

Lecture Notes in Computer Science 5512
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martin Glinz Patrick Heymans (Eds.)

Requirements Engineering:
Foundation for
Software Quality

15th International Working Conference, REFSQ 2009
Amsterdam, The Netherlands, June 8-9, 2009
Proceedings

13

Volume Editors

Martin Glinz
University of Zurich
Department of Informatics
Binzmühlestrasse 14, 8050 Zurich, Switzerland
E-mail: glinz@ifi.uzh.ch
www.ifi.uzh.ch/∼glinz

Patrick Heymans
FUNDP–University of Namur
Computer Science Faculty
PReCISE Research Centre
Rue Grandgagnage 21, 5000 Namur, Belgium
E-mail: phe@info.fundp.ac.be
www.info.fundp.ac.be/∼phe

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.2.1, D.2.3, D.1, I.2.2, D.1.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-02049-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02049-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12688807 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers accepted for presentation at the 15th Work-
ing Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2009), held in Amsterdam during June 8–9, 2009.

Since 1994, when the first REFSQ took place, requirements engineering (RE)
has never ceased to be a dominant factor influencing the quality of software, sys-
tems and services. Initially started as a workshop, the REFSQ working confer-
ence series has now established itself as one of the leading international forums
for discussing RE in its many relations to quality. It seeks reports on novel ideas
and techniques that enhance the quality of RE products and processes, as well
as reflections on current research and industrial RE practices.

One of the most appreciated characteristics of REFSQ is that of being a
highly interactive and structured event. Each session is organized in order to
provoke discussion among the presenters of papers, discussants and all the other
participants. Typically, after a paper is presented, it is immediately discussed by
one or two pre-assigned discussants, then subject to a free discussion involving
all participants. At the end of each session, an open discussion of all the papers
presented in the session takes place. REFSQ 2009 maintained this tradition.

The special theme of REFSQ 2009 was value and risk in relation to RE
and quality. Ensuring that requirements, and eventually running systems, meet
the values of the individuals and organizations that they are meant to serve
has always been at the core of RE. Nowadays, continuously changing technol-
ogy, ubiquitous software, ever-growing system complexity, and unheard of mar-
ket pressure, simultaneously with new business models based, for example, on
crowdsourcing, make the concern for value all the more present and challeng-
ing. The notion of value is inseparably connected to the notion of risk. We are
challenged both by product risks, i.e., risks that threaten the value we want to
achieve with the systems we build, and project risk, i.e., the risk of not achieving
the intended value when building a system. Identifying and mitigating risks is a
core task of RE.

While REFSQ 2009 invited general submissions on RE, papers dealing with
value and risk were especially welcome. In all, we received a healthy 60 submis-
sions, consisting of 49 full papers and 11 short papers. After all the submissions
were carefully assessed by three independent reviewers and went through elec-
tronic discussions, the Program Committee met and finally selected 14
top-quality full papers (11 research papers and 3 experience reports), result-
ing in an acceptance rate of 29% (14/49) for full papers. In addition to those
14 papers, 7 high-quality short papers were selected: 4 were shortened versions
of very promising but not fully mature long papers, while the remaining 3 were
selected from the 11 submitted short papers. The overall acceptance rate of the
conference was thus of 35% (21/60).

VI Preface

The table of contents shows a topical grouping of papers highlighting the
success of this year’s special theme. It also indicates consistent interest of the
community in already popular topics such as change and evolution, inconsis-
tency, interaction, structuring, elicitation, creativity, documentation, modelling
and research methods. The work presented at REFSQ 2009 continues to have a
strong anchoring in practice with empirical investigations spanning over a wide
range of application domains, including embedded systems (automotive, mobile
communication, navigation), off-the-shelf and open-source sofware, business and
Web-based information systems, smart homes, and product lifecycle manage-
ment. The international character of REFSQ is underlined by the 12 countries
represented1 this year with a notable 33% (7/21) of papers coming from North
America. Table 1 provides more details2.

Table 1. Authors and papers per country

Country Number of papers Number of authors
Australia 1 1
Austria 1 2
Belgium 1 4
Canada 1 4
France 2 5
Germany 4 10
Greece 1 1
Spain 1 2
Sweden 5 12
Switzerland 1 3
UK 4 10
US 6 10

As in previous years, these proceedings serve as a record of REFSQ 2009, but
also present an excellent snapshot of the state of the art of research and practice
in RE. As such, we believe that they are of interest to the whole RE community,
from students embarking on their PhD to experienced practitioners interested
in emerging knowledge, techniques and methods.

All readers who are interested in an account of the discussions that took
place during the conference should consult the post-conference summary that we
intend to publish as usual in the ACM SIGSOFT Software Engineering Notes.

REFSQ is essentially a collaborative effort. First of all, we thank Anne Pers-
son and Guttorm Sindre, who served REFSQ 2009 very well as Organization
Chairs. We are also indebted to the CAiSE 2009 organization team for their
efficient support in co-locating both events. REFSQ would not be in its 15th

1 Computed from the affiliations of the authors.
2 The sum of the second column is higher than the total number of accepted papers

because some papers have authors from multiple countries.

Preface VII

edition this year without the wise guidance of our Advisory Board – Eric Dubois,
Andreas L. Opdahl and Klaus Pohl – as well as all the former conference chairs.

As the Program Chairs of REFSQ 2009, we deeply thank the members of the
REFSQ 2009 Program Committee and the additional referees for their careful
and timely reviews. We especially thank those who actively participated in the
Program Committee meeting and those who volunteered to act as shephards to
help finalize promising papers. Finally, we would like to thank our collaborators
at the University of Zurich and the University of Namur: Eya Ben Charrada,
Cédric Jeanneret, Reinhard Stoiber and Tobias Reinhard for their careful format
checking of the camera-ready submissions, Germain Saval and Andreas Classen
for their support in setting up the website and for the layout of the call for papers.
Last, but not least, we thank Evelyne Berger and Laura Oger who provided all
sorts of administrative support.

April 2009 Martin Glinz
Patrick Heymans

Organization

Advisory Board Eric Dubois
PRC Henri Tudor, Luxembourg

Andreas L. Opdahl
University of Bergen, Norway

Klaus Pohl
University of Duisburg-Essen, Germany

Program Chairs Martin Glinz
University of Zurich, Switzerland

Patrick Heymans
University of Namur, Belgium

Organization Chairs Anne Persson
University of Skoevde, Sweden

Guttorm Sindre
NTNU, Norway

Program Committee
Ian Alexander Scenario Plus, UK
Aybüke Aurum University New South Wales, Australia
Daniel M. Berry University of Waterloo, Canada
Jürgen Börstler University of Ume̊a, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
David Callele University of Saskatchewan, Canada
Alan Davis University of Colorado at Colorado Springs,

USA
Joerg Doerr Fraunhofer/IESE, Germany
Christof Ebert Vector, Germany
Anthony Finkelstein University College London, UK
Xavier Franch Universitat Politècnica de Catalunya, Spain
Vincenzo Gervasi Università di Pisa, Italy
Jaap Gordijn Vrije Universiteit Amsterdam, The Netherlands
Tony Gorschek Blekinge Institute of Technology, Sweden
Olly Gotel Pace University, USA
Paul Grünbacher University of Linz, Austria
Peter Haumer IBM Rational, USA
Jane Huang DePaul University, USA
Matthias Jarke RWTH Aachen, Germany
Sara Jones City University, London, UK
Natalia Juristo Universidad Politécnica de Madrid, Spain

X Organization

Erik Kamsties University of Applied Sciences, Lübeck,
Germany

Søren Lauesen IT University of Copenhagen, Denmark
Seok-Won Lee University of North Carolina at Charlotte, USA
Michel Lemoine ONERA, France
Nazim H. Madhavji University of Western Ontario, Canada
Neil Maiden City University, London, UK
Raimundas Matulevičius University of Namur, Belgium
Haris Mouratidis University of East London, UK
John Mylopoulos University of Toronto, Canada
Cornelius Ncube Bournemouth University, UK
Bashar Nuseibeh Open University, UK
Barbara Paech University of Heidelberg, Germany
Oscar Pastor Valencia University of Technology, Spain
Colette Rolland Université Paris I – Panthéon Sorbonne, France
Gil Regev EPFL, Switzerland
Björn Regnell Lund University, Sweden
Camille Salinesi Université Paris 1 - Panthéon Sorbonne, France
Kristian Sandahl Linköping University, Sweden
Peter Sawyer Lancaster University, UK
Kurt Schneider University of Hannover, Germany
Janis Stirna Jönköping University, Sweden
Axel van Lamsweerde Université Catholique de Louvain, Belgium
Roel Wieringa University of Twente, The Netherlands
Eric Yu University of Toronto, Canada
Didar Zowghi University of Technology Sydney, Australia

Additional Referees
Lars Borner
Jordi Cabot
Oscar Dieste
Golnaz Elahi
Anna Grimán
Jennifer Horkoff
Siv-Hilde Houmb
Slinger Jansen
Marijke Janssen
Sybren de Kinderen

Mahvish Khurum
Kim Lauenroth
Armstrong Nhlabatsi
Zornitza Racheva
Jürgen Rückert
Henk van der Schuur
Christer Thörn
Inge van de Weerd
Krzysztof Wnuk

Sponsoring Institutions
– University of Namur, Belgium
– University of Zurich, Switzerland
– CAiSE 2009 conference organization
– Interuniversity Attraction Poles Programme, Belgian State,

Belgian Science Policy (MoVES project)

Table of Contents

1. Value and Risk

When Product Managers Gamble with Requirements: Attitudes to
Value and Risk . 1

Nina D. Fogelström, Sebastian Barney, Aybüke Aurum, and
Anders Hederstierna

Toward a Service Management Quality Model . 16
Gil Regev, Olivier Hayard, Donald C. Gause, and Alain Wegmann

A Controlled Experiment of a Method for Early Requirements Triage
Utilizing Product Strategies . 22

Mahvish Khurum, Tony Gorschek, Lefteris Angelis, and Robert Feldt

Demystifying Release Definition: From Requirements Prioritization to
Collaborative Value Quantification . 37

Tom Tourwé, Wim Codenie, Nick Boucart, and Vladimir Blagojević

2. Change and Evolution

Specifying Changes Only – A Case Study on Delta Requirements 45
Andrea Herrmann, Armin Wallnöfer, and Barbara Paech

Requirements Tracing to Support Change in Dynamically Adaptive
Systems . 59

Kristopher Welsh and Pete Sawyer

3. Interactions and Inconsistencies

Early Identification of Problem Interactions: A Tool-Supported
Approach . 74

Thein Than Tun, Yijun Yu, Robin Laney, and Bashar Nuseibeh

Composing Models for Detecting Inconsistencies: A Requirements
Engineering Perspective . 89

Gilles Perrouin, Erwan Brottier, Benoit Baudry, and Yves Le Traon

4. Organization and Structuring

Experiences with a Requirements Object Model . 104
Joy Beatty and James Hulgan

XII Table of Contents

Architecting and Coordinating Thousands of Requirements – An
Industrial Case Study . 118

Krzysztof Wnuk, Björn Regnell, and Claes Schrewelius

5. Experience

BPMN-Based Specification of Task Descriptions: Approach and Lessons
Learnt . 124

Jose Luis de la Vara and Juan Sánchez

Clarifying Non-functional Requirements to Improve User
Acceptance – Experience at Siemens . 139

Christoph Marhold, Clotilde Rohleder, Camille Salinesi, and
Joerg Doerr

6. Elicitation
Scenarios in the Wild: Experiences with a Contextual Requirements
Discovery Method . 147

Norbert Seyff, Florian Graf, Neil Maiden, and Paul Grünbacher

Inventing Requirements with Creativity Support Tools 162
Inger Kristine Karlsen, Neil Maiden, and Andruid Kerne

7. Research Methods

A Quantitative Assessment of Requirements Engineering Publications
– 1963-2008 . 175

Alan Davis and Ann Hickey

Assurance Case Driven Case Study Design for Requirements
Engineering Research . 190

Robin A. Gandhi and Seok-Won Lee

8. Behavior Modeling

Translation of Textual Specifications to Automata by Means of
Discourse Context Modeling . 197

Leonid Kof

A Requirements Reference Model for Model-Based Requirements
Engineering in the Automotive Domain . 212

Birgit Penzenstadler, Ernst Sikora, and Klaus Pohl

9. Empirical Studies

Quality Requirements in Practice: An Interview Study in Requirements
Engineering for Embedded Systems . 218

Richard Berntsson Svensson, Tony Gorschek, and Björn Regnell

Table of Contents XIII

Does Requirements Clustering Lead to Modular Design? 233
Zude Li, Quazi A. Rahman, Remo Ferrari, and Nazim H. Madhavji

10. Open-Source RE

Lessons Learned from Open Source Projects for Facilitating Online
Requirements Processes . 240

Paula Laurent and Jane Cleland-Huang

Author Index . 257

When Product Managers Gamble with
Requirements: Attitudes to Value and Risk

Nina D. Fogelström1, Sebastian Barney1, Aybüke Aurum2,
and Anders Hederstierna3

1 School of Engeering, Blekinge Institute of Technology
nino.dzamashvili.fogelstrom@bth.se, sebastian.barney@bth.se

2 School of Information Systems, Technology and Management,
University of New South Wales

aybuke@unsw.edu.au
3 School of Management, Blekinge Institute of Technology

anders.hederstierna@bth.se

Abstract. [Context and motivation] Finding a balance between
commercial (customer specific, market pull and external quality require-
ments) and internal quality requirements is a recognized challenge in
market driven software product development (MDSPD). In order to ad-
dress this challenge it is important to understand the preferences and
biases influencing decision makers selecting requirements for software
releases. [Question/problem] Prospect theory has been successfully
applied to many disciplines. Applying it to MDSPD suggests decision
makers will avoid risk when selecting between commercial requirements,
take risk with internal quality requirements, and prefer commercial re-
quirements over internal quality requirements in order to maximize their
perceived value. This paper seeks to investigate this claim. [Principal
ideas/results] This paper presents an experiment investigating whether
the biases proposed by prospect theory can be seen operating in MDSPD
requirements engineering (RE). The results indicate risk avoidance when
dealing commercial requirements, while greater risk is taken when deal-
ing with internal quality requirements. [Contribution] As this is the
first paper to use prospect theory to explain requirements selection deci-
sions, it presents opportunity to educate people in the biases they bring
to the RE process, and facilitate the creation of strategies for balancing
the different requirements types.

Keywords: requirements selection, prospect theory, value, risk.

1 Introduction

Requirements engineering (RE) is a decision rich activity, and RE decision sup-
port as a field has received increasing attention as market-driven software prod-
uct development (MDSPD) has taken off [1,2,3]. Due to the growing popularity
and complexity of MDSPD, it is important to understand how inherit biases in-
fluences decisions made in this area. This paper explores one key bias presented
through prospect theory, and how it impacts value and risk perception.

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 N.D. Fogelström et al.

MDSPD is focused on the task of selecting a set of requirements that should
be included in the coming releases of a product. The success of the product is
measured in sales and is related to how much the product features are valued
by the customers.

The requirements selection process in MDSPD is often perceived as a very
complex activity. This complexity is explained by:

– A large number of requirements that need to be considered;
– A variety of different technical aspects that need to be taken into account

before a selection of the requirements can be made; and
– The challenge associated with taking decisions based on the decision material

of variable quality (such as uncertain cost and value estimations).

Thus, the authors of this paper classify requirements selection as occurring in
a high-risk environment.

Requirements selection in MDSPD often involves situations where a decision
maker must choose between requirements of different types. Key requirement
types include commercial requirements – originating from the market and key
customers; and system requirements (internal quality requirements) – often con-
nected with system maintenance, quality and architecture. The challenge here
is to find a balance between commercial and system requirements, such as to
allow satisfying the immediate market and customer needs, as well as assuring
the healthy product architecture evolution.

Recent studies on MDSPD show that commercial requirements are perceived
more important than system requirements [4,5,6,7]. However, these studies also
show that system requirements are generally undervalued. Considering the im-
pact of requirements selection decisions on the business of a development com-
pany, it would be useful to have an understanding of the heuristics and cognitive
biases behind these decisions, which according to the classical decision theory
govern the decision outcome [8].

In this paper prospect theory [9,10] is used to explore biases behind require-
ment selection decisions in a MDSPD context. While this breaks normative
assumptions about decision making in risky situations referenced in most engi-
neering literature [11], decisions made by software project managers have found
to be better modelled by prospect theory than the more common utility theory.

Prospect theory models decision makers’ attitudes towards risk in terms of
gains and losses [8]. It predicts that people will be risk adverse when selecting
between options described in terms of gains, and risk taking when deciding
between options described in terms of losses. Given that software requirements
in MDSPD RE can be described in terms of revenues (gains) and/or costs (losses)
it seems interesting to apply prospect theory in order to explain the choices of
decision makers.

Assuming that in MDSPD commercial requirements are normally associated
with revenue, while system requirements are associated with costs, applying
prospect theory would suggest decision makers will take risks with system re-
quirements. As these requirements are associated with cost, the preference is to

When Product Managers Gamble with Requirements 3

delay spending in the short-term, despite the potential for increased costs later
and thus taking a risk.

Conversely, since commercial requirements are associated with gains, decision
makers will be more risk adverse when selecting and prioritizing these require-
ments. This means preference will be given to requirements with a more reliable
revenue stream, even if the alternatives could yield greater ROI.

In the experiment presented in this paper the authors investigate how well
prospect theory applies to MDSPD RE. To the best of the author’s knowledge
this is the first time prospect theory has been applied to MDSPD. The primary
objective is to investigate the decision maker’s attitude towards risk, as well as
perception of requirements value when it comes to choosing between alternatives
of both cost and benefit.

The structure of the paper is as follows; Section 2 presents the special char-
acteristics of MDSPD and provides an overview of how prospect theory can be
used to explain and model requirements selection decisions in an MDSPD en-
vironment; Section 3 details the research question and the experiment design;
the experiment results and analysis are found in Section 4 and finally Section 5
presents conclusions and future work.

2 Background

The following section provides a brief summary of the characteristics of require-
ments selection process in MDSPD. This is followed by a presentation of prospect
theory and an experiment that explore attitudes towards losses and gains. The
section concludes with a discussion on how prospect theory can be used to ex-
plain requirements selection decisions in MDSPD.

2.1 Market Driven Software Product Development

In typical MDSPD the development organization is the main stakeholder and
owner of a developed product. The product evolves over time with new func-
tionality added and offered to the general market through product releases. In
MDSPD the development organization takes most risks and is responsible for
development costs of the product. Delivering the right set of functionality when
the market is ready for it is critical for the success of the software product.

Market-driven development is largely product focused and many important
activities are performed prior to the initiation of the development projects (i.e.
pre-project). The goal of pre-project activities is to catch, analyse, select and
plan requirements for future releases of the product. Pre-project activities should
result in a prioritized list of requirements that are assigned to a specific release.
These requirements are then realized through one or more development projects.

The importance of correct decision making pre-project is acknowledged and
highlighted by both industry and academia. However, finding a perfect set of re-
quirements is considered impossible due to a variety of different criteria that need
to be taken into account and conflicting interests of stakeholders. Each stake-
holder group is interested to see their requirement in the next release [12,13,14].

4 N.D. Fogelström et al.

Table 1. Requirement Types in MDSPD

Requirement Type Explanation
Customer specific features Requirement originating from one of the key customers
Market pull requirements Requirements originating from more than one customers

that represent a certain market
Innovation Requirement usually originating from the company’s

R&D. Examples of this may be innovative technology,
patents, innovative features, etc.

External quality aspects Requirements concerning usability, security, reliability
and other quality issues

System requirements
(Internal quality aspects)

These are system architecture specific requirements, con-
nected to system architecture health, flexibility, and evo-
lution.

Different requirement types that are typically involved in requirements se-
lection process are shown in Table 1 [2,15,16]. Customer specific features and
Market pull requirements, which are often referred to as commercial require-
ments originate from the customers. In the case of Customer specific features
the main stakeholder is one key customer, whereas for Market pull requirements
the main stakeholder is often a marketing or sales unit representing a number
of customers.

Innovation requirements can originate from Key customers, however mostly
these requirements are defined by the R&D unit of a company.

The stakeholders of External quality aspects can be represented by both ex-
ternal parties, such as customers and internal parties such as R&D. Finally,
System requirements mainly focus on system architecture and evolution aspects
and almost always originate from organisations’ R&D units.

Recent studies on MDSPD show that commercial requirements are perceived
more important than system requirements [4,5,6,7]. However, these studies also
show that system requirements are generally undervalued. The situation where
system requirements are usually given a lower priority is troubling system en-
gineers as it will lead to system architecture deterioration and collapse in the
longer term, which can be connected to serious losses for the company.

Finding a trade-off and profitable balance between commercial and system
requirements is very important for the success of a product. But before this
trade-off can be found, the authors believe an understanding should be reached
of the reasoning and decision frames that govern decision making process in
MDSPD RE. This is where the authors believe prospect theory may be useful.

2.2 Prospect Theory and Related Works

Prospect theory was developed by Daniel Kahneman and Amos Tversky [9], for
which Kahneman won a Nobel Prize in economics in 2002. It examines pos-
sible outcomes in terms of gains and losses to determine the value of these
outcomes [8]. When asked about the preferred choice between the “sure thing”

When Product Managers Gamble with Requirements 5

Table 2. Risk Preferences

Scenario Risk Attitude Risk Preference
V (X) = V (0.5 ∗ 2X) Risk neutral Indifferent between the options
V (X) > V (0.5 ∗ 2X) Risk adverse Prefers the “sure thing”
V (X) < V (0.5 ∗ 2X) Risk taker Prefers the risky option

and a risky option, it is assumed that the decision maker’s attitude to risk is
revealed. If X is the monetary outcome, 0.5 is the probability of “winning” X
and V is the value of a choice option, the preferences in Table 2 reveal the risk
attitude of an individual.

While prospect theory is built on utility theory, prospect theory differs in
that it considers issues from within a reference frame. Utility theory looks at net
wealth, where prospect theory considers gains and losses. Thus prospect theory
can explain why a loss of $500 is felt more strongly than a gain of $500.

Prospect theory has many practical applications, even within software engi-
neering. It has been used to understand the reasons behind software project
escalation [17], explain why early involvement in software project bidding leads
to higher quotes [18], and support with the pricing of software bundling [19].
What is interesting about prospect theory is the relationship between the out-
come and value is not linear, as seen in Figure 1. The function is steepest around
zero and flattens out as the losses and gains become greater. It is also steeper
for losses than gains.

The properties of the function mean that $500 loss is felt more strongly than
a $500 gain as the relative value for losses is greater than the value for a similar
sized gain. This can be seen in Figure 1 by using the guide markings.

Given the choice between (a) a 50% chance of gaining $1000 or (b) a sure
gain of $500, most people select the safer option, B [9]. Figure 1 shows that a

Fig. 1. Value function from prospect theory

6 N.D. Fogelström et al.

doubling in gains is not equivalent to a doubling in value, so the value delivered
by option B on average is actually less than option A (as the value derived from
the average of no gain and a $1000 gain is less than the value of a $500 gain).

Conversely when presented with options to (a) lose $1000 with 50% probability
or (b) a sure loss of $500, most people chose the riskier option A [9]. As more
value is lost from $0 to $500 than from $500 to $1000, the expected value of the
outcome is less than the guaranteed loss of $500.

Another implication of prospect theory is that preferences will depend on how
a problem is framed [8]. If the decision maker perceives the outcome as a gain
they will accordingly act in a risk-adverse manner, while acting in a risk-taking
manner where the perceived outcome is a loss.

Framing has been found to play an important role in medicine. How the ben-
efits of a vaccine are framed will yield very different take-up rates [11]. Patients
who are told a vaccine is guaranteed to stop a virus are more likely to take it,
than patients who are told a vaccine will stop two equally likely viruses with
50% probability.

However, these results would suggest that most people would not buy insur-
ance. Replicas of the original experiments into prospect theory have found that
most people act differently depending on whether the cost is framed as a gam-
ble or an insurance [20,21]. When a cost scenario is framed as insurance most
people are risk adverse preferring to pay the smaller fixed amount, while when
it is presented as a gamble people prefer to take on the risk.

Kahneman and Tversky [9] also found that people overweighed low proba-
bilities and underweighted higher probabilities. This explains why people are
prepared to buy lottery tickets.

2.3 Using Prospect Theory to Explain Requirements Selection
Decisions

Given prospect theory can be applied to decision-making processes in disciplines
from finance to medicine [22], this section proposes how prospect theory can be
used to explain the requirements selection decisions in MDSPD – in this context
losses are described in terms of costs and gains in terms of revenues.

The requirements types presented in Section 2.1 are represented in Table 3
with information on whether each is perceived as generating costs or revenues.
Commercial requirement types are marked with an asterisk, while system re-
quirement types are not.

Table 3. Requirement associations and related risk

Requirement Type Cost/Revenue Driver
Customer specific features * Revenue
Market pull requirements * Revenue
Innovation * Revenue
External Quality aspects * Revenue
System Requirements (internal quality) Cost

When Product Managers Gamble with Requirements 7

Commercial and system requirements are obviously very different in nature.
Commercial requirements are clearly associated with customers – and therefore
with revenue, while system requirements are associated with costs. This result
can be seen through the language used to describe the different requirement
types. Commercial requirements are referred to as business opportunities, and
are discussed in terms revenue generation and expanding markets. In contrast
system requirements are discussed as costs and must be justified with either, “If
we do not do this now it will lead to higher costs in the future,” or, “If we make
this change now we will be able to lower our production costs.”

As commercial and system requirements can be described in terms of gains
and losses, prospect theory has an obvious connection in how these different
requirement types are valued. This is seen most clearly by replacing gains and
losses with revenue and costs, and placing requirements of different types on the
graph in Figure 1.

Looking at a commercial requirement with an expected gain, one can see that
a doubling of the gain does not double the value of the requirement. Similarly
halving the gain does not halve the value of the requirement. The results from
previous studies of prospect theory would therefore suggest that decision mak-
ers would be risk adverse when selecting commercial requirements, preferring
guaranteed returns over larger riskier returns. Conversely decision makers would
prefer to take more risk with system requirements, trying to minimize costs, even
if these savings come at the risk of spending more money.

Different levels of risk are associated with the various requirement types. A
customer specific requirement often has a customer willing to foot the entire
cost, and one may reasonably assume that an individual customer is indicative
of wider market demands. The return on investment of an innovation, however,
does not have the same guaranteed revenue stream, but there is a potential
for large revenues if the requirement proves popular. Internal system quality
requirements are likewise risky as they involve investments in the longer-term
sustainability of a software product. This could mean, for example, a requirement
is developed allowing different database systems to be used with the product,
but if this is never used the cost was unnecessarily incurred. It should also be
noted that the customer is only aware of commercial requirements, with only
the development organisation having clear visibility into internal system quality.

Given the clear link between prospect theory and MDSPD RE, the aim of
the experiment presented in this paper is to investigate whether prospect theory
holds in an MDSPD RE setting. While the authors acknowledge MDSPD RE is
a complex decision making setting, the focus of this paper is on understanding
the bias towards the perception of value as proposed by prospect theory, and
how it may impact the decision making process.

3 Experiment Planning and Operation

This section presents the research question and major steps in the experiment
planning and operation.

8 N.D. Fogelström et al.

3.1 Research Question

The goal of the experiment presented in this paper is to investigate if the results
of the experiments conducted by Tversky and Kahneman [9,10] can be seen in
the MDSPD RE context - that is people are more risk taking when it comes to
losses (costs) and risk adverse when it comes to gains (revenue).

In order to investigate this idea, the experiment follows the arrangement of the
experiments conducted by Tversky and Kahneman [9,10], but places the partic-
ipants in a MDSPD RE context. Thus the research question for the experiment
is formulated as follows:

– When selecting requirements, do product managers show more risk-adverse
behaviour with requirements formulated in terms of revenue, than with re-
quirements formulated in terms of cost?

3.2 Experiment Instrumentation

A questionnaire was developed to investigate whether the participants behave
in a manner that can be predicted by prospect theory. A range of risk levels
and monetary values was used. The questions included are presented in Table 4.

Table 4. Question Sets for Revenue and Cost

Set Revenue Cost
1 Select one requirement:

A has a guaranteed revenue of
e10,000.

B could raise e2,400 revenue with 75%
probability, and e32,800 revenue
with 25% probability.

Select one requirement:

A has a cost of e10,000.
B could cost e200 with 30% probabil-

ity and e14,200 with 70% proba-
bility.

2 Select one requirement:

A has a guaranteed revenue of
e10,000.

B could raise e2,000 or e18,000 rev-
enue with equal probability.

Select one requirement:

A has a cost of e10,000.
B could cost e2,000 or e18,000 with

equal probability.

3 Select one requirement:

A has a guaranteed revenue of
e10,000.

B could raise e200 revenue with 30%
probability, and e14,200 revenue
with 70% probability.

Select one requirement:

A has a cost of e10,000.
B could cost e2,400 with 75% proba-

bility and e32,800 with 25% prob-
ability.

When Product Managers Gamble with Requirements 9

Table 5. Questions from Related Studies

Ref Gain Loss
[10] Select one:

– A sure gain of $250.
– A 25% chance to gain $1000, and a

75% chance to gain nothing.

Select one:

– A sure loss of $750.
– A 75% chance to lose $1000, and a

25% chance to lose nothing.

[9] Scenario: In addition to whatever you
own, you have been given $1000. You
are now asked to choose between the
alternatives:

– A 50% chance of gaining $1000.
– A sure gain of $500.

Scenario: In addition to whatever you
own, you have been given $2000. You
are now asked to choose between alter-
natives:

– A 50% chance of losing $1000.
– A sure loss of $500.

In order to control the variable for value gains and losses are only described in
monetary terms. While providing a richer context would better simulate reality,
it is not easy to assess what value participants place on the different aspects that
make up this context.

Each set of questions is designed in the similar style used in the original ex-
periments by Tversky and Kahneman [9,10]. Examples of the original questions
can be found in Table 5.

From the questions presented in Table 4 and Table 5 it is easy to see the
similarities between formulation of the questions from the authors’ experiment
and the original experiment. However, the question formulation differed between
the original and authors’ experiment with the original experiment using zero gain
and zero loss as an option in each case. The effect of this difference in the design
of the questions is discussed in Section 4.

A number of measures were undertaken to reduce systematic biases in the
results. The order effect was addressed by systematically varying the order of
the questions in the study. Additionally questions were placed between questions
on revenue and cost to distract the participant from their previous answers.

A pilot of the questionnaire was completed prior to conducting the experiment.
Two lecturers in software engineering completed the questionnaire, with both
feeling they had a clear understanding of what was required, and were able to
make informed decisions.

3.3 Experiment Subjects

The experiment involved 71 student participants completing either their final year
of undergraduate studies or a masters in Software Engineering at Blekinge Insti-
tute of Technology, Sweden. The group consisted mostly of international masters
students, who came from Pakistan, India, China, Iran, Nepal, Bangladesh, Nige-
ria, Germany and Jordan; with four undergraduate students, all Swedish.

10 N.D. Fogelström et al.

Forty-nine of the participants had prior experience of working in the soft-
ware industry. The Swedish students had experience from software engineering
projects in terms of project courses which are run in tight cooperation with in-
dustry and very much resemble real development in industry. At the time of the
experiment most of the students had completed the courses in Software Require-
ments Engineering and Software Verification and Validation, thus the students
were assumed to be familiar with requirements engineering concepts.

3.4 Experiment Operation

The experiment was conducted at Blekinge Institute of Technology in the spring
of 2008 during a single two-hour session.

Prior to starting the experiment the participants were introduced to the role
of a software product manager and presented with the key performance indica-
tors (KPIs) used to assess a person in this position. The list of KPIs included
responsibility over the selection of requirements in a release to maximize the
profit (return on investment) generated by the sales of a product. The KPIs
remained visible for the duration of the experiment and the participants were
encouraged to act in accordance to them.

4 Results and Analysis

This section presents the results, with an analysis and discussion.

4.1 Presentation of Results

The results of the experiment are presented in Table 6. The table shows the
percentage of participants that chose the safe and risky options for the cost and
revenue related questions in each of the question sets presented in Section 3.2.

As shown in Table 6, most participants were risk adverse when answering
questions related to revenue, with most selecting the safer option. For the revenue
questions presented in Question Set 1, 69% chose a safe option, in Question Set
2 a similar 68% chose the safe option, while in Question Set 3 56% chose the
safe option.

The results for the cost related questions show only a small difference in
preference between the safe and risky options in Question Set 1 and Question

Table 6. Participant responses (percentages)

Revenue Cost
Set Safe Risk Safe Risk
1 0.69 0.31 0.49 0.51
2 0.68 0.32 0.68 0.32
3 0.56 0.44 0.52 0.48

When Product Managers Gamble with Requirements 11

Set 3. However, in Question Set 2 the participants were more risk adverse, which
was the opposite of what was expected (68% safe).

Comparing the answers between the revenue and cost related questions, the
results show increased risk taking attitude in cost related questions for Question
Set 1 (from 31% to 51%) and Question Set 3 (from 44% to 48%). The attitude
towards risk is unchanged for Question Set 2.

4.2 Analysis

The results for revenue related questions show a preference for avoiding risk in
each and every case, demonstrating alignment with aligned with the original
experiment conducted by Tversky and Kahneman [9]. While the results showed
more risk-taking behavior in the questions related to cost, the results were not
as strong as the original prospect theory experiments.

The level of risk avoidance is higher for the revenue questions in Question
Set 1 and Question Set 3 than for the questions regarding cost in the same
question sets. When it comes to cost related questions, two of the three tested
cases (Set 1 & Set 3) do not show a strong preference to take or avoid risk. These
combined results, when considered relative to one another, indicate a more risk-
adverse behaviour with requirements formulated in terms of revenue, than with
requirements formulated in terms of cost.

The results for Question Set 1 and Question Set 3 show a clear change in
attitudes towards risk between requirements termed as costs and requirements
termed as revenue. While the result for Question Set 2 did not show a strong
difference, the majority of the cases support the application of prospect theory
to software requirements selection.

4.3 Discussion

The results of the experiment indicate that decision makers will be more risk
adverse when choosing between requirements formulated in terms of revenue,
compared to when choosing between requirements formulated in terms of cost.
This provides ground for concluding that prospect theory can be used to under-
stand and explain decision making in MDSPD requirements selection situation.

The observed attitude towards risk taking for cost related questions was not as
strong as expected, however, aspects of this may be explained by the experiment
design. The participants of the experiment are students and do not have the
same sense of ownership and responsibility towards the money of a real product
manager. This could mean that they were not as sensitive to losing money. For
example, looking at the cost related questions in Question Set 2, it is reasonable
to assume that the students did not see the value of taking the risky option
because it was not their own budget, own reputation or job position that was
at stake. Another difference is that in original experiments in prospect theory,
the subjects were offered to decrease the loss to zero, which may have motivated
more to risk as other psychological factors are involved with zero [23].

The authors expect an experiment involving professional software product
managers would be more aligned with the original experiments as people in

12 N.D. Fogelström et al.

this role have a greater sense of ownership in the product for which they are
responsible and will face a greater loss in reputation for failing to meet budget
than the experiment participants. This assumption is supported by findings of
the study on application of prospect theory on software project decisions, where
project managers’ decisions were found to be aligned with prospect theory [11].

4.4 Validity Threats

Internal and external validity threats are most important to address for experi-
ments in software engineering field [24] and social sciences [25].

Internal validity is concerned with identifying whether the observed result of
the experiment is influenced by other factors than the experiment treatment.
For the experiment presented in this paper an ordering effect (learning) and
experiment instrumentation (the way questions are formulated) are the most
significant threats.

Treatment order effect would means the order the questions are presented will
affect the participants’ answers. To minimize this threat, the order of cost and
revenue questions were systematically varied in the study.

To minimize the risk associated with the question formulations, a pilot of
the experiment was conducted involving three participants. The intention of the
pilot was to discover ambiguities and improve the formulation of the questions.

External validity is associated with the possibility to generalize the outcome
of the experiment. While using students as experiment subjects usually puts a
threat for generalizing the results [26], most of the students participating in the
experiment have prior industrial experience and are trained in the requirements
engineering field at a masters level. However, the participants may not have felt
the responsibility for the success of the product in the same way that a product
manager in industry would. As discussed earlier in Section 4.3 this provides
ground for assuming that an experiment involving professionals will be more
aligned with the original experiments in prospect theory.

MDSPD RE operates in a much more complex setting than that modelled
in this experiment, potentially impacting the generalisability of the result. For
example, while it can be argued that software requirement selection decisions
are more commonly group decisions, and not up to individuals as modelled in
this experiment. However, the application of the results in a group situation
should still be possible as research has shown than individuals’ attitudes to risk
are translated into a groups attitudes to risk [27]. Similarly, while requirements
are more complex than questions of cost and revenue, in order to control the
participants perceived gains and losses and how these impact value, the problems
were reduced to monetary terms.

The results presented in this paper are inline with other findings from industry,
recognising the importance commercial requirements with a fixed return over
more variable market opportunities [6]. Similarly, literature recognises the risk-
taking attitude towards system requirements [4,5,6,7].

When Product Managers Gamble with Requirements 13

5 Conclusions and Future Work

The intention of the research presented in this paper is to investigate if the
ideas behind prospect theory, one of the prominent theories in decision making,
can explain requirements selection decisions in market-driven software product
development (MDSPD). The experiment presented is this paper replicates the
design of the original experiments into prospect theory, but places it in the
context of requirements selection situations in MDSPD.

The experiment results show a clear potential for applying prospect theory in
MDSPD setting. The participants consistently displayed risk adverse behaviour
when selecting between requirements described in terms of revenue. In two of the
three cases investigated the participants were more risk taking when selecting
between requirements described in terms of cost when compared to the revenue
situation. The increase in risk taking attitude was not as distinct as anticipated.
However, the authors’ expect that an experiment involving professionals would
show larger difference between risk taking approach between the revenue and
cost related situations.

To the best of the authors’ knowledge the work presented in this paper is the
very first application of prospect theory in MDSPD requirements selection con-
text. The insights found in this paper provide contributions both to researchers
and practitioners in this field, as they open up possibilities for explaining the
behaviour of decision makers in different requirements selection situations. This
provides an answer to why resent studies observe internal quality requirements
being consistently undervalued compared to commercial requirements, as well
as help in finding ways for managing the balance between different types of
commercial requirements originating from market pull and technology push.

Looking more closely at commercial requirements, prospect theory suggests
preference favour for the guaranteed revenue stream over more uncertain options.
Looking at the different requirements types, this would translate to a preference
for customer specific features over innovation related requirements, as predicting
market demands brings with it more risk.

The situation for system requirements is more complex. As these requirements
are viewed as cost-drivers, they cannot be directly compared with the other types
of requirements that are perceived as delivering revenue. This highlights the need
to describe system requirements in terms of the gains that they deliver, so that
a comparison between requirements of different types can be made. However, it
should be noted that the risk associated with system requirements is still higher
– so even when described in terms of gains, natural preference will be given to
less riskier options. Putting this in MDSPD context implies that unless there is
a clear strategy for balancing commercial and internal quality requirements, the
later will be consistently down- prioritized until the point when the architecture
issues will pose an impediment for the production of commercial features.

A number of actions should be undertaken as future work. A follow-up study
is planned involving software product managers from companies working in a
market-driven software development context, helping address issues faced in the
experiment presented in this paper. Additionally this work should be used to

14 N.D. Fogelström et al.

educate software project managers to the biases they bring to the development
process, and will be used as an input to a model to help software product man-
agers balance requirement types when selecting requirements for a release.

References

1. Aurum, A., Wohlin, C.: The fundamental nature of requirements engineering ac-
tivities as a decision-making process. Information and Software Technology 45(14),
945–954 (2003); Eighth International Workshop on Requirements Engineering:
Foundation for Software Quality

2. Regnell, B., Brinkkemper, S.: Market-driven requirements engineering for software
products. Engineering and Managing Software Requirements, 287–308 (2005)

3. Carlshamre, P.: Release planning in market-driven software product development:
Provoking an understanding. Requirements Engineering 7(3), 139–151 (2002)

4. Wohlin, C., Aurum, A.: What is important when deciding to include a software
requirement in a project or release? In: International Symposium on Empirical
Software Engineering, pp. 246–255 (November 2005)

5. Wohlin, C., Aurum, A.: Criteria for selecting software requirements to create prod-
uct value: An industrial empirical study. Value-Based Software Engineering, 179–
200 (2006)

6. Barney, S., Aurum, A., Wohlin, C.: A product management challenge: Creating
software product value through requirements selection. Journal of Systems Archi-
tecture 54(6), 576–593 (2008); Selection of best papers from the 32nd EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA
2006)

7. Barney, S., Hu, G., Aurum, A., Wohlin, C.: Creating software product value in
china. IEEE Software 26(4) (July– August 2009)

8. Plous, S.: The Psychology of Judgement and Decision Making. McGraw-Hill, New
York (1993)

9. Kahneman, D., Tversky, A.: Prospect theory: An analysis of decision under risk.
Econometrica 47(2), 263–291 (1979)

10. Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice.
Science 211(4481), 453–458 (1981)

11. Lauer, T.W.: Software project managers’ risk preferences. Journal of Information
Technology 11(4), 287–295 (1996)

12. Karlsson, L., Regnell, B., Karlsson, J., Olsson, S.: Post-release analysis of require-
ments selection quality post-release analysis of requirements selection quality — an
industrial case study. In: 9th International Workshop on Requirements Engineering
— Foundation for Software Quality (RefsQ) (June 2003)

13. Regnell, B., Karlsson, L., Host, M.: An analytical model for requirements selection
quality evaluation in product software development. In: Proceedings of the 11th
IEEE International Requirements Engineering Conference, pp. 254–263 (Septem-
ber 2003)

14. Ngo-The, A., Ruhe, G.: A systematic approach for solving the wicked problem of
software release planning. Soft Computing — A Fusion of Foundations, Method-
ologies and Applications 12(1), 95–108 (2008)

15. Karlsson, L., Dahlstedt, A.G.: Natt och Dag, J., Regnell, B., Person, A.: Challenges
in market-driven requirements engineering — an industrial interview study. In: 8th
International Workshop on Requirements Engineering — Foundation for Software
Quality (RefsQ) (September 2002)

When Product Managers Gamble with Requirements 15

16. Gorschek, T., Wohlin, C.: Requirements abstraction model. Requirements Engi-
neering 11(1), 79–101 (2006)

17. Keil, M., Mixon, R.: Understanding runaway it projects: Preliminary results from
a program of research based on escalation theory. In: Proceedings of the Twenty-
Seventh Hawaii International Conference on System Sciences, vol. 3, pp. 469–478
(January 1994)

18. Jorgensen, M., Carelius, G.J.: An empirical study of software project bidding. IEEE
Transactions on Software Engineering 30(12), 953–969 (2004)

19. Chang, W.L., Yuan, S.T.: A markov-based collaborative pricing system for infor-
mation goods bundling. Expert Systems with Applications 36(2), 1660–1674 (2009)

20. Hershey, J.C., Schoemaker, P.J.H.: Risk taking and problem context in the domain
of losses: An expected utility analysis. Journal of Risk and Insurance 47(1), 111–132
(1980)

21. Slovic, P., Fischhoff, B., Lichtenstein, S.: Response mode, framing and information
processing efforts in risk assessment. New directions for methodology of social and
behavioral science. In: Question framing and response consistency, Jossey-Bass,
San Francisco (1982)

22. Wu, G., Markle, A.B.: An empirical test of gain-loss separability in prospect theory.
Management Science 54(7), 1322–1335 (2008)

23. Shampanier, K., Mazar, N., Ariely, D.: Zero as a special price: The true value of
free products. Marketing Science 26(6), 742–757 (2007)

24. Wohlin, C., Höst, M., Runeson, P., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering: An Introduction. Springer, Heidelberg (2000)

25. Robson, C.: Real World Research: A Resource for Social Scientists and
Practitioner-researchers. Blackwell Publishing, Malden (2002)

26. Berander, P.: Using students as subjects in requirements prioritization. In: In-
ternational Symposium on Empirical Software Engineering (ISESE), pp. 167–176
(August 2004)

27. Farber, H.S., Katz, H.C.: Interest arbitration, outcomes, and the incentive to bar-
gain. Industrial and Labor Relations Review 33(1), 55–63 (1979)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 16–21, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Toward a Service Management Quality Model

Gil Regev1,2, Olivier Hayard2, Donald C. Gause3, and Alain Wegmann1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{gil.regev,alain.wegmann}@epfl.ch

2 Itecor, Av. Paul Cérésole 24, cp 568, CH-1800 Vevey 1, Switzerland
{o.hayard,g.regev}@itecor.com

3 State University of New York at Binghamton and Savile Row, LLC, U.S.A
dgause@stny.rr.com

Abstract. [Context and motivation] Service Management has been steadily
gaining in importance in many organizations and is becoming a major force of
change in IT departments. ITIL, one of the main service management frame-
works, defines the value of a service for its customers as the sum of the service
utilities and service warranties but provides no specific rules for defining them.
[Question/problem] Companies, IT departments and their consultants face dif-
ficulties defining utilities and warranties, as well as identifying their value for
customers. [Principal ideas/results] We propose a general framework for un-
derstanding service requirements and for analyzing the quality of a service. The
framework is based on General Systems Thinking. We define service utilities as
norms created by the service for a given stakeholder. Service warranties then
protect the stakeholder from variations of these norms as a result of threats.
Value is created when the norms are maintained within the tolerance range of
the stakeholder. Risk is defined as the possibility of detrimental consequences
for a stakeholder if the norm is pushed outside its tolerance range. [Contribu-
tion] We believe that this work has the potential to advance theory and practice
of service management in both academia and industry, and to reduce the risk of
overlooking important service properties when defining service requirements.

Keywords: Service Utilities, Service Warranties, Norms, Tolerances.

1 Introduction

Service Management has been steadily gaining in importance in industry. As many IT
departments are struggling with the changing business environment they are encour-
aged or sometimes forced to specify the services they provide to their customers, to
define the value of these services, how they will be developed, provided, monitored
and maintained.

Two of the main frameworks driving these changes are the IT Infrastructure Library
(ITIL) and the Control Objectives for IT (COBIT). These frameworks have, in recent
years, elevated the awareness of many organizations to the necessity of enhancing the

 Toward a Service Management Quality Model 17

strategic importance of IT departments for their parent organization by delivering ser-
vices with customer value rather than applications and computing power.

The IT Infrastructure Library (ITIL) [9] is one of the main service oriented frame-
works. It is a major industry driver that is drawing the attention of IT department
managers to the service they provide and its value for their customers.

The concept of service1 is defined in ITIL as [9] “a means of delivering value to
customers by facilitating outcomes customers want to achieve without the ownership
of specific costs and risks.” Value is defined in ITIL as the sum of two deliverables,
Utility and Warranty. Utility and warranty can be seen at a first glance as correspond-
ing to Functional Requirements (FR) and Non-Functional Requirements (NFR), re-
spectively, in Requirements Engineering (RE). Warranties are defined in Service
Level Requirements (SLR), which, once signed by provider and beneficiary, become
Service Level Agreements (SLA).

In ITIL Utility is defined as fitness for purpose whereas Warranty is defined as fit-
ness for use. These two concepts are themselves defined as follows [9], “Fitness for
purpose comes from the attributes of the service that have a positive effect on the
performance of activities, objects, and tasks associated with desired outcomes. Re-
moval or relaxation of constraints on performance is also perceived as a positive ef-
fect. Fitness for use comes from the positive effect being available when needed, in
sufficient capacity or magnitude, and dependably in terms of continuity and security.”

In everyday language [7] utility evokes both fitness for purpose and fitness for use,
and relation between warranty and fitness for use is not directly apparent. The blurry
nature of the definitions of ITIL results in confusion about the categorization of the
properties of a service into utility or warranty. This confusion is one of the difficulties
in specifying an SLR.

In this paper we attempt to clarify the crucial concepts of service level require-
ments, i.e. value, utility, warranty, and risk. We propose a conceptual framework
based on General Systems Thinking (GST) [12], in which we consider a service as a
system that maintains stable states (norms) for its stakeholders. We use the very sim-
ple example of an email service offered by an IT department to its company users.
Due to space constraints, we only consider the availability warranty.

In Section 2 we present a very short introduction to GST. In Section 3 we discuss
the view of a service as a system. In Section 4 we describe our conceptual framework.
In Section 5 we review some of the related work before concluding in Section 6.

2 Viewing a Service as a System

One way of exploring the quality of a service is to model the service as a system, i.e.
“a set of elements standing in interrelations” [11]. As demonstrated by Weinberg [12],
some person, usually referred to as an observer in General Systems Thinking (GST),
must define what the system is, its elements and their relationships, or else there is no
system. A system is therefore a model (Weinberg calls it a viewpoint) that the

1 We refer to business service in this paper as opposed to web services as they are considered in

Service Oriented Architecture (SOA) and Service Oriented Computing (SOC).

18 G. Regev et al.

observer creates in order to understand some object in his or her reality. From this
philosophical point of view, the quality of a system is a relationship between an ob-
server and the object itself. Quality is therefore neither an absolute property, nor an
intrinsic property, of an object. It depends on the observer as much as it depends on the
object.

In Systems Theory [11] a system draws energy, information and matter from the
systems with which it has relationships in order to maintain its internal order. The
concept of open systems implies that systems must accept input from other systems in
order to survive. In doing so, a system becomes dependent on the stability of the input
it receives from the other systems’ output. In GST, outputs and inputs are traditionally
specified in terms of states. More specifically, according to Klir [6], “the set of instan-
taneous values of all the quantities of the system (external as well as internal) is usu-
ally denoted as the state of the system. Similarly, the set of instantaneous values of
all the internal quantities of the system will be called the internal state of the system.”
The system exists in states and the inputs may alter the system states. This causes the
system to emit outputs. If we model the inputs, outputs, and system as another super
system, then the inputs, system, and outputs can be described in terms of a more en-
compassing state space. We refer to the stable state of a system as its norm [10],
whether it applies to its input, output or internal state.

In RE the observers of a system (or in our case of a service) are its stakeholders. A
stakeholder of a service derives its norms from the stable input he or she receives
from the service. This input is the service’s output. The stakeholder then becomes
sensitive to the variations in the service’s output.

3 Defining Utilities, Warranties, Value, Risk and Quality

In the example of the email service, a user we call Alice provides input to the service
in the form of requests to connect to the service, to send messages and to receive
messages. The service outputs can be: connection confirmation, delivering sent mes-
sages to their destination and displaying received messages. As Alice takes the habit
of using the service it becomes dependent on it for his or her everyday work. This
everyday work is the output expected by the company from Alice. If the service’s
output is not stable, e.g. if Alice cannot connect to it of if the service doesn’t display
Alice’s messages, or doesn’t deliver the messages she sends, Alice will not be able to
ensure the stability of her work.

From Alice’s point of view, the utility of the email service is the outputs it main-
tains, connection, displaying received messages and delivering sent messages. Alice
expects the service to deliver these outputs wherever and whenever she needs them.
This can be anytime, anyplace (in the office, at home or during business travels) or
restricted to certain hours in the office. The corresponding service warranty for Alice
is that the service will be available when and where she needs it. Hence availability is
not only a question of time (as described by ITIL, see definition of warranty in the
introduction) but also a question of place.

The value for Alice is her ability to perform her daily work reliably. The risk for
Alice is the probability that the email service, by not displaying or delivering mes-
sages will prevent her from performing her work. By accepting to use the email

 Toward a Service Management Quality Model 19

service, Alice and her employer benefit from the advantage of electronic communica-
tion and shape their work accordingly but become potential victims if it is unreliable.

To understand the other stakeholders’ viewpoints we use Gause and Lawrence’s
classification of stakeholders. Gause and Lawrence [3] propose to categorize users2
(or rather stakeholders) as: clients, designers, direct users, secondary stakeholders,
tertiary stakeholders, frivolous stakeholders. Clients are defined by Gause and Law-
rence as [3], “responsible for economic matters, which include the ultimate financial
success of the product.” A similar definition can be found in ITIL [9]. Direct users are
those who enter into contact with the service.

The advantage of this classification for a service is that it includes the designers as
stakeholders. Extending this list from product stakeholders to service stakeholders, we
have to include the service provider as well. The designers may or may not be part of
the service provider. If the service provider is an IT department, the designers of the
utilities are often the developers. The designers of the warranties and the service pro-
viders are the IT operations people. Secondary or tertiary stakeholders include regula-
tors (market and legal), competitors, business process owners within organizations, as
well as the partners of direct users and clients. In the case of the email service, it is
probably on an off the shelf application designed by a software development firm. To
turn it into a service, the application is hosted by the IT operations who must define
its availability considering a set of threats that may limit this availability.

Gause and Lawrence provide a further subdivision of stakeholders. Favored stake-
holders are those for which the service is designed and provided, in our example,
Alice. Disfavored stakeholders are those for which the service is designed to create
inconveniences and difficulties. Disfavored stakeholders are those who create the
threats that push the norm outside of the tolerance range of favored stakeholders.
Making the service impractical for them to use is one way of protecting the interests
of favored stakeholders. Disfavored stakeholders include people who are not author-
ized to use the service and people who can create damage whether authorized to use
the service or not. We can think of many such stakeholders for the email service,
spammers, hackers, and even maintenance people can bring the service down. Ig-
nored stakeholders are those for which the service is not designed at all, in our exam-
ple, people outside the company with whom Alice never exchanges emails.

Favored stakeholders are those for which the service warranties maintain a norm
within their tolerance range. Conversely, we want the warranties to be outside the
tolerance range for disfavored stakeholders.

Based on this stakeholder classification, we propose the following definitions:

• A service utility is a norm that the service must maintain in order to sat-
isfy favored stakeholders.

• The service warranty is the commitment by the service provider that the
variation of the utility will be kept within favored stakeholders’ tolerances
and outside of disfavored stakeholders’ tolerances.

2 Gause and Lawrence’s definition of a user as “any individual who is affected by or

who may affect your product” corresponds to what is referred to as stakeholder in
the current RE literature. We therefore take the liberty to refer to their concept of
user as stakeholder.

20 G. Regev et al.

• Value is the effect on a favored stakeholder when the utility is delivered
within the warranty

• Risk is the possibility that a favored stakeholder will suffer the conse-
quences of a service utility moving beyond their tolerance as a result of
the system experiencing a given set of threats.

Favored stakeholders derive a value from the relationship they have with the ser-
vice because it helps them to maintain their norms but at the same time they take the
risk that if the service cannot maintain stability in its output, they may not be able to
maintain stability in their own norms either. Hence, value and risk are inseparable.

In order to maintain the service’s value to its favored stakeholders and to reduce
the risk they are taking in using it, the service designer must design mechanisms that
guarantee that the output remains within the tolerances of its favored stakeholders in
the face of variations in the input. Limiting the variations of the input includes limita-
tions to both favored stakeholders and disfavored stakeholders requests.

In our example, it is critical to understand Alice’s tolerances for a lack of availabil-
ity of the email service. These depend on the nature of Alice’s work and on her per-
sonal preferences. If Alice depends on email for a mission critical work, her tolerances
for a lack of availability will be very low. The service warranties will have to be very
stringent. If, however, Alice uses her email for sending and receiving non urgent mes-
sages, the service can be down for maintenance every now and then and she may not
even notice it. The IT department must therefore understand these norms and toler-
ances in order to define the SLR for the service provided to Alice.

When the variations in the utility become unacceptable to a stakeholder, he or she
will define the service as being of poor quality. Conversely, when the states expected
by a stakeholder are maintained despite perturbations, he or she is likely to declare
that the service has high quality.

We can therefore define the quality of a service for a given stakeholder as the ade-
quacy between its utilities and the needs of the stakeholder and adequacy of the war-
ranties with the stakeholder’s tolerances to variations in the utilities.

4 Related Work

Our definition of quality can be seen as an extension of the definition of service quality
defined in [13], “the extent of discrepancy between customers’ expectations or desires
and their perceptions.” Indeed, each stakeholder has his or her own idea of the quality
of a service. We have also sharpened the question of expectations and perceptions.

Value-based Requirements Engineering [1, 5] is a stream of RE research based on
the analysis of value exchanges within a network of actors. Value is considered in
financial terms as the exchange of goods for money.

The research presented in [2] and [8] is an attempt to define business service prop-
erties by abstracting from the domain of software services. The result is much more
technical and less general than our proposal.

The dichotomy between utilities and warranties in ITIL is similar to the well
known dichotomy between Functional and Non Function Requirements in RE. Stud-
ies such as [4] can help in clarifying this dichotomy and therefore establish a better
understanding of utilities and warranties.

 Toward a Service Management Quality Model 21

5 Conclusions

Utilities and warranties as presented in ITIL are as important to service management
as the concepts of Functional and Non Functional Requirements are to Requirements
Engineering. We have found the definitions of utilities and warranties to be somewhat
confusing. In this paper we propose to clarify these notions by resorting to the funda-
mental principles provided by General Systems Thinking, As a result we define utili-
ties and warranties as relating to stakeholders’ norms and tolerances. We believe that
this clarification will be a stepping stone for further research in service science as well
as a more pragmatic approach to service level requirements in industry. No doubt,
more research is needed to refine the model we proposed. For example, we have not
dealt with the issues of service support and service innovation. We have encouraging
initial experience using this model in organizations, but more experience is needed.

References

1. Aurum, A., Wohlin, C.: A Value-Based Approach in Requirements Engineering: Explain-
ing Some of the Fundamental Concepts. In: Sawyer, P., Paech, B., Heymans, P. (eds.)
REFSQ 2007. LNCS, vol. 4542, pp. 109–115. Springer, Heidelberg (2007)

2. Ferrario, R., Guarino, N.: Towards an Ontological Foundation for Services Science. In:
Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 152–169.
Springer, Heidelberg (2008)

3. Gause, D.C., Lawrence, B.: User-Driven Design: Incorporating users into the requirements
and design phase. Software Testing & Quality Engineering (January/February 1999)

4. Glinz, M.: On Non-Functional Requirements. In: Proc. 15th IEEE International Require-
ments Engineering Conference, New Delhi, India (October 2007)

5. Gordijn, J., Akkermans, J.M.: Value-based requirements engineering: exploring innovative
e-commerce ideas. Requirement Engineering Journal, 114–134 (July 2003)

6. Klir, G.: An Approach to general Systems Theory. Van Nostrand Rheinhold, New York
(1969)

7. Merriam-Webster online dictionary, http://www.merriam-webster.com (accessed,
November 2008)

8. Nayak, N., Nigam, A., Sanz, J., Marston, D., Flaxer, D.: Concepts for Service-Oriented
Business Thinking. In: Proc. IEEE International Conference On Services Computing, Chi-
cago, Illinois, September 18–22 (2006)

9. Office of Government Commerce, ITIL Service Strategy, TSO, London (2007)
10. Regev, G., Wegmann, A.: Where do Goals Come From: the Underlying Principles of

Goal-Oriented Requirements Engineering. In: Proc. 13th IEEE International Requirements
Engineering Conference (RE 2005), Paris (September 2005)

11. von Bertalanffy, L.: General System Theory. George Braziller, New York (1968)
12. Weinberg, G.M.: An Introduction to General Systems Thinking. Wiley & Sons, New York

(1975)
13. Zeithaml, V.A., Parasuraman, A., Berry, L.L.: Delivering Quality Service: Balancing Cus-

tomer Perceptions and Expectations. Free Press, NY (1990)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 22–36, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Controlled Experiment of a Method for Early
Requirements Triage Utilizing Product Strategies

Mahvish Khurum1, Tony Gorschek1, Lefteris Angelis2, and Robert Feldt1

1 Blekinge Institute of Technology, Department of Systems and Software Engineering,
S-372 25, Ronneby, Sweden

mkm@bth.se, tgo@bth.se, rfd@bth.se
2 Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

lef@csd.auth.gr

Abstract. [Context and motivation] In market-driven product development of
software intensive products large numbers of requirements threaten to overload
the development organization. It is critical for product management to select the
requirements aligned with the overall business goals, product strategies and
discard others as early as possible. Thus, there is a need for an effective and
efficient method that deals with this challenge and supports product managers
in the continuous effort of early requirements triage [1, 2] based on product
strategies. This paper evaluates such a method – A Method for Early
Requirements Triage Utilizing Product Strategies (MERTS), which is built
based on the needs identified in literature and industry. [Question/problem]
The research question answered in this paper is “If two groups of subjects have
a product strategy, one group in NL format and one in MERTS format, will
there be a difference between the two groups with regards to effectiveness and
efficiency of requirements triage?” The effectiveness and efficiency of the
MERTS were evaluated through controlled experiment in a lab environment
with 50 software engineering graduate students as subjects. [Principal
ideas/results] It was found through results that MERTS method is highly
effective and efficient. [Contribution] The contribution of this paper is
validation of effectiveness and efficiency of the product strategies created
through MERTS method for requirements triage, prior to industry trials. A
major limitation of the results is that the experiment was performed with the
graduate students and not the product managers. However, the results showed
that MERTS is ready for industry trials.

Keywords: Market driven requirements engineering, requirements triage,
product strategies, MERTS, experiment, effectiveness and efficiency.

1 Introduction

Due to the emergence of markets for off-the-shelf or packaged software [3, 4], market-
driven development is gaining increased interest in comparison to customer-specific
system development [5, 6]. As a consequence a shift in focus is occurring, affecting
software development in general and requirements engineering in particular [6]. In

 A Controlled Experiment of a MERTS 23

contrast to traditional requirements engineering, requirements in market-driven
requirements engineering (MDRE) to a large extent come from internal sources such as
developers, marketing, sales teams, support, bug reports, as well as from external
sources such as different users, customers from different and multiple market
segments, and competitors [7]. The result is a large and continuous flow of
requirements that threaten to overload the development organization [5]. This has two
major implications. One, the product and domain knowledge reside largely with the
development company itself. For example a developer of robotics products with many
of e.g. car manufacturers as customers probably knows more about robotics than any
one customer.

Two, the risk and cost of development is carried by the development organization,
meaning that the potential revenues depend on selecting the “right” requirements for
implementation. The selection accuracy is the main success criteria for the
development organization, and being able to perform the selection in a scalable and
cost effective way is crucial to avoid overloading. Which requirements to select is a
trade-off between different strategic factors such as key-customer requirements and
long-term aspects and innovation efforts. All of these factors, and more, need to be
explicitly stated and weighed together to reach an optimal strategy for the company,
which can then be used for selecting the “right” requirements for implementation.

However, while industry managers regard strategy formulation and use as the most
important aspect of technology management [8], strategy formulation is usually
performed ad-hoc, and a systematic approach for formulating strategies is often
missing in practice [9]. Even if the formulation of strategies was pursued, the factors
affecting strategy formulation differ between different stakeholders. Strategic and
middle management and technical experts all need to share one vision. Strategic
managers often overlook the technical perspective, and technical experts can be
unaware of or overlook the strategic managers’ perspective. As a result of these
challenges, identified both in academia and through industry case studies, a Method
for Early Requirements Triage and Selection (MERTS) [10] was developed to
combine both strategic and technical perspectives for the formulation of product
strategies that are good-enough to be used for early requirements triage and selection.

This paper presents an experiment testing some key aspects of this method,
following a stepwise plan to validate MERTS prior to industry piloting.

MERTS has two main purposes. First, it acts as a stepwise guide to creating
product strategies taking both strategic and technical views into account thus
following a systematic way of agreeing on a joint plan. Secondly, the strategies
resulting from MERTS can be used by product managers to effectively perform
requirements triage and requirements selection in a reasonable amount of time as
spending initial 10 minutes on triage versus 10 hours is super critical for industry. The
experiment aims at testing the second purpose of MERTS. Thus, the main purpose of
the experiment is to assess the efficiency and effectiveness of requirements triage
utilizing strategy formulated and formatted using MERTS prior to industry piloting.
Thus, this experiment is considered as a lab validation following the research
approach suggested by Gorschek et al. [11] aimed at producing useable and useful
research results and successful technology transfer.

Before describing the experiment and experiment results an introduction to
MERTS is given in Section 2. Section 3 details the experiment design. Section 4 lists

24 M. Khurum et al.

the validity threats. Section 5 contains preparation and execution details. Section 6
presents the results and analysis, and finally Section 7 presents the conclusions drawn
and plans for further work.

2 MERTS Background

MERTS is centered on ensuring that the five strategic questions for a product are
answered explicitly [10]. Fig. 1 gives an overview of MERTS and the three main
parts of the method. The goal of MERTS is to offer a clear method detailing how to
reach consensus and a homogenous understanding of a product strategy. The product
managers using the method are required to follow these three parts. Each part has
several steps (see Fig. 1).

Part One – Early Requirements Triage. This part provides steps to create an initial
product strategy for use in requirements triage.

A. Specify. In order to explicitly state the goals and objectives of a product, it is
important to specify the directions of movement for the product deduced from the
organization’s mission statement. Thus it is important to answer the three strategic
questions ((1) Where we want to go?, (2) How to get there?, (3) What will be done?)
for each product.

Fig. 1. MERTS Steps

 A Controlled Experiment of a MERTS 25

The output of this step is an explicit understanding of goals and objectives
associated with a specific product which can be used to perform requirements triage
and selection for individual products.

To answer (A.1) “Where to go” the organization’s directions of movement have to
be clearly stated. An organization can have one or many directions of movement. For
example, shareholders’ revenue, profit, growth, and market share [10]. The answer to
this question depends on identified directions of movement and their relative
importance.

The answer to (A.2) “How to get there” will bind the strategy in terms of
customer segments and competition targeted and differential advantage of the
individual product providing a unique selling point. In order to answer this question
there is a need to specify:

- Different customer segments targeted by a specific product, e.g. one customer
segment can be the Asian market and another can be the European market.
By explicitly specifying customer segments, relative priorities can also be assigned,
helping in the selection of requirements. Customer segments can be defined either on
a higher level of abstraction or refined depending on the needs of the organization.

- Competitors to a product to show which ones to target. This enables features
provided by relevant competitors to be included in the product offering. Just as
customer segments, competitors can also be prioritized relatively, giving more
importance to features provided by high priority competitors.

- Differential advantage(s) of the product that makes it unique in the market place in
relation to competitors. The differential advantage can be based on any one (or
combination) of technology, pricing, strategic alliances and non-functional
requirements. These can also be prioritized in relation to each other depending on their
importance to offering the advantage. By identifying the differential advantages and
prioritizing them, it is possible to ensure that all requirements are weighted against
them and requirements providing unique differential advantages are not missed.

For the answer to (A.3) “What to do” a more management centered perspective
can be used, focusing on product pricing, promotion, distribution, and service.
However, since MERTS is targeted towards early requirements triage and selection,
answers to this question will focus on the abstract technical considerations of a
requirement. Some of the possible considerations rated highest by the technical
experts during the interviews have been taken as example here, i.e. innovation, core
assets, architecture stability, market-pull, technology-push, customization flexibility,
and use of COTS [10]. Priorities can be assigned to each of these factors showing
their relative importance with respect to each other.

B. Assign Weights. The answers from Step 1 are assigned weights. The rule is to
assign weights to each of the factors based on their relative importance in a way that
total weight remains 100. This way has been reported to be one of easiest and
quickest prioritization methods [17].

C. Compare Requirements. The total weights of all the requirements are
compared against a threshold to select or reject each of the requirements.

The first three steps of MERTS should be performed at product management level
supporting the triage of requirements (aiding in the selection). The purpose of step 2
(Assign weights) is not requirements prioritization which is usually associated with

26 M. Khurum et al.

early project activities during release planning. The points assigned to each requirement,
against each factor or sub-classification, show the level of strategic alignment.

Part Two – Requirements Selection for Release. After a set of requirements
(deemed to be aligned with the strategy) have been selected, the question in focus is
“when to get there”. To answer this following two steps are required.

A. Specify product-technology roadmap. It has been emphasized in literature [12]
to chalk out a product-technology roadmap to get an overview of the relationship
between product releases (product evolvement) and successive technology
generations. This means specifying what a product tends to achieve along the time
axis in term of its evolvement and technology trends. This enables placement of
requirements in appropriate intervals planned in a roadmap. For example, if a
requirement requires expertise in some new technology to be explored in the future
and this has been planned in the roadmap, the requirement can be postponed or
depending on the urgency of the requirement, the roadmap can be altered.

B. Estimate resources. In order to determine the feasibility of the requirements, the
organization needs to explicitly state financial and effort allowances against each
interval in the roadmap. Several methods can be used to estimate cost, effort and time,
e.g. feature points, function points, lines of code, and methods like e.g. COCOMO
[13] can be used to support the efforts. An alternative could be to perform estimates
based on previous development efforts. Additionally, requirements prioritization
techniques [14] can be used to plan releases for the product.

Part Three – Strategy Rationale. Once the strategic questions have been answered,
it is important to document the reasoning behind the decisions. This way if the
decisions (and indirectly the answers) result in success (of a product) replication can
be achieved, and the organization has good examples to follow for future efforts.

In addition, the strategy formulated through MERTS should be used to share product
and organizational visions across the organization. In its simplest form it can mean
writing a paragraph explaining the reason behind the answers, keeping in view the
organization’s long term goals, financial plans, technology trends and marketing trends.

In order to implement MERTS method, requirements need to be comparable to the
strategies formulated. The reasoning is that MERTS is meant to assist in early
requirements triage and selection. In case of requirements being too technical or too
detailed method usage will not be efficient because it will be difficult to compare
detailed technical requirements with strategies as strategies are formulated on a higher
level of abstraction. Even if there is some process to compare detailed technical
requirements with strategies they will still be too many detailed requirements to be
compared against strategies. Often many detailed requirements form one product level
feature/requirement therefore it is pointless to compare every detailed requirement
against the strategies. Any method for abstracting the requirements can be used, e.g.
the RAM model by Gorschek and Wohlin [6], as long as it produces requirements on
an abstraction level comparable to product strategies.

3 Design of the Controlled Experiment

The usefulness and the usability of MERTS depend on several concepts that need to
be assessed; the one studied in this controlled experiment is that it should be possible

 A Controlled Experiment of a MERTS 27

to perform triage of a new incoming requirement based on its alignment with the
MERTS strategy. This means that a MERTS strategy should be usable in an efficient
and effective manner for performing requirements triage (formally stated as research
questions in Section 3.3).

3.1 Context

The experiment was conducted in an academic setting, with the help of 50 engineering
graduate students at Blekinge Institute of Technology. It was conducted as a mandatory
although non-graded exercise at the end of a 7.5 ECTS merits master’s course in research
methodology. Participation was mandatory and despite the ethical issues of forcing
subjects to participate in a study, it was believed that the experiment had several
pedagogical benefits in the course. The students were instead given the option to exclude
their individual results from the study, an option not utilized by any student. The intended
users of MERTS, however, are product managers with several years of experience in a
specific domain and product. In the experiment, the subjects have no training in using
MERTS, they possess limited domain knowledge, are under time pressure, and most of
them have not seen the product strategies or the requirements before. There is thus a
considerable gap between the intended target group and the sample used in this
experiment. The subjects in this experiment can be expected to adapt a more surface
oriented approach to the problem than product managers. We argue that this works to our
advantage, since any results that we evaluate are likely to stem from the instrumentation
and the use of MERTS, rather than previous experiences of the subjects in the study. If
MERTS proves to be usable in the experiment, it would indicate that it is able to decrease
the dependency on individual’s experience, product knowledge, and methodology.

