Software Engineering in Practice: Design and
Architectures of FLOSS Systems

Andrea Capiluppi and Thomas Knowles

Centre of Research on Open Source Software,
University of Lincoln,
Brayford Campus, Lincoln,
LN5 7TS, United Kingdom
{acapiluppi, tknowles}@hemswell.lincoln.ac.uk

Abstract. Free/Libre/Open Source Software (FLOSS) practitioners and devel-
opers are typically also users of their own systems: as a result, traditional soft-
ware engineering (SE) processes (e.g., the requirements and design phases), take
less time to articulate and negotiate among FLOSS developers. Design and re-
quirements are kept more as informal knowledge, rather than formally described
and assessed. This paper attempts to recover the SE concepts of software design
and architectures from three FLOSS case studies, sharing the same application
domain (i.e., Instant Messaging). Its first objective is to determine whether a com-
mon architecture emerges from the three systems, which can be used as shared
knowledge for future applications. The second objective is to determine whether
these architectures evolve or decay during the evolution of these systems. The re-
sults of this study are encouraging: albeit no explicit effort was done by FLOSS
developers to define a high-level view of the architecture, a common shared ar-
chitecture could be distilled for the Instant Messaging application domain. It was
also found that, for two of the three systems, the architecture becomes better
organised, and the components better specified, as long as the system evolves
in time.

1 Introduction and Related Work

During the last years Free/Libre/Open Source Software (FLOSS) has gained much at-
tention in the SE research community. This is due to various reasons, ranging from the
availability of the software products, to the archival of past software and non-software
artifacts in versioning repositories (bug tracking systems and mailing lists, among oth-
ers). Two main types of FLOSS literature have been observed since, one termed ex-
ternal and the other internal to the FLOSS phenomenon [6]. Based on the availability
of FLOSS data, the former has traditionally used FLOSS artefacts in order to propose
models [[17], test existing or new frameworks [9120], or build theories [3] to provide
advances in the more general SE field. The latter instead includes several other studies
that have analyzed the FLOSS phenomenon per se [10/14/16.26], with their results aim-
ing at both building a theory of FLOSS, and characterizing the results and their validity
specifically as inherent to this type of software and style of development.

While much empirical research has used FLOSS as case studies where data and
experience can be easily obtained, FLOSS-specific issues have also been identified.

C. Boldyreff et al. (Eds.): OSS 2009, IFIP AICT 299, pp. 34@ 2009.
(© IFIP International Federation for Information Processing 2009

Software Engineering in Practice: Design and Architectures of FLOSS Systems 35

Generically, it should be established whether well-established approaches, techniques,
frameworks and tools from the traditional SE knowledge apply to FLOSS practitioners
and developers [2]. Specifically, FLOSS systems and their architectures have attracted
significant attention among researchers due to the distributed constraints, modularity
and the issue of collaboration. Developers sporadically joining FLOSS projects do not
always have a clear understanding of the underlying architecture, and may break the
overall conceptual structure by several small changes to the code base [27].

Also, it has been suggested that core FLOSS developers might hinder improvements
to the software architecture to protect their privileged positions, thus precluding the
system’s future development [7]]. In other words, the system’s architecture could either
be lost or decay over time.

Past SE literature has firmly established that software architectures and the associ-
ated code decay over time [13]], and that the pressure on software systems to evolve
in order not to become obsolete plays a major role [[19]]. As a result, software systems
have the progressive tendency to loose their original structure, which makes it diffi-
cult to understand and further maintain them [24]]. Architectural recovery is one of the
recognized counter-measures to this decay [[12]. Several earlier works have been fo-
cused on the architectural recovery of proprietary [[12], closed academic [1]], COTS [J5]
and FLOSS [8/15127] systems; in all of these studies, systems were selected in a spe-
cific state of evolution, and their internal structures analyzed for discrepancies between
the conceptual and concrete architectures [27]. Repair actions have been formulated
as frameworks [23]], methodologies [18] or guidelines and concrete advice to develop-
ers [27].

