
C. Boldyreff et al. (Eds.): OSS 2009, IFIP AICT 299, pp. 83–93, 2009.
© IFIP International Federation for Information Processing 2009

Analysis of Open Source Software Development
Iterations by Means of Burst Detection Techniques

Bruno Rossi, Barbara Russo, and Giancarlo Succi

CASE – Center for Applied Software Engineering
Free University of Bolzano-Bozen

Via Della Mostra 4, 39100 Bolzano, Italy
{brrossi,brusso,gsucci}@unibz.it

http://www.case.unibz.it

Abstract. A highly efficient bug fixing process and quick release cycles are
considered key properties of the open source software development
methodology. In this paper, we study the relation between code activities (such
as lines of code added per commit), bug fixing activities, and software release
dates in a subset of open source projects. To study the phenomenon, we
gathered a large data set about the evolution of 5 major open source projects.
We compared activities by means of a burst detection technique to discover
temporal peaks in time-series. We found quick adaptation of issue tracking
activities in proximity of releases, and a distribution of coding activities across
releases. Results show the importance of the application type/domain for the
evaluation of the development process.

1 Introduction

The availability of source code and large communities of motivated and restless
developers are two key factors at the base of the success of the open source software
movement. Large interest has thus gathered the open source development
methodology, very often compared critically to traditional software development
practices in the quest for an answer to the growing number of failing software
projects. Such methodology is mostly based on informal and distributed practices that
seem to perform fairly well in domains constituted by turbulent and continuously
changing requirements [11]. Practices such as web-based collaborations, peer
reviews, short cycle iterations, and quick releases - among others - hamper the project
management overhead and lead to a leaner development process.

In particular, considering both the bug fixing process, and version release cycles,
many researchers claim that the open source methodology allows a faster bug-fixing
process and higher release velocity than proprietary software [1, 6, 13].

Well-known empirical studies in this context are controversial. The Apache project
was found to be very reactive to bug fixing requests, as well to provide many iterative
software releases [9]. This conclusion was found in contrast with the development
process of the Mozilla web browser, where the process was found equivalent to
traditional development practices in terms of adaptability and release cycles [10]. For
the FreeBSD system, similar in terms of number of core developers and reporters of

84 B. Rossi, B. Russo, and G. Succi

failures to Apache, not enough evidence could be collected to confirm or reject the
same hypotheses [5]. FreeBSD in the operating system domain, and Apache in the
web server domain, were found to provide higher velocity in bug-fixing activities than
other equivalent proprietary applications. In contrast with this view, Gnome, in the
graphical user interfaces domain, was found to be less efficient in terms of bug-fixing
speed compared to a proprietary application [8]. What appears from these studies is
that, indeed, open source software has a faster bug fixing process but specific to
particular applications and domains.

With this paper, we investigate the reactivity of the open source software
development process when fixing code defects and when approaching version
releases. We used a burst detection technique in time-series analysis to compare the
evolution of peak activities during the projects’ development.

The paper is structured as follows, in Section 2 we propose the research question,
in Section 3 we propose the heuristic for project selection, and the data collection
process, Section 4 is devoted to the method, Section 5 proposes the analysis of the
datasets, and Sections 6, 7, 8 propose respectively discussion about the results,
limitations, future works, and conclusions.

2 Research Question

Our general research question is to evaluate whether there is an increase in activities
involving open source software repositories during version releases and bug-fixing
activities. To better investigate the research question, we set-up five different
hypotheses connected to our research question (Table 1).

The first two hypotheses refer specifically to the velocity of the bug-fixing process.
We consider coding activities of developers correlated both to the bug-opening
process (H1), and to the bug-closing process (H2). We expect that a fast bug-fixing
process adapts quickly to the opened bug reports, whereas late reaction to users
requests will lead to a correlation among coding activities and bug-closing activities.