3.2 Subjects

The group of experiment subjects using MERTS strategy for requirements triage had
an average of 1.46 years of industrial experience, and only 3 out of 25 subjects had
seen project strategies or performed requirements triage before. The subjects in the
group using a natural language (NL) strategy for requirements triage had an average
experience of 2.23 years, and 4 subjects out of 25 had seen product strategies in some
form in their companies and 5 had performed requirements triage previously. This
information was gathered through a post-experiment questionnaire; the groups were
formed randomly.

3.3 Research Questions

The main research question is RQ which is described below along with associated
hypotheses and independent/dependant variables.

RQ: If two groups of subjects have a product strategy, one group in NL format and
one in MERTS format, will there be a difference between the two groups with regards
to effectiveness and efficiency?

Hypotheses
Null hypothesis, Ho Effectiveness: The use of MERTS strategy for requirements triage is
not significantly different from NL strategy with regards to effectiveness.

28 M. Khurum et al.

Alternative hypothesis, H1 Effectiveness: The use of MERTS strategy for requirements
triage is significantly different from NL strategy with regards to effectiveness.

Null hypothesis, Ho Efficiency: The use of MERTS strategy for requirements triage is not
significantly different from NL strategy with regards to efficiency.

Alternative hypothesis, H1 Efficiency: The use of MERTS strategy for requirements
triage is significantly different from NL strategy with regards to efficiency.
Variables Selection: This experiment has the following independent variables:

Independent variables
Product strategy formatted according to MERTS or according to NL.
Dependant variables
The dependant variables are effectiveness and efficiency measured through:
1. Effectiveness: Number of correct requirements triage decisions.
2. Efficiency: Time taken (in minutes) to perform triage on all requirements.

The definition and hypotheses for finding an answer to RQ depict that the design
is: one factor with two treatments. The factor is the product strategy and treatments
are NL and MERTS.

3.4 Design and Instrumentation

Prior to the experiment execution one round of validation (pre-test) was performed to
refine the experiment design and instrumentation. The pre-test was constructed and
evaluated with the help of 4 colleagues at Blekinge Institute of Technology. Based on
the experience from this pre-test, the experiment package was revised. Specifically,
the initial presentation describing the study and running through an example was
refined to make it more concrete for describing the motivation of the triage decisions
taken by the subjects.

The subjects were divided randomly into two groups, with one treatment per group.
The experiment consisted of two parts that both ran consecutively without breaks. The
first part was a preparatory lecture where the concepts of requirements triage and
MERTS/NL were introduced, together with a presentation of the experiment, research
instruments and an example of how to take triage decisions and provide motivations.
The second part of the experiment consisted of filling the forms. All other artifacts
like the requirements and forms were the same.

During the experiment, the following instruments were used:

- Each subject was given an example of how to perform triage using either NL or
MERTS (depending on the group).

- Each subject was given either NL or MERTS formatted strategy for the experiment.
The product strategy detailed the goals of a new version of a mobile phone targeted for
entertainment-oriented users in the Asian market. The level of information in the two
strategies was the same with respect to goals and objectives, targeted customers and
competitors, differential advantages and technical considerations. NL strategy was
formulated based on example strategies given in literature. Industrial experience of
authors with real product strategies was also beneficial to ensure that NL formatted
strategy was as close as possible to industry practice. The MERTS strategy however, as

 A Controlled Experiment of a MERTS 29

prescribed by the MERTS method, had weights assigned to each of the factors stated in
the strategy which was absent in NL strategy because in traditional NL strategies the
weights to each of the factors is not explicitly given in numbers rather stated as
subjective statements.

- The requirements set contained 13 product and 18 feature level requirements. For
example, messages communication, music playing, enhanced imagining, enhanced
display, availability, usability, browsing, connectivity, and so on. The requirements
were constructed to be of moderate to good quality based on industry observation.
The appropriateness of the requirements and other instruments was also validated in
the pre-test. It is important to understand that in lab experimentation, it is not possible
to have a large number of requirements for triage. There is a limited amount of time
where subjects have to understand the method and then apply it for requirements
triage. The aspects of effectiveness and efficiency as evaluated in the experiment are
however related to using MERTS strategies vs. NL strategies. The relative efficiency
and effectiveness is the goal.

- Each requirement in the set has at least two levels: product and feature, and often
also divided into functions. Each requirement was formatted and specified using the
following attributes; Unique Id, Product level requirement, Feature level requirement,
Function level requirement, Component level requirement (in some cases) and
Comments.

- The instrumentation had a Decision column next to every feature level
requirement with two options: Accept and Reject. For every triage decision the
experiment subject had to specify a rationale behind the triage (Accept or Reject)
decision. It was emphasized during the experiment training that the motivation had to
be deduced from the product strategy and not personal judgments and opinions.

Last in the experiment, each subject had to answer the questions at the end of
experiment as a post-test. The experiment materials (NL strategy, MERTS strategy,
example requirements and the post-test) is not included in the paper as space does not
allow, but can be obtained online at http://www.bth.se/tek/aps/mkm.nsf/pages/merts-
experimentation.

4 Validity Evaluation

Internal validity. This threat can have a huge impact on the experiment results if the
data collection forms and other instruments are poorly designed. To ensure that the
research instruments, including the posed question, are of a good quality, one pre-test
with the material was executed before the “live” round. Moreover, all subjects received
the same introductory lecture, and were given the same material in the same order. It is
thus unlikely that the instrumentation and the implementation of the treatment
influenced the results unduly. That being said, since we used the answers of human
subjects as measures, the gathered measures are of course not 100% repeatable.

To alleviate author’s bias towards MERTS while designing the experiment, a senior
researcher (the second author) not involved in the creation of MERTS, was actively
involved in the design of the experiment to avoid favoritism towards MERTS.

30 M. Khurum et al.

Construct validity. To reduce the risk of evaluation apprehension among the test
subjects, they were told that they would be graded on their efforts, but not on the
number of correct decisions.

External validity. To ensure the external validity and the ability to generalize the
results, we use a requirements specification from a fairly mature domain. As
discussed in Section 3.2, the knowledge and experience of the participants is less than
that of the target audience (e.g. product managers in industry). To reduce this gap, a
system from a domain that is familiar to the subjects was used.

The correlation analysis between the total number of correct triage decisions and
the industrial experience show that there was no significant difference between
performance of subjects with more industry experience and those with less experience
(both for the group using MERTS strategy and group using NL strategy). Thus, the
two groups were homogenous in terms of industry experience.

As the intended target of MERTS (e.g. product managers) would have not only a
better requirement and domain understanding, but also more experience in triage, it
can be argued that the ability to use MERTS (and the potential positive results
obtained in the experiment) should be transferrable to industry practice. Moreover,
experimentation using state-of-the-art research (well-structured method MERTS in
this case) also has learning/training benefits for future professionals.

In this study paper printouts were used, which may impact the readability and the
ease by which the participants may access the information. Hence, any positive
effects are also here transferable to the target audience and the target environment as
the use of tools may increase usability.

5 Operation

The subjects were not aware of the aspects intended for study, and were not given any
information regarding research questions in advance. They were aware of the fact that
it was a controlled experiment in the area of requirements engineering that was a part
of their research methodology course. The experiment ran over a period of three
hours, and the subjects were randomly divided into two groups seated in two different
rooms. Introduction to the experiment was given during these three hours in the form
of a brief slide show presentation. In this presentation basic concepts of product
strategy and requirements triage were explained along with examples.

The mean time to conduct the experiment was around 60 minutes when using
MERTS strategy, the shortest time spent was around 33 minutes and the longest was
107 minutes. The group using NL strategy had a mean time of around 33 minutes, the
shortest time spent was 17 minutes and the longest was 50 minutes.

6 Results and Analysis

6.1 Testing Ho Effectiveness

In each group 18 feature level requirements were given to the subjects and they had to
decide which of these are to be selected/rejected in accordance with the product
strategy (either MERTS or NL). According to the experiment design 10 feature level

 A Controlled Experiment of a MERTS 31

requirements were to be selected and 8 rejected based on the product strategies.
During this analysis, answers that were in line with the study design and aptly
motivated were treated as “correct”. If an answer is in line with the study design but
missing a proper motivation (that is the motivation is not based on the given product
strategy) or if the answer is not in line with the study design, the answer is considered
“incorrect”.

Table 1 shows the mean, standard deviation, skewness and kurtosis for the total
number of correct decisions for all the 18 feature level requirements for the two
strategies: MERTS and NL respectively. The results show that the average number of
correct decisions using MERTS (Mean = 17.72) is more than double the average
number of correct decisions using the NL (Mean = 6.22).

Table 1. Statistics for total number of
correct decisions for MERTS and NL
strategies

MERTS Natural
Language

Statistic Value Statistic Value

Mean 17.72 Mean 6.22

Median 17.50 Median 5.00

Std.
deviation

4.456 Std.
deviation

4.124

Skewness -.143 Skewness 1.180

Kurtosis -1.257 Kurtosis 0.639

Fig. 2. Boxplots for total number of correct
decisions using the two strategies

Confirmed complementary view is offered by the boxplots in Fig. 2 where the

greater number of correct triage decisions using MERTS strategy is evident. Through
the boxplots, an outlier (marked with a small circle and 29) was identified which is
discussed below.

Table 2. Normality tests for total number of correct decisions

Strategy Kolmogorov-Smirnov Shapiro-Wilk

 Statistic Sig. Statistic Sig.

MERTS 0.158 0.200 0.923 0.146

NL 0.203 0.048 0.862 0.013

The skewness and kurtosis values for the total number of correct triage decisions
show that the distributions seem to differ from the normal distribution. To check
normalization prior to the application of an appropriate statistical test, normality tests
were performed on the given data and the results are shown in Table 2. It can been in

32 M. Khurum et al.

Table 2 that the total number of correct triage decisions for MERTS do not differ
significantly from the normal distribution (Significance = 0.20 > 0.05) but the
distribution of the total number of correct triage decisions for NL is not normally
distributed (Significance = 0.048 < 0.05). Based on this result the Mann-Whitney U test
was used to compare if the two sample distributions (of total number of correct
decisions using MERTS and NL strategies) come from the same population.

Looking at overall effectiveness of MERTS versus NL strategy the bar chart in
Fig. 3 confirms that MERTS was more effective for triage decisions than NL.

Fig. 3. Percentage of correct decisions in relation to strategy used

Additionally, the visual inspection of cross tabulations in Table 3 shows that the
percentages of correct decisions for MERTS are significantly higher than the correct
decisions for NL. For example, looking at second row it is possible to see that 22
subjects (62.9%) using MERTS strategy made a correct triage decisions for FE3.2
whereas only 13 subjects (37.1%) using NL strategy made a correct decisions. The
difference of the percentages of correct and incorrect decisions between the two
groups was tested with the chi-square test. For all the requirements the difference is
significant at 0.025 except the requirement 9.1. This is the same requirement for
which an outlier has been identified in Fig. 2. The reason behind this is that for this
particular requirement the total number of correct decisions both for MERTS and NL
are equal (16 correct decisions).

Requirement 9.1 is shown below with its related Function and Product level
requirements. This requirement is easy to relate to in both strategy formulations, and
also during the requirements engineering course at the university, students were given
an example of a very similar requirement. In perfect hindsight it was not surprising
that 50% subjects got this requirement decision correct both in MERTS strategy and
NL strategy. The conclusion drawn after analysis was that the use of this particular
requirement in the experiment was less than optimal.

 A Controlled Experiment of a MERTS 33

Requirement 9.1.

Product: PR9: Usability Internationally
Feature: FE9.1: The mobile shall support multiple languages.
Function:
FN9.1.1: The mobile shall provide Swedish language support
FN9.1.2: The mobile shall provide Chinese language support
FN9.1.3: The mobile shall provide Japanese language support.

Table 3. Significance using Chi-Square Test

Requirement Sig. MERTS Natural Language

Incorrect Correct Incorrect Correct
Count % Count % Count % Count %

FE3.1 0.000 0 0 25 83.3 20 100 5 16.7
FE3.2 0.002 2 14.3 22 62.9 12 85.7 13 37.1
FE3.3 0.003 13 36.1 11 84.6 23 63.9 2 15.4
FE4.1 0.000 0 0 25 65.8 12 100 13 34.2
FE5.1 0.000 7 25 17 81 21 75 4 19
FE5.2 0.000 3 15.8 21 70 16 84.2 9 30
FE6.1 0.000 3 14.3 22 75.9 18 85.7 7 24.1
FE7.1 0.024 13 38.2 11 73.3 21 61.8 4 26.7
FE7.2 0.000 9 29 15 83.3 22 71 3 16.7
FE8.1 0.000 1 4.8 24 82.8 20 95.2 5 17.2
FE9.1 1.000 9 50 16 50 9 50 16 50
FE10.1 0.000 6 22.2 18 90 21 77.8 2 10
FE10.2 0.047 14 42.4 11 73.3 19 57.6 4 26.7
FE11.1 0.000 1 5.3 23 26.7 18 94.7 7 23.3
FE12.1 0.000 10 31.2 15 88.2 22 68.8 2 11.8
FE13.1 0.002 8 29.6 17 73.9 19 70.4 6 26.1
FE14.1 0.000 3 15 22 75.9 17 85 7 24.1
FE15.1 0.001 11 33.3 14 82.4 22 66.7 3 17.6

Finally to confirm the results, the Mann-Whitney U test is applied in order to check
the significance of the results. Significance less than 0.001 was attained, indicating
that there is a significant difference between the means of the two groups. The null
hypothesis: HoEffectiveness is rejected and H1Effectiveness is confirmed, i.e. using MERTS is
significantly different from NL for requirements triage with regards to effectiveness.
To conclude, the use of MERTS strategy for requirements triage is superior to NL
strategy with regards to effectiveness.

6.2 Testing H0 Efficiency

Fig. 4 shows the mean, standard deviation, skewness and kurtosis values for the time
taken by the 50 subjects using the MERTS and NL strategies. The results show that
average time taken using MERTS (Mean = 60.12) is double the average time taken
using NL (Mean = 33.44). The outlier identified in Fig. 4 contributes to the large mean
and standard deviation for the triage time taken using MERTS (Std. Deviation 19.10).

34 M. Khurum et al.

Table 4. Total time taken (minutes) for
MERTS and NL strategies

MERTS Natural Language

Statistic Value Statistic Value

Mean 60.12 Mean 33.44

Median 59.00 Median 34.00

Std.
deviation

19.10 Std.
deviation

9.10

Skewness 0.93 Skewness -0.06

Kurtosis 0.62 Kurtosis -0.92

Fig. 4. Boxplots for time taken (minutes) for
the two strategies

Fig. 5. Number of correct decisions versus time taken

Fig. 5 shows a scatter plot of the points representing each of the subject’s
responses in two dimensions (the dependant variables), the total number of correct
decisions and the total time taken (in minutes). The spikes show the distance from the
centroid. A clear difference between the two treatments can be seen. MERTS is
characterized by long times and greater number of correct decisions whereas NL is
characterized by shorter times and fewer correct decisions.

However, an analysis of the ratios of the total number of correct decisions in
relation to total time taken using MERTS strategy (ratio value = 0.2355) and NL
strategy (ratio value = 0.1937) shows that the time taken to perform correct triage
decisions utilizing MERTS is only 0.12 times more than the time to perform correct
triage decisions utilizing NL.

Using MERTS strategy, the number of correct decisions far outweigh the number
of correct decisions using NL, thus it can safely be stated that MERTS has a fairly
equivalent efficiency compared to NL, even if at a first glance MERTS may seem
much more resource demanding.

Nevertheless, the subjects in the experiment that used MERTS did spend more
time in total, and per correct decision, even if the latter was only marginal. A potential

 A Controlled Experiment of a MERTS 35

explanation could be that the subjects using MERTS had to explicitly write a
motivation/explanation referring to the strategy for every answer. This qualification of
their decisions was not present on the NL side to the same extent as the NL strategy
formatting was less exact the motivations were more of the character “could be good
to have”. The main motivation for demanding a thorough mapping between answers
(choosing to accept or dismiss a requirement) and the MERTS formulated strategy
was to enable decision traceability, a added value of MERTS that is not a part of the
evaluation presented in this paper.

This might not explain the entire time difference, but at least parts of it. Using
Mann-Whitney U, significance less than 0.001 was attained, indicating that there is a
significant difference between the means of the two groups. This means that the null
hypothesis Ho Efficiency is rejected, and thus H1 Efficiency is confirmed i.e. i.e. using
MERTS is significantly different from NL for requirements triage with regards to
efficiency. However, it cannot be concluded that use of MERTS for correct triage
decisions is superior to the use of NL strategy with regards to efficiency. If the
hypothesis was formulated as efficiency per correct answer, and if the time taken to
write explicit qualification for the MERTS group was taken into consideration we feel
confident that MERTS would be as efficient as NL, if not more.

7 Conclusions

MERTS is intended to aid product managers in performing requirements triage
effectively and efficiently in a repeatable manner providing traceable decisions.

In this experiment the effectiveness and efficiency of requirements triage using
MERTS was compared to using NL formulated strategies, which is the norm in
industry. The main motivation of the experiment was to validate MERTS prior to
industry piloting as such real industry tests require valuable and hard to obtain
resources.

The experiment subjects were given 18 feature level requirements and asked to
accomplish a considerable amount of work in a relatively short amount of time. The
subjects were expected to form an understanding of the concept of product strategy
and requirements triage, understand the domain (read and understand the
requirements) and then take decisions whether to include or exclude a specific
requirement based on the strategy supplied. The subjects were offered very little
training, and they also possessed little prior knowledge regarding the domain
compared to the level of a product manager in industry. Considering these aspects and
the total number of correct decisions that resulted in using MERTS we feel that it is
safe to draw the conclusion that MERTS is far superior to NL when it comes to
strategy formulation and utilization for the purpose of requirements triage. The only
potential drawback is that MERTS seems to be more resource intensive to use,
although per correct answer we think that MERTS is at least as efficient as the NL
option. Moreover, MERTS is essentially a systematic method for thinking and making
decisions and that is why it takes more time but avoids errors. This systematic work is
missing when using NL strategies.

36 M. Khurum et al.

The characteristics of industry are also relevant as real-life requirements triage
utilizing product strategies would probably be easier for product managers than for
the subjects in this controlled experiment. In industry, requirements triage and
selection is not performed in isolation, regular meetings as well as official and
unofficial conversations and discussions help in sharing views and reaching
consensus. The benefit of MERTS is the ability to document the strategies (and the
consensus) in a way that offers explicit decision support for all decision makers when
performing requirements triage.

Considering these aspects, the results revealed through this experiment appear
even more promising. In addition, product managers in industry are well versed in
both their specific domain and in the field of requirements engineering. Given this,
the use of MERTS would likely ensure even greater effectiveness and efficiency than
was observed during the controlled experiment presented in this paper.

References

1. Davis, A.M.: The art of requirements triage. IEEE Computer 36, 42–49 (2003)
2. Simmons, E.: Requirements Triage: What Can We Learn from a “Medical” Approach?

IEEE Software 21, 86–88 (2004)
3. Carmel, E., Becker, S.: A process model for packaged software development. IEEE

Transactions on Engineering Management 42, 50–61 (1995)
4. El Emam, K., Madhavji, N.H.: A field study of requirements engineering practices in

information systems development. In: Proceedings of the Second IEEE International
Symposium on Requirements Engineering, pp. 68–80. IEEE Computer Society, Los
Alamitos (1995)

5. Karlsson, L., Dahlstedt, Å., Nattoch Dag, J., Regnell, B., Persson, A.: Challenges in
Market-Driven Requirements Engineering - an Industrial Interview Study. In: Proceedings
of the Eighth International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ 2002), pp. 101–112. Universität Duisburg-Essen, Essen (2003)

6. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineering
journal 11, 79–101 (2006)

7. Potts, C.: Invented Requirements and Imagined Customers: Requirements Engineering for
Off-the-Shelf Software. In: Proceedings of the Second IEEE International Symposium on
Requirements Engineering, pp. 128–130. IEEE, Los Alamitos (1995)

8. Scott, G.M.: Top priority management concerns about new product development, vol. 13.
The Academy of Management Executive (1999)

9. Krishnan, V., Karl, T.U.: Product Development Decisions: A Review of the Literature.
Manage. Sci. 47, 1–21 (2001)

10. Khurum, M., Aslam, K., Gorschek, T.: MERTS – A method for early requirements triage
and selection utilizing product strategies. In: APSEC 2007, Nagoya, Japan (2007)

11. Gorschek, T., Garre, P., Larsson, S., Wohlin, C.: A Model for Technology Transfer in
Practice. IEEE Softw. 23, 88–95 (2006)

12. Kappel, T.A.: Perspectives on roadmaps: how organizations talk about the future. Journal
of Product Innovation Management 18, 39–50 (2001)

13. Fenton, N.E., Pfleeger, S.L.: Software Metrics - A Rigorous & Practical Approach.
International Thomson Computer Press (1996)

14. Berander, P.: Evolving Prioritization for Software Product Management. APS, PhD.
Blekinge tekniska hogskola (2007)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 37–44, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Demystifying Release Definition: From Requirements
Prioritization to Collaborative Value Quantification

Tom Tourwé, Wim Codenie, Nick Boucart, and Vladimir Blagojević

Sirris Software Engineering Cell
{tom.tourwe,wim.codenie,nick.boucart,

vladimir.blagojevic}@sirris.be

Abstract. [Context and motivation] Most software products are developed
and improved over time in iterative releases. Defining the contents of the next
product release is an important, but challenging activity, as a large number of
potential requirements is typically available. [Question/problem] Implement-
ing these requirements in a single release is impossible, and prioritizing them is
hard: which requirements deliver the most value, and what is their value ex-
actly? A study among European software companies in the context of the Flexi
project revealed that this release definition challenge is still significant, in spite
of the available state-of-the-art. [Principle ideas/results] This paper reports on
a number of myths surrounding release definition we observed during the study,
and explains shortcomings of the available state-of-the-art in a context where
many requirements should be considered and defining and quantifying value is
hard. [Contribution] We then propose a novel approach for reducing the risk of
making wrong choices, based on emerging social technologies.

1 Introduction

Packaged software products are seldom fully finished in one shot, but rather follow an
iterative development cycle [12]: different product increments are released over time
consisting of a mixture of features, bug fixes, change requests and technical refactor-
ings. Usually, software product builders are confronted with a large number of such
requirements that can be included in the next increment [11]. Implementing them all
at once is impossible, because of limited available resources, time restrictions or con-
flicts in the wishes formulated by the stakeholders. Choices have to be made and
priorities have to be set [14].

In the context of the European Flexi research project, we are investigating this sub-
ject and have performed a study among more than 100 (Belgian) product builders.
This revealed that release definition —the selection of the most valuable requirements
to be implemented in the next product increment — fulfils an important strategic role.
Companies realise that making incorrect choices for a release can significantly impact
their competitiveness.

Given this strategic relevance, it is striking to observe that the studied companies
often implement fragmentary and inconsistent solutions for defining releases, leading
to suboptimal and unsatisfactory results. Their often ad-hoc approach can be ex-
plained by the fact that, despite its strategic relevance, release definition is not yet

38 T. Tourwé et al.

considered as an explicit and standalone software engineering discipline. Rather, it is
scattered throughout many different disciplines, such as requirements engineering
[20], release management or development methodologies such as Scrum [18].

In this paper, we first provide insights into how the studied companies approach
the release definition challenge. Because of the fragmentary and scattered nature of
the discipline, and because of the myriad of state-of-the-art tools and techniques
available, we observed a number of release definition myths, which we discuss next.
We then show that the available state-of-the-art is not optimal when the number of
requirements to consider is large and defining and estimating the value of those re-
quirements is hard. Finally, we present a novel approach that aims to reduce the risk
of making the wrong choices for a release.

2 The Industry Perspective: Myths of Release Definition

Myth 1: Release definition boils down to installing an idea database

Many companies feel that they don’t have a grip on the release definition challenge
because they don’t know all the ideas and requirements that are available for inclusion
in the next product increment. In order to get an overview of those, they install a cen-
trally-accessible idea database that makes it easier to search for ideas and to submit
new ones. During our study, we have observed databases in different forms and
shapes, ranging from excel files over issue tracking systems to dedicated idea man-
agement tools [8][9]. Some companies even open these up to their customers.

Although an idea database is necessary, it is not sufficient by itself for dealing with
the release definition challenge. An idea database is in essence a feed of ideas that
have no explicit value associated to them. In other words, the idea database itself does
not help in selecting requirements. On the contrary, the success of an idea database
can make the challenge worse, because many more ideas will have to be considered,
ideas which are in different states of maturity, and at different levels of detail. Manag-
ing this amalgam of ideas quickly becomes a burden that can hinder the further suc-
cess of the idea database.

Myth 2: Release definition boils down to appointing an enlightened product
manager

Many organizations appoint a gatekeeper, in the form of the product manager, to
resolve the release definition challenge. The product manager guards and structures
the potential requirements and selects the best ones. He is expected to study the mar-
ket, listen to customers and prospects, identify interesting opportunities, study the
competition, their offerings and activities, etc. Based on this knowledge he is ex-
pected to separate the valuable requirements from the less valuable ones.

Given the complexity of today’s products and markets, determining the value of a
requirement resembles solving a puzzle; it requires different pieces of information in
order to position the requirement in the larger context. These pieces of information
are often dispersed among many different people in the organization; they are often
incomplete and sometimes even tainted by personal agendas. Therefore in practice,
the theory of the enlightened product manager does not stand. The product manager

 Demystifying Release Definition: From Requirements Prioritization 39

should be supported in exploiting the knowledge that lives across the organisation to
help him make the right choices.

Myth 3: Release definition can be expressed solely as a tayloristic process

Many companies look at the release definition problem purely from a process per-
spective. They chop up the release definition process in a series of well-defined
phases, steps and activities, each requiring specific skills and associated responsibili-
ties. Since these skills can be trained, the overall process is independent of the par-
ticular people participating in it. The end result of the process is thus in theory always
the same.

These Tayloristic principles1 work well in an environment where the activities and
associated skills and responsibilities can be identified easily, where the same results
need to be produced over and over again, where uncertainty is reduced to a minimum
and where creativity is not required. Unfortunately, we observed during our study that
the typical release definition environment holds none of these properties. A clear
definition of the activities and skills related to release definition is still lacking. This
classifies the problem as a wicked problem [2]. Additionally, defining the tasks and
responsibilities of people up front, thereby restricting their input to particular informa-
tion only, obstructs creativity and disregards the inherent uncertainty of software
product development. Relying only on a process-oriented view clearly will not suffice
to solve the release definition challenge.

Myth 4: Release definition boils down to using a voting system

An alternative way of inviting many different people to provide their input and views
is involving them through a voting system. People are presented a list of requirements
and are asked to cast their vote on the requirements they prefer. As different voting
systems exist [22], such preference can be expressed in different ways: as a simple
yes/no vote, for example, or as a number on a particular scale (e.g. 1 to 5). Require-
ments that get the most votes are assumed to be those that are the most valuable.

Although voting systems are simple and easy to organize, they do have some par-
ticular quirks. Casting a sincere vote for the best requirements requires that each and
every requirement is considered, and that the different advantages and disadvantages
of realizing these requirements are carefully balanced. This becomes time consuming
if the list of requirements is large.

Voting also requires knowledgeable people that understand each and every re-
quirement in the list in detail. Not surprisingly, this assumption does not hold. A
sales person might not understand that a requirement that will generate a lot of reve-
nue is too costly or too complex to implement, or a developer might not know that a
costly requirement will generate a lot of revenue.

People also employ clever strategy and tactics, all because they want to avoid an
unwanted result, rather than achieve the best result. Such tactical voting is unavoid-
able, whatever voting system is selected, and beats the assumption that stakeholders
always handle in the company’s best interest.

1 This view originates from Frederic Winslow Taylor [21].

40 T. Tourwé et al.

A last challenge associated with voting systems is that one looses track of the un-
derlying rationale the voters used to cast their votes. Suppose two requirements get
the same amount of votes: one requirement doubles the market share at a huge devel-
opment cost, while the other one halves the maintenance cost but does not attract a
single customer. Which of these two requirements is the most valuable and should be
realized?

Myth 5: Release definition boils down to a requirements prioritization algorithm

People have looked for ways to overcome the disadvantages of voting while at the
same time retaining its advantages. In other words, how to determine the real value
from the overwhelming amount of potential requirements in a collective, time-
efficient and objective fashion? This gave rise to extensive research on automated
requirements prioritization through algorithms [13][23]. Requirements prioritization
algorithms capture the value of a requirement in a single number, computed by means
of a (complex) formula that combines the (values of) relevant criteria in a clever way.
Based on this number, the list of requirements is sorted.

The concept itself is quite clear and promising, but living up to the promise in prac-
tice seems hard. Companies often do not know exactly what the relevant criteria are
for expressing value in their context. Some approaches pre-define criteria such as
cost, effort and risk [23], while others allow user-defined criteria, but provide no
guidance on determining the criteria that are useful in a particular context [15].

Whether using pre-defined or user-defined criteria, we also heard questions about
how to quantitatively measure them. Criteria such as cost and effort can be expressed
in absolute terms (money or time spent), but some criteria, such as innovativeness or
product stability, are much more difficult to express as numbers. In addition, only
estimates can be provided and correct estimates are crucial for having a correct priori-
tization. Estimation is an art by itself, however.

3 The Research Perspective: Available State-of-the-Art

In trying to help companies solve the release definition challenge, we looked at the
current state-of-the-art, and distilled 6 groups in which most of these available meth-
ods, tools and techniques can be classified. A recent overview of the available state-
of-the-art in the domain of release definition is presented in [12][13].

• Clustering in importance groups: approaches that divide the requirements into a
small number of different importance groups: Kano analysis [10], the MoSCoW
method [3] and the Planning Game [1], for example.

• Consensus-based approaches: approaches specifically geared towards reaching
consensus among a group of stakeholders. An example is the Delphi method [16].

• Multi-criteria ranking: approaches that automatically rank the requirements,
based on the value of multiple relevant criteria and a specific formula that com-
bines these values into a single value. Examples are Wieger’s method [23] and Re-
lease Planner [15].

 Demystifying Release Definition: From Requirements Prioritization 41

• Pairwise comparison: approaches that rely on mutually comparing all require-
ments, and identifying for each comparison the most valuable requirement. Exam-
ples are manual pairwise comparison approaches, such as the analytic hierarchy
process [17] and the “20/20 vision” innovation game [7], and semi-automatic ap-
proaches, such as the one implemented by the FocalPoint tool [5].

• Voting systems: approaches that involve different stakeholders and ask each one
of them to express their preference in some way or another. Examples are the “Buy
a Feature” innovation game [7] and the “$100-test” approach.

• Financial approaches: approaches based on financial measures, such as the Inter-
nal Rate of Return, Net Present Value [4], or business cases.

Keeping in mind the myths, we studied how a company’s context impacts the suitabil-
ity of a particular release definition approach from these 6 groups. While there are
potentially many relevant context characteristics, we have so far identified the follow-
ing two: the number of potential requirements, and the ability of the company to
quantify the value of those requirements.

The number of requirements available for the next product increment influences
the trade-off between a lightweight, coarse-grained approach or a fine-grained, more
heavyweight approach. The latter approaches can be used when few requirements are
available and an in-depth analysis of each and every requirement is feasible. These
approaches do not scale well when the number of potential requirements is high,
however, as specifying the value of thousands of requirements in detail is too time-
consuming. In such cases, coarse-grained approaches can be applied first, to make an
initial selection, followed by ever more finer-grained approaches that complement the
existing information, until making a motivated selection is deemed possible.

Fig. 1. Applicability of the state-of-the-art w.r.t. the number of requirements and the uncer-
tainty in value quantification

The ability to quantify the value of requirements refers to how easily a company
can express what “value” means in their context. When a company is building custom
software for a specific customer, their definition of “value” will be different than that
of a company that is building an off-the-shelf software product. In the first case, the
customer might be available to estimate the value of the requirements and to comment
on the next product increment. In the latter case, different customers may have

42 T. Tourwé et al.

different wishes and opinions, and it is in general more difficult to predict how well a
particular product increment will be received by the market.

Figure 1 illustrates how the 6 groups of approaches are positioned against the
above characteristics. All approaches work fine when both the number of require-
ments and the uncertainty in value quantification is low. Few approaches however
work well when either the number of requirements is high or the uncertainty in value
quantification is high. Most striking however is that none of the approaches seems
suitable in a situation where both the number of requirements and the uncertainty on
the value quantification is high. This is exactly the situation that a lot of software
intensive product builders face, according to our study.

4 Releasious: Exploiting the Wisdom of Crowds

An interesting question is what the core characteristics are of release definition ap-
proaches that can deal at the same time with large amounts of potential requirements
and with high uncertainty in the value quantification. We feel a paradigm shift is
ongoing: whereas in the past, release definition was often equated with requirements
prioritization, it is becoming more and more a “social” interaction in which value is
quantified collaboratively by all involved stakeholders.

Current evolutions in Web 2.0 social technologies are now sufficiently mature to
allow exploitation in this challenging domain. In particular the application of wisdom
of crowds techniques [19] seems a promising research path to consider: How can
techniques such as crowd sourcing2 and collaborative filtering [6] be applied to the
problem of release definition and what benefits can they bring to companies?

To understand this, we are developing a web 2.0 prototype tool called Re-
leasious™. Releasious allows organisations to

• tap into their collective creativity potential, by providing a centrally accessible
platform that allows any stakeholder to submit his or her product ideas, comment
on other ideas and/or state his opinion on their value.

• determine the value of requirements, by involving all stakeholders, allowing
them to express their individual opinion on the value of a requirement, as well as
providing information that they think is relevant. Stakeholders can use their own
vocabulary when expressing the value of a requirement, by using free-form “tags”
(e.g. “innovative”, “sellable”, “quality improving”, …). Inspired by the work on
folksonomies, this can allow to grow a company-specific definition of how value
should be expressed.

• let the controversial requirements emerge, by using dashboard technologies that
consolidate all the information available into appropriate views and signal dis-
agreement. Word clouds are used, for example, to show what tags are considered
most relevant for a requirement, and stakeholder agreement is measured by consid-
ering the distribution of different tags over different stakeholders.

2 Crowdsourcing is the act of taking a task traditionally performed by an employee or contrac-

tor, and outsourcing it to an undefined, generally large group of people, in the form of an open
call.

 Demystifying Release Definition: From Requirements Prioritization 43

• define product releases that are in lign with the product roadmap and the
business strategy, by supporting product managers in browsing through the avail-
able information by offering pre-defined and user-definable views and filters that
help in making a motivated and rational selection of requirements.

We expect three major benefits from using such wisdom of crowds based tech-
niques. A first one is based on a “divide and conquer” philosophy. The large and
complex problem of release definition can be partitioned in smaller pieces, each being
attacked by different (groups of) stakeholders. Afterwards, the results can be aggre-
gated. This can allow a company to deal with a large number of requirements in a
collaborative way. A second benefit is that through the collaborative assessment of
value, the company-wide vision of what value is can be established and spread among
the different stakeholders. This common understanding of value, in combination with
aggregation and negotiation of individual value assessments coming from different
stakeholders, will yield a third benefit: limiting the risk of wrong value assessment of
individual requirements.

Several important challenges remain to be addressed, such as stakeholder motiva-
tion, reputation management and rewarding strategies. Furthermore, meeting the nec-
essary conditions for effective wisdom of crowds application is also challenging [19].

5 Summary

In this article, we presented a number of release definition myths observed at various
software builders. We found that current state of the art cannot be efficiently and/or
effectively applied in their specific context. This brought us to propose a novel ap-
proach, based upon wisdom of crowds techniques. This new approach of course faces
its own challenges, which are currently being studied with the help of a prototype tool
called Releasious™. Experiments with Releasious™ are underway, but the results are
still premature. Releasious™ can be seen in action at http://releasious.sirris.be.

References

1. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Reading (2001)
2. Carlshamre, P.: Release Planning in Market-driven Software Product Development - Pro-

voking an Understanding. Requirements Engineering Journal 7(3), 139–151 (2002)
3. Clegg, D., Barker, R.: Case Method Fast-Track: A RAD Approach. Addison-Wesley,

Reading (2004)
4. Cohn, M.: Agile Estimating and Planning. Prentice-Hall, Englewood Cliffs (2005)
5. FocalPoint,

http://www.telelogic.com/corp/products/focalpoint/index.cfm
6. Goldberg, D., et al.: Using collaborative filtering to weave an information tapestry. Com-

munications of the ACM 35(12), 61–70 (1992)
7. Hohmann, L.: Innovation Games: Creating Breakthrough Products Through Collaborative

Play. Addison-Wesley, Reading (2006)
8. IdeaScale, http://www.ideascale.com
9. InnoBar, http://www.innobar.org

44 T. Tourwé et al.

10. Kano, N.: Attractive quality and must-be quality. The Journal of the Japanese Society for
Quality Control, 39–48 (1984)

11. Karlsson, L., Dahlstedt, S.G., Regnell, B., Nattoch Dag, J., Persson, A.: Requirements en-
gineering challenges in market-driven software development - An interview study with
practitioners. Inf. Softw. Technol. 49(6), 588–604 (2007)

12. Karlsson, L.: Requirements Prioritisation and Retrospective Analysis for Release Planning
Process Improvement, PhD Thesis, HUT / Department of Computer Science (2006)

13. Lehtola, L.: Providing value by prioritizing requirements throughout product development:
State of practice and suitability of prioritization methods. Licentiate Thesis, HUT / De-
partment of Computer Science (2006)

14. Lubars, M., Potts, C., Richter, C.: A Review of the State of the Practice in Requirements
Modeling. In: Proceedings of the IEEE International Symposium on Requirements Engi-
neering, pp. 2–14. IEEE Computer Society Press, Los Alamitos (1993)

15. ReleasePlanner, http://releaseplanner.com
16. Rowe, G., Wright, G.: The Delphi technique as a forecasting tool: issues and analysis. In-

ternational Journal of Forecasting 15(4) (October 1999)
17. Saaty, T.L.: Fundamentals of Decision Making and Priority Theory. RWS Publications,

Pittsburgh (2001)
18. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004) ISBN 0-

7356-1993-X
19. Surowiecki, J.: The Wisdom of crowds: Why the Many Are Smarter Than the Few and

How Collective Wisdom Shapes Business, Economies, Societies and Nations Little,
Brown (2004) ISBN 0-316-86173-1

20. The Software Engineering Body of Knowledge (SWEBOK), http://www.swebok.org
21. Taylor, F.W.: The Principles of Scientific Management. Harper & Brothers. Free book

hosted online by Eldritch Press (1911)
22. Voting systems, http://en.wikipedia.org/wiki/Voting_system
23. Wiegers, K.: First things first. Softw. Dev. 7(9), 48–53 (1999)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 45–58, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Specifying Changes Only – A Case Study on Delta
Requirements

Andrea Herrmann1,*, Armin Wallnöfer2, and Barbara Paech3

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
Andrea.Herrmann@iese.fraunhofer.de

2 ABB Corporate Research Center Germany, Wallstadter Str. 59,
68526 Ladenburg, Germany

armin.wallnoefer@de.abb.com
3 University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

paech@informatik.uni-heidelberg.de

Abstract. [Context and motivation] Requirements engineering methods and ex-
amples presented in textbooks and scientific publications usually treat software
which is developed - and therefore specified - from scratch. However, in the soft-
ware development practice, this situation is very rare. In an industry case study,
we encountered the situation that a software system in use had to be enhanced by
a small delta. [Question/problem] Our objective was to specify these delta re-
quirements without having to describe the complete system in detail. Therefore
we explored how much of the existing system had to be specified in order to make
the delta requirements understandable. [Principal ideas/results] We made an in-
tensive literature search to proven practices. As we were not successful we ap-
plied the requirements engineering method TORE and extended it to capture the
delta requirements. [Contribution] In this paper we describe a process for captur-
ing delta requirements. To our knowledge, this is the first work about this practi-
cally relevant question. In our case study, hierarchical refinement of requirements
top-down and iterative requirements prioritization successfully supported the
specification of deltas, combined with a high-level specification of the existing
system. We also present our experiences during the case study and propose ideas
for further research.

Keywords: change request; evolution; requirements specification.

1 Introduction

In practice, most often software projects enhance an existing system, e.g. when a
software product is customized, when a legacy system is adapted to changed require-
ments or slightly enhanced, or when standard components are added. Nevertheless,
methods and examples presented in requirements engineering (RE) textbooks and
scientific publications, usually treat software which is developed and specified from
scratch.

* The presented work is the result of her previous work at the University of Heidelberg.

46 A. Herrmann, A. Wallnöfer, and B. Paech

In the following, we call the requirements describing the enhancement “delta re-
quirements”. Such delta requirements could be specified as isolated units or based on
and linked to a specification of the existing system. Such a context description sup-
ports the understanding and discussion of the delta´s influence on the existing system,
especially when the stakeholders of the project do not know the existing system.
However, in practice often a complete and up-to-date specification of the system does
not exist. Thus, the existing system has to be specified before the delta requirements
can be described. This is typically too time-consuming, especially when the system is
large and the delta is small. Although a documentation of the complete system has its
value in terms of knowledge management, the project budget does often not allow its
creation.

In an industry case study, we encountered the situation that a software system in
use had to be enhanced by including change management functionalities. Our objec-
tive was to focus the specification effort on these delta requirements mainly and to
analyze the influence of the new functionality on the currently supported processes,
without having to describe the complete existing system equally detailed. The ap-
proach we used was to apply the requirements specification method TORE (which
stands for “Task and Object Oriented Requirements Engineering” [1], [2]) and to find
out how much of the existing system has to be specified in order to make the delta
requirements understandable. The value of TORE for this task lies in the fact that
requirements are described on different levels of granularity. Refining requirements
hierarchically should support describing the delta requirements in detail and the rest
of the system on a higher level of granularity.

The case study described in this experience paper took place at ABB, a company
which is a leader on the market on energy and automation technology and which
employs 115.000 persons worldwide. ABB has adapted a systems engineering tool to
their own needs and enhanced it. The resulting plant engineering tool - which we here
call the Integrated Engineering System (IES) - is used internally in the field of power
plant engineering. It integrates all project specific data – from project planning and
RE to plant operation. Thus, it offers a consistent model of the plant and the project
documents and links all project stakeholders within ABB automation projects: sub-
contractors as well as the customers. Change management is important in plant engi-
neering projects because engineering results from the different stakeholders add up to
a huge amount of data, which are hierarchically, logically and technically interde-
pendent. This complexity makes such projects a very dynamic and sophisticated un-
dertaking, where changes frequently take place and have far-reaching consequences.
Such changes are caused for example by refinement of high-level requirements or by
new technical or other constraints. It is essential to analyze impacts of changes before
deciding about their implementation, to document and to communicate these changes.
These activities serve risk management.

In the case study, it was investigated how change management functionalities can
be added to IES. A prototype of the highest ranked requirements was implemented.
The RE activities of the case study were managed by one of the authors who dis-
cussed the approach with the other two authors. The stakeholders who defined and
prioritized the requirements were experts of ABB, who already use the IES system
and are technical or business experts for plant engineering.

 Specifying Changes Only – A Case Study on Delta Requirements 47

The remainder of this paper is structured as follows: Section 2 presents the result of
our literature research. Section 3 describes how we proceeded in the case study, while
Section 4 discusses our approach, especially how we modified TORE and why.
Section 5 presents lessons learned. Section 6 is the conclusion of this publication and
presents questions which we plan to investigate in future work.

2 Related Work

We searched literature in order to find answers to the following questions:

• Are there empirical studies which result in statistics about how often in software
projects it is necessary to describe delta requirements?

• Which specific challenges are met in practice with respect to delta requirement
specification in the situation that no complete specification of the existing system
is available?

• Which solutions are proposed and/ or applied for the specification of delta re-
quirements?

Typically, in the context of requirements evolution and maintenance, it is assumed
that a specification of the existing system is given using the traditional specification
methods. Then, the following topics are treated in the typical publications about delta
requirements:

• Why and when requirements change and which software development process or
tool can cope how with requirements evolution.

• How requirements changes (to the specification of the existing system) are man-
aged and documented, e.g. by requirements management, traceability and ration-
ale.

• How requirements can be specified in order to be reusable.

Thus, we made a more comprehensive literature search for approaches dealing spe-
cifically with delta requirements. As the term “delta requirements” is not used in the
scientific literature so far, we successively used the following search keys: delta re-
quirements; scalability AND requirements AND specification; scalability AND re-
quirements AND modeling; scalable AND change request AND specification; change
AND specification; requirements creep; requirements AND hierarchical AND re-
finement; incremental AND requirements AND specification; incremental AND re-
quirements AND model; requirements AND specification AND evolution; COTS
AND specification; COTS AND specification AND development; COTS AND re-
quirements; COTS AND requirements AND development; “requirements change”;
“requirements reuse”; Software AND maintenance AND requirement; “requirements
recycling”; “perfective maintenance”; perfective AND maintenance AND require-
ments; perfective AND maintenance AND specification; change AND impact AND
analysis; requirements AND change AND control; requirements AND change AND
management; agile AND requirements AND specification.

We searched in the IEEE Xplore database (including periodicals and conference
proceedings) and additionally entered the search keys in a Google search which deliv-
ered publications for instance from the ACM portal, Requirements Engineering

48 A. Herrmann, A. Wallnöfer, and B. Paech

Journal, in Citeseer, and in many conference proceedings. Several hundreds of paper
abstracts were checked and more than hundred papers read. And we analyzed some
state of the art overviews, like the one of Finnegan [3] who reviews methods for RE
for the development of Commercial-Off-The-Shelf software.

We didn’t find any investigations about the frequency of the situation that in
practice delta requirements are to be specified instead of complete software systems,
and also no study about what specific challenges are met in this situation. We expect
that such an investigation would find out that this under-researched situation in fact is
very frequent and challenging in practice. That frequently delta requirements are
implemented additionally to existing systems can be expected because software is
known to evolve constantly, what is true for legacy systems as well as for Commer-
cial Off-the-Shelf Software. Kiedaisch et al. [2] for the automotive domain emphasize
that systems are not built from scratch. (However, they treat requirements reuse from
former product generations.)

We didn’t find any work which discusses how to specify delta requirements
without specifying the existing system completely in detail, or whether or when it
is necessary to specify the existing system. This topic has neither been treated ex-
plicitly by research nor has been discussed in the context of industry case studies. It
seems that always the requirements on the system have been described completely.
(This observation could be attributed to a lack of awareness of this problem, at least
on the side of researchers.) While we did not find ready to use solutions the literature
search stimulated us for the following solution ideas:

• Reusable requirements: For instance, it has been proposed to use domain models
as requirements specification templates (then, for each project only the delta with
respect to the domain model is specified) [4]. Reusable requirements or reusable
components can be described and documented in a library, which demands a
specification of the complete system, but a black box specification is sufficient [5].

• Hierarchical refinement: Describing the requirements on different degrees of
granularity/ hierarchical refinement, allows specifying the existing system on a
high level of granularity, which is sufficient for describing the context of the
delta requirements, especially when the existing system is well known to the
stakeholders involved. This is the approach chosen for our case study.

• Change request templates: Such templates are explicitly made for describing
delta requirements, as each change request signifies a delta to a system. How-
ever, usually, they refer to the existing requirements which they apply to or
which they influence, and thus require an existing specification.

• Prototyping: Prototyping can present the existing system as a graphical proto-
type, e.g. a user interface prototype. Alternatively, the existing system itself can
be used like a prototype.

• Agile software development methods: These usually specify the system com-
pletely on a high level of granularity in order to obtain an initial set of require-
ments (in the form of user stories, features, etc.) which then are prioritized and
realized incrementally. The task of specifying the requirements in more detail is
done at implementation time. We found this to be true for Feature Driven Devel-
opment [6], Scrum and Extreme Programming [7].

 Specifying Changes Only – A Case Study on Delta Requirements 49

• Specifying requirements in units which are independent of each other as far as
possible: This principle is followed in the agile development methods but also in
other approaches. Such requirements units are called features [8], [9], super-
requirements [10], or Minimum Marketable Features [11], [12].

• Variability modelling for product lines: In the context of product line develop-
ment, one meets the challenge to describe requirements of several similar prod-
ucts. Thus, methods treating shared requirements and variability points are
proposed. However, these methods also demand the modelling of the complete
system. They avoid to model the same requirements several times by reusing
their descriptions.

We conclude from our literature research that the specification of delta require-
ments is an under-researched area: It has neither been investigated how often such a
situation appears in practice, nor which specific challenges it causes or how it can be
treated successfully.

3 Dealing with Delta Requirements: The Case Study Approach

The RE approach we used in the case study (see Fig. 1) was based on TORE, because
we expect that its hierarchical refinement of requirements supports saving effort when
specifying delta requirements. TORE describes requirements on four levels (examples
from the case study are given in brackets):

1. Task Level: On this level one specifies actors (e.g. External Engineer) and es-
sential tasks (e.g. Generate Documentation) which these actors perform, as
much as possible abstracting from the given IT support.

2. Domain Level: Looking at the tasks in more detail reveals the activities (e.g.
Generate documents for import) users have to perform as part of their work.
These activities are influenced by organizational and environmental con-
straints (e.g. NFR ‘Pre-processed documents shall be marked ready’). At this
level, it is determined how the work process changes as a result of the new
system. This includes, in particular, the decision on which activities will be
supported by the system (called system responsibilities) and which domain
data (e.g. Report about import result) are relevant for the activities.

3. Interaction Level: On this level, the assignment of activities between human
and computer is described by use cases (e.g. Import prepared document into
system). They define how the user can use the system functions (e.g. Generate
system data according to imported document) to achieve the system responsi-
bilities. These have to be aligned with the user interface (UI) and the interac-
tion data (e.g. path of document) which are input and output on the UI. The
notations used are use cases, entity-relationship diagrams, system functions
and the user interface structure (abstracting from the specific layout and plat-
form of the UI).

4. System Level: The internals of the application core (e.g. class Import) and the
UI are documented on the system level. They determine details of the visual
and internal structure of the system.

50 A. Herrmann, A. Wallnöfer, and B. Paech

Fig. 1. Steps of our requirements elicitation and specification approach and their dependencies
in terms of information flow between the steps

In the case study, the requirements were specified and prioritized by successively
moving top-down from a high level of description to a lower level of description
within TORE. The decision how to proceed was based on the involved researchers´
and practitioners´ experience. It was also important to integrate notations and presen-
tations which the different stakeholders know. While the project´s technical stake-
holders are familiar with use cases, the non-technical stakeholders usually discuss
about software using user interface prototypes and process models like the one pre-
sented in Fig. 2. The process models contain less detail than the use cases, because
they only give the steps´ names while use cases also add rules and other details about
these steps.

It is important to note that in this case study the delta requirements concern change
management. This should not be confused with the fact that delta requirements them-
selves describe changes.

The following steps were executed (see also Fig. 1):

1. High-level as-is-analysis of what the system supports so far: The first step was
a high-level TORE analysis (task and domain level) of the existing IES in or-
der to identify domain data and activities of the user task “change manage-
ment” so far supported by IES. This resulted in 9 actors and 16 activities and
roughly 50 entities covering also the system architecture.

2. High-level to-be-analysis of the system, i.e. identification of where in the exist-
ing system deltas are needed when integrating change management functional-
ities to the activities supported so far: Some of the data and activities identified

 Specifying Changes Only – A Case Study on Delta Requirements 51

in step 1 needed to be modified in order to support change management, some
others less or not at all. We identified those domain data managed by the IES
which can be subject to changes and the activities which are affected by
change management. This led to a matrix of four domain entities times three
activities, and each of the twelve fields of these matrix was treated as a possi-
ble high-level delta requirement.

3. Prioritization: These twelve high-level requirements were prioritized to focus
the effort of a detailed requirements specification and prototype implementa-
tion on the most important ones. In the case study the following prioritization
criteria were used:

a. The degree to which the change in an artefact affects the corre-
sponding activity (not at all, partially, fully);

b. For which fully affected activity tool support for change manage-
ment leads to higher efficiency, because rules can be defined for the
consequences which a change in the artefact has on the activity.

In the case study, the import of customer data was rated highest and
therefore chosen for detailed requirements specification and implemen-
tation. Note that customer data means IES data provided by the cus-
tomer.

4. Detailed as-is-analysis of the whole task integrated with literature research: A
high-level description of how well IES currently supports change management
was created. As a source for desirable functionality also a literature search on
tool support for change management was carried out. This description was
structured according to the change management phases of ISO 10007 [13], and
contains one to three sentences per phase which describe the gap, i.e. what is
missing in the current system. These phases are:

a. Initiation, identification and documentation of need for change (i.e.
change request).

b. Evaluation of change.
c. Disposition of change.
d. Implementation and verification of change.

5. As-is-analysis on interaction level: In order to analyze how the chosen activity
(see step 3) is currently supported by the tool, it was refined by a use case like sce-
nario and graphically modelled as a process (see Fig. 2) and at the same time de-
scribed in textual form in a use case template. We did not use standard use case
templates, because they demand much detail which was not necessary in our case
study because the current processes are known to all stakeholders. Therefore, we
rather talk of “scenarios” in what follows. Furthermore, the user interface was ab-
stracted to a UI structure (specified in terms of workspaces as defined in the con-
textual inquiry approach [7]). This detailed as-is-analysis was the basis for the
detailed delta requirement specification. The graphical process notation was al-
ready known to most of the stakeholders and used mostly for the discussion with
them. The textual scenario specification was used as a means of rigour to docu-
ment the common understanding of the process diagram in more detail.

6. Gap analysis on interaction level. The proposed requirements from literature
(step 4) were scrutinized to find out whether they are relevant for the process.
The literature study identified 10 such “literature proposals”. Examples are

52 A. Herrmann, A. Wallnöfer, and B. Paech

“Add representation relationships / horizontal relationship: The IES shall sup-
port relationships between X and Y”, i.e. they describe what is to be changed
within the system on the interaction level. They were added to the list of po-
tential delta requirements.

Fig. 2. An example scenario, modeled graphically as a process including potential delta re-
quirements (hatched boxes). This model´s focus are the actor steps, not the system steps.

7. To-be-analysis on the interaction level in order to identify proposals for delta
requirements on interaction level: For the chosen activity, ideas for imple-
menting change management functionalities in IES were generated. For each
scenario step specified in step 5, we analyzed whether it needs to be changed
to support the new functionality (i.e., change management). In particular, steps
which are currently executed manually were analyzed whether tool support
makes sense here. Scenarios are described as high-level as possible, while
those parts of the scenario which are relevant for change management, are “re-
fined”, i.e. described in more detail and highlighted by a grey (upward diago-
nal hatched) background. New ideas were included in the process model and
the scenario text as comments and highlighted by downward diagonally
hatched background. Variants of scenarios were described, not by specifying
several versions of the same scenario, but by separately specifying alternatives
of single steps, which were identified unambiguously by numbers. This led to
13 potential delta requirements. Some of these were further detailed with spe-
cific scenarios giving rise to 6 additional potential delta requirements. See Fig.
2 and Fig. 3 for examples of such extended scenario descriptions, both in
graphical and in textual form. Fig. 4 shows an example of a variant descrip-
tion. For reasons of confidentiality, the examples in this paper use general
wording. An example of a potential delta requirement is “support follow-up of
open issue”. Thus, altogether 29 potential delta requirements were collected in
steps 6 and 7.

 Specifying Changes Only – A Case Study on Delta Requirements 53

Fig. 3. Example scenarios described in a use case template, with refinements of base scenario
(italic font / upward diagonal background)

8. Elicitation of detailed stakeholder requirements: The potential delta requirements
were discussed in detail with the stakeholders. This revealed 19 stakeholder re-
quirements on how the deltas to the current process and tool support should be
carried out.

54 A. Herrmann, A. Wallnöfer, and B. Paech

Fig. 4. Example for potential delta requirement (i.e. Proposals, downward diagonal back-
ground)

9. Prioritization on interaction level: The 29 potential delta requirements from steps
6 and 7 were mapped against the 19 stakeholder requirements from step 8. This
revealed which delta requirement was how useful. Altogether, 13 delta require-
ments were selected for the implementation.

10. UI prototyping for delta requirements: For these, a detailed solution specification
was derived in terms of a UI prototype and iteratively discussed with the stake-
holders.

In short, our approach was a successive detailing of the to-be-analysis and as-is-

analysis. By prioritization, it was decided which higher level requirements were to be
described on a lower level of granularity.

4 Discussion of the Case Study Approach

Like all other RE methods, TORE is usually used for specifying complete software
systems. It proceeds top-down over four levels of description, which refine the re-
quirements successively. The exact procedure for the creation of the descriptions on
the different levels is not fixed a priori and should be defined for the specific project
purpose. In this case study we defined the TORE procedure consistent with our two
specific objectives: namely describing delta requirements and keeping the specifica-
tion effort low while taking profit of the fact that there is an existing system which
does not need to be specified in detail. These two objectives led to the procedure
described in the previous section. Resulting from our experiences in the above case
study, these are the major extensions in the use of TORE for the purpose of delta
requirement specification:

 Specifying Changes Only – A Case Study on Delta Requirements 55

• We performed both: an as-is-analysis and a to-be analysis. The results are ideally
described in the same form. This simplifies the identification of deltas between
the existing process / system and the to-be-process / system. TORE so far sup-
ports the as-is- and to-be analysis on the domain level. We enhanced TORE to
support this also on the interaction level.

• We executed several stakeholder sessions on the interaction level. The to-be
analysis was essentially carried out in two steps: First potential delta require-
ments were proposed by analyzing the existing processes and system support.
This could be done with the aid of only few stakeholders, mainly based on gen-
eral change management knowledge. In a second step, the details of the literature
analysis were used to develop potential delta requirements. Only then we in-
volved all the relevant stakeholders to bring in their specific requirements on
these potential delta requirements.

• In order to highlight the most relevant scenario steps, we introduced the follow-
ing color coding:

o In derived scenarios, such steps were highlighted by a grey background
(in this paper presented as upwards hatched background) which were re-
fined more than the rest of the scenario in order to discuss potential delta
requirements (see Fig. 3, Step 1a).

o Partially described scenarios have been used to describe selective im-
provements, namely potential delta requirements (see Fig. 4). These
delta requirements were highlighted green (here as downwards hatched
background).

• We found that system steps in the scenario text could be documented minimally:
In ordinary use cases, it is important to describe the details of the system support.
But when describing delta requirements, in many cases these details could be
seen in the existing system. If so, we focused on describing the actor steps in de-
tail, containing also implicit information about the corresponding system support.
Thus, system steps have been described in a generic way (e.g. “Supported by Ap-
plication A”, see Fig. 3, Step 3).

• The fact that a system already exists allowed us to ignore some rules which are
commonly observed in RE. Such a rule is that requirements, e.g. use cases, must
describe the “what” but not the “how”, i.e. the strict separation between require-
ments and design. However, when the system to be specified essentially already ex-
ists, it is more understandable for most stakeholders to describe the system in terms
they know. This can mean to name technical system components, software names
(trademarks) and names of the software modules used in the company. Thus, we al-
lowed the scenarios to use system specific terms, i.e. to mention the system compo-
nents which are responsible for a specific scenario step (see Fig. 3, Step 6).

• During TORE´s top-down refinement, on each level decisions are made. Such
decisions can mean to prioritize the requirements, with respect to which of these
are to be refined to the next level. Such an explicit prioritization – as we did on
the task, domain and interaction level - is especially important when the objective
is to focus the specification effort on delta requirements.

• The overall comprehension was supported by the intense use of diagrams. Such
diagrams were process models for presenting the scenarios graphically (see for
instance in Fig. 2) and GUI prototypes. These diagrams have been a good basis

56 A. Herrmann, A. Wallnöfer, and B. Paech

for discussion with the non-technical stakeholders. Furthermore, it was possible
to use GUI prototypes earlier in the requirements specification process than usu-
ally, and they played a more important role than usually in TORE, because the UI
essentially already existed. The GUI prototype did not play the role of a specifi-
cation result, but rather as a specification backbone and basis for describing del-
tas. They supported specifying scenarios as well as the UI itself.

5 Lessons Learned

In this section, we discuss lessons learned from the case study with respect to the speci-
fication of delta requirements, TORE´s applicability for this task and RE in general.

In this case study, we felt that it would not have been a good option to exclusively
specify the delta enhancement of the system. This is because we did not simply
enhance the software system incrementally, but our objective was to improve
processes. Therefore, some sort of process analysis was necessary. The as-is-analysis
supported the analysis of the effects of the delta requirements on other processes.

TORE facilitated the analysis of an existing system: High level requirements like
actors, user tasks and workspaces of the existing system could easily be described.
TORE offers guidelines for describing the RE artifacts. Furthermore it was easy to do
as-is-analysis as well as to-be-analysis and to include several prioritization steps in
order to identify requirements which are to be refined further.

It was easy to modify TORE, as each part of TORE has a well-defined purpose
capturing a specific part of the requirements specification. We could easily identify
those parts of TORE which needed to be modified and also to check what modifica-
tions would be induced on related parts of the specification.

Besides the above benefits also difficulties have been encountered. Describing the
delta requirements was not as easy as the analysis of the existing system. Different
stakeholders needed different notations. For the technical stakeholders, use case tem-
plates were a good means for specifying requirements, even if we did not adhere to
standards, while the non-technical stakeholders preferred graphical process models.
The process diagrams used in the case study were accepted and usually applied at
ABB. So they were used in the discussion with the stakeholders while the scenario
texts were only used by us for capturing more detail. While the UI structure was too
abstract for the discussion, useful feedback was created after presenting GUI proto-
types. These GUI prototypes supported discussions about and decisions on the sce-
nario steps. This shows that GUI prototypes must be presented as early as possible.
Discussions during requirements specification not only focused on the delta require-
ments but also on the right form of requirements specification. Reasons for this were
difficulties with finding the ideal granularity of description, different usage and un-
derstanding of the terms ‘Actor’, ‘User Task’ and ‘Role’ (in the context of ABB a role
is used to describe a task of one actor). This shows that some time is needed to intro-
duce in an organization an RE specification method with new concepts.

The need was felt for means for documenting discussion and prioritization. Discus-
sions about variants of the identified scenarios were documented separately in a text
processing tool. Versioned and commented presentation slides were used to capture
further information about the discussions. This includes documentation of brainstorming

 Specifying Changes Only – A Case Study on Delta Requirements 57

activities, evolution and documentation of different versions of RE artifacts, in particu-
lar process descriptions. A possibility to tag the state of a requirement was desired (e.g.
proposal in discussion, proposal accepted, and proposal postponed) and how to distin-
guish between obligatory and optional requirements.

Specific and flexible tool support would be helpful. In this case study, a text proc-
essing tool was used to document requirements instead of the specific TORE tool
[14]. The implementation of the method modifications in the tool would have been
too time-consuming (e.g. modified use case template). Using text processing resulted
in additional effort (e.g. of establishing references between the artifacts), but it offered
the necessary flexibility and appropriate data security.

TORE supports the specification of both functional and non-functional requirements
(FR and NFR). However, in the case study we focused on FR and only to a small extent
on NFR. This made sense because the realization of the case studies delta requirements
did not influence the satisfaction of NFR, e.g. maintainability. We expect that this often
is the case when an existing system is enhanced by small delta functionalities. However,
the situation is different when the delta requirements are NFR, e.g. when one aims at
improving the systems quality, e.g. to increase the systems performance.

6 Conclusion and Outlook

In an industry case study, we met the situation that an existing large software system
without a specification had to be enhanced by change management functionalities. As
we did not want to specify the existing system completely, we explored a way to
specify the delta requirements in detail and describing the existing system less de-
tailed. This was supported by TORE, which specifies software requirements on four
levels of granularity. Two main modifications were made to TORE. The first modifi-
cation is the parallel specification of the system as it is and of the system as it should
be on several levels, using the same notation for both, in order to identify the gaps
between them. The second modification meant to include prioritization on each speci-
fication level in order to identify the requirements which are to be specified in more
detail. This approach worked well. We managed to describe delta requirements so that
they could serve as the basis for their successful implementation, while saving speci-
fication effort where it was not necessary.

We were surprised to find that there is no research which explicitly treats the ques-
tion how delta requirements can be specified without specifying the complete system
in detail. This we find especially surprising as we expect that this challenge is fre-
quently met in practice. We see the need for further research about the specification of
delta requirements. We plan to investigate the following questions further:

• How frequent is the situation in practice that delta requirements are to be speci-
fied? How are delta requirements specified in practice?

• How much of the as-is-system must be specified in order for the delta require-
ments to be understandable? How well does our approach scale to other contexts?

• How well do the traditional RE methods support this?
• Do reusable requirements (e.g. quality models, domain models or requirements

patterns) support the specification of delta requirements?

58 A. Herrmann, A. Wallnöfer, and B. Paech

References

1. Dutoit, A.H., Paech, B.: Developing Guidance and Tool Support for Rationale-based Use
Case Specification. In: REFSQ - Workshop on Requirements Engineering for Software
Quality, Foundations for Software Quality, pp. 85–100. Springer, Heidelberg (2001)

2. Kiedaisch, F., Pohl, M., Weisbrod, J., Bauer, S., Ortmann, S.: Requirements archaeology:
from unstructured information to high quality specifications [in the automotive industry].
In: Fifth IEEE International Symposium on Requirements Engineering, pp. 304–305
(2001)

3. Finnegan, R.: Requirements engineering methodologies for COTS systems. In: IEEE In-
ternational Conference on Electro/Information Technology EIT, pp. 475–481 (2008)

4. Paech, B., Kohler, K.: Task-driven Requirements in object-oriented Development. In: Le-
ite, J., Doorn, J. (eds.) Perspectives on RE. Kluwer Academic Publishers, Dordrecht
(2003)

5. Boehm, B.: Requirements that handle IKIWISI, COTS, and rapid change. IEEE Com-
puter 33(7), 99–102 (2000)

6. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. The Coad
Series. Prentice Hall PTR, Upper Saddle River (2002)

7. Beck, K.: Extreme programming explained. Addison-Wesley, Upper Saddle River (2000)
8. Nejmeh, B., Thomas, I.: Business-Driven Product Planning Using Feature Vectors and In-

crements. IEEE Software 19(6), 34–42 (2002)
9. Zhang, W., Mei, H., Zhao, H.: Feature-driven requirement dependency analysis and high-

level software design. Requirements Engineering Journal 11(3), 205–220 (2006)
10. Davis, A.M.: The Art of Requirements Triage. IEEE Computer 36(3), 42-49 (2003)
11. Denne, M., Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return Develop-

ment. Prentice-Hall, Upper Saddle River (2003)
12. Denne, M., Cleland-Huang, J.: The incremental funding method: data-driven software de-

velopment. IEEE Software 21(3), 39–47 (2004)
13. ISO/IEC: Quality management systems – Guidelines for configuration management –

ISO/IEC 10007:2003(E). International Standards Organization ISO (2003)
14. Unicase,

https://teambruegge.informatik.tu-muenchen.de/groups/unicase/

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 59–73, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Requirements Tracing to Support Change in
Dynamically Adaptive Systems

Kristopher Welsh and Pete Sawyer

Lancaster University, Computing Dept., Infolab21 LA1 4WA Lancaster, UK
{k.welsh,p.sawyer}@lancs.ac.uk

Abstract. [Context and motivation] All systems are susceptible to the need for
change, with the desire to operate in changeable environments driving the need
for software adaptation. A Dynamically Adaptive System (DAS) adjusts its be-
haviour autonomously at runtime in order to accommodate changes in its operat-
ing environment, which are anticipated in the system's requirements specification.
[Question/Problem] In this paper, we argue that Dynamic Adaptive Systems' re-
quirements specifications are more susceptible to change than those of traditional
static systems. We propose an extension to i* strategic rationale models to aid in
changing a DAS. [Principal Ideas/Results] By selecting some of the types of
tracing proposed for the most complex systems and supporting them for DAS
modelling, it becomes possible to handle change to a DAS' requirements effi-
ciently, whilst still allowing artefacts to be stored in a Requirements Management
tool to mitigate additional complexity. [Contribution] The paper identifies differ-
ent classes of change that a DAS' requirements may be subjected to, and illus-
trates with a case study how additional tracing information can support the
making of each class of change.

Keywords: Adaptive Systems, Requirements Evolution, Traceability.

1 Introduction

Changes can be required of a system at any stage during its design, implementation or
useful life. In traditional static systems, these adaptations (e.g. changed requirements),
are made offline by the system developers as maintenance. Recently a new class of
system has begun to emerge, capable of adapting to changes in its environment
autonomously at run-time. Such Self-Adaptive or Dynamically Adaptive Systems
(DASs) are designed for volatile environments where the system requirements and/or
their priorities may change along with the environment even while the system is run-
ning. The nature of the problem domains for which DASs are conceived are such that
their environments may be only partially understood at design time. Similarly and
particularly for embedded DASs, the potential for new and exploitable technologies to
emerge during the course of the system’s life is high because, with the current state-
of-the-art, a DAS often represents a novel application of emergent technologies. The
DAS itself may exhibit emergent behaviour as it re-configures itself dynamically, in
ways and under circumstances that may have been hard to anticipate at design-time.

60 K. Welsh and P. Sawyer

Thus, far from their runtime adaptive capability making them immune to the need for
offline adaptation, DASs are particularly susceptible to it.

It has long been recognized [1] that requirements management (RM) is needed to
help deal with anticipated change by recording (among other items of information) as
traces the relationships between requirements and the down-stream artifacts of the
development process. This allows questions about how requirements came to be and
how decisions were reached to be answered later in the development process, or in-
deed after deployment. Given the identified need for evolvability and the variety of
factors that may mandate it, the importance of traceability information in a DAS is,
we claim, at least as high or even higher than in a comparable static system.

In this paper we identify requirements for traceability of DASs and, building on
our earlier work on using goal models to discover DAS requirements [2], [3] show
how i* [12] models can be augmented to record this information, for later integration
in a Requirements Management tool.

The rest of this paper is organised as follows: Section 2 looks at related work in the
area of DASs. Section 3 identifies the types of change that the specification of a DAS
may need to accommodate, section 4 examines the types of traceability required to
support these changes. Section 5 proposes a lightweight, i* based method of capturing
these types of traceability information for the purposes of modelling the proposed
DAS' adaptive behaviour. Section 6 presents a case study demonstrating the use of
Section 5's method to revisit decisions in light of different types of change, whilst
Section 7 concludes the paper.

2 Related Work

The requirements engineering (RE) community has recently started to investigate
higher-level runtime representations that would support self-adaptation. Although the
challenges posed by DASs to RE were first identified over ten years ago – principally,
in run-time monitoring of requirements conformance [4] [5] [6] [7] – there are few
current approaches for reasoning at runtime about system requirements.