From these previous empirical reports and from specific calls for research on FLOSS
architectures and their decay [4], the following open research questions have been for-
mulated for the research reported in this paper:

1. Even if not specifically imposed by FLOSS developers, does any common system
architecture emerge from FLOSS projects sharing the same application domain?

2. Is it possible to assess whether this architecture decays or improves during the
evolution of a FLOSS project?

In order to tackle these questions, this research evaluates three FLOSS systems
(Ayttnﬂ, Miranddd and Pidgint), sharing the same application domain (Instant Messag-
ing — IM), and compares the evolution of their conceptual, hierarchical views [25] with
the architectural view based on the common coupling among components. As stated
above, the objective is two-fold; at first, a common architecture will be sought, encom-
passing the three case studies. This could help other FLOSS developers within the same
application domain to comply with the design notion and the shared (tacit) knowledge
of the domain of other FLOSS developers. The second objective will study whether the
architecture of these systems decays or not in their evolution and maintenance.

This paper is articulated as follows: Section [2] introduces the case studies, the two
visualisations used throughout the paper, and how they were extracted, and presents the

1 http://ayttm.sourceforge.net/
’http://www.miranda-im.org/
3 http://www.pidgin.im/

http://ayttm.sourceforge.net/
http://www.miranda-im.org/
http://www.pidgin.im/

36 A. Capiluppi and T. Knowles

case for the architectural decays of FLOSS systems. Section [3] summarises the main
findings on the empirical analysis of the three projects, and determine a threshold for
architectural decay, visualising the point where each system broke it, while Section
concludes and pinpoints future works.

2 Empirical Approach

This section details the empirical approach used throughout this research. At first, the
rationale for the selection of the three systems will be given, next an overview of the
extraction of the raw data into results will be outlined. In particular, attention will be
given to the hierarchical [25] and concrete [27] architectures.

The selected FLOSS projects were chosen for the following reasons:

e There are similarities in their basic functions, since they all are “multi protocol
instant messaging clients”: no previous empirical study has tried before to detect
the shared architecture of similar-scoped FLOSS systems;

e There are similarities in the underlying programming languages (Ayttm and Pidgin
are implemented in C, and Miranda in C++);

e They are long-lived, established FLOSS projects (hence all their software is avail-
able), with an established community of developers and users: as visible in Table[l]
Ayttm is an ongoing project since 2002, Miranda since 2000, and Pidgin since 1999.

2.1 Hierarchical and Common Coupling

A posssible method of examing the architecture of the software is through the nesting of
folders, and their relations of “contained-in” results in the so-called treestructure [25]].
Observing the disposition of source code within folders (i.e., source folders) can give
potential developers the initial insight of how code is organised within folders [22].
The tree structures have been extracted for the three temporal points of each system
(first available, latest available and middle releases), and the number of “nodes” (i.e.,
the source folders) of the corresponding tree has been recorded in Table [Il One such
example, for the Pidgin system, is given in Figure [T} the dashed lines represent the
hierarchical structure of folders contained in higher level folders.

On the other hand, in order to produce an accurate description of the concrete archi-
tecture suggested by [27]], each project has been parsed using Doxygerﬂ. The following
notation was used:

e Coupling: This is the union of all the includes, dependencies and functions calls
(i.e., the common coupling) of all source files as extracted through the Doxygen
source code documentation generator tool. The file-fo-file couplings were con-
verted into folder-to-folder couplings, considering the folder that each of the above
files belongs to; coupling among functions and/or methods was also converted into
folder-to-folder coupling. A stronger coupling link between folder A and B would
be found when many items within A call items of folder B (or viceversa). Cou-
plings are depicted in Figure[T] as directed arrows, the amount of actual calls being
summarised by the number on the arrow.

4 http://www.doxygen.org/

http://www.doxygen.org/

Software Engineering in Practice: Design and Architectures of FLOSS Systems 37

e Connection: Distilling the couplings as defined above, one could say, in a boolean
manner, whether two folders are linked by a connection or not, despite the strength
of the link itself. The overall number of these connections is recorded in Table[I} the
connections of a folder to itself are not counted (for the encapsulation principle),
while the two-way connection A — B and B — A is counted just once (since we are
only interested in which folders are involved in a connection). In Figure[Tlit is pos-
sible to count 5 connections (src — irc, src — msn, src — oscar, src — napster and
msn — oscar). Connections to the external libraries (“EXT_LIB”) are not counted,
since only the internal architectural properties of these systems are studied.

