, α1) �⊆ firings(q, α2).

Intuitively, this means that the state q has a transition that will be blocked in
the presence of certain additional requests. In the following automata, the state
q exhibits context dependent behaviour, because firings(q, ab) = {(q, a)} �⊆
{(q, ab)} = firings(q, ab), whereas the state p does not.

The following lemmas show that negative information in guards is required
to express context dependency.

Lemma 5. Let A be a guarded automaton for which no negative atoms appear
in the guards. Then A is firing monotonic.

Lemma 6. Firing monotonicity is preserved by product and synchronisation.

Constraint automata [7] can be embedded in a natural way into our model by
transforming every transition labelled by F into a transition labelled by F̂ |F . As
a consequence of the previous lemmas, this makes explicit the fact that constraint
automata do not exhibit context dependent behaviour.

In addition we have, for Reo automata:

Lemma 7. A firing monotonic Reo automaton is firing upclosed.

The LossySync channel is not firing monotonic, yet it is firing upclosed.

5.4 Enabledness and Product

We now formally define the notion of enabledness, which captures that a port
can fire whenever a request is made on that port (in a given state). This property
has not been previously formalised for existing models of Reo. We also show that
this property is propagated through product, though this would not be the case
if negative information were not included in the definition of product.

Definition 13 (Enabledness). Let A = (Σ, Q, δ) be a guarded automaton.
A port a ∈ Σ is enabled in a state q if for all α ∈ AtΣ such that α ≤ a,
(1) firings(q, α) �= ∅ and (2) for all (f, ) ∈ firings(q, α) we have a ∈ f .

Intuitively, a port a is enabled whenever all request sets containing a match
some guard g and a subsequently fires. Including negative information in the
definition of product (using q�) preserves enabledness through product.

Lemma 8. Let A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2) be guarded automata
with Σ1∩Σ2 = ∅. Assume that in A1 the port a ∈ Σ1 is enabled in state q ∈ Q1.
Then in A1 ×A2, the port a is enabled in all states (q, q′), where q′ ∈ Q2.
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Without negative information in the product, enabledness is not preserved, as the
following counter-example demonstrates. Port a of LossySync(a, b) is enabled. If
we remove the q� from the definition of product, thus taking the naive definition
of product (×̂) following the definition in constraint automata directly, then a is
no longer enabled in LossySync(a, b)×̂Sync(c, d), because a transition with guard
cd|cd is present in the resulting automaton. This transition matches request set
acd, but a does not fire.

5.5 Justification of the g �≤ ab Condition in ∂a,b

The LossySync-Fifo1 example (Fig. 5) alone motivated the research into context-
dependent models. When the Fifo buffer is empty, data must flow through the
LossySync into the buffer, as the buffer’s port c is enabled. Our product and
synchronisation operations ensure this. What existing research lacks is a general
and formal characterisation of the requirements underlying this example. We
believe that until now, the required technical machinery was missing.

a b c d q × e f =

(e, q) (f, q) (e, q) (f, q)
∂b,c

ab|ab

ab|a

c|c

d|d

abc|ab
abc|a

abd|ab
abd|a

abc|abc

abc|ac
ca|c

abd|abd

abd|ad
da|d

a|a

ad|ad
da|d ad|a

Fig. 5. LossySync-Fifo1

Definition 14. Let A = (Σ, Q, δ) be a guarded automaton. We say that a port
a ∈ Σ is (q, R)-sensitive for state q ∈ Q and request set R ⊆ Σ whenever a ∈ f
for all (f, ) ∈ firings(q, αR∪{a}).

This property holds for port b in LossySync(a, b) in the request set {a}, and for
port c in Fifo1 (c, d) in state empty for all request sets. In contrast, port a of
Merge(ab, c) is not sensitive for request set {b, c}.

The following lemma captures the property underlying the LossySync-Fifo1
example:

Lemma 9. Let A = (Σ, Q, δ) be a Reo automaton, a, b ∈ Σ, q ∈ Q, and
R ⊆ Σ a request such that a, b �∈ R. If a is (q, R ∪ {b})-sensitive and b is
(q, R ∪ {a})-sensitive, then firings∂a,bA(q, αR) = {(f \ {a, b}, q′) | (f, q′) ∈
firingsA(q, αR∪{a,b})}.
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a b c d e f × e f =

(e, e) (e, f)

(f, e) (f, f)

(e, e) (e, f)

(f, e) (f, f)

∂b,c

c|c

d|d

a|a

b|b

ac|c

ac|a
ac|ac

ad|d

ad|a

ad
|adbc|b

bc|c

bc|bc

bd|d

bd|b
bd|bd

a|a

ad|d

ad|a
ad|ad

�|∅

d|d

(e, e) (e, f) (f, f)

a|a

ad|d

ad|a
ad|ad

d|d

Fig. 6. Two Fifo1 buffers plugged together, their automaton, and the result of per-
forming ‘hiding’—a Fifo2 buffer

This says that if both a and b are mutually enabled in the presence of request
set R, then they will both fire when synchronised, excluding the alternative
possibility that both do not fire. Constraint automata [7] would include both.

We believe that this kind of analysis is only the beginning in the key issue of
more deeply understanding the interaction between synchronisation and context
dependency [11,19,12].

5.6 Choice of Operations

The original model of constraint automata [7] included one operation for compos-
ing automata, namely a join, which played a similar role to both of our operations
combined. Having a separate product and synchronisation operation enables a
more fine grained analysis, which we believe was required to obtain the results
presented here. Barbosa et al. [8] go even further, presenting 5 operations (par-
allel, interleaving, hook, left join and right join). Our product merely places two
connectors next to each other, without restricting their behaviour, whereas Bar-
bosa et al.’s model forces a choice between parallel or interleaving composition.
Left join and right join (approximately the counterpart of replicator and merger)
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are modelled by primitive automata in our model, not as operations. Their hook
operation is the same as our synchronisation.

5.7 ‘Hiding’

Constraint automata [7] models of Reo include a ‘hiding’ operation, which com-
presses τ transitions in the automata, which are transitions labelled by �|∅ in
our model. See Figure 6. This can be used to obtain an automaton for a FIFO2
channel from the composite of two FIFO1 channels. The alternative variant de-
fined by Costa [12] is equally applicable, and perhaps more robust.

6 Conclusion and Future Work

We have presented a new semantic model for context-dependent Reo connec-
tors. The automata corresponding to primitive channels are very compact and
intuitive. As a novelty, when compared to previous approaches, our model takes
negative information into account in the composition operations. This has al-
lowed us to provide a ‘correct’ behavioural description of connectors (such as the
Repl-AsyncDrain example) which were not possible in other models. Moreover,
we provided a detailed justification for the various properties of our model. We
hope that our research will contribute to a more axiomatic description of Reo
connectors.

In this paper, we have not taken into account the actual data flowing through
the connectors. This was in order to not distract the reader from the actual
novelty of the paper. In fact, data constraints form a boolean algebra and can
be added exactly in the same way as we have dealt with guards. Moreover,
our model can be used to give a significantly simpler account of quantitative
Reo [4]. At present, we are incorporating our automata model into CWI’s Eclipse
Coordination Tools3 This will enable the generation of Java implementations of
our automata for composing components and services.

Kleene algebra with tests [22] (KAT) are to guarded automata what regular
expressions are to ordinary finite automata. Therefore, we want to explore how
KAT expressions can be used to specify and synthesize Reo connectors. This will
give us an algebraic description of Reo connectors, for which reasoning can be
automated. More generally, since our automata can be seen as ordinary labelled
transition systems with structured labels, we are interested in the connection
with temporal logic and model checking.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1-3), 3–52 (2005)

3 http://reo.project.cwi.nl/

http://reo.project.cwi.nl/


202 M. Bonsangue, D. Clarke, and A. Silva

3. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
WADT (2009) (to appear)

4. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y., Verhoef, C.: From
Coordination to Stochastic Models of QoS. In: Field, J., Vasconcelos, V.T. (eds.)
COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg
(2009)

5. Arbab, F., Herman, I., Spilling, P.: An overview of Manifold and its implementa-
tion. Concurrency - Practice and Experience 5(1), 23–70 (1993)

6. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55.
Springer, Heidelberg (2003)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

8. Barbosa, L., Barbosa, M.: A perspective on service orchestration. In: Science of
Computer Programming (2008) (accepted for publication)

9. Barbosa, M., Barbosa, L., Campos, J.: Towards a coordination model for interactive
systems. Electr. Notes Theor. Comput. Sci. 183, 89–103 (2007)

10. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. In: FOCLASA
2008 (2008) (to appear)

11. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and
context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

12. Costa, D.: Formal Models for Context Dependent Connectors for Distributed Soft-
ware Components and Services. Ph.D thesis (2009) (to appear)

13. de Boer, F., Kok, J., Palamidessi, C., Rutten, J.: Non-monotonic concurrent con-
straint programming. In: ILPS, pp. 315–334 (1993)

14. Fiadeiro, J., Lopes, A.: Community on the move: Architectures for distribution
and mobility. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 177–196. Springer, Heidelberg (2004)

15. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM
2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)

16. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

17. Scholten, J.: Mobile channels for exogenous coordination of distributed systems:
semantics, implementation and composition. Ph.D thesis, LIACS, Faculty of Math-
ematics and Natural Sciences, Leiden University (January 2007)

18. Izadi, M., Bonsangue, M.: Recasting constraint automata into Büchi automata.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 156–170. Springer, Heidelberg (2008)

19. Izadi, M., Bonsangue, M., Clarke, D.: Modelling component connectors: Synchro-
nisation and context-dependency. In: Proceedings of SEFM 2008. IEEE Computer
Society Press, Los Alamitos (2008) (to appear)

20. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling
and analysis of Reo connectors using Alloy. In: Lea, D., Zavattaro, G. (eds.)
COORDINATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg
(2008)

21. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring distributed Reo connectors.
In: WADT (2009) (to appear)

22. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. TR 10173,
Computing and Information Science, Cornell University (March 2008)



Automata for Context-Dependent Connectors 203

23. Lee, B., Lee, E.: Hierarchical concurrent finite state machines in Ptolemy.
In: ACSD, pp. 34–40. IEEE Computer Society, Los Alamitos (1998)

24. Liu, X., Xiong, Y., Lee, E.: The Ptolemy ii framework for visual languages.
In: HCC, p. 50. IEEE Computer Society, Los Alamitos (2001)

25. Maraikar, Z., Lazovik, A., Arbab, F.: Building mashups for the enterprise with
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Abstract. Embedded software is intrinsically concurrent, because an
embedded system has several computing units. The way the software
pieces communicate and synchronize depends on the hardware architec-
ture. If the architecture is regular and fixed, there often exists a program-
ming model that allows software developers to use it. If the architecture
is ad hoc, heterogeneous, or changing, such a programming model does
not exist, and the software developer has to be provided with a sufficient
view of the hardware behavior. We propose a notion of contract asso-
ciated with a component-based description framework, to help defining
such views. The contracts are used to describe and simulate the poten-
tially complex behaviors of the hardware execution platform, but only
the situations the embedded software should be aware of. In some sense,
the “semantics” of concurrency between the software pieces is given
by the structure of the hardware platform, the interface it exposes to
the software, and its contract behavior.
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1 Introduction

1.1 Development of Hardware/Software Embedded Systems

Embedded hardware/software systems (ranging from systems-on-a-chip to dis-
tributed fault-tolerant avionics systems) involve several software components,
running on the various computing units, with or without operating systems.
The way they synchronize and exchange information depends on the architec-
ture and properties of the hardware platform.

Programming Models. When the architecture is sufficiently regular and fixed
(e.g., arrays of identical processors connected with a network-on-chip), there
usually exists a corresponding high level programming model; it allows to describe
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the software with abstractions like “SMP” or “dataflow”, etc. Then, automatic
tools can map the software pieces onto the computing units, guaranteeing that
the synchronizations on the actual hardware happen as they were described in
the high level programming model.

When Programming Models Do Not Exist. When the architecture is het-
erogeneous, ad hoc, and/or subject to changes during the design of the system,
there does not exist such a programming model. In this case, the hardware ar-
chitecture has to be described in such a way that the software developer knows
how to use it. This view of the hardware, for the software developer, is much
more abstract than the descriptions needed to build the actual hardware. The
model of the hardware should also be efficiently executable, and available early,
to serve as a virtual prototype.

Systems-on-a-chip are a typical domain in which the hardware and the soft-
ware may be designed together. Transaction-level modeling (TLM) [8] has been
proposed, abstracting away the details of register-transfer level models (RTL).
The standard language of the domain in the industry is SystemC/TLM, which
has been quite successful in providing virtual prototypes of complex hardware
platforms, so that software developers can start developing the embedded soft-
ware long before the chip is available. The definition of what is a good TL
model is still the subject of many discussions. Abstractions are needed because
of simulation speed, of course, but it is also a very good idea to write the soft-
ware without being allowed to take fine hardware details into account. This
make it more robust, in the sense that it is less sensitive to small variations of
the hardware behavior. This is mainly why a TL model is essentially untimed
and asynchronous. A certain amount of non-determinism is also present in the
model. For instance, in SystemC, the behavior of hardware components is simu-
lated with C++ threads, which are scheduled by a non-deterministic scheduler.
A difficulty with TLM in SystemC is that it is not always obvious to separate
the model from the execution engine. An advantage is that SystemC modeling
encourages a component-based approach. Initiatives like IPXact1 try to define
standard specifications for the components, but this is quite informal for the
moment.

1.2 Components and Contracts for Embedded Systems

There has been a lot of work, in recent years, on component models for embed-
ded systems, formalized or not, focused on refinement, or concurrency models,
or expressivity, etc. See, for instance, logical contracts for Lustre [16], reac-
tive modules [2], interface automata [6], conditional dependencies in Signal [13],
etc. The purpose of this paper is not to discuss the advantages, drawbacks and
relative expressivity of all these proposals, because this would deserve a whole
paper.

We concentrate on the problem of defining contracts for the simulation of
hardware platforms. We will use a very simple model inspired by Ptolemy [3].

1 See www.eclipse.org/dsdp/dd/ipxact/toc.html
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In Ptolemy, systems are made of actors (in the sense of [1]) connected to each
other, and coordinated by a director that implements a given MoCC (model of
computation and communication). Ptolemy proposes a quite large catalog of dis-
crete and continuous MoCCs. Our model inspired by Ptolemy is called 42 [15,17].
It is restricted to discrete systems, and the main difference with Ptolemy is that
the various directors corresponding to MoCCs are expressed as small programs
in terms of more basic notions like the activation of the components, the trans-
mission of data from one component to another, etc. Section 2 will briefly present
this model.

The other important notion for this paper is that of a contract. Contracts
were proposed originally by B. Meyer for the programming language Eiffel, and
have proven very useful for (object-oriented) software design. A lot of tools, like
JML [12] allow to obtain defensive code automatically from the expression of
contracts. Some extensions like JASS (Java with Assertions) [5] of the original
proposition allow to express logical-time contracts (one can express an assump-
tion like: ”the inputs to method m, during the whole execution of a program, are
increasing”, which could not be expressed with pre and post conditions asso-
ciated with methods). Such logical-time contracts have also been proposed in a
synchronous framework for concurrent software, as shown in [16], and are very
similar to the sequential don’t cares used by hardware designers [21], or to the
circular assume-guarantee reasoning described in [18].

The notion of a contract, extended with logical-time, seems to be appropriate
for hardware/software systems, and for our purpose of designing abstract mod-
els of the hardware. The hardware components have to respect synchronization
contracts between each other, because of bus protocols, and various constraints
on the possible connections; the hardware platform seen as a whole, and the
embedded software, also have to respect contracts between each other.

1.3 Contributions and Structure of the Paper

The contributions of this paper are the following:

1. A notion of control contract for the 42 components, rich enough to express
complex synchronizations between components. An assemblage of compo-
nents can be simulated given the contracts only, before the detailed behavior
of the components is known.

2. An extension of the 42 implementation to allow the execution of a hardware
model, together with some embedded software.

3. An illustration of this early execution mechanism for building high-level mod-
els of hardware platforms inspired by TLM; these platforms can be simulated
together with the actual embedded software. The contribution is the defini-
tion of TL-like modeling for hardware platforms, independent of a particular
language and simulation engine.

Section 2 briefly presents the model 42; Section 3 presents the contracts for
42; Section 4 shows how to use these contracts for the simulation of hardware
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platforms together with some embedded software. Section 5 and 6 describe a
case-study, for which we demonstrate the benefits of early simulation. Section 7
is a list of related work, and Section 8 is the conclusion.

2 An Overview of the Component Model 42

The original definition of 42, and examples, can be found in [15,17].

Basic Components. Figure 1 shows a 42 component. It is a black-box that has
input and output data ports, and input and output control ports. The input
control ports are used to ask it to perform a computation step. A step corresponds
to a terminating (non-necessarily deterministic) piece of code. A component has
some internal memory. The input and output data ports are used to communicate
data between the components. The output control ports will be used by the
components to send information to the controller (see below).

od1

od2

od3

id1

id2

id3
internal memory

atomic
step

Input
Data Ports

Output
Data Ports

ic1ic2

oc2 oc1
Output Control Ports

Input Control Ports

Fig. 1. A Basic 42 Component

controller

A B

ic ic

oc oc

a

b

OI
i o

IC

OC

Fig. 2. Assembling Components

Controller is
x : int; x := 1;
for IC do { //Global IC

m_a, m_b, m_i, m_o : int;
if (x==2){

i.put; i.get; //Global ID
A.ic; alpha:=A.oc; //Read A.oc
if(alpha){
a.put; a.get; B.ic; //Activate B
}x:=1;

}else{
B.ic; o.put; o.get; //Global OD
b.put; b.get;
A.ic; x:=2;

} this.OC := x;} //Global OC

Fig. 3. Controller Code of Figure 2

Assembling Components. Components are connected by directed wires. An in-
put data port can be connected to an output data port of the same type (we
will assume this is always true in the sequel). The control ports are connected to



208 T. Bouhadiba and F. Maraninchi

the controller, not directly to each other. A wire does not mean a priori any
synchronization, nor memorization.

In the sense of Ptolemy [3], a system (see Fig. 2) is made of components con-
nected by wires (the architecture) plus a controller that activates the components
and decides what happens on the wires. The model is hierarchic: an architecture
plus a controller form a new component. It exposes new input and output data
and control ports. The global output data ports (e.g., O) are connected to out-
put data ports of subcomponents (e.g., o), and the global input data ports (e.g.,
I) are connected to input data ports of the subcomponents (e.g., i).

The Controller. Figure 3 is an example, given in some simple imperative style.
The controller defines how the components behave together. It is in charge of
translating an activation request on one global control input port (e.g., IC, also
referred to as a macro-step in the sequel), into a sequence of activations of the
subcomponents, and data exchanges between them (also called micro-steps). It
defines what the MoCC is, at this level. To achieve this, the controller may use
some temporary variables explicitly associated with the wires (e.g., m a), whose
lifetime is limited to the macro-step. It uses simple primitives of two forms:
activation of subcomponents (e.g., A.ic) and data management: a.put moves
the value from the port A.a to the memory associated with the wire a, whereas
a.get moves the value stored from the wire to the right port B.a. The controller
also reports on the activity of subcomponents through global output control
ports (e.g., OC).

3 Rich Control Contracts for 42

In this section, we propose a definition of control contracts for 42. The formal
definition can be found in [17]. In 42, contracts are similar to the protocols widely
used in object-oriented designs (see, for instance [22,20]). When specifying a class
in an object-oriented framework, a protocol can be used to specify, for instance,
that method m1 should always be called before method m2, unless method m3
has been called at least twice. The idea in 42 is similar: contracts will be used
to specify sequential constraints between the control inputs and outputs by a
finite state machine. Moreover, the contract will specify which of the inputs are
needed for each control input (the “assume” part of a contract), and which of
the data and control outputs are produced (the “guarantee” part). We restrict to
control contracts: they express how the components should be activated, but tell
nothing on the values that may be accepted or delivered, except for particular
data ports (see below).

3.1 Definition

Figure 4 shows a protocol for the component C of Figure 1. Each transition has
a label of the form:

[condition] (data req) control input / control output (data prod).
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(id1;) ic1/

α=oc1 (od1;)

n0

n2

n3

n1

[α = a] (id2;) ic2/β=oc2

(od2;od3=true;)

(id2;if ¬β then id3;) ic2/α=oc1

(od2;od3=false;)
n4

() ic2 ()

() ic2 ()
[α = b]

() ic2/β=oc2 ()

Fig. 4. Example Contract for the Component of Fig. 1

The variables denoted by Greek letters are used to store the value of control
outputs. A control output is of some enumerated type. They may be used later
on in the protocol itself; let us note the set of such variables V . The [condition]
part is built from the variables in V . The (data req) part expresses conditional
data dependencies; the conditions are built on V too. For instance (id2,if
¬β then id3) means that the transition needs id2 and, if the value stored in
variable β is false, it also needs id3. The (data prod) is built similarly, and
expresses which outputs are indeed produced. For some of the data ports, which
are used for synchronizations (e.g., an interrupt) the contract may also express
which value is indeed produced (e.g., od3 = true). This can be done only if the
type of the port is finite (some enumeration, usually). The control input is
a single control input. the control outputs gives the control outputs that are
indeed produced, and may indicate that their values are stored in variables of V .
Initially, the protocol is in its initial state (n0), and then it evolves according to
the sequence of activations produced by the controller in response to a sequence
of macro-steps. Each macro-step is considered to start in the state where the
protocol was at the end of the previous macro-step.

3.2 Compatibility Issues

The code of a component should be compatible with its contract: for instance,
if the contract declares that only input id is required for a given step, the
component should not make use of the other inputs. If the contract declares
that a given data output is produced for a given step, then the actual component
should indeed produce it. The complete definition is given in [17].

Checking this kind of property statically, in the general case, is a complex
program analysis problem. For instance, in most programming languages, deter-
mining which variables are read by a particular piece of code is undecidable. On
the contrary, if the component is a piece of hardware, described in a language
like VHDL, then the use of inputs and the actual production of outputs might be
analyzable by model-checking techniques in some cases. The purpose of this pa-
per is not to check statically that components conform with their contracts. We
will see in sections 4.5, 6.3 below that the compatibility property can be checked
dynamically if the contract is executed together with the actual component.
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4 Defining a Simulation MoCC as a Contract Interpreter

4.1 Example: A Simple Producer/Consumer System

Figure 5 shows the structure of a system made of three components: a producer,
a consumer, and a bounded FIFO used to store the elements produced before
they are consumed. The intended behavior is that the producer and the consumer
perform cyclic jobs, writing to or reading from the FIFO from time to time. The
producer should wait when the FIFO is full, and the consumer should wait when
it is empty.

In the 42 model, the data ports and connections are representative of the real
hardware system. For instance, there is a protocol between the FIFO and the
consumer: the latter should send a request to the FIFO to know whether it may
deliver an element, and it is blocked until the FIFO answers this request by a
grant signal. Similarly, the producer should send a request to know whether the
FIFO still has some room available, and it is blocked until the FIFO accepts the
WRITE operation by sending a grant signal.

In the 42 model, the control ports are connected (implicitly) to the controller,
and are used to obtain a simulation model. Each component has a single control
input called op, meaning: perform a single atomic execution step. The model is
sufficiently abstract to represent systems in which the consumer and the producer
are dedicated hardware components, or two CPUs with embedded software.

controller
gw

gr

PROD
FIFO

opG

op op

report

report

reqw
dr

dw

CONS

op

report

reqr

Ports Types :
gw, rr : {t, f} (true, false)
dr, dw : int
reqr, reqw : {t}
FIFO.report : {ok, ko}
PROD.report : {write, no write}

Fig. 5. The Producer/Consumer Example in 42

4.2 What Do We Want to Observe?

Before defining the simulation model, let us define precisely what we
want to observe in such a simulation; remember that the idea is to show “all”
possible behaviors of the hardware platform to the software developer. In the
example, the producer could be implemented as embedded software running on
a CPU.

A lot of real behaviors of the hardware are similar, from the point of view
of the software, hence we define an abstract view, keeping only the behaviors that
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matter. Since the three components could be running in true physical parallelism,
with or without a common clock, the most abstract view imposes to consider
them as purely asynchronous.

Figure 6 recalls the importance of atomicity in such asynchronous models,
based on interleaving semantics. Consider two entities running in parallel, de-
scribed by the automata (1) and (2). Associating a label a to a single transition
means that the part of the behavior of the entity 1 described by a can be consid-
ered as atomic with respect to their parallel behaviors. In other words, nobody
running in parallel can observe the internal states of entity 1 during action a. The
set of all possible global behaviors is given by automaton (4). Now, if automaton
(2) is replaced by automaton (3), meaning that b should not be considered as
atomic, then the global behaviors are those of automaton (5), in which new states
appear. The a transition from state X means that in entity 2, the intermediate
state between b’ and b’’ is observable by entity 1.

a

a

b

b

ba

b′′

a

b′a

b′′

b′′

a

b′
b′

b′′

(1) (2) (3) (4) (5)

X

Fig. 6. Asynchronous Models

Choosing the granularity of atomic transitions is an intrinsic modeling prob-
lem. When modeling the behaviors of two threads on a mono-processor with a
preemptive scheduler, the only possible choice is to consider the atomicity as
given by the execution platform: instructions in the processor are atomic (non
interruptible by the scheduler). Hence a thread is described by a detailed automa-
ton, with explicit states between machine instructions. The model is appropriate
for checking parallel programs that use low-level synchronization mechanisms
like semaphores of atomic read-write machine instructions.

However, in higher level models, the notion of atomicity may be of a coarser
granularity. In transaction-level models, typically, the granularity reflects the
fact that we do not need to observe the precise interleavings of the components’
behaviors. We only need to observe the interleavings at a granularity given by
the explicit synchronizations between the components.

4.3 Contracts, and Interpreting Contracts

Principles. In 42 simulation models like the one of Figure 5, the atomicity is
expressed by the op control input. Each activation of the component with input
op makes it execute a (potentially long but terminating) piece of its behavior.
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In a 42 model made of two components C1 and C2, we can consider each
of the components to be an automaton, whose transitions are labeled by op.
The simulation produces the paths of the asynchronous interleaving product of
these two automata.The contracts of the components contain all the information
needed to understand the explicit synchronizations between them. The simula-
tion MoCC — and the corresponding 42 controller — can be obtained automat-
ically. In fact, the simulation MoCC is simply an non-deterministic interpreter
of the components’ contracts.

Example. Let us illustrate all this with the example. The contracts of the pro-
ducer, the consumer, and the FIFO, are given by Figures 7, 8 and 9 respectively.
Paragraph 4.5 will explain the assert statement attached to state p3 of Fig-
ure 7. The types of the ports are given in Figure 5. Figure 10 gives a small
part of the graph whose paths are explored by the non-deterministic contract
interpreter. The simulation starts with all the components’ contracts in their
initial state. At each simulation step, the choice of the component to consider
is non-deterministic, among the components whose contract shows that at least
one transition is possible (all data required are present in the set Available).
Activating a component consists in choosing a transition in its contract, from
the current state. After the activation, the required data are removed from the
set Available, the provided ones are added to it. The control outputs are given
non-deterministic values (in their finite domain).

p1

p3

p0
{}op{reqw; }

{gw = t; }op{}{}op{dw; }

{gw = f ; }op{}

assert report = write

Fig. 7. Contract of The Producer. It
sends a request to write to the FIFO,
via its port reqw. If it receives gw = f ,
it is not allowed to write, and returns to
its initial state (it will have to issue an-
other request later). Otherwise, it will
receive gw = t. At this point, it may
send a data via its port dw and return
to the initial state.

c0 c1

{}op{reqr; }

{gr = t; dr; }op{}
{gr = f ; }op{}

Fig. 8. Contract of The Consumer. It
sends a request to read from the FIFO,
via its port reqr, and waits for a re-
sponse. If it receives gr = f , it is not
allowed to read, and returns to its ini-
tial state (it will have to issue another
request later). If it receives gr = t, it is
granted access to read; it also needs the
data read, via its port dr, and returns
to its initial state.
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{dw; }op{}

f0 f1

{}op{IF (α = ok)THEN

{reqr; }op/α = report; {}

f2

f3

{reqw; }op/α = report; {}

[α = ko]{}op{gw = f ; }
{gr = t; dr; }ELSE{gr = f ; }}

[α = ok]{}op{gw = t; }

Fig. 9. Contract of The FIFO. The FIFO receives a request for a read via its port reqr

and puts a value on the report output control port which is stored in variable α. This
value tells the controller whether the FIFO is empty. If it is not empty (α = ok), it
grants access, providing gr = t together with the data read (via port dr). Otherwise, if
it is empty, it does not grant access and provides gr = f . Similarly, the FIFO responds
to a write request when it receives reqw. It provides a value on report stored in α
telling whether the FIFO is full. If α = ko (the FIFO is full), it will not grant access
for a write, and sends gw = f . If α = ok, the FIFO grants access for the write request
(it sends gw = t) and waits for the value to be written on its dw input data port.

Available = {reqw}
α = null

p1,f0,c0

p1,f2,c0
Available = {}
α = ok

Available = {reqr, reqw}
α = null

p1,f0,c1

Available = {reqr}
α = null

p0,f0,c1
Available = {}
α = null

p0,f0,c0

α = ko
Available = {}
p1,f2,c0

PRODCONS

FIFOFIFOCONSPROD

Fig. 10. Interleaving components executions

4.4 Executing Embedded Software on the Hardware Model

Assume the producer component is actually a processor that executes some
embedded code. An example software code is given by Figure 12. On the real
hardware, the functions like send req() will be implemented by accesses to
the drivers’ registers. To make the same software run together with the simu-
lation of the hardware platform, these functions are implemented as a wrapper
of the embedded software, whose code is given in Figure 11. The wrapped soft-
ware corresponds to the 42 component called PROD on Figure 5. send req() and
write v(data) are used to send a write request, and to write on the dr data
port. The wrapper functions produce the report control outputs.