There is a strong case that any such approach should be goal-based and a number
of authors [8], [9], [10], [3] report on the use of goals for modelling requirements for
DASs. This work commonly recognises that the aim of the system should be to satis-
fice its overall goals even as the environment in which it operates changes. Here, ad-
aptation is seen as the means to maintain goal satisficement, while goal modelling
notations such as KAOS [11] and i* [12] support reasoning about both functional and
non-functional (soft-) goals. We have previously argued [2] that context-dependent
variation in the acceptable trade-offs between non-functional requirements is a key
indicator of problems that require dynamically adaptive solutions.

Goldsby et. al. [3] use i* as part of the LoREM process which partially implements
the four levels of RE for self-adaptive systems proposed by Berry et al. [13]. The lat-
ter work is interesting because it partitions the environment into discrete domains,
each of which represent a state of the environment with distinct requirements. The
system's adapted configuration for each domain is termed a target system. LoREM
has validated this approach on the requirements for a self-adaptive flood warning sys-
tem implemented in the GridKit adaptive middleware system [14] which we use in

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 61

this paper as a case study to illustrate our approach to tracing. To date, DASs have not
attracted any special attention that we are aware of from the RE research community
for the challenges they pose to RM and tracing.

Ramesh and Jarke [15] categorise users of traceability information into two groups:
high and low-level, depending on the types of use made of the information. Two
traceability uses are of particular interest to DASs: traceability of decision rationale
and for evolvability. To allow decision rationale tracing, a record needs to be made of
all the viable alternatives considered, along with assumptions of the impact the selec-
tion of each alternative would have. Typically, this sort of information is only kept by
so-called high-level traceability users, working on large, complex projects; with
patchy coverage of rejected alternatives. Requirements evolution can occur due to a
change in user needs, or due to an identified deficiency in the system. As require-
ments at different levels of detail change, the question “Where did this requirement
come from?” becomes harder to answer. By explicitly recording changes to require-
ments, it becomes possible to understand how the system has evolved (or needs to)
over time, and to identify derived requirements that need to be revisited in the light of
new changes. Given the increased likelihood of change impacting a DAS' require-
ments, the likelihood of encountering derived requirements whose necessity is hard to
establish, or even understand is also, we argue, increased.

Furthermore, given that these requirements may form the basis of the justification
for several decisions, each of which will be repeated (with different environmental
assumptions) for several target systems, a change in requirements can have a wide-
spread impact. The likelihood of far-reaching change impact means that traceability
of decision rationale and for evolvability are crucially important for DAS developers
as a consequence. Therefore, we argue that DASs promote high-level traceability as
essential practice.

3 Types of Change

Although a DAS can adjust its behaviour in response to change whilst in operation,
this does not mean that all changes can be handled automatically by the system. New
requirements, new technology or simply a better understanding of the environment
may all require the system to be re-specified, in whole or in part. If already deployed,
the system will need to be taken offline for static adaptation to be carried out. The
static adaptation process is not radically different to that of a traditional (non-
adaptive) system, but the relative complexity of a DAS coupled with the increased
likelihood of change means that an inefficient change management process will rap-
idly become problematic.

Our work [2] [16] builds upon Berry et. al.'s four levels of RE for Dynamic Adap-
tive Systems [13]. Berry et al start with the assumption that the environment in which
a DAS must operate can be characterized as discrete states or domains. Each domain
is served by a separate target system, which in a DAS is a conceptualization of a sys-
tem configuration. Hence, when the environment makes the transition for domain 1 to
domain 2, the DAS adapts from target system S1 to target system S2.

We use i* [12] to model the system at each level. Level 1 RE is done on a per-
target system basis, specifying how the system functions in each. Level 2 RE specifes

62 K. Welsh and P. Sawyer

which target system to adopt given the runtime context. Level 3 RE specifies the re-
quirements on the system's adaptation mechanism, and how it achieves its level 2 RE.
Level 4 RE is the most abstract level, covering adaptation mechanisms in general.
Most changes will involve some modification to the level 1 models, which is the fo-
cus of this work. In cases where a previously made decision is changed, the system's
level 2 and 3 models may also be affected; these secondary impacts are the subject of
ongoing work.

We have identified five distinct classes of change that a DAS' specification may
need to be adjusted for. Each needs handling differently.

• Environmental Change. This will be particularly common given the inherent

volatility of a DAS' proposed environment; which increases the likelihood of in-
dividual domains being misunderstood, or entirely new domains being discov-
ered. This class of change may occur during any stage of the system's life cycle,
and the need for change may be punctuated with a system failure if it emerges
only after deployment. A change to a previously identified environmental do-
main will trigger the need to re-evaluate the design decisions taken for it,
whereas the identification of a new domain will require a new target system
(and associated model) to be created, possibly based on that of another target.

• Broken Assumption. This may be an assumption about the environment in a
given domain ("There will be ample solar power during the day"), or an as-
sumption about a given system component's suitability for a domain ("Com-
municating via Bluetooth will use less power than Wi-fi"). The assumptions
underpinning the level 2 modelling ("The environment will not switch directly
from S1 to S6" or "The system will spend most of its time in S1") are also
classed as environmental assumptions, and will affect several different levels
of model. Assumptions such as these may be broken as designers better under-
stand the domain or the proposed system, or may only become apparent after
deployment. An assumption being broken triggers the need to re-evaluate all
decisions based upon it.

• New Technology. The availability of a new technology that can be exploited
can be modelled as a new alternative for a decision. Given the relative imma-
turity of adaptation frameworks this will likely occur frequently. As with a
static system, designers need to weigh the potential costs and benefits to de-
cide whether to take advantage of the new technology or not. However, for a
DAS the designers will need to make the decision for each target system. If the
new technology is utilised in one or more targets, other decisions that impact
on the same quality features as the new technology in these targets will need to
be revisited.

• Consequential Change. This is so named because the change is necessitated
as a consequence of a previous change. This kind of change will be particu-
larly important in systems with a budgeted requirement such as a maximum
power consumption or maximum total weight. In this case, making any of the
previous types of change can require a re-evaluation of previous decisions
across all domains, trying either to bring the system back down to budget if the
change negatively impacted the budgeted requirement, or to more fully utilise
the budget if the change created headroom.

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 63

• User Requirements Change. This class of change is of course not specific to
DASs. However, the impact may reach several target systems, essentially multi-
plying the workload involved in making the change. User requirement changes
are difficult to predict, and are also variable in the extent of their impact.

4 Traceability Requirements

Given the increased likelihood of change impacting the requirements specification of
a DAS, and the fact that decisions are essentially taken again and again for each target
system, traceability information becomes more important. Each of the types of change
discussed in the previous section has differing traceability requirements.

• Environmental Change. When environmental understanding changes, an en-
tire model will need to be reconsidered, or created from scratch if a new do-
main has been discovered. Essentially, this will involve re-making all the
per-domain decisions in light of the changed (or new) environmental knowl-
edge. For this type of change, the only traceability information needed is the
ability to identify all the decisions taken for a given target system. In most
cases, the target systems of a DAS will share much commonality, perhaps ex-
hibiting variability only in a small number of discrete components. As such,
each's level 1 model will merely be a refinement of another's.

• Broken Assumption. When an assumption has been broken, either by im-
proved understanding of the environment or available alternatives, or having
been broken demonstrably in the field, all of the decisions based on this as-
sumption will need to be revisited. In order to facilitate this forward tracing,
there needs to be a record of all decisions reliant on this assumption, along
with the information on alternatives required to re-make them.

• New Technology. A new decision alternative, often brought about as a result
of newly available technology, will require only a limited number of decisions
to be revisited. However, each decision may need to be revisited for each tar-
get system. As such, to support this backwards tracing, there needs to be a
record of alternatives previously considered and what basis the previous deci-
sion was taken on.

• Consequential Change. A consequential change, so named because the
change is necessitated as a consequence of a previous change, requires the
ability to trace across target systems all decisions made that affected a given,
budgeted requirement. As such, there needs to be a record of which require-
ments are affected by which selection alternatives, to allow the analyst to
search through the system to find an acceptable change to trade-off against the
previous, necessitating change.

• User Requirements Change. A user requirement change can potentially
affect any or all target systems, or may necessitate a change to a static (i.e.
identical in all targets) component of the system. Therefore, as with user re-
quirement changes to static systems, the impact of this type of change varies
from case to case.

64 K. Welsh and P. Sawyer

From the range of traceability requirements above we can conclude that for deci-
sions to be re-visited and re-evaluated it is necessary to record all of the alternatives
considered, along with the rationale behind the selection made. Each alternative re-
quires assumptions that impact on the system's competing requirements to be re-
corded, along with the presumed impact itself. The relative importance of the system's
competing requirements in this domain drives per-target selection decisions, and
should be recorded along with the environmental assumptions that underpin the re-
prioritisation.

5 Recording Traceability Information

In our earlier work [3] we argue that DAS development should commence with an
early goal modelling phase that allows the analyst to reason about the environment,
the goals that the actors within that environment have and the softgoals that constrain
the quality with which the goals can be satisfied. We use the i* modelling language
[12] in our LoREM [16] method for developing the requirements for DASs since i* is
well matched to these aims.

There are two types of i* model: the Strategic Dependency (SD) and Strategic Ra-
tionale (SR) models. The SD model is intended to identify the goals and softgoals in
complex, multi-agent systems and the dependencies between agents engaged in at-
tempting to satisfy the system's goals and softgoals. The SR model is intended to ex-
plore the available alternatives for satisfying each agent’s goals and softgoals. The SR
models offer a useful means of reasoning about trade-offs, primarily in terms of the
extent to which the various solution alternatives satisfy the softgoals. As the “ration-
ale” in SR suggests, SR models serve to record the rationale for decisions. Hence, i*
can be thought of as not only a modelling technique, but also as a means for tracing
the motivation for requirements. It is this feature that we propose to exploit here.

However, although an i* SR model allows us to infer an actor's basis for making a
decision by examining the decision's impact on system goals, the conveyed informa-
tion on impacts is limited, and understanding complex decisions that balance conflict-
ing goals, such as most adaptation decisions, is difficult. The NFR Framework [17] to
which i* is related includes a mechanism for recording beliefs and assumptions, re-
ferred to as claims. A claim can be used to support a decision in two ways: attached to
a node on an NFR model, it represents a comment about an alternative, which may
influence its selection; attached to a link, it represents a comment on the importance
(not the magnitude) of the impact. By adding claims to i* SR diagrams, it is possible to
convey similar information, allowing decision rationale to be inferred more effectively.

A claim may be used to explain a decision alternative's negative impact on the sys-
tem softgoal “minimise running costs” by claiming that this alternative “requires an
additional operator for monitoring”. On a standard SR diagram, by contrast, only the
negative impact itself would be recorded, with the rationale merely implicit and thus
potentially inexplicable to a developer tasked with evolving the system. A claim could
also be used to “de-prioritise” a high magnitude impact. For example encrypting an
intranet site may significantly hinder scalability, but still be deemed necessary for
security, despite the positive impact on the security goal being weaker.

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 65

In most instances, it is possible to record a decision justification using a claim in
two ways. The first is to invalidate a selected candidate's negative impact(s) by claim-
ing they are insignificant or unavoidable, or to promote an alternative's claiming
them too costly. The second is to promote a candidate's positive impact(s) by claiming
them necessary, or to invalidate an alternative's claiming them needless. Although
both are equivalent when revisiting decisions later, and those with scalability con-
cerns may wish to record the rationale using the fewest additional entities, we prefer
to record whichever way is closest to the rationale actually used. Figure 1 shows an
example of an NFR claim being used to justify a decision using the first method:
promoting the rejected alternative's negative impacts. The selected alternative is col-
oured white for clarity.

Fig. 1. NFR claim justifying selection of a component negatively impacting Energy Efficiency

In this example, the DAS under analysis is a wireless sensor network and one of its
goals is to “Transmit data”. This has spurred the need to select a wireless communica-
tion standard and two alternatives have been identified, modelled as: Use Bluetooth
and Use WiFi (IEEE 802.11). When alternatives such as these exist, reasoning about
which one to select is aided by considering their impact on softgoals. In Figure 1, two
softgoals have to be satisfied: “Energy efficiency” and “Fault tolerance”. These two
softgoals are imperfectly compatible, thus spurring the kind of high-level trade-off
analysis that i* is so useful for.

The relatively short-range Bluetooth solution is energy efficient but its ability to
tolerate a node failure is constrained: since if data is routed via nodes A and B, and
node B fails, the next closest node may be too remote to establish a connection with
A. The WiFi alternative, by contrast, endows the nodes with greater communication
range at the cost of (relatively) high power consumption. These relative strengths and
weaknesses are captured crudely by the “helps” and “hurts” contribution links be-
tween the alternative solutions and the softgoals. It is these contribution links that we
propose should be annotated with claims.

As the environment cycles through its set of possible domains, the DAS needs to
adapt to the appropriate target system. Analysis of the environment shows that much
of the time, the DAS will operate in a benign domain in which the risk of node failure
is low. However, another domain exists, for which the target system is labeled “S2”,
where the risk of node-failure is significant. A claim attached to the contribution link
between the “Use Bluetooth” task and the “Fault tolerance” softgoal records the ra-
tionale for why the extent to which selecting Bluetooth as the communication stan-
dard hurts fault tolerance makes its selection unacceptable for S2.

66 K. Welsh and P. Sawyer

Note that this is different from using fine-grained contribution links (Make, Break,
Some+, ++, etc.) because although defining impact magnitude, the weight (impor-
tance) of the contribution link is context- (i.e. domain/target system) dependent. Nor
are claims the same as i* “beliefs” which represent assumptions made by an actor,
with no presumption of truthfulness by the analyst. In the next section we expand
upon the wireless sensor network example.

6 Case Study

GridStix [19] is a DAS built to perform flood monitoring and prediction, and is de-
ployed on the River Ribble in North West England. It takes the form of an intelligent
wireless sensor network, with multiple nodes measuring river depth and flow rate
using a variety of sensors, including the analysis of images taken with an on-board
digital camera. The nodes have processing capability and memory. This allows proc-
essing of the data and execution of the predictive models of the river’s behaviour to
be performed on site with the system acting as a lightweight grid. However, the nodes
are resource-constrained and some tasks are best performed by distributing computa-
tion among the nodes. Distributing computation has a cost in terms of the power con-
sumed by inter-node communication, however. This is a serious issue since GridStix’s
location is remote and power has to be provided by batteries and solar panels, which
provide only limited power.

Domain experts identified three distinct environmental domains that GridStix
needs to operate in. In the “quiescent” domain, the river has a low depth and flows
relatively slowly. In the “high flow” domain, the river flows faster, but is still at a
relatively low depth, this can presage the rapid onset of the third domain “flood”,
where the river depth has started to increase, and there is imminent danger of flood-
ing, which poses a danger to both local residents and the system.

Fig. 2. Models of GridStix configured for High Flow (S2) and Flood (S3) domains

GridStix's key softgoals are “Energy efficiency” to maximise battery life, “Predic-
tion Accuracy” to provide timely and accurate flood warnings, and "Fault Tolerance"
for survivability. The system is built upon the Gridkit middleware [14] which allows
software components to be substituted at runtime. Our practice is to develop a sepa-
rate SR diagram for each target system. Figure 2 shows part of those for target system

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 67

S2, which operates in the high flow domain, and S3 which operates in the flood do-
main. The actual, deployed system varies a wider set of individual components dy-
namically, but their inclusion would increase the models' complexity for little or no
illustrative benefit.

The S2 and S3 SR diagrams illustrate which decisions were reached for each target
system. Notice that the only difference between S2 and S3 is that in S3, the task “Use
FH topology” substitutes for “Use SP topology” in S2. SP and FH represent spanning
tree algorithms used to communicate data among the nodes in the network: shortest
path and fewest hop, respectively. The characteristics of the spanning tree algorithms
are different and this is reflected by their respective contribution links to the Fault
tolerance and Energy efficiency softgoals.

From the contribution links from the two spanning tree tasks in S2 and S3, it is
possible to infer that the “Energy efficiency” softgoal was de-prioritised between S2
and S3. It is not possible, however, to revisit the decisions in light of new information
or some other change, given that the alternatives considered are not documented, and
that the only justification for the decision recorded is that: “This alternative helps the
Prediction Accuracy softgoal, which must have been prized more highly than Energy
Efficiency.” The real rationale for the choice of spanning tree algorithm has been lost,
viz in the high flow domain the risk of immersion or water-borne debris destroying a
node is slight, so the need to conserve energy in case the situation worsens takes pri-
ority. The relatively energy-efficient shortest path algorithm is therefore the better
choice. In the flood domain, however, node damage is a real risk and the relatively
power-hungry but resilient fewest hop algorithm is used to favour Fault tolerance
over Energy efficiency.

Fig. 3. Augmented model of GridStix in the High Flow (S2) domain

68 K. Welsh and P. Sawyer

Although the limited traceability available from Figure 2 is far better than nothing,
dealing with numerous, frequent specification changes and having to adjust several
target's specifications using only this information is a bleak prospect. Recording the
rejected alternatives and a small amount of additional information using NFR claims
could make these changes far more manageable. Figures 3 and 4 show the same two
models, with this extra information recorded.

Fig. 4. Augmented model of GridStix in the Flood (S3) domain

The additional information shown in Figures 3 & 4 allows rejected alternatives to
be re-examined if necessary with a richer (although still incomplete) understanding of
the previous decision's basis. We believe that the information recorded in Figures 3 &
4 is the minimum required to allow per-target system decisions to be revisited.

In section 3, we identified five distinct classes of change that a DAS' specification
may need to be adjusted for. We now discuss how recording additional traceability
information allows some of these types of changes to be carried out more easily.

Environmental Change. The first type of change identified was Environmental
change. This could take the form of a new environmental constraint, an adjustment to
domain boundaries, or an entire domain being introduced, eliminated, or merged with
another. We illustrate the new domain scenario, by introducing a fourth domain to the
GridStix system. This fourth domain, blockage occurs when a natural or man-made
obstruction hinders the flow of the river downstream from the GridStix nodes.

Although this fourth domain does not necessarily pose a danger to local residents
and should not trigger a flood alert, there is a significant risk of nodes becoming sub-
merged and quickly failing. This makes the more power efficient shortest path (SP)
networking algorithm and Bluetooth communication risky choices. Furthermore, if
the blockage is removed (or breached) suddenly, the river's behaviour could be very

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 69

difficult to predict without data downstream of the blockage. Therefore, it would be
desirable for the system to report this condition to the Environment Agency, who
would typically seek to remove occluding objects maintaining the river's regular flow.
The blockage domain is characterised by a high river depth and low flow rate. It could
be argued that the new domain and the requirement to report it are two separate
changes (one environmental change and one user requirement change), but we have
modelled both together for brevity. Figure 5 shows the SR model for the target sys-
tem, S4, for the blockage domain.

Fig. 5. Augmented model of GridStix configured for the blockage (S4) domain

The decisions taken for the Blockage (S4) domain closely mirror those taken for
the Flood (S3) domain, with both Bluetooth and Shortest Path networking rejected on
the grounds that they each compromise fault tolerance unacceptably, and that there is
a real risk of node failure in this domain. Unlike the Flood (S3) domain, the chances
of a sudden increase in flow rate or depth are remote, and the slower, more power
efficient single node image processing algorithm can be used to save power.

Broken Assumption. The second class of change identified was broken assumption.
This can happen as understanding of the operating environment improves, or as knowl-
edge of available components becomes more complete. Dealing with this type of change
involves tracing all the decisions made based on the assumption, and revisiting them.

To illustrate this type of change, we have modified our model of the Flood (S3)
domain, replacing the assumption “Single node image processing is not accurate
enough for S3” with the inverse. In this instance, changes are confined to this model,
although this will not always be the case. In fact, only one decision is reached on the
basis of this assumption, and Figure 6 shows single node image processing being used
instead, along with the replaced assumption.

70 K. Welsh and P. Sawyer

Fig. 6. Augmented model of GridStix in the Flood (S3) domain after a broken assumption

Fig 7. Augmented model of GridStix in High Flow (S2) domain, with new decision alternative

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 71

This class of change is particularly amenable to analysis in a requirements man-
agement tool, providing the tool has a record of decisions reliant on the now false
assumption. By automating the location of affected decisions, the overhead of dealing
with this class of change will be decreased, particularly in larger systems.

New Technology. The third class of change identified was a new technology that
becomes available for use. This may introduce a brand new decision to be taken for
each domain, or add a new alternative to a decision already taken. It is this second
variant that we have chosen to illustrate in Figure 7, which shows the prediction
model decision after being re-taken with a newly available alternative.

Although Figure 7 shows just the High Flow domain, the new alternative would
need to be added to each diagram, creating a significant overhead in systems with
many domains. The new/changed decision in each needs to be re-examined and re-
made in light of the new alternative, which may be selected in some, all or none of the
target systems. In this example and domain, the extra accuracy offered by the new
image processing method was deemed necessary and its negative impact on energy
efficiency tolerated on the basis of this claimed need.

7 Conclusion

In this paper we have argued that, far from removing the need for off-line adaptation,
DASs are inherently susceptible to the need to adapt in ways that are beyond the
scope of their (necessarily limited) self-adaptive capabilities, which are limited in
scope at design time. In practical terms, to give a DAS usefully long service life, it is
likely to need to be maintained by human developers to correct defects and to take
advantage of new knowledge and new capabilities. As such, a DAS' requirements
specification needs to be as amenable to change as the system itself.

We have classified some of the types of change that a DAS is subject to and ar-
gued that some are special to DASs. From this analysis we have identified a need
to trace how these change types impact on the requirements. To evaluate this, we
have applied three of the types of identified change (Environmental Change, Bro-
ken Assumption and New Technology) to a case study we have used in our earlier
work [2], [3], [16]. In this earlier work we developed a process for analysing DASs
based on goal modelling using i*. We have therefore proposed recording rejected
decision alternatives alongside the accepted option in i* Strategic Rationale mod-
els, which would previously have shown only the selected alternative. We have
also proposed extending i* with the notion of claims which we have borrowed
from the related NFR framework.

Claims permit us to annotate the contribution links used in i* Strategic Ration-
ale models with the rationale underpinning a decision, explaining how it was
reached in terms of the softgoals affected. The annotation also makes explicit the
re-prioritisation of softgoals between domains, which previously had to be inferred
by comparing several target system's models and examining differences in contri-
bution links.

72 K. Welsh and P. Sawyer

Ultimately, we envisage a target system's decision alternatives, their presumed im-
pact on system softgoals, the selected option and the rationale underpinning the selec-
tion decision itself (recorded as claims) being mapped into a conventional tracing tool
suck as DOORS [18]. Such a tool would allow the now-possible tracing to be auto-
mated, bringing greater benefit in terms of efficiency with scale.

References

1. Gotel, O., Finkelstein, A.: An analysis of the requirements traceability problem. In: Pro-
ceedings of the International Conference on Requirements Engineering, Colorado Springs
(1994)

2. Welsh, K., Sawyer, P.: When to Adapt? Identification of Problem Domains for Adaptive
Systems. In: Paech, B., Rolland, C. (eds.) REFSQ 2008. LNCS, vol. 5025, pp. 198–203.
Springer, Heidelberg (2008)

3. Goldsby, J., Sawyer, P., Bencomo, N., Cheng, B., Hughes, D.: Goal-Based Modelling of
Dynamically Adaptive System Requirements. In: Proceedings of 15th IEEE International
Conference on Engineering of Computer-Based Systems, Belfast, Northern Ireland (2008)

4. Fickas, S., Feather, S.: Requirements Monitoring in Dynamic Environments. In: Proceed-
ings of the Second IEEE International Symposium on Requirements Engineering, York,
England (1995)

5. Savor, T., Seviora, R.: An approach to automatic detection of software failures in realtime
systems. In: IEEE Real- Time Tech. and Appl. Sym., pp. 136–147 (1997)

6. Feather, M., Fickas, S., van Lamsweerde, A., Ponsard, C.: Reconciling system require-
ments and runtime behavior. In: Proceedings of the 9th International Workshop on Soft-
ware Specification and Design (1998)

7. Robinson, W.: A requirements monitoring framework for enterprise systems. Require-
ments Engineering 11(1), 17–41 (2006)

8. Yu, Y., Leite, J., Mylopoulos, J.: From goals to aspects: Discovering aspects from re-
quirements goal models. In: Proceedings of the 12th IEEE International Conference on
Requirements Engineering (2004)

9. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards requirements-driven auto-
nomic systems design. In: Proceedings of 2005 Workshop on Design and Evolution of
Autonomic Application Software, St. Louis, Missouri, USA (2005)

10. Yu, Y., Mylopoulos, J., Lapouchnian, A., Liaskos, S., Leite, J.: From stakeholder goals to
high-variability software design. Technical report csrg-509, University of Toronto (2005)

11. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Sci. Comput. Program. 20, 3–50 (1993)

12. Yu, E.: Towards modelling and reasoning support for early-phase requirements engineer-
ing. Requirements Engineering. In: Proceedings of the Third IEEE International Sympo-
sium on Requirements Engineering (1997)

13. Berry, D., Cheng, B., Zhang, J.: The four levels of requirements engineering for and in dy-
namic adaptive systems. In: Proceedings of the 11th International Workshop on Require-
ments Engineering: Foundation for Software Quality (2005)

14. Coulson, G., Grace, P., Blair, G., Cai, W., Cooper, C., Duce, D., Mathy, L., Yeung, W.,
Porter, B., Sagar, M., Li, W.: A component-based middleware framework for configurable
and reconfigurable Grid computing: Research Articles. Concurr. Comput. Pract. Ex-
per. 18(8), 865–874 (2006)

 Requirements Tracing to Support Change in Dynamically Adaptive Systems 73

15. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

16. Sawyer, P., Bencomo, N., Hughes, D., Grace, P., Goldsby, H.J., Cheng, B.H.: Visualizing
the Analysis of Dynamically Adaptive Systems Using i* and DSLs. In: Proceedings of the
Second international Workshop on Requirements Engineering Visualization (2007)

17. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in software en-
gineering. Kluwer Academic Publishers, Dordrecht (2000)

18. Quality Systems & Software Ltd., Oxford Science Park, Oxford, U.K., DOORS Reference
Manual (V3. 0) (1996)

19. Hughes, D., Greenwood, P., Coulson, G., Blair, G.: GridStix: supporting flood prediction
using embedded hardware and next generation grid middleware. World of Wireless, Mo-
bile and Multimedia Networks (2006)

Early Identification of Problem Interactions:
A Tool-Supported Approach

Thein Than Tun, Yijun Yu, Robin Laney, and Bashar Nuseibeh

Department of Computing
The Open University

Walton Hall, Milton Keynes
{t.t.tun,y.yu,r.c.laney,b.nuseibeh}@open.ac.uk

Abstract. [Context and motivation] The principle of “divide and
conquer” suggests that complex software problems should be decom-
posed into simpler problems, and those problems should be solved be-
fore considering how they can be composed. The eventual composition
may fail if solutions to simpler problems interact in unexpected ways.
[Question/problem] Given descriptions of individual problems, early
identification of situations where composition might fail remains an out-
standing issue. [Principal ideas/results] In this paper, we present a
tool-supported approach for early identification of all possible interac-
tions between problems, where the composition cannot be achieved fully.
Our tool, called the OpenPF, (i) provides a simple diagramming editor
for drawing problem diagrams and describing them using the Event Cal-
culus, (ii) structures the Event Calculus formulae of individual problem
diagrams for the abduction procedure, and (iii) communicates with an
off-the-shelf abductive reasoner in the background and relates the results
of the abduction procedure to the problem diagrams. The theory and the
tool framework proposed are illustrated with an interaction problem from
a smart home application. [Contribution] This tool highlights, at an
early stage, the parts in problem diagrams that will interact when com-
posed together.

Keywords: Problem Composition, Problem Interactions, Problem
Frames, Event Calculus.

1 Introduction

One general approach to problem solving in requirements engineering is to de-
compose complex software problems into simpler familiar problems [1]. A soft-
ware problem refers to the challenge of specifying a software system that satisfies
an expressed user requirement [2]. In this approach to problem solving, no provi-
sion is initially made about the questions of if and how the subproblems obtained
can be composed to solve the larger complex problem. Only when subproblems
have been solved, are the concerns for composition considered and addressed as
separate problems in their own right. This deferral of the concerns for composi-
tion is seen as an effective way of managing complexity in software development.

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 74–88, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Early Identification of Problem Interactions 75

However, when solutions to subproblems are found, several questions arise [3]:
Are the problems free from interactions? If they interact, how do they interact?
If there are undesired interactions, what can be done to remove them? In this
paper, we are primarily concerned with the second question.

We will consider this question within the framework of the Problem Frames
(PF) approach [2], which has been recognised as providing a core ontology for
requirements engineering [4]. Following this approach, complex problems are de-
composed by fitting their subproblems into known problem patterns. Subprob-
lems, when composed together, may interact in unexpected ways. By problem
interactions, we refer to situations where the composition of solutions to sub-
problems does not constitute a solution to the complex problem (from which
subproblems were obtained). These interactions may be related to the issues of
consistency, precedence, interference and synchronisation [2].

Checking whether subproblems in an event-based reactive system can be com-
posed can only give event sequences where the composed requirement is satisfied
(if it can be satisfied at all): it cannot tell us event sequences where the com-
posed requirement is not satisfied. One way to solve this problem is to monitor
the runtime behaviour of the system, and diagnosis failures whenever they are
detected [5]. However, event sequences are identified only after the occurrence
and detection of failures.

The main contribution of the paper is a tool-supported approach that uses
abductive reasoning [6] to identify all possible event sequences that may cause
the composition to fail. Given a description of system behaviour, an abductive
procedure [7] obtains all event sequences that can satisfy a requirement, if the re-
quirement is satisfiable. Otherwise, the procedure will report no event sequence.

In order to identify event sequences leading to a failure in composition, we
negate the conjunction of all requirements to be composed as the requirement
to satisfy, and attempt to abduce all possible event sequences for the negated
requirement. In other words, we assume that the problems cannot be composed
and ask an abductive reasoner to find out why. If the procedure returns no
event sequence, there is no interactions between problems. On the other hand,
any event sequence returned by the abduction is a possible interaction in the
composition, and may require further analysis. Our use of logical abduction is
reminiscent of [8]. In this paper, we will focus on the identification of possible
interactions, whilst the issue of how undesired interactions can be removed is
discussed in [9].

We have implemented a tool chain called the OpenPF to demonstrate how event
sequences leading to failures in composition can be detected using the technique
suggested. The front-end of the OpenPF helps requirements engineers create prob-
lem diagrams and describe the elements in the diagram using the Event Calcu-
lus, a form of temporal logic [10,11]. The back-end of our tool encodes the input
into an executable specification for an off-the-shelf Event Calculus abductive rea-
soner [12,13] to check whether the new diagram can be composed with the existing
ones. If event sequences for possible failures are found, the tool takes the abduc-
tion results and relates them back to relevant problem diagrams.

76 T.T. Tun et al.

Interface Phenomena Set
TiP!a {Night, Day}
TiP!b {NightStarted,

DayStarted}
SF!c {TiltIn, TiltOut}

Win!d {Open, Shut}

Fig. 1. Problem Diagram: Security Feature

The rest of the paper is organised as follows. In Section 2, we present an brief
overview of the Problem Frames approach and the Event Calculus, and explain
how they are used in this paper. Our approach to identifying interacting problems
is explained in Section 3, and application of the OpenPF tool is discussed in
Section 4. Related work can be found in Section 5, whilst Section 6 provides
some concluding remarks.

2 Preliminaries

In this section, we introduce two decomposed problems related to the security
feature and climate control feature of a smart home application [14]. The purpose
of the simple example is to help us illustrate the approach and tool-support. An
overview of Problem Frames, the Event Calculus and how we use minimal Event
Calculus predicates to describe problem diagrams are also explained.

2.1 Problem Diagrams and Their Descriptions

An important feature of the Problem Frames approach (PF) is that it makes a
clear distinction between three descriptions: the requirements (R), the problem
world domains (W) and the specification (S). Broadly speaking, the requirements
describe the desired property of the system, the problem world domains describe
the given structure and behaviour of the problem context, and the specifications
describe the behaviour of the software at the machine-world interface [2].

Security Feature in Smart Home. The problem diagram of the security fea-
ture (SF), shown in Figure 1, emphasises the high-level relationship between the
requirement, written inside a dotted oval, the problem world domains, denoted
by plain rectangles, representing entities in the problem world that the machine
must interact with, and a machine specification, denoted by a box with a double
stripe, implementing a solution to satisfy the requirement.

The problem world domains in the context of the security feature are Window
(Win) and Time Panel (TiP). When describing their behaviour, we will use labels
such as (Win1) and (TiP1), and refer to them later in the discussion. The window
has two fluents, or time-varying properties, Open and Shut, each a negation of
the other. At the interface SF!c, the machine SF may generate instances of events

Early Identification of Problem Interactions 77

Interface Phenomena Set
TeP!e {Hot, Cold}
TeP!f {HotStarted,

ColdStarted}
CCF!c {TiltIn, TiltOut}
Win!d {Open, Shut}

Fig. 2. Problem Diagram: Climate Control Feature

(or simply events henceforth) TiltIn and TiltOut, which are only observed by
the window (Win). The behaviour of the window is such that once it observes
the event TiltIn, it will soon become shut (Win1); once it observes the event
TiltOut, the window will become open (Win2), when it starts to tilt in, it is no
longer open (Win3), and when it starts to tilt out, it is no longer shut (Win4),
and the window cannot be both open and shut at the same time (Win5).

Similarly, the Time Panel domain has two opposing fluents, Day and Night.
When time switches from day to night, the panel generates the event
NightStarted once at the interface TiP!b, observed by the machine SF (TiP1).
Likewise, when the daytime begins, DayStarted is generated once (TiP2). Solid
lines between these domains represent shared phenomena: for example, c is a set
of the phenomena TiltIn and TiltOut, and SF!c indicates that these phenomena
are controlled by the security feature and are observed by Window. In such event-
based systems, states of the problem world domains are represented by fluents,
whilst these domains communicate by sending/receiving events. This is a neat
mapping to the Event Calculus ontology, as we shall see later.

The requirement for the security problem (SR) can be expressed informally as
follows: “Keep the window shut during the night.” Notice that the requirement
statement references the fluent Night of the TiP at the interface TiP!a, and
constrains the fluent Shut of the window at the interface Win!d.

A possible specification for the security feature (SF) may be: “Fire TiltIn
whenever NightStarted is observed (SF1). Once TiltIn is fired, do not fire
TiltOut as long as DayStarted is not observed (SF2).” It should be noted that
the specification is written only in terms of events at the interface between the
machine and the world, while the requirement is written only in terms of the
fluent properties of the problem world domains.

Climate Control Feature in Smart Home. The problem of the climate
control feature (CCF) is shown in Figure 2. The requirement of this problem is:
“Keep the window open when it is hot”. Temperature Panel (TeP) fires an event
HotStarted or ColdStarted to indicate the relationship between the preferred
and the actual temperatures.

Correctness of Specifications. In addition to the three descriptions, the
Problem Frames approach also provides a way of relating these descriptions

78 T.T. Tun et al.

through the entailment relationship W, S |= R, showing how the specification,
within a particularly context of the problem world, is sufficient to satisfy the
requirement. This provides a template for structuring correctness proofs, and/or
arguments for sufficiency/adequacy, of specifications [2].

An informal argument for adequacy of the specification may be provided as
a positive event sequence: When the night starts, the time panel will generate
the event NightStarted observed by the machine (TiP1). The security feature
will fire TiltIn as soon as it observes NightStarted (SF1). TiltIn makes the
window shut (Win1). Since the specification does not allow the window to tilt
out until DaytStarted is observed (SF2), the window will remain shut during
the night, thus satisfying the requirement (SR).

Although we have so far described the problem diagrams using an informal
language, the Problem Frames approach is agnostic about the particular choice
of the description language. We now give an overview of the description languge
used in remainder of the paper.

2.2 The Event Calculus

The Event Calculus (EC) is a system of logical formalism, which draws from first-
order predicate calculus. It can be used to represent actions, their deterministic
and non-deterministic effects, concurrent actions and continuous change [10].
Therefore, it is suitable for describing and reasoning about event-based temporal
systems such as the smart home application. Several variations of EC have been
proposed, and the version we adopted here is based on the discussions in [11].
Some elementary predicates of the calculus and their respective meanings are
given in Table 1.

Table 1. Elementary Predicates of the Event Calculus

Predicate Meaning
Happens(a, t) Action a occurs at time t

Initiates(a, f , t) Fluent f starts to hold after action a at time t

Terminates(a, f , t) Fluent f ceases to hold after action a at time t

HoldsAt(f , t) Fluent f holds at time t

t1 < t2 Time point t1 is before time point t2

The Event Calculus also provides a set of domain-independent rules to reason
about the system behaviour. These rules define how fluent values may change as
a result of the events.

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t)∧

t1 ≤ t < t2 ∧ Terminates(a, f, t)]
(EC1)

HoldsAt(f, t2)← [Happens(a, t1)∧
Initiates(a, f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1, f, t2)]

(EC2)

Early Identification of Problem Interactions 79

For instance, the rule (EC1) states that Clipped(t1,f,t2) is a notational short-
hand to say that the fluent f is terminated between times t1 and t2, whilst the
rule (EC2) says that fluents that have been initiated by occurrence of an event
continue to hold until occurrence of a terminating event. There are other such
rules in the Event Calculus but we will omit them for space reasons. All vari-
ables in our formulae are universally quantified except where otherwise shown.
We also assume linear time with non-negative integer values. We follow the rules
of circumscription in formalizing commonsense knowledge [12], by assuming that
all possible causes for for a fluent are given and our reasoning tool cannot find
anything except those causes.

In the Event Calculus, given a requirement expressed using a HoldsAt for-
mula, the abduction procedure will find all Happens literals via a system de-
scription and the Event Calculus meta-rules. For example, given the requirement
HoldsAt(Open, 4), and the domain rule Initiates(TiltOut, Open, t), the
meta-rule (EC2) allows us to abduce that Happens(TiltOut, 3) is a possible
event squence to satisfy the requirement.

2.3 Relating Event Calculus to Problem Frames

As discussed in [9,15], requirements are largely about some desired properties in
the problem world, and can be expressed using the HoldsAt predicate. Problem
world domains are about causality between events and fluents: event-to-fluent
causality can be expressed using the Initiates and Terminates predicates,
and the fluent-to-event causality is expressed using the HoldsAt and Happens
predicates. Specifications are about events generated by machines, and can be
expressed using the Happens predicate. Event and fluent names will be parame-
terised with the names of domains that control them. For instance, we will write
TiltIn(SF) to refer to the event TiltIn controlled by the domain Security Fea-
ture. The same event or fluent name with different parameters denote distinct
events or fluents respectively.

Once described in this way, the W, S |= R entailment of problem diagrams
can be instantiated in the Event Calculus, allowing us to prove the correctness of
a specification, with respect to a problem world context and a requirement [15].

3 Identifying Problem Interactions

This section describes the formal basis of our approach, while working through
the running examples introduced in Section 2.

3.1 Abducing Failure Event Sequences in Problem Composition

Let n be the total number of problem diagrams that have been initially created
in the workspace, where 1 ≤ n. Each problem diagram has the Event Calculus
descriptions of the requirement, relevant problem world domains, and the spec-
ification. Furthermore, each specification is assumed to be correct with respect

80 T.T. Tun et al.

to its problem world context and the requirement: for every diagram i in the
workspace, where 1 ≤ i ≤ n, the entailment Wi, Si |= Ri holds. Since problem
diagrams are created incrementally, the nth diagram is typically the newly added
diagram.

Let W be W1 ∧ · · · ∧Wn, denoting the finite conjunction of all Initiates,
Terminates, and Happens formulae in the current workspace. It is a conjunction
because each Initiates and Terminates formula, for instance, describes a rule
by which a fluent changes its value, and if the rule can be applied in a subproblem,
it should be possible to apply the same rule in the composed system. We assume
that W is consistent, meaning for instance that there are no two rules in W that
allow a fluent to be true and false at the same time.

Let S be S1∧· · ·∧Sn, denoting the finite conjunction of the Happens formulae
in the specifications of problem diagrams in the workspace. Finally, let R be R1∧
· · ·∧Rn, denoting the finite conjunction of HoldsAt formulae of the requirements
in the problem diagrams. We consider conjunction, rather than disjunction, as
the composition operator for any composed requirement, because any disjuncted
requirement will be trivially satisfied if one of the individual requirements has
been satisfied (which is the case).

Our focus, therefore, is on requirements: in particular, requirements that in-
teraction. When the composed requirements is not always satisfiable, we would
like to identify the event sequences where the composition may fail. Again, the
possibility of composition failures does not necessarilly mean the system is not
useful: these failures may be tolerated, even desired in some cases, or prevented
from arising by modifying the problem context. The composed system should
have the property W, S |= R. The question raised then is: What are the possi-
ble failure event sequences in this system? In other words: What are the event
sequences where this entailment may not hold?

Let Δ be the set of all possible event sequences (ordered Happens literals)
permitted by the system, i.e. W and S. One way to check whether R can be
failed is as follows. For every σ ∈ Δ, verify whether the entailment (1) holds.

W, S, σ |= R (1)

Let us denote the set of event sequences that satisfy the entailment (1) as Δ1
and the set of event sequences that do not satisfy the entailment (1) as Δ2.
Clearly, Δ = Δ1 ∪Δ2. There are two major limitations to finding Δ2 through
deduction. In a system with a reasonable number of events and fluents, verifying
the relationship for a good length of time will require a large Δ, which is usually
difficult to obtain. Secondly, this approach can be highly inefficient because it
requires checking exhaustively [8].

In such circumstances, logical abduction is regarded as more efficient [8]. Log-
ical abduction is a procedure that, given a description of a system, finds all event
sequences that satisfy a requirement. Since an abduction procedure will return
the event sequences Δ1 that satisfy the goal, it is not possible to obtain Δ2 using
the abduction procedure on the entailment relation (1).

In order to identify failure event sequences, we take the negation of the com-
posed requirement ¬R as the requirement to be satisfied, whilst W and S serve

Early Identification of Problem Interactions 81

as the same description of the composed system. Given the uniqueness of flu-
ent and event names, completion of Initiates and Terminates predicates, and
the event calculus meta-rules, the procedure will find a complete set of event
sequences Δ2, such that the entailment (2) holds for every member ε of Δ2 [12].

W, S, ε |= ¬R (2)

Since Δ2 also is a set of event sequence permitted by the composed system, any
ε is a member of Δ. Each ε is a failure event sequence, and is a refutation of (1).
If Δ2 is empty, Δ equals Δ1, and all valid sequences of events permitted by the
composed system will lead to the satisfaction of the requirement in (1).

Since our Event Calculus formulae are annotated with the names of problem
world domains in problem diagrams, when Δ2 is not empty, each ε will contain
references to elements in the problem diagrams. This information allows us to
relate the results of abduction procedure back to the corresponding problem
diagrams in the workspace.

3.2 Smart Home Example

In order to illustrate a simple application of the approach, we will first formalise
the requirements, specifications and the descriptions of the problem world do-
mains discussed in Section 2. Natural language descriptions of all formulae given
below are provided in Section 2.

Security Feature. The requirement for the security feature (SR), described in
Section 2, can be formalised as follows.

HoldsAt(Night(T iP), t)→ HoldsAt(Shut(Win), t + 1) (SR)

This formula is, in fact, stronger than the natural language statement. The
formula says that at every moment that is night, the window should be shut at
the next moment, requiring the window to be shut until one time unit after the
night has passed. This formulation is chosen for its simplicity. The behaviour of
the window domain in the security problem is given below.

Initiates(T iltIn(SF), Shut(Win), time) (Win1)

Initiates(T iltOut(SF), Open(Win), time) (Win2)

Terminates(T iltIn(SF), Open(Win), time) (Win3)

Terminates(T iltOut(SF), Shut(Win), time) (Win4)

HoldsAt(Open(Win), time)↔ ¬HoldsAt(Shut(Win), time) (Win5)

Parameterisation of the event and fluent names is important because (Win1),
for instance, allows only the TiltOut event generated by the security feature

82 T.T. Tun et al.

to affect the fluent Shut. The behaviour of the time panel domain is described
below.

[HoldsAt(Day(T iP), time− 1) ∧HoldsAt(Night(T iP), time)]↔
Happens(NightStarted(T iP), time)

(TiP1)

[HoldsAt(Night(T iP), time− 1) ∧HoldsAt(Day(T iP), time)]↔
Happens(DayStarted(T iP), time)

(TiP2)

Finally, the specification of the security feature can be formalised as follows.

Happens(NightStarted(T iP), time)→ Happens(T iltIn(SF), time) (SF1)

[Happens(NightStarted(T iP), time)∧
¬Happens(DayStarted(T iP), time1)∧ time ≤ time1]

→ ¬Happens(T iltOut(SF), time1)
(SF2)

Climate Control Feature. Formalisation of the requirements, problem world
domains and the specification of the climate control feature is given below. Since
the behaviour of the window is the same in both problems, we will omit their
formulae in this feature, but note that the TiltIn and TiltOut events will be
parameterised with CCF, instead of SF.

HoldsAt(Hot(TeP), t)→ HoldsAt(Open(Win), t + 1) (TR)

[HoldsAt(Cold(TeP), time− 1) ∧HoldsAt(Hot(TeP), time)]↔
Happens(HotStarted(TeP), time)

(TeP1)

[HoldsAt(Hot(TeP), time− 1) ∧HoldsAt(Cold(TeP), time)]↔
Happens(ColdStarted(TeP), time)

(TeP2)

Happens(HotStarted(TeP), time)→ Happens(T iltOut(CCF), time) (TF1)

Happens(HotStarted(TeP), time)∧
[¬Happens(ColdStarted(TeP), time1)∧ time ≤ time1]

→ ¬Happens(T iltIn(CCF), time1)
(TF2)

Detecting Interactions. R in this case is TR ∧ SR; W is the conjunction of
(Win1–Win5), similar formulae for the window in the climate control problem,
(TiP1), (TiP2), (TeP1) and (TeP2); and S is the conjunction of (SF1), (SF2),
(TF1) and (TF2). In order to detect posssible failure event sequences in the
composition of the two problems, we will first take the negation of the composed
requirement, which can be stated as:

(HoldsAt(Night(TeP), t) ∧HoldsAt(Open(Win), t + 1))∨
(HoldsAt(Hot(TeP), t) ∧HoldsAt(Shut(Win), t + 1))

(¬R)

Early Identification of Problem Interactions 83

The abduction procedure, in this case, will work as follows. It may be either day
or night, and hot or cold, and the window may be open or shut at the beginning,
and the procedure will condsider every valid combination. Suppose the window
is initially open during a hot day at a symbolic time t1. In order to abduce event
sequence for HoldsAt(Hot(TeP), t1)∧HoldsAt(Shut(Win), t1+1), for instance,
the procedure will look for events that can make the fluents hold.

Since it is already hot, HoldsAt(Hot(TeP), t1) is true. In order to satisfy
HoldsAt(Shut(Win), t1+1), the procedure will look for event that can turn the
current state HoldsAt(Open(Win), t1) into HoldsAt(Shut(Win), t1 + 1).

According to the domain rule (Win1), its counterpart for the climate control
problem, and the Event Calculus meta-rule (EC2), if the event TiltIn(SF) or
TiltIn(CCF) happens, the window will be shut at the next time point, provided
the event TiltOut(SF) or TiltOut(CCF) does not happen at the same time.
The event TiltIn(SF) will be fired when NightStarted(TeP) is fired, according
to (SF1), and NightStarted(TeP) is triggered when the day turns into night,
according to (TeP1). The event TiltOut(SF) will not happen at the same time
because of (SF2). TiltOut(CCF) in (TF1) will not happen at the same time
because it has been hot for a while.

In other words, in one possible failure event sequence, the window is open
during a hot day, and the night soon begins. In that case, the window will be
shut according to the specification of the security feature, because the climate
control feature cannot prevent the window from being shut, thus resulting in a
failure situation where the smart home is hot but the window is shut. This, of
course, is a single event sequence and there may be other such event sequences,
and the abduction procedure will find all of them in one pass. From the event
sequence obtained, we know how the security problem and the climate control
problem can interact.

The failure event sequence in this composition is due to the fact that no
precendence between the security and the climate control requirements has been
defined. It is, of course, possible that the smart home is situated in a world where
it is never too hot at night. The interaction only arises under certain conditions,
and the abduction procedure can find those conditions. (Strictly speaking, the
abduction procedure cannot reason about the changes from day to night unless
the events for these changes are given. That is due to the frame axiom in the
Event Calculus. The examples we implemented in the next section include these
events, but for space reasons we have ommitted them.)

A similar failure may arise if the specifications of individual problems are too
strong. For example, another way to satisfy the security requirement is to have
a specification that fires the TiltIn event at every time point, thus ensuring that
the window is shut at all times. Similarly, the climate control requirement can be
satisfied by another specification that fires the TiltOut event at every time point.
They both satisfy the individual requirements, but any chance of composition is
prevented because the specifications are too strong. Again, the same procedure
can be used to identify those conditions in descriptions of problem diagrams. A
detailed discussion, however, is beyond the scope of the paper.

84 T.T. Tun et al.

Fig. 3. An input file to create a problem diagram

Performing this abduction procedure manually is both labourious and error-
prone. Fortunately, there are several implementation of this procedure for the
Event Calculus. In the next section, we describe an end-to-end tool for detecting
interacting problems that automates much of what has been discussed.

4 Detecting Interacting Problems Using the OpenPF

This section gives a brief overview of the OpenPF tool, with a particular emphasis
on how interacting problems can be discovered early in the development.

4.1 Creating Problem Diagrams

An easy way to create problem diagrams using the OpenPF is through an input
file that defines the names of the requirement, problem world domains and the
machine, together with the Event Calculus formulae as their descriptions. Fig-
ure 3 shows an extract from the input file to create the climate control problem
diagram and its descriptions.

Our OpenPF tool will check the syntax of the above input and the confor-
mance of the Event Calculus formulae to the problem diagram. For instance,
the tool will not allow two problem world domains to have the same names as
otherwise there may be ambiguity in the produced EC formalae. Furthermore,
it will check whether the requirement description refers to event names: since
the requirements should be written in terms of fluents, such descriptions are
not allowed. The tool will also annotate the event calculus formulae with the
appropriate domain names: for instance, the fluent term Open will be written as

Early Identification of Problem Interactions 85

Fig. 4. Generated problem diagram with the Event Calculus descriptions

Open(W) because the window domain assigns values to the fluent. It will also
generate a problem diagram from the input.

4.2 Detecting Interactions in the Running Example

Once a problem diagram is created, the OpenPF tool can generate a composition
diagram such as the one shown in Figure 4 for the running example. When the
diagram is created, the tool automatically generates the Event Calculus script to
abduce failure event sequences for the composition. The script will include the
conjunction of all formulae for problem world domains in all individual problem
diagrams, the conjunction of all formulae for the specifications, and the nega-
tion of the conjunction of the requirements formulae (as shown in the property
window in Figure 4).

The Event Calculus script is then fed to the off-the-shelf abductive
reasoner, Decreasoner [12,13], in order to abduce the event sequences satis-
fying the negated requirement. Decreasoner will translate the abduction prob-
lem in the Event Calculus into a SAT problem and solve it using the solver
Relsat [16,17]. SAT results are then translated back into the Event Calculus
literals by Decreasoner. From the output of Decreasoner, the OpenPF tool will
capture the abduction output, and relate it to the elements in the problem di-
agrams. In one view, the tool can show the event sequences of the interactions,
and in another view, it will pinpoint the list of problem world domains, events
and fluents involved in a the interaction (as shown in the panel to the left of

86 T.T. Tun et al.

the diagram in Figure 4). Once an input file as shown in Figure 3 is provided,
the rest of the tasks of finding interacting problem diagrams, or even individual
elements with a diagram, is done automatically.

Our initial evaluation criterion is to implement the idea that identifying pos-
sible failure event sequences in problem composition can be done efficiently
through logical abduction. Our implementation of the OpenPF using Problem
Frames, Event Calculus, decreasoner, and Model-driven Eclipse plugins, and the
smart home examples have demonstrated the viability of our idea. An abduc-
tion example involving 140 variables and 440 Event Calculus clauses has been
computed in less than one second on a standard personal laptop. Since the ab-
duction procedure and modern SAT solvers such as Relsat are efficient, it gives
us confidence that a framework such as the OpenPF will scale when applied to
larger examples.

5 Related Work

Russo et al. [8,18] provide theoretical insights on the use of abductive reasoning
in the analysis of requirements. Given a system description and an invariant,
Russo et al. propose using of an abduction procedure to generate a complete
set of counterexamples, if there is any, to the invariant. Rather than analyse ex-
plicit safety properties, we use logical abduction to identify possible interactions
between problems, with the assumption that conjunction will be the eventual
composition operator. Failure event sequences suggested by our approach may
not be sound (if the interactions can be tolerated), but they provide an early
indication of possible failures in composition.

Wang et al. [5] propose a SAT-based framework for monitoring run-time sat-
isfaction of requirements and diagnosing the problems when errors happens. In
order to diagnose the components where errors originate, the framework logs the
system execution and when goals are not satisfied, the traces are preprocessed
and transformed into a SAT problem using propositional logic. Although their
aim and ours are similar, we work with early requirements models where there is
no running system to monitor. Moreover, our approach generates possible failure
event sequences by abduction procedure.

van Lamsweerde et al [19] propose a framework for detecting requirements
inconsistencies at the goal level and resolving them systematically. Unlike the
KAOS approach [19], we reason about the system behaviour in a bottom-up
fashion. Once the behaviour of individual solutions are specified, failure event
sequences can be generated automatically. A way of resolving the composition
problem such as precedence are discussed in [9].

Nentwich et al [20] describe a tool-supported approach for describing consis-
tency constraints and checking them across various resources. Similarly, Egyed [21]
presented a tool for instantly checking consistency of UML diagrams. Although in-
consistency checking also plays an important role in our approach, we are detect-
ing run-time interactions rather than static inconsistency in the representation of
artefacts.

Early Identification of Problem Interactions 87

Seater and Jackson [22] propose a systematic way to derive specifications
using the Problem Frames approach, and they use the Alloy language and Alloy
Analyzer to check the validity of the derivation. Our work is complementary in
the sense that they are concerned with decomposing and specifying individual
problems, but we are concerned with the composition of the individual problems.

6 Conclusions and Future Work

In this paper, we examined the issue of problem interactions: these are situations
where the conjunction of solutions to smaller problems introduce new, often un-
expected, problems in the composed solution. Although checking whether some
given problems can be composed is relatively easy, identifying situations where
the composition may fail can be difficult. In this paper, we proposed that identi-
fication of problem interactions where composition cannot be achieved fully can
be done through logical abduction. We have used the OpenPF tool to demon-
strate our idea using examples taken from a smart home application.

The issue of identifying possible failure event sequences is closely related to the
question of suggesting viable corrective actions to resolve undesired interactions.
We are currently investigating how requirements engineers can use the early
feedback obtained through logical deduction in order to come up with proposals
for corrective actions.

Although, we focused on problem solving approaches that defer the concerns
of composition, other problem solving approaches in requirements engineering
may have a similar issue. For instance, when there is a need to modify a goal tree,
or to merge smaller goal trees, the question of finding event sequences leading to
possible failures may be raised. Therefore, we conjecture that our approach can
be applied, with little or no modification, in those cases. We are also investigating
in this direction.

Acknowledgements. We would like to thank our colleagues at the Open Uni-
versity, in particular, Michael Jackson, and the anonymous reviewers for their
helpful comments and suggestions. This research is funded by the EPSRC, UK.

References

1. Parnas, D.L., Lawford, M.: The role of inspection in software quality assurance.
IEEE Trans. Softw. Eng. 29(8), 674–676 (2003)

2. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. ACM Press & Addison Wesley (2001)

3. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction manage-
ment. ACM Computing Surveys 35(2), 132–190 (2003)

4. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem
in requirements engineering. In: Proceedings of the 2008 16th IEEE International
Requirements Engineering Conference, pp. 71–80. IEEE Computer Society Press,
Los Alamitos (2008)

88 T.T. Tun et al.

5. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: An automated approach to
monitoring and diagnosing requirements. In: Proceedings of the International Con-
ference on Automated Software Engineering, pp. 293–302. ACM, New York (2007)

6. Shanahan, M.: Prediction is deduction but explanation is abduction. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence, pp. 1055–1060.
Morgan Kaufmann, San Francisco (1989)

7. Denecker, M., Schreye, D.D.: Sldnfa: an abductive procedure for normal abductive
programs. In: Proc. of the International Joint Conference and Symposium on Logic
Programming, pp. 686–700. MIT Press, Cambridge (1992)

8. Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for
analysing event-based requirements specifications. In: Stuckey, P.J. (ed.) ICLP
2002. LNCS, vol. 2401, pp. 22–37. Springer, Heidelberg (2002)

9. Laney, R., Tun, T.T., Jackson, M., Nuseibeh, B.: Composing features by manag-
ing inconsistent requirements. In: Proceedings of 9th International Conference on
Feature Interactions in Software and Communication Systems (ICFI 2007), pp.
141–156 (2007)

10. Shanahan, M.P.: The event calculus explained. In: Woolridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS, vol. 1600, pp. 409–430. Springer, Hei-
delberg (1999)

11. Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axioma-
tisations. Journal of Electronic Transactions on Artificial Intelligence (1999)

12. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann, San Francisco (2006)
13. Decreasoner, http://decreasoner.sourceforge.net/
14. Kolberg, M., Magill, E., Marples, D., Tsang, S.: Feature interactions in services for

internet personal appliances. In: Proceedings of IEEE International Conference on
Communications (ICC 2002), vol. 4, pp. 2613–2618 (2001)

15. Classen, A., Laney, R., Tun, T.T., Heymans, P., Hubaux, A.: Using the event calcu-
lus to reason about problem diagrams. In: Proceedings of International Workshop
on Applications and Advances of Problem Frames, pp. 74–77. ACM, New York
(2008)

16. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: AAAI/IAAI, pp. 203–208 (1997)

17. Relsat, http://code.google.com/p/relsat/
18. Russo, A., Nuseibeh, B.: On the use of logical abduction in software engineering.

In: Chang, S.K. (ed.) Software Engineering and Knowledge Engineering. World
Scientific, Singapore (2000)

19. Lamsweerde, A.v., Letier, E., Darimont, R.: Managing conflicts in goal-driven
requirements engineering. IEEE Trans. Softw. Eng. 24(11), 908–926 (1998),
http://dx.doi.org/10.1109/32.730542

20. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency
checking and smart link generation service. ACM Trans. Interet Technol. 2(2),
151–185 (2002)

21. Egyed, A.: Instant consistency checking for the uml. In: Proceedings of the Inter-
national Conference on Software Engineering, pp. 381–390. ACM Press, New York
(2006)

22. Seater, R., Jackson, D.: Requirement progression in problem frames applied to a
proton therapy system. In: Proceedings of RE 2006, Washington, DC, USA, pp.
166–175. IEEE Computer Society Press, Los Alamitos (2006)

http://decreasoner.sourceforge.net/
http://code.google.com/p/relsat/
http://dx.doi.org/10.1109/32.730542

Composing Models for Detecting Inconsistencies:
A Requirements Engineering Perspective

Gilles Perrouin1, Erwan Brottier2, Benoit Baudry1, and Yves Le Traon3

1 Triskell Team IRISA/INRIA Rennes Campus de Beaulieu, 35042 Rennes, France
{gperroui,bbaudry}@irisa.fr

2 France Télécom R&D, 2 av. Pierre Marzin, 22 307 Lannion Cedex, France
erwan.brottier@orange-ftgroup.com

3 ENST Bretagne, 2 rue de la Châtaigneraie, CS 17607,
35576 Cesson Sévigné Cedex France
Yves.letraon@telecom-bretagne.eu

Abstract. [Context and motivation] Ever-growing systems’ com-
plexity and novel requirements engineering approaches such as reuse or
globalization imply that requirements are produced by different
stakeholders and written in possibly different languages. [Question/
problem] In this context, checking consistency so that requirements
specifications are amenable to formal analysis is a challenge. Current
techniques either fail to consider the requirement set as a whole, miss-
ing certain inconsistency types or are unable to take heterogeneous (i.e.
expressed in different languages) specifications into account. [Princi-
pal ideas/ results] We propose to use model composition to address
this problem in a staged approach. First, heterogeneous requirements are
translated in model fragments which are instances of a common meta-
model. Then, these fragments are merged in one unique model. On such
a model inconsistencies such as under-specifications can be incremen-
tally detected and formal analysis is made possible. Our approach is
fully supported by our model composition framework. [Contribution]
We propose model composition as means to address flexibility needs in
requirements integration. Threats to validity such as the impact of new
requirements languages needs to be addressed in future work.

Keywords: model-driven requirements engineering, flexible inconsis-
tency management, model composition.

1 Introduction

Cheng and Atlee [1] have reviewed state of the art of current requirements en-
gineering research and identified future directions. Amongst those, two seem
particularly relevant to address ever-growing system complexity, shorten engi-
neering time and maximize value: Globalization and Reuse. Globalization sug-
gest to engineer systems in geographically distributed teams in order to benefit
from a continuous working force (24h/day), close distance of customers and re-
source optimization. Reuse offers to capitalize on requirements value by wisely

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 89–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

90 G. Perrouin et al.

re-applying the same requirements in a product-line context. These promising
research directions have a strong impact on the definition of the requirements
themselves. First, requirements of a single system will be handled by several en-
gineering teams having different habits and therefore inducing communication
challenges [1]. Second, reusing requirements in a new context may imply having
to deal with different formalisms used for their description. As mentioned by
Sommerville [2], a Software Requirements Specification (SRS) is captured by a
collection of viewpoints, described by system authorities (stakeholders, existing
system documentation, and so on). Viewpoints encapsulate partial requirements
information, described by heterogeneous models i.e. expressed in various lan-
guages (depending on stakeholders preferences and skills) and relating to differ-
ent crosscutting concerns [3].

Globalization and reuse also represent a challenge for consistency manage-
ment. Indeed, models forming viewpoints are likely to be inconsistent due to the
amount of heterogeneous information involved and the number of stakeholders
responsible of their productions. Requirements analysts need to detect inconsis-
tencies among these models to reveal conceptual disagreements and drive the
requirements elicitation process [4]. To do so, they need a global view of incon-
sistencies in order to decide whether they will tolerate inconsistency presence
or not [5]. Model comparison techniques [4,6,7,8] have been proposed to detect
logical contradictions with respect to consistency rules. These techniques are
relevant to find static and inter-model inconsistencies. But they have some im-
portant limitations. First, consistency rules in a multi-formalism context must
be written for each possible pair of languages. Second, these techniques are in-
efficient to provide a measure of the overall SRS consistency since consistency
rules checks models two by two. As a result, they are not suitable to detect
under-specifications (a lack of information detected between two models may be
resolved by a third one). Moreover, dynamic inconsistencies are undetectable be-
cause formal techniques enabling their detections can not be used as they require
a global model of the SRS.

Composing models can help to overcome these limitations by providing one
global model from a set of models providing an unified view [9] of the require-
ments with respect to a particular purpose (e.g. functional requirement simu-
lation). Regarding inconsistencies detection, model composition translates the
inter-model consistency problem into an intra-model consistency one. This has
numerous advantages. First, consistency rules can be defined on one unique meta-
model and hence are much easier to specify. Second, dynamic inconsistencies can
be readily checked by formal tools.

However, current composition techniques [9,10,11,12,13,14] do not fully ad-
dress our problem. Indeed, they do not support the composition of heteroge-
neous models since they compose models in the same formalism. Most of these
approaches assume that models are conforming to their metamodel prior to their
composition which is not common place in requirements engineering practice [15].
Finally, they do not emphasize of ensuring traceability during composition which
is required to determine inconsistency source, such as stakeholders conflicts.

Composing Models for Detecting Inconsistencies 91

Building on our experience on model composition [13], we propose in this paper
a generic composition process addressing the above issues. First, we extract infor-
mation from heterogeneous models and translate it in terms of a set of model frag-
ments. This step is called interpretation. The second step, called fusion, builds a
globalmodelby composingmodel fragments. The resulting globalmodel canbe an-
alyzed with respect to under-specifications and other inconsistency types through
dedicated diagnostic rules potentially covering the SRS as a whole. By postponing
inconsistency detection in the global model it is possible to resolve inconsistencies
in an order only determined by the requirements engineers. Therefore, we provide
them the flexibility required to drive inconsistency management. We also automat-
ically compute traceability links between elements of input models and the global
one. This is useful to trace inconsistencies back in models, providing valuable feed-
back to stakeholders. This process is fully supported by a model-driven platform
[13,16], integrated into the Eclipse framework. Section 2 outlines our model com-
position process. Section 3 details the fusion step and illustrates how inconsistent
models can be composed. Section 4 illustrates how various kinds of inconsistencies
can be detected. Section 5 highlights some relevant work. Section 6 concludes the
paper and sketches some interesting perspectives.

2 Process Overview

In this section, we describe our composition-and-check process. It is a result
of researches carried out in the context of the R2A1 project (R2A stands for
Requirement To Analysis) project, initiated in collaboration with THALES and
FRANCE TELECOM. Its goal is the definition of a framework for analyzing
requirements, simulating functional requirements [16] and generating software
artifacts from them [17]. This process is completely based on a model-driven
approach and consists of three sequential steps, as shown in Figure 1. It starts
from a set of input models, expressed in various input requirements languages
(IRL). These models are composed during the interpretation and fusion steps,
presented in section 2.1. These steps result in a global model and a traceability
model. These two models are the inputs of a static analysis step which consists
in checking the global model according to consistency rules and producing a
consistency verdict. This last step is described in section 2.2.

2.1 Composition

Input models to compose are produced by stakeholders. They capture specific
parts of the software requirements specification (SRS) and describe partial in-
formation of the requirements. They may be inconsistent and can be described
with various input requirements languages as depicted in Figure 1 (a prelimi-
nary parsing step presented in [13] is required for textual specifications.). Fur-
thermore, they describe different concerns of the system-to-be. Composing such
1 http://www.irisa.fr/triskell/Softwares/protos/

r2a/r2a core?set language=en

http://www.irisa.fr/triskell/Softwares/protos/r2a/r2a_core?set_language=en
http://www.irisa.fr/triskell/Softwares/protos/r2a/r2a_core?set_language=en

92 G. Perrouin et al.

Fig. 1. Overview of the composition-and-check process

input models requires to state precisely the following: 1) Which information must
be extracted from input models, 2) How this information is obtained from these
input models and 3) How extracted pieces of information must be combined to
obtain one global model.

Core Requirements Metamodel. The Core Requirements Metamodel (CRM)
defines information that will be extracted from input models and composed. Two
main factors influence the definition of the CRM. The first one is related to the
answer that we will give to the first point i.e. the elicitation of a subset of the IRLs’
concepts on which we will base analysis on the global model. This elicitation is
the result of a negotiation between stakeholders to determine what are the most
important concepts according to their respective viewpoints.

The second important factor is the type of analysis that is targeted by the
check process. If dynamic inconsistency checking is required, a formal operational
semantics of the CRM has to be given.

Interpretation. The first step of the process, called interpretation, addresses
the second point. This step is detailed in previous work [13] and is beyond the
scope of this paper. Basically, the interpretation extracts relevant information in
input models and translates it in terms of model fragments, which are instances of
the CRM. The interpretation is governed by a set of interpretation rules match-
ing IRLs’ concepts (with respect to optional guards) and producing corresponding

Composing Models for Detecting Inconsistencies 93

model fragments instances of the CRM. These interpretation rules have been de-
fined in collaboration with THALES’ requirements analysts in order to validate
“correctness by construction” of interpretation rules.

Fusion. The second step of the process called fusion addresses the third point.
From a model-driven perspective, the fusion step is supported via a model com-
position technique which provides a high-level of flexiblity (see Section 3.3 for
details). As for interpretation, fusion is described by a set of fusion rules. The
fusion consists in detecting and resolving overlaps between model fragments. An
overlap is a situation where two sets of related model elements in different mod-
els are semantically equivalent i.e. designate common features of the domain of
discourse [18]. Overlap resolution aims at producing a compact representation of
information captured by interpretation, i.e. the global model. Without replacing
a complete semantic analysis, the fusion makes explicit semantic links between
input models. This step is detailed and illustrated in section 3.

Interpretation and fusion rules automatically build traceability information
necessary to identify elements which are the cause of an inconsistency.

2.2 Static Analysis

The third step of the process, called static analysis, is performed once the global
model is available. Two kinds of consistency rules are checked. The first ones,
called structural inconsistencies, check if the global model fulfills at least the
CRM constraints expressed with MOF (cardinalities, composition...). Two kinds
of inconsistencies can be detected at this stage:

– Under-specification is detected if one property value of one object has fewer
elements than specified by the property cardinality. It means that informa-
tion is missing in input models and the global model is incomplete with
regards to the targeted formal analysis technique,

– Logical contradiction is detected if one property value of one object has more
elements than specified by the property cardinality. It means that at least
two input models overlap semantically but this overlap is inconsistent.

The second kind of consistency rules, called static semantics inconsistencies,
is complex and is generally described with OCL rules. Intuitively, these rules cor-
respond to well-formedness rules defining business-specific restrictions on meta-
models. However these rules can be difficult to write in OCL for stakeholders
who do not have a technical expertise. To help such stakeholders, we propose
the notion of diagnostic rules which are easier to write for stakeholders and
enable to provide meaningful information in a non-technical form when a rule
is violated. The composition-and-check process can be used iteratively in order
to limit the amount of managed information and the number of inconsisten-
cies to solve. As the fusion step can take as an input the global model (it is
just a large model fragment). It is then possible to check how a new input
model impacts a consistent global model. When no inconsistencies are detected,
the targeted formal verification technique can be applied. When input models

94 G. Perrouin et al.

(and corresponding parts of the SRS) are updated to take into account results of
the formal verification, a new cycle can be started. These points will be detailed
in section 4.2.

3 Combining Inconsistent Models via Fusion

3.1 Running Example: The RM

The RM metamodel is the current CRM of the R2A platform. It captures a
functional and a data description of the system. It is meant to capture functional
requirements and the control flow between them. RM also allows for requirements
simulation and system test cases generation within R2A platform [17]. Figure 2
illustrates an excerpt of the RM metamodel. It describes a state-based formalism
where system actions are described as use cases (metaclass UseCase), enhanced
with their activation conditions and effects (relationships PreCondition and
PostCondition expressed as first order logic expressions).

Only few concepts defining these expressions are showed in Figure 2 (the
Expression subclasses). Expressions contain references to property values of
the system, represented by the metaclass PropertyValue. The OCL constraint
1 in Figure 2 ensures that referenced property values in any expression exist in

Fig. 2. A part of the RM metamodel used in R2A platform

Composing Models for Detecting Inconsistencies 95

the model (constraint 2 checks their type conformance). Use case contains a set
of formal parameters (metaclass Parameter). Each parameter represents an
Entity involved in the use case, which plays a particular Role (for instance
“actor”). Only the actor parameter of a use case can trigger it and a use case
has only one actor, as expressed by the OCL constraint 3.