Fig. 1. Pidgin — tree structure, couplings and connections

Table 1. Summary of metrics

Ayttm Miranda Pidgin

Active since 2002 2000 1999
Releases studied 21 35 114
Nodes (initial) 21 4 1
Nodes (middle) 32 44 33
Nodes (final) 32 72 50
SLOC:s (initial) 70,493 3,692 5,679
SLOCs (middle) 103,044 118,641 152,370
SLOC:s (final) 99,572 383,146 297,471
Connections (initial) 47 3 1

Connections (middle) 125 168 90
Connections (final) 122 390 223

38 A. Capiluppi and T. Knowles

2.2 Methods of Metrics Extraction

Source code for each case study was extracted and Doxgen was used on each version
of the software. DOTf files (mapping the connections between files) are generated by
Doxygen and several PERL scripts were applied to DOT files to extract the couplings
and connections of each file/module. Using the data regarding the connections between
files a hierarchical map of the software was possible as seen in figures 1 - 5.

3 Results

3.1 Common Instant Messaging (IM) Architecture

During the analysis of the evolution of the studied systems, recurring patterns have
been observed in the naming of folders containing source code, and the directions and
frequency of connections among them.

1. Core. The first set of folders comprises the core function of an IM client. Connec-
tion to IM networks, handling of IM contacts, drawing of the underlying GUI are
all examples of the “core” functions of an IM system. Most of its connections are
handled from and to elements (files, functions) contained within it, while links to
other components see this component acting as a“server’” of functions, rather than
a receiver [1L1]].

2. Protocols. The second observed cluster of folders, attracting a considerable amount
of couplings, deals with the supported IM protocols (e.g., Yahoo, Jabber, etc.).
Since the very early releases of each system, several calls are directed from and
to folders named after each protocol. A container “protocol” folder, keeping source
code shared by several protocols, is also commonly found, while some protocols
can be further expanded in other exportable folders (e.g., libyahoo, libjabber, etc.).

3. Plugins. The third component comprises the plugins handled by the IM client, rang-
ing from GUI skins managers to connectors to email clients. A “plugin” umbrella
folder is also used for the same purposes as the “protocol” above. The main purpose
of this component is to hold those functionalities which are not considered as fun-
damental for an IM client. In terms of connectors, each plugin can be considered
as a stand-alone system, typically linked with few couplings to other plugins and
other parts of the IM system.

In summary, a common architecture of IM systems has emerged, as visible in
Figure[2l The three basic components (core, plugins and protocols) appear as primitives
in the early releases of the observed systems, and get better refined and modularized dur-
ing the system’s lifetime, meaning that the refined components send most of their calls
to elements within themselves. Each component exists as a cluster of several source
folders; the hierarchical structure [25]] comprises umbrella folders (“core”, “plugins”,
“protocols”) containing other folders, typically at the same level of nesting, acting as

placeholder for source files of specific modules (“aycryption”, “ticker”, “yahoo”, can
be seen as an example module contained in each component).

5 http://www.graphviz.org/

http://www.graphviz.org/

Software Engineering in Practice: Design and Architectures of FLOSS Systems 39

IM - Shared Architecture

System/Plugins System/Protocols System/Core

@D || Eud || (@

Fig. 2. Shared IM architecture

3.2 Evolution and Architectural Decay

The very early releases of the studied systems show on average few folders (see Table[T)
with the exception of Ayttm, which appears well modularized already in the first avail-
able release (21 folders). On the other hand, the latest studied releases show projects
which have been extensively decomposed into folders and subfolders. Throughout their
evolution, as new folders get connected into the system, new couplings are introduced,
in part within the components of the three-tier architecture described above, and in part
connecting the components among each other. This second type of couplings taints the
desirable independence of an architectural component, making it a requester or a server
of services from other components.

