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Preface

The Third Annual International Conference on Combinatorial Optimization and
Applications, COCOA 2009, took place in Huangshan, China, June 10–12, 2009.
Past COCOA conferences were held in Xi’an, China (2007) and Newfoundland,
Canada (2008).

COCOA 2009 provided a forum for researchers working in the areas of combi-
natorial optimization and its applications. In addition to theoretical results, the
conference is particularly focused on recent works on experimental and applied
research of general algorithmic interest. The Program Committee received 103
submissions from 17 countries and regions: Brazil, Canada, China, Denmark,
France, Germany, Hong Kong, India, Italy, Japan, Korea, Malaysia, Poland,
Switzerland, Taiwan, UK, and USA.

Among the 103 submissions, 50 papers were selected for presentation at the
conference and are included in this volume. Some of these will be selected for
publication in a special issue of Journal of Combinatorial Optimization, a special
issue of Theoretical Computer Science, and a special issue of Discrete Mathe-
matics, Algorithms and Applications under the standard refereeing procedure.
In addition to the selected papers, the conference also included one invited pre-
sentation by Panos M. Pardalos (University of Florida, USA).

We thank the authors for submitting their papers to the conference. We are
grateful to the members of the Program Committee and the external referees
for their work within demanding time constraints. We thank the Organizing
Committee for their contribution to make the conference a success. We also
thank Donghyun Kim for helping us create and update the conference website
and maintain the Springer Online Conference Service system.

Finally, we thank the conference sponsors and supporting organizations for
their support and assistance. COCOA 2009 was supported in part by the Na-
tional Natural Science Foundation of China under Grant No. 10531070, 10771209,
10721101 and the Chinese Academy of Sciences under Grant No. kjcx-yw-s7.
COCOA 2009 was held at Huangshan International Hotel, Huangshan, China.

June 2009 Ding-Zhu Du
Xiaodong Hu

Panos M. Pardalos
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Polynomial Approximation Schemes for
the Max-Min Allocation Problem under

a Grade of Service Provision�

Jianping Li1,��, Weidong Li1, and Jianbo Li2

1 Department of Mathematics, Yunnan University, Kunming 650091, China
jianping@ynu.edu.cn, liweidong@mail.ynu.edu.cn

2 School of Management and Economics, Kunming Uni. of Sci. and Tech., China
lijianbo@public.km.yn.cn

Abstract. The max-min allocation problem under a grade of service
provision is defined in the following model: given a set M of m parallel
machines and a set J of n jobs, where machines and jobs are all entitled
to different levels of grade of service (GoS), each job Jj ∈ J has its pro-
cessing time pj and it is only allocated to a machine Mi whose GoS level
is no more than the GoS level the job Jj has. The goal is to allocate all
jobs to m machines to maximize the minimum machine load, where the
machine load of machine Mi is the sum of the precessing times of jobs
executed on Mi. The best approximation algorithm [4] to solve this prob-
lem produces an allocation in which the minimum machine completion
time is at least Ω(logloglogm/loglogm) of the optimal value.

In this paper, we respectively present four approximation schemes to
solve this problem and its two special versions: (1) a polynomial time
approximation scheme (PTAS) with running time O(mnO(1/ε2)) for the
general version, where ε > 0; (2) a PTAS and an fully polynomial time
approximation scheme (FPTAS) with running time O(n) for the version
where the number m of machines is fixed; (3) a PTAS with running time
O(n) for the version where the number of GoS levels is bounded by k.

Keywords: Scheduling; allocation; grade of service; polynomial time
approximation scheme; fully polynomial time approximation scheme.

1 Introduction

The max-min allocation problem, treated as the Santa Claus problem [2,4] and
the fair division [3,6,8], has been studied widely in many domains. This problem
is formulated in the following model. There are m players (or machines) and n
items (or jobs). Let pij (≥ 0) denote the value (or processing time) of item j to

� The work is fully supported by the National Natural Science Foundation of
China [No.10861012,10561009], Natural Science Foundation of Yunnan Province
[No.2006F0016M] and Foundation of Younger Scholar in Science and Technology
of Yunnan Province [No.2007PY01-21].

�� Correspondence author.

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 J. Li, W. Li, and J. Li

player i. The goal is to partition n items into m disjoint bundles, S1, . . . , Sm,
such that min{

∑
j∈Si

pij | 1 ≤ i ≤ m} is maximized.
The max-min allocation problem is viewed as a “dual” problem to the famous

problem of makespan minimization on unrelated parallel machines. Lenstra et
al. [12] designed a 2-approximation algorithm based on linear programming for
the makespan problem and then proved that approximating it with ratio bet-
ter than 1.5 is NP-hard. The problem of finding a better than 2-approximation
algorithm (or improving the lower bound) for the makespan minimization prob-
lem is one of the ten open challenging problems in the area of approximation
algorithms for machine scheduling [14].

The max-min allocation problem was first studied as a machine scheduling
problem, where the goal is to maximize the minimum machine completion time.
Alon et al. [1] gave a polynomial time approximation scheme (PTAS) with run-
ning time O(n) for the problem P ||Cmin in which each job has an intrinsic value
pj and pij = pj for all machines Mi. Epstein and Sgall [7] presented a PTAS for
the version where the machine Mi has a speed si and pij = pj/si for machine
Mi and job Jj , here 1 ≤ i ≤ m and 1 ≤ j ≤ n.

For the max-min allocation problem, Bezakova and Dani [5] first provided
a simple approximation algorithm with the worst-case performance ratio n −
m + 1 and showed that this problem is NP-hard to be approximated within
2 − ε, for any ε > 0. Asadpour and Saberi [3] presented an O(

√
mlog3m)-

approximation algorithm for this problem, by using the LP relaxation method.
Recently, Chakrabarty et al. [6] designed an Õ(nε) approximation algorithm for
this problem in running time nO(1/ε), where ε = Ω(loglogn/logn). Woeginger [15]
gave an FPTAS for this problem in the version where the number of machines
is a constant, but its running time is very high.

Bansal and Sviridenko [4] studied a restricted version of the max-min alloca-
tion problem, treated as the Santa Claus problem [2,4], where pij ∈ {pj, 0}, and
they proposed a nontrivial O(loglogm/logloglogm)-approximation algorithm for
the problem, by using the configuration of LP relaxation. Feige [8] showed a con-
stant upper bound on the integrality gap of configuration LP for the Santa Claus
problem, however, his proof is not constructive. Asadpour et al. [2] presented an
alternative non-constructive proof of a factor-5 upper bound on the integrality
gap of the configuration LP.

In this paper, we consider the max-min allocation problem under a grade
of service provision, defined by: given a set M = {M1, . . . , Mm} of machines
and a set J = {J1, . . . , Jn} of jobs, each job Jj has the processing time pj
and is labelled with the GoS level g(Jj), and each machine Mi is also labelled
with the GoS level g(Mi), job Jj is allowed to be allocated to machine Mi only
when g(Jj) ≥ g(Mi). The goal is to partition the set J into m disjoint bundles,
S1, . . . , Sm, such that min{

∑
Jj∈Si

pj | 1 ≤ i ≤ m} is maximized, where Jj ∈ Si
only if g(Jj) ≥ g(Mi). We denote this model as the problem P |GoS|Cmin, by
the three-field notation of Graham et al. [9]. For convenience, we denote a nota-
tion, by I = (J ,M; p, g), to represent an instance of the problem P |GoS|Cmin.
We also consider its two basic variants: the problem Pm|GoS|Cmin, where the
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number m of machines is a fixed constant, and the problem P |GoSk|Cmin, where
g(Mi), g(Jj) ∈ {1, 2, . . . , k} and k is a fixed constant.

Our max-min allocation problem under a grade of service provision is closely
related to the problem of parallel machine scheduling under a grade of service pro-
vision [10], but the goal in [10] is to minimize max{

∑
Jj∈Si

pj | 1 ≤ i ≤ m}, and our
goal is to maximize min{

∑
Jj∈Si

pj | 1 ≤ i ≤ m}. Ou et al. [13] designed a PTAS
for the problem of parallel machine scheduling under a grade of service provision.

It is easy to verify that the difficulty to solve the problem P |GoS|Cmin is
somewhere between the parallel machine problem P ||Cmin and the Santa Claus
problem. To our knowledge by now, the best approximation algorithm to solve
the problem P |GoS|Cmin is the O(loglogm/logloglogm) approximation algo-
rithm designed for the Santa Claus problem [4], which is based on rounding a
certain natural exponentially large linear programming relaxation usually re-
ferred to as the configuration LP. In this paper, we first presented a PTAS
for the problem P |GoS|Cmin in running time O(mnO(1/ε2)), for any ε > 0. In
addition, we notice that Woeginger [15] provided an FPTAS for the problem
Pm|GoS|Cmin, however, the running time in [15] is high, which leads an interest
that we present a new PTAS and a new FPTAS for the problem Pm|GoS|Cmin
in linear time. Afterwards, we also design a PTAS for the problem P |GoSk|Cmin
in linear time.

This paper is divided into the following sections. In Section 2, we construct a
transformed instance from any instance of the problem P |GoS|Cmin, and then
prove some important lemmas. In Section 3, we present a PTAS with running
time O(mnO(1/ε2)) for the problem P |GoS|Cmin. In Section 4, we present a
PTAS and an FPTAS with running time O(n) for the problem Pm|GoS|Cmin,
where the number m of machines is a fixed constant. In Section 5, we design a
PTAS with running time O(n) for the problem P |GoSk|Cmin. We provide our
conclusions and future work in the last section.

2 Original Instance and Transformed Instance

For any given instance I = (J ,M; p, g) of the problem P |GoS|Cmin, sort the
machines in nonincreasing order of their GoS levels, i.e., g(M1) ≥ g(M2) ≥
· · · ≥ g(Mm). Let vj = min{i | g(Mi) ≤ g(Jj)} denote the machine index of
job Jj , and J[i] = {Jj | vj = i} denote the set of jobs with machine index i
(i = 1, 2, . . . , m). Let

L = min
{∑t

i=1 p(J[i])
t

∣∣∣ t = 1, 2, . . . , m
}

denote the minimum average load of the first t machines with p(J[i]) =
∑
Jj∈J[i]

pj .
Clearly, L ≥ OPT , where OPT denotes the optimal value for the instance
I = (J ,M; p, g).

For the problem P |GoS|Cmin, a feasible allocation must allocate all jobs to
the machines such that each job is assigned to exactly one machine. In fact,
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we call that an allocation
∑

is feasible if each job is allocated at most one
machine, because we can allocate the remaining jobs to arbitrary machines to
get a solution such that each job is allocated to exactly one machine.

The following two observations are similar to the two observations in Alon
et al. [1].

Observation 1. If a job Jj has processing time pj ≥ L, then there exists an op-
timum allocation

∑∗ = (S∗
1 , S∗

2 , . . . , S∗
m) in which job Jj is the only job assigned

to its machine.

Proof. Suppose that in some optimal allocation
∑∗, job Jj is assigned together

with some other jobs to a machine Mi. As L is an upper bound on OPT , re-
moving all jobs except Jj from the machine Mi cannot decrease the objective
function. ��

Hence, if there is a job Jj with processing time ≥ L, we assign it to the machine
Mvj . If vj < m, remove both the job Jj and the machine Mvj from the setting,
and reset J[vj+1] = J[vj+1] ∪J[vj ] −{Jj}; otherwise, remove both the jobs in J[m]
and the machine Mm from the setting. Then, we can handle a smaller instance
without changing the optimal value. Thus, we may assume that no jobs has
processing time ≥ L.

Observation 2. If no job has processing time ≥ L, then there exists an optimum
allocation

∑∗ = (S∗
1 , S∗

2 , . . . , S∗
m) in which all machine completion times Ci

satisfy L/2 ≤ Ci ≤ 2L, where Ci =
∑

Jj∈S∗
i

pj for 1 ≤ i ≤ m.

Proof. For convenience, given an instance I of the problem P |GoS|Cmin, we
refer a job Jj as large job if Jj has processing time ≥ L/2 and otherwise as small
job. First, suppose that Ci > 2L holds for some machine Mi, discarding jobs in
S∗
i until Ci ≤ 2L cannot decrease the goal value.
Next, we will prove that L/2 is a lower bound on OPT by presenting the

following algorithm: For i = 1 to m, if there remains a large job Jj in J[1] ∪ · · · ∪
J[i], we assign job Jj to the machine Mi, then stop assigning more jobs to Mi;
otherwise, we assign small jobs in J[1]∪· · ·∪J[i] to Mi until the completion time
of Mi first exceeds L/2. In the end, every machine completion time must exceed
L/2. Suppose, to the contrary, that the completion time of machine Mτ is less
than L/2, which implies no jobs in J[1] ∪ · · · ∪ J[τ ] are remained after assigning
jobs to machine Mτ .

According to our algorithm, each machine completion time Ci is no greater
than L. Hence, combining the definition of L, we have

τ∑
i=1

p(J[i]) =
τ∑
i=1

Ci < τL ≤ τ

∑τ
i=1 p(J[i])

τ
=

τ∑
i=1

p(J[i]),

a contradiction. Hence, the observation 2 holds. ��

In the sequel, similar to the strategy in Alon et al. [1], we introduce a so-called
transformed instance that is a kind of rounded version of the original instance
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I = (J ,M; p, g) of the problem P |GoS|Cmin, and that can easily be solved in
polynomial time.

For any instance I = (J ,M; p; g) of the problem P |GoS|Cmin and an integer
constant λ, we construct a transformed instance I�(λ) from the instance I =
(J ,M; p, g) as follows:

• Assume that the processing time of any job is less than L. Partition the
jobs into two subsets JB and JS , where JB = {Jj | pj > L/λ} and JS = {Jj |
pj ≤ L/λ}.

• For every job Jj in JB, the transformed instance I�(λ) contains a corre-
sponding job J�j with processing time

p�j =
⌈ pj
L/λ2

⌉ L

λ2 .

It is easy to verify that

p�j ≤ pj +
L

λ2 ≤ pj +
pj
λ

≤ λ + 1
λ

pj .

The GoS level of job J�j is indicated as the original GoS level g(Jj) of job Jj .
• For i = 1, 2, . . . , m, let JS[i] = JS∩J[i]. The instance I�(λ) contains a number

of auxiliary jobs, each of processing time L/λ. Specifically, for i = 1, 2, . . . , m,
let JA[i] be a set of ki auxiliary jobs with machine index i, where

ki =
⌈∑

Jj∈JS
[i]

pj

L/λ

⌉
.

Let p�j = L/λ denote the processing time of the auxiliary job JAj . Clearly,

∑
Jj∈JS

[i]

pj ≤
∑

JA
j ∈JA

[i]

p�j ≤
∑

Jj∈JS
[i]

pj +
L

λ
.

• The machines remain the same as in the instance I.
We notice that in the instance I�(λ), the processing times of all jobs are integer

multiples of L/λ2. Let

L� = min

{∑t
i=1

(
p�(JB[i]) + p�(JA[i])

)
t

∣∣∣ t = 1, 2, . . . , m

}

denote the minimum average load of the first t machines in the instance I�(λ).
By the fact

t∑
i=1

p(J[i]) =
t∑
i=1

( ∑
Jj∈JB

[i]

pj +
∑

Jj∈JS
[i]

pj

)
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≤
t∑
i=1

( ∑
J�

j∈JB
[i]

p�j +
⌈∑

Jj∈JS
[i]

pj

L
λ

⌉
L

λ

)

=
t∑
i=1

( ∑
J�

j∈JB
[i]

p�j +
∑

JA
j ∈JA

[i]

p�j

)

=
t∑
i=1

(
p�(JB[i]) + p�(JA[i])

)
we have

L = min

{∑t
i=1 p(J[i])

t

∣∣∣ t = 1, . . . , m

}

≤ min

{∑t
i=1(p

�(JB[i]) + p�(JA[i]))

t

∣∣∣ t = 1, . . . , m

}
= L�.

And by the fact

t∑
i=1

(
p�(JB[i]) + p�(JA[i])

)
=

t∑
i=1

( ∑
J�

j∈JB
[i]

p�j +
∑

JA
j ∈JA

[i]

p�j

)

=
t∑
i=1

( ∑
Jj∈JB

[i]

⌈ pj
L
λ2

⌉ L

λ2 +
⌈∑Jj∈JS

[i]
pj

L
λ

⌉L

λ

)

≤
t∑
i=1

( ∑
Jj∈JB

[i]

pj +
L

λ2 +
∑

Jj∈JS
[i]

pj +
L

λ

)

≤
t∑
i=1

p(J[i]) + t
2L

λ

we have L ≤ L� ≤ (1 + 2/λ)L.
Similar to Observation 2, we may assume that there is no job has processing

time ≥ L� in the instance I�(λ).
Observation 3. If no job has processing time ≥ L� in the instance I�(λ), then
there exists an optimum allocation in which all machine completion times Ci
satisfy L�/2 ≤ Ci ≤ 2L�, where 1 ≤ i ≤ m.

From now on, for convenience, for a job Jj in the instance I or in the trans-
formed instance I�(λ), we refer job Jj as a large job if it has the processing time
> L/λ and otherwise as a small job, i.e., having the processing time ≤ L/λ.

The two following lemmas about the relationships between allocations for
the instance I and allocations for the instance I�(λ) are very important to our
approximation schemes.
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Lemma 1. If there exists an allocation
∑

for the instance I with minimum
machine completion time at least C, then there exists an allocation

∑� for the
instance I�(λ) with minimum machine completion time at least C − L/λ.

Proof. In the allocation
∑

, replace every large job Jj in the instance I by its
corresponding job J�j in the instance I�(λ). This can never decrease a machine
completion time. Next, rearrange on every machine Mi and the jobs in such a
way that the small jobs are processed in the end, and let si denote their total
size. Clearly, we have

∑t
i=1 si ≤

∑t
i=1 p(JS[i]) for all t ≥ 1. For i = 1, 2, . . . , m, we

assign 
 si

L/λ� remaining auxiliary jobs in JA[1]∪· · ·∪JA[i] to Mi. This may decrease
a machine completion time at most L/λ. Suppose that there exists a machine
Mτ which can not be assigned 
 si

L/λ� auxiliary jobs, we have

τ∑
i=1

⌊ si
L/λ

⌋L

λ
>

τ∑
i=1

⌈p(JS[i])

L/λ

⌉L

λ
≥

τ∑
i=1

p(JS[i]) ≥
τ∑
i=1

si ≥
τ∑
i=1

⌊ si
L/λ

⌋L

λ

a contradiction. Hence, the lemma holds. ��

Lemma 2. Let
∑� be an allocation for the instance I�(λ) with minimum ma-

chine completion time at least C�. Then there exists an allocation
∑

for the
instance I with minimum machine completion time at least λC�/(1+λ)−2L/λ.

Proof. In the allocation
∑�, replace every large job J�j by its corresponding job

Jj in the instance I. This may decrease a machine completion time at most a
factor of λ/(λ+1). Next, let s�i denote the number of auxiliary jobs of processing
time L/λ that are processed on machine Mi in the allocation

∑�; rearrange on
every machine Mi the jobs in such a way that these auxiliary jobs are processed
in the end.

For i = 1, 2, . . . , m, we assign the remaining small jobs in JS[1] ∪ JS[2] ∪ · · · ∪JS[i]
to Mi until the total size of small jobs exceeds (s�i − 2)L/λ. We claim that the
total size of small jobs assigned to any machine is at least (s�i−2)L/λ in the end.
Suppose, to the contrary, that there exists a machine Mτ such that the total size
of small jobs assigned to it is less than (s�i − 2)L/λ, which implies that no small
jobs is remaining after assigning small jobs to Mτ . Since the size of small job in
I is at most L/λ, the total size of small jobs assigned to any machine is bounded
by (s�i − 1)L/λ. Thus, we have

τ∑
i=1

p(JS[i]) <
L

λ

τ∑
i=1

(
s�i − 1

)
=

L

λ

τ∑
i=1

s�i − τ
L

λ
≤L

λ

τ∑
i=1

⌈p(JS[i])

L/λ

⌉
− τ

L

λ
≤

τ∑
i=1

p(JS[i])

a contradiction. Hence, the lemma holds. ��

3 The Problem P |GoS|Cmin

Note that all jobs in the instance I�(λ) have processing times of the form kL/λ2,
where k ∈ {λ, λ + 1, . . . , λ2}. The jobs in the instance I�(λ) can be represented
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as a set N = {
−→
ni |

−→
ni = (niλ, n

i
λ+1, . . . , n

i
λ2), i = 1, 2, . . . , m}, where nik denotes

the number of jobs with machine index i whose processing times are equal to
kL/λ2. An assignment to a machine is a vector −→v = (vλ, vλ+1, . . . , vλ2), where
vk is the number of jobs of processing time kL/λ2 assigned to that machine.
The processing time of assignment −→v , denoted as l(−→v ), is

∑λ2

k=λ(vk · kL/λ2).

Let −→n =
∑m

i=1

−→
ni = (nλ, nλ+1, . . . , nλ2). Denote by F the set of all possible

assignment vectors with processing time between L�/2 and 2L�, i.e., F = {−→v |
L�/2 ≤ l(−→v ) ≤ 2L� and −→v ≤ −→n }. By the fact that the processing times of all
jobs are integer multiples of L/λ2 and L� ≤ (1 + 2/λ)L, it is easy to see that
|F | ≤ (2λ2 + 4λ)λ

2
holds. Denote by ψi the set of all feasible vectors that can

be allocated to machine Mi, i.e., ψi = {−→u | −→u ≤
∑i

t=1
−→
nt}. For every −→u ∈ ψi,

1 ≤ i ≤ m, we denote by T (i,−→u ) the value of optimum allocation of the jobs in
−→u to first i machines that only uses assignments from the set F .

For each −→u ∈ ψi, we compute T (i,−→u ) using the following recurrence:

Subroutine

Step 1 For −→u ∈ ψ1, originally set T (1,−→u ) = l(−→u );
Step 2 For −→u ∈ ψi, i = 2, . . . , m, compute

T (i,−→u ) = max{min{l(−→v ), T (i − 1, (−→u −−→v ) 
−→
ni)} | −→v ∈ F ∩ ψi},

where (−→u −−→v )
−→
ni = (min{uλ− vλ, n

i
λ}, min{uλ+1 − vλ+1, n

i
λ+1}, . . . ,

min{uλ2 − vλ2 , niλ2}).
Step 3 Output T (m,−→n ).

It is easy to check that the total running time of the preceding dynamic
programming is O(|F |

∑m
i=1 |ψi|). By the facts

|ψi| ≤
λ2∏
k=λ

(
nk + 1

)
≤ nλ

2−λ+1 and |F | ≤
(
2λ2 + 4λ

)λ2

,

we get the following result.

Theorem 1. For any fixed integer λ, an optimal solution for the transformed in-
stance I�(λ) of the problem P |GoS|Cmin is computed in O(m(2λ2+4λ)λ

2
nλ

2−λ+1).
Now, we are ready to present our first polynomial time approximation scheme for
the problem P |GoS|Cmin. For any instance I of the problem P |GoS|Cmin and
a positive number 0 < ε < 1, our approximation scheme is constructed in the
following structural form:

Algorithm PTAS-1

Step 1. Set λ = �7/ε�, and construct the instance I�(λ) from the instance I.
Step 2. Solve the instance I�(λ) optimally, and denote the optimal allocation∑� with goal value OPT �.
Step 3. Transform the schedule

∑� of the instance I�(λ) into an allocation
∑

with goal value OUT for the original instance I as described in
the proof of Lemma 2.
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Now, let OPT denote the goal value in the optimum schedule of the instance
I, we get the following result.

Theorem 2. For any ε > 0, the algorithm PTAS-1 can produce a schedule
∑

for
the problem P |GoS|Cmin, whose output value OUT satisfies OUT ≥ (1−ε)OPT ,
and the running time of PTAS-1 is O(mnO(1/ε2)), where the hidden constant
depends exponentially on 1/ε.

Proof. By Lemma 1, we have OPT � ≥ OPT − L/λ; and by Lemma 2, we have

OUT ≥ λ

1 + λ
OPT � − 2

λ
L.

By Observation 2, we have L ≤ 2OPT . Thus, we obtain

OUT ≥ λ

1 + λ
(OPT − L

λ
) − 2

λ
L

≥ OPT − 1
1 + λ

OPT − 1
1 + λ

L − 2
λ

L

≥ OPT − 1
λ

OPT − 1
λ

L − 2
λ

L

≥ OPT − 7
λ

OPT ≥ (1 − ε)OPT .

We now analyze the running time of the algorithm PTAS-1. The running
time of Step 1 is O(n); By Theorem 1, Step 2 can be implemented in time
O(mnO(1/ε2)); By Lemma 2, Step 3 can be implemented in time O(n). Thus, the
total running time of the algorithm PTAS-1 is O(mnO(1/ε2)). ��

4 The Problem Pm|GoS|Cmin

Now, we study a special version Pm|GoS|Cmin of the problem P |GoS|Cmin,
where the number m of machines is fixed. In this version, an important observa-
tion is that the number of jobs needed to allocate in the instance I�(λ) is bounded
by a constant. As the processing time of any job in the instance I�(λ) is at least
L/λ, and by Observation 3 and the fact L� ≤ (1 + 2/λ)L, the number of jobs
needed in

−→
ni is at most (2λ+4)m. Hence, the total number of jobs needed in the

instance I�(λ) is at most (2λ+4)m2, which is a constant. By simply enumerating
all possible assignments and selecting the maximum one, we can get the optimal
solution for the transformed instance I�(λ) in time O(m(2λ+4)m2

) = O(1), where
m is a fixed constant. Therefore, for the problem Pm|GoS|Cmin, Step 2 in the
algorithm PTAS-1 can be executed in O(1). With the arguments similar to the
proof of Theorem 2, we can prove the following result.

Theorem 3. For any ε > 0, the algorithm PTAS-1 can produce a schedule
∑

for the problem Pm|GoS|Cmin, whose output value satisfies OUT ≥ (1−ε)OPT ,
and the running time is O(n), where the hidden constant depends exponentially
on 1/ε and m.
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To obtain an FPTAS for the problem Pm|GoS|Cmin, we must avoid the expo-
nential dependence on 1/ε. Now, we will present a dynamic programming method
at Step 2 in the algorithm PTAS-1 to solve I�(λ) optimally, in the running time
n(2λ2 + 4λ)m = O(n).

In the dynamic programming method at Step 2 in the algorithm PTAS-1,
we will store certain information for certain schedules for the first k jobs in
the instance I�(λ). Every such schedule is encoded by an m-dimensional vec-
tor (C1, C2, . . . , Cm), where Ci specifies the overall processing times of all jobs
assigned to machines Mi for i = 1, 2, . . . , m. Originally, the state space ψ0 con-
tains only one element (0, 0, · · · , 0). For k ≥ 1, by Observation 3, it is suf-
ficient for the state space ψk only to contain all m-dimensional vectors with
Ci ≤ 2L� (i = 1, 2, · · · , m) to the first k job, and then the state space ψk is
derived from the state space ψk−1. Assume that J�k ∈ J[t]. For every vector
(C1, C2, · · · , Cm) ∈ ψk−1 and for every coordinate i ≥ t, we put the vector
(C1, C2, · · · , Ci + p�k, · · · , Cm) which satisfies Ci + p�k ≤ 2L� into ψk. In the end,
we run through all vectors in the final state space and output the schedule that
maximize the minimum coordinate.

Note that the processing times of all jobs in the transformed instance I�(λ)
are integer multiples of L/λ2. Hence, | ψk |≤ (2λ2 + 4λ)m = O(1). Therefore,
the running time of the dynamic programming algorithm is O(n), which implies
that Step 2 in the algorithm PTAS-1 can be executed in O(n) for the problem
Pm|GoS|Cmin. With the arguments similar to the proof of Theorem 2, we can
prove the following result.

Theorem 4. For any ε > 0, the algorithm PTAS-1 can produce a schedule
∑

for
the problem Pm|GoS|Cmin, whose output value satisfies OUT ≥ (1− ε)OPT , and
the running time is O(n), where the hidden constant depends exponentially on m.

5 The Problem P |GoSk|Cmin

In this section, we study the problem P |GoSk|Cmin as a special version of the
problem P |GoS|Cmin, where the number of GoS levels is bounded by k. Without
loss of generality, we assume that g(Mi), g(Jj) ∈ {1, 2, . . . , k} for 1 ≤ i ≤ n and
1 ≤ j ≤ m. For a given instance I = (J ,M; p, g) of the problem P |GoSk|Cmin,
let mi denote the number of machines with GoS level i. Clearly, m =

∑k
i=1 mi.

Let J[i] = {Jj | g(Jj) = i} denote the set of jobs with GoS level i. Obviously,
J = ∪ki=1J[i]. Let

L = min
{∑k

i=t p(J[i])∑k
i=t mi

∣∣∣ t = 1, 2, . . . , k
}

denote the minimum average load of the machines with GoS level at least t, where
p(J[i]) =

∑
Jj∈J[i]

pj . Clearly, L ≥ OPT , where OPT denotes the optimal value.
Observation 1 and Observation 2 still hold for the instance I of the problem
P |GoSk|Cmin.
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For any instance I = (J ,M; p; g) of the problem P |GoSk|Cmin and an integer
constant λ, we construct a transformed instance I�(λ) as follows:

• Partition the jobs into two subsets JB and JS , where JB = {Jj | pj > L/λ}
and JS = {Jj | pj ≤ L/λ}.

• For every job Jj in JB, the transformed instance I�(λ) contains a corre-
sponding job J�j with processing time p�j = � pj

L/λ2 � Lλ2 ≤ λ+1
λ pj.

The GoS level of job J�j is g(Jj).
• For i = 1, 2, . . . , k, let JS[i] = JS ∩J[i]. The instance I�(λ) contains a number

of auxiliary jobs, each of processing time L/λ. Specifically, for i = 1, 2, . . . , m,
let JA[i] be a set of ki auxiliary job with GoS level i, where

ki =
⌈∑

Jj∈JS
[i]

pj

L
λ

⌉
.

• The machines remain the same as in instance I.
Note that in the instance I�(λ), the processing times of all jobs are integer

multiples of L/λ2. Let

L� = min
{∑k

i=t

(
p�(JB[i]) + p�(JA[i])

)∑k
i=t mi

∣∣∣∣ t = 1, 2, . . . , k

}
denote the minimum average load of the machines with GoS level at least t in
instance I�(λ). As the similar arguments in the section 2, we have L ≤ L� ≤
(1 + 2/λ)L.

It is easy to see that Observation 3, Lemma 1 and Lemma 2 still hold. Note
that all jobs in the instance I�(λ) have processing times of the form tL/λ2, where
t ∈ {λ, λ + 1, . . . , λ2}. The jobs in the instance I�(λ) can be represented as a
set N = {

−→
ni |

−→
ni = (niλ, n

i
λ+1, . . . , n

i
λ2), i = 1, 2, . . . , k}, where nit denotes the

number of jobs with GoS level i whose processing times are equal to tL/λ2.
An assignment to a machine is a vector −→v = (vλ, vλ+1, . . . , vλ2), where vt is
the number of jobs of processing times tL/λ2 assigned to that machine. The
processing time of assignment −→v , denoted l(−→v ), is

∑λ2

t=λ(vt · tL/λ2). Denote by
F the set of all possible assignment vectors with processing time between L�/2
and 2L�, i.e., F = {−→v | L�/2 ≤ l(−→v ) ≤ 2L�;−→v ≤ −→n =

∑k
i=1

−→
ni}. It is easy to

verify that |F | ≤ (2λ2 + 4λ)λ
2

holds as in Section 3. Denote by ψi the set of all
feasible vectors with processing time less than 2L� that can be allocated to the
machine with GoS level i, i.e., ψi = {−→u | −→u ≤

∑k
t=i

−→
nt; L�/2 ≤ l(−→u ) ≤ 2L�}.

For every −→v ∈ F , we define F
−→v = {−→u ∈ F | l(−→u ) ≥ l(−→v )} and ψ

−→v
i = {−→u ∈ ψi

| l(−→u ) ≥ l(−→v )}. For each vector −→u ∈ ψ
−→v
i , denote by x

−→u
i be the numbers

of machines with GoS level i that are assigned −→u in ψ
−→v
i . For every −→v ∈ F ,

we construct an integer linear programming ILP(−→v ) with arbitrary objective
function, and that the corresponding constraints are:
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ILP (−→v )∑
−→u ∈ψ−→vi

x
−→u
i = mi; i = 1, 2, . . . , k

k∑
i=t

∑
−→u ∈ψ−→vi

x
−→u
i

−→u ≤
k∑
i=t

−→
nt; t = 1, 2, . . . , k

x
−→u
i ∈ Z+ ∪ {0} ∀−→u ∈ ψ

−→v
i

here, the first set of constraints guarantee that each machine is assigned at least
one vector (a set of jobs), and the second set of constraints ensure that no jobs
is used in more than once. For every −→v ∈ F , the number of variables in the
integer linear programming is

k∑
i=1

|ψ
−→v
i | ≤ k|F | ≤ k(2λ2 + 4λ)λ

2
,

and that the number of constrains is

k + k(λ2 − λ + 1) +
k∑
i=1

|ψ
−→v
i | ≤ k

(
λ2 − λ + 2 + (2λ2 + 4λ)λ

2
)
.

Both values are constants, as the two numbers λ and k are fixed constants, which
do not depend on the input.

To solve the integer linear programming ILP(−→v ), by utilizing Lenstra’s algo-
rithm in [11] whose running time is exponential in the dimension of the program
but polynomial in the logarithms of the coefficients, we can decide whether the
integer linear programming ILP(−→v ) has a feasible solution in time O(logO(1)n),
where the hidden constant depends exponentially on λ and k. And since the
integer linear programming ILP(−→v ) can be constructed in O(n) time, we can
find the optimal value OPT � = max{l(−→v )| ILP(−→v ) has a feasible solution of
the instance I�(λ)} in time O(|F |(logO(1)n + n)) = O(n). Hence, the following
theorem holds.

Theorem 5. For any fixed integer λ, an optimal solution for the transformed
instance I�(λ) of the problem P |GoSk|Cmin can be computed in time O(n), where
the hidden constant depends exponentially on λ and k.

By Theorem 5, for the problem P |GoSk|Cmin, Step 2 in the algorithm PTAS-1
can be executed in time O(n). Similar to Theorem 2, we can prove the following
result.

Theorem 6. For any ε > 0, the algorithm PTAS-1 can produce a schedule∑
for the problem P |GoSk|Cmin, whose output value OUT satisfies OUT ≥

(1 − ε)OPT , and the running time is O(n), where the hidden constant depends
exponentially on 1/ε and k.
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6 Conclusion

In this paper, we respectively present four approximation schemes for the max-
min allocation problem under a grade of service provision and its two spe-
cial versions, and the running time of the algorithm PTAS-1 for the problem
P |GoS|Cmin is O(mnO(1/ε2)), where ε > 0 is any real number.

In future study, it is desirable to design a new PTAS with running time O(n)
for the problem P |GoS|Cmin or to extend the approximation schemes in the
current paper to the general goals as in [1,7]. The most challenging study is to
design a PTAS for the general goals with running time O(n) as in [1].
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Abstract. Given an unreliable communication network, we seek for de-
termining a vertex from the network, the expected number of vertices
which connects to is maximum. Such vertex is named the most reliable
source (MRS) on the network. The communication failures may occur to
links or vertices of the network. The case was generally studied, where no
failure happens to each vertex and each link has an independent opera-
tional probability. Practically, failures frequently happen to the vertices,
including the transmitting fault and receiving fault. Recently, another
case is proposed, where each link is steady and each vertex has an inde-
pendent transmitting probability and receiving probability, and an O(n2)
time algorithm is presented for computing the MRS on such tree networks
with n vertices. In this paper, we propose a faster algorithm for this case,
whose time complexity is O(n).

Keywords: Most reliable source, Transmitting probability, Receiving
probability.

1 Introduction

A computer network or communication network is often modeled as an undi-
rected graph G = (V, E), where n vertices represent processing vertices or switch-
ing elements and m edges represent communication links [3]. For any given vertex
pair u and v of the network, the communication between u and v is composed of
every communication link on the path connecting u with v. Failures may happen
to vertices or communication links [4,5,6,8,11]. As networks grow in size, they
become increasingly vulnerable to the failures of some links and/or vertices. In
past decades, a large number of network reliable problems have arisen rapidly
and been extensively studied, others referring to [1,2,7,9,10].

In unreliable communication networks, the vertex, the expected number of
vertices which connects to is maximum, is named the most reliable source (MRS)
on the network. The problem for determining the MRS on given network is one of
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the network reliable problems, which has caused many experts’ interests. Several
articles studied the case where no failure happens to vertices and each link has
an independent operational probability. For tree networks, Melachrinoudis and
Helander [8] gave an O(n2) time algorithm and Xue [11] presented an O(n)
time algorithm separately. Later, Colbourn and Xue [5] proposed a linear time
algorithm for computing the MRS on series-parallel graphs. Recently, Ding [6]
concentrated on another case where no failure happens to links and each vertex
has an independent probability of making faults, and proposed an O(n2) time
algorithm. In [6], the probability of making faults of each vertex includes two
sides, one is transmitting fault and the other is receiving fault. For any vertex u
and v of the network, the communication link from u to v is correct if and only
if no failure happens to the transmitting process of u and no failure happens
to the receiving process of v. In this paper, we continue to study such case and
design a faster algorithm, whose time complexity is O(n).

The rest of this paper is organized as follows. In Sect. 2, we present some defi-
nitions and fulfil some preliminary works. In Sect. 3, we take effect of the results
in Sect. 2 to design a linear time algorithm for computing the MRS on a tree net-
work where each link is steady and each vertex has an independent transmitting
probability and receiving probability. In Sect. 4, we present a numerical example
to illustrate our algorithm. In Sect. 5, some suggestions on future research are
concluded.

2 Definitions and Preliminaries

In the rest of this paper, we let T = (V, E, P ) denote a weighted tree network
with n vertices, where T is regarded as a rooted tree with root vertex R. We let L
denote the set composed of all leaves of T . For each vi ∈ V , it is associated with
a pair of weights 〈p(vi), p(vi)〉 of P , where p(vi) denotes the probability that vi
transmits messages correctly and p(vi) denotes the probability that vi receives
messages correctly. For convenience, we call p(vi) transmitting probability of vi
and call p(vi) receiving probability of vi.

For each edge {vi, vj} ∈ E, there are two arcs associated with {vi, vj}. We let
(vi, vj) and (vj , vi) denote the directed edge from vi to vj and from vj to vi re-
spectively. The operational probability of (vi, vj) is denoted by p(vi, vj). Consid-
ering the vertex operational probabilities (including the transmitting probability
and the receiving probability) are independent and the operational probability
of (vi, vj) is determined by the transmitting probability of vi and the receiving
probability of vj , the operational probability of (vi, vj) can be computed by

p(vi, vj) = p(vi) · p(vj). (1)

Similarly, p(vj , vi) = p(vj) · p(vi). In general, p(vi, vj) is distinct with p(vj , vi),
so that {vi, vj} is associated with two nonsymmetric arcs on weight (see Fig. 1).

The arc set composed of 2n−2 arcs is denoted by A, i.e. A = {(vi, vj), (vj , vi) :
{vi, vj} ∈ E}. For each (vi, vj) ∈ A, the arc operational probability of (vi, vj) is
computed by (1). Moreover, we introduce P ∗ to denote the set of arc operational
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(p(v ),p(v ))

(p(v ),p(v ))v
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i
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jjj

j

j
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vj
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Fig. 1. Left-hand undirected rooted tree T = (V, E, P ) where P denotes the set of
vertex operational probability pair is transformed into right-hand directed rooted tree
T ∗ = (V, A,P ∗) where P ∗ denotes the set of arc operational probability

probability, consisting of all operational probabilities of all arcs of A, i.e. P ∗ =
{p(vi, vj) : (vi, vj) ∈ A}. As a result, we construct a new directed rooted tree
T ∗ = (V, A, P ∗) based on T = (V, E, P ) (see Fig. 1).

Lemma 1. To compute the MRS on an undirected tree T = (V, E, P ) is equiv-
alent to compute the MRS on its corresponding directed tree T ∗ = (V, A, P ∗).

It is clear that T = (V, E, P ) is an undirected tree where failures only happen
to vertices and T ∗ = (V, A, P ∗) is a directed tree where failures only happen to
links. Lemma 1 states that to compute the MRS on T where all links are steady
and failures only happen to vertices is equivalent to compute the MRS on its
corresponding T ∗ where each vertex has no failure and failures only happen to
links. Consequently, our main task is how to compute the MRS on a directed
rooted tree network.

For each vi ∈ V , we use C(vi) to denote the set which consists of all children of
vi. In the rest of this paper, for convenience, we always suppose that fi denotes
the parent of vi (except the root vertex R). Each fi corresponds to one exact
vertex of V , which is signed by subscript i(f) ( i.e. vi(f) ).

Let Tα(vi) to denote the subtree of T rooted at vi. The vertex set of Tα(vi) is
denoted by Vα(vi) and the vertex set composed of all vertices outside of Tα(vi)
is denoted by Vβ(vi). We introduce U �W to denote U ∪W provided U ∩W = ∅.
Hence V = Vα(vi) � Vβ(vi).

Given a vertex vi ∈ V , it is evident that Vα(vi) = {vi} if vi is a leaf of T
and Vβ(vi) = ∅ if vi is the root of T . Otherwise, we presents the decomposition
scheme of Vα(vi) and Vβ(vi) in detail by Lemma 2 (see Fig. 2).

Lemma 2. Given a vertex vi of V , we obtain
(i) If vi ∈ V − L, then Vα(vi) can be decomposed as

Vα(vi) =

( ⊎
vk∈C(vi)

Vα(vk)

)
� {vi}. (2)

(ii) If vi ∈ V − {R}, then Vβ(vi) can be decomposed as

Vβ(vi) =

( ⊎
vt∈C(fi)−{vi}

Vα(vt)

)
� Vβ(fi) � {fi}. (3)
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Fig. 2. Illustration of decomposing V at vertex vi colored with black

By Lemma 2, V is recursively decomposed from top root to bottom leaves, of
which our algorithm for computing the MRS on T ∗ is designed on basis.

Definition 1. Given directed rooted tree T ∗=(V, A, P ∗) based on T =(V, E, P ),
let X (vi) denote the expected number of vertices in Vα(vi) which vi can connect
to, and let Y(vi) denote the expected number of vertices in Vβ(vi) to which vi
can connect.

Theorem 1. Given directed rooted tree T ∗ = (V, A, P ∗) based on T = (V, E, P ),
the expected number of vertices to which vi connects is X (vi) + Y(vi).

Proof. For each vi ∈ V , the vertices to which vi connects are the union of vertices
in Vα(vi) and those in Vβ(vi) to which vi connects due to V = Vα(vi) � Vβ(vi).
By Definition 1, the expected number of vertices in Vα(vi) which vi connects to
is X (vi) and the expected number of vertices in Vβ(vi) which vi connects to is
Y(vi). ��

Based on Theorem 1, our critical task is to compute X (vi) and Y(vi) for each
vi ∈ V in order to compute the expected number of vertices which vi connects
to. According to Definition 1, we investigate X (vi) = 1 for each vi ∈ L and
Y(R) = 0. Otherwise, the following Theorem 2 shows the formulas to compute
X (vi) and Y(vi) recursively (see Fig. 3).

Theorem 2. For each vertex vi in V − L, we have

X (vi) = 1 +
∑

vk∈C(vi)

X (vk) · p(vi, vk). (4)
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Fig. 3. An illustration of computing the expected number of vertices which vi connects
to for Theorem 1. It is also an illustration of computing X (vi) and Y(vi) for Theorem 2.

For each vertex vi in V − {R}, we have

Y(vi) =

(
Y(fi) +

∑
vt∈C(fi)−{vi}

X (vt) · p(fi, vt) + 1

)
· p(vi, fi). (5)

Proof. For each vi ∈ V −L, (2) implies that the vertices in Vα(vi) that vi connects
to are the union of vertices in each Vα(vk) where vk ∈ C(vi) and vi itself. It is
certain that vi connects to itself. The expected number of vertices in each Vα(vk)
to which vi connects is X (vk) · p(vi, vk) by Definition 1.

For each vi ∈ V −{R}, (3) makes it clear that vi via fi connects to all vertices
in Vβ(vi) and the vertices in Vβ(vi) are from the union of vertices in each Vα(vt)
where vt ∈ C(fi) − {vi} and vertices in Vβ(fi) and fi itself. It is certain that fi
connects to itself. The expected number of vertices in each Vα(vt) to which fi
connects is X (vt) · p(fi, vt), and those in Vβ(fi) is Y(fi) by Definition 1. ��

3 The Linear Time Algorithm

Based on Theorem 1, X (vi) + Y(vi) is the expected number of vertices that vi
connects to. The maximum one amongst all such values corresponds to the MRS
on T ∗. Therefore, we can determine the MRS on T ∗ with n vertices by O(n) time
provided that we can compute the values of X (vi) and Y(vi) for all vi ∈ V by
O(n) time. In this section, we propose such an algorithm. At first, we introduce
thr important Lemma 3 as follows.
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Lemma 3. For each vertex vi in V − {R}, we have

Y(vi) = (Y(fi) + X (fi) −X (vi) p(fi, vi)) · p(vi, fi). (6)

Proof. Based on definition of X (vi) and Y(vi) and referring to Fig. 3, we conclude
from (5) that for each vertex vi in V − {R}

Y(vi) =
(
Y(fi) +

∑
vt∈C(fi)−{vi}

X (vt) p(fi, vt) + 1
)
· p(vi, fi)

=
(
Y(fi) +

∑
vt∈C(fi)

X (vt) p(fi, vt) −X (vi) p(fi, vi) + 1
)
· p(vi, fi)

=
(
Y(fi) +

(
1 +

∑
vt∈C(fi)

X (vt) p(fi, vt)
)
−X (vi) p(fi, vi)

)
· p(vi, fi)

=
(
Y(fi) + X (fi) −X (vi) p(fi, vi)

)
· p(vi, fi). ��

Lemma 3 makes it clear that the value of Y(vi) can be computed by
(
Y(fi)+

X (fi)−X (vi)p(fi, vi)
)
·p(vi, fi) after the values of X (vi),X (fi),Y(fi) have been

obtained. In fact, we can apply (4) to compute recursively each value of X (vi)
from bottom leaves up to top root among T ∗ (see Step 2 of algorithm DRMRS),
beginning with X (vi) = 1 for all vi ∈ L. On the other hand, we can apply (6)
to compute recursively each value of Y(vi) from top root down to bottom leaves
amongst T ∗ (see Step 3 of algorithm DRMRS), beginning with Y(R) = 0.

For simplicity of presentation, we let H(T ∗) denote the height of T ∗ and let
h denote the variable of current height. Let Vh denote the set composed of all
vertices on the h-th level of T ∗. Specially, VH(T∗) = {R}. Let Ci denote the set
composed of all children of vi. Hence

V =
H(T∗)⊎
h=1

Vh and Vh−1 =
⊎

vi∈Vh

Ci, h = 2, . . . ,H(T ∗)

Furthermore, it yields that

L =
H(T∗)⊎
h=1

{
Vh ∩ L

}
(7)

and

V − L =
H(T∗)⊎
h=1

{
Vh ∩ (V − L)

}
. (8)

Then it is not hard to be verified that
H(T∗)∑
h=1

|Vh| = |V | (9)

and ∑
vi∈V−L

|Ci| = |E| . (10)
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For each vi ∈ V , let Xi record the value of X (vi) and Yi record the value
of Y(vi), let P[i,j] record the operational probability of (vi, vj). Accordingly, the
value of X (fi) is recorded by Xi(f) and Y(fi) by Yi(f). Initially, we set Xi to
one and set Yi to zero. Our algorithm DRMRS for computing Xi and Yi is
presented as follows.

Algorithm DRMRS

Input: The directed rooted tree T ∗ = (V, A,P ∗).
Output: The value of Xi and Yi for each vertex vi of V .

Step 1 {Initializing the value of each Xi and Yi. }
for each vertex vi of V do

Xi := 1, Yi := 0;
end for

Step 2 { Computing the value of each Xi. }
for h from 1 up to H(T ∗) do

for each vi ∈ Vh do
if vi ∈ L then

break;
else

for each vk ∈ Ci do
Xi := Xi + Xk · P[i,k];

end for
end if

end for
end for

Step 3 { Computing the value of each Yi. }
for h from H(T ∗) down to 1 do

if h = H(T ∗) then
break;

else
for each vi ∈ Vh do

Yi :=
(
Yi(f) + Xi(f) − Xi · P[i(f),i]

)
· P[i,i(f)];

end for
end if

end for

Theorem 3. Given the directed rooted tree network T ∗ = (V, A, P ∗) with n
vertices, algorithm DRMRS can compute the MRS on T ∗ correctly, whose total
time complexity is O(n).

Proof. At first, the Step 1 of algorithm DRMRS initializes the value of Xi and
Yi for each vi ∈ V , which occupies O(n) time.

Subsequently, the Step 2 of algorithm DRMRS computes the value of each
Xi from leaves up to root. The value of Xi where vi ∈ Vh ∩ L is just the initial
value Xi = 1. The value of Xi where vi ∈ Vh ∩ (V − L) can be computed by
Xi = 1 +

∑
vk∈Ci

Xk ·P[i,k] due to (4) since all values of Xl where vl ∈ Vh−1 =
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vi∈Vh

Ci have been obtained in the previous loop. Thus, the time spent in
computing the value of Xi for all vi ∈ V is

H(T∗)∑
h=1

∑
vi∈Vh∩L

O(1) +
H(T∗)∑
h=1

∑
vi∈Vh∩(V−L)

∑
vk∈Ci

O(1)

(7)
=

∑
vi∈L

O(1) +
H(T∗)∑
h=1

∑
vi∈Vh∩(V−L)

O(|Ci|)

(8)
= O(|L|) +

∑
vi∈V−L

O(|Ci|)
(10)
= O(|L|) + O(|E|) = O(n).

Finally, the Step 3 of algorithm DRMRS computes the value of each Yi from
root down to leaves. The value of Yi where vi ∈ VH(T∗) is just the initial value
Yi = 0. The value of Yi where vi ∈ Vh, h = 1, 2, . . . ,H(T ∗)−1 can be computed
by Yi =

(
Yi(f) + Xi(f) − Xi · P[i(f),i]

)
· P[i,i(f)] due to (6) as all values of Xp

where vp ∈ V have been computed previously and all values of Yq where vq ∈
Vh+1 have been obtained in the previous loop. Thus, the time spent in computing
the value of Yi for all vi ∈ V is

O(1) +
H(T∗)−1∑
h=1

∑
vi∈Vh

O(1) = O(1) +
H(T∗)∑
h=1

O(|Vh|) −O(|VH(T∗)|)
(9)
= O(n).