Other notions in Figure 2 describe basically an entity-relationship diagram.
Entities are either business concepts (Concept) or actors (Actor) of the sys-
tem (entity which can trigger at least one use case). Entities have properties
which represent their possible states (Attribute) and relationship with others
(Relation). Properties have a type (DataType) which can be a Boolean-
Type or an EnumerationType (a finite set of literal values, representing
strings, integers or intervals). Instances of attributes and relations are property
values of the system. A system state is a set of entity instances and property
values, corresponding to a system configuration at a given moment. The reader
can refer to [13,15] for more details on this metamodel.

3.2 Dealing with Inconsistent Fragments

Figure 3 presents a set of RM model fragments, obtained by interpreting a set
of input models (interpretation step). These input models represent the specifi-
cation of a library management system (see [13] for details). Input models are
written in RDL (Requirement Description Language [13]) which is a constrained
form of natural English. For example, one sentence of library management sys-
tem, interpreted in terms of model fragments of Figure 3 is:

The ‘‘book’’ must be registered before the ‘‘customer’’ can
‘‘borrow’’ the ‘‘book’’

Each fragment handles a piece of information, extracted from one input model
by one interpretation rule as explained in section 2.1. The fragment (a) declares

Fig. 3. Examples of RM model fragments

96 G. Perrouin et al.

a use case subscribe which can be triggered by an actor customer. The fragment
(b) states the existence of a business concept book which has a state borrowed,
without information on its type. To handle such inconsistent fragments in a
model (prior and after their fusion), it is necessary to allow non-compliance with
respect to basic well-formedness rules of the metamodel such as multiplicities
or types. We introduce the notion of a relaxed metamodel to cope with this
situation.

Definition 1. A relaxed CRM is a metamodel where the following properties
hold:

– All metaclasses are considered as concrete (i.e. instantiable),
– All multiplicities between metaclasses are considered as ’*’,
– There is no containment relationship (treated as regular associations).

Thanks to this notion it is possible to interpret partial and inconsistent model
elements and to combine them. As mentioned in Section 2, inconsistency check-
ing is progressively performed on the global model. Finally the global model is
made consistent with respect to the original (un-relaxed) CRM. This process
will be detailed in Section 4.

3.3 Fusion Principles

One simple approach to perform model fusion is to compare objects two by
two and combine them when with respect to syntactical equivalence. Yet, this
raises two issues (i) designation clashes and (ii) type clash. Designation clash [19]
occurs when a single syntactic name in the requirements specification designates
different real-world concepts (e.g. the pair (9,12) refers to different concepts while
having the same name). A type clash arises when two different types ar given for
the same concept (e.g. the pair (1, 8) refers to a customer in two different ways).
It can be seen as specialization of a terminology clash [19]. To alleviate these
issues, we need to let requirements analysts define fine-grained rules specializing
fusion and resolve these clashes. To this aim, we propose two kinds of fusion
rules (FR): equivalence rules (ER) and normalization rules (NR).

Rules of the first type define equivalence ranges and describe how to resolve
them. An equivalence range is a set of objects which are considered as equiva-
lent. Resolution targets the replacement of equivalent objects by one new object,
where properties have been set properly to keep the whole information. Nor-
malization rules aim at transforming the model after ER executions so that a
violation of conformity reflects an inconsistency. Figures 4 and 5 give examples
of FR specifications for the RM metamodel presented in Figure 2.

An ER is defined as an equivalence range constructor and an equivalence
range resolution (constructor and resolution in the remainder). The constructor
is a boolean expression which takes as inputs a pair of objects and returns
true if they are equivalent. It aims at defining a set of equivalence ranges in
the context of its owning rule. The resolution is used to replace all objects in

Composing Models for Detecting Inconsistencies 97

Fig. 4. Examples of equivalence rules

the equivalence ranges by a new object which captures their semantics. ERs
are expressed with three ordered elements, listed in Figure 4: a signature (first
line), a constructor boolean expression (the first element of the list) and a set of
resolution directives (the second element being optional and used only in ER3).
The signature handles the name of the rule, a type filter on the pair of objects
checked by the constructor and the type of the object created by the resolution
(return type). ER1 specifies for instance that objects of type Attribute which
have the same name and are related to the same Entity (attributes -1 points out
the opposite reference of attributes) are part of the same equivalence range. This
ER illustrates how context can be part of overlaps identification. The resolution
of such an equivalence range will produce an instance of Attribute, as specified
by its return type.

A resolution directive describes how to set the value of a particular property
for the object created by the resolution. If no resolution directive is defined, the
default policy is applied. As defined by Sabetzadeh et al. [9], it consists in mak-
ing the union of the property value of each object in the equivalence range (with

Fig. 5. Examples of normalization rules

98 G. Perrouin et al.

Fig. 6. Result of the application of Fusion rules on model fragments (Figure 3)

basic equality resolution for primitive types such as string or integer). Yet, some
property values cannot be resolved by union (for instance the kind of a UML class
representing one abstract class and one interface). In such cases, resolution direc-
tives are useful to resolve these overlaps. As an example, each property value of
Attribute instances created by the ER4 resolution is evaluated by the default
policy as opposite to the linkedEntities property values of Relation instances
created by the ER3 resolution. The fusion of model fragments may not be per-
formed in one step (identification of all equivalence ranges and resolution). Indeed,
an object can be contained by more than one equivalence range. As an example,
the object 1 is also contained by (1, 17) ER6. The stopping criterion of the fusion is
satisfied when no more equivalence ranges have been identified. Some inconsisten-
cies in a model do not reveal inconsistencies in the information captured but only

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Algo Fusion(l1 : List<Object>, l2 : List<ER>) is
var resolved : List
do
 resolved.clear()
 forAll o1 in l1
 forAll o2 in l1
 forAll er in l2
 if (er.constructor(o1, o2)) then er.equivalences.add(o1, o2)
 forAll er in l2
 forAll r in f.equivalenceRanges
 var o : Object := er.resolution(r)
 l1.add(o)
 resolved.addAll(eq)
 l1.elicit(resolved)
until(resolved.isVoid())

Fig. 7. Fusion Algorithm (equivalence rules application)

Composing Models for Detecting Inconsistencies 99

irrelevant ways to express this information. For instance, an instance of Usecase in
a RM model must have one pre-condition exactly. If this use case has no condition
of activation, its pre-condition must be an instance of the metaclass True. This
mapping to True must be done if no partial specifications describe information
about this pre-condition. NR3 is specified for this purpose.

The main part of the fusion algorithm is given in Figure 7. It processes a set
of objects (from model fragments to merge) and a set of ER. It iterates until no
more equivalence ranges have been resolved (or identified). The loop contains
two steps: equivalence range identifications (lines 04-07) and their resolutions
(lines 08-13). The method elicit(l:list of objects) removes all objects passed as
parameter (it also deletes links between them and remaining objects). It is used
to remove objects contained by a resolved ER. Figure 6 gives the final model
obtained by executing this algorithm on model fragments of Figure 3 according
to fusion rules of Figure 4 and 5. It is an instance of the relaxed CRM.

3.4 Traceability Computation

The composition process generates automatically a traceability model as in-
troduced in section 2.1. This model stores the history of all kinds of rules
(interpretation, fusion and normalization) that have been executed during the
composition process. Each rule execution is associated to model elements that
have been matched and produced. Model elements pertain either to input mod-
els, interpreted and composed model fragments or to the global model. Given
such a traceability model, it is possible to compute a connected graph where
nodes are model elements involved in at least one rule and vertices relates ele-
ments matched and produced for each rule.

4 Inconsistency Detection

We illustrate in this section our inconsistency detection process, introduced in
section 2.2. This process is composed of two activities performed in parallel:
structural inconsistency detection and static semantics inconsistency detection.

4.1 Structural Inconsistency Detection

Structural inconsistency detection checks conformance of the model with respect
to the CRM definition expressible through MOF. For example, one constraint on
the RM metamodel requires that any UseCase has at least one Parameter.
Structural inconsistencies comprise logical contradictions: attribute registered of
customer (object 53 in Figure 6) has two types which is clearly a non-sense.
Concerning under-specifications, attribute registered (object 15) of book has no
type at all. Structural inconsistencies for a given CRM are automatically detected
by MOF-compliant tools. Therefore there is no need to define them for a new
CRM. When no more structural inconsistency is detected, the global model can
be cast to an instance of the original (un-relaxed) CRM.

100 G. Perrouin et al.

4.2 Static Semantics Inconsistency Detection

We distinguish two categories of static semantics inconsistencies depending on
the stakeholders who specify them.Well-formedness inconsistencies are related
to rules domain experts define on the CRM (e.g. constraint 1 for the RM meta-
model in Figure 2). Custom inconsistencies are violation of rules defined by
requirements analysts. Enforcing such rules may be required to enable further
formal analysis on the model. As mentioned in section 3, fusion outputs the
global model as an instance of the relaxed CRM. Since for flexibility reasons [5]
we do not want to impose a sequence in inconsistency detection activities, we
cannot assume that the global model can be cast to an instance of the CRM. We
therefore need to define well-formedness and custom rules on the relaxed CRM.
While OCL is often used to specify static semantics rules, defining navigation
paths across scattered elements can be tricky and rule violation feedback useless
for stakeholders.

DR1 (Parameter p)
p.role = ‘actor’
∧

DR1 (Parameter p)
p.role = ‘actor’
∧

DR2 (BPValue v)
v.property = void
DR2 (BPValue v)
v.property = void

Fig. 8. Some DRs for the metamodel RM and an excerpt of the verdict

We offer the possibility to requirements analysts to define diagnostics rules
(DR), defined for a given version of the relaxed CRM, to solve these problems.
Diagnostics rules encapsulate a guard and a textual template. The guard is based
on pattern matching as for interpretation and fusion rules. Hence, it is no longer
required to specify navigation through the model to retrieve model elements. The
template is a natural language sentence parameterized with expressions referring
matched elements and navigating the global model. When a DR matches, an in-
consistency is detected, the template is instantiated and added to a verdict log
which can be reviewed by non-experts. Traceability links can be then navigated
until pointing out inconsistent requirements in input models and rules involved
in the production of elements responsible of the inconsistency. A few examples
based on the RM metamodel are provided in Figure 8a. For instance, DR1 de-
clares that there is a contradiction if a use case has more than one actor. Indeed,
this DR is related to the OCL constraint 3 defined Figure 2). As the verdict
illustrates (Figure 8b), the feedback for this rule is much more understandable
for non-experts.

Composing Models for Detecting Inconsistencies 101

When both static semantics and structural inconsistencies are resolved we cast
the global model to an instance of the original CRM which is fully consistent
and amenable to further analysis.

While having no inconsistency detection sequence is a good point for flexibil-
ity, it can be disturbing for requirements analysts to figure out which rules have
to be checked first, especially if the CRM is complex and there are numerous
rules. In such cases we propose to manage inconsistency resolution incrementally
by stepwise resolving groups of diagnostics rules. Freed from restriction such as
checking of structural inconsistencies prior to static semantics ones, domain ex-
perts can drive inconsistency management in accordance with conceptual and
methodological grounds rather than technical limitations.

5 Related Work

Zave and Jackson defined in [12] the scientific foundations of multi-formalism
composition. They describe a formal CRM designed for formalizing a wide range
of metamodels where composition is the conjunction of elements extracted from
models. They describe a notion of functions dedicated to each input language for
assigning input model semantics in the CRM. They then discuss a few method-
ological points on how to perform inconsistency checking. However, they do not
discuss inconsistency types that can be verified and do not offer any implemen-
tation supporting their vision. More concrete composition solutions have been
proposed as a way to perform semantic analysis [10,11]. In [10], the authors
defines a framework to produce a HOL (High Order Logic) model from mod-
els expressed in different notations and analyze the composed model with HOL
tools. Ainsworth et al. [11] propose a method for composing models written in
Z. Relations between models are described with functional invariants and some
Z proof obligations can be performed to verify composition correctness. How-
ever, these two approaches require that a significant amount of work shall be
done manually, either for the pre-processing of Z models [11] or relevant infor-
mation must be extracted and translated into a HOL specification by hand in
[10]. Moreover, they do not process inconsistent models.

Kompose [14] is a meta-modeling approach built on the Kermeta language. It
targets the automatic structural composition of aspects in software development
processes. It is a rule-based approach where equivalence between objects is auto-
matically calculated with regards to object structure. Kompose assumes that ho-
mogeneous input models (i.e. instances of a unique metamodel) are structurally
consistent prior to their composition. Kolovos et al [20] propose a model merging
language able to compose heterogeneous models which uses pattern-matching to
merge models. However, similarly to compose they need to avoid conflicts be-
fore merge which restricts the inconsistency types that can be fixed and the
global model and limit flexibility with respect to inconsistency management.
Sabetzadeh and Easterbrook [9] provide an interesting composition framework
based on a formal definition of models to compose. The composition operator
(category-theoretic concept of colimit) is formally defined and traceability links

102 G. Perrouin et al.

are automatically inferred. However this operator requires the model type of
[21] which restricts highly the accepted IRLs. As opposed to Kompose and our
approach, equivalence must be given by hand by the requirements analyst and
composition only works for homogeneous models.

6 Conclusion

Dealing with inconsistencies across multiple models is a critical issue that re-
quirements analysts and software engineers have to face nowadays. In this
paper, we have shown how, by translating the problem from managing incon-
sistencies amongst heterogeneous models to managing inconsistencies within a
single model, stakeholders’ task can be greatly facilitated. In particular, we pro-
posed a novel model composition mechanism which able to compose partial and
possibly inconsistent models. Hence, various categories of inconsistencies can be
checked on the resulting global model. Furthermore, as the order of inconsisten-
cies to be solved is not prescribed by the approach, requirements analysts can
flexibly drive the inconsistency management depending on the context. Native
traceability supported by our implementation enables to report inconsistencies
on the original models thus easing the determination of inconsistency causes.
We are currently working on integrating our platform with formal analysis tools
to obtain a complete requirements validation chain. Integration is performed by
means of a model transformation translating CRM instances into models ana-
lyzable by the targeted tool.

In the future, we would like to acquire experience on the adaptability of the
approach to various contexts and input languages. In particular, we will assess
the impact of the introduction of a new input language on fusion rules and on
the CRM.

References

1. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. In:
FOSE at ICSE, Washington, DC, USA, pp. 285–303. IEEE Computer Society
Press, Los Alamitos (2007)

2. Kotonya, G., Sommerville, I.: Requirements Engineering with Viewpoints. Software
Engineering Journal (1996)

3. Rashid, A., Moreira, A., Araújo, J.: Modularisation and composition of aspectual
requirements. In: AOSD 2003, Boston, Massachusetts, USA, pp. 11–20 (2003)

4. Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.
Software Engineering Journal 11(1), 31–43 (1996)

5. Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency respectable in soft-
ware development. Journal of Systems and Software 58(2), 171–180 (2001)

6. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the rela-
tionships between multiple views in requirements specification. IEEE TSE 20(10),
760–773 (1994)

7. Nentwich, C., Emmerich, W., Finkelstein, A.: Flexible consistency checking. ACM
TOSEM (2001)

Composing Models for Detecting Inconsistencies 103

8. Kolovos, D., Paige, R., Polack, F.: Detecting and Repairing Inconsistencies across
Heterogeneous Models. In: ICST, pp. 356–364. IEEE Computer Society, Los Alami-
tos (2008)

9. Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete
and inconsistent views. In: RE 2005, August -2 September, pp. 306–315. IEEE, Los
Alamitos (2005)

10. Day, N., Joyce, J.: A framework for multi-notation requirements specification and
analysis. In: 4th ICRE, pp. 39–48 (2000)

11. Ainsworth, M., Cruickshank, A., Groves, L., Wallis, P.: Viewpoint specification
and Z. Information and Software Technology 36(1), 43–51 (1994)

12. Zave, P., Jackson, M.: Conjunction as Composition. ACM TOSEM 2(4), 379–411
(1993)

13. Brottier, E., Baudry, B., Traon, Y.L., Touzet, D., Nicolas, B.: Producing a Global
Requirement Model from Multiple Requirement Specifications. In: EDOC, pp. 390–
404 (2007)

14. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for
Model Composition in Metamodels. In: EDOC, Annapolis, MD, USA (2007)

15. van Lamsweerde, A., Letier, E., Ponsard, C.: Leaving Inconsistency. In: ICSE work-
shop on Living with Inconsistency (1997)

16. Baudry, B., Nebut, C., Traon, Y.L.: Model-driven engineering for requirements
analysis. In: EDOC, pp. 459–466 (2007)

17. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: Automatic test generation: A
use case driven approach. IEEE TSE (2006)

18. Spanoudakis, G., Finkelstein, A.: Overlaps among requirements specifications. In:
ICSE workshop on Living with Inconsistency (1997)

19. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE TSE 24(11) (1998)

20. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models With the Epsilon Merg-
ing Language EML. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

21. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26(3-4), 241–265 (1996)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 104–117, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Experiences with a Requirements Object Model

Joy Beatty and James Hulgan

Seilevel, Inc.
3410 Far West Blvd., Suite 350

Austin, Texas 78731
{joy.beatty,james.hulgan}@seilevel.com

Abstract. [Context and motivation] Experiences in working with customers in
the software development community have shown that the language used to talk
about requirements is inconsistent. Because of this inconsistency, projects are
struggling to develop products that meet the organizations’ goals. [Ques-
tion/problem] An inconsistent terminology leads to barriers to communication,
which increases both the cost and length of time of development. In addition,
the artifacts of requirements planning efforts are often ill-defined, and the team
creates products that are not aligned with the organization’s goals. [Principal
ideas/results] As an attempt at resolving this inconsistent terminology and its
fallout, this paper outlines the need for a common language. We propose a solu-
tion in the form of a Requirements Object Model (ROM) and study the use of
the ROM in the requirements efforts on three software development projects.
[Contribution] Evidence from these three projects demonstrates that the adop-
tion of a common terminology leads to improved communication among project
teams, and as a result, alignment about the business objectives for software de-
velopment projects was achieved.

Keywords: Software Requirements, Requirements Models, Requirements
Engineering.

1 Introduction

A recent study showed that over two-thirds of companies follow requirements prac-
tices which make project success improbable [1]. The CHAOS Report says that the
top three reasons projects are failing are all related to requirements, specifically a lack
of user input, incomplete requirements and changing requirements [2]. Reworking
requirements during development or after deployment is extremely costly as com-
pared to identifying the correct requirements during requirements phases [3]. The re-
work is expensive because it requires resources to handle the issues, results in lost
revenue from the delay and causes delays to other projects. Furthermore, experiences
with a variety of customers’ software development projects have demonstrated that
teams are often building software that is not what the business needs. Years of discus-
sions with stakeholders have uncovered a common issue in that there is often no
common understanding of project objectives among stakeholders. This leads to teams
developing additional unnecessary features and sometimes even the wrong features.

 Experiences with a Requirements Object Model 105

Further observations led to the realization that most projects do not have clearly ar-
ticulated business objectives because teams do not know how to identify them and use
them.

Working with customers has shown that the language with which requirements are
talked about is inconsistent within an organization, which leads to barriers to commu-
nication. There are many different types of stakeholders that requirements practitio-
ners deal with during the course of the project. For example, communicating a
marketing manager’s business needs for a feature to a developer can be challenging
because there is no common language with which to label the various levels of re-
quirements information. When the marketing manager communicates the business
need, the requirements engineer might label it a business objective, while the devel-
oper thinks it is the justification of a single requirement. However, when the require-
ments engineer reviews the business objective with the marketing manager, it has a
different name and is not recognized as an original need.

A common model, including both a language and approach to apply the language,
is needed to help business users, requirements practitioners and development re-
sources discuss and develop software products. A common model will enable teams
to communicate better, as terminology will be consistent and understood by all stake-
holders. Development resources will know the level at which they are receiving perti-
nent information. And all of the resources will understand how to use the common
language to gather and use the information that drives the project priorities.

The ideas described in this paper are based on work initially done to help a cus-
tomer create a standard requirements language to be used across their global organiza-
tion. In addition, an approach was created for teams to use the language defined to
help drive requirements for development. It is worth mentioning, a complete require-
ments methodology is important, however this paper is limited to the common lan-
guage and approach to using this model to drive requirements and does not delve into
details about how to execute the remainder of a methodology. The rest of the paper
will further describe the need for a common model, explain and provide an example
of a proposed Requirements Object Model (ROM) and discuss specific project ex-
periences in which the ROM was used. The intent of this paper is to adapt what indus-
try has already defined and alter it when necessary for additional clarity.

2 Review of Research on Requirements Terminology

Within and across teams, individuals typically have different understandings of the
requirements terminology used. This is not surprising, given there really is no com-
monly agreed upon terminology for the various levels of the requirements hierarchy
in the industry [4]. To illustrate this point, in one project example, a team member
thought “need” referred to the justification for a feature; while another person thought
“need” was the executive level justification for the project. When the team was asked
to document “needs”, it should be expected that there was a discrepancy in the type of
information elicited.

There are various levels of requirements that must be explored and labeled with a
common term. Some of the requirements information elicited will be very high-level
and derive further detailed requirements, while other information elicited will be

106 J. Beatty and J. Hulgan

detailed requirements for development. For example, a business user may describe a
need to achieve a revenue target for the year, have a replacement call-center system,
be able to view the upcoming call queue and have specific colors of buttons on the
screen. These are pieces of information at very different levels of the requirements
hierarchy. All of them are very important to understand to achieve project success;
and therefore, a common set of names would enable easier communication about
them on the team.

Experts in industry have defined terms of their preference. The following describe
some of these definitions to help illustrate the variances.

• “Business requirements” or “business objectives” are used to describe why a
product is being built, “user requirements” describe what the user wants
and “functional requirements” describe expected system behaviors the de-
veloper should build. “Features” are logical groupings of functional re-
quirements [5].

• “User requirements” are user-imposed constraints or affordances, and “func-
tional requirements” are things the system is required to do. This author
also makes use of the term “goal” to describe desired results, often decom-
posed through various levels until they are written as use case titles [6].

• “Business objectives” are goals of the business or customer requirements.
“Business requirements” are different, in that they are essential activities
of the organization and are derived from the business objectives [7].

• “Business requirements” are an answer to business problems, “user require-
ments” solve user specific problems, and “software requirements” de-
scribe the software solution. In this case, user requirements are a bridge
between the business requirements and software requirements [8].

• “Business requirements” can be used interchangeably with enterprise goals,
objectives, or needs. “User requirements” describe stakeholder needs.
“Functional requirements” describe the system behavior and information
it will manage [9].

• “Need” is the highest level of information, with “goals” and “objectives” be-
ing derived from the needs. “Goals” describe what the product will do,
while an “objective” further describes how the goals will be met [10].

It is apparent that these terms are very closely related, but that the literature does
not adopt a common terminology with precisely the same definitions. Business re-
quirements, business objectives, goals and needs mean the same thing in some cases,
but not always. Functional requirements and software requirements mean the same
thing in some cases, but vary in other definitions.

3 The Need for a Common Model

Experiences show that most teams do not start projects with clear goals, but rather
make assumptions about the business needs and dive into requirements writing. Typi-
cally, the business goals are defined higher in the organization and passed down to the
project team, sometimes implicitly. In fact, in training requirements engineers, it has
become clear that most of them do not know what their projects’ business objectives

 Experiences with a Requirements Object Model 107

are or how to identify them. Furthermore, teams often make up their own definitions
about what the requirements terminology means.

Initial evidence shows that a common set of terminology might allow teams to bet-
ter collaborate on requirements. The team members would not have to spend time
thinking about what their co-workers meant by phrases such as “business require-
ments” or “needs”. If working with a common language, when developers receive
requirements information, they will know at what level they are receiving it – whether
a high-level introduction of scope or low-level requirements to develop. This paper
suggests that adoption of a model, which includes a common terminology and an
approach to apply it, will help improve the overall requirements methodology.
Through the adoption of a common model, it will be easier for project teams to iden-
tify missing pieces of information necessary to the development lifecycle, as well as
features that have not been given proper business justification.

4 ROM Defined

4.1 Overview

The ROM is a suggested model that defines language for talking about requirements
and an approach to apply the language to projects in order to build successful prod-
ucts. It provides a common language with which to communicate globally about the
requirements and an approach to encourage early identification of an organization’s
goals.

The ROM has multiple levels of objects. In order to further discuss these objects
and how they relate, it is first necessary to define them. To clarify the definitions,
other common phrases with the same definition are included.

One intention in designing the model was to make it easy to learn and adapt.
Therefore, in some cases, the terminology used in industry was explicitly avoided in
the proposed model in order to avoid confusion with these terms.

4.2 Business Level Definitions

Business level objects are entities in the requirements activities that are defined early
in projects and relate to the organizational priorities. They are not specific to any
product or project, but to the business as a whole.

Business Problems. Describe problems that are preventing the business from achiev-
ing its goals.
Business Objectives. Desired metrics the business seeks to meet in order to solve the
problem. Business objectives may also be commonly referred to as sales targets, sen-
ior management’s goals, business requirements, or goals.
Business Strategy. An approach to meet the business objectives. A business strategy
is not specific to any one product or project solution. In most projects dealing with
requirements engineering, an adopted strategy typically involves building a system or
software.

108 J. Beatty and J. Hulgan

4.3 Project Level Definitions

Project level objects should only be defined once the business level objects have been
established and a business strategy leads to a specific project. These are the objects
which are derived from the business level objects and which lead to the development
of a software product.

Product Concept. Proposed solution derived from the business strategy to accom-
plish one or more business objectives. This becomes a project and can be described
with a project vision or mission statement.
Success Metrics. Statements about the specific desired measurable outcomes to meet
the business objectives. If there is only one project to meet the business objectives,
then the success metrics are likely the same as the business objectives. These may
also be called project management targets or product targets.
Guiding Principles. The approach to meet the success metrics for the project. They
are common themes to be considered in creating a product that will drive the feature
set and specific requirements. They may be statements of market desires, stakeholder
goals, user requirements, or product strategies.
Product Features. A collection of functionality that provides a set of services to the
users. System requirements are gathered for product features.
Product Qualities. A collection of desired qualities about the product. Product quali-
ties encompass non-functional requirements.

4.4 Relationships between the Levels

An object model is more than just a language; it also defines how the objects in the
model relate to one another. As such, the ROM is divided into a hierarchy (see Fig. 1)
where objects lower in the hierarchy can be said to have a “derived from” relationship
to objects higher in the hierarchy. For example, features and product qualities are

Fig. 1. Relationships between objects in the ROM

 Experiences with a Requirements Object Model 109

derived from business objectives. The product concept, success metrics and guiding
principles should be defined to help derive features. Functional requirements and the
other requirement types all derive from the features and qualities.

4.5 The Hierarchy Repeats

There are often many levels of the objects in the ROM repeated (see Fig. 2). For ex-
ample, at the beginning phases of a new project during a discussion with a director, the
director may describe a business problem, with business objectives and business
strategies to solve this problem. Over the course of this discussion, another business
problem is discovered, which also has business objectives and business strategies em-
ployed to solve this problem. It is important to define these layers starting at the top
and going down enough layers—low enough to get to a project level. Similarly, the
project level may also contain nested ROM hierarchies—each project may define its
own business level objects from which to derive project level objects for the product
being developed. If this is the case, then it is important to ensure that the business ob-
jects defined at the project level are consistent with the higher-level business objects.

Fig. 2. The ROM Hierarchy repeated over several different levels

5 Using the ROM

5.1 Typical Approach

Experiences have demonstrated that most projects start with the equivalent of a prod-
uct concept. The project team might define success metrics, such as a launch date.
However, they quickly jump into defining features and qualities and then proceed
with requirements and design. The problem with the typical approach (see Fig. 3) is
that there are no agreed upon business objectives with which to guide the project
scope, and development strays from the intended goals of the business.

110 J. Beatty and J. Hulgan

Fig. 3. Typical Approach

5.2 Ideal Approach

An ideal approach (see Fig. 4) would be to start with the business level problem and
define objectives and strategies which solve that problem. The project level would
then be defined, leading to the product requirements. This approach is ideal because it
ensures that the features developed are always driven by the solution to a business
problem. The issue with this is approach is that it does not reflect the reality of how
organizations operate, in that most organizations are more chaotic and less linear in
thinking about projects. However, the main reason this approach does not work is that
requirements engineers are typically engaged well after the business level thought
processes have evolved.

Fig. 4. Ideal Approach

5.3 A Realistic Approach

Many projects will continue to start with a product concept, simply due to the timing
of when the requirements team is engaged. Therefore a top-down approach to start at
the business problem is not realistic; however the same levels can be applied to
achieve success (see Fig. 5).

Most projects start with a product concept (e.g., “Replace the call center applica-
tion”). Frequently, a set of features is also already defined (e.g., “Viewable call
queue”). However, in this case, working up from the product concept, the problem
that is being solved can still be understood. By asking “why is that a problem?”, even-
tually a problem will emerge that relates to money. It should be noted that “relates to
money” in the context of business often means relating to revenues, profit and costs to

 Experiences with a Requirements Object Model 111

the company. Each project is unique, so this is just a guideline to identify the business
problem. In fact, in some cases the business objectives maybe be “improved patron
service”, however most organizations will have an objective above this that relates to
money, such as “retain 30% of new customers” which is derived from “increase reve-
nue by 5%”. Depending on the level of the organization in which the practitioner is
working, the project’s relationship to revenue, profit or cost savings may not be ini-
tially clear. However, the practitioner should elicit this information from the appropri-
ate personnel, often needing to work higher in the organizational structure, in order to
clearly define the project business objectives. From a clearly defined problem and
desired business objectives, appropriate strategies can be derived that meet the busi-
ness objectives.

Fig. 5. Realistic Approach

Using the business problem, objectives and strategies, a clear product concept can
be developed, which may or may not be the same as the original product concept.
Success metrics and guiding principles should be developed for the project, followed
by features and qualities. Similarly, the features may have changed from the original
suggestions, in order to map back to actual business objectives.

Establishing business objectives is critical for the success of a project, because they
are used to define and control the project’s scope. Product concept, success metrics
and guiding principles represent steps that help to make the bridge from business
objectives to features.

6 Questions to Help Complete the ROM

As described previously, there are different levels of requirements. However, when
eliciting requirements, users do not distinguish between these different levels, nor
should they. The requirements engineer has to take in all of the levels of information
provided and organize them. Additionally, they must recognize when various levels of

112 J. Beatty and J. Hulgan

 the ROM are not provided and explicitly elicit those. There are questions (see Table 1)
that requirements engineers can ask of various stakeholders in order to complete the
ROM and identify each of the objects.

Table 1. Questions to ask to complete the ROM

ROM Term Questions to Ask
Initial Product
Concept

What are we building?

Business Problem What problem does this product solve? Continue asking the question
“why is that a problem?” until money is in the answer.

Business Objectives What metrics can we use to determine that we have solved the busi-
ness problem?

Business Strategy What are the approaches that could be followed to meet the business
objectives, thereby solving the business problem? What problems or
aspects of problems are being solved and in which way? What stops
you from solving the problem today, and what is your strategy to
resolve that?

Product Concept What products must be built for each of the business strategies, in
order to meet the business objectives?

Success Metrics What metrics can we use to determine if the product built is a suc-
cess? How will we know if it fully enables its intended contribution to
the business objectives?

Guiding Principles What are the overarching themes for the product that should be con-
sidered in developing the product? What high-level market desires
should influence the product? What is the overall approach/strategy in
designing the product to ensure the success metrics are met?

Product Features What buckets of functionality are needed based on the guiding princi-
ples and users’ requirements? What features are driven by the high-
level models (i.e., process flows, use cases,)?

Product Qualities What qualities about the product are important to develop given the
guiding principles of the project? If the functionality is built correctly,
what types of things would keep users from adopting the software?

7 ROM Example

An example of the ROM in a mock-project will help further explain it. In the exam-
ple, a team was assigned the project of building an online Yahtzee® game. Table 2
demonstrates a set of questions and answers used to identify a business objective and
business strategies.

The series of questions led to a clear business problem, followed by a business ob-
jective. Taking the questions further, business strategies were identified. There are
often many business strategies that can be defined to achieve the business objectives.
However, a project stakeholder will need to make a selection about which ones will
be implemented. In this example, it turns out that building an online Yahtzee® game
is a valid product concept for the first strategy, as long as it is a product designed for
seven to thirteen year olds.

 Experiences with a Requirements Object Model 113

Table 2. Identifying Example Business problem, business objective and business strategies

Question Answer
What is the Product Concept? An online Yahtzee® game
Why would you build Yahtzee®? Our current games are complicated
Why do you care if your games are compli-
cated?

We are not selling outside the age group of
15-30 year olds.

Why do you care if the rest of the market
buys?

Sales to the 15-30 year old market are slow-
ing down.

Why are you concerned about that growth? Our competition is still growing, while we
are not. (Business problem about “money”
identified)

What kind of growth do you want? 25% growth in markets outside of 15-30 year
olds. (Business objective identified)

How can we target growth in other markets? Build a game for 7-13 year olds. Advertise to
retirement age people. (Two business strate-
gies identified)

Fig. 6. Example ROM

To further explain this example, using the business objective, business strategy and
an understanding of the detailed problem, a product concept can be more clearly de-
fined, along with success metrics and guiding principles for the project (see Fig. 6).
For example, the product concept was “Online Yahtzee®”, a success metric was “7-
13 year olds rate the game as fun on a standard survey”, and a guiding principle was
“create a social environment”. From these, features and qualities were defined,

114 J. Beatty and J. Hulgan

ultimately to derive requirements. An example, a feature was “chat sessions” and a
product quality was “they must be able to play it on an Apple”. These can be further
broken into requirements such as “System shall support text-based conversations” and
“System shall alert user to any incoming conversations”.

8 Project Experiences

The following examples describe experiences with using and not using the ROM on
requirements engineering projects. Perhaps the most important lesson learned from
these experiences is that quantifiable success metrics are critical for project success.
Additionally, a weakness of this approach is that factors unrelated to the development
of an IT system can contribute to project success or failure.

8.1 Pricing Analysis Example

In this project, development had been underway to replace the backend of a pricing
analysis tool. The project had gone in several directions with very little focus, and the
schedule had slipped a month due to this lack of project focus. When the requirements
team became engaged with the project, they began defining objects within the ROM
for this project. Requirements practitioners first spoke with the development manager
to determine which business problems and objectives were driving the development of
the pricing tool. The initial statement of the business objective was to “build a global
pricing tool”, which exemplifies how the project was not focusing on solving a particu-
lar problem related to money. Through the course of these discussions and attempting
to understand the business problem, the team uncovered other business problems that
management was attempting to solve using this tool. Helping define the business level
objects for the project helped stakeholders prioritize features, as stakeholders were able
to quickly see which features solved business problems and met business objectives.
For example, some of the business problems identified were that the system needed to
be in compliance with certain Securities and Exchange Commission (SEC) controls.
The lack of this compliance had led to decreased shareholder confidence and subse-
quently, decreased investment revenue. The definition of these problems helped the
business determine which problem was most affecting their business, which in turn
ultimately drove the features of the pricing tool which best solved their most important
business problem. Often, during the discovery of business problems, requirements and
non-functional requirements for the system were discovered in the discussions imme-
diately. For example, one of the reasons no one used the current system was that the
server response times for pushing updates were horrendously long.

A benefit of the ROM, according to the project’s requirements expert, is that dur-
ing elicitation and prioritization sessions, the requirements team can ask everyone in
the room if they are doing the right things, developing the right features and help
guide people towards what the objective is. Since the ROM can ideally fit on one
page, it can also help get all members of the team—from business users to develop-
ment resources—to understand the problems being solved.

Some challenges encountered were that the practitioners had difficulties convinc-
ing the IT manager of this approach, even though they were able to successfully

 Experiences with a Requirements Object Model 115

convince the business manager of the benefit of using the ROM and insist on using
success metrics and business objectives to drive feature prioritization. Indeed one of
the biggest challenges is getting buy-in from stakeholders with multiple interests to
use the ROM approach. This is further complicated when the requirements team is
engaged on a very large project that is in mid-development with previous lack of
focus and priorities.

8.2 Loan Originations Example

This project was to evaluate current and desired functionality of loan origination
software, so that the system could be replaced by a new system, because the existing
system could not be further updated. When the practitioner joined this project, a ROM
had been partially completed; however, success metrics had not been defined. The
development team had jumped directly to the product concept without defining met-
rics by which to measure the success of the product. Indeed, success was defined
circularly by several stakeholders (“We will be successful as soon as we build the
product”). Asking the question, “What does success look like?”—and tying it to the
solution of a business problem—allowed the project to maintain focus. During stand-
ups and other meetings where features were prioritized, practitioners and managers
were able to ask themselves, “Is my team doing all and only those things which sup-
port project success?” This is critical, since without having a good idea of what counts
as success, one cannot do things in the direction of success. Additionally, since pro-
jects do not have unlimited resources, defining project success and business objec-
tives helps ensure that limited resources remain focused on the most critical business
needs. The requirements practitioner on the project suggested that software develop-
ment can be seen as a process of change. The most difficult thing about change is
helping the teams maintain focus—and to keep people focused on the important
things. Success metrics are about maintaining focus on the project. A successful out-
come of this project was that the business manager was able to have better conversa-
tions with her superiors, allowing her to win support for the project by giving her a
language with which to justify the project to both her managers and the teams she
supervised.

A challenge of this approach as stated by the practitioner, is that even though the
various teams were able to focus on the problems being solved and how to solve
them, there are still things outside of the control of the practitioner (for example,
hiring decisions for development resources). In this way, applying the ROM did not
always guarantee that the project would be successful.

8.3 Semiconductor Factory Example

This project evolved over the course of several years and involved several different
development teams dispersed geographically and culturally. The goal of the project
was to develop a system which would eventually automate a semiconductor factory.

When the project started, there was one mission, which was to “select a tool to run
the fab in our custom way”. There were business objectives above this, such as increas-
ing yield or decreasing the cost per wafer, but at that point in the project, those were
unstated to the project team. As a result, the team immediately jumped into eliciting

116 J. Beatty and J. Hulgan

desired features of the tool, but did not pay attention to time to deploy the tool or what
features would help meet the business objectives, since these were unclear.

A couple of years into the project, practitioners were able to present the value of
using business objectives to drive feature prioritization at the beginning of a release
cycle to IT managers and the system architect. For the first time in the project history,
managers defined business objectives and success metrics for each release and used
these to drive scope discussions and prioritization. Very quickly, management began
thinking in terms of the ROM and was able to use the objects in the ROM to drive
feature development, as well as to justify development budgets to their management.
Naturally, during this transitional period, the challenges were to acclimate stake-
holders to the new terminology and concepts being discussed.

With each release that followed the transition period, the architect and stakeholders
became used to thinking in terms of the ROM. The development process was modi-
fied to accommodate the ROM, with success being clearly defined and quantifiably
measured following each release. Consequently, the ROM helped frame scope discus-
sions in terms of the business objectives to be achieved. Practitioners noticed that by
using the ROM, prioritization and scope definition became easier with each release.
An added benefit was that requirements traceability was more easily achieved, since
the ROM helped define the traceability relationships and the objects to be traced.

One of the challenges on this particular project was that stakeholders (in this case,
users), after learning what the business objectives and success metrics were, would
sometimes use these as an ad hoc justification for features that they had been request-
ing for, in some cases, years. This led to some artificial justifications for certain fea-
tures. These ad hoc justifications were not a result of dishonesty or manipulation on
the part of the stakeholders, but of a real belief on their part that a particular feature
would help achieve a business objective. In this case, the value of the success metrics
is clear, as they help determine whether the feature did, in fact, achieve the business
value (even if it is after the fact). Additionally, when practitioners were engaged with
a project for this length of time, other business strategies not related to the develop-
ment of an IT system were revealed. For example, a way to increase revenue might be
to attempt to license technology or to acquire one’s competition through a merger. In
these cases, it is difficult for the ROM to accommodate discussions around business
strategies which do not involve building new software. These strategies ideally would
have been discovered prior to committing to a particular software project.

9 Conclusions and Future Work

The ROM is a proposed requirements hierarchy and approach to apply it to help pro-
ject teams deliver more successful projects. Initial experiences demonstrate that a
common model will enable teams to communicate better with a common language
and focus teams on developing products that are within scope of the business’ goals.

The ROM was initially developed out of discussions with a customer team, many
practitioners and two industry experts to address the customer’s global terminology
gaps and lack of formal approach to defining the initial high-level requirements. It has
been used on multiple projects since; however it is necessary to continue to test the
ROM on additional projects. As a result of further testing, the terms in the ROM may

 Experiences with a Requirements Object Model 117

need to be updated if they prove to be unclear. Additional levels or terminology may
be added to the ROM if any are determined to be insufficient. Also, the approach to
apply the ROM to projects may need refinement and a method of training teams to
use it. Tools to facilitate capturing the ROM on projects might be beneficial and rep-
resent an area for expanding the research, including understanding what tools already
exist to aid using ROM and where there are weaknesses in those tools that must be
improved. Although not investigated thus far, using the ROM may have a nice impact
in the verification and validation of software solutions. Finally and most importantly,
any discussions and feedback on the proposed ROM from industry experts would be
greatly appreciated, leading to further refinements of the model.

Acknowledgement

The authors of this paper would like to express their gratitude to Ian Alexander and
Karl Wiegers for their valuable discussions and feedback on the proposed terminol-
ogy and approach in their early stages.

References

1. IAG Consulting: Business Analysis Benchmark Report (2008), http://www.iag.biz
2. The Standish Group: The Chaos Report (1994), http://www.standishgroup.com
3. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
4. Alexander, I., Beus-Dukic, L.: Discovering Requirements: How to Specify Products and

Services. Wiley, Chichester (2009)
5. Wiegers, K.: More About Software Requirements. Microsoft Press, Redmond (2006)
6. Alexander, I., Stevens, R.: Writing Better Requirements. Addison-Wesley Professional,

Redmond (2002)
7. Young, R.: Effective Requirements Practices. Addison-Wesley, Boston (2001)
8. Gottesdiener, E.: Requirements by Collaboration. Addison-Wesley, Boston (2002)
9. International Institute of Business Analysis: Business Analysis Body of Knowledge

(2008), http://www.theiiba.org/AM/
Template.cfm?Section=Body_of_Knowledge

10. Hooks, I., Farry, K.: Customer-Centered Products. AMACOM, New York (2000)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 118–123, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Architecting and Coordinating Thousands of
Requirements – An Industrial Case Study

Krzysztof Wnuk2, Björn Regnell1,2, and Claes Schrewelius1

1 Sony Ericsson, Lund, Sweden
http://www.sonyericsson.com

2 Lund University, Sweden
{bjorn.regnell,krzysztof.wnuk}@cs.lth.se

http://www.cs.lth.se

Abstract. [Context & motivation] When large organizations develop systems
for large markets, the size and complexity of the work artefacts of requirements
engineering impose critical challenges. [Problem] This paper presents an
industrial case study with the goal to increase our understanding of large-scale
requirements engineering practice. We focus on a senior requirements engineer-
ing role at our case company, called requirements architect, responsible for
quality and coordination of large requirements repositories. [Results] Based on
interviews with 7 requirements architects, we present their tasks and views on
architecture quality. [Contribution] Our results imply further research oppor-
tunities in large-scale requirements engineering.

Keywords: Large-scale requirements engineering; Empirical study; Require-
ments repositories; Requirements dependencies; Requirements architect.

1 Introduction

Large software companies are often confronted with large and complex requirements
repositories. The requirements originate from multiple sources and address multiple
customers and market segments. This paper presents an industrial case study of the
tasks involved in managing large and complex requirements repositories. The investi-
gated tasks are related to a role called Requirements Architect that has recently been
introduced at the case company. The requirements architects are responsible for the
scope of large platform projects that products are based on [4]. Our motivation to
perform this study was to understand current practices in working with large-scale
requirements repositories and to find issues for future research. In this study, we have
conducted interviews with requirements architects in order to address the following
questions: (1) What are the tasks related to working with large-scale complex re-
quirements repositories on multiple products platform projects? (2) How do practitio-
ners perceive the notion of requirements architecture and how do they describe good
requirements architectures?

The second question is related to sustainable requirements architectures [5]. With
the term requirements architecture we mean the underlying structure of requirements,
including the data model of requirements with their pre-conceived and emerging

 Architecting and Coordinating Thousands of Requirements 119

attributes and relations. By sustainable architectures we mean structures that allow for
controlled growth while allowing requirements engineers to keep track of the myriad
of issues that continuously emerge. Practitioners facing a transformation to large-scale
requirements engineering (RE) may use this research to gain insights in what may
come, and researchers may use the results to inform their choices of future research
directions.

The paper is organized as follows: Section 2 describes the industrial context at the
case company. Section 3 provides the methodology description. Section 4 and 5 high-
lights the result of interviews. Section 6 concludes the paper.

2 Industrial Case Context

The interview study was performed at Sony Ericsson. Due to the technological com-
plexity of the domain, the case company is working in parallel in many advanced
system engineering areas such as radio technology, audio and video, and positioning.
The complexity of requirements engineering is driven by a large and diverse set of
stakeholders, both external to the company and internal. Different stakeholders have
different demands on the future functionality of the mobile phone which they express
by different types of requirements. Requirements originating from external stake-
holders are called market requirements. They are mainly supplied by mobile opera-
tors, which usually submit specifications with thousands of requirements that require
gap analysis. Other sources of requirements are the Application Planning and Product
Planning departments. The platform and market requirements also have to be checked
against supplier requirements to ensure that certain functionality can be delivered by a
corresponding platform project, including integration of subcontracted parts. Cur-
rently, the case company’s requirements database contains around 30 000 platform
system requirements and a few thousands supplier requirements. The platform system
requirements are organized into features that represent the smallest units that can be
scoped into or out from the platform project [2]. The case company develops products
using a product line engineering approach, where one platform project is the basis for
many products that reuse the platform project’s functionality and qualities [4]. Within
the platform project, the case company has defined a number of requirements engi-
neer groups called Technical Working Groups (TWGs). They are responsible for
elicitation, specification and prioritisation of high-level requirements within a specific
sub-domain. Within this industrial context, requirements architects work mainly with
platform system requirements and features. Their main responsibility is the manage-
ment of the scope of platform projects by helping TWGs to specify requirements and
project management to see all implications of the scoping decisions. The scoping
decisions are made by a Change Control Board (CCB).

3 Research Methodology

To study individual perceptions of requirements architect role at the case company,
we conducted seven semi-structured interviews [6]. Before conducting interviews, a
brainstorming and planning meeting was conducted. During this meeting, the scope of

120 K. Wnuk, B. Regnell, and C. Schrewelius

the study was agreed upon and an interview instrument was developed with a set of
questions, where the wording could be changed and the order could be modified
based upon the interviewer’s perception [6]. The third author, acting in his role as
manager for requirements architects at the case company, participated in the devel-
opment of the interview instrument and invited seven interviewees with various ex-
perience within the requirements architect role. These persons were chosen from three
sub-organizations within the case company, each responsible for products for differ-
ent market segments. It was sent out via email to all the participants in advance and
also discussed at the beginning of each interview to ensure that the scope of the inter-
view was understandable. The interviews were held during the autumn of 2007 and
varied in length between 60 and 110 minutes. All interviews were attended by two
interviewers and one interviewee. Questions were kept simple and effort was put on
avoiding leading or biased questions [6]. All interviews were transcribed. After tran-
scription, each of the interviewees received the transcripts for validation. Interviewees
analysed their transcripts in order to ensure that the interviewers heard and understood
the recordings and notes correctly. In case of misinterpretations, corrections and
comments were sent back to the researchers. The data was then imported to a spread-
sheet program to perform a content analysis [3] based on categorisation. The catego-
ries such as tasks or notion of requirements architecture quality, were chosen based on
the interview instrument topics and other emerging topics in the interviews. Addition-
ally, for each category notes describing problems and improvements were added.
Finally, the results were validated by two interviewees that gave independent com-
ments to the proposal of the tasks derived from the interviews.

4 Tasks of the Requirements Architect in the Case Company

Based on the analysis of interviews, we have identified six tasks, listed in Table 1,
that represent what is considered to be important obligations of the requirements ar-
chitect role when acting as a senior coordinator in a large-scale setting. Several tasks
(T1, T4, and T5) are directly related to change management. In order to cope with the
initial definition of the platform projects scope and later incoming change proposals
to the platform projects, requirements architects facilitate communication across

Table 1. Tasks and goals for requirements architect in the case company

Task Goal
T1: Scope management Ensure that the platform project scope changes are

addressed and that the change proposals are prepared.
T2: Gap analysis Ensure that misalignments between market require-

ments and supplier requirements are addressed.
T3: Enforce requirements
quality improvements

Check the quality of requirements. Alert if require-
ments quality improvements are needed.

T4: Drive CCB investigations Drive change proposal investigations in order to gain
understanding of the impact of the scope changes.

T5: Present the scope Present the scope of the platform project at milestones.
T6: Request requirements
architectures improvements

Ensure that the requirements structure is maintained
according to defined rules.

 Architecting and Coordinating Thousands of Requirements 121

different groups of requirements engineers. This may indicate that the complexity in
both requirements inter-dependencies and organisational structure in the large-scale
case imply hard challenges in communicating decisions about changes. The analysis
of gaps between market requirements and what is offered by technology suppliers
(T2) is increasingly complicated as the number of stakeholders on the market in-
creases and the number of technical areas that are covered gets larger.

Also, for a basic and common task such as checking the quality of requirements
(T3), interviewees express challenges related to the cohesion of complex multilayered
requirements structures that originate from multiple sources. In our case, requirements
architects have to drive complex changes (T4) that span over many technical areas and
may impact many product releases in one platform. Another challenge related to these
investigations is the ability to ensure that investigations are made by the right persons
with the right competence and that the full impact picture will be ready before CCB
decision meetings. Missing some of the aspect may have a great impact on the whole
platform project. In a large scale case, the task of presenting the current scope (T5) is
especially demanding as the requirements architect must understand both technical
aspects as well as the business and market impact of all features in order to conclude
them in a way that is meaningful to high-level management and marketing. Finally, we
report that in a case like the one we have examined, where several parallel large plat-
form projects coexist, there is an expressed need for a person with a holistic view that
has a mandate to request requirements architecture improvements (T6). In this case, the
responsibility for ensuring architectural consistency of requirements is not delegated to
the projects, but is managed across projects by requirements architects.

5 Views on Requirements Architecture and Its Quality

In our interviews with practitioners we have confirm our pre-understanding that the
concept of requirements architecture is complex and include many aspects. We have
deliberately not imposed a pre-conceived, closed definition of the concept on our
interviewees, as we wanted to base our understanding of the requirements architecture
on empirical data. We cannot say that a single, generally accepted definition of re-
quirements architecture has emerged, but our findings indicate that all interviewed
practitioners included some of the following aspects in their views on requirements
architecture: (1) the requirements entities themselves (such as features, system re-
quirements, detailed requirements, functional requirements, quality requirements, etc)
and their relationships; (2) the information structure (meta-model) of requirements
entities including (a) attribute types of entities, and (b) the relationship types includ-
ing different types of dependencies to other entities; (3) the evolution of the informa-
tion structure (a) over time and (b) across abstraction levels as entities are refined
both bottom-up and top-down; (4) the implications of organisational structures on
requirements structures; (5) the implications of process and methodology on require-
ments structures; (6) the implementation of tool support and its relation to require-
ments structures, organisation, process, methodology etc.; (7) the scalability of the
requirements structures as the number of entities increase and the interrelated set of
entities gets more complex.

122 K. Wnuk, B. Regnell, and C. Schrewelius

In our interviews with requirements architects, we also discussed the notion of
quality of requirements architectures. We started the discussion based on the analogy
of how system architecture quality supports good design and implementation of sys-
tems, and transferred this analogy to how requirements architecture quality supports
good requirements engineering. The following quality issues were identified when
analysing interview transcripts:

Understandability and cohesion. Responders expressed the opinion that a good
requirements architecture should be easy to understand and designed to enable a ho-
listic view of different types of modules and abstraction levels in order to enable easy
identification of vital information. Furthermore, the way how the structure of re-
quirements information is visualized was also mentioned by our responders as an
important factor influencing mentioned quality issues.

Robustness, integrity and enforcement of policies. An established process for
managing and architecting requirements can result in a consistent, reliable and robust
requirements architecture. Lack of clear policies and working rules may result in low
reliability of requirements as well as discrepancies in usage of the architectural poli-
cies across projects.

Extensibility, flexibility and efficient traceability. According to our responders,
a good requirements architecture should allow for controlled growth by being exten-
sible and flexible without endangering the previously mentioned qualities of robust-
ness and integrity. Cost-efficient traceability among requirements at different levels of
abstraction when continuous growth and refinement occur is important. A good bal-
ance between extensibility, flexibility and traceability on one hand and the complexity
driven by these qualities on the other hand has to be achieved in order to avoid the
risk of ending up with an unmanageable repository.

6 Conclusions

This paper presents tasks related to a role called requirements architect, which is
working with large and complex requirements repositories at the case company. We
also present practitioners views on quality attributes of the artefact called require-
ments architecture. Efficient management of large sets of information is considered to
be crucial in many disciplines. Similar to software architecture, the information model
is considered to be not only a technical blueprint for a software-intensive system, but
it also includes social, organisational, managerial and business aspects of the software
architecture [1]. At our case company, the requirements architecture is an artefact that
is managed separately, but in relation to the system architecture, and interviewees
express a range of issues that need to be addressed, both soft issues such as organisa-
tion and business models as well as technical aspects.

The requirements architect role at our case company is motivated by a perceived
need of special attention to cross-cutting issues, and inter-disciplinary communication
across sub-domains and technical areas. We found several tasks of normal require-
ments engineering practice, such as change management, scoping and specification
quality enforcement that is viewed as particularly challenging in the studied large-
scale setting, and therefore included in the responsibilities of requirements architects
acting as senior coordinators of the requirements engineering process. We also found

 Architecting and Coordinating Thousands of Requirements 123

expressions for specific quality aspects of the requirements architecture itself that are
viewed as important to support an effective and efficient management of an increas-
ingly large and complex repository.

In relation to the concept of requirements architecture, we highlight the following
areas to be considered in further research:

• Continued conceptual and empirical investigation of the notion of require-
ments architecture.

• Investigations on features of computer-aided tools for managing require-
ments architectures.

• Studies of the organisational and process aspects in relation to requirements
architectures.

• Development of assessment instruments for requirements architecture quality
and competence certification of requirements architects.

• Analysis methodology and visualisation models for requirements architec-
tures in large-scale product line engineering.

Acknowledgements. This work is supported by VINNOVA (Swedish Agency for
Innovation Systems) within the UPITER project. Special thanks to the anonymous
interviewees for their valuable time and knowledge. Thanks also to Thomas Olsson
and Lena Karlsson for the initial input on a draft version of this paper, and to Lars
Nilsson for valuable language comments

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

2. Clements, P.: Being proactive pays off. IEEE Software 19, 28–30 (2002)
3. Patton Quinn, M.: Qualitative Research & Evaluation Methods, 3rd edn. Sage Publication

Ltd., London (2002)
4. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering: Founda-

tions, Principles and Techniques. Springer, Heidelberg (2005)
5. Regnell, B., Berntsson Svensson, R., Wnuk, K.: Can We Beat the Complexity of Very

Large-Scale Requirements Engineering? In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 123–128. Springer, Heidelberg (2008)

6. Robson, C.: Real World Research, 2nd edn. Blackwell Publishing, Oxford (2002)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 124–138, 2009.
© Springer-Verlag Berlin Heidelberg 2009

BPMN-Based Specification of Task Descriptions:
Approach and Lessons Learnt*

Jose Luis de la Vara and Juan Sánchez

Centro de Investigación en Métodos de Producción de Software,
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
{jdelavara,jsanchez}@pros.upv.es

Abstract. [Context & motivation] The need of organizational modelling dur-
ing the requirements engineering process of an information system has been
widely acknowledged, and business process modelling can be considered a
must. Nonetheless, the specification of functional requirements can be inade-
quate if business processes are not properly analysed so as to elicit these re-
quirements. [Question/problem] There is a gap between business processes
and functional requirements that must be bridged in order to specify the func-
tional requirements of an information system. In addition, means of precisely
and homogeneously elicit these requirements from business processes are nec-
essary. [Principal ideas/results] The goals of this paper are: 1) to present an
approach that provides methodological guidance to properly specify functional
requirements from business processes; and 2) to report on practical experience
using the approach. The approach is based on the analysis and graphical en-
richment of BPMN diagrams for the elicitation and specification of functional
requirements in the form of task descriptions, and it has been applied in field
trials with a software development company. [Contribution] The main contri-
butions of the paper are: 1) the extension of BPMN for proper elicitation of task
descriptions; 2) the provision of detailed guidance in order to adequately use
BPMN diagrams for the specification of task descriptions; and 3) the presenta-
tion of the lessons learnt by using the approach.

Keywords: Information System, Requirements Elicitation, Requirements
Specification, BPMN, Task Description.

1 Introduction

Understanding of the application domain is essential for the requirements engineering
(RE) process of an information system (IS) for an organization. Organizational con-
cerns must drive requirements elicitation [24], and requirements must be defined in
terms of phenomena that occur in the organizational environment [28]. As a result, the
need of organizational modelling during the RE process has been widely acknowl-
edged for the last two decades (e.g. [3][9][12][22]).

* Research supported by the Spanish Government under the project SESAMO TIN2007-62894

and the program FPU AP2006-02324, and co-financed by FEDER.

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 125

Business process modelling is part of most of the organizational modelling-based
RE approaches, and it can be considered a must for IS development. ISs for organiza-
tions should manage and execute operational processes involving people, applica-
tions, and/or information sources on the basis of process models [11], and RE
approaches for their development should differ from traditional ones [1]. First, de-
tailed process models are necessary in the RE process. Second, new systems must
support new ways of (better) running an organization.

Once the desired business processes of an organization have been modelled, they
must be analysed in or order to bridge the gap that exists between business and (soft-
ware) system domains. This gap is the consequence of characteristics such as different
terminology, levels of granularity and models between the domains. The business
requirements that are specified in the business processes must be properly analysed to
elicit and specify functional requirements from them. Therefore, it is necessary to find
means that help system analysts to adequately determine the system support to busi-
ness processes.

This paper presents a RE approach (referred to as new approach hereafter) that
provides detailed methodological guidance to elicit and specify the functional re-
quirements of an IS from the business processes of an organization. The approach is
based on the extension of BPMN (Business Process Modeling Notation) [19], and its
purpose is to help system analysts specify the set of task descriptions that precisely
and homogeneously represent the functional requirements of an IS.

The new approach is the result of a collaborative project with the software devel-
opment company CARE Technologies (http://www.care-t.com), and practical experi-
ence using it is also presented. It has been used in several small/medium-size
organizations, with which field trials have been carried out in order to acquire knowl-
edge and to show that the approach can be used in practice. The new approach is
based on another RE approach [8][9] (referred to as wider approach hereafter) that
encompasses business process-centred organizational modelling, system purpose
analysis, business process reengineering (considered as improvement), and require-
ments specification. The new approach is the result of practical experience with the
wider one, from which improvements in requirements elicitation and specification
were identified and several lessons were learnt, as explained below.

The new approach starts from the modelling in BPMN of the business processes
that an organization wants to execute. The business process diagrams (BPD) are ana-
lysed and graphically enriched in collaboration with the stakeholders for the elicita-
tion of functional requirements. Finally, these requirements are specified by means of
task descriptions in textual templates, and are agreed upon with the stakeholders. The
content of the templates is derived by following a set of guidelines that are based on
the structure and automation of the business processes, and a criterion is used so that
the granularity of task descriptions is homogeneous.

We are aware that the new approach might be considered not to be very original.
Related work abounds and the problems that are addressed are not new. Nonetheless,
we think that the value (i.e. originality) of the new approach is that it deals with im-
portant issues that are not properly addressed by other approaches. It is essential to
understand, properly analyse and try to improve the business processes of an organi-
zation during the RE process, to precisely and homogeneously specify the functional
requirements of an IS from them, and to promote stakeholder involvement. Further-
more, the new approach has been defined from practical experience.

126 J.L. de la Vara and J. Sánchez

The paper is organized as follows: section 2 presents the new approach; sections 3
revises related work; section 4 describes practical experience using the approach;
finally, section 5 presents our conclusions and future work.

2 Description of the New Approach

As a result of the practical experience with the wider approach, its methodological
guidance to elicit and specify task descriptions from BPDs has been refined and im-
proved progressively. New patterns of system support to business processes have
been discovered, new elements (concepts) have been introduced to analyse these
patterns, the correspondence between the patterns and the functional requirements of
an IS has been determined, and a significance criterion for functional requirements
has been defined so that the granularity of task descriptions is homogenous.

The new approach (Fig. 1) consists of two stages: BPD enrichment and specifica-
tion of task descriptions.

In the first stage, the “to-be” BPDs of an organization are labelled according to the
system support that they will have, and the labelling is agreed upon with stakeholders.
Next, the flow objects that are executed consecutively are identified in collaboration
with stakeholders, who validate the identification. The output of this stage is the set of
enriched BPDs of the organization.

Afterwards, textual templates are filled in order to specify the set of task descrip-
tions that represents the functional requirements of an IS. This activity is carried out
from the enriched BPDs by following a set of guidelines that determine the corre-
spondence between BPD elements and the content of the textual templates. Part of the
content must be agreed upon with stakeholders, and they must check the templates to
validate the requirements.

BPMN-BASED SPECIFICATION OF TASK DESCRIPTIONS

BPDs Enrichment

To-Be BPDs

Labelled

BPDs
Guidelines

Task
descriptions

Agreement

Specification of Task
Descriptions

Validation
Agreement and

Validation

Enriched

BPDs

Modelling of

consecutive flows

Filling of

textual templates
BPD Labelling

Fig. 1. New approach for the specification of task descriptions

2.1 BPDs Enrichment

Before the first stage is developed, the business processes that an organization wants
to execute to fulfil its needs are modelled, and stakeholders collaborate in the process,
as described in [8] and [9]. BPDs are completed with the textual specification of the
business rules that have not been modelled graphically and a table that specifies the
input and output data objects of the business tasks and their states. All business rules
and data objects are not always represented graphically to facilitate the understanding
of the BPDs.

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 127

BPDs, which represent business requirements, are then analysed and graphically
enriched for the elicitation of functional requirements. System analysts have to pre-
cisely determine the system support that the business processes will have and the
execution order of its flow objects, and they do it in collaboration with the stake-
holders. These activities are explained in the following subsections.

2.1.1 BPD Labelling
In this activity, system analysts and stakeholders agree upon the automation of the
business processes. BPMN tasks, events with triggers, and gateways that depict deci-
sions are labelled according to the system support that they will have. The labels are:
“O” (out of the system), if the flow object will not be part of the IS; “IS” (controlled
by the system), if the IS will be in charge of the execution of the flow object with no
human participation; or “U” (controlled by a user), if the flow object will be executed
by a person that interacts with the IS.

On the basis of our experience, the semantics of the flow objects that will be out of
the system is clear, but the semantics of those that will be controlled by the system or
by a user might be confusing. Depending on their labels, an event happening will be
thrown or caught by the IS or by a user that interacts with the system, the fulfilment
of a gateway condition will be checked by the IS or by a user, and a task will be exe-
cuted by the IS or by a user. In the latter case, the system will also take part in the
execution of the task, but it will be executed because of the user’s initiative.

In addition, system analysts and stakeholders agree upon the business rules and
data objects that will be part of the IS.

2.1.2 Modelling of Consecutive Flows
In the second activity of the first stage, labelled BPDs are enriched by specifying
those sequence flows that are consecutive flows, i.e. those sequence flows that link
two flow objects that are executed one after another without an interruption. The
graphical representation of a consecutive flow is an arrow with two arrowheads.

This type of connection does not exist in BPMN. The purpose of its definition is to
be able to graphically represent the fact that two flow objects are always executed
consecutively. As is explained below, homogeneity of task descriptions is based on
the analysis of consecutive flows.

The identification of consecutive flows is carried out as follows. For each sequence
flow of a BPD, system analysts have to determine if the target flow object is always
executed immediately after the source flow object when a token is in the sequence
flow. If so, both flow objects are linked by means of a consecutive flow.

Stakeholders’ participation is essential in this activity. Stakeholders are the source
of information from which the execution order of the BPD elements is modelled, and
they must validate that the consecutive flows have been properly modelled according
to how the organization executes or wants to execute its business processes.

An example of enriched BPD is shown in Fig. 2. It corresponds to a fragment of
the real business process “item acquisition” of the Library and Scientific Documenta-
tion Office at Universidad Politécnica de Valencia. Due to page limitations, the com-
plete BPD is not modelled, the business process is not described in detail, and the
business rules that are specified textually and the table with the input and output data

128 J.L. de la Vara and J. Sánchez

objects are not shown. Anyway, we consider that the fragment is easy to understand,
and the lack of this information does not hinder the understanding of the new ap-
proach. The complete BPD and its description can be downloaded from
http://www.upv.es/entidades/ABDC/menu_634945c.html.

L
ib

ra
ry

 a
n

d
 S

c
ie

n
ti
fi
c

D
o

c
u
m

e
n

ta
ti
o

n
 O

ff
ic

e

L
ib

ra
ry

 E
m

p
lo

y
e

e

No

Choose a
provider

Notify
request

rejection

Request the
item

Record item
arrival

No

Yes

Item
request

Accept
request ? Item

received

Item
available?Reply from

provider

Yes

O
UU

U

U

U OO Place an
oder for the

item

Start event with a

message trigger

Defalut consecutive flow

Consecutive flow

Default sequence flow

Sequence flow

Controlled by a user

Intermediate event

with a timer trigger

Intermediate event

with a message trigger

End event

U

O

IS

U

IS

BPMN Elements Element LabelsLegend

Controlled by the system

Out of the system
Task

XOR gateway

P
o
o

l
L

a
n

e

Fig. 2. Example of enriched BPD

2.2 Specification of Task Descriptions

In the second stage of the approach, the functional requirements of an IS are elicited
and specified from the enriched BPDs. Functional requirements are specified by
means of task descriptions in a textual template whose purpose is to specify adequate
system support for business tasks. The content of the template is based on task &
support descriptions [18] and essential use cases [5], but with some slight differences.

Unlike the wider approach, the granularity of business tasks modelled in BPMN
and task descriptions may not be the same in the new approach. A task description
can support several business tasks (subtasks of the task description), and the determi-
nation of these subtasks will be based on the consecutive flows of the enriched BPDs.
A task description specifies IS support for the execution of a set of consecutive flow
objects of an enriched BPD. The set includes flow objects that represent the subtasks
of the task description, and the subtasks will be executed by the same user role and/or
by the system.

Another difference with the wider approach is the definition of a significance crite-
rion for functional requirements (task descriptions) so that their granularity is homo-
geneous and, thus, their specification is consistent and proper. The criterion is as
follows: a task description is significant if no other task description is always exe-
cuted immediately before or after the first one is executed. If there were two task
descriptions that hindered the fulfilment of this criterion, both task descriptions would
represent the same functional requirement in conjunction, so they should be specified
in the same textual template. This criterion is a result of using analysis of consecutive
flows for elicitation of task descriptions.

The sections of the textual template of a task description and the guidelines to fill
them are presented in the following subsection. The sections either are derived from
an enriched BPD or must be agreed upon with stakeholders. Table 1 shows an exam-
ple of textual template (specified from the enriched BPD shown in Fig. 2).

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 129

Table 1. Example of task description

Task Description: MANAGE ITEM REQUEST

Business Process: Item acquisition Role: Library Employee
Subtasks: Decide whether accept a request or not, Choose a provider, Request the item, Notify request rejection
Triggers: Item request
Preconditions: -
Postconditions: -

Input Output
Data Object State Data Object State

Item Request New Item request Accepted or Rejected
Provider -
Business Rules
• The period to manage an item request depends on the type of item (books: 7 working days; films: 30 working days;

magazines and journals: before 30th September)
• An item is accepted or rejected on the basis of its existing copies, loans, and the explanation of its acquisition need
• A provider is chosen on the basis of its delivery time, cost and complementary services

User Intention System Responsibility
 Normal

2. Accept the request

4. Choose a provider
5. Request the item

1. Show item request details

3. Show the providers

6. Store the information

 Alternatives
2.a.1. Reject the request

2.a.3. Notify the rejection (End)

2.a.2. Store the rejection

 Extensions
- -

2.2.1 Filling of Textual Templates
Several guidelines have been defined to fill the textual template of a task description.
The guidelines specify what BPD elements correspond to the content of a task de-
scription, and there is a guideline to fill each section of a textual template. We are
aware that some guidelines might be difficult to understand without an example, but it
is not possible to exemplify each guideline due to page limitations. We are also aware
that some parts of the explanation of the guidelines may be intuitive or well-known
for some readers, but we have dealt with cases in which the understanding was not as
simple as expected and led to misinterpretation.
Name

If a task description has only a subtask, then its name is the same as the name of
the subtask. Otherwise, the name must be agreed upon with the stakeholders.
Business Process

The business process of a task description corresponds to the name of the enriched
BPD from which the content of the task description is specified.
Role

The role of a task description is the system if all its subtasks are controlled by the
system. Otherwise, the role is the participant in the business process of the task de-
scription whose lane contains the flow objects from which the subtasks of the task
description that will be controlled by a user have been specified.
Subtasks

The subtasks of a task description are the flow objects that denote subtasks that
will be supported by the IS. These flow objects are the BPD tasks that will be con-
trolled by the IS or a user, and the gateways and “throwing” events that will be con-
trolled by a user.

130 J.L. de la Vara and J. Sánchez

Triggers
The triggers of a task description are the flow objects that precede the first of its

subtasks, cause the need to execute the task description, and will be controlled by the
IS. These flow objects are the events that will be controlled by the system, and the
gateways that will be controlled by the system if the role is the system.
Preconditions

The preconditions of a task description are the flow objects that precede the first of
its subtasks and denote conditions that must be fulfilled before the task description
can be executed and will be controlled by the IS. These flow objects are the “catch-
ing” events that will be controlled by a user, and the gateways that will be controlled
by the system if the role is not the system.
Postconditions

The postconditions of a task description are the flow objects that follow the last of
its subtasks and denote conditions that must be fulfilled after the task description is
executed and will be controlled by the IS. These flow objects are the “throwing”
events that will be controlled by the system, and the gateways that will be controlled
by the system and can make the task description iterate.

Triggers, preconditions and postconditions can be combined conjunctively and
disjunctively.
Input

The input of a task description is the data objects that are input of the flow objects
from which its subtasks were defined and will be part of the IS.
Output

The output of a task description is the data objects that are output of the flow ob-
jects from which its subtasks were defined and will be part of the IS.
Business Rules

The business rules of a task description are the business rules that were specified
textually in its business process, will be part of the IS, and affect the execution of the
task description. They must be agreed upon with the stakeholders.
Normal (User Intention and System Responsibility)

The normal user intention and system responsibility of a task description are the set
of actions that a user and the system carries out during the normal execution of the task
description (set of subtasks of the task description that are always executed in its busi-
ness process, or that are the default flow of a gateway and the branches that follow the
gateway are not always executed in the business process of the task description).