Table 1. Low-level hypotheses under investigation

Hypothesis Rationale

H1. There is an increase in code-related
activities as there is an increase in the creation
of bug-reports

immediate response from the developers
as soon as large numbers of bug reports
are inserted into issue tracking systems

H2. There is an increase in code-related
activities as there is an increase in the closed
bug-reports

a late reaction to users requests will lead
to more code activities

H3. There is an increase in bug opening
activities in the proximity of a software release
date

a rapid increase in bug reports opened as
there is a software release

H4. There is an increase in bug closing activities
in the proximity of a software release date

a rapid increase in the bug closing
process as a release date is approaching

H5. There is an increase in code-related
activities in the proximity of a software release

code activities intensify as a release date
is approaching

 Analysis of OSS Development Iterations by Means of Burst Detection Techniques 85

The open source community provides constant feedback to developers. We expect
this effect to lead to an increase in bug reports opened in coincidence of a software
release (H3). We also presume an increase in bug closing activities in correspondence
to a software release (H4), and a synchronization of code activities with release dates,
showing greater coding effort in proximity of version releases (H5).

3 Project Selection

To gather knowledge about the current open source landscape, we mined the Ohloh
(https://www.ohloh.net/) repository. The repository is not only a large collection
of metrics and evolutionary data about open source projects, but also a social
networking opportunity for developers. As of November 2008, there are 20.590
projects listed including aggregated reports on the website. We used the Ohloh API
(https://www.ohloh.net/api) to acquire data from the projects, focusing then the
analysis on a subset of 5 projects.

We considered OpenOffice.org, office automation suite, KDE, and Gnome, window
managers, Wine-project, a cross-platform implementation of the Microsoft Windows
API, and the Eclipse platform for integrated software development. We selected these
projects, apart for being rather popular, for the fact that are part of the open source
projects with large number of source lines of code (SLOCs) and number of yearly
contributing developers. Our heuristic for project selection was complemented by the fact
that we limited the number of yearly contributors to a maximum of 500 developers. This
boundary excluded thus projects such as the Linux Kernel 2.6, and the Android project
that we considered as outliers compared to other open source projects. We then selected
specifically projects based on expectations of obtaining interesting and useful results [2].
According to this rationale, we preferred projects not part of the main cluster according to
SLOCs and yearly contributors, and with a wide diffusion in the community (Figure 1).

Fig. 1. Projects considered in terms of total number of SLOCs and yearly contributors (9.020
projects from the Ohloh repository

The projects selected range from 76 yearly contributors (Eclipse) to 480 (KDE),
with a size in terms of SLOCs from 1,6M (Wine-Project) to 16,4M (Gnome). Main
languages for 4 out of 5 projects are C and C++, with Java as the main language only
for the Eclipse project. Information from the Ohloh repository encompasses a period
from 3 to 15 years (Table 2).

86 B. Rossi, B. Russo, and G. Succi

Table 2. Descriptive statistics for the projects

Project 12 months
contributors

SLOCs Main
Language

Information
start date

Information end
date

OpenOffice.org 149 8.721.053 C/C++ 2000-07-01 2008-09-01
KDE 480 4.530.775 C 2005-05-01 2008-09-01
Gnome 406 16.467.663 C/C++ 1997-01-01 2007-11-01
Wine 218 1.644.154 C 1993-06-01 2008-09-01
Eclipse 76 7.352.744 Java 2001-04-01 2008-09-01

3.1 Process of Data Collection

For the analysis we used 3 different sources of information, respectively for code
activities, bug reports, and release dates.

First, we retrieved the activity level for each project; we gathered three indicators
of development activities during a time-span of one month:

• code-activities = LOCs added + LOCs removed;
• comments-activities = comments added + comments removed;
• blanks-activities = blanks added + blanks removed;

The rationale behind this choice is that for our analysis we needed a pure
indicator of activity inside the projects, not an indicator about the growth of the
projects in time. In that case considering only additions of lines would have been
more appropriate for the focus of analysis.

Second, we retrieved information about opened and closed bug reports from the
issue tracking systems of the selected projects; for each project we evaluated the bug
reports that were opened and closed at a certain date, by considering the closing and
opening dates of bugs tagged as CLOSED, FIXED, and not marked as enhancements.