The total time occupied by algorithm DRMRS to compute the value of Xi

and Yi for all vi ∈ V is the sum of time spent separately in Step 1 and Step 2
and Step 3. Therefore, the time complexity of algorithm DRMRS is O(n). ��

4 An Example

In this section, we set an undirected unrooted tree network (shown as the left-
hand graph in Fig. 4 where each vertex is associated with one vertex operational
probability pair) as an example to illustrate our algorithm. Our objective is to
compute its MRS. According to Lemma 1, our critical task is to determine the
MRS on its corresponding directed tree network rooted at vertex M (shown as the
right-hand graph in Fig. 4 where each arc is associated with one arc operational
probability).

In Table 1, the column of i shows all vertices of given graph and the column of
Ei shows the expected number of vertices which i connects to. At first, Step 1 of
algorithm DRMRS initializes Xi = 1 for i = A, B, C, D, E, G, H, I, L and YM = 0.
During the Step 2, it computes the values of XF,XJ,XK,XM in turn. During
the Step 3, it computes the values of Yi, i = M, J, K, L, D, E, F, G, H, I, A, B, C
in turn. Finally, the values in the column of Ei are computed by adding the
values in the column Xi to the values in the column Yi by the coordinates. It
is evident that vertex F is the MRS on given graph.
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Fig. 4. Applying algorithm DRMRS to compute the MRS on given left-hand graph

Table 1. The data of Xi,Yi,Ei for each vertex i on given graph

i Xi Yi Ei

A 1.00000000000000 7.92455970350880 8.92455970350880
B 1.00000000000000 8.03530402202520 9.03530402202520
C 1.00000000000000 7.85153010350880 8.85153010350880
D 1.00000000000000 7.86567845522520 8.86567845522520
E 1.00000000000000 8.26640053706604 9.26640053706604
F 3.67540000000000 6.76752427960000 10.44292427960000
G 1.00000000000000 6.97517060521554 7.97517060521554
H 1.00000000000000 7.27692627460890 8.27692627460890
I 1.00000000000000 7.72758516135060 8.72758516135060
J 5.88810280000000 4.21312112424000 10.10122392424000
K 3.48400000000000 5.80044686892744 9.28444686892744
L 1.00000000000000 7.77487290412290 8.77487290412290
M 9.60108251740000 0.00000000000000 9.60108251740000

5 Conclusions

As we all know, the network failures may happen to vertices and/or network
links. Some articles [5,8,11] seek for computing the MRS on given unreliable
networks where no failures happen to vertices and each link has an independent
operational probability. The paper [6] and this paper focus on how to compute
the MRS on unreliable tree networks where each link is steady and each vertex
has an independent transmitting probability and receiving probability. Actually,
the network failures may happen to vertices and links simultaneously. We believe
that the approach used in this paper can be applied to compute the MRS on
such unreliable tree networks.
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In past decades, a large number of network reliability problems [4] have arisen
rapidly and been studied extensively. However, few papers were interested in the
unreliable networks where failures happen to vertices. We also believe that our
approach can be generalized to solve these reliability problems, particularly on
unreliable tree networks with faulty vertices.
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Abstract. The objective of the classical Joint Replenishment Problem
(JRP) is to minimize ordering costs by combining orders in two stages,
first at some retailers, and then at a warehouse. These orders are needed to
satisfy demands that appear over time at the retailers. We investigate the
natural special case that each demand has a deadline until when it needs
to be satisfied. For this case, we present a randomized 5/3-approximation
algorithm, which significantly improves the best known approximation ra-
tio of 1.8 obtained by Levi and Sviridenko (APPROX’06). We moreover
prove that JRP with deadlines is APX-hard, which is the first such inap-
proximability result for a variant of JRP. Finally, we extend the known
hardness results by showing that JRP with linear delay cost functions is
NP-hard, even if each retailer has to satisfy only three demands.

1 Introduction

The Joint Replenishment Problem (JRP) is one of the fundamental problems in
inventory theory [1]. In this problem, we have a warehouse and some retailers
1, 2, . . . , N , which face demands D that appear over time. The time horizon is
finite and partitioned into periods 1, 2, . . . , T . Therefore, each demand in D is de-
fined by a tuple (i, t, h), where i ∈ {1, . . . , N} is its release retailer, t ∈ {1, . . . , T }
is its appearance period, and h : N0 → R+ is a monotonously increasing func-
tion that defines its delay cost (in the traditional setting, this function is linear).
To satisfy arbitrary many demands in some period t, a retailer i needs to send
an order to the warehouse in this period, which implies retailer ordering cost
Ki. In this case, the warehouse orders in period t as well, which implies addi-
tional warehouse ordering cost K0. However, this warehouse order can be used
by arbitrary many retailer orders. More formally, a schedule for such an instance
consists of a set of warehouse orders S0 ⊆ {1, . . . , T } and a sequence of subsets of
retailer orders S1, S2, . . . , SN ⊆ S0 of the retailers 1, 2, . . . , N , respectively. This
inclusion ensures that whenever a retailer orders, the warehouse orders as well.
Consequently, the warehouse and retailer ordering costs of such a schedule are
K0|S0| and

∑N
i=1 Ki|Si|, respectively. We assume that each demand (i, t, h) ∈ D
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is satisfied by the first order t′ ∈ Si with t′ ≥ t, whereas it then needs to be
delayed during the periods t, t+1, . . . , t′−1, which results in delay cost h(t′− t).
The objective of JRP is to find a schedule that satisfies all demands with mini-
mum cost, that is, the sum of warehouse ordering costs, retailer ordering costs,
and delay costs. Consequently, we need to balance ordering costs and delay costs.
As defined above, we study JRP in the make-to-order variant [5], that is, each
demand is satisfied after it appears. This variant is equivalent to the more com-
mon make-to-stock variant, where the demands are satisfied by goods which are
ordered before the appearance of the demands, and then kept in inventory [14].

In the traditional setting treated in [3], the delay cost functions are linear,
which corresponds to the well-known flow time objective from scheduling. We
refer to this special case as JRP-L. However, in many scenarios, it is more rea-
sonable to have fixed deadlines, which is for instance necessary if we have to deal
with perishable goods in the make-to-stock variant, or with fixed contract dead-
lines in the make-to-order variant. Besides the flow time objective, this is also
the most common timing constraint in basically all areas of scheduling. Only to
mention one, speed-scaled scheduling has been investigated in the deadline [16]
and in the flow time case [2]. We refer to JRP with deadlines as JRP-D. To
implement this special case, for each demand (i, r, h) ∈ D, there is a deadline
d ≥ r such that h(t) = 0, for 0 ≤ t ≤ d − r, and h(t) = ∞, otherwise. We also
refer to the periods {r, r+1, . . . , d} as the due interval of (i, r, h), and write this
demand as (i, r, d). Hence, since this cost structure implies that a deadline is
never exceeded, the cost of a schedule S simplifies to

∑N
i=0 Ki|Si|.

A common generalization of JRP in the make-to-stock variant is the One-
Warehouse Multi-Retailer Problem (OWMR) [12]. In this generalization, we are
allowed to store the goods satisfying the demands at the warehouse, which con-
trasts to JRP, where the warehouse only has the role of a cross-docking point.
Note that OWMR contains JRP as a special case if we set the delay costs at the
warehouse to infinity, which insures that a good is never stored there.

Previous Work. Dozends of heuristics and exact algorithms with superpoly-
nomial running time have been proposed for JRP and its variants during the
last decades. Only to mention some older papers, we refer to [17,15,11]. More-
over, the NP-hardness of JRP-L and hence JRP was shown in [3], but little is
known about its approximability. Only recently, there has been an increasing
interest in finding constant factor approximation algorithms [13,14,12]. But as
mentioned in [14], it is not even known whether this problem is APX-hard, i.e.,
if there is an ε > 0 such that finding a (1+ ε)-approximation in polynomial time
is NP-hard. Levi, Roundy, and Shmoys [13] presented a 2-approximation algo-
rithm for JRP, even for arbitrary monotonously increasing delay cost functions,
that can hence also be applied to JRP-D. Moreover, Levi and Sviridenko [12] im-
proved the approximation ratio to 1.8, even for the more general OWMR setting,
which is also the best known approximation guarantee for JRP-D. It is worth
mentioning that this algorithm does not provide an improved approximation
ratio in the special case that we only have deadlines. Independently, Becchetti
et al. [4] presented a 2-approximation algorithm for the Latency Constrained
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Data Aggregation Problem in tree networks, which contains JRP-D as a special
case for trees of depth two. Finally, Buchbinder et al. [5] recently presented a
3-competitive online algorithm for JRP.

Both special cases, JRP-L and JRP-D, contain a prominent problem as a
special case for N = 1, i.e., if there is a single retailer. In this case, JRP-L is a
discrete time version of the well-known TCP Acknowledgment Problem [6], and
JRP-D is the Interval Stabbing Problem [9], where, given a set of intervals, we
have to find a minimum set of points such that each interval contains at least one
of them (each due interval corresponds to an interval, and each order corresponds
to a point). This problem is equivalent to Clique Cover in interval graphs [9], and
can be solved via a simple greedy procedure in linear time. Therefore, we can
also think of JRP-D as a hierarchical version of the Interval Stabbing Problem,
which itself attracted a considerable amount of research. Even et al. [7] showed
that even the capacitated version, where each point has a capacity that indicates
how many intervals it may cover, is solvable in polynomial time. However, the
Rectangle Stabbing Problem, which is a generalization of the Interval Stabbing
Problem to two dimensions, is NP-hard [10], but there is a 2-approximation
algorithm [8].

Contributions and Outline. We prove the APX-hardness of JRP-D in Sec-
tion 7, which is the first APX-hardness proof for a variant of JRP. Moreover, we
significantly improve the approximation ratio for JRP-D by presenting a random-
ized 5/3-approximation algorithm in Section 6. Note that none of the previous
algorithms [13,12] gives an improved approximation ratio for the special case of
deadlines. Besides that, this also improves the approximation ratio of the La-
tency Constrained Data Aggregation Problem for the special case of trees of
depth two [4]. On the other hand, JRP can be solved in polynomial time by
dynamic programming for a fixed number of retailers, or for a fixed number of
time periods [11,15,17]. We show in Section 7 that the traditional setting JRP-L
with linear delay cost functions is strongly NP-hard, even if each retailer needs
to satisfy a constant number of demands. This case is not included in the NP-
hardness proof in [3]. Specifically, we show that three demands suffice. It is worth
noting that our NP-hardness proof is also much simpler than the NP-hardness
proof in [3].

High-Level Algorithmic Ideas. We adapt some ideas from the algorithm for
JRP of Levi and Sviridenko [12] with approximation ratio 1.8, which we name
SHIFT. This algorithm has the following high-level structure: Combine two algo-
rithms that both first select the warehouse orders S0, and then, for each retailer i,
select a subset of retailer orders Si ⊆ S0 separately. Each selection step is based
on an LP-rounding approach, which exploits the ‘line’-structure of the problem
implied by the notion of time. Our algorithm has the same high-level structure
and is based on a similar LP-rounding approach. We introduce this approach in
Section 2, and show how to combine algorithms in the same section. But since
we have deadlines, we are able to select retailer orders more greedily than in
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algorithm SHIFT as explained in Section 3. This immediately allows us to adapt
this algorithm to JRP-D in Section 4. It is worth noting that this adaption is far
simpler than the original algorithm, but surprisingly does not yield an improved
approximation ratio. Therefore, we introduce a different randomized warehouse
order selection method in Section 6, which depends on an input density function
of a random variable. We use two techniques to analyze this algorithm: First,
we show that an optimal input density function corresponds to an optimal strat-
egy for a game, which we call generalized tally game. We introduce this game
separately in Section 5, since we think that it is of independent interest and
raises some interesting questions. Second, we use an adaption of Wald’s equa-
tion, whereas we are not aware of any previous use of such an adaption in the
analysis of a randomized algorithm.

2 LP-Formulation and Continuous Schedules

We formulate JRP-D as an integer program by introducing an integral variable
yit for each retailer i and each period t that indicates whether retailer i orders
in period t. Analogously, we have an integral variable xt for each period t that
indicates whether the warehouse orders in this period:

minimize
T∑
t=1

K0xt +
N∑
i=1

T∑
t=1

Kiyit

subject to
d∑
t=r

yit ≥ 1 for (i, r, d) ∈ D (1)

xt ≥ yit for 1 ≤ i ≤ N, 1 ≤ t ≤ T (2)
xt ∈ {0, 1} for 1 ≤ t ≤ T
yit ∈ {0, 1} for 1 ≤ i ≤ N, 1 ≤ t ≤ T

Constraints (1) enforce that during the due interval of each demand its retailer
orders at least once, and constraints (2) ensure that whenever a retailer orders,
the warehouse orders as well. Let (LP) be the corresponding linear program
where we replace the integrality constraints by the constraints 0 ≤ xt ≤ 1, for
1 ≤ t ≤ T , and 0 ≤ yit ≤ 1, for 1 ≤ i ≤ N, 1 ≤ t ≤ T . In the following, let
(x, y) be an optimum of (LP), which we can compute in polynomial time with
the Ellipsoid method. Let W :=

∑T
t=1 xt and Ri :=

∑T
t=1 yit, for 1 ≤ i ≤ N .

Using the optimum (x, y) of (LP), we explain in the following how to replace
the periods by ‘continuous’ time, which allows us to simplify the description of
the following algorithms. To this end, we need the notion of a continuous schedule
S′, that is, a set of warehouse orders S′

0 ⊆ [0, W ) with a sequence of subsets of
retailer orders S′

1, S
′
2, . . . , S

′
N ⊆ S′

0. Hence, the difference to a schedule is that the
warehouse orders are from the set [0, W ) instead of the set {1, . . . , T }. We also
refer to a value t ∈ [0, W ) as a time. Finally, define x0 := 0 and xt :=

∑t
s=0 xs,

for 0 ≤ t ≤ T . We can convert a continuous schedule S′ into a schedule S as
follows:
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1. For each period t = 1, . . . , T : If S′
0 ∩ [xt−1, xt) �= ∅, then add the

order t to S0.
2. For each retailer i = 1, . . . , N : Proceed analogously as for the ware-

house in the first step, whereas replace S′
0 and S0 by S′

i and Si,
respectively.

For each 1 ≤ i ≤ N , since S′
i ⊆ S′

0, we obtain that Si ⊆ S0 as well, and hence
S is truly a schedule. On the other hand, since we might pool orders during this
conversion,

|Si| ≤ |S′
i|, for 0 ≤ i ≤ N. (3)

For each retailer i, define the multi-interval ri :=
⋃T
t=1[xt−1, xt−1+yit), which

is contained in [0, W ). Moreover, for a pair of times a ≤ b, define mi(a, b) :=∫ b
a χi(x) dx, where χi is the indicator function of the multi-interval ri. We also

refer to mi(a, b) of the mass of the interval [a, b] in ri. Clearly, mi(a, b) ≤ b − a.
Moreover, we say that the interval [a, b] is covered by a set A ⊆ [0, W ) if A ∩
[a, b] �= ∅. Finally, we say that [a, b] has unit mass if it has mass one. Observe
that mi(0, W ) = Ri, for each retailer i. Using these definitions, the following
lemma provides a criteria for the feasibility of S with respect to S′:

Lemma 1. A continuous schedule S′ can be converted into a feasible schedule
S if for each retailer i and each pair of times a ≤ b with mi(a, b) ≥ 1, we have
that [a, b] is covered by S′

i.

Proof. Consider a fixed retailer i and a demand (i, r, d) ∈ D. Then we have that∑d
t=r yit ≥ 1, and hence, mi(xr−1, xd) ≥ 1. Consequently, the interval [xr−1, xd]

is covered by S′
i, which implies by the construction of S that demand (i, r, d) is

satisfied in S, since the corresponding constraint (1) is satisfied. ��

Analogously, we say that a continuous schedule S′ is feasible if the property
from Lemma 1 is satisfied. We obtain the following lemma, which allows us to
combine algorithms.

Lemma 2. If there are two polynomial time (randomized) algorithms A1 and
A2, where algorithm A1 returns a feasible continuous schedule S′ with

E

[
|S′

0|
W

]
≤ α1 and E

[
|S′
i|

Ri

]
≤ β1, for 1 ≤ i ≤ N,

algorithm A2 returns a feasible continuous schedule S′ with

E

[
|S′

0|
W

]
≤ α2 and E

[
|S′
i|

Ri

]
≤ β2, for 1 ≤ i ≤ N,

α1 ≤ α2, β1 ≥ α1, β2 ≤ α2, and there is an x with α1 + β1x = α2 + β2x, then
there is a randomized (α1 + β1x)/(1 + x)-approximation algorithm for JRP-D.
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Proof. Let CW := K0W and CR :=
∑N

i=1 KiRi be the warehouse ordering costs
and retailer ordering costs of the optimum (x, y) of (LP), respectively (recall that
W =

∑T
t=1 xt and Ri =

∑T
t=1 yit, for 1 ≤ i ≤ N). Moreover, define λ := CR/CW .

We compute a feasible continuous schedule S′ with algorithm A1 or algorithm
A2, whereas we choose A1 if λ ≤ x and A2 if λ > x, and then we use Lemma 1
to convert S′ into a feasible schedule S. Because of inequalities (3), the cost∑N

i=0 Ki|Si| of S is bounded from above by
∑N
i=0 Ki|S′

i|. Moreover, the cost of
an optimal schedule is bounded from below by CW + CR. Therefore, the choice
of the algorithm above, linearity of expectation, and simple arithmetic shows
that the cost of S is at most (α1 + β1x)/(1 + x) times the cost of an optimal
schedule, which proves the claim. ��

Lemma 2 allows us to restrict our attention to the computation of continuous
schedules. Hence, in the remainder of this paper, a schedule is always a continu-
ous schedule.

3 Greedy Selection of Retailer Orders

As explained in Section 2, recall that we only consider continuous schedules in
the remainder of this paper, and we hence refer to a continuous schedule simply
as a schedule. Now assume that we have already selected the warehouse orders
S0 of a schedule S such that each unit length interval [a, b] ⊆ [0, W ) is covered
by S0, i.e., S0 ∩ [a, b] �= ∅. Then, in order to complete S, we only have to select
the retailer orders with respect to S0. We can do this as follows:

1. For each retailer i = 1, . . . , N : Iteratively increase a time t, where ini-
tially t ← 0. In each iteration, set t′ > t to the time with mi(t, t′) = 1
if such a time exists. If yes, then set I ← (t, t′] and t ← max(S0 ∩ I),
and add t to Si. Otherwise, terminate the retailer order selection of
retailer i and proceed with the next retailer.

Note that in each iteration, the interval I is the next interval we need to
cover with some retailer order in order to ensure the feasibility of S, since no
previously added retailer order covers this interval yet. Since we are only allowed
to use warehouse orders, we greedily choose the warehouse order t that is as far
away from the retailer order added in the last iteration as possible, but still covers
I. Therefore, we also refer to I as the cover interval of the new retailer order t.
The following lemma proves the correctness of this retailer order selection:

Lemma 3. The computed schedule S is feasible.

Proof. Consider a fixed retailer i. We assume in each iteration that there is a ware-
house order in S0∩I. But this holds since t′−t ≥ mi(t, t′) ≥ 1, and hence S0∩I �= ∅.
We conclude that each interval with unit mass in ri is covered by some retailer or-
der in Si, which yields the feasibility of the computed schedule S. ��
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By Lemma 3, we only have to explain how to select the warehouse orders S0. We
do this twice in the following, in Section 4 and Section 6. Combining both ap-
proaches as explained in Lemma 2 results in the randomized 5/3-approximation
algorithm.

4 Selecting the Warehouse Orders as a Grid

In this section, we present a simple adaption of the algorithm of Levi and Sviri-
denko [12]. This adaption takes an additional parameter 0 ≤ c ≤ 1 as input and
works as follows:

1. Select the warehouse orders as S0 ← {ci | i ∈ N : ci < W}.
2. Use the greedy retailer order selection described in Section 3 to turn

the warehouse orders S0 into a feasible schedule S.

We can think of the computed warehouse orders S0 as a grid with grid-length
c. The following theorem analyzes the computed schedule S:

Theorem 1.

|S0|
W

≤ 1
c

and, for 1 ≤ i ≤ N,
|Si|
Ri

≤
{

2 c > 1
2 ,

1
1−c c ≤ 1

2 .

Proof. By the selection of the warehouse orders, we immediately conclude that
|S0|/W ≤ 1/c. Therefore, we only have to consider the retailer orders. To this
end, consider a fixed retailer i. Let then t1 < t2 < . . . < tk be the retailer orders
in Si, and let t0 := 0 and tk+1 := W . As in the claim of the theorem, we have
to distinguish two cases:

Case c > 1/2: For each 1 ≤ j ≤ k, we conclude with the definition of the greedy
retailer order selection that mi(tj−1, tj+1) ≥ 1. Now observe that mi(tj−1, tj+1)=
mi(tj−1, tj) + mi(tj , tj+1). Using this, we find that

|Si| ≤
k∑
j=1

mi(tj−1, tj) + mi(tj , tj+1) ≤ 2
k+1∑
j=1

mi(tj−1, tj) = 2Ri,

which completes this case.

Case c ≤ 1/2: Consider a fixed 1 ≤ j ≤ k, and let (t, t′] be the cover interval of tj as
defined in Section 3. Observe that t = tj−1, and recall that mi(t, t′) = 1. Now let
t ≤ s ≤ t′ be the time such that mi(s, t′) = c. Consequently, t′−s ≥ mi(s, t′) = c,
and therefore, by the definition of the warehouse order selection, S0 ∩ [s, t′] �= ∅.
Hence, we find with the definition of the greedy retailer order selection that tj ∈
[s, t′]. Thus, we have mi(tj−1, tj) ≥ mi(t, t′)−mi(s, t′) = 1−c. By applying these
arguments to all retailer orders t1, t2, . . . , tk, we obtain that (1− c)k ≤ Ri, which
completes this case and the proof of the theorem, since k = |Si|. ��
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Theorem 1 yields that in order to minimize the warehouse ordering cost, we
have to choose c = 1, and in order to minimize the retailer ordering cost, we
have to choose a small c. Note that the former case immediately results in a
2-approximation algorithm with Lemma 2. In the algorithm of Levi and Sviri-
denko [12], a more involved warehouse and retailer selection method was used to
deal with arbitrary delay cost functions. Specifically, they additionally shifted a
similar grid randomly, but they used the same principle as in the proof of Theo-
rem 1 to bound the ordering costs. Consequently, they derived a similar theorem
as Theorem 1 for these costs. Finally, they used the arguments from Lemma 2
to combine the two algorithms for c = 1 and c = 1/3 to a 1.8 approximation
algorithm. One might think that if we do not have to deal with arbitrary delay
cost functions, it should be possible to improve the approximation ratio using
the same principle. But surprisingly, this approach does not yield an improved
approximation ratio for the special case that we only have deadlines (at least
the used analysis does not yield an improvement). Hence, we need a significantly
different method to select warehouse orders.

5 The Generalized Tally Game

In this section, we introduce two black-jack type games, the tally game and the
generalized tally game. We need these games for the analysis of the algorithm
described in Section 6. However, since we think that these games are of indepen-
dent interest, we introduce them separately. In the tally game, we are initially
given some value x ≥ 0. In each round of the game, we draw some random value
d according to the density function f of a random variable X with 0 ≤ X ≤ 1
and E [X ] = 1/2. If x− d ≥ 0, then we set x ← x− d, and proceed with the next
round. Otherwise, the game finishes and we have to pay the remaining value of
x (this is a pessimistic game). For a density function f and an initial value x,
let Z(f, x) be the random variable that describes the outcome of the game, i.e.,
the final value of x. Note that for any density function f and any 0 ≤ x ≤ 1,
E [Z(f, x)] ≤ x. The generalized tally game is then the extension where we are
allowed to choose the density function f , but some adversary chooses the initial
value of x. Since X ≤ 1 we can wlog assume that x ≤ 1. The question is then
how to choose f such that the expected final pay is minimized with respect to
such an adversarial choice? Hence, we need to minimize

max
0≤x≤1

E [Z(f, x)] . (4)

Observe that the function x �→ E [Z(f, x)] which maps [0, 1] to itself satisfies the
integral equation

E [Z(f, x)] =
∫ x

0
f(x − y)E [Z(f, y)] dy + x

∫ 1

x

f(y) dy. (5)

Moreover, we have the two boundary conditions

E [Z(f, 0)] = 0 and
dE [Z(f, 0)]

dx
= 1. (6)
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To see the second boundary condition, note that for any density function f ,
Pr [Z(f, x) = x] → 1 as x → 0. Using this, we can formally interpret the general-
ized tally game as follows: Find a density function f such that the function which
satisfies equation (5) and boundary conditions (6) with respect to f minimizes
objective (4). However, consider the simple density function

f(x) :=

⎧⎪⎨⎪⎩
4x 0 ≤ x ≤ 1/2,

2 − 4x 1/2 < x ≤ 1,

0 otherwise,

which is basically a triangle. The following lemma analyzes f (proof in the full
version):

Lemma 4.
max

0≤x≤1
E [Z(f, x)] <

1
3

The full version of this paper contains some experiments where we compare f
with some other natural density functions such as the density function of the
uniform distribution. These experiments show that although the function f is
relatively simply, and hence easy to formally analyze, it surprisingly meets or
beats the performance of all other considered functions. However, finding the
‘true’ optimal function f remains an interesting open problem.

6 Random Selection of Warehouse Orders and a
5/3-Approximation Algorithm

In this section, we describe a randomized algorithm, which is our main building
block in the 5/3-approximation algorithm. This randomized algorithm takes the
density function f of a random variable X with 0 ≤ X ≤ 1 and E [X ] = 1/2 as
an additional input and works as follows:

1. Select the warehouse orders by iteratively increasing a time t, where
initially t ← 0. In each iteration, draw a random d according to the
density function f . If t + d < W , then set t ← t + d, and add t to S0.
Otherwise, stop the selection of warehouse order.

2. Apply the greedy retailer order selection method described in Sec-
tion 3 to turn the warehouse orders S0 into a feasible schedule S.

Our main tool for the analysis of this algorithm is the following adaption of
Wald’s equation (proof in full version):

Theorem 2. Let X1, X2, . . . be an infinite sequence of random variables such
that for each i ≥ 1, E [Xi | X1, X2, . . . , Xi−1] ≥ μ and 0 ≤ Xi ≤ c for two
constants μ, c > 0. Moreover, for some C ≥ 0, let
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L := max

{
k

∣∣∣∣ k∑
i=1

Xi ≤ C

}
.

Then E [L] ≤ C/μ.

An interesting fact about Theorem 2 is that we do not require that the vari-
ables X1, X2, . . . are independent, but we only need that each expected value
E [Xi | X1, X2, . . . , Xi−1] is bounded from below. On the other hand, if this prop-
erty does not hold, then we do not obtain such a theorem. To see this, let X be
uniformely distributed in [0, 1], and let Xi = X , for each i ≥ 1, i.e., all random
variables X1, X2, . . . have the same outcome. It can then be easily verified that
surprisingly E [L] = ∞. Now we are ready to analyze the computed schedule S:

Lemma 5.
E [|S0|]

W
≤ 2

Proof. Let t1 < t2 < . . . < tL be an ordering of the warehouse orders S0, and
let t0 := 0. Hence, L is a random variable with L = |S0|. Moreover, for each
1 ≤ j ≤ L, define Xj := tj − tj−1. We can think of X1, X2, . . . , XL as a sequence
of random variables which describe the distances between the warehouse orders.
By the definition of the warehouse order selection, for each 1 ≤ j ≤ L, we
have 0 ≤ Xj ≤ 1 and E [Xj] = E [X ] = 1/2, where X is the random variable
with the input density function f . By adding an infinite sequence of variables
XL+1, XL+2 . . ., where Xj := 1, for j ≥ L + 1, we can extend the sequence
X1, X2, . . . , XL to an infinite sequence X1, X2, . . . of random variables with 0 ≤
Xj ≤ 1 and E [Xj ] ≥ 1/2, for j ≥ 1. Moreover, we conclude with the definition of
the warehouse order selection that L = max{k |

∑k
j=1 Xj < W}. Consequently,

Theorem 2 implies that E [L] ≤ 2W , which proves the claim of the lemma. ��

The following lemma establishes a relation to the generalized tally game intro-
duced in Section 5:

Lemma 6. For each retailer 1 ≤ i ≤ N ,

E [|Si|]
Ri

≤ 1
1 − max0≤x≤1 E [Z(f, x)]

.

Proof. Consider a fixed retailer i. Let t1 < t2 < . . . < tL be an ordering of the
retailer orders Si, and let t0 := 0. For each 1 ≤ j ≤ L, define Xj := mi(tj−1, tj).
Thus, we can now think of X1, X2, . . . , XL as a sequence of random variables
which describe the masses between the retailer orders. Note that 0 ≤ Xj ≤ 1,
for 1 ≤ j ≤ L. We will moreover show that for each 1 ≤ j ≤ L,

E [Xj | X1, X2, . . . , Xj−1] ≥ 1 − max
0≤x≤1

E [Z(f, x)] . (7)

In this case, we can proceed similar to the proof of Lemma 5. Specifically, by
adding an infinite sequence of variables XL+1, XL+2, . . ., where Xj := 1, for
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i ≥ L + 1, we can extend the sequence X1, X2, . . . , XL to an infinite sequence
X1, X2, . . . of random variables such that inequality (7) even holds for each
variable in this infinite sequence. By the definition of the greedy retailer order
selection, we find again that L = max{k |

∑k
i=1 Xi < Ri}. Combining this,

Theorem 2 implies that

E [|Si|] = E [L] ≤ Ri

1 − max0≤x≤1 E [Z(f, x)]
,

which proves the claim of the lemma.
To prove inequality (7), consider a fixed 1 ≤ j ≤ L, and let (tj−1, t

′] be the
cover interval of the retailer order tj as defined in Section 3 with t′ − tj−1 ≥
mi(tj−1, t

′) = 1, and hence t′−1 ≥ tj−1. On the other hand, since the warehouse
orders are selected such that they have at most distance one, there is at least
one warehouse order in the interval [t′ − 1, t′]. Let then t′0 < t′1 < . . . < t′s be all
warehouse orders in [t′−1, t′], and let x := t′− t′0. By the definition of the greedy
retailer order selection, we find that t′s = tj . Moreover, by the definition of the
warehouse order selection, we have that the random variables t′l− t′l−1, 1 ≤ l ≤ s,
are drawn according to the density function f . Therefore, the random variable
t′ − tj is identically distributed as the random variable Z(f, x). Consequently,
E [t′ − tj ] = E [Z(f, x)], and hence, E [mi(tj , t′)] ≤ E [Z(f, x)]. But then, since
mi(tj−1, t

′) = 1, we have E [Xj ] ≥ 1 − E [Z(f, x)], which implies inequality (7).
Note that x depends on the outcome of the variables X1, X2, . . . , Xj−1. ��
Theorem 3. There is a randomized 5/3-approximation algorithm for JRP-D.

Proof. By combining Lemma 4, Lemma 5, and Lemma 6, we find that we can
choose the input density function f such that the randomized algorithm described
in this section returns a schedule S with E [|S0|] /W ≤ 2 and E [|Si|] /Ri ≤ 3/2, for
1 ≤ i ≤ N . Now recall the algorithm described in Section 4, which by Theorem 1
returns for c = 1 a schedule S with |S0|/W ≤ 1 and |Si|/Ri ≤ 2, for 1 ≤ i ≤ N .
The claim follows then from Lemma 2. ��

7 Hardness Results

The following two theorems are proven in the full version of this paper:

Theorem 4. JRP with deadlines (JRP-D) is APX-hard, even if each retailer
has to satisfy only three demands.

Theorem 5. JRP with linear delay cost functions (JRP-L) is strongly NP-hard,
even if each retailer has to satisfy only three demands.
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Abstract. The node-weighted Steiner tree problem is a variation of clas-
sical Steiner minimum tree problem. Given a graph G = (V, E) with node
weight function C : V → R+ and a subset X of V , the node-weighted
Steiner tree problem is to find a Steiner tree for the set X such that
its total weight is minimum. In this paper, we study this problem in
unit disk graphs and present a (1+ε)-approximation algorithm for any
ε > 0, when the given set of vertices is c-local. As an application, we use
node-weighted Steiner tree to solve the node-weighted connected domi-
nating set problem in unit disk graphs and obtain a (5+ε)-approximation
algorithm.

Keywords: Node-weighted Steiner tree, minimum weighted connected
dominating set, polynomial-time approximation scheme, approximation
algorithm.

1 Introduction

Given a graph G = (V, E) and a subset X ⊆ V , the classical Steiner tree problem
is to find a tree of shortest length in G interconnecting X , where the length is
the sum of the lengths of all edges in the tree. This problem is known to be NP-
hard in graphs, and it is also proved to be NP-hard in most other metrics rather
than Euclidean [7]. Lots of effort have been devoted to study the approximation
algorithms for this problem [4,10,14,17,20] and some of them have successfully
achieved constant ratios [10,17,20]. The best known result among all of them is
ρ = 1 + ln 3

2 ≈ 1.55 by Robins et.al [17] up till now.
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The Node-weighted Steiner Tree problem (NWST) is a variation of the clas-
sical Steiner tree problem. Given a graph G = (V, E) with node weight function
C : V → R+ and a subset X of V , which is denoted as the terminal set, the
node-weighted Steiner tree problem is to find a Steiner tree for the set X such
that the total weight of this Steiner tree is minimum. In 1991, Berman [3] proved
that NWST problem can not be approximated within a factor of o(log k). Later,
Klein and Ravi [13] presented the first asymptotically optimal solution of ap-
proximation ratio 2 ln k, by constructing the Steiner tree using “spiders”, which
is a special kind of tree with at most one node of degree greater than two. Later,
this ratio is improved to be 1.35 lnk by Guha and Khuller [8]. They introduce a
new concept called “branch-spider” based on “spider”.

Recently, researchers are interested in this problem on a special type of graphs
called unit disk graphs, which has a wide application in networks. A unit disk
graph is associated with a set of unit disks in the Euclidean plane. Each vertex
in the graph is the center of a unit disk and an edge exists between two vertices
u and v if and only if the Euclidean distance between u and v is at most 1. Zou
et al. [21] is the first to give a 3.875-approximation algorithm by converting the
node-weighted Steiner tree problem to the classical Steiner tree problem.

In this paper, we concern about the same problem from a different perspective.
We present a polynomial-time approximation scheme (PTAS) when the given
set of vertices is c-local. A polynomial-time approximation scheme (PTAS) is a
family of approximation algorithm with ration 1+ε for any ε > 0 and such a
scheme would be the best for a NP-hard problem we can expect.

As an application, we use our algorithm to solve minimum weighted connected
dominating set problem in unit disk graph. The Minimum Weighted Connected
Dominating Set problem (MWCDS) is a generalization of the minimum con-
nected dominating set problem. Given a graph G = (V, E) with node weight
function C : V → R+, the minimum weighted connected dominating set prob-
lem is to find a connected dominating set of G such that its total weight is
minimized. Up till now, the best known approximation ratio for MWCDS in
general graphs is O(log n) [8].

In unit disk graphs, researchers usually construct an approximation algorithm
for MWCDS with the following two steps. The first step is to find a DS, and
the second step is to interconnect DS. Ambühl et al. [1] gave the first constant-
factor algorithm for MWCDS with an approximation ratio of 89 with a 72-
approximation algorithm for MWDS. Huang et al. [11] improved the approx-
imation ratio from 89 to 10+ε with a (6+ε)-approximation algorithm for the
first step. Recently, Dai and Yu [6] gave a (5+ε)-approximation algorithm for
MWDS. Therefore, the best known approximation ratio for MWCDS in UDG
is 8.875+ε. In this paper, we first give a (4+ε)-approximation algorithm for
MWDS and then obtain a (5+ε)-approximation algorithm by using Steiner tree
to interconnect such DS.

The rest of this paper is organized as follows. In Section 2, we give some useful
notations and lemmas. In Section 3, we introduce our main strategy, which
is the partition and shifting strategy. Based on the partition, we present our
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algorithm in Section 4. In Section 5, we first show that our algorithm is a PTAS
for NWST in unit disk graphs when the given set of vertices is c-local. Then, as
an application, we obtain a (5+ε)-approximation algorithm for MWCDS in unit
disk graphs.

2 Preliminaries and Fundamental Lemmas

Given a node-weighted unit disk graph G = (V, E) with weighted function C, and
the terminal set X . For convenience, we normalize the weight function C such that
for any vertex v in G, C(v) ≥ 1. And we denote a vertex u in the Steiner tree T
for X as terminal vertex if u ∈ X ; otherwise, we call it Steiner vertex.

We introduce two kinds of distance between any two vertices u and v in
the graph, which are called e-distance and w -distance, respectively. In detail,
diste(u, v) is calculated as the Euclidean distance between the two nodes and
distw(u, v) is calculated as the minimum weight of all the possible paths con-
necting u and v in G. The weight of each path here is calculated as the total
weight of all intermediate vertices on that path.

Since the graph is node-weighted instead of edge-weighted, the construction
of the minimum spanning tree, or saying the minimum node-weighted spanning
tree on terminal set X (denoted as Ts(X)), is a little bit different here. Firstly,
we create an edge-weighted complete graph G′ on terminal set X such that for
any edge (u, v) in G′ (u, v ∈ X), its weight is equal to the w-distance between
u and v. Then let Ts be a minimum spanning tree of G′. Easy to see, for any
edge (u, v) in Ts, it corresponds to the minimum weighted-path between u and
v in G. In the following, we use C(Ts) to denote the total weight of edges in Ts.
Meanwhile, for simplicity, we keep Ts as it is without replacing the weighted-
edge with the corresponding minimum weighted-path between any two nodes in
the node-weighted graph.

A set of vertices X is called c-local in a node-weighted graph if in the minimum
node-weighted spanning tree for X , the weight of longest edge is at most c.
This definition could be considered as the node-weighted version of the c-local
definition given by [18]. In the following of paper, we assume that the terminal
set X is c-local for some constant c.

In [16], Robin et.al showed that the Minimum Spanning Tree Number for
Euclidean metric is 5 and [19] shows that for any unit disk graph G, there exits
a spanning tree T of G such that the maximum degree of G is at most 5. Thus,
we can get the following lemma easily. (Proof is omitted due to lack of space.)

Lemma 1. The minimum spanning tree of a given terminal set in a node-
weighted graph has an approximation ratio of at most 5 for the optimal Steiner
tree of the same given terminal set.

Following are some of the preliminaries for MWCDS problem, which we will
talk about as an application after introducing our own algorithm. Given a graph
G = (V, E), a Dominating Set (DS) is a subset D ⊆ V such that for every vertex
v ∈ V , either v ∈ D, or v has a neighbor in D. If the graph induced from D
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is connected, then D is called a Connected Dominating Set (CDS). Minimum
Connected Dominating Set (MCDS) problem is to find a connected dominating
set in G with minimum size, which is a well-known NP-complete problem[7] and
has been further shown to be NP-complete even though the given graph is a
unit disk graph (UDG)[15]. The MWCDS is a generalization of MCDS, which is
obviously NP-hard problem in unit disk graphs.

3 Partition and Shifting

One of the key strategies adopted in our algorithm is partition and shifting. Con-
sidered as a special way to make restriction and derandomize the probabilistic
result to get a deterministic one, researchers has started to use partition and
shifting strategy [2,9] in approximation algorithms from early 1980s.

Specifically, in our algorithm, we partition the graph according to the following
strategy. Let A be the smallest square containing all vertices of G with size q×q.
For a given integer k, let l = (
q/k�+ 2)k and make the lower left corner of the

A
0,0P

,i j
P

(0,0)

( , )i j- -

( , )i l j- - ( , )l i l j- -

( , )l i j- -

(0, )l ( , )l l
k

( ,0)l

Fig. 1. Two partitions P0,0 and Pi,j with shadow area is A. The black is P0,0 and the
dashed is Pi,j .
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Boundary areab

b

b

Fig. 2. The interior area and boundary area with boundary width b = (1 + 1.5 log k)c

square A as the center of the coordinate system. We extend the area A to A′ of
size l× l and divide it into small cells such that the size of each cell is k× k (see
Fig 1.) Furthermore, for each cell, we divide it into two parts: interior area and
boundary area with boundary width b = (1 + 1.5 log k)c (as in Fig 2.). We call
this partition as P0,0. Then we shift the extended area A′ to make its lower left
corner positioned at point (−i,−j) (0 ≤ i, j ≤ k − 1) in the coordinate system,
to get another partition Pi,j . Clearly, there are all k2 possible partitions and any
partition contains the area A.

Our intention of making use of partition and shifting strategy is that for any
fixed partition, we first construct the local optimal solution for each cell. Then,
we further modify the union of the local optimal solution of all cells to make
it a feasible solution. In order to achieve the best solution, we use shifting to
obtain a set of solutions on different partitions and choose the best solution
among all these feasible solutions. With this strategy, we could better bound the
approximation ratio of our algorithm.

4 NWST Approximation Algorithm

In this section, we present our approximation algorithm for this problem based on
the partition and shifting strategy introduced in last section. Before introducing
this algorithm, we first give some useful notations.

Recall that Ts is a minimum spanning tree of terminal set X in G. For a fixed
partition P , we call an edge uv a crossing edge if at least one of the end nodes u
or v is contained in boundary area of P . We use Xp to denote the set of terminal
vertices contained in the interior area of P . Note that we study this problem
under a fixed partition P in this section.

The algorithm has two steps as follows. Firstly, for each cell, we construct a
local optimal Steiner forest on terminal vertices in the interior area of this cell.
Then, union all these forests to obtain a local optimal Steiner forest F̂p on Xp.
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In the second step, we add all the crossing edges in TS into F̂p to get a Steiner
tree on terminal set X . We call the resulted graph Gp for a specific partition P .
In order to approximate the minimum node-weighted Steiner tree, we calculate
all Gpi,j for 0 ≤ i, j ≤ k − 1 and choose the minimum one among all of them as
the output of our algorithm.

Following, we describe in detail the construction of the local optimal Steiner
forest and the final Steiner tree in our scheme.

4.1 Local Optimal Steiner Forest F̂p

Our target in this part is to construct a local optimal Steiner forest F̂p on Xp. In
order to achieve this goal, we first group the terminal vertices in the interior area
of every cell satisfying that the w -distance between any two groups is greater
than c. The grouping is achieved by first constructing the minimum spanning
tree on the terminal vertices in the interior area of each cell and then deleting
all edges with weight greater than c. Obviously, by doing so, terminal vertices
will be divided into different connected components. We consider all terminals
vertices in the same connected component to be in the same group. Clearly, the
w -distance between any two groups is greater than c. Otherwise, there will be
another spanning tree with weight less than our minimum spanning tree, which
derives a contradiction.

For a fixed cell, let Y1, . . . , Ym be the different groups of all terminal vertices
after grouping. In order to get desired solution, we merge Y1, . . . , Ym into new
groups, construct Steiner minimum tree for each new group in this cell and
then combine them to form a Steiner forest. If we calculate the total weight
of vertices in the resulted Steiner forest to be the merging-cost of this specific
merging, with different possible merging choices, we choose the merging with
the minimum merging-cost among all of them. The corresponding Steiner forest
is the local optimal Steiner forest that we are after for this cell in partition P .

For a fixed partition P , we denote F̂p the local optimal Steiner forest on the
terminal vertices Xp in graph G. It is calculated as the union of local optimal
Steiner forest in each cell. From the method for F̂p construction described above,
we can obtain the following lemma easily.

Lemma 2. F̂p is a Steiner forest on XP with the following properties:
(1) Each tree in the forest F̂p is completely included in some cell.
(2) The w-distance between any two terminal vertices in different trees of F̂p is
greater than c.

In the following, we will discuss the running time for computing a local optimal
Steiner forest. Let n be the number of vertices of G. Since G is a unit disk graph,
G can be cover by a square with size n×n. Recall that the size of every cell is k×k,
there are at most O(n/k)2 cells. Then, we will discuss the time for computing
a local optimal Steiner forest in a cell. Let Y be the set of terminal vertices in
the interior area in this cell and m the number of groups in the same cell. Since
there is a minimum Steiner tree containing all of edges of induced subgraph
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G[Y ], we shrink every component of G[Y ] to a new vertex and set Y ′ as the set
of these new vertices. Easy to see that m < |Y ′|. If we find a minimum Steiner
tree on Y ′, and replace every vertex in Y ′ by the corresponding component, we
obtain a minimum Steiner tree on Y . Hence, the time-complexity to compute
local optimal Steiner forest is O(2mM(|Y ′|)) [18], where M(|Y ′|) is the time to
compute an optimal Steiner tree on terminal set Y ′ and M(|Y ′|) is exponential
in |Y ′| [5,12]. In order to show |Y ′| is bounded by a constant value, we divide
the cell into some squares such that the size of each square is

√
2

2 ×
√

2
2 . Then the

terminal vertices in each square must belong to the same component of G[Y ].
Hence, there are at most 2k2 components in G[Y ], i.e., |Y ′| ≤ 2k2. In Section 5,
we will show that k is only related with c and ε. Hence, we can compute a local
optimal Steiner forest in polynomial times.

4.2 Constructing NWST Tout from F̂p

Recall that in the above subsection, we get a local optimal Steiner forest F̂p on
Xp and the w -distance between any two terminal vertices in different trees of F̂p
is greater than c.

Let Es
p be the set of all crossing edges in Ts under a partition P . In order to

interconnect the disconnected components in the Steiner forest F̂p, we add all
edges in Es

p into F̂p and then replace every crossing edge by corresponding path
in G. Denote Gp as the resulting graph, we have

Lemma 3. Gp contains a Steiner tree interconnecting X.

Proof. In order to prove this statement, it is sufficient to show (1) X ⊆ V (Gp);
(2) Gp is connected.

Obviously, vertices in the interior area of a partition Xp ⊆ V (Gp). If a vertex
is in the boundary area of a partition, it must be on one of the crossing edges
included in the set Ep, which has already been added into V (Gp). So X ⊆ V (Gp).
It is sufficient to show Gp is connected. For convenience, we keep Gp as it is
without replacing every crossing edge by corresponding path, i.e., Gp is obtained
from F̂p by adding all edges in Es

p. Clearly, if this Gp is connected, after replacing
every crossing edge, the resulting graph Gp is also connected.

Now, suppose to the contrary that Gp is disconnected. Then, Gp can be di-
vided into two disjoint subgraphs G1

p and G2
p such that there are no edges con-

necting G1
p and G2

p in Gp. Since Gp is obtained from F̂p by adding all edges in
Es
p, there are some terminal vertices contained in G1

p and G2
p. Since Ts is a span-

ning tree of terminal set X in G, there is an edge L in Ts connecting G1
p and G2

p.
Because all crossing edges are added in Gp, the edge L must be a non-crossing
edge. Therefore, L is contained in some cell. Denote u and v as the endpoints
of this edge. Also let Tu and Tv be the two trees containing u and v in the cell,
respectively. Since c is the maximum edge weight among all edges in Ts, we have
distw(u, v) ≤ c. On the other hand, from Lemma 2, we have distw(u, v) > c.
This derives a contradiction. Hence, Gp is connected. ��
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Recall that there are all together k2 different partitions and for every parti-
tion Pi,j , we could obtain a graph GPi,j . Among all k2 graphs, we choose the
minimum-weight graph and prune it into a Steiner tree on X . This final tree,
denoted as Tout, is the output of our algorithm.

5 Theoretical Analysis

In this section, we study the approximation ratio of our algorithm and show that
for any ε > 0, choosing appropriate integer k, the approximation ratio is 1 + ε.

There are two steps in our proof. In the first step, we show that for any
partition P , C(F̂p) ≤ C(TOPT ), where TOPT is the optimal solution for node-
weighted Steiner tree on terminal set X . In the second step, we show that our
algorithm has a performance ratio of 1 + ε.

5.1 C(F̂P ) ≤ C(TOPT )

Let Tp be the minimum Steiner tree in G on Xp. Since TOPT is also a Steiner
tree on Xp, clearly C(Tp) ≤ C(TOPT ). In order to prove C(F̂P ) ≤ C(TOPT ), we
construct a new Steiner forest Fp on Xp, which is modified from Tp satisfying
that each tree in Fp is completely included in a cell and also C(F̂p) ≤ C(Fp).
Following gives some useful notations for further proof.

For any Steiner tree, we call a Steiner vertex a real Steiner vertex if its degree
is at least 3. Besides, a path between two vertices in the Steiner tree is a Stem
if its endpoints are either a terminal vertex or a real Steiner vertex and also all
the other vertices are 2-degree Steiner vertices. We modify Tp to be the desired
forest Fp with the following 3 steps.

In the first step, we delete all stems with weight greater than c in Tp, and
denote the resulting forest by F ′

p. After this, the w -distance between any two
trees in F ′

p is greater than c because of the optimality of Tp. Also we have
C(F ′

p) ≤ C(Tp).
In the second step, we further modify F ′

p to guarantee that each tree in it
is interconnecting terminal vertices in the same cell. If there is a tree T ∗ in F ′

p

connecting terminal vertices in different cells, T ∗ must have some Steiner vertices
between the boundary areas of two adjacent cells since the e-distance between
any two vertices is at most 1. By Steiner vertices, we mean those vertices not
belong to the Xp. If we draw two vertical lines, the distance between which
is 2c as illustrated in the figure 3, there must exist a vertex u in the tree T ∗

within these two lines since the e-distance between any two vertices is at most
1. Therefore, the e-distance between u and any boundaries of the interior area
is more than 1.5c log k. Since the weight of any stem in F ′

p is at most c and the
weight of any vertex is at least 1, the e-distance between any two adjacent real
Steiner vertices is at most c, where two real Steiner vertices are adjacent if they
can be connected without any other real Steiner vertices. Now, we count the
number of real Steiner vertices to connect the vertex u and any boundary of the
interior area. Clearly, it must use at least

1 + 2 + · · · + 2(1.5 log k)−1 = 21.5 log k − 1 = k1.5 − 1
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2c

u

*
T

Boundary areaBoundary area

Interior
area

Fig. 3. The tree T ∗ and the vertex u

real Steiner vertices in the tree T ∗(see figure 3). Hence, there are at least

k1.5 − 1 + (k1.5 − 1)(c − 1) = c(k1.5 − 1)

Steiner vertices in the tree between u and the boundary of interior area. By
deleting all of these vertices, at most k more trees will be created along this
boundary. If the w -distance of any two trees is at most c, connect them to be a
new tree. As there are at most k trees, the whole weight will increase at most
c(k − 1). Meanwhile, as we delete at least c(k1.5 − 1) vertices, which means the
whole weight decreases at least c(k1.5 − 1). Hence, the weight of the new F ′

p is
decreased by doing so. Repeating this step until there are no trees connecting
different cells, denoted the resulting forest by F ′′

p . We can see that the w -distance
between any two trees in F ′′

p is also greater than c and C(F ′′
p ) ≤ C(F ′

p).
In the last step, if any tree of F ′′

p is completely included in a cell, we do
nothing. Otherwise, there must exist a tree such that all its terminal vertices are
in a same cell, but at least one Steiner vertex is in a different cell. In this case,
we modify F ′′

p using the same method described in Step 2. Clearly, any tree in
the new F ′′

p is completely in one cell. Finally, for any tree, we reconstruct Steiner
minimum tree on its terminal vertices in the cell. Let Fp be the resulting graph
afterwards, we can obtain the following lemmas.
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Lemma 4. Fp is a Steriner forest on Tp with the following properties:
(1) Each tree of Fp is completely included in some cell.
(2) The w-distance between any two trees in Fp is greater than c. Furthermore,
the w-distance between any two terminal vertices in different trees of Fp is greater
than c.
(3) C(Fp) ≤ C(Tp) ≤ C(TOPT ).