Normal user intention and system responsibility must be agreed upon with the
stakeholders, and their actions are jointly ordered according to their execution.
Alternatives

The alternatives of a task description are the set of actions that a user and/or the
system may carry out when executing it, are not part of the normal execution of the
task description, and are an alternative to the actions of normal user intention and/or
system responsibility (i.e. actions that imply that some action of normal user intention
and/or system responsibility is not executed and substitute it).

The actions of alternatives must be agreed upon with the stakeholders. They are or-
dered by means of three components: the same number as the first action that substi-
tute; a letter to distinguish among alternatives; and another number to order the actions.
The action of normal user intention or system responsibility that follows the last action
of an alternative is put in brackets.

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 131

Extensions
The extensions of a task description are the set of actions that a user and/or the sys-

tem may carry out when executing it, are not part of the normal execution of the task
descriptions, and are an extension to the actions of normal user intention and/or sys-
tem responsibility (i.e. additional actions that may be executed but do not imply that
some action of normal user intention and/or system responsibility is not executed).

The actions of extensions must be agreed upon with the stakeholders. They are or-
dered like alternatives, but their first number corresponds to the action of normal user
intention or system responsibility that precedes its actions.

3 Related Work

Business process modelling is part of most of the organizational modelling-based RE
approaches for IS development, such as EKD [3], ARIS [22] and the UML-based
approaches (e.g. [12]). There exist more approaches, but we consider these ap-
proaches to be sufficient to illustrate related work.

Some weaknesses these approaches are that they lack precise guidance for re-
quirements elicitation and specification (they state what must be elicited or specified,
but they do not explain in detail how to do it) and their specification of functional
requirements might be considered inadequate because they just use a use case dia-
gram or other simple model and do not provide guidelines for homogeneous granular-
ity. In addition, ARIS and the UML-based approaches lack focus on business process
improvement, and the diagrams of the UML-based approaches might be difficult for
stakeholders to use and understand [23].

With regard to other RE approaches, scenario-based approaches [2] can be consid-
ered to be close to our approach. On the one hand, their purpose is to find possible
ways to use a system, which is a similar purpose to normal user intention and system
responsibility, alternatives and extensions. On the other hand, scenarios usually use
the language of the application domain, facilitate agreement about system support to
the business processes, and inter-relate system functionality and business processes
[27]. As other authors [17], we think that the main weakness of scenario-based ap-
proaches is that they do not precisely explain how to obtain the scenarios and where
their content comes from.

The original version of Lauesen´s task descriptions [18] and the new approach
shares two main principles: specify adequate support for business tasks and delay the
splitting of the work between the system and the users. Lauesen’s task descriptions
can be considered similar or equivalent to “to-be” BPDs of our approach, and his task
& support descriptions to our tasks descriptions. The main differences are that the
new approach uses graphical models for requirements elicitation, specifies system
support on the basis of essential use cases, differentiates between alternatives and
extensions, and extends the content of the original textual template with information
such as business rules and input and output.

With regard to the definition of a criterion for homogeneous granularity and sig-
nificance of functional requirements, this issue is missing in most of RE approaches.
Nonetheless, there exist well-known approaches that provide criteria in order to as-
sure that functional requirements are significant (such as Cockburn’s goals [4] or

132 J.L. de la Vara and J. Sánchez

Lauesen’s closure and “coffee break test” [18]). As other approaches (e.g. [13]), the
difference of the new approach is that its guidance for homogeneity is more detailed,
so we think that it facilitates analysts’ work.

4 Practical Experience

This section presents the practical experience using the new approach with CARE
Technologies and explains the lessons learnt.

4.1 Motivation of the Project

The collaborative project with CARE started in 2005, and its purpose is to link busi-
ness and software domains in order to solve problems that the company has experi-
enced and are related to the RE process. These problems arise when system analysts
are inexperienced, they model large or complex systems, or the organization for
which an IS is going to be developed is part of a domain with which they have not
previously dealt.

The company uses OO-Method [20], a methodology for automatic software gen-
eration based on data-centred conceptual modelling. Among other advantages, this
methodology can decrease development time and increase productivity. However,
these advantages might disappear if problems related to the RE process arise. System
analysts might have difficulty in modelling systems, and systems are sometimes de-
ployed later than expected.

4.2 RE Practices in CARE Technologies

After analyzing its requirements practices, we argued that the company did not
properly address business and system purpose understanding, communication with
stakeholders, and, therefore, requirements elicitation, specification and validation.
Furthermore, problems in subsequent development stages may occur.

The conceptual schemas of OO-Method consist mainly of a class diagram that is
enriched with information about methods execution. The class diagram is the main
system model, and analysts just provide some unstructured textual descriptions about
the requirements and validate them on the class diagram or on the application. Senior
analysts feel comfortable with this technique, but we think it should be improved:

− Class diagrams alone might not be appropriate for communicating and validating
requirements, there are few studies addressing the ability of stakeholders to under-
stand class models, and they can be complex for people that have not been trained
in object-oriented modelling [10]. In addition, objects might not be a good way of
thinking about an application domain [26].

− Requirements validation should be carried out with reference to organizational
concerns instead of with reference to system functionality [21]. Furthermore, re-
quirements validation on the generated applications causes the late detection of er-
rors, thus their correction might be much more expensive than if errors had been
detected in earlier development stages.

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 133

− Maintenance might be complex for systems whose analysts do not longer work for
CARE. System documentation is usually scarce and inadequate, so system modifi-
cation can be very difficult for new analysts of a system when they just have a
class diagram and the application to understand the system and its requirements.

CARE has previously tried to solve its requirements problems, and three ap-
proaches have been developed as a result of the collaboration between the company
and Universidad Politécnica de Valencia. However, the approaches have weaknesses
and most of CARE analysts think that the benefits of their use against their time cost
are not worth, so the company thinks that they do not fit its needs:

− Modelling of use cases and sequence diagrams [16]: this approach is solution-
oriented, so it does not properly analyse application domain; in addition, its dia-
grams might be difficult for stakeholders to validate, and they are too detailed (the
operations that are specified are equivalent to class methods in many cases).

− Modelling with the i* framework [14]: as acknowledged by the proponents of the
approach [15], i* models need to improve features such as granularity and refine-
ment; furthermore, they might be too complex for stakeholders to understand and
for non-experienced analysts to use.

− Analysis of business processes, goal trees and use cases [7]: goal trees might be too
complex and thus hard to use and understand, and detailed guidance to bridge the
gap between use cases and the other models is necessary; nonetheless, this ap-
proach can be regarded as the direct antecedent of the wider approach.

4.3 Application of the Approach

A very positive point of collaborating with CARE is that it belongs to a holding com-
pany (http://www.olivanova.com). As a result, other organizations of this company
have been used to evaluate the new approach. CARE had developed software for the
organizations previously, so the technique they usually use, the RE approaches of the
previous subsection and our approach could be compared.

As mentioned above, the wider approach and the new one have been applied in
field trials to acquire knowledge and to show that they can be used in practice. Both
stakeholders of the organizations (managers, employees and end-users) and CARE
analysts participated. First, we held meetings with stakeholders to model the organiza-
tions. They described the activity of the organizations, and organizational documenta-
tion was compiled. BPDs were then modelled and stakeholders validated the
diagrams. Several iterations were needed to obtain the final version. Next, analysis of
system purpose was carried out to find out means to meet systems goals and deter-
mine how they affected business processes. BPDs were labelled, and functional re-
quirements were specified and validated. More details about application of the wider
approach can be found in [8] and [9].

4.4 Lessons Learnt

This subsection summarizes and discusses the main lessons that have been learnt
during practical experience and are related to the new approach. Some of them could
be used for other RE approaches (lessons 1, 2, 3, 4, 5, 6 and 7), and some of them are
specific to the new approach (lessons 8, 9 and 10).

134 J.L. de la Vara and J. Sánchez

1) Detailed methodological guidance is essential for the use of a RE approach
Lack of detailed methodological guidance has been one of the main problems of

the RE approaches that CARE has tried to use (both the approaches of subsection 4.2
and other existing approaches). The approaches explain what information has to be
compiled, but system analysts have problems when using them because they do not
know exactly how to compile it.

This problem has been addressed in the new approach. Detailed guidance has been
provided so that analysts do not get confused when using the approach and this use is
as straightforward as possible.
2) BPMN facilitates communication

One of the first facts that CARE requested to be proved was the claim that BPMN
is easy to use and understand and, thus, facilitates communication. Communication
was addressed from two viewpoints: communication between analysts and stake-
holders, and communication among analysts.

When modelling the business processes of the organization, stakeholders get used
to BPMN even quicker than we expected. After one or two meetings, they were able
to completely understand the BPDs (although it must be said that we have not used
the complete notation in any field trial), and they even fixed modelling errors.

With regard to the communication among analysts, analysts that were not expert in
BPMN were asked to interpret BPDs of organizations that they did not know in depth.
The result was that they understood them easily most of times, and they just had prob-
lems when documentation of the organizational activity (business rules, data ob-
jects…) was insufficient.
3) Notation extension and graphical representation can facilitate understanding

When proposing to extend BPMN graphically with labels for flow objects and with
consecutive flow, some analysts didn’t like the idea. They wondered if more notation
elements were really necessary given that BPMN is quite extensive, and they asked if
there were no mechanisms in BPMN to specify the automation of business processes.
These mechanisms exist in the form of attributes, but just for BPMN tasks.

Since we argued that labelling and modelling of consecutive flows were necessary
for the new approach, analyst finally agreed upon their use. Furthermore, after using
these elements, they acknowledged that these graphical elements helped them to bet-
ter understand the BPDs, and thus BPMN expressiveness was improved.

Stakeholders also liked the graphical extensions. Understanding of the proposed
solution (system support) for their business processes was easy, much higher than if
new graphical elements had not been used (i.e. using or defining attributes of the
BPMN elements).

Nonetheless, we acknowledge that other mechanisms could have been adopted, and
some of them were analysed. For example, instead of defining consecutive flow,
BPMN sub-process could have been used for encapsulation of consecutive flow ob-
jects. However, we finally decided to use sub-processes just as mechanism for re-
finement and decomposition of business processes without imposing any constraint to
the execution order of their flow objects, as BPMN does.
4) There exists a semantic gap between BPMN and functional requirements

The existence of a semantic gap between business and system domains that must
be bridged has been acknowledged commonly, and this gap has become evident for us
as a result of using BPMN for the elicitation of functional requirements.

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 135

When BPMN is used from a business perspective (it might also be used from a sys-
tem perspective), the semantics of its elements is different from the semantics of the
elements of a task description. This difference is clear if the guidelines for filling the
textual template of a task template are analysed. For example, depending on the sys-
tem support to them, a BPMN event with a trigger may not correspond to the trigger
of a task description, and the subtasks of a task description do not only correspond to
BPMN tasks.
5) Granularities of business tasks and of functional requirements can be differ-
rent, and requirements homogeneity is essential for specification consistency

We think that the main refinement in the wider approach has been the differentia-
tion between the granularities of business tasks and of task descriptions. They were
the same initially, but we realised that granularities could be different and task de-
scriptions would be inconsistently specified if their granularities were not homogene-
ous. Using Table 1 as example, we consider that it would be nonsense to specify four
task descriptions (one per subtask) and, therefore, four functional requirements from
it. Since the subtasks are always executed consecutively, we think that their specifica-
tion as functional requirements is significant as a whole (an only requirement), and
not as separate requirements. As a result of the granularity change, the alternatives
and extensions sections of the textual templates were included. In addition, using the
initial granularity, the number of functional requirements (task descriptions) was
higher, so more difficult to be managed.

However, a problem arose: how detailed should then a business task be? On the
one hand, granularity should allow task descriptions to be homogenously specified.
On the other, stakeholders should feel comfortable with granularity so that they
thought that BPDs were detailed enough to properly depict the organizational activity.
Finally, we decided that business tasks should be as detailed as stakeholders desired
(felt comfortable with). Using Fig. 2 as example, a stakeholder might feel comfortable
if the business tasks “Choose a provider” and “Request the item” were modelled as an
only task, but another might not.

Afterwards, we conceived the concept of consecutive flow and defined the signifi-
cance criterion as mechanisms for homogeneous specification of task descriptions.
Evidently, depending on the granularity of business tasks, task descriptions will sup-
port more or fewer subtasks, and less or more interaction between a user and a system
will have to be discovered.
6) The use of a RE approach will depend on the characteristics of the projects

When asking analysts about the usefulness of the new approach, we obtained dif-
ferent opinions. Although all of them stated that the approach allowed them to better
understand the requirements, there were some senior analysts who did not think that
the approach could improve their job significantly and would probably not use it.

These analysts are very skilled in using OO-Method and interacting with custom-
ers, and they usually model a system while the customer describes what the system
should do, so they can quickly generate it, validate it, and fix it if needed. However,
most of the junior analysts, who have less experience in dealing with customers and,
therefore, in understanding what is needed, considered that the new approach could
really help them.

We think that these comments are a reflection of common practices in IS develop-
ment. Models are only used when they are believed to be useful [6]. In our case, some

136 J.L. de la Vara and J. Sánchez

senior analysts do not think that the new approach can accelerate their job or improve
the final system, whereas junior analysts think that it can improve their performance.

In summary, the use of our approach by system analysts will depend on their ex-
perience and knowledge about the application domain, and on system complexity.
7) It is essential to link RE approaches to subsequent development stages

Although we consider that the wider approach and the new one can solve the prob-
lems that have been initially addressed in the project, they must be linked to OO-
Method to be useful for CARE. A RE approach is not useful per se, but it must be
appropriate for the software development process into which it is integrated [25].

Furthermore, this link will improve the approaches. They are mainly centred on the
analysis of the behaviour (business processes) of an organization, but they must also
address its data. Thus, data modelling will be carried out on the basis of OO-Method.
8) Alternatives of task modelling in BPMN do not affect task descriptions

When using BPMN, a business task can be modelled in different ways. For exam-
ple, the gateway “accept request” shown in Fig. 2 could have been modelled as a
BPMN task depending on the preferences of system analysts or stakeholders. How-
ever, this fact does not affect the specification of task descriptions. Unlike the existing
guidance of the wider approach, the existence of alternative ways of modelling busi-
ness tasks (which will be subtasks of task descriptions) in BPMN has been analysed
and included in the guidelines of the new approach.
9) The filling of the textual templates of the task descriptions is variable

The content of the textual templates of the task descriptions depends on the BPDs.
Their content comes from them, and their correspondence is determined by guide-
lines. However, BPD modelling is variable, and therefore the textual templates also
are. For example, a business rule might be modelled: 1) as a gateway; or 2) textually
as documentation of a BPD. Therefore, this business rule would correspond to: 1) to a
trigger, precondition, postcondition or a place that originates an alternative or an ex-
tension; or 2) to a business rule of a textual template.

However, we do not think that variability of BPD modelling and, thus, of the con-
tent of the textual templates is a weakness or problem of the new approach. What is
important for us is that all the organizational concerns that will affect or will be con-
trolled by an IS (e.g. business rules) are specified in the task descriptions, regardless
of where they are specified.

Furthermore, guidelines advise analysts how to fill the textual templates, but do not
impose a unique way of filling. We have presented the set of guidelines that we like
and we have agreed upon with CARE, but we are aware that other authors could like
other guidelines. For example, other authors could prefer not to specify input and
output data objects and to consider them as pre and postconditions, respectively.
10) The practical experience has limitations

The practical experience that has been presented has several limitations. Apart
from the limitations reported in [8] and [9] for the wider approach (use in more and
larger projects, and formal surveys and experiments), the new approach must be used
in projects in which a legacy system exists so that the approach is evaluated in this
situation. We are considering the options of including the description of legacy sys-
tems as part of organizational modelling and of defining a new label for BPD ele-
ments (“L”, controlled by a legacy systems), but they must be put into practice in
order to evaluate them and find out the effect on the current methodological guidance.

 BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt 137

5 Conclusions and Future Work

This paper has presented an approach that provides detailed methodological guidance
in order to properly elicit and specify task descriptions for an IS from business proc-
esses modelled in BPMN. The approach represents a deep refinement and impro-
vement of previous guidance thanks to its use with a software development company,
and details about practical experience and lessons learnt have been presented.

The approach has analysed the use of BPMN for the specification of task descrip-
tions. As a result, the gap between BPMN and task descriptions has been bridged,
BPMN has been extended graphically by specifying the automation of its elements with
labels and by defining the concept of consecutive flow, and BPMN expressiveness has
been improved. Task descriptions are specified in a standard template from the analysis
of BPDs thanks to a set of guidelines that determines the correspondence between the
business processes and the system support that they need, and a significance criterion
for task descriptions has been presented to specify them homogeneously.

In addition, stakeholders collaborate in developing the activities of the approach.
They participate actively by validating models, and by agreeing upon the decisions on
the automation of business processes and on the specification of functional require-
ments with system analysts.

Apart from the improvements that have been pointed out above (link to OO-
Method, use of the approach with legacy systems …), in our future work we want to
develop a tool that automates the use of the approach and introduce a technique for
the analysis of system non-functional requirements. We also want to extend the tex-
tual template of the task descriptions in order to derive abstract user interfaces that
facilitate requirements validation. Finally, since the approach is being and will be
applied in new projects, refinements and improvements might be found.

Acknowledgements. The authors would like to thank Anne Person, Martin Glinz,
Patrick Heymans and the reviewers for their useful comments and suggestions for the
final version of the paper.

References

1. Alexander, I., Bider, I., Regev, G. (eds.): REBPS 2003: Motivation, Objectives and Over-
view. Message from the Workshop Organizers. REBPS 2003, CAiSE 2003 Workshops,
Klagenfurt/Velden, Austria (2003)

2. Alexander, I., Maiden, N.: Scenarios, Stories, Use Cases. John Wiley and Sons, Chichester
(2004)

3. Bubenko, J., Persson, A., Stirna, J.: EKD User Guide (2001),
http://www.dsv.su.se/~js

4. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2001)
5. Constantine, L., Lockwood, L.: Software for Use. Addison-Wesley, Reading (1999)
6. Davis, I., et al.: How do practitioners use conceptual modelling in practice? Data &

Knowledge Engineering 58(3), 359–380 (2006)
7. de la Vara, J.L., Sánchez, J.: Business process-driven requirements engineering: a goal-

based approach. In: BPMDS 2007, Trondheim, Norway (2007)

138 J.L. de la Vara and J. Sánchez

8. de la Vara, J.L., Sánchez, J.: Improving Requirements Analysis through Business Process
Modelling: A Participative Approach. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008,
Innsbruck, Austria. LNBIP, vol. 7, pp. 167–178. Springer, Heidelberg (2008)

9. de la Vara, J.L., Sánchez, J., Pastor, Ó.: Business Process Modelling and Purpose Analysis
for Requirements Analysis of Information Systems. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 213–227. Springer, Heidelberg (2008)

10. Dobing, B., Parsons, J.: Understanding the role of use cases in UML: a review and re-
search agenda. Journal of Database Management 11(4), 28–36 (2000)

11. Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-Aware Information Systems.
Wiley, Chichester (2005)

12. Eriksson, H., Penker, M.: Business Modeling with UML. John Wiley and Sons, Chichester
(2000)

13. España, S., González, A., Pastor, Ó.: Communication Analysis: a Requirements Elicitation
Approach for Information Systems. In: CAiSE 2009, Amsterdam, Netherlands (2009)

14. Estrada, H., Martínez, A., Pastor, Ó.: Goal-Based Business Modeling Oriented towards
Late Requirements Generation. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann,
P. (eds.) ER 2003. LNCS, vol. 2813, pp. 277–290. Springer, Heidelberg (2003)

15. Estrada, H., et al.: An Empirical Evaluation of the i* Framework in a Model-Based Soft-
ware Generation Environment. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

16. Insfran, E., Pastor, Ó., Wieringa, R.: Requirements Engineering-Based Conceptual Model-
ling. Requirements Engineering 7(2), 61–72 (2002)

17. Jones, S., et al.: Informing the Specification of a Large-Scale Socio-technical System with
Models of Human Activity. In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007.
LNCS, vol. 4542, pp. 175–189. Springer, Heidelberg (2007)

18. Lauesen, S.: Task Descriptions as Functional Requirements. IEEE Software 20(2), 58–65
(2003)

19. OMG: Business Process Modeling Notation (BPMN) Specification v.1.1 (2008),
http://www.bpmn.org

20. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg
(2007)

21. Rolland, C., Prakash, N.: From conceptual modelling to requirements engineering. Annals
of Software Engineering 10(1-4), 151–176 (2000)

22. Scheer, A.W.: Aris - Business Process Modeling, 3rd edn. Springer, Heidelberg (2000)
23. Siau, K., Cao, Q.: Unified modeling language – a complexity analysis. Journal of Database

Management 12(1), 26–34 (2001)
24. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley,

Chichester (1997)
25. Verner, J., et al.: Requirements engineering and software project success: an industrial sur-

vey in Australia and the U.S. Australasian Journal of Information Systems 13(1) (2005)
26. Vessey, I., Coner, S.: Requirements Specification: Learning Objects, Process and Data

Methodologies. Communications of the ACM 37(5), 102–113 (1994)
27. Weidenhaupt, K., et al.: Scenarios in System Development: Current Practice. IEEE Soft-

ware 15(2), 34–45 (1998)
28. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM Transac-

tions on Software Engineering and Methodology 6(1), 1–30 (1997)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 139–146, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Clarifying Non-functional Requirements to
Improve User Acceptance – Experience at Siemens

Christoph Marhold1, Clotilde Rohleder1,2, Camille Salinesi2, and Joerg Doerr3

1 Siemens PL (DE) GmbH, Lina-Ammon-Strasse 22, D-90471 Nuremberg
2 CRI - Université Paris 1, 90, rue de Tolbiac, F-75013 Paris

3 Fraunhofer Institute Experimental Software Engineering, D-67663 Kaiserslautern
{christoph.marhold,clotilde.rohleder}@siemens.com,

camille.salinesi@univ-paris1.fr, joerg.doerr@iese.fraunhofer.de

Abstract. [Context and motivation] The starting point for software develop-
ment is usually the system requirements. The requirements, especially non-
functional requirements specified in a document are often incomplete and
inconsistent with the initial user needs and expectations. [Question/problem]
Experience at Siemens showed us that programmers working on software de-
velopment often have trouble interpreting under-specified non-functional re-
quirements, resulting in code that does not meet the users’ quality expectations
and contains “quality faults” that can only be detected later through expensive
user acceptance testing activities. [Principal ideas/results] In this problem
statement paper, we investigate the need for clarifying non-functional require-
ments in software specifications to improve user acceptance. In particular we
focus on establishing the role of non-functional requirements on user accep-
tance. [Contribution] Our contribution is that we emphasize the need for a sys-
tematic empirical study in this area. We propose a possible set-up where a
number of hypotheses have been developed that a systematic experiment will
help to validate. Our work is based on industrial experiments at Siemens, in the
particular context of the installation of a Product Lifecycle Management (PLM)
system.

Keywords: User Acceptance, Non-Functional Requirements.

1 Introduction

It is crucial for implementers that the systems they develop are finally accepted by
their users. New systems must therefore meet explicit and implicit criteria for
acceptance. Experience shows that user non-acceptance originates more often from
inadequate non-functional requirements (NFR) more than from problems with
functional requirements [6]. There are many NFR-related causes of user non-
satisfaction: for example ambiguous, incomplete, wishful thinking, inconsistent,
unusable, silent, under-specified or under-sized NFR. From users’ point of view,
NFRs are qualities that the system must show. In practice, users are unsatisfied
because the system does not achieve their expectation in terms of quality: the

140 C. Marhold et al.

perceived quality does not match the expected quality. Generally errors detected
during user acceptance tests are reported as bugs. But in fact, non-acceptance can
arise from many other issues than bugs. In this paper, we refer to quality as defined in
the ISO9126 standard [13] that classifies NFRs as Software Quality tree (Fig. 1), and
distinguishes between the internal/external qualities of systems, and quality in use.

Fig. 1. ISO9126 Software Quality Tree

One major hypothesis underlying our work is that the latter is influenced by the
former. Our vision is to significantly increase user acceptance of complex systems in
better implementating quality goals (in the shape of an NFR). To our knowledge,
there is surprisingly little research to date on the mechanisms, technologies and
attitudes that address the impact of non-functional requirements on user acceptance.
We have therefore decided to undertake a research work on this topic.

This paper is the first of a series of investigations of the impact on user
acceptance of a methodology for clarification of non-functional requirements using
an empirical approach. The paper has two parts: In the first part, we introduce the
domain of PLM, and report Siemens's experience and view about critical factors of
user acceptance while installing PLM systems, and about the perception of the
importance of NFR in these projects. The second part of the paper uses this analysis
of past experience at Siemens to draw the basis for a series of systematic
experiements about the correlation between NFRs and user acceptance. The origi-
nality of the paper is twofold (a) it is an industry experience based exploration of a
fundamental RE problem, and (b) it explores an issue that has received so far little
attention in RE research. This paper reports early results from our analysis in the
industrial context of PLM. In the long term, we hope to be able to develop a method
that helps predict user acceptance for any kind of complex system based on an
analysis of NFR specifications.

The paper is organized as follows: Section 2 describes the research problem in the
PLM context. Section 3 presents the need for an empirical study. Related works and
conclusions are given respectively in Section 4 and Section 5.

 Clarifying Non-functional Requirements 141

2 User Acceptance and NFR Specification in the PLM Context

2.1 Challenges of PLM Systems Acceptance by Users

Product lifecycle management (PLM) is “the process of managing the entire lifecycle
of a product from its conception, through design and manufacture, to service and
disposal. PLM integrates people, data, processes and business systems and provides a
product information backbone for companies and their extended enterprise” [2].
Installing a PLM system implies –like with other complex COTS such as ERPs –
some kind of matching between users’ requirements and the requirements that the
system is able to satisfy [20]. Fig. 2 shows that PLM is a strategic business approach
that applies a consistent set of business solution in support of collaboration creation,
management, dissemination, and use of product definition information across the
extended enterprise from concept to end of life [2].

Fig. 2. Overview PLM Product Lifecycle Management [9]

The worldwide PLM applications market in 2007 amounted to $ 8.7 billion. There
is no doubt that PLM is now broadly valued by large manufacturers as well as by
small and medium-sized business. Cost, effort, time and complexity of implementing
a PLM system can be compared to those for implementing an ERP system. Siemens's
experience of implementing its PLM Teamcenter solution showed that the user accep-
tance tests had best results when non-functional requirements on response time or
ease of use had been specified prior to implementation. PLM experts reported bad
user acceptance in projects where the specification of non-functional requirements
had been focused only on technical non-functional requirements or where user ori-
ented non-functional requirements [14] had been insufficiently specified. Time and
efforts spent in projects for correcting the final software product to improve user ac-
ceptance (projects of type A) compared to time and efforts spent in projects where
more attention was paid to specifying sufficiently all NFRs to ensure user acceptance
(projects of type B) was evaluated to be around 100. Moreover, we observed that the
level of user acceptance reported in projects of type A has never reached the same
level than the user acceptance reported in projects of type B. PLM experts at Siemens
report that there is a correlation between specifying non-functional requirements and

142 C. Marhold et al.

improving user acceptance. Developers and technical project stakeholders with direct
contact with customers are asking for more formality in NFR specification, whereas
project managers responsible for budgets want less NFR formalization.

2.2 State of the Practice on NFR Specification for PLM System Installation

In practice, although one could assume that some care is taken when writing down the
initial requirements including the NFRs while implementing such a complex system
as a PLM, the role of a clear specification of the NFRs is usually undermined.
Besides, user acceptance test documents tend to be little more than bug reports. We
observed that in fact, it is often assumed that a lot of quality information is obvious at
this time of the project or is agreed verbally. The main purpose of a PLM system is to
enable collaboration among users. PLM systems handle a large collection of
collaborative data (requirements specifications, simulation data, design 2D files, 3D
models, bill of material, production plans, sales and marketing data, logistics, etc)
from the early stage of product development until the maintenance phase. As a result,
PLM systems have extremely diverse kinds of users: requirements engineers, CAD
designers, CAE and CAM engineers, ERP users, maintenance technicians, etc. Each
have specific expectations with respect to the PLM tool, not only in terms of
functionality, but also in terms of ergonomy, performance, interoperability with other
systems, and ability to support business goals. Besides, PLM systems must handle
extremely different fields of application which results in extremely different NFR
priorities [19]. For example in OEM Automotive Supplier sector, NFR “Portability”
has “absolute” priority because of multi CAD systems (NX, ProE, CATIA, etc.) on
different platform infrastructures (Windows, SUN, IBM, HP) used by key PLM users,
whereas in the field of Defense the NFR “Security” comes first.

3 Empirical Investigation – Design and Result

3.1 Research Questions of Interest and Hypotheses

We decided to undertake an empirical investigation of the relationship between NFRs
and user acceptance for several reasons. Besides (i) to assess the usefulness of formal
NFR specification models, we are interested in (ii) evaluating whether meeting NFRs
achieves better results than acceptance tests and (iii) determining the cost, in terms of
extra efforts, to get user acceptance if NFRs are not adequately considered. Overall,
the purpose of our empirical investigation is to determine the influence of NFR
related factors on the acceptance by users of enterprise-wide systems such as PLM,
ERP, etc. The investigation is split in two phases: an initial study, and a series of
interviews. The initial study aims at exploring the relationship between NFR
specifications and user acceptance in a qualitative way. The final result expected from
this study is a series of hypotheses that can be quantitatively validated. This study is
qualitative. It is mostly based on expert feedback and lessons learned from PLM
installation experiences. The purpose of interviews is to validate quantitatively the
hypotheses specified during the empirical study phase, and based on the results, to
develop a systematic method that would help predict user acceptance from NFRs.
Interviews during this second phase will be undertaken both with users and

 Clarifying Non-functional Requirements 143

developers of the PLM system. The questions that will be asked will be about their
perception of system in relationship with NFRs, under the same perspective as
defined in our hypotheses. Both the initial study and the questions raised during
interviews have to be designed to deal with the following two research questions:
RQ1: what are the non functional-related factors that influence user acceptance of
enterprise-wide systems such as PML? RQ2: what are the influence flows from early
requirements specifications down to user acceptance?

3.2 Possible Set-Up of an Empirical Study

We should be able to determine the correlation between the clarity of NFRs and user
acceptance in setting a number of hypotheses that the interviews will help to validate.
Based on the aforementioned return on experience, we drew a series of hypotheses of
potential interest. For feasibility reasons, we reduced the list to 3 hypotheses as follows.

H1: Quality of non-functional requirements specification influences user acceptance

Experience: One customer specified following requirement concerning PLM
Graphical User Interface: “GUI should be very simple and attractive for informational
users”. Developers needed to know if a complete new GUI had to be developed or if
the current ones could be customized to be accepted by the informational users. The
requirements had to be specified more precisely: how could the GUI be more
attractive for the informational users? The quality of specifications of non-functional
requirements seems to help programmers better understand the non-functional
requirements in comparison with textual or semi structured descriptions.

H2: User acceptance increases when users are involved in the NFR priorization

Experience: in the preliminary phase of specifications –Prove of Concept- the users
are committed in the weighting of non-functional requirements. In that phase, we pre-
align the prioritizations of non-functional requirements according to the expectations.

H3: Improving user acceptance is not a continuous function of satisficing NFRs

Experience shows that user acceptance has a maximum level to be reached. There
is a maximum limit of efforts that should be invested in satisficing NFRs to get
maximized user acceptance. If the effort goes further, the user acceptance will never
be better.

These hypotheses shall be checked in a systematic experiment. We need to compare
efforts and time spent in getting the mile stones user acceptance test within different
projects having different quality of specifications. We aim to work in test-driven
development and search how much this emphasizes the contribution of testing and test
cases, when their construction anticipates the actual development of the code. The
strategy of empirical experiment is still in discussion. The advantage of performing
case studies with focus groups would provide detailed feedback and valuable informa-
tion. But we have to check if the results are able to be generalized to other PLM
groups. If this study proves the importance of meeting the NFRs to improve the user
acceptance, we should develop methods within PLM delivery methodology that
advocates an expressive documentation form of the NFRs.

144 C. Marhold et al.

4 Related Works

Improving user acceptance is an important issue in industry. The issues met to install
PLM systems may not be very different from the ones met to maintain an Information
System, to personalize ERP or to create new market product. The literature proposes
different research approaches to address user acceptance. Some approaches consist in
surveys with the goal to assess system acceptance. For example, [16] defines a system
acceptance indicator (SAI) and [18] and [5] propose similar approaches. The activity of
interest [18] is the integration of an extant soft-system (human workforce) and the
modified hard-system (IT system) [5]. Our approach is new because we adopt a re-
quirement-driven point of view, whereas the aforementioned approaches focus on
social and psychological and technical aspects such as HC interaction within system
implementation. The importance of clarifying non-functional requirements is also a
topic of interest in different areas of Requirements Engineering. For example, [10],
[11] proposes to represent the NFRs as clouds. [15] used similar goal representation to
visualize quality components. [3] [4] propose to represent the non-functional
requirements by goals according to the decomposition methods of [3] and [1]. [14]
focussed on user oriented non-functional requirements but did not mention user
acceptance. Potts [21] used the term ‘fitness for use’ to designate the concept. ‘Fitness’
has been studied under different perspectives and was considered as a concept per se
that can be modeled by [20]. Melnik’s study [17] focused on the use of tables called Fit
user acceptance tests for specifying functional requirements. Our approach is different
because we are not starting from the user acceptance test to clarify functional require-
ments. We wish to get enough expertise to know how to specify requirements, in par-
ticular non-functional requirements, such that they will favourably impact user accep-
tance. We could also refer to methods like the AMUSE methods [6], [7], [8] where the
results are not tailored to the medical domain or discussions on the nature of NFRs like
in [12]. In [7] the authors show an approach that was designed to appraise and measure
the users' (future) satisfaction in the requirements engineering phase. In this phase little
systematic guidance exists on how to evaluate the effects of features on user satisfac-
tion early on, and on how to contribute the results to the development process. The
AMUSE approach [7], [8] claims to close this gap. It helps requirements engineers and
product managers to select the most promising features, i.e., the ones that will satisfy
the user the most, already in the requirements phase. The approach does not differ
between functionality and non-functionality but deals with both in the general term
feature. The approach uses a standardized user satisfaction measurement device (ques-
tionnaire), a feature appraisal and prioritization methodology, and some tool support.
For evaluation of user acceptance, the standardized questionnaire could be used in the
future to evaluate the effect of NFRs on user acceptance.

5 Conclusion

Experience with user acceptance of PLM system shows the need of meeting first the
quality requirements. We believe that the user acceptance may depend on how well
the NFRs are developed. We believe empirical research is necessary to evaluate the
impact and efficiency of expressing NFRs in a more formal way. Also an in-depth

 Clarifying Non-functional Requirements 145

research is needed to increase understanding of the interplay between NFRs and user
acceptance. We recommend the development of a process model (methodological
framework) for development of NFRs. Another important issue is how to effectively
guide the elicitation of non-functional requirements and check their correctness in
view of user acceptance. The research should ensure maximum user acceptance of the
PLM implementation.

References

1. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Software Develop-
ment Methodology: The Tropos Project, Information Systems (2002)

2. CIMdata (2003), http://www.cimdata.com
3. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Kluwer Academic Publishers, Boston (2000)
4. Chung, L., Nixon, B.A., Yu, E.: Dealing with Change: An approach Using Non-Functional

Requirements. In: Proceedings of the Second Internation Symposium on Requirements
Engineering, York, England. Requirements Engineering Journal, pp. 238–260. Springer,
London (1996)

5. Checkland, P.: Systems Thinking, Systems Practice – Includes a 30 year retrospective.
John Wiley and Sons, Chichester (1999)

6. Doerr, J., Kerkow, D., Landmann, D.: Supporting Requirements Engineering for Medical
Products - Early Consideration of User-Perceived Quality. In: Association for Computing
Machinery (ACM): 30th International Conference on Software Engineering. ICSE 2008,
pp. 639–647. IEEE Computer Society, Los Alamitos (2008)

7. Doerr, J., Hartkopf, S., Kerkow, D., Landmann, D., Amthor, P.: Built-in User Satisfaction
- Feature Appraisal and Prioritization with AMUSE. In: Sutcliffe, A., Jalote, P. (eds.) Pro-
ceedings of 15th IEEE International Requirements Engineering Conference, pp. 101–110.
IEEE Computer Society, Los Alamitos (2007)

8. Doerr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-Functional Requirements in
Industry - Three Case Studies Adopting an Experience-based NFR Method. In: 13th IEEE
International Requirements Engineering Conference (2005)

9. Eigner (2005), http://vpe.mv.uni-kl.de/cms/index.php?id=274
10. González-Baixauli, B., Sampaio do Prado Leite, J.C., Mylopoulos, J.: Visual Variability

Analysis for Goal Models. In: Requirements Engineering Conference, pp. 198–207 (2004)
11. González-Baixauli, B., Laguna, M.A., Sampaio do Prado Leite, J.C.: A Meta-model to

Support Visual Variability Analysis. In: First International Workshop on Variability Mod-
elling of Software-intensive Systems, Limerick, Ireland (2007)

12. Glinz, M.: On Non-Functional Requirements. In: International Conference on RE (2007)
13. ISO/IEC 9126-1: Software Engineering - Product Quality - Part 1: Quality Model (2001)
14. Keller, R.K., Schauer, R.: Design Components: Towards Software Composition at the De-

sign Level. In: Proceedings of International Conference on Software Engineering, Kyoto,
Japan, pp. 302–311 (1990)

15. Lapouchnian, A., Yu, Y., Mylopoulos J., Liaskos S., Sampaio do Prado Leite J.C.: From
stakeholder goals to high-variability software design, Tech. rep., University of Toronto
(2005), http://ftp.cs.toronto.edu/csrg-technical-reports/509

16. Lehane, P., Huf, S.: Towards understanding system acceptance: the development of an as-
sessment instrument and work practice. In: Proc. of OZCHI, Canberra, Australia (2005)

146 C. Marhold et al.

17. Melnik, G., Read, K., Maurer, F.: Suitability of fit user acceptance tests for specifying
functional requirements: Developer perspective. In: Extreme programming and agile
methods - XP/Agile Universe 2004, pp. 60–72 (2004)

18. Mwanza, D.: Towards an Activity-Oriented Design Method for HCI research and practice,
Knowledge Media Institute, The Open University, Walton Hall, United Kingdom (2002)

19. Rohleder, C.: Visualizing the Impact of Non-Functional Requirements on Variants– A
Case Study. In: International Conference on Requirements Engineering, REV 2008, Barce-
lona (2008)

20. Salinesi, C., Rolland, C.: Fitting Business Models to Systems Functionality Exploring the
Fitness Relationship. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681.
Springer, Heidelberg (2003)

21. Potts, C.: Fitness for Use: The System Quality that Matters Most. In: International Work-
shop on Requirements Engineering: Foundation of Software Quality, Barcelona (1997)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 147 – 161, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Scenarios in the Wild: Experiences with a
Contextual Requirements Discovery Method

Norbert Seyff1, Florian Graf2, Neil Maiden1, and Paul Grünbacher2

1 City University London, Centre for HCI Design, London EC1V 0HB, UK
n.seyff@soi.city.ac.uk, n.a.m.maiden@city.ac.uk

2 Johannes Kepler University, Systems Engineering and Automation, 4040 Linz, Austria
fg@sea.uni-linz.ac.at, pg@sea.uni-linz.ac.at

Abstract. [Context and motivation] A number of ethnographic approaches are
available to gather requirements where they emerge, i.e. in the workplace of fu-
ture system users. [Question/problem] Most of these approaches do not pro-
vide guidance and software tool support for on-site analysts. [Principal
ideas/results] In this paper we present a tool-supported contextual method that
combines key benefits of contextual inquiry and scenario-based techniques. It
aims to improve guidance and support for on-site analysts performing a contex-
tual requirements discovery. [Contribution] We applied this method in the
Austrian Alps to discover stakeholder’s requirements for a ski tour navigation
system. This paper reports on this inquiry and analyses its results. Moreover, we
discuss lessons learned and conclusions.

Keywords: Requirements elicitation, scenarios, contextual inquiry, mobile
computing.

1 Introduction

Observing and interacting with people in their work context to study and learn about
their needs and expectations is not new. Several approaches support contextual inves-
tigations [1], [2], [3]. Most of them are based on ethnography, which itself is anything
but a unified method [4]. In recent years ethnographically-informed approaches have
appeared in the field of human-computer interaction (HCI) and requirements engi-
neering (RE) [3]. Researchers and practitioners have used ethnographic methods to
support RE in various domains including air traffic control [5] and underground con-
trol rooms [6]. In some approaches ethnography was combined with existing RE
approaches. For example, viewpoints were used to structure the results of an ethno-
graphic study [7].

Highly relevant for this research is contextual inquiry (CI) [2], an ethnographically
informed approach that focuses on system development. In CI an analyst with a
technical background is in charge of analysing existing work practice. Beyer and
Holtzblatt [2] define four principles of contextual inquiry – context, partnership, in-
terpretation and focus – which guide the analyst in interacting with stakeholders and
highlight important aspects of this interaction.

148 N. Seyff et al.

Although contextual inquiry and similar contextual approaches support analysts in
understanding the users’ work context there still exist several research issues [3]. For
instance, researchers highlight that there is no apparent theoretical structure underpin-
ning the observation process. Also, due to a lack of focus these approaches are
confined to relatively small-scale environments (e.g. control rooms) [6]. Moreover,
ethnographically informed approaches lack on-site software tool support for guiding
analysts and for documenting gathered information. Finally, most contextual ap-
proaches are weakly integrated with existing requirements engineering (RE) methods
and tools, which limits their applicability.

We developed the Mobile Scenario Presenter (MSP) to address these problems. The
MSP is an RE tool for mobile devices which supports on-site analysts in contextual
requirements elicitation [8]. The evaluation of the MSP tool has included several field-
and case studies. For example, at Belfast City Airport the MSP was successfully used
to gather requirements for the VANTAGE air traffic management system [8]. Based on
lessons learned from these applications of the MSP we developed a contextual method
that guides analysts to prepare and conduct scenario-based on-site inquiries. This
method was applied to gather requirements for the SemWay ski tour navigation sys-
tem. We report on this inquiry and compare its results to results from other require-
ments elicitation activities within SemWay and to results from previous projects.
Based on the application of our method and our results we report lessons learned and
draw first conclusions on the use of our contextual method in real-world projects.

The paper is structured as follows: Section 2 presents the tool-supported contextual
requirements elicitation method ART-SCENE CoRE. Section 3 introduces research
questions and reports on the SemWay case study. In Section 4 we analyse the results
of this study. Section 5 revisits the research questions. In Section 6 we present lessons
learned and conclusions.

2 ART-SCENE CoRE

ART-SCENE CoRE is based on ART-SCENE (Analysing Requirements Trade-offs:
Scenario Evaluations) and provides support for Contextual Requirements Elicitation
(CoRE). ART-SCENE is a scenario-driven approach to discover requirements and pro-
vides software tools for generating and walking through scenarios [9]. The automatically
generated scenarios include normal course events (e.g. The ski hiker starts the navigation
of the route) and alternative course what-if questions (e.g. What if the ski hiker has some
unusual physical characteristics that affect his/her behaviour during this action?). ART-
SCENE focuses on workshop settings: stakeholders, guided by a facilitator and supported
by a scribe, walk through scenarios event by event to discover and capture requirements
[9]. Mavin and Maiden [10] argue that scenario walkthroughs are effective because people
are better at identifying errors of commission rather than omission. ART-SCENE scenario
workshops on average generate 10 requirements per hour [10]. However, coming together
in a workshop to elicit requirement is not always possible, and is usually costly and time
consuming. We developed the MSP, a mobile tool supporting on-site scenario walk-
throughs to address these issues. The MSP (see Figure 2) provides the most essential
scenario walkthrough capabilities (e.g. view normal/alternative course event, add require-
ment) to mobile analysts [11]. The lessons learned in previous MSP studies allowed us to

 Scenarios in the Wild 149

develop ART-SCENE CoRE. This method follows the principles of contextual inquiry [2]
and supports analysts in planning and conducting on-site scenario walkthroughs. ART-
SCENE CoRE increases guidance for on-site analysts by combining the benefits of sce-
nario-based and contextual requirements elicitation. Moreover, tool support is available in
the form of the MSP, but can also be provided by other tools which support ART-SCENE
CoRE activities (e.g. navigating scenarios). ART-SCENE CoRE does not intend to re-
place existing ART-SCENE scenario workshops [9], but complements them by providing
scenario walkthrough capabilities for on-site analysts. In particular, the method includes
the two contextual activities on-site scenario validation and on-site scenario walkthrough.
These activities cannot be performed in isolation and are based on ART-SCENE activities
tailored to the needs of a contextual method (see Figure 1). Each of the four ART-SCENE
CoRE activities consists of several steps. We describe these activities using the Entry-
Task-Validation-Exit (ETVX) notation [12].

Fig. 1. High level view on ART-SCENE CoRE

Activity 1: Scenario generation and walkthrough preparation

Generate scenarios: ART-SCENE CoRE relies on early ART-SCENE steps such as
domain modelling and automatic scenario generation [9]. In particular this first step is
not different to other ART-SCENE projects. ART-SCENE’s automatic scenario gen-
eration capabilities significantly contribute to ART-SCENE CoRE. Scenarios provide
a high-level context model supporting on-site inquiries by providing focus for ana-
lysts and allowing them to document discovered requirements in a structured way.

Identify scenarios for on-site walkthroughs: After the initial scenario generation ana-
lysts identify scenarios suitable for on-site walkthroughs. For instance, scenarios are
highly relevant if most of their events correspond to tasks observable on-site. Similar
to contextual inquiry we favour so-called normal tasks for on-site inquiries. Normal
tasks, such as writing a letter, can be scheduled and interrupted [2]. Most other tasks
(e.g. extremely long tasks or uninterruptable tasks) limit the analyst’s ability to per-
form an on-site inquiry.

Train analysts on tools: On-site analysts applying ART-SCENE CoRE must be famil-
iar with the provided tool support. For instance, if ART-SCENE CoRE is supported
by the MSP, analysts might need training on this tool before performing an on-site
scenario walkthrough.

Selecting interviewees: Analysts need to select stakeholders to involve in the on-site
inquiry. Scenario events support this activity as they describe agents (roles)

150 N. Seyff et al.

performing an action [9]. We recommend proceeding as described in [2], where the
analyst identifies two or three on-site stakeholders for each role.

Table 1 summarizes the scenario generation and walkthrough preparation activity
according to the ETVX concept.

Table 1. ETVX cell for activity 1: Scenario generation and walkthrough preparation

Entry • Use case specifications
• List of potential stakeholders

Task • The analyst generates scenarios based on use case specifications
• The analyst identifies scenarios relevant for on-site walkthroughs
• The analyst gets training on provided tool support
• Based on the list of potential stakeholders and the selected scenarios an

analyst decides on stakeholders to involve in on-site walkthroughs
Ver. • Normal and alternative course events generated

• Scenarios selected for on-site walkthroughs
• The analyst is familiar with provided tool support for ART-SCENE CoRE
• Stakeholders identified and invited

eXit • Scenarios including normal and alternative course events
• List of stakeholders involved in the on-site walkthroughs

Activity 2: On-site scenario validation

Identification of misleading or missing scenario events: ART-SCENE focuses on
developing high quality use case models and scenarios [9]. However, as a first contex-
tual activity we recommend validating the scenarios on-site before starting scenario
walkthroughs. Ideally, work practices relevant for system design are reflected by
scenario events. Further, the sequence of normal course events should correspond to
the observed work tasks. By observing stakeholders’ work an analyst checks whether
the defined normal course events refer to current work practices. The analyst can also
validate alternative course what-if questions to prune irrelevant questions or to iden-
tify new questions complementing the automatically generated ones. If analysts iden-
tify a gap between ongoing work practices and scenarios they are advised to perform
on-site interviews to understand the reasons.

Scenario update: After the on-site scenario validation the analyst performs a scenario
update, which includes generating what-if questions for newly discovered normal
course events.

Table 2 describes the on-site scenario validation activity.

Table 2. ETVX cell for activity 2: On-site scenario validation

Entry • Scenarios including normal and alternative course events
Task • The on-site analyst identifies misleading or missing scenario events

• The analyst updates the scenario based on change requests
Ver. • Change requests documented

• Scenarios updated according to change requests
eXit • Validated scenarios including normal and alternative course events

 Scenarios in the Wild 151

Activity 3: On-site scenario walkthrough

Conventional interview: Similar to contextual inquiry [2] the on-site analyst first
introduces herself to the stakeholders and explains her role. Further, the analyst clari-
fies the focus of the inquiry by discussing relevant scenario events. This also allows
the analyst to present the MSP or other tools to the stakeholders.

Transition: After defining the focus of the inquiry the analyst and the stakeholders
discuss how to conduct the actual on-site scenario walkthrough. This includes agree-
ing on when to interrupt stakeholders’ work to discover requirements [2]. Ideally the
observed tasks can be interrupted anytime for discussions.

Scenario walkthrough: On-site scenario walkthroughs combine observations and
interviews based on scenarios. The analyst observes current work practices and identi-
fies the corresponding normal course events. While observing the ongoing task the
analyst takes notes on aspects of work relevant for system design. More importantly,
the ongoing tasks are discussed with stakeholders to identify new requirements in due
course. This includes asking stakeholders how the future system shall handle normal
course events corresponding to their actual work tasks. Further, the analyst discusses
alternative course what-if questions, which provide essential input for the discussion
of unusual and unexpected system behaviour.

Documentation of requirements and inquiry notes: ART-SCENE CoRE goes beyond
mere requirements descriptions [13]. In addition to fully specified text-based require-
ments descriptions, the analyst documents upcoming requirements with multimedia
annotations and text-based information cues. For instance, using text-based informa-
tion cues significantly reduces the time needed for requirements documentation as
analysts only note key information about a requirement and develop a more precisely
formulated requirement later.

Table 3 summarizes key aspects of the on-site scenario walkthrough activity.

Table 3. ETVX cell for activity 3: On-site scenario walkthrough

Entry • Validated scenarios including normal and alternative course events
• List of stakeholders involved in the on-site walkthroughs

Task • The on-site analyst starts the interview and explains the scenario walk-
through to the stakeholders

• The on-site analyst performs scenario walkthroughs to discover system
requirements and comments from stakeholders

• The on-site analyst documents the gathered requirements with the help of
multimedia descriptions and information cues

Ver. • All scenario events discussed in the walkthrough
• Upcoming requirements documented

eXit • System requirements and comments

Activity 4: Analysis and follow up

Transcribe audio recordings and information cues: After the walkthrough the analyst
analyses the gathered information. For example, the analyst can use ART-SCENE
desktop tools to transcribe audio recording and information cues.

152 N. Seyff et al.

Validate requirements in workshops: Finally, the analyst may validate the gathered
requirements in workshops (e.g. ART-SCENE workshops) to discuss them with a
larger number of stakeholders.

Table 4 describes the analysis and follow up activity.

Table 4. ETVX cell for activity 4: Analysis and follow up

Entry • System requirements and comments
Task • The analyst transcribes information cues and audio recordings into precise

requirements descriptions
• Analysts and stakeholders validate the gathered requirements in workshops

and discuss comments
Ver. • All requirements transcribed

• All requirements discussed in workshops
eXit • Precisely defined and validated system requirements

3 The SemWay Project – Discovering Requirements in the Wild

We applied ART-SCENE CoRE within SemWay (Semantic Way), a project in which
Salzburg Research, the Technical University of Vienna, and industry partners jointly
explore cognitive processes of human wayfinding to develop electronic navigation
support for several domains [14]. In particular, the SemWay project sought to develop
a ski tour navigation system. To support requirements discovery for this system we
applied ART-SCENE CoRE in the Austrian Alps and undertook the ART-SCENE
CoRE activities described in Section 2. The only exception was the on-site scenario
validation activity which was performed in a workshop with domain experts rather
than on-site, due to time constraints. In this workshop we adjusted normal and alterna-
tive course events according to comments from domain experts. We explored the
following research questions in the SemWay on-site scenario walkthroughs:

Q1: Does ART-SCENE CoRE support a single analyst to discover requirements from

stakeholders while moving about the domain under analysis and walking through
scenarios with the MSP?

Q2: Does ART-SCENE CoRE trigger additional requirements not discovered in pre-
vious SemWay requirements elicitation activities?

Q3: Does ART-SCENE CoRE trigger a larger number of requirements per hour of
stakeholder participation compared to the average ART-SCENE requirements
generation rate?

We chose to investigate Q1 based on issues we identified in earlier evaluation stud-

ies. On-site analysts found it difficult to observe and acquire responses from end-users
whilst navigating the scenario and entering requirements into the MSP [15]. Therefore
in previous VANTAGE and APOSDLE projects we introduced the role of facilitator
and scribe for on-site scenario walkthroughs [11]. However, we aimed at providing a
method, which would also allow a single analyst to gather requirements in the work-
place of future system users with the help of the MSP.

 Scenarios in the Wild 153

We had already sought answers to Q2 and Q3 in previous research. Results from
the VANTAGE and APOSDLE projects allowed us to answer both questions with a
tentative yes [11]. However, in VANTAGE and APOSDLE, the on-site inquiry was
not based on a clearly defined contextual method such as ART-SCENE CoRE. In-
stead on-site analysts intuitively used the MSP based on their scenario workshop
skills. In SemWay on-site analysts were familiar with ART-SCENE CoRE and fol-
lowed its predefined steps to interact with stakeholders and to discover requirements.

Fig 2. The MSP displaying SemWay’s normal and alternative course events

In contrast to VANTAGE and APOSDLE, where ART-SCENE workshops were
held prior to on-site inquiries, Salzburg Research and their partners used several other
approaches to gather requirements for SemWay. These included testing and analysis
of existing navigation tools, wayfinding experiments and brainstorming workshops
[14], which produced 31 requirements (e.g. The system must detect if a user ski hiker
leaves the predefined route). We agreed with Salzburg Research to complement their
RE activities with ART-SCENE CoRE. In order to prevent the on-site inquiry from
being influenced, we decided not to access the previously gathered requirements.

Following ART-SCENE CoRE’s scenario generation and walkthrough prepara-
tion activity we identified two scenarios relevant for on-site walkthroughs. Sc1 Plan
route describes how a skier selects an appropriate route. Sc2 Navigate route (see
Figure 2) focuses on the skier’s navigation tasks while walking uphill on skis.

We conducted an on-site inquiry in the Austrian Alps near Untertauern and decided
to form two groups for the on-site inquiry (see Table 5). Each group was headed by a
single analyst and included two stakeholders walking up the mountain on skis. Both
analysts were trained Personal Digital Assistant (PDA) and MSP tool users. The
analysts were equipped with snowshoes and followed the ski hikers, who were also

154 N. Seyff et al.

involved in previous requirements discovery activities for SemWay. Following ART-
SCENE CoRE’s on-site scenario walkthrough activity the analysts first clarified that
the focus of the inquiry was the same as in previous SemWay requirements elicitation
activities – gathering requirements for the SemWay navigation support system. More-
over the analysts presented the MSP to on-site stakeholders. Both groups agreed that
while walking uphill the analyst was allowed to interrupt the ski tour for questions.
Analysts observed the movements of the ski hikers in the environment. Based on this
context the analysts identified corresponding normal course events and discussed
them with the stakeholders. Depending on the steepness, ski hikers either slowed
down or stopped for discussions. Requirements were either documented with audio
recordings or information cues. Analyst 1 documented requirements using informa-
tion cues, while Analyst 2 used the MSP’s audio recording feature. After the on-site
walkthroughs we performed ART-SCENE CoRE’s analysis and follow up activity to
compare and validate the discovered requirements in a workshop.

Table 5. SemWay scenario walkthrough schedule

Date Scenario Way of Use
27/02/08 Sc1: Plan route Work context – Analyst 1
27/02/08 Sc2: Navigate route Work context – Analyst 1
27/02/08 Sc1: Plan route Work context – Analyst 2
27/02/08 Sc2: Navigate route Work context – Analyst 2

4 SemWay Results

Although the inquiry was planned in detail, several unforeseeable challenges occurred
that were untypical for requirements discovery and not related to ART-SCENE
CoRE. The first challenge was walking with snowshoes. We expected to reach the
starting point of the ski tour in less than 2 hours. However, it took the analysts more
than 3 hours to get there. The exhausting walk to the starting point of the ski tour
reduced time for the on-site walkthroughs, as the analysts needed more time to re-
cover than expected. Considering the short days in winter, instead of almost 3 hours
only 1 hour was left for requirements discovery during the ski tour (see Figure 3).

Fig. 3. Requirements discovery in the Austrian Alps

 Scenarios in the Wild 155

Analyst 1 spent approximately 50 minutes undertaking scenario walkthroughs
while Analyst 2 had about 1 hour available to gather requirements on SemWay. The
reduced time for Analyst 1 was the result of another problem: after about half an hour
the PDAs ran out of battery due to the cold conditions. The analyst then obtained
printouts of the scenario events that included alternative course what-if questions
from the nearby base camp. So, instead of walking through the scenario events with
the MSP, the analysts switched to a paper-and-pencil approach for the rest of the
inquiry. Although not planned in advance, this problem allowed us to analyse the
suitability of ART-SCENE CoRE with and without tool support.

Despite these problems when performing the on-site scenario walkthroughs in the
Austrian Alps, the two analysts discovered 58 requirements on the SemWay naviga-
tion support system (see Table 6), including requirements discovered using tool-
supported and paper-and-pencil-based on-site inquiries. The group headed by Analyst
1 spent about 25 minutes on each scenario and discovered 17 requirements (7 trig-
gered by what-if questions) for Sc1 and 10 requirements (3 triggered by what-ifs) for
Sc2. The second analyst gathered 15 requirements (4 triggered by what-ifs), for Sc1 in
15 minutes and 16 requirements (3 triggered by what-ifs) for Sc2 in 45 minutes.

Table 6. Results of on-site walkthroughs in SemWay

Total number of

requirements
documented

Requirements
on normal

course

Requirements
on alternative

course

Average number
per normal

course event
Sc1 – Analyst 1 17 10 7 2.8
Sc2 – Analyst 1 10 7 3 1.6
Sc1 – Analyst 2 15 11 4 2.5
Sc2 – Analyst 2 16 13 3 2.6

Total 58 41 17

We examined the requirements generated using MSP-supported ART-SCENE
CoRE and the paper-and-pencil-based method in turn. Both analysts applied MSP-
supported ART-SCENE CoRE when walking through Sc1 and Analyst 2 applied the
tool-supported method for 15 minutes when walking though Sc2 to gather 8 require-
ments (3 triggered by what-ifs). From this data we compute that applying MSP-
supported ART-SCENE CoRE on the average generated 21.8 requirements per hour
of stakeholder participation. Approximately 35% of these requirements were triggered
by what-if questions. Applying the paper-and-pencil-based method had several side
effects. Analysts had to remove their gloves to turn pages and write. Moreover it was
challenging to read, write and walk uphill at the same time. This slowed down the ski
tour and limited the analyst’s ability to focus on the stakeholders. Although analysts
stopped to document requirements these written information cues were hard to read
and it was not always obvious to which scenario event they belonged. Another issue
was that only 3 requirements were triggered by what-if questions. Analysts reported
that they were not able to browse the printouts of alternative courses and therefore
they focused on what-if questions from memory. These problems significantly de-
creased the average generation rate (9.8 req. per hour of stakeholder involvement).

156 N. Seyff et al.

After the ART-SCENE CoRE on-site walkthroughs, colleagues from Salzburg re-
search made the 31 requirements available, which had been collected in previous
SemWay RE activities. These requirements included functional (16 requirements),
business (9), usability-type (5), and one safety requirement. Although the focus of the
elicitation did not change, ART-SCENE CoRE on-site walkthroughs discovered reli-
ability (4) and interoperability requirements (2). Considering the total number of
requirements gathered, more usability-type requirements (14) were found on-site, the
number of safety requirements gathered was similar (2), but business goals signifi-
cantly decreased (1). Again, most of the requirements were functional (35).

For further qualitative analysis regarding requirements’ subjects, themes and geo-
graphical references we removed all duplicates. There were three duplicate require-
ments compared to results from previous SemWay RE activities and 7 from the two
on-site scenario walkthroughs. This means that in total we found 48 new requirements
for SemWay applying ART-SCENE CoRE.

We analysed the subject of each requirement and discovered that there were few
differences in requirements subject from previous SemWay RE activities and ART-
SCENE CoRE on-site inquiries. Most of the requirements found had the SemWay
navigation system as their subject (e.g. The SemWay navigation system shall allow to
synchronise routes with other computer systems). Subjects also included the users and
the route (e.g. The user shall be able to sort routes regarding duration, difficulty and
destination). Only previous SemWay RE activities gathered requirements where the
subject was navigation advice, whilst ART-SCENE CoRE generated an additional
requirement on GPS and environmental information (e.g. GPS positioning shall detect
the position of the ski hiker in a similar time as car navigation systems).

We then analysed the requirements’ themes (see Table 7) and discovered that pre-
vious SemWay RE activities gathered more requirements on how the SewWay system
navigates its users. However, ART-SCENE CoRE discovered requirements on several
other themes. This included 4 requirements on the navigation device and its resistance
to outdoor exposure (e.g. The SemWay navigation device shall be shock resistant), the
navigation corridor (e.g. The SemWay system shall inform the user when s/he leaves
the navigation corridor) and requirements on environmental impacts on navigation.
The on-site walkthroughs also discovered significantly more requirements on infor-
mation relevant for the tour (e.g. weather forecast and avalanche warnings).

Table 7. Requirements for SemWay by theme

Previous SemWay

RE activities
ART-SCENE CoRE walk-

throughs
Requirements themes - Sc1 Sc2
Define route 7 11 0
Navigate tour 19 0 10
Determination of position 2 5 0
Information relevant for the tour 1 5 2
SemWay system 2 0 1
Resistance to outdoor exposure 0 4 0
Navigation corridor 0 0 7
Envtl. impacts on navigation 0 0 3

 Scenarios in the Wild 157

Of the 31 requirements generated from the previous SemWay RE activities, 8 con-
tained a geographical reference (see Table 8). Most referenced the decision point: a
point where the skier has to decide which route to take. However, more requirements
gathered on-site contained a geographical reference (some of them even had 2 refer-
ences). In Sc1 we identified 10 requirements out of 25 containing geographical refer-
ences, four requirements referenced the local area in which the skier was planning to
make a tour (e.g. The SemWay system shall provide a weather forecast for the area of
interest). In Sc2 18 out of 23 requirements contained geographical references, e.g. we
found several requirements that addressed the navigation corridor and landmarks
(orientation points).

Table 8. Total number of requirements that reference geographical features

 Previous SemWay
RE activities

ART-SCENE CoRE walk-
throughs

Geographical reference - Sc1 Sc2
Decision point 4 0 2
Landmarks 1 0 6
Start position 0 2 0
Destination 1 2 0
Actual position 2 2 3
Navigation corridor 0 0 7
Local area 0 4 0
Total 8 10 18

5 Research Questions Revisited

Although on-site analysts had to deal with several unforeseen challenges, applying
ART-SCENE CoRE helped to discover new requirements for SemWay. Using the
results we sought to answer the three research questions.

Can ART-SCENE CoRE be used by a single analyst? In SemWay the two analysts
interacted with stakeholders and documented requirements without the support of
scribes. The analysts, both experienced PDA users and familiar with the MSP tool
were able to focus on the ski tour, communicate with ski hikers, browse the scenarios
and to document upcoming requirements, all at the same time. Analyst 2 was even
able to walk uphill while documenting requirements with the help of the MSP’s audio
recording feature. In contrast to previous studies [15], we conclude that the answer to
Q1 is yes.

Both on-site analysts agreed that ART-SCENE CoRE provided guidance and sup-
port for conducting an on-site scenario walkthrough. In particular analysts highlighted
that the short and precise scenarios provided by the scenario validation activity en-
abled fast navigation and selection of relevant normal and alternative course events.
As recommended in the ART-SCENE CoRE method, on-site analysts considered their
intensive PDA and MSP training to be an important prerequisite for successful on-site
scenario walkthroughs without a scribe.

158 N. Seyff et al.

Does ART-SCENE CoRE trigger additional requirements? Although previous
SemWay requirements elicitation activities and ART-SCENE CoRE walkthroughs
shared the same focus we were able to discover 48 new requirements on SemWay.
We analysed these requirements according to their subject, theme and geographical
reference and found several differences. For instance, ART-SCENE CoRE discovered
requirements on the navigation corridor and the navigation device’ resistance to out-
door exposure, two themes not discussed in previous SemWay requirements. Fur-
thermore requirements gathered with ART-SCENE CoRE contained significantly
more geographical references than requirements discovered with previous SemWay
requirements elicitation activities. Based on this analysis we conclude that Q2 can be
answered with yes – applying ART-SCENE CoRE enabled us to identify new re-
quirements for SemWay.

This result is consistent with the results from previous VANTAGE and APOSDLE
studies [11]. However, in previous studies, the gathered requirements were compared
to requirements gathered with the help of ART-SCENE scenario walkthroughs, while
in SemWay the comparison was based on requirements discovered with different
approaches (e.g. wayfinding experiments and brainstorming workshops).

Does ART-SCENE CoRE gather requirements at a higher generation rate? In
previous studies [11] we compared the average generation rate of MSP-based on-site
inquiries with ART-SCENE scenario workshops. In SemWay no ART-SCENE sce-
nario workshops took place at all. Therefore, we compared the SemWay results with
the average ART-SCENE generation rate and to results from previous applications of
the MSP.

In SemWay, MSP-supported ART-SCENE CoRE on average generated 21.8 re-
quirements per hour of stakeholder participation, which is significantly higher than
the average ART-SCENE generation rate of 10 requirements per hour [10]. Consider-
ing that a minimum of 2 stakeholders attend ART-SCENE workshops, the typical
generation rate is below 5 requirements per hour of stakeholder involvement. More-
over, SemWay even exceeds the results from previous VANTAGE and APOSDLE
studies. Whilst the VANTAGE study produced 8.2 requirements per hour of stake-
holder involvement, the two on-site APOSDLE walkthroughs in Graz and Dortmund
had generation rates of 12.7 and 17.7 requirements respectively [11]. Based on this
result we conclude that Q3 can be answered with a tentative yes – applying ART-
SCENE CoRE enables us to gather requirements at a rate higher than the average
ART-SCENE generation rate.

Threats to Validity. There are several possible threats to the validity of the reported
results. We consider the short duration of SemWay on-site inquiries to be the most
critical threat to validity. Instead of having several hours for the on-site inquiry the
unexpected long walk to the start point and the problems with PDA runtime
significantly limited the time for applying MSP-supported ART-SCENE CoRE. In
particular, the short duration of the inquiries might have influenced the calculated
requirement’s generation rate and therefore our answer to Q3 needs to be interpreted
with care. In particular, researchers report that an elicitation process may slow down
over time [16]. This means that the short duration of the on-site inquiry could have
boosted the generation rate. Another issue is that researchers who have an interest in

 Scenarios in the Wild 159

the success of ART-SCENE CoRE applied the new method on-site. However, the
generation rate was similarly high for both on-site analysts and seems to be in line
with results from previous studies. Further research is needed to provide a clearer
answer to Q3 as budget, time and stakeholder availability constraints in SemWay did
not allow us to undertake further investigations.

In previous studies [11] ART-SCENE workshops were held prior to on-site sce-
nario walkthroughs, and these results allowed us to directly compare ART-SCENE
workshops to on-site inquiries. In SemWay, other requirements elicitation techniques
than ART-SCENE were applied prior to ART-SCENE CoRE. We are unaware of
details of these requirement elicitation activities and how they might have influenced
the quality of the gathered requirements and therefore the qualitative analysis pre-
sented in this paper. Another issue regarding the qualitative analysis is that about 30%
of the considered requirements came from paper-and-pencil-based scenario walk-
throughs. We decided to include these requirements in the analysis because analysts
still followed a variant of ART-SCENE CoRE, which produced requirements equiva-
lent in their types, subjects and themes.

6 Lessons Learned and Conclusion

The conducted research confirms results from previous studies [11]. Moreover we are
able to present lessons learned that highlight benefits and weaknesses of applying
ART-SCENE CoRE to gather requirements for SemWay.

Analysts need to be familiar with the environment. The SemWay project high-
lighted the importance of being familiar with the environment where the on-site sce-
nario walkthrough takes place. In SemWay it could have helped us to identify issues
such as the reported battery problems and the long walk to the starting point. ART-
SCENE CoRE’s on-site scenario validation supports the investigation of the environ-
ment as analysts validate scenario events in the workplace of future system users.
However, in SemWay we replaced ART-SCENE CoRE’s on-site scenario validation
with a scenario validation workshop due to time constraints. We now conclude that
SemWay’s validation workshop was not an effective substitute for on-site scenario
validation, as analysts were not able to get sufficiently familiar with the environment.

Mobile tools better support on-site scenario walkthroughs. Due to battery prob-
lems caused by the cold conditions, the MSP-supported ART-SCENE CoRE scenario
walkthroughs had to be replaced with a paper-and-pencil-based method. Therefore the
analysts used scenario printouts, which were also used to document upcoming re-
quirements. This caused several problems as reported above and might be the main
reason for the significantly decreased average generation rate. We therefore conclude
that tool support on a small and mobile device provided better support for mobile
analysts and increased the efficiency of on-site scenario walkthroughs.

ART-SCENE CoRE requirements cover unexpected system behaviour. In Sem-
Way, alternative courses provided essential input for requirements discovery as about
35% of the generated requirements were triggered by what-if questions. This is a rate
significantly higher than in previous on-site inquiries (e.g. 19.7 and 17.1 in APOSDLE).

160 N. Seyff et al.

We conclude that in SemWay, ART-SCENE CoRE supported analysts in discovering
requirements covering unexpected and unusual system behaviour.

Reasons for the high number of requirements generated by alternative course
events include that scenario validation workshop supported the creation of short and
focused scenarios. In particular we deleted automatically generated what-if questions
considered to be irrelevant and added new ones specific to the domain (e.g. What-if
the weather changes?). Moreover, domain experts highlighted the importance of
particular what-if questions, encouraging analysts to focus on these questions during
the on-site inquiry. Analysts reported that the short and focused scenarios also eased
navigation between normal and alternative course events.

Audio recording speeds up on-site scenario walkthroughs. As reported, one ana-
lyst used audio recordings to document upcoming requirements while the other ana-
lyst used text based recognition cues. The requirements generation rate of the analyst
using audio recording was significantly higher. Apart from that, using audio notes
also enabled the analyst to keep walking uphill while documenting requirements. This
increased the speed of the ski tour itself and the group around this analyst was much
faster. We recommend the intensive use of audio recordings to document upcoming
requirements as in SemWay it increased the requirements generation rate and allowed
the analyst to document requirements while moving around.

In this paper we presented the tool-supported ART-SCENE CoRE method that
supports mobile analysts to perform structured on-site scenario walkthroughs. The
contextual method was used to gather requirements for the SemWay ski tour naviga-
tion system. We analysed the results of this inquiry in order to answer the research
questions raised. Moreover, we presented lessons learned based on our experiences
during the on-site scenario walkthroughs.