Third, to retrieve the release dates of each project, we used mainly the official
website of each project, and where not sufficient, we relied on the integration from
third party sources such as blogs, wikis, etc..

Fig. 2. OpenOffice.org activities, release dates, and bug reports closing dates (log scale)

 Analysis of OSS Development Iterations by Means of Burst Detection Techniques 87

In Figure 2, we show the typical result of aggregation of the three different data
sources, by representing on the same time-line the aggregation of code-activities
(code, comments, and blanks), bug-reports closed, and release dates. The figure refers
to the OpenOffice.org project.

For the OpenOffice.org application, we see a constant trend in all the activities,
characterized by some periods where there are bursts, followed by periods of reduced
activities. After the first analysis, we decided to drop the indicators comments-
activities, and blanks-activities for the reason that they were highly correlated with the
code-activities indicator by running non-parametric correlation analysis (Table 3). For
this reason in the remaining of this paper we refer to code activity simply as lines of
code added + lines of code removed.

Aggregated data collected for the projects (Table 4), shows the differences and
similarities of the projects in terms of yearly code activities, total commits, and total bug
reports closed. The KDE project is the monthly most active project (588 KSLOCs per
month), followed by Gnome(443), Eclipse (276), OpenOffice.org (245), and Wine (35).

Table 3. Spearman Rank Order correlation between code-activities, comments-activities, and
blanks-activities, significant at 0.01 two-tailed

Correlation with Code Activities

Project Code_comments Code_blanks
OpenOffice.org 0.7147 0.70408
KDE 0.9064 0.9702
Gnome 0.7821 0.8615
Wine 0.8930 0.9286
Eclipse 0.8578 0.8159

Table 4. Aggregated data for projects considered during the analysis

Project Code Activity
(KSLOCs)

Total commits Total bug reports
closed in the period

Number of
months

OpenOffice.org 24.284K 168.121 12.692 99
KDE 24.111K 92.433 5.824 41
Gnome 62.475K 258.989 4.812 141
Wine 6.560K 50.148 5.559 185
Eclipse 24.898K 167.893 32.350 90

4 Method of Analysis

Once we gathered all information from the three different sources, we started
investigating the relation between code activities, releases, and bug-fixing activities.
We used a burst detection technique, the same technique used in [12] to identify
similarities between temporal online queries and similar to the one used in [3, 4] to
analyze developers’ behavior.

88 B. Rossi, B. Russo, and G. Succi

The technique identifies in a systematic way peaks in the temporal evolution and
compares them with peaks in other time-series. Given a time-series defined as a
sequence of time-points t=(t1,t2,…,tn), a burst or peak is defined as a set of points that
exceed the observed behavior in other points of the time-series. More formally, the
approach is as follows:

1. calculate the moving average MAl of the time-series, where l>0 is the lag of the
moving average;

2. calculate the cut-off value for a given l as mean(MAl)+x*std(MAl); this gives a
threshold to use for peak detection. In our case we considered x=0.5 as an
appropriate value for the detection technique applied to our dataset; we must
consider that higher x values will increase the cut-off level and thus lead to a
detection of only the strongest peaks in the time-series;

3. determine bursts with MAi
l>cut-off, where i is the time interval considered;

4. project the bursts on a temporal line; this is to identify the time points
corresponding to the bursts;

5. compare the overlap of the bursts for the different activities on the temporal line;

Figure 3 illustrates visually the steps 1-4, by showing a random dataset, the moving
average, the cut-off point, and the peaks identified.

15-Feb-2009 18-Mar-2009 18-Apr-2009 19-May-2009
0

5

10

15

20

25

30

35

random data

MAl

cut-off

Fig. 3. Burst-detection method. Random dataset with peaks, moving averages, cut-off line, and
bursts areas identified

The cut-off line gives an indication of the data points to consider as part of a peak.
Once peaks have been identified, they are plotted on a line to ease the comparison
with peaks identified in other time series. For this reason we needed then a metric to
compare the identified bursts (Figure 4). To compare different regions of activities we
defined the following metrics:

• number of peaks identified by the approach, we identify all peaks as t’
i; this gives

a first evaluation of the burstiness of the time-series;
• number of intersections between peaks, computed as BA tt '' ∩ : gives a raw

indication about the intersection of peaks, but it is not a reliable measure as we

 Analysis of OSS Development Iterations by Means of Burst Detection Techniques 89

can have a hypothetical time-series with peaks that span over the entire period that
gets a perfect intersection with any time-series with at least one peak. For this
reason we defined the next metric;

• a measure of recall, defined as
A

BA
t

tt

'

)''(∩ , that gives information about the specific

coverage of peaks that intersect between the two time-series;

Fig. 4. Overlapping of bursts areas detected between two time-series

The whole process has been implemented as a Java application that mines the
projects’ repository and generates CSV files. Such files are then the input of a Matlab
(http://www.mathworks.com) script that handles calculation and plotting of the
overlapping regions. Information about version releases and bug reports is still saved
manually to CSV files and then used as an additional data source for the script.

From this point we will label code-activities as CA, the activities of bug reports
opening as BO, and the bug reports closing activities as BC. We will also label the
peaks for opening bugs activities as t’

BO, closing bugs activities as t’
BC, and code-

activities as t’
CA.

5 Analysis

We run burst detection on the CA, BO, and BC time-series for all projects. We used a
window size of l=8, as we found heuristically that parameter to work better with our
dataset than a shorter window of l=2, as peaks identified for BC and CA were
respectively +25,9%, and +25%. A better fitting was also confirmed visually by
inspection of the generated burst regions.

5.1 Bug Reports Opening and Closing versus Code-Activities

First we run a comparison between CA, and BC (Table5). In 3 out 5 projects, the
process has a higher burstiness for code-related activities rather than bug-closing
activities.

In only 2 projects, KDE and Gnome, there is an increase in CA that seems related
to BC activities. This specifically means that for these two projects, peaks in code
activities are highly correlated to the activities of closing bug reports in the same
period.

We run the same comparison, this time taking into account the BO activities (Table 6).
In two projects, Gnome, and Wine, peaks in the bug reports opening are related with
peaks in code-activities, while for the other projects the behavior is different.

90 B. Rossi, B. Russo, and G. Succi

Table 5. Comparison between code activities and bug closing activities, l=8, x=0.5

Project

t’BC t’CA

OpenOffice.org 28 20 0.00
KDE 8 12 0.62
Gnome 8 57 0.87
Wine 9 46 0.0
Eclipse 34 25 0.0

Table 6. Comparison between code activities and bug opening activities, l=8, x=0.5

Project
t’BO t’CA

OpenOffice.org 23 20 0.09
KDE 11 12 0.09
Gnome 29 57 0.86
Wine 40 46 0.45
Eclipse 35 25 0.0

According to the relation between code, and bug reports activities, we can

categorize the projects in 4 categories: in the first category there is no apparent
connection in bursts between time-series BC-CA, and BO-CA (OpenOffice.org,
Eclipse), in second category there is a relation in bursts BC-CA (KDE), in the third
category there is a relation BO-CA (Wine) and in the final category there is a strong
relation in bursts between time-series BC-CA, and BO-CA(Gnome).

5.2 Software Releases versus Code, Bug-Closing, Bug-Opening Activities

As a next step, we compared software releases with CA, BO, and BC activities (Table 7).
We wanted to evaluate the behavior of developers in proximity of software releases. In
all projects, and with different degrees, releases are related to increases in bug reports
opening, bug-closing, and to a minor extent to code-activities.

Bug reports opening activities are related to new version releases: as a new version
is released there are peaks in the generation of bug reports. Especially for the Wine
and Eclipse projects this effect seems relevant.

Also bug closing activities are stronger in presence or in proximity of a release
date. This effect seems particularly strong for the Eclipse project.

Comparing the two effects, we can state that in presence of a release, bug opening
activities are more bursty than bug closing activities, this can be an indication that
while bug closing activities are more gradual in time, bug opening activities are more
subject to bursts at a software release date.

Peaks in code activities are also correlated to the proximity of a release date. This
means that in proximity of a release date there is a burst in code development
activities. The Wine project, and, again the Eclipse project do not follow this behavior.