Lemma 5. C(F̂p) ≤ C(Fp) ≤ C(TOPT ).

Proof. It is only necessary to show C(F̂p) ≤ C(Fp). Recalling the constructions
of F̂p and Fp, for a fixed cell, every Yi is completely contained in one tree of
Fp. Hence, Fp will be one of possible merging solutions as well. Since F̂p is the
minimum solution of all possible merging choices, we have C(F̂p) ≤ C(Fp). ��

5.2 Performance Analysis

Based on Lemma 5 and the construction of Tout, we obtain the main theorem in
this paper.

Theorem 1. The approximation ratio for the NWST problem used in our algo-
rithm to interconnect the terminal set is 1 + 40c�1 + 1.5 log k�/k.

Proof. Recall that Tout is consisted of two parts, local optimal F̂p and Epi,j . To
bound total weight of the Epi,j , we consider the number of times each vertex in
the terminal set appears in the boundary area in all k2 partitions.

If we divide every cell into 1 × 1 squares, for different partitions, the same
terminal vertex must lie in different square according to the shifting strategy
we used. Since there are at most 4ck�1 + 1.5 log k� squares in boundary area,
a terminal vertex will appear in the boundary area at most 4ck�1 + 1.5 log k�
times. For an edge in Ts, since both of its endpoints are terminal vertices, it will
be considered as a crossing edge at most 2 × 4ck�1 + 1.5 log k� times in all k2

partitions. Hence, we have∑
0≤i,j≤k−1

C(Gpi,j ) ≤ k2C(F̂p) +
∑

0≤i,j≤k−1

C(Epi,j )

≤ k2C(TOPT ) +
∑

0≤i,j≤k−1

C(Epi,j )

≤ k2C(TOPT ) + 8ck�1 + 1.5 log k�C(Ts)
≤ k2C(TOPT ) + 8ck�1 + 1.5 log k� × 5C(TOPT )
≤ k2C(TOPT ) + 40ck�1 + 1.5 log k�C(TOPT ).

Therefore, we have

C
(
Tout

)
≤

( ∑
0≤i,j≤k−1

C(Gpi,j )

)
/k2 ≤

(
1 + 40c�1 + 1.5 log k�/k

)
C
(
TOPT

)
.

The proof is then finished. ��
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Corollary 1. For any given ε > 0, let k > �(41 c/ε)2�. Then C(Tout) ≤ (1 +
ε) C(TOPT ).

5.3 Application on MWCDS

As an application, we apply NWST algorithm into MWCDS problem. Recall
that the problem of MWCDS is to construct the connected dominating set in
a node-weighted graph with the minimum total weight. Normally, researchers
start with calculating dominating set for the graph first and then interconnect-
ing them. Obviously, the node-weighted Steriner tree can be used in the MWCDS
problem to interconnect all nodes of the DS to get better approximation algo-
rithm. Therefore, we can obtain the following results.

Theorem 2. There is a (4+ε)-approximation algorithm for minimum weighted
dominating set problem. (Proof is omitted due to lack of space.)

Corollary 2. There is a (5+ε)-approximation algorithm for MWCDS by using
node-weighted Steriner tree to interconnect all nodes of the DS.

Proof. For any node-weighted graph G and a given Dominating Set DS of
G, denote OPTCDS and TOPT be the optimal CDS of the G and the opti-
mal Steiner tree of G on the given DS, respectively. Since the induced graph
G[DS

⋃
OPTCDS ] is connected, this graph contains a Steiner tree of G on DS.

Hence, we have C(TOPT ) ≤ C(DS) + C(OPTCDS).
By Theorem 2, for any ε > 0, we can obtain a dominating set D of G with

C(D) ≤ (4 + ε/7) C(OPTCDS). Then, using our algorithm for D, we can get a
Steiner tree T interconnecting D with C(T ) ≤ (1 + ε/7) C(TOPT ). Since D is a
dominating set, clearly, V (T ) is a connected dominating set of G and

C(T ) ≤
(
1 +

ε

7
)

C(TOPT )

≤
(
1 +

ε

7
)

( C(D) + C(OPTCDS) )

≤
(
1 +

ε

7
)(

4 +
ε

7
)

C(OPTCDS) +
(
1 +

ε

7
)
C(OPTCDS)

≤
(
4 + 6

ε

7
)

C(OPTCDS) +
(
1 +

ε

7
)
C(OPTCDS)

≤ (5 + ε) C(OPTCDS).

The proof is then finished. ��

6 Conclusion and Discussion

In this paper, adopting the strategy of partition and shifting, we propose a
(1 + ε)-approximation algorithm for NWST problem in unit disk graphs, which
is the best solution for this problem we could ever have without proving P=NP.
As an application, we give a (5+ε)-approximation solution for MWCDS problem
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in unit disk graphs afterwards, by interconnecting the DS constructed by the
(4 + ε)-approximation algorithm using our PTAS solution for NWST problem,
which better bounds the performance of the MWCDS compared with existing
algorithms.
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Abstract. Pooling design is an important research topic in bio-
informatics due to its wide applications in molecular biology, especially
DNA library screening. In this paper, with unitary spaces over finite
fields, we present two new constructions whose efficiency ratio, i.e., the
ratio between the number of tests and the number of items, is smaller
than some of existing construction.
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1 Introduction

A recent important research area in molecular biology is the study of gene func-
tions. Such a study is often supported by a high quality DNA library which
usually obtained through a large amount of testing and screening. Consequently,
the efficiency of testing and screening becomes critical to the the success and ul-
timately the impact of the study. Pooling design is a data mining method which
can deal with data in such an efficient way so that the number of tests can
be reduced significantly. For example, the Life Science Division of Los Alamos
National Laboratories reported [7] that they was facing 220,000 clones in their
study and did only 376 tests with help from pooling design while individual
testing requires 220,000 tests.

In pooling design, a clone is also referred as an item. Suppose we face a set
of n items with some positive ones. The problem is to identify all positive items
with a smaller number of tests. There are several models of pooling design with
different testing mechanisms for different applications [1]. The classical model
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has a simplest testing mechanism. Each test is on a subset of items, called
a pool. When the pool contains a positive items, the test-outcome is positive;
otherwise, the test-outcome is negative. Usually, the pooling design requires that
all pools are constructed at the beginning of testing so that all tests can be
performed simultaneously. Therefore, a pooling design can be represented by a
binary matrix. Such a binary matrix has rows indexed with pools and columns
indexed with items and the entry at intersection of row pi and column j is 1 if
and only j ∈ pi.

A pooling design or corresponding binary matrix is said to be de-disjunct if
for any d + 1 columns of j0, j1, ..., jd, there exist e + 1 rows pi1 , ..., pie+1 in each
of which the entry at column j0 is 1 and entries at j1, ..., jd are 0s. Every de-
disjunct pooling design can identify up to d positive items in the situation that
there may exist at most e errors in test-outcomes. Furthermore, a de-disjunct
matrix is said to be fully de-disjunct if in addition, it is not (d′)e

′
-disjunct for

d′ > d or e′ > e.
There are several constructions for the de-disjunct pooling design and for

the fully de-disjunct pooling design [2,3,4,5,6,8,9,10]. In this paper, we present
two new constructions. Those constructions are based on study of unitary spaces
over finite fields. We will show that those constructions can provide some pooling
designs with smaller ratio between the number of pools and the number of items,
compared with some important existing constructions.

2 Unitary Space

Let Fq2 be a finite field with q2 elements, where q is a power of a prime. Fq2 has
an involutive automorphism a �→ ā = aq, and the fixed field of this automorphism
is Fq. Let n = 2ν + δ, where δ = 0 or 1, and let

Hδ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0 I(ν)

I(ν) 0

)
, if δ = 0,⎛⎝ 0 I(ν)

I(ν) 0
1

⎞⎠ , if δ = 1.

The unitary group of degree n over Fq2 , denoted by Un(Fq2), consists of all
n×n matrix T over Fq2 satisfying THδ(T̄ )t = Hδ. There is an action of Un(Fq2)
on F

(n)
q2 defined by

F
(n)
q2 × Un(Fq2) −→ F

(n)
q2

((x1, x2, · · · , xn), T ) �−→ (x1, x2, · · · , xn)T .

The vector space F
(n)
q2 together with the above group action of the unitary group

Un(Fq2), is called the n-dimensional unitary space over Fq2 . An m-dimensional
subspace P is said to be of type (m, r), if PK(P̄ )t is of rank r. In particular,
subspaces of type (m, 0) are called m-dimensional totally isotropic subspaces.The
subspaces of type (m, r) exist if and only if 2r ≤ 2m ≤ n + r. The subspace
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of type (m, r), which contains subspaces of type (m1, r1), exists if and only if
2r ≤ 2m ≤ n + r, 2r1 ≤ 2m1 ≤ n + r1 and 0 ≤ r − r1 ≤ 2(m − m1). From [11],
the number of subspaces of type (m, r), denoted by N(m, r; n), is given by

N(m, r; n) = qr(n+r−2m)

n∏
i=n+r−2m+1

(qi − (−1)i)

r∏
i=1

(qi − (−1)i)
m−r∏
i=1

(q2i − 1)
. (1)

Let N(m1, r; m, r; n) denote the number of subspaces of type (m1, r) contained
in a given subspace of type (m, r). From [11]

N(m1, r; m, r; n) = q2r(m−m1)

m−r∏
i=m−m1+1

(q2i − 1)

m1−r∏
i=1

(q2i − 1)
. (2)

Let N ′(m1, r; m, r; n) denote the number of subspaces of type (m, r) containing
a given subspace of type (m1, r). From [11]

N ′(m1, r; m, r; n) =

n+r−2m1∏
i=1

(qi − (−1)i)

n+r−2m∏
i=1

(qi − (−1)i)
m−m1∏
i=1

(q2i − 1)
. (3)

Lemma 1. Let F
(n)
q2 denote the n-dimensional unitary space over a finite field

Fq2 , with 2r ≤ 2m0 ≤ 2i ≤ 2m ≤ n + r, r = 2s + δ1 and δ1 ≤ δ, where δ1 = 0,
or δ1 = 1. Fix a subspace W0 of type (m0, r) in F

(n)
q2 , and a subspace W of type

(m, r) in F
(n)
q2 such that W0 ⊂ W . Then the number of subspaces A of type (i, r)

in F
(n)
q2 , where W0 ⊂ A ⊂ W , is N(i − m0, 0; m − m0, 0; 2(ν + s − m0)).

Proof. Let σ = ν + s−m0. Since the unitary group Un(Fq2) acts transitively on
each set of subspaces of the same type, we may assume that W has the matrix
representation of the form

s m0 − 2s σ s m0 − 2s σ δ1 δ − δ1

W =

⎛⎜⎜⎜⎜⎝
I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 0 1 0
0 I 0 0 0 0 0 0
0 0 W1 0 0 W2 0 0

⎞⎟⎟⎟⎟⎠
s
s
δ1

m0 − 2s − δ1
m − m0

where (W1, W2) is a subspace of type (m − m0, 0) in F
(2(ν+s−m0))
q2 . By (2), the

number of subspaces A of type (i, r), where W0 ⊂ A ⊂ W , is N(i − m0, 0; m −
m0, 0; 2(ν + s − m0)). ��
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3 Construction I

Definition 1. For 2r ≤ 2d0 < 2d < 2k ≤ n + r, assume that P0 is a fixed sub-
space of type (d0, r) in F

(n)
q2 . Let M be a binary matrix whose columns (rows) are

indexed by all spaces of type (k, r) containing P0 ( spaces of type (d, r) containing
P0) in F

(n)
q2 such that M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix is

denoted by M1(n, d, k).

Theorem 1. Suppose 2r ≤ 2d0 < 2d < 2k ≤ n + r, r = 2s + δ1, where δ1 = 0, 1
and set b = q2(q2(k−d0−1)−1)

q2(k−d)−1 . Then M1(n, d, k) is le − disjunct for 1 ≤ l ≤ b and

e = q2(k−d)N(d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + s − d0))
−(l − 1)q2(k−d−1)N(d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + s − d0)).

Proof. Let C, C1, · · · , Cl be l + 1 distinct columns of M1(n, d, k). To obtain the
maximum numbers of subspaces of type (d, r) containing P0 in

C ∩
s⋃
i=1

Ci =
s⋃
i=1

(C ∩ Ci),

we may assume that each C ∩ Ci is a subspace of type (k − 1, r).
Then each C ∩Ci covers N(d− d0, 0; k− d0 − 1, 0; 2(ν + s− d0)) subspaces of

type (d, r) containing P0 from Lemma 1. However, the coverage of each pair of Ci
and Cj overlaps at a subspace of type (k−2, r) containing P0, where 1 ≤ i, j ≤ s.
Therefore, from Lemma 1 only C1 covers the full N(d− d0, 0; k− d0 − 1, 0; 2(ν +
s−d0)) subspaces of type (d, r) containing P0, while each of C2, · · · , Cl can cover
a maximum of N(d − d0, 0; k − d0 − 1, 0; 2(ν + s − d0)) − N(d − d0, 0; k − d0 −
2, 0; 2(ν+s−d0)) subspaces of type (d, r) not covered by C1. By (2), the number
of the subspaces of type (d, r) of C not covered by C1, C2, · · · , Cl is at least

e = N(d − d0, 0; k − d0, 0; 2(ν + s − d0))
−N(d − d0, 0; k − d0 − 1, 0; 2(ν + s − d0))
−(l − 1)(N(d − d0, 0; k − d0 − 1, 0; 2(ν + s − d0))
−N(d − d0, 0; k − d0 − 2, 0; 2(ν + s − d0)))

= q2(k−d)N(d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + s − d0))
−(l − 1)q2(k−d−1)N(d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + s − d0)).

Note that
N(d − d0 − 1, 0; k − d0 − 1, 0; 2(ν + s − d0))
N(d − d0 − 1, 0; k − d0 − 2, 0; 2(ν + s − d0))

=
q2(k−d0−1) − 1

q2(k−d) − 1
. Since

e > 0,

l <
q2(q2(k−d0−1) − 1)

q2(k−d) − 1
+ 1.

Set

b =
q2(q2(k−d0−1) − 1)

q2(k−d) − 1
.

Then 1 ≤ l ≤ b. ��
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Corollary 1. Suppose that 2r ≤ 2d0 < 2d < 2k ≤ n + r, r = 2s + δ1 and
1 ≤ l ≤ min{b, q2 + 1}. Then M1(n, d, k) is not le+1-disjunct, where b and l are
as in Theorem 1.

Proof. Let C be a subspace of type (k, r) containing P0, and E be a fixed sub-
space of type (k − 2, r) containing P0 and contained in C. By Lemma 1, we
obtain the number of subspaces of type (k− 1, r) containing E and contained in
C is

N(1, 0; 2, 0; 2(ν + s − k + 2)) = q2 + 1.

For 1 ≤ l ≤ min{b, q2 + 1}, we choose l distinct subspaces of type (k − 1, r)
containing E and contained in C, denote these subspaces by Qi(1 ≤ i ≤ l). For
each Qi, we choose a subspace Ci of type (k, r) such that C∩Ci = Qi(1 ≤ i ≤ l).
Hence, each pair of Ci and Cj overlaps at the same subspace E of type (k−2, r),
where 1 ≤ i, j ≤ l. By Theorem 1, we have desired result. ��
Corollary 2. Suppose that d = d0 + 1 and 1 ≤ l ≤ q2. Then M1(n, d, k) is
le-disjunct, but is not le+1-disjunct, where e = q2(k−d0−2)(q2 − l + 1).

Proof. Setting d = d0 + 1 in the e formula of Theorem 1, we obtain

e = q2(k−d0−2)(q2 − l + 1).

The second statement follows directly from Corollary 1. ��

The following theorem tells us how to choose k so that the test to item ratio is
minimized.

Theorem 2. For 2r ≤ 2m0 < 2m ≤ n + r, the sequence N ′(m0, r; m, r; n) is
unimodal and gets its peak at m = 
n+r+m0

3 � or m = 
n+r+m0
3 � + 1.

Proof. For 2r ≤ 2m0 < 2m ≤ n + r, by (3), we have

N ′(m0, r; m1, r; n)
N ′(m0, r; m2, r; n)

=

m2−m0∏
i=m1−m0+1

(q2i − 1)

n+r−2m1∏
i=n+r−2m2+1

(qi − (−1)i)

=

m2−m1−1∏
i=0

(q2(m1−m0+1+i) − 1)

2(m2−m1)−1∏
i=0

(qn+r−2m2+1+i − (−1)n+r−2m2+1+i)

=
m2−m1−1∏

i=0

qm1−m0+1+i − 1
qn+r−2m2+1+2i − (−1)n+r−2m2+1+2i

×
m2−m1−1∏

i=0

qm1−m0+1+i + 1
qn+r−2m2+1+2i+1 − (−1)n+r−2m2+1+2i+1 .

(4)

If 
n + r + m0

3
� + 1 ≤ m1 < m2, then n+r+m0

3 < m1. It implies that

2m1 + m2 > 3m1 > n + r + m0. (5)
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Since i ≤ m2 − m1 − 1, by (5) we have

m1 + 2m2 > n + r + m0 + 1 + (m2 − m1 − 1) ≥ n + r + m0 + 1 + i.

Thus m1 − m0 + 1 + i > n + r − 2m2 + 2i + 2. It follows that

qm1−m0+1+i > qn+r−2m2+2i+2 > qn+r−2m2+2i+1.

Therefore,

qm1−m0+1+i − 1
qn+r−2m2+1+2i − (−1)n+r−2m2+1+2i > 1

and
qm1−m0+1+i + 1

qn+r−2m2+1+2i − (−1)n+r−2m2+1+2i+1 > 1.

From (4) we have N ′(m0, r; m2, r; n) < N ′(m0, r; m1, r; n).

If m0 ≤ m1 < m2 ≤ 
n + r + m0

3
�, then m2 ≤ n+r+m0

3 . Thus

m1 + 2m2 < 3m2 ≤ n + r + m0 < n + r + m0 + i.

It follows that m1 − m0 + 1 + i < n + r − 2m2 + 1 + 2i. So

qm1−m0+1+i < qn+r−2m2+1+2i < qn+r−2m2+1+2i+1.

It follows that
qm1−m0+1+i − 1

qn+r−2m2+1+2i − (−1)n+r−2m2+1+2i < 1

and
qm1−m0+1+i + 1

qn+r−2m2+1+2i − (−1)n+r−2m2+1+2i+1 < 1.

From (4) we have N ′(m0, r; m2, r; n) > N ′(m0, r; m1, r; n). ��

4 The Discussions of Test Efficiency

Identifying most positive items with the least tests is one of our goals. Therefore,
discussing how to make the ratio t/n smaller is significative. In our matrix,

t1/n1 =
N ′(d0, r; d, r; n)
N ′(d0, r; k, r; n)

=

k−d0∏
i=d−d0+1

(q2i − 1)

n+r−2d∏
i=n+r−2k+1

(qi − (−1)i)
.

We first will explain several facts on the ratio:

(1) Parameter d0(n, r) only appears in the numerator (denominator). It is
easy to show that the larger the d0, n and r are, the smaller the ratio is.
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(2) Noting that the increasing speed of (qi − (−1)i)(qi+1 − (−1)i+1) is larger
than (q2i − 1), so the smaller the d and k are, the smaller the ratio is.

D’yachkov et al. [2] constructed with subspaces of GF (q), where q is a prime
power, each of the columns (rows) is labeled by an k(d)-dimensional space, mij =
1 if and only if the label of row i is contained in the label of column j. In order
to compare with t/n, we should take the dimension of the space of GF (q) to be
2(ν + s − d0), and replace q by q2, where n = 2ν + δ, r = 2s + δ1. Assume that
the test efficiency is t2/n2, then

t2
n2

=

[
2(ν+s−d0)

d

]
q2[

2(ν+s−d0)
k

]
q2

=

k∏
i=d+1

(q2i − 1)

2(ν+s−d0)−d∏
i=2(ν+s−d0)−k+1

(q2i − 1)

.

Theorem 3. If 2d0 > k − δ − δ1, then t1/n1 < q2d0(d−k)t2/n2, where k−δ−δ1
2 <

d0 < d < k.

Proof. We have

t1
n1
t2
n2

=

k−d0∏
i=d−d0+1

(q2i − 1)

n+r−2d∏
i=n+r−2k+1

(qi − (−1)i)
/

k∏
i=d+1

(q2i − 1)

2(ν+s−d0)−d∏
i=2(ν+s−d0)−k+1

(q2i − 1)

=

k−d−1∏
i=0

(q2(d−d0+1+i) − 1)

2k−2d−1∏
i=0

(qn+r−2k+1+i − (−1)n+r−2k+1+i)
/

k−d−1∏
i=0

(q2(d+1+i) − 1)

k−d−1∏
i=0

(q2(2ν+2s−2d0−k+1+i) − 1)

=
k−d−1∏

i=0

q2(d−d0+1+i) − 1
q2(d+1+i) − 1

k−d−1∏
i=0

q2(2ν+2s−2d0−k+1+i) − 1

2k−2d−1∏
i=0

(qn+r−2k+1+i − (−1)n+r−2k+1+i)

<

k−d−1∏
i=0

q2(d−d0+1+i)

q2(d+1+i)

×
k−d−1∏

i=0

( q2ν+2s−2d0−k+1+i−1

qn+r−2k+1+2i−(−1)n+r−2k+1+2i
q2ν+2s−2d0−k+1+i+1

qn+r−2k+1+2i+1−(−1)n+r−2k+1+2i+1 )

= 1

q2d0(k−d)

k−d−1∏
i=0

( q2ν+2s−2d0−k+1+i−1
qn+r−2k+1+2i−(−1)n+r−2k+1+2i

q2ν+2s−2d0−k+1+i+1
qn+r−2k+1+2i+1−(−1)n+r−2k+1+2i+1 ).

Since 2d0 > k − δ − δ1, and n = 2ν + δ, r = 2s + δ1, we have

q2ν+2s−2d0−k+1+i − 1
qn+r−2k+1+2i − (−1)n+r−2k+1+2i

=
q2(ν+s)−k+1+i−2d0 − 1

q2(ν+s)−k+1+2i−(k−δ−δ1) − (−1)n+r−2k+1+2i < 1,
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and

q2ν+2s−2d0−k+1+i + 1
qn+r−2k+1+2i+1 − (−1)n+r−2k+1+2i+1

=
q2(ν+s)−k+1+i−2d0 + 1

q2(ν+s)−k+1+2i−(k−δ−δ1−1) − (−1)n+r−2k+1+2i+1 < 1.

Therefore, t1/n1 < q2d0(d−k)t2/n2, where k−δ−δ1
2 < d0 < d < k. ��

5 Construction II

Definition 2. For 2 ≤ 2r ≤ 2d < 2k ≤ n + r, let M be a binary matrix
whose columns ( rows ) are indexed by all subspaces of type (k, r) ((d, r)) in F

(n)
q2

such that M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix is denoted by
M2(n, d, k).

Theorem 4. Suppose 0 ≤ 2r − 4 ≤ 2d < 2k − 2 ≤ n + r − 2. If 1 ≤ s ≤ q2r,
then M2(n, d, k) is se − disjunct, where

e = q2(k−d−1)d+2r.

Proof. Let C, C1, · · · , Cs be s + 1 distinct columns of M2(n, d, k). To obtain the
maximum number of subspaces of type (d, r) in

C ∩
s⋃
i=1

Ci =
s⋃
i=1

(
C ∩ Ci

)
,

we may assume that each C ∩ Ci is a subspace of type (k − 1, r), where 1 ≤
i ≤ s. By (2), the number of the subspaces of type (d, r) of C not covered by
C1, C2, · · · , Cs is at least

N(d, r; k, r; n) − sN(d, r; k − 1, r; n)

= q2r(k−d−1)

k−r−1∏
i=k−d+1

(q2i − 1)

d−r∏
i=1

(q2i − 1)

(
q2k − q2r − s(q2(k−d) − 1)

)
.

Since 0 ≤ 2r − 4 ≤ 2d < 2k − 2 ≤ n + r − 2 , we obtain

k−r−1∏
i=k−d+1

(q2i − 1)

d−r∏
i=1

(q2i − 1)

=

d−r−2∏
i=0

(q2(i+k−d+1) − 1)

d−r−2∏
i=0

(q2(i+1) − 1)

1
q2(d−r) − 1
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=
d−r−2∏
i=0

q2(i+k−d+1) − 1
q2(i+1) − 1

1
q2(d−r) − 1

=
d−r−2∏
i=0

q2(k−d) q
2(i+1) − 1

q2(k−d)

q2(i+1) − 1
1

q2(d−r) − 1
> q2(k−d)(d−r−1)−2(d−r).

Since 1 ≤ s ≤ q2r, we obtain

q2k − q2r − s(q2(k−d) − 1) ≥ q2k − q2r − q2r(q2(k−d) − 1)
= q2k−2d+2r(q2(d−r) − 1) > q2k−2d+2r.

Hence e = q2(k−d−1)d+2r. ��

Theorem 5. Suppose 0 ≤ 2r − 4 ≤ 2d < 2k − 2 ≤ n + r − 2. Let p =
q2(d+1) − q2r

q2 − 1
− 1. If 1 ≤ s ≤ p, then M2(n, d, d + 1) is fully se-disjunct, where

e = p − s.

Proof. By (2), we have N(d, r; d + 1, r; n) = p + 1. It follows that we can pick
s + 1 distinct subspaces C, C1, . . . , Cs of type (d + 1, r) such that C ∩ Ci and
C ∩ Cj are two distinct subspaces of type (d, r), where 1 ≤ i, j ≤ s. By the
principle of inclusion and exclusion, the number of subspaces of type (d, r) in C
but not in each Ci is p − s + 1, where 1 ≤ i ≤ s. It follows that e ≤ p − s.

On the other hand, similar to the proof of Theorem 4 we obtain

e ≥ N(d, r; d + 1, r; n) − s − 1 = p − s.

Hence e = p − s. ��

The following theorem tells us how to choose k so that the test to item ratio is
minimized.

Theorem 6. Fox fixed integers r < n, N(m, r; n) is a monotonic decreasing in
m ∈ [
n+r

3 � + 1, 
n+r
2 �] and a monotonic increasing in m ∈ [r, 
n+r

3 �].

Proof. For any 
n+r
3 � + 1 ≤ m1 < m2 ≤ 
n+r

2 �, by (1), we have

N(m2,r;n)
N(m1,r;n) =

qn+r−2m1 − (−1)n+r−2m1

qr(qm1−r+1 + 1)
· qn+r−2m1−1 − (−1)n+r−2m1−1

qr(qm1−r+1 − 1)

·q
n+r−2m1−2 − (−1)n+r−2m1−2

qr(qm1−r+2 + 1)
· qn+r−2m1−3 − (−1)n+r−2m1−3

qr(qm1−r+2 − 1)
· · · ·

·q
n+r−2m2+2 − (−1)n+r−2m2+2

qr(qm2−r + 1)
· qn+r−2m2+1 − (−1)n+r−2m2+1

qr(qm2−r − 1)
.

Since 
n + r

3
� + 1 ≤ m1 < m2 ≤ 
n + r

2
�, then

n + r

3
≤ m1. Thus

m1 + 1 > n + r − 2m1.
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It follows that
qn+r−2m1 < qm1+1.

So
qn+r−2m1 − (−1)n+r−2m1 < qm1+1 + qr = qr(qm1−r+1 + 1).

That is

1 >
qn+r−2m1 − (−1)n+r−2m1

qr(qm1−r+1 + 1)
.

Note that

qn+r−2m1 − (−1)n+r−2m1

qr(qm1−r+1 + 1)
>

qn+r−2m1−1 − (−1)n+r−2m1−1

qr(qm1−r+1 − 1)

>
qn+r−2m1−2 − (−1)n+r−2m1−2

qr(qm1−r+2 + 1)
>

qn+r−2m1−3 − (−1)n+r−2m1−3

qr(qm1−r+2 − 1)
> · · ·

>
qn+r−2m2+2 − (−1)n+r−2m2+2

qr(qm2−r + 1)
>

qn+r−2m2+1 − (−1)n+r−2m2+1

qr(qm2−r − 1)
.

Hence N(m2,r;n)
N(m1,r;n) < 1. That is N(m2, r; n) < N(m1, r; n).

For any r ≤ m1 < m2 ≤ 
n+r
3 �, by (1), we have

N(m2,r;n)
N(m1,r;n) =

qn+r−2m1 − (−1)n+r−2m1

qm1+1 + qr
· qn+r−2m1−1 − (−1)n+r−2m1−1

qm1+1 − qr

·q
n+r−2m1−2 − (−1)n+r−2m1−2

qm1+2 + qr
· qn+r−2m1−3 − (−1)n+r−2m1−3

qm1+2 − qr

· · · ·

·q
n+r−2m2+2 − (−1)n+r−2m2+2

qm2 + qr
· qn+r−2m2+1 − (−1)n+r−2m2+1

qm2 − qr
.

Since r ≤ m1 < m2 ≤ 
n + r

3
�, then m2 ≤ n + r

3
<

n + r + 1
3

. It implies that

m2 − r < n − 2m2 + 1.

So

qn−2m2+1 − (−1)n+r−2m2+1

qr
> qn−2m2+1 − 1 > qm2−r − 1.

It follows that
qn−2m2+1 − (−1)n+r−2m2+1

qr

qm2−r − 1
> 1.

Thus
qn+r−2m2+1 − (−1)n+r−2m2+1

qm2 − qr
> 1.
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Note that

qn+r−2m1 − (−1)n+r−2m1

qm1+1 + qr
>

qn+r−2m1−1 − (−1)n+r−2m1−1

qm1+1 − qr

>
qn+r−2m1−2 − (−1)n+r−2m1−2

qm1+2 + qr
>

qn+r−2m1−3 − (−1)n+r−2m1−3

qm1+2 − qr

> · · ·

>
qn+r−2m2+2 − (−1)n+r−2m2+2

qm2 + qr
>

qn+r−2m2+1 − (−1)n+r−2m2+1

qm2 − qr
.

Hence
N(m2, r; n)
N(m1, r; n)

> 1. That is N(m2, r; n) > N(m1, r; n). ��

Theorem 7. If d = r, k = r + 1 < n
2 , then the test efficiency of construction II

is smaller than that of [2]

Proof. If d = r and k = r + 1, then the disjunct matrix of construction II is
M2(n, r, r + 1) and the disjunct matrix of [2] is M(n, r + 1, r). Let t

n be the test
efficiency of M2(n, r, r + 1) and let t1

n1
be the test efficiency of M(n, r + 1, r),

respectively.
Then

t

n
=

N(d, r; n)
N(k, r; n)

=
N(r, r; n)

N(r + 1, r; n)

= qr(n+r−2r)

n∏
i=n+r−2r+1

(qi − (−1)i)

r∏
i=1

(qi − (−1)i)
r−r∏
i=1

(q2i − 1)
·

r∏
i=1

(qi − (−1)i)
r+1−r∏
i=1

(q2i − 1)

q
r(n+r−2(r+1))

n∏
i=n+r−2(r+1)+1

(qi−(−1)i)

=
qr+1 − qr

qn−r − (−1)n−r
· qr+1 + qr

qn−r−1 − (−1)n−r−1 ,

and

t1
n1

=

[
n
d

]
q[

n
k

]
q

=

k∏
i=d+1

(qi − 1)

n−d∏
i=n−k+1

(qi − 1)
=

qr+1 − 1
qn−r − 1

.

Since r + 1 < n
2 , we have

qr+1 + qr

qn−r−1 − (−1)n−r−1 < 1.

Therefore,
t

n
<

t1
n1

. ��
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Abstract. A gene team is a set of genes that appear in two or more
species, possibly in a different order yet with the distance between ad-
jacent genes in the team for each chromosome always no more than a
certain threshold. The focus of this paper is the problem of finding gene
teams of two chromosomes. Béal et al. [1] had an O(n log2 n)-time al-
gorithm for this problem. In this paper, two O(n log d)-time algorithms
are proposed, where d ≤ n is the number of gene teams. The proposed
algorithms are obtained by modifying Béal et al.’s algorithm, using two
different approaches. Béal et al.’s algorithm can be extended to find the
gene teams of k chromosomes in O(kn log2 n) time. Our improved al-
gorithms can be extended to find the gene teams of k chromosomes in
O(kn log d) time.

Keywords: bioinformatics, comparative genomics, conserved gene clus-
ters, gene teams, algorithms.

1 Introduction

Comparing multiple genome sequences is an important method to discover new
biological insights. If a group of genes remain physically close to each other in
multiple genomes, often called a conserved gene cluster, then the genes may be
either historically or functionally related [15]. For example, Overbeek et al. [13]
showed that the functional dependency of proteins can be inferred by consid-
ering conserved gene clusters in multiple genomes. This conservation of spatial
clustering of genes has also been used to predict features of interest, such as
operons and physical interactions of proteins [6,4,10,11]. Therefore, identifying
conserved gene clusters is an important step towards understanding the evolution
of genomes and predicting the functions of genes.

In recent years, several models had been developed to capture the essential
biological features of a conserved gene cluster. The first such model was intro-
duced by Uno and Yagiura [16], in which a genome sequence is considered as a
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under grant NSC-97-2221-E-007-053-MY3.
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permutation of distinct genes and a common interval is defined to be a set of
genes that appear consecutively, possibly in different orders, in two given per-
mutations. Uno and Yagiura had an algorithm that finds all common intervals
of two permutations of n genes in O(n + K) time, using O(n) space, where K is
the number of common intervals. Heber and Stoye [9] extended this work to find
all common intervals of k permutations in O(kn + K) time, using O(kn) space.
In addition, Didier [5] extended this model to include paralogs by considering a
sequence definition more general than a strict permutation, and gave an algo-
rithm that finds all common intervals of two sequences in O(n2 log n) time, using
O(n) space, on the extended model. Later, Schmidt and Stoye [14] improved this
result to O(n2) time. Schmidt and Stoye’s algorithm can be extend to find all
common intervals of k sequences in O(kn2) time, using O(n2) additional space.

In the definition of common intervals, a single misplaced gene disqualifies the
commonality between two otherwise similar intervals. To remedy this drawback,
Béal et al. [1,12] introduced the concept of gene teams. A gene team is a set of
genes that appear in two or more species, possibly in a different order yet with
the distance between adjacent genes in the team for each chromosome always
no more than a certain threshold. Similar to the model in [16], Béal et al. con-
sidered a chromosome as a permutation of distinct genes. They gave an efficient
algorithm that finds the gene teams of two chromosomes in O(n log2 n) time,
using O(n) space. He and Goldwasser [8] generalized the gene team model to
handle general sequences, in which multiple copies of the same gene are allowed.
They had an algorithm that finds gene teams of two general sequences in O(mn)
time, using O(m + n) space, where m and n are, respectively, the numbers of
genes in the two given sequence.

The focus of this paper is the problem of finding gene teams of two chromo-
somes. As mentioned above, Béal et al. had an O(n log2 n)-time algorithm for
this problem. In this paper, two improved algorithms are proposed. Both of the
proposed algorithms require O(n log d) time, using O(n) space, where d ≤ n is
the number of gene teams. Our algorithms are obtained by modifying Béal et
al.’s algorithm, using two different approaches. Béal et al.’s algorithm can be
extended to find the gene teams of k chromosomes in O(kn log2 n) time [1]. Our
improved algorithms are modified versions of theirs, and thus can also be easily
extended to find the gene teams of k chromosomes in O(kn log d) time.

The remainder of this paper is organized as follows. Section 2 gives notation
and definitions that are used throughout this paper. Section 3 reviews Béal et
al.’s algorithm. Then, our two improved algorithms are proposed in Sections 4
and 5, respectively. Finally, concluding remarks are given in Section 6.

2 Notation and Definitions

Let Σ be a set of n genes. A gene order G of Σ is a permutation of the genes
in Σ, in which each gene α is associated with a real number PG(α), called its
position, such that for any two genes α and β in G, PG(α) ≤ PG(β) if α appears
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before β. Let G be a gene order of Σ. The distance of two genes α and β in G
is given by |PG(α) − PG(β)|. For any subset S ⊆ Σ, let G(S) be the gene order
of S that is obtained from G by deleting the genes not in S. Let δ ≥ 0 be a
real number. A subset C ⊆ Σ is a δ-chain of G if the distance between any two
consecutive genes in G(C) is at most δ. A δ-chain C of G is maximal if there
dose not exist any δ-chain C′ of G such that C′ ⊃ C.

Example 1. Consider Σ ={a, b, c, d, e, f}, δ=3, and a gene order G=(d1, e2, c3,
a4, f5, b8), where the letters represent genes and the numbers in the subscript
denote positions. Then, G({c, d, f}) = (d1, c3, f5). The set {c, d, f} is a δ-chain
of G since each pair of consecutive genes in G({c, d, f}) is distant by less than
δ; but it is not maximal, since {c, d, e, f} is also a δ-chain of G. The set {d, f}
is not a δ-chain of G, since the distance between d and f is 4.

Let G1 and G2 be two gene orders of Σ. A subset S ⊆ Σ is a δ-set of G1 and G2 if
it is a δ-chain of both G1 and G2. A δ-team of G1 and G2 is a δ-set that is maximal
with respect to set inclusion. Given two gene orders G1, G2 of Σ and a real number
δ ≥ 0, the gene team problem is to identify all the δ-teams of G1 and G2. It is easy
to see that the set of δ-teams of G1 and G2 form a partition of Σ.

Example 2. Consider Σ = {a, b, c, d, e, f}, δ = 3, and two gene orders G1 =
(d1, e2, c3, a4, f5, b8) and G2 = (a1, b2, c3, d7, e8, f9). Then, {d, e}, {e, f}, {d, e, f}
are δ-sets. Since {d, f} is not a δ-chain of G1, {d, f} is not a δ-set. The δ-teams
of G1 and G2 are {a, c}, {b}, {d, e, f}.

3 Béal et al.’s Algorithm

In this section, we review Béal et al.’s algorithm in [1] for finding the δ-teams of
two gene orders G1 and G2 of Σ. A δ-league of G1 and G2 is a union of δ-teams
of G1 and G2. Trivially, Σ is a δ-league of G1 and G2. Let Team(G1, G2) be the
set of δ-teams of G1 and G2. Béal et al. observed that any maximal δ-chain of
G1 or of G2 is a δ-league, and gave the following important property for finding
the δ-teams of two gene orders.

Lemma 1. [1] Let C ⊆ Σ be a maximal δ-chain of G1 or of G2. Then, Team(G1,
G2) = Team(G1(C), G2(C)) ∪ Team(G1(Σ\C), G2(Σ\C)).

Consider a gene order G of Σ. For convenience, we say that a maximal δ-chain
C of G is small if the size of C is at most |Σ|/2. If G is not a δ-chain, a small
maximal δ-chain of G can be found efficiently as follows. We scan the genes
in G from the two ends simultaneously by using two pointers p1 and p2. The
pointer p1 examines the distance between each pair of consecutive genes in G
from left to right, and the pointer p2 examines the distance between each pair
of consecutive genes in G from right to left. Initially, p1 and p2 point, respec-
tively, to the first and last genes in G. Then, repeatedly, we do the following.
If the current distance examined by p1 is larger than δ, a small maximal δ-chain is
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found, which contains the genes that have encountered by p1; and if the current
distance examined by p2 is larger than δ, a small maximal δ-chain is found, which
contains the genes that have encountered by p2. Otherwise, move p1 one step
to the right and move p2 one step to the left, and proceed to the next iteration
until p1 and p2 cross in the middle. In case p1 and p2 cross in the middle, G is
a δ-chain.

If G is not a δ-chain, the above procedure finds a small maximal δ-chain C in
O(|C|) time. Otherwise, the above procedure terminates in O(|Σ|) time. If both
G1 and G2 are δ-chains, Σ is a gene team. Otherwise, a small maximal δ-chain of
G1 or of G2 can be found efficiently by a simple extension of the above procedure
as follows: By using four pointers, we scan the genes in each of G1 and G2 from
the two ends to the center simultaneously.

For any subset S ⊆ Σ, let L1(S) denote a doubled linked list storing G1(S)
and L2(S) denote a doubled linked list storing G2(S). For convenience, define
an operation as follows:

SMALLCHAIN(L1(S), L2(S)): if both G1(S) and G2(S) are δ-chains, return S;
otherwise, return a small maximal δ-chain of G1(S) or of G2(S).

Based upon the above discussion, we have the following.

Lemma 2. [1] SMALLCHAIN can be implemented in O(|C|) time, where C is
the output.

Based on Lemmas 1 and 2, Béal et al.’s gave the following efficient algorithm for
the gene team problem.

Algorithm 1. GENE-TEAMS

Input: two gene orders G1, G2 of Σ and a real number δ ≥ 0
Output: the set of all δ-teams of G1 and G2
begin
1 GT ← ∅; construct L1(Σ) and L2(Σ)
2 FINDTEAM(L1(Σ), L2(Σ))
3 output(GT )
end

Procedure FINDTEAM(L1(S), L2(S))
begin
1 C ← SMALLCHAIN(L1(S), L2(S))
2 if C = S then GT ← GT ∪ {S} /* a δ-team S is found
3 else
4 begin
5 construct L1(C), L1(S\C), L2(C), and L2(S\C)
6 FINDTEAM(L1(C), L2(C)) /* solve two sub-problems recursively
7 FINDTEAM(L1(S\C), L2(S\C))
8 end
end
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Consider the running time of FINDTEAM. By Lemma 2, Line 1 requires O(|C|)
time. If both G1(S) and G2(S) are δ-chains, FINDTEAM terminates at Line 2 in
O(|S|) time. Assume that not both G1(S) and G2(S) are δ-chains. Line 5 is
implemented in O(|C| log |C|) time as follows. By symmetry, we may assume
that C is a small maximal δ-chain of G1(S). Then, since L1(S) is either the
concatenation of L1(C) and L1(S\C), or the concatenation of L1(S\C) and
L1(C), we can obtain L1(C) and L1(S\C) in O(1) time by simply splitting
L1(S) into two parts. The list L2(S\C) is obtained in O(|C|) time from L2(S)
by removing the nodes storing the genes in C. The construction of L2(C) is the
bottleneck. It is done in O(|C| log |C|) time by sorting genes in C according to
their positions in G2. Let T (n) be the time required for running FINDTEAM on
two gene orders of size n. Then, the recursive calls in Lines 6 and 7 take T (|C|)+
T (|S\C|) time, respectively. Therefore, we have T (n) = max1≤i≤n/2{T (n− i) +
T (i) + O(i log i)}. By induction, it can be shown that T (n) = O(n log2 n) [1].
Consequently, we have the following.

Theorem 1. [1] Algorithm 1 solves the gene team problem in O(n log2 n) time.

Remark 1. Béal et al. showed that it is easy to modify FINDTEAM to find the δ-
team containing a designated gene α ∈ Σ in O(n log n) time. In fact, FINDTEAM

can be modified to do the finding in O(n) time as described below. First, compute
C as SMALLCHAIN(L1(S), L2(S)). If C = S, S is the desired δ-team. Otherwise,
do the following: obtain L1(X) and L2(X) from L1(S) and L2(S) in O(|S\X |)
time by removing genes not in X , and then call FINDTEAM(L1(X), L2(X)) re-
cursively, where X denotes C if α ∈ C and denotes S\C otherwise.

4 The First Improved Algorithm

This section presents our first O(n log d)-time algorithm for the gene team prob-
lem, where d ≤ n is the number of δ-teams. The presented algorithm is a
modified version of Béal et al.’s algorithm. Given L1(S) and L2(S), their al-
gorithm computes Team(G1(S), G2(S)) as follows. First, find a small maximal
δ-chain of G1(S) or of G2(S). If S = C, then S is a δ-team; otherwise, construct
L1(C), L1(S\C), L2(C), and L2(S\C), and compute Team(G1(C), G2(C)) and
Team(G1(S\C), G2(S\C)) recursively. By symmetry, assume that C is a small
maximal δ-chain of G1(S). Then, the bottleneck of their algorithm is the con-
struction of L2(C). They implemented the construction in O(|C| log |C|) time by
sorting genes in C according to their positions in G2. It is well-known that sort-
ing n integers in a range 1 to nc, for any constant c, can be done in linear time
[2]. Our improvement is obtained by reducing the construction time of L2(C) to
amortized O(|C|), based on a non-trivial application of integer sort.

During the course of our first algorithm, each gene α in G1 is associated
with an integer label such that integer sort may be applied to construct L1(C)
according to the labels. Similarly, each gene α in G2 is associated with an integer
label. Our first improved algorithm is as follows.
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Algorithm 2. MODIFIED-GENE-TEAMS

Input: two gene orders G1, G2 of Σ and a real number δ ≥ 0
Output: the set of all δ-teams of G1 and G2
begin
1 GT ← ∅; construct L1(Σ) and L2(Σ)
2 MODIFIEDFINDTEAM(L1(Σ), L2(Σ))
3 output(GT )
end

Procedure MODIFIEDFINDTEAM(L1(S), L2(S))
begin
1 k ← |S|
2 label the genes in L1(S) and L2(S) from left to right,

using the integers in [1, k]
3 repeat
4 C ← SMALLCHAIN(L1(S), L2(S))
5 if C �= S then
6 begin
7 construct L1(C), L1(S\C), L2(C), and L2(S\C)
8 /* solve the subproblem induced by C recursively
9 MODIFIEDFINDTEAM(L1(C), L2(C))
10 /* solve the subproblem induced by S\C in next iteration
11 S ← S\C
12 end
13 until C = S
14 GT ← GT ∪ {S} /* a δ-team S is found
end

The correctness of Algorithm 2 is ensured by Lemma 1. Consider a fixed
iteration of the repeat-loop in MODIFIEDFINDTEAM. For ease of discussion, as-
sume that C is a small maximal δ-chain of G1(S). Then, the bottleneck is the
construction of L2(C) at Line 7. We do the construction of L2(C) as follows.

Case 1: |C| ≥ k1/2.
In this case, we construct L2(C) in O(|C|) time by integer sort, according
to the labels of the genes in C. Note that all labels are integers in [1, k]. In
this case, O(1) time is spent on each gene in C.

Case 2: |C| < k1/2.
We construct L2(C) in O(|C| log |C|) time by using a comparison sort. In
this case, O(log |C|) amortized time is spent for each gene in C.

Lemma 3. Line 7 of MODIFIEDFINDTEAM takes O(|C|) time if |C| ≥ k1/2, and
takes O(|C| log |C|) time otherwise.

We proceed to discuss the overall time complexity of Algorithm 2. For ease of
discussion, we describe the execution of Algorithm 2 on a given gene orders G1
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and G2 by a recursion tree RT , which is defined as follows. The nodes in RT
are classified into two subsets X and Y . Each node x ∈ X represents a δ-team,
denoted by Qx. Each node y ∈ Y represents a subset Sy ⊆ Σ, indicating that
there is a recursive call to MODIFIEDFINDTEAM with input (L1(Sy), L2(Sy)).
All nodes x ∈ X are leaves. For each node y ∈ Y , y is the parent of a node
x ∈ X , if Qx ⊆ Sy, indicating that Qx is found at Line 14 of the recursive
call corresponding to y; and y is the parent of another node y′ ∈ Y , if Sy′ ⊂
Sy, indicating that the recursive call corresponding to y′ is issued by the call
corresponding to y.

Clearly, the running time of Algorithm 2 is proportional to the total construc-
tion time of L1(Sy) and L2(Sy) for every node y ∈ Y . Consider the total amortized
time spent on a fixed gene α ∈ Σ for the construction. Let x ∈ X be the leaf with
α ∈ Qx, and let (y(1), y(2), ..., y(q), x) be the path from the root of RT to the leaf
x. (See Fig 1.) Then, {Sy(i) | 1 ≤ i ≤ q} is the collection of all subsets Sy in RT
such that the construction of L1(Sy) and L2(Sy) involves α. Note that y(1) is the
root of RT and Sy(1) = Σ. According to Lines 4 and 9 of MODIFIEDFINDTEAM, a
recursive call having input of size k may issue recursive calls having input of size
at most k/2. Thus, |Sy(i)| ≤ |Sy(i−1)|/2 for 1 < i ≤ q. Since |Sy(1)| = n and
|Sy(q)| ≥ |Qx|, we have q ≤ log(n/|Qx|). Let ti be the amortized time spent on
α for the construction of L1(Sy(i)) and L2(Sy(i)). If |Sy(i)| ≥ |Sy(i−1)|1/2, we call
y(i) a cheap node of α, since by Lemma 3, ti = O(1); otherwise, we call y(i) an
expensive node of α, and ti = O(log |Sy(i)|) by Lemma 3.

Lemma 4. t1 + t2 + ... + tq = O(log(n/|Qx|)).

Proof. Let a1 =
∑

y(i) is cheap{ti} and a2 =
∑
y(i) is expensive{ti}. Since q ≤

log(n/|Qx|), we have a1 = O(log(n/|Qx|). If |Qx| ≥ n1/2, α does not have
any expensive node and thus a1 + a2 = O(log(n/|Qx|)). Therefore, the lemma

 

y(1) Sy(1) = Σ 

y(4) Sy(4) 

y(2) Sy(2) 

y(3) 

x α∈Qx 

Sy(3) 

a node in X 

a node in Y 

Fig. 1. An illustration of (y(1), y(2), ..., y(q), x), in which q = 4
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holds for |Qx| ≥ n1/2. Assume that |Qx| < n1/2. Let (e(1), e(2), ..., e(s)) be
the sequence of expensive nodes of α on the path from the root of RT to
the leaf x. Clearly, |Se(i)| < |Se(i−1)|1/2 for 1 < i ≤ s. Thus, it is easy to
see that |Se(i)| < n(1/2)i

. And thus, we have a2 = O(
∑

1≤i≤s(log |Se(i)|)) =
O(

∑
1≤i≤s((1/2)i log n)) = O(log n). We had assumed that |Qx| < n1/2. There-

fore, a2 = O(log n) = O(log(n/|Qx|)). Consequently, the lemma holds. ��

Let GT be the set of δ-teams of G1 and G2. Then, by Lemma 4, the overall time
complexity of Algorithm 2 is proportional to∑

Q∈GT
∑

α∈Q log(n/|Q|)
≤

∑
Q∈GT |Q| × log(n/|Q|)

=
∑

Q∈GT |Q| × log n −
∑

Q∈GT |Q| × log |Q|
= n log n −

∑
Q∈GT |Q| × log |Q|.