In this Section, the architecture of the three systems, as proposed above, is observed
in three temporal points, namely the earliest and the latest available releases, and the
release in between the first two. The objective of this analysis is to observe how the
systems have evolved with respect to their architectural components and connectors,
and to draw instructive conclusions and guidelines for FLOSS developers. The overall
evolution in number of source folders has also been studied. The number of nodes
containing source code have been compared with the number of connections among
them to give an insight into on how FLOSS developers counteract the increasing decay
of their systems.

Ayttm. The top left part of Figure[3|shows the evolution in the number of source folders
for the Ayttm project. Its initial state was already quite formed and structured, then a
steep growth brought it to its current size and structure. These lasted up to the recent,
scattered releases, which did not change significantly the internals of the project. In
terms of the connections among different source folders, a new source folder added to
the system brought 7 new connections with existing folders. This is evaluated excluding
the connections tying elements within the same folder, and counting a single connection
even when two folders are linked forward and backward (i.e. both act as server and
requester of services to each other).

In Figure [3] the remaining graphs (in order, top right, bottom left and bottom right)
show the evolution of the basic architecture (the components, and their connectors) in
the three selected releases: only two components are detectable (“Core” and “Proto-
cols”) in this system, while the hierarchical structure does not suggest the presence of

40 A. Capiluppi and T. Knowles

Ayttm - Growth of connections

140

120 Do ol
®
100 ‘0.
80 ’
®

60

S
K g @ = o=

& Folders

@ Connections

09/02 01/04 05/05 10/06 02/08 07/09

Ayttm --- v0.2.2 --- 03/03/2003
Ayttm --- v0.4.6 --- 21/01/2004

Protocols 57.93

Ayttm --- v0.5.0-45 --- 04/06/2008

Core

27.27
(3,75-‘9.05

Protocols

59.99

Fig. 3. Results (Ayttm) — Evolution of nodes, connections and architecture

the third component. Even so, the overall structure, and the balance of the couplings
remains quasi-constant in the three points: there is still a severe dependency between
the two components, each acting both as requester and server of services from the other.

Software Engineering in Practice: Design and Architectures of FLOSS Systems 41

Miranda. Similarly to what has been seen for the Ayttm system above, the top left part
of Figure @] shows how the number of source folders grew in Miranda: very few folders
formed the initial releases of the system, which also counted on very few couplings
among them. The 5th available release had a steep increase of functionalities, adding
26 new source folders, 111 new connections, but a decrease of 2,000 SLOCs, qualifying
as a restructure of the system. As also visible in the plot, there are several releases which
act as refinement of the current architecture, where decreases in the number of source
folders are often paired to decrease in the couplings between folders. Every new source
folder added to the system on average 6 new connections.

The other graphs of Figure [show the percentage of couplings among the compo-
nents of the Miranda system in the three selected evolutionary points. As visible on
the top right part, the Miranda system at its inception was just encapsulating the ba-
sic functionalities (“Core”) and handling a selected number of IM protocols. Overall,
the principle of independence permitted to have around 90% of the couplings within the
same component, but the “Core” acted as a requester of services in 10% of the couplings
(35 out of 345). In the bottom left and right graphs, the Miranda system developed a
“Plugin” component, and the “Core” component reduced its requests to just 3% of the
overall amount of couplings (358 calls), while the latest available release is even more
modularized, having just 1,12% of the couplings being outward.

Pidgin. Finally, the top left part of Figure[3]shows the growth of source folders in Pidgin.
Initially just one folder contained the source code of the first release. Unlike Ayttm, this
system had a steady pace in its public releases, apart from a long hiatus during 2005 and
2006, when the original name of the project (Gaim) was changed due to copyright issues.
Unlike Miranda, no major restructuring has taken places yet, but several small and medium
decreases in both the number of folders and couplings between them have been observed.
Thiscontinual maintenance efforthas aneffectalsoonthenew foldersbeing added; foreach
new folder, around 4 new connections have to be made on average with existing folders.