BO

CABO

t

tt

'

)''(∩

BC

CABC
t

tt

'

)''(∩

 Analysis of OSS Development Iterations by Means of Burst Detection Techniques 91

R

tR BO'∩

Table 7. Comparison of software releases with bug reports closing activities and code
activities, l=8, x=0.5

Project

OpenOffice.org 0.38 0.31 0.23
KDE 0.33 0.33 0.33
Gnome 0.5 0.06 0.5
Wine 1.0 0.22 0.09
Eclipse 1.0 1.0 0.0

A question that still remains open is how much skewed are the peaks between code

activities and bug closing activities. One approach would be to consider the distance
between lagged time series, but this would compare all periods without focusing on
the peaks. Remaining in the context of our approach, it would mean to find k, periods
of lags, such that)(BAk ttMax ∩ , with time-series lagging as validation. We leave this

step as future work, as for the significance of the result we need a finer granularity of
data analysis based on data points on a daily scale.

6 Discussion

Falling back to our initial research hypotheses we can state the following:

H1. There is an increase in code-related activities as there is an increase in the
creation of bug-reports; we did not get enough evidence to support this
hypothesis, for only two projects out of five we derived some evidence of a
relation of code activities and bug reports creation; according to our rationale,
this means that the projects do not adapt quickly to the new reports that are
issued;

H2. There is an increase in code-related activities as there is an increase in the
closed bug-reports: also in this case, we could not find evidence to support the
hypothesis. Only for two out of five projects there is indication that in
coincidence with peak code activities there is a peak activity in the closed bug
reports;

H3. There is an increase in bug opening activities in the proximity of a software
release date: we report that this hypothesis is supported by all the projects, with
two out of five projects where the behavior is particularly evident;

H4. There is an increase in bug closing activities in the proximity of a software
release date: we can state that for mostly of the projects analyzed there are
bursts of bug closing activities in coincidence of software releases;

H5. There is an increase in code-related activities in the proximity of a software
release: for three out of five projects this holds, there is a more or less limited
coincidence of peaks in code activities with software releases;

In accordance with our initial observation about many and contrasting empirical
results about the speed of the development process to adhere to bug-fixing requests, a
generalization of results across projects is difficult to obtain (Table 8).

R

tR BC'∩
R

tR CA'∩

92 B. Rossi, B. Russo, and G. Succi

We see that each application has a different pattern in answering our hypotheses,
we suspect that the reason is due to the different type of application and domain.

Our interpretation of the general findings is that open source projects examined are
subject to limited peaks in code development activities during the early phases of the
bug reporting process (H1). As soon as an user/developer issues a bug report, the
activity starts to be frenetic in order to solve the issue. Solving many issues is then
incremental: there are limited bursts in activities as the bug reports are closed (H2).
The fixing of defects in code is a process that is distributed in time.

From another viewpoint, release dates are connected with peaks in the bug opening
process and the closing process (H3/H4): approaching a software release, bug reports
will be closed with a bursting activity, as well with a new release the users will tend
to increase their reporting activities. Confirming H1, bursts of code activities are not
detected – or slightly detected - when there is a code release (H5). This seems to
confirm a more distributed effort during the development process.

Table 8. Comparison of projects according to hypothesis of higher development speed (+
supports the hypothesis, - is against the research hypothesis)

Project
H1 H2 H3 H4 H5

OpenOffice.org - - + + +
KDE - + + + +
Gnome + + + - +
Wine + - ++ + -
Eclipse - - ++ ++ -

7 Limitations and Future Works

Limitations of current work are threefold:

• the major limitation is the monthly granularity of the time series considered, a
finer granularity is opportune in consideration of the technique used;

• another limitation is the restricted number of projects analyzed, although we
considered relevant projects. We plan to extend the analysis to a larger number of
projects;

• we did not consider in this work intensity of peaks. Adding this information, once
normalized, to the calculation of peaks’ distance gives more information about the
actual similarities of peaks;

Future work will go in the direction of addressing these limitations, in particular
extending the current analysis to other projects, and, more important, to collect this
information throughout single projects data-mining. Results from the queries of the
Ohloh repository will be used as a relevant source for support and validation.
Moreover, other aspects such as the impact of the development of open source
components that are the basis for the development of a complex system and the
techniques used to improve their quality through an open testing process [7] can be
investigated.