Let d be the number of δ-teams in GT . It is easy to check that the minimum
of

∑
Q∈GT |Q| × log |Q| occurs when all δ-teams in GT are of the same size.

Therefore,
∑

Q∈GT
∑
α∈Q log(n/|Q|) ≤ n log n−d(n/d)× log(n/d) = n log d. We

have the following.

Theorem 2. Algorithm 2 solves the gene team problem in O(n log d) time, where
d is the number of δ-teams.

Remark 2. With a more careful analysis, it can be shown that the running time
of Algorithm 1 is O(n log n log d).

5 The Second Improved Algorithm

This section presents our second improved algorithm for the gene team problem,
which also requires O(n log d)-time. Similar to Algorithm 1, our second algorithm
is designed based upon the following strategy: repeatedly partition two given
gene orders into smaller gene orders according to Lemma 1, until all gene orders
are δ-chains. Béal et al. implemented the above strategy by using recursive calls.
To improve the running time, our second algorithm dose not use recursive calls.
Instead, we maintain two job queues R and W , which are described as follows.
Each job queue is a collection of subsets S ⊆ Σ. Each subset S in the queues
indicates that we need to solve the sub-problem defined by G1(S) and G2(S).
We call R the ready queue. Each subset S in R is represented by (L1(S), L2(S)).
We call W the waiting queue. Each subset S in W is simply represented by S.
Our algorithm works as follows. Initially, we compute an array A1 storing the
sequence of genes in G1 and an array A2 storing the sequence of genes in G2.
And, we set R = ∅, W = {Σ}, and GT = ∅. Then, we proceed to iterate as
follows, until both job queues are empty. If R is empty, we do the following:
construct (L1(S), L2(S)) and include it into R for all S ∈ W , and then empty
the waiting queue W . Otherwise, we extract an element (L1(S), L2(S)) from
R and do the following. First, we compute C = SMALLCHAIN(L1(S), L2(S)). If
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C = S, we include the δ-team S into GT ; otherwise, we construct L1(S\C)
and L2(S\C), insert (L1(S\C), L2(S\C)) into R, and insert C into W . Then,
we proceed to the next iteration. The above algorithm is formally described as
follows.

Algorithm 3. NONRECURSIVE-GENE-TEAMS

Input: two gene orders G1, G2 of Σ and a real number δ ≥ 0
Output: the set of all δ-teams of G1 and G2
begin
1 A1 ← the sequence of genes in G1; A2 ← the sequence of genes in G2
2 R ← ∅; W ← {Σ}; GT ← ∅
3 while (W �= ∅) do
4 begin
5 MAKELIST /* move sub-problems in W into R
6 PARTITION /* partition each sub-problem in R by Lemma 1
7 end
8 output(GT )
end

Procedure MAKELIST

begin
1 for each S ∈ W do
2 construct L1(S) and L2(S) and then insert (L1(S), L2(S)) into R
3 W ← ∅
end

Procedure PARTITION

begin
1 while (R �= ∅) do
2 begin
3 (L1(S), L2(S)) ← an element extracted from R
4 C ← SMALLCHAIN(L1(S), L2(S))
5 if C = S then GT ← GT ∪ {S} /* a δ-team S is found
6 else begin
7 obtain L1(S\C) and L2(S\C) from L1(S) and L2(S)
8 R ← R ∪ {(L1(S\C), L2(S\C))} /* insert S\C into R
9 W ← W ∪ {C} /* insert C into W
10 end
11 end
end

The correctness of Algorithm 3 is ensured by Lemma 1. The time complexity is
analyzed as follows. First, we show that the while-loop in Lines 3–7 of Algorithm
3 performs O(log n) iterations. Consider a fixed iteration of the while-loop. At
the beginning, R is empty. In Line 5, the call to MAKELIST moves all subsets in
W into R. In Line 6, the call to PARTITION inserts a subset C into W only if
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|C| ≤ |S|/2 for some S ∈ R. Thus, at each iteration, the size of the largest subset
in W is reduced by a factor of at least 1/2. Before entering the while-loop, the
largest subset in W is Σ. Therefore, the while-loop performs O(log n) iterations.

Lines 1 and 2 of Algorithm 3 require O(n) time. In the following, we first
show that the time complexity of Algorithm 3 is O(n log n) by showing that
both MAKELIST and PARTITION require O(n) time. MAKELIST needs to construct
L1(S) and L2(S) for all S ∈ W . By symmetry, only the construction of L1(S)
for all S ∈ W is described. Let S1, S2, ..., Sk be the subsets in W . Note that
these subsets are mutually disjoint. Moreover, S1, S2, ..., Sk and the subsets in
GT form a partition of Σ. For any subset Si ∈ W , the order of the genes in
L1(Si) is the same as their order in A1. Therefore, all L1(Si) can be constructed
as follows. Initially, set L1(Si) = ∅ for each i, 1 ≤ i ≤ k. Then, we examine
the genes in A1 from left to right. If A1[j], 1 ≤ j ≤ n, is not a gene of a set in
GT , we append it to the tail of L1(Si), where Si is the subset containing A1[j].
Clearly, the above construction takes O(n) time. Next, consider the running time
of PARTITION. At the beginning, there are at most n genes in the subsets of R.
Each iteration of the while-loop takes O(|C|) time and moves |C| genes from R
into GT or W (at Lines 5 and 9), until R is empty. Thus, the overall running
time of PARTITION is O(n). Consequently, the time complexity of Algorithm 3
is O(n log n).

In the following, we further show that with slight modifications, Algorithm 3
can be implemented in O(n log d) time. As mentioned, the while-loop of Algorithm
3 performs O(log n) iterations. At each iteration, the most critical step is Line 2
of MAKELIST, which needs to construct L1(S) and L2(S) for all S ∈ W . For i ≥ 1,
let Zi be the union of the subsets in W at the beginning of the i-th iteration of
the while-loop of Algorithm 3. Consider the i-th iteration for a fixed i. Clearly, the
genes in A1 and A2 that are not in Zi are useless to the construction of L1(S) and
L2(S) for any subset S ∈ W . Therefore, to reduce the running time, we modify
Algorithm 3 as follows: at the end of the i-th iteration of the while-loop, we remove
from A1 and A2 those genes that are not in Zi+1, so that at the beginning of the
(i + 1)-th iteration, A1 and A2 contain only the genes in Zi+1.

With the above modification, the time complexity of Algorithm 3 is analyzed
as follows. Consider the i-th iteration of the while-loop of Algorithm 3. Since
A1 and A2 contain only the genes in Zi, the call to MAKELIST at Line 5 takes
O(|Zi|) time. After Line 5, the union of the subsets in R is Zi. Therefore, the
call to PARTITION at Line 6 also takes O(|Zi|) time. Before proceeding to the
next iteration, we need to remove from A1 and A2 those genes not in Zi+1. By
a simple scan, such a removal is done in O(|Zi|) time. Therefore, the running
time of the i-th iteration is O(|Zi|). Consequently, the overall time complexity
of Algorithm 3 is O(

∑
|Zi|).

Let GT be the set of δ-teams of G1 and G2 and let d be the number of δ-
teams in GT . In the following, we show that

∑
|Zi| = O(n log d). Consider a

δ-team Q ∈ GT . As mentioned, each iteration of the while-loop of Algorithm
3 reduces the size of the largest subset in W by a factor of at least 1/2. Thus,
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at the beginning of the i-th iteration, the size of the largest subset in W is at
most n/(2i−1). Therefore, Q ⊆ Zi only if n/(2i−1) ≥ |Q|. That is, each Q is
found not later than the end of the (log(n/|Q|) + 1)-th iteration. Thus, the size
of Q contributes to

∑
|Zi| at most log(n/|Q|)+1 times. And therefore,

∑
|Zi| ≤∑

Q∈GT |Q|×(log(n/|Q|)+1) = n+n log n−
∑
Q∈GT |Q|×log |Q|. As mentioned in

Section 4, the minimum of
∑
Q∈GT |Q|×log |Q| occurs when all δ-teams in GT are

of the same size. Therefore,
∑

|Zi| ≤ n+n log n−d(n/d)×log(n/d) = n+n log d.
We have the following.

Theorem 3. Algorithm 3 solves the gene team problem in O(n log d) time, where
d is the number of δ-teams.

It is nature to extend the definition of δ-teams to a set of gene orders
{G1, G2, ..., Gk}. A gene order describes the structure of a linear chromosome.
Also, it is nature to extend the definition of δ-teams to a set of circular chro-
mosomes. As indicated in [1], Algorithm 1 can be easily extended to solve the
problem of finding the δ-teams of a set of k gene orders or a set of k circular
chromosomes in O(kn log2 n) time. Similarly, Algorithms 2 and 3 can be easily
extended to obtain the following.

Theorem 4. The δ-teams of a set of k gene orders or a set of k circular chro-
mosomes can be found in O(kn log d) time, where d is the number of δ-teams.

6 Concluding Remarks

A graph problem, called the common connected component problem (CCP), was
introduced by Gai et al. [7]. The gene team problem is a special case of the
CCP, in which the input is two unit interval graphs. Coulon and Raffinot [3]
extended Algorithm 1 to solve the CCP on k interval graphs in O(kn log2 n)
time. Similarly, Algorithms 2 and 3 can be easily extended to solve the CCP
on a set of k interval graphs in O(kn log d) time, where d ≤ n is the number of
common connected components.

He and Goldwasser [8] considered a generalization of the gene team problem, in
which each of G1 and G2 may contain multiple copies of the same gene. They had
an O(mn)-time, O(m+n)-space algorithm for the generalized problem, where m
and n are, respectively, the lengths of G1 and G2. Let D =

∑
α∈Σ o1(α)× o2(α),

where o1(α) and o2(α) are, respectively, the numbers of copies of α in G1 and
G2. We remark that with some efforts, both Algorithms 2 and 3 can be extended
to solve the generalized problem in O(min{D log n, nm}) time. According to our
experimental results, Algorithm 3 is more efficient than Algorithm 2. However,
while being extended to solve the generalized gene team problem, Algorithm 2
uses less space than Algorithm 3, since Algorithm 2 solves sub-problems in a
depth-first way, while Algorithm 3 solves sub-problems in a breadth-first way.
The space requirements of the two extended algorithms are, respectively, O(n +
m) and O(D).
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Abstract. Discovering groups of genes that share common expression
profiles is an important problem in DNA microarray analysis. Unfortu-
nately, standard bi-clustering algorithms often fail to retrieve common
expression groups because (1) genes only exhibit similar behaviors over
a subset of conditions, and (2) genes may participate in more than one
functional process and therefore belong to multiple groups. Many algo-
rithms have been proposed to address these problems in the past decade;
however, in addition to the above challenges most such algorithms are
unable to discover linear coherent bi-clusters—a strict generalization of
additive and multiplicative bi-clustering models. In this paper, we pro-
pose a novel bi-clustering algorithm that discovers linear coherent bi-
clusters, based on first detecting linear correlations between pairs of gene
expression profiles, then identifying groups by sample majority voting.
Our experimental results on both synthetic and two real datasets, Sac-
charomyces cerevisiae and Arabidopsis thaliana, show significant perfor-
mance improvements over previous methods. One intriguing aspect of
our approach is that it can easily be extended to identify bi-clusters of
more complex gene-gene correlations.

1 Introduction

Microarray analysis involves monitoring the expression levels of thousands of
genes simultaneously over different conditions. Although such an emerging tech-
nology enables the language of biology to be spoken in mathematical terms,
extracting useful information from the large volume of experimental microarray
data remains a difficult challenge. One important problem in microarray analy-
sis is to identify a subset of genes that have similar expression patterns under
a common subset of conditions. Standard clustering methods, such as K-means
clustering [8,5], hierarchical clustering [17,20] and self-organizing map [18], are
usually not suitable for microarray data analysis for two main reasons: (1) genes
exhibit similar behaviors not over all conditions, but over a subset of conditions,
and (2) genes may participate in more than one functional processes and hence
belong to multiple groups. Thus, traditional clustering algorithms typically do
not produce a satisfactory solution. To overcome the limitations of the tradi-
tional clustering methods, the concept of bi-clustering was developed where one
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Fig. 1. Example of a constant row bi-cluster in gene expression matrix. The left image
shows a gene expression matrix without any obvious bi-clusters; the right image shows
an expression matrix with a constant row bi-cluster.

seeks groups of genes that exhibit similar expression patterns, but only over a
subset of the sample conditions. Figure 1 illustrates a gene expression matrix
without any obvious bi-clusters (left) and an expression matrix with a salient
bi-cluster (right).

The term bi-clustering, also called co-clustering, or two-mode clustering was
first mentioned by Hartigan in [7] and latter formalized by Mirkin in [14]. Cheng
and Church [4] were the first to apply bi-clustering to gene expression analysis.
Since then, dozens of bi-clustering algorithms have been proposed for the gene
expression analysis. The general bi-clustering problem and many of its variants
were proved to be NP-hard in [4], and therefore most bi-clustering algorithms
comprise heuristic approaches unless special restrictions are made on the bi-
cluster type and(or) bi-cluster structure. Among such bi-clustering algorithms,
the majority assume that a expression matrix contains multiple bi-clusters rather
than a single bi-cluster. Under the multiple bi-cluster circumstance, different bi-
cluster structures can be considered, such as exclusive row and(or) column bi-
clusters, checkerboard structure bi-clusters, non-overlapping tree-structured bi-
clusters, non-overlapping non-exclusive bi-clusters, overlapping bi-clusters with
hierarchical structure, arbitrarily positioned overlapping bi-clusters, and arbi-
trarily positioned overlapping bi-clusters [13]. The specific variant of the problem
we address with the algorithm proposed in this paper, the Linear Coherent Bi-
cluster Discovering (LCBD) algorithm, is the last form of bi-cluster structure;
i.e., arbitrarily positioned overlapping bi-clusters. This last form is a a more
general structure that covers most of the other bi-cluster structures.

Before designing a bi-clustering algorithm, one needs to determine what type
(model) of individual bi-clusters to be looking for. There are six primary types
considered in the literature, illustrated in Figure 2: (a) the constant value model,
(b) the constant row model, (c) the constant column model, (d) the additive co-
herent model, where each row or column is obtained by adding a constant to
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x y z w
1.0 1.0 1.0 1.0
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Examples of different bi-cluster types: (a) constant value model; (b) constant
row model; (c) constant column model; (d) additive coherent model; (e) multiplicative
coherent model; (f) linear coherent model

another row or column, (e) the multiplicative coherent model, where each row
or column is obtained by multiplying another row or column by a constant
value, and (f) the linear coherent model, where each column is obtained by mul-
tiplying another column by a constant value and then adding a constant [6].
To understand which type of bi-cluster structure makes the sense for gene ex-
pression analysis, one should note that the ultimate purpose is to identify pairs
of biologically related genes such that, under certain conditions, one activates
or deactivates the other, either directly or indirectly, during a genetic regula-
tory process. Because a gene may regulate a group of other genes, this problem
becomes identifying groups of such genes, i.e., bi-clusters. Housekeeping genes,
which are constitutively expressed over most conditions, are not biologically or
clinically interesting. The genes that the first two bi-cluster models, i.e., (a) and
(b) find tend to be this kind. Therefore, most existing algorithms are based on
either the additive model (d) or the multiplicative model (e) [6]. Since type (f)
is a more general type that unifies types (c), (d), and (e), we focus on seeking
type (f) bi-clusters in this paper.

Our algorithm, the Linear Coherent Bi-cluster Discovering (LCBD) algorithm,
is based on first detecting linear correlations between pairs of gene expression
profiles, then identifying groups by sample majority voting. To evaluate our algo-
rithm, we will compare its performance to six existing, well known bi-clustering
algorithms: Cheng and Church’s algorithm, CC [4]; Samba [19]; Order Preserving
Sub-matrix Algorithm, OPSM [1]; Iterative Signature Algorithm, ISA [10,9]; Bi-
max [15]; and Maximum Similarity Bi-clusters of Gene Expression Data, MSBE
[12]. The first five algorithms were selected and implemented in the survey [15].
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The last algorithm, MSBE, is the first polynomial time bi-clustering algorithm
that finds optimal solutions, but under certain constraints. To briefly explain
each of the first five bi-clustering algorithms: in [4] Cheng and Church de-
fined a merit score, called mean squared residue, to evaluate the quality of a
bi-clustering, and then develop a greedy algorithm for finding δ-bi-clusters. Yang
et al. improved Cheng and Church’s method by allowing missing values in gene
expression matrices. Tanay et al. [19] and Prelić et al. [15] search for bi-clusters of
up-regulated or down-regulated expression values, while the original expression
matrices are discretized to binary matrices during a pre-processing phase. Ih-
mels et al. [10,9] used gene and condition signatures to evaluate bi-clusters, and
propose a random iterative signature algorithm (ISA) when no prior information
of the matrix is available. Ben-Dor et al.[1] attempt to find the order-preserving
sub-matrix (OPSM) bi-clusters in which all genes have same linear ordering,
based on a heuristic algorithm.

The remainder of the paper is organized as follows: First, we present the details
of our LCBD method in Section 2. Then Section 3 describes the experimental
evaluation of our proposed method, comparing its performance on both synthetic
and real data to other algorithms. Section 4 then assesses the advantages and
disadvantages of the LCBD algorithm and proposes some possible approaches
that may overcome the drawbacks of the LCBD algorithm.

2 Methods and Algorithms

Let A(I, J) be an n × m real valued matrix, where I = {1, 2, 3, ..., n} is the set
of genes and J = {1, 2, 3, ..., m} is the set of samples. The element aij of A(I, J)
represents the expression level of gene i under sample j. A row vector A(i, J)
and a column vector A(I, j) represents the ith gene over all the samples and the
jth sample over all the genes, respectively. Our algorithm is composed of three
major steps.

In the first step, for each pair of genes A(p, J) and A(q, J), where p, q ∈
{1, 2, 3, ...n} and p �= q, we construct a two-dimension binary matrix that rep-
resents the 2D image of the two vectors with x-coordinates A(p, J) and y-
coordinates A(q, J), respectively. A pixel in the 2D image is denoted by a 1
in the binary matrix. Using the binary matrix as input, we then identify lines in
the 2D image based on the Hough transform. The Hough transform technique
works on the following principle: First note that each point (pixel) in a 2D image
can be passed through by an infinite number of lines, and each of which can be
parameterized by r and θ, where r is the perpendicular distance between the
origin and the line and θ is the angle between the perpendicular line and the
x-coordinate. Then note that the set of lines that pass through a point forms
a sinusoidal curve in the r − θ coordinate space. Now, if there is a common
line that passes through a set of points in the original 2D image, their corre-
sponding sinusoidal curves must have a point of intersection in the r−θ space. So
by finding a point of intersection in r−θ space, one can identify a line that passes
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Fig. 3. Illustration of an n × n gene pairwise sample sets matrix

through a set of points in the original 2D space. Each line in the 2D image is a
linear correlation between a pair of genes under a subset of samples. To allow for
possible overlaps in the final bi-clusters, we let the Hough transform identify at
most k non-reduplicative lines. Therefore, for each pair of genes, we can collect
at most k sample sets over which the two genes are linearly correlated. After
collecting sample sets for each gene pair, we obtain an n × n upper trianglular
matrix, where each element contains at most k sample sets (See Figure 3 for an
illustration). We denote each element in the matrix as Sij . Note that for each 2D
image, the horizontal lines and vertical lines in the 2D image are not eliminated
since they might not represent linear correlations.

In the second step, for vector of sample sets, SiJ , we count the samples that
appear in each element of SiJ . We then collect the top w voted samples into a
sample pool and the corresponding genes who voted for these samples into a gene
pool. The sample and gene pools thus constitute an initial bi-cluster. Then, for
the remaining samples, we iteratively add them and their corresponding gene
into the sample and gene pools, respectively, as long as by adding them the
mean gene-gene correlation coefficient of the current bi-cluster remains above a
threshold. The user specified parameter w should be greater than 3, because one
can always draw a line between any 2 random points but the possibility that
more than 2 random points lie on the same line is very small unless there is
a linear correlation. In this step, each sample sets vector SiJ will construct at
most one bi-cluster that necessarily contains gene i.

In the third step, we remove redundancy in the bi-cluster sets generated in step
two. If two bi-clusters share more than 60% identical elements, one of the two
will be removed depending on which has more identical elements. Algorithm 1
describes the LCBD algorithm.
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Algorithm 1. The LCBD Algorithm
Input: An n × m real value matrix A(I, J), k, w.
Output: A set of bi-clusters A(gi, si), where gi ⊆ I and si ⊆ J .

for i = 1 to n do
for j = i + 1 to n do

Construct binary matrix Bi,j for vectors A(i, J) and A(j, J);
Do Hough transform based on Bi,j and k to obtain a set of sample sets, SiJ ;

end for
end for

for i = 1 to n do
Select the top w most voted samples in SiJ as the initial sample pool si;
Select the genes whose corresponding gene pair sample sets contain all the initial
samples gi;
Construct the initial bi-cluster A(gi, si);
while gene-wise mean correlation coefficient of A(gi, si) < threshold do

Add the most voted sample in the leftover sample sets to the sample pool si;
Add the corresponding gene into the gene pool gi;
Update bi-cluster A(gi, si);

end while
end for

Remove redundant bi-clusters in the set A(gi, si) that has > 60% overlapping ele-
ments.
Output the set of bi-clusters A(gi, si);

3 Results

We tested our algorithm on both synthetic datasets and two real datasets Sac-
charomyces cerevisiae and Arabidopsis thaliana. For the synthetic datasets, we
evaluate the algorithms based on how well they identify the real bi-clusters em-
bedded in the expression matrix beforehand. We adopt the Prelić’s match score
function [15] as a quantified evaluation of merit: Let M1, M2 be two sets of
bi-clusters. The gene match score of M1 with respect to M2 is given by the
function

S∗
G(M1, M2) =

1
M1

∑
(G1,C1)∈M1

max(G2,C2)∈M2

|G1 ∩ G2|
|G1 ∪ G2|

S∗
G(M1, M2) reflects the average of the maximum match scores for all bi-clusters

in M1 with respect to the bi-clusters in M2. In our experiment, M2 is one or more
reference (optimal) bi-cluster(s) embedded in the expression matrix beforehand.
For the parameter settings of the existing algorithms, we follow the previous
works [12] and [15].
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3.1 Results on Synthetic Data

Because most existing bi-clustering algorithms do not work on linear coherent
bi-clusters, we select two bi-clustering algorithms OPSM and ISA that seek ad-
ditive bi-cluster structures to compare to our LCBD algorithm, since an additive
bi-cluster is a special case of a linear coherent bi-cluster. For the MSBE algo-
rithm, we found in our testing that prior knowledge of a reference gene and
reference sample for recovering a synthetic bi-cluster had a great effect on its
final result, we therefore do not include the MSBE algorithm into the synthetic
experiments because we assume that this prior knowledge is blind to all the
algorithms tested.

Constant Bi-Cluster. To produce an expression matrix with an additive bi-
cluster, we first randomly generated an 100×50 matrix. The values of the expres-
sion matrix obey either a normal distribution (with mean 0 ad SD 1) or a unique
distribution (with minimum 0 and maximum 1), since a real data distribution
could be either one of them [3,11,6]. Within the expression matrix, we randomly
select a row and 10 columns to form a size 10 reference gene vector. We then
randomly select 9 other row vectors under the same samples and re-calculate
their expression values based on the equation A(i, Jr) = mi × A(i0, Jr) + bi,
where A(i0, Jr) is the reference gene vector, mi equals to 1, and bi is a random
constant. Random noise is then added to the synthetic bi-cluster: a certain per-
cent of elements in the bi-cluster is randomly selected and replaced with random
values which obey the same distribution as the background matrix. We tested
noise levels of 0% to 25% with increasing steps of 5%. At each noise level we
generated 50 synthetic matrices with bi-clusters and reported a final match score
that is the mean over the 50 results. Figure 4 shows that our LCBD algorithm
obtained the highest match scores for all noise levels and distributions, compared
to the two additive bi-cluster type algorithms OPSM and ISA. As one can see,
the LCBD algorithm is robust to noise even at noise level 25%. This occurs a
line will be identified by the Hough transform as long as it passes through at
least 3 points (samples) and during the majority sample voting. Although the
expression value under some samples is destroyed, there are sufficiently many
others that their expression values under these samples are not destroyed and
thus these samples still obtain more votes than random samples that are not
within the linear coherence bi-cluster.

Linear Coherent Bi-Cluster. Because the LCBD algorithm seeks bi-clusters
of the linear coherent type, we can then test it directly on the linear coher-
ent bi-clusters. In this experiment, we only use unique distribution expression
matrix, since the normal distribution matrix shows similar results. To gener-
ate a linear coherent bi-cluster in a expression matrix, we use the same pro-
cedure as in the constant bi-cluster experiment, except that in the equation
A(i, Jr) = mi × A(i0, Jr) + bi, the mi’s are no longer 1’s but random values.
The left part of Figure 5 shows the match scores of the LCBD algorithm under
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dataset under unique distribution and normal distribution
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Fig. 5. Match score and gene discovering rate of the LCBD method on synthetic dataset
of different bi-cluster size and noise level under unique distribution

different noise levels and different bi-cluster sizes; the right part of Figure 5
shows the corresponding gene discovery rates of the LCBD algorithm under the
same noise level and bi-cluster size. From Figure 5, we can see that the match
score and gene discovery rates are generally higher on larger bi-clusters. This is
the case because whether a line can be identified during the Hough transform
depends more on the absolute number of points that a line passes through than
the proportion of points a line passes through. This suggests that the LCBD
algorithm should be better at discovering large bi-clusters.

Overlapping Test. To test the LCBD algorithm on discovering multiple over-
lapping bi-clusters, we generated two linear coherent bi-clusters in the expression
matrix and let them overlap to some degree. Figure 6 shows the mean match
scores of the LCBD algorithm on discovering two overlapping bi-clusters at noise
level 10%. For the overlapping elements, we replace their original values with the
sum of the two overlapping values. The overlapping elements are not linear co-
herent elements and can be viewed as noise elements.
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3.2 Results on Real Data

The documented descriptions of functions and processes that genes participate in
has become widely available prior knowledge. The Gene Ontology Consortium
in particular provides one of the largest organized collection of gene annota-
tions. Following the idea in [19,15], we investigate whether the genes identified
in bi-clusters produced by the different algorithms show significant enrichment
with respect to a specific Gene Ontology annotation. We use two web-servers,
FuncAssociate [2] and EasyGo [22], to evaluate the groups of genes produced
in our bi-clustering results. The FuncAssociate computes the hypergeometric
functional enrichment score, cf. [2], based on Molecular Function and Biologi-
cal Process annotations. The resulting scores are adjusted for multiple testing
by using the Westfall and Young procedure [21,2]. The EasyGo calculates the
functional enrichment score in a similar way. In detail, based on availability, we
tested the bi-clustering results from the Saccharomyces Cerevisiae dataset on the
FuncAssociate web-server and the results from the Arabidopsis thaliana dataset
on the EasyGo web-server. The Saccharomyces Cerevisiae dataset contains 2993
genes and 173 conditions and the Arabidopsis thaliana dataset contains 734 genes
and 69 conditions. Figure 7 and Figure 8 show the proportion of gene groups
of bi-clusters that are functionally enriched at different significance levels. The
LCBD algorithm demonstrates the best results (all 100%) on the Arabidopsis
thaliana dataset, compared to other seven algorithms; The LCBD results are
also competitive to the best results derived from the MSBE algorithm on the
Saccharomyces Cerevisiae dataset. These results on real datasets indicate that
linear coherent bi-clusters are a useful form of bi-cluster structure to extract
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from gene expression datasets, and could be a bi-cluster type that exists widely
in other gene expression datasets.

4 Discussion and Conclusion

In this paper, we have developed a novel bi-clustering algorithm, the Linear Co-
herent Bi-cluster Discovering algorithm (LCBD), which seeks linear coherent bi-
clusters in gene expression data. Our experimental results on the synthetic data
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show that the LCBD algorithm can accurately discover additive and linear coher-
ent bi-clusters, while being robust to the noise level and bi-cluster size. Our results
on the two real datasets revealed that the linear coherent bi-clusters discovered by
LCBD are functionally enriched and therefore biologically meaningful.

The drawback of using the traditional Hough transform technique for iden-
tifying linear correlations is that it can suffer from sparse data problems: even
if some points lie perfectly on a common line, if the binary pixel matrix is too
sparse, the traditional Hough transform might not find this line because differ-
ent parameter values are needed to make the transform work appropriately for
different sparsity levels. The sparse data problem may occur when the sample
size of the expression matrix is small. However, the sparse data problem can
be addressed by applying more advanced image analysis techniques such as the
sparse resistant Hough transform or other feature recognition techniques.

The time complexity of the LCBD algorithm is worse than most algorithms
mentioned in this paper, and improving its efficiency is an important direction
for future work. It appears that selecting a set of representative genes, rather
than all genes, to construct the n×n sample set matrix is a promising approach,
since redundancies often occur if ones uses all genes. One intriguing aspect of
the LCBD algorithm is that it can easily be extended to identify bi-clusters of
more complex gene-gene correlations.
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Abstract. This paper investigates Russian Cards problem for the pur-
pose of unconditional secured communication. First, a picking rule and
deleting rule as well as safe communication condition are given to deal
with the problem with 3 players and 7 cards. Further, the problem is
generalized to tackle n players and n(n − 1) + 1 cards. A new picking
rule for constructing the announcement is presented, and a new deleting
rule for players to determine each other’s cards is formalized. In addition,
the safe communication condition is also proved.
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1 Introduction

The security of cryptographic protocols generally depends upon several assump-
tions such as the agents are computationally limited and certain computational
problems are intractable with these computational limits. In protocols based on
public key encryption schemes such as RSA [11], for example, decryption of mes-
sages is tractable for the intended recipient but assumed to be impossible for
an intruder, because it requires factoring a large product of primes, a problem
assumed to be intractable [18]. There do exist, however, unconditionally secure
protocols, whose security does not rely upon such assumptions. Some of such
protocols have been studied recently in the cryptography and information the-
ory community [6,9]. These protocols can be shown to be secure even against
the adversaries with unlimited computational powers, because they ensure that
the adversary cannot learn secrets for information theoretic rather than compu-
tational reasons.

‘Russian Cards’ problem was originally presented at the Moscow Mathematics
Olympiad in 2000 with 3 players and 7 cards. The problem can be described as
follows [14]:

From a pack of seven known cards two players each draw three cards and a
third player gets the remaining card. How can the players with three cards openly
(publicly) inform each other about their cards, without the third player learning
from any of their cards who holds it?
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Typically, it is a communication protocol with three parties and seven num-
bers. The solution to the problem will imply a method to communicate infor-
mation among parties in a distributed computing setting securely without using
any encryption [6,10,8,1,15,12,16]. As a result, the communicating agents and
adversaries can be modeled as players and the information to be communicated
as the ownership of cards. It is generally believed that the above game gives
unconditional security for communication protocols [14,6,10,8,17].

Concerning the initial Russian Cards problem, Ditmarsch [14] proposed a
safe solution and gave 102 solutions according to different cards deals. However,
he did not tell us how to figure out these solutions. Although some solutions
can be found in the literature [14] for the problem, however, a generic safe
communication protocol based on Russia Cards problem has not intensively been
studied. Cyriac and Krishnan studied the Lower Bound for the Communication
Complexity of the Russian Cards Problem [2]. They also pointed out that it is
interesting to study the possible generalization of the problem to an n-player
m-card game, and to derive a possible lower bound for announcement in this
scenario. However, to the best of our knowledge, there is no published work on
this generalization. Therefore, in this paper, we are motivated to investigate the
Russian Cards problem with the following aspects: (1) formalizing the picking
rule and deleting rule and safe communication condition with 3 players and 7
cards; (2) generalizing the problem to n players and n(n−1)+1 cards and further
investigating the picking and deleting rules and safe communication condition.

In the paper, to deal with the initial Russian Cards problem, we first formalize
two algorithms called picking rule and deleting rule to construct the announce-
ment (a set of cards a announcer holds) and to manipulate the communication
among players. Further, a safe communication condition is proposed and proved.
Based on the mathematical analysis, an instance of Russian cards problem is
given to show how the rules work. Further, we generalize the problem to n play-
ers and n(n− 1) + 1 cards so that a safe public communication protocol can be
established. To do so, we randomly dispatch n cards from n(n− 1) + 1 cards to
each party as his hand, and leave the remaining one card for intruder. In the
communication with n(n ≥ 4) players, each party has to announce his hand by
means of the announcement one by one. Each announcement is actually a matrix
containing announcer’s hand and other fake hands. Since we know the card deal
and can construct the matrix for each party by means of a new picking rule.
The ith announcement is made after the (i − 1)th announcement. The (n − 1)th

announcement gives the intruder’s hand. After all of the announcements, all par-
ties but intruder know each other’s hand by means of a new deleting rule. We
can guarantee the communication is safe since, after all n − 1 announcements,
all parties learn each other’s hand, and the intruder knows nothing about any
party’s hand.

The rest of the paper is organized as follows. Section 2 models and analyzes
the original Russia Cards problem. The picking rule and deleting rule as well
as the safe communication condition are formalized. In section 3, we generalize
the problem to a generic case with n players and n(n − 1) + 1 cards. By the
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mathematical analysis, new picking and deleting rules are given. To prove the
communication based on our approach is safe, some lemmas and theorems are
proved in the appendix. Finally, the conclusion is drawn in Section 4.

2 Russian Cards Problem

2.1 Russian Cards Problem

The Russian cards problem was originally presented at the Moscow Mathemat-
ics Olympiad in 2000. Initially, the cards were named 0, ..., 6. Besides being
public, all announcements are assumed to be truthful. For convenience, we use
the following notations. According to game rules, when all cards are allocated to
each player, we call the set of cards held by a player a hand, and the allocation
of cards a card deal. Further, for a hand of cards such as {0, 1, 2}, we write 012
instead; and for a card deal such as 012, 345, 6, we write 012.345.6 to mean that
the first player holds cards {0, 1, 2}, the second holds {3, 4, 5}, and the third
holds {6}. Suppose the three players are Anne, Bill and Crow. We assume that
012.345.6 is the actual card deal. A solution to the Russian Cards problem is a
sequence of secured announcements such that Anne and Bill know each other’s
hand without Crow learning any of cards from Anne and Bill. The following is
an instance of solutions. [14]:

Anne says: “I have one of 012, 034, 056, 135, 246.” After which Bill
announces:“Crow has card 6.”

Once Bill receives Anne’s announcement, he learns Anne’s hand from the
hand of his own. Accordingly, after having received both announcements, Crow
knows just Anne has one of 012, 034, 135, but neither which one nor the hand
of Bill. This sequence is safe. However, if we replace Anne’s announcement by
“I have one of 012, 034, 056, 134, 256” and keep other conditions, the result is
different since although both Anne and Bill can learn each other’s hand, Crow is
also able to figure out some information (for instance, he can work out Bill holds
card 5) about their cards because he holds card 6. So this sequence is unsafe.

2.2 What Is a Safe Communication?

We call the set of hands, such as 012,034,056,135 and 246 in the instance of
solutions, appearing in any announcement a hand set. Observe the instance of
solutions above, the set is generated in the way in which the first three hands
cover all the cards with a sharing card (0 in the instance), and each of the
remaining hands consists of three cards, coming from each of the first three hands
excluding the sharing card. For convenience, we call this procedure picking rule.

Let S = {0, 1, 2, 3, 4, 5, 6} denote the set of cards, and ha, hb and hc represent
the hand of Anne, Bill and Crow respectively. A matrix called hand matrix
B = (bi,j)3×3 is given below,

B =

⎛⎝ b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

⎞⎠



88 Z. Duan and C. Yang

denote a hand set, where each row represents a hand, and each of the last two
columns also represents a hand. For simplicity, we assume Anne’s hand is placed
in the first row of B. Let Ri (resp. [Ri] ) represent the ith row (resp. set of cards
from Ri), and Cj (resp. [Cj ]) the jth column (resp. set of cards from Cj) of
matrix B. Formally, the picking rule is described in Algorithm 2.1.

The sequence of announcements, the first from Anne and the second from
Bill, completes the communication procedure for the Russian Cards problem. So
we call this sequence a communication. Note that, in a communication, once
receiving the announcement from Anne, Bill and Crow can remove the hands
containing cards in their own hands, from the hand set within the announcement.
We call this procedure deleting rule. Let Ha = {[R1], [R2], [R3], [C2], [C3]}
denote the set of all possible hands for Anne. The rule can be formalized as
follows. The deleting rule for Bill is formally described in Algorithm 2.2.

Note that if
|H | = 1 (2.1)

then Bill learns Anna’s hand. One may think the above deleting rule can be
used for Crow to determine Anne’s hand as well. However, it is not enough to
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guarantee a safe communication since Crow might learn what cards Anne has
not held from his announcement. For instance, suppose Anne’s announcement
is {012, 034, 056, 134, 256} and Bill still hold 345, by Algorithm 2.2, Bill learns
Anne’s hand is 012. Since both hands 056 and 256 contain card 6, by removing
them from the hand set , Crow also learns Anne’s hand is one of {012, 034, 134}.
Although Crow cannot determine Anne’s hand however he learns Anne does not
hold card 5. This is not a safe communication. Therefore, to guarantee a safe
communication, the set of hands generated by using deleting rule must cover all
cards except for Crow’s card. Formally, the deleting rule for Crow is given in
Algorithm 2.3.

Where Hs represents the set of cards extracted from members of H (Crow
figured out set of all possible hands for Anne). It is easy to see that, if

hc = S − Hs (2.2)

then Crow learns nothing about hands of Anne and Bill. Thus, after Anne’s
announcement, Bill and Crow complete the communication by the deleting rule,
Bill learns Anne’s hand, while Crow knows neither Anne’s nor Bill’s hand. Also,
Crow does not know what cards Anne and Bill do not hold. Therefore, the
communication is safe. In what follows, we call equations 2.1 and 2.2 the safe
conditions for the communication. Therefore, we have the following conclusion.

Theorem 1. For the Russian Cards problem, a communication based on the
hand matrix constructed by the picking rule is safe.

We have proved Theorem 1.
Back to the instance of solutions, Anne’s hand 012 is one of the first three

hands. So, Bill’s hand contains three cards out of 3, 4, 5 and 6. There are C3
4 = 4

possible hands 345, 346, 356 or 456 for Bill. Suppose his hand is 345. According
to the deleting rule, Bill can remove four hands 034, 135, 246 and 056 from the
hand set, and the left hand 012 should be Anne’s hand. The intruder Crow holds
card 6 and can remove hands 056 and 246 from the hand set, but the left hands
012, 034, 135 cover all the cards excluding card 6, so he cannot decide which
cards Anne and Bill hold or do not hold. Accordingly, the communication in this
instance of solutions is safe.

3 Generalization of Russian Cards Problem

The Russian cards problem with 3 players and 7 cards, written as R(3), can
be generalized to n players and n(n − 1) + 1 cards, {0, 1, ..., n2 − n}, written
as R(n). The picking rule and deleting rule for R(3) can also be generalized for
R(n). For convenience, we use the following notations. We call each player but
the intruder a party, represented by Pi (1 ≤ i ≤ n − 1), and the party who an-
nounces his hand announcer. We randomly dispatch n cards from n(n− 1)+ 1
cards to each party as his hand, and leave the remaining one card for intruder as
his hand. In the communication protocol the information communicated among
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parties actually are their hands. We use hPi and hin to denote hands of party
Pi and the intruder respectively. In the communication with n(n ≥ 4) players,
each party has to announce his hand by means of the announcement one by
one. With our approach, each announcement is actually a matrix containing
announcer’s hand and other fake hands. Since we know the card deal we can
generate the matrix for each party. The ith announcement is made after the
(i − 1)th announcement; and the (n − 1)th announcement shows the intruder’s
hand. After all of n−1 parties have made their announcements, they know each
other’s hand. The communication is safe if, after all n−1 announcements, (i) all
parties learn each other’s hand; and (ii) the intruder knows nothing about any
party’s hand.

In the communication based on R(n), the picking rule is responsible for gen-
erating matrix and hiding hand of the announcer in it. As a matter of fact,
announcer’s hand can be placed in any rows or columns of the matrix or hidden
with any way in the matrix. However, for simplicity, we assume the announcer’s
hand is placed in the first row. In the communication protocol the picking rule
is actually to encrypt the announcer’s hand by means of hiding it in the matrix.
In the following, we discuss the picking rule for R(n).

1. Picking rule

Each announcer announces his hand by means of a matrix so that his hand can be
hidden in it. So, we need construct a matrix for each announcer. For convenience,
we use Bk = (bki,j)n×n (1 ≤ k ≤ n − 2) to denote the matrix for announcer Pk
in kth announcement. The structure of Bk is as follows: the first row we call
hand row holds all n cards of hPk

. The first column which we call sharing
column is filled with a card from hPk

which we call sharing card. As shown
in Fig.1, the announcer’s hand is hPk

= {bk1,1, bk1,2, ..., bk1,n}, and the sharing card
is bk1,1, where bk1,1 = bk2,1 = · · · = bkn,1. The intruder’s card can be placed in
any of the remaining places. We assume that the intruder holds card bkp,q. We
call the row and column containing this card respectively redundant row and
redundant column. The remaining part of Bk holds the other n2 − 2n + 1
cards. However, how to place these cards into the matrix is a tricky job (we
introduce the method later). In principle, to guarantee a successful matrix for
the communication based on R(n), the above matrix has to satisfy the property
(called covering property): each row and each column, apart from the hand row
and sharing column, contains a card from each hand of all parties except for the
announcer. In this way, any row of Bk is a possible hand of the announcer, and
apart from the sharing column, any column is also a possible hand of announcer.
Let Rk

i (resp. [Rk
i ] ) represent the ith row (resp. set of cards from Rk

i ), and Ck
j

(resp. [Ck
j ]) the jth column (resp. set of cards from Ck

j ) of matrix Bk. Thus, the
covering property can be given as follows,

∀i ∀j [(1 ≤ i ≤ n−1∧i �= k∧2 ≤ j ≤ n) → hPi∩[Rk
j ] �= φ∧hPi ∩[Ck

j ] �= φ] (3.1)
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bk1,1 bk1,2 . . . bk1,q−1 bk1,q bk1,q+1 . . . bk1,n
bk1,1 bk2,2 . . . bk2,q−1 bk2,q bk2,q+1 . . . bk2,n
...

...
...

...
...

...
...

...
bkp−1,1 bkp−1,2 . . . bkp−1,q−1 bkp−1,q bkp−1,q+1 . . . bkp−1,n
bkp,1 bkp,2 . . . bkp,q−1 bkp,q bkp,q+1 . . . bkp,n

bkp+1,1 bkp+1,2 . . . bkp+1,q−1 bkp+1,q bkp+1,q+1 . . . bkp+1,n
...

...
...

...
...

...
...

...
bkn,1 bkn,2 . . . bkn,q−1 bkn,q bkn,q+1 . . . bkn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t0 tq−3 tq−2 tn−3

s0

sp−3

sp−2

sn−3

redundant column

redundant row

sharing column

hand row

Fig. 1. Hand matrix of Pk

We call the procedure generating matrix Bk for Pk picking rule. Actually, we
first generate B1 for P1, then we construct Bh for Ph (2 ≤ h ≤ n − 2) based on
B1. For clarity, the pick rule can be formalized as follows:

A. Constructing B1

(a) Firstly, we chose a card from hP1 as the sharing card to fill the sharing
column. Then we place the remaining cards of hP1 in the hand row in any order.
Secondly we randomly place intruder’s card in one of the remaining places of
B1. Suppose intruder’s card is b1

p,q, so pth row and qth column are respectively
redundant row and redundant column. As shown in Fig.1, apart from the sharing
column, redundant column, hand row and redundant row, indices of the remain-
ing rows from top to bottom are respectively denoted by s0, s1, ..., sn−3, and
indices of the remaining columns from left to right are respectively denoted by
t0, t1, ..., tn−3. For convenience, let S := {s0, ..., sn−3} and T := {t0, ..., tn−3}.
Thus, the indices can be generated in Algorithm 3.1.

(b) We randomly divide each hand of the remaining parties Pk (2 ≤ k ≤ n−1)
into three parts such that hPk

= Xk ∪ Yk ∪ Zk, |Xk| = n − 2 and |Yk|=|Zk|=1.
Formally, it is described in Algorithm 3.2

For convenience, we further define positive integers odk and edk (2 ≤ k ≤ n−1)
as follows:

odk =
{

2k − 4, 2 ≤ k ≤ n+1
2 ;

2k − n − 2, n+1
2 + 1 ≤ k ≤ n − 1,

and

edk =

⎧⎪⎪⎨⎪⎪⎩
0, k = 2;
n − k, 3 ≤ k ≤ n

2 ;
n − 1 − k, n+2

2 ≤ k ≤ n − 2;
n−2

2 , k = n − 1.

(c) We place all n−2 cards of X2 into the remaining places of B1 so that any
sth row, s ∈ S, and any tth column, t ∈ T , can be occupied, namely [R1

s]∩X2 �= φ
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and [C1
t ]∩X2 �= φ. Thus, in any tth column there exists a card from X2. Suppose

the card is in si
th row. For each of the remaining parties Pk (3 ≤ k ≤ n− 1) we

randomly pick a card from Xk and place it in su
th (u = (i + odk) mod (n − 2))

row if n is odd, or place it in sv
th (v = (i + edk) mod (n − 2)) row if n is even.

Formally, it is described in Algorithm 3.3.
(d) Since there exists only one card in Y2 (resp. Z2) we place it randomly in

any column (resp. row) within the redundant row (resp. column). We assume the
card is in ti

th column (resp. si
th row), ti ∈ T (resp. si ∈ S) in the redundant row

(resp. column). For each of the remaining parties Pk (3 ≤ k ≤ n− 1), if n is odd
we place the only one card from Yk (resp. Zk) into tu

th (u = (i+odk) mod (n−2))
column (resp. su

th row) in the redundant row (resp. column), if n is even we
place the only one card from Yk (resp. Zk) into tv

th (v = (i + edk) mod (n− 2))
column (resp. sv

th row) in the redundant row (resp. column). Formally, it is
described in Algorithm 3.4.

B. Constructing Bk, 2 ≤ k ≤ n − 2.

For convenience, we need three auxiliary matrices Ak = (aki,j)n×n, Dk =
(dki,j)n×n and F k = (fki,j)n×n. In the same way as Bk, indices of rows and
columns of matrices Ak, Dk and F k can respectively be represented by s0, s1,
..., sn−3 and t0, t1, ..., tn−3. Let ARk

i , DRk
i and FRk

i (resp. ACk
i , DCk

i and
FCk

i ) be ith rows (resp. columns) of matrices Ak, Dk and F k respectively. Let
[DRk

i ] represent the set of cards from DRk
i , and [DCk

j ] the set of cards from
DCk

j . The procedure for constructing Bk is as follows

(i) constructing Ak from B1 (see Algorithm 3.5)
We first copy the first row and pth row of B1 to the first row and pth row of

Ak respectively. Then, for the remaining rows, we copy si
th row of B1 to sj

th

row of Ak, j := (i − (k − 1) + n − 2) mod (n − 2).
(ii) constructing Dk from Ak (see Algorithm 3.6) We first copy the first column

and qth column of Ak to the first column and qth column of Dk respectively.
Then, for the remaining columns, we copy ti

th column of Ak to tj
th column of

Dk, j := (i − (k − 1) + n − 2) mod (n − 2).
(iii) constructing F k and Bk (see Algorithm 3.7). We first swap cards of hP1

with cards of hPk
in F k. Then, let Bk := F k.

After each announcement Bh (1 ≤ h ≤ n − 2), apart from announcer Ph, any
other party Pk (1 ≤ k ≤ n− 1, k �= h) compares his hand with the announcement
to determine the announcer’s hand. Similarly, the intruder also compares his hand
with the announcement to probe announcer’s hand. In the communication proto-
col, a deleting rule for parties is required to decrypt the announcer’s hand from
matrix Bh, and might be used for the intruder to detect the announcer’s hand.

2. Deleting rule

Suppose the current announcer is Ph (1 ≤ h ≤ n− 2). Let HPk
be a set of hands

not intersecting with hPk
(k �= h). The deleting rule for Pk can be formally

described in Algorithm 3.8.
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Party Pk compares his hand with each row and each column (excluding the
sharing column) of Bh, and records them into set HPk

if the row or column does
not intersect with his hand since, in this case, it is a possible hand of announcer
Ph. Note that if

|HPk
| = 1 (3.2)

then Pk is aware of announcer’s hand. Let Hin be a set of hands not intersecting
with hin, and Hintr be the set of cards from hands of Hin. The deleting rule for
intruder can formally be described in Algorithm 3.9.

Similarly to a party, the intruder compares his hand with each row and each
column (excluding the sharing column) of Bh and records them into set Hin if the
row or column is a possible hand of announcer Ph. After that, he extracts all cards
from hands in Hin and puts them into set Hintr . Subsequently, he checks if

hin = {0, 1, . . . , n2 − n} − Hintr (3.3)

If so, the intruder learns nothing about announcer’s hand.
As a matter of fact, R(3) is a trivial problem of R(n). If we make the hand set

into 3 × 3 matrix for Anne to announce, no matter what hand Bill holds, the
matrix satisfies expression 3.1.

In the following we prove that matrix Bh generated according to the picking
rule satisfies expression 3.1.

Lemma 1. Matrix Bh (1 ≤ h ≤ n − 2) generated according to the picking rule
satisfies expression 3.1.

We have proved Lemma 1.
After hth announcement, by the deleting rule, the intruder can only remove

the redundant row and redundant column from Bh. Let

HSh = {[Rh
1 ], [Rh

s0 ], . . . , [R
h
sn−3

], [Ch
t0 ], . . . , [C

h
tn−3

]}.

From the intruder’s view, HSh contains all candidates of hand of Ph.
After (n − 2)th announcement, the intruder can obtain n − 2 hand sets:

HSk(1 ≤ k ≤ n − 2). Since any two parties do not allow to share a card,
the intruder may obtain a group of hand sets,

G={{h1, ..., hn−2} ∈ HS1×, ..., HSn−2| ∀i, j hi∩hj=φ, i �= j, 1 ≤ i, j ≤ n−2}.

Any hand set from G can be regarded as a candidate of card deal. Note that if
|G| = 1 the intruder knows the card deal, and further learns the hand of any
party. So, the communication is unsafe. Before we prove the communication with
Bh (1 ≤ h ≤ n − 2) constructed according to the picking rule is safe, we need
the following lemmas.

Lemma 2. ∀s ∀t [(2 ≤ s, t ≤ n−2∧s �= t) → (ods−s+n−1) mod (n−2) �= (odt−
t+n−1) mod (n−2) ∧ (eds−s+n−1) mod (n−2) �= (edt−t+n−1) mod (n−2)].