Technically, the software is run as a thread that may suspend itself with pause.
The simulation of the hardware platform is the main program; it may reacti-
vate the software thread with the resume() function. Consider a case when the
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write_v(int val){

report.write("write");

pause();

dw.write(val);

pause();

}

int send_req(){

reqr.write(t);

report.write("no_write");

pause();

return gw.read();

}

op(){

resume();

}

int main(...) {

int val, g;

while(1) {

val = ...

// some value

g = send_req();

if(g==1)

write_v(val);

}}

Fig. 11. Wrapper Primitives in Some Imperative Style.
p.write(val) writes val on port p; p.read() reads the
port p.

Fig. 12. Software C-code

simulation controller transforms a global activation opG into an activation of the
producer component (PROD.op). This resumes the thread of the software, which
runs until the next pause in a communication primitive (e.g., send req). The
software thread being suspended, the simulation controller considers PROD.op
to be terminated. Next time it will be activated, the software thread will start
execution from where it had paused. An execution from one pause to the next
one is the atomic step of the producer component.

4.5 Introducing Assertions in Contracts

Assertions are introduced to be able to check the compatibility between a compo-
nent and its contract, dynamically. An assertion is a logical property associated
with a state of a contract, and expressing conditions on the control outputs of
the component. In figure 7, if the contract is in state p3, the assertion tells that
the value of the report output control port should be write.

When executing the contracts alone, the values of the control outputs are
non-deterministic, and the assertions are not checked. When running actual em-
bedded software, the production of the control outputs is done by the wrapper
functions. Hence checking the control output of the wrapper component is a way
of checking that the software has indeed made a call to the write v() function.
If the software does not call write v(), the control output is no write, and the
assertion is violated. This mechanism makes it possible to run the software and
to check the compatibility with the contract, even if it is given as object code.
The only constraint is that it uses the interface functions to access the hardware.

5 A Hardware/Software Case-Study

5.1 Structure of the System, Intended Behavior and Potential Bugs

Figure 13 is the structure of the system under study. It is made of a CPU, a
LCD display, a bus, and a memory. The LCD is a component that may be pro-
grammed by the CPU, in order to perform repetitive transfers from the memory
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(like a DMA, Direct Memory Access Component). There is a need for some
communication between the LCD and the CPU, to inform it that the transfers
that were programmed are finished. This is done with an interrupt. In order to
display something on the LCD, the software writes an image in some dedicated
place of the memory; then it programs the LCD so that it now transfers from
the memory to the screen; then it waits for the interrupt from the LCD, meaning
the transfer is finished. Figure 15 gives the software that will be run on the CPU
(more details below).

Intended Behavior. In our example, the software repeatedly displays a full
green screen, then a blue one, then a red one, and so on. On Figure 14, (a) and
(b) show normal states of the display. (b) is possible because the LCD may take
some time to replace a full green screen by a full blue one. (b) corresponds to
the following situation: the CPU had written a green image before, it has just
written a blue one; it is waiting for the interrupt telling it that the blue transfer
is finished. The LCD is transferring the blue image, part of the green one is still
visible. When the transfer is finished, and the screen is totally blue, it will send
the interrupt to the CPU.

On the contrary, (c) should not be possible. The only way of obtaining such
a state is when the software starts reprogramming the LCD (writing the red
image, for instance) without waiting for the last programming to finish.

Typical Bugs. A typical misconception of the hardware platform is to forget
the interrupt wire between the LCD and the CPU. If this wire does not exist,
the only way for the software to know that a transfer is finished would be to
have a precise knowledge of the time it can take. In high level models like TL
models, this is prohibited. Synchronizations should be made explicit, so as to
get robust software, able to run correctly on various hardware platforms, with
different timings. A typical synchronization bug in the software is to forget to
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#define WIDTH 20

#define HEIGHT 20

#define blue 0xff0000ff

#define red 0xffff0000

#define green 0xff00ff00

void lcd_print

(unsigned long int pattern ) {

int y;

for (y=0; y<HEIGHT*WIDTH; y++)

write_mem(y, pattern);

}

int main(int argc, char **argv) {

while(1) {

lcd_print(green);

write_lcd(0x01,0x1);

wait_interrupt();

lcd_print(blue);

write_lcd(0x01,0x1);

wait_interrupt();

lcd_print(red);

write_lcd(0x01,0x1);

wait_interrupt();

}

}

interrupt : bool;

write_lcd(int a, int d){

report.write("LT");

report’.write("NoIT");

pause();

acd_c.write(a,"W",d);

target.write("L");

pause(); resp_c.read();

}

write_mem(int a, int d){

report.write("MT");

report’.write("NoIT");

pause();

acd_c.write(a,"W",d);

target.write("M");

pause(); resp_c.read();

}

wait_interrupt(){

report’.write("IT");

pause();

interrupt=0;// clear interrupt

}

op(){

if(intr.read()!=null)

interrupt=1;// set interrupt

else resume();

}

Fig. 15. Software Code and Wrapper

wait for the interrupt from the LCD. Another kind of bug would be due to pure
data errors, like writing to an erroneous part of the memory, or writing only a
part of the image, or using the wrong color, etc.

6 Designing and Exploiting a Model in 42

The benefits of a 42 model for the system described above are the following.
First, the whole system can be described by its architecture and the contracts
of the components, without knowing the details of the components. Then, the
system can be simulated following the principles of section 4.3. In this first step,
the contract of the CPU is in fact the contract of: the CPU plus the software
that will run on it; but the part of the behavior which is due to the software is
very abstract, as we will see on the example.

Second, when the architecture and the contracts have been simulated so that
early synchronization problems (like forgetting the interrupt wire, or forgetting
to wait for the interrupt in the CPU+SW contract) have been discovered and
corrected, the same model can be simulated together with the execution of the
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Ports Type:
CPU.report : {MT, LT} acdX : [a : int, c : {R, W}, d : int] intr : {t, f}
CPU.report′ : {IT, NoIT} respX : [status : bool, data : int] target : {L, M}
LCD.report : {ok, ko}
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Fig. 16. 42 Model of the Example in Fig. 13 Fig. 17. The Contract of the LCD

real software. This allows to see more bugs, typically the data bugs (wrong color,
etc.). But the interesting part is that it allows to check the compatibility between
the contract of the CPU component (which includes some information on the
software) and the actual piece of software, written in C or other languages.

6.1 The 42 Model

Figure 16 is the structure of the model in 42. Each wire between two components
models a communication in the real hardware platform. The types of the wires
may be Boolean (e.g., for intr) or records (e.g., acdX encapsulates the address,
the control R/W, and the data to be written). Each component is equipped with
its local contract where the output control values may be used. LCD.report may
take the value ok (resp. ko) which states that the transfer of the image from the
memory is finished (resp. not finished).

The contract of the CPU (Figure 18) is in fact the contract of the embedded
software, plus some hardware mechanisms like the memorization of the interrupts
until they are taken into account (variable interrupt in Fig. 15). The CPU con-
tract reports on the state of the software, which may end an atomic step in three
cases: either it stops just before an access to the memory or the LCD, or it is wait-
ing for an interrupt. These three situations are encoded with the two control
outputs report and report′ . report may take its value in { MT, LT } (mem-
ory or LCD access, respectively). report′ may take its value in { IT, NoIT }.
IT indicates that the software is waiting for an interrupt.
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Fig. 18. Contract of The CPU Component (Software + interrupt bit). see Fig. 16 for
Ports Types.

The LCD contract (Figure 17) describes the following behavior: in state l0
the LCD waits until it is programmed by the CPU (this comes as a data on input
acdLT , transition to l1). Then it acknowledges this by writing to its port respLT

and it reaches state l2. The loop between l2 and l3 corresponds to a sequence of
read actions from the memory (acdL), each of them being acknowledged (respL).
For each read the contract stores the control output report in variable β. In state
l3, if β is ok it means this was the last read, and the LCD returns to state l1
and writes a true value to its interrupt port (intr=t), for the CPU. If β is ko,
it writes a false value (intr=f) and continues.

The contract of the memory (Figure 19) is quite simple: it accepts read or
write requests on its input port acdM and acknowledges them by respM (which
encapsulates the request status, and potentially a data delivered for a read
request).

The contract of the bus (Figure 20) is more complex, because it describes
the correct transportation of read and write accesses, and their corresponding
acknowledgments. The possible transfers are: the CPU writes to the memory; the
LCD reads from the memory. We do not consider the case of parallel software
running on the CPU and issuing several accesses to the bus in parallel. The
contract of the bus shows that an access to the bus can be memorized until the
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Fig. 20. Contract of the bus

current transfer is terminated, but only two parallel transfers are considered. In
a real bus, this is far more complex, but the contract is of the same form (we
would need a better language than flat explicit automata to describe it, though).

The contract of the CPU is as follows. The unprimed states (resp. the primed
ones) correspond to cases when there is no memorized interrupt (resp. there
is a memorized interrupt). When the interrupt arrives (transitions labeled by
{intr = t}op{}), the contract changes from an unprimed state to a primed
one (e.g., c4 to c4’). When the interrupt is taken into account, the contract
changes from a primed state to an unprimed one (the only one is from c4’ to
c1, the interrupt bit may not be cleared before receiving the acknowledgment
corresponding to the last LCD programming).

From the initial state c0, the initial activation op goes to state c1 and cor-
responds to the first part of the software, before it stops for a memory or LCD
access (at this point, it should not stop because it is waiting for an interrupt).
The report output stored in α indicates the target (MT or LT).

From c1, the interrupt can be taken, and the contract goes to c1’. Otherwise,
the software starts the memory or LCD access, by sending relevant information
on its output data ports (acdC , target). It goes to c2 or c3.

In c2 and c3, the CPU is waiting for the acknowledgment from the target
component (respC). From c2 it goes back to c1 for potential new memory ac-
cesses; from c3 it goes to c4: the LCD has been programmed, and the software
should now wait for the interrupt stating that the LCD has finished.

From c4, the only possible change is that the interrupt arrives, and is stored.
The contract goes to state c4’. Then the software can take it into account, and
go to state c1 again.
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The assert statement associated with c4 and c4’ tells that, when the con-
tract is in these states, the actual implementation should be waiting for the
interrupt. This information about the implementation comes through the con-
trol output report′ , which will be produced by the wrapper (Fig. 15).

6.2 Simulation of the Hardware Platform Alone

As explained in section 4.3, the hardware platform can be simulated alone. In
fact we use a very abstract view of the embedded software, included in the
contract of the CPU. An exhaustive simulation would build the complete inter-
leaving graph (for applying model-checking), but it can also be used as input
for a runtime verification tool (in the sense of a tool like Verisoft [9], or using
dynamic partial orders adapted to SystemC/TLM [11]). Even if we do not use
a specification language for temporal properties, we can observe generic prop-
erties like deadlocks, and some livelocks. The two following simulation results,
obtained for the case study, illustrate two bugs that can be found early.

The Interrupt Bug. After writing an image, the processor waits for an in-
terrupt coming from the LCD to start writing a new image. If the interrupt
never occurs, the system is blocked. Suppose we modify the contract of the
LCD to introduce this bug: on Figure 17, the transition from state l3 to l0
is now labeled by: [β = ok]{respL; }op{}. Suppose the simulation has reached
the state {(c4,b0,m0,l3), Available = {respL}, β = ok} (the processor is wait-
ing for the interrupt, the memory is waiting for a READ/WRITE request, and
the bus has just delivered the memory acknowledgment to the LCD). At this
state, only the LCD may be activated, and the simulation moves to the state
{(c4,b0,m0,l0), Available = {}}. At this state, all the components’ transitions
require inputs. But no inputs are available, which leads to a deadlock.

Other Bugs Other problems may be detected by the simulator. For instance,
there are cases when a component is never activated. It’s not necessarily a bug,
but it deserves at least a warning. For example, when the LCD waits to be
programmed, if the processor never does it, the LCD is never activated.

6.3 Simulation of the HW Platform Together with the Embedded
Software

When the bugs that can be found with the execution of the hardware platform
alone have been corrected, we start simulations together with the embedded
software. As for the example in section 4.4, we need a set of wrapper functions
(see Figure 15), and we may check the violation of the assertions.

One of the typical bugs mentioned previously is: the software omits to wait
for the interrupt before reprogramming the LCD. So, suppose we omit the first
occurrence of wait interrupt() in the program of Figure 15. The simulation
will report that the assertion associated with state c4 or c4′ of the contract of
the CPU is violated. This is a bug in the software, detected because it does not
conform to its contract.
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Despite the fact that the software respects its contract, there may be more
bugs, related to the data. For instance, suppose the code of the lcd print func-
tion is changed in the program of Figure 15: the condition of the loop is now
y<HEIGHT+WIDTH, which means that the program writes 40 pixels instead of 400.
This bug my be detected by observing the output on a simulated LCD, as shown
on Figure 14-(d). The top of the LCD is colored whereas the bottom of it has
the color corresponding to the initial memory value (white).

7 Related Work

We already gave some related work in the introduction, mainly on component
models for embedded systems, and on the notion of contracts. A thorough com-
parison of all the component frameworks that could be applied for our purpose
of building hardware abstract models is outside the scope of this paper.

The paper is focused on early execution of complex heterogeneous platforms.
There is also related work in this direction.

The whole domain of transaction-level modeling for systems-on-a-chip is dedi-
cated to this objective, but this is not yet possible to simulate the hardware with
only the contract of the embedded software. A long cooperation with STMicro-
electronics in Grenoble has led us to observe that, in some cases, people use
TLM platforms to play with a very rough version of the embedded software,
and the intention is clearly to use only the synchronization part of the software;
but there are no tools to do that cleanly, the real embedded software cannot be
compared to this rough version, etc.

There is also some academic work on early execution, especially for syn-
chronous languages where the semantics is clear (see, for instance [19]).

Executable specifications have been advocated for a long time. In [7] they
are illustrated with examples in the declarative language LSL (Larch Shared
Language). The author claims that executing specifications allows early valida-
tion at an abstract level. This increases the correctness and the reliability of the
software, and allows time and cost reduction. The same language is used as a tar-
get specification language for interpreting OCL (Object Constraint Language)
constraints in UML [10].

The UML profile MARTE is defined for the analysis of real-time and em-
bedded systems. [14] introduces a timing semantics expressed in CCSL (Clock
Constraints Specification Language). CCSL constraints give a non-deterministic
contract of a component, and the simulator produces execution scenarios of the
system being modeled, non-deterministically. This is very similar to our ap-
proach, but more focused on time patterns (e.g., periodic inputs).

8 Conclusion

We have presented a notion of contract for a Ptolemy-like component model,
usable for heterogeneous hardware/software concurrent systems. In this simple
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framework we suggest a solution to the following problem: how to design an
abstract model of concurrent hardware platforms, to be exposed to software
developers. This is inspired a lot by transaction-level modeling of systems-on-a-
chip, but this is a first step towards language-independent TL models. This is
useful because SystemC/TLM models, which have become a de facto standard,
sometimes mix the semantics of the model with the peculiarities of the execution
engine.

The 42 component framework is fully implemented. Basic components can be
described in Java, the architecture of a composed component can be given in
XML, and there is a small imperative language for describing the controllers,
like the one in Figure 2. The framework has been used for other applications
of 42, especially multi-MoCCs systems. For the application described in this
paper, we added a way of describing contracts (also in XML) and the simulation
controller which is reduced to a non-deterministic interpreter of the components’
contracts. We also developed the mechanism of wrappers described in section 4.4.
It is usable for the case when the implementation of a component is done in
software. But it could be adapted to the case when the implementation is a piece
of hardware. In this case, we would have to check the compatibility between
the precise description of the hardware component (typically at the register-
transfer level, given in VHDL or Verilog), and the contract. The principles of
our wrappers could also be applied in this case; the essential point is that the
wrapper has to produce the control outputs so that the assertions in the contracts
can be checked.

Further work will be in three directions. First, We will investigate the lan-
guages used to describe contracts. Expressing a complex contract gives a big
automaton. We can introduce finite-domain variables to keep small explicit au-
tomata; this would help in describing the general bus protocol of our example.
But we also need products. The contract of the CPU we gave is in fact the syn-
chronous product between a two-states automaton (the memory of the interrupt)
and another automaton describing the cyclic behavior of the software. Note that
these extensions do not increase the expressive power of the contracts. Second,
we will concentrate on the expressivity of contracts, and precise comparisons
with approaches like CCSL and the UML profile MARTE mentioned preciously.
And, finally, further work on hardware models concentrates on the underlying
modeling problem: “what is the right granularity for models of hardware/soft-
ware systems?”. If it is too coarse, the model may hide bugs that will appear
in the real system, because it does not show some important interleavings of
the components’ behaviors. If it is too fine grain, then it will expose a lot of
behaviors and will be very slow, so it will be hard to exploit it for finding bugs.
Finding the right compromise is quite hard, and there will be no theoretical
answer (see [4] for a discussion). But we think that expressing the problem in
a simple language-independent framework like 42 and its contracts, where the
decision on atomicity is perfectly visible in the transitions of the contracts, is a
good way to make progress.
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Abstract. Real-time Collaborative Editors (RCE) are a class of distributed sys-
tems based on the interaction of several users trying to edit simultaneously shared
documents, such as articles, wiki pages and programming source code. Oper-
ational Transformation (OT) is considered as the efficient and safe method for
consistency maintenance in the literature of collaborative editors. Indeed, it is
aimed at ensuring copies convergence even though the users’s updates are ex-
ecuted in any order on different copies. Unfortunately, existing OT algorithms
often fail to achieve this objective. Moreover, these algorithms have limited scal-
ability with the number of users as they use vector timestamps to enforce causality
dependency. In this paper, we present a novel coordination model for managing
collaborative editing work in a scalable and decentralized fashion. It may be de-
ployed easily on P2P networks as it supports dynamic groups where users can
leave and join at any time.

Keywords: Collaborative editors, Optimistic replication, Consistency, Operational
Transformation, Real-time collaboration.

1 Introduction

Motivations. Real-time Collaborative Editors (RCE) provide computer support for
modifying simultaneously shared documents by dispersed users (e.g. Google Docs).
To improve availability of data, each user has a local copy of the shared documents.
In general, the collaboration is performed as follows: each user’s updates are locally
executed in nonblocking manner and then are propagated to other sites in order to be
executed on other copies.

Although being distributed applications, RCE are specific in the sense that they
must consider human factors. So, they are characterized by the following requirements:
(i) High local responsiveness: the system has to be as responsive as its single-user edi-
tors [1,17,18]; (ii) High concurrency: the users must be able to concurrently and freely
modify any part of the shared document at any time [1, 17]; (iii) Consistency: the users
must eventually be able to see a converged view of all copies [1,17]; (iv) Decentralized
coordination: all concurrent updates must be synchronized in decentralized fashion in
order to avoid a single point of failure; (v) Scalability: a group must be dynamic in the
sense that users may join or leave the group at any time.

It is very difficult to meet these requirements when deploying RCE in networks
with high communication latencies (e.g. Internet). Due to replication and arbitrary ex-
change of updates, consistency maintenance in a scalable and decentralized manner is a
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challenging problem. Traditional concurrency control techniques, such as (pessimistic/
optimistic) locking and serialization, turned out to be ineffective because they may en-
sure consistency at the expense of responsiveness and loss of updates [1, 7, 17].

To illustrate this problem, consider the scenario in Figure 1.(a) where two users work
on a shared document represented by a sequence of characters. These characters are ad-
dressed from 1 to the end of the document. Initially, both copies hold the string “efecte”.
User 1 executes operation o1 = Ins(2, f) to insert the character ‘f’ at position 2. Con-
currently, user 2 performs o2 = Del(6) to delete the character ‘e’ at position 6. When
o1 is received and executed on site 2, it produces the expected string “effect”. But, at
site 1, o2 does not take into account that op1 has been executed before it and it pro-
duces the string “effece”. The result at site 1 is different from the result of site 2 and it
apparently violates the intention of o2 since the last character ‘e’, which was intended
to be deleted, is still present in the final string. It should be pointed out that even if a
serialization protocol [1] was used to require that all sites execute o1 and o2 in the same
order (i.e. a global order on concurrent operations) to obtain an identical result effece,
this identical result is still inconsistent with the original intention of o2.

Operational Transformation (OT). To maintain consistency, an OT approach has been
proposed in [1]. In general, it consists of application-dependent transformation algo-
rithm, called IT , such that for every possible pair of concurrent updates, the application
programmer has to specify how to integrate these updates regardless of reception order.
In Figure 1.(b), we illustrate the effect of IT on the previous example. At site 1, o2 needs
to be transformed in order to include the effects of o1: o′2 = IT ((Del(6), Ins(2, f)) =
Del(7). The deletion position of o2 is incremented because o1 has inserted a character
at position 1, which is before the character deleted by op2.

site 1
“efecte”

site 2
“efecte”

o1 = Ins(2, f)

������������ o2 = Del(6)

���
��

�����
��“effecte” “efect”

Del(6) Ins(2, f)

“effece” “effect”

(a) Incorrect integration

site 1
“efecte”

site 2
“efecte”

o1 = Ins(2, f)

��������������� o2 = Del(6)

������

��������“effecte” “efect”

IT (o2, o1) = Del(7) IT (o1, o2) = Ins(2, f)

“effect” “effect”

(b) Correct integration

Fig. 1. Serialization of concurrent updates

Many collaborative applications are based on the OT approach such as Joint
Emacs [13] (a groupware based on text editor Emacs), CoWord [18] (a collaborative
Microsoft word processor) and CoPowerPoint [18] (a real-time collaborative multime-
dia slides creation and presentation system) and a file synchronizer [11] distributed
with the industrial collaborative development environment LibreSource Community1.
OT also has been proposed as a consistency model for replicated mobile computing [2].

1 http://dev.libresource.org

http://dev.libresource.org
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OT aims at ensuring consistency in a decentralized way without need of any global
order. It allows users to concurrently modify the shared document and exchange their
updates in any order since the convergence of all copies must be ensured in all cases.
Unfortunately, we have discovered that the most existing OT algorithms fail to guar-
antee consistency, because they contain bugs [5, 3]. Moreover, to our knowledge, the
scalability requirement has never been dealt with in OT community research. All pro-
posed OT frameworks rely on a fixed number of users during collaboration sessions.
This is due in the fact that they use vector timestamps (to preserve causality relation)
that do not scale well.

Contributions. In this paper, we propose a new framework for collaborative editing to
address the weakness of previous OT works and to satisfy all requirements mentioned
above. Our contributions are as follows:

1. Our framework supports an unconstrained collaborative editing work (without the
necessity of central coordination). Using optimistic replication scheme, it provides
simultaneous access to shared documents and an enhanced set of operations for
editing these documents.

2. Instead of vector timestamps, we use a simple technique to preserve causality de-
pendency. Our technique is minimal because only direct dependency information
between updates is used. It is independent on the number of users and it provides
high concurrency in comparison with vector timestamps.

3. Using OT approach, reconciliation of divergent copies is done automatically in
decentralized fashion.

4. Our framework can scale naturally thanks to our minimal causality dependency
relation. In other words, it may be deployed easily in Peer-to-Peer (P2P) networks.

Outline. This paper is organized as follows: In Section 2 we give an overview on the
OT approach and we fix the main problems encountered in OT-based RCE. Section 3
presents the ingredients of our coordination model. Section 4 illustrates three kinds of
OT algorithms that we use for transforming editing operations. Section 5 presents our
concurrency control algorithm for managing collaborative editing sessions. Section 6
discusses related work and Section 7 summarizes contributions and future works.

2 Operational Transformation Approach and the Problems

2.1 Overview

OT is an optimistic replication technique which allows many users (or sites) to concur-
rently modify the shared data and next to synchronize their divergent replicas in order
to obtain the same data. Every site stores all executed operations in a buffer also called
a log. It is known that collaborative editors manipulate shared objects that own a lin-
ear data-structure [1, 16, 18] (e.g. a list). This list is a sequence of elements from some
data type, such as a character, a paragraph, a page, an XML node, etc. In [18], it has
been shown that this linear structure can be easily extended to a range of multimedia
documents, such as MicroSoft Word and PowerPoint documents.
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Two primitive operations are used to modify the shared document: (i) Ins(p, e, s)
to insert the element e at position p; (ii) Del(p, s) to delete the element at position p.
The parameter s is the identity of the site issuing the operation2. As a long established
convention in collaborative editors [1, 16], the vector timestamps are used to determine
the happened-before and concurrent relations between operations.

To deal with concurrent operations, OT uses an algorithm, called inclusive transfor-
mation [16] and denoted by function IT , to merge these operations regardless reception
order. Let o1 and o2 be two concurrent operations. Intuitively, IT (o1, o2) transforms o1
against o2 in order to include the effect of o2 in o1. The transformed form of o1 is
then executed after o2. For instance, here are two transformation cases given in the IT
algorithm proposed by Ressel et al. [13]:

IT (Ins(p1, e1, s1), Ins(p2, e2, s2)) =
if (p1 < p2 or (p1 = p2 and s1 < s2)) then return Ins(p1, e1, s1) else return Ins(p1 + 1, e1, s1)

IT (Ins(p1, e1, s1), Del(p2, s2)) =
if (p1 > p2) then return Ins(p1 − 1, e1, s1) else return Ins(p1, e1, s1)

The site identities are used to tie-break conflict situations (e.g. two concurrent opera-
tions inserting elements at the same position). Using an IT algorithm requires to satisfy
two properties TP1 and TP2 in order to ensure convergence [13]. For all o, o1 and o2
pairwise concurrent operations with o′1 = IT (o1, o2) and o′2 = IT (o2, o1):

• TP1: [o1 ; o′2] ≡ [o2 ; o′1], i.e. sequences [o1 ; o′2] and [o2 ; o′1] are equivalent.
• TP2: IT (IT (o, o1), o′2) = IT (IT (o, o2), o′1).

Property TP1 defines a state identity and ensures that if o1 and o2 are concurrent,
the effect of executing o1 before o2 is the same as executing o2 before o1. This property
is necessary but not sufficient when the number of sites is greater than two. Property
TP2 defines an operation identity and ensures that transforming o along equivalent and
different operation sequences will give the same operation. Properties TP1 and TP2
are sufficient to ensure the convergence for any number of concurrent operations which
can be executed in arbitrary order [13, 10]. Accordingly, by these properties, it is not
necessary to enforce a global total order between concurrent operations because data
divergence can always be repaired by operational transformation.

To better understand our work, all examples given in this paper use characters as
elements to be inserted/deleted.

2.2 OT Problems

Here we summarize the main problems encountered in RCE based on OT approach:

Problem 1: Scalability issue. RCE must enable dynamic groups in the sense that
users may enter and quit the groups at any time. Such editors rely on the vector times-
tamp technique to determine the happened-before and concurrent relations between

2 Every site has a unique identity. The set of site identities is assumed totally ordered by
relation ≤.
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operations issued by users. Unfortunately, this technique does not scale well since each
timestamp is a vector of integers with the number of entries equal to the number of sites.

Problem 2: TP2 Puzzle. Although in theory the OT approach is able to achieve con-
vergence in the presence of arbitrary transformation orders, linear objects (such as text
or ordered XML tree) still represent a serious challenge for the application of the OT
approach. Indeed, all proposed IT algorithms [5, 3] for these datatypes fail to meet the
property TP2, leading inevitably to data divergence situations. The “killer” scenario
for these algorithms always consists of two insertion operations and a delete operation,
like the one depicted in Figure 2). At site 2 (resp. site 3), o1 is recursively transformed
against the sequence [o2; o′3] (resp. [o3; o′2]). As we can see o′1 �= o′′1 and TP2 is vi-
olated. Therefore the data convergence is not achieved. This scenario is termed TP2
puzzle [16].

site 1
“abc”

site 2
“abc”

site 3
“abc”

o1 = Ins(3, x, 1)

�� ��

o2 = Del(2, 2)

������������������� o3 = Ins(2, y, 3)

�������������������

“abxc” “ac” “aybc”

o′
3 = IT (o3, o2) = Ins(2, y, 3) o′

2 = IT (o2, o3) = Del(3, 2)

“ayc” “ayc”

o′
1 = Ins(2, x, 1) o′′

1 = Ins(3, x, 1)

“axyc” “ayxc”

Fig. 2. Scenario of TP2 puzzle

Problem 3: Partial Concurrency. Two concurrent operations o1 and o2 are said to be
partially concurrent iff o1 and o2 are generated from two different states [14]. In case
of partial concurrency situation, naively applying the inclusive transformation IT may
lead to data divergence.

Consider two users trying to correct the word “fect” as in Figure 3.(a). User 1 gener-
ates o1 and o2 (o1 happens before o2). User 2 concurrently generates o3. It is clear that
o1 and o3 are concurrent (as o1 did not see the effect o3 and vice-versa). However, o2
and o3 are partially concurrent as they are generated on different states: o3 is generated
on “fect” while o2 is generated on “afect”. Transforming directly o2 against o3 may lead
to divergence situation (as illustrated in Figure 3.(a)). Indeed, IT (o2, o3) requires that
o2 and o3 be concurrent and defined on the same state.

To overcome this partial concurrency problem, the most existing OT frameworks,
such that SOCT2 [14] and GOTO [16], impose to reorder local log into equivalent
one before transforming o2. Hence, the local log at site 2 must be reordered into a
concatenation of two sequences Lh and Lc, where Lh contains all operations that hap-
pened before o2 (i.e. o1) and Lc includes operations that are concurrent with o2 (i.e.
o′3 = IT (o3, o1)). Next, o2 is just inclusively transformed against Lc (see Figure 3.(b)).
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In general, the above solution is very expensive because it may require several re-
organizations inside local log in order to integrate each remote operation. As the log
length can increase rapidly during collaboration sessions, these frequent reorganiza-
tions inevitably lead to performance degradation in RCE.

site 1
“fect”

site 2
“fect”

o1 = Ins(1, a, 1)

������
����

�� o3 = Ins(1, e, 2)

		��
��

��
��

��
��

��
��

��
“afect” “efect”

o2 = Ins(2, f, 1)



����������
IT (o1, o3)

= Ins(1, a, 1)

“affect” “aefect”

o′
3 = Ins(3, e, 2) o′

2 = IT (o2, o3)
= Ins(3, f, 1)

“afefect” “aeffect”

(a) Wrong application of IT
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“afect” “efect”

o2 = Ins(2, f, 2)
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IT (o1, o3)

= Ins(1, a, 1)

“affect” “aefect”

o′
3 = Ins(3, e, 2) o′

2 = IT (o2, IT (o3, o1))
= Ins(2, f, 1)

“afefect” “afefect”

(b) Correct application of IT

Fig. 3. Partial concurrency

3 Our Coordination Model

3.1 Model of Collaborative Editor

To deal with linear data-structure, we propose an enhanced set of operations to modify
the shared state:(i) Ins(p, e, ω) where p is the insertion position, e the element to be
added at position p and ω is the sequence of positions that contains all different po-
sitions occupied by e during the transformation process (see Section 4.1);(ii) Del(p)
which deletes the element at position p;(iii) Up(p, e, e′) which replaces the element e
at position p by the new element e′. It is clear that combinations of these operations
enable us to define complex operations, such as cut/copy and paste, intensively used in
professional text editors.