ART-SCENE CoRE was developed based on lessons learned from earlier MSP-
supported on-site inquiries where analysts followed an intuitive approach to discover
requirements. There are obviously overlaps between previous studies and the applica-
tion of ART-SCENE CoRE in SemWay. Nevertheless, with ART-SCENE CoRE we
developed a structured contextual requirements elicitation method supported by a
mobile software tool. With the help of this work we have shown that ART-SCENE
CoRE is able to support analysts in performing on-site inquiries without the help of a
scribe. Moreover, it supported us to find additional requirements for the SemWay
navigation support system. However, future research and applications of ART-
SCENE CoRE will be needed to explore the method in more detail. This includes
investigating Q3 in more detail, as well as research on the repeatability of the ART-
SCENE CoRE method, and more importantly the relative benefits and costs of one
analyst versus two analysts using the MSP tool during on-site scenario workshops.
We look forward to reporting these results in the future.

References

1. Agar, M.: The Professional Stranger: An Informal Introduction to Ethnography. Academic
Press, New York (1980)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Consumer-Centered Systems. Mor-
gan Kaufmann, San Francisco (1998)

 Scenarios in the Wild 161

3. Viller, S., Sommerville, I.: Social Analysis in the Requirements Engineering Process:
From Ethnography to Method. In: 4th IEEE Symposium on Requirements Engineering, pp.
6–13. IEEE Computer Society, Washington (1999)

4. Crabtree, A.: Ethnography in Participatory Design. In: 5th Biennial Participatory Design
Conference (PDC), CPSR, Seattle, Washington, USA, pp. 93–105 (1998)

5. Bentley, R., Hughes, J., Randall, D., Rodden, T., Sawyer, P., Shapiro, D., Sommerville, I.:
Ethnographically-Informed Systems Design for Air Traffic Control. In: 5th Conference on
Computer Supported Cooperative Work (CSCW), pp. 123–129. ACM, New York (1992)

6. Heath, C., Luff, P.: Collaboration and Control: Crisis Management and Multimedia Tech-
nology in London Underground Control Rooms. In: 5th Conference on Computer Sup-
ported Cooperative Work (CSCW), pp. 69–94. ACM, New York (1992)

7. Hughes, J., King, V., Rodden, T., Anderson, H.: The Role of Ethnography in Interactive
Systems Design. In: ACM Interactions, vol. 2(2), pp. 56–65. ACM, New York (1995)

8. Maiden, N., Ncube, C., Kamali, S., Seyff, N., Grünbacher, P.: Exploring Scenario Forms
and Ways of Use to Discover Requirements on Airports that Minimize Environmental Im-
pact. In: 15th IEEE International Requirements Engineering Conference, pp. 29–38. IEEE
Computer Society, Washington (2007)

9. Maiden, N.: Systematic Scenario Walkthroughs with ART-SCENE. In: Alexander, I.,
Maiden, N. (eds.) Scenarios, Stories, Use Cases: Through the Systems Development Life-
Cycle, pp. 161–178. John Wiley & Sons, Hoboken (2004)

10. Mavin, A., Maiden, N.: Determining Socio-Technical System Requirements: Experiences
with Generating and Walking Through Scenarios. In: 11th IEEE International Require-
ments Engineering Conference, pp. 213–222. IEEE Computer Society, Washington (2003)

11. Seyff, N., Maiden, N., Ncube, C., Karlsen, K., Lockerbie, J., Grünbacher, P., Graf, F.: Ex-
ploring How to Use Scenarios to Discover Requirements. Requirements Engineering Jour-
nal (REJ) (to be published)

12. Radice, R.A., Roth, N.K., O’Hara Jr., A.C., Ciarfella, W.A.: A Programming Process Ar-
chitecture. IBM Systems Journal 24, 79–90 (1985)

13. Rabiser, R., Seyff, N., Grünbacher, P., Maiden, N.: Capturing Multimedia Requirements
Descriptions with Mobile RE Tools. In: 1st International Workshop on Multimedia Re-
quirements Engineering - Beyond Mere Descriptions (MeRE), pp. 2–7. IEEE Computer
Society, Washington (2006)

14. Rehrl, K., Leitinger, S., Gartner, G.: The SemWay Project - Towards Semantic Navigation
Systems. In: 4th International Symposium on LBS & TeleCartography, Hong Kong (2007)

15. Maiden, N., Seyff, N., Grünbacher, P., Otojare, O., Mitteregger, K.: MakingMobile Re-
quirements Engineering Tools Usable and Useful. In: 14th International Requirements En-
gineering Conference, pp. 26–35. IEEE Computer Society, Washington (2006)

16. Sindre, G., Krogstie, J.: Process heuristics to achieve requirements specification of feasible
quality. In: 2nd International Workshop on Requirements Engineering – Foundation of
Software Quality (REFSQ), Augustinus, Aachen, pp. 92–103 (1995)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 162–174, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Inventing Requirements with Creativity Support Tools

Inger Kristine Karlsen1, Neil Maiden1, and Andruid Kerne2

1 Centre for Human-Computer Interaction Design and Centre for Creativity in
Professional Practice, City University, London, UK

kristine.karlsen@soi.city.ac.uk, n.a.m.maiden@city.ac.uk,
2 Interface Ecology Lab, Texas A&M University, USA

andruid@cs.tamu.edu

Abstract. [Context and motivation] Creativity is indispensable for software
systems to deliver progress and competitive advantage for stakeholders. Yet it
is rarely supported in requirements processes. [Question/problem] This paper
investigated integration of two software tools, one for generating requirements
with scenarios, the other for supporting people to think creatively while finding
and collecting information. The effectiveness of the integration was investi-
gated. [Principal ideas/results] The technical integration is described, and an
evaluation is reported. [Contribution] Results reveal some effect on the nov-
elty of the requirements generated, and have implications for the design of tools
to support creative requirements processes.

Keywords: Requiremensts discovery, creativity, creativity support tools.

1 Creating Requirements

Requirements engineering is a creative process in which stakeholders and analysts
work together to create ideas for new software systems, which are expressed as re-
quirements. Creativity is indispensable if software systems are to deliver progress and
competitive advantage, yet it is rarely supported in requirements tools. In this paper
we describe the integration of a requirements tool and a creativity support tool, then
report how analysts used the integrated tools to specify requirements of a new secure
access system.

Most current requirements processes and tools support problem analysis and sys-
tem specification [17]. An assumption is that stakeholders already know their re-
quirements. However, this is not always true, because stakeholders are not aware of
what new technologies can do. As technologies evolve, stakeholders need to create
novel requirements by connecting knowledge of the problem with information about
relevant technologies. This means engaging in a form of creativity known as informa-
tion discovery, in which processes of finding, collecting, and arranging information
stimulate the emergence of new ideas [8]. In software development new ideas are
often expressed as requirements.

Previously we applied theories and models of creativity in workshops to support
stakeholders to discover requirements for complex systems in domains including air

 Inventing Requirements with Creativity Support Tools 163

traffic management and food traceability. However, although successful in terms of
the number and the impact of requirements generated [11, 12], the workshops were
resource-intensive. Each could involve up to 20 stakeholders and analysts for 2 days,
and our support for creative thinking was not available during other requirements
processes.

To support people’s creative thinking effectively throughout a requirements proc-
ess, we sought to deliver new tools. Whilst creativity support tools are available, none
have been explicitly built to support requirements processes. Therefore we integrated
ART-SCENE, a tool designed to discover more complete requirements with scenar-
ios, with combinFormation, a tool that supports people in creating new ideas while
finding and collecting information. The remainder of this paper is in 6 sections. Sec-
tions 2 and 3 describe ART-SCENE and combinFormation, and their integration, then
section 4 describes how an analyst might use the integrated tools. Section 5 reports
results for a preliminary evaluation of the integrated tools. The paper ends with a
review of related work and future research plans.

2 Enhancing Scenario Walkthroughs

Scenarios are an effective requirements technique, and ART-SCENE is an internet-
based environment that uses scenarios to discover more complete requirements. Stake-
holders have applied ART-SCENE successfully to discover requirements on software
systems in domains ranging from air traffic control to work-based learning [14].

ART-SCENE delivers two important capabilities to stakeholders. The first is
automatic scenario generation. ART-SCENE automatically generates one or more
scenarios with different normal course event orderings and alternative courses from a
use case specification. The second capability is guided walkthroughs of these gener-
ated scenarios. The big idea behind walkthroughs is very simple – that people are
better at recognition than recall [1]. ART-SCENE scenario walkthroughs offer stake-
holders recognition cues in the form of generated alternative courses. If the alternative
course is relevant to the system being specified but not yet handled in the specifica-
tion, then a potential omission has been identified. ART-SCENE guides the stake-
holders to specify more complete requirements.

Automatically generated scenarios in ART-SCENE are delivered to stakeholders
using a web client shown in Figure 1. The left-side menu provides functions for view-
ing the scenario and requirements generated for it. Top-line buttons offer walkthrough
functions (e.g. next or previous event) and functions to add, edit or delete events,
comments and requirements. The left-hand main section contains the sequence of
events of a scenario that describe the behaviour of a system, in this case security ac-
cess to a building. Event 1 describes the start of an action: user walks up to the secu-
rity gate. The right-hand main section describes generated alternative courses for each
normal course event, presented in the form of 'what-if' questions. The top-listed alter-
native course is what if the user is physically unable to undertake this action? Alter-
native courses are generated for different normal course events. If no requirements are
specified to handle an event that is recognised as relevant, then omissions have been
discovered and new requirements can be written, thus increasing requirements
completeness.

164 I.K. Karlsen, N. Maiden, and A. Kerne

Fig. 1. A snapshot of ART-SCENE, showing one scenario for a security access system, describ-
ing the event user walks up to security gate (left side), automatically generated alternative
courses for the highlighted normal course event (right side), and one generated requirement in a
VOLERE form

Returning to the example, if the user walks up to the security gate, and the user is
physically unable to undertake this action, stakeholders might generate new require-
ments to handle this event, such as all members of the public shall be able to access
the security gate.

One benefit of using scenarios in ART-SCENE has been improved communication
between stakeholders, especially in distributed settings where communication is asyn-
chronous. Scenarios provide a shared context and lingua franca for people in different
places to communicate about requirements. To facilitate this communication, ART-
SCENE supports a server-side scenarios and requirements database that can be ac-
cessed by stakeholders in distributed settings.

3 Extending ART-SCENE with Creativity Support

ART-SCENE did not explicitly support stakeholders in thinking creatively about
requirements. Therefore we worked to extend scenario walkthroughs with creativity
stimuli, as stakeholders work to develop requirements. Sternberg’s defines creativity

 Inventing Requirements with Creativity Support Tools 165

as “the ability to produce work that is both novel (i.e. original, unexpected) and ap-
propriate (i.e. useful, adaptive concerning task constraints)” [22]. The goal was for
digital information stimuli to support stakeholders in creating requirements that are
novel and useful.

We integrated ART-SCENE and combinFormation, a creativity support tool for
searching, browsing, collecting, mixing, organizing and thinking creatively about digital
information [7, 8, 9, 10]. combinFormation is regularly used by 1000 undergraduate
design students each year to collect existing work as they create new designs.

3.1 combinFormation

combinFormation is a freely available [7] mixed-initiative [6] system that integrates
searching, browsing, and exploring information [9, 10]. It has been developed as an
extensible platform with a modular object-oriented architecture. Software agents pro-
cedurally extract clippings from documents, which function as surrogates, and assem-
ble them in a visual composition space storyboard, shown in Figure 2. A surrogate is
an enhanced bookmark, which represents an important idea in a document, and enables
navigation back to the document. Visual surrogates are formed by extracting images,
and augmenting them with metadata. Composition functions a means for representing a
collection of surrogates as a connected whole, instead of as separate elements, as in a
list. The visual composition is procedurally generated over time, like a dynamic video.
Related surrogates are automatically clustered. Procedural generation iteratively places
visual surrogates into the composition space, where the participant can see and ma-
nipulate relationships among them. By making ideas and relationships visible, the
composition space can stimulate cognitive restructuring, and creative ideation. Design
tools enable authoring task-oriented collections as navigable compositions. Visual
characteristics, such as colors, sizes, fonts, sizes, layout, and compositing can be ad-
justed. Spatial relationships and visual characteristics are used to connect ideas. Com-
positing blends surrogates visually, by using alpha masks.

The user engages in processes of searching, browsing, collecting, and authoring
media in the composition space, which serves as a visible medium for communication
between human and agent, as well as for thinking about and sharing information re-
sources. Users can directly experience the juxtaposed surrogate clippings, and they
can also navigate back to source documents for more in-depth information. Composi-
tions can be saved reopened, shared, and published.

A combinFormation session is initiated by the user through the specification of
seeds. Each seed is a search query, website, or news feed. The top left of Figure 2
shows a process of seeding combinFormation, in this case to develop a composition
relevant to requirements generation for a secure access system, and the resulting com-
position space. Queries included terms such as physical security and security gate.
The outer area is the mixed-initiative Hot Space, which is shared by combinForma-
tion’s visual composition agent and the user. Surrogates stream directly into this
space. The inner area is the Cool Space, available only to the user for constructing a
compositional storyboard of the surrogates most relevant to the task at hand, using
drag and drop. As the user fills the Cool Space storyboard with relevant content, s/he
can enlarge it to allocate more of the visual area for her own use, leaving less for the
agent.

166 I.K. Karlsen, N. Maiden, and A. Kerne

Fig. 2. Launching combinFormation by issuing multiple search queries as seeds for mixing
(e.g. “Physical Security” and “security gate”) in the top left-hand corner, and the composition
space filled with retrieved surrogates. The user organizes relevant surrogates by dragging them
into the center Cool Space, and adjusting their visual characteristics and relationships.

As part of integrating ART-SCENE and combinFormation, we developed a new
ART-SCENE component called the Creative Requirements Innovation Space (CRIS).
CRIS provides analysts with a flexible storyboarding space in which to explore, com-
bine and transform ideas prior to generating requirements.

3.2 CRIS: The Creative Requirements Innovation Space

We designed CRIS to emulate how people in our creativity workshops generate new
associations between concepts using creativity techniques. In workshops, stakeholders
browse and associate ideas, place them on pin boards, then elaborate these ideas in
storyboards that combine graphics and text to describe new system behaviour [12].
Using CRIS the analyst explores associations between image and text elements pre-
sented by combinFormation, then pulls these elements into CRIS to connect them
with requirements.

So how did the tool integration work? We designed ART-SCENE to extract key
terms dynamically from scenario event descriptions, and pass them to combinForma-
tion to seed searches and download web pages to create collections of surrogates and
links displayed in its composition space. An analyst then used combinFormation to

 Inventing Requirements with Creativity Support Tools 167

manipulate surrogates in the composition space and the visual representation of the
collection. To document requirements, the analyst opened another storyboard in
CRIS, dragged selected surrogates from the composition space to construct a story-
board for each scenario normal course event, then documented one or more structured
requirements through VOLERE forms. The storyboard and requirements were stored
in the ART-SCENE database, which met one important need – that storyboards and
requirements can be shared between stakeholders working in distributed settings with
the same ART-SCENE scenario.

To facilitate rapid storyboarding, the analyst could directly drag elements from the
Composition Space and/or any existing web-site into the CRIS storyboard, then re-
size, label and delete elements, combine elements together, save the storyboard, re-
open it later, and share it with other stakeholders. To minimize resource consumption
and quicken response times, most CRIS functions were client-side, and client-server
communication only happened when the analyst stored a storyboard in the database.

The next section demonstrates how this architecture supports an analyst to generate
and use CRIS storyboards during an ART-SCENE scenario walkthrough.

4 ART-SCENE and combinFormation to Invent Requirements

The security access scenario in Figure 1 has 7 discrete normal course events, from
user walking up to a security gate to the security gate closes, and alternative courses
generated to ensure requirements completeness. For any selected use case event, the
analyst can request creativity support by clicking the corresponding light bulb icon,
then edit and extend the terms in the event description – for example user, walk and
security gate. ART-SCENE seeds combinFormation with the extracted event terms.

The composition space in Figure 2 connects surrogates that include images of a
crowd scene, a security camera and a disabled access symbol. The analyst uses com-
binFormation to organize surrogates in the composition space. She drags some surro-
gates into CRIS to develop new requirements for security access. Figure 3 shows a
CRIS storyboard in ART-SCENE, created from surrogates retrieved and associated
from the composition space of Figure 3.

More than one user can walk up to the security gates. The user can interact with the
gate in different ways. Disabled access is provided, there are human security guards to
provide assistance, and surveillance is in place, providing images of the faces of the
registered user of an ID card.

During storyboarding the analyst can formalize new requirements in the VOLERE
form. Figure 3 shows two functional requirements, one that specifies that the security
guard shall view a picture of the registered user when an ID is swiped (based on im-
ages of banks of screens and images of people’s faces), whilst the second specifies
that the user will access to gate without actively having to swipe or use the card
(based on images of a Smart card and fingerprint system). ART-SCENE supports
further communication and traceability of requirements by linking each documented
requirement and CRIS storyboard in the server-side database.

However we lacked empirical evidence that the integration could deliver require-
ments that, following Sternberg’s definition, are more novel but still useful. Therefore
a first exploratory evaluation was undertaken.

168 I.K. Karlsen, N. Maiden, and A. Kerne

Fig. 3. A storyboard in CRIS, showing elements discovered with combinFormation, annotated
with text (in blue) written within CRIS by an analyst. Two possible requirements generated
from the CRIS storyboard are specified using VOLERE forms. One specifies the security guard
shall view a picture of the registered user when an ID is swiped, whilst the second specifies that
the user will be able to access to gate without actively having to swipe or use the card.

5 A First Exploratory Evaluation

Nine analysts worked individually with an environment comprising the ART-SCENE
with CRIS and combinFormation (2006 version) tools (referred to ART-SCENE/cF)
to generate requirements for the security access system scenario in Figure 1. Each had
received training in walking through scenarios and writing VOLERE requirements.
Each received a basic introduction to ART-SCENE, combinFormation and CRIS
functions.

Requirements generated by the analysts were analyzed to explore 3 research ques-
tions based on Sternberg’s definition of creativity:

Q1: Do analysts generate more requirements using ART-SCENE/cF than when
using ART-SCENE-only?

Q2: Do analysts generate requirements that are more novel using ART-
SCENE/cF than when using ART-SCENE-only?

Q3: Do analysts generate requirements using ART-SCENE/cF that would not
have been generated using ART-SCENE-only?

 Inventing Requirements with Creativity Support Tools 169

The evaluation was in two parts of 20 minutes each. In the first, each analyst
walked through the scenario with ART-SCENE-only to discover and document re-
quirements for the security access system. Next, the experimenter seeded combin-
Formation with queries. The analyst continued the walkthrough in ART-SCENE with
combinFormation and CRIS to discover and document requirements. Each analyst
was then debriefed. Afterwards, a security expert rated the usefulness and novelty of
all requirements generated by the 9 analysts.

All 9 analysts completed both parts of the evaluation and generated at least one
CRIS storyboard each. combinFormation queries were simple and not tuned. During
debriefings, all 9 analysts claimed that using ART-SCENE/cF had helped them to
generate requirements not generated using ART-SCENE-only based on prompts from
the composition space. Requirements totals by analyst are reported in Table 1.

Table 1. Totals of requirements generated by each analyst with ART-SCENE-only and with
ART-SCENE/cF, and totals of security expert ratings of the usefulness and novelty of these
requirements

ART-SCENE-only ART-SCENE/cF Analyst
ID # of Re-

quirements
Usefulness Novelty # of Require-

ments
Usefulness Novelty

A1 16 (62%) 16 (100%) 0 (0%) 10 (38%) 10 (100%) 0 (0%)
A2 6 (67%) 5 (83%) 1 (17%) 3 (33%) 2 (67%) 0 (0%)
A3 13 (76%) 13 (100%) 0 (0%) 4 (24%) 4 (100%) 0 (0%)
A4 8 (62%) 8 (100%) 0 (0%) 5 (38%) 5 (100%) 0 (0%)
A5 14 (64%) 14 (100%) 0 (0%) 8 (36%) 8 (100%) 0 (0%)
A6 17 (63%) 17 (100%) 0 (0%) 10 (37%) 10 (100%) 0 (0%)
A7 10 (63%) 10 (100%) 3 (30%) 6 (38%) 6 (100%) 1 (17%)
A8 14 (61%) 14 (100%) 0 (0%) 9 (39%) 7 (78%) 3 (33%)
A9 7 (50%) 6 (85%) 1 (15%) 7 (50%) 6 (85%) 2 (29%)
Totals 105 (63%) 103 (98%) 5 (5%) 62 (38%) 58 (94%) 6 (10%)

On average, each analyst generated almost twice as many requirements with ART-
SCENE-only as with ART-SCENE/cF. Reasons reported included generating the
obvious requirements quickly with ART-SCENE-only, and the longer time needed to
learn to use CRIS and select elements from combinFormation.

The security expert rated 98% of the ART-SCENE-only requirements as useful and
5% as novel, and 94% of the ART-SCENE/cF requirements as useful and 10% as
novel, so although analysts generated fewer requirements when using ART-
SCENE/cF, a higher percentage of these were rated as novel. Three of the 11 novel
requirements were also rated as not useful for reasons that included too much admini-
stration and not practicable due to costs.

The 11 novel requirements – 5 generated with ART-SCENE-only and 6 with ART-
SCENE/cF – were investigated. We attributed 4 of the 5 ART-SCENE-only require-
ments to alternative course events generated automatically in ART-SCENE. For
example, the requirement the system shall notify the user and alert an administrator
when there is a malfunction with the card reader in a response to the alternative course
event what if the Card Reader is unavailable or malfunctioning during this action? One
analyst (A7) specified 3 of these 5 novel requirements, suggesting that he exploited
alternative course prompts for creative thinking more than the other analysts did.

170 I.K. Karlsen, N. Maiden, and A. Kerne

Table 2. Eight requirements and their rationale generated by analysts using ART-SCENE/cF,
and storyboard elements associated with these requirements. The security expert ranked all 8 as
useful, and the first 5 as innovative.

Analyst A8
Description: If a toll is
required, security should
accept cash.

Analyst A8
Description: It should be
possible for the gate system
to know who to expect at a
certain time. The face of the
person should be displayed on
the monitor of the security
desk when someone is ex-
pected.

Analyst A8
Description: If user looks
drastically different to
when photographic ID
was taken, security
should be able to take
new photos there and
then.
Rationale:

Analyst A9
Description: When the user
approaches the security gate,
information will be displayed
to them informing them on
how to use the system.

Analyst A9
Description: The security
gates should have numer-
ous entry points maximis-
ing the amount of people
that can pass through at
once.

Analyst A9
Description: The system will
include some CCTV aspect
which will record who goes
through at what time. it will
be time linked with the
recorded info in the card
reader.

Analyst A4
Description: Human
assistance should be
available in the event of a
technical failure.

Analyst A1
Description: The security
gate is connected to a camera
which can recognize and
match features of a user to
their ID card image/profile.

During debriefings, analysts attributed only 1 of 6 ART-SCENE/cF requirements
to alternative course events (analyst A7 again). The remaining 5 were attributed to
surrogates in the analysts’ storyboards shown in Table 2.

Results revealed individual differences between analysts. Analysts A8 and A9
generated the 5 innovative requirements associated with storyboard elements. For
example, the requirement if a toll is required, the security should accept cash, was
associated with an image of an briefcase of cash, whilst the requirement to display the
face of expected visitors was associated with a person’s face on the retrieved maga-
zine cover. Similar associations were detected for the other 3 novel requirements, and
with requirements rated as useful but not novel (Table 2).

All 9 analysts reported preferences for images over text, citing reasons like images
gave more impact and I could look at more pictures at the same time.

 Inventing Requirements with Creativity Support Tools 171

The results provide tentative answers to our research questions. The answer to Q1
was no, at least in a restricted time period. Using ART-SCENE/cF took more time
than ART-SCENE-only, reducing the frequency and number of requirements that
analysts generated. There is weak evidence to answer yes to Q2, because double the
proportion of requirements generated with ART-SCENE/cF were rated as novel.
However, introducing ART-SCENE/cF did not result in a step change in requirements
creativity. Individual differences between analysts were a factor – all requirements
rated as novel were generated by just one-third of the analysts. There is stronger evi-
dence for answering yes to Q3. All analysts reported that ART-SCENE/cF prompted
the generation of new requirements, both novel and otherwise, in connection with
composition space surrogates.

Clearly there are threats to the validity of this first exploratory evaluation. Many of
the threats limit the generality of the conclusions that can be drawn. A small number
of analysts undertook the evaluation, which restricted our conclusions about the effec-
tiveness of ART-SCENE/cF. The analysts had previous analysis experience within a
given range, and our results cannot be applied to inexperienced analysts and analysts
with over 10 years of analytic experience. Furthermore the results revealed important
individual differences, with most creativity results generated by a small subset of the
analysts. Finally the evaluation was undertaken in one problem domain – secure gate
access – with small numbers of cF queries, and it is difficult to generalize the results
to other domains, because the nature of the requirements discovered might be differ-
ent and because different types of storyboard elements might be retrieved by cF.

Other threats to the validity of the evaluation were due to the design of the evalua-
tion. The number of analysts available meant that a control group was not practical.
We were unable to investigate the effect of the order of the two study tasks on re-
quirements discovery, and increased exposure to the scenarios over time might have
led to more discovered requirements. Likewise more training in combinFormation and
CRIS might increase the volume and novelty of the requirements. In particular, if
participants had known about how to express interest in combinFormation, this would
have helped them to receive information more relevant to their tasks. combinForma-
tion’s fluid interface minimizes the cognitive effort required [8]. Likewise, knowledge
of how to automatically generate a new search, using an existing surrogate in com-
binFormation, would have helped the analysts. Improving integration of the technolo-
gies is expected to improve the experience and results.

Nonetheless, the results reveal that the use of ART-SCENE/cF prompted analysts
to generate requirements that otherwise might not have been generated. Evidence that
only a minority of the ART-SCENE/cF requirements were novel is consistent with
findings from earlier creativity workshops [12], in which stakeholders tend to gener-
ate useful requirements that are both novel and otherwise during periods of creative
thinking.

6 Related Work

Little requirements research has addressed creative thinking directly. Brainstorming
techniques and RAD/JAD workshops [3] make tangential reference to creative think-
ing. Most current brainstorming work refers back to Osborn’s text [19] on principles

172 I.K. Karlsen, N. Maiden, and A. Kerne

and procedures of creative problem solving (CPS). Examples of CPS activities in-
clude the matrix, which involves making lists then selecting items from each list at
random and combining them to generate new ideas, and parallel worlds, which uses
analogical reasoning to generate new ideas. However, there are no reported applica-
tions of the CPS model to requirements processes.

In the requirements domain, Robertson [20] argues that requirements analysts need
to be inventors to bring about the innovative change in a product that gives competi-
tive advantage. Such requirements are often not properties that a stakeholder would
ask for directly. Nguyen et al. [18] observed that teams restructured requirements
models at critical points when they re-conceptualize and solve sub-problems, trig-
gered by moments of sudden insight. Mich et al. [15] report the successful use of the
elementary pragmatic model from communication theory in a controlled environment
to trigger combinatorial creativity during requirements acquisition. The RESCUE
requirements process has ran numerous creativity workshops in domains from air
traffic management to food information traceability [11, 12].

 In creativity research, creativity support tools have been posited to support users to
discover, explore, innovate and imagine. Schneiderman [21] reports that use of these
tools to locate, study, review and revise can accelerate users’ creative efforts. Search
engines such as Google are important in such tools to locate information quickly.
However Kules [16] reports that these search engines are more effective for retrieving
information from well-defined queries than to support creative tasks with incomplete
or ambiguous queries in often-unfamiliar domains. That said, by using more than
ranked lists of search results, such as the hot space in combinFormation, we can sup-
port creativity by exposing users to information that will help the creative process.
Greene [4] reported other important characteristics of creativity support tools, which
include pain-free exploration and experimentation, supporting engagement with con-
tent to promote active learning, iteration, and collaboration. Future requirements tools
will need some of these characteristics.

Whilst our work has sought to support individual creativity, much research focuses
on collaborative creativity. Mamykina et al. [13] report research results that reveal the
importance of social interactions, mentoring and collaboration in creative work, and
Fischer & Giaccardi [2] talk of the need to sustain social creativity. Mamykina et al.
[13] further report that effective collaboration involved 3 main activities – creative
conceptualization, realization and evaluation. Future creativity tools that will support
requirements processes might be expected to support at least these activities.

7 Creativity Support Tools for Requirements

We successfully integrated 2 tools to support people to think creatively about re-
quirements. These tools utilize the Internet as a source of descriptions of domain
events and situations that stimulate analysts and stakeholders to generate requirements
that are more complete and novel.

The evaluation results have implications for improving the design of creativity
support tools for requirements analysts. We need much better integration of creativity
support tools with the tasks they intended to assist. Analysts’ loss of efficiency
while generating requirements is a concern. We can improve the efficiency of the

 Inventing Requirements with Creativity Support Tools 173

composition’s stimulation of creative thinking in requirements generation. We hypothe-
size that using combinFormation’s cool space as the storyboard, and then integrating
combinFormation directly with server-side ART-SCENE will improve the experience
and results in several ways. First of all, the number of windows will be reduced, thus
increasing efficiency by reducing cognitive effort [5]. There is also an opportunity to
invoke peripheral attention that minimizes the physical effort to see and interact with the
composition being generated, the tools create the opportunity for the analyst to be stimu-
lated by relevant information when it arises. The benefits of mixed-initiative composi-
tion on requirements generation will be increased. We will give users fluid mechanisms,
next, for associating a combinFormation surrogate with an event in an ART-SCENE
scenario, and with a requirement that the user has generated. We will also enable stake-
holders working on the same scenario to share compositions.

We expected the analysts to generate one storyboard per scenario event of interest,
but this did not happen. Although a lack of time to produce more than one storyboard
was a factor, each storyboard included elements related to more than one scenario
event. One possible reason was that elements retrieved from the Internet were more
coarse grain than the actions, agents and objects described in the scenario events in
ART-SCENE. One implication is to use composition to support the earlier use case
authoring tasks, using surrogates to provide scaffolds with which to write the use cases.

The most important step is to derive queries automatically from ART-SCENE
more effectively and pass them as seeds to the mixed-initiative composition space.
The granularity of the queries can start with the generality of a scenario, and the shift
to specific events and requirements. For software to perform this shifting automati-
cally, it must model the user’s attention in the context of using ART-SCENE to per-
form a task. This integration will be facilitated by combinFormation’s services
mechanism, through which the software functions as a composition visualization
server that can respond to semantic messages. Thus, ART-SCENE will periodically
send XML messages to the running cF over a network socket. The experimental re-
sults reveal that effective query formulation is essential to providing elements relevant
to a requirements task. Better query formulation and integration between requirements
specification and creativity support components has the potential to provide strong
support for requirements tasks.

Acknowledgements

Support for combinFormation development is provided by National Science Founda-
tion grants IIS-735897 and IIS-0747428.

References

1. Baddeley, A.D.: Human memory: Theory and practice. Lawrence Erlbaum Associates,
Hove (1990)

2. Fischer, G., Giaccardi, E.: Sustaining Social Creativity. Communications of the
ACM 50(12), 28–29 (2007)

3. Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., Wolf, G.: Out of Scandinavia: Alter-
native Approaches to Software Design and System Development. Human-Computer Inter-
action 4(4), 253–350 (1989)

174 I.K. Karlsen, N. Maiden, and A. Kerne

4. Greene, S.L.: Characteristics of Applications that Support Creativity. Communications of
the ACM 45(10), 100–104 (2002)

5. Henderson, D.A., Card, S.K.: Rooms: the use of multiple virtual workspaces to reduce
space contention in a window-based graphical user interface. ACM Transactions on
Graphics 5(3), 211–243 (1986)

6. Horvitz, E.: Principles of Mixed-Initiative User Interfaces. In: Proc. ACM CHI 1999, pp.
159–166 (1999)

7. Interface Ecology Lab, combinFormation (2007),
 http://ecologylab.net/combinFormation/

8. Kerne, A., Koh, E.: Representing Collections as Compositions to Support Distributed
Creative Cognition and Situated Creative Learning. New Review of Hypermedia and Mul-
timedia 13(2), 135–162 (2007)

9. Kerne, A., Koh, E., Smith, S.M., Webb, A., Dworaczyk, B.: combinFormation: Mixed-
Initiative Composition of Image and Text Surrogates Promotes Information Discovery.
ACM Transactions on Information Systems (TOIS) 27(1), 1–45 (2008)

10. Koh, E., Kerne, A., Damaraju, S., Webb, A., Sturdivant, D.: Generating views of the Buzz:
Browsing popular media and authoring using mixed-initiative composition. In: Proc. ACM
Multimedia, pp. 226–237 (2007)

11. Maiden, N., Robertson, S., Gizikis, A.: Provoking Creativity: Imagine What Your Re-
quirements Could be Like. IEEE Software 21(5), 68–75 (2004)

12. Maiden, N.A.M., Ncube, C., Robertson, S.: Can Requirements Be Creative? Experiences
with an Enhanced Air Space Management System. In: Proceedings 28th International Con-
ference on Software Engineering ICSE, pp. 632–641. ACM Press, New York (2007)

13. Mamykina, L., Candy, L., Edmonds, E.: Collaborative Creativity. Communications of the
ACM 45(10), 96–99 (2002)

14. Mavin, A., Maiden, N.A.M.: Determining Socio-Technical Systems Requirements: Ex-
periences with Generating and Walking Through Scenarios. In: Proc. IEEE Requirements
Engineering, pp. 213–222 (2003)

15. Mich, L., Anesi, C., Berry, D.M.: Requirements Engineering and Creativity: An Innovative
Approach Based on a Model of the Pragmatics of Communication. In: Proceedings
REFSQQ 2004 Workshop, Riga (2004)

16. National Science Foundation Workshop Report Creativity Support Tools, Washington,
DC, June 13-14 (2005), http://www.cs.umd.edu/hcil/CST/report.html
(retrieved, 02/12/2008)

17. Nuseibeh, B.A., Easterbrook, S.M.: Requirements Engineering: A Roadmap. IEEE Com-
puter Society Press, Los Alamitos (2000)

18. Nguyen, L., Carroll, J.M., Swatman, P.A.: Supporting and Monitoring the Creativity of IS
Personnel During the Requirements Engineering Process. In: Proc. Hawaii Int’l Conf. Sys-
tems Sciences (HICSS-33). IEEE Computer Society Press, Los Alamitos (2000)

19. Obsorn, A.F.: Applied Imagination: Principles and Procedures of Creative Problem Solv-
ing. Charles Scribener’s Sons, New York (1953)

20. Robertson, J.: Eureka! Why Analysts Should Invent Requirements. IEEE Software, 20–22
(July/August 2002)

21. Schneiderman, B.: Creativity Support Tools – Accelerating Discovery and Innovation.
Communications of the ACM, 20–29 (December 2007)

22. Sternberg, R.J. (ed.): Handbook of creativity. Cambridge University Press, Cambridge
(1999)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 175–189, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Quantitative Assessment of Requirements Engineering
Publications – 1963-2008

Alan Davis and Ann Hickey

University of Colorado at Colorado Springs,
College of Business,

PO Box 7150,
Colorado Springs, CO 80933-7150, USA
{adavis,ahickey}@uccs.edu

Abstract. [Context and motivation] Two years ago, the authors conducted an
extensive meta-analysis of the requirements engineering (RE) literature and
reported a demographic analysis by date, type, outlet, author, and author affi-
liation for just over 4,000 RE publications. We have now added two more years
and 1,200 more publications. [Question/problem] The current paper continues
this analysis to see if the same publication trends in RE continue or if unique
new trends are emerging. It explores the past ten years in more depth, and
separately analyzes the trends in journals. [Principal ideas/results] The study
uncovers some continuing trends: (1) European Union countries continue to be
the leaders in publishing RE papers, (2) the UK continues to surpass most
countries in annual production, (3) the USA continues to lose market share, and
(4) the same institutions lead the effort. But some new trends emerge as well:
(1) total production of papers in RE has decreased since its high in 2005, (2) the
average number of authors per paper has increased, (3) non-RE-specific
conferences and non-RE-specific conferences have published fewer RE papers,
and (4) some institutions strong in RE paper production in general are not as
productive with respect to journal articles, and vice versa. [Contribution] This
paper enables RE researchers to understand where RE research is being
conducted and where results are being published. Although we report some
interesting trends, the data cannot help us understand causes of these trends.

Keywords: requirements engineering, requirements management, elicitation,
literature analysis, specification, research analysis.

1 Introduction

Two years ago, the authors provided a demographic analysis of 44 years worth of
requirements engineering (RE) publications [1]. In the current paper, we update this
corpus with two more years of data and discover specific trends that have occurred in
the recent past. Although two years might seem like a short time-frame to revisit these
trends given the overall 46 history of RE publications, the 30% increase from 4,000 to
5,200 publications encourages this re-analysis. Moreover, since the detailed demogra-
phic basis was established in [1], this paper expands its analysis in two critical areas

176 A. Davis and A. Hickey

of interest to RE researchers. First, in addition to overall demographic trends from
1963-2008, this paper focuses on trends in the last 10 years. Second, it analyzes and
compares trends for all RE publications to those for journal papers.

2 Research Method

We conducted a meta-research analysis of the full corpus of 5,200 papers published in
the field of requirements engineering. Full details of our research method can be
found in [1]. Briefly, we have been cataloguing RE papers for 20 years and storing
key data about these publications in an Access database: paper title, publication
outlet, year, all author names and their affiliations. We then constructed database
queries to improve our understanding of trends in these publications.

2.1 Research Questions

In this study we deal with all publications that concern concepts of gathering, defin-
ing, pruning, and documenting requirements, needs, desires, etc. We will use the
expression “requirements engineering” to refer to any or all of these concepts.

Our research questions are:

• How many publications have been written in the field of RE, and how has the
production changed over the years?

• Have the most popular outlets for RE publications changed?
• How many different authors are responsible for the RE publication output? How

many authors team together to author papers? Are many new authors emerging,
or is the population of authors remaining fairly static?

• What countries and organizations have been responsible for writing RE papers?
Has this changed significantly in the recent past? Has the distribution among
government, academic, and commercial affiliations changed recently?

• Do answers to any of the above change when limited to only journals?

2.2 Data Collection

Two years ago, the database consisted of 4,089 publications gathered over the pre-
ceding 18 years. Stored in a database and publicly accessible in html via
www.uccs.cdu/faculty/adavis/reqbib.htm, the website [2] has now
been visited 60,000 times, and is used regularly by researchers all over the world. The
database now includes:

• 5,198 RE publications spanning the years from 1963 through 2008.
• We located full source or abstracts for approximately 4,565, or 88%.
• We determined the complete list of authors for 5,194, or 99.9%.

o 5,973 unique authors of RE publications
o 11,988 unique assignments of authors to publications, and we determined

affiliations of 11,675, or 97.4%, of the author-pub pairs.

Although we make no completeness claims, we believe the database is (a) the largest
ever collected, and (b) complete enough to make the data analysis trends accurate.

 A Quantitative Assessment of Requirements Engineering Publications 177

3 Results for All Requirements Publications

3.1 Publication Volume and Trends

The RE research area had exhibited exponential growth between 1977 and 2006 [1], but
that growth has leveled out more recently. Fig 1 shows the growth during the past 46
years in 5-year increments. For consistency with the format of the data we used in the
2007 study, we have linearly extrapolated RE publication production for 2007-2011
based on the papers recorded for 2007 and 2008. To better understand more recent
trends, Fig 2 shows the past 10 years. We see a noticeable decrease in production in the
past 3 years. We do not fully understand its reasons, but have reached some preliminary
conjectures, to be discussed later in this paper.

0

500

1000

1500

2000

2500

<1967 1967-1971 1972-1976 1977-1981 1982-1986 1987-1991 1992-1996 1997-2001 2002-2006 2007-2011*

Half Decade

N
um

be
r o

f R
E

Pu
bl

ic
at

io
ns

Fig. 1. Quantity of Publications in Domain of Requirements Engineering

3.2 Publication Types and Outlets

We investigated outlets of all publications in our database. Fig 3 shows how the number
of publications for each outlet type (the figure shows two types of conference papers –
regular and auxiliary – where auxiliary papers include introductions, panel reports, etc.;
and two types of journal papers –regular and auxiliary – where auxiliary papers include
guest editor introductions, columns, abstracts, etc.) has changed over the past 10 years.
Notice that the percent of RE papers published in conferences has increased slowly from
around 50% to over 60%. Journal papers have remained fairly steady at 20-25%, with a
decrease in its relative contribution since 2007. The number of books published has
decreased since the heyday in 1999-2005. Further analysis of specific outlets highlights
the leading venues for RE publications; Fig 4 shows all venues accounting for 2% or
more, and highlights how their popularity has changed during the past two years. Notice
that the IEEE Requirements Engineering Conference and REFSQ have grown in

178 A. Davis and A. Hickey

proportion to the general growth of RE publications, the relative size of the
Requirements Engineering Journal has decreased slightly, and the INCOSE Symposium
on Systems Engineering has decreased its emphasis on RE.

0

50

100

150

200

250

300

350

400

450

500

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Years

N
u

m
be

r
o

f R
E

 P
u

b
lic

at
io

n
s

Fig. 2. Quantity of Publications in Domain of RE (past 10 years)

0%

20%

40%

60%

80%

100%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

V
o

lu
m

e

Book

Book Chapter

Other Periodical

Journal/Magazine Article (Auxiliary)

Conference Paper (Auxiliary)

Journal/Magazine Article (Regular)

Conference Paper (Regular)

Fig. 3. Publication Outlets by Year

 A Quantitative Assessment of Requirements Engineering Publications 179

Inter'l Conf/Symposia on Req'ts
Eng'g

Req'ts Eng'g Journal

Inter'l Symposium on Systems
Eng'g Inter'l Workshop/Working Conf

on Req'ts Eng'g: Foundations
for SW Quality (REFSQ)

IEEE Software

IEEE Trans on SW Eng'g

Inter'l Computer SW and Applic
Conf (COMPSAC)

Inter'l Conf on SW Eng'g and
Knowledge Eng'g (SEKE) Advances in

Conceptual Modeling

Inter'l Conf on SW Eng'g (ICSE)

0%

2%

4%

6%

8%

10%

12%

14%

1993-2006 2007-2008

Fig. 4. Leading RE Publication Venues

3.3 Author Productivity and Authorship Patterns

We also investigated the authors of RE publications. The 5,198 publications were
written by a total of 5,973 different individuals. We analyzed the average number of
authors on each paper, as shown in Fig 5; here we see a distinct increase from an
average of 2 authors per paper to an average of 3 authors per paper, over a period of
just 10 years. This is, in fact, a long-term trend; the average number of authors per
paper published prior to 1999 was below 2. We also wanted to discover if require-
ments engineering research is becoming more insular, so we analyzed how many
authors each year are new1 authors. The results, shown in Fig 6, show a phenomenal
trend, i.e., that very few new authors are emerging. Ten years ago, 40% of all authors
of RE papers were new to the field; today, only 10% are new to RE. Are we becoming
more insular? Does our conference and journal review process contribute to this?
Would this change if we used a double-blind review process 2 (common in most
disciplines)? Are the members of all are review committees composed of the same
group of individuals? Is our field simply not attracting new researchers because of a
decrease in interest? Or is this phenomenon commonplace for any new field?

3.4 Author Affiliations

We then placed each publication into one or more of four categories based on affilia-
tions of its authors: academic, industry, government, and unknown. To no surprise a

1 Defined as “did not author an RE paper in the preceding 5 years.”

180 A. Davis and A. Hickey

large majority of RE papers are written by academics. But as can be seen in Fig 7, a
growing majority (increasing from 73% to 87% during the past ten years) of RE
papers have at least one author affiliated with an academic institution, and a shrinking
minority (decreasing from 31% to 27% during the past ten years) of RE papers have
at least one author affiliated with a commercial institution.

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

1999 2000 2001 2002 2003 2004 2005 2006 2007

Year

A
ve

ra
g

e
A

u
th

o
rs

 p
er

 P
u

b
lic

at
io

n

Average years 1963-1998

Range of Annual
Averages 1963-1998

Fig. 5. Average Number of Authors per Publication

Author affiliations represent over 1,541 different organizations worldwide. The top
20 RE publication-producing organizations, along with their relative ranking, and
total number of publications are shown in Table 12. It is interesting to note that 3 of
the top 10 are in UK (including 3 of the top 4), 2 are in Canada, and 1 is in each of
France, Germany, Netherlands, Sweden and USA. Just below the 1% cutoff are
Pontifícia Universidade Católica do Rio de Janeiro, and Technischen Universität
München. To better understand how the top five organizations have produced RE
publications recently, Fig 8 shows their annual production (three year moving
averages of a percent of papers produced that year) for the past 10 years. Notice that
#1, City University of London, had a lull in the early 2000’s, but is now producing
over 3% of every year’s RE paper production. University of Toronto and Manchester
University have remained consistent for the past ten years, producing roughly 2.5%
and 1% of papers annually, respectively. The #3 organization, Lancaster University
also experienced a lull in the early 2000’s but now produces 2% annually. Fraunhofer
had produced more in the early 2000’s but has now slowed down.

2 Note that small publication counts separate all but the top 3; thus inadvertent omissions by the

researchers can have a significant affect on rankings.

 A Quantitative Assessment of Requirements Engineering Publications 181

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1999 2000 2001 2002 2003 2004 2005 2006 2007

Year

%
 o

f
A

u
th

o
rs

 w
/P

re
vi

o
u

s
R

E
 P

u
b

lic
at

io
n

s

Fig. 6. New RE Authors

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

C
la

ss
 o

f
A

u
th

o
r

A
ff

ili
at

io
n

Academic
Industry
Government
Unknown

Fig. 7. Percent of RE Authors from Classes of Affiliation3

To see how individual countries have contributed, let us look at a ranked list of all
countries that have produced 1% or more of all RE publications as of 2008, as shown in

3 Note that the sum of the percents for any one year exceed 100% because some papers include

multiple authors from multiple classes of organizations.

182 A. Davis and A. Hickey

Table 2. Meanwhile, Table 3 combines the European Union (EU) countries. Finally, Fig 9
shows the ten year trend for the top 7 countries; this figure makes it clear that the EU has
increased its share in the past ten years, while US has lost its share.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

%
 o

f
T

o
ta

l R
E

 P
u

b
lic

at
io

n
s

(3
 Y

r
M

o
vi

n
g

 A
vg

)

City U, London

U Toronto

Lancaster U

Fraunhofer

U Manchester

Fig. 8. Top Five RE-Publishing Organizations – Last 10 Years (3 Yr Moving Averages)

Table 1. Top 20 Organizations

Organization Rank

Pubs
% of

Total

City U, London 1 127 2.44%
U Toronto 2 112 2.15%
Lancaster U 3 76 1.46%
U Manchester 4 61 1.17%
Fraunhofer - Germany 4 61 1.17%
U Calgary 6 59 1.14%
U Colorado, Colorado Springs 7 56 1.08%
U Twente 8 54 1.04%
Lund U 9 52 1.00%
U Paris 1, Panthéon-Sorbonne 9 52 1.00%
U Technology, Sydney 11 51 0.98%
Open U 12 50 0.96%
Imperial College 13 48 0.92%
Jet Propulsion Lab 13 48 0.92%
AT&T - USA 15 46 0.88%
U Southern California 16 44 0.85%
U Waterloo 17 43 0.83%
George Mason U 18 41 0.79%
RWTH - Aachen U of Technology 19 40 0.77%
IBM - USA 20 39 0.75%

 A Quantitative Assessment of Requirements Engineering Publications 183

Table 2. Top 19 Countries

Country Rank # Pubs % of
Total

USA 1 1966 37.8%
UK 2 814 15.7%
Canada 3 395 7.6%
Germany 4 343 6.6%
Australia 5 250 4.8%
Spain 6 190 3.7%
Italy 7 163 3.1%
Sweden 8 156 3.0%
Japan 9 147 2.8%
France 10 146 2.8%
Netherlands 11 138 2.7%
China 12 120 2.3%
Brazil 13 110 2.1%
Austria 14 93 1.8%
Belgium 15 89 1.7%
Finland 16 61 1.2%
Israel 17 57 1.1%
India 18 56 1.1%

 Korea, South 18 56 1.1%

Table 3. Top 10 Countries
(EU Considered as One)

Country Rank # Pubs % of
Total

 EU 1 2397 46.1%
 USA 2 1966 37.8%
 Canada 3 395 7.6%
 Australia 4 250 4.8%
 Japan 5 147 2.8%
 China 6 120 2.3%
 Brazil 7 110 2.1%
 Israel 8 57 1.1%
 India 9 56 1.1%

 Korea, South 9 56 1.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

P
er

ce
n

t
o

f
R

E
 P

u
b

lic
at

io
n

s

EU

USA

Canada

Australia

Japan

China

Brazil

Fig. 9. Top Seven RE-Publishing Countries/Unions – Last 10 Years

4 Results for Journal Requirements Publications

Recognizing that many academic institutions emphasize publishing in journals rather
than other outlets, this section analyzes the subset of the entire RE publication corpus

184 A. Davis and A. Hickey

corresponding to papers in journals; it does not include auxiliary papers such as guest
editor introductions, columns, editorials, book reviews, and so on.

4.1 Publication Volume and Trends

Until 2007, growth in RE journal publication closely paralleled the growth in RE
publications in general (contrast Fig 10 with Fig 1). As before, we have linearly
extrapolated RE publication production for 2007-2011 based on the papers for 2007
and 2008. However, Fig 11, which shows detailed data for just the past 10 years,
exhibits a major drop in journal publications in the past 2 years. The reasons for this
are unclear, but may in part be due to: (a) requirements engineering may have fallen
out of vogue as a serious research topic, (b) fewer journal outlets accepted RE
publications (e.g., in 2005 and 2006, approximately 50 journals published RE papers,
but in 2007 and 2008, approximately 40 did so; the major RE journal publishers did
not decrease their production, but fewer related journals published papers on RE).
This trend needs to be watched in coming years to see if it continues.

0

50

100

150

200

250

300

350

400

450

<1967 1967-1971 1972-1976 1977-1981 1982-1986 1987-1991 1992-1996 1997-2001 2002-2006 2007-2011*

Half Decade

N
u

m
b

er
 o

f
R

E
 J

o
u

rn
al

 P
u

b
s

Fig. 10. Quantity of Journal Publications in Domain of RE

4.2 Author Productivity and Authorship Patterns

The 1,209 journal papers were written by a total of 1,980 different individuals. To
better understand this, we again analyzed the average number of authors on each
paper, as shown in Fig 12 (this shows the same increasing trend as for RE publi-
cations in general, as shown in Fig 5). We also wanted to discover if requirements
engineering research is becoming as insular with journal publication as it is with RE

 A Quantitative Assessment of Requirements Engineering Publications 185

publications in general, so we analyzed how many authors of journal papers each year
are new authors (i.e., did not publish any RE paper in the preceding 5 years). The
results, shown in Fig 13, show the trend in journals is even more insular than in
general, with only 8% of papers being written by first-time authors. Although one
could argue that journal papers are usually written by individuals who have published
before, the single-digit trend does not go back more than two years; prior to 2006,
between 15% and 40% of the RE journal articles were written by first-timers.

0

10

20

30

40

50

60

70

80

90

100

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

N
u

m
b

er
 o

f
R

E
 J

ou
rn

al
 P

u
b

lic
at

io
ns

Fig. 11. Quantity of Journal Publications in Domain of RE (past 10 years)

4.3 Author Affiliations

We categorized each journal publication by affiliations of its authors. Fig 14 shows
the results. To no surprise given academic pressure to publish in more prestigious
outlets, a greater percentage of journal article authors (than RE authors in general) are
affiliated with academic institutions. Affiliations for authors of RE journal papers
include 802 different organizations worldwide. Table 44 contains a list of all
organizations responsible for 1% or more of the total RE journal publication, along
with their ranking as of 2008, and total number of journal publications. Just below the
cutoff for this table are University College of London, Lunds Universitet, and
Pontifícia Universidade Católica do Rio de Janeiro.

Some interesting results emerge when comparing Table 4 to Table 1: Some orga-
nizations that were not highly ranked for RE publications in general are much more
impressive when we examine just journals: University of Minnesota, Minneapolis;
University of Maryland. College Park; Georgia State University; Naval Research Lab;
Brunel University; Naval Postgraduate School; and Universidad Politécnica de

4 Note that small publication counts separate all but the top 2; thus inadvertent omissions by the

researchers can have a significant affect on rankings.

186 A. Davis and A. Hickey

Madrid. Other institutions, which fared well with respect the RE publications in
general, did not make the list of top journal producers: Fraunhofer, Universiteit
Twente, Lunds Universitet, Université de Paris 1, University of Technology, Sydney,
Open University, University of Waterloo, George Mason University and IBM-USA.

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year

A
ve

ra
ge

 A
ut

ho
rs

 p
er

 J
ou

rn
al

 P
ub

lic
at

io
n

Average years 1963-1998

Range of Annual
Averages 1963-1998

Fig. 12. Average Number of Authors per Journal Publication

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

%
 o

f J
o

u
rn

al
 A

rt
ic

le
 A

u
th

o
rs

 w
/P

re
vi

o
u

s
R

E
 P

u
b

lic
at

io
n

s

Fig. 13. New RE Journal Authors

 A Quantitative Assessment of Requirements Engineering Publications 187

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

C
la

ss
 o

f
Jo

ur
n

al
 A

u
th

o
r

A
ff

ili
at

io
n

Academic
Industry
Government
Unknown

Fig. 14. Percent of RE Journal Authors from Classes of Affiliation5

Table 4. Top RE Journal Producing Organizations

Organization Rank

Pubs
% of

Total
City U, London 1 33 2.76%
U Manchester 2 25 2.09%
U Toronto 3 19 1.59%
AT&T - USA 4 18 1.51%
U Colorado, Colorado Springs 5 17 1.42%
U Calgary 6 16 1.34%
Lancaster U 6 16 1.34%
U Minnesota, Minneapolis 6 16 1.34%
U Maryland, College Park 9 15 1.26%
Georgia State U 10 14 1.17%
U Southern California 10 14 1.17%
Naval Research Lab 12 13 1.09%
Jet Propulsion Lab 12 13 1.09%
Brunel U 12 13 1.09%
Naval Postgraduate School 15 12 1.01%
RWTH - Aachen U of Tech 15 12 1.01%
U Politécnica Madrid 15 12 1.01%
Imperial College 15 12 1.01%

To see how individual countries have contributed to this trend, let us look at a ranked
list of all countries that have produced 1% or more of all RE journal publications as of
the end of 2008, as shown in Table 5. Meanwhile, Table 6 combines the EU. Notice the

5 Note that the sum of the percents for any one year exceed 100% because some papers include

multiple authors from multiple classes of organizations.

188 A. Davis and A. Hickey

top 7 countries for journal production are identical to the top 7 countries for RE
production in general. In fact, the only significant difference between Table 3 and Table
6 is that Taiwan emerges on the list of leading journal-producers. Finally, Fig 15 shows
the 10 year trend for the top 7 countries. Once again, the increasing role of EU and
decreasing role of USA is apparent. This is interesting contrast to the observations by
Lyytinen, et al [3], who report that Europe is behind USA in publishing of top-quality
journal papers in information systems in general. This difference in results could be the
caused by the fact that Lyytinen, et al., (a) studied IS in general, and we are studying RE
specifically, (b) may not consider RE as part of IS, or (c) examined only the top IS
journals, whereas we studied all journals.

Table 5. Top RE Journal-Producing
Countries

Table 6. Top RE Journal-Producing
Countries (EU Considered as One)

Country Rank # Pubs
% of
Total

USA 1 479 39.7%
UK 2 227 18.8%
Canada 3 93 7.7%
Germany 4 64 5.3%
Australia 5 51 4.2%
Spain 6 44 3.6%
Sweden 7 40 3.3%
Italy 8 39 3.2%
Netherlands 9 34 2.8%
Japan 10 31 2.6%
France 11 25 2.1%
Taiwan 12 24 2.0%
China 13 23 1.9%
Israel 13 23 1.9%
Korea, S. 15 22 1.8%
Belgium 16 20 1.7%
Austria 17 19 1.6%
Brazil 17 19 1.6%
Denmark 19 17 1.4%
India 20 14 1.2%

Country Rank # Pubs
% of
Total

EU 1 574 47.5%
USA 2 479 39.7%
Canada 3 93 7.7%
Australia 4 51 4.2%
Japan 5 31 2.6%
Taiwan 6 24 2.0%
China 7 23 1.9%
Israel 7 23 1.9%
Korea, S. 9 22 1.8%
Brazil 10 19 1.6%
India 11 14 1.2%

5 Summary and Conclusions

Overall interest in research in requirements engineering may be leveling off and
certainly appears to be slowing from the exponential growth reported in our previous
analysis [1]. Many trends observed previously continue including the European Union
and UK leadership in RE publications, USA’s continuing loss of market share, and
the institutions who lead in RE publications. The new analysis focusing on RE journal
publications highlights many of these same trends, with the only major differences
appearing in the list of leading institutions. New emerging trends are even more
interesting. The decrease of RE publications in 2007 and 2008 should be carefully
monitored. The dramatic increase in the number of authors per paper is also
surprising. However, the most surprising results arose from the focus on the last 10
years. The new dependence on RE-specific publication outlets, the increasing
dominance of academic vs. industrial authors, and, most critically, the decreasing
numbers of new authors may indicate some combination of an increasing insularity of

 A Quantitative Assessment of Requirements Engineering Publications 189

the RE research community and/or a decreasing interest in RE research. The inability
to definitively identify the cause of these trends is the major limitation of this
research, but either possibility is worrisome. Future research will focus on close
monitoring and more in-depth analysis of these trends to see if they persist.

0%

10%

20%

30%

40%

50%

60%

70%

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

P
er

ce
n

t
o

f
R

E
 J

o
u

rn
al

 P
u

b
lic

at
io

n
s EU

USA

Canada

Australia

Taiwan

China

Japan

Fig. 15. Top Seven RE Journal- Producing Countries – Last 10 Years

References

1. Davis, A., Hickey, A., Dieste, O., Juristo, N., Moreno, A.: A quantitative assessment of
requirements engineering publications – 1963-2006. In: Sawyer, P., Paech, B., Heymans, P.
(eds.) REFSQ 2007. LNCS, vol. 4542, pp. 129–143. Springer, Heidelberg (2007)

2. http://www.uccs.edu/faculty/adavis/reqbib.htm
3. Hill, S., Provost, F.: The myth of the double-blind review?: Author id using only citations.

ACM SIGKDD Exp. News 5(2), 179–184 (2003)
4. Lyytinen, K., Baskerville, R., Iivari, J., Te’eni, D.: Why the old world cannot publish?

Overcoming challenges in publishing high-impact IS research. Euro. J. Info. Sys. 16(4),
317–326 (2007)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 190–196, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Assurance Case Driven Case Study Design for
Requirements Engineering Research

Robin A. Gandhi1 and Seok-Won Lee2

1 University of Nebraska at Omaha, College of Information Science and Technology,
6001 Dodge Street, Omaha, NE 68182

rgandhi@unomaha.edu
2 University of North Carolina at Charlotte, College of Computing and Informatics,

9201 University City Blvd., Charlotte, NC 28223
seoklee@uncc.edu

Abstract. [Context and motivation] Case studies have the potential to be an
essential bridge between the constructive (build new theories, algorithms, or
methods to address practical problems) and the empirical (develop evidence
through observation of or experience with existing methods or artifacts in
practice) approaches to requirements engineering research. [Question/problem]
To realize this potential, our aim is to provide representational guidance for
designing a case study as a part of the invention process of a novel requirements
engineering methodology (REM). [Principal ideas/results] In this paper, we
present the innovative use of assurance cases to emphasize argumentation and
rigorous evidence planning during case study research design. [Contribution]
The steps involved in case study research design using the assurance case notation
are outlined as a systematic way to plan a validation effort for a REM.

Keywords: Case study, Assurance Case, Requirements, Research methods.

1 Introduction

A Requirements Engineering Methodology (REM) provides analytical capabilities to
Subject Matter Experts (SMEs) who execute its steps for eliciting, modeling,
analyzing, negotiating or validating requirements. Well-defined usage, representation
and measurement of these capabilities and related artifacts are essential to
demonstrate the achievement of the desired outcomes from the REM as well as their
continuous improvement. An outcome is defined as a statement that describes what a
SME is expected to know and to be able to perform by using the REM or the expected
quality of resulting artifacts. From the definition, it is clear that any REM validation
effort is heavily dependent on the skills of SMEs who participate in the validation
exercise, and the problem domain.

For a newly invented REM, the outcomes are difficult to evaluate as no
materializations may exist yet in the real-world context and the SMEs may have no
prior experience or training for the techniques required to be applied. Comparison
with other existing REMs and benchmarking is not meaningful as the unique nature

 Assurance Case Driven Case Study 191

(philosophy, models, steps, and techniques) of each REM influences human analytical
reasoning and resulting artifacts differently. Under these circumstances, a defined
strategy for data collection and analysis is necessary to make valid inferences about
the fitness/quality of the desired REM outcomes from the observed phenomena or
artifacts in the real world context. To carry out this effort, case study research designs
allow an investigator to clearly identify the followings [12] [8] [10]: 1) The research
questions; 2) The REM outcomes being studied; 3) What are the resources to be
examined and what data to collect; 4) What are the logics linking the data to the REM
outcomes; and 5) What are the criteria for interpreting the findings.

If used correctly, case study as a validation strategy reveals: why and how a newly
invented REM works; the effectiveness of the stated outcomes; and opportunities for
further improvement. However, planning a case study is a significant undertaking.
Yin [12] points out that a good case study is difficult to perform, and we hardly
understand the required skills on the part of the investigators or reviewers dealing
with case studies. Vague or implicit research designs will only add to the many mis-
understandings and skepticism [5] already widespread about case studies.
Additionally, if the case study design is an afterthought the newly invented REM may
not provide optimal opportunities for data collection necessary to address the original
research questions. The REM steps may also lack traceability and rationale to support
the expected outcomes if such contribution is not clearly identified in advance.

It is clear that systematic guidance while building case study research designs is
essential. Particularly, we emphasize the need for representational mechanisms that
guide and assure the development of a rigorous case study research design during the
REM invention itself. This approach can effectively combine the constructive
component of REM development with an empirical component to validate REM
outcomes in the real world context. To facilitate this goal, in the following sections
we describe the steps in combining assurance cases [7] and case study research
designs in requirements engineering research. These steps have been developed in the
context of planning a case study while inventing a novel REM. While the complexity
of planning data collection and analysis in context with SMEs makes our approach
particularly suited for requirements engineering research, the steps are generally
applicable and can be extended for planning case studies in different domains.

2 Representing Assurance Case and Case Study Design

Often compared to a structured legal argument, an assurance case [7] is a self-
contained information unit that includes a top-level goal/claim, an argument in the
form of continuous claim refinement until the sub-claims can be specified in
operational terms, and evidence that the claims have been satisfied. Its purpose is to
provide a clear, comprehensive and defensible argument that the claimed objectives
are achieved in a certain context. On the other hand, the case study evaluation strategy
is mostly appropriate for “how” and “why” types of study questions [12]. These
question types also correspond to top-down and bottom-up traversals in a goal
refinement hierarchy, respectively. As a result, the goal structuring notation [7] of
assurance cases provides a natural fit for representing case study research designs.

192 R.A. Gandhi and S.-W. Lee

With an early start to case study design using assurance cases, our rationale is to
identify more intuitive sources of evidence by exploring the possibilities of
instrumentation (i.e. opportunities for evidence generation and gathering) as each step
of the REM is being developed. Early planning of evidence generation and collection
alongside the explication of the theoretical propositions that underlie the REM will
assure that the identified outcomes are in fact being addressed by the methodological
steps and measured properly in the case study research design. To facilitate this
process, the five case study design components can be systematically captured in the
form of a graphical assurance case notation as Fig. 1. The assurance case notation [7],
as shown in Fig. 1, consists of the following elements: goal/claim nodes, strategy
nodes, context nodes, solution/evidence nodes, and most importantly the
interconnections among these nodes to construct a valid and convincing argument.
Strategy elements clarify the nature of an argument, while context elements specify the
conditions under which a goal/claim is stated.

claim claim

evidenceevidence

Study Question
expressed as the Top-

level Measurement Goal

Study
Propositions B

Study
Proposition A

Study
Proposition D

Study
Proposition C

Argument by appeal to
all the REM outcomes

being investigated

strategy

claim

claim claim claim claim

With respect to
the definition of
steps in the REM

context

Study
Propositions B

Refinement

Study
Propositions B

Refinement evidence

Goal/Claim Strategy

Evidence Context

Context
Inclusion

Goal/Claim to be
further elaborated

Goal/Claim
refinement

Assurance Case Notation

Fig. 1. An Assurance Case Skeleton and its relevance to Case Study Design Components

For developing case study research designs using assurance cases alongside the
design of a new REM, a step by step method is outlined as follows:

Step 1: Study Question and the Top-level Measurement Goal/Claim. To identify
opportunities for REM instrumentation as early as possible, the primary study
question (“why” and “how” a newly invented REM works) needs to be re-written as
the top-level measurement claim/goal in the assurance case notation. This conversion
in some sense starts the linking process between constructive and empirical research
approaches. For the assurance case to follow a logical argument, a claim is always
worded as a predicate (i.e. it can only be true or false).

 Assurance Case Driven Case Study 193

Step 2: Propositions and Goal/Claim Refinement. Case studies benefit from the
prior development of theoretical propositions to guide data collection and data
analysis [12]. These propositions are assertions that determine what should be
examined within the scope of the study. Typically these assertions emerge from all
the desired REM outcomes that reflect the theoretical propositions that guide the
REM development. To capture this general rationale in an assurance case, the
Strategy modeling element suggests the form that an argument is going to take for
satisfying the top-level claim. Specific theoretical propositions then form the sub-
claims that refine the top-level claim as shown in Fig. 1. The REM progression may
correspond to the levels of intellectual behavior [3] of the SMEs or related artifacts.

Step 3: Units of Analysis and Case boundary. With the REM itself being the
“case”, the units of analysis include the steps in the methodology, the models and
methods used in each step, and the characteristics of the methodology itself. To this
end, the assurance case claims and steps in the REM clearly establish the case
boundary and identify the relevant phenomena/artifacts.

Step 4: Linking Logic and Goal/Claim Operationalization. The theoretical
propositions may exist at a level of abstraction such that they cannot be measured
directly. Through a goal refinement process, assurance cases can effectively explicate
the rigor adopted by the investigator in linking the high level theoretical propositions
to concrete measurement claims/goals that can be specified in operational terms of the
REM steps. A particularly effective and disciplined way to gather and organize case
study evidence is to construct an ordered set of questions with respect to the steps in
the REM as a Summary Sheet [8]. For a newly invented REM, the summary sheet
combined with the given instructions (e.g. a tutorial or workshop to teach or educate
the REM) prior to a case study helps SMEs to identify the units of analysis and the
corresponding evidence (qualitative or quantitative) that needs to be captured towards
the case study propositions. The summary sheet columns in a table format, as shown
in Fig. 2, allows SMEs to effectively conduct the steps in the REM and capture
evidence with no interventions required from the investigator. In the fourth column,
the identification of assurance leaf-node claims for each row of the summary sheet
clearly explicates what evidence from the unit of analysis supports/rejects the claims.

Unit of
Analysis

Evidence to be captured by SMEs
based on specific propositions

Step/Model/Method
in the REM

Related Claims in the
Assurance Case

Fig. 2. Elements of a Summary Sheet

Step 5: Data Analysis through Stratification. Unorganized collections of data do
not produce meaningful insights. For initial guidance in selecting data analysis
techniques, we have developed a general tabular structure wherein the gathered
evidence is placed in the cells at the intersection of the relevant leaf-node claims
(columns) of the assurance case and units of analysis (rows). The resulting
presentation, as shown in Fig. 3 (a), provides a multi-dimensional categorization of
the gathered evidence in the summary sheet. This representation can also be combined
with more specific data analysis techniques such as structural analysis [11] or
comparative gap analysis [4].

194 R.A. Gandhi and S.-W. Lee

Claim C1 Claim C2 . .

Unit of Analysis A
Evidence E1
Evidence E2

Evidence E2 . .

Unit of Analysis B
Evidence E3
Evidence E4

. .

. . . .

Units of
Analysis

Leaf-Node
Claims

E2 from
Unit of

Analysis
A

evidence

E1 from
Unit of

Analysis
A

E5 from
Unit of

Analysis
C, D

evidence

evidence

E18 from
Unit of

Analysis
F

evidence

E6 from
Unit of

Analysis
E

evidence

E17 from
Unit of

Analysis
G

evidence

(a) (b)

Claim C1

Fig. 3. (a) Stratification of Evidence gathered in the Summary Sheet; (b) Convergence of
Multiple Sources of Evidence to support/reject a Claim

Case study inquiry relies on multiple sources of evidence, with data needing to
converge in a triangulating fashion [12]. The stratification of evidence, as shown in
Fig. 3 (b), can capture multiple sources of evidence along with their relationships
(converging or non-converging sources of evidence) towards making stronger
analytical conclusions about a claim. An assurance case allows relatively weak
evidence to be combined in argumentation with other evidence to make a stronger
conclusion [6]. The evidence stratification effectively utilizes this flexibility to
include varying degrees of rigor in evidence as well as different types of evidence in a
case study to make appropriate analytical generalizations. This presentation exercise
with summary sheet questions may also identify instrumentation defects.

Step 6: Criteria for Interpreting the Findings. As with any empirical evaluation,
usually there is no precise way of setting the criteria for interpreting the case study
findings. The assurance case representation adds much needed rigor to this design
step. In particular, the criteria are clearly based on metrics that evaluate the
importance/significance of the evidence to support the argument. These metrics can
be supported by quantitative or qualitative measures depending on the types of the
evidence available from the case study.

The assurance case as a whole helps to maximize the utilization of limited
resources and available evidence in a given research setting. Their analytical structure
allows a careful and fair review of the level of trust that can be put into the case study
results. In other words, an explicit body of knowledge exists for a reader to determine
the level of trust to be expressed in results that may have different values depending
on the research settings [9].

Step 7: Testing for Threats to Validity and Assurance Case Representation.
Construct Validity. The assurance case argument maintains an explicit chain of
evidence from the original study question to any conclusions that are made. Such
traceability enables a reviewer or participating SMEs to assess that correct operational
measures have been chosen for the characteristics of the REM being studied.

External validity. This test for a case study is often addressed through replication
logic in multiple case study design, which is outside our current scope.

Internal Validity. For explanatory type case study, an assurance case facilitates
systematic review of the inferences being made about causality between the REM

 Assurance Case Driven Case Study 195

execution and the desired outcomes. During review, an assurance case improves the
chance to detect if any factor contributing to the observed outcomes is missing.