We have proved Lemma 2.
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Lemma 3. ∀h ∀k ∀i [(1 ≤ h, k ≤ n−2∧h �= k∧0 ≤ i ≤ n−3) → [Rh
si

]∩ [Rk
si

] =
φ ∧ [Ch

ti ] ∩ [Ck
ti ] = φ].

We have exploited Lemma 2 to prove Lemma 3.

Theorem 2. (Safe communication for R(n)) Given a card deal for R(n), the com-
munication based on Bk (1 ≤ k ≤ n − 2) generated by the picking rule is safe.

We have exploited Lemma 1 and Lemma 3 to prove Theorem 2.

4 Conclusion

This paper investigated Russia cards problem. First, R(3) was studied and some
solutions were given in detail. Then, the problem was generated to R(n), and
the picking rule was developed to construct hand set while the deleting rule was
designed to decide card deal. Based on R(n), an unconditionally secured protocol
can further be developed to tackle n parties communication without public keys.
This is a challenge to us in the future research. In addition, the verification of the
protocol based on R(n) is also required. To do so, we will employ Propositional
Projection Temporal Logic [3,4,5,13] to express the properties and use Promela
[7] to describe the behavior of the protocol. Thus, the model checker SPIN [7]
can be used to check the properties.
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Abstract. This paper proposes a method to compute the transitive clo-
sure of a union of affine relations on integer tuples. Within Presburger
arithmetics, complete algorithms to compute the transitive closure exist
for convex polyhedra only. In presence of non-convex relations, there ex-
ist little but special cases and incomplete heuristics. We introduce a novel
sufficient and necessary condition defining a class of relations for which
an exact computation is possible. Our method is immediately applicable
to a wide area of symbolic computation problems. It is illustrated on
representative examples and compared with state-of-the-art approaches.

Keywords: transitive closure, affine tuple relations.

1 Introduction

Computing the transitive closure of graphs is required in many algorithms, from
CAD, software engineering, real-time process control, data bases to optimiz-
ing compilers. To cite a few of its applications in the domain of programming
languages and compilation: redundant synchronization removal, testing the le-
gality of iteration reordering transformations, computing closed form expressions
for induction variables, iteration space slicing and code generation [3,9], model
checking and in particular reachability analysis (see [7] and included references),
testing equivalence between codes [1,2,10].

Graphs can be represented in different ways. One of possible representations
of graphs is based on tuple relations. In this paper, we consider the class of pa-
rameterized and affine integer tuple relations whose constraints consist of affine
equalities and inequalities. Such relations describe infinite graphs. There are
many techniques for computing transitive closures for finite graphs, but to our
best knowledge, techniques for computing the transitive closure of a parameter-
ized affine integer tuple relation, that describes infinite graphs, were the subject
of the investigation of a few papers only [5,6,7,9]. The solution presented by Kelly

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 98–109, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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et al. [9] is based on heuristics that guarantee neither calculating the exact result
nor its conservative approximation.

This paper presents a method to calculate the transitive closure of a relation R
being a union of n integer tuple relations Ri, i=1,2,...,n. The domain and range
of an integer tuple relation consists of integer tuples. Our approach is based on
computing relation A[Rk], (symbolically) for all k, being either the exact Rk or
its overapproaximation. We assume that power k of each individual relation Ri

can be computed.

Rk = R ◦ R ◦ ... ◦ R︸ ︷︷ ︸
k times

represents the power k of relation R.

Computation of Rk itself is an important result. It opens the door for extract-
ing fine-grained parallelism available in program loops, for example, by building
the free-scheduling of loop statement instances [8] implying that each loop state-
ment instance is executed as soon as its operands are ready. When Rk does not
describe redundant synchronization [9], then to get the free-scheduling we form
the set range(Rk), use the constraints of Rk to calculate the upper bound of k,
kmax, defining the latency of the free-scheduling [8], and generate a nested loop
whose outermost nest enumerates values of k from 0 to kmax while inner loops scan
statement instances to be executed at time k (elements of the set range(Rk)).

Having represented the constraints of Rk as a Presburger formula, we can
easily get a representation of the positive transitive closure of R, R+, by making
k in the formula for A[Rk] existentially quantified, i.e., by adding the quantifier
“∃” to k into the constraints of Rk.

Having found the positive transitive closure of relation R, R+, the transitive
closure of R, R∗, is calculated as follows

R∗ = R+ ∪ I,

where I is the identity relation.
We propose a necessary and sufficient condition defining when positive transi-

tive closure calculated according to the suggested technique corresponds to exact
positive transitive closure. Further on in this paper transitive closure refers to
positive transitive closure.

2 Background and Related Work

This section briefly presents some definitions necessary for the rest of the paper
and describes related work for transitive closure computation.

An integer k-tuple is a point in Zk. An integer tuple relation has the following
general form {[input list ] �[output list ]: constraints}, where input list and out-
put list are the lists of variables and/or expressions used to describe input and
output tuples, and constraints is a Presburger formula describing the constraints
imposed upon input list and output list [9].

The transitive closure of a directed graph G=(V, E) is a graph H=(V, F) with
edge (v, w) in F if and only if there is a path from v to w in G. There is a path
in G if and only if there is an edge (v, w) in H. A graph can be represented with
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an integer tuple relation whose domain consists of integer k-tuples and whose
range consists of integer k′-tuples, for some fixed k and k′.

We use the following standard operations on relations and sets: union (∪),
composition (◦ - for a pair of relations,

∏
- for multiple relations), inclusion (⊆),

domain(R) (S=domain(R), x∈ S iff ∃y s.t. {x�y}∈ R), range(R) (S=range(R),
y∈S iff ∃x s.t. {x�y}∈R).

Transitive closures of relations with arbitrary Presburger constraints are not
computable in general [5,9]. Two approaches have been studied: finding a par-
ticular class of relations for which transitive closure can be computed exactly,
and finding an approximation of transitive closure that is “good enough” for a
particular class of relations. The general form of a relation is as follows:{

[x] → [y] |
n∨
i=1

(∃αi, Ai(x, y, αi) ≥ bi)

}
,

where x, y, and αi are integer tuples, Ai is an integer matrix and bi is a tuple of
integer and symbolic values. A distinction is then made when relations contain
a single clause (meaning n = 1) and are of the form:

{[x] → [y] | ∃α, A(x, y, α) ≥ b}

and when they contain multiple clauses (n > 1).
For single clause relations, the exact formulation of transitive closure has been

given in particular cases. For relations of the form R = {[x] → [Ax+b] | Cx ≥ d}
where A and C are integer matrices, b and d are constant integer vectors, Boigelot
in [5] (theorem 8.53, p.236) defines a sufficient condition for the computation of
R∗. In briefly, this condition states that if there exists p such that Ap is diagonal-
izable with eigenvalues in {0, 1} then R∗ is computable in Presburger arithmetics.
In particular, idempotent matrices correspond to transitive closures that are rep-
resented by periodic sets [6]. Kelly et al. [9] also define a simple class of relations,
called d-forms, for which the transitive closure is easily computable. These d-form
relations are single clause relations with constraints only on the difference of out-
put and input tuples. Bielecki et al. [4] show how to compute the transitive closure
of a single relation representing graphs of the chain topology. The exact transitive
closure calculation is based on resolving a system of recurrence equations being
formed from the input and output tuples of a dependence relation.

For multiple clause relations (or union of single clause relations), the computa-
tion of transitive closure is more complex. To our knowledge, it is not yet known,
for instance, whether the transitive closure of a union of d-forms is computable.
Approaches proposed by Boigelot in [5] or Kelly et al. [9] compute approxima-
tions of transitive closures for such relations. The union of polyhedra defined
by multiple clauses is then approximated into the convex hull of the polyhedra.
The multiple clauses are therefore approximated into a single clause. Kelly et
al. propose a flexible approach based on very specific cases with recipes to com-
pute the transitive closure of a union of relations. The conditions for which the
computation is exact are not decided beforehand.
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In the following sections, we present a new technique to compute the transitive
closure for a union of single clause relations, assuming the power k of each
individual relation can be computed.

3 Computing the Power k of a Union of Multiple
Relations

In this section, we present an approach to calculate the power k of relation
R being a union of single clause relations, denoted as A[Rk]. Given a set of
n ≥2 relations Ri, i=1,2,...,n, relations R̄i are obtained by transforming the
constraints of Ri so that their domains (and, respectively, ranges) are infinite.
When relations R̄i are commutative (this means that R̄i ◦ R̄j = R̄i ◦ R̄i for all

i, j), our approach to compute Rk = (
n⋃
i=1

Ri)k is the following

A[Rk] = {[x] → [y] | x ∈ domain(R) ∧ y ∈ range(R) ∧ (1)

∃ki ≥ 0, i = 1, 2, ..., n, s.t. y ∈
n∏
i=1

R̄ki

i (x) ∧
n∑
i=1

ki = k ∧ k > 0}.

We specify the following classes of relations Ri, i=1,2,...,n, n ≥2, for which
the corresponding relations R̄i are always commutative.

1. Uniform relations, that is, relations of the form R = {[x] → [x+b] | Cx ≥ d},
where C is the integer matrix, b and d are the constant integer vectors;

2. Non-uniform relations of the form R = {[x] → [Ax] | Cx ≥ d}, where A is
the diagonal integer matrix, C is the integer matrix, d is the constant integer
vector.

3. Relations of the form R = {[x] → [OP (A, x, op)] | Cx ≥ d}, where A is the
diagonal integer matrix, C is the integer matrix, d is the constant integer
vector, and OP is the operator producing the following output:

OP (A, x, op) =

∣∣∣∣∣∣∣∣
a11 op1 x1
a22 op2 x2

...
ann opn xn

∣∣∣∣∣∣∣∣ ,
where

A =

∣∣∣∣∣∣∣∣
a11 0 ... 0
0 a22 ... 0
... ... ... ...
0 0 ... ann

∣∣∣∣∣∣∣∣ , x =

∣∣∣∣∣∣∣∣
x1
x2
...
xn

∣∣∣∣∣∣∣∣ , op =

∣∣∣∣∣∣∣∣
op1
op2
...

opn

∣∣∣∣∣∣∣∣ , opi ∈ {+,×}, 1 ≤ i ≤ n,

op is the same for all relations Ri.
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The two previous classes of relations are the special cases of the third class
– when op is composed of only the addition operators, we deal with the first
class, and when op is composed of only the multiplication operators, we deal
with the second class.

To proove that relations R̄1 = {[x] → [OP (A, x, op)]} and R̄2 = {[x] →
[OP (B, x, op)]} are indeed commutative for given A, B, x, and op, we
compute

R̄1 ◦ R̄2 =

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣∣∣∣∣
x1
x2
...
xn

∣∣∣∣∣∣∣∣ →
∣∣∣∣∣∣∣∣

a11 op1 b11 op1 x1
a22 op2 b22 op2 x2

...
ann opn b22 opn xn

∣∣∣∣∣∣∣∣
⎫⎪⎪⎬⎪⎪⎭ ,

R̄2 ◦ R̄1 =

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣∣∣∣∣
x1
x2
...
xn

∣∣∣∣∣∣∣∣ →
∣∣∣∣∣∣∣∣

b11 op1 a11 op1 x1
b22 op2 a22 op2 x2

...
bnn opn a22 opn xn

∣∣∣∣∣∣∣∣
⎫⎪⎪⎬⎪⎪⎭ .

Because the addition/multiplication operators represented by each opi, 1≤
i ≤ n, are commutative and associative, we can conclude that R̄1 ◦ R̄2 =
R̄2 ◦ R̄1, that is, relations R̄1 and R̄2 are commutative.

For example, relations R̄1={[i, j] → [i+1, 2∗j]} and R̄2={[i, j] → [i+3, 5∗j]}
are commutative (they belong to the third class with op = [+ ∗]), while relations
R̄3={[i, j] → [2 ∗ i, j + 1]} and R̄4={[i, j] → [i + 3, 5 ∗ j]} are not commutative.

For relations of the general form R = {[x] → [Ax + b] | Cx ≥ d}, the satis-
faction of the commutativity condition introduced above depends on particular
values of A and b and should be verified for each pair of relations Ri and Rj

by checking whether R̄i ◦ R̄j is equal to R̄i ◦ R̄i using any tool permitting for
operations on relations.

The following property guarantees that A[Rk] defined by (1) is either the
exact representation of Rk or its overapproximation.

Property 1. Rk ⊆ A[Rk].

Proof. By definition, Rk =
k∏
j=1

n⋃
i=1

Ri. Since R1 ⊆ R̄1, R2 ⊆ R̄2, ... Rn ⊆ R̄n,

the following is true:
k∏
j=1

n⋃
i=1

Ri ⊆
k∏
j=1

n⋃
i=1

R̄i.

Because relations R̄1, R̄2, ..., R̄n commute, we can group all the occurrences
of the same R̄i together. It can be shown using properties of a commutative
semiring on relations that

k∏
j=1

n⋃
i=1

R̄i =
⋃

k1, k2, ..., kn∑
ki = k, ki ≥ 0

R̄k1
1 ◦ R̄k2

2 ◦ ... ◦ R̄kn
n .
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It implies that ∀ x,y s.t. {x�y}∈ Rk,

∃ki ≥ 0, i = 1, 2, ..., n, s.t. y ∈
n∏
i=1

R̄ki

i (x) ∧
n∑
i=1

ki = k ∧ k > 0.

Because {x�y}∈ Rk means that x∈ domain(R) and y∈ range(R), we can
conclude that Rk ⊆ A[Rk].

Note that for proving the property Rk ⊆ A[Rk] we require that relations R̄1,
R̄2, ..., R̄n be commutative. Under this condition, for A[R+] formed by mak-
ing k in the constraints of A[Rk] existentially quantified, we can conclude that
R+ ⊆A[R+] meaning that A[R+] is either the exact representation of R+ or its
overapproximation.

The following theorem provides a necessary and sufficient condition when
A[Rk] = Rk.

Theorem 1. A[Rk]=Rk if and only if the following condition is satisfied for all
positive values of k:

∀x ∈ domain(R) ∪ range(R) ∧ ∀ki ≥ 0, i = 1, 2, ..., n, s.t.
∑
i

ki = k ∧ k > 0,

(
n∏
i=1

R̄ki

i (x) ∈ range(R)) ⇒ (∃hi ≥ 0, i = 1, 2, ..., n, s.t.

n∑
i=1

hi = k, (2)

n∏
i=1

R̄ki

i (x) =
n∏
i=1

R̄hi

i (x) ∧ x ∈
n⋃

i=1,hi>0

domain(Ri)).

Proof. The proof consists of two steps. We first prove by induction that Con-
dition (2) is the sufficient condition for A[Rk] to be the exact representation of
Rk. Next, we prove that Condition (2) is the necessary condition.

Sufficient condition: (2)⇒ A[Rk] ⊆ Rk.

Consider x,y s.t. {x�y}∈A[R1]. The satisfaction of Condition (2) guarantees
that ∃i s.t. y∈ R̄i(x) and x∈ domain(Ri). This means that {x�y}∈ R1, i.e.,
A[R1]⊆ R1.

Now, assuming that A[Rk]=Rk, we want to prove that A[Rk+1]=Rk+1. Con-
sider x,y s.t. {x�y}∈A[Rk+1]. By definition of A[Rk+1],

x∈domain(R), y∈range(R), ∃ki ≥0, i=1,2,...,n,

s.t.
n∑
i=1

ki = k + 1, y∈
n∏
i=1

R̄ki

i (x).

The satisfaction of Condition (2) guarantees that

∃hi ≥0, i=1,2,...,n, s.t.
n∑
i=1

hi = k+1,

y∈
n∏
i=1

R̄hi

i (x) ∈ range(R), x∈
n⋃

i=1,hi>0

domain(Ri).
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In particular, ∃j ∈[1,2,...,n] such that hj >0, x∈domain(Rj).
Since relation Rj commutes with the remaining relations, we have

y∈
∏
i,i	=j

R̄hi

i ◦ R̄
hj

j (x).

Consider z∈ R̄j(x) such that y∈
∏
i,i	=j

R̄hi

i ◦ R̄
hj−1
j (z). Because x∈ domain(Rj)

and z∈ range(Rj), the following is true: {x�z}∈R. Moreover, because Condi-
tion (2) is satisfied for z, {z�y}∈ A[Rk]. By induction, {z�y}∈ Rk. Thus,
{x�y}∈ Rk+1 and A[Rk+1]⊆ Rk+1.

Necessary condition: A[Rk] ⊆ Rk ⇒ (2).

Let us now show that Condition (2) of Theorem 1 is the necessary condition for
A[Rk] to be the exact representation of Rk. Assume Condition (2) is not satisfied
but A[Rk] ⊆ Rk.

Since A[Rk] ⊆ Rk, {x�y}∈ Rk. This implies that x∈ domain(R), y∈ range(R)
and ∃ih ∈[1,2,...,n], h=1,2,...,k, such that y∈ Ri1 ◦ Ri2 ◦ ... ◦ Rik(x). Note that
x∈ domain(Rik). Since R1 ⊆ R̄1, R2 ⊆ R̄2, ..., Rn ⊆ R̄n, the following is true:
y∈ R̄i1 ◦ R̄i2 ◦ ... ◦ R̄ik(x).

Because all relations Ri commute, we conclude that

∃ hi ≥0, i=1,2,...,n, s.t.
n∑
i=1

hi = k, y∈
n∏
i=1

R̄hi

i (x).

Such a redefinition of y as well as the knowledge that x∈ domain(Rik) is
in contradiction with the assumption that Condition (2) is not satisfied. This
proves that indeed Condition (2) is the necessary condition for A[Rk] to be the
exact representation of Rk.

Fig. 1. Examples of graphs (i)

Figure 1 shows three examples of graphs. Condition 2 is satisfied for the first
and second graphs, while for the third graph it is not valid: there exists the
vertex x=(2,2) (it is shown in white) for which the condition does not hold.
Indeed, for the pair x=(2,2) and y=(3,3) (it is shown in black), we can see that
y=R̄1 ◦ R̄2(x)=R̄2 ◦ R̄1(x), but x/∈ domain(R1) and x/∈ domain(R2).

Figure 2 presents two more examples of graphs. Condition (2) is satisfied
for the left-hand side graph, while for the right-hand side graph the condition



Computing the Transitive Closure 105

Fig. 2. Examples of graphs (ii)

does not hold: there exists the vertex x=(1,1) (it is shown in white) for which the
condition is not satisfied. Indeed, for the pair x=(1,1) and y=(4,4) (it is shown in
black), we have {x�y}∈A[R2] (y=R̄1 ◦ R̄2(x)=R̄2 ◦ R̄1(x)), but {x�y}/∈ R2 (x/∈
domain(R1) and x/∈ domain(R2)). In the matter of fact, {x�y}∈ R3, because
y=R3 ◦ R3 ◦ R3(x).

4 Illustrating Examples

In this section, we consider several examples illustrating the presented approach
and compare our results with those yielded by approaches presented in paper
[9]. We use the Omega syntax [11] to present relations and sets in our examples
and the Omega calculator to carry out necessary calculations. Having computed
A[Rk], we want to check whether Condition (2) is satisfied. For this purpose, we
calculate set X containing elements that satisfy the left-hand side of the impli-
cation of Condition (2) and do not satisfy the right-hand side of this implication.
We build relation X1 whose domain containts elements satisfying the left-hand
side of the implication. Next, we build relation X2 whose domain contains ele-
ments not satisfying the right-hand side of the implication. The computation of
the domain(X1 − X2) defines set X . If set X is empty, then we conclude that
A[Rk] corresponds to the exact representation of Rk.

Steps to check whether Condition (2) is valid are the following.

1. Compute A[Rk] and A[R+].
2. Check whether A[Rk] = Rk. In the matter of fact,

(a) form the following relation X1

X1 = {x → y | x ∈ domain(R) ∪ range(R), y ∈ range(R),

∃ki ≥ 0 s.t.

n∑
i=1

ki = k, y =
n∏
i=1

R̄ki

i (x)};

(b) form the following relation X2

X2 = {x → y | x ∈ domain(R) ∪ range(R), y ∈ range(R),

∃ki ≥ 0 s.t.

n∑
i=1

ki = k, y =
n∏
i=1

R̄ki

i (x), x ∈
n⋃

i=1,ki>0

domain(Ri)};
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(c) calculate the set X = domain(X1−X2). If set X is empty, A[Rk] = Rk

and, respectively, A[R+]=R+. The end. Otherwise, A[Rk] �= Rk.

To illustrate the proposed approach, we start with the following example.

Example 1
R1:={[i,j]�[i+1,j+1]: 1≤i<n & 1≤j<n},
R2:={[i,j]�[i+1,j-1]: 1≤i<n & 2≤j≤n}.
Figure 3 illustrates the graph described with relations R1 and R2 for n=5. Our
task is to compute relation A[Rk] and to find A[R+] using A[Rk]. Relations R̄1
and R̄2 derived from relations R1 and R2 by transforming their constraints so
that their domains (and, respectively, ranges) are infinite have the following form

R̄1:={[i,j]�[i+1,j+1]},
R̄2:={[i,j]�[i+1,j-1]}.

R̄1 and R̄2 are commutative because R̄1 ◦ R̄2 − R̄2 ◦ R̄1 = ∅ and R̄2 ◦ R̄1 −
R̄1 ◦ R̄2 = ∅ (this is easy to check by means of the Omega calculator).

R̄k1
1 , R̄k2

2 can be calculated easily using the formula presented in [9] and they
are given below.

R̄k1
1 :={[i,j]�[i′,j′]: i′=i+k1 & j′=j+k1 & k1 ≥0 },

R̄k2
2 :={[i,j]�[i′,j′]: i′=i+k2 & j′=j-k2 & k2 ≥0 }.
The composition R̄k1

1 ◦ R̄k2
2 is the following

R̄k1
1 ◦ R̄k2

2 :={[i,j]�[i′,j′]: i′=i+k1+k2 & j′=j+k1-k2 & k1 ≥0 & k2 ≥0 }.
Finally, we are able to calculate A[Rk] that can be represented as

A[Rk]:={[i,j]�[i′,j′]: 1≤i<n & 1≤j≤n & 2≤i′ ≤n & 1≤j′ ≤n & Exists (k1,k2:
i′=i+k1+k2 & j′=j+k1-k2 & k1 ≥0 & k2 ≥0 & k1 + k2 = k & k ≥0)}.

In order to check whether Condition (2) is satisfied, we form relations X1 and
X2, and calculate set X .

X1:={[i,j]�[i′,j′]:

1 ≤ i, j ≤ n︸ ︷︷ ︸
x∈domain(R)∪range(R)

& 2 ≤ i′ ≤ n & 1 ≤ j′ ≤ n︸ ︷︷ ︸
y∈range(R)

&

Exists(k1, k2 : i′ = i + k1 + k2 & j′ = j + k1 − k2︸ ︷︷ ︸
y=

n∏
i=1

R̄ki

i (x)

&

k1 ≥ 0 & k2 ≥ 0 & k1 + k2 = k & k > 0)};
X2:={[i,j]�[i′,j′]:

1 ≤ i, j ≤ n︸ ︷︷ ︸
x∈domain(R)∪range(R)

& 2 ≤ i′ ≤ n & 1 ≤ j′ ≤ n︸ ︷︷ ︸
y∈range(R)

&
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Exists(k1, k2 : i′ = i + k1 + k2 & j′ = j + k1 − k2︸ ︷︷ ︸
y=

n∏
i=1

R̄ki

i (x)

&

k1 ≥ 0 & k2 ≥ 0 & k1 + k2 = k & k > 0 &

(1 ≤ i, j < n & k1 > 0︸ ︷︷ ︸
x∈domain(R1), k1>0

OR 1 ≤ i < n & 2 ≤ j < n & k2 > 0︸ ︷︷ ︸
x∈domain(R2), k2>0

))};

X := domain(X1 − X2)=∅.
Because set X is empty, Condition (2) is satisfied and A[Rk]=Rk meaning

that A[Rk] found by means of our approach is the exact representation of Rk.
To get the positive transitive closure, R+, of the union of R1 and R2, we make

k in the formula for A[Rk] to be existentially quantified, i.e.,
R+:={[i,j]�[i′,j′]: 1≤i<n & 1≤j≤n & 2≤i′ ≤n & 1≤j′ ≤n & Exists (k1, k2, k:

i′=i+k1 + k2 & j′=j+k1 − k2 & k1 ≥0 & k2 ≥0 & k1 + k2 = k & k ≥0)}.
Applying the Omega calculator implementing the approach to compute transi-

tive closure presented in paper [9], we yield a complex representation of transitive
closure including the seven “union” operators, while the both forms (ours and
produced by Omega) represent the exact transitive closure.

Fig. 3. Graph of Ex.1 Fig. 4. Graph of Ex.2 Fig. 5. Graph of Ex. 3

Let us now consider the following set of relations being a slight modification
of the previous example. We will show that Omega is fragile to even the simplest
modification of Example 1.

Example 2.
R1:={[i,j]�[i+2,j+2]: 1≤i<n-1 & 1≤j<n-1},
R2:={[i,j]�[i+2,j-2]: 1≤i<n-1 & 3≤j≤n}.

Figure 4 illustrates the graph described with relations R1 and R2 for n=5.
Using the Omega calculator, it is easy to state that the corresponding relations
R̄1 and R̄2 are commutative and Condition (2) is satisfied.
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Applying our approach, we get
R+:={[i,j]�[i′,j′]: 1≤i<n-1 & 1≤j≤n & 3≤i′ ≤n & 1≤j′ ≤n & Exists (k1,k2,k:
i′=i+2 ∗ k1 + 2 ∗ k2 & j′=j+2 ∗ k1 − 2 ∗ k2 & k1 ≥0 & k2 ≥0 & k1 + k2 = k &
k ≥0)},
while applying the approach implemented in the Omega calculator [9] it is not
possible to obtain any result.

Let us now show how the proposed method can be applied to non-uniform
relations.
Example 3.
R1:={[i,j]�[2i,j]: 2≤2i≤n & 1≤j≤m},
R2:={[i,j]�[i,j+1]: 1≤i≤n & 1≤j<m}.

Figure 5 illustrates the graph described with relations R1 and R2 for n=8 and
m=4. Relations R̄1 and R̄2 derived from relations R1 and R2 by transforming
their constraints so that their domains (and, respectively, ranges) are infinite
have the following form

R̄1:={[i,j]�[2i,j]},
R̄2:={[i,j]�[i,j+1]}.

R̄1 and R̄2 are commutative because R̄1 ◦ R̄2 − R̄2 ◦ R̄1 = ∅ and R̄2 ◦ R̄1 −
R̄1 ◦ R̄2 = ∅.

Because relation R1 is non-uniform, we cannot compute R̄k1
1 using Omega.

But using Mathematica according to the approach described in [4] we yield:

R̄k1
1 :={[i,j]�[i′,j′]: (i′=i2∗k1 & k1 ≥1 OR i′=i & k1=0) & j′=j },

while R̄k2
2 (computed either using Omega or according to [4]) is the following:

R̄k2
2 :={[i,j]�[i′,j′]: i′=i & j′=j+k2 & k2 ≥0 }.

The composition R̄k1
1 ◦ R̄k2

2 is of the form

R̄k1
1 ◦R̄k2

2 :={[i,j]�[i′,j′]: (i′=i2∗k1 & k1 ≥1 OR i′=i & k1=0) & j′=j+k2 & k2 ≥0}.
Finally, we are able to calculate A[Rk] that can be represented as

A[Rk]:={[i,j]�[i′,j′]: (1≤i≤n & 1≤j<m OR j=m & 1≤i & 2*i≤n) &
(1≤i′ ≤n & 2≤j′ ≤m OR Exists (alpha: 2*alpha = i′ & 2≤i′ ≤n & j′=1) ) &
Exists (k1,k2: (i′=i2∗k1 & k1 ≥1 OR i′=i & k1=0) & j′=j+k2 & k2 ≥0 & k1+k2 =
k & k ≥0)}.

Using Mathematica, it can be shown that set X is empty for this example.
Thus, A[Rk]=Rk and A[R+] found making k in the formula for A[Rk] to be
existentially quantified is the exact representation of R+, i.e., A[R+]=R+.

5 Conclusion and Future Work

We presented in this paper a novel approach for the computation of the transi-
tive closure of a union of affine and parameterized relations. For relations that
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commute when their domains and ranges are set to be infinite, we proposed a
formulation for both the power k and the positive transitive closure of the union
of n ≥ 2 relations, for a symbolic k. The precise class of relations for which
the computation is exact is defined by the necessary and sufficient condition
presented in Section 3. This class includes in particular non-convex relations.
For relations beyond this class, we proved that the approach still provides an
overapproximation of transitive closure.

In comparison to the heuristic approach presented in [9], ours always permits
the computation of the transitive closure of a union of multiple relations. A
result can be either exact transitive closure or its overapproximation, depending
on the satisfaction of the introduced condition.

In our future research we plan to derive approaches for calculating transi-
tive closure for a union of n ≥2 relations Ri, i=1,2,...,n, whose corresponding
relations R̄i are not commutative.
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Abstract. Combinatorial optimization problems have recently emerged
in the design of controllers for OLED displays. The objective is to de-
compose an image into subframes minimizing the addressing time and
thereby also the amplitude of the electrical current through the diodes,
which has a direct impact on the lifetime of such a display. To this end,
we model this problem as an integer linear program. Subsequently, we
refine this formulation by exploiting the combinatorial structure of the
problem. We propose a fully combinatorial separation routine for the
LP-relaxation based on matching techniques. It can be used as an oracle
in various frameworks to derive approximation algorithms or heuristics.
We establish NP-hardness and hardness of approximation. Nevertheless,
we are able to work around this issue by only focusing on a subsets of the
variables and provide experimental evidence that they are sufficient to
come up with near optimal solutions in practice. On this basis, one can
derive custom-tailored solutions adapting to technical constraints such as
memory requirements. By allowing the addressing of distributed double-
lines, we improve the addressing time in cases where previous approaches
fall short due to their restriction to consecutive doublelines.

1 Introduction

Organic Light Emitting Diodes (OLEDs) have been a hot topic on the display
market in the last years as the sizes of commercially available displays increased
significantly. Moreover, they provide many advantages over current technology,
such as Liquid Crystal Display (LCD).The image and video displayed has a
very high contrast and a viewing angle of nearly 180 degrees. It reacts within
10 microseconds, which is much faster than the human eye can catch and is
therefore well suited for video applications. Moreover, the display is physically
flexible.

There are two different OLED technologies called active matrix (AM) and
passive matrix (PM). The former is more expensive but offers a longer lifetime
than the latter. Their limited lifetime is one major reason why there are only
small-sized displays on the mass market. For mobile phones or digital cameras,
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large state of the art OLED displays are either too expensive or suffer from
insufficient lifetime.

While a lot of research is conducted on the material science side, the so-called
Consecutive Multiline Addressing Scheme for passive matrix OLED displays [12]
tackles the lifetime-problem from an algorithmic point of view. It is based on
the fact that equal rows can be displayed simultaneously with a lower electrical
current than in a serial manner [3,11]. Here we restrict ourselves to an informal
description for self-containment.

Fig. 1. Schematic electrical circuit of a display

A (passive matrix) OLED display has a matrix structure with n rows and m
columns as depicted in Figure 1. At any crossover between a row and a column
there is a vertical diode which works as a pixel. The image itself is given as an
integral non-negative n × m matrix. For the sake of simplicity, we first consider
the case of binary matrices, i.e. black/white images, and generalize to greyscale
and colored images later on.

Consider the contacts for the rows and columns as switches. For the time the
switch of row i and column j is closed, an electrical current flows through the
diode of pixel (i, j) and it shines. Hence, we can not control each pixel directly.
Therefore, such passive matrix displays are traditionally driven row by row in
a round-robin fashion. At a sufficiently high framerate, say 50 Hz, the human
eye perceives for each pixel only the average over time. Since, we may skip rows
that are completely dark, the addressing time varies from to image to image. To
maintain the brightness at the same level, we lower the amplitude of electrical
current that is sourced into the columns. This procedure has two desired side
effects: The power consumption is reduced and their lifetime is extended since
high amplitudes of the electrical current are the major issues with respect to the
lifetime of the diodes [10]. We can even save more time per frame, if we drive two
rows simultaneously. However, this only works, if their content is equal as in the
following example. As one can see, we need 5 units of time to display the image
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in the traditional way, i.e. row by row, whereas 3 units of time are sufficient with
so-called Distributed Doubleline Addressing (DDA).⎛⎜⎜⎜⎜⎝

0 1 1 0
1 0 0 1
1 1 1 1
1 0 0 1
1 0 0 1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 1
1 0 0 1

⎞⎟⎟⎟⎟⎠
We thereby gain 40% of the time to display this image and as said before we
may decrease the amplitude of the electrical current by that amount. Hence,
it remains to find an algorithm that computes such a decomposition to benefit
from Distributed Doubleline Addressing (DDA). We use the term distributed to
distinguish from previous work where it is only allowed to combine consecutive
lines. That is, we have to display the first matrix on the right-hand side of our
example in two steps, which therefore only permits a reduction of the electrical
current by 20% in that case.

To benefit from this decomposition in practice, we should adhere to the follow-
ing design criteria. Since the algorithm has to be implemented on a driver chip
attached to the display, it must have low hardware complexity allowing small
production costs. Consequently it has to rely only on a small amount of mem-
ory and it should be fully combinatorial, i.e. only additions, subtractions, and
comparisons are used. Though it has to solve or approximate the optimization
problem, which is formally described in Section 2, in real-time. We do not fulfill
all these requirements in one shot. We rather apply an algorithm engineering
process that approaches these goals in several iterations.

Previous Work

Algorithmic questions on the restriction to Consecutive Doubleline Addressing
(CDA) have been discussed by Eisenbrand et al. [3,4]. In these papers, the au-
thors also considered to combine more than two lines simultaneously, but only
consecutive ones. Other approaches based on Non-negative Matrix Factoriza-
tion [6,5] have been outlined by Smith et al. [9] and Smith [8].

Contributions of this Paper

We describe an algorithm engineering process to develop efficient solutions for a
real-world problem. That is, we first model the matrix decomposition problem of
Distributed Doubleline Addressing as an integer program. On this basis, we im-
prove the formulation by exploiting its combinatorial structure until we achieve
a solution which is applicable in practice. On the theory side, we prove that
computing optimal decompositions is NP-complete and also hard to approxi-
mate within a certain constant factor. To this end, we introduce the Matchable
Subset Problem as a special case of our real-world problem. Though the com-
plexity results sound discouraging, they give useful insight into the structure of
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the problem and also hints to the applicable methods. That is, we adopt approx-
imation techniques such as LP-rounding to come up with a promising method in
practice. We derive two LP formulations of our problem: A concise one and one
with exponentially many constraints. Though the former is of polynomial size, it
is impractical and inferior to the latter. This interesting and on the first glance
counter-intuitive behavior is due to the fact that we apply techniques known
from b-matching to develop an efficient fully combinatorial algorithm for the
separation problem of the exponentially many constraints. Finally, we propose
parameterized heuristics to achieve a solution, which is applicable in practice.
We conclude with a presentation of some computational results showing the im-
provement with respect to previous work. We thereby show that methods from
combinatorial optimization are well-suited to tackle algorithmic challenges in the
design of flat panel display drivers.

2 A Linear Programming Formulation

In this section, we will briefly introduce a linear programming model for DDA.
The interested reader is referred to [3] for a more profound elaboration on the
technical details. For the sake of simplicity, we restrict ourselves to the special
case of black/white images given by binary matrices R = (rij) ∈ {0, 1}n×m for
time being. Let the binary variables fj(i, k) ∈ {0, 1} denote whether the switch
for column j is closed while the switches of the rows i and k are closed. Note that
if i equals k, then the corresponding variables represent a single line. Moreover,
fj(i, k) and fj(k, i) represent the same switches and hence we implicitly require
fj(i, k) = fj(k, i) in the following. To get a lossless decomposition of the image
R, the following constraints must hold.

n∑
k=1

fj(i, k) = rij for all i, j

Recall that our objective is to minimize the addressing time for each given image.
Clearly, if we have for some pair {i, k} that fj(i, k) = 0 for all j ∈ {1, . . . , m},
we can skip this doubleline (or singleline if i equals k). Hence, the total number
of subframes is given by∑

i≤k
max{fj(i, k) : j = 1, . . . , m}.

We apply the standard trick to derive a linear programming formulation by
replacing each maximum by an auxiliary variable u(i, k). This yields

min
∑
i≤k

u(i, k)

s.t.
n∑
k=1

fj(i, k) = rij for all i, j (1)

0 ≤ fj(i, k) ≤ u(i, k) for all i, j, k.
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This LP formulation is not integral in general, which can be verified by an ex-
ample with three rows and a single column with R = (1, 1, 1)T . The fractional
optimum of 3

2 is attained at u(1, 2) = u(2, 3) = u(1, 3) = 1
2 , whereas the integer

optimum is 2. This comes to no surprise regarding the hardness results of Sec-
tion 4 for integer DDA. However, we stick to the LP formulation as it can be
used with well-known approximation techniques, e.g. randomized rounding. We
can also work around this issue on the technical side. To this end our display con-
troller must work with a higher precision than the input data. Let us assume for
now that it has an arbitrary precision. Then u(i, k) denotes the fraction of time
for which the row-switches i and k are simultaneously closed. Moreover, fj(i, k)
is the fraction of time for which the column-switch j is closed while the switches
for rows i, k are simultaneously closed. Now the generalization to greyscale im-
ages becomes straightforward by taking R ∈ [0, 1]n×m. Since the images usually
have a fixed resolution, we may assume that the input data is scaled to integers
in {0, . . . , �} for some integer �, e.g. � = 255 for 8-bit resolution. Mathematically,
there is no difference between greyscale and colored images. In the latter case,
we just have differently colored OLEDs at the respective pixels.

Experimental Evaluation

This basic LP formulation permits a first evaluation of the DDA approach using
standard software. Though it is clear that we will not be able to implement a
general purpose LP-solver on a chip that drives such a display, we can use the
LP-solutions as a benchmark for our further algorithms and heuristics. Although
the formulation (1) is concise in the theoretical sense as only a polynomial num-
ber (with respect to the input size) of variables and constraints are used, the
programs get huge for typical OLED displays. To give the reader a figure, we
present the numbers for QQVGA resolution, e.g. subdisplays for mobile phones.
There, we have n = 120 rows and m = 3 · 160 = 480 columns. This means that
we have (m + 1)n(n + 1)/2 ≈ 3.5 · 106 variables and about the same number of
constraints in our LP. Hence, it comes to no surprise that CPLEX 10.0 takes for
a much smaller LP of 30 rows already about 4 minutes on a 2.8 GHz Dualcore
AMD Opteron with 16 GB RAM and the run for QQVGA did not finish within
300 hours. Clearly, we must have a deeper look at the theoretical properties of
our problem to make any progress. To this end, we refine the formulation of our
problem by exploiting its combinatorial structure.

3 Combinatorial Refinement

A closer look at the LP formulation (1) reveals that the objective only depends
on the u-variables. Moreover, if those variables were fixed, then the problem
would decompose into m independent parts. Hence, we wish to have an efficient
method to solve the separation problem for the u-variables. That is, given an
assignment to the u-variables, to decide whether all the independent parts are
feasible, and if not, to return a violated inequality.
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To this end, we introduce a combinatorial formulation of our problem. It is
straightforward to consider an undirected graph G = (V, E) where each vertex
i ∈ V corresponds to a row of the display and the edgeset E represents the pairs
of row-switches. Note that we allow self-loops in G to model the singlelines. If
no further restrictions are given, then G is the complete graph on n nodes.

In the following, we consider the column vectors of an image R as functions
rj : V → Z≥0. A lossless decomposition is then considered as a perfect rj-
matching problem for each column j = 1, . . . , m. That is, the set of feasible
timings for column j is given by the polyhedron

Pj :=
{
f ∈ R

|E|
≥0 : f(δ(i)) = rj(i) ∀i ∈ V

}
where δ(·) denotes the set of incident edges and f(δ(·)) means the sum over
variables of these edges.

Recall that the timings for the row-switches is determined by the maxima over
all columns. That is, we have a variable u(e) for each edge e ∈ E. A row-timing
u : E → Z≥0 is feasible, if and only if for each column j ∈ {1, . . . , m} there is
a feasible matching fj ∈ Pj with fj ≤ u. Hence, a row-timing u is feasible for a
column j if and only if it is contained in the up-hull of Pj , i.e. u ∈ P ↑

j := Pj+R
|E|
≥0 .

Thus, the set of feasible row-timings is given by the polyhedron

P :=
m⋂
j=1

P ↑
j .

The problem can now be divided into two parts and understood as follows.

1. Find a row-timing u ∈ P that minimizes the sum u(E).
2. For each column j = 1, . . . , m, compute a u-capacitated perfect rj -matching

fj representing the timings for the corresponding column switches.

Note that in the second step, the columns become independent and the matching
problems could be solved in parallel. Moreover, there are several combinatorial
algorithms known from literature to solve this task.

It remains to find a good characterization of P , e.g. by an efficient combina-
torial algorithm for the separation problem. That is, given a vector u′ determine
an inequality that is valid for all elements of P but violated for u′, or assert that
no such inequality exists and hence u′ is contained in P .

Theorem 1. The polyhedron P is determined by the inequalities

2u(E[X ]) + u(δ(X) \ δ(Y )) ≥ rj(X) − rj(Y ) (2)

for all X ⊆ V , Y ⊂ N(X), j = 1, . . . , m where E[X ] denotes the inner edges of
X excluding the self-loops, δ(·) also contains the self-loops of X, and N(X) ⊂ V
is the neighborhood of X in G.

We sketch the proof in the following, since it reveals our implementation of
the separation routine for these inequalities. We show first that each of the
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Inequalities (2) is valid for P . To this end, arbitrarily fix u ∈ P , X ⊆ V ,
Y ⊂ N(X), and j ∈ {1, . . . , m}. Since u ∈ P , there is a f ∈ Pj with f ≤ u.
Hence,

rj(X) − rj(Y ) = 2f(E[X ]) + f(δ(X)) − 2f(E[Y ]) − f(δ(Y ))
≤ 2u(E[X ]) + u(δ(X) \ δ(Y )).

To prove sufficiency, we transform the problem to the uncapacitated case. To
this end, we split each edge e = {i, k} ∈ E by two new nodes e1, e2 such that we
get a new graph G′ = (V ′, E′) with

V ′ := V ∪̇ {e1, e2 : e ∈ E}
E′ :=

{
{i, e1}, {e1, e2}, {e2, k} : e = {i, k} ∈ E

}
.

Note that the self-loops transform into 3-cycles as depicted in Figure 2.

i k ⇒ i e1 e2 k

i ⇒ i

e1 e2

Fig. 2. Transformation to the uncapacitated case

Consider j to be fixed for time being. We define b : V ′ → Z≥0 with b(i) := rj(i)
for all i ∈ V , b(e1) := b(e2) := u(e) for all e ∈ E that are no self-loops, and
b(e1) := b(e2) := u(e)/2 for all self-loops e. It is easy to verify that a fractional
perfect b-matching in G′ corresponds to a fractional u-capacitated perfect rj-
matching in G and vice versa. The value attributed to the middle segment in
G′ determines the slack of the corresponding edge in G. The transformation to
the uncapacitated case allows us to use a well-known characterization of the
existence of perfect 2b-matchings (cf. Corollary 31.5a in [7]) that we can state
in our context as follows.

Lemma 1. There is a fractional perfect b-matching for G′ if and only if

b(N ′(S)) ≥ b(S)

for each stable set S of G′ where N ′ denotes the neighborhood in G′.

Let S be a stable set in G′. Define the set X := S ∩ V , i.e. the nodes of S that
correspond to nodes in the original graph G. Moreover, let Y := N ′(S \ X) ∩ V
and F ⊆ δ(Y ) such that its edges correspond to the nodes of S \X in G′. Hence,

b(S) = b(X) + b(S \ X) = rj(X) + u(F )
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and
b(N ′(S)) = 2u(E[X ]) + u(δ(X) \ F ) + u(F ) + rj(Y ).

It follows that b(N ′(S)) ≥ b(S) is equivalent to

2u(E[X ]) + u(δ(X) \ δ(Y )) ≥ rj(X) − rj(Y ).

It remains to show that it is sufficient to consider only Y ⊆ N(X) in the original
graph. However, this is easy to see since any y ∈ Y \ N(X) would weaken the
right-hand side and would leave the left-hand side unchanged.

Algorithmically, a violated inequality for a given assignment u : E → Z≥0 can
be found by a further transformation of the uncapacitated perfect b-matching
problem to a transportation problem. That is, we construct a bipartite graph G′′

such that each part of the bipartition consists of a copy of V ′, say V ′′ := V ′
1 ∪̇V ′

2 ,
and for each edge {v, w} ∈ E′ we have the two edges {v1, w2} and {v2, w1} in
E′′. By directing the edges from V1 to V2 and considering the nodes of V1 as
supplies and the nodes of V2 as demands, the separation problem becomes a
transshipment problem, which can be solved by a maximum flow computation.
If and only if the value of the maximum flow equals b(V ′), then there exist
a fractional perfect b-matching in G′. If the value of the maximum flow, or
by duality the minimum cut, is smaller, then the nodes of G′′ constituting a
minimum cut also represent a vertex cover y : V ′′ → {0, 1} of the same weight.
By setting z(v) := y(v1) + y(v2), we get a 2-vertex cover of G′ with∑

v∈V ′
b(v)z(v) < b(V ′).

Moreover, the set S := {v ∈ V ′ : z(v) = 0} yields a stable set, while N ′(S) =
{v ∈ V ′ : z(v) = 2}. Hence,

b(V ′) > 2b(N ′(S)) + b(V ′ \ N ′(S) \ S) = b(N ′(S)) + b(V ′ \ S),

which gives the equivalent violated inequality b(S) > b(N ′(S)).

3.1 Further Improvements

In principle, we could start the separation with the zero-vector. However, it is
much more efficient to provide a starting set of valid inequalities which is of
moderate size and easy to solve but still yields a dual solution which is not too
far from the optimum.

It is straightforward to select the inequalities arising from the sets X = {i}
and Y = ∅ for each i ∈ V . This means, we simply bound the variables in the
perfect matching constraints by the corresponding capacities and get

u(δ(i)) ≥ ri (3)

where ri := max{rij : j = 1, . . . , m}.
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For our application, it is easy to see that the optimal objective value of this
partial solution is at least half of the optimum of the whole problem, since
u(i, i) := ri and u(i, k) := 0 for all i �= k is a feasible solution and

2u(E) ≥
n∑
i=1

ri

holds by summing up the inequalities (3) and the non-negativity constraints for
u(i, i).

Note that these inequalities together with the non-negativity constraints de-
termine the fractional r-edge cover polytope. This has the following two con-
sequences for us: Firstly, there is a fully combinatorial algorithm to compute
a minimum fractional b-edge cover. Secondly, the integer r-edge cover polyhe-
dron is contained in the integer hull PI of P . Hence, we may also add the valid
inequalities

u(E[X ] ∪ δ(X)) ≥
⌈r(X)

2

⌉
for all X ⊆ V (4)

to the description of PI . Recall that we made the temporary assumption that
our display controller works with arbitrary precision. But in the real world, this
is hardly possible since our digital circuit shall work with a fixed clock frequency.
Hence, there is a minimum amount of time for which switches can be closed and
opened again. Thus, we only have fixed precision, which is equivalent to require
the variables to be integer by appropriate scaling.

Nevertheless, the separation routine has not become useless since we already
get a very simple approximation algorithm by simply rounding each fractional
variable to the next greater integer. Note that then the obtained integer solution
has an objective value within an additive error of |E|. Moreover, the separation
routine can be used within the framework of [3] to come up with fully combina-
torial heuristics.

It is natural to ask whether there is a completely different approach to solve
the problem exactly in polynomial time. But there is little hope because of the
NP-completeness result of Section 4. Before we come to this section, we give
a brief overview of the experimental results with respect to the combinatorial
separation.

3.2 Experimental Evaluation

We implemented the combinatorial separation using the LEDA 6.1 library to
solve the transportation problem by the built-in MaxFlow routine. We can
use this separation to speed up the solution time of CPLEX. For example, the
instance with 30 rows mentionend before is now solved in 14 seconds instead of
240 seconds. However, it is still not possible to solve the LP relaxation of a full
QQVGA instance in timely manner.
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4 Hardness Results

We show in this section that already the restriction to the black/white case,
i.e. binary matrices R ∈ {0, 1}n×m, is NP-complete and also hard to approx-
imate. To this end, we define the Matchable Subset Problem and analyze its
complexity.

Definition 1 (Matchable Subset Problem). Given an undirected graph G =
(V, E) and m subsets of the nodes V1, . . . , Vm ⊆ V , find an edgeset Ẽ ⊂ E of
minimum cardinality such that for each j ∈ {1, . . . , m} the set Vj is matchable in
G̃ = (V, Ẽ), i.e. there is a perfect matching in the subgraph of G̃ induced by Vj.

Theorem 2. The Matchable Subset Problem is NP-complete, even when re-
stricted to complete graphs (with or without self-loops).

Proof. Clearly, the problem is in NP. We show hardness by a reduction from
vertex cover. Given an undirected graph G = (V, E), we construct an undirected
graph G′ = (V ′, E′) as follows. Let

V ′ := {s} ∪̇ V ∪̇ {te : e ∈ E}
E′ :=

{
{s, u} : u ∈ V

}
∪̇

{
{u, te}, {v, te} : e = {u, v} ∈ E

}
and let the matchable subsets be induced by the nodes {s, u, v, te} for each
original edge e = {u, v} ∈ E. An illustration is given in the left of Figure 3.

s

u v

te

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1

A

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 3. The construction for the hardness-proof is illustrated on the left and the one
for the decomposition problem on the right

Given an edgeset Ẽ ⊆ E′ such that for every e = {u, v} ∈ E the set {s, u, v, te}
is matchable in the graph (V ′, Ẽ), we define the nodeset C := {u ∈ V : {s, u} ∈
Ẽ}. By construction, we have that |C| = |Ẽ| − |E|. We show next that C is
a vertex cover in G. Let e = {u, v} be an arbitrary edge. This implies that{
{s, u}, {s, v}

}
∩ Ẽ �= ∅, since {s, u, v, te} has a perfect matching within Ẽ.

Hence, {u, v} ∩ C �= ∅, which proves that C is a vertex cover in G.
Conversely, if C is a vertex cover in G, then we define Ẽ ⊆ E′ as follows. We

distinguish the two cases if an edge of G is covered by one or two vertices in C.
If e = {u, v} ∈ E is covered by exactly one vertex in C, say C ∪ e = {u}, we
include the edges {s, u} and {v, te} in Ẽ. If both of ends of an edge e = {u, v}
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are contained in the cover C, then we include {s, u}, {s, v}, and an arbitrary
edge of {u, te} and {v, te}. This yields |Ẽ| = |C| + |E| and moreover for each
edge e = {u, v} ∈ E the set {s, u, v, te} has a perfect matching within Ẽ.