We define a request q as a quadruple (c, r, a, o) where c is the identity of the col-
laborator site (or the user) issuing the request and r ∈ N is its serial number. Note that
the concatenation of c and r is defined as the identity of q. The component a is the
identity of the preceding request3, and finally o is the operation to be executed on the
shared state. If a is null then the request does not depend on any other request. The
projections q.c, q.r, q.a, and q.o will be used to denote the corresponding components
of request q. We use q, q′, q1, q2, . . ., to denote all requests. We simply refer to insert,
delete and update requests by respectively the letters i, d and u. Functions old(u)) and
new(u) return respectively the old element e and the new element e′ for every update
request with u.o = Up(p, e, e′). A log buffer is a request sequence which is maintained

3 According to the dependency relation described in Definition 1.
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on every site in order to keep all executed requests. Given a log L, L[i] denotes the i-th
request of L; |L| is the length of L; L[i, j] is the sub-log of L ranging from its i-th to
j-th requests with 0 < i ≤ j ≤ n− 1 such that n = |L|. Furthermore, we suppose that
sites are interconnected by a reliable network. The propagation of requests is based on
an epidemic style of communication.

3.2 Causal Dependency Relation

Given a log, a request may depend on previous requests according to the execution
order. Tracking this dependency inside a log enables us to identify requests that must
be executed on all sites according to the same order.

To address the Scalability issue (see Problem 1 in Section 2.2), we propose a mini-
mal dependency relation which is independent of the number of users, and accordingly,
allows for dynamic groups. Studying the semantics of linear object (modified by in-
sertion, deletion and update operations) allows us to provide the following dependency
relation within a log:

Definition 1 (Causal dependency relation). Let L be a log where L[i] = qi and L[j] =
qj with j = i + 1. We define the transitive relation

s→ on L as follows. We say that
qi

s→ qj iff one of the following conditions holds:
1. qi.o = Ins(p, e, ω), qj .o = Ins(p, e′, ω′) and qi.c ≤ qj .c; (df1)
2. qi.o = Ins(p, e, ω), qj .o = Ins(p + 1, e′, ω′) and qj .c ≤ qi.c; (df2)
3. qi.o = Ins(p, e, ω) and qj .o = Del(p); (df3)
4. qi.o = Ins(p, e, ω) and qj .o = Up(p, e, e′) ; (df4)
5. qi.o = Up(p, e, e′), qj .o = Up(p, e′, e′′) and qj .c ≤ qi.c; (df5)

Otherwise, if qi � s→ qj then qi and qj are independent (or concurrent).

When the added elements are adjacent (at positions p and/or p + 1), their respective
insertion requests are considered as dependent provided that their site identities satisfy
conditions imposed by (df1) and (df2). Deleting an element depends on the request
that has inserted this element. Thus, there is no dependency between delete requests
and they can be executed among them in any order. Likewise, updating an element
depends on the request inserting this element. At last, we consider two consecutive
update requests as dependent if their update positions are equal and the condition on
their site identities is satisfied.

Two adjacent requests within a log are independent means that they can commute
backward in some sense (or they can be executed out-of-order). We only need to cor-
rectly compute this backward form. To do that we will use request transformations
described in Section 4. Moreover, it is easy to show that our causal relation builds a
dependency tree on the requests. In this case, each request has only to store the request
identity whose it directly depends on. We will see in Section 4.2 how to detect this
dependency between requests within a log.

3.3 Canonical Logs

To avoid the TP2 puzzle (see Problem 2 in Section 2.2), we will define a class of logs
which allows us to build transformation paths leading to data convergence.
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Definition 2. A log L is canonical iff L is the concatenation of two sub-logs Li and
Ld such that Li does not contain deletion requests and Ld does not contain insertion
requests.

Of course, logs Li and Ld can also contain update requests. In canonical logs, we
impose an order on insertion and deletion requests: an insertion request should al-
ways be before deletion requests. Note that empty logs and logs containing only in-
sert and/or update (resp. delete and/or update) requests are also canonical. For instance:
[u1; i1; u2; d1] and [i1; u1; d1; u2] are canonical but [u1; d1; u2; i1] is not. We will see in
Section 4 how to build canonical logs.

3.4 Consistency Criteria

A stable state in a RCE is achieved when all generated requests have been performed at
all sites. Our replication scheme must ensure the following criteria:

Definition 3. (Consistency Model) A RCE is consistent iff it satisfies the following
properties:
1. Dependency preservation: if q1

s→ q2 then q1 is executed before q2 at all sites.
2. Convergence: when all sites have performed the same set of requests, the copies of

the shared document are identical.

To establish a causal dependency between requests, we use the relation given in Defini-
tion 1. This relation is minimal because every request has to know only the identity of
the request it depends on directly. Nevertheless, an important issue remains and should
be solved: how to serialize concurrent requests in order to achieve the convergence?
The solution of this problem is given in the next section.

4 Building Canonical Logs

In our work, we use three kinds of transformation [14, 16]: Inclusive Transformation
(IT ), Exclusive Transformation (ET ) and Permutation (PERM ). In the following, we
will present our IT and ET algorithms. For more details, see [3, 6].

4.1 Inclusive Transformation

It should be noted that we have redefined the insertion operation by adding a new pa-
rameter (i.e. ω). This parameter is used as a stack: each time an insert request is trans-
formed against a delete request we push the last position before transformation in the
ω parameter. On the other hand, when an insert request is generated its ω is empty. For
instance, consider requests i and d such that i.o = Ins(3, x, ε) and d.o = Del(1) where
ε denotes the empty stack: then IT (i, d) = i′ with i′.o = Ins(2, x, [3]).

Given requests ij , uj and dj such that ij.o = Ins(pj , ej, ωj), uj .o = Up(pj, ej , e
′
j)

and dj .o = Del(pj) for j ∈ {1, 2}. All cases for our IT are given in Algorithm 1.
When two requests insert two elements at the same position (they are in conflict), a
choice has to be done (lines 4-5): which element must be inserted before the other?
In our IT function, when a conflict occurs, the element of an insertion request whose
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user identifier c is the highest is inserted before the other. On the other hand, when two
requests delete at the same position, IT returns the idle request whose the operation
parameter is Nop()4 that has null effect on the shared state. The remaining cases of IT
are quite simple.

Recall that IT algorithm is used to execute concurrent requests in any order. Using
canonical logs we avoid the TP2 puzzle. Consequently, our IT algorithm is sufficient
to achieve data convergence. For more details on our IT algorithm, see [6].

1: IT (q1, q2) = q′
1

2: q′
1 ← q1

3: Choice of q1 and q2
4: Case: q1 = i1 and q2 = i2
5: if (p2 < p1 or (p2 = p1 and q2.c < q1.c)) then q′

1.o ← Ins(p1 + 1, e1, ω1)

6: Case: q1 = i1 and q2 = d2
7: if (p2 < p1) then q′

1.o ← Ins(p1 − 1, e1, p1ω1)
8: else if (p2 = p1) then q′

1.o ← Ins(p1, e1, p1ω1)

9: Case: q1 = d1 and q2 = i2
10: if (p2 ≤ p1) then q′

1.o ← Del(p1 + 1)

11: Case: q1 = d1 and q2 = d2
12: if (p2 < p1) then q′

1.o ← Del(p1 − 1)
13: else if (p2 = p1) then q′

1.o ← Nop()

14: Case: q1 = u1 and q2 = i2
15: if (p2 ≤ p1) then q′

1.o ← Up(p1 + 1, old(u1), new(u1))

16: Case: q1 = u1 and q2 = u2
17: if (p1 = p2) and (q2.c < q1.c) then q′

1.o ← Up(p1, new(u2), new(u1))
18: else if (p1 = p2) and (q2.c > q1.c) then q′

1.o ← Nop()

19: Case: q1 = u1 and q2 = d2
20: if (p2 < p1) then q′

1.o ← Up(p1 − 1, old(u1), new(u1))
21: else if (p2 = p1) then q′

1.o ← Nop()
22: end choice
23: return q′

1

Algorithm 1. Inclusive transformation

4.2 Exclusive Transformation

Let [q1; q2] be a request sequence so that q2 is defined on the state produced by q1.
The exclusive transformation ET (q2, q1) enables us to exclude the effect of q1 from q2
as if q2 had not been executed after q1. As a simple example, consider the scenario in
Figure 4. Given q1 defined in state “abc” and q2 defined in state “ac” (produced by q1):
ET (q2, q1) = q′2 with q′2.o = Ins(4, y, ε) which is exactly the form of q2 as defined
relative to the state “abc”.

Let ij , uj and dj be three requests such that ij.o = Ins(pj , ej , ωj), uj.o =
Up(pj, ej , e

′
j) and dj .o = Del(pj) with j ∈ {1, 2}. All different cases of our ET are

given in Algorithm 2. For instance, when q1 and q2 have the same insertion positions,
then the element added by q1 must precede (or is before) the one added by q2. If the
relation between their positions or site identities reflects this precedence, ET (q1, q2)
returns q1 as q2 has no effect on the insertion position of q1. On the other hand, when

4 If q.o = Nop() then IT (q, q′) = q and IT (q′, q) = q′.
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“abc”

q′
2.o = Ins(4, y, ε) q1.o = Del(2)

“ac”

q2.o = Ins(3, y, ε)

������������

“acy”

Fig. 4. Exclusive transformation

q2 is before q1 and their positions (or their site identities) give the same order, then we
decrement the insertion position of q1 for excluding the q2’s effect (lines 4-6).

Using ET algorithm enables us to detect causal dependency relation between re-
quests (see Definition 1) inside a log. Indeed, when ET (q1, q2) returns “Undefined”
then q2

s→ q1. Otherwise, ET algorithm allows requests to be executed out-of-order.
In [3], we have shown that our algorithms IT and ET are reversible, in the sense that
transforming in both directions preserves the data convergence.

1: ET (q1, q2) = q′
1

2: q′
1 ← q1

3: Choice of q1 and q2
4: Case: q1 = i1 and q2 = i2
5: if (p1 = p2 and q1.c ≥ q2.c) or (p1 = p2 + 1 and q1.c ≤ q2.c)) then return “Undefined”
6: else q′

1.o ← Ins(p1 − 1, e1, ω1)

7: Case: q1 = i1 and q2 = d2
8: if (p1 = p2) then q′

1.o ← Ins(p1, e1, T l(ω1)) /* Function Tl returns the resulting stack without the top
position */

9: else if (p1 > p2) then q′
1.o ← Ins(p1 + 1, e1, T l(ω1))

10: Case: q1 = d1 and q2 = i2
11: if (p1 ≥ p2 + 1) then q′

1.o ← Del(p1 − 1)
12: else if (p1 = p2) then return “Undefined”

13: Case : q1 = d1 and q2 = d2
14: if (p1 ≥ p2) then q′

1.o ← Del(p1 + 1)

15: Case : q1 = u1 and q2 = i2
16: if (p1 > p2) then q′

1.o ← Up(p1 − 1, old(u1), new(u1))
17: else if (p1 = p2) then return “Undefined”

18: Case : q1 = u1 and q2 = d2
19: if (p1 > p2) then q′

1.o ← Up(p1 + 1, old(u1), new(u1))

20: Case : q1 = u1 and q2 = u2
21: if (p1 = p2 and q1.c > q2.c) then q′

1.o ← Up(p1, old(u2), new(u1))
22: else if (p1 = p2) return “Undefined”
23: end choice
24: return q′

1

Algorithm 2. Exclusive transformation

4.3 Reordering Logs

In this section we will give how to build canonical logs by combining ET and IT algo-
rithms. Firstly, we refine Definition 1 on causal dependency relation between requests
as follows.
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Definition 4. Let L = [q1; q2; . . . ; qn] be a log. We say that qi
s→ qj , where i, j ∈

{1, . . . , n} and i < j, iff there exists either (i) q′ = ET ∗(qj , L[i + 1, j − 1]) such that
qi

s→ q′; or, (ii) a request qk with i < k < j and qi
s→ qk

s→ qj .

Function ET ∗ denotes the exclusive transformation of a request against a log. It
is defined recursively as follows: (i) ET ∗(q, []) = q where [] is the empty log;
(ii) ET ∗(q, [q1; . . . ; qn−1; qn])= ET ∗(ET (q, qn), [q1; . . . ; qn−1]). Definition 4 en-
ables us to detect causal dependency between requests, that are not necessarily adjacent,
by using recursively ET algorithm.

To build canonical logs, it is necessary to reorder (or permute) requests in a log
without affecting the resulting state of this log [12, 14]. So we use function PERM
that enables a request to be moved back to the past in order to simulate it as being
executed first.

Definition 5 (Permuting requests). Let [q1; q2] be a request sequence. We define func-

tion PERM as follows: if q1
s

�→ q2 then PERM(q2, q1) = [q′2; q′1] such that
(i) q′2 = ET (q2, q1); and, (ii) q′1 = IT (q1, q

′
2).

Note that the function PERM is not defined when q1
s→ q2. Given the reversibility of

IT and ET , replacing [q1; q2] by PERM(q2, q1) means that we can get an equivalent
sequence where another form of q2 could be executed first. As a simple example, con-
sider the scenario in Figure 5: PERM(q′2, q1) = [q2; q′1] with q2 = ET (q′2, q1) and
q′1 = IT (q1, q2) and so that [q2; q′1] and [q1; q′2] are equivalent. By using the ω param-
eter, we ensure that our ET algorithm “goes backward” in a deterministic way as ω
contains the previous positions. We can build canonical logs by applying one or several
request permutations.

“abc” “abc”

q1.o = Del(2)

��











 q2.o = Ins(2, y, ε)

“ab” “abyc”

q′
2.o = Ins(2, y, [2])

��������������
q′
1.o = Del(3)

“aby” “aby”

Fig. 5. Permutation of requests

4.4 How to Simplify Partial Concurrency

We present here how to alleviate the processing burden of Partial Concurrency Situation
(see Problem 3 in Section 2.2). Firstly, we give an interesting result when using our
causal dependency relation.

Theorem 1. For every request q concurrent with q1 and q2:
if q1

s→ q2 then IT (q1, q)
s→ IT (q2, q

′) where q′ = IT (q, q1).
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Theorem 1 says that the causal dependency relation is still preserved when correctly ap-
plying the inclusive transformation for partial concurrent requests. Request q1 is either
an insertion request or an update (see Definition 1). Therefore, it is easy to general-
ize this result for canonical logs (i.e. q is replaced by a canonical log). The proof of
Theorem 1 is given in Appendix A.

In our approach, we deal with the partial concurrency problem by avoiding the log
reorganization. This is done, thanks to Theorem 1, by directly deducing the form to be
executed of the remote request from its precedent request inside the local log. Consider
the example of partial concurrency illustrated in Figure 3. We have q1

s→ q2 at site 1 (i.e.
df2 form according to Definition 1). As this dependency is preserved by transformation
at site 2, q′1

s→ q′2, we can deduce that q′2.o = q2.o.

5 Concurrency Control Algorithm

We have designed a new algorithm for managing all concurrent interactions occurring
in RCE. This algorithm relies on (i) the replication of the shared documents in order to
provide data access without constraints, and; (ii) the consistency model based on causal
dependency. We will sketch the correctness of this algorithm in Appendix A.

5.1 Control Procedure

In our approach, a collaborative editor consists of a group of N sites (where N is vari-
able in time) starting a collaboration session from the same initial state l0. Each site
stores all executed requests in canonical log L (i.e. insertions before deletions). Our
control concurrency procedure is given in Algorithm 3.

Generation of Local Request. When an operation o is locally generated, it is imme-
diately executed on its generation state (i.e. Do(o, l) computes the resulting state when
executing operation o on state l). Once the request q = (c, r, null, o)5 is formed, func-
tion COMPUTEBF(q,L) is called (see Algorithm 4) in order to compute the minimal
generation context of q. In other words, instead of considering q as being dependent
of all L’s requests, our procedure reduces this context by excluding as much as possi-
ble some requests of L by means of exclusive transformation ET . To well understand
this step, consider the set Dep(q) = {q” ∈ L|q” s→ q} which is built according to
Definition 4. If Dep(q) = ∅ then the new request q′ is not dependent of L. Otherwise,
Dep(q) �= ∅, q′ must be executed on all sites after the requests of Dep(q). In this case,
q′.a contains only the identity of the direct preceding request plus the dependency form
dfj (see Definition 1).

Integrating q after L may result in not canonical log. To transform [L; q] in canonical
form, we use function CANONIZE(q,L) that is given in Algorithm 5. It relies on func-
tion PERM to applying successive permutations. Finally, the request q′ (the result of
COMPUTEBF) is propagated to all sites in order to be executed on other copies of the
shared document.

5 null means that q does not depend on any request.
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1: Main:
2: INITIALIZATION

3: while not aborted do
4: if there is an input o then
5: GENERATE REQUEST(o)
6: else
7: RECEIVE REQUEST

8: INTEGRATE REMOTE REQUESTS

9: end if
10: end while

11: INITIALIZATION:
12: Q ← []
13: L ← []
14: l ← l0
15: r ← 1
16: c ← Identification of local user

17: GENERATE REQUEST(o):
18: l ← Do(o, l)
19: q ← (c, r, null, o)
20: q′ ← COMPUTEBF(q,L)
21: L ← CANONIZE(q,L)
22: broadcast q′ to other users

23: RECEIVE REQUEST:
24: if there is a request q from a network then
25: Q ← Q + q
26: end if

27: INTEGRATE REMOTE REQUEST:
28: if there is q in Q that is causally-ready then
29: Q ← Q − q
30: q′ ← COMPUTEFF(q,L)
31: l ← Do(q′.o, l)
32: L ← CANONIZE(q′ ,L)
33: end if

Algorithm 3. Control Concurrency
Algorithm

1: COMPUTEBF(q,L) : q′

2: q′ ← q
3: for (i = |L| − 1; i ≥ 0; i − −) do
4: if q′ is not dependent of L[i] then
5: q′ ← ET (q′, L[i])
6: else
7: q′.a = (L[i].p, L[i].k, dfj)

{dfj with j = 1, 2, 3, 4 or 5 according to the
dependency form}

8: return q′

9: end if
10: end for
11: return q′

Algorithm 4. Detection of causal depen-
dency

1: CANONIZE(q,L) : L′

2: L′ ← [L; q]
3: i ← |L′| − 1
4: while L′ is not canonical do
5: < L′[i − 1], L′[i] >← PERM(L′[i], L′[i − 1])
6: i ← i − 1
7: end while
8: return L′

Algorithm 5. Canonizing logs

1: COMPUTEFF(q,L) : q′

2: q′ ← q
3: j ← −1
4: if q′.a 	= null then
5: Let L[j] be the request whose q′ depends on

(j ∈ {0, . . . , |L| − 1})
6: Modify q′.o with respect to L[j].o and the

dependency form
7: end if
8: for (i = j + 1; i ≤ |L| − 1; i + +) do
9: q′ ← IT (q′, L[i])
10: end for
11: return q′

Algorithm 6. Transforming a request
against a log

Integration of Remote Request. Each site has the use of queue Q to store the remote
requests coming from other sites. Request q generated on site i is added to Q when it
arrives at site j (with i �= j). To preserve the causality dependency, q is extracted from
the queue when it is causally-ready: if q” s→ q then q” has been already integrated
on site j. Next, function COMPUTEFF(q,L) (see Algorithm 6) is called in order to
compute the transformed form q′ to be executed on current state l. Let n be the length
of L. Two cases are to be considered: (i) if q.a = null then q is concurrent to all
requests of L; (ii) if q.a �= null then there exists request L[k] (with k ∈ {0, . . . , n−1})
whose q depends on. In case (ii), unlike the others integration algorithms based on OT
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approach, our algorithm does not require to reorganize L in two sub-logs containing
respectively precedent requests and concurrent requests with respect to q. Instead, only
the parameter q.o is updated with respect to L[k] and the dependency form dfj contained
in q.a (see Definition 1). The obtained request is next inclusively transformed against
L[k+1, n−1]. Finally, the transformed form of q, namely q′, is executed on the current
state and function CANONIZE is called in order to turn again [L; q′] in canonical form.

Asymptotic Time Complexities. We assume the time to execute IT , ET and PERM
transformations is constant. Let L be a canonical log. Let Li be all insertion/update
requests in L and Ld be all deletion/update requests in L. In the worst-case the com-
plexity of COMPUTEBF(q,L) is O(|Li|+ |Ld|). Indeed, if all requests concurrent with
q are in L then q is exclusively transformed against all L’s requests. When q is an in-
sertion request and Ld is not empty, the function CANONIZE(q,L) takes time O(|Ld|).
If q is concurrent with all L’s requests then the complexity of COMPUTEFF(q,L) is
O(|Li|+ |Ld|). Hence the generation of local request and the integration of remote re-
quest have the same complexity, O(|Li|+2|Ld|), in the worst-case (i.e. q is an insertion
request and Ld is not empty).

6 Related Work

The discovery of the TP2 puzzle [14, 16] gave birth to several works that have tried to
address this problem. These works may be categorized in two approaches. The first one
tries to avoid the TP2 puzzle scenario. This is done by constraining the communication
among users in order to restrict the space of possible execution order. For instance,
the SOCT4 algorithm [19] uses a sequencer, associated with a deferred broadcast and
a sequential reception, to enforce a continuous global order on requests. This global
order can also be obtained by using an undo/do/redo scheme like in GOT [17]. These
ensure the data convergence but they cannot scale because they rely on client-server
architecture in order to get a global and unique order of execution.

The second approach deals with resolution of TP2 puzzle. In this case, concurrent
requests can be executed in any order, but the transformation algorithm requires to sat-
isfy property TP2. This approach has been developed in adOPTed [13], SOCT2 [14],
GOTO [16], and SDT [7]. Unfortunately, we have proved elsewhere [5,3] that all previ-
ously proposed transformation algorithms fail to satisfy TP2 when we deal with linear
objects.

A first thought has been conducted in LBT environment [8] to build a total order on
elements (e.g. characters) of the shared linear object. To establish such an order, each
element must be uniquely identified. To achieve convergence, the integration of remote
request consists in deducing the total order between elements. To do so, the follow-
ing schemes are used: (i) a hash table containing all order relations between elements;
(ii) vector timestamps for tracking causality dependency between requests; (iii) bidi-
rectional (inclusive and exclusive) transformation algorithms; (iv) a particular class of
transformation paths like the ones we have used in our integration algorithm, namely
logs containing insertions before deletions. This approach is very complicated due to
the number of schemes used to ensure convergence and it is also less practical even for
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small collaborative editors. In addition, LBT does not scale with the number of sites as
the convergence is dependent on vector timestamps.

In ABT environment [9], the authors make up for the drawback of LBT. Indeed,
ABT uses few schemes to ensure convergence. Besides using vector timestamps and
canonical logs (insertions before deletions), ABT proceeds as follows: (i) only the ef-
fect of deletion requests are excluded from local request before to broadcast it; (ii) the
integration of remote request requires the reorganization of local log to deal with the
partial concurrency problem. Unlike ABT, our integration algorithm scales easily and
it can provide a high degree of concurrency. Indeed, we propagate local request with
minimal generation context. We also solve merely the problem of partial concurrency
by integrating directly remote request without reorganizing the local log.

It should be noted that this work is an extension of our preliminary paper [4]. Indeed,
in this work, we propose an enhanced set of operations and we present a new and
optimized version of our concurrency control algorithm as well as its correctness.

7 Conclusion

In this paper, we have proposed a new framework for managing collaborative editing
work in real-time context. It is based on optimistic replication. Using OT approach, it
provides a simultaneous access to shared documents and an automatic reconciliation of
divergent copies. A minimal causality between requests is given by means of a depen-
dency relation based on semantics of the shared document. This causality relation is
not tributary to the number of users and it allows to support dynamic groups. Thus, our
framework may be deployed in P2P networks. Note that our work is the first that deals
with the scalability and the consistency maintenance problems in OT research commu-
nity. A prototype based on our OT framework has been implemented in Java. It supports
the collaborative editing of wiki pages and it is deployed on P2P JXTA platform6.

In future work, we intend to investigate the impact of our work when undoing re-
quests [15]. As the length of local logs increases rapidly during collaboration sessions
we plan to address the garbage collection problem.
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A Correctness

In this section we give the correctness of our concurrency control algorithm with respect
to criteria consistency (see Definition 3). By lack of space, we only sketch some proofs.

A.1 Basic Definitions

The shared document can be modelled by the abstract data type list. A list is a sequence
of elements from a data type E . The element type is only a parameter and can be in-
stantiated by each type needed. For instance, an element may be regarded as a character,
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a paragraph, a page, an XML node, etc. The set of operations modifying the list state is
defined as follows:

O = {Ins(p, e, ω)|e ∈ E , p ∈ N and ω ∈ N∗} ∪ {Del(p)|p ∈ N}
∪{Up(p, e, e′)|p ∈ N, e ∈ E and e′ ∈ E} ∪ {Nop()}

where Nop() is the idle operation that has null effect on the list state. Each user’s
site has a local state l that is altered only by insertion, deletion and update operations.
The initial state, denoted l0, is the same for all sites. Let L be the set of list states.
We use the function, Do : O × L → L, for computing the resulting state l′ when
a user applies operation o to state l: Do(o, l) = l′. We extend this function to se-
quence of requests as follows: (i) Do([], l) = l where [] is the empty sequence and;
(ii) Do([q1.o; q2.o; . . . ; qn.o], l) = Do(qn.o, Do(. . . , Do(q2.o, Do(q1.o, l)))).

Every site stores all executed requests in a buffer also called a log.

Definition 6. A log is a tuple (L,"L) where L is a finite set of requests together
with a total order "L over L reflecting the execution order. For simplicity, we de-
note a log (L,"L) as the sequence L = [q1; q2; . . . ; qn] iff L = {q1, q2, . . . , qn} and
(qi, qj) ∈"L whenever i < j.

Every log can be divided into several sub-logs as follows.

Definition 7. A log (L′,"L′) is a sub-log of (L,"L) iff L′ ⊆ L and for every requests
q, q′ ∈ L′ (q, q′) ∈"L iff (q, q′) ∈"L′ .

The causal dependency relation given in Definition 1 allows us to define the following
property on logs.

Definition 8. A sub-log (L′,"L′) of log (L,"L) is closed iff for every requests q ∈ L

and q′ ∈ L′ where (q, q′) ∈"L if q
s→ q′ then q ∈ L′.

A closed sub-log contains for each request every preceding request it depends on. When
exchanging requests between different sites, the closed-sublogs must be preserved. Per-
muting two successive requests in a log enables us to produce another log without al-
tering the resulting state of the original log. So we can define an equivalence relation
between logs:

Definition 9. A log (L,"L) is equivalent by transformation to a log (L′,"L′), de-
noted L ≡t L′, iff the following conditions holds: (i) Do(L, l0) = Do(L′, l0) for every
state l0; (ii) |L| = |L′|; (iii) (L′,"L′) can be obtained from (L,"L) by applying a
finite number of permutations.

This equivalence by transformation is simply a bijective mapping f : L → L′ that can
be considered as a composition of a finite number of request permutations having the
following form: ci : L → L′ (with 1 < i ≤ |L|) such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ci(qi) = q′i where q′i = ET (qi, qi−1) and
(qi−1, qi) ∈"L

ci(qi−1) = q′i−1 where q′i−1 = IT (qi−1, q
′
i)

ci(q) = q for all q �= qi and q �= qi−1

By abuse of notation we often write f(L) = L′.
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Definition 10. Two operations o1, o2 ∈ O are said similar, denoted by o1 ≈ o2, iff
one of the following conditions holds: (i) o1 = Ins(p, e, ω1) and o2 = Ins(p, e, ω2);
(ii) o1 = Del(p) and o2 = Del(p); (iii) o1 = Up(p, e, e′) and o2 = Ins(p, e, e′);
(iv) o1 = Nop() and o2 = Nop(). We can extend this similarity relation to requests as
follows: q ≈ q′ iff q.o ≈ q′.o, q.c = q′.c, q.k = q′.k and q.a = q′.a.

Two similar operations produce the same state when they are executed on the same
initial state. For example, o1 = Ins(2, e, [3.4]) and o2 = Ins(2, e, ε) are similar.

A.2 Basic Properties

By abuse of notation, we also use IT (resp. ET ) for transforming a request
against a request sequence: (i) IT (q, []) = q and ET (q, []) = q where
[] is the empty log; (ii) IT (q, [q1; . . . ; qn−1; qn])= IT (IT (q, q1), [q2; . . . ; qn]);
(iii) ET (q, [q1; . . . ; qn−1; qn])= ET (ET (q, qn), [q1; . . . ; qn−1]).

Property 1 expresses a relaxed form of TP2 property as it is based on canonical
request sequences and the similarity relation. For example, consider two canonical se-
quences [q1; q′2] and [q2; q′1] where q′1 = IT (q1, q2) and q′2 = IT (q2, q1). Suppose that
q1.o = Del(3) and q2.o = Del(2). By transformation, we have q′1.o = Del(2) and
q′2.o = Del(2). Let q be an insertion request with q.o = Ins(3, e, ε). When transform-
ing q against both sequences we obtain: q′ = IT (q, [q1; q′2]) and q′′ = IT (q, [q2; q′1])
with q′.o = Ins(2, e, [3.3]) and q′′.o = Ins(2, e, [2.3]). It is clear that q′ and q′′ are not
identical – unlike TP2 property – but they are similar.