As done above, the three remaining graphs of Figure[5| show the architecture of this
system and its components and connectors. Since its inception this system (although
with just one folder containing the source code) already provided the three basic com-
ponents which appear in each subsequent release. These primitives still have serious
dependencies with each other which are later corrected and ultimately resolved in the
latest available release (bottom right of Figure[3)). The same component appears further
decomposed into three subsystems, namely the “pidgin” graphical environment, the
“libpurple” set of core functions, and the “finch” text-based version of the IM client.

From the reuse perspective, the approach described above is particularly relevant
and conclusive for this system: the reuse of its components (or modules) within other
systems is further simplified by how the connections have been designed and simplified
throughout the lifecycle of this application. As reported above, the “core” of this system,
in its latest release, shows three modules (“Finch”, “Libpurple” and “Pidgin”) which
are independent from both the protocols and the plugins components: when in need
of recreating a new IM client, developers could safely extract the “libpurple” module
(responsible for the vast majority of the basic functionalities of an IM system) and reuse
it as the basis of a new IM system. In fact, this module acts as a pure server, and does
not rely on any other components or modules of the system in which it belongs.

42

A. Capiluppi and T. Knowles

700
600

500

400

300 *
200 #

100

01/00 05/01 09/02

¢
*
. H'IF Bt 1 B

02/04 06/05

Miranda - Growth of connections

& Folders
~®-Connections

03/08 08/09

Miranda -- vO1 --- 07/02/2000

Miranda --- v0.4 --- 07/04/2005

Core

@)19.13

10.14

Protocols
) 4

Protocols

@Dﬁs.%

8.70 §.31

Plugins
Y
@1 1.44

Miranda -- v0.7.7 --- 01/06/2008

Protocols

N

521 B.82

Plugins
A
Plugins 3.06

Fig. 4. Results (Miranda) — Evolution of nodes, connections and architecture

Software Engineering in Practice: Design and Architectures of FLOSS Systems

250

200

150

100

50

0

07/98 12/99

Pidgin - Growth of connections

B Folders
“® Connections

04/01 09/02 01/04 05/05 10/06 02/08 07/09

Gaim --- v0.8.0 --- 30/04/1999

Pidgin -- v1.0.0 --- 17/09/2004

Protocols Plugins

37.81 2491
\18.35 617

Copé

&

Pidgin -- v2.4.3 --- 01/07/2008

Plugins

Pidgin_Plugins) >1.32

Protocols

33495

Libpurple_Plugins

1.41

Libpurple Y$>14.46

Fig. 5. Results (Pidgin) — Evolution of nodes, connections and architecture

43

44 A. Capiluppi and T. Knowles

4 Conclusions

This paper has attempted to make use of established Software Engineering concepts
(software design and architectures) within the FLOSS development paradigm. It has
been reported in the literature that established processes as the software requirements
or the designs are written down or formalised by FLOSS developers, but instead those
are tacitly understood by both developers and users.

Software architectures of FLOSS projects represent an active and open research field,
since the distributed style of development of the FLOSS approach makes it easier for
occasional developers to break the underlying assumptions of components and connec-
tors, and their desirable independence. Past literature has already studied the architec-
tures of FLOSS systems, but no longitudinal study has been performed yet, nor has the
common architecture of several FLOSS projects, sharing the same application domain,
been extracted.

This paper has presented the empirical observation of three FLOSS systems im-
plementing the same functionalities and domain, with the aim of both extracting their
tacitly agreed architectures, if any, and checking whether a common architecture could
be formalised for the domain “Instant Messaging”. A longitudinal approach was used
to show the evolution of nodes and connectors in the three systems, and recurring com-
ponents were sought.

It was found that a common architecture is currently at the base of the three studied
systems, based on three components: a “core” component encompassing the basic func-
tionalities of an IM client (managing network connections, handling contacts, drawing
of the graphical interface, etc); a “protocol” component, managing the diverse protocols
an IM client can support (AIM, Jabber, Yahoo, etc.); and finally a “plugin” component,
whose objective is to enhance the basic functions with widgets not considered as core,
similar to what is found in the “plugin” package of other systems (e.g., Sun’s Eclipse).