Including also the edges {u, v} and {s, te} in E′ does not help as they are only
contained in one induced subgraph. Moreover, it is easy to see that self-loops
are not suited to improve the solution. ��

The relation to DDA is as follows. Consider the complete graph and subsets
V1, . . . , Vm of its nodes. For each j = 1, . . . , m, let rj be the characteristic vector
of Vj . The shortest DDA timing for the matrix R made up by the column vectors
rj is then equal to the minimum-cardinality edgeset solving the Matchable Subset
Problem. Hence, the vertex cover problem for a graph G = (V, E) can be solved
as follows. From the node-edge-incidence matrix A ∈ {0, 1}|V |×|E|, we construct
the image R ∈ {0, 1}(1+|V |+|E|)×|E| as shown on the right of Figure 3. The
optimum number of timesteps to display the image using DDA is equal to the
minimum size of a vertex cover of G plus the number of edges in G. Note that
the constructed graph G′ does not contain odd cycles and thus constraining the
input to bipartite graphs is not a restriction. Furthermore, it does not make the
problem easier if we also consider fractional perfect matchings.

Note that vertex cover is hard to approximate within a factor α > 1.36 [2].
Moreover, hardness of approximation also holds for graphs with bounded de-
gree [1]. Thus, we get the following theorem.

Theorem 3. There is a constant β such that it is NP-hard to approximate the
Matchable Subset Problem within a factor of β.

Proof. An approximation algorithm for the Matchable Subset Problem with
guarantee β yields an approximation algorithm for vertex cover with

|C| = |Ẽ| − |E| ≤ β(OPTvc + |E|) − |E| ≤ [(Δ + 1)β − Δ]OPTvc

where Δ denotes the maximum degree of G. Hence, if it is hard to approximate
vertex cover on a graph with maximum degree Δ within an approximation factor
α(Δ), then it is hard to approximate the matchable subset problem within an
approximation factor

β =
α(Δ) + Δ

Δ + 1
The proof is then finished. ��

We get β ≥ 261
260 = 1.00385 by the numbers from [1] and graphs with maximum

degree 4. By the previous considerations, this also holds for the shortest DDA
timing.

5 Cutting the Bandwidth

In the previous Section, we have seen that the problem is hard for complete
graphs. Moreover, the experimental evaluations have shown that the large num-
ber of variables prevents ourselves from solving even the LP-relaxation in a
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Fig. 4. Comparison between CDA (b = 1) and DDA with b = 2, 3, 4. The line marks
the break even. The lower a symbol the better performs the algorithm.

timely manner. Hence, it is natural to dismiss some (or most) of them, i.e. to
consider a suitable subgraph. From previous work [4], we know that Consecutive
Doubleline Addressing (CDA) works pretty well in practice. A close look reveals
that CDA is a special case of DDA, when we consider a path with n nodes (and
self-loops at every node) as the corresponding graph. It is easy to see that this
graph has bandwidth 1. If we take the square of this graph, i.e. inserting edges
that skip one node on the path, we get bandwidth 2. The third power yields
bandwith 3, and so on. Note that the n-th power, i.e. bandwidth n, is again the
complete graph. We use the same testset of images as in [3] and [4] in QQVGA
resolution (i.e. n = 120 and m = 3 · 160 = 480) to compare the different band-
widths b = 1, 2, 3, 4. We do so with a small uncertainty by taking the mean of the
LP-relaxation and the objective value after the naive rounding. This is justified
since the error is negligible and the running time for solving the integer linear
program is much higher, e.g. 27 seconds compared to 51.5 minutes. In fact, the
error is so small that the error bars would not exceed the symbol size in Figure 4.

The reduction factor of the worst instance for CDA dropped from 63% via
58% and 54% to 52% for b = 2, 3, 4, respectively. As one can see in Figure 4,
there is a saturation with growing bandwidth for real-world instances. However,
for artificial images like icons, text, wallpapers for mobile displays, etc. where
the mean reduction by CDA is only 63% [4], we strongly believe that DDA with
small bandwidth, e.g. b = 3, will be of great interest. Moreover, it will decrease
the number of bad instances.

Hence, future work includes the development of an efficient hardware imple-
mentation specialized for graphs with bounded bandwidth. To this end, it is
usefull to investigate the black/white case. While the problem is NP-complete
for general graphs as shown in Section 4, is is solvable in polynomial time for
b = 1 [4]. Since the theoretical research to come up with the polynomial time
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algorithm for b = 1 has lead to an efficient approximation algorithm in practice,
the complexity of the Machable Subset Problem on graphs with bounded band-
width b > 1 is a relevant open problem. A long term goal is to combine more
than two distributed rows, but this is also more demanding from the technical
point of view.

Since CDA has recently entered the market as part of Dialog Semiconductor’s
SmartXtendTM technology, which is included a 3” W-QVGA OLED displays
of TDK, and the work presented in this paper further improves the addressing
time, we strongly believe that DDA will follow with the next version of the
display driver.
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Abstract. We investigate open rectangle-of-influence drawings for irre-
ducible triangulations, which are plane graphs with a quadrangular ex-
terior face, triangular interior faces and no separating triangles. An open
rectangle-of-influence drawing of a plane graph G is a type of straight-
line grid drawing where there is no vertices drawn in the proper inside
of the axis-parallel rectangle defined by the two end vertices of any edge.
The algorithm presented by Miura and Nishizeki [8] uses a grid of size
W +H ≤ (n-1), where W is the width of the grid, H is the height of the
grid and n is the number of vertices in G. Thus the area of the grid is at
most �(n-1)/2� × 	(n-1)/2
 [8].

In this paper, we prove that the two straight-line grid drawing algo-
rithms for irreducible triangulations from [4] and quadrangulations from
[3,5] actually produce open rectangle-of-influence drawings for them re-
spectively. Therefore, the straight-line grid drawing size bounds from
[3,4,5] also hold for the open rectangle-of-influence drawings. For irre-
ducible triangulations, the new asymptotical grid size bound is 11n/27 ×
11n/27. For quadrangulations, our asymptotical grid size bound 13n/27
× 13n/27 is the first known such bound.

1 Introduction

In this paper, we deal with the straight-line grid drawing of a graph G. We
denote by n the number of the vertices in the graph. The grid size is denoted by
W ×H, where W is called the width of the grid and H is called the height of the
grid. The grid consists of (W + 1) vertical grid lines and (H+ 1) horizontal grid
lines.

A planar graph is a graph which can be drawn in the plane so that the edges
do not intersect at any point other than their end vertices. A planar graph with
a fixed planar embedding is called a plane graph. A plane graph divides the plane
into regions which are called faces. The unbounded region is called exterior face,
the other faces are called interior faces. An edge is an exterior edge if it belongs
to the exterior face. A 3-cycle of a plane graph is a separating triangle if its
removal separates the graph. A plane graph G is an irreducible triangulation, if
G has a quadrangular exterior face, triangular interior faces and no separating
� Research supported in part by NSF Grant CCF-0728830.
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Fig. 1. Three straight-line grid drawings of a graph G: (a) an open rectangle-of-
influence drawing, (b) a closed rectangle-of-influence drawing, (c) an ordinary straight-
line grid drawing

triangles. An irreducible triangulation G is internally 4-connected. Namely, if we
add a new vertex into the exterior face of G and connect it to all its four exterior
vertices, the resulting graph is 4-connected.

A straight-line planar drawing of a planar graph G is a drawing in which all the
vertices of the graph are represented by points and all the edges are represented
by straight line segments without intersection, except at their common ends. A
straight-line grid drawing is a straight-line planar drawing in which every vertex
is placed on a grid point with integer coordinates. There are many results on
straight-line grid drawings under additional constraints so that the drawings look
nicer [2,10]. In this paper, we deal with a type of straight-line grid drawings under
one additional constraint, known as the open rectangle-of-influence drawing; it
is a straight-line grid drawing such that there is no vertex in the proper inside of
the axis-parallel rectangle defined by the two ends of any edge. A rectangle-of-
influence grid drawing is called closed if the axis-parallel rectangle defined by the
two ends of any edge contains no vertices except its two ends on its boundary.
See Figure 1 for three different straight-line grid drawings of a graph G. The
axis-parallel rectangles defined by the two ends of the edge e = (u, v) are shaded
in Figure 1 (a), Figure 1 (b), and Figure 1 (c) respectively. In Figure 1 (a), the
proper inside of the shaded rectangle contains no vertices of G. But there is a
vertex �= u, v on its boundary. In Figure 1 (b), the shaded rectangle contains
no vertices except its end vertices u and v, while in Figure 1 (c), the shaded
rectangle contains two other vertices �= u, v in the proper inside of the rectangle.
After examining all the other edges in the three drawings, we can easily see that
Figure 1 (a) is an open rectangle-of-influence drawing of G, Figure 1 (b) is a
closed rectangle-of-influence drawing of G, while Figure 1 (c) is just an ordinary
straight-line grid drawing of G. A rectangle-of-influence grid drawing often looks
pretty, since vertices are inclined to be separated from edges.

In this paper, we focus on open rectangle-of-influence drawing. From now on
in this paper, rectangle-of-influence means open rectangle-of-influence. For a 4-
connected n-vertex plane graph G with four or more exterior vertices, Miura
et al. [8] presented a rectangle-of-influence drawing algorithm. It uses a grid
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of width W and height H such that W + H ≤ (n-1). Therefore, the area of
grid used is W × H, which is ≤ �(n-1)/2� × 
(n-1)/2� [8]. This algorithm is
quite sophisticated and it relies on some particular ordering and grouping of the
vertices called 4-canonical decomposition [8]. This makes it difficult to implement
and carry it out by hands.

Irreducible triangulations are associated with transversal structures [4,6]. Let
G be an irreducible triangulation with four exterior vertices W, S, E, N in coun-
terclockwise order. Roughly speaking, a transversal structure T (G) of G parti-
tions the interior edges of G into two well patterned subsets of red edges and
blue edges, where red edges are oriented from S to N and blue edges are ori-
ented from W to E. The subgraph consisting of all the exterior edges and all
the red edges (blue edges, respectively) is called the red map Gr (blue map Gb,
respectively) of G. By applying the face counting approach [1,9] to Gr and Gb,
Fusy [4] introduced a straight-line grid drawing algorithm for irreducible trian-
gulations. It has been shown that for a random irreducible triangulation with n
vertices, this algorithm asymptotically uses a grid of size 11n/27 × 11n/27, with
a high probability up to an additive error of O(

√
n). In addition, the coordinates

calculated by this approach carry clear combinatorial meanings.
Later on, Fusy proposed a related straight-line grid drawing algorithm for

quadrangulations [3,5]. For a random quadrangulation with n vertices, the grid
size is asymptotically with high probability 13n/27 × 13n/27 up to an additive
error of O(

√
n).

In this paper, we prove that the above two straight-line grid drawing al-
gorithms by Fusy for irreducible triangulations and quadrangulations actually
produce open rectangle-of-influence drawings for them respectively. Therefore,
the above mentioned straight-line grid drawing size bounds also hold for the
open rectangle-of-influence drawings. Since a 4-connected n-vertex plane graph
with four or more exterior vertices can be made into a n-vertex irreducible tri-
angulation by adding diagonals, therefore our new asymptotical grid size bound
11n/27 × 11n/27 notably improves the previous grid size bound W +H ≤ (n-1)
from [8] for 4-connected plane graphs. For quadrangulations, our asymptotical
grid size bound 13n/27 × 13n/27 is the first known bound.

The reminder of the paper is organized as follows. In the Section 2, we in-
troduce some preliminaries. In the Section 3, we introduce the details of the
transversal-structure-based straight-line grid drawing algorithm for irreducible
triangulations. In Section 4, we prove that the straight-line grid drawing ob-
tained using the transversal structure on irreducible triangulation is indeed a
rectangle-of-influence drawing. We also prove that the related straight-line grid
drawing on quadrangulation is also a rectangle-of-influence drawing.

2 Transversal Structure for Irreducible Triangulations

We now introduce the details about transversal structures [4,7]. An orientation
of a graph G assigns a direction to every edge of G. An orientation is said to
be acyclic if the graph does not contain any directed cycle in the graph. For
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every acyclic orientation we can find a vertex with no ingoing edge as source and
a vertex with no outgoing edge as sink. A bipolar orientation [4] is an acyclic
orientation with a unique source s and a unique sink t. For a 2-connected plane
graph G with bipolar orientation we have for any vertex v ∈ V where v �= s, t,
the edges incident to v are partitioned into a non-empty consecutive block of
ingoing edges and a non-empty block of outgoing edges around v. Each face f
of G has two vertices sf and tf such that the boundary of the face f consists of
two non-empty directed paths both originating at sf and ending at tf . These
are called the left-lateral path and the right-lateral path of f respectively.

Let G be an irreducible triangulation. Let W, S, E and N be four exterior
vertices in counterclockwise order. A transversal structure T (G) of G is a parti-
tion of its interior edges into two sets; say in red and blue edges, such that the
following conditions are satisfied:

– Interior vertices: In clockwise order around each interior vertex v, its incident
edges form a non empty interval of red edges entering v, a non empty interval
of blues edges entering v, a non empty interval of red edges leaving v and a
non empty interval of blue edges leaving v.

– Exterior vertices: All interior edges incident to N are red edges entering N,
all interior edges incident to S are red edges leaving S, all interior edges
incident to W are blue edges leaving W and all interior edges incident to E
are blues edges entering E. Each of these blocks is non empty.

An alternating 4-cycle of a transversal structure T (G) is a cycle C = (e1, e2, e3,
e4), where the edges e1, e2, e3, e4 form a cycle such that they are color alternating.
In other words, two adjacent edges in the cycle have different colors [4]. Given
a vertex v of the alternating cycle C, we call left edge (right edge, respectively)
of v the edge of C starting from v and having the exterior of C on its left (right,
respectively). An alternating 4-cycle C in T (G) satisfies either of the following
configurations [4]: (1) All edges inside C and incident to a vertex v of C have
the same color of the left edge of v. Then C is called as a left alternating cycle.
(2) All edges inside C and incident to a vertex v of C have the same color of
the right edge of v. Then C is called as a right alternating cycle. A transversal
structure T (G) is called the minimum transversal structure if T (G) has no right
alternating 4-cycles. It will be denoted by Tm(G).

Figure 1 shows an example of an irreducible triangulation G and a transversal
structureT (G) ofG.There are two left alternating cyclesC1 = ((n, a), (a, d), (d, e),
(e, n)) and C2 = ((p, i), (i, j), (j, k), (k, p)). Consider the vertex n in C1. The edge
(n, e) is the left edge ofn. The edge (n, d) inside the alternating cycle and incident to
n has the same color of the edge (n, e). (n, d) also has the same color of the left edge
of the vertex d. Hence, C1 is a left alternating 4-cycle. Similary, one can check that
C2 is also a left alternating 4-cycle. Hence T (G) has no right alternating 4-cycles;
it is the minimum transversal structure Tm(G) of G.

We have the following three simple facts from [4]:

– Fact 1: Let G be an irreducible triangulation with a transversal structure
T (G) of G. Then the oriented red edges form a bipolar orientation of the
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plane graph G after removing W, E and all non red edges. Symmertrically,
the oriented blue edges form a bipolar orientation of the plane graph G after
removing S, N and all the non blue edges [4].

– Fact 2: The orientation of the interior edges given by the transversal struc-
ture T (G) is acyclic. The exterior vertices S and W are sources and the
exterior vertices N and E are sinks [4].

– Fact 3: Let G be an irreducible triangulation. Then the minimum transversal
structure Tm(G) is unique, and it can be computed in linear time [4].

3 A Straight-Line Grid Drawing Algorithm by Fusy

Consider an irreducible triangulation G with a transversal structure T (G) as
defined above. The subgraph of G with all its red colored edges (blue colored
edges, respectively) and all its four exterior edges is called the red map of G
(blue map of G, respectively), it is denoted by Gr (Gb, respectively). For an
interior vertex v in Gr (Gb, respectively), the edges entering v and the edges
leaving v form two non empty contiguous blocks. When walking from u to v in
Gr (Gb, respectively), if we always pick the first feasible outgoing edge (i.e., the
outgoing edge could still lead to the vertex v) in counterclockwise direction at all
its intermediate vertices in the path, then the path is unique and it is called the
rightmost path from u to v. Similarly, the leftmost path always chooses the first
feasible clockwise outgoing edge at all its intermediate vertices in the path. In
particular, we use P inr (v) to denote the rightmost path from S to v and Poutr (v)
to denote the leftmost path from v to N in Gr. We use P inb (v) to denote the
rightmost path from W to v and Poutb (v) to denote the leftmost path from v
to E in Gb. For any interior vertex v of G, let Pr(v) denote the concatenated
path of P inr (v) and Poutr (v), it is called the separating red path for v. Similarly,
let Pb(v) denote the concatenated path of P inb (v) and Poutb (v), it is called the
separating blue path for v.

Consider an interior vertex v. The region enclosed by the path (S, W, N) and
Pr(v) will be denoted by Rleft

red (v), the region enclosed by the path (S, E, N) and
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Fig. 2. An irreducible triangulation G and the minimum transversal structure Tm(G)
of G
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Pr(v) will be denoted by Rright
red (v). The region enclosed by the path (W, S, E)

and Pb(v) will be denoted by Rright
blue (v), and the region enclosed by the path

(W, N, E) and Pb(v) will be denoted by Rleft
blue(v). Let x(v) be the number of

faces in Gr which are within the region Rleft
red (v), y(v) be the number of faces in

Gb which are within the region Rright
blue (v).

Let x(T (G)) be the total number of interior faces of Gr and y(T (G)) be the
total number of interior faces of Gb. For the exterior vertices, we define x(W)
= 0, y(W) = y(T (G)), x(E) = x(T (G)), y(E) = 0, x(N) = x(T (G)), y(N) =
y(T (G)), x(S) = 0, and y(S) = 0.

For example, Figure 3 (a) presents Gr and Figure 3 (b) presents Gb. Consider
the vertex f . In Gr, Pr(f) for f is Pr(f) = (S, b, d, f, j, l, N). In Gb, Pb(f) for
f is Pb(f) = (W, o, e, f, g, h, c, E). Therefore, we have x(f) = 6 and y(f) = 4.

We have the following lemma from [3]:

Lemma 1. Let G be an irreducible triangulation, W, S, E, N be its four exterior
vertices in counterclockwise order.Let T (G) be a transversal structure of G. Ap-
plying T (G), for each vertex v, embed it on the grid point (x(v), y(v)). For each
edge of G, simply connect its end vertices by a straight line. Then the drawing is
a straight-line grid drawing for G. Its drawing size is x(T (G)) × y(T (G)). This
drawing is computable in linear time.

Figure 4 (a) shows the straight-line grid drawing of the graph G in Figure 2, using
the transversal structure T (G) in Figure 3. Observe that there are unused vertical
or horizontal grid lines in the drawing plane in Figure 4 (a). It is easy to see
that, after deleting all the unused vertical and horizontal grid lines and shifting
other vertical grid lines and horizontal grid lines accordingly, we can obtain more
compact straight-line grid drawing for G. See Figure 4 (b) for an illustration of
the compaction. For an irreducible triangulation G, and a transversal structure
T (G), we will denote the drawing obtained from Lemma 1 by D(G) and the
resulting compact drawing by Dc(G). The compaction can be understood as
a pair of functions from the coordinates of the grid point (x(u), y(u)) for a
vertex u in drawing D(G) to the corresponding coordinates of the grid point
(xc(u), yc(u)) for u in the drawing Dc(G), where we use xc(u) and yc(u) to
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Fig. 3. The Gr and Gb for the transversal structure Tm(G) of G in Figure 2
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Fig. 4. Straight-line grid drawings of the graph G in Figure 2

denote the x− and y− coordinates for u in Dc(G). It is easy to observe that, the
function from x(u) to xc(u) and the function from y(u) to yc(u) are both strictly
monotonically increasing. (Note, the functions only consider feasible coordinate
values. An integer which is not a coordinate value for any vertices is not in the
domain of the function. Take the function from the set of x(u) to the set of xc(u)
for an example. Different coordinate values from the set of x(u) are mapped into
different coordinate values in the set of xc(u). Therefore, this function is strictly
monotonically increasing.)

When using the minimum transversal structure Tm(G), we have the following
lemma about the sizes of the drawings from [3]:

Lemma 2. Let G be an irreducible triangulation with n vertices taken unifor-
maly at random. Let W ×H be the grid size of D(G) and Wc ×Hc be the grid
size of Dc(G) respectively. Then the following results hold asymptotically with
high probability, up to fluctuations of order

√
n:

W ×H ≈ n

2
× n

2
,Wc ×Hc ≈

11n

27
× 11n

27
.

Let us mention that the so-called ε-formulation holds here: For any ε > 0, the
probability that W or H are outside of [(1/2−ε)n, (1/2+ε)n] and the probability
that Wc and Hc are outside of [(11/27 − ε)n, (11/27 + ε)n] are asymptotically
exponentially small.

We have the following simple observations regarding the coordinate mono-
tonicity of the above grid drawing algorithms in Lemma 1 and Lemma 2.

Observation 1:

1. If (u, v) is a red path directed from u to v in the red map Gr of T (G), then
x(u) ≤ x(v), y(u) < y(v). xc(u) ≤ xc(v), and yc(u) < yc(v).

2. If (u, v) is a blue path directed from u to v in the blue map of Gb of T (G),
then y(u) ≥ y(v), x(u) < x(v). yc(u) ≥ yc(v), and xc(u) < xc(v).
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First sentences of both Statement 1 and Statement 2 of the above observation
are from [11]. Second sentences of both Statement 1 and Statement 2 are also
valid because of first sentences of both Statement 1 and Statement 2 and the
monotonicity of the function from x(u) to xc(u) and the monotonicity of the
function from y(u) to yc(u).

4 Rectangle-of-Influence Drawing

In this section, we prove that the above two drawings D(G) and Dc(G) of G
are actually rectangle-of-influence drawings for the irreducible triangulation G.
First we have the following technical lemma:

Lemma 3. Let G be an irreducible triangulation. Let T (G) be a transversal
structure for G. Let D(G) and Dc(G) for G be the two straight-line grid drawings
for G as obtained above from T (G). Then:

1. Let w be a vertex and (u, v) be an edge in G. If w is not in the proper inside
of the rectangle defined by the two end vertices u and v in D(G), then w is
not in the proper inside of the rectangle defined by the two end vertices u
and v in Dc(G).

2. If D(G) is a rectangle-of-influence drawing for G, then Dc(G) is also a
rectangle-of-influence drawing for G.

Proof. 1. Case 1: If x(u) = x(v) or y(u) = y(v), then after compaction,
xc(u) = xc(v) or yc(u) = yc(v), then the rectangle defined by (xc(u), yc(u))
and (xc(v), yc(v)) has no proper inside. Therefore, w cannot be in the proper
inside of the rectangle defined by the two end vertices u and v in Dc(G),
Case 2: Without loss of generality, let’s assume that x(u) < x(v) and y(u) <
y(v). Consider the vertex w. If w is not in the proper inside of the rectangle
defined by (x(u), y(u)) and (x(v), y(v)) in D(G), then using the monotonicity
property for the functions from the coordinates in D(G) to the coordinates
in Dc(G), we have the following: if x(w) < x(u), then xc(w) < xc(u); if
x(w) > x(v), then xc(w) > xc(u); if y(w) < y(u), then yc(w) < yc(u); if
y(w) > y(v), then yc(w) > yc(u).

Therefore, w is not in the proper inside of the rectangle defined by
(xc(u), yc(u)) and (xc(v), yc(v)) in Dc(G).

2. It is trivial from the above statement and the definition of the rectangle-of-
influence drawing for a graph.

Therefore, we only need to prove that D(G) is a rectangle-of-influence drawing
for G in the following. Next we will have our key technical lemma:

Lemma 4. Let (u, v) be an edge of G, (x(u), y(u)) and (x(v), y(v)) be the coor-
dinates of u and v in D(G). Then there is no vertex in the proper inside of the
rectangle defined by (x(u), y(u)) and (x(v), y(v)).
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Fig. 5. Proof of Lemma 4

Proof. We have the following several cases for the edge (u, v):

Case 1: (u, v) is an exterior edge. Then either x(u)=x(v) or y(u)=y(v). There-
fore the proper inside of the rectangle defined by (x(u), y(u)) and (x(v), y(v)) is
empty. Hence, no vertex can lie in its interior.

Case 2: (u, v) is a red edge directed from u to v, and u is the exterior vertex
S. See Figure 5 (a) for an illustration. First observe that none of the other
three exterior vertices can be in the proper inside of the rectangle defined by
(x(S), y(S)) and (x(v), y(v)). Consider Pb(v) and Pr(v), and the rightmost path
in Gb from v to E, which is denoted by P . Consider an interior vertex w �= u, v
of G. We have three subcases: Case 2a: w is in the interior of the region Rleft

blue(v),
which is enclosed by Pb(v) and the exterior path (W, N, E). Then y(w) > y(v).
Case 2b: w is in the interior of the region Rright

red (v), which is enclosd by Pr(v)
and the exterior path (S, E, N). Then x(w) > x(v). Case 2c: w is in the region
enclosed by (W, S), P in

r (v) and P in
b (v). Clearly, this region contains no vertices in

its inside. Therefore, w must be on P in
b (v). Since w is in P in

b (v), there is a directed
blue path from w to v. According to Observation 1, y(w) ≥ y(v). Therefore, w
can not be in the proper inside of the rectangle defined by (x(S), y(S)) = (0, 0)
and (x(v), y(v)).

Case 3: (u, v) is a red edge directed from u to v, and v is the exterior vertex
N . This case is similar to Case 2 and can be proved similarly.

Case 4: Both u and v are interior vertices, and (u, v) is red. Note that, Gr

is 2-connected and (u, v) is inside a face of Gb. Denote this face in Gb by f .
Let sf and tf be the source and sink of the face f in Gb. (u, v) is directed from
u to v, therefore, according to the coloring and edge orientation property of a
transversal structure, u is on the right-lateral path of f and v is on the left-
lateral path of f , and neither u nor v can be sf or tf . See Figure 5 (b) as an
illustration.

According to the first statement and second statement of Observation 1, we
have x(u) ≤ x(v) and y(u) < y(v).

Consider the separating blue paths Pb(u) and Pb(v). u is on the right-lateral
path of the blue face f , hence the leftmost outgoing blue path from u in Gb

must pass through all the vertices in the right-lateral path of f which are after
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the vertex u. Denote the subpath of the right-lateral path from u to tf by
(u, · · · , n, · · · , tf ). It is contained in Pb

out(u). Here, the vertex n denotes the last
vertex in the path (u, · · · , n, · · · , tf ) which has a red outgoing edge to v. In a
degenerated case, n could be u.

Consider the separating red path Pr(v). The vertex v is on the left-lateral
path of the blue face f and v is not sf or tf . Hence according to the local edge
coloring and orientation property for the vertex v, all the red ingoing edges to
v can only be from the vertices in the right-lateral path of f . (Of course, it is
not possible for sf and tf to have red outgoing edges to v.) Note that n denotes
the last vertex in the path (u, · · · , n, · · · , tf ) which has a red outgoing edge to v.
Therefore, each vertex between u and n has an outgoing red edge to v. Because
the block of the ingoing red edges for v is consecutive. Therefore, for the vertices
in the path (u, · · · , n, · · · , tf ) which are after n, they cannot have red outgoing
edges to v. Hence, n must be contained in the path P in

r (v).
Similary, when we consider Pr(u), the leftmost outgoing red path from u in Gr

must pass through a vertex m in the left-lateral path of f . And in a degenerated
case, m could be v.

Now we have four subcases according to whether u = n or m = v.

Case 4a: u = n and m = v. Then clearly Pr(u) is identical to Pr(v). Hence
x(u) = x(v). Therefore the proper inside of the rectangle defined by (x(u), y(u))
and (x(v), y(v)) is empty. Hence, no vertex can lie in its proper inside.

Case 4b: u �= n and m �= v. See Figure 5 (b) for an illustration. For any
vertex w other than u and v, w must fall in one of the following scenarios:

– w is an exterior vertex. Then clearly w cannot lie in the proper inside of the
rectangle defined by (x(u), y(u)) and (x(v), y(v)).

– w is contained in the interior of the region Rleft
red (u), which is enclosed by

Pr(u) and the exterior path (S, W, N). Then clearly x(w) < x(u). Because
x(u) ≤ x(v), so w can not be in the proper inside of the rectangle defined
by (x(u), y(u)) and (x(v), y(v)).

– w is contained in the interior of the region Rright
red (v), which is enclosed by

Pr(v) and the exterior path (S, E, N). Then clearly x(w) > x(v). Note that
x(u) ≤ x(v), so w can not be in the proper inside of the rectangle defined
by (x(u), y(u)) and (x(v), y(v)).

– w is contained in the interior of the region Rright
blue (u), which is enclosed by

Pb(u) and the exterior path (W, S, E). Then clearly y(w) < y(u). Because
y(u) < y(v), so w can not be in the proper inside of the rectangle defined by
(x(u), y(u)) and (x(v), y(v)).

– w is contained in the interior of the region Rleft
blue(v), which is enclosed by

Pb(v) and the exterior path (W, N, E). Then clearly y(w) > y(v). Because
y(u) < y(v), so w can not be in the proper inside of the rectangle defined by
(x(u), y(u)) and (x(v), y(v)).

– w is in the blue path (u, · · · , n) − {u}, which is directed from u to n. Then
according to Observation 1, y(u) ≥ · · · ≥ y(w). Note that y(u) < y(v), so w
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can not be in the proper inside of the rectangle defined by (x(u), y(u)) and
(x(v), y(v)).

– w is in the blue path (m, · · · , v)− {v}, which is directed from m to v. Then
according to Observation 1, y(w) ≥ · · · ≥ y(v). Note that y(u) < y(v), so w
can not be in the proper inside of the rectangle defined by (x(u), y(u)) and
(x(v), y(v)).

Case 4c: u = n and m �= v. It is the same as Case 4b except that the blue
path (u, · · · , n) − {u} is empty. The proof for Case 4b is still valid.

Case 4d: u �= n and m = v. It is the same as Case 4b except that the blue
path (m, · · · , v) − {v} is empty. The proof for Case 4b is still valid.

Case 5: (u, v) is a blue edge directed from u to v, and u is the exterior vertex
W . This case is symmetrical to Case 2 and can be proved similarly.

Case 6: (u, v) is a blue edge directed from u to v, and v is the exterior vertex
E. This case is symmetrical to Case 3 and can be proved accordingly.

Case 7: Both u and v are interior vertices, and (u, v) is blue. This case is
symmetrical to Case 4 and can be proved symmetrically.

The following main theorem is a direct result of Lemma 1, Lemma 2, Lemma 3
and Lemma 4:

Theorem 1. Let G be an irreducible triangulation with n vertices taken uni-
formly at random. Then G has a rectangle-of-influence drawing whose grid size
is asymptotically 11n

27 × 11n
27 with high probability, up to fluctuations of order

√
n.

This drawing can be obtained in linear time.

Transversal structures have been defined in [4,6] in the case where all interior
faces are triangles. However, it is easy to replicate transversal structure defini-
tion to partially triangulated quadrangulations, where every face is a triangle or a
quadrangle, and the exterior face is a quadrangle. The definition for the transver-
sal structure for partially triangulated quadrangulations is exactly the same as
for the irreducible triangulations. The only difference is that we do not know a
precise condition of existence of transversal structures for partially triangulated
quadrangulations. Fusy proved that if a partially triangulated quadrangulation
is endowed with a transversal structure, then using the same way to calculate
coordinates, Lemma 1 can easily be replicated [3,5]. The compaction method can
also be easily replicated. Hence Lemma 3 and Lemma 4 can also be replicated.

When given a quadrangulation G with n vertices, Fusy proved that we can
smartly insert certain edges into G to make it a partially triangulated quadrangu-
lation G′ and during the process of inserting edges, a transversal structure T (G′)
is of G′ is also constructed. This process can be done in linear time [3,5]. Apply-
ing this transversal structure, a rectangle-of-influence drawing can be obtained
in linear time for G′. After deleting the inserted edges, a rectangle-of-influence
drawing of G is thus obtained. In addition, for a random quadrangulation with
n vertices, the grid size produced by the above approach is asymptotically with
high probability 13n/27 × 13n/27 up to an additive error of O(

√
n). Therefore,

we can have the following theorem:



134 H. Zhang and M. Vaidya

Theorem 2. Let G be an quadrangulation with n vertices taken uniformly at
random. Then G has a rectangle-of-influence drawing obtainable in linear time
whose grid size is asymptotically with high probability 13n/27 × 13n/27 up to an
additive error of O(

√
n).
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and Spheres Packing Problems
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Abstract. Given a fixed set of equal or unequal circular objects, the
problem we deal with consists in finding the smallest container within
which the objects can be packed without overlap. Circular containers are
considered. Moreover, 2D and 3D problems are treated. Lacking powerful
optimization method is the key obstacle to solve this kind of problems.
The energy landscape paving (ELP) method is a class of heuristic global
optimization algorithm. By combining the improved ELP method with
the gradient descent (GD) procedure based on adaptive step length, a
hybrid algorithm ELPGD for the circles and spheres packing problems is
put forward. The experimental results on a series of representative circu-
lar packing instances taken from the literature show the effectiveness of
the proposed algorithm for the circles packing problem, and the results
on a set of unitary spherical packing instances are also presented for the
spheres packing problem for future comparison with other methods.

Keywords: Circular packing, Spherical packing, Combinatorial opti-
mization, Energy landscape paving, Gradient descent method.

1 Introduction

Given n objects and a container, each with given shape and size, the packing
problem is concerned with how to pack these objects into the container with no
overlap of any pair of them. The packing problem has a wide spectrum of applica-
tions [3,5,13]. It is encountered in a variety of real world applications including
production and packing for the textile, apparel, naval, automobile, aerospace,
and food industries. Many various optional features exist on this problem, e.g.,
the container can be circle,sphere, rectangle, cuboid or polygon, and the objects
can be circular, rectangular, spherical or irregular. This paper discusses the cir-
cles packing problem (CPP) where the objects and container are circular and
the spheres packing problem (SPP) where the objects and container are spheri-
cal. These problems have proven to be NP-hard [3], i.e., no procedure is able to
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exactly solve them in polynomial time unless P=NP. So, some heuristic methods
are generally proposed to solve them.

For the problem of packing equal circles, Birgin, et al. [3], Dowsland [5],
Lubachevsky and Graham [13] developed various heuristics to generate approx-
imate solutions. The most recent of these works is due to Mladenović et al. [14],
who gave a general reformulation descent heuristic. Some authors have studied
the problem of packing unequal circles as well. Based on quasi-physical model,
Huang et al. [10,8] and Wang et al. [17] developed heuristics inspired from hu-
man packing strategies. Zhang and Deng [18] combined Huang et al.’s approach
with simulated annealing to explore the neighborhood of the current solution,
and taboo search to be used jump out of local minima. Hifi and M’Hallah [7]
proposed a three-phase approximate heuristic. Huang et al. [9] presented two
greedy algorithms which use a maximum hole degree rule and a self look-ahead
search strategy. Lü et al. [12] incorporated the strategy of maximum hole de-
gree into the PERM scheme. The basic idea of their approach is to evaluate the
benefit of a partial configuration using the principle of maximum hole degree,
and use the PERM strategy to prune and enrich branches efficiently. Akeb et al.
[1] gave an adaptive beam search algorithm that combines the beam search, the
local position distance and the dichotomous search strategy.

Stoyan et al. [16] studied the problem of packing various solid spheres into
a parallelepiped with minimal height, where a clever approach to jump from a
local minimizer to a better one, interchanging the positions of two non-identical
circles, is devised, and numerical results with up to 60 spheres show that this
strategy yields high-quality solutions.

The energy landscape paving (ELP) [6] is a new global optimization algo-
rithm and an improvement on Monte Carlo method. The ELP method has been
successfully applied to solving many protein folding problems [15,11]. By com-
bining the improved ELP method with the gradient descent (GD) procedure
based on adaptive step length, an effective hybrid algorithm ELPGD for the
circles and spheres packing problem is put forward. The experimental results on
a series of representative circular or spherical instances show the effectiveness of
the proposed algorithm.

2 The Mathematical Models of the Problems

This paper discusses the circles and spheres packing problems. For n objects
(circles or spheres) ci, i ∈ N = {1, · · · , n} with given shape and size, the problem
consists of finding the smallest container (larger containing circle or sphere) c0
so that all the objects can be packed into the container without overlapping each
other. The problems are stated formally as follows.

Let (xi, yi) and (xi, yi, zi), i ∈ N = {1, · · · , n}, denote respectively the coordi-
nates of the centers of n circular or spherical objects ci with radii ri, i = 1, · · · , n.
The circles packing problem (CPP) or the sphere packing problem (SPP) is
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equivalent to finding the minimal radius r0 of the larger containing circle or
sphere c0 and the coordinates of every circle or sphere ci so that no two circles
or spheres ci and cj , i �= j, overlap. The mathematical models of the problems
are as follows:

(CPP )

⎧⎨⎩
min r0

s.t.(xi − xj)2 + (yi − yj)2 ≥ (ri + rj)2, i �= j ∈ N (1)
x2
i + y2

i ≤ (r0 − ri)2, i ∈ N, (2)

(SPP )

⎧⎨⎩
min r0

s.t.(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≥ (ri + rj)2, i �= j ∈ N (3)
x2
i + y2

i + z2
i ≤ (r0 − ri)2, i ∈ N (4)

Constraints (1) and (3) denote that each object in the container should not
extend outside the container. Constraints (2) and (4) denote that any pair-wise
objects placed in the container cannot overlap each other.

Definition 1. At any moment, if the positions of n objects in the container are
fixed, then we call them a configuration, denoted by X.
Based on the quasi-physical strategy [8,17], we imagine the all n objects and
the container as smooth elastic solids. For a given configuration X , if d(ci, cj) <
ri + rj , where d(ci, cj) denotes the Euclidean distance between the objects ci
and cj , then we call two objects ci, cj(i �= j) embed each other, otherwise the
objects ci and cj do not embed each other. If two objects embed each other,
then the embedding depth dij between them is dij = ri + rj − d(ci, cj), i, j ∈ N .
Otherwise, dij = 0. Similarly, if d(cj , c0) > r0 − rj , then we call the container c0
and the object cj embed each other, otherwise the container c0 and the object cj
do not embed each other. If the container c0 and the object cj embed each other,
then the embedding depth d0j between them is d0j = d(cj , c0) + rj − r0, j ∈ N.
Otherwise, d0j = 0. When two different objects are imbedded into each other,
the extrusive elastic potential energy between them is proportional to the square
of the depth of their mutual embedment according to elasticity mechanism. So
the extrusive elastic potential energy of the whole systems is

E(X) =
n−1∑
i=0

n∑
j=i+1

kd2
ij

Here k is a physical coefficient. Generally, we set k = 1. Obviously, E(X) ≥ 0.
For a given radius r0 of the container(larger containing circle or sphere) , if there
exists a configuration X∗ subject to E(X∗) = 0, then X∗ is a feasible solution
of CPP or SPP, whereas if E(X∗) > 0, then X∗ is not a feasible solution of CPP
or SPP. Thus, if we find an efficient algorithm to solve optimization problem
minimize E(X), we can solve the original CPP or SPP by using some search
strategies, for example dichotomous search, to reach the minimal radius of the
container. Consequently, we will concentrate our discussion on the optimization
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problem minimize E(X) and propose a global optimization algorithm ELPGD
to solve it in the following section.

3 Algorithms

In this section, we first introduce the theory and method of the energy landscape
paving (ELP) and propose a critical improvement on ELP. Then we give the
gradient descent (GD) procedure based on adaptive step length. At last, a hybrid
algorithm ELPGD which combines the improved ELP method with the GD
procedure is developed.

3.1 Energy Landscape Paving Method and Its Improvement

The energy landscape paving (ELP) method [6] is an improved Monte Carlo
(MC) global minimization method, and combines ideas from energy landscape
deformation [2] and taboo search [4]. ELP has been applied successfully to rough
energy landscape of proteins [6,15,11] for finding low-energy configurations. As
all good stochastic global optimizers, it is designed to explore low-energy con-
figurations while avoiding at the same time entrapment in local minima. This
is achieved by performing low-temperature MC simulations with a modified en-
ergy expression designed to steer the search away from regions that have already
been explored. This means that if a configuration X is hit, the energy E(X) is
increased by a “penalty” and replaced by energy E(X) = E(X) + f(H(q, t)),
in which the “penalty” term f(H(q, t)) is a function of the histogram H(q, t)
in a prechosen “order parameter” q . In the present paper we assume that
f(H(q, t)) = kH(q, t), where k is a constant. The most simple choice of or-
der parameter q is the energy itself, i.e., q = E. The histogram H(E, t) is a
function of the energy and the iterative step number t. In the course of execu-
tion of ELP, we update the histogram by adding 1 to the corresponding bin if
only the found energy E(X) falls into a certain bin, where a “bin” denotes an
entry of the histogram, i.e., a small energy region, and the sizes of all bins in the
histogram are equal. The statistical weight for a configuration X is defined as

ω(E(X)) = exp(−E(X)/kBT )

where kBT is the thermal energy at the (low) temperature T , and kB is Boltz-
mann constant.

In ELP minimization, the sampling weight of a local minimum configuration
decreases with the time that the system stays in that minimum, and consequently
the probability to escape the minimum increases. However, in ELP, there exists
a technical flaw: to update the old configuration X1, the simulation accepts the
new configuration X2 only when satisfying the condition expression

Ran(0, 1) < exp{[E(X1, t) − E(X2, t)]/kBT },

where Ran(0, 1) denotes a random number between 0 and 1. Consider an at-
tempted move in ELP which yields a new lower energy minimum that has never
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been visited before and happens to fall into the same bin which contains other
energies previously visited in the earlier steps. Undesirably, the likelihood of ac-
cepting this new energy minimum X2 becomes small as the result of the penalty
term kH(E, t), i.e., the ELP minimization may miss this new lower energy con-
figuration X2 near X1. To overcome this shortcoming, we give an improvement
on ELP. In the improved ELP, the acceptability of the new configuration X2
is determined by a comparison between E(X1) and E(X2), where three cases
are possible: (a) E(X2) < 10−8; (b) E(X2) < E(X1) and (c) E(X2) ≥ E(X1).
For case (a), the simulation stops with success; for case (b), the simulation un-
conditionally accepts the new configuration X2 and starts a new round of itera-
tion; for case (c), if the new configuration X2 satisfies the condition expression
Ran(0, 1) < exp{[E(X1, t) − E(X2, t)]/kBT }, then the simulation accepts X2
and starts a new round of iteration, otherwise does not accept X2 and restores
X1 as the current configuration.

3.2 Configuration Update Strategy

Definition 2. In the configuration X, define the relative degree of pain RDPi of
the object ci as the extrusive elastic potential energy Ei (which is

∑n
j=0,j 	=i d

2
ij)

possessed by itself at this moment divided by its radius ri : RDPi = Ei/ri.

Definition 3. In the configuration X, suppose that the object ci is the next
object to be picked and moved. Define the taboo region as the region where all
packed objects (except the object ci) occupy at this moment in the container and
the vacant region as the remainder except the taboo region at this moment in the
container.
In ELP method, each iterative step must update the current configuration, we
use the following configuration update strategy to update configuration.

• For the current configuration X1, we pick out the object ci with the max-
imum relative degree of pain RDPi and randomly produce a point within the
container and accept it if only it belongs to the vacant region. Then put the
center of ci at this point, and gain a new configuration X2.

This strategy can generally pick out the object in most wrong position, i.e.,
select the object with maximum RDPi to jump out of local minima. In addition,
to put the center of the picked object into the vacant region can also improve the
efficiency of ELP. However, during the process of jumping out of local minima,
cycling is possible, namely, an object may be selected repeatedly. In order to
improve further the efficiency of the exploration process and avoid cycling, we
give the following taboo strategy.

• If an object ci with maximum RDPi has been put randomly four times within
the vacant region in the container and every time the updated configuration X2
is not accepted, we take its RDPi as zero in the next jumping time, i.e., the
object ci is forbidden one time.
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3.3 Gradient Descent Procedure Based on Adaptive Step Length

In order to search for the local or global optimal minimum near the updated
configuration X2, we introduce the gradient descent (GD) minimization. In
the following GD procedure, acceptenergy denotes a threshold. If E(X2) ≥
acceptenergy, we use GD to search for the local minimum near the updated
configuration X2. If E(X2) < acceptenergy, we use GD to search for the global
(or new local) optimal configuration near X2. The details of GD are given as
follows:

GD(X2)

Begin
Leth = 1.
Set ε = 10−8.
Let X1 = X2, and computeX2 = X1 −∇E(X1) · h.
//Here ∇E(X1) denotes gradient vector of E(X) at X1.
If E(X2) ≥ acceptenergy then

Repeat
If E(X2) ≥ E(X1) then h = h · 0.8;
X1 = X2;
X2 = X1 −∇E(X1) · h;

Until |E(X1) − E(X2)| < 0.01
If E(X2) < acceptenergy then

Repeat
IfE(X2) ≥ E(X1) then h = h · 0.8;
X1 = X2;
X2 = X1 −∇E(X1) · h;

Until E(X2) < ε or h < 10−2

Return X2.
End

3.4 Description of the Hybrid Algorithm

Our hybrid algorithm ELPGD is based on a combination of the gradient descent
(GD) procedure and the improved ELP method. After random initialization
of the all n objects’ coordinates, the computational procedure mainly includes
the following two steps, repeated iteratively. The first step is identical to that
in ELP. Based on the current configuration X1 computed from the previous
iteration, we consider an attempted move by displacing the configuration X1
to a new configuration X ′ by the configuration update strategy described in
subsection 3.2 . The configuration X ′ is then used as the initial guess in a
deterministic minimization algorithm, GD, to locate the nearest local or global
optimal minimum at X2. Then, the acceptability of the new configuration X2
is determined by a comparison between E(X1) and E(X2) according of the
improved strategy of ELP described in subsection 3.1. The details of the ELPGD
algorithm are described as follows:
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Program ELPGD

Begin

1. Randomly give n points in the container c0 with the origin as the center and
r0 as the radius, whereby the initial configuration X1 is determined.
Set T := 5, k := 20. Let t = 1 and initialize H(E, t).
Set acceptenergy ∈ [0.01, 1].

2. Compute E(X1, t) and E(X1, t).
3. Pick out the object ci with maximum RDPi, set j := 1.
4. Randomly produce a point within the container and accept it if only it

belongs to the vacant region. Then put the center of ci at this point, and
gain a new configuration X ′.

5. Set X2 := GD(X ′, acceptenergy).
6. Compute E(X2, t) and E(X2, t) = E(X2, t) + kH(E(X2), t).
7. If E(X2, t) < 10−8 then save X2 and stop with success;

Else if E(X2, t) < E(X1, t) then accept X2, i.e.,
set X1 := X2, E(X1, t) := E(X2, t), go to Step 9;

Else If Ran(0, 1) < exp{[E(X1, t) − E(X2, t)]/kBT }
then accept X2, go to Step 9;

Else do not accept X2, and restore X1 as the current configuration, j := j+1,
go to Step 8.

8. If j > 4 then set RDPi=0, go to Step 3;
Else go to Step 4.

9. If t < 100, 000 then t := t + 1, go to Step 3;
Else stop with failure.

End

4 Experimental Results

To evaluate the performance of our algorithm for the circles packing problem
(CPP) and the spheres packing problem (SPP), we implement the hybrid algo-
rithm ELPGD which is coded in Java language. All experiments are run on a
Pentium IV 1.6GHz and 512M RAM.

For the CPP, we test all seven instances listed in [8]. These instances include
two equal circular packing instances and five unequal circular packing ones.
These benchmark instances vary from regular to non-regular, from identical to
non-identical, and from small to large problems, which are typical representa-
tives. For each instance, ELPGD is run for 5 times independently. The obtained
smallest radius of the larger containing circle over five independent runs and
the running time (in second) under this smallest radius are listed in Table 1,
in comparison with those obtained by the improved quasi-physical algorithm
(IQP). In Table 1, column 2 denotes the number n of circles to be packed, col-
umn 3 denotes the radius ri of each of the n circles, column 4 tallies the larger
containing circle radius rIQP0 obtained when applying IQP, and columns 5 and
6 display the smallest radius rELPGD0 of the larger containing circle obtained
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by ELPGD and the running time under this smallest radius, respectively. It is
noteworthy that we find new smaller radii (which are reported in boldface) of
the larger containing circles missed in [6] for six circular packing instances, while
the result of another instance agrees well that obtained by IQP. The geometric
configurations of the solutions obtained by ELPGD are shown in Fig.1.

(a)

(g)(f)(e)

(d)(b) (c)

Fig. 1. Geometric configurations of seven circular packing instances obtained by
ELPGD: (a) Solution for instance 1 with r0 = 99.885; (b) Solution for instance 2
with r0 = 57.095; (c) Solution for instance 3 with r0 = 215.470; (d) Solution for in-
stance 4 with r0 = 49.188; (e) Solution for instance 5 with r0 = 241.421; (f) Solution
for instance 6 with r0 = 142.578; (g) Solution for instance 7 with r0 = 158.950

Table 1. Comparisons between IQP and ELPGD for the circles packing problem

No. n ri, i = 1, · · · , n rIQP0 rELPGD0 time(s)
1 10 r1 = 10, r2 = 12, r3 = 15, r4 = 20, r5 = 21, 99.92 99.885 10.082

r6 = r7 = r8 = 30, r9 = 40, r10 = 50
2 11 r1 = 10, ri+1 = ri + 1, i = 1, · · · , 10 57.65 57.095 134.802
3 12 r1 = r2 = r3 = 100, r4 = r5 = r6 = 48.26, 215.47 215.470 0.375

r7 = · · · = r12 = 23.72
4 17 r1 = · · · = r10 = 5, r11 = r12 = r13 = 10, 50.00 49.188 220.384

r14 = r15 = 15, r16 = 20, r17 = 25
5 17 r1 = · · · = r8 = 20, r9 = · · · = r13 = 41.415, 241.43 241.421 0.693

r14 = · · · = r17 = 100
6 40 r1 = · · · = r40 = 20 142.77 142.578 1.234
7 50 r1 = · · · = r50 = 20 159.32 158.950 85.702

For the SPP, we test fifty equal spherical packing instances, each of which is
characterized by n unitary spheres, where n = 1, 2, 3, · · · , 50. For each instance,
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ELPGD is run three times independently. The minimal radius OurResult ob-
tained by ELPGD and runtime (in second) under this radius are listed in Table 2
for future comparison with other methods.