Property 1. Let [q1; q′2] and [q2; q′1] be two canonical request sequences with q′1 =
IT (q1, q2) and q′2 = IT (q2, q1). For every request q: if q′ = IT (q, [q1; q′2]) and
q′′ = IT (q, [q2; q′1]) then q ≈ q′.

Proof. Consider two cases:

(i) q1 and q2 are update requests: for every request q, the position parameter (i.e.
insertion, deletion or update position) remains unchanged after transformation
against both sequences.

(ii) q1 and q2 are pairwise deletion/insertion requests: if q is an update request, the
position parameter evolves (i.e. it is increasing, decreasing, or unchanged) in the
same way for both sequences.

The remaining cases where q, q1 and q2 are pairwise deletion/insertion requests have
been proved in [3]. �

Property 2 stipulates that exclusively transforming a request against both canonical and
equivalent sequences produces the same request.

Property 2. Let [q1; q′2] and [q2; q′1] be two canonical request sequences with q′1 =
IT (q1, q2) and q′2 = IT (q2, q1). For every request q, if q′ = ET (q, [q1; q′2]) then
q′ = ET (q, [q2; q′1]).
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Proof. Consider two cases:

(i) q1 and q2 are update requests: if q is an insertion or deletion request, the position
parameter (i.e. insertion or deletion position) remains unchanged after transfor-
mation.

(ii) q1 and q2 are pairwise deletion/insertion requests: if q is an update request, either
its position parameter evolves (i.e. it is increasing, decreasing, or unchanged) in
the same way or we get “undefined” value for both sequences.

The remaining cases where q, q1 and q2 are pairwise deletion/insertion requests have
been proved in [3]. �

A.3 Preservation of Causal Dependency Relation

Proof of Theorem 1. Consider q′1 = IT (q1, q) and q′2 = IT (q2, q
′) with q′ =

IT (q, q1). We consider two dependency forms df4 and df5. The other forms have been
proved in [3].

df4 form: We have q1.o = Ins(p, e, ω) and q2.o = Up(p, e, e′).

(i) q.o = Ins(p1, e1, ω1) and ((p1 = p and q1.c > q.c) or (p1 < p)): q′1.o =
Ins(p + 1, e, ω) and q′2.o = Up(p + 1, e, e′).

(ii) q.o = Ins(p1, e1, ω1) and ((p1 = p and q1.c < q.c) or (p1 > p)): q′1 = q1 and
q′2 = q2.

(iii) q.o = Del(p1) and p1 ≥ p: q′1 ≈ q1 and q′2 = q2.
(iv) q.o = Del(p1) and p1 < p: q′1.o = Ins(p−1, e, pω) and q′2.o = Up(p−1, e, e′).
(v) q.o = Up(p1, e1, e

′
1): q′1 = q1 and q′2 = q2.

df5 form: We have q1.o = Up(p, e, e′), q2.o = Up(p, e′, e′′) and q2.c ≤ q1.c.

(i) q.o = Ins(p1, e1, ω1) and p1 ≤ p: q′1.o = Up(p + 1, e, e′) and q′2.o = Up(p +
1, e′, e′′).

(ii) (q.o = Ins(p1, e1, ω1) or q.o = Del(p1)) and p1 > p: q′1 = q1 and q′2 = q2.
(iii) q.o = Del(p1) and p1 < p: q′1.o = Up(p− 1, e, e′) and q′2.o = Up(p− 1, e′, e′′).
(iv) q.o = Del(p1) and p1 > p: q′1.o = Nop() and q′2.o = Nop().
(v) q.o = Up(p, e, e′1) and q.c < q1.c: q1.o = Up(p, e′1, e

′) and q′2 = q2.
(vi) q.o = Up(p, e, e′1) and q.c > q1.c: q1.o = Nop() and q′2.o = Nop(). �

In Lemma 1 we show how the causal dependency relation is preserved by permutation
inside a log of three requests.

Lemma 1. Let L = [q1; q2; q3] be a log formed by three requests. Then the following
assertions hold:

(i) if q1
s→ q2 and q2 � s→ q3 then [q1; q′3; q

′
2] ≡t L such that PERM(q2, q3) = [q′3; q

′
2]

and q1
s→ q′2;

(ii) if q1 � s→ q2 and q2
s→ q3 then [q′2; q

′
1; q3] ≡t L such that PERM(q1, q2) = [q′2; q

′
1]

and q′2
s→ q3;
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(iii) if q1 � s→ q2 and q1
s→ q3 then [q′2; q

′
1; q3] ≡t L such that PERM(q1, q2) = [q′2; q

′
1]

and q′1
s→ q3;

(iv) (i) =⇒ (iii);
(v) (ii) ⇐⇒ (iii).

Proof. We have to consider all different dependency forms according to Definition 1
(see [3]). �

In Lemma 2 we show that the causal dependency between two requests inside canonical
log is preserved in another equivalent log.

Lemma 2. Let L = [q1; q2; . . . ; qn] be a canonical log. For every canonical log L′

such that L ≡t L′, if qi
s→ qj then f(qi)

s→ f(qj) where f(L) = L′ and f is a bijective
mapping.

Proof. Suppose that f is the composition of p request permutations. Then we proceed
by induction on p.

(i) Induction base: Let p = 1 and L = [q1; . . . ; qi; . . . ; qj ; . . .] such that i < j.
Without a lost of generality we consider the case where qi

s→ qj is a direct de-
pendency, i.e. there is no qk such that i < k < j and qi

s→ qk
s→ qj . Let

q′j = ET (qj , L[i + 1, j − 1]) and q′′j = ET (qj, L[i + 2, j − 1]). By definition,

qi
s→ qj implies qi

s→ q′j and qi
s→ q′′j . Let k be the position where the permutation

is performed on L. We have the following cases:
(a) k < i or k > j + 1:

PERM(qk−1, qk) does not affect the requests between qi and qj ;
(b) i + 1 < k < j:

As L′ is canonical then qk−1 and qk must be of the same
type. From L = [. . . ; qi; . . . ; qk−1; qk; . . . ; qj ; . . .] we get L′ =
[. . . ; qi; . . . ; q′k; q′k−1; . . . ; qj ; . . .] such that PERM(qk−1, qk) = [q′k; q′k−1].
As L[i + 1, j − 1] ≡t L′[i + 1, j − 1], then q′j = ET (qj, L[i + 1, j − 1]) =
ET (qj, L

′[i + 1, j − 1]) using Property 2. Hence qi
s→ qj is preserved.

(c) k = i:
From L = [. . . ; qi−1; qi; . . . ; qj ; . . .] we get L′ = [. . . ; q′i; q

′
i−1; . . . ; qj ; . . .].

As qi−1 � s→ qi and qi
s→ q′j then q′i

s→ qj using Lemma 1(ii).
(d) k = i + 1:

From L = [. . . ; qi; qi+1; . . . ; qj ; . . .] we get L′ = [. . . ; q′i+1; q
′
i; . . . ; qj ; . . .].

As qi � s→ qi+1 and qi
s→ q′′j then q′i

s→ qj using Lemma 1(iii).
(e) k = j:

From L = [. . . ; qi; . . . ; qj−1; qj ; . . .] we get L′ = [. . . ; qi; . . . ; q′j ; q
′
j−1; . . .].

As qi
s→ qj then qi

s→ ET (qj, qj−1).
(f) k = j + 1:

If qj and qj+1 are of the same type then from L = [. . . ; qi; . . . ; qj ; qj+1; . . .]
we get L′ = [. . . ; qi; . . . ; q′j+1; q

′
j ; . . .]. As qi

s→ qj and qj � s→ qj+1 then

qi
s→ q′j using Lemma 1(i).



Coordination Model for Real-Time Collaborative Editors 245

(ii) Induction hypothesis: This lemma is true for p ≥ 1.
(iii) Induction step: Let us show that this lemma holds for p + 1. Given L′′ a canon-

ical log built from L by applying p request permutations and L′ a canonical log
obtained by performed one request permutation to L′′. Then this lemma holds for
L′ since it is true for L′′ (by induction hypothesis) and it is true for one request
permutation (by induction base). �

In Theorem 2 we show that all causal dependencies inside canonical logs are preserved
by transformation.

Theorem 2. Let L1 and L2 be two canonical logs such that L1 ≡t L2. If L′
1 is a closed

sub-log of L1 then f(L′
1) is also a closed sub-log of L2 such that f(L1) = L2 and f is

a bijective mapping.

Proof. Let n = |L′
1|. We proceed by induction on n.

(i) Induction base: for n = 2 we have L′
1 = [qi; qj ] such that qi

s→ qj with i, j ∈
{1, . . . , |L1|} and i < j. Using Lemma 2, we can state that f(L′

1) is a closed
sub-log of L2.

(ii) Induction hypothesis: f(L′
1) is a closed sub-log of L2 for n ≥ 2.

(iii) Induction step: Let L′
1 = [qi1 ; . . . ; qin ] and L′′

1 = [L′
1; q] where q is a request

and qin

s→ q. As f(qij )
s→ f(qij+1 ) for j ∈ {1, . . . , n} (using the induction

hypothesis) and f(qin) s→ f(q) (using the induction base), then f(L′′
1) is a closed

sub-log of L2. �

As a consequence of Theorem 2, a closed sub-log containing only insertion (or update)
requests can be reordered at the head of canonical log.

Corollary 1. Let L′
1 be a closed sub-log of a canonical log L1 such that L′

1 contains
only insertion requests. There must exist a canonical log L2 such that (i) L1 ≡t L2,
and (ii) L2 = [L′

2; L
′′
2 ] where L′

2 = f(L′
1) for every bijective mapping f : L1 → L2.

A.4 Data Convergence

By adding an insertion request to a canonical log it is still possible to build a new
canonical log.

Lemma 3. Suppose that L is a log which contains only deletion requests. Let i be an
insertion request that is generated in state s = Do(L, l0). Then there exists a canonical
log L′ such that L′ ≡t [L; i].

Proof. Let |L| = n. We proceed by induction on n.
Induction base: for n = 1 we have L = [d] where d is a deletion request. By construc-
tion [d; i] ≡t [i′; d′] where [i′; d′] = PERM(d, i). So L′ = [i′; d′] is canonical.
Induction hypothesis: for n > 1 there exists a canonical log L′ ≡t [L; i].
Induction step: Let L = [d1; d2; . . . ; dn; dn+1]. Using induction hypothesis, we have:
L = [d2; . . . ; dn; dn+1; i] ≡t [i′; d′2; . . . ; d

′
n; d′n+1] where i′ is the result of permuting i
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with requests d2, . . ., dn+1. We have [i′′; d′1] ≡t [d1; i′] as PERM(d1, i
′) = [i′′; d′1].

Consequently, L′ = [i′′; d′1; d
′
2; . . . ; d

′
n; d′n+1; i] ≡t [L; i] and L′ is canonical. �

Theorem 3 concerns the generation step of our concurrency control algorithm.

Theorem 3. Suppose that L is canonical log. Let q be a request generated in state
l = Do(L, l0). There must exist a canonical log L′ such that: L′ ≡t [L; q]

Proof. We consider two cases: either q is an insertion request or q is a deletion request.

1. q is a deletion or update request: We get L′ by simply adding q to L, i.e. L′ = [L; q].
2. q is a insertion request: As L is canonical then L = [Li; Ld] where Li contains

insertions requests and Ld holds deletion requests. Using Lemma (3), we can per-
mute q with every deletion requests in Ld and we get [q′; Ld] ≡t [Ld; q]. Hence,
L′ = [Li; q′; L′

d] ≡t [L; q] is canonical. �

The following theorem concerns the integration of remote requests. It means that the
integration of every remote request on every two equivalent logs produces also two
equivalent logs.

Theorem 4. At stable state any two sites have equivalent canonical logs.

Proof. Let L1 and L2 be two canonical logs of peers P1 and P2, respectively, such that
L1 ≡t L2. Let q be a remote request to be integrated in P1 and P2. Thus two cases are
possible:

(i) q is independent: Let q′ = IT (q, L1) and q′′ = IT (q, L2). As L1 ≡t L2 then
q′ ≈ q′′ using Property 1 Thus, Do([L1; q′], l0) = Do([L2; q′′], l0).

(ii) q is dependent: Let L′
1 = [qi1 ; qi2 ; . . . ; qin ] be a closed log of L1 such that qin

s→
q. Note that L′

1 contains only insertion deletions. In the following diagram we
sketch the equivalent canonical logs we can build from L1 and L2 using bijective
mappings f , f ′, g1 and g2:

L1

g1

��

f �� L2

g2

��
L3

f ′
�� L4

As L′
2 = f(L′

1) is also a closed sub-log of L2 then we deduce that f(qin) s→ q.
By using Corollary 1, we have L3 = [L′

3; L
′′
3 ] such that L′

3 = g1(L′
1). In the same

way, L4 = [L′
4; L

′′
4 ] such that L′

4 = g1(L′
2). It is easy to see that f ′(g1(L′

1)) =
g2(f(L′

1)) and L′
3 = L′

4 since they contains respectively the n first requests of L3
and L4 and they are closed sub-logs. In this case, the integration of q consists in
transforming it along with L′′

3 and L′′
4 . Let q′ = IT (q, L′′

3) and q′′ = IT (q, L′′
4).

Since L′′
3 ≡t L′′

4 then q′ ≈ q′′ according to Property 1. Thus, Do([L3; q′], l0) =
Do([L4; q′′], l0). �
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Abstract. The purpose of this paper is to present a framework to model
component interfaces and the component connectors that provide the
glue code for the components. Our modeling approach is based on two
input languages which rely on the same automata model. One of them is
a scripting language which can serve to specify exogenous or endogenous
coordination mechanisms. The other one is a guarded command language
which has been designed to specify behavioral component interfaces, but
can also be used to design component connectors. This hybrid approach
allows nesting of the two specification languages, supports compositional
design, modular verification and reusability of components or component
connectors. It yields the input language of our verification toolset Vereofy
which realizes several model checking algorithms for components, com-
ponent connectors, and the composite system.

1 Introduction

The basic principle of component-based software engineering is to fragment a
complex system into logical components with well-defined interfaces. In this
context, a variety of coordination models and languages have been introduced
that support the separation between computations inside the components and
the interactions between the components. Endogenous coordination languages
require to incorporate coordination primitives within the code that specifies the
behavior of the components. A typical example is Linda [11] where components
are described in a computational languages extended by operators to store or
retrieve data objects from a global tuple space. A cleaner separation of compu-
tation and coordination is provided by exogenous coordination models where the
components do not need to be aware of each other. Instead, they are controlled
from “outside” via their interfaces. Several approaches for exogenous coordi-
nation have been suggested, e.g., an aspect-oriented approach [8], a variant of
the π-calculus with anonymous peer-to-peer communication [13], and formalisms
that rely on the construction of component connectors, such as interaction sys-
tems as in [12,17] or the declarative channel-based language Reo [2].

For providing tool support for the verification of systems specified in such coor-
dination formalisms, one needs input languages which on the one hand cover the
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major features of the coordination language and on the other hand have an op-
erational semantics that can easily be implemented. For exogenous coordination
languages, there is an additional aspect that should be taken into account. The
objects specified in an exogenous coordination language typically just formalize
the network that organizes the interactions of black-box components, but they
do not make any restrictions on the behavior of the components. Such restric-
tions, however, might be essential to prove certain functional properties of the
composite system consisting of several components and the network that serves
as a component connector. Thus, what is needed for model checking tools are
input languages that provide coordination primitives to specify the network and
features to model the behavioral interfaces of the components. Beside constraints
on the type of messages that can be send or received via the input and output
ports, such behavioral interfaces can also specify local states of the components
and impose (possibly data-dependent) conditions on the enabledness of sending
and receiving messages via the I/O-ports. In the literature, there are several
automata-based models that can be seen as “light-weight” formalisms for speci-
fying the behavioral interfaces of components. Examples are I/O-automata that
support compositional reasoning about asynchronous concurrent systems [16] or
interface automata that have been introduced for reasoning about compatibility
of components [10,9] or constraint automata which have been developed in the
context of reasoning about exogenous coordination [5].

The goal of this paper is to present the uniform framework for specifying be-
havioral component interfaces and component connectors that we developed in
the context of our toolkit Vereofy [7] (see Fig. 1). The verification constituents of
Vereofy are symbolic BDD-based model checking tools for linear-, branching- and
alternating-time temporal logics with special operators to reason about the data
flow at I/O-ports of components or internal nodes of the network and a bisimu-
lation checker. These logics LTLIO, BTSL, ASL and verification algorithms for
them and the bisimulation checking algorithm, together with some experimen-
tal results performed on the basis of a prototype implementation, have been
presented elsewhere [6,15,4,14]. This work on model checking component-based
systems uses constraint automata [5] as a uniform operational model for com-
ponent connectors, behavioral component interfaces and the composite system.
The focus of this paper is on the modeling approach of Vereofy which supports

network components requirements

CARML specification
library

model checker

for components
RSL specification

constraint automaton

temporal formula
of the network

Fig. 1. Vereofy overview
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exogenous and endogenous coordination. Vereofy deals with the combination of
two languages, both equipped with a constraint automata semantics. One of
them is a guarded command language, called CARML, that mainly serves to
specify the I/O-ports of components and their stepwise “observable” behavior.
The second input language of Vereofy, called RSL, is a scripting language which
combines the major features of the exogenous coordination language Reo [2] with
concepts to specify connectors with dynamically changing network topologies
and some features of other languages (such as shared variables or data types).
Reo’s coordination primitives allow to reason about all kinds of coordination
patterns with an arbitrary mixture of synchronous or asynchronous peer-to-peer
communication. By combining Reo’s coordination primitives with operators for
the instantiation of component connectors or components which are specified
in RSL or CARML, our approach offers an elegant way for the compositional,
hierarchical construction of component connectors and components. While pre-
vious work on Reo and constraint automata relies on the assumption of a global
data domain that serves as data type for all messages that can be send via the
channels, our hybrid modeling approach with RSL and CARML supports the
use of several data types. This allows using standard methods to ensure type
consistency and to check compatibility via type checking.

Organization of the paper. Section 2 summarizes our notations concern-
ing data types and constraint automata. The languages CARML and RSL are
presented in Section 3 and 4, respectively. An example using our hybrid model-
ing approach is provided in Section 5 and experimental results with our toolkit
Vereofy are presented in Section 6. The paper ends with some remarks on related
work and a conclusion (Section 7).

2 Preliminaries

Data types with fixed semantics. Let DT denote a set of data types covering
standard data types, such as Booleans or integers of fixed bit-size, or user-defined
data types with a fixed semantics, such as arrays and unions over elements of
a predefined data type or enumeration types. Let Op denote a set of operators
on the data types in DT such as conjunction, disjunction, negation for Booleans
and arithmetic operations like addition and multiplication for integers. Further-
more, Pred denotes a set of predicates, such as the standard binary comparison
predicates =, <, ≤, and so on. Formally, the elements of DT are fixed finite non-
empty sets and each operator op ∈ Op is a function op : T1× . . .×Tk → T where
(T1, . . . , Tk, T) ∈ DTk+1 and k ∈ N. The tuple (T1, . . . , Tk, T) is called the type
of op, denoted type(op). Each predicate P ∈ Pred is a subset of T1 × . . . × Tk

where k ≥ 1 and T1, . . . , Tk ∈ DT. We write type(P) for the tuple (T1, . . . , Tk).

Uninterpreted data types and signatures. Beside data types with fixed
semantics, our languages also allow for uninterpreted symbols for data types,
operators and predicates. These can be used as parameters for RSL and CARML
specifications which then serve as templates for components or connectors.
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A signature is a tuple Sig = (DT, Op, Pred, Var) where DT ⊆ DT, Op ⊆ Op

Pred ⊆ Pred and Var is a set of typed variables, i.e., for each variable V ∈ Var

its type type(V ) is an element of DT. The uninterpreted symbols for data types,
operators and predicates are then given by the elements of Θ = DT \ DT,
Ω = Op \ Op and Π = Pred \ Pred, respectively. The data type symbols T ∈ Θ
can be seen as placeholders for sets (data types). The operator symbols op ∈ Ω
and predicate symbols P ∈ Π are associated with a type. The type of an op-
erator symbol op ∈ Ω is a tuple type(op) = (T1, . . . , Tk, T ) ∈ DT

k+1 for some
k ∈ N. It declares that op takes as arguments k elements v1, . . . , vk where vi is
of type Ti and returns an element of type T . That is, op stands for a function
op : T1 × . . . × Tk → T . The number k is called the arity of op. Similarly, the
type of a predicate symbol P ∈ Π is a tuple type(P ) = (T1, . . . , Tk) ∈ DT

k for
some k ≥ 1, denoting that P has to be interpreted by a predicate consisting of
tuples (v1, . . . , vk) where vi is an element of data type Ti.

Terms and atomic propositions. Terms over Sig are built by variables, con-
stants, and the operator symbols in a type-consistent manner. Formally, terms
over Sig are defined recursively according to the following statements.

(1) Each variable V ∈ Var is a term of type type(V ) and each constant op ∈ Op

(i.e., 0-ary operator in Op ∪Ω) is a term of type type(op).
(2) If t1, . . . , tk are terms such that the type of ti is Ti and op ∈ Op with

type(op) = (T1, . . . , Tk, T ) then op(t1, . . . , tk) is a term of type T .

Atomic propositions over Sig are type-consistent expressions stating that a cer-
tain tuple of terms is an element of a predicate in Pred. Formally, if P ∈ Pred

with type(P ) = (T1, . . . , Tk) and t1, . . . , tk are terms over Sig such that ti is of
type Ti then P (t1, . . . , tk) is called an atomic proposition over Sig.

Interpretations of signatures. For the semantics of terms and atomic propo-
sitions over a signature, we have to consider an interpretation I that provides
type-consistent meanings for the uninterpreted data types, operator and predi-
cate symbols and the variables. That is, I assigns a finite set T I �= ∅ to each data
type symbol T , an element of V I ∈ T I to each variable of type T , a function
opI : T I

1 × . . . T I
k → T I to each operator symbol op of type (T1, . . . , Tk, T ) and

a predicate P I ⊆ T I
1 × . . . T I

k to each predicate symbol P of type (T1, . . . , Tk).
(We treat I as an interpretation for all symbols of Sig by putting SI = S for
all predefined symbols S ∈ DT∪Op∪Pred.) The semantics tI ∈ T I of a term of
type T and the truth value P (t1, . . . , tk)I ∈ {true, false} for an interpretation I
and an atomic proposition P (t1, . . . , tk) are defined in the obvious way.

Locations and data-flow vocabulary. Locations are points in the network
where data flow is observable, e.g., the I/O-ports of components or nodes of the
network that serve as a router. In the sequel, L denotes a finite set of locations.
The sets Lsrc and Lsnk are disjoint subsets of L representing different kinds of
locations. Intuitively, Lsrc stands for the set of input ports (sources), Lsnk for
the set of output ports (sinks). A data-flow vocabulary over a signature Sig is
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a tuple Voc = 〈L,Lsrc,Lsnk, λ〉 where L is a set of locations and λ : L → DT is
a function that assigns to each location A its message-type λ(A), i.e., the type
of data items that can be passed via location A.

Concurrent I/O-operations (CIO) and Constraint automata (CA).
Constraint automata [5] serve as a compositional semantics for components and
connectors specified in CARML or RSL. For the syntax of CA we slightly depart
from [5] and use types for the messages that can be received or sent. The observ-
able data flow is formalized in a CA by means of a concurrent I/O-operation.
These can be understood as the potential actions of a component, a connector or
as interactions between several components and the connector in the composite
system. A concurrent I/O-operation specifies the locations where at some spe-
cific time instance data flow is observed simultaneously. In addition, it specifies
the data items that are read or written at the I/O-ports of components or trans-
mitted through locations of the connector. Formally, given an interpretation I
for the signature Sig then a concurrent I/O-operation over I is a function c that
assigns to each location A ∈ L either a data item of type λ(A)I or the special
symbol ⊥ indicating that there is no data flow at A. We write Obs(c) for the set
of locations A ∈ L such that c(A) �= ⊥. Let CIOI , or briefly CIO, denote the
set of all concurrent I/O-operations over I. A CA over an interpretation I for a
signature Sig is a tuple A = (Q, Voc,−→, Q0), where Q is a finite set of states,
Voc a data-flow vocabulary over Sig, →⊆ Q×CIOI×Q the transition relation,
and Q0 ⊆ Q the set of initial states. Obviously, the interpretation I is irrelevant
if all message-types have a fixed semantics, i.e, λ(A) ∈ DT for all A ∈ L.

3 Constraint Automata Reactive Module Language

One of the input languages of Vereofy is a guarded command language, called
CARML (constraint automata reactive module language), that describes the
transitions of constraint automata in a symbolic way, i.e., by means of Boolean
conditions on the states and the enabled concurrent I/O-operations. CARML
provides a convenient way to specify the component interfaces and to provide a
high-level description of the operational behavior of components. CARML sup-
ports channel-based message passing and communication over shared variables.
The latter is irrelevant for exogenous coordination, but can be useful to incor-
porate the coordination primitives of an endogenous approach e.g. for existing
systems where the coordination protocol is given in an imperative language. In
this case, modeling the protocol by means of the coordination language can be
much harder than providing a CARML specification. CARML is even expres-
sive enough to specify complex component connectors. To ease the automatic
translation of CARML specifications into a compact internal BDD-based repre-
sentation, we adapted some concepts of reactive modules [1] for the syntax of
CARML modules.

Standard data types such as Boolean, integers of fixed bit-size, arrays, unions
and enumerations together with the usual operators and predicates on them
can be used as data types for variables and message-types for I/O-ports. As in
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Section 2, these sets of data types, operators and predicates with fixed semantics
are denoted by DT, Op and Pred. CARML modules can also use uninterpreted
symbols for data types, operators and predicates. That is, a CARML module M
can be parameterized by a set Θ of data types, a set Ω of operator symbols, a
set Π of predicate symbols, and a set Υ of variables with types in DT = DT∪Θ.

MODULE M〈type : Θ, op : Ω, pred : Π, var : Υ 〉 {
// interface declaration: source ports

in : T in
1 A1;

... // Ai with message-types T in
i ∈ DT ∪ Θ

in : T in
k Ar;

// interface declaration: sink ports

out : T out
1 B1;

... // Bi with message-types T out
i ∈ DT ∪ Θ

out : T out
� Bs;

// definition of local variables Xi with data types T var
i ∈ DT ∪ Θ

// with initial value init valuei ∈ T var
i (optional)

var : T var
1 X1 init := init value1;

...
var : T var

� X� init := init value�;

// transition definitions

state guards1 −[ I/O guards1 ]→ state assignments1;
...

...
...

state guardsn −[ I/O guardsn ]→ state assignmentsn; }

Fig. 2. Schema of a CARML module

The general schema of a CARML module is shown in Fig. 2. It consists of
a (possibly empty) parameter list, the interface declaration where the source
and sink ports of a component and its local variables are defined followed by the
transition definitions specifying the behavioral interface. The shorthand notation
“type : Θ, op : Ω, pred : Π” in Fig. 2 refers to a list where all uninterpreted
symbols S ∈ Θ∪Ω∪Π are encountered together with the corresponding keyword
type, op or pred and their types in case of the operator and predicate symbols.
Similarly, var : Υ stands short for an enumeration of all variables in Υ together
with the keyword var and their types. All variables in Υ are passed according
to the concept “call-by-value”.

Let M be the name of the CARML module in Fig. 2. The data types with
fixed semantics together with the parameters Θ, Ω, Π , Υ and the set VarM of
variables that can be used in M (see below) constitute the signature of M which
is given by SigM = (DT, Op, Pred, VarM) where DT = DT∪Θ, Op = Op∪Ω
and Pred = Pred ∪Π . The variables that can be used in a CARML module M
are local variables and the variables in Υ . The local variables together with their
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type have to be listed in the declaration part of M. Thus, the CARML module
in Fig. 2 has the local variables X1, . . . , X�. The type of local variable Xi is
type(Xi) = T var

i which has to be an element of DT. The specification of an
initial value for the local variables is optional.

With our hybrid modeling approach where CARML specifications can be
embedded in the scripting language RSL (see Section 4) a CARML module can
also use global variables which have to be declared in the RSL (main) program.
Let VarM be the set of all local variables of M, all variables in Υ and all
global variables. We refer to the elements of VarM as accessible variables of M.
The interface declaration in Fig. 2 induces the data-flow vocabulary VocM =
〈LM,Lsrc

M ,Lsnk
M , λM〉 where Lsrc

M = {A1, A2, . . . , Ar}, Lsnk
M = {B1, B2, . . . , Bs},

and LM = Lsrc
M ∪ Lsnk

M . The type of source port Ai is λM(Ai) = T in
i , while sink

port Bj is of type λM(Bj) = T out
j . Again, the types T in

i and T out
j are elements

of DT. The sets Lsnk
M and Lsrc

M are supposed to be disjoint.
Each transition definition consists of local conditions on the current state (a

state guard), conditions on the concurrent I/O-operations to be fired (an I/O-
guard) and the effect of firing such an I/O-operation on the states (formalized
by the state assignments). A state guard is a (possibly empty) conjunction of
atomic propositions P (t1, . . . , tk) over SigM. An I/O-guard is a condition on
the observable data flow, formalized by a Boolean combination of atomic propo-
sitions over an extended signature Sig

L
M that allows to reason about the data

items that are observable at the locations in L. Formally, Sig
L
M denotes the

signature that results from SigM by adding

– a special type TI/O that serves for a characterization of the I/O-ports,
– a new monadic predicate symbol active with type(active) = TI/O,
– constant symbols dataA with type(dataA) = λM(A) for all A ∈ LM.

The special type symbol TI/O is needed for technical reasons only. (Note that
the location-symbol A is of type TI/O, while its message-type is λM(A) =
type(dataA).) For the interpretations I of Sig

L
M we require that T I

I/O = LM.
The intuitive meaning of the atomic proposition active(A) is a port activity flag
which indicates that data flow at location A is observed. To avoid an overlap
with state guards, we require that all atomic propositions P (t1, . . . , tk) in an
I/O-guard contain at least one subterm dataA for some A ∈ LM.