It was also shown that these systems decay in terms of the underlying structure,
since it was found that the addition of new folders and functionalities typically adds
more than one connections to existing folders, making the overall understanding of
the components more complicated. In two of three systems, though, these decay did not
affect the overall architecture: in Pidgin and Miranda the three main components appear
better and better defined, with a decreasing trend of connections outside the boundaries
of the components themselves.

5 Threats to Validity

The use of the 2000 Holt paper for extracting the architectures of the software systems
using the coupling method may be seen as out-dated in comparison to other newer
techniques such as the Focus Method[21]. Additionally using one method to extract all
of the architectures may also limit the variation of results.

Due to the domain of the software (IM), particular functionality (protocols) of the
software are developed and structured in an exogenous manner in comparison to other
modules. Protocols such as MSN, AOL or Yahoo must function and interact in a standard-
ised way, which affect how other modules of the software are designed and developed.
Due to this common and standardised functionality shared between all case studies, each

Software Engineering in Practice: Design and Architectures of FLOSS Systems 45

of the systems may inherit architectures in regards to protocols used. The source code for
each case study was extracted and Doxgen were used on each version of the software.
Using the DOT files (mapping the connections between files) generated by Doxygen sev-
eral PERL scripts were applied to DOT files to gather the statistics of the interactions of
each of the files. Using the data regarding the connections between files a hierarchical
mapping of the software is possible as seen in figures one through five.

6 Future Work

The future works we are planning are essentially two-fold: on one hand, it should be
studied how developers contribute to the decay of the architectures, by enabling connec-
tions among elements which belong to separate components. On the other hand, other
application domains should be studied: the analysis of several multi-media systems,
for instance, should reveal internal and reused libraries (codec, demux, conversion of
formats) which form clear-cut components; an analysis of several web-server should
highlight the presence of modular components (e.g., “logging”, “access control” and
others). We are planning to study how diverse systems in both achieved the same func-
tionalities, and how these are mirrored in the architecture. Also, these studies (and all
the ones making use of public data) should be made available to the developers of the
studied systems, to try and bridge the gap between traditional Software Engineering
and Open Source Software Engineering.

References

1. Abi-Antoun, M., Aldrich, J., Coelho, W.: A case study in re-engineering to enforce architec-
tural control flow and data sharing. Journal of Systems and Software 80(2), 240-264 (2007)

2. Adams, P., Capiluppi, A.: Bridging the gap between agile and free software approaches: The
impact of sprinting. International Journal of Open Source Software and Process 2009

3. Antoniol, G., Casazza, G., Penta, M.D., Merlo, E.: Modeling clones evolution through time
series. In: Proc. IEEE Intl. Conf. on Software Maintenance 2001 (ICSM 2001), Fiorence,
Italy, pp. 273-280 (2001)

4. Arief, B., Gacek, C., Lawrie, T.: Software architectures and open source software — Where
can research leverage the most? In: Proceedings of Making Sense of the Bazaar: 1st Work-
shop on Open Source Software Engineering, Toronto, Canada (2001)

5. Avgeriou, P., Guelfi, N.: Resolving architectural mismatches of cots through architectural
reconciliation. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp. 248-257.
Springer, Heidelberg (2005)

6. Beecher, K., Boldyreff, C., Capiluppi, A., Rank, S.: Evolutionary success of open source soft-
ware: An investigation into exogenous drivers. Electronic Communications of the EASST 8
(2008)

7. Bezroukov, N.: A second look at the cathedral and the bazaar. First Monday 4(12) (1999),
http://www.firstmonday.org/issues/issued_12/bezroukov/
index.html

8. Bowman, L.T., Holt, R.C., Brewster, N.V.: Linux as a case study: its extracted software ar-
chitecture. In: ICSE 1999: Proceedings of the 21st International conference on Software
Engineering, pp. 555-563. IEEE Computer Society Press, Los Alamitos (1999)

http://www.firstmonday.org/issues/issue4_12/bezroukov/index.html
http://www.firstmonday.org/issues/issue4_12/bezroukov/index.html