Table 2. Results of ELPGD for equal spherical packing instances

n OurResult time(s) n OurResult time(s)
1 1.0000006104 19.078 26 3.7544099284 44.485
2 1.9999903454 3952.813 27 3.8232278317 78.328
3 2.1546167514 429.657 28 3.8515149358 117.453
4 2.2246708262 9.063 29 3.8839304098 61.547
5 2.4141344424 0.687 30 3.9261491500 122.335
6 2.4141532067 6.157 31 3.9586163857 196.313
7 2.5911976306 52.203 32 3.9702237305 73.234
8 2.6452760424 14.484 33 4.0297789249 9.344
9 2.7320006394 27.172 34 4.0597699668 136.078
10 2.8324158104 230.313 35 4.0892793950 91.485
11 2.9020670076 9.250 36 4.1228778440 102.703
12 2.9020703080 26.500 37 4.1599920917 518.625
13 3.0012182585 0.578 38 4.1665004961 34.234
14 3.0920038218 34.500 39 4.2333222860 211.078
15 3.1416013295 16.360 40 4.2610782845 226.390
16 3.2156404405 454.438 41 4.2992680183 191.109
17 3.2725342088 9.984 42 4.3090119020 58.907
18 3.3189507406 94.250 43 4.3628504653 132.781
19 3.3861842506 26.484 44 4.3847055183 1257.891
20 3.4771886832 21.610 45 4.4168820245 77.296
21 3.4863138754 18.422 46 4.4490860772 23.594
22 3.5798162793 457.375 47 4.4834917689 258.703
23 3.6274969467 162.125 48 4.5080735101 770.891
24 3.6862536176 130.796 49 4.5211083524 29.359
25 3.6875554317 27.250 50 4.5604157703 49.813

5 Conclusions

This paper solves the circles and spheres packing problems using a new effec-
tive hybrid algorithm ELPGD, which combines the improved energy landscape
paving (ELP) method with the gradient descent (GD) procedure based on adap-
tive step length. The energy landscape paving method is mainly introduced to
escape from local minima and enhance diversification, and the gradient descent
method is used for searching for the local or global optimal minima near an
updated configuration. The experimental results on a series of representative
equal or unequal circular packing instances taken from the literature show the
effectiveness of the proposed algorithm for the circles packing problem, and the
results on a set of unitary spherical packing instances are also presented for the
spheres packing problem for future comparison with other methods.
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Abstract. In wireless communication networks, optimal use of the di-
rectional antenna is very important. The directional antenna coverage
(DAC) problem is to cover all clients with the smallest number of di-
rectional antennas. In this paper, we consider the variable-size rectangle
covering (VSRC) problem, which is a transformation of the DAC prob-
lem. There are n points above the base line y = 0 of the two-dimensional
plane. The target is to cover all these points by minimum number of
rectangles, such that the dimension of each rectangle is not fixed but the
area is at most 1, and the bottom edge of each rectangle is on the base
line y = 0. In some applications, the number of rectangles covering any
position in the two-dimensional plane is bounded, so we also consider
the variation when each position in the plane is covered by no more than
two rectangles. We give two polynomial time algorithms for finding the
optimal covering. Further, we propose two 2-approximation algorithms
that use less running time (O(n log n) and O(n)).

1 Introduction

Let R be a region above the base, i.e., y = 0, of a two-dimensional plane. An
h-rectangle is a rectangle with its lower edge touching the base, and with its
height h > 0 and width w, such that w · h ≤ 1, i.e., the area of an h-rectangle
is bounded by 1. An h-rectangle (h, x, xr) is defined by its height, the position
of its left edge and right edge. We say an h-rectangle is at q if its left edge is at
x = q.

The Variable-Size Rectangle Covering (VSRC) problem is to cover a given set
of points with the minimum number of h-rectangles. Note that this VSRC prob-
lem differs from the traditional set covering problem in several ways. Besides the
points in a two-dimensional region to be covered by h-rectangles, the dimensions
of the h-rectangles can vary and the lower sides of the h-rectangles have to be
grounded (i.e., touching the base y = 0). For example, consider the set of points
P = {(0, 0.05), (3, 0.3), (4, 0.35), (5, 0.45), (6, 0.1), (7, 0.12), (8, 0.09)}. P can be
covered by the following three h-rectangles (as shown in Figure 1(a)): (0.3, 0, 3),
(0.45, 4, 6) and (0.12, 7, 8), or alternatively, by two h-rectangles (as shown in Fig-
ure 1(b)): (0.12, 0, 8) and (0.45, 3, 5). The formulation of the problem has some
immediate applications; e.g., points can be assumed as dirty stains on a wall, the
� Supported by HK RGC grant HKU-7113/07E.
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Fig. 1. Two coverings for P = {(0, 0.05), (3, 0.3), (4, 0.35), (5, 0.45), (6, 0.1), (7, 0.12),
(8, 0.09)}

VSRC problem is equivalent to covering these dirty stains with the minimum num-
ber of rectangular cardboards standing on the floor and leaning against the wall,
and whose dimensions are not fixed but the area of each cardboard is bounded.

An important application of the VSRC problem is to optimize the use of
a directional antenna in a wireless network [11,12,13]. Traditionally, a wireless
network uses an antenna that is omnidirectional, i.e., the signals are sent and
received in all directions. In recent years, the use of directional antennas has be-
come more common. A directional antenna is one whose signal is concentrated in
a certain direction. Comparing with omnidirectional ones, it is far more efficient
in terms of the frequency bandwidth and energy. In some antenna designs, mul-
tiple beams pointing at different directions can be used simultaneously, e.g., the
multi-beam adaptive array (MBAA) [1]. For example, consider a set of clients on
a two-dimensional plane. There is a base station which provides wireless coverage
to these clients. The base station uses a directional antenna to send “beams” to
cover the clients so as to provide wireless coverage (as shown in Figure 2).

In an abstract model, the coverage area of a beam can be represented by a
circular sector with angle θ and radius r. Typically the covered area of a beam
is bounded since the transmission energy of each base station is bounded, which
means the wider the beam angle, the shorter the range [2]. For efficiency, an-
tennas may dynamically adjust their orientation, and/or beam angle (and hence
the range) [9]. The directional antennas coverage (DAC) problem is to cover all
clients with the smallest number of beams.

Fig. 2. Clients covered by beams from directional antennas
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The DAC problem can be transformed to the VSRC problem as follows. Each
client at position (ri, θi) can be converted to point pi = (xi, yi), where xi = kθi
and yi = ri. Similarly each beam with radius r and angle θ(r) at a direction
θ0 is equivalent to an h-rectangle (h, x, xr), where h = r, x = kθ0 and xr =
k(θ0 + θ(r)). The bounded area of each beam can be converted to the bounded
area of each h-rectangle. Furthermore, since the beam is sent by an antenna at
the origin which corresponds to r = 0, this would imply that each h-rectangle
would have to touch the base y = 0 when capturing the points (clients). Let
the wrapped around line for the VSRC problem be the line x = 2kπ. In this
way, the DAC problem can be reduced to the VSRC problem with the points
in the region being wrapped around and minimizing the number of beams used
would be equivalent to minimizing the number of h-rectangles. From Lemma
1 in Section 2.1, we have the good property of optimal covering, i.e., any two
h-rectangles are either disjoint or nested. If we have an algorithm for the VSRC
problem without wrapped around point, we can modify the algorithm to deal
with wrapped around case (DAC) as follows:

– For each point, cut the region at its x-coordinate then attach the right part
to the left of the left part (as shown in Figure 3) and apply the algorithm
for finding the optimal covering;

– Return the one with minimal number of h-rectangles.

Thus, we can reduce the algorithm for the VSRC problem without wrapped
around point for the DAC problem. On the other hand, given the algorithm
for the DAC problem, we can apply it for the VSRC problem without wrapped
around point as follows:

– Find the point of the lowest height h;
– Apply the algorithm for VSRC with wrapped around points (DAC) and the

wrapped around line is at x = xr + 1/h + 1, where xr is the x-coordinate of
the rightmost point.

In this way, any two points cannot be covered by an h-rectangle crossing the
wrapped around line. Thus, the algorithm for the DAC problem can be reduced
to the algorithm for the VSRC problem without wrapped around point.

In most applications on wireless communications, to avoid interference, each
position in the plane can be covered by a bounded number of antennas. In
other applications, this constraint is still reasonable, e.g., in the above example

(a) (a)

Fig. 3. Cut at the 4th point then attach the right part to the left of the left part
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of covering dirty stains on the wall, the number of cardboards covering each
position on the wall cannot be too many, that is because the total thickness of
cardboards on each point cannot be too thick. In this paper, we consider the
variation that any position in two-dimensional plane can be covered by at most
two h-rectangles.

The problem of covering a set of points in a two-dimensional plane with the
minimum number of unit disks or squares is well studied. It is NP-hard [5]
to find the optimal solution, and polynomial time approximation schemes are
known [7] (even for any higher but fixed dimensions). Berman et al. [2] used bin
packing [8,10] and other techniques to give a 3-approximation algorithm for the
capacitated version of DAC problem, i.e., the number of clients covered by a
beam is bounded. They also considered the case where the radii of all antennas
are fixed and equal. This essentially reduces the problem to one dimension.
They [2] gave a tight 1.5-approximation algorithm for this case.

To find the optimal covering for the VSRC problem, we give two polynomial
time algorithms: an O(n4) time algorithm and an O(n3) time algorithm for the
variations without and with the constraint that each position in the plane is
covered by no more than two h-rectangles. With less running time (O(n log n)
and O(n)), we propose two 2-approximation algorithms.

In Section 2, we give two optimal algorithms for two variations of the VSRC
problem,we alsopropose two 2-approximationalgorithms for this problembyusing
less running time. The conclusion and future research are discussed in Section 3.

2 Algorithms for the VSRC Problem

In this section, we show that because all h-rectangles have to be grounded, the
VSRC problem can be solved in polynomial time by dynamic programming,

2.1 An O(n4) Algorithm

Firstly, we give a polynomial time algorithm for solving the VSRC problem
without the constraint that each position in two-dimensional plane is covered by
at most a bounded number of h-rectangles.

Consider any two h-rectangles r1 = (h1, x

1, x

r
1) and r2 = (h2, x


2, x

r
2) in the

optimal covering. Assuming xl1 ≤ xl2, there are at most three cases of the rela-
tionship between r1 and r2.

– xl1 < xr1 ≤ xl2 < xr2, i.e., these two h-rectangles are disjoint, which is shown
in Figure 4(a)

– xl1 ≤ xl2 < xr1 ≤ xr2, i.e., these two h-rectangles are overlapped, as shown
in the left part of Figure 4(b). In this case, we may transform these two
overlapped h-rectangles to two disjoint h-rectangles, as shown in the right
part of Figure 4(b), which still cover the same area.

– xl1 ≤ xl2 < xr2 ≤ xr1, i.e., these two h-rectangles are nested, as shown in
Figure 4(c)
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Fig. 4. The relationship between two h-rectangles in the optimal covering

Thus, we have the following lemma for the optimal covering:

Lemma 1. In the optimal covering, any two h-rectangles are either disjoint or
nested.

Consider the set of points P = {p1, p2, ..., pn}, where pi = (xi, yi), and x1 ≤
x2 ≤ ... ≤ xn. Define N(i, j, h) be the minimum number of h-rectangles needed
to cover the points Q = {pk ∈ P |i ≤ k ≤ j and yk > h}.

According to Lemma 1, the optimal covering for Q must be in one of these
forms (i) disjoint optimal covering for {pi...pk} ∩ Q and {pk+1...pj} ∩ Q for
some i ≤ k ≤ j; or (ii) nested covering with an h-rectangle Rij with height
h′ = 1/(xj − xi) covering pi and pj and some other points in P and with height
no more than h′, and another optimal covering for Q′ = {pk ∈ Q|i < k <
j and yk > h′}.

From the above analysis, we have the recursive formula for the minimum
number of h-rectangles covering all the points.

N(i, j, h)=

⎧⎪⎨⎪⎩
1 if all points can be covered by one h-rectangle

min
{

min
i≤k≤j

{N(i, k, h)+N(k+1, j, h)}, N(i, j, h′)+1
}

otherwise

(1)
As there are O(n3) terms of N(i, j, h) and from the above formula, it is easy

to see that each term takes O(n) time to compute. Thus, we have the following
result.

Theorem 1. The VSRC problem can be solved in O(n4) time, if each position of
the two-dimensional plane can be covered by an unbounded number of h-rectangles.

This preliminary result shows that the VSRC problem is not NP-hard.

2.2 2-Approximation Algorithms with Less Running Time

In this section,we give two simple algorithms,whose solutions is atmost twiceof the
optimal solution, i.e., 2-approximation. The idea of the first algorithm is from [2].

In any covering strategy, the highest point p = (x, y) must be covered by an
h-rectangle with h ≥ y, and the width of this h-rectangle is at most 1/h. Note
that if h > y, the coverage by the h-rectangle higher than y is wasted. Thus, we
can assume that h = y and use two disjoint h-rectangles to cover p, on the left
and right side of p. After all the covered points are removed, the next highest
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point will then be selected and processed in the same way until all points are
covered. Formally, the algorithm can be described as follows.

Input: P = {(xi, yi)|1 ≤ i ≤ n}
Algorithm VSRC1

1: while P �= φ do
2: Find the point (x, y) with the highest height y in P .
3: Create two h-rectangles (y, (x − 1/y), x) and (y, x, (x + 1/y))
4: if these two h-rectangles overlap with previous h-rectangles then
5: Trim the width of these two h-rectangles until there is no overlap.
6: end if
7: Remove from P those points covered by these two h-rectangles.
8: end while

Theorem 2. Algorithm VSRC1 is 2-approximation with running time O(n log n).

Proof. Let qi be the highest point selected in round i. We claim that in any
covering strategy, any two points qi and qj , with i < j, must be covered by two
disjoint h-rectangles. Otherwise, |xi − xj | · yi ≤ 1, that means point qj should
be covered and removed in round i, this leads to contradiction.

As the minimum number of h-rectangles needed to cover all the points is
no less than the number of highest points selected from each round. Thus, the
number of rounds is the lower bound for the optimal covering. Since we create
two h-rectangles at each round, VSRC1 is a 2-approximation algorithm.

As updating the set of uncovered points and finding the highest point take
O(log n) time and the number of rounds is at most n, the running time of
algorithm VSRC1 is O(n log n). ��

Consider an example with points pi = (h, i) for 1 ≤ i ≤ n and h > 1. It can
be shown easily that VSRC1 outputs 2n h-rectangles while the optimal covering
needs n h-rectangles.

Can we further improve the running time while having the same approxima-
tion ratio? The answer is positive. Algorithm VSRC2 is very simple, just scan
all the points from left to right once, and create h-rectangle with area at most
1 to cover the leftmost uncovered points. Formally,

Input: pi = (xi, yi) for 1 ≤ i ≤ n and x1 ≤ x2 ≤ ... ≤ xn
Algorithm VSRC2

1: i = 1
2: while i ≤ n do
3: Find the largest k, s.t. points pi until pi+k can be covered by one h-

rectangle with area no more than 1.
4: Create an h-rectangle to cover the points pi, · · · , pi+k
5: i = i + k + 1
6: end while
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Theorem 3. Assume {pi} where x1 ≤ x2 ≤ ... ≤ xn, Algorithm VSRC2 is
2-approximation with running time O(n).

Proof. At each round, we create one h-rectangle to cover all those points whose
x-coordinates are within an interval, thus, there is no overlap between any two
h-rectangles.

Consider the optimal covering OPT , we modify OPT to another covering
OPT ′ without overlapping h-rectangles. For any interval [l, r] covered by more
than one h-rectangles in OPT , we use the h-rectangle with the highest height
to cover this interval. For example, in the optimal covering, the interval [l, r] is
covered by three h-rectangles: (h1, l1, r1), (h2, l2, r2) and (h3, l, r), where h1 ≤
h2 ≤ h3, after the modification, the interval [l, r] is only covered by one h-
rectangle (h3, l, r). Note that some h-rectangles with lower height in OPT may be
split to several h-rectangles in OPT ′, as shown in Figure 5. In such modification,
if two h-rectangles are nested in the optimal covering, the h-rectangle with lower
height will be split to more than one h-rectangles.

Consider the example shown in Figure 5, in the optimal covering as shown
in Figure 5(a), there are four h-rectangles 1, 2, 3 and 4, h-rectangle 1 is of the
lowest height and overlaps with the other three h-rectangles of higher heights.
After modification, h-rectangle 1 is split to three h-rectangles, say 1′, 1′′ and 1′′′,
with less widths. Any split occurs from its overlap with an h-rectangle of higher
height. We can associate each part, except the leftmost one, of a split to the
right edge of the overlapping h-rectangle with higher height. In this example,
h-rectangles 1′′ and 1′′′ are associated to the right edges of h-rectangles 3 and
4 respectively. It is easy to see that the right edge of each h-rectangle in OPT
can associate with at most one split part in OPT ′. Thus, the number of disjoint
h-rectangles in OPT ′ is at most twice to the number of h-rectangles in OPT .

In each round of Algorithm VSRC2, an h-rectangle is created to cover as
many points as possible. We can prove by induction from the leftmost point to
the rightmost point that the number of h-rectangles created by VSRC2 is no
greater than the number of h-rectangles of OPT ′. Thus, we can say that VSRC2
is 2-approximation.

At each round, as the points are in order with respect to xi, finding the largest
k such that point pi until pi+k can be covered by one h-rectangle takes O(k)

1

2

3

4

1′

2

3

4

1′′ 1′′′

(a) (b)

Fig. 5. Example of modify the optimal covering OPT to disjoint covering OPT ′
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time. As we can create an h-rectangle in each round in constant time, the total
running time of VSRC2 is bounded by O(n). ��

Consider the example shown in Figure 6, there are 10 points (a to j) to be
covered in the plane. The heights of these points are in three levels: a, b, i and
j are of the same lowest height; c, d, g and h are of the same middle height;
while e and f are of the same highest height. The points of the same height
can be covered by an h-rectangle, but any two leftmost points of any two levels
cannot be covered by an h-rectangle. Similarly, any two rightmost points of any
two levels cannot be covered by an h-rectangle. For example, points a and c,
c and e, f and h, h and j cannot be covered by an h-rectangle. To deal with
this example, the optimal covering uses three h-rectangles (1, 2 and 3) while
Algorithm VSRC2 uses 5 h-rectangles (1, 2, 3, 2’ and 3’).

We can generalize this example, force each h-rectangle except the highest one
from the optimal covering covers 4 points of the same height, while the highest h-
rectangle covers 2 points. When applying VSRC2, all h-rectangles except the one
with highest height will be split to two h-rectangles with less width. In this way, we
can force the optimal covering uses k h-rectangles while Algorithm VSRC2 uses
2k − 1 h-rectangles. Thus, the approximation ratio 2 is tight for VSRC2.

2.3 Each Position Covered by at Most 2 h-Rectangles

In the previous covering strategy, some positions in two-dimensional plane may
be in the overlapped area of more than 2 h-rectangles.

Note that Lemma 1 still holds for the optimal covering if each position can be
covered by at most 2 h-rectangles. If two h-rectangles r1 = (h1, x

l
1, x

r
1) and r2 =

(h2, x
l
2, x

r
2) overlap, they must be nested, w.l.o.g., xl1 < xl2 < xr2 < xr1. We can say

that r2 only overlaps with r1, otherwise, some position in the plane will be covered
by more than two h-rectangles. Therefore, if there are more than one h-rectangles
nested in an h-rectangle r, all these h-rectangles except r are disjoint.

Define N(i, j) to be the minimum number of h-rectangles for covering all
points between xi and xj . Similar to the description in Section 2.1, the optimal
covering consists of either two optimal coverings from xi to xk and from xk+1 to
xj , or an h-rectangle r covering xi and xj combined with the optimal covering for
those points higher than r. Based on the above analysis, we have the following
recurrence formula for the optimal covering of the VSRC problem.

3

1

2

3

2’2

1 1’
a b

c d

e f

g h

i j a b

c d

e f

g h

i j

Fig. 6. Tight example of algorithm VSRC2
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N(i, j)=

{
1 if all points can be covered by one h-rectangle
min

{
mini≤k≤j {N(i, k)+N(k+1, j)}, N1(i, j)+1

}
otherwise (2)

where N1(i, j) is the minimal number of disjoint h-rectangles for covering those
points whose x-coordinates are between xi and xj , and with their heights higher
than h = 1/(xj − xi). From the above analysis, as the h-rectangles must be
disjoint, we can use Algorithm VSRC2 to find N1(i, j) as VSRC2 would give the
optimal covering if the h-rectangles are not allowed to overlap. Thus, N1(i, j)
can be computed in O(j−i) time, and the computation of N(i, j) can be finished
in O(n) time. As there are O(n2) entries of N(i, j) and N1(i, j), we have the
following theorem.

Theorem 4. Assume pi = (xi, yi) for 1 ≤ i ≤ n and x1 ≤ x2 ≤ ... ≤ xn
and each position can be covered by no more than two h-rectangles, the VSRC
problem can be solved in O(n3) time.

3 Concluding Remark

We have considered the variable-size rectangle covering problem and proposed
several algorithms for finding the optimal covering or approximation covering of
some variations of the problem. There are still many covering problems unsolved.
In our future research, we will focus on the following directions:

– If the number of points covered by an h-rectangle is bounded and the weight
of each point is fractional, it is NP-hard and we can directly use the algorithm
from [2] to achieve 3-approximation. But if each point is of unit weight, can we
achieve the optimal covering in polynomial time?

– The online version of VSRC problem is a very interesting problem. For one-
dimensional case, there are several results on some similar problems [4,3,14,10].
For two-dimensional case, there are many results on covering points by rectan-
gles if the bottom edges of rectangles do not have to be grounded at the base.
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Abstract. We study the multiple-strip packing problem, in which the
goal is to pack all the rectangles into m vertical strips of unit widths such
that the maximum height among strips used is minimized. A number of
on-line algorithms for this problem are proposed, in which the decision
of delivering the rectangles to strips as well as packing the rectangles
in strips must be done on-line. Both randomized and deterministic on-
line algorithms are investigated, and all of them are guaranteed to have
constant competitive ratios.

Keywords: Strip packing; approximation algorithms;many-core schedul-
ing.

1 Introduction

We consider packing a set of rectangles into multiple two-dimensional strips of
unit width such that no rectangles are intersected with each others and the sides
of the rectangles are parallel to the strip sides. Rectangles are not allowed to
rotate. The objective is to minimize the maximum height of the strips used to
pack a given list of rectangles.

The classical strip packing problem, that uses exactly one strip, is known to
be NP-hard [1]. It arises in many real-world applications, e.g., VLSI design and
stock cutting problem for packing newspaper commercials. When we extend it
to multiple strips, it is not only of interests in the theoretical study, but also has
many real applications. For example, in operating systems, multiple-strip packing
arises in the computer grid [6] and server consolidation [11]. In the system sup-
porting server consolidation on many-core chip multiprocessors (CMP), multiple
server applications are deployed on to virtual machines (VMs). Every virtual ma-
chine is allocated several processors and each application might require a number
of processors simultaneously. Hence, a virtual machine can be regarded as a strip
and server applications can be represented as rectangles whose heights and widths
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are equal to the running time and the required number of processors, respectively.
Similarly, in the distributed virtual machines environment, each physical machine
can be regarded as a strip and virtual machines are represented as a rectangle. It
is quite natural to investigate the packing algorithm by minimizing the maximum
height of the strips. This is related to the problem maximizing the throughput,
which is commonly used in area of operating systems.

In this paper we study on-line multiple-strip packing. In the on-line version,
the items (rectangles) appear one by one and the placement decision for the
incoming rectangle must be immediately and irrevocability made without any
knowledge of subsequence items. Since we have multiple strips, the decision
consists of assigning a strip and packing to the strip. In our model both assigning
and packing have been done before the next items is seen. If we assign items
immediately (on-line) but pack them later (off-line), it becomes semi on-line.

Performance measures. For any input list I and a deterministic approximation
(on-line) algorithm A, we denote by OPT(I) and A(I), respectively, the maxi-
mum height of strips used by an optimal algorithm and the maximum height of
strips used by the algorithm A to pack the list I. The approximation (competi-
tive) ration of Algorithm A is defined to be RA = supI{A(I)/OPT (I)}.

If algorithm A is a randomized on-line algorithm, then A(I) is random vari-
able. We define the competitive ratio by the expected value of this random
variable with oblivious adversary, that is

RA = sup
I
{E[A(I)]/OPT (I)}.

Related Work. The classical online strip packing problem has been extensively
studied. Baker and Schwarz [2] developed the first class of on-line algorithms
named shelf algorithms. They showed that next fit shelf algorithm (NFS) has a
competitive ratio at most 7.46 and first fit shelf algorithm (FFS) has a competi-
tive ratio at most 6.99. They also gave a lower bound of 2. Hurink and Paulus [10]
recently improved the lower bound to 2.43. To the best of our knowledge, the
best upper bound by far is 6.6623 [14,9]. There is a lot of work concerning about
the asymptotic performance of on-line algorithms [2,4].

A closely related problem to the strip packing is parallel jobs (or multipro-
cessor tasks) scheduling [5,9,12,15]. Parallel jobs might require to execute on
more than one processor at the same time. If we consider that the widths as the
resource requirement and the heights as the time, the strip packing is essentially
a version of parallel jobs scheduling with additional constraint that a job must
be scheduled on consecutively numbered processors. Any algorithms for strip
packing can be migrated to parallel job scheduling problem, however vice versa
may not. Schwiegelshohn et al. [12] studied the parallel jobs scheduling in grids,
where the jobs arrive over time but do not need to be allocated to processors
immediately at its submission time. They presented a grid scheduling algorithm
that guarantees a competitive ratio at most 5.

The multiple-strip packing was first considered by Zhuk [16]. The author
proved that the problem does not admit an approximation algorithm of a ratio
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Table 1. Our results on on-line strip packing problem

Randomized algorithms Deterministic algorithms
One RLS-NF: UB ≤ 6.58 NFS UB=7.46 [2]
strip RLS-FF: UB ≤ 6.1 FFS UB=6.99 [2]

RLS-RFF: UB ≤ 5.75 RFFS UB=6.6623 [14,9]
m RLS-NF: UB ≤ 2r + 1+m(r−1)

m ln r
LS-NF: UB ≤ (

√
3m + 1)2/m

identical RLS-FF: UB ≤ 1.7r + 1+m(r−1)
m ln r

LS-FF: UB ≤ (
√

2.7m + 1)2/m
strips RLS-RFF: LS-RFF:

UB ≤
{

2 + (2m−1)r−(m−1)
m ln r

, r ≤ 4
3
;

3
2
r + (2m−1)r−(m−1)

m ln r
, r > 4

3
.

UB ≤

⎧⎨⎩
1
m

+ 5
2

+ 10√
10m

, m ≤ 3;
10
3

+ 4
m

, 4 ≤ m ≤ 8;
3 + 2√

m
+ 1

m
, m ≥ 9.

Table 2. Some numeric results on on-line strip packing problem

m RLS−NF RRLS−NF RLS−F F RRLS−F F RLS−RF F RRLS−RF F

1 7.4641 6.5949 6.9863 6.0937 6.6623 5.7512
2 5.9495 5.4566 5.5238 5.0155 5.2361 4.7158
3 5.3333 4.9741 4.9307 4.5594 4.6591 4.2783
4 4.9821 4.6931 4.5932 4.2939 4.3333 4.0238
5 4.7492 4.5041 4.3697 4.1155 4.1333 3.8539
6 4.5809 4.3661 4.2083 3.9854 4.0000 3.7381
7 4.4522 4.2598 4.0850 3.8851 3.9048 3.6553
8 4.3497 4.1746 3.9869 3.8048 3.8333 3.5932

strictly small than 2 unless P = NP even if there are only two strips. In that
paper, a semi-online algorithm was studied, i.e., the jobs arrive on-line and must
be distributed to the strips in the on-line manner, but the packing of items in a
strip is off-line since the packing is performed only after all the items have been
deployed to the strips. The author adopted the Bottom-Left Decreasing algo-
rithm [1] which requires to order the items (in a strip) in the order of decreasing
width. It was shown that the competitive ratio of this semi-online algorithm is
exactly 10.

Our Contribution. In this paper we study the online problem by designing both
randomized and deterministic on-line algorithms. The competitive ratios beat
the previous bound 10 that works for the semi-online problem [16]. When the
number m of strips is arbitrarily large, the algorithms can achieve much better
competitive ratios. The detailed competitive ratios are given in Table 1, and some
numeric results are illustrated in Table 2, where m is the number of machines,
LS-NF, LS-FF and LS-RFF are our deterministic algorithms and RLS-NF, RLS-
FF and RLS-RFF are our randomized algorithms.

At the end, we give some remarks on the off-line version. We present a (2+ε)-
approximation algorithm for any small number of ε > 0, and thus it is nearly
optimal.
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2 Randomized Online Algorithms

Before presenting our algorithms, some global notations are introduced here.
We are given m vertical strips of width 1. The rectangles are characterized by
their widths and heights. Denote by T = {T1, . . . , Tn} the list of rectangles. Let
w(Tj)) ≤ 1 and h(Tj) be the width and the height of rectangle Tj, respectively.

To get an online algorithm, we have to answer two questions upon arrival of
a new item: i) which strip it goes to and ii) where it is placed inside the strip?
The basic idea is: using List Scheduling(LS) [7] to select a strip for the incoming
item and using Shelf Algorithm [2] to pack the item into the selected strip.

In a shelf packing, the strip is gradually divided level by level. A shelf is the
rectangular bin formed by two consecutive levels and the distance of the two
levels gives the height of the shelf. Our randomized or deterministic algorithms
consist of two steps. At the first step, if the incoming item can be packed into
some existing shelf among all strips, then pack the item in such a shelf with a
shelf packing algorithm. Else go to the second step, open a new shelf for the item
in the strip with the least load. The load of a strip is defined to be the current
height of the strip used.

We will employ several packing algorithms in the first step. The next fit shelf
algorithm [2] packs each item as far to the left as possible on the current active
shelf (the first on the top) that has the required height until the next item is
too wide to fit. A new such shelf is created and becomes the active shelf of that
height once there is no room. In the first-fit approach [2], the item is packed to
the lowermost shelf that it can fit. If there is no shelf of the required height, or
none of the appropriate shelves have a sufficient room, then a new shelf of that
height is created. Moreover, we will also use the revised shelf algorithm [14].

On the other hand, there are lots of strategies to assign the newly created shelf
to a strip. Actually, the second step can be regarded as the classical scheduling
problem. The height of a shelf can be regarded as processing time and strips are
regarded as machines. In this paper, we use list scheduling(LS) [7] in the second
step to assign the shelf to a strip. Algorithm LS always schedules the current
job as early as possible.

2.1 Randomized LS-NF Algorithm

The idea of the algorithm is to partition items to a shelf and use list scheduling
algorithm to pack the shelf. The height of a shelf is classified with a random
variable, however, it is not too much random because it is fixed at the first step,
and then only deterministic algorithm is applied.

Algorithm RLS-NF
1: Choose a uniform random real number ε ∈ [0, 1) and a constant real number

r > 1, and let d = rε.
2: For an incoming item with height pj , find an integer k such that d · rk <

pj ≤ d ·rk+1. Then pack the item by the NF algorithm to a shelf with height
d · rk+1 if there exists available space, otherwise create a new shelf with
height d · rk+1.
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3: Finally, the newly created shelf is assigned to a strip with the smallest load.
The load of a strip is defined to be the height of the strip used.

Remark. The first line of RLS-NF gives the randomization. And the algorithm
is oblivious randomized algorithm, i.e., the optimal algorithm does not know our
randomized choice. When the algorithm NF is replaced by FF or RFF, then
RLS-FF and RLS-RFF follow.

Consider the final packing, it consists of shelves. The shelves with the same
height d · rk are grouped to be class k. For each k, the last one shelf is called
sparse, and the remaining shelves are dense. Let HS and HD be the total height
of sparse shelves and dense shelves over all k. Denote by h the maximum height
among all the shelves and by μ the maximum height among all the rectangles,
then μ = maxj h(Tj) ≤ Opt, where Tj is the j-th rectangle and h(Tj) is its
height. Note that the maximum difference of two strips is at most h. Then we
have the following lemmas.

Lemma 2.1. Let Alg be the value by online algorithm RLS-NF. Then Alg ≤
HS+HD−h

m + h.

Proof. Let hi be the height of the i-th strip, where 1 ≤ i ≤ m. So, we have

Alg = max
i

{hi}.

By the List Scheduling algorithm, we have |hi − hj | ≤ h for any 1 ≤ i, j ≤ m,
where h is the maximum height over all the shelves. So, we have

m∑
i=1

hi + (m − 1)h ≥ m ∗ max
i

{hi} = m ∗ Alg.

Since
∑m
i=1 hi = HS + HD, this lemma holds. ��

Remark. For algorithms RLS-FF and RLS-RFF, we also have the similar result.

Lemma 2.2. The expectation of the random variable h/μ is r−1
ln r .

Proof. Similar as the randomized technical for online bidding problem [3], we
know that h/r < μ ≤ h and h/μ is a random variable of rX , where X is uniformly
chosen from [0, 1).

The expectation of E[h/μ] can be computed directly from its definition.

E[h/μ] =
∫ 1

0
rxdx =

∫ r

1
y

1
y ln r

dy =
r − 1
ln r

. (1)

��

Theorem 2.3. For any r > 1, the competitive ratio of RLS-NF algorithm is

RRLS−NF = min
r>1

{
2r +

1 + m(r − 1)
m ln r

}
. (2)
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Proof. Denote by Alg and Opt the value of algorithm RLS-NF and the value of
optimal off-line algorithm, respectively.

By the NF algorithm, we know that in a density shelf, averagely the width is
at least half occupied. By the shelf algorithm, we know in any shelf, the height
is at least 1/r used, so we have

m ∗ Opt ≥ 1/2 ∗ 1/r ∗ HD, (3)

i.e., the total area occupied by the optimal algorithm is not smaller than the
total area of all the rectangles packed in the density shelves HD.

Since the height of each sparse shelf differs at least r times, we have

HS ≤ h ∗
∑
i=0

r−i ≤ h

(1 − 1/r)
.

By Lemma 2.1,

Alg ≤ HS + HD − h

m
+ h (4)

≤ HD/m + HS/m + h ∗ (m − 1)/m (5)

≤ 2r ∗ Opt +
( r

m ∗ (r − 1)
+

(m − 1)
m

)
∗ h (6)

≤ 2r ∗ Opt +
( r

m ∗ (r − 1)
+

(m − 1)
m

)
∗ h/μ ∗ Opt (7)

Then we get that

RRLS−NF =
E[Alg]
Opt

≤ 2r +
( r

m ∗ (r − 1)
+

(m − 1)
m

)
∗ E[h/μ].

By Lemma 2.2, the competitive ratio is

E[Alg]
Opt

≤ 2r +
1 + m(r − 1)

m ln r
.

Let c(m, r) = 2r+ 1+m(r−1)
m ln r . For each specific value of m, we need to calculate

r so that c(m, r) reaches its minimum, which can be computed by its derivative.

d(c(m, r))
dr

= 2 +
m2 ln r − (m2r + m − m2)/r

m2 ln2 r
(8)

It is not easy to get a explicit relationship between variables m and r since the
derivative itself is not a simple function. However, by aids of computer program-
ming, we get the following table.

m = 1 2 3 4 5 6 7 8
r = 1.6487 1.4550 1.3702 1.3199 1.2857 1.2605 1.2410 1.2254

RNLS−NF ≤ 6.5949 5.4567 4.9742 4.6931 4.5042 4.3662 4.2598 4.1747
��
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2.2 Randomized LS-FF (RLS-FF)

In this section, we consider the randomized algorithm RLS-FF, which is gotten
by replacing the NF algorithm by the FF algorithm in RLS-NF, i.e., we use first
fit algorithm to packing rectangles instead of next fit algorithm.

To analyze the algorithm RLS-FF, we use the online algorithm of packing
rectangles into one strip as a bridge. The details are the followings. Let FF and
OPT be the costs of algorithm first fit shelf and an optimal off-line algorithm to
pack all the items into one strip, respectively. Then we have the following lemma
from [2].

Lemma 2.4. FF/r − h/(r − 1) ≤ 1.7OPT .

Theorem 2.5. For any r > 1, the competitive ratio of RLS-NF algorithm is

RRLS−FF ≤ min
r>1

{
1.7r +

1 + m(r − 1)
m ln r

}
. (9)

Proof. Let FF ∗ and OPT ∗ be the costs of algorithm RLS-FF and an optimal off-
line algorithm to pack rectangles into m strips, respectively. By the definitions,
we have OPT ≤ m ·OPT ∗. Again similar with the proof in Lemma 2.1, we have
FF ≥ m ∗FF ∗ − (m− 1)h, where h is the maximum height over all the shelves.
Hence, we have

1.7m · OPT ∗ ≥ m · FF ∗/r − (m − 1)h/r − h/(r − 1),

and then

FF ∗ ≤ 1.7r · OPT ∗ + (m − 1)h/m + r · h/(m(r − 1)). (10)

Since h ≤ r · μ ≤ r · OPT ∗ and by Lemma 2.2, we have

E[FF ∗]/OPT ∗ ≤ 1.7r + (
m − 1

m
+

r

m(r − 1)
) · E[h/μ] (11)

≤ 1.7r +
1 + m(r − 1)

m ln r
. (12)

Using the same technique in Theorem 2.3, we get the following table.

m = 1 2 3 4 5 6 7 8
r = 1.6942 1.4863 1.3957 1.3418 1.3051 1.2783 1.2574 1.2407

RNLS−FF ≤ 6.0937 5.0156 4.5594 4.2930 4.1156 3.9854 3.8851 3.8048
��

2.3 Randomized LS-RFF Algorithm (RLS-RFF)

In this section, we give a randomized version of the revised shelf algorithm in [14].
The detail of the RLS-RFF algorithm is given as follows.
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Algorithm RLS-RFF
1: if the incoming item is a big item, i.e., its width is larger than 1/2 then
2: this item is packed to a new shelf with the same height as the item. This

shelf is then assigned to a strip with the minimum load.
3: end if
4: if the incoming item is a small item, i.e., its width is at most 1/2 then
5: call the algorithm Randomized LS-FF (RLS-FF).
6: end if
Denote by HF the height of shelves that only contain big items. Again, let

HS and HD be the height of sparse shelves and dense shelves.

Lemma 2.6. [14] The total area of all the rectangles is at least HF

2 + 2
3 ·

1
r ·HD,

i.e., the used efficiencies of shelves in HF and HD are 1/2 and 2/3r, respectively.

Theorem 2.7. The competitive ratio of algorithm RLS-RFF is

E[Alg]/Opt ≤
{

2 + 1+r(m−1)
m ln r , 1 < r ≤ 4/3;

3
2r + 1+r(m−1)

m ln r , r > 4/3.

Proof. The proof can be done by adopting Lemma 2.6 and similar idea as The-
orem 2.3. However the detailed analysis is omitted due to space limited. Also by
the same technical used in Theorem 2.3, we get the following table.

m = 1 2 3 4 5 6 7 8
r = 1.7305 1.5114 1.4159 1.3592 1.3334 1.3334 1.3333 1.3333

RNLS−FF ≤ 5.7513 4.7158 4.2783 4.0239 3.8540 3.7381 3.6553 3.5933
��

3 Deterministic Online Algorithms

In this section, we derandomize the algorithms in the last section and get the
corresponding deterministic algorithms, called LS-NF, LS-FF, LS-RFF respec-
tively. The approach to derandomize is quite simple: we let ε = 0 instead of a
random variable in the first step of above random algorithms, then all the algo-
rithms become the deterministic algorithms. Next we analyze the deterministic
algorithms and show that the corresponding competitive ratio is worse than the
ratio of the randomized algorithm.

Theorem 3.1. For any m strips, the competitive ratio of LS-NF algorithm is
3r + r/(m(r − 1)), which reaches to the minimum (3m + 2

√
3m + 1)/m when

r = 1 + 1/
√

3m.

Proof. The proof is very similar as Theorem 2.3, since only the variable h/μ
is a random variable. To obtain a deterministic analysis, we replace with the
item h/μ by the parameter r in the equation (7), since h/μ ≤ r. Therefore, the
competitive ratio of LS-NF is
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RLS−NF =
Alg

Opt
≤ 2r +

( r

m ∗ (r − 1)
+

(m − 1)
m

)
∗ r (13)

= 3r +
r

m(r − 1)

From the above inequality, the minimum value of RLS−NF is (3m + 2
√

3m +
1)/m by setting r = 1 + 1/

√
3m. ��

By an analogy analysis, we can get the deterministic version of algorithms LS-FF
and LS-RFF.

Corollary 3.2. The competitive ratio of deterministic algorithm LS-FF is 2.7r+
r/(m(r − 1)), which reaches to the minimum (2.7m + 2

√
2.7m + 1)/m when

r = 1 + 1/
√

2.7m.

Corollary 3.3. The competitive ratio of deterministic algorithm LS-RFF is

RLS−RFF ≤

⎧⎨⎩
2 + r + r

m(r−1) , 1 < r ≤ 4
3 ;

5r
2 + r

m(r−1) , r > 4
3 .

Then we have

RLS−RFF =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
m + 2.5 + 10√

10m
, m ≤ 3, r = 1 + 2√

10m
;

10
3 + 4

m , 4 ≤ m ≤ 8, r = 4
3 ;

3 + 2√
m

+ 1
m , m ≥ 9, r = 1 + 1√

m
.

Lemma 3.4. Let A be one of algorithms LS-NF, LS-FF and LS-RFF and RA be
one of algorithms RLS-NF, RLS-FF and RLS-RFF. Then we have RRA < RA.

Proof. To compare the ratios in Theorems 2.3, 2.5 and 2.7 with the ratios in
Theorem 3.1, Corollaries 3.2 and 3.3 respectively, we find if r−1

ln r < r for all
r > 1, then this lemma holds.

It is not difficult to get this

r ln r − r + 1 > 0,

by setting r = ex, then applying the inequality ex > x + 1 for all x > 0. ��

4 Off-Line Version

In [16], it was shown that there is no hope to get an approximation algorithm
within a factor of 2 even with two strips. In this section, we present (2 + ε)-
approximation algorithm for the case with equal width of strips.

We deal with off-line problems into two steps, first we solve a scheduling
problem to deploy the rectangles to strips, then apply Steinberg’s algorithm [13]
to pack the rectangles in each strip. The detailed algorithm is given as follows.
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Algorithm WPS
1: For every item Tj, denote Sj = w(Tj) ∗ h(Tj) to be the work of the item.

A new instance I of classical scheduling problem is established, where Sj
is regarded as the processing time of the j-th job and m is the number of
identical machines.

2: Apply the PTAS algorithm [8] to the instance I. Denote Bi to be the set of
jobs assigned to the machine i and li to be the completion time of machine
i after this procedure, where 1 ≤ i ≤ m.

3: Apply Steinberg’s algorithm [13] for the set Bi by setting the height of a bin
to be 2li and width to be wi.

Theorem 4.1. For any ε > 0, the algorithm WPS is (2+ ε)-approximation. Its
running time is O((n/ε)1/ε

2
).

Proof. Roughly, the proof consists of a lemma in [13] that ensures at most dou-
ble space used for a specific set of rectangles, and the fact that the PTAS algo-
rithm [8] evenly distributes the items to the strips. The detailed proof will be
given in the full version. ��
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Abstract. We present a cross-monotonic competitive cost-sharing
method with provable cost-recovery ratio for the soft-capacitated eco-
nomic lot-sizing game, an extension of the basic economic lot-sizing game,
under the weak triangle inequality assumption.

Keywords: Economic lot-sizing game; cost-sharing method; cross-
monotonic; approximate cost recovery.

1 Introduction

The basic economic lot-sizing model was proposed by [9,12], which does not allow
backlogging. In the general economic lot-sizing model [16], a retailer is facing a
demand for a single product that occurs during each period of a consecutive
time periods numbered through 1 to T . The demand of a given time period
can be satisfied by orders at either that, previous, or later periods; that is,
inventory holding and back-logging are allowed. The objective is to decide the
order quantity at each period such that all demands are fulfilled and the total cost
of ordering, inventory holding, and backlogging is minimized. As an extension
of the above problem, the capacitated version consider the situation where the
amount of production is limited by a given capacity for each time period [1].

In this paper, we consider the soft-capacitated economic lot-sizing problem
(SCELSP). Let us consider T time periods. For each t : 1 ≤ t ≤ T , we define the
following notations:

dt: the amount of demand at period t;
xt: the order quantity at period t, which is called an ordering period if xt > 0;
st: the amount of (non-negative) inventory at the end of period t;
rt: the amount of backlogged demand at period t;
ht: the unit cost of holding inventory at the end of period t;
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gt: the unit cost of having backlogged demand at period t;
ut: the capacity associated with period t;
pt(xt): the cost of ordering xt units at period t.
We consider the SCELSP with setup cost. In this problem, the ordering cost

function has a fixed cost component and a variable cost component, i.e., pt(xt) =
ft �xt/ut� + ctxt where ft is the setup cost and ct is a given constant at period t.

It is well-known that the SCELSP can be formulated as follows

P (d) := min
T∑
t=1

{pt(xt) + htst + gtrt}

s.t. x1 = d1 + s1 − r1,
xt + st−1 − rt−1 = dt + st − rt, ∀t = 2, ..., T,
xt ≥ 0, st ≥ 0, rt ≥ 0, ∀t = 1, 2, ..., T,

(1)

where d = (d1, d2, ..., dT ) is a vector in RT .
Consider the following soft-capacitated economic lot-sizing situation where

multiple retailers sell the same product, they order the product from a single
manufacturer. In a decentralized system, each retailer would solve an SCELSP.
However, by exploiting economies of scale, the retailers may find that it is benefi-
cial to form coalitions and place joint orders. A prime question is how to allocate
the cost or profit in such a way that is advantageous for all the retailers, i.e.,
no retailer(s) gain more by deviating from the cooperation. This naturally gives
rise to a cooperative game with the players being the retailers, which is referred
to as the soft-capacitated economic lot-sizing game (SCELSG).

Formally, consider a set of retailers N = {1, 2, ..., n} that sell the same prod-
uct, all retailers buy the product from the same manufacturer. For each l ∈ N ,
let dl = (dl1, d

l
2, ..., d

l
T ) be the demand vector of player (retailer) l, where dlt is

the known demand of retailer l in time period t : 1 ≤ t ≤ T . For any given subset
of players S ⊆ N , let dS be the demand vector of S, i.e., dS = (dS1 , dS2 , ..., dST ).
We assume that the holding and backlogging costs of each retailer are fixed in a
single period.

The retailers can place orders individually. They can also cooperate by plac-
ing joint orders and keeping inventory at one warehouse which will lead to costs
reduction. In this setting, we define the SCELSG (N, V ), where the grand coali-
tion is the set of retailers N and the characteristic cost function V (S) (S ⊆ N)
is defined by V (S) = P (dS). The objective is to design a cost-sharing method
that allocates the total cost to the different players, that is, computes the cost
share ηl for each l ∈ S.

A cost-sharing method is cross-monotonic, if η(S, l) ≥ η(S
′
, l) for all S ⊆ S

′
.

A cost-sharing method is competitive, if
∑
l∈S η(S, l) ≤ V (S). A cost-sharing

method is α-approximate cost recovering, if
∑

l∈S η(S, l) ≥ V (S)/α, where α ≥ 1.
We are interested in cost-sharing methods that would motivate the players to

cooperate by revealing their true value. To obtain fair and group-strategyproof
mechanisms, it is sufficient to focus on cross-monotonicity, competitiveness, cost
recovery (cf. [10]).
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The SCELSP can be reformulated as a soft-capacitated facility location prob-
lem. For the facility location problem and the corresponding game, we refer to
[4,5,8,10,13,15,17,20] and references therein.

Xu and Yang [14] give the first cost-sharing method for the economic lot-
sizing game (ELSG). Following the approaches of [6,7,10,14], we first trans-
form the SCELSP to a special economic lot-sizing problem (ELSP), then call
the cost-sharing method of the ELSG to construct the cost shares, resulting
in cross-monotonicity and competitiveness naturally. In order to get the overall
approximation cost recovery, one needs to balance carefully the transformation
between the SCELSP and the ELSP. We construct an integral solution of the
SCELSP based on the ELSP. This integral solution will reveal the approximate
cost recovery.

Finally, the ELSG has also been investigated under the concept of core which
is an allocation that ensures that no subset of the players is charged more than
the true cost of the subset. When backlogging is allowed and the ordering cost
is a general concave function, Chen and Zhang [2] showed that the core of the
ELSG is always nonempty. For the other inventory games, we refer to [3,18,19]
and references therein.

The organization of our paper is as follows. In the next section, we present a
cost-sharing method for the SCELSG. The analysis will be given in Section 3.
Some discussions are presented in Section 4.

2 Cost-Sharing Method

Let qkt be the cost of satisfying one unit demand at period t by ordering at
period k, i.e.,

qkt = ck +
t−1∑
i=k

hi if k ≤ t, and qkt = ck +
k−1∑
i=t

gi if k > t.

It is well-known that the ELSP can be formulated as a facility location problem
(cf. [11]). So we can give the following mixed integer program of the SCELSP

OPT ≡ min
T∑
k=1

fkyk +
T∑
k=1

T∑
t=1

dSt qktxkt

s.t. dSt
T∑
k=1

xkt ≥ dSt , ∀t,

xkt ≤ yk, ∀k, t,
T∑
t=1

dSt xkt ≤ ukyk, ∀k,

xkt ≥ 0, ∀k, t,
yk ∈ Z+, ∀k.

(2)

In the above program, yk is an integral variable denoting the ordering times
of period k, and xkt is the fraction of the demand at period t that is satisfied
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by inventory ordered at period k. The first constraint states that the demand of
each period must be satisfied. The second constraint ensures that if the fraction
of the demand at period t is satisfied by a possible ordering period k then k must
be an ordering period, and the third constraint says that if period k orders yk
times, it can serve at most ukyk amount of demand.

The linear programming relaxation of (2) is:

P1 ≡ min
T∑
k=1

fkyk +
T∑
k=1

T∑
t=1

dSt qktxkt

s.t. dSt
T∑
k=1

xkt ≥ dSt , ∀t,

xkt ≤ yk, ∀k, t,
T∑
t=1

dSt xkt ≤ ukyk, ∀k,

xkt, yk ≥ 0, ∀k, t.

(3)

The dual program of (3) is:

D1 ≡ max
T∑
t=1

dSt αt

s.t. dSt αt − βkt − dSt γk ≤ dSt pkt, ∀k, t,

ukγk +
T∑
t=1

βkt ≤ fk, ∀k,

αt, γk, βkt ≥ 0, ∀k, t.

(4)

For each possible ordering period k, let us fix

γk =
fk
2uk

.

Then we eliminate variables γk from (4):

D2 ≡ max
T∑
t=1

dSt αt

s.t. dSt αt − βkt ≤ dSt (pkt +
fk
2uk

), ∀k, t,

T∑
t=1

βkt ≤
fk
2

, ∀k,

αt, βkt ≥ 0, ∀k, t.

(5)

One can verify that (5) is exactly the dual of an ELSP. The primal program of
(5) is:

P2 ≡ min
T∑
k=1

fk
2

Yk +
T∑
k=1

T∑
t=1

dSt (pkt +
fk
2uk

)Xkt

s.t. dSt
T∑
t=1

Xkt ≥ dSt , ∀t,

Xkt ≤ Yk, ∀k, t,
Xkt, Yk ≥ 0, ∀k, t.