A state assignment is a (possibly empty) sequence of assignments for accessi-
ble variables, i.e., state assignments have the form V1 := t1 ; . . . ; Vp := tp where
V1, . . . , Vp are pairwise distinct variables in VarM and tj are terms over the ex-
tended signature Sig

L
M. Intuitively, when firing a transition via a concurrent

I/O-operation c with a state assignment as above as then in the next state the
value of the variables Vi agrees with the value of the term ti under the interpre-
tation given by the current state and the c. Variables V ∈ VarM \ {V1, . . . , Vp}
keep their value after the transition has been taken.

Example 1 (A railway track). The CARML module in Fig. 3 serves as a proto-
type definition for a railway track where trains may either pass or stop. It can
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be instantiated providing a data type for the trains and an element of that type
indicating that there is no train in the track. The component has one source port
A and one sink port B. Local variable “stat” keeps track of the status (free or
occupied), while local variable “train” serves to remember which train actually
stopped on the track when occupied by a train. 	

MODULE track〈type : TrainType, var : TrainType no train 〉{
in : TrainType A; // A is a source with type(dataA) = TrainType
out : TrainType B; // B is a sink with type(dataB) = TrainType
var : enum{free, occupied} stat := free;
var : TrainType train := no train;
stat = free−[ active(A) ∧ active(B) ∧ dataA = dataB ]→;
stat = free−[ active(A) ∧ ¬active(B) ]→ stat := occupied ; train := dataA;
stat = occupied−[ active(B) ∧ ¬active(A) ∧ dataB = train ]→

stat := free ; train := no train; }

Fig. 3. CARML module for a railway track

Semantics of a CARML module. The intuitive operational meaning of the
transition definitions is as follows. Suppose that q is the current state, which
means an evaluation of all accessible variables. Then, nondeterministically a
concurrent I/O-operation c and one of the transition definition is chosen such
that the state guard holds for q and the I/O-guard is fulfilled by c. The next
state is then obtained by modifying q according to the state assignments of
the chosen transition definition. This intuitive behavior can be formalized by
means of constraint automata. As a CARML module M as in Fig. 2 serves as
a template for components (or connectors), the constraint-automata semantics
of M relies on an interpretation J for all parameters in Θ, Ω, Π, Υ . For all
predefined symbols S ∈ DT ∪ Op ∪ Pred we write SJ = S.

The constraint automaton AM,J = (Q, VocM,−→, Q0) over DT = DT ∪ Θ
is defined as follows. The data-flow vocabulary of AM,J is VocM. The state
space of AM,J is the set Q consisting of all evaluations of the variables that are
accessible for M, i.e., Q is the set of functions q that assign to each variable
V ∈ VarM a data item in q(V ) in type(V )J . The set Q0 of initial states consists
of all q0 ∈ Q such that q0(Xi) = init valuei for each local variable Xi where
an initial value has been specified in the declaration part of M. For all other
variables V , q0(V ) is an arbitrary element in type(V )J .

The transition relation → is defined as follows. Let q, q′ ∈ Q and c ∈ CIOJ .
Let I = (q,J ) be the interpretation for SigM that agrees with q for all vari-
ables V ∈ VarM and assigns to the symbols in the parameter list of M the
same meaning as J . The pair (I, c) denotes the interpretation for the extended
signature Sig

L
M that agrees with I = (q,J ) on the symbols in SigM, inter-

prets the type symbol TI/O by T I,c
I/O = LM = {A1, . . . , Ar, B1, . . . , Bs}, and

assigns activeI,c = Obs(c) = {D ∈ LM : c(D) �= ⊥} to the activity predicate.
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For D ∈ Obs(c) the interpretation of dataD is the data element dataI,c
D = c(D).

For E ∈ LM with c(E) = ⊥, the interpretation dataI,c
E is irrelevant.

Then, q
c−→ q′ iff there is a transition definition state guardsi −[ I/O guardsi ]→

state assignmentsi in M such that the following conditions (1), (2) and (3) hold.

(1) state q fulfills the state guard, i.e., state guardsi evaluates to true under I
(2) the concurrent I/O-operation c satisfies the I/O-guard, i.e., I/O guardsi eval-

uates to true when interpreted over (I, c)
(3) the next state q′ arises from q via executing the state assignments, i.e.,

if state assignmentsi has the form V1 := t1 ; V2 := t2; . . . Vp := tp then
q′(Vj) = tI,c

j for 1 ≤ j ≤ p and q(V ) = q′(V ) for V ∈ VarM \ {V1, . . . , Vp}.

stat = free
train = no train

stat = occupied
train = train1

stat = occupied
train = train2

[A → train1, B → ⊥]

[A → ⊥, B → train1]

[A → train2, B → ⊥]
[A → ⊥, B → train2]

[A → no train, B → no train]

[A → train1, B → train1]

[A → train2, B → train2]

The picture on the right shows
the reachable part of the CA
for the railway track from Ex-
ample 1 and interpretation J
where TrainTypeJ is the set
{train1, train2, no train} and
no trainJ = no train.

4 Reo Scripting Language

While the main purpose of CARML is to specify the behavioral interfaces of
components, Reo scripting language (RSL) mainly serves to specify networks
that provide the glue code for components. RSL is inspired by the exogenous
coordination language Reo [2] which yields an elegant declarative framework for
the compositional construction of connectors by creating channels and glueing
their channels ends, the I/O-ports of components, or sub-connectors together.
This is done via join-operations, resulting in a network called Reo circuit. The
semantics of a Reo circuit is a CA which can be constructed in a compositional
way by providing constraint automata models for each channel and component
and mimicking Reo’s operators by corresponding operators for CA [5].

The language RSL combines the Reo operators with operators for the instan-
tiating of components, channels, and component connectors – that are either
given by a parameterized CARML module or specified in RSL – and features
to specify dynamic reconfigurations of the network topology. Indeed, RSL treats
components, channels and component connectors in the same way. This means,
that a channel is viewed as a primitive component connector and any compo-
nent connector can use components or other connectors as “subroutines” via the
instantiation mechanism. In what follows, the notion “module” will be used as
an umbrella term for component, channel or component connector.

RSL programs. On the top-level, an RSL program consists of (1) a declaration
part, (2) a list of include-instructions to access modules from a library, (3) a list
of the CARML modules and RSL scripts that might be instantiated in the main
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system, and optionally (4) an instantiation of an RSL script that serves as the
main system. When omitting (4), a non-parameterized module called “main” is
required to be contained in (3). The declaration part of an RSL program contains
the declarations of global variables and the definition of user-defined data types
(like enumerations, arrays and unions over predefined or previously user-defined
data types) as well as constants, operators of arity ≥ 1 and predicates. These
together with the predefined data types and built-in operators and predicates
constitute the sets DT, Op, Pred of data types, operators and predicates with
fixed semantics and only these can be passed as meanings for the uninterpreted
symbols (elements of Θ, Ω, Π, Υ ) in the parameter list of the instantiated mod-
ule in (4). This ensures that the instantiation in (4) yields an interpretation
for all free symbols in the RSL script for the main system. In (2) the library
contains the CARML or RSL code for several predefined basic channel types,
such as synchronous channels, FIFO channels, and so on, but also components
connectors that serve as coordination units in many situations, like an exrouter
or sequencer. It can be extended by user-defined modules.

CIRCUIT C 〈type : Θ, op : Ω, pred : Π, var : Υ 〉 {
stmt; // stepwise construction of a Reo circuit
interface decl // declaration of the I/O-ports of the Reo circuit

}

Fig. 4. Schema of an RSL circuit

RSL scripts for networks with static topology. The schema for the RSL
script of a Reo circuit without dynamic reconfiguration is shown in Fig. 4 where
the parameterization by uninterpreted symbols for data types, operators, pred-
icates and variables is as for CARML modules. The body of an RSL circuit
consists of a statement that describes the stepwise construction of a Reo circuit
and an interface declaration where the exported I/O-ports are specified.
Statements. The statement in the body of an RSL circuit is build by basic oper-
ations and control flow instructions (sequential composition, conditional branch-
ing and for-loops). The abstract syntax for statements is given by the grammar

stmt ::= instantiation
∣

∣ Reo operation
∣

∣ assignment
∣

∣ stmt ; stmt
∣

∣

if (bexpr) {stmt} else {stmt}
∣

∣ for (i = j, . . . , k) {stmt}

Instantiation. The instantiation of a module (i.e., a component, a channel or a
complex connector) specified in CARML or by a RSL circuit is performed via
instructions of the form

new module template〈Θ′, Ω′, Π ′, Υ ′〉(A1, . . . , Ar; B1, . . . , Bs)

where Θ′, Ω′, Π ′, Υ ′ are lists of data types, operators, predicates and variables or
constants that provide meanings for the parameters in the CARML or RSL code
for the module template. The elements of Θ′, Ω′, Π ′, Υ ′ have to be contained
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in the signature of C which is given by SigC = (DT, Op, Pred, VarC) where
DT = DT ∪Θ, Op = Op ∪Ω, Pred = Pred ∪Π and VarC = Υ .1 Optionally, the
list of meanings for the uninterpreted symbols in the template for some module
M is followed by a list (A1, . . . , Ar; B1, . . . , Bs) of names for the source and sink
ports of M. Thus, Ai will serve as name for the i-th source port of the gener-
ated instance of M, and Bj as name for the j-th sink port of that instance. The
names Ai and Bj have to be pairwise distinct. They can be fresh names or can
represent an existing location, in which case consistency of the message-types is
required. If Ai is an already existing location then the message-types of Ai and
the i-th source port of M must agree, and from now on location Ai is joined
with the i-th source port of the created instance of M. Analogous conditions are
required for B1, . . . , Bs and the sink ports of the created instance of M.

The second type of instantiation is the creation of an entity that is called a
Reo node [2] which plays a crucial role for the join-operation (explained below).
A Reo node can combine zero or more channel ends or I/O-ports of components
with the same message-type. Reo nodes can be understood as routers with a
special routing strategy. The intuitive meaning is a merger semantics of all read
operations performed at the sinks combined in a Reo node N and a replicator
semantics of the write operations at the sources of N . That is, all pending read
operations at the sinks of N are scheduled in an interleaved way and executed
synchronously with writing the received value to all sources of N . The effect of
an instantiation of a Reo node via the instruction node〈type : T 〉 is the creation
of a fresh Reo node N without any channel end or I/O-port. The message-type
of N is T ∈ DT which indicates that only data items v ∈ T can flow through N .
Reo operations. RSL supports Reo’s main operations for the composition of com-
plex circuits. The join operation join(N1, . . . , Nn) in RSL takes a list N1, . . . , Nn

of at least two I/O-ports or Reo nodes of the same message-type T ∈ DT as ar-
guments. It creates a new Reo node N of message-type T where all I/O-ports
and channel ends of N1, . . . , Nn are combined. If all Ni are sources then the
resulting node N is called source (node). Similarly, N is called sink (node) if all
Ni’s are sinks. There are more operations offered by Reo, but any circuit which
can be constructed by the complete list of Reo operations can also be obtained
by a sequence of instantiations and join operations. Thus we omit explanations
of additional Reo operations.

Script variables and assignments. I/O-ports, nodes created by a join-operation
as well as the result of an instantiation (either a Reo node or module) can be
stored into local script variables. Script variables can also be used to hold values
of predefined data types (typically an integer value). The script variables are
“dynamically typed” and do not have to be declared in advance. An assignment
for a script variable sv has the syntax sv := V where
1 There are the obvious side-constraints. If type : Θ stands for type : T1, . . . , type : Tn

then Θ′ must be a list U1, . . . , Un of elements in DT. If op : Ω encounters m operator
symbols then Ω′ must be a list of m elements in Op, and if the i-th element in op : Ω
is op : (Ti1 , . . . , Tik , Tj) f then the i-th element of Ω′ has to be an element f ′ ∈ Op

of the type (Ui1 , . . . , Uik , Uj). Analogous conditions are required for Π ′ and Υ ′.
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V ::= instantiation
∣

∣ join(N1, . . . , Nn)
∣

∣ expression
∣

∣ script variable

and expression is a term over the signature induced by the predefined data types
and the variables V ∈ Υ (typically arithmetic expressions). Script variables are
dynamically sized arrays, with sv being shorthand for sv [0]. A script variable sv
referring to an instantiated module M provides access to the interface I/O-ports
via sv .source [i] and sv .sink [j]. An RSL circuit can refer to its own source and
sink ports via source[i] and sink[j] (see the explanations below).

Control flow instructions. The control flow features (sequential composition, con-
ditional and repetitive commands) have the standard meaning. These and the
script variables serve for the stepwise construction of a Reo circuit, and should
not be confused with the operational behavior of the network given by the CA
for the Reo circuit that results from executing the RSL script. The control flow
statements make use of Boolean expressions (bexpr) that impose conditions on
the values of script variables and variables in Υ . In the sloppy notation provided
for the syntax of for-loops, we assume that i is an integer script variable and j
and k are either integer script values or constants.
Interface declaration. In the schema sketched in Fig. 4, the body of an RSL cir-
cuit ends with a definition of the nodes that are exported to the higher level as
source and sink ports. This can be done in an analogous way as in CARML via
“in: A1; . . . ; in: Ar; out: B1; . . . ; out: Bs” to specify that the i-th source port
is Ai and the j-th sink port is Bj . It is required that the Ai’s are sources and the
Bj ’s are sinks (I/O-ports or Reo nodes) that have been defined in stmt via an
assignment or module instantiation. Furthermore, the Ai’s and Bj ’s are required
to be pairwise distinct. Alternatively, one may depart from the schema in Fig. 4
and define the interface ports in stmt via the references source[i] and sink[j], ei-
ther by assignments (“source [i] := . . .” and “sink [j] := . . .”) or instantiations
(“new module( . . . , source[i], . . . ; . . . , sink[j], . . .)”). The indices i and j for the
exported source and sink ports have to be consecutive starting with 0. If there
are two or more assignments for, e.g., source [i] then the last one declares the
i-th source port.

Semantics of an RSL circuit. Let C be an RSL circuit with the parameters
Θ, Ω, Π and Υ as in Fig. 4. To provide an operational semantics for C, we fix
an interpretation J for the symbols in the parameter list of C (which yields
an interpretation for the induced signature SigC) and then construct a Reo
circuit RC,J for C by means of the instructions given in stmt. Finally, we can
apply the machinery presented in [5] to construct a constraint automaton AC,J
from RC,J . The data-flow vocabulary VocC of this constraint automaton AC,J
is defined according to the interface declaration, i.e., VocC = (LC ,Lsrc

C ,Lsnk
C , λC)

where Lsrc
C = {A1, . . . , Ar} and Lsnk

C = {B1, . . . , Bs} if the interface declaration
specifies A1, . . . , As as source ports and B1, . . . , Bs as sink ports. The function
λC is the obvious one and assigns the message-type of Ai to the i-th source port
(source[i−1]) and the message-type of Bj to the j-th sink port (sink[j−1]).
The set of all observable locations of C is LC = Lsrc

C ∪ Lsnk
C .
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The Reo circuit RC,J is obtained by executing the RSL script given by the
instructions in the body of C. When instantiating a module the meanings of the
uninterpreted data types, operator or predicate symbols are taken according to
J . The instantiation of a CARML module M(Θ0, Ω0, Π0, Υ 0) with n sources
and m sinks via the instruction comp := newM(Θ′, Ω′, Π ′, Υ ′)(D1, . . . , Dn, E1,
. . ., Em) means binding an instance comp of M where the i-th source of comp is
identified with the possibly already existing node Di and the j-th sink of comp
with Ej . In the Reo circuit RC,J , comp is viewed as a black-box component.
However, by applying the algorithm of [5] (extended to handle global variables)
to construct a constraint automaton from RC,J we use a constraint automaton
Acomp,J as specification for the behavioral interface of that instance comp of M.
AutomatonAcomp,J can be obtained as follows. Let J0 be the interpretation that
arises from J by the substituting Θ0 with Θ′ (i.e., if the i-th data type symbol
in Θ0 is T and the i-th element of Θ′ is U then TJ0 = UJ ) and substituting Ω0
with Ω′, Π0 with Π ′, and Υ 0 with Υ ′. We now regard the constraint automaton
AM,J0 and replace the i-th source port of M with Di and the j-th sink port
of M with Ej in the data-flow vocabulary of AM,J0 and the concurrent I/O-
operations that appear as labels for the transitions of AM,J0 . The resulting
automaton is Acomp,J . The meaning of an instantiation of another RSL script
C′ via the instruction comp := new C′(Θ′, Ω′, Π ′, Υ ′)(D1, . . . , Dn, E1, . . . , Em)
is analogous. It has the effect of including the Reo circuit associated with the
generated instance of C′.

CIRCUIT buffered replicator 〈type : T, var : integer k〉 {
// create channels

F := new FIFO1〈T 〉(A; R[0]);
for (i = 1, . . . , k){ new SYNC〈T 〉(R[i]; B[i]); }

// join channel-ends in a node N
N := node〈T 〉;
for (i = 0, . . . , k){ join(R[i], N); }

// define the interface of the circuit
source[0] := A;
for (i = 0, . . . , k−1){ sink[i] := B[i + 1]; }

}

...A

B[1]

B[2]

B[k]

source[0]

sink[0]

sink[1]

sink[k-1]

Fig. 5. RSL code for a Reo circuit for a buffered replicator of size k

Example 2. Fig. 5 shows the RSL code and its Reo circuit for a buffered replica-
tor with k output ports where k is an integer variable passed in the parameter list.
It uses modules FIFO1〈type : T 〉 and SYNC〈type : T 〉 from a built-in library that
model a FIFO channel with one buffer cell and a synchronous channel, respec-
tively, where both the input and output port of that channel have (uninterpreted)
message-type T . For the instantiation of a buffered replicator circuit one has to
provide an interpretation TJ for the data type symbol T to fix the type of data
that may flow through the connector and an integer kJ for variable k which



260 C. Baier et al.

A B[2]

B[1]
R[0]

R[1]

R[2]

F

source[0]

sink[0]

sink[1]
B[2]

B[1]F

A

R[1], R[2]
N,R[0],

Fig. 6. Three phases for creating a buffered replicator of size 2. (a) create channels,
(b) join channel ends, and (c) export the interface

determines the number of sink ports. (We assume here that kJ ≥ 1.) Fig. 6
illustrates the three phases in the construction of Rrepl,J (instantiation, compo-
sition via the join operations, and interface declaration) for kJ = 2. In the first
phase of the execution of the RSL script, a FIFO channel with one buffer cell
and two synchronous channels are created. In a second phase the source ends
of the synchronous channels are joined with the sink of the buffer in a new Reo
node N . In the last phase the interface of the connector is defined by exporting
the source end of the buffer and the sink ends of the synchronous channels.

// include predefined modules and prototype definition for a replicator and module M:
#include ”builtin”, ”buffered replicator.rsl”, ”some component.carml”
CIRCUIT main{

repl := new buffered replicator〈Boolean, 2〉(C; D1, D2);
S[0] := new SYNC〈Boolean〉(B1; C);
S[1] := new SYNC〈Boolean〉(D1; A1);
S[2] := new SYNC〈Boolean〉(D2; E2);
comp := new M〈Boolean〉(A1, E1; B1);
in : E1; out : E2; // equivalent to source[0] := E1; sink[0] := E2;

}

Fig. 7. RSL program for the circuit Rmain depicted in Fig. 8

The replicator can be instantiated in another context like the RSL program
in Fig. 7. The instantiation of the buffered replicator yields the interpretation
TJ = Boolean and kJ = 2. Thus, the first step in the construction of the Reo
circuit Rmain for the RSL program in Fig. 7 is running the script for the buffered
replicator which yields the (sub)circuit Rrepl,J . Then, the three synchronous
channels S[0], S[1], and S[2] arise by the instantiation of the CARML module
SYNC〈type:T 〉 taken from the built-in library. Finally, an instance comp of a
CARML module M (also taken from a library) is created. We assume here that
M’s parameter list consists of an uninterpreted data type symbol and that M
has two input ports and one output port. The first input port of comp is identified
with node A1, the output port of comp with B1, while the second input port
E1 of comp is a fresh node. Fig. 8 shows the resulting Reo circuit Rmain, where
comp is treated as a black-box component. The constraint automaton Acomp

for the behavioral interface of comp is obtained from the constraint automaton
AM,J0 of its prototype module M and the interpretation J0 that assigns the
type Boolean to the data type symbol T (i.e., TJ0 = Boolean) and replacing
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E1

A1

B1 C

D1

D2 E2

instance comp of M〈T〉
instance repl of

buffered replicator〈T,k〉

Fig. 8. Reo circuit Rmain for the RSL program in Fig. 7

the names of the I/O-ports of M by the ones provided during the instantiation.
The constraint automaton Amain for the RSL program in Fig. 7 is then obtained
by using the algorithm of [5] to construct a constraint automaton A for the
circuit Rmain (where comp is treated as a black-box component), constructing
the constraint automaton Acomp = AM,J0 [source[0]/A1,

source[1]/E1,
sink[0]/B1], and

finally building the product of A and Acomp as described in [5]. 	

Dynamic reconfiguration. RSL provides support for specifying component
connectors with multiple network topologies. The interface of a dynamic con-
nector C contains a special input port C.reconf, called reconfiguration port.

CIRCUIT C 〈type : Θ, op : Ω, pred : Π, var : Υ 〉 {
stmt; // construction of a common sub-circuit
interface decl // declaration of the exported source/sink ports
TOPO(id1 ) = {stmt1} // additional sub-circuit for topology id1

...
TOPO(idt) = {stmtt} // additional sub-circuit for topology idt

}

Fig. 9. Schema for RSL scripts with dynamic reconfiguration

The schema of RSL scripts with dynamic reconfigurations is shown in Fig. 9.
The parameter list is the same as before. The body of a dynamic RSL circuit C
consists of statement stmt that specifies a common (static) sub-circuit Cstmt of
all network topologies, followed by the interface declaration and instructions of
the form topo(idi){stmti} for i = 1, . . . , t. Here, idi denotes an identifier for the
i-th network topology and stmti is a statement. The network topology with an
identifier idi is generated by the composite statement stmt ; stmti, resulting in the
(static) Reo circuit C′i. The interface declaration specifies the input and output
ports of C, except for the reconfiguration port circ.reconf of the instances of
the circuit C in Fig. 9. No special declaration is required for the reconfiguration
port. The assignments in the interface declaration can only refer to the nodes
and ports that appear in stmt, but not to entities created in stmt1, . . . , stmtt.
Any other RSL circuit circ′ creating an instance circ of the circuit C in Fig. 9
can access the reconfiguration port circ.reconf as any port in the interface
of circ. Hence, any module that is connected in circ′ to the reconfiguration
port circ.reconf can serve as a driver and trigger switches in the topology of circ
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by sending the identifier of the new topology. The constraint automaton AC,J
for a dynamic connector C as in Fig. 9 can be seen as a complete hyper-graph
with t hyper-vertices (one hyper-vertex for each topology). Each hyper-vertex
stands for a constraint automaton for one of the circuits C′i. The edges of this
hyper-graph represent the switch from one topology to another one by receiving
a signal on the reconfiguration port. The formal definition of AC,J is as follows.
The data-flow vocabulary VocC is defined according to the interface declaration
completed with the reconfiguration port C.reconf which is a source port of
message-type {id1, . . . , idt}. We use the aforementioned construction for each
constraint automatonA′

i = Astmt;stmti,J = (Q(i), VocC ,→i, Q
(i)
0 ) for the circuit

C′i induced by the statement stmt ; stmti. The states in Q(i) can be written in
the form 〈q, q(i)〉 where q stands for a state in the constraint automaton Astmt,J
for the (static) common subcircuit Cstmt of all circuits C′1, . . . , C′t and q(i) a state
of constraint automaton Astmti,J for the subcircuit induced by stmti. W.l.o.g.
we can assume that Q(i) ∩Q(j) = ∅ for 1 ≤ i < j ≤ t. The constraint automaton
AC,J = (Q, VocC ,→, Q0) for the dynamic connector C is then obtained by
combining A′

1, . . . ,A′
t as follows. The state space Q of AC,J is the disjoint union

of the state spaces of A′
1, . . . ,A′

t, that is, Q = Q(1) ∪ . . . ∪ Q(t). The set Q0 of
initial states in AC,J is the set of all states 〈q, q(i)〉 where q is an initial state
in the constraint automaton Astmt,J for stmt and q(i) an initial state in the
constraint automaton Astmti,J for stmti. The transitions → of AC,J are given
by the following two rules, where the first stands for the receipt of the signal to
switch to the j-th network topology and the second rule stands for the execution
of a concurrent I/O-operation in the i-th topology:

q(j) initial state of the CA Astmtj ,J for stmtj

〈q, q(i)〉 C.reconf?idj−−−−−−−−→ 〈q, q(j)〉

〈q, q(i)〉 c−→i 〈q, p(i)〉
〈q, q(i)〉 c−→ 〈q, p(i)〉

where C.reconf?idj denotes the unique concurrent I/O-operation c with L(c) =
{C.reconf} and c(C.reconf) = idj .

5 Modeling a Railway Network

We demonstrate our hybrid approach with Vereofy’s input languages CARML
and RSL by means of a toy example modeling a simple railway network, com-
posed out of basic building blocks (tracks, stations, switches). Trains are rep-
resented by unique identifiers and travel of a train is modeled by data flow of
its identifier. We use the CARML module track (Fig. 3) as the basic (unidirec-
tional) railway track, allowing a train to stop or to pass through instantaneously.
A CARML module track with train is a variant of this basic track, initially occu-
pied by a train. It has an additional parameter (var:TrainType initial train)
used to specify the identifier of this train and can be derived from track by set-
ting the initial values of variables “stat := occupied” and “train := initial train”.
A CARML module for a train station (train station) is obtained from track by
removing the transition for an instantaneous pass-through.
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Railway switches come in two variants, left-hand-side (lhs) with k entries and
one exit and right-hand-side (rhs) with k exits and one entry. In Fig. 10, we
show how to model two variants of right-hand-side switches with nondetermin-
istic choice between the possible exits, one as a CARML module with two exits
(simple rhs switch) and one as a RSL script with a parameterized number of k
exits (rhs switch), recursively built out of simpler switches. As an example for a
left-hand-side switch, Fig. 10 also shows the RSL script for a switch with two
entries, using dynamic reconfiguration (reconf lhs switch).

The CARML module for simple rhs switch ensures that a train leaves via
exactly one exit and serves as the basic building block for the more general
rhs switch. Its RSL script has a parameter k specifying the number of exits (sink
ports). The first two lines handle the base cases, by instantiating either a built-in
synchronous channel or a simple rhs switch and exporting their ports. For k > 2,
two instances of rhs switch with half the number of exits are recursively instan-
tiated (r1,r2) and a simple rhs switch (l) switches between r1 and r2. In the last
three lines, the interface with one source port (that of l) and k sink ports (those
of r1 and r2) is generated.

The RSL script for reconf lhs switch declares two sources and one sink as the
common interface. In both topologies (having identifiers 0 and 1), one of the
sources is connected via a synchronous channel to the sink, the other source is
left unconnected (and thus blocks data flow). Upon receipt of topology identifier
i at the reconfiguration port, the switch reconfigures to topology i, letting trains
pass only from source i to the sink port.

The RSL program in Fig. 11 composes a simple railway network. A set of
train identifiers is defined and the building blocks are included. In the RSL
script main, instances of the building blocks are created and connected at the
nodes Li to yield the depicted network. To provide reconfiguration signals, an
instance of the CARML module driver is connected to the reconfiguration port
of sw1, alternately sending the topology identifiers 0 and 1.

The given model of the railway example may now serve as input for our
verification toolkit Vereofy. The tool allows to check safety or liveness conditions
specified by temporal formula with classical modalities, but also to argue about
the observable data flow at the locations of the network [4].