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Capiluppi and T. Knowles

. Canfora, G., Cerulo, L., Penta, M.D.: Identifying changed source code lines from version

repositories. Mining Software Repositories, 14 (2007)

Capiluppi, A.: Models for the evolution of OS projects. In: Proceedings of ICSM 2003,
pp- 65-74. IEEE, Amsterdam (2003)

Ducasse, S., Lanza, M., Ponisio, L.: Butterflies: A visual approach to characterize packages.
In: Metrics 2005: Proceedings 11th International Software Metrics Symposium (2005)
Dueiias, J.C., de Oliveira, W.L., de la Puente, J.A.: Architecture recovery for software evo-
lution. In: CSMR 1998 — Proceedings of the 2nd Euromicro Conference On Software Main-
tenance And Reengineering, pp. 113—120 (1998)

Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code decay? assessing
the evidence from change management data. IEEE Transactions on Software Engineering 27,
1-12 (2001)

German, D.M.: Using software trails to reconstruct the evolution of software. Journal of
Software Maintenance and Evolution: Research and Practice 16(6), 367-384 (2004)
Godfrey, M., Eric, H.: Secrets from the monster: Extracting mozilla’s software architecture.
In: CoSET 2000: Proceedings of the 2nd Symposium on Constructing Software Engineering
Tools (2000)

Herraiz, 1., Gonzalez-Barahona, J.M., Robles, G.: Determinism and evolution. In: Hassan,
A.E., Lanza, M., Godfrey, M.W. (eds.) Mining Software Repositories, pp. 1-10. ACM, New
York (2008)

Hindle, A., German, D.M.: Scql: a formal model and a query language for source control
repositories. SIGSOFT Softw. Eng. Notes 30(4), 1-5 (2005)

Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C.: A two-phase process for
software architecture improvement. In: ICSM 1999: Proceedings of the IEEE International
Conference on Software Maintenance, p. 371. IEEE Computer Society, Washington (1999)
Lehman, M.M.: Programs, cities, students, limits to growth? Programming Methodology,
42-62 (1978) (inaugural lecture)

Livieri, S., Higo, Y., Matushita, M., Inoue, K.: Very-large scale code clone analysis and
visualization of open source programs using distributed ccfinder: D-ccfinder. In: ICSE 2007:
Proceedings of the 29th International Conference on Software Engineering, pp. 106-115.
IEEE Computer Society, Washington (2007)

Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural recovery. Au-
tomated Software Engineering, 13 (2006)

Murphy, G.C., Notkin, D., Sullivan, K.: Software reflexion models: bridging the gap between
source and high-level models. In: SIGSOFT 1995: Proceedings of the 3rd ACM SIGSOFT
symposium on Foundations of software engineering, pp. 18-28. ACM, New York (1995)
Sartipi, K., Kontogiannis, K., Mavaddat, F.: A pattern matching framework for software ar-
chitecture recovery and restructuring. In: IWPC 2000: 8th International Workshop on Pro-
gram Comprehension, pp. 37-47 (2000)

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures from
running systems. IEEE Transactions on Software Engineering 32(7), 454-466 (2006)
Spinellis, D.: Code Reading: The Open Source Perspective. Addison-Wesley Professional,
Reading (2003)

Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L.: Code quality analysis in open-source
software development. Information Systems Journal 12(1), 43—60 (2002)

Tran, J.B., Godfrey, M.W., Lee, E.H.S., Holt, R.C.: Architectural repair of open source soft-
ware. In: IWPC 2000: Proceedings of the 8th International Workshop on Program Compre-
hension, pp. 48-59. IEEE Computer Society, Washington (2000)

	Software Engineering in Practice: Design and Architectures of FLOSS Systems
	Introduction and Related Work
	Empirical Approach
	Hierarchical and Common Coupling
	Methods of Metrics Extraction

	Results
	Common Instant Messaging (IM) Architecture
	Evolution and Architectural Decay

	Conclusions
	Threats to Validity
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