 Analysis of OSS Development Iterations by Means of Burst Detection Techniques 93

8 Conclusions

The open source development methodology is considered to be highly efficient in the bug
fixing process and to propose generally quick version release cycles. We proposed an
empirical investigation of this assertion studying 5 large and well-known open source
projects by studying temporal evolution of source code activity, issue tracking repositories
activities, and release dates. By using temporal burst-detection to evaluate peaks in time-
series, we compared the periods of highest activity in the different time-series.

We found that peaks or bursts in code activities are not related to peaks in bug
reports closing activities inside issue tracking systems, instead we found peaks in bug
reports opening/closing to be synchronized with version release cycles. Code
activities seem more distributed across version releases.

Our conclusions show that the open source development methodology quickly
adapts to the changing environment, but also that such velocity depends on the
application and specifically on the projects’ domain.

References

1. Challet, D., Du, Y.L.: Closed Source versus Open Source in a Model of Software Bug
Dynamics, Cond-Mat/0306511 (June 2003),

 http://arxiv.org/pdf/cond-mat/0306511
2. Christensen, C.M.: The ongoing process of building a theory of disruption. Journal of

Product Innovation Management 23(1), 39–55 (2006)
3. Coman, I., Sillitti, A.: An Empirical Exploratory Study on Inferring Developers’ Activities

from Low-Level Data. In: Proceedings of 19th International Conference on Software
Engineering and Knowledge Engineering (SEKE 2007), Boston, MA, USA, July 9-11 (2007)

4. Coman, I., Sillitti, A.: Automated Identification of Tasks in Development Sessions. In:
Proceedings of 16th IEEE International Conference on Program Comprehension (ICPC
2008), Amsterdam, The Netherlands, June 10-13 (2008)

5. Dinh-Trong, T., Bieman, J.: Open source software development: a case study of FreeBSD.
In: Proceedings of 10th International Symposium on Software Metrics, pp. 96–105 (2004)

6. Feller, J., Fitzgerald, B.: Understanding Open Source Software Development. Addison-
Wesley Professional, Reading (2001)

7. Gross, H.G., Melideo, M., Sillitti, A.: Self Certification and Trust in Component
Procurement. Journal of Science of Computer Programming 56, 141–156 (2005)

8. Kuan, J.: Open Source Software as Lead User’s Make or Buy Decision: a Study of Open
and Closed Source Quality. Stanford University (2002)

9. Mockus, A., Fielding, R., Herbsleb, J.: A case study of open source software development:
the Apache server. In: Proceedings of the 22nd international conference on Software
Engineering, pp. 263–272. ACM, Limerick (2000)

10. Mockus, A., Fielding, R., Herbsleb, J.: Two case studies of open source software
development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 309–346 (2002)

11. Scacchi, W.: Is open source software development faster, better, and cheaper than software
engineering. In: 2nd ICSE Workshop on Open Source Software Engineering (2002)

12. Vlachos, M., Meek, C., Vagena, Z., Gunopulos, D.: Identifying similarities, periodicities
and bursts for online search queries. In: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pp. 131–142. ACM, Paris (2004)

13. Weinstock, C.B., Hissam, S.A.: Making Lightning Strike Twice? In: Feller, J., Fitzgerald,
B., Hissam, S., Lakhani, K. (eds.) Perspectives on Free and Open Source Software, pp. 93–
106. MIT Press, Cambridge (2005)

	Analysis of Open Source Software Development Iterations by Means of Burst Detection Techniques
	Introduction
	Research Question
	Project Selection
	Process of Data Collection

	Method of Analysis
	Analysis
	Bug Reports Opening and Closing versus Code-Activities
	Software Releases versus Code, Bug-Closing, Bug-Opening Activities

	Discussion
	Limitations and Future Works
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