6 Implementation

Our toolkit Vereofy (see Fig. 1 and www.vereofy.de) supports modeling using
RSL and CARML. Vereofy can be used as stand-alone tool or as an Eclipse plugin
for the Eclipse Coordination Tools (ECT) [19] which allow to specify connec-
tors in a graphical way. It currently supports all language features explained in
Sections 3 and 4, except for the parameterization by uninterpreted symbols for
data types, operators and predicates. Furthermore, global variables and locations
of different message-types are not yet supported2. For model checking purposes,
2 In Sections 3 and 4 we focused on a clear presentation of the core features of CARML

and RSL and slightly departed from the syntax used in our implementation.
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MODULE simple rhs switch〈type : TrainType〉 {
in : TrainType A;
out : TrainType B; out : TrainType C;
−[ active(A) ∧ active(B) ∧ ¬active(C) ∧ dataA = dataB ]→;
−[ active(A) ∧ ¬active(B) ∧ active(C) ∧ dataA = dataC ]→;

} CIRCUIT rhs switch〈type : TrainType, var : integer k〉 {
if(k = 1){new SYNC〈TrainType〉(source[0]; sink[0]); }
if(k = 2){new simple rhs switch〈TrainType〉(source[0]; sink[0], sink[1]); }
if(k > 2){
l := new simple rhs switch〈TrainType〉;
r1 := new rhs switch〈TrainType, 
k

2
�〉;

r2 := new rhs switch〈TrainType, k − 
 k
2
�〉;

join(l.sink[0], r1.source[0]); join(l.sink[1], r2.source[0]);
source[0] := l.source[0]; out := 0;
for(i = 1, . . . , 
k

2
�) {sink[out ] := r1.sink[i − 1]; out := out + 1; }

for(j = 1, . . . , k − 
 k
2
�) {sink[out ] := r2.sink[j − 1]; out := out + 1; }

}
} CIRCUIT reconf lhs switch〈type : TrainType〉 {

source[0] := node〈TrainType〉; source[1] := node〈TrainType〉;
sink[0] := node〈TrainType〉;
TOPO(0) = {new SYNC〈TrainType〉(source[0]; sink[0]); }
TOPO(1) = {new SYNC〈TrainType〉(source[1]; sink[0]); }

}

Fig. 10. Specifications for three variants of railway switches

TYPE Trains = enum{T1, T2, no train};
#include “builtin”,“railway building blocks”
MODULE driver {

out : int(0, 1) B; var : int(0, 1) s := 0;
−[ active(B) ∧ dataB = s ]→ s := (s + 1) mod 2;

}
CIRCUIT main {

t1 := new track with train〈Trains, no train, T1〉(L6; L1);
t2 := new track with train〈Trains, no train, T2〉(L5; L3);
t3 := new track〈Trains, no train〉(L2; L4);
st := new station〈Trains, no train〉(L4; L7);
sw1 := new reconf lhs switch〈Trains〉;
sw2 := new rhs switch〈Trains , 2〉;
join(L1, sw1.source[0]); join(L3, sw1.source[1]);
join(L2, sw1.sink[0]);
join(L5, sw2.sink[0]); join(L6, sw2.sink[1]);
join(L7, sw2.source[0]);
d := new driver; Lr = join(d.sink[0], sw1.reconf);

}

T
1

T
2

Lr

d

sw1

sw2

st

t 1 t 2

t 3

L1 L2

L3

L4

L5

L6 L7

Fig. 11. Example RSL program for a railway network with two trains
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RSL programs are translated into a symbolic BDD-based representation as pre-
sented in [6] of the corresponding constraint automaton. The translation is done
by constructing the Reo circuit and applying the machinery presented in [5] and
the enhancements for dynamic connectors explained in Section 4.

number reachable BDD building
of phils states nodes time (s)

100 1, 89 · 1038 15618 7, 29
200 3, 59 · 1076 31418 31, 15
400 1, 29 · 10153 63018 148, 87
600 4, 62 · 10229 94618 364, 35
800 1, 66 · 10306 126218 706, 12
1000 > 10308 157818 1157, 25

Fig. 12. Dining philosophers results

number of reachable BDD building reachable
processes states nodes time (s) time (s)
(50, 29) 2, 54 · 1021 2652 8, 76 0, 46
(50, 50) 7, 54 · 1028 5298 10, 13 0, 95
(100, 61) 1, 22 · 1045 8412 160, 59 4, 72
(100, 100) 6, 78 · 1058 18123 192, 61 13, 25
(120, 79) 5, 00 · 1056 12807 743, 17 12, 57
(120, 120) 6, 81 · 1070 25353 785, 89 164, 97

Fig. 13. Mutual exclusion results

We illustrate the scalability of our approach by two examples. The first is a
variant of a dining philosophers example [14]. The table in Fig. 12 shows the time
in seconds needed to synthesize the scenario for a given number of philosophers,
the number of reachable states as well as the number of BDD nodes necessary
to store the composite system. Computing the reachable fragment of the state
space finishes within one second for all depicted sizes. The second example is a
mutual exclusion protocol using exogenous coordination, where n processes are
present and k are allowed to enter their critical section at the same time. The
table in Fig. 13 shows the time for the synthesis of the system and the time
for computing the reachable fragment of the state space for different values of
(n, k). The results for both examples have been achieved on a 2,2GHz CPU and
2GB memory.

7 Related Work and Conclusion

Related work. For the design of our languages RSL and CARML we bor-
rowed ideas from many other modeling and coordination languages. We argue
that there are rather natural transformations of many other languages into our
hybrid modeling approach. Several formalisms have been embedded into Reo,
such as Petri nets [20], the actor-based language Rebeca [21] or UML sequence
diagrams [3], which can immediately encoded in RSL. The main features of pro-
cess algebras can be mimicked by Reo operations and encoded in RSL. E.g.,
CCS-like parallel composition with synchronization over complementary actions
can be modeled by synchronous channels and the join-operation. Nondetermin-
istic choice operators can be modeled by a (RSL script for a) Reo circuit for an
exrouter [2]. The concept of name-passing as in the π-calculus [18] is not yet
supported by RSL, but intended for a future extension of RSL.

Interaction systems were introduced in [12] as a general model for component-
based systems. In this approach, the behavioral interfaces of components are
modeled by labeled transition systems and they offer ports to communicate
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with each other. Up to some syntactic adaptions for communication actions,
they can easily be specified in CARML. Connectors of an interaction system are
used to glue ports of different components together by enforcing some actions
to be synchronized. They have a natural representation by an RSL script which
instantiates several synchronous channels and performs several join operations
on their channel ends.

Although the syntax of CARML is inspired by reactive modules [1] there are
some crucial differences concerning the interactions of modules. Communication
of reactive modules has to be realized via interface variables and the parallel
composition of reactive modules is defined in terms of rounds. This round-based
coordination principle of reactive modules can be modeled by a Reo circuit spec-
ified by an RSL script.

Conclusion. The presented approach is based on two modeling languages RSL
and CARML which together permit formal reasoning about component-based
systems relying on endogenous and exogenous coordination, possibly with dy-
namic reconfigurations of the network topology. It allows for compositional and
hierarchical design and reusability of components and coordination units. In our
opinion, our hybrid approach yields a good compromise between (1) the elegance
and expressiveness of coordination languages and (2) meta-languages supporting
an efficient generation of a compact system-representations that yield the basis
for applying model checking routines.

To illustrate the main features of our hybrid approach, we presented a toy
example and experimental results for the model generation with Vereofy for
academic case studies. We are currently working on the modeling and verifica-
tion of larger examples with our tool set, such as a peer-to-peer protocol with a
dynamic network manager and a bio-medical sensor network. The embeddings
of other languages as sketched in Section 7 together with the wide range of ap-
plication areas of Reo (such as modeling of compliance-aware business processes,
long-run business transactions, and orchestration of web services [19]) makes our
modeling and verification approach with the tool set Vereofy applicable for many
purposes.
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15. Klüppelholz, S., Baier, C.: Alternating-time stream logic for multi-agent sys-
tems. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052,
pp. 184–198. Springer, Heidelberg (2008)

16. Lynch, N., Tuttle, M.: An Introduction to Input/Output Automata. CWI Quar-
terly 2(3), 219–246 (1989)

17. Majster-Cederbaum, M., Minnameier, C.: Everything is PSPACE-complete in
interaction systems. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.)
ICTAC 2008. LNCS, vol. 5160, pp. 216–227. Springer, Heidelberg (2008)

18. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

19. Reo website at CWI Amsterdam, http://reo.project.cwi.nl/
20. Scholten, J.-G., Arbab, F., de Boer, F., Bonsangue, M.: Modeling the exogenous

coordination of mobile channel-based systems with Petri nets. In: FOCLASA 2005.
ENTCS, vol. 154(1), pp. 83–99 (2006)

21. Sirjani, M., Jaghoori, M., Baier, C., Arbab, F.: Compositional semantics of an
actor-based language using constraint automata. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 281–297. Springer, Heidelberg
(2006)

http://www.vereofy.de/
http://reo.project.cwi.nl/


From Coordination to Stochastic Models of QoS

Farhad Arbab1, Tom Chothia2, Rob van der Mei1,3, Sun Meng1,
YoungJoo Moon1, and Chrétien Verhoef1

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
2 School of Computer Science, Univ. of Birmingham, United Kingdom

3 Vrije Universiteit Amsterdam, The Netherlands
{Farhad.Arbab,R.D.van.der.Mei,M.Sun,Y.J.Moon,C.G.Verhoef}@cwi.nl,

T.P.Chothia@cs.bham.ac.uk

Abstract. Reo is a channel-based coordination model whose opera-
tional semantics is given by Constraint Automata (CA). Quantitative
Constraint Automata extend CA (and hence, Reo) with quantitative
models to capture such non-functional aspects of a system’s behaviour
as delays, costs, resource needs and consumption, that depend on the
internal details of the system. However, the performance of a system can
crucially depend not only on its internal details, but also on how it is
used in an environment, as determined for instance by the frequencies
and distributions of the arrivals of I/O requests. In this paper we pro-
pose Quantitative Intentional Automata (QIA), an extension of CA that
allow incorporating the influence of a system’s environment on its perfor-
mance. Moreover, we show the translation of QIA into Continuous-Time
Markov Chains (CTMCs), which allows us to apply existing CTMC tools
and techniques for performance analysis of QIA and Reo circuits.

Keywords: Performance evaluation, Coordination language, Reo,
Markov Chains.

1 Introduction

Service-oriented Computing (SOC) provides the means to design and deploy
distributed applications that span organization boundaries and computing plat-
forms by exploiting and composing existing services available over a network.
Services are platform- and network-independent applications that support rapid,
low-cost, loosely-coupled composition. Services run on the hardware of their own
providers, in different containers, separated by fire-walls and other ownership and
trust barriers. Their composition requires additional mechanisms (e.g., process
work-flow engines, connectors, or glue code) to impose some form of coordination
(i.e., orchestration and/or choreography). Even if the quality of service (QoS)
properties of every individual service and connector are known, it is far from
trivial to build a model for and make statements about the end-to-end QoS of
a composed system. Yet, the end-to-end QoS of a composed service is often as
important as its functional properties in determining its viability in its market.

The coordination language Reo [3,6] provides a flexible, expressive model
for compositional construction of connectors that coordinate service behaviour.
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CA [7] were introduced to express the operational semantics of Reo. Indeed, CA
provide a unified model to capture the semantics of components and services,
as well as Reo connectors and their composition. Quantitative Reo and Quanti-
tative Constraint Automata (QCA) [4] extend Reo and CA with the means to
describe and combine the QoS aspects of composed systems. The QCA model
integrates the QoS aspects of components/services and connectors that com-
prise an application to yield the QoS properties of that application, ignoring the
impact of the environment on its performance such as throughput and delays.
While QCA provide a useful model for service selection and composition [20],
the performance of a system can crucially depend not only on its internal de-
tails, but also on how it is used in an environment, as determined, for instance,
by the frequencies and distributions of the arrivals of I/O requests which be-
long to stochastic aspects. However, such stochastic aspects are not investigated
in [20]. Intentional Automata (IA) [15] take into account the influence of the
environment as well as internal details of a system by describing the pending
status of I/O operators interacting with the environment. A particular class of
IA models, called the Reo Automata class, is defined in [15], which provides
precise characterization of context-dependent connectors [7].

In this paper we propose QIA, an extension of IA that allows incorporating
the influence of a system’s environment on its performance. The QIA model
extends the semantics of Reo by admitting annotations on its channel ends and
the channels to represent the stochastic properties of request arrivals at those
ends, data-flows, and data processing and transportation delays through those
channels. The resulting Stochastic Reo model retains its compositional semantics
through QIA: the QIA of a composed system is the product (composition) of the
QIA of the individual channels and components/services used in its construction.

The QIA of a system typically has more states than its counterpart CA or
QCA, reflecting the (epistemologically) intentional configurations of the system
that CA and QCA abstract away. In addition to the synchronization and data
constraints of the CA model, the transitions in QIA carry extra information
in their labels to convey arrival and firing of data/requests, and their stochastic
properties. This information is adequate to allow the analysis of the performance
of a system in the context of the stochastic processes in its environment that
determine the arrival of data/requests on its ports and their delays. In order
to carry out such analysis, in this paper we show the translation of QIA into
CTMCs [13], which allows us to apply existing CTMC tools and techniques for
performance analysis of QIA and (Stochastic) Reo circuits.

The main contributions in this paper include:

– Stochastic Reo as a compositional model for specifying system behaviour
that captures its non-functional (QoS) aspects and takes into account the
influence of the environment on its performance,

– QIA as the operational semantics for Stochastic Reo which serves as an
intermediate model for generating CTMCs, and

– translation from QIA specifications into CTMC models for performance
evaluation.
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The Reo and automata editors in the Eclipse Coordination Tools (ECT) [1]
have been extended to support Stochastic Reo and QIA, and the automatic
derivation of the QIA semantics of Reo circuits. We have implemented the trans-
lation of QIA to CTMCs described in this paper as a plug-in within this plat-
form. We have also developed a bridge plug-in that generates the proper input
for other stochastic analysis tools like PRISM [2,19] from our CTMC models to
allow performance analysis of Stochastic Reo.

The remainder of this paper is organized as follows. In Section 2, we provide
a short overview of Reo, CA, and their quantitative variants. In Section 3 we
introduce Stochastic Reo. In Section 4 we define QIA and their composition
through product and refinement. In Section 5, we show the translation from
QIA into its corresponding CTMC. In Section 6, we show an example of how our
CTMC model can be analyzed in PRISM. We review related work in Section 7.
Conclusions and future work comprise Section 8. A crucial step in the translation
of QIA into a CTMC, as described in Section 5, consists of the sequencing of the
delays of synchronized actions that appear on the label of a single transition,
and the algorithm of extracting the sequence is given in [5].

2 Preliminaries

2.1 Reo

Reo is a channel-based exogenous coordination model wherein complex coor-
dinators, called connectors, are compositionally built out of simpler ones. We
summarize only the main concepts of Reo and its CA semantics here. Further
details about Reo and its semantics can be found in [3,7].

Fig. 1. Some basic Reo channels

Complex connectors in Reo are organised in a network of primitive connec-
tors, called channels. Connectors serve to provide the protocol that controls and
organises the communication, synchronization and cooperation among the com-
ponents/services that they interconnect. Each channel has two channel ends,
and there are two types of channel ends: source and sink. A source channel end
accepts data into its channel, and a sink channel end dispenses data out of its
channel. Reo places no restriction on the behaviour of a channel, so it is possi-
ble for the ends of a channel to be both sources or both sinks. Figure 1 shows
the graphical representation of some simple channel types. A FIFO1 channel
(FIFO1) represents an asynchronous channel with one buffer cell. A synchronous
channel (Sync) has a source and a sink end and no buffer. It accepts a data
item through its source end if it can simultaneously dispense it through its sink.
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A lossy synchronous channel (LossySync) is similar to a synchronous channel
except that it always accepts all data items through its source end. The data
item is transferred if it is possible for the data item to be dispensed through the
sink end, otherwise the data item is lost. A synchronous drain (SyncDrain) has
two source ends and no sink end. It accepts a data item through one of its ends
if and only if a data item is also available to be accepted simultaneously through
the other end as well.

Connectors are constructed by composing simpler ones via the join operation.
Channels are joined together in a node which consists of a set of channel ends.
Nodes are categorised into source, sink and mixed nodes, depending on whether
all channel ends that coincide on a node are source ends, sink ends or a combina-
tion of both. In remainder of this paper, we call source and sink nodes boundary
nodes since they interact with the environment. Reo allows an open-ended set
of user-defined channels with arbitrary behaviour, but it fixes the semantics of
the nodes. A source node acts as a synchronous replicator. A sink node acts as
a merger. A mixed node combines the behaviour of the the other two nodes and
acts as a self-contained “pumping station” that atomically consumes an item out
of one of its selected sink ends and replicates it to all of its source ends. Nodes
have no memory or buffer and perform their actions atomically. This forces syn-
chrony and exclusion constraints to propagate through the nodes, which causes
the channels involved in each synchronous region of a circuit to synchronize their
actions in atomic steps.

Fig. 2. Ordering circuit

For example, the connector shown in Figure 2 is an alternator that imposes
an ordering on the flow of the data from its input nodes A and B to its output
node C. The SyncDrain channel enforces that data flow through A and B only
synchronously. The empty buffer together with the propagation of synchrony
through the three nodes guarantee that the data item obtained from B is deliv-
ered to C while the data item obtained from A is stored in the FIFO1 buffer.
After this, the buffer of the FIFO1 is full and propagation of exclusion from
A through the SyncDrain channel to B guarantees that data cannot flow in
through either A or B, but C can dispense the data stored in the FIFO1 buffer,
which makes it empty again. Assume three independent processes (that follow
no communication protocol and each of which knows nothing about the others)
place I/O requests on nodes A, B, and C, each according to its own internal
timing. By delaying the success of their requests, when necessary, this circuit
guarantees that successive read operations at C obtain the values produced by
the successive write operations at B and A alternately.



272 F. Arbab et al.

2.2 Constraint Automata

CA were introduced [7] as a formalism to capture the operational semantics of
Reo, based on timed data streams, which also constitute the foundation of the
coalgebraic semantics of Reo [6].

We assume a finite set N of nodes, and denote by Data a fixed, non-empty
set of data that can be sent and received through these nodes via channels. CA
use a symbolic representation of data assignments by data constraints, which
are propositional formulas built from the atoms “dA ∈ P”, “dA = dB” and
“dA = d” using standard Boolean operators. Here, A, B ∈ N , dA is a symbol
for the observed data item at node A and d ∈ Data. DC(N) denotes the set
of data constraints that at most refer to the observed data items dA at node
A ∈ N . Logical implication induces a partial order ≤ on DC: g ≤ g′ iff g ⇒ g′.

A CA over the data domain Data is a tuple A = (S, S0, N ,→) where S is
a set of states, also called configurations, S0 ⊆ S is the set of its initial states,
N is a finite set of nodes, → is a finite subset of S × {N} × DC(N) × S with
N ∈ 2N , called the transition relation. A transition fires if it observes data items
in its respective ports/nodes of the component that satisfy the data constraint
of the transition, and this firing may consequently change the state of the
automaton.

Fig. 3. Constraint Automata for basic Reo channels

Figure 3 shows the CA for the primitive Reo channels in Figure 1. In this figure
and the remainder of this paper, for simplicity, we assume the data constraints
of all transitions are true (which simply imposes no constraints on the contents
of the data-flows) and omit them to avoid clutter. For proper full treatment of
data constraints in CA, see [7].

As the counterpart for the join operation in Reo, the product of two CA
A1 = (S1, S1,0, N1,→1) and A2 = (S2, S2,0, N2,→2) is defined as a constraint
automaton A1 �� A2 ≡ (S1 × S2, S1,0 × S2,0, N1 ∪ N2,→) where → is given by
the following rules:

– If s1
N1,g1

−−−−−−−−−−→1 s′1, s2
N2,g2

−−−−−−−−−−→2 s′2, N1 ∩ N2 = N2 ∩ N1 and

g1 ∧ g2 is satisfiable, then 〈s1, s2〉
N1∪N2,g1∧g2
−−−−−−−→ 〈s′1, s′2〉.

– If s1
N1,g1

−−−−−−−−−−→1 s′1, where N1∩N2 = ∅ then 〈s1, s2〉
N1,g1

−−−−−−−→ 〈s′1, s2〉.
– If s2

N2,g2
−−−−−−−−−−→2 s′2, where N2∩N1 = ∅ then 〈s1, s2〉

N2,g2
−−−−−−−→ 〈s1, s

′
2〉.
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2.3 Quantitative Constraint Automata and Quantitative Reo

Quantitative Reo and QCA are extensions of Reo and CA, respectively, with
quantitative aspects by Q-algebra [14] and form the basis for compositional
specification and reasoning on QoS issues for connectors. A Q-algebra is an
algebraic structure R = (C,⊕,⊗, �,0,1) such that R⊗ = (C,⊕,⊗,0,1) and
R� = (C,⊕, �,0,1) are both constraint semirings [10,21]. C is a set of QoS
values and is called the domain of R. The operation ⊕ induces a partial order
≤ on C, which is defined by c ≤ c′ iff c ⊕ c′ = c′. The other two operators ⊗
and � can combine QoS values when they occur, respectively, sequentially and
concurrently. In these constraint semirings, 0 is the identity for ⊕, and 1 is the
identity for ⊗ and �.

A QCA is a tuple A = (S, S0, N , R,−→) where S is a set of states, S0 ⊆ S
is the set of its initial states, N is a finite set of nodes, R = (C,⊕,⊗, �,0,1) is
a Q-algebra with domain C of QoS values, −→ is a finite subset of S × {N} ×
DC(N) × C × S with N ∈ 2N .

The synchronous behaviour of each Quantitative Reo channel has a certain
QoS value in its label, which is in the domain C of a Q-algebra. The following
types of QoS for the basic channels in Reo are considered: t (execution time
for data transmission), c (allocated memory cost for the message transmission)
and p (reliability represented by the probability of successful transmission). The
corresponding Q-algebras are given as:

– execution time: (R+ ∪ {∞}, max, +, max, 0, 0)
– memory cost: (N+ ∪ {∞}, max, +, +, 0, 0)
– reliability: ([0, 1], min,×,×, 1, 1)

Quantitative Reo keeps a compositional framework with the same join op-
eration of Reo, and QCA, as operational semantics of Quantitative Reo, pro-
vide a corresponding composition method (product). Two QCA A and B with
the same Q-algebra turn into a new QCA by the product operation. For A =
(S1, S0,1, N1, R,−→1) and B = (S2, S0,2, N2, R,−→2), their product is defined
as

A �� B = (S1 × S2, S0,1 × S0,2, N1 × N2, R,−→)

where −→ is given by the following rules:

– If s1
N1,g1,c1
−−−→ 1 s′1, s2

N2,g2,c2
−−−→ 2 s′2, N1 ∩ N2 = N2 ∩ N1 �= ∅ and g1 ∧ g2 is

satisfiable, then 〈s1, s2〉
N1∪N2,g1∧g2,c1�c2
−−−−−−−−−−−−→ 〈s′1, s′2〉.

– If s1
N,g,c
−−−→1 s′1, where N ∩ N2 = ∅ then 〈s1, s2〉

N,g,c
−−−→ 〈s′1, s2〉.

– If s2
N,g,c
−−−→2 s′2, where N ∩ N1 = ∅ then 〈s1, s2〉

N,g,c
−−−→ 〈s1, s

′
2〉.

The quantitative version of the circuit in Figure 2 and its corresponding QCA
are shown in Figure 5. The relevant QoS values are given by the tuple (ti, ci, pi)
that represents the QoS values for the basic channels, as specified in Figure 4.
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Fig. 4. Quantitative Constraint Automata for basic Quantitative Reo channels

Fig. 5. Ordering circuit in Quantitative Reo and its QCA

3 Stochastic Reo

Stochastic Reo is an extension of Reo annotated with stochastic properties, such
as processing delays on channels and arrival rates of data/requests at the channel
ends, allowing general distributions. Figure 6 shows the primitive channels of
Stochastic Reo that correspond to the primitives of Reo in Figure 1. In this
figure and the remainder of this paper, for simplicity, we delete node names, but
these names can be inferred from the names of their respective arrival processes:
for instance, ‘dA’ means an arrival process at node ‘A’. The labels annotating
Stochastic Reo channels can be separated into the following two categories:

Fig. 6. Basic Stochastic Reo channels

– channel delays
To model the stochastic behaviour of Reo channels, we assume every Reo
channel has one or more associated delays represented by their corresponding
random variables. Such a delay represents how long it takes for a channel to
deliver or throw away its data. For instance, a LossySync has two associated
variables ‘dAB’ and ‘dALost’ for stochastic delays of, respectively, successful
data-flow through the nodes ‘A’ and ‘B’ and losing data at node ‘A’ when
a read request is absent at node ‘B’. In a FIFO1 ‘dAF ’ means the delay
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for data-flow from its source ‘A’ into the buffer, and ‘dFB’ for sending the
data from the buffer to the sink ‘B’. Similarly, the random variable of a Sync
(and a SyncDrain) indicates the delay for data-flow from its source node ‘A’
to its sink node ‘B’ (and losing data at both ends, respectively).

– arrivals at nodes
I/O operations are performed on the source and sink nodes of a Reo circuit
through which it interacts with its environment. We assume the time be-
tween consecutive arrivals of read and write requests at the sink and source
nodes of Reo connectors depends on their associated stochastic processes. For
instance, ‘dA’ and ‘dB’ in Figure 6 represent the associated arrival processes
at nodes ‘A’ and ‘B’. Furthermore, at most one request at each boundary
node can wait for acceptance. If a boundary node is occupied by a pending
request, then the node is blocked and consequently all further arrivals at
that node are lost.

Stochastic Reo supports the same compositional framework of joining nodes
as Reo. Most of the technical details of this join operation are identical to that of
Reo. The nodes in Stochastic Reo have certain QoS information on them, hence
joining nodes must accommodate their composition. Nodes are categorized into
mixed, source, and sink nodes. Boundary nodes receive data/requests from the
environment, after that mixed nodes are synchronized for data-flow and then
merely pump data in the circuit, i.e., mixed nodes do not interact with the envi-
ronment. This account shows the causality of the events happening in the circuit,
such as arrivals of data/requests at its boundary nodes, synchronizing its mixed
nodes, and occurrences of data-flow, sequentially. Besides, we assume that pump-
ing data by mixed nodes is an immediate action and therefore mixed nodes have
no associated stochastic variables1. Boundary nodes have their corresponding
stochastic arrival processes, yet when they are combined into mixed nodes by a
join operation, they lose their stochastic variables. As mentioned in Section 2, a
source node and a sink node act as a replicator and a non-deterministic merger,
respectively, and each activity, such as selecting a sink end or replicating data to
its source ends, has its own stochastic property. In order to describe stochastic
delays of a channel explicitly, we name the delay by the combination of a pair of
(source, sink) nodes and the buffer of the channel. For example, the stochastic
property ‘dAF ’ of FIFO1 in Figure 6 stands for the data-flow from the source end
‘A’ into the buffer of the FIFO1. However, in cases where, for instance, a source
node (as a replicator) A is connected to two different FIFO1s (buffers), then the
corresponding stochastic processes have the same name, e.g., dAF . To avoid such
an ambiguous situation, we rename the stochastic processes by adding a num-
ber after its node name like dA1F and dA2F when the node has more than one

1 This assumption is not a real restriction. A mixed node with delay can be modelled
by replacing this mixed node with a Sync channel with the delay. Moreover, according
to the required level of specification detail, each input and output of the mixed node
can be modelled by adding corresponding Sync channels with their stochastic values.
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Fig. 7. Ordering circuit in Stochastic Reo

outgoing channel or one incoming channel. As an example of composed Stochas-
tic Reo, Figure 7 shows the ordering circuit with the annotation of its stochastic
variables.

4 Quantitative Intentional Automata

In this section we introduce the notion of QIA which is an extension of CA and
provides operational semantics for Stochastic Reo. Whereas CA transitions de-
scribe system configuration changes, QIA transitions describe the changes of not
only the system configuration but also the status of its pending I/O operations.
In CA, configurations are shown as states, and processes causing state changes
are shown in transition labels as a set of nodes where data are observed. Simi-
larly, in QIA, system configurations and the status of pending I/O operations are
shown as states. Data-flow or firing through nodes causes changes in the system
configuration, and arrivals of data/requests at the nodes or synchronization of
nodes changes the status of pending data/requests. These two different types of
changes are shown in the transition labels by two different sets of nodes. More-
over, QIA transitions carry their relevant stochastic properties in their labels.
We use such QIA as an intermediate model for translation Stochastic Reo into
a homogeneous CTMC.

Definition 1. QIA
A Quantitative Intentional Automaton is a tuple A =(S, S0, N ,→) where

– S ⊆ L × 2N is a finite set of states.
• L is a set of system configurations.
• R ∈ 2N is a set of pending nodes, that describes the pending status in

the current state.
– S0 ⊆ S is a set of initial states.
– N is a finite set of nodes.
– →⊆

⋃

M,N⊆N

S ×{M}× {N}×DC(N)× 2DI × S is the transition relation.

• DI ⊆ 2N × 2N × R+.

A transition in a QIA is represented as 〈l, R〉
M,N,g,D

−−−−−−−→ 〈l′ , R′〉 where M is
the set of nodes that exchange data or synchronize for data-flow through the
transition, N is the set of nodes to be released by the firing of the transition,
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Fig. 8. QIA for each channel of Figure 6

and D ⊆ DI is the set of delay information tuples (I, O, r) where I and O are
sets of, respectively, source (input) and sink (output) nodes, and r indicates
the stochastic delay rate for the data-flow from I to O or the arrival rate of
data/request from the environment at nodes in I ∪ O. Furthermore, let D =
{(Ij , Oj , rj)|1 ≤ j ≤ n}, then

⋃

1≤j≤n

(Ij ∪ Oj) = N ∪ M .

Definition 1 is not enough to specify the system behaviour correctly. The
causality of activities, such as arrivals of data/requests and firing, is not embraced
in this definition. Moreover, in continuous time scale, all events occur one by one:
only a single event, such as one request arrival or a single firing in a set of synchro-
nized atomic firings, is taken into consideration at a time. Taking these features
into account, we explore additional conditions that can be placed on QIA, and
define the well-formedness condition of QIA. Hence, the QIA corresponding to
the primitive Stochastic Reo channels are represented like Figure 8.

Definition 2. QIA Well-formedness

A QIA A = (S, S0, N ,→) is well-formed if ∀〈l, R〉
M,N,g,D

−−−−−−−→ 〈l′ , R′〉 ∈→ all
following conditions are satisfied:

1. N ⊆ R ∪ M
2. M ∩ R = ∅
3. (R ∪ M) \ N = R′

4. ((N �= ∅ ∧ M ⊆ N) ∨ (N = ∅ ∧ M �= ∅ → |M | = 1))
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According to the assumption on synchronization and the causality of the activ-
ities in a Reo circuit, the well-formedness conditions are interpreted as follows:

1. A data-flow can occur only when all necessary nodes are ready to transfer
the data.

2. A node is blocked when the node is suspended and occupied by another data
item.

3. A firing releases the nodes involved in the firing.
4. A firing and a data arrival are mutually exclusive:

– A firing and its relevant synchronization happen simultaneously, i.e.,
after the synchronization of nodes, those nodes are immediately released
by their corresponding firing.

– Only one single data/request arrives at a time.

Fig. 9. Corresponding QIA to the ordering circuit in Figure 7

QIA provide a compositional framework for Stochastic Reo. Hence, the QIA
corresponding to a circuit is obtained by the product of the QIA of all primitive
channels that constitute the circuit, for example, the QIA model in Figure 9
corresponding to the ordering in Figure 7 is obtained by composing the QIA of
its primitive channels. The mixed nodes from such a composition are obtained by
a function newMixed : A ×A → 2N . As mentioned above, the synchronization
of its relevant mixed nodes has no associated stochastic property and occurs
simultaneously with its corresponding firing. Hence, the mixed nodes involved
in a certain firing must be considered as undergoing an atomic change through
the firing, and the stochastic properties of the mixed nodes are deleted in the
composed result. To represent such simultaneous occurrence, the relevant mixed
nodes must be collected and shown in the label of their firing together.
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Definition 3. Synchronization of mixed nodes
For two QIA A = (S1, S0,1, N1,→1), B = (S2, S0,2, N2,→2), the firing with

synchronization of its mixed nodes is defined as s
C∪M,N,g,D

−−−−−−−−−→∗
i s

′
for C ⊆

newMixed(A , B) such that there are consecutive transitions with the mixed
nodes until its firing appears

s
{Bi},∅,true,Di

−−−−−−−−−−→i s1
{Bk},∅,true,Dk

−−−−−−−−−−→i · · ·
M,N,g,D

−−−−−−−−−−→i s
′

where Bi, Bk, · · · ∈ C ∧ C ⊆ N for i = 1, 2.