Reliability. The assurance case outlines a repeatable protocol for case study execution
and data analysis. When multiple investigators are involved, the assurance case can
help to promote a common understanding regarding the research design.

3 Discussion and Future Work

The work presented here builds upon the goal-oriented case study research design for
a newly invented software engineering methodology by Lee et al. [8]. Identifying the
representational strengths of assurance cases for the early planning of case studies
during REM invention, and evidence stratification to support logical argumentation
are the novel ideas contributed through this work. In the footsteps of other goal-driven
approaches such as GQM [2], our selection of the assurance case notation puts equal
emphasis on structured logical argumentation and planned evidence collection, which
are both important elements of a case study to draw analytical generalizations. In
contrast to the goal/claim, argument, and evidence structure of assurance cases, theory
diagrams [1] use action-oriented structure of precondition, actions, results, and effects
to model theories. In both cases, the objective is to increase reviewability through a
defined logic, linking the theoretical propositions to the observed phenomena.

Our exploration of the case study design possibilities here is by no means
complete. Many subtleties will emerge as the approach outlined in this paper is
employed across cases and their results are reported. Our approach is intended to
provide a structured capability for tracing the usages, acceptance, and feasibility of a
newly invented REM based on defined data collection and analysis strategy over a
period of time across multiple cases and in different domains. We hope that early
adoption of this strategy, while a new REM is being developed, will reduce the gap
between constructive and empirical research approaches.

An important aspect of our future work includes the codification of case study
design approaches. Unlike other research strategies, a comprehensive catalog of
research designs for case studies does not exist [12]. Assurance case patterns [6]
provide a promising direction for codifying different case study designs to be used in
requirements and software engineering methodology validation. Well-codified
research designs will guide the selection of cases and units of analysis that are similar
to previous works in the literature and provide points of comparison. This form of
case study design is highly encouraged in social sciences.

References

1. Axelsson, K., Goldkuhl, G.: Theory Modelling - Action Focus when Building a Multi-
Grounded Theory. In: 3rd Euro. Conf. on Research Methods in Buss. & Mgmt. (2004)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach (1994)
3. Bloom, B.S., Krathwohl, D.R.: Taxonomy of educational objectives: The classification of

educational goals. Handbook 1: Cognitive domain. Longmans, New York (1956)

196 R.A. Gandhi and S.-W. Lee

4. Breaux, T., Anton, A., Dorfman, B.: Legal Requirements, Compliance and Practice: An
Industry Case Study in Accessibility. In: 16th IEEE Req. Engg. Conf., Spain (2006)

5. Flyvbjerg, B.: Five Misunderstandings about Case Study Research. In: Qualitative
Research Practice, pp. 420–434. Sage Publications, Thousand Oaks (2004)

6. Goodenough, J., Lipson, H., Weinstock, C.: Arguing Security - Creating Security
Assurance Cases. Technical Report, Software Engineering Institute (2007)

7. Kelly, T.P., Weaver, R.A.: The Goal Structuring Notation: A Safety Argument Notation.
In: DSN Workshop on Assurance Cases. Florence, Italy (2004)

8. Lee, S.W., Rine, D.C.: Case Study Methodology Designed Research in Software
Engineering Methodology Validation. In: 16th SEKE Conf., Canada, pp. 117–122 (2004)

9. Shaw, M.: The coming-of-age of software architecture research. In: 23rd International
Conference on Software Engineering, Toronto, Canada, pp. 657–664 (2001)

10. Sim, S.E., Perry, D.E., Easterbrook, S., Aranda, J.: Case Studies for Software Engineers.
In: The 28th International Conf. on Software Engineering, Tutorial, China (2006)

11. Wasson, K.S.: A Case Study in Systematic Improvement of Language for Requirements.
In: 14th IEEE International Requirements Engineering Conference, pp. 6–15 (2006)

12. Yin, R.K.: Case Study Research: Design and Methods. In: Applied Social Research
Methods Series, 2nd edn., vol. 5. Sage Publications, Thousand Oaks (1994)

Translation of Textual Specifications to Automata by
Means of Discourse Context Modeling

Leonid Kof

Fakultät für Informatik, Technische Universität München,
Boltzmannstr. 3, D-85748, Garching bei München, Germany

kof@informatik.tu-muenchen.de

Abstract. [Context and motivation] Natural language is the main presentation
means in industrial requirements documents. In such documents, system behavior
is specified either in the form of scenarios or in the form of automata described in
natural language. The behavior descriptions are often incomplete: For the authors
of requirements documents some facts are so obvious that they forget to mention
them; this surely causes problems for the requirements analyst.

[Question/problem] Formalization of textual behavior description can re-
veal deficiencies in requirements documents. Formalization can take two major
forms: it can be based either on interaction sequences or on automata, cf. sur-
vey [1]. Translation of textual scenarios to interaction sequences (Message Se-
quence Charts, or MSCs) was presented in our previous work [2,3,4]. To close
the gap and to provide translation techniques for both formalism types, an al-
gorithm translating textual descriptions of automata to automata themselves is
necessary.

[Principal ideas/results] It was shown in our previous work that discourse
context modeling allows to complete information missing from scenarios written
in natural language and to translate scenarios to MSCs. The goal of the approach
presented in this paper is to translate textual descriptions of automata to automata
themselves, by adapting discourse context modeling to texts describing automata.

[Contribution] The presented paper shows how the previously developed
context modeling approach can be adapted in order to become applicable to texts
describing automata. The proposed approach to translation of text to automata
was evaluated on a case study, which proved applicability of the approach.

Keywords: requirements analysis, behavior extraction, behavior modeling,
natural language processing.

1 Requirements Documents Suffer from Missing Information

At the beginning of every software project, some kind of requirements document is
usually written. The majority of these documents are written in natural language, as
the survey by Mich et al. shows [5]. This results in the fact that the requirements docu-
ments are imprecise, incomplete, and inconsistent, because precision, completeness and
consistency are extremely difficult to achieve using mere natural language as the main
presentation means. From the linguistic point of view, document authors may introduce
three defect types, without perceiving them as defects, cf. Rupp [6]:1

1 The following definitions are translations of the definitions from [6], in German.

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 197–211, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 L. Kof

Deletion: “. . . is the process of selective focusing of our attention on some dimensions
of our experiences while excluding other dimensions. Deletion reduces the world
to the extent that we can handle.”

Generalization: “. . . is the process of detachment of the elements of the personal mo-
del from the original experience and the transfer of the original exemplary experi-
ence to the whole category of objects.”

Distortion: “. . . is the process of reorganization of our sensory experience.”

The authors of requirements documents are not always aware of these document
defects. Even documents that are precise from the human point of view can omit some
facts relevant for behavior specification. The goal of the presented paper is to translate
texts to automata despite such defects.

According to Boehm [7], the later an error is found, the more expensive its correc-
tion. Thus, it is one of the goals of requirements analysis, to find and to correct the
defects of requirements documents. Our previous work [2,3,4] focused on defects in
scenarios, specially on the “deletion” defects. The goal of the previous work was to
identify missing parts of scenarios written in natural language and to produce Message
Sequence Charts (MSCs) containing the reconstructed information. The key idea was to
model the discourse context and to infer the missing parts of scenarios from the context.
In the case of MSCs, the discourse context model included the set of messages that are
sent but not yet answered.

According to our survey of modeling techniques [1], all modeling techniques are
either interaction-based (MSC-like) or automata-based. Similarly, texts describing sys-
tem behavior fall in the same two categories: They either specify scenarios (interaction
between system components) or give textual description of automata. The goal of the
approach presented in this paper is to translate automata-based textual descriptions to
automata. Together with our previous work, this provides extraction of both model types
from textual documents. It turns out that, in the case of automata, the discourse context
model is simpler than for MSCs and contains only a default initial state for incompletely
specified state transitions (see Section 3 for details).

Contribution: The presented paper shows how the idea of discourse context mod-
eling can be transferred to texts describing automata. It shows that a different approach
to context modeling, even simpler than the approach developed to translate textual sce-
narios to MSCs, is sufficient to translate textual descriptions of automata to automata
themselves.

Outline: The remainder of the paper is organized as follows: Section 2 introduces the
case study used to evaluate the presented approach. Section 3 is the technical core of the
paper, it presents and evaluates the approach to translate texts to automata. Sections 4, 5,
and 6 present an overview of related work, the summary of the paper, and possible
directions for future work, respectively.

2 Case Study: The Steam Boiler

Authors of requirements documents tend either to forget facts that seem obvious to them
or they are reluctant to precisely specify the context in which their statements apply.
This is quite natural, and is just a part of the human process of focusing attention onto

Translation of Textual Specifications to Automata 199

facts that seem most important at the moment of writing. This results in the problem
that even precise specifications, as for example the Steam Boiler Specification [8], used
in the presented work, cannot be analyzed on the sentence level.

The Steam Boiler Specification was chosen for the case study, as it was the standard
benchmark for several case studies aiming to compare different formalization meth-
ods [9]. This specification describes the steam boiler itself and states the requirements
to the control program for the steam boiler. The steam boiler system consists of four
pumps to provide the steam boiler with water, one controller for every pump, a device
to measure the water level in the steam boiler, and a device to measure the quantity of
steam coming out of the steam boiler. The goal of the control program is to maintain the
water level between predefined marks, in order to prevent damage of the steam boiler.
This water level should be maintained even in case of certain equipment failures. In the
case of equipment failures, water levels between certain emergency marks are allowed.
Water levels above/below emergency marks cause steam boiler damage.

The control program for the steam boiler should support a number of modes: initial-
ization mode, normal mode, degraded mode, rescue mode, and emergency stop mode.
For every mode, the specification describes the required program reactions to different
operation situations. An example set of rules, applicable in the normal mode, is shown
in Table 1. It is easy to see that it makes no sense to analyze every sentence of the
specification separately: Some sentences, as for example Sentence 1, Sentence 3, and
Sentence 7, do not contain any explicit behavior specification. Others contain behav-
ior information, but cannot be directly translated to state transitions, as they specify
the state after the transition only. The initial state, normal mode, is common for all
transitions and remains unspecified in the sentences describing transitions. Every such
omission is a “deletion” defect in the sense of the definitions given in Section 1. The
goal of the presented paper is to translate texts to automata despite such defects.

In spite of the fact that separate analysis of every sentence is insufficient even for
the relatively well-written Steam Boiler Specification, the existing approaches translat-

Table 1. The steam boiler, specification excerpt (copied from [8])

Normal mode

1. The normal mode is the standard operating mode in which the program tries to maintain
the water level in the steam-boiler between N1 and N2 with all physical units operating
correctly.

2. As soon as the water level is below N1 or above N2 the level can be adjusted by the
program by switching the pumps on or off.

3. The corresponding decision is taken on the basis of the information which has been
received from the physical units.

4. As soon as the program recognizes a failure of the water level measuring unit it goes
into rescue mode.

5. Failure of any other physical unit puts the program into degraded mode.
6. If the water level is risking to reach one of the limit values M1 or M2 the program enters

the mode emergency stop.
7. This risk is evaluated on the basis of a maximal behaviour of the physical units.
8. A transmission failure puts the program into emergency stop mode.

200 L. Kof

Table 2. Automaton for steam boiler control, manually constructed

Initial mode Target mode Transition condition

initialization initialization message steam-boiler-waiting not yet received
initialization emergency stop unit for detection of the level of steam is defective
initialization emergency stop failure of the water level detection unit
initialization normal all the physical units operate correctly
initialization degraded any physical unit is defective
initialization emergency stop transmission failure

normal rescue failure of the water level measuring unit
normal degraded failure of any other physical unit
normal emergency stop the water level is risking to reach one of the limit values
normal emergency stop transmission failure

degraded normal defective unit repaired
degraded rescue failure of the water level measuring unit
degraded emergency stop the water level is risking to reach one of the limit values
degraded emergency stop transmission failure

rescue normal water level measurement unit repaired
rescue degraded water level measurement unit repaired
rescue emergency stop the unit which measures the outcome of steam has a failure
rescue emergency stop the units which control the pumps have a failure
rescue emergency stop the water level risks to reach one of the two limit values
rescue emergency stop transmission failure

ing textual specifications to models analyze every specification sentence separately (cf.
Section 4). It is the goal of the presented work, to capture context information in order to
complete information not explicitly mentioned in sentences specifying state transitions.

Table 2 shows the required behavior of the control program, manually constructed
on the basis of the specification. This manually constructed automaton will be used to
evaluate the proposed text-to-automaton translation procedure in Section 3.

3 Translation of Texts to Automata

The process of text-to-automaton translation is motivated by the already tested and
validated algorithm for text-to-MSC translation presented in [2,3,4]. The process of
text-to-MSC translation consisted of three steps:

– identification of communicating objects,
– splitting of every sentence into segments,
– for every segment, translation of the segment to an MSC element. An MSC element

can be either a message between two communicating objects or an assertion about
system state.

The process of text-to-automaton translation follows similar steps: First, the set of
potential states is determined. Then, every sentence is split into segments. Finally, seg-
ments are translated either to state transitions or to transition conditions. These steps
are presented in Sections 3.1-3.3. Section 3.4 presents the results of the evaluation of
the presented text-to-automaton translation on the Steam Boiler Specification.

Translation of Textual Specifications to Automata 201

To stay robust, the presented approach uses solely a part-of-speech (POS) tagger [10]
on linguistic side and does not use more sophisticated techniques like Discourse Rep-
resentation Theory (DRT) [11], as the use of techniques like DRT would render the
approach highly fragile.

3.1 Identification of States

In our previous work [2,3,4] it was shown that the algorithm for text-to-MSC translation
that inspired the presented work is highly sensitive to the proper definition of the set of
communicating objects. Thus, it was to expect that the presented algorithm for text-to-
automaton translation is sensitive to the proper definition of the set of states.

Identification of states is necessary for later decision whether to translate a particular
sentence segment to a state transition. As a first approximation, it is possible to manually
extract the names of the states explicitly listed in the text. However, this set of states can
be incomplete. In our case study, this incompleteness resulted in missing transitions in
the extracted automaton, cf. Section 3.4.

The name of a state can consist of several words, like “emergency stop mode”. Fur-
thermore, the same mode can be called, for example, both “emergency stop mode” and
“mode emergency stop” in the specification text. To automatically extract the different
forms of the mode names, the following procedure was applied:

– The whole text was tagged by a part-of-speech (POS) tagger. The applied tag-
ger [10] has a precision of about 97%, which makes it unlikely to be an error source.

– Following tags were considered: (1) tag “VBD”, identifying verbs in the past par-
ticiple form (“been”, “done”), (2) any tag starting with “NN”, identifying different
noun forms, and (3) tag “JJ”, identifying adjectives.

– Following patterns were extracted from the tagged text:
• Word “mode”, followed by any number of substantives (like in “mode|NN
rescue|NN”), adjectives (like in “mode|NN normal|JJ”), or verbs in the
past participle form (like in “mode|NN degraded|VBD”).
• Any number of substantives, adjectives, or verbs in the past participle form,

followed by the word “mode”.
Technically, the extraction of the above patterns from the tagged text was performed
by the application of the UNIX tool grep with the following regular expressions:
• mode|NN ([ˆ|]*|(NN|VBD|JJ))+
• ([ˆ |]*|(NN|VBD|JJ))+ mode|NN

Here it is important to emphasize that the signal word “mode” used to identify state
names, is specific to the Steam Boiler Specification. For other specification texts,
it is necessary to provide other signal words or to use other extraction techniques:
For example, in [4] the names of modeling elements were identified as subjects of
sentences having particular grammatical features.

The above procedure resulted in the extraction of the word sequences shown in
Table 3. This table contains not only the states explicitly defined in the document, but
also noise, “standard operating mode”. However, as the case study has shown,
this noise can be compensated for when constructing the automaton (cf. Section 3.4).

202 L. Kof

Table 3. Automatically extracted states

“mode”, followed by other words: mode emergency stop, mode normal, mode rescue, mode
degraded

“mode”, preceded by other words: initialization mode, emergency stop mode, normal mode,
standard operating mode, rescue mode, degraded mode

The procedure to extract the potential states of the automaton by extracting the
named entities with the signal word “mode” was sufficient for the steam boiler case
study. In general, it is easy to extend the procedure by adding further signal words. Fur-
thermore, it is possible to integrate the above procedure with grammar-based methods
from [4]. Applicability of every particular method depends on the writing style of the
concrete document.

3.2 Categories of Sentences

One of the prerequisites for the text-to-automaton translation is the assignment of every
(sub)sentence to one of the four categories: “state transition”, “transition condition”,
“context setting”, or “irrelevant”, cf. Section 3.3. The assignment of sentence segments
to categories takes place in the following steps:

1. Splitting of every sentence to segments
2. Assignment of segments to categories on the basis of grammatical information only
3. Re-assignment of segments to categories, by using context information

Each of these steps is described below.

Sentence splitting: To split sentences, just the following assumption is made: punctu-
ation marks are correctly placed to separate subsentences. The splitting process itself is
rather simple. Punctuation symbols and the words “if” and “when” are used as splitting
marks. Additionally, the conjunctions “and” and “or” are used as splitting marks, un-
less they directly follow an adjective or a number. This heuristics prevents splitting of
expressions like “if the water level lies between N1 and N2, . . . ”. A splitting example
is shown in Table 4.

Assignment of segments to categories on the basis of grammatical information: On
total, we differentiate four classes of sentence segments:

Table 4. Splitting example

Original sentence
as soon as this signal has been received, the program enters either the mode normal if all the
physical units operate correctly or the mode degraded if any physical unit is defective

Splitting
1. as soon as this signal has been received
2. the program enters either the mode normal
3. all the physical units operate correctly
4. the mode degraded
5. any physical unit is defective

Translation of Textual Specifications to Automata 203

– Segments translated to transitions, like “the program enters either the mode nor-
mal” in the example in Table 4. Such segments are called “state transition” in the
remainder of the paper.

– Segments translated to transition conditions, like “as soon as this signal has been
received” in the example in Table 4. Such segments are called “transition condition”
in the remainder of the paper.

– Segments that are not translated to any element of the automaton, but setting the
context for the subsequent segments, like the first sentence in Table 1. Such seg-
ments are called “context setting” in the remainder of the paper.

– Segments that are irrelevant for the text-to-automaton translation, like the third sen-
tence in Table 1. Such segments are called “irrelevant” in the remainder of the paper.

Identification of the four segment classes is possible on the basis of the POS tags
and the previously extracted set of states. The identification consists of two phases. In
the first phase, every sentence segment is marked on its own. In the second phase, the
decision of the first phase is revised by taking the neighbors of the analyzed segment
into account. In the first phase, the assignment of the sentence segment to one of the
four classes is fairly simple:

– If the sentence segment does not contain any reference to a state (element of the
extracted set of states), it is marked as “irrelevant”. This holds, for example, for the
first segment in Table 4.

– If the sentence segment contains a reference to a state, but first occurrence of the
state is not preceded by a verb, this segment is marked as “context setting”. A word
is considered as a verb if the POS tagger assigns a tag starting with “VB” to this
word. For example, in Table 1, the header (“normal mode”) and the first sentence
set the context for the translation of the following sentences.

– Otherwise, the sentence segment is marked as “state transition”.

Here it is important to emphasize that in the first phase no sentence segment is
marked as “transition condition”.

Re-assignment of segments to categories, by using context information: To take
context into account, it is necessary to revise the “context setting”-marks first. For ex-
ample, the fourth segment in Table 4 is marked as “context setting” in the first phase,
although it actually specifies a state transition. Here, the following heuristics is applied:
If, for a given sentence, any of its segments is marked as “state transition”, then all seg-
ments marked as “context setting” are relabeled to “state transition”. This compensates
for potentially missing verbs in some sentence segments. In the case of the example
shown in Table 4, it marks the fourth segment as “state transition” and leaves the other
marks unchanged.

When the marking of segments as “state transition” is finished, it is possible to iden-
tify transition conditions:

– If a sentence segment is marked as “irrelevant” and directly precedes a segment
marked as “state transition”, then the former segment is relabeled to “transition
condition”. This allows to mark the first segment of the example in Table 4, “as
soon as this signal has been received”, as “transition condition”.

204 L. Kof

– After the above step, if a sentence segment is marked as “irrelevant” and directly
precedes a segment marked as “transition condition”, the former segment is rela-
beled to “transition condition”. This allows to treat compound conditions, like “if
message A or message B is received,. . . ”.

– If a sentence segment is marked as “irrelevant” and directly follows a segment
marked as “state transition”, then the former segment is relabeled to “transition
condition”. This allows to treat conditions like “〈some transition〉 if 〈some
condition〉”.

– After the above step, if a sentence segment is marked as “irrelevant” and directly
follows a segment marked as “transition condition”, the former segment is relabeled
to “transition condition”. This allows to treat compound conditions, like “〈some
transition〉 if 〈some condition〉 or 〈some other condition〉”.

When this relabeling process is finished, we have enough information to translate the
text to an automaton.

The process of sentence splitting is purely syntactic, which is its major advantage:
this makes sentence splitting independent of writing style of a particular document au-
thor. Furthermore, this allows to treat grammatically different types of conditions, like
“if something happens” and “as soon as something happens”, in a uniform way.

3.3 Context Modeling and Generation of Transitions

When every sentence segment is assigned to one of the four classes (“state transition”,
“transition condition”, “context setting”, or “irrelevant”), we can use this information
to translate the text to an automaton. The actual text-to-automaton translation exploits
the fact that sentence segments marked as “context setting” or “state transition” always
refer to a state. The translation algorithm sequentially goes through the marked sentence
segments. Depending on the sentence segment class, it performs the following actions:

– Segments marked as “irrelevant” are ignored.
– If the translation algorithm comes across a sentence segment marked as “context

setting”, the state contained in this segment becomes the default initial state for the
transitions generated afterwards.

– If the translation algorithm comes across a sentence segment marked as “state tran-
sition”, then several transitions are generated. The initial state of the transitions is
always the current default initial state (context), the target state is the state taken
from the “state transition” segment under analysis. The transitions conditions de-
pend on the neighbors of the segment under analysis:
• If the “state transition” segment under analysis is followed by a contiguous

block of “transition condition” segments, then a state transition is generated for
every segment from the “transition condition” block. The textual representation
of every “transition condition” segment becomes a transition condition in the
generated automaton.
• If the “state transition” segment under analysis is preceded by a contiguous

block of “transition condition” segments, and the “state transition” segment
under analysis is the first “state transition” segment of its sentence, then a state
transition is generated for every segment of the “transition condition” block, in
the same way as above.

Translation of Textual Specifications to Automata 205

• If no state transition can be generated due to the above two rules, the translation
algorithm re-analyzes the current “state transition” segment and extracts the
word sequence preceding its main verb. The word sequence preceding the main
verb becomes the transition condition. This allows to handle constructions like
“a transmission failure puts the program into the mode emergency stop”. In this
case, “a transmission failure puts” becomes the transition condition, cf. Table 5.
• If all the above rules fail, a transition with an empty transition condition is

generated.

By inferring the initial states of transitions, the presented algorithm visualizes pre-
suppositions of the document author. This can be used for validation, in particular to
proof whether the document author and the document reader interpret the specification
in the same way.

The generated automaton is flat: it contains neither parallel nor nested states. Gen-
eration of such constructions would require deep semantic analysis, going far beyond
capabilities of the existing linguistic tools.

The above rules were implemented in a Java program. This program generates au-
tomata represented as table, like Table 2 or Table 5. At the moment, the generated
transition conditions are represented in natural language, and are not automatically an-
alyzable. In the long run, the presented approach should be integrated with the approach
by Gervasi and Zowghi [12]. Gervasi and Zowghi can translate conditions written in a
restricted natural language to logical formulae. This translation would allow to perform
further analysis of the automata, like for example completeness of input coverage.

3.4 Evaluation

Three case studies were performed to evaluate the presented approach. The case studies
were performed on the same text, namely on Section 4 of the Steam Boiler Speci-
fication [8]. This section describes the required behavior of the steam boiler control
program. This section was manually cut out of the document and submitted to the text-
to-automaton translation.

The case studies differed in the definition of the states:

1. In the first case study, the algorithm for text-to-automaton translation was provided
with the set of states explicitly listed in the following specification sentence:

The program operates in different modes, namely: initialization, normal,
degraded, rescue, emergency stop.

Thus, the translation algorithm was provided with the following set of states: “ini-
tialization mode”, “normal mode”, “degraded mode”, “rescue mode”, “emergency
stop mode”.

2. In the second case study, the algorithm for text-to-automaton translation was pro-
vided with the automatically extracted set of states shown in Table 3. The state
name “standard operating mode” was manually removed from the set, as
it does not represent a real state of the control program.

3. In the third case study, the algorithm for text-to-automaton translation was again
provided with the automatically extracted set of states shown in Table 3. In contrast
to the second case study, however, “standard operating mode” was not
removed from the set.

206 L. Kof

Fig. 1. Automaton for steam boiler control, manually constructed

(a) Translation with explicitly mentioned states (b) Translation with automatically extracted
states, cf. Section 3.1

Fig. 2. Automaton for steam boiler control, automatically extracted

The first case study produced the automaton shown in Figure 2(a). When compared
with the manually constructed automaton, shown in Figure 1, the automaton in Fig-
ure 2(a) definitely lacks several state transitions.

The second and the third case studies produced the same automaton, shown in Fig-
ure 2(b) and Table 5. Interestingly, the state “standard operating mode” did
not result in any additional state transitions in the third case study. As the output algo-
rithm ignores such standalone states, this state is not presented in Figure 2(b).

To evaluate the text-to-automaton translation, we compare the manually constructed
automaton with the generated one. If we compare the graphical representations, i.e.
Figure 1 with Figure 2(b), we see that the automata coincide, except for the loop
in the “initialization” mode in Figure 1 and the loop in the “emergency
stop” mode in Figure 2(b). Manual analysis of the steam boiler specification shows
that the behavior in the emergency stop mode is underspecified. It can be interpreted
both as a loop and as its absence: “once the program has reached the emergency stop
mode, the physical environment is then responsible to take approrpiate actions, and the

Translation of Textual Specifications to Automata 207

Table 5. Automaton for steam boiler control, automatically extracted

Initial mode Target mode Transition condition

initialization emergency stop the unit for detection of the level of steam is defective – that is,
when v is not equal to zero – the program enters

initialization emergency stop the program realizes a failure of the water level detection unit it
enters

initialization normal all the physical units operate correctly
initialization degraded any physical unit is defective.
initialization emergency stop a transmission failure puts

normal rescue as soon as the program recognizes a failure of the water level
measuring unit it goes

normal degraded failure of any other physical unit puts
normal emergency stop the water level is risking to reach one of the limit values m1 or

m2 the program enters
normal emergency stop a transmission failure puts

degraded normal once all the units which were defective have been repaired, the
program comes

degraded rescue as soon as the program sees that the water level measuring unit
has a failure, the program goes

degraded emergency stop the water level is risking to reach one of the limit values m1 or
m2 the program enters

degraded emergency stop a transmission failure puts

rescue degraded as soon as the water measuring unit is repaired
rescue normal
rescue emergency stop it realizes that one of the following cases holds: the unit which

measures the outcome of steam has a failure,
rescue emergency stop the units which control the pumps have a failure,
rescue emergency stop the water level risks to reach one of the two limit values.
rescue emergency stop a transmission failure puts

emergency stop emergency stop the program stops.

program stops”. As for the loop in the “initialization” mode, its extraction re-
quires semantic analysis, going beyond the capabilities of the available linguistic tools.
This loop stems from the sentence “the program enters a state in which it waits for the
message steam-boiler-waiting to come from the physical units”. It is not yet possible for
linguistic tools to interpret the word “wait” as a state loop. Hard-coding generation of
loops for words like “wait” would make the approach highly dependent on the writing
style and would make generalization extremely difficult.

If we compare the table representations, Table 2 and Table 5, we see that they co-
incide except for the already discussed loops, if we ignore phrasings for the transition
conditions. Furthermore, due to the applied sentence splitting algorithm, transition con-
ditions in Table 5 are sometimes grammatically incomplete. A closer analysis shows
that the transition conditions in Table 2 and Table 5 are semantically equivalent and
differ in their lexical representation only. The only exception is the transition from the
rescue mode to the normal mode that lacks a transition condition. This transition orig-
inates from the sentence “as soon as the water measuring unit is repaired, the program
returns into mode degraded or into mode normal”. The exact transition condition to
“mode normal” is not specified. In Table 2 it was just guessed that the transition
conditions to “mode normal” and “mode degraded” coincide.

208 L. Kof

Anyway, none of the automata, neither the manually constructed nor the automat-
ically extracted can be directly used for further system development. Both automata
rather serve to visualize the specification and thus to ease its validation. For this reason
differences in lexical representations of transition conditions are unimportant.

To summarize, the presented approach to text-to-automaton translation is able to
translate texts about automata to automata themselves and the translation result is pre-
cise enough to be used for behavior validation.

4 Related Work

Ryan [13] claimed that natural language processing is not mature enough to fully au-
tomate requirements engineering. In the same paper he admitted, however, that natural
language processing can be useful to support human analysts. There was a lot of work
aiming to support human analysts in recent years.

There are three areas where natural language processing is applied to requirements
engineering: assessment of document quality, identification and classification of appli-
cation specific concepts, and analysis of system behavior. Approaches to the assessment
of document quality were introduced, for example, by Rupp [6], Fabbrini et al. [14],
Kamsties et al. [15], and Chantree et al. [16]. These approaches have in common that
they define writing guidelines and measure document quality by measuring the degree
to which the document satisfies the guidelines. These approaches have a different focus
from the approach presented in this paper: their aim is to detect poor phrasing and to
improve it, they do not target at behavior analysis.

Another class of approaches, like for example those by Goldin and Berry [17], Ab-
bott [18], or Sawyer et al. [19] analyzes the requirements documents, extracts applica-
tion specific concepts, and provides an initial model of the application domain. These
approaches do not perform any behavior analysis, either.

The approaches analyzing system behavior, as for example those by Vadera and
Meziane [20], Gervasi and Zowghi [12], and Avrunin et al. [21] translate requirements
documents to executable models by analyzing linguistic patterns. In this sense they are
similar to the approach presented in this paper. Vadera and Meziane propose a procedure
to translate certain linguistic patterns into first order logic and then to the specification
language VDM, but they do not provide automation for this procedure. Gervasi and
Zowghi go further and introduce a restricted language, a subset of English. They auto-
matically translate textual requirements written in this restricted language to first order
logic. The approach by Avrunin et al. is similar to the approach by Gervasi and Zowghi
in the sense that it introduces a restricted natural language. The difference lies in the
formal representation means: Gervasi and Zowghi stick to first order logic, Avrunin et
al. translate natural language to temporal logic. The presented paper goes further than
the above two approaches, as the language is not restricted, and the assumptions about
phrasing are minimal: It is solely assumed that punctuation marks are correctly placed.

To summarize, to the best of our knowledge, there is no approach to requirements
documents analysis, that is able to analyze documents written in non-restricted lan-
guage, model context information and use this context modeling to complete the infor-
mation missing from the text when translating the text to an executable model.

Translation of Textual Specifications to Automata 209

5 Summary

The approach presented in this paper automates parts of the step from requirements
documents to design. Despite minimal assumptions about the structure of the sentences
to be translated, the approach is effective, which was shown in case studies. The transla-
tion of texts to design imitates the way how human analysts would model the discourse
context. This context model is then applied to infer information not explicitly stated in
the behavior specification.

The presented approach relies, in its pure form, on the writing style of the Steam
Boiler Specification. Under following assumptions, it can be generalized and applied to
other specifications too:

The set of system states is known: In the presented work, the set of states was ex-
tracted from the specification, but, in general, it is possible to provide the approach
with a predefined set of states. It is important that the provided set of states be
complete: if a state is missing, some sentences may be wrongfully identified as “ir-
relevant” instead of “context setting” or “state transition”, which would definitely
hurt the correctness of the generated automaton. Presence of noise states (“standard
operating mode” in the presented case study), however, can be compensated for, as
long as the noise states do not occur in sentences identified as “state transition”.

Sentences describing state transitions contain a reference to the target state, as in
“if . . . , the system goes into 〈target state〉”. Given that the initial state of a state
transition can be inferred from the context, this allows to extract a complete state
transition.

Context setting is stated explicitly, either in paragraph titles or in describing senten-
ces like “〈context state〉 is the state in which . . . ”

Comma setting is correct: “if 〈condition〉, then 〈action〉” or “〈action〉 if 〈condition〉”.

Before being used in the further development process, the generated behavior model
has to be validated. Validation is necessary for at least two reasons:

– The original requirements document can contain inconsistencies or omissions.
– The applied linguistic tools do not offer 100% precision, and errors introduced by

the linguistic tools may interfere with the presented heuristic for automata con-
struction.

Validation of the produced automaton can make apparent the ambiguities or omis-
sions in the document, not perceived by a human analyst. Validation of the automaton
becomes especially valuable if the automaton generated by the presented approach rad-
ically differs from the manually constructed automaton. This can mean that the require-
ments text has several interpretations and thus should be made more precise before
used in the further development steps. When the generated automaton is validated, it
can be used in the further development process. Thus, the presented approach makes a
contribution both to document improvement and validation and to the transition from
requirements to design.

210 L. Kof

6 Future Work

The approach presented in this paper is a proof-of-concept that discourse context mod-
eling can be successfully applied to translate specification texts to behavior models. It
can be further developed in different directions. First of all, the case study used to eval-
uate the approach was relatively small. A larger case study would allow more signifi-
cant conclusion about the precision of the proposed approach. Secondly, the generated
transition conditions, as for example those shown in Table 5, sometimes contain un-
necessary words. This problem arises from the fact that it is not possible to determine
the boundaries of the subordinate clauses without parsing the sentence. In the presented
work, mere part-of-speech (POS) tagging was applied instead of parsing, as POS tag-
ging is much more precise (97% precision for tagging [10] vs. approx. 80% for pars-
ing [22]). To combine the advantages of both technologies, the presented approach can
be augmented in such a way that POS tagging is used for the actual text-to-automaton
translation and parsing is used to determine clause boundaries. In this way it is possible
to generate better transition conditions.

To validate the generated automata, a technique similar to CREWS-SAVRE [23]
can be applied: In the original version of CREWS-SAVRE, a sequence of events is
taken as input, and, for this sequence, questions like “What happens if the specified
event does not occur?” are generated. In a similar way, for every state transition of
the generated automaton, we could generate questions like “What happens if the input
signal necessary for the transition does not occur?”, “What happens if the input signal
necessary for the transition occurs several times?”, etc.

Developments sketched above would further improve the presented approach and
make it industrially applicable.

References

1. Kof, L., Schätz, B.: Combining aspects of reactive systems. In: Broy, M., Zamulin, A.V.
(eds.) PSI 2003. LNCS, vol. 2890, pp. 344–349. Springer, Heidelberg (2004)

2. Kof, L.: Scenarios: Identifying missing objects and actions by means of computational lin-
guistics. In: 15th IEEE International Requirements Engineering Conference, New Delhi, In-
dia, pp. 121–130. IEEE Computer Society Conference Publishing Services, Los Alamitos
(2007)

3. Kof, L.: Treatment of Passive Voice and Conjunctions in Use Case Documents. In: Kedad, Z.,
Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592,
pp. 181–192. Springer, Heidelberg (2007)

4. Kof, L.: From Textual Scenarios to Message Sequence Charts: Inclusion of Condition Gen-
eration and Actor Extraction. In: 16th IEEE International Requirements Engineering Confer-
ence, Barcelona, Spain, pp. 331–332. IEEE Computer Society, Los Alamitos (2008)

5. Mich, L., Franch, M., Novi Inverardi, P.: Market research on requirements analysis using
linguistic tools. Requirements Engineering 9, 40–56 (2004)

6. Rupp, C.: Requirements-Engineering und -Management. In: Professionelle, iterative An-
forderungsanalyse für die Praxis, 2nd edn., Hanser–Verlag (2002) ISBN 3-446-21960-9

7. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
8. Abrial, J.R., Börger, E., Langmaack, H.: The steam boiler case study: Competition of formal

program specification and development methods. In: Abrial, J.R., Borger, E., Langmaack, H.
(eds.) Dagstuhl Seminar 1995. LNCS, vol. 1165. Springer, Heidelberg (1996)

Translation of Textual Specifications to Automata 211

9. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Dagstuhl Seminar 1995. LNCS, vol. 1165.
Springer, Heidelberg (1996)

10. Curran, J.R., Clark, S., Vadas, D.: Multi-tagging for lexicalized-grammar parsing. In: 21st
International Conference on Computational Linguistics and 44th Annual Meeting of the As-
sociation for Computational Linguistics, Sydney, Australia, July 17-21 (2006)

11. Blackburn, P., Bos, J., Kohlhase, M., de Nivelle, H.: Inference and computational semantics.
CLAUS-Report 106, Universität des Saarlandes, Saarbrücken (1998)

12. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements.
ACM Trans. Softw. Eng. Methodol. 14, 277–330 (2005)

13. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings of IEEE
International Symposium on Requirements Engineering, pp. 240–242. IEEE Computer So-
ciety Press, Los Alamitos (1992)

14. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool. In: 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, Maryland, pp. 97–105. IEEE Computer Society,
Los Alamitos (2001)

15. Kamsties, E., Berry, D.M., Paech, B.: Detecting ambiguities in requirements documents us-
ing inspections. In: Workshop on Inspections in Software Engineering, Paris, France, pp.
68–80 (2001)

16. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: RE 2006: Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE 2006), Washington, DC, USA, pp. 56–65. IEEE
Computer Society Press, Los Alamitos (2006)

17. Goldin, L., Berry, D.M.: AbstFinder, a prototype natural language text abstraction finder for
use in requirements elicitation. Automated Software Eng. 4, 375–412 (1997)

18. Abbott, R.J.: Program design by informal English descriptions. Communications of the
ACM 26, 882–894 (1983)

19. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in early
phase requirements engineering. IEEE Trans. Softw. Eng. 31, 969–981 (2005)

20. Vadera, S., Meziane, F.: From English to formal specifications. The Computer Journal 37,
753–763 (1994)

21. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting
property elucidation. In: ICSE 2002: Proceedings of the 24th International Conference on
Software Engineering, pp. 11–21. ACM Press, New York (2002)

22. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with ccg and log-linear
models. Comput. Linguist. 33, 493–552 (2007)

23. Maiden, N.A.M.: CREWS-SAVRE: Scenarios for Acquiring and Validating Requirements.
Automated Software Engineering 5, 419–446 (1998)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 212–217, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Requirements Reference Model for Model-Based
Requirements Engineering in the Automotive Domain

Birgit Penzenstadler1, Ernst Sikora2, and Klaus Pohl2

1 Software & Systems Engineering, Technische Universität München, Germany
penzenst@in.tum.de

2 Software Systems Engineering, Universität Duisburg-Essen, Germany
{ernst.sikora,klaus.pohl}@sse.uni-due.de

Abstract. [Context and motivation] The use of conceptual models in
automotive requirements engineering is impaired due to the lack of appropriate
modelling guidelines. [Question/problem] The goal of this paper is to propose
a requirements reference model that serves as the basis for defining such
guidelines. [Principal ideas/results] The reference model distinguishes three
abstraction layers and three content categories for requirements models.
[Contribution] The reference model has been successfully applied in the
REMsES project to support the development of a model-based requirements
engineering approach for the automotive domain.

Keywords: requirements models, reference models, abstraction layers.

1 Motivation

Requirements for automotive embedded systems are documented predominantly
using natural language. However, natural language offers limited support for dealing
with large and complex requirements specifications. Model-based requirements
engineering (RE) can help to overcome some of the difficulties related to natural
language requirements (see e.g. [1]). In model-based RE, conceptual models such as
goal models, scenario models, and function models are used to specify requirements.
However, according to our experience, the lack of a comprehensive guidance impairs
the use of models in requirements engineering practice.

We have observed that requirements engineers in the automotive domain find it
difficult to create requirements models that support them in managing the high system
complexity. In particular, when creating requirements models, the problem arises
which is the right level of abstraction for the model. Quite often, the models that we
have found in practice were at a very detailed technical level and therefore
insufficient for managing a high system complexity (cf. [2]). Furthermore, in many
cases, requirements engineers are not sufficiently familiar with the advantages and
disadvantages of different types of requirements models. Hence they have difficulties,
e.g. in finding the specification technique that satisfies their needs best.

The main goal of our work is to provide requirements engineers in the automotive
domain with a comprehensive guidance for the creation of models in requirements
engineering. The requirements reference model presented in this paper forms the core

 A Requirements Reference Model for Model-Based Requirements Engineering 213

of this guidance. The reference model is based on two structuring principles: the
distinction between three abstraction layers at which requirements models can be
developed and three essential categories of content to be documented by means of
models. The model supports documenting requirements for the system as a whole as
well as for individual system components. Furthermore, the reference model suggests
six specification techniques for documenting the different kinds of content. It has
been developed in collaboration with our partners from the automotive industry. The
model has been applied for deriving detailed modelling guidelines for the different
abstraction layers, content categories, and specification techniques. In addition, it has
been applied in an approach for supporting the intertwined development of
requirements and architecture (see [3]).

In this paper, we motivate and explain the key principles of our requirements
reference model. The detailed guidelines derived from the reference model are not
reported in this paper. The paper is organised as follows. Section 2 presents the key
concepts of the requirements reference model. Section 3 presents the most relevant
related work. Section 4 concludes the paper and provides an outlook on future work.

2 The Requirements Reference Model

In this section, we explain the key structuring principles of our requirements reference
model (see Fig. 1): the three abstraction layers and the three content categories. In
addition, we briefly discuss the relationship between the specification techniques
included in the reference model and the structuring principles of the model.

System layer

Context Requirements Design

Function groups

layer (FG)

Hardware/software

layer (HW/SW)

1
.
C

o
n

te
x
t

m
o

d
e

ll
in

g

2
.
G

o
a

l
m

o
d

e
ll

in
g

3
.

S
c

e
n

a
ri

o
m

o
d

e
ll

in
g

4
.

F
u

n
c

ti
o

n
m

o
d

e
ll

in
g

5
.
A

rc
h

it
e
c

tu
re

m
o

d
e
ll

in
g

6
.

B
e
h

a
v
io

u
r

m
o

d
e

ll
in

g

content categories

abstraction layers

specification techniques

Fig. 1. Structure of the requirements reference model

2.1 Abstraction Layers

Requirements engineers in the embedded systems domain (e.g. in the automotive
domain) are faced with requirements at different levels of abstraction (see e.g. [4]).

214 B. Penzenstadler, E. Sikora, and K. Pohl

The requirements range from high-level system requirements to detailed technical
requirements for individual software and hardware components. This diversity of
requirements demands a systematic way of defining how to deal with each
requirement according to its granularity and abstraction level. A well-known solution
to deal with varying levels of abstraction of requirements is to establish multiple
layers of abstraction and assign each requirement to the appropriate abstraction layer
(see e.g. [4]). In the literature and in practice, different hierarchies of abstraction
layers are defined and used (see Section 3). In the REMsES project, we have adopted
a hierarchy of three abstraction layers: system layer, function groups layer, and
HW/SW layer (see Fig. 1). These layers can be characterised as follows:

• System layer: At the system layer, the stakeholders take an “outside” (or a black
box) view of the system. Requirements models at this layer focus on the usage of
the system by its human users and other systems. Since these models are
essentially free of technical details, they have a significantly lower complexity.

• Function groups layer: At the function groups layer, the system is viewed as a
network of interacting, logical units. The system structure at this layer is obtained
by a logical decomposition of the system into units of coherent functionality. We
refer to these units as “function groups”.

• Hardware/software layer: At the hardware/software layer, a coarse-grained
partitioning of the system functionality into HW and SW is defined. For this
purpose, the system is decomposed into (coarse-grained) HW and SW components.

Requirements models that are defined at the system layer have a significantly
lower complexity than the models at the function groups layer and the HW/SW layer.
The function groups layer allows requirements engineers to define requirements that
are more detailed than the requirements defined at the system layer. At the same time,
it allows to postpone defining some details about the technical realisation of the
requirements. At the HW/SW layer, the requirements for the individual HW and SW
components of the system are defined. These requirements refine the requirements
that are defined at the function groups layer. However, the decomposition of the
system into HW and SW components is rather coarse-grained, i.e. the detailed HW
and SW design is not in the scope of the HW/SW layer. In addition, the HW
components considered at the HW/SW layer are essentially the peripheral devices of
the system such as sensors and actuators needed to realise the interactions of the
system with its environment.

2.2 Content Categories

By analysing requirements documents in the automotive domain, we have identified
three main categories of content to be documented by means of conceptual models:
context, requirements, and (coarse-grained) design. The content categories context
and design have been included in our reference model as they contain essential
information for the requirements engineering process. Furthermore the inclusion of
the three categories in our reference model shall increase the requirements engineers’
awareness for the need to distinguish between these three categories. This shall avoid
the intermingling of context information, requirements, and design during modelling.
The context category and the design category can be characterised as follows:

 A Requirements Reference Model for Model-Based Requirements Engineering 215

• Context: We distinguish between the business context, the stakeholder context,
and the operational context of an automotive embedded system (see [5]). The
operational context of an automotive system comprises, for instance, actors and
environmental variables. Actors are persons, systems, or devices that interact with
the system. Environmental variables are the variables that the system must monitor
or control by means of sensors and actuators. In order to specify the requirements
for the system, the requirements engineers need detailed knowledge about the
context. We suggest to use conceptual models to provide an overview of the
relevant aspects of the context as well as to support the detailed analysis of specific
context aspects (e.g. protocols that the system must adhere to).

• Design: A certain amount of design information in the requirements document of
an embedded system is inevitable, because knowledge about the major system
components is required for refining high-level requirements into detailed, technical
requirements (see [3]). In addition, it is quite common in the automotive domain to
include design artefacts in the requirements document in order to hint at the
intended solution or to outline a feasible solution, respectively. We have included
the design category in our reference model to allow for capturing the major parts of
the system and the essential relationships among these parts. Furthermore, by
defining design as a content category of its own, we aim at supporting developers
in documenting requirements and design in separate models rather than
(unknowingly) including design information in requirements models. Thereby, the
complexity of the requirements models is further reduced.

2.3 Specification Techniques

Our artefact reference model includes six specification techniques that the
requirements engineers of an automotive system can use for documenting the three
different kinds of content at the three abstraction layers (Fig. 1). The descriptions of
the specification techniques are included in the documentation of our requirements
reference model. The techniques have been selected based on the following
constraints: (1) At least one specification technique is needed for each content
category. (2) The reference model should support goal- and scenario-based
requirements engineering. (3) The reference model should support the reasoning
about system functions since functions are an important means for specifying and
reasoning about automotive system requirements. (4) The reference model should
allow for a detailed specification of components (e.g. in terms of the component
interfaces and the behaviour of the components at their interfaces).

As shown in Fig. 1, some specification techniques are assigned to a single category
while other techniques are assigned to two categories. For instance, scenario
modelling is assigned to the requirements category, since scenario models are suited
particularly well for documenting the required interactions of a system or a
component. Goal modelling is assigned to two categories, because goal modelling
approaches support the documentation of both, information or assumptions about the
context as well as functional and quality requirements equally well.

The abstraction layers do not affect the choice of the specification technique but
still have a significant influence on model creation and the resulting models. For
instance, a scenario at the system layer documents the interactions among the system

216 B. Penzenstadler, E. Sikora, and K. Pohl

and its actors whereas a scenario at the HW/SW layer documents, e.g. the interactions
of a software component with other components such as sensors and actuators.

When defining detailed modelling guidelines, one must choose a specific
coordinate with respect to the dimensions “abstraction layer”, “content category”, and
“specification technique”. In the REMsES project, detailed guidelines for creating
models at each possible coordinate have been defined. A simple example of a
guideline for the coordinates <system layer, requirements, goal modelling> is “Define
goals at the system layer independently of a specific decomposition of the system at
the lower abstraction layers.”

3 Related Work

The approaches presented in the literature that come closest to our reference model
are the Requirements Abstraction Model (RAM) and the Zachman Framework.

The RAM [4] defines a hierarchy of five abstraction layers for requirements:
product level, feature level, function level, and component level. At the product level
requirements with an abstraction level similar to product strategies are defined. The
feature level captures requirements which describe characteristic properties of the
system. The function level describes individual user functions. The component level
captures requirements which are close to exemplary solutions. In principle, a rough
mapping between the layers of the RAM and our reference model can be established.
However, the RAM does not provide an explicit support for the two kinds of system
decomposition supported by our reference model: the decomposition of the system
into functional components and the decomposition into HW/SW components.
Secondly, specification techniques are not considered in the RAM since the RAM
does not address model-based requirements engineering. Thirdly, since the RAM does
not distinguish between the three basic content categories context, requirements, and
design, it is not suited for guiding the creation of models which clearly distinguish
between these three kinds of content.

In the Zachman Framework [6], a hierarchy of five layers is defined to represent
the viewpoints of the different stakeholders of an information system. For each layer,
the framework distinguishes between six information categories. However, although
both, the Zachman Framework and our reference model have a two-dimensional
structure, the definitions of the layers and categories are conceptually different. The
Zachman Framework neither considers the refinement of requirements based on the
decomposition of the system nor the distinction between context, requirements, and
design. Furthermore, the layers and categories of the Zachman Framework are
difficult to adapt to the needs of the automotive domain.

4 Conclusion and Outlook

In this paper, we have presented the key structuring principles of our requirements
reference model. The reference model has been developed in collaboration with
industrial partners from the automotive domain. The model considers the needs of this
domain by means of a hierarchy of three abstraction layers and three content

 A Requirements Reference Model for Model-Based Requirements Engineering 217

categories. It provides six specification techniques for documenting the different
kinds of content at the three abstraction layers.

The reference model has been applied in the REMsES project for defining a
comprehensive set of modelling guidelines. An initial, experimental evaluation of
these guidelines indicated a better quality of the resulting requirements artefacts
compared to a state-of-practice process that was based on the Volere approach (see
[7]). The results of the experiment are presented in [8]. In addition, the reference
model is used in the COSMOD-RE method for supporting the intertwined
development of requirements and architecture for embedded systems [3]. The
successful application of the requirements reference model in the REMsES project
and in COSMOD-RE indicates the utility of this reference model.

Our ongoing work focuses on the further enhancement of the modelling guidelines
that were defined in the REMsES project. In addition we aim at strengthening the
evidence of the utility of these guidelines and the underlying reference model for
supporting the development of high-quality requirements models. Furthermore, we
seek to transfer and adapt our reference model to other domains such as avionic
systems, automation systems, or medical systems.

Acknowledgements. This paper was partly funded by the BMBF project REMsES,
grant no. 01 IS F06 D.

References

1. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software Engineering for Automotive
Systems: A Roadmap. Future of Software Engineering, 55–71 (2007)

2. Weber, M., Weisbrod, J.: Requirements Engineering in Automotive Development:
Experiences and Challenges. IEEE Software 20(1), 16–24 (2003)

3. Pohl, K., Sikora, E.: COSMOD-RE: Supporting the Co-design of Requirements and
Architectural Artifacts. In: Proc. of the 15th IEEE Intl. Conf. on Requirements Engineering
(RE 2007), pp. 258–261 (2007)

4. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements
Engineering 11(1), 79–101 (2006)

5. Weyer, T., Pohl, K.: Eine Referenzstrukturierung zur modellbasierten Kontextanalyse im
Requirements Engineering softwareintensiver eingebetteter Systeme. In: Modellierung.
LNI, vol. 127, pp. 181–196 (2008)

6. Sowa, J.F., Zachman, J.A.: Extending and Formalising A Framework for Information
Systems Architecture. IBM Systems Journal 31(3), 590–616 (1992)

7. Robertson, J., Robertson, S.: Volere Standard Specification (2006),
 http://volere.co.uk/

8. Leuser, J., Porta, N., Bolz, A., Rachke, A.: Empirical Validation of a Requirements
Engineering Process Guide. In: 13th Intl. Conf. on Evaluation and Assessment in Software
Engineering (EASE 2009) (to appear, 2009)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 218–232, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Quality Requirements in Practice:
An Interview Study in Requirements Engineering for

Embedded Systems

Richard Berntsson Svensson1, Tony Gorschek2, and Björn Regnell1

1 Lund University, Department of Computer Science, PO Box 118,
221 00 Lund, Sweden

{Richard.Berntsson_Svensson,Bjorn.Regnell}@cs.lth.se
2 Blekinge Institute of Technology, School of Engineering, PO Box 520,

372 25 Ronneby, Sweden
tony.gorschek@bth.se

Abstract. [Context and motivation] In market-driven software development it
is crucial, but challenging, to find the right balance among competing quality
requirements (QR). [Problem] In order to identify the unique challenges
associated with the selection, trade-off, and management of quality requirements
an interview study is performed. [Results] This paper describes how QR are
handled in practice. Data is collected through interviews with five product
managers and five project leaders from five software companies. [Contribution]
The contribution of this study is threefold: Firstly, it includes an examination of
the interdependencies among quality requirements perceived as most important
by the practitioners. Secondly, it compares the perceptions and priorities of
quality requirements by product management and project management
respectively. Thirdly, it characterizes the selection and management of quality
requirements in down-stream development activities.

Keywords: Quality requirements; Non-functional requirements; Requirements
engineering; Market-driven requirements engineering; Empirical study.

1 Introduction

The complexity of software systems is determined by both functionality and by quality
aspects such as performance, reliability, accuracy, security, and usability [6]. These
quality aspects, or non-functional requirements are subsequently called quality
requirements (QR). It is commonly acknowledged that the handling and balance of QR
are an important and difficult part of the requirements engineering (RE) process [16],
playing a critical role in software development [6]. However, the situation is even more
complex in a market-driven development situation [1]. In market-driven development,
the flow of requirements is not limited to one project, and the requirements are
generated from internal (e.g., engineers) and external (e.g., customers) sources [15].
Also, to achieve high-quality in complex embedded systems, a combination of
experience and knowledge from different disciplines is needed [19]. This may lead to

 Quality Requirements in Practice 219

communication difficulties and difficulties in achieving the required quality level [19].
QR often specify certain quality levels and QR are in many cases possible to quantify
[22]. Quantification is important, not only for understanding QR [16], but also for
planning [24]. Not dealing, or ineffectively dealing with QR may lead to more
expensive software and longer-time-to-market [10], or in worst case, failures in
software development [2, 11]. Studies [3, 9] have showed cases where QR are the most
expensive and difficult aspects to handle, and according to Chung et al., QR are often
poorly understood in comparison to less critical aspects of software development [6].
To be able to improve how QR are handled it is important to understand their
characteristics [22], how they are used and prioritized in industry, as well as the
challenges of dealing with QR. This paper presents an empirical study performed in
industry to investigate these aspects as well as complement other RE surveys as few of
them have focused on the specific challenges related to QR.

Two main perspectives on QR are studied in this paper [14]. First, the product
perspective. Product managers are responsible for the overall product perspective and
the selection of the overall planning of the product evolution and offering are elicited
(for further elaboration see [26]). Second, the project perspective is studied through
the project leader, responsible for managing and prioritizing within the realization
phases. The two perspectives are also compared, studying the alignment between
project and product managers. The purpose of this study is to discover and describe
how QR are handled in practice, both from the product manager and the project
leader’s perspective, which is important since communication problems are a
challenge in market-driven software development [18]. In addition, the effects of not
dealing, or ineffectively dealing with QR are also investigated. The paper presents the
results of an empirical study that includes data collected from ten practitioners (five
product managers and five project leaders) at five companies in Sweden.

The reminder of this paper is organized as follows. In section 2, the background
and related work are presented. The research methodology is described in Section 3,
while Section 4 presents the results and relates the findings to previous studies.
Section 5 gives a summary of the main conclusions.

2 Background and Related Work

There are several surveys that concern or include RE related challenges. Curtis et al.
reported the first significant field survey of practices [8]. Even though the study does
not have a focus on RE, challenges related to RE were identified, including
communication breakdowns and conflicting requirements. Next, a study by
Chatzoglou identifies problems with the RE process, the challenges presented are e.g.,
lack of resources and poor quality of tools and techniques in the RE process [5].

Lubars et al. published a field study on requirements modeling [21]. The presented
challenges include vaguely stated requirements and difficulties with prioritization of
requirements. In addition, Lubars at el. identified challenges in relation to specification
of performance requirements (a type of QR) such as the rationale is not always obvious
and difficulties to associate performance requirements with parts of dataflow or control
flow specifications. In addition, a field study by Kamsties et al. includes small and
medium sized enterprises [17]. The identified challenges include implementation of

220 R. Berntsson Svensson, T. Gorschek, and B. Regnell

new requirements may cause unpredictable interaction with existing requirements,
requirements are not traceable, and that requirements are too vague to test. Kamsties et
al. also indentified a challenge related to specification of graphical user interfaces
(usability requirements, a type of QR). Furthermore, Karlsson et al. published a study
with solely focus on challenges in market-driven software development [18]. The
presented challenges include communication problems between marketing and
development, and requirements prioritization. Karlsson et al. also indentified
challenges in relation to QR. One challenge is related to QR interdependencies, which
was identified as a major problem. Quality requirements can influence a large part of
the functionality or other QR. This is not only related to finding the existing
interdependencies, but also assessing to what extent that requirements affect each
other, and determining how to deal with this. In addition, problems with considering
quality requirements in release planning were identified.

Several studies [4, 6, 7] have looked at requirements interdependencies; for
example, Carlshamre et al. identified six different interdependency types in industry
[4]. Research related to classification and measurement of QR are also introduced in
literature [16, 22]. Olsson et al. conclude that for a method to be successful, it is
important that it is flexible enough to handle the diverse nature of QR [22].

The focus of the above mentioned studies have not been primarily on QR, but QR-
related findings emerged as parts of the results. This paper presents a study with the
primary focus on QR and how they are managed in the RE process.

3 Research Method

The study was carried out using a qualitative research approach [25]. Qualitative
research aims to investigate and understand phenomena within its real life context. A
qualitative research approach is useful when the purpose is to explore an area of
interest, and when the aim is to improve the understanding of phenomena. The
purpose of this study is to gain in-depth understanding of QR within market-driven
embedded systems companies. The following research questions (see Table 1)
provided a focus for our empirical investigation.

It is important to understand an organizations alignment in terms of QR, otherwise
there may be a mismatch between product management [26] and project leadership.
Project leaders may down prioritize quality aspects that are considered important by
product managers and vice verca. In addition, interdependencies are important to
understand since QR may influence a large part of the system [18]. Kamsties et al.
found that requirements are often too vague to test [17], therefore, it is important to
investigate if QR are quantified in industry. Also, dismissal of QR from projects may
have an impact on the predicted return of investment, as well as the cost for the
customers. Finally, QR are a difficult part of the RE process [16], however; not all
challenges in relation to QR may be of major concern for industry. Therefore, it is
important to understand what challenges are critical and which ones are adequately
handled today.

 Quality Requirements in Practice 221

Table 1. Research questions

Research Questions (QR = Quality Requirements)
RQ1: Is there any difference in the views of what quality requirements are the most
important between product managers and project leaders?
RQ2: What interdependencies between QR are present in the companies?

RQ2.1: What types of interdependencies are deemed most important by practitioners, and
is there any difference between the view of product managers and project leaders in this
regard?
RQ2.2: To what extent are interdependencies elicited, analyzed and documented in
industrial practice?

RQ3: Are QR specified in a measurable manner?
RQ4: To what extent are QR dismissed from projects after project initiation?

RQ4.1: If QR are dismissed, is any consequence analysis performed?
RQ5: What QR challenges are articulated as critical by the practitioners themselves?
RQ6: What QR aspects do the companies feel confident as being adequately handled today?

3.1 Research Design and Data Collection

The study uses semi-structured interviews enabling exploratory discussion between
the researcher and the interviewee. The study was conducted in two stages: first the
data from each company was collected and analyzed. Secondly, the combined data
from all participating companies was collected and analyzed. The criteria for selecting
companies were based on our corporate contacts within industry. Five market-driven
software companies participate. From each company, one product manager (PM) and
one project leader (PL) from the same project were interviewed, resulting in ten data
points. The study consists of three phases: planning, data collection, and analysis.

Planning: The first phase of the study involved a brainstorming and planning
meetings to design the study and to identify different areas of interests. A
combination of maximum variation sampling and convenience sampling was used to
select companies within our industrial collaboration network [23]. The included
companies vary in respect to size, type of product, and application domain, a
rudimentary characterization can be see in Table 2 (more details are not revealed for
confidentiality reasons). The interview instrument was designed with respect to the
different areas of interest and inspiration from [18]. To test the interview instrument1,
two pilot interviews were conducted prior to the industry study.

Data collection: The study used a semi-structured interview strategy [25]. All
interviews were attended by one interviewee and one interviewer. First, the purpose
of the study and a general explanation of QR were presented and then questions about
the different areas of interests in relation to QR were discussed in detail. All
interviews varied between 40 and 90 minutes.

Analysis: The content analysis [25] involved creating categories where interesting
parts from the interviews were added and discussed. The first two authors examined
the categories from different perspectives and searched for explicitly stated or
concealed pros and cons in relation to how QR are handled in industry. The results
from the analysis are found in section 4.

1 http://serg.cs.lth.se/research/packages

222 R. Berntsson Svensson, T. Gorschek, and B. Regnell

Table 2. Company characteristics

 Alpha Beta Gamma Delta Epsilon
employees ~100 ~3000 >5000 325 65
Domain Control

systems
Telecom Telecom Telecom Control

Systems
Typical
project
cycle

18 months 48 months 24-36 months Differs 9 months

#reqs
#QR

>1000
~10% QR

~7000
 ~10% QR

>20000
QR unknown

~100 features,
~10% QR

Differs

3.2 Validity

In this section, threats to validity are discussed. We consider the four perspectives of
validity and threats presented in Wohlin et al. [27].

Construct validity: The construct validity is concerned with the relation between
theories behind the research and the observations. The variables in our research are
measured through interviews, including open-ended aspects where the participants are
asked to express their own opinions. Mono-operation bias [27] was avoided by
collecting data from a wide range of sources on the topic of the study. To avoid
evaluation apprehension [27], complete anonymity from other participants, the
companies, and researchers was guaranteed. Another validity threat lies in the
question that asked interviewees to rank and include additional factors if the list
provided to them was inadequate. Interviewees may have thought that it was easier to
rank the provided factors than propose new factors. This means that important
interdependency types may be missing.

Conclusion validity: Threats to conclusion validity arise from the ability to draw
accurate conclusions. The interviews were conducted at different companies and each
interview was done in one work session. Thus, answers were not influenced by
internal discussions. To obtain highly reliable measures and to avoid poor question
wording and poor layout, several pilot studies were conducted.

Internal validity: This threat is related to issues that may affect the causal
relationship between treatment and outcome. Threats to internal validity include
instrumentation, maturation and selection threats. In our study, the research instrument
was developed with close reference to literature relating to non-functional requirements,
and influenced by a previously administrated and validated research instrument [18],
which mitigates the instrumentation threat. In addition, maturation threats are handled
by reducing the duration of interview sessions by collecting background information
before the interview, and by keeping the interview session to 90 minutes.

External validity: This threat is concerned with the ability to generalize the findings
beyond the actual study. Qualitative studies rarely attempt to generalize beyond the actual
setting since it is more concerned with explaining and understanding the phenomena.
However, understanding the phenomena may help in understanding other cases. The fact
that most of the identified challenges are acknowledged by more than one company
increases the possibility to generalize the results beyond this study. To avoid the
interaction of selection and treatment, interviewees were selected according to their roles
within the company, and companies were selected from different geographical locations.

 Quality Requirements in Practice 223

4 Results and Analysis

This section presents the results discovered during the analysis of the interviews. The
five following sub-sections present and discuss one research question each,
corresponding to the research questions in Table 1.

4.1 Important Quality Aspects (RQ1)

In analyzing Research Question 1, this section examines the most important quality
aspects, as illustrated in Figure 1. Based on Lauesen's comparison of ISO9126 and
McCall quality factors [20], we identified 23 different types of QR. We asked the
interviewees to rank the top five most important aspects for their products based on
their expertise and their own definition of the quality factor. (Our approach was not to
impose preconceived definitions but to try to understand existing industrial practice
and practitioners' own interpretations of QR.) Looking at Figure 1, the quality aspect
ranked first received five points, the one ranked second got four points and so on, and
the one ranked fifth got one point. In total we see that interviewees agreed that
usability (which got a total of 26 points) and performance (23 points) requirements
are the two most important types of QR followed by compliance (13 points),
flexibility (13 points), and stability (11 points).

One reason for the prioritization of usability, as explained by several interviewees,
is that “if the product is not usable we will not sell any products”. One interviewee
expanded the view by stating that it does not matter if you have the latest and coolest
functionality, if the system is not easy to use, the customer will look at the
competitors for an easy to use system. The reason why compliance was ranked as the
third most important quality aspect is interesting. Several interviewees explained that
compliance is important because “we must be compliant with the requirement
document”. This interpretation of compliance differs from the one formulated by
ISO9126 which states to adhere to standards, regulations and laws. This leads to a
possible mismatch between the established academic interpretation of compliance and
the industrial interpretation of it. Apart from the agreement that usability and
performance were the two most important types of QR, PM and PL had different
priorities. PMs ranked performance (14 points) as the most important quality aspect,
followed by usability (12 points) and security/integrity (7points).

PLs ranked usability first (14 points), followed by performance (9 points), and
compliance and flexibility (8 points). PMs uniquely identified security/integrity,
testability, suitability, and installability as the most important quality aspects. On the
other hand, PLs uniquely identified the following quality aspects: recoverability,
reusability, correctness, and accuracy. The differences in priority between PM and PL
may not be a surprise as some mismatch can be expected. The two have different
roles and perspectives, but it might nevertheless be an important insight. For example,
not a single PL ranked security/integrity among the top five even if security/integrity
was considered the third most important by the PMs. Worth observing is that the
aspects of fault tolerance, conformance, replaceability, and analyzability was not in
any of the PMs or PLs top five.

224 R. Berntsson Svensson, T. Gorschek, and B. Regnell

Fig. 1. Importance of quality aspects

4.2 Interdependencies (RQ2)

Six different interdependency types are characterized [4]: (1) R1 AND R2: R1 requires
R2 to function, and R2 requires R1 to function, (2) R1 REQUIRES R2: R1 requires R2 to
function, but not vice versa, (3) R1 TEMPORAL R2: Either R1 has to be implemented
before R2 or vice versa, (4) R1 CVALUE R2: R1 affects the value of R2 for a customer,
(5) R1 ICOST R2: R1 affects the cost of implementing R2, and (6) R1 OR R2: Only one
of {R1, R2} needs to be implemented.

Although the interviewees had the option of adding new types of interdependencies, no
new types were discovered during the interviews. All of the six presented interdependency
types were used by the interviewees to characterize perceived interdependencies, both
among different QR, and interdependencies among QR and functional requirements (FR),
as illustrated in Table 3.

In general, the most common interdependency types identified among QR were:
OR, REQUIRES, and ICOST, while the least frequent one identified was TEMPORAL.
When the results from PM and PL were examined separately, the findings show a
difference of opinion. PMs viewed OR and ICOST as the most common types, while
PLs viewed REQUIRES as the most common one.

When examining the most frequent identified interdependency types among QR
and FR, four of the six types were considered equally common, while the remaining
two (AND, OR) types were considered least important. However, when examining the
results from the PM and PL separately, the findings show an interesting difference.
While PM considered TEMPORAL as the most common interdependency, PL viewed
TEMPORAL as least frequent. On the other hand, PL identified OR as one of four (the
other three are: REQUIRES, ICOST, and CVALUE) equally common interdependency
types, but OR was viewed as least frequent by PM.

 Quality Requirements in Practice 225

Table 3. Existing interdependency types divided by role

 Role QR to QR QR to FR

PM REQUIRES, CVALUE, ICOST AND, REQUIRES, TEMPORAL,
CVALUE, ICOST

Alpha

PL NONE NONE

PM OR, AND, REQUIRES,
TEMPORAL, CVALUE, ICOST

OR, AND, REQUIRES, TEMPORAL,
CVALUE, ICOST

Beta

PL OR, REQUIRES, TEMPORAL,
CVALUE, ICOST

OR, REQUIRES, TEMPORAL,
CVALUE, ICOST

PM OR, AND, REQUIRES, CVALUE,
ICOST

AND, REQUIRES, TEMPORAL,
CVALUE, ICOST

Gamma

PL OR, AND, REQUIRES, CVALUE,
ICOST

AND, REQUIRES, CVALUE, ICOST

PM OR, ICOST OR, REQUIRES, TEMPORAL,
CVALUE, ICOST

Delta

PL OR, REQUIRES, CVALUE,
ICOST

OR, AND, REQUIRES, TEMPORAL,
CVALUE, ICOST

PM OR TEMPORAL Epsilon

PL REQUIRES OR

In the study by Carlshamre et al., three of five case companies viewed value related
(ICOST or CVALUE) interdependency types as the most common [4]. In the
remaining two cases, functionality related (i.e., AND or REQUIRES) types were most
common. Our results show a mix of value and functionality types as the most
common ones (with the exception of Company Epsilon). The difference between the
studies may be explained by the focus, i.e.we focused solely on interdependencies
related to QR, while in Carlshamre et al. the focus was on requirements in general [4].
In [6, 7], a softgoal interdependency graph (SIG) is used to show interdependencies
among QR. The interdependency types used in the SIG are limited to AND, and OR,
which is not inline with the findings in our study, as we found that six different
interdependency types were present in the companies. Furthermore, the two types
AND, and OR were only identified as present by 25% of the interviewees.

RQ2.1: What types of interdependencies are deemed most important by
practitioners, and is there any difference between the view of product managers and
project leaders in this regard? According to the interviewees in total, the most important
interdependency type to identify among QR was REQUIRES, however, the PM and PL
roles were not in agreement. PM considered ICOST as the most important, while
REQUIRES was prioritized by the PL. Interestingly, in identifying the most important
interdependency type among QR and FR, the total result was identical to interdependency
types among QR. On closer examination the result between PM and PL vary in relation to
interdependencies among QR and FR. PM prioritized ICOST, but also uniquely identified
TEMPORAL and ICOST. The PL prioritized REQUIRES, but also uniquely identified OR
and CVALUE.

226 R. Berntsson Svensson, T. Gorschek, and B. Regnell

It is not surprising that PM and PL have different views on interdependency
priority. According to Carlshamre et al., value related interdependencies are
subjective; it may be difficult to state whether the cost exceeds the value for the
customer, therefore, these types of decisions should be made by product committees
[4]. This is inline with the results in this study; PM considers ICOST as the most
important type, while PL REQUIRES. One PL explained that REQUIRES is the most
important interdependency type because “functionality first, then the quality aspect of
the functionality is relevant”. Surprisingly, both among QR, and among QR and FR,
REQUIRES is considered the most important to identify looking at the summation of
all interviewees. This result is not inline with Carlshamre et al., which found that
ICOST and CVALUE were the most important types of interdependencies in market-
driven developing companies, while REQUIRES was considered the most important
in bespoke developing companies [4]. One PM explained that REQUIRES is
considered the most important interdependency to identify because “this is the easiest
type to miss, and therefore the most important to identify”.