Definition 4. QIA Product
Given two QIA A = (S1, S1,0, N1,−→1) and B = (S2, S2,0, N2,−→2), their
product is defined as A �� B = (S1 × S2, S1,0 × S2,0, N1 ∪ N2,−→) where −→
is given by the following set of rules:

1. for every 〈l1, R1〉
M1,N1,g1,D1

−−−−−−−−−−→1 〈l
′
1, R

′
1〉 and 〈l2, R2〉

M2,N2,g2,D2
−−−−−−−−−−→2 〈l′2, R

′
2〉

– if M1 ∩ N2 = ∅ ∧ N1 ∩ N2 = ∅, then

〈(l1, l2), R1 ∪ R2〉
M1,N1,g1,D1

−−−−−−−−−−−→ 〈(l′1, l2), R
′
1 ∪ R2〉.

– if M2 ∩ N1 = ∅ ∧ N2 ∩ N1 = ∅, then

〈(l1, l2), R1 ∪ R2〉
M2,N2,g2,D2

−−−−−−−−−−−→ 〈(l1, l
′
2), R1 ∪ R

′
2〉.

2. for every 〈l1, R1〉
C1∪M1,N1,g1,D1

−−−−−−−−−→∗
1 〈l′1, R

′
1〉 and 〈l2, R2〉

C2∪M2,N2,g2,D2

−−−−−−−−−→∗
2 〈l′2, R

′
2〉

with ∀C1, C2 ⊆ newMixed(A , B)
– if N1 �= ∅ �= N2 ∧ N1 ∩ N2 = N2 ∩ N1, then

〈(l1, l2), R1 ∪ R2〉
C1∪C2∪M1∪M2,N1∪N2,g1∧g2,D1∪D2
−−−−−−−−−−−−−−−−−−−−−−−−→ 〈(l′1, l

′
2), R

′
1 ∪ R

′
2〉

The product of two QIA generates all possible compositions of transitions,
though some of the generated transitions are irrelevant. For instance, in the
product of the automata LossySync AB and Sync BC (cf. the first automaton
in Figure 10), the state 〈l0, {A, C}〉 has two possible firing transitions: one for
losing the data at A and the other for the data-flow from A to C via the mixed
node B. However, this state says that some requests are pending on nodes A and
C, therefore, only data-flow between A and C can occur in the next step. We
define a notion of refinement in the following that can be used to delete such
unnecessary transitions from a product.

Definition 5. QIA Refinement
For a QIA A = (S, S0, N ,→), the refinement of A , Ref(A ), is defined as
(S, S0, N ,→′

) with →′
=→ \T , where T is defined as

T = {s
M,N,g,D

−−−−−−−→ s
′ |∃s

M1,N1,g1,D1
−−−−−−−→ s1 ∈→ s.t. P}

, P is the conjunction of the following conditions:

1. g ∧ g1 is satisfiable.
2. M ⊆ M1 ∧ ∅ �= N ⊆ N1
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Fig. 10. QIA product of LossySync AB and Sync BC

3. N \ M ⊆ N1 \ M1

4. �s
M2,N2,g2,D2
−−−−−−−→ s2 s.t. (N1 \ M1) \ (N \ M) ⊆ (N2 \ M2) �= ∅

∧ (N \ M) ∩ (N2 \ M2) = ∅

Intuitively, conditions 1, 2, and 3 in Definition 5 guarantee that a transition
with less pending and firing nodes than another transition from the same source
state will be removed, and condition 4 ensures that transitions with independent
firings of pending nodes are kept. Now we apply such refinement to the product
of LossySync AB and Sync BC in Figure 10. The transition from 〈l0, {A, C}〉
with losing data at node A has less pending and firing nodes than the other
transition from the same source state with a data-flow from A to C via the
mixed node B, and also there is no independent firing through the node C (∈
{A, C} \ {A}), which means the firing of pending requests at nodes A and C are
dependent. Hence the transition of losing data at node A with pending data at
nodes A and C will be removed from the product result. A QIA model specifies
the system behaviour with considering the influence of the environment, and
provides a compositional framework, i.e., the QIA version of a complex connector
is obtained by applying the product to primitive channels which comprise the
connector. However, the context-dependency [7] of the connector is ignored in
the product, hence we apply the refinement to the product result to retain the
dependency.

5 From QIA to CTMC

A CTMC is a stochastic discrete-state process, often used to model and analyse
system performance. A CTMC process is defined as {X(t)|t ≥ 0}. X(t) ∈ S
denotes the state in state space S at time t. Let P{X(t) = i} be the proba-
bility that the process is in state i at time t. The stochastic process X(t) is a
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homogeneous CTMC if, for ordered times t0 < · · · < tn < tn+∆t, the conditional
probability of staying in any state j satisfies:

P{X(tn + ∆t) = j|X(tn) = in, X(tn−1) = in−1, · · · , X(t0) = i0} =
P{X(tn + ∆t) = j|X(tn) = in}

In this section we propose an approach for translating QIA into CTMC to
carry out performance evaluation. Through this translation, we can specify a
system in Stochastic Reo, provide its operational semantics with QIA, and then
evaluate its performance via the CTMC derived from its QIA. A Markov Chain
(MC) is not compositional and it is difficult to obtain a MC model for a com-
plex system. In our approach, QIA provide a compositional framework for the
specification, and the corresponding CTMC model even for a complex system
can be subsequently derived from the composed QIA by translation.

In a CTMC, all the stochastic variables on each of its transitions must be
exponentially distributed. Hence every stochastic event occurs one by one. In
QIA, each transition corresponds to an atomic behaviour, i.e., an arrival of a
single data item or synchronized multiple events (especially firings). Such syn-
chronized multiple events happen together, and this is where QIA and CTMC
differ. Therefore, for our translation, we need to spread and divide such synchro-
nized multi-event firings into micro-step single-event transitions.

Principle 1. A data-flow in a channel takes place from its input node to its
output node.

Principle 2. Mixed nodes send and receive data instantaneously.

Recall that a D in a QIA transition label is a set of delay information tuples
(I, O, r) in 2N × 2N × R+. Each such tuple describes a data-flow from its
input nodes in I to its output nodes in O with the stochastic delay r. The above
principles impose a causality-based sequence on the events in D. For example, in
D = {({A}, {B}, dAB), ({B}, {C}, dBC)}, the two tuples directly indicate that
data-flow occurs from A to B, with delay dAB, and from B to C, with delay
dBC. Moreover, since B appears in the output set of one tuple and the input set
of the other, B must be a mixed node, which implies that the data-flow between
A and B occurs before data-flow between B and C. From such causality-based
sequences we derive a delay-sequence d for each firing, capturing the sequential or
parallel properties of each element in its D. The concrete algorithm of extracting
such a delay-sequence from D is given in [5]. Syntactically, a delay sequence is:

d ::= ε | delay | d; d | d|d (1)

where ε is the empty sequence, delay ∈ D, ‘d; d’ is the sequential composition of
delays, and ‘d|d’ is the parallel composition of delays. We also use parentheses ‘(’
and ‘)’ to indicate the highest priority for grouping, where more deeply nested
groups have higher precedence. The empty sequence ε is an identity element for
the ‘;’ and ‘|’ operations, i.e., ε|d = d = d|ε, ε; d = d = d; ε, and ‘|’ is commutative,
associative, and idempotent, i.e., A|B = B|A, (A|B)|C = A|(B|C), A|A = A.
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Fig. 11. Derived MC from ordering circuit

In the translation from QIA to CTMC, a single delay causes no change to a
transition. A synchronized multi-event firing in the ‘d; d’ or ‘d|d’ form is divided
into micro-step single-event transitions by, respectively, enumerating each delay
element in a sequential delay-sequence and considering the interleaving of all
single delays in a parallel delay-sequence. For example, in Figure 11, the con-
secutive transitions from state Y to the initial state via state X correspond to
the result of splitting the synchronized multi-event firing from state 〈l1, {C}〉 to
state 〈l0, {}〉 in Figure 9, into micro-step single-event transitions. Similarly, the
second and third diamond-shaped clusters of transitions (G2 and G3 in Figure
11, respectively) represent the result of splitting the synchronized multi-event
firing from state 〈l0, {A, B, C}〉 to state 〈l1, {}〉 in Figure 9. This splitting is ap-
plied until no multi-event firing remains. Consequently, every transition in the
result corresponds to a single event with its stochastic property.

In QIA, a synchronized multi-event firing is considered atomic, hence other
events cannot interfere with it. However, as we split multiple synchronized events,
we cannot guarantee their atomicity any more. A transition having the same
source state as another transition that involves a synchronized multi-event firing
represents an event that can preempt the sequence of transitions that result from
splitting the multi-event firing. For example, state 〈l1, {C}〉 of the QIA in Figure
9 is connected to the initial state by the transition labeled with the synchro-
nized multi-event firing {({}, {C1}, dFC1), ({C1}, {C}, dC1C)}, and there are
two other transitions of data arrivals at nodes A and B out of 〈l1, {C}〉. These
arrivals are preemptible events for the sequence of micro-step transitions that
result from the splitting of this synchronized multi-event firing. State 〈l1, {C}〉
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in Figure 9 corresponds to state Y in Figure 11, and hence its preemptible events
are added as extra transitions tracing the split single-event transitions, like the
transitions from state X labeled with data arrivals at nodes A and B.

6 Stochastic Analysis

Our QIA to CTMC translation tool has been incorporated as a plug-in in our
ECT environment and can generate input files for analysis in other existing tools
like PRISM. For instance, PRISM can be used on a CTMC for the analysis of its
steady-state distributions to gain insight not only into the essential states of a
system but also about principal performance measures such as delays, through-
put, bottlenecks, and blocking probabilities. Moreover, by adjusting values of
some stochastic variables, we can perform sensitivity analysis on the system. To
illustrate the relevance of our method and the usefulness of our tool, we briefly
consider an example, and show the results of a simple analysis of our generated
model.

Consider the ordering circuit in Figure 7. As mentioned in Section 3, a bound-
ary node or a buffer in a connector is blocked when it is occupied by another
pending request. Figure 12 shows the blocking probabilities of nodes A, B, and C
and the buffer of the FIFO1 channel when the arrival rate dA at node A increases
(i.e., the arrival frequency of requests at node A is increasing) while the arrival
rates of requests at nodes B and C, and all processing delays are fixed to 1. A
blocking probability is calculated by accumulating steady-state probabilities of
its corresponding states, i.e., the blocking probability of node A is obtained as the
summation of the steady-state probabilities of all the states whose configurations
show that node A is blocked. The arrival rate λ is distributed exponentially and
its mean is 1/λ time units. Hence, as dA increases, the blocking probability of
node A also increases, which increases the probability that the FIFO1 is full since

Fig. 12. Blocking probabilities of ordering circuit in Figure 7
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the request at node A is delivered to its buffer. A request at node B is consumed
together with a request at node A, and a request at node C is consumed together
with another at node B or the FIFO1 buffer, alternately. Hence as requests arrive
at node A more frequently, the probabilities that nodes B and C are released
increase (i.e., their blocking probabilities decrease). Because node C is released
by both node B and the buffer, its blocking probability decreases more quickly
than that of node B. However all probabilities reach a certain threshold after a
while, because of the fixed stochastic values.

7 Related Work

The research in formal specification of a system with quantitative aspects en-
compasses many developments such as Stochastic Process Algebras (SPAs) [12],
Stochastic Automata Networks (SANs) [16,23,25], Stochastic Petri nets (SPNs)
[17,24]. SPA is a model for both qualitative and quantitative specification and
analysis with a compositional and hierarchical framework, and has algebraic laws
(or so called static laws) and expansion laws which express a parallel composi-
tion in terms of its operators. In SPA the interpretation of the parallel compo-
sition is a vexed one, which allows various interpretations such as Performance
Evaluation Process Algebra (PEPA) [18], Extended Markovian Process Alge-
bra (EMPA) [8,9]. SPA describes ‘how ’ each process behaves, but (Stochastic)
Reo directly describes ‘what ’ communication protocols connect and coordinate
the processes in a system, in terms of primitive channels and their composition.
Therefore, QIA and (Stochastic) Reo explicitly model the pure coordination and
communication protocols including the impact of real communication networks
on software systems and their interactions. Compared to SPA, our approach
more naturally leads to a formulation using queueing models like SPNs.

SPN is a directed, weighted, and bipartite graph with an associate exponen-
tially distributed firing delay on each transition. SPN is widely used for mod-
elling concurrency, synchronization, and precedence, and is conducive to both
top-down and bottom-up modelling. Stochastic Reo shares the same properties
with SPN and natively supports composition of synchrony and exclusion together
with asynchrony, which is not possible in Petri nets. The topology of connec-
tors in (Stochastic) Reo is inherently dynamic, and it accommodates mobility.
Moreover, (Stochastic) Reo supports a liberal notion of channels and is more gen-
eral than data-flow models and Petri nets, which can be viewed as specialized
channel-based models that incorporate certain specific primitive coordination
constructs.

SAN consists of a couple of stochastic automata which act independently. In
other words, it supports a modular approach. Hence the state of SAN at time t is
expressed by the states of each automaton at time t. The concept of a collection
of individual automata helps modelling distributed and parallel systems more
easily. SAN might be viewed as SPA. However, SPA is concerned with structural
properties such as compositionality and equivalence, and mapping of the speci-
fication onto Markov Chains for the computation of performance measures. On
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the other hand, the original purpose of SAN is to provide an efficient and con-
venient methodology for computing performance measures rather than a means
of deriving algebraic properties of complex systems. The interactions in SAN
are rather limited to patterns like synchronizing events or operating at different
rates. Compared with the SAN approach, the expressiveness of (Stochastic) Reo
makes it possible to model different interaction patterns involving both asyn-
chronous and synchronous communications.

In general, the reachability graphs or MCs derived from the above formalisms
have a large state space that prohibits the computation of a solution. In case
of SAN the state space explosion problem is relieved by a modular approach to
modelling and efficient numerical treatment of the generator matrix [23]. Ame-
liorating the state explosion problem in other models is still ongoing research,
and we are also concerned with the efficient solution technique for the MC de-
rived from Stochastic Reo. The compositional nature of Reo encourages a mod-
ular design approach that can, as in the case of SAN, help the state explosion
problem. Moreover, the Markov Chains generated by our translation method
from Stochastic Reo and QIA consistently show certain interesting structural
properties that can be exploited for modular solution and composition through
re-scaling. We are currently investigating these alternative solution techniques.

QCA and Quantitative Reo deal with various kinds of non-functional aspects
of the system’s behaviour and provide a computational and reasoning model with
Q-algebra, as used for selection and composition of services/components [20].
The QoS aspects concerned in QCA, such as delays, costs, and resource, depend
on the internal details of the system, and accordingly ignore the influence of
the environment. However, the performance of a system depends not only on its
internal details but also on how it is used in its environment like the the frequency
and distribution of request arrivals, and QCA do not concern these stochastic
aspects. QIA and Stochastic Reo cover both the internal details of a system as
well as the influence of the environment, and hence support a comprehensive
approach for specification and performance analysis of a system.

8 Conclusion and Future Work

In this paper, we propose Stochastic Reo and QIA by adding quantitative sup-
port in our coordination model and its operational semantics to account for the
influence of the environment on the performance of a coordination protocol (i.e.,
connector). We provide an approach to translate QIA into CTMC for perfor-
mance analysis when the performance properties are distributed exponentially
in QIA. The Reo and automata editors in the Eclipse Coordination Tools [1] have
been extended to support Stochastic Reo and QIA, and the automatic deriva-
tion of the QIA semantics of Stochastic Reo circuits. We have implemented the
translation from QIA to CTMC, and also the generation of the input files for
PRISM, and have incorporated them within this platform.

As future work, we want to consider non-exponential distributions, for exam-
ple, by considering phase-type distributions [22] as an approximation of non-
exponential distributions or using (generalized) semi-Markov processes [26] as a
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target model of the translation. We have found that the CTMCs that are derived
from Reo circuits frequently contain a pattern of essentially feed-forward clus-
ters of states. We are investigating methods to exploit these patterns for more
efficient compositional solution techniques. A recent semantic model for Reo
captures the context-dependent behaviour of Reo connectors in a very small au-
tomata model [11]. We expect that using these automata as a basis can provide
a more abstract model with significantly smaller numbers of states and transi-
tions compared to the QIA. This can make translating a Reo connector to a MC
considerably more efficient.
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Abstract. Process algebras are a set of mathematically rigourous languages with
well defined semantics that permit modelling behaviour of concurrent and com-
municating systems. Verification of concurrent systems within the process alge-
braic approach can be performed by checking that processes enjoy properties
described by some temporal logic’s formulae. In this paper we present a formal
framework that permits verifying properties of concurrent and communicating
systems by using an assumption-guarantee approach. Each system component is
not considered in isolation, but in conjunction with assumptions about the context
of the component. In the paper we introduce a sound and complete proof system
that permits verifying whether a process, when it is executed in an environment
for which we provide some assumptions, satisfies a given formula. It is also en-
sured that property satisfaction is preserved whenever the context is partially in-
stantiated (implemented) as a concrete process that verifies the assumptions we
have for the environment.

1 Introduction

Process algebras [4,5,19,20] are a set of mathematically rigourous languages with well
defined semantics that permit describing and verifying properties of concurrent commu-
nicating systems. They can be seen as mathematical models of processes, regarded as
agents that act and interact continuously with other similar agents and with their com-
mon environment. The agents may be real-world objects (even people), or they may be
artefacts, embodied perhaps in computer hardware or software systems.

Process algebras provide a number of constructors for system descriptions and are
equipped with an operational semantics that describes systems evolution. Moreover,
they often come equipped with observational mechanisms that permit identifying
(through behavioural equivalencies) those systems that cannot be taken apart by exter-
nal observations. In some cases, process algebras have also complete axiomatisations,
that capture the relevant identifications.

Verification of concurrent systems within the process algebraic approach is per-
formed either by resorting to behavioural equivalencies for proving conformance of
processes to specifications that are expressed within the notation of the same algebra or
by checking that processes enjoy properties described by some temporal logic’s formu-
lae [10,17].

In the former case two descriptions of a given system, one very detailed and
close to the actual concurrent implementation, the other more abstract describing the
abstract tree of relevant actions the system has to perform, are provided and tested for
equivalence.

J. Field and V.T. Vasconcelos (Eds.): COORDINATION 2009, LNCS 5521, pp. 288–305, 2009.
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In the latter case, concurrent systems are specified as terms of a process description
language while properties are specified as temporal logic formulae. Labelled Transition
Systems are associated with terms via a set of structural operational semantics rules
and model checking is used to determine whether the transition systems associated with
those terms enjoy the property specified by the given formulae.

Process algebras and modal logics have been largely used as tools for specifying
and verifying properties of concurrent systems. This also thanks to model checking
algorithms that permit verifying whether a given specification satisfies the expected
properties.

However, it is not always possible to specify (or know) all the details of a system.
Typical examples are network and distributed systems. These are composed of hetero-
geneous computational units that interact with each other following a predefined pro-
tocol. Even if the protocol governing the interactions among the system components is
completely specified, the precise implementation of each component is not known.

In this paper we will consider mixed specifications of the form Γ � P, where Γ is
a set of formulae describing the properties we assume satisfied by the environment
where the process is executed, while P is a process that describes the behaviour of a
part of the system we completely know. Our aim is to introduce a proof system that
permits verifying whether a given process P satisfies ϕ whenever it is executed in an
environment satisfying assumptions Γ. In the case, we will guarantee that for each Q
satisfying Γ, P|Q will satisfy ϕ.

The idea is to verify the behaviour of a subset of the system components (P). These
components are not considered in isolation, but in conjunction with assumptions (Γ) on
the behaviour of the context where the components will be executed.

The proposed framework naturally induces a notion of refinement. Indeed, Γ2 � Q
refines assumption Γ1 if and only Γ2 �Q satisfies Γ1. At the same time, if Γ1 �P satisfies
ϕ the same is for Γ2 �Q|P. By iterating the proposed approach we obtain a methodology
that permits obtaining a complete description of a system starting from an high level
logical based specification. In each step of the refinement procedure, the satisfaction of
the expected properties is preserved.

The rest of the paper is organised as follows. In Section 2 we recall basic the Calculus
of Communication Systems and the Hennessy-Milner logic. In Section 3 we present
the dialect of HML that we use for specifying the properties we assume satisfied by
the environment. Section 4 presents the proposed proof system. Section 5 concludes
the paper with a few final considerations. In the present paper all the proof are only
sketched, detailed proofs can be found in [13].

2 Calculus of Communicating Systems

The Calculus of Communicating Systems (CCS) [19,20], one of the most popular pro-
cess calculi, provides a set of operators that permit describing the behaviour of a sys-
tem starting from the specification of its subcomponents. Components interact with
each other by means of actions, atomic and not interruptible steps, which represent in-
put/output operations on communication ports or internal computations of the system.
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Let Λ be an infinite numerable set of channels or ports, a CCS action α can be:
an input over a ∈ Λ, denoted by a; an output on a ∈ Λ, denoted by a; an internal
computational step, denoted by τ. We assume ¯̄α � α, where α ∈ Λ ∪ {ā | a ∈ Λ} ∪ {τ}.
Actions ᾱ and α are said complementary, they represent input and output actions on the
same channel.

The syntax of CCS processes is defined by means of the following grammar:

P,Q ::= nil | X | α.P | P + Q | Q | P | P | P\A | P [ f ]
α ::= ā | a | τ

CCS operators have the following meaning:

– nil is the inactive process.
– X is a constant which is assumed defined by an appropriate equation X � P for

some process term P, where constants occur only guarded in P, i.e. under the scope
of an action prefix.

– α.Q is the action prefixing and describes a process that after the execution of action
α behaves like P

– P + Q is the choice or sum operator and identifies a process that can behaves either
like P or like Q.

– P | Q is the parallel composition operator and represents the concurrent execution
of processes P and Q. A synchronisation, generating a τ action, can occur when P
and Q execute complementary actions.

– P\A is the restriction operator and models a process that behaves like P, but for the
impossibility of interacting using actions in A ⊆ Λ.

– P
[
f
]

is the relabelling operator where f : Λ → Λ is a function that “renames”
actions performed by P (we let f̂ be such that f̂ (τ) = τ while f̂ (a) = f (a)).

Table 1. CCS Operational Semantics

α.P
α−→ P

P
α−→ P′

P + Q
α−→ P′

Q
α−→ Q′

P + Q
α−→ Q′

P
α−→ P′

P|Q α−→ P′|Q
Q

α−→ Q′

P|Q α−→ P|Q′
P

α−→ P′ Q
α−→ Q′

P|Q τ−→ P′|Q′

P
α−→ P′

P\A α−→ P′\A
(α, α � A)

P
α−→ P′

P[ f ]
f̂ (α)−−−→ P′[ f ]

P
α−→ P′

X
α−→ P′

(X
�
= P)

The operational semantics of CCS is formally defined in Table 1. In the rest of the

paper we will use P
α−→ to denote that exists P′ such that P

α−→ P′. Similarly, P
α
�

if ¬(P
α−→). We will also write P −→ P′ if exists α such that P

α−→ P′ while −→∗ is the
transitive and reflexive closure of −→. Finally, we adopt the following notation:
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– Ch(P) denotes the set of channels occurring in P;
– Act(P) denotes the set of actions P can perform during a computation;
– Init(P) denotes the set of actions P can immediately perform;
– Der(P) = {Q|P −→∗ Q}.

Example 1 (Dining Philosophers). The dining philosophers problem is a classical ex-
ample proposed by Edsger Dijkstra to illustrate resource sharing, fairness and synchro-
nisation in concurrent systems. There are n philosophers sitting at a circular table. Each
philosopher can do one of two activities: eating or thinking. A fork is placed in be-
tween each philosopher. A philosopher must obtain the use of his left and right forks
concurrently to be able to eat, which means two neighbouring philosophers can not
eat simultaneously since they share the resource, the fork. After a philosopher finishes
eating, he puts down the forks and starts to think.

The i-th philosopher can be modelled in CCS as follows:

Phi = picki.picki+1mod n.eati.reli.reli+1mod n.Phi

while the i-th fork is rendered as:

Fi = picki.reli.Fi

2.1 Hennessy-Milner Logic

Hennessy-Milner Logic (HML) is a modal logic introduced by Hennessy and Milner to
provide a logical characterisation of bisimulation [14]. The syntax of HML formulae is
the following:

ϕ ::= tt | f f | 〈α〉ϕ | ¬ϕ | ϕ1 ∨ ϕ2 | X | νX.ϕ

A process satisfies 〈α〉ϕ if and only if action α can be executed leading to process
satisfying ϕ. Greatest fix-point (νX.ϕ) can be used for specifying recursive properties.
Greatest fix-point operator νX.ϕ acts as a binder for the recursive variable occurring in
ϕ. We said that X occurs free in ϕ if it does not occur under the scope of νX.·. A formula
ϕ is closed if no free variable occurs in ϕ; ϕ is well-formed if it is closed and in each
sub-formula of the form νX.ϕ, X is positive, i.e. X appears under an even number of
symbols of negation. From now on we will consider only well-formed formulae.

Other operators can be defined as macro in the HML. In the sequel, we let ϕ1 ∧ ϕ2

be ¬(¬ϕ1 ∨ ¬ϕ2) and [α]ϕ be ¬ 〈α〉 ¬ϕ. The former is the logical conjunction operator
while the latter is a modal operator satisfied by all the process that, after α, satisfy ϕ.

Semantics of HML formulae is formally defined by means of an interpretation func-
tion � · � that takes a formula ϕ and a recursion environment δ, i.e. a function mapping
recursion variable to set of processes, and yields the set of processes satisfying ϕ. Func-
tion � · � is formally defined as follows:

– � tt �δ = Proc
– � f f �δ = ∅
– � ¬ϕ �δ = Proc − � ϕ �δ
– � ϕ1 ∨ ϕ2 �δ = � ϕ1 �δ ∪ � ϕ2 �δ
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Table 2. Formulae proof system

P � ϕ
P � ¬¬ϕ

P � ¬ϕ1 P � ¬ϕ2

P � ¬(ϕ1 ∨ ϕ2)
P � ϕi

P � ϕ1 ∨ ϕ2
(i = 1, 2)

Q � ϕ
P � 〈α〉 ϕ (∃Q : P

α−→ Q)
{Q � ¬ϕ | P α−→ Q}

P � ¬ 〈α〉 ϕ

P � ϕ[νX{P,→r }ϕ/X]

P � νX{→r }ϕ
(P � {→r }) P � ϕ[µX{P,→r }ϕ/X]

P � µX{→r }ϕ
(P � {→r })

– � 〈α〉ϕ �δ =
{
P
∣∣∣∣∃P′ : P

α−→ P′ & P′ ∈ � ϕ �δ
}

– � X �δ = δ(X)

– � νX.ϕ �δ =
⋃
{
S
∣∣∣∣S ⊆ � ϕ �δ

[
S /X

]}

where if δ is a recursion environment, δ[S/X] denotes the function associating S to X
and δ(Y) to each variable Y � X while [] denotes the function associating ∅ to each
variable. A process P satisfies a formula ϕ (P |= ϕ) if and only if P ∈ � ϕ �[].

Example 2. For the dining philosophers, two properties are classically considered: ab-
sence of deadlock and absence of starvation. The former requires that the system never
reaches a configuration where no action can be performed while the latter asks that each
philosopher can eventually eat. In HML these properties can be rendered as follows:

Absence of deadlock:

νX. 〈A〉 tt ∧ [A] X

Absence of starvation (for i-th philosopher):

¬νX.
[
eati

]
f f ∧ 〈A〉 X

where A = {τ} ∪ {eati|0 ≤ i < n} and 〈A〉ϕ (resp. [A] ϕ) stands for
∨
α∈A 〈α〉 ϕ (resp.

∧
α∈A [α] ϕ).

2.2 A Proof System

Satisfaction of HML formulae can be verified by using a local model-checking tech-
nique [24,23,11] that is based on tableau. Tableau systems are finite families of deduc-
tion rules which sanction reduction of goals to subgoals. They are similar in style to
structured operational semantics.

To verify whether a process satisfies a formula, we consider the proof system
of Table 2 already presented in [24]. The proof system operates on sequents
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(denoted by π1, π2, . . .) of the form P � ψ where ψ is a logic formula and P is a process.
Derivation rules have the following form:

{π1, . . . , πn}
π

cond

where {π1, . . . , πn} is the (finite) set of sequents to prove in order to assess validity of π
and cond is a side condition. A rule like the above can be applied only when the side
condition is satisfied.

We say that Π is a derivation from π if and only if it has π as root and it is maximal,
in the sense that no rule can be applied from leaves.

Definition 1. A sequent π = P � ψ is successful when one of the following conditions
holds:

1. ψ ≡ tt;

2. ψ ≡ νX{→r }ϕ and P ∈ {→r };
3. π is derivable from {}.

A derivation Π is successful if all its leaves are successful. A sequent π is provable
if there exists a successful derivation Π from it. In the case we said that Π is a proof
for π.

Notice that, to properly handle recursive properties, the syntax of HML has been
enriched in order to annotate recursive variables with set of processes:

νX{P1, . . . , Pn}.ϕ
where νX.ϕ can be viewed as a shorthand for νX{ }.ϕ. Interpretation function is then
modified as follows:

� νX{P}.ϕ �δ = P ∪
⋃{

S
∣∣∣∣S ⊆ � ϕ �δ

[
S /X

] }

Termination of proofs is ensured by the fact that assertions are strictly smaller after
reductions and for recursive assertions an assumption on finite-state processes is done.
The Lemma below is the key result on which is based the proof of soundness and
completeness of the proof system.