RQ2.2: To what extent are interdependencies elicited, analyzed and documented
in industrial practice? The results show that in three of the five companies (Gamma,
Delta, and Epsilon) both PM and PL confirmed that no elicitation, analysis, or
documentation of interdependencies involving QR was conducted at all. In Company
Alpha, the PM stated that all dependency activities were conducted, while the PL from the
same company indicated that none of them were performed. In only one company (Beta)
both PM and PL stated that activities to elicit, analyze and document interdependencies
was performed. This result is inline with results from Karlsson et al., which found that
interdependencies between requirements in market-driven software development are a
major problem [18]. The problem includes identification, how the requirements affect
each other, and how to deal with them. The results are relevant since interdependencies
among QR’s are at the hart of managing explicit trade-offs among solution alternatives
[10]. In addition, Cleland-Huang et al. states that failing to trace QR expose a company to
huge risks when a change is introduced [7]. Furthermore, Kamsties et al. found that new
requirements may cause unpredictable interaction with existing requirements, which
indicates the importance of finding the interdependencies among requirements [17].

There can be several potential explanations of why interdependencies among QR
are not actively looked for. Quality requirements tend to have a global impact on the
entire system, therefore, QR are difficult to trace and because of the extensive
network of interdependencies and trade-offs that exists among them responsibilities
for their realization is often vague [6, 10]. Other explanations were discovered during
the interviews. Some interviewees stated that they have little focus on QR, while
others stated that QR are assumed and therefore interdependencies are not actively
looked for. In addition, one interviewee confirmed that their focus is on functional
requirements and not QR. Others stated that dependencies are handled during other
parts of the development process, for example, during the design, architecture, and
implementation. However, they have more focus on functional requirements because
functional requirements are easier to discover than QR.

One possible implication with this is that quality aspects such as usability and
performance are not considered at the early stages of product and project planning.
This can be an acceptable alternative, given that the companies consider quality
aspects important only in the solution domain, and not from a product offering or

 Quality Requirements in Practice 227

business perspective. This is however contradicted by the results obtained during the
prioritization of quality aspects (see Section 4.1), where the practitioners stated that
several (or which usability was premiered) quality aspects were crucial for being able
to sell the product at all.

4.3 Quantification of Quality Requirements (RQ3)

In analyzing research question 3, this section examines how often QR are specified in
a measurable manner, as illustrated in Table 4.

Table 4. Quantification of quality requirements

Role Alpha Beta Gamma Delta Epsilon
PM Always Never Always Sometimes Always
PL Sometimes Sometimes Always Sometimes Sometimes

Interestingly, four of the PLs claimed that QR were quantified sometimes, while in
three of these cases the PMs view differed, stating always or never. In two out of five
(Gamma and Beta) companies agreement between PM and PL could be observed. The
disagreement may be an indication of communication problems between the PM and
PL. Communication problems were also identified as a challenge in market-driven RE
by several studies [12, 13, 18]. In a study by Olsson et al., about half of the QR were
found to be quantified which seems to confirm the findings [22]. However, one
interesting observation that can not be directly confirmed is the level of disagreement
between PM and PL. It should be noted that each PM and PL pair worked for the
same company, and moreover with the same project.

4.4 Dismissal of Quality Requirements (RQ4)

We asked the interviewees how often QR that were actually specified and selected for
inclusion in a project were subsequently dismissed from project during development
(see Table 5). The total average mean value of dismissed QR is 22.5%, meaning
almost every fourth QR that has been included in a project is dismissed at some stage.
When comparing PM and PL, the least (in the best situation) amount of dismissed QR
is slightly higher for PM (5%) than for PL (3%). In worst case (Most in Table 5); the
mean value of dismissed QR is 55% according to the PMs, while PLs believe that
45% are dismissed.

According to the interviewees, there are two trends of which types of QR that are
more representative of the ones being dismissed. Firstly, QR that are not visible for
the end customer, such as maintainability and testability are more often dismissed
than other QR. Secondly, performance requirements are more often dismissed due to
the difficulties of estimating them. One inherent contradiction can be seen in these
two trends. For example, if the performance of a system is inadequate, the inadequacy
of this quality aspect can be noticed by the customer through a slow system/product.
No further elaborations were given on this contradiction.

228 R. Berntsson Svensson, T. Gorschek, and B. Regnell

Table 5. Dismiss rate of quality requirements

Dismissal rate Role

Least Avg. Most

Consequence Analysis Reason for dismiss rate

PM 10% 15% 20% If customer is affected Poor cost estimations Alpha

PL 0% 50% 90% No Testing QR very late

PM 10% 20% 90% If customer is affected Lack of resources Beta

PL 1% 5% 20% Yes Lack of resources and
poor cost estimations

PM NA NA NA Check with stakeholders Poor cost estimations and
lack of resources

Gamma

PL NA NA NA No Lack of resources and
lower priority than FR

PM 0% 5% 10% If customer is affected Issues we cannot affect,
e.g. network capacity

Delta

PL 0% 10% 20% No Issues we cannot affect,
e.g. network capacity

PM 0% 50% 100
%

If customer is affected Poor cost estimations and
lower priority than FR

Epsilon

PL 10% 25% 50% No Lower priority than FR

NA: Not available

The results reveal three main reasons for the dismissal of QR: (1) poor cost
estimations, (2) lack of resources, and (3) that QR have lower priority than functional
requirements (FR). Poor cost estimations is related to the difficulties to estimate the
cost of QR that have a global impact on the system. The difficulties of estimating the
cost of QR are related to lack of knowledge and understanding of how to manage QR
in practice. Several interviewees frequently described that QR have lower priority,
and that they do not spend much time on managing QR. Some of the interviewees
explained that QR are seen as base requirements and therefore not considered.
However, this focus has implications on the system, as explained by one PM, “in
most situations, QR are down prioritized by FR due to lack of knowledge of how
important a system’s quality is. By lowering the quality level, the value of the system
decreases”.

RQ4.1: If QR are dismissed, is any consequence analysis performed?
According to the PMs, a consequence analysis is only conducted if the customers are
affected. The consequence analysis may include new prioritization of all requirements
and new cost estimations, as explained by one interviewee that “if we have promised
a certain quality, then we have to increase the cost for this project and accept a lower
return of investment”. Another consequence, as explained by a PM, is to “first ask the
customer if this is OK. If not, we talk to the developers to find out the reason why this
cannot be done. Finally, we decide if we have to add or remove other requirements”.
Surprisingly, none of the PLs shared the view of the PMs. All PL claimed that nothing
happens when QR were dismissed from the projects. One explanation, which was
qualified by one PL, is that “we do not have time to re-analyze the consequence of

 Quality Requirements in Practice 229

QR, other things are more important”. Another explanation according to another PL
is that “we can deliver on time if QR are dismissed”.

A central issue here seems to be the difficulty to properly quantify as well as
estimate the cost of implementing a QR, but more importantly the value of a QR. This
might indicate a lack of estimation models/techniques for QR. The complexity is of
course that a QR often implies a quality aspect of a system/product. Such a quality
aspect is often not realized as a feature, but rather implies that all development be in
line and adhering to the quality aspect. For example, performance is not dictated by
one thing, but often by how the system is realized overall, including architectural
considerations impacting the whole.

4.5 Quality Requirement Challenges (RQ5 and RQ6)

In analyzing research questions 5 and 6, this section examines what QR challenges
and what QR aspects the practitioners identified. Figure 2 shows the two perspectives.

Three companies (Beta, Gamma, and Epsilon) stated that they are very good in
terms of testing QR (QR that are well specified and quantified). This was confirmed by
one interviewee: QR that are quantified are easy to test. Another interviewee explained
that their company has a well established test organization and good methods for
testing QR, both in lab and field environments. However, one of the identified
challenges is difficulties in achieving testable QR, i.e. making QR well specified and
quantified. This is not a surprising result and is confirmed in previous studies [17, 18,
21]. Apart from the agreement of testing QR, each company identified issues in
relation to QR that are adequately handled today. One surprising finding was that one
company (Delta) stated that they are good at rejection of QR. The product manager
explained that “we are very good in negotiation of QR, which is to make sure that QR
are not part of the contract.”. The result reveals two major challenges that are faced by
the companies, (1) how to get QR into the projects, and (2) when is the quality level
good enough? All companies faced the same problem of getting QR into the project.
The challenge is that QR have to contend with FR, where FR often emerge as victors.
Problems with considering QR were also found by Karlsson et al. [18].

What is the
industry good at?

What challenges
does the industry
face?

Alpha EpsilonDeltaGammaBeta

Performance
requiremetns are
measureable Dismiss QR

Increased awareness
of QR

Test of QR Test of QR Test of QR

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

Early cost
validation of QR

Achieve
testable QR

Achieve
testable QR

Create measurable
usability requirements

Prioritize QR
against FR

What is the
industry good at?

What challenges
does the industry
face?

Alpha EpsilonDeltaGammaBeta

Performance
requiremetns are
measureable

Performance
requiremetns are
measureable Dismiss QRDismiss QR

Increased awareness
of QR
Increased awareness
of QR

Test of QR Test of QR Test of QRTest of QRTest of QR Test of QRTest of QR Test of QRTest of QR

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

Get QR into
projects when FR
are prioritized

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

When is the
quality level
good enough?

Early cost
validation of QR
Early cost
validation of QR

Achieve
testable QR
Achieve
testable QR

Achieve
testable QR
Achieve
testable QR

Create measurable
usability requirements
Create measurable
usability requirements

Prioritize QR
against FR
Prioritize QR
against FR

Fig. 2. Challenges and non-challenges in the companies

230 R. Berntsson Svensson, T. Gorschek, and B. Regnell

A reason may be that having an extra function is considered more valuable than to
improve the quality of the system. However, this focus may backfire as the customers
may want a certain quality level of the systems that are bought. One interviewee
confirmed that “we have been very technology focused, we did not care about QR, but
now it has backfired and we have to put a lot of focus on the QR.” In addition, QR are
considered as obvious, or even as base requirements and therefore not quantified or
specified. The second main challenge is to decide when a certain quality level is good
enough, when are you finished with a QR? The interviewees expressed their concern
of how to decide when the quality is good enough. Should the performance be two
seconds, 1.5 seconds, or even one second, who can decide that? One interviewee said,
who can decide if 1 or 5 Mbits are most appropriate?

Two companies (Alpha and Delta) identified achieving testable QR, and one
company (Gamma) viewed creating measurable usability requirements as challenges.
One reason for identifying these challenges may be related to the quantification of QR
(Section 4.3), which shows that 60% of the interviewees stated that QR are never, or
sometimes specified in a measurable manner. Another identified challenge (Company
Beta) is prioritization of QR. Prioritization of QR involves other challenges than
prioritization of FR, which were further explained by one interviewee by the statement
that performance and usability requirements are different in nature and very difficult to
compare. How do we prioritize performance requirements of two seconds against the
subjective appraisal of usability requirements, was asked by one interviewee.

5 Conclusions

In conclusion, this article presents the results of an empirical study that examines
Quality Requirements (QR) in practice in five software companies. Data is collected
from five product managers and five project leaders at the companies. To the best of
our knowledge, there are no other multi-case survey studies that examine QR in
practice.

The findings reveal that usability and performance requirements are deemed the two
most important types of QR by the interviewed practitioners. In addition, we found that
the companies do not actively look for interdependencies among QR, and we did not
encounter QR-specific elicitation, documentation, or analysis (RQ2). The findings
highlight three important challenges (RQ5): (1) how to get QR into the projects when
functional requirements are prioritized, (2) how to know when the quality level is good
enough, and (3) how to achieve testable QR. Our results indicate that QR are often not
quantified (RQ3), thus difficult to test. However, the interviewees consider that the
companies are good in terms of testing the (few) QR that are quantified (RQ6).

There seems to be a bespoke development mindset where the immediate project
gets a higher priority than the long-term evolution of the product (which would be
interesting for further studies). This is confirmed by the implicit management of QR,
and the dismissal off-hand of QR with little or no consequence analysis (RQ4). This
contradicts the interviewees’ initial view (RQ1) where quality aspects were labeled as
critical, but looking at practice, the project-oriented perspective and the urge of
offering more functionality in the immediate release dominates.

 Quality Requirements in Practice 231

The interviewees expressed that the limited focus on QR can have long-term
consequences as well; increased maintenance costs and degradation in usability with
feature growth are but a few examples. However, the main problem is that QR are not
taken into consideration during product planning (pre-project) and thus not included
as hard requirements in the projects. This implies that no explicit trade-off can be
made, making the realization of QR a reactive rather than proactive effort. Product
management may thus not be able to plan and rely on quality aspects to achieve
competitive advantages, but mainly respond to emerging QR problems.

References

1. Aurum, A., Wohlin, C. (eds.): Engineering and Managing Software Requirements.
Springer, New York (2005)

2. Breitman, K.K., Leite, J.C.S.P., Finkelstein, A.: The World’s Stage: A Survey on
Requirements Engineering Using a Real-Life Case Study. Journal of the Brazilian
Computer Scociety 6, 13–38 (1999)

3. Brooks Jr., F.P.: No Silver Bullet: Essences and Accidents of Software Engineering.
Computer 4, 10–19 (1987)

4. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In:
Proc. 5th IEEE Int. Sypm. on Requirements Engineering, Los Alamitos, USA, pp. 84–91
(2000)

5. Chatzoglou, P.D.: Factors Affecting Completion of the Requirements Capture Stage of
Projects with Different Characteristics. Information and Software Technology 39, 627–640
(1997)

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

7. Cleland-Huang, J., Settimi, R., BenKhadra, O.: Goal-Centric Traceability for Managing
Non-Functional Requirements. In: Proc. 27th Int. Conf. on Software Engineering, Saint
Louis, USA, pp. 362–371 (2005)

8. Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Communications of the ACM 31, 1268–1287 (1988)

9. Cysneiros, L.M., Leite, J.C.S.P.: Integrating Non-Functional Requirements into Data
Model. In: Proc. 4th IEEE Int. Symp. on Requirements Engineering, Limerick Ireland, pp.
162–171 (1999)

10. Cysneiros, L.M., Leite, J.C.S.P.: Nonfunctional Requirements: From Elicitation to
Conceptual Models. IEEE Transactions on Software Engineering 30, 328–349 (2004)

11. Finkelstein, A., Dowell, J.: A Comedy of Errors: The London Ambulance Service Case
Study. In: Proc. 8th Int. Workshop on Software Specification and Design, Los Alamitos,
USA, pp. 2–4 (1996)

12. Fricker, S., Gorschek, T., Glintz, M.: Goal-Oriented Requirements Communication in New
Product Development. In: 2nd Int. Workshop on Software Product Management,
Barcelona, Spain (2008)

13. Fricker, S., Gorschek, T., Myllyperkiö, P.: Handshaking between Software Projects and
Stakeholders Using Implementation Proposals. In: Sawyer, P., Paech, B., Heymans, P.
(eds.) REFSQ 2007. LNCS, vol. 4542, pp. 144–159. Springer, Heidelberg (2007)

14. Gorschek, T., Davis, A.: Requirements Engineering: In Search of the Dependent Variables.
Information and Software Technology 50, 67–75 (2008)

232 R. Berntsson Svensson, T. Gorschek, and B. Regnell

15. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements Engineering
Journal 11, 79–101 (2006)

16. Jacobs, S.: Introducing Measurable Quality Requirements: A Case Study. In: Proc. 4th
IEEE Int. Symp. on Requirements Engineering, Limerick, Ireland, pp. 172–179 (1999)

17. Kamsties, E., Hörnmann, K., Schlich, M.: Requirements Engineering in Small and
Medium Enterprises. In: Proc. Conf. on European Industrial Requirements Engineering,
London, UK, pp. 84–90 (1998)

18. Karlsson, L., Dahlstedt, Å.G., Regnell, B., Nattoch Dag, J., Persson, A.: Requirements
engineering challenges in market-driven software development – An interview study with
practitioners. Information and Software Technology 49, 588–604 (2007)

19. Kusters, R.J., Solingen, R.V., Trienekens, J.J.M.: Identifying Embedded Software Quality:
Two Approaches. Quality and Reliability Engineering International 15, 485–492 (1999)

20. Lauesen, S.: Software Requirements – Styles and Techniques. Addison-Wesley, Great
Britain (2002)

21. Lubars, M., Potts, C., Richter, C.: A Review of the State of the Practice in Requirements
Modelling. In: Proc. 1st IEEE Int. Symp. on Requirements Engineering, San Diego, USA,
pp. 2–14 (1993)

22. Olsson, T., Berntsson Svensson, R., Regnell, B.: Non-functional requirements metrics in
practice – an empirical document analysis. In: Workshop on Measuring Requirements for
Project and Product Success. Palma de Mallorca Spain (2007)

23. Patton, M.Q.: Qualitative Research and Evaluation Methods. Sage Publications, USA
(2002)

24. Regnell, B., Höst, M., Berntsson Svensson, R.: A Quality Performance Model for Cost-
Benefit Analysis of Non-functional Requirements Applied to the Mobile Handset Domain.
In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 277–
291. Springer, Heidelberg (2007)

25. Robson, C.: Real World Research. Blackwell, Oxford (2002)
26. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards

a Reference Framework for Software Product Management. In: Proc. 14th IEEE Int.
Requirements Engineering Conference, St. Paul, USA, pp. 312–315 (2006)

27. Wohlin, C., Runeson, P., Höst, M., Ohlson, C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Kluwer Academic, Boston (2000)

Does Requirements Clustering Lead to Modular Design?

Zude Li, Quazi A. Rahman, Remo Ferrari, and Nazim H. Madhavji�

Computer Science Department, University of Western Ontario,
London, Ontario, Canada, N6A 5B7

{zli263,qrahman2,rferrari,madhavji}@csd.uwo.ca

Abstract. [Context and motivation] The clustering of system requirements
groups together related requirements. In a concept paper, we had previously pro-
posed a requirements clustering approach for the purpose of modularizing soft-
ware. [Question/problem] In this short paper, we describe a preliminary study
to explore the answer to the posed question: whether or not requirements cluster-
ing leads to modular design as measured by design goodness criteria. [Principal
ideas/results] The study assesses the modularity of software designs developed
by independent groups given the same requirements. These are then compared
against the expected design resultant from implementing the requirements clus-
ter. [Contribution] The study results are encouraging and it warrants further
investigation.

Keywords: Requirements Clustering, Design Modularity.

1 Introduction

Requirements clustering is a recognized technique to organize software requirements
into a set of clusters with high cohesion and low coupling [4,1,10]. It can also be used
in system decomposition [4], modularization [1], software product lines [9], triage [6]
and quality improvement [10].

Our previous study [7] has proposed a requirements clustering technique. In this
paper, we describe a preliminary empirical validation of this technique. Specifically,
we want to explore the answer to the posed question: whether or not requirements
clustering leads to modular design as measured by design goodness criteria. The study
assesses the modularity of software designs developed by independent groups given the
same requirements. We used the modularity metric evolutionary coupling index (ECI)
[11], which is based on measuring coupling and cohesion, as the goodness criteria to
evaluate the modularity of the designs developed by these groups. The designs are then
compared against the expected design resultant from implementing the requirements
cluster derived by using our approach. These comparisons show that our requirements
clustering approach can produce good modular design, where the modularity level is
close to the modularity level achieved by an expert.

The remainder of the paper is organized as follows: Section 2 briefly reviews our
requirements clustering approach [7]. Section 3 describes the study including the pre-
liminary findings. Section 4 discusses future work and concludes the paper.
� This research is, in part, supported by a research grant from Natural Science and Engineering

Research Council (NSERC) of Canada.

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 233–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

234 Z. Li et al.

2 Requirements Encapsulation

Requirements encapsulation means organizing requirements into a set of clusters along
with external interfaces such that each cluster can be ultimately implemented by a
functional module. Its main principle is the Requirement Encapsulation Design Rule
(REDR) [8, page3]: Create one functional module per requirements cluster.

Our requirements encapsulation approach [7] includes two main steps: requirements
clustering and clusters encapsulation. These are discussed in the next two subsections.
The differences between our approach and other requirements clustering techniques are
discussed in [7] and so are not repeated here.

2.1 Requirements Clustering

Within our approach, requirements clustering is implemented based on the Require-
ment-Dimension-Attribute (RDA) relations. A dimension of requirements depicts an in-
formation category of the requirements semantics within the application environment.
We decompose requirements into seven organizational or semantic dimensions: sub-
ject, action, object, functionality, quality, time, and location. An attribute is the con-
crete information of a requirement in a dimension. For example, user is an attribute
of dimension subject. Requirements can be decomposed into each dimension as an at-
tribute, representing its information granularity level in the dimension. Each attribute is
assigned with a weight (similar to the weighting scheme in [3]) indicating the degree of
similarity or associativity of this attribute with others. In each dimension, attributes are
organized in a hierarchy with the information granularity.

Example 1: Consider these two requirements, R1: User may input client data (name,
gender, birthdate), and R2: Super-user can input user data (name, password). In R1
and R2, client data and user data can be considered as two attributes in the object di-
mension, written Client-Data and User-Data, respectively. They can be taken as two
granular specializations of attribute Data. Attribute Client-Data can be further spe-
cialized into three more granular attributes: Name, Gender, and Birthdate, indicating
client’s name, gender and birthdate data. Attribute User-Date can be further specialized
into Name and Password indicating user’s name and password. Also the attribute of
R1 in the quality dimension can be expressed as Client-Data-Input-GUI, indicating the
quality aspect of this requirement.

The similarity and associativity degrees are measured between requirements to ad-
dress the possibility of implementing these requirements in the same module. The re-
quirements clustering metric is defined based on these measures.

2.2 Cluster Encapsulation

Requirements cluster encapsulation is to encapsulate each requirements cluster by
defining its external interface with a set of stimulus-response pairs. The stimulus and
response are defined with the following format:

stimulus = (source requirement, trigger);
response = (target requirement, response behaviour).

Does Requirements Clustering Lead to Modular Design? 235

Here source requirement refers to the requirement that launches the action (named trig-
ger) to another requirement (named target requirement). The possible behaviour of tar-
get requirements responded to the trigger is named response behaviour.

Example 2: Consider requirement R3: Non-medical entries can be added to client
record. Suppose that R3 and R1 are organized into two clusters. In this situation, R3
has a cluster-level relation with R1, since any non-medical entries to a client record can
be added only if the client record has been created. This relation is a temporal sequence
constraint which indicates that the action specified in R3 can be possibly accomplished
only after the action in R1 is accomplished. We can define the stimulus-response pair on
R1 and R3 as follows: (R1, record-created)−(R3, activate-entry-option), where record-
created is the trigger identified in R1 that notifies that non-medical entries (in R3) of a
client record can be added, as activate-entry-option.

After the stimulus-response pairs are defined for each requirements cluster, it is ex-
pected to design a module to directly implement a cluster of requirements. The internal
requirements attributes and relations in a cluster can be captured as classes (or objects)
and relations within a module. The external cluster interface can be addressed by (pub-
lic) access methods to the module.

3 The Study

The software project used in this study is an open project CAISI (Client Access to
Integrated Services and Information), which is developed to help address the problem
of homelessness in big cities, by providing integrated information to agencies that help
homeless people. The main software requirements have already been posted in the third-
party project website (http:/www.caisi.ca/, see also [2]) and so we do not reproduce
them in this paper.

We investigated nine CAISI system designs that were developed by nine indepen-
dent students’ groups given the same set of requirements [2] in a university object ori-
ented design course. Each group contained four to six senior undergraduate students.
Students did not use any requirements clustering technique during their development
process. After the project was completed, we analyzed their system designs using (a)
the evolutionary coupling index [11] and (b) requirements clusters which are derived
using our approach.

In this section, we first describe the clustering of the project requirements [2] using
our approach [7] (section 3.1), and then we present some initial study results (section
3.2) to find out how requirements clusters can help to improve design modularity.

3.1 Clustering CAISI Requirements

The clustering task includes the following three steps.

Step 1 (Dimension hierarchy construction): For each requirement, we extract its at-
tributes in the seven dimensions (see Section 2.1) and construct the seven dimension
hierarchies based on these requirements attributes.

236 Z. Li et al.

1. GUI [2]

1 . U sa b i li t y [1]

0. Q ualit y [0]

1. Use r- GUI [3] 2. Client-GUI [3]

1 . Us e r - Da t a - In pu t - G U I [4] 1 . C l i e n t - D a t a- In pu t - G UI [4]

Q ualit y

2. Pe r sist e n ce [2] 3. Q u e ry [2]

1. Q ue r y-B y-Name [3]

2. Q ue r y-I ns e ns itive [3]

2. S e cu rit y [1]

Fig. 1. The Quality dimension hierarchy

Example 3: Fig. 1 depicts the Quality dimension hierarchy. Usability and security are
two quality attributes (with weight 1). Usability has three refined attributes: GUI, Per-
sistence, and Query (with weight 2). The more granular attributes have greater weights.

Step 2 (RDA building): The RDA table is built on the seven dimension hierarchies, see
Table 1. Each element contains a hierarchical path to an attribute with its similarity or
associativity degree in a dimension.

Table 1. The Requirements-Dimensions-Attributes (RDA) table (Partial)

Functionality Action Object Time Location Subject Quality
R1 1-1-1-1 [4] 1-2-1 [3] 1-1-{1,2,3} [4] 0-1 [1] 1-2 [2] 1 [1] 0-1-1-2-1 [4]
R2 1-1-2 [3] 1-2-2 [3] 1-2-{1,2} [3] 0-1 [1] 1-1 [2] 1-1 [2] 0-1-1-1-1 [4]
R3 1-1 [2] 1-2 [2] 1 [1] 0-2 [1] 1 [1] 1 [1] 0-1 [1]

Example 4: In Table 1, the quality attribute value of R1 is “0-1-1-2-1 [4]”, which means
the quality attribute of R1 is Client-Data-Input-GUI (in Fig. 1, see Example 1) with path
Quality−Usability−GUI−Client-GUI and the weight (i.e., associativity degree) 4.

Step 3 (Requirements clustering): A set of requirements clusters is derived by the re-
quirements clustering algorithm [7] based on the RDA table. For instance, the require-
ments {R1, R2, R3} (from Example 1 and 2 above) are grouped into a requirements
cluster, because they share granular attributions in the seven dimensions.

3.2 Design Analysis

In this study, students’ designs of the CAISI system were analyzed. We used the metric
evolutionary coupling index (ECI) [11] as the goodness criteria for evaluating design
modularity. This metric is defined as the ratio of the number of internal dependencies
in modules to the number of external dependencies between modules:

ECI =
#Internal Couplings

#External Couplings
.

Does Requirements Clustering Lead to Modular Design? 237

It can be used to measure the modularity of the module set with relation to the connec-
tions between modules. The greater the ECI , the better the modularity is [11].

Each student group designed the class diagram for the system based on the given set
of requirements. They did not do any module level design. To investigate how require-
ments clusters can help to achieve better design modularity, we compared the design
modularity achievable by our clustered requirements to the design modularity achieved
by an expert design based on the same set of classes. First the student classes were orga-
nized into modules by an expert without considering the requirement clusters. We call
this set of modules as Students’ modules from Expert (SME). We measured the average
modularity level of the SME set using the ECI metric.

To derive modules based on requirements clusters, we identified the traceability links
between requirements and classes to find out which requirement is implemented by
which classes. For each of the requirements clusters, we organized the linked classes
into modules for nine CAISI systems designed by the students. We call this set of mod-
ules the Students’ modules from requirements clusters (SMRC). Then we measured the
average modularity level of the SMRC set using the ECI metric. We used the following
metric ECIRatio to compare the modularity levels of the SMRC and SME sets.

ECIRatio =
ECI(SMRC)
|SMRC| /

ECI(SME)
|SME| .

The ECIRatio measures how close the modularity level of the SMRC set is to the
SME set, ranged between 0 and 1. A high ECIRatio indicates that the modularity level
of the SMRC set (the modules derived from the requirements clusters) is close to the
modularity achievable by an expert using the same set of classes.

The results from these measurements are illustrated in Table 2.

Table 2. The design comparison results

GrpNo #Class avgECI(SMRC) avgECI(SME) ECIRatio
1 12 0.87 0.87 1.0
2 35 0.5 0.61 0.85
3 12 0.31 0.52 0.60
4 21 1.0 1.0 1.0
5 25 1.1 1.37 0.83
6 12 0.34 0.40 0.85
7 27 1.2 1.25 0.95
8 6 1.35 1.5 0.90
9 18 0.7 0.8 0.88

In Table 2, column “#Class” addresses the number of classes in the system, column
“avgECI(SMRC)” (or “avgECI(SME)”) depicts the average ECI level of the SMRC
(or SME) set, and column “ECIRatio” represents the ECIRatio value. We find that,
the average ECIRatio for these groups is 0.87. That means for those groups’ designs,
our clustering technique could achieve 87% of the design modularity achieved by an
expert. In qualitative terms, this indicates that our requirements clustering approach can

238 Z. Li et al.

produce good modular design where the modularity level is close to that achieved by
an expert, as measured by the goodness criteria (ECI metric) used in our study.

We also provided the requirements clusters to the expert to do the modular design
based on the clusters. We measured the modularity level (ECI metric) of the expert
modular design that has been derived directly from the requirements cluster. The ECI
metric value for the design is 1.7 (i.e., the average number of internal couplings is 1.7
times as many as the number of external couplings), which is 100% higher than the
average modularity level (the metric value is 0.82) achieved from the students’ design.

The above findings are concluded from students’ course projects. Although some re-
searchers, e.g., Host et al. [5], have found that student work can be used to conduct em-
pirical studies under certain conditions, we recommend that such studies can be taken a
step further when opportunities arise to apply to industry data.

4 Conclusion and Future Work

In this short paper, we have presented a requirements clustering approach and initial
results of a study determining the effectiveness of this approach on modular software
design. The initial results are encouraging as shown in Table 2. We conclude from this
that requirements clustering can lead to modular design. In the future, however, we
plan to conduct a controlled study whereby one group would design software using the
requirements clusters produced by our clustering approach and another group would
design software without using the requirements clusters.

Acknowledgement

We are grateful to Prof. Jamie Andrews of the University of Western Ontario for pro-
viding access to the student projects.

References

1. Al-Otaiby, T.N., AlSherif, M., Bond, W.P.: Toward software requirements modularization
using hierarchical clustering techniques. In: ACMSE 2005, Kennesaw, GA, USA, pp. 223–
229 (2005)

2. Andrews, J.H.: Standalone caisi system (scs): System requirements, version 2.2 (2007),
http://www.csd.uwo.ca/courses/cs307b/project/2007/
cs307jan2007projectreqs.pdf

3. Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Transactions on
Software Engineering 31(2), 150–165 (2005)

4. Hisa, P., Yaung, A.T.: Another approach to system decomposition. In: COMPSAC 1988,
Chicago, IL, USA, pp. 75–82 (1988)

5. Host, M., Regnell, B., Wohlin, C.: Using students as subjects–a comparative study of students
and professionals in lead-time impact assessment. Empirical Software Engineering 5, 201–
214 (2000)

6. Laurent, P., Cleland-Huang, J., Duan, C.: Towards automated requirements triage. In: RE
2007, New Delhi, India, October 2007, pp. 131–140 (2007)

http://www.csd.uwo.ca/courses/cs307b/project/2007/cs307jan2007projectreqs.pdf
http://www.csd.uwo.ca/courses/cs307b/project/2007/cs307jan2007projectreqs.pdf

Does Requirements Clustering Lead to Modular Design? 239

7. Li, Z., Rahman, Q.A., Madhavji, N.H.: An approach to requirements encapsulation with
clustering. In: WER 2007, Toronto, ON, CA, pp. 97–103 (2007)

8. Lutowski, R.: Software Requirements: Encapsulation, Quality, and Reuse. Auerbach Pub-
lisher (2005)

9. Niu, N., Easterbrook, S.: On-demand cluster analysis for product line functional require-
ments. In: SPLC 2008, Limerick, Ireland, September 2008, pp. 87–96 (2008)

10. Zhang, W., Mei, H., Zhao, H.: Feature-driven requirements dependency analysis and high-
level software design. Requirements Engineering 11, 205–220 (2006)

11. Zimmermann, T., Diehl, S., Zeller, A.: How history justifies system architecture (or not). In:
IWPSE 2003, Helsinki, Finland, September 2003, pp. 73–83 (2003)

M. Glinz and P. Heymans (Eds.): REFSQ 2009, LNCS 5512, pp. 240–255, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Lessons Learned from Open Source Projects for
Facilitating Online Requirements Processes

Paula Laurent and Jane Cleland-Huang

1 Systems and Requirements Engineering Center,
School of Computing,

DePaul University
{plaurent,jhuang}@cs.depaul.edu

Abstract. [Context and motivation] The use of websites for gathering and
prioritizing requirements in large-scale distributed projects is becoming
increasingly prevalent in the software industry. These websites include both
forums and wiki-style collaborative tools, and are designed to allow large
numbers of stakeholders to participate in the requirements gathering process.
[Question/problem] This paper explores and evaluates the forum-based
requirements gathering and prioritization processes adopted by vendor-based
open source software projects. The findings of this work have implications far
beyond the domain of open source projects as they highlight requirements
processes that could be applicable to any distributed, web-based requirements
process. [Principal ideas/result] The effectiveness of various requirements
gathering and prioritization practices adopted by vendor-based projects are
evaluated, through observing how feature requests are managed in the forums, and
also through a survey of vendor-based forum users and project managers.
[Contribution] Our results highlight practices that could lead to more effective
requirements processes in web-based requirements gathering and prioritization
tools.

Keywords: large scale requirements, feature requests, requirements elicitation.

1 Introduction

The task of gathering and analyzing requirements is an intrinsically people-centric
process in which analysts elicit the needs, wants, and desires from a carefully selected
group of key stakeholders. However, as software projects continue to grow in scope,
the number of stakeholders involved in the elicitation process tends to rise, making
this process difficult to coordinate effectively. Furthermore as projects increasingly
extend across geographical and organizational boundaries, it becomes more difficult
to organize regular face-to-face meetings meaning that we must rely increasingly on
collaborative tools [1].

Most traditional requirements management tools fail to provide adequate support for
large distributed projects, even though many of them claim to support a collaborative
process. For example, DOORSTM [2] requirements management tool, which is one of

 Lessons Learned from Open Source Projects 241

the industry leaders, is advertised as providing a collaborative environment, but in fact
like other similar tools it simply provides a multi-user front-end for entering, updating,
and viewing requirements. Although multiple users can work together to construct a
Software Requirements Specification, the tool provides no real support for managing
large numbers of feature requests, or helping to organize stakeholders into forums where
they can work collaboratively to explore their needs and generate requirements. For
example, organizations such as NASA routinely manage projects which include
thousands of stakeholders using rather basic tools such as CRADLETM. Unfortunately
this creates numerous coordination challenges, evidenced by a comment made by a
NASA engineer that the paperwork generated in the SpaceStation project could have
been used to build a stairway into space, thereby eliminating the need for a rocket
launch altogether [3]! One approach to solving this problem involves moving the
process online into a forum or wiki.

Open Source Software (OSS) development represents a collaborative community-
based effort to develop software in which the users participate in deciding what
features to build, and a subgroup of developers participate in designing the solution,
writing code, and deploying and maintaining the system [4].

The increasing popularity of OSS, has led to an abundance of open forums in
which stakeholders report bugs, discuss issues and request new features. There are
currently two common OSS models. The first is the user-based model in which
software is developed collaboratively by the users, and in which integration of new
features is governed by an executive body. The second model represents a vendor-led
approach in which a specific vendor controls the development and integration of new
features. Although source code is released to the users to develop additional features,
the primary responsibility for development is carried by the vendor.

This paper explores the product enhancement requirements elicitation and
prioritization processes of vendor-based open source projects which are quite similar
in nature to the kinds of requirements forums that might be used by more traditional
projects to help facilitate the requirements process in similar circumstances. Lessons
learned from studying both the successes and failures of these elicitation and
prioritization models can be applied to future tools designed to support large-scale
requirements gathering in non-OSS projects.

2 The Requirements Process

In this section we lay the groundwork for the remainder of the paper by exploring
some of the accepted requirements practices of a traditional software development
project. The requirements phase is generally comprised of elicitation, analysis,
specification, validation and management activities, which can be executed either
sequentially or iteratively depending upon the software development lifecycle.

The first activity of elicitation represents a discovery process [5-7] in which analysts
gather information about the problem that the proposed new application or feature
enhancement will address, identify a core group of stakeholders, discover their needs,
emerge and negotiate conflicts and establish clear project scope and boundaries[6,7].
During requirements elicitation knowledge is gathered about the stakeholders’ needs by

242 P. Laurent and J. Cleland-Huang

helping the stakeholders to understand and articulate their problems and describe their
own vision of the to-be-developed system [6,7]. Information is iteratively collected,
clarified and reformulated [7]. During this phase, the analysts focus on what the system
needs to do within the context of its given problem domain while the stakeholders
discover how their individual needs fit into the overall project and explore the feasibility
of the project as a whole [7].

There are many techniques for eliciting requirements including collaborative
sessions such as structured brainstorming sessions and workshops; ethnography, in
which members of the development team observe how users interact with an existing
application, questionnaires, personal interviews, analysis of existing documentation
such as user manuals or problem reports; and finally prototyping in which early quick
and dirty GUIs are shown to the users to elicit feedback [6-8]. Conditions such as the
type, scope and size of a project and stakeholder availability help to determine the
appropriate technique to use [8].

The success of websites and wikis that have been used to gather comments from
users, demonstrates that, people willingly take the time to contribute feedback and
ideas when given the opportunity. Wikis allow anyone to post their comments and to
respond to previous posts. Usually the forums’ postings or discussions are displayed
in a threaded format which allows everyone to see the discussion unfold. Business
analysts or project managers can use wikis or forums to elicit requirements by asking
a question, posting their comments in a forum, or by reviewing and participating in
the user discussions [1,6]. All of these techniques require the project team, developers
and stakeholders to closely communicate and actively collaborate.

In most projects, resource limitations mean that requirements must be carefully
prioritized [8,10] using one of several common techniques. Stakeholders may simply
place requirements into categories such as mandatory, desirable, or inessential, or else
quantitatively rank them [11,12]. More sophisticated methods combine the preferences
or decisions made by multiple stakeholders. For example Wiegers proposed an approach
in which stakeholders assign each requirement a score from 1 to 9 based on the
importance, cost, and technical risk of the requirement [5] and the priority value for the
requirement is then calculated as the importance/(cost + risk). A second class of
prioritization technique is based on the relative value of requirements and produces a
strict prioritization. For example, a Binary Search Tree (BST) can be used to prioritize
relatively large sets of requirements. It is constructed by inserting less important
requirements to the left and more important ones to the right of the BST. A prioritized
list of requirements can then be generated through a depth-first traversal of the
completed tree. All of these prioritization methods involve significant levels of
participation by the users to rank their needs, wants, and desires, and by the developers
to evaluate the cost and risks of the associated development effort.

3 Vendor-Based Open Source Feature Request Forums

All Vendor-based processes that we observed included an open process for gathering
and prioritizing requirements. Due to the nature of open source products, this process

 Lessons Learned from Open Source Projects 243

was at least partially conducted over the web using an open forum. For the purposes
of this study we were interested in discovering the different techniques used by
Vendor-based OSS projects to elicit, negotiate, and prioritize software enhancement
requirements and to evaluate their effectiveness. Some of these activities involve the
general users while other activities are conducted solely by the vendors.

3.1 Requirements Processes in OSS Forums

Most OSS forums follow a similar process for adding and managing feature requests.
This process is depicted in Fig. 1. After connecting to the open source project site, a
user enters a new feature request into the appropriate forum or performs a topic search
to determine if a relevant thread already exists. The user can either browse through
various forum threads looking for discussions and comments that are related to their
topic of interest, or perform a more structured search of one or more forums by use of
keywords or other attributes such as authors’ names.

In general, OSS administrators use a variety of techniques to gather new stakeholder
feature requests ranging from very passive methods to more proactive ones. Some
administrators post details regarding planned releases and ideas for future development
in the projects “Announcement” forum, while others not only post questions and solicit
stakeholder feedback in the regular forums, but also maintain a dedicated “Feature

Fig. 1. Vendor Based Open Source Process for Entering and Managing Feature Requests

244 P. Laurent and J. Cleland-Huang

Requests” forum. New requests are also generated from bug reports and other sub-
forums of the issue tracking forum.

The typical OSS administrative process for handling and prioritizing a newly
submitted feature request is also shown in Fig. 1. The administrators, or a team of
reviewers, review each feature request, determine the feasibility of developing it and
prioritize it in relationship to the development team’s schedule and resource
availability. In some forums users can demonstrate their support of feature requests by
casting a vote. These votes are taken into account by the administrators as they
attempt to provide the enhancements that will return the most user satisfaction. In
many forums, the administrator also is responsible for updating and communicating
the status of the request to the users. This process appears relatively straightforward;
however our study was designed to evaluate its effectiveness.

Table 1. Number of posts and responses for each of the surveyed forums

Project Number of posts User responses Admin responses
Password Manager > 17, 000 16 1

Source Code Editor > 32,000 5 0

File Manager > 4,000 9 0
ERP > 20,000 17 1

Java app server > 440,000 27 1

Virtual world/game > 2,000,000 10 0

Groupware > 110,000 4 0
* CRM > 125,000 0 0

* Included in observational part of study but did not participate in surveys in
accordance with administrator’s negative response.

Table 2. Features observed in the Open Source Forums

 Lessons Learned from Open Source Projects 245

4 Research Approach

In an attempt to include a diverse set of open source projects, we asked software
engineering students and IT professional for suggestions about the open source
projects in which they participated. The criteria for our exploratory survey were
vendor based OSS projects with at least 3000 postings. Fifteen candidate open source
project were identified. After further evaluation, the analyses and results of eight
projects from a variety of software domains, including games, groupware and system
management, were selected for inclusion in the study and are described in this paper.

Our survey questions were geared toward gaining an understanding of the actual
activities that users performed when contributing requirements; and the administrator’s
methodology for eliciting and prioritizing requirements. The survey was reviewed by
researchers in our team with industry experience. It was then appraised by several
software engineering industry professionals who provided feedback regarding the clarity
and appropriateness of the questions. These professionals were similar to our target
audience of OSS users. We solicited participation by contacting the project administrators
via email. A request for user participation and a survey link were posted in the OSS user
forums.

5 The Survey

Our initial analysis of forum based requirements processes, specifically those found in
open source software projects, helped us to identify some of the successes and
challenges of implementing an online requirements process using a forum. Our study
included well-known open source projects in the following industries: a Java
application server, password manager software; a source code editor written in C++; a
file manager for Windows; a web-based enterprise resource planning tool; a
client/server tool for next-generation messaging and collaboration; a virtual world
environment/game; and a customer relationship management tool. The characteristics
of these projects are summarized in Table 1. Specific project names are not used in
order to protect anonymity of the forums.

Observations were made in two different ways. First, we visited each of the
forums and analyzed the available tools, adopted processes, and general culture of the
forum. Some of the results from this survey are reported in Table 2 and discussed in
Section 5. Secondly we conducted a survey of both users and administrators of the
identified vendor based OSS forums. Additional OSS projects were included in the
study, but one was dropped when we discovered it was actually a community based
forum, and the others were dropped when fewer than 4 users responded to the survey.
As a result of these surveys we received three responses from administrators and 88
from individual users. Given the low response from administrators, the remainder of
this paper discusses their responses only in a qualitative manner. The primary
questions which were included in the user survey are shown in Table 3. Additional
questions that provided some metadata on the users such as the frequency with which
they visited the forums were also asked but not shown here due to space constraints.

246 P. Laurent and J. Cleland-Huang

Table 3. User survey questions

Questions Responses
What is your primary role in this
OSS community?

Current user of the product

Prospective user of the product
Current provider of the product

Prospective provider of the product
How do you request new
features and new functionality?

<OSS> Forum @ <OSS project forum URL>

Online Newsgroups

Invited Groups, such as Google, Yahoo, etc.
Via Email

Which of the following methods
do you think your OSSP uses to
prioritize feature requests?

Formal voting, by available voting mechanism in the
forum.
User discussions in the forum

Face-to-face meetings conducted with user groups
Emails from users
<OSS> staff members decide which features to build
without user input

Who do you think decides which
new feature requests to
implement in a given release?

A single person (i.e. release manager, project manager)
A team of people (please explain)

Other (please explain)
How many feature requests
have you made in the last 6
months?

0 requests

1 request

2-5 requests
6-10 requests

More than 11
Which of these scenarios most
closely resembles how you
interact with the OSS forums to
request new features?

I log in to the forum and type in my new feature request.
I login to the forum and search to see if my feature
request has already been posted by somebody. If I find a
similar request I do nothing.
I login to the forum and search to see if my feature
request has already been posted by somebody. If I find a
similar request I demonstrate support for it by registering
a vote or adding a supportive comment.

How satisfied are you that your
feature requests for new
functionality are addressed by
this process?

Very Satisfied

Somewhat Satisfied
Somewhat Dissatisfied

Very dissatisfied

* Note: Most questions also included options for comments or no response.

6 Forum Observations

Our initial study of forum based requirements processes, helped us to identify several
strengths and weaknesses of using forums to support online elicitation and

 Lessons Learned from Open Source Projects 247

prioritization processes. The primary strength of the forum approach was its inclusive
nature, which enabled large numbers of stakeholders from geographically distributed
regions operating in different time-zones to engage in the feature gathering process.
Including more stakeholders in the process could increase buy-in to a new product,
and could potentially help in the discovery of a complete and correct set of
requirements.

We also identified several typical requirements elicitation practices that are
difficult to perform in a forum. These challenges can be categorized as follows (i)
ineffective processes and tools for bringing the right groups of users together to
discuss related needs, (ii) problems in capturing users’ priorities, (iii) problems in
establishing two-way conversations in which administrators communicate process and
decisions, and seek clarification or otherwise engage users in the requirements
process, (iv) problems in managing the feature requests in the forum, and finally (v)
problems in differentiating between the roles of anonymous users. Each of these
problems is explored in more detail in the following four sections.

Fig. 2. Methods preferred by users for entering feature requests

6.1 Creating Collaboration

One of the strengths of a more traditional requirements engineering process is that analysts
work hard to bring the right stakeholders together to brainstorm ideas and explore their
product related needs. Although forums do provide some structure for facilitating this
process, our observations show that this task is not accomplished very well.

In a forum, stakeholders engage in discussions by participating in a shared
discussion thread. It is the user’s responsibility to search for and find appropriate
discussion threads. Each of the forums studied provided both browse and search
features, primarily designed to help users find relevant discussions. We therefore
asked the users whether they searched for relevant topics before entering a new
feature request. 12% of users said that they did not perform a search, and just entered

248 P. Laurent and J. Cleland-Huang

their request into a new thread, while 88% of users claimed to perform a search.
These results are depicted in Fig. 2. Nevertheless, a quantitative analysis from a
previous study of threads in eight overlapping open source feature-request forums
[13], showed that in each forum over 50% of the threads contained only 1 or 2 feature
requests. Fig. 3. depicts the distribution of thread sizes in three of these forums;
however these results were typical for all forums studied. Further analysis of these
threads showed that the majority of them fit into other existing threads, suggesting
that users either failed to search for existing threads or searched ineffectively [13].

Fig. 3. Distribution of threads sizes in three open source forums

From a requirements perspective, this is a major problem because it means that
stakeholders with similar interests do not necessarily engage in a shared discussion of
their needs. In fact, two similar or conflicting statements might be placed into separate
discussion threads. From a project manager’s perspective the fact that individual topics
are dispersed across multiple threads, makes the analysis, negotiation and prioritization
process very difficult. Browsing support in the forums tended to be very rudimentary
and in five of the eight forums studied there was a very flat hierarchy of topics. In the
Java App Server, Virtual world, CRM, and groupware forums the administrators
provide several coarse-grained categorizations to help organize the forums, which was
useful in helping users to find relevant feature requests. In fact one of the surveyed
users specifically suggested “Requests could be categorized: User Interface, Options
and Settings, File/Plugin/Feature Support, etc. Having this kind of organization helps
people searching for related topics better find their own answers without duplicating
requests.” Similar problems were identified in the use of wikis for requirements
engineering. Decker et al noted that the organization of the wiki was improved when
administrators created a high-level hierarchy of information [1].

All but one of the forums we studied included a feature for monitoring a discussion
thread, so that once a user had found a thread of interest they could be kept informed
as additional comments were posted. This was a useful feature as long as the user had
already found the correct discussion thread to participate in.

 Lessons Learned from Open Source Projects 249

Fig. 4. User Satisfaction with the Requirements Management Process

Fig. 5. Methods for prioritizing feature requests

6.2 Prioritization

Three different prioritization methods were observed in forums we visited. The first
was a simple voting button that allowed a user to register their support for a feature
request. The second method, which was found only in the virtual world game,
allowed the contributing stakeholder to assign a priority to a feature request. Finally,
all of the forums without more explicit prioritization methods appeared to rely on
users expressing their priorities as part of their comments. For example we observed
many instances in which users attempted to promote a feature request through adding
a comment that included a request such as “let my comment serve as a vote for this
feature.” In forums without dedicated feature request sub-forums, several users
resorted to the trick of starting their issue with the words “Feature Request” in an
apparent attempt to attract attention.

250 P. Laurent and J. Cleland-Huang

It was clear that users wanted project managers to listen to them and to build
features that were important to them. Several forums included posts that made it very
clear that the users were either perplexed or annoyed that their favorite requests were
seemingly ignored. One of the administrators responding to the question of “Who
decides which new feature requests to implement in a given release?” responded that
“We have some polls on our website that might influence decisions,” which suggests
that users’ requests are only a small part of the prioritization process.

Another more subtle problem was observed in the virtual world forum which
provided both prioritization and voting functions. The initial contributor was allowed
to prioritize the requirements, while other users were simply allowed to vote for it.
This introduced an ambiguity as to whether users were voting for the feature, or
agreeing to its prioritization level. For example, if a contributor had created a new
feature request and assigned it a low priority, then subsequent users were unable to
change its priority level, although they could cast their votes for it. In general, the
forums we observed did not provide sophisticated support for the requirements
prioritization process.

In our survey, all three administrators responded that they were only partially
satisfied with the requirements prioritization process. User responses to the question
“How satisfied are you that your feature requests for new functionality are addressed
by this process?” are reported in Fig. 4. Interestingly, the two projects for which
users were most dissatisfied were ERP and JavaAppServer also were two of the
projects which had no separate feature request module. There was also a significant
degree of dissatisfaction in the password manager and virtual world projects. The
possible reasons for this are found in users responses to the question “Which of the
following methods do you think your OSSP uses to prioritize feature requests?” These
responses are reported in Fig. 5. Users were allowed to select as many responses as
they wished. The responses indicate that in general, prioritization decisions are made
by administrators drawing upon the user discussions in the forums. It was interesting
that in the Groupware project, the users’ perception was that prioritization decisions
were largely based on user input. This project notably had no users that reported being
dissatisfied or somewhat dissatisfied with the prioritization method. It should be noted
that the level of dissatisfaction by users of the Java App Server, might be correlated to
the fact that 30% of the surveyed users did not know how feature requests were
prioritized by the administrators.

Users’ responses also threw some light on why Virtual World respondents were so
dissatisfied with the process. Two respondents who checked the “other” option said
that the prioritization was by “dart game, random selection”, while another user said
that “On rare occasions, there are discussions either in the blog or in the newly-active
area in the forums; however, (the administrators) seem to disregard these for the
most part although they are the ones who have opened solicited comments.” In fact
the virtual world forum provides a webpage describing how feature requests get
processed. They include the advice that“Features are more likely to get implemented
if the description of the feature is clear. For a complicated feature, a link to a
specification on the wiki is a great way to help flesh out the idea.” Nevertheless, the
level of dissatisfaction in the process suggests that users do not believe their feature
requests are handled in a satisfactory way despite the appearance of due process.

 Lessons Learned from Open Source Projects 251

In CRM’s very active discussion forum one of the project managers created a new
discussion thread and asked users “what would you like us to build next?” In one
sense, this demonstrated willingness to engage the user base in the prioritization
process, but in another sense it demonstrated failure to extract user priorities out of
the active discussions which contained numerous feature requests. This highlights the
challenges of conducting the requirements capture process using a web-based
environment, where staggering amounts of data need to be processed in order to
extract useful information. It seems that despite the active discussions in many of the
forums, administrators are still not easily able to understand the users’ real needs.

6.3 Engaging and Communicating

Our study identified four primary techniques by which vendors communicated with
users in order to engage them more proactively in the requirements elicitation process.
First, in several forums we found that administrators and project managers actually
participated in the discussion threads. All of the forums we studied included a status
field that was used to communicate the status of each feature request. Two of the forums
had published processes, although interestingly one of them, the virtual world, was the
forum for which users gave the most negative feedback about their prioritization
process. The published process included a description of steps a user should take to get
their feature requests noticed; however the general consensus by users of this particular
forum was that the administrators largely ignored users’ requests and built whatever
features they felt inclined to build. The same two forums that published process
descriptions also posted release schedules in which feature requests had been copied
from the primary forums and ranked in order of their likely release.

Our observations of these forums led us to conclude that most forum administrators
saw the forums as a means to eliciting information that might be considered in the
requirements prioritization process. Notably absent from any of the forums however
were the type of questions that analysts usually engage in during the requirements
process to clarify and explore the needs of the users. We found few examples of
project administrators asking users to explain something in more detail, although
there were numerous peer-to-peer examples of this. This problem may be recognized
by project administrators. For example, one of the administrators stated that “We
would like more involvement from the community and are experimenting with various
tools to elicit more feedback.” Incidentally, this comment was made by the
administrator of the ERP forum, which exhibited the highest level of dissatisfaction in
responses to our user survey.

6.4 Managing Feature Requests

Our study also unearthed a number of problems related to managing feature requests.
For example we observed that most forums had no way of removing feature requests
from the forums once they had been either implemented or designated as non-
implementable. There were numerous occasions in the forum discussions that we
observed users frustrated because they thought that features they had requested had
gone ignored, while in fact those features had been released in recent versions of the
product.

252 P. Laurent and J. Cleland-Huang

Seven out of the eight forums we observed included issue tracking features
including feature status fields, and sorting features that users could use to check up on
the status of their requested feature requests; however only the virtual world forum
had a method in place for removing feature requests from the forum once they were
implemented, and also of archiving old feature requests. None of the forums had
methods for reporting back to the user if a specific feature request was not considered
feasible for implementation.

The three administrators surveyed made some suggestions for improvements. One
administrator suggested that “We should remove feature requests that obviously never
will be implemented, even though they are good ideas. Keeping a long list of feature
requests that will never be implemented only disappoints users”, while one user
requested that “There should be a website where new features are listed, documented
and prioritized so the users can determine how possible it is for them to actually be
implemented. This doesn't change the way in which the feature requests are handled
but informs the prospective users of them."

In general, almost all of the forums we surveyed did a very poor job in managing
the status of each feature request. For example, feature requests that were never
implemented, generally languished in the discussion forum, and every now and again
a user would complain that the feature was not implemented. Unfortunately, none of
the forums we surveyed had any means of communicating that a given feature request
would not be implemented. Furthermore, old discussion threads for features that had
already been implemented were rarely removed from the forum. In most cases, when
discussion threads were either sorted chronologically or according to activity level,
old feature requests tended to drift to the bottom of the list. None of the forums
provided traceability between old feature requests and the releases in which they were
actually implemented, and so a user searching the forum might easily believe that
they had not yet been implemented.

6.5 Role-Based Elicitation

Although one of the intrinsic strengths of online forums is their ability to elicit needs
from any stakeholder, this is also a major limitation because all of the forums we
studied did not differentiate between different users. One administrator specifically
said that an area of improvement would include “getting feedbacks directly from
organizations using our product and then going over them and finding common
denominators.” To implement this type of differential prioritization requires forums
to improve their registration process so that the true role and affiliation of users are
known.

7 Lessons Learned

The study reported in this paper highlights a number of interesting lessons that can be
learned and applied in future forum-based requirements processes. First of all,
forums must provide better support for grouping related feature requests together, so
that users with similar interests are placed into the same discussion group. The
findings from this study suggest that making users solely responsible for the

 Lessons Learned from Open Source Projects 253

placement of their own feature requests into threads, will result in a proliferation of
redundant discussion threads, and topics dispersed over multiple threads. Our
proposed solution to this problem is two-fold. First, data-mining methods can be used
to help manage the creation of new discussions in order to prevent the creation of
redundant discussion topics [14-16]. Secondly, project administrators can create a
predefined hierarchy of topic structures [1].

Project managers also need to increase communication between themselves and
the users of the forums. There needs to be higher visibility concerning the status of
each feature request, and a clearer definition of the process by which features are
prioritized. Project managers also need to more actively engage in the forum
discussions in order to truly understand the stakeholders’ needs through asking
meaningful questions. This of course is only useful if the project manager’s intention
is to carefully weigh the input of the stakeholders and deliver a product which is
designed to meet their needs. Conducting the requirements elicitation and
prioritization process in a forum or wiki setting, should not be seen as an opportunity
to return to passive requirements gathering methods. Analysts and project managers
should actively participate in the process, by visiting and participating in discussion
threads, and requesting clarifications when needed.

Prioritization mechanisms must also be improved so that project managers can
easily understand the current priorities of their users. This introduces the additional
need to track roles and affiliations for each of the users so that prioritization decisions
can take this type of information into account. The current comment-based
prioritization methods found in most of the forums we studied does not allow the
project manager to query the forum for specific priorities. Voting and other
prioritization mechanisms need to be significantly improved so that all users are able
to provide weighted priorities for each feature request, so that administrators can issue
queries that return meaningful insights into the users’ needs. Furthermore, as users
are unlikely to be available during actual prioritization meetings, they should be
provided tools for entering rationales behind their feature requests and their
prioritization requests.

Finally, forums also need to be restructured so that it is possible to differentiate
between feature requests, comments, and issues. The best approach we observed was
to have specific forums dedicated to feature requests, and to create a hierarchy so that
comments can be associated with each feature request. Each feature request needs to
pass through a distinct lifecycle in which it is created, prioritized, scheduled or
deferred, and then implemented or marked as a feature that will not be considered for
implementation in the near future. Feature requests that are satisfied must be
removed to a separate webpage and must be explicitly traced to the release in which
they have been implemented.

8 Conclusions

The primary purpose of conducting this study was to gain some understanding of how
forums should be designed to provide increased support for the requirements
engineering process. The distributed and asynchronous nature of Vendor-based open-
source software projects has naturally led to the use of forums to capture feature

254 P. Laurent and J. Cleland-Huang

requests. Unfortunately as this study has shown, these forums suffer from a number
of problems that inhibit the use of many normally accepted and successful
requirements engineering practices. With the increasing trend towards using both
forums and wikis as part of more traditional software development efforts it is critical
to identify these problems and address them in the second generation of forums
designed to capture and manage feature requests.

Given the apparent trend towards online collaborative requirements engineering
environments, the challenges outlined in this paper should prove useful in helping us
to improve the functionality and utility of future online requirements forums. Our
ongoing work in this area focuses on building data-mining tools to augment the
process of online, large-scaled requirements processes through automating topic
discovery [15] and by using recommender systems to keep users informed of relevant
discussions [14]. Addressing these problems will help to improve online
requirements processes.

Acknowledgments

We would like to thank Phik Shan Foo for her help in developing some of the
graphics for this paper.

References

1. Decker, B., Ras, E., Rech, J., Jaubert, P., Rieth, M.: Wiki-Based Stakeholder Participation
in Requirements Engineering. IEEE Software 24(2), 28–35 (2007)

2. Telelogic Products. Increase quality with Requirements Management and traceability
(Retrieved December 4, 2007),
http://www.telelogic.com/products/doors/index.cfm

3. Hooks, I.F., Farry, K.: Creating Successful Products Through Smart Requirements
Management. Amacon, New York (2001)

4. Scacchi, W.: Free/Open Source Software Development: Recent Research Results and
Emerging Opportunities. In: 6th Joint Meeting on European Software Engineering
conference (ESEC) and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE) 2007, Dubrovnik, Croatia (2007)

5. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
6. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley,

Reading (1999)
7. Sawyer, P.: The Context of Software Requirements. In: Thayer, R.H., Christensen, M.J.

(eds.) Software Requirements, The Development Process, 3rd edn., vol. 1. John Wiley &
Sons, Chichester (2005)

8. Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.: Effectiveness of Requirements
Elicitation Techniques. In: IEEE International Requirements Engineering Conference,
Minneapolis, MN, September 2006, pp. 179–188 (2006)

9. Davis, A.M.: The Art of Requirements Triage. IEEE Computer 36, 42–49 (2003)
10. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE

Software 5, 67–75 (1997)
11. Karlsson, J.: Towards a Strategy for Software Requirements Selection, Licentiate Thesis

513, Department of Computer and Information Science, Linkoping University (1995)

 Lessons Learned from Open Source Projects 255

12. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(2000)

13. Cleland-Huang, J., Dumitru, H., Duan, C., Castro-Herrera, C.: Automated support for
managing feature requests in open forums. Communications of the ACM (2009)

14. Castro-Herrera, C., Duan, C., Cleland-Huang, J., Mobasher, B.: A Recommender System
for Requirements Elicitation in Large-Scale Software Projects. In: ACM Symposium on
Applied Computing, Data Mining track, Honolulu, HI (to appear) (March 2009)

15. Duan, C., Cleland-Huang, J., Mobasher, B.: A Consensus Based Approach to Constrained
Clustering of Software Requirements. In: ACM Conference on Information and
Knowledge Management, NAPA, CA, USA, October 2008, pp. 1073–1082 (2008)

16. Laurent, P., Cleland-Huang, J., Duan, C.: Towards Automated Requirements Triage. In:
15th IEEE International Requirements Engineering Conference (RE 2007), Delhi, India
(2007)

Author Index

Angelis, Lefteris 22
Aurum, Aybüke 1

Barney, Sebastian 1
Baudry, Benoit 89
Beatty, Joy 104
Berntsson Svensson, Richard 218
Blagojević, Vladimir 37
Boucart, Nick 37
Brottier, Erwan 89

Cleland-Huang, Jane 240
Codenie, Wim 37

Davis, Alan 175
de la Vara, Jose Luis 124
Doerr, Joerg 139

Feldt, Robert 22
Ferrari, Remo 233
Fogelström, Nina D. 1

Gandhi, Robin A. 190
Gause, Donald C. 16
Gorschek, Tony 22, 218
Graf, Florian 147
Grünbacher, Paul 147

Hayard, Olivier 16
Hederstierna, Anders 1
Herrmann, Andrea 45
Hickey, Ann 175
Hulgan, James 104

Karlsen, Inger Kristine 162
Kerne, Andruid 162
Khurum, Mahvish 22
Kof, Leonid 197

Laney, Robin 74
Laurent, Paula 240
Le Traon, Yves 89
Lee, Seok-Won 190
Li, Zude 233

Madhavji, Nazim H. 233
Maiden, Neil 147, 162
Marhold, Christoph 139

Nuseibeh, Bashar 74

Paech, Barbara 45
Penzenstadler, Birgit 212
Perrouin, Gilles 89
Pohl, Klaus 212

Rahman, Quazi A. 233
Regev, Gil 16
Regnell, Björn 118, 218
Rohleder, Clotilde 139

Salinesi, Camille 139
Sánchez, Juan 124
Sawyer, Pete 59
Schrewelius, Claes 118
Seyff, Norbert 147
Sikora, Ernst 212

Tourwé, Tom 37
Tun, Thein Than 74

Wallnöfer, Armin 45
Wegmann, Alain 16
Welsh, Kristopher 59
Wnuk, Krzysztof 118

Yu, Yijun 74

	Title Page
	Preface
	Organization
	Table of Contents
	Value and Risk
	When Product Managers Gamble with Requirements: Attitudes to Value and Risk
	Introduction
	Background
	Market Driven Software Product Development
	Prospect Theory and Related Works
	Using Prospect Theory to Explain Requirements Selection Decisions

	Experiment Planning and Operation
	Research Question
	Experiment Instrumentation
	Experiment Subjects
	Experiment Operation

	Results and Analysis
	Presentation of Results
	Analysis
	Discussion
	Validity Threats

	Conclusions and Future Work
	References

	Toward a Service Management Quality Model
	Introduction
	Viewing a Service as a System
	Defining Utilities, Warranties, Value, Risk and Quality
	Related Work
	Conclusions
	References

	A Controlled Experiment of a Method for Early Requirements Triage Utilizing Product Strategies
	Introduction
	MERTS Background
	Design of the Controlled Experiment
	Context
	Subjects
	Research Questions
	Design and Instrumentation

	Validity Evaluation
	Operation
	Results and Analysis
	Testing H_{o Effectiveness}
	Testing H_{0 Efficiency}

	Conclusions
	References

	Demystifying Release Definition: From RequirementsPrioritization to Collaborative Value Quantification
	Introduction
	The Industry Perspective: Myths of Release Definition
	The Research Perspective: Available State-of-the-Art
	Releasious: Exploiting the Wisdom of Crowds
	Summary
	References

	Change and Evolution
	Specifying Changes Only – A Case Study on Delta Requirements
	Introduction
	Related Work
	Dealing with Delta Requirements: The Case Study Approach
	Discussion of the Case Study Approach
	Lessons Learned
	Conclusion and Outlook
	References

	Requirements Tracing to Support Change in Dynamically Adaptive Systems
	Introduction
	Related Work
	Types of Change
	Traceability Requirements
	Recording Traceability Information
	Case Study
	Conclusion
	References

	Interactions and Inconsistencies
	Early Identification of Problem Interactions: A Tool-Supported Approach
	Introduction
	Preliminaries
	Problem Diagrams and Their Descriptions
	The Event Calculus
	Relating Event Calculus to Problem Frames

	Identifying Problem Interactions
	Abducing Failure Event Sequences in Problem Composition
	Smart Home Example

	Detecting Interacting Problems Using the OpenPF
	Creating Problem Diagrams
	Detecting Interactions in the Running Example

	Related Work
	Conclusions and Future Work
	References

	Composing Models for Detecting Inconsistencies: A Requirements Engineering Perspective
	Introduction
	Process Overview
	Composition
	Static Analysis

	Combining Inconsistent Models via Fusion
	Running Example: The RM
	Dealing with Inconsistent Fragments
	Fusion Principles
	Traceability Computation

	Inconsistency Detection
	Structural Inconsistency Detection
	Static Semantics Inconsistency Detection

	Related Work
	Conclusion
	References

	Organization and Structuring
	Experiences with a Requirements Object Model
	Introduction
	Review of Research on Requirements Terminology
	The Need for a Common Model
	ROM Defined
	Overview
	Business Level Definitions
	Project Level Definitions
	Relationships between the Levels
	The Hierarchy Repeats

	Using the ROM
	Typical Approach
	Ideal Approach
	A Realistic Approach

	Questions to Help Complete the ROM
	ROM Example
	Project Experiences
	Pricing Analysis Example
	Loan Originations Example
	Semiconductor Factory Example

	Conclusions and Future Work
	References

	Architecting and Coordinating Thousands of Requirements – An Industrial Case Study
	Introduction
	Industrial Case Context
	Research Methodology
	Tasks of the Requirements Architect in the Case Company
	Views on Requirements Architecture and Its Quality
	Conclusions
	References

	Experience
	BPMN-Based Specification of Task Descriptions: Approach and Lessons Learnt
	Introduction
	Description of the New Approach
	BPDs Enrichment
	Specification of Task Descriptions

	Related Work
	Practical Experience
	Motivation of the Project
	RE Practices in CARE Technologies
	Application of the Approach
	Lessons Learnt

	Conclusions and Future Work
	References

	Clarifying Non-functional Requirements to Improve User Acceptance – Experience at Siemens
	Introduction
	User Acceptance and NFR Specification in the PLM Context
	Challenges of PLM Systems Acceptance by Users
	State of the Practice on NFR Specification for PLM System Installation

	Empirical Investigation – Design and Result
	Research Questions of Interest and Hypotheses
	Possible Set-Up of an Empirical Study

	Related Works
	Conclusion
	References

	Elicitation
	Scenarios in the Wild: Experiences with a Contextual Requirements Discovery Method
	Introduction
	ART-SCENE CoRE
	The SemWay Project – Discovering Requirements in the Wild
	SemWay Results
	Research Questions Revisited
	Lessons Learned and Conclusion
	References

	Inventing Requirements with Creativity Support Tools
	Creating Requirements
	Enhancing Scenario Walkthroughs
	Extending ART-SCENE with Creativity Support
	combinFormation
	CRIS: The Creative Requirements Innovation Space

	ART-SCENE and combinFormation to Invent Requirements
	A First Exploratory Evaluation
	Related Work
	Creativity Support Tools for Requirements
	References

	Research Methods
	A Quantitative Assessment of Requirements Engineering Publications – 1963-2008
	Introduction
	Research Method
	Research Questions
	Data Collection

	Results for All Requirements Publications
	Publication Volume and Trends
	Publication Types and Outlets
	Author Productivity and Authorship Patterns
	Author Affiliations

	Results for Journal Requirements Publications
	Publication Volume and Trends
	Author Productivity and Authorship Patterns
	Author Affiliations

	Summary and Conclusions
	References

	Assurance Case Driven Case Study Design for Requirements Engineering Research
	Introduction
	Representing Assurance Case and Case Study Design
	Discussion and Future Work
	References

	Behavior Modeling
	Translation of Textual Specifications to Automata by Means of Discourse Context Modeling
	Requirements Documents Suffer from Missing Information
	Case Study: The Steam Boiler
	Translation of Texts to Automata
	Identification of States
	Categories of Sentences
	ContextModeling and Generation of Transitions
	Evaluation

	Related Work
	Summary
	Future Work
	References

	A Requirements Reference Model for Model-Based Requirements Engineering in the Automotive Domain
	Motivation
	The Requirements Reference Model
	Abstraction Layers
	Content Categories
	Specification Techniques

	Related Work
	Conclusion and Outlook
	References

	Empirical Studies
	Quality Requirements in Practice: An Interview Study in Requirements Engineering for Embedded Systems
	Introduction
	Background and Related Work
	Research Method
	Research Design and Data Collection
	Validity

	Results and Analysis
	Important Quality Aspects (RQ1)
	Interdependencies (RQ2)
	Quantification of Quality Requirements (RQ3)
	Dismissal of Quality Requirements (RQ4)
	Quality Requirement Challenges (RQ5 and RQ6)

	Conclusions
	References

	Does Requirements Clustering Lead to Modular Design?
	Introduction
	Requirements Encapsulation
	Requirements Clustering
	Cluster Encapsulation

	The Study
	Clustering CAISI Requirements
	Design Analysis

	Conclusion and Future Work
	References

	Open-Source RE
	Lessons Learned from Open Source Projects for Facilitating Online Requirements Processes
	Introduction
	The Requirements Process
	Vendor-Based Open Source Feature Request Forums
	Requirements Processes in OSS Forums

	Research Approach
	The Survey
	Forum Observations
	Creating Collaboration
	Prioritization
	Engaging and Communicating
	Managing Feature Requests
	Role-Based Elicitation

	Lessons Learned
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