Lemma 1 (Reduction lemma [24]). For each set of processes P,

P |= νX.ϕ⇔ P |= ϕ[νX{P}.ϕ/X]

Theorem 1 (Soundness and Completeness [24]). Let P be a process such that Der(P)
is finite, and ϕ is a closed formula, P � ϕ is provable if and only if P |= ϕ.

Example 3. The proof system of Table 2 can be used for proving that the following
system S ys composed of 2 philosophers and 2 forks:

S ys � Ph0|F0|Ph1|F1

does not satisfy neither absence of deadlock nor absence of starvation.
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Deadlock can be avoided when we let one of the two philosophers taking forks in a
reverse order. If we let:

Ph∗1 = pick0.pick1.eat1.rel0.rel1.Phi

and
S ys∗ � Ph0|F0|Ph∗1|F1

we have that S ys∗ satisfies absence of deadlock while absence of starvation is still
unsatisfied. Indeed, there exists an infinite computation in which Ph0 (resp. Ph1) never
eats.

3 Formalising Assumptions for Process Environments

In the previous section we have presented a proof system that permits verifying whether
a process P satisfies or not a given property ϕ. However, when distributed or network
systems are taken into account, all the details of a system are typically not known. In-
deed, these systems are composed of heterogeneous computational units that interact
with each other following a predefined protocol. Even if the protocol governing the
interactions among the system components is completely specified, the precise imple-
mentation of each component is not known.

In this section we present a dialect of HML thought for specifying the set of prop-
erties we assume satisfied by the environment where a process is executed. Indeed, we
will consider system specifications composed of two parts: a CCS process P that speci-
fies the behaviour of a known component, and a set of formulae Γ that identifies the set
of properties we assume satisfied by the environment where P is executed.

In the example of Dining Philosophers introduced in previous sections, desired prop-
erties can be verified only on a specific instance of the problem. On the contrary, by re-
lying on the framework introduced in this section, behaviour of a philosopher, namely
Phi, will be analysed by considering a given set of assumptions we let satisfied by the
context where Phi operates. Satisfaction of verified properties will be preserved each
time Phi will be immersed in an environment satisfying the considered assumptions.
This, for instance, independently from the number of philosophers considered in the
particular instance of the system.

Assumptions on the environment will be formalised by means of a dialect of HML
for which we will be able to define a precise operational semantics, i.e. a relation of

the form Γ
α−→ Γ′. The proposed semantics will guarantee that a Γ exhibits a given

behaviour if and only if it is shared among all the processes satisfying Γ
We let Lχ be the set of formulae Φ, Ψ , . . . defined by the following syntax:

Φ,Ψ ::= tt | f f | � α �Φ | †(α) | � α �Φ | ¬Φ | Φ ∨ Ψ | X | νX.Φ

where for each νX.Φwe assume each free occurrence of X in Φ always occurring under
the scope of a modal operator, even and never under the scope of a � · �.

In Lχ, modal operators of HML are replaced by †(·), � · �, � · � that have the
following meaning: †(α) states that action α cannot be performed, while both � α �Φ
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and � α � Φ guarantees the execution of action α. However, while the former ensures
that after α,Φ is always satisfied,the latter is satisfied by those processes that can evolve
with α both to states satisfying Φ and to states satisfying ¬Φ. For instance, � α �†(β)
is satisfied by α.nil and it is not satisfied by α.β.nil|α.nil. Conversely, � α � †(β) is is
satisfied by α.β.nil|α.nil and it is not satisfied by α.nil.

Interpretation function of HML is then extended in order to consider new modal
operators:

– � � α �Φ �δ =
{
P
∣∣∣∣∃P1, P2 : P

α−→ P1, P1 ∈ � Φ �δ & P
α−→ P2, P2 ∈ � ¬Φ �δ

}

– � †(α) �δ =
{
P
∣∣∣∣P

α
�

}

– � � α �Φ �δ =
{
P
∣∣∣∣P

α−→ & ∀P′ : P
α−→ P′, P′ ∈ � Φ �δ

}

Notice that the proposed logic is a dialect of HML in the sense that it can be completely
specified by using HML formulae. Indeed, it is easy to prove that modal operators 〈·〉
and [·] can be easily expressed, and then considered as macros, by using the ones inLχ:

〈α〉 ϕ ≡ ¬(� α �¬ϕ ∨ †(α)) [α]ϕ ≡ � α �ϕ ∨ †(α)

at the same time, it is easy to prove that modal operators in Lχ can be expressed by
using HML operators:

� α �Φ ≡ [α]Φ ∧ 〈α〉 tt � α �Φ ≡ 〈α〉Φ ∧ 〈α〉 ¬Φ †(α) ≡ [α] f f

Assumptions on environments are then specified by means of a set Γ of sets of formulae
in Lχ. A process P satisfies an assumption Γ if and only if for each Φ ∈ Γ, P |= Φ.
Formally:

� Γ �δ =
⋂

Φ∈Γ
� Φ �δ

Even if HML could be used for specifying the properties we assume for an environ-
ment, this approach is not suitable for deriving the possible behaviours of the specified
environment. On the contrary, the proposed dialect permits directly characterising the
behaviour that is shared among all the processes satisfying given assumptions Γ.

We let −→ ⊆ Lχ × Act × Lχ be the transition relation defined in Table 3. Notice that,
a transition can be derived for a Γ only when each Φ ∈ Γ has only modal operators at
top level. We will refer to this kind of assumptions as determined.

Definition 2. An environment Γ is determined if and only if Γ � ∅ and for each Φ ∈ Γ,
Φ = � α � Ψ, � α �Ψ, †(α).

Indeed, we cannot directly derive a transition for every Γ. For instance, let Γ be:

(
� α �Φ1 ∧ †(β)

) ∨ (� β �Φ1 ∧ †(α)
)

This identifies all the environments where either α or β can be executed. In both
the cases, after α (or β), satisfaction of Φ1 is guaranteed. The point is that ∨ can
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Table 3. Formulae operational semantics

{� α �Φ} α−→ {Φ} {� α �Φ} α−→ {¬Φ} {
� α �Φ

} α−→ {Φ}

Γ
β−→ Γ′

Γ ∪ {� α �Φ} β−→ Γ′
(α � β)

Γ
α−→ Γ′

Γ ∪ {� α �Φ} α−→ Γ′ ∪ {Φ}
Γ

α−→ Γ′

Γ ∪ {� α �Φ} α−→ Γ′ ∪ {¬Φ}

Γ
β−→ Γ′

Γ ∪ {†(α)} β−→ Γ′
(α � β)

Γ
α−→ Γ′

Γ ∪ {� α �Φ
} α−→ Γ′ ∪ {Φ}

Γ
β−→ Γ′

Γ ∪ {� α �Φ
} β−→ Γ′

(α � β)

combine “behaviours” that do not provide a “coherent” specification. In the example
above, � α �Φ1 ∧ †(β) states that α can be executed and β can not, while � β �Φ1 ∧ †(α)
does the contrary.

In the rest of the paper Γ −→ Γ′ indicates that exists α such that Γ
α−→ Γ′ and Γ →∗ Γ′

is the transitive and reflexive closure of→.
The following lemma permits guarantee that if Γ

α−→ Γ′ then each process satisfying
Γ can perform the same action leading to a state satisfying Γ′.

Lemma 2. For each Γ ⊆ Lχ, |Γ| > 0, and for each process P such that P |= Γ:

∃Γ′, α : Γ
α−→ Γ′ =⇒ ∃P′ : P

α−→ P′ ∧ P′ |= Γ′

Proof. The proof easily proceeds by induction on the size of Γ. �

The reverse implication does not hold in the general case. For instance, let Γ = {†(α)}
and P = β.nil (α � β): P |= Γ and P

β−→ P′ while Γ
β
�. However, if one considers an

action α that is initial in Γ, it holds that if P |= Γ (Γ determined) and P
α−→ P′ then

Γ
α−→ Γ′ and P′ |= Γ′.

Definition 3.

– For each Φ ∈ Lχ, Init(Φ) is inductively defined as follows:

Init(tt) = Init( f f ) = Init(X) = ∅
Init(¬Φ) = Init(Φ)

Init(Φ1 ∨Φ2) = Init(Φ1) ∪ Init(Φ2)

Init(� α �Φ) = Init(� α �Φ) = Init(†(α)) = {α}
Init(νX.Φ) = Init(Φ)

– For each Γ ⊆ Lχ:

Init(Γ) =
⋃

Φ∈Γ
Init(Φ)
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Lemma 3. For each Γ ⊆ Lχ determined and for each process P such that P |= Γ and
for each α ∈ Init(Γ):

∃P′ : P
α−→ P′ =⇒ ∃Γ′ : Γ

α−→ Γ′ ∧ P′ |= Γ′

Proof. The proof easily proceeds by induction on the size of Γ. �

Another important point is that an assumption Γ can be inconsistent, i.e. either f f ∈ Γ
or both †(α) and � α �Φ (or � α � Φ) belong to Γ, for some α and Φ. This can be
either a consequence of a bad specification or due to the fact that some combinations of
assumptions in Γ can never be satisfied. For instance, let Γ be {� α �Φ1 ∨ †(β), � β �Φ2}.
A process satisfies Γ if and only if it satisfies either {� α �Φ1, � β �Φ2} or {†(β), � β �Φ2}.
However, the latter is inconsistent and is never satisfied.

The following lemma guarantees that, if a Γ can reach an inconsistent Γ′, then no
process satisfies Γ.

Lemma 4. For each Γ ⊆ Lχ, if Γ −→∗ Γ′ ⊆ Lχ and Γ′ is inconsistent, then � Γ � = ∅.
Proof. By induction on the length of the derivation −→∗. �

We now introduce some macros that simplify the specification of environment assump-
tions:

Always(A, Φ) = νX.Φ ∧∧α∈A [α] X Eventually(A, Φ) = ¬Always(A,¬Φ)

Let A ⊆ Act be a finite set of actions, Always(A, Φ) is satisfied by those processes
that always satisfy Φ in each state reachable with actions in A. A process satisfies
Eventually(A, Φ) if a state satisfying Φ is reachable by executing a finite sequence of
actions inA.

Interpretation function of Section 2.1 can be extended in order to consider the as-
sumptions where a process is executed. The set of processes satisfying ϕ under the
assumptions Γ (� ϕ �Γ) can be defined as:

� ϕ �Γ =de f

{
P
∣∣∣∀Q. Q |= Γ, P|Q ∈ � ϕ �

}
(1)

Let A ⊂ Act, we can limit our attention to only those processes that can perform
only action inA:

� ϕ �AΓ =de f

{
P
∣∣∣∀Q. Act(Q) ⊆ A ∧ Q |= Γ, P|Q ∈ � ϕ �

}

Notice that, if Γ is inconsistent, � Γ � = ∅ and, for each P and ϕ, P ∈ � ϕ �Γ .

Example 4. LogicLχ can be used for formalising the properties we assume satisfied by
each environment where philosopher Ph0 could be executed. First of all we assume that
these environments can only interact with Ph0 by performing a finite set of actions inA
containing {τ, pick0, pick1, rel0, rel1}. Properties we assume for the environment of Ph0

are:
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– Two forks, F0 and F1, are available in the environment. Then pick0 (resp. pick1)
can be performed leading to a state where action rel0 (resp. rel1) is always available
until fork F0 (resp. F1) is released. We let Φi

F (i = 0, 1) be:

Φi
F = νX.Always(A− picki, � picki �Always(A− reli, � reli �X))

– A fork can be used by another philosopher. In that case, it will return eventually
available:

Φi
B = νX.(� τ �Eventually(A − {picki, reli}, � τ �(Φi

F ∧ X))
∧
� picki �Always(A− {reli}, � reli �X)
) ∨ (
∧
α∈A−{picki} [α] X

)

– Never both picki and reli are enabled at the same time in the environment:

Φi
C = ¬Always(A, � picki �tt ∧ � reli �tt)

The overall assumptions are:

ΓDF = {Φ0
F , Φ

1
F , Φ

0
B, Φ

1
B, Φ

0
C , Φ

1
C}

4 An Assume-Guarantee Based Proof System

In this section we present a proof system that permits verifying whether a process P
satisfies a formula ϕ under the assumption that the environment where P is executed
satisfies a given set of formulae Γ ⊆ Lχ.

The proposed proof system, formally defined in Table 4, operates on sequents of the
form S � ϕ where S is a specification of the form Γ � P and ϕ a formula of HML.
Operational semantics of Table 1 is extended in order to consider specifications S with
the following rule:

P
α−→ P′

Γ � P
α−→ Γ � P′

Γ
α−→ Γ′

Γ � P
α−→ Γ′ � P

Γ
α−→ Γ′ P

α−→ P′

Γ � P
τ−→ Γ′ � P′ (2)

Proof system of Table 2 is extended with the rules for handling logical connectives on
the assumptions. Rule E-Not states that if Γ∪{¬¬Φ} is assumed, then the proof proceeds
with assumption Γ∪{Φ}. Rule E-And and E-Or are used for handling conjunctions and
disjunctions in the assumptions. The former states that assuming ¬(Φ1∨Φ2) is the same
to assume both ¬Φ1 and ¬Φ2. The latter states that to prove Γ ∪ {Φ1 ∨Φ2} � P � ϕ we
have to prove both Γ ∪ {Φ1} � P � ϕ and Γ ∪ {Φ2} � P � ϕ separately.

Rules E-Fix and E-NotFix are used when a fixed point (νX.Φ), or its negation
(¬νX.Φ), is in the assumptions. In both the cases we proceed in a proof by replacing
each occurrence of X in Φ (resp. ¬Φ) with νX.Φ.
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Table 4. Tableau based Proof System

S � ψ
S � ¬¬ψ (Not)

Γ ∪ {Φ} � P � ψ
Γ ∪ {¬¬Φ} � P � ψ (E-Not)

Γ � P
α−→ S S � ψ

Γ � P � 〈α〉ψ (Dia)∗

{
S � ¬ψ

∣∣∣∣Γ � P
α−→ S
}

Γ � P � ¬ 〈α〉ψ (Box)∗

S � ¬ψ1 S � ¬ψ2

S � ¬(ψ1 ∨ ψ2)
(And)

S � ψi i ∈ {1, 2}
S � ψ1 ∨ ψ2

(Or)

Γ ∪ {¬Φ1,¬Φ2} � P � ψ
Γ ∪ {¬(Φ1 ∨Φ2)} � P � ψ (E-And)

Γ ∪ {Φ1} � P � ψ Γ ∪ {Φ2} � P � ψ
Γ ∪ {Φ1 ∨Φ2} � P � ψ (E-Or)

S � ψ[νX{H ,S}.ψ/X]
S � νX{H}.ψ (S � H)(Fix)

S � ¬ψ[¬νX{H ,S}.ψ/X]
S � ¬νX.ψ

(S � H)(NotFix)

Γ ∪ {Φ[νX.Φ/X]} � P � ψ
Γ ∪ {νX.Φ} � P � ψ (E-Fix)

Γ ∪ {¬Φ[¬νX.Φ/X]} � P � ψ
Γ ∪ {¬νX.Φ} � P � ψ (E-NotFix)

Γ � P � ψ
Γ ∪ {tt} � P � ψ (E-True)

Γ ∪ {� α �tt
}
� P � ψ

Γ ∪ {¬†(α)} � P � ψ (E-NotNeg)

Γ ∪ {†(α)} � P � ψ Γ ∪ {� α �Φ
}
� P � ψ Γ ∪ {� α �¬Φ} � P � ψ

Γ ∪ {¬ � α �Φ} � P � ψ (E-NotPos)

Γ ∪ {†(α)} � P � ψ Γ ∪ {� α �Φ} � P � ψ Γ ∪ {� α �¬Φ} � P � ψ
Γ ∪ {¬� α �Φ

}
� P � ψ (E-NotNec)

(*) Γ is determined.

Finally, rules E-NotDis, E-NotPos and E-NotNec handle assumptions where a nega-
tion of a modal formula is assumed. In all these rules the proof proceeds with the corre-
sponding positive assumptions on the considered environment. For instance, if ¬� α �Φ
is assumed, then we have that either α can not be executed (†(α) is assumed), after α
both states satisfyingΦ and states satisfying ¬Φ can be reachable (� α �Φ is assumed),
or each state after α satisfies ¬Φ (� α �¬Φ is assumed).

Like for the proof system of Section 2.2, we say thatΠ is a derivation from π = S � ϕ
if and only if has π as root and it is maximal, in the sense that nothing can be derived
from its leaves. Sequent successfulness is also extended in order to consider inconsistent
assumptions:

Definition 4. A sequent Γ�P � ϕ is successful if and only if either one of the conditions
of Definition 1 holds or Γ is inconsistent.

A derivationΠ is successful if all its leaves are successful. IfΠ is a successful derivation
from π, then Π is a proof for π.
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Table 5. Relation �

Γ ∪ {Φ1 ∨Φ2} � Γ ∪ {Φi} Γ ∪ {¬(Φ1 ∨ Φ2)} � Γ ∪ {¬Φ1,¬Φ2}
Γ ∪ {¬¬Φ} � Γ ∪ {Φ} Γ ∪ {νX.Φ} � Γ ∪ {Φ[νX.Φ/X]}

Γ ∪ {¬νX.Φ} � Γ ∪ {¬Φ[νX.Φ/X]}
Γ1 � Γ2

Γ1
α−→ Γ2

Γ ∪ {¬†(α)} � Γ ∪ {� α �tt
}

Γ ∪ {¬ � α �Φ} � Γ ∪ {†(α)}
Γ ∪ {¬ � α �Φ} � Γ ∪ {� α �Φ

}
Γ ∪ {¬ � α �Φ} � Γ ∪ {� α �¬Φ}

Γ ∪ {¬� α �Φ
} � Γ ∪ {†(α)} Γ ∪ {¬� α �Φ

} � Γ ∪ {� α �Φ}
Γ ∪ {¬� α �Φ

} � Γ ∪ {� α �¬Φ}

In the rest of this section we show how soundness and completeness can be proved
for our system. We will show that, Γ�P � ϕ is provable if and only if P ∈ � ϕ �AΓ whereA
is the set of actions we assume performed by the environment. However, to obtain this
result we have to guarantee that all the actions the environment can perform are properly
considered in the assumptionsΓ. We let Der(Γ) denoting the set of assumptions we have
to consider in a proof involving assumptions Γ:

Definition 5. We let:

– � be the smallest relation satisfying the rule of Table 5;
– � be the transitive and reflexive closure of �;
– Der(Γ) = {Γ′|Γ � Γ′}.

It is important to notice that, for each Γ, Der(Γ) is finite.

Lemma 5. For each Γ, Der(Γ) is finite.

Proof. The proof proceeds by induction on the cardinality of Γ and by showing that for
each Γ1 � ∅ and Γ2 � ∅, Der(Γ1 ∪ Γ2) ⊆ {Γ′1 ∪ Γ′2|Γ′1 ∈ Der(Γ1) ∧ Γ′2 ∈ Der(Γ2)}. �

Definition 6. Γ is complete for A ⊆ Act if and only if for each Γ′ ∈ Der(Γ),
Init(Γ′) = A.

Notice that, if Γ is complete forA ⊆ Act then the assumptions of Lemma 3 are always
verified in each proof involving Γ.

Theorem 2 (Soundness). For each Γ complete for A ⊆ Act, if Γ � P � ϕ is provable
then P ∈ � ϕ �AΓ .

Proof. The proof proceeds by induction on the length of a proofΠ for Γ � P � ϕ and by
showing that, for each P, Γ and ϕ the following hold:

a. P ∈ � ϕ �Γ∪{tt} ⇔ P ∈ � ϕ �Γ
b. P ∈ � ϕ �Γ∪{Φ1∨Φ2} ⇔ P ∈

(
� ϕ �Γ∪{Φ1} ∩ � ϕ �Γ∪{Φ2}

)

c. P ∈ � ϕ �Γ∪{Φ1∧Φ2} ⇔ P ∈ � ϕ �Γ∪{Φ1}∪{Φ2}
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d. P ∈ � ϕ �Γ∪{¬¬Φ} ⇔ P ∈ � ϕ �Γ∪{Φ}
e. P ∈ � ϕ �Γ∪{νX.Φ} ⇔ P ∈ � ϕ �Γ∪{Φ[νX.Φ/X]}
f. P ∈ � ϕ �Γ∪{¬νX.Φ} ⇔ P ∈ � ϕ �Γ∪{¬Φ[¬νX.Φ/X]}
g. P ∈ � ϕ �Γ∪{¬†(α)} ⇔ P ∈ � ϕ �Γ∪{� α �tt}
h. P ∈ � ϕ �Γ∪{¬� α �Φ} ⇔ P ∈

(
� ϕ �Γ∪{†(α)} ∩ � ϕ �Γ∪{� α �Φ} ∩ � ϕ �Γ∪{� α �¬Φ}

)

i. P ∈ � ϕ �Γ∪{¬� α �Φ} ⇔ P ∈
(
� ϕ �Γ∪{†(α)} ∩ � ϕ �Γ∪{� α �¬Φ} ∩ � ϕ �Γ∪{� α �Φ}

)

�

To prove completeness we use the following schema. First we prove that for each P, Γ
and ϕ, if Der(P) is finite then we can have only finite maximal derivations for Γ �P � ϕ.
From that we can derive that only one between Γ � P � ϕ and Γ � P � ¬ϕ is provable.
This, with the soundness result, guarantees the completeness (and the decidability) of
the proposed proof system.

Definition 7. We let Der(Γ � P) = {Γ′ � Q|Γ′ ∈ Der(Γ) ∧ Q ∈ Der(P)}
Definition 8. Let S = Γ � P, for each ϕ and ψ we will write ϕ ≺S ψ if and only if:

– either ψ is a proper subformula of ϕ;
– or ψ = ¬ψ′, ϕ = ¬ϕ′ and ψ′ ≺S ϕ′;
– or ϕ = νX{−→S }.ϕ′ and ψ = ϕ′[νX{−→S ,S′}.ϕ′/X] where S′ ∈ Der(S) − {−→S }.

It is clear that, if Der(P) is finite then, for each Γ Der(Γ � P) is finite too. The following
lemma guarantees that if Der(Γ � P) is finite than we cannot find an infinite ascending
chain of formulae for a derivation involving Γ � P.

Lemma 6. For each S such that Der(S) is finite does not exist an infinite sequence of
formulae ϕi (i ∈ N) such that, for each i, ϕi ≺S ϕi+1.

Proof. Directly from the fact that νX{Der(S)}.ψ is a maximum. �

Since ϕ1 ≺Γ�P ϕ2 means that ϕ2 is a formula that can occur in a proof for ϕ1, we can
conclude that only a finite number of formulae can occur in a derivation.

Definition 9. For each formula Φ we let weight(Φ) as follows:

– weight(tt) = weight( f f ) = weight(†(α)) = weight(� α �Φ) = weight(� α �Φ) = 0;
– weight(Φ1 ∨Φ2) = 2 + weight(Φ1) + weight(Φ2)
– weight(νX.Φ) = 1 + weight(Φ)
– weight(¬Φ) = 1 + weight(Φ)

Definition 10. Let π1 and π2 be two sequents, we will write π1 � π2 if and only if π1

immediately precedes π2 in a proof.

The following lemma shows that, if sequent π1 can be proved through sequent π2 then
either the weight of assumptions, i.e. the number of logical connectives in front of modal
operators, or the formula subject of the derivation decrease in π2. These means that, if
we find an infinite derivation from π then we have also an infinite chain of formulae.
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Lemma 7. If Γ1 � P1 � ϕ1 � Γ2 � P2 � ϕ2 then either weight(Γ1) < weight(Γ2) or
ϕ1 ≺Γ1�P1 ϕ2.

Proof. Directly from rules of Table 4. �

Lemma 8. For each P such that Der(P) is finite and for each Γ and ϕ, does not exist
infinite derivation starting from Γ � P � ϕ.

Proof. Suppose that there exists an infinite derivation for Γ � P � ϕ.
=⇒ {De f .π1 � π2}
∃ infinite chain of sequents πi : ∀k, πk � πk+1 (i ∈ N)

=⇒ {Lemma 7}
∃ infinite sequence of formulae ϕ j : ∀k, ϕk ≺Γ�P ϕk+1 ( j ∈ N)

=⇒ {Lemma 6,Der(Γ � P) is finite}
� infinite sequence of formulae ϕ j : ∀k, ϕk ≺Γ�P ϕk+1 ( j ∈ N)

=⇒ {Reductio ad absurdum}
� infinite derivation from Γ � P � ϕ �

We can now introduce our final result:

Theorem 3. For each process P, Γ, ϕ andA, where Der(P) is finite and Γ is complete
forA, if P ∈ � ϕ �AΓ then Γ � P � ϕ is provable.

Proof. Der(P) is finite

=⇒ {Lemma 8}
� infinite derivation from Γ � P � ϕ

=⇒ {Each maximal derivation is finite}
one between Γ � P � ϕ and Γ � P � ¬ϕ is provable

=⇒ {Theorem 2}
Γ � P � ϕ is provable �

Example 5. The proposed proof system can be used for verifying that, when we con-
sider the assumptions ΓDF of Example 4, process Ph0 guarantees absence of deadlock.
However, absence of starvation is not guaranteed. Indeed, Φ0

F |Ph1|Φ1
F does not satisfy

ΓDF that, on the contrary, is satisfied by Ph∗1 (see Example 3). Moreover, in the former
specification it is not guaranteed that fork F1 will be released after that it is acquired by
the environment.

The proposed assumptions can be refined by considering a concrete specification for
forks F0 and F1. In this case we have:

Γ2
DF = {Φ0, Φ1, ΦC}
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Where each Φi identifies the protocol used by the environment for interacting with fork
Fi, while ΦC states that picki and reli (i = 1, 0) can not be enabled at the same time.
If A is the (finite) set of actions that can be performed by the environment, where
{τ, pick0, pick1, rel0, rel1} ⊆ A, Φi and ΦC are defined as follows:

Φi = νX.� picki �Eventually(A − {picki, reli}, � reli �X)

ΦC = ¬Always(A, (� pick0 �tt ∧ � rel0 �tt) ∨ (� pick1 �tt ∧ � rel1 �tt))

The proposed proof system can be used for verifying that Γ2
DF � F0|F1 satisfies ΓDF .

Therefore, Γ2
DF � Ph0|F0|F1 guarantees that deadlock is never reached. However, both

Ph1 and Ph∗1 do not satisfies Γ2
DF . Indeed, these processes assume a prefixed order in

which forks are retrieved, while in the assumed behaviour, forks can be retrieved by
the environment in any order. A correct implementation of Γ2

DF is a process that, non
deterministically, can select the first picked fork and, at the same time, can always
decide to release the first without taking the second.

5 Conclusions, Related Works and Future Works

In this paper we have presented a formal framework that permits verifying proper-
ties of concurrent and communicating systems by using an assumption-guarantee ap-
proach [16]. Each system component under the analysis is not considered in isolation,
but in conjunction with assumptions about the context of the component. In the pa-
per we have also introduced a sound and complete proof system that permits verifying
whether a process, when it is executed in an environment for which we provide some
assumptions, satisfies a given formula. It is also ensured that property satisfaction is
preserved whenever the context is partially instantiated (implemented) as a concrete
process that verifies the assumptions we have for the environment. Even if the proposed
approach can be used for modular/compositional verification, it is important to remark
that this is only a consequence of our approach and it is not the main objective. Indeed,
differently from existing compositional proof systems [2,12,18], process specification
and the investigated property are not (automatically) decomposed in components and
sub-formulae that are verified separately.

The proposed framework is somehow reminiscent of the one proposed in [21] where
the logical implication (−∗) on monoids M = (M, ·, e,�) has been introduced. This
implication is defined as m � ϕ −∗ψ⇔ ∀n ∈ M(n � ϕ⇒ n · m � ψ). However, elements
in M are not processes but memory locations. Moreover, · is not a parallel composition
but a Cartesian product.

In the same line of [21] we recall the Separation Logic presented in [22]. In this
work each process has a storage space. Processes are composed by using the separating
conjunction P∗Q asserting that P and Q use disjoint portions of the addressable storage.
The same approach has been used in [6,15] to concurrent processes sharing access to
mutable data.

However, while in [21,22] concurrent programs mainly interact by means of shared
memory, in our work, on the contrary, we consider processes that interact by using
channels. Moreover, we also consider an explicit interaction between the environment
and the considered process.



304 L. D’Errico and M. Loreti

In [8,9] a spatial implication (�) is used for relating the satisfaction of a formula to
the properties satisfied by the context. Indeed, P satisfies A � B if and only if for each
Q satisfying A, P|Q satisfies B. However, this very interesting and powerful logical
framework makes the operator undecidable [7]. In our approach, we do not perform
any separation of components running in parallel.

Other existing solutions for partical/compositional specification rely on mixed spec-
ifications or on the use of intuitionistic/linear logics. Mixed specifications [3] have been
also introduced to describe a system where transitions must or may happen. The con-
text is then specified by means of Modal Transition Systems that, combined with a
process specification, are used by model checking algorithms to verify the satisfiabil-
ity of temporal logics. In [1], two logics, one intuitionistic and the other linear, have
been introduced for specifying reactive systems and for studying compositional rules.
In this approach, process semantics is defined in term of a logical framework where
process composition is derived in term of tensor product and linear implications. Even
if these works and the present paper share the same aim, the final results are quite
different. Indeed, in the case of Modal Transition Systems, different tools have to be
used for verifying the compliance between the abstract specification with the refined
implementation. On the contrary, in the case of [1] the actual implementation of the
system (i.e. the process describing the behaviour of the considered system) is hidden
inside the logical specification. Moreover, property verification, as well as system re-
finement, is performed in term of propositional reasoning. Our approach, by relying
on Hennessy-Milner Logic/mu Calculus, permits exploiting standard and well studied
model checking algorithms.

In the future, we aim at defining a methodology that, starting from a process P and
a formula ϕ, aims at deriving the most general assumptions we have to impose to the
environment to see ϕ be satisfied by P.
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