(6)
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Denote Qkt ≡ qkt +
fk
2uk

and Fk ≡ fk
2

. Then (6) can be transformed into the

following linear program

P2 = min
T∑
k=1

FkYk +
T∑
k=1

T∑
t=1

dSt QktXkt,

s.t. dSt
T∑
k=1

Xkt ≥ dSt , ∀t,

Xkt ≤ Yk, ∀k, t,
Xkt, Yk ≥ 0, ∀k, t.

(7)

Let T̄ = {1, 2, ..., T }. For any k, t ∈ T̄ , we always use k as the possible ordering
period and t as the time period. For any k, k′ ∈ T̄ , we define

Qkk′ ≡ min
t:t∈T̄

{Qkt + Qk′t}.

Now we are ready to describe the algorithm as follows.

Algorithm 2.1

Step 1 (the ghost process). We introduce the notation of time t̃, advancing
from 0 to ∞. For every period t ∈ T̄ , the ghost of t is a ball centered at t
with radius dSt t̃.

The period of t ∈ T̄ touches a possible ordering period at time t̃ if Qkt ≤ t̃.
All ghost that touch a possible ordering period start filling the setup cost
of the possible ordering period. The contribution of the ghost t at time t̃
towards filling the setup cost of k is ξkt = max{0, dSt t̃ − dSt Qkt}. Denote
θkt = max{0, t̃−Qkt}. The possible ordering period k ∈ T̄ is said to be fully
paid at some time t̃(k) if

∑
t∈T̄ ξkt = Fk. Let Rk be the set of periods that

contributed towards filling the setup cost of k, i.e., Rk = {t : ξkt > 0}, hence
Fk =

∑
t∈Rk

(dSt t̃(k) − dSt Qkt).
Step 2 (the cost shares). Let αt = min{ min

k:t∈Rk

t̃(k), min
k:t/∈Rk

Qkt}. The cost

share of each player l ∈ S is ηl =
∑T

t=1 dltαt.
Step 3 (constructing ordering periods of (7)). Sort all the possible order-

ing periods in a nondecreasing order of the fully paid time t̃(k)(k ∈ T̄ ).
According to this order, the period k is the ordering period if and only if
there is no already ordering period k ∈ T̄ such that Qkk′ ≤ 2t̃(k). Suppose
that k ∈ T̄ is an ordering period, we assign the demand of periods in Rk

is satisfied by k. The demand of remaining periods will be satisfied by the
closest ordering period. Denote the corresponding integral solution of (7) as
(X̄, Ȳ ).

Step 4 (constructing an integral solution of (2)). Set x̄kt := X̄kt and ȳk :
=
⌈∑T

t=1 d̄St Xkt/uk

⌉
.
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3 Analysis

By adding more players, the setup cost of each possible ordering period k ∈ T̄
will be fully paid more quickly, and each θkt, (k ∈ T̄ , t ∈ T̄ ) will not increase.
Combining the definition of ηl =

∑T
t=1 dltαt, we have the following lemmas.

Lemma 1. The cost share generated by Algorithm 2.1 is cross-monotonic.

Lemma 2. (Competitiveness) Every solution to the SCELSP has cost at least∑T
t=1 dSt αt.

Proof. It is easy to see that the sum of dSt αt can not exceed the cost of any
solution of (7). Noting that

OPT ≥ P1 = D1 ≥ D2 = P2 ≥
T∑
t=1

dSt αt,

the lemma is concluded.

Assumption 3.1. For any t ∈ T̄ , we assume that a1ht ≤ gt ≤ a2ht, where a1,
a2 are constants, 0 < a1 ≤ a2.

Let b := max{1/a1, a2}. Suppose that Assumption 3.1 holds throughout the
remainder of our paper. For any possible ordering period k and k′, any time
period t, it is easy to verify that Qkt satisfies the so-called weak triangle inequality
(cf. [14]): Qkt ≤ b(Qk′t+Qkk′ ). From Step 3 of Algorithm 2.1 and the definition
of Qkk′ , we have

Lemma 3. If k, k′ are both ordering periods, then Rk ∩ Rk′ = ∅.
Lemma 4. We have

T∑
k=1

FkȲk +
T∑
k=1

T∑
t=1

dSt QktX̄kt ≤ 3b
T∑
t=1

dSt αt. (8)

Proof. Let us consider the following two possibilities.
Case 1. Let k ∈ T̄ be the ordering period, and let t ∈ Rk. Then 3bαt ≥ t̃(k).

Otherwise, for contradiction we assume that 3bαt < t̃(k). Let k′ is the first fully
paid period that t touched, i.e., Qk′t ≤ αt and t̃(k′) ≤ αt. We consider two
subcases.

Case 1.1 If k′ is an ordering period, then

Qkk′ ≤ Qkt + Qk′t ≤ t̃(k) + αt < 2t̃(k).

Case 1.2 If k′ is not an ordering period, there exists an ordering period k′′ ∈ T̄ ,
such that Qk′k′′ ≤ 2t̃(k′) ≤ 2αt, note that k �= k′′, since t̃(k′′) ≤ t̃(k′) ≤ αt <
t̃(k), we have

Qkk′′ ≤ Qkt + Qk′′t
≤ Qkt + b(Qk′t + Qk′′k′)
≤ t̃(k) + b(αt + 2t̃(k′))
< 2t̃(k).

(9)

Both of the above two cases contradict to Step 3 of Algorithm 2.1.
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Case 2. Suppose that t ∈ T̄ does not belong to any neighborhood Rk for an
ordering period k ∈ T̄ , and t is assigned to the closest ordering period k. In the
similar way, we can show that 3bαt ≥ Qkt.

Summarizing all the above two cases, we get the desired conclusion (8). ��

Theorem 1. The cost of the solution constructed is at most 6b
∑T
t=1 αtd

S
t , and

hence Algorithm 2.1 is a 6b-approximate cross-monotonic cost-sharing method
for the SCELSG.

Proof. Recall the constructions of (X̄, Ȳ ) and (x̄, ȳ) at Algorithm 2.1. It is easy
to see that

ȳk ≤
∑T
t=1 dSt X̄kt

uk
+ Ȳk. (10)

It follows from (10) and Lemma 4 that

T∑
k=1

fk
2

ȳk +
T∑
k=1

T∑
t=1

dSt qktx̄kt ≤
T∑
k=1

fk
2

(∑T
t=1 dSt X̄kt

uk
+ Ȳk

)
+

T∑
k=1

T∑
t=1

dSt qktX̄kt

=
T∑
k=1

FkȲk +
T∑
k=1

T∑
t=1

dSt QktX̄kt

≤ 3b

T∑
t=1

dSt αt,

which implies
T∑
t=1

T∑
k=1

qktx̄kt +
T∑
k=1

fkȳk ≤ 6b

T∑
t=1

dSt αt. (11)

Combining Lemmas 1-2 and (11), we conclude the proof. ��

4 Discussions

In this paper, we present a 6b-approximate cross-monotonic competitive cost-
sharing method for the SCELSG. There are two possible directions for future
research. It would be interesting to design efficient cost-sharing method for the
economic lot-sizing game with general concave ordering cost. Another research
direction is to design efficient cost-sharing method for the multilevel economic
lot-sizing game.
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Abstract. We study Facility Location games played by n agents situ-
ated on the nodes of a graph. Each agent orders installation of a facility
at a node of the graph and pays connection cost to the chosen node, and
shares fairly facility installation cost with other agents having chosen the
same location. This game has pure strategy Nash equilibria, that can be
found by simple improvements performed by the agents iteratively. We

show that this algorithm may need super-polynomial Ω(2n
1
2 ) steps to

converge. For metric graphs we show that approximate pure equilibria
can be found in polynomial time. On metric graphs we consider addition-
ally strong equilibria; previous work had shown that they do not always
exist. We upper bound the overall (social) cost of α-approximate strong
equilibria within a factor O(α ln α) of the optimum, for every α ≥ 1.

1 Introduction

We study Facility Location games in which, self-interested agents situated on the
nodes of a network request installation of facilities and connection to them. Each
agent i may be associated with non-negative demand weight wi and may order
facility installation on any node v of the network. The agent tries to minimize
his individual cost; it consists of the (weighted) distance of i from v and a fair
share of the facility installation cost at v. Facility installation cost at v is shared
evenly among all agents having chosen v, or proportionally to their demand
weight in case of weighted agents. In this paper we study pure Nash and strong
equilibria (PNE and SE) of the described facility location game, and improve or
extend previous results [2,8]. We prove a super-polynomial lower bound on the
complexity of the Iterative Best Response algorithm for finding PNE, and analyze
a polynomial-time algorithm for finding approximate PNE on metric networks.
Also, for metric networks, we upper bound the social cost of approximate SE,
that are resilient to coalitional deviations; the social cost is the sum of agents’
individual costs. The upper bounding is with reference to the socially optimum
cost; this ratio is known as the Price of Anarchy [9]. A previous result [8] provided
an upper bound only in case of existence of exact SE.

The fair cost-sharing rule is of particular interest, as an instance of the Shapley
Value that is stable for coalitional games [13]. The facility location game is a
1 The Center for Algorithmic Game Theory, funded by the Carlsberg Foundation.

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 174–185, 2009.
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special case of the general network design game model with fair cost allocation
proposed in [2], which has attracted a significant amount of recent research
[1,6,4,7]. In this model each out of n selfish agents wishes to interconnect a given
subset of network nodes, using network links. Each link is associated with a cost
function and a delay function, both non-decreasing in the number of agents using
the link. Agents try to minimize their individual cost, i.e. the sum of cost shares
and delays of the links that an agent uses. For unweighted agents these games
have PNE; they belong to the class of potential games, introduced by Monderer
and Shapley [11]. They are associated with a potential function which, given any
initial configuration of agents’ strategies, can be optimized locally by a sequence
of iterative improvements performed by the agents. When no agent can improve
his cost any more, the resulting strategy configuration is a PNE. The authors
in [2] studied the Price of Stability (PoS) of PNE, i.e. the worst-case ratio of the
social cost of the least expensive equilibrium, relative to the socially optimum
cost. They showed that for constant delay and cost functions PoS = O(ln n).

Recent work on network design with fair cost allocation has focused on iden-
tifying the Price of Stability, particularly when delays are zero. A lower bound
of 4

3 was given in [2], and improved to 12
7 in [7]. The O(log n) upper bound for

the general single-sink case was improved recently to O( log n
log logn ) [10]. Albers re-

cently considered general network design with weighted players [1]; she proved
an almost tight poly-logarithmic lower bound on the PoS for PNE and studied
the Price of Anarchy of approximate SE with weighted and unweighted agents.
SE of network design games were first studied by Epstein et al. [6]. The notion
of SE is due to Aumann [3]. Metric Facility Location with unweighted players is
the only case of the model of [2], in which tight constant bounds are known for
the Price of Stability [8]. Also, existence of e-approximate SE (e = 2.718 . . . ) was
shown in [8], even for the non-metric weighted case. Nguyen Kim [12] showed
that PNE do not always exist for metric facility location games with weighted
agents. Facility Location games have been used for modeling caching systems [5].

Contribution: The complexity of finding PNE for network design games with
fair cost allocation is an open problem. It was shown in [2] that Ω(2

n
3 ) Iterative

Best Responses may be needed before equilibrium is reached. This was shown
though for the most general case of the game model. We prove that, even in the
special case of Facility Location the algorithm needs super-polynomial Ω(2n

1
2 )

number of steps. On the positive side, we analyze a polynomial time algorithm
for finding 2.258-approximate PNE on metric networks with uniform facility costs
and weighted agents. This factor improves over the e = 2.718 . . . factor shown
in [8] for general Facility Location games. Finally, we develop an analysis for the
Price of Anarchy of α-approximate SE for metric Facility Location games with
unweighted agents, and show that it is SPoA = O(α ln α). The SPoA of exact
strong equilibria was bound in [8] by a constant, only when they exist.

Definitions: An instance of the facility location game is defined as a tuple
(V, d, β, A, u, w). (V, d) defines a graph with vertex set V and distance function
d : V × V → R+

0 ∪ {∞}. β : V → R+
0 ∪ {∞} associates every vertex with a
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facility opening cost. A = {1, . . . , n} is the set of agents residing on the graph,
with u : A → V mapping agents to vertices, and w : A → R+ associating agents
with positive demand weight. We use βv, ui and wi instead of β(v), u(i) and w(i),
respectively. Each agent is a player with strategy space V . Let si ∈ V be the
strategy of i ∈ A. A strategy profile is denoted by s = (s1, . . . , sn). We use s−i for
(s1, . . . , si−1, si+1, . . . , sn). Ws(v) =

∑
i:si=v wi is the sum of weights of agents

playing v in s. The individual cost ci(s) of i under s is ci(s) = wid(ui, si)+
βsi

wi

Ws(si)
,

i.e. i pays (weighted) connection cost and a fair share of the facility opening cost.
Let Fs = {si|i ∈ A}. The social cost of s is defined as:

c(s) =
∑
i∈A

ci(s) =
∑
i∈A

wid(ui, si) +
∑
v∈Fs

βv

and coincides with the objective function of the facility location problem [14]. s
is socially optimum if it is an optimum solution to the facility location problem.

The game is metric when d is metric, unweighted when wi = 1 for all i ∈ A,
and has uniform facility costs when βv = 1 for all v ∈ V . For α ≥ 1 a strategy
profile s is an α-approximate pure Nash equilibrium (PNE) if for every player
i ∈ A and every strategy s′i ∈ V it is ci(s) ≤ αci(s−i, s′i). It is an α-approximate
strong equilibrium (SE) if for every non-empty subset I ⊆ A, and pure strategies
s′i 	= si for every i ∈ I, there is a j ∈ I with cj(s) ≤ αcj(s−I , s′I) [1,6,3]. When
α = 1, s is a PNE or a SE respectively.

For a strategy profile s, a best response of player i is any strategy s′i that
minimizes ci(s−i, s′i). The Iterative Best Response algorithm is initialized at an
arbitrary profile s. It performs iteratively the following: while there is any player
i ∈ A and a best response s′i of i with ci(s−i, s′i) > ci(s), set s equal to (s−i, s′i).
The algorithm terminates at a profile s which is a PNE [2,11].

2 Complexity of Iterative Best Response

We derive a super-polynomial lower bound on the convergence complexity of the
Iterative Best Response algorithm for non-metric facility location, later showing
that it can be modified to work for metric facility location as well. We exhibit a
family of instances of the game and a schedule of iterative best responses on this
family, that simulates a bit counter. We assume n bit agents bi, i = 0 . . . n− 1,
each choosing among two facility nodes f0

i and f1
i , referred to as the 0-strategy

and 1-strategy of bi. We use auxiliary agents, whose choices will enable the bit
agents to switch between 0- and 1-strategies. For any other location in the graph
we make the distance of bi big enough, to discourage bi from connecting there.

Every pair of bits i and j > i will be grouped by a gadget Gij , see fig. 1(a)
for an illustration. Gij has two auxiliary agent nodes qij (referred to as inner
agent) and pij (referred to as outer agent) and one extra facility node fij . Agent
qij is attached to facility nodes f0

i , f0
j , and fij . Agent pij is attached only to the

facility nodes f0
j and fij . The total number of used gadgets is O(n2). Fig. 1(b)

illustrates an instance with 4 bit agents. We introduce a schedule of Iterative
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qij

fij

f 0
i

f 0
j

x

x′

y

y′ z

4j

4i

2 · 4i

pij

(a) A gadget Gij .

f 1
0

b0

b1

b2

b3

f 0
3 f 1

3

f 1
2f 0

2

f 0
1 f 1

1

f 0
0

(b) Construction with 4 bits.

Fig. 1. A gadget (initial state) and a construction of 4 bits, pairwise grouped by gadgets

Best Response, formally described as algorithm 1, which we call COUNT. Initially
every bit agent bi is connected to f0

i , and in every gadget Gij agents pij and qij
are connected to f0

j . During execution of COUNT the changes occurring to pij , qij
are depicted in order in fig. 2. Let us explain how COUNT(k) proceeds recursively.
Initially, for every j ∈ {0, . . . , k}, agents bj, pij and qij for all i < j are connected
to f0

j . The following high level steps occur:

1. At first COUNT(k − 1) is called (line 1), that results in all agents bi, i < k
being connected to f1

i ; also, agents pji, qji with j < i are connected to fji.
2. Agent bk switches from f0

k to f1
k (line 2). Lines 3-10 cause bit agents bi, i < k

to switch back to f0
i , so that number 2k−1 is formed by the strategy profile.

3. Finally, a call to COUNT(k− 1) is performed once more (line 11).

We explain lines 3-10 of the schedule. For any value of k, agent bk is the first to
leave f0

k and deviate to f1
k . Agents qik follow, in order i = k − 1 . . . 0 and they

deviate to f0
i (Inner Fall - fig. 2(a)). Each of them helps attracting sequentially

back to f0
i all agents pji, qji in orders j = i−1 . . . 0 and j = 0 . . . i−1 respectively

(Outer and Inner Reset - fig. 2(d) & (e)); recall that they were connected to fji
after the high level step 1. Then, agents bi, i = k − 1 . . . 0, are also attracted to
f0
i ; at this time there is one agent more - qij - connected to f0

i , than when bi
abandoned f0

i for f1
i . Finally, this additional agent qik is attracted away from f0

i ,
to create incentive for deviation to the bit agents bi, i < k. This is achieved first
by deviation of agents pik to fik in order i = 0 . . . k − 1 (Outer Fall - fig. 2(c));
this creates incentive for qik to leave f0

i for fik (Inner Join - fig. 2(d)).
In order for the moves specified by the schedule (algorithm 1) to be best

responses of agents, we assign facility installation costs and distances so that
certain inequalities hold. We assign f0

i cost 4i, and facility nodes fij cost 2 · 4i.
Let distances be named as in fig. 1(a). The following inequalities should hold
for the movements of a gadget’s Gij agents to be best responses. We consider
movements of bit agents later. We use f for 2 · 4i - the cost of fij :

Inner Fall of qij : x +
4j

i + j + 1
> x′ + 4i , i = j − 1 . . . 0 (1)

Inner Fall of qij : z + f > x′ + 4i , i = j − 1 . . . 0 (2)
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qij

fij

f 0
j

f 0
i

pij

(a) Inner Fall

qij

fij

f 0
j

f 0
i

pij

(b) Outer Fall

qij

fij

f 0
j

f 0
i

pij

(c) Inner Join

qij

fij

f 0
j

f 0
i

pij

(d) Outer Reset

qij

fij

f 0
j

f 0
i

pij

(e) Inner Reset

Fig. 2. Movements performed by the “inner” and “outer” agents of a gadget Gij

Algorithm 1. COUNT(k): counts up to 2k − 1

1: if k > 1 then COUNT(k − 1) {Count up to 2k−1 − 1}
2: sbk

← f1
k {Set bk to 1}

3: for i = k − 1 . . . 0 do
4: sqik ← f0

i {Perform an Inner Fall for qik}
5: for j = i − 1 . . . 0 do spji ← f0

i {Perform an Outer Reset for pji}
6: for j = 0 . . . i − 1 do sqji ← f0

i {Perform an Inner Reset for qji}
7: sbi ← f0

i {Set bi to 0}
8: end for
9: for i = 0 . . . k − 1 do spik ← fik {Perform an Outer Fall for pik}

10: for i = 0 . . . k − 1 do sqik ← fik {Perform an Inner Join for qik}
11: if k > 1 then COUNT(k − 1) {Count up to 2k−1 − 1}

Outer Fall of pij : y +
4j

j − i
> y′ + f , i = 0 . . . j − 1 (3)

Inner Join of qij : x′ +
4i

2i + 2
> z +

f

2
, i = 0 . . . j − 1 (4)

Outer Reset of pij : y′ +
f

2
> y +

4j

j − i + 1
, i = j − 1 . . . 0 (5)

Inner Reset of qij : z + f > x +
4j

i + j + 2
, i = 0 . . . j − 1 (6)

Inner Reset of qij : x′ + 4i > x +
4j

i + j + 2
, i = 0 . . . j − 1 (7)

Correctness of inequalities (1)-(7): For (1) and (2) note that Inner Falls
of qij agents start when bj has already left f0

j . Initially there are 2j + 1 agents
connected to each f0

j . Thus each qij for i = j − 1 . . . 0 shares the cost of f0
j with

i + j + 1 agents exactly before deviating. Furthermore, it is the first to connect
to f0

i , and no agent is connected to fij . For (3) we note that the number of pij
agents connected to f0

j is exactly j − i, for i = 0 . . . j − 1. Agent bj and all qij
agents have already deviated before at the time when Outer Falls begin. Since
the order by which they occur is i = 0 . . . j − 1 (3) is justified; each pij is the
first to connect to fij . For (4), note that qij has attracted back to f0

i the 2i + 1
agents connected to f0

i in the initial state. It is the second agent (after pij) to
deviate to fij . The rest of the inequalities are justified if we consider that agents
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are reset in reverse order of their deviation, attracted to f0
j by an additional

agent connected there, than when they deviated. To solve the system (1)-(7) at
first we simplify as follows:

(3), (5) ⇒ 4j

j − i + 1
− 4i < y′ − y <

4j

j − i
− 2 · 4i (8)

(1), (7) ⇒ 4j

i + j + 2
− 4i < x′ − x <

4j

i + j + 1
− 4i (9)

(2), (4) ⇒ (2i + 1)4i

2i + 2
< x′ − z < 4i (10)

The ranges given by (8)-(10) are non-empty. Several values for y,y′ satisfy (8).
For x′,x and z we equalize x′ − x, x′ − z to the average of bounds given by (9),
(10) respectively. Then, we solve a system of 2 equations and 3 variables to
express x′ and z as functions of x. Sufficiently large x > 0, no larger than O(4n),
ensures x′, z > 0. This settles best responses of agents of Gij . Let us decide
distances of bi from f0

i and f1
i , and cost of f1

i ; bi always leaves f0
i for f1

i when 2i
other agents are connected to f0

i , and returns to f0
i from f1

i when 2i + 1 other
agents are connected to f0

i . This yields 2 inequalities with 3 variables which can
be easily satisfied. Facility nodes and distances other than the ones considered
(fig. 1(b)) have a very big cost. The graph can be made metric by addition of a
large constant to all described distances and usage of triangle inequality for the
rest. Since we use O(n2) players we get:

Theorem 1. Iterative Best Response for the Facility Location game with fair
cost allocation may need superpolynomial Ω(2n

1
2 ) steps in the number of players.

3 Approximation of Equilibria for Uniform Facility Costs

It is not known whether pure equilibria of facility location games can be com-
puted efficiently. In light of Theorem 1 it seems reasonable to consider compu-
tation of approximate equilibria as a first step towards this goal. This was also
suggested in [2] for the general network design model. In this section we restrict
our attention to metric facility location games with uniform facility opening costs
and describe an algorithm for computing approximate equilibria of such games.
The existence of such an algorithm furthermore improves previous bounds for
existence of approximate equilibria [8] in this setting when agents are weighted.

Let (V, d, β, A, u, w) be a metric weighted facility location game with uniform
facility costs. Let A(U) = ∪i:ui∈U{i} be the set of agents residing on nodes
v ∈ U . We claim that Algorithm 2 constructs an approximate equilibrium s.

The parameter δ in the input of Algorithm 2 facilitates analysis of the al-
gorithm. S = ∪i∈A{ui} is the set of vertices where agents are residing. The
algorithm incrementally constructs a set Fs ⊆ S by adding more and more fa-
cilities. Fδ is maintained as the set of agents with a distance of at most δ

w to a
facility f ∈ Fs, where w is the weight of the agent in question. While S \Fδ 	= ∅,
the vertex of the agent in S \Fδ with highest weight is added to Fs. Intuitively,
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Algorithm 2. Compute an approximate equilibrium
1: Input: (V, d, β, A, u, w), δ.
2: Fs ← ∅, Fδ ← ∅, S ← ∪i∈A{ui}.
3: while S \ Fδ �= ∅ do
4: Pick i ∈ A(S \ Fδ), such that ∀j ∈ A(S \ Fδ) : wi ≥ wj .
5: Fs ← Fs ∪ {ui}.
6: for j ∈ A(S \ Fδ) do
7: if wjd(ui, uj) ≤ δ then Fδ ← Fδ ∪ {uj}.
8: end for
9: end while

10: For all i ∈ A : si ← arg minf∈Fs d(ui, f).
11: return s = (s1, . . . , sn).

Fig. 3. Approximate equilibrium computed for an unweighted facility location game.
The Voronoi diagram and the balls are included for illustrative purposes.

Fδ is the union of balls centered at the facilities of Fs. See Figure 3 for an
illustration of the outcome for a facility location game with unweighted agents.

Theorem 2. Algorithm 2 computes a 2.258-approximate equilibrium (1.781-
approximate equilibrium) in O(n2) time given a metric weighted (unweighted)
facility location game with uniform facility opening costs and n agents.

Proof. First, let us observe that the running time of Algorithm 2 is at most
quadratic in the number of agents. Indeed, at most |S| ≤ n facilities will be
added to Fs, and finding the next facility and updating S \ Fδ can be done in
O(n) time. Connecting the agents to the nearest facility of Fs can be done in
O(n · |Fs|) time, so overall the running time is O(n2).

Next, let us show that we have indeed computed a strategy profile s that is an
approximate equilibrium. Let i ∈ A be any agent. Let f ∈ Fs be the facility that
i is connected to in s, and let f ′ ∈ Fs∪{ui} be a best response of i resulting in a
strategy profile s′. Note that when i opens a facility on his own, i.e. f ′ ∈ V \Fs, it
is always a best response to open it at ui. We need to show that ci(s)/ci(s′) ≤ α
for some constant α. We can split this into the following two cases. We will use
wf , f ∈ Fs, to denote the weight of the agent that caused f to be picked for Fs.
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Case 1: f ′ = ui /∈ Fs, i.e. agent i opens a facility on his own.

ci(s)
ci(s′)

= wid(ui, f) +
wi

Ws(f)
≤ wid(ui, f) +

wi
wi + wf

< δ +
2
3

(11)

In (11) we use wid(ui, f) ≤ δ. Also, because addition of some facility g to Fs
caused ui to be covered by Fδ, we take 2 cases. Either f = g and wi ≤ wf ,
or f 	= g and wi < 2wf because wid(ui, g) ≤ δ < wfd(f, g) ≤ wf (d(f, ui) +
d(ui, g)) ≤ wf2d(ui, g). In both cases wi < 2wf , hence the last inequality.

Case 2: f ′ ∈ Fs, i.e. agent i connects to another facility that is already open.

ci(s)
ci(s′)

=
wid(ui, f) + wi/Ws(f)

wid(ui, f ′) + wi/Ws′(f ′)
< 1 +

1
wfd(ui, f ′)

(12)

< 1 + 2/[wfd(f, f ′)] < 1 + 2/δ (13)

In (12) we use that d(ui, f) ≤ d(ui, f ′) and that wf ≤ Ws(f). In (13) we use the
triangle inequality saying that d(f, f ′) ≤ d(f, ui) + d(ui, f ′) ≤ 2d(ui, f ′).
Hence, if α = max

(
δ + 2

3 , 1 + 2
δ

)
, no agent will gain more than a factor of α by

deviating. Then α is minimized for δ = 1
6 (1+

√
73), with α = 1

6 (5+
√

73) < 2.258.
If agents are unweighted, we would get ci(s)/ci(s′) ≤ δ + 1/2 instead of (11)

and ci(s)/ci(s′) < 1+1/δ instead of (12). The second inequality follows from two
subcases. Either i is the only agent going to f in s, in which case ci(s)/ci(s′) <
1 + 1/(wfd(f, f ′)), or there is someone else sharing the cost, in which case
ci(s)/ci(s′) < 1 + 1/(2wfd(ui, f ′)). Hence, we could let α = max

(
δ + 1

2 , 1 + 1
δ

)
,

which is minimized for δ = (1 +
√

17)/4, with α = (3 +
√

17)/4 < 1.781. �

Approximate strong equilibria are also approximate pure equilibria, by defini-
tion. The following corollary improves over the best known approximation factor
of e = 2.718 . . . , for approximate pure equilibria with weighted agents [8].

Corollary 1. 2.258-approximate equilibria are guaranteed to exist in weighted
metric facility location games with uniform facility opening costs.

4 Strong Price of Anarchy: The Unweighted Metric Case

The metric unweighted Facility Location game does not always have exact SE,
but α-approximate SE always exist, for α ≥ e = 2.718 . . . [8]. We prove an upper
bound for the Price of Anarchy of α-approximate SE (Strong Price of Anarchy
- SPoAα). Exact SE were shown to have SPoA = O(1), when they exist [8].
Let s be any α-approximate SE, s∗ the socially optimum profile, and As∗(v) the
subset of agents that are connected to v ∈ Fs∗ under s∗. For v ∈ Fs∗ define
cv(s∗) = βv +

∑
i:s∗i =v d(ui, v). We upper bound the SPoAα as:

SPoAα =
c(s)
c(s∗)

=

∑
v∈Fs∗

∑
i∈As∗ (v) ci(s)∑

v∈Fs∗
cv(s∗)

≤ max
v∈Fs∗

∑
i∈As∗ (v) ci(s)

cv(s∗)
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R

v

As(v)

Is∗(v)

As∗(v)

Fig. 4. The situation examined in the proof of theorem 3

We will upper bound the latter ratio for any v ∈ Fs∗ , so as to prove:

Theorem 3. For any α ≥ 1, the Price of Anarchy of α-approximate strong
equilibria in the unweighted metric Facility Location game is O(α ln α).

For any facility node v ∈ Fs∗ , define As(v) ⊆ As∗(v) to be the subset of those
agents that are connected to v both in s∗ and s. Define Is∗(v) = As∗(v)\As(v) to
be the subset of agents that are connected to v in s∗, but not in s. Let R denote
agents connected to v under s, with R ⊆ A\As∗(v). See fig. 4 for an illustration.
To simplify notation we use d(ui, v) = x∗

i , for i ∈ As∗(v). With respect to R we
will consider two cases. At first assume that, under s−R, no agent of Is∗(v) has
incentive to deviate to v in with coalition Is∗(v). Then for every i ∈ Is∗(v) it is
ci(s) ≤ αci(s∗), because s is an α-approximate SE. Then:

∑
i∈As∗ (v)

ci(s) =
∑

i∈As(v)

ci(s) +
∑

i∈Is∗ (v)

ci(s) ≤ βv +
∑

i∈As(v)

x∗
i + α

⎛⎝βv +
∑

i∈Is∗ (v)

x∗
i

⎞⎠
Thus

∑
i∈As∗ (v) ci(s) ≤ (1 + α)

(
βv +

∑
i∈As∗ (v) x∗

i

)
= (1 + α)cv(s∗).

For the rest of the analysis we assume there exists at least one agent i ∈ Is∗(v)
willing to deviate to v in coordination with the coalition Is∗(v) under s−R. Define
a minimal disagreeing subset I0

s∗(v) ⊆ Is∗(v) as a minimal subset of misconnected
agents containing an agent i that would deviate to v with I0

s∗(v), under s−R.
Also define Js∗(v) = Is∗(v) \ I0

s∗(v). Fix i ∈ I0
s∗(v) to be from now on the agent

(or one of them if there are many) that would deviate to v in coordination with
I0
s∗(v). We call i the unstable agent of the minimal disagreeing subset I0

s∗(v). By
definition, the following holds for the unstable agent i:

ci(s) > α

(
x∗
i +

βv
|I0
s∗(v)|+ |As(v)|

)
(14)

The rest of the analysis consists of bounds for agents in I0
s∗ and Js∗(v) separately.

In particular, lemmas 1 and 2 describe upper bounds for these sets respectively.

Lemma 1. Let Is∗(v) be a subset of misconnected agents under an α-approxi-
mate strong equilibrium profile s. Let I0

s∗(v) be a minimal disagreeing subset of
Is∗(v) and i ∈ I0

s∗(v) an unstable agent. Then:∑
l∈I0

s∗ (v)

cl(s) ≤ 2α
(
βv +

∑
l∈I0

s∗ (v)

x∗
l

)
(15)
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Proof. By minimality of I0
s∗(v), every agent l ∈ I0

s∗(v) is not willing to deviate
to v under s−R with a coalition of size |I0

s∗(v)| − 1. Thus for every l ∈ I0
s∗(v):

cl(s) ≤ α

(
x∗
l +

βv
|I0
s∗(v)|+ |As(v)| − 1

)
≤ α

(
x∗
l +

βv
|I0
s∗(v)| − 1

)
Summing over I0

s∗(v) yields the upper bound of (15). �

Lemma 2. Let Is∗(v) be a subset of misconnected agents under an α-approxi-
mate strong equilibrium profile s. Let I0

s∗(v) be a minimal disagreeing subset of
Is∗(v) and Js∗(v) = Is∗(v) \ I0

s∗(v). Then:∑
j∈Js∗ (v)

cj(s) ≤ α
∑

j∈Js∗ (v)

x∗
j + αβv

(
H(|As∗(v)|) −H(|I0

s∗(v)| + |As(v)|)
)

(16)

Proof. We use an argument by Albers [1]. W.l.o.g. name agents j ∈ Js∗(v) by
distinct indices 1, . . . , |Js∗(v)| and define a series of supersets of I0

s∗(v), as follows:
Ijs∗(v) = Ij−1

s∗ (v)∪{j}. Since s is an α-approximate SE, every set Ijs∗(v) contains
an agent not willing to deviate to v in coordination with Ijs∗(v); it is found either
in I0

s∗(v) \ {i} or in Ijs∗(v) \ I0
s∗(v). We can assume w.l.o.g. that for Ijs∗(v) this

agent is j; otherwise we exchange j with an agent from I0
s∗(v)\{i}. By definition

of a minimal disagreeing subset, this will not harm our previous results. Then:

cj(s) ≤ α
(
x∗
j +

βv

|Ijs∗(v)| + |As(v)| + |R|

)
, j = 1, . . . , |Js∗(v)| ∈ Js∗(v) (17)

We omit |R| and sum the inequality over j ∈ Js∗(v). The result follows. �

The following lemma will provide a lower bound for the socially optimum con-
nection cost

∑
j∈Js∗ (v) x∗

j appearing in the upper bounding expression (16).

Lemma 3. Let Is∗(v) be a subset of misconnected agents under α-approximate
strong equilibrium profile s. Let I0

s∗(v) be a minimal disagreeing subset of Is∗(v)
and Js∗(v) = Is∗(v) \ I0

s∗(v). Then for r = |I0
s∗(v)|+ |As(v)|:∑

j∈Js∗ (v)

x∗
j ≥

βv
1 + α

( |As∗(v)| − �αr�
r

− α
(
H(|As∗(v)|) −H(�αr�)

))
(18)

Proof. Let i be the fixed unstable agent of I0
s∗(v). Note that, under strategy

profile s, i does not have an incentive to join facility node sj for any j ∈ Js∗(v).

Thus if j pays for sj a share of
βsj

λj
(that is, sj serves λj agents in total in s):

ci(s) ≤ α

(
d(ui, sj) +

βsj

1 + λj

)
≤ α

(
d(ui, v) + d(uj , v) + d(uj , sj) +

βsj

λj

)
⇒

ci(s) ≤ α
(
x∗

i + x∗
j + cj(s)

)
≤ α

(
x∗

i + x∗
j + α

(
x∗

j +
βv

|Ij
s∗(v)| + |As(v)|

))
(19)
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The last inequality derives by (17) for cj(s) and by safely omitting |R|. Using (19)
and the lower bound for ci(s) by (14), we solve for x∗

j . By definition of Ijs∗(v) in
lemma 2, |Ijs∗(v)| = |I0

s∗(v)|+ j, j = 1, . . . , |Js∗(v)|. Then for j = 1 . . . |Js∗(v)|:

x∗
j ≥ max

{
0,

βv
1 + α

( 1
|I0
s∗(v)|+ |As(v)| −

α

j + |I0
s∗(v)| + |As(v)|

)}
Finally we sum up the latter bound over all j. Notice that x∗

j becomes non-zero
only when j+ |I0

s∗(v)|+ |As(v)| ≥ α(|I0
s∗ (v)|+ |As(v)|). Since j+ |I0

s∗(v)|+ |As(v)|
is an integral value, it turns out that x∗

j becomes non-negative for those values of
j for which it is j + |I0

s∗(v)|+ |As(v)| ≥ �α(|I0
s∗ (v)|+ |As(v)|)�. Then, by setting

r = |I0
s∗(v)|+ |As(v)|, and by summing up over all j we obtain (18). �

Proof of Theorem 3. We put everything together. A lower bound on cv(s∗) is:

cv(s∗) ≥ βv +
∑

j∈Js∗ (v)

x∗
j +

∑
l∈I0

s∗ (v)

x∗
l +

∑
i∈As(v)

x∗
i (20)

Accordingly, we obtain the following upper bound on
∑
i∈As∗ (v) ci(s) by (15):

∑
i∈As∗(v)

ci(s) ≤
∑

l∈I0
s∗ (v)

cl(s) +
∑

j∈Js∗ (v)

cj(s) +
∑

i∈As(v)

ci(s)

≤ 2α
(
βv +

∑
l∈I0

s∗ (v)

x∗
l

)
+

∑
j∈Js∗ (v)

cj(s) +
∑

i∈As(v)

ci(s) (21)

We use (20), (21) for bounding 1
cv(s∗)

∑
i∈As∗ (v) ci(s), and substitute by (16),

(18). Using bounds γ + ln m ≤ H(m) ≤ 1 + lnm for the harmonic numbers
(γ > 0.5 is Euler’ constant), and �αr� ≤ (1 + α)r, we obtain:

SPoA ≤ 1 + 2α + 2α
1 − γ + ln |As∗ (v)|

r

1
1+α

(
|As∗ (v)|

r
− α ln |As∗ (v)|

r
+ α(γ + ln α − 1)

)
We substitute γ with 0.5 and, by setting y = |As∗(v)|

r , we simplify to:

SPoAα < 1 + 2α + 2
√

e(1 + α)
ln α + ln(y

√
e/α)

y
√

e/α−√e ln(y
√

e/α)

For x > 0 it is 1
x−√

e ln x = O(1) and lnx
x−√

e ln x = O(1), thus SPoAα = O(α ln α).

Corollary 2. The Price of Anarchy of e-approximate strong equilibria for the
metric unweighted Facility Location game is O(1).

5 Future Work

Computing PNE and approximate strong equilibria remains wide open. Hardness
results in this respect would be of major interest as they would not only apply
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to facility location, but also to more general models. Besides being of indepen-
dent interest, further improvements of approximation algorithms might lead to
insights in this area. In particular, one might produce a better way of assigning
agents to facilities in Algorithm 2. Studying the quality of computed (approxi-
mate) equilibria would be of importance as well. A wide range of approximation
algorithms are known for the classical facility location problem, some of which
might be modified to produce approximate equilibria of low cost. Finally, the
existence of PNE of weighted facility location games with uniform facility costs
remains unresolved.
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Abstract. The Single Source Shortest Paths problem with positive edge
weights (SSSPP) is one of the more widely studied problems in Opera-
tions Research and Theoretical Computer Science [1,2] on account of its
wide applicability to practical situations. This problem was first solved
in polynomial time by Dijkstra [3], who showed that by extracting ver-
tices with the smallest distance from the source and relaxing its outgoing
edges, the shortest path to each vertex is obtained. Variations of this gen-
eral theme have led to a number of algorithms, which work well in prac-
tice [4,5,6]. At the heart of a Dijkstra implementation is the technique
used to implement a priority queue. It is well known that using Dijkstra’s
approach requires Ω(n log n) steps on a graph having n vertices, since it
essentially sorts vertices based on their distances from the source. Ac-
cordingly, the fastest implementation of Dijkstra’s algorithm on a graph
with n vertices and m edges should take Ω(m + n · log n) time and con-
sequently the Dijkstra procedure for SSSPP using Fibonacci Heaps is
optimal, in the comparison-based model. In this paper, we introduce a
new data structure to implement priority queues called Two-Level Heap
(TLH) and a new variant of Dijkstra’s algorithm called Phased Dijkstra.
We contrast the performance of Dijkstra’s algorithm (both the simple
and the phased variants) using a number of data structures to imple-
ment the priority queue and empirically establish that Two-Level heaps
are far superior to Fibonacci heaps on every graph family considered.

1 Introduction

This paper is concerned with the design of fast empirical strategies for the Single
Source Shortest Path problem with positive weights (SSSPP). SSSPP is one of
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the more widely studied problems within the Operations Research and Theo-
retical Computer Science communities on account of its wide applicability. This
problem was first solved efficiently in [3] using a variant of Breadth-First Search
(BFS). Since then, a number of variants of the general relaxation-based theme
have been proposed, each claiming success on a select class of inputs. At the
heart of the Dijkstra approach is a priority queue structure which implements
the Extract-Min() and Decrease-Key() operations efficiently [1]; indeed
the technique used for implementing the priority queue, more or less determines
the complexity of the Dijkstra implementation. The three common techniques
of priority queue implementation are arrays, binary heaps and Fibonacci heaps.
A Dijkstra implementation using Fibonacci heaps runs in O(m + n · log n) time,
on a graph with n vertices and m edges and this is the best that one can hope
for in a comparison-based model using the Dijkstra approach, since Dijkstra’s
algorithm sorts the vertices in terms of their actual distances from the source.
However, Fibonacci heaps are notoriously difficult to implement and analyze;
consequently, there is sufficient interest in investigating whether simpler alterna-
tives providing comparable performance exist. This paper answers that question
in the affirmative by detailing a modification of binary heaps called Two-Level
Heaps (TLH) that are simple to visualize, analyze and implement and yet out-
perform Fibonacci heaps on all graph families that we considered. Our results are
particularly surprising, since the asymptotic complexity of Dijkstra’s algorithm
using TLHs is worse than the complexity using Fibonacci heaps.

The principal contributions of this paper are as follows:

(a) The introduction of a new data structure called Two-Level Heaps (TLHs);
although this structure was invented primarily for Dijkstra’s algorithm, it
can be used in any situation where a priority queue is required.

(b) The introduction of the Phased-Dijkstra algorithm; although asymptotically
no better than simple Dijkstra, it performs better empirically.

2 Preliminaries

We assume that we are given a graph G =< V, E, s > with V denoting the
vertex set, E denoting the edge set and s denoting the source vertex. Associated
with each edge is it The basic Dijkstra approach is described by Algorithm 2.1.

The Relax() operation is described by Algorithm 2.2.
There are two important operations that determine the complexity of Al-

gorithm 2.1, viz., the Extract-Min() operation, which is performed once per
vertex, and the Relax() operation, which is performed once per edge. The latter
operation is performed through a Decrease-Key() operation on the appropri-
ately defined priority queue. Accordingly, the running time of Algorithm 2.1 is
n ∗ TE + m ∗ TD, where TE denotes the time required for an Extract-Min()
operation and TD denotes the time required for a Decrease-Key() operation.
When Algorithm 2.1 completes execution, the shortest path distances are stored
in the d[] array. Typical implementations include a storage structure to represent
the Shortest Path Tree (SPT), but we will not be concerned with the SPT.
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Function Single-Source-Shortest-Path (G =< V, E, s >)
1: S ← φ; Q ← V .
2: {S contains the vertices whose shortest paths from the source have been deter-

mined, while Q is the queue containing the remaining vertices. The actual distance
of a node v ∈ V from the source s is stored in d[v], while its parent in the current
Shortest Path Tree is stored in π[v]. The graph G itself is stored in adjacency
list form, with the nodes that are adjacent to node u being stored in a linked list
Adj[u]. If vertex v is on vertex u’s adjacency list, then c(u, v) denotes the cost of
the edge from u to v. }

3: for (each vertex v ∈ V) do
4: π[v] = Nil
5: d[v] = ∞
6: end for
7: π[s] = s
8: d[s] = 0
9: while (Q �= φ) do

10: r ← Extract-Min(Q)
11: {It is the structure of the priority-queue Q that determines the efficiency of the

update operations in Dijkstra’s algorithm.}
12: S ← S ∪ {r}
13: for (each vertex v ∈ Adj[r]) do
14: Relax(r, v)
15: end for
16: end while

Algorithm 2.1. Dijkstra’s Algorithm

3 Phased Dijkstra

We build on the ideas of the last section to develop a phase-based implemen-
tation of Dijkstra’s algorithm. This implementation requires the following data
structures:

(i) A heap structure H , and
(ii) A current array A.

We first run a Breadth-First search (BFS) on G from the source s and update
the d[ ] values of vertices using this search. Note that the BFS updates the

Function Relax (u, v)
1: if (d[v] > d[u] + c(u, v)) then
2: d[v] = d[u] + c(u, v)
3: π[v] = u
4: end if

Algorithm 2.2. The Relax Procedure
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distance labels of vertices in the order that vertices are seen. Accordingly, the
distance label of a vertex is set exactly once. The d[ ] values returned by the
BFS serve as a first approximation to the true shortest path values. The vertices
are then organized as a priority queue H . This is followed by extracting the
log n smallest elements in H and placing them in A. The idea behind the BFS
is that in many representative families (especially sparse graphs), we get an
approximation which is very close to the actual shortest path distances to many
of the vertices in the graph. Thus, the number of queue operations is reduced.

An Extract-Min() operation is performed by searching through the ele-
ments of A; this can be done in log n time. If the array A is emptied as a con-
sequence of the Extract-Min(), then an additional log n elements are moved
from H into A.

Let us now study the Decrease-Key() operation, which involves the follow-
ing steps:

(a) If the element whose key is decreased is in A, then decreasing the key is an
O(1) operation.

(b) If the element whose key is decreased is in H , then the corresponding el-
ement could become the smallest element in H . In this case, the element
is compared with the largest element in A and an appropriate exchange is
made.

Clearly the time taken for a Decrease-Key() operation is proportional to the
time required for an Extract-Min() operation on H . We thus see that from
an asymptotic perspective, the phased Dijkstra approach is no better than the
regular Dijkstra algorithm described in Section 2.

4 Two-Level Binary Heaps

As described in Section 2, there are n Extract-Min() calls and m Decrease-
Key() calls in the basic flow of Dijkstra’s algorithm. We now propose the follow-
ing Two-Level binary heap, which permits implementations of these operations
which are more efficient than the traditional Binary Heap.

Assume that the n vertices are divided into logk n min-heaps, each contain-
ing n

logk n
elements1. The minimum elements of these heaps are then further

organized as a linked list D.
Note that there are at most n/ logk n elements in each of the min-heaps and

at most logk n elements in D.
To perform an Extract-Min() operation on this structure, we first deter-

mine the smallest element in D; this takes logk n time. This element is removed
from D as is its mirror in the corresponding min-heap, say H . An element from
H is then bubbled to the top and into D. Clearly the total number of steps is
logk n + log n

logk n
, which simplifies to ≤ 2 · logk n. Note that for an Extract-

Min() operation, logk n comparisons must be carried out.

1 We use logk n to represent (log n)k, as described in [1].
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Linked List D

Fig. 1. Two-Level heap

Consider a Decrease-Key() operation; in the worst-case, an element in one
of the min-heaps could bubble all the way to the top replacing its current rep-
resentative in D; the time taken for this operation is log n

logk n
.

Thus the total number of operations taken by Algorithm 2.1 is:

f(k) = 2n · logk n + m · [log
n

logk n
] (1)

Optimizing for k, we get

k =
log[m log logn

2n ln log n ]

log log n
(2)

Note that even at k = 1, our data structure beats simple min-heaps, so that for
the value of k calculated above, we should do much better. It is very important
to note that for each input graph, the value of k has to be recalculated and the
data structure has to be built accordingly. Secondly, for very sparse graphs, it
is possible that the optimal value of k is negative; in this case, we choose k = 1.

5 Performance Analysis

5.1 Experimental Setup

Our test platform for performance results is a 2.8 GHz 32-bit Intel Xeon machine
with 4GB memory, 512KB cache and running RedHat Enterprise Linux 4. We
build our codes with the Intel C compiler (icc) Version 9.0 and the optimization
flag -O3.

We report the execution time of a baseline Breadth-First Search implementa-
tion for comparison with our shortest path code running times. The BFS running
time is a natural lower bound for our SSSPP codes and is a good indicator of
how close to optimal the shortest path running times are. It also removes depen-
dencies of low-level implementation details and cache effects. Further, it gives us
an estimate of the initialization time in the phased Dijkstra algorithm.

We represent the graph (vertex degree and adjacencies) using cache-friendly
adjacency arrays [7], which takes optimal O(m+n) space. Note that the ordering
of vertex IDs determines how the graph is traversed. For the synthetic graph
instances we experiment with, we randomly permute the vertex IDs so that
there is no locality in the input graph. For each test instance, we choose five
shortest path source vertices randomly. For each source vertex, we determine the
shortest path tree and distances ten times, and compute the average execution
time, removing the best and worst cases.
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Our two-level binary heap implementation works for both directed and undi-
rected instances. We use eight bytes to represent the edge weight, which can be
either an positive integer or a positive real number.

5.2 Problem Families

We study performance on graph instances from several different families. How-
ever, we do not include dense graphs where m = Ω(n2) in our experiments for
two reasons: (a) Dijkstra’s algorithm with an array for a priority queue is ac-
tually a linear time algorithm in this case (b) dense graphs for the graph sizes
that we studied do not fit into the DRAM memory of our computer.

The synthetic graph families we experiment with are listed below. Some of
the generators and graph instances are part of the 9th DIMACS Shortest Path
Implementation Challenge benchmark package [8].

Random graphs : We generate graphs according to the Erdos-Renyi random graph
model, and ensure that the graph is connected. The generator may produce
parallel edges as well as self-loops. The ratio of the number of edges to the
number of vertices, and the weight distribution, can be varied. We experiment
with the following variants of random graphs:

– iRandom-n: Integer weight edges, the maximum weight is set to n, m is set
to 4n. n increases by a factor of two for one set of parameter values to the
next. 221. Maximum weight is varied from 28 to 220, in multiples of sixteen.

– rRandom-n: Real weighted edges uniformly chosen from [0, 1], m is set to
4n. n increases by a factor of two for one set of parameter values to the next.

– iRandom-m: Integer weight edges, the maximum weight is set to n, m is
varied from n to n

√
n.

Mesh graphs : These are synthetic two-dimensional meshes with grid dimensions
x and y. We generate Long grids where x = n

16 and y = 16 for this study.
The diameter of these graphs is significantly higher than random graphs, and
the degree distribution is uniform. We define the graph families (iLong-n and
rLong-n similar to the Random graph family.

Small-world networks : We use the Recursive MATrix (R-MAT) [9] random graph
generation algorithm to generate input data sampled from a Kronecker product
that are representative of real-world networks with a small-world topology. As
in the above random graph classes, we set m = 4n, and experiment with both
integer (iSW ) and real-weighted (rSW ) graphs. Small-world networks have a
low diameter and an unbalanced degree distribution.

The graph generators we use write the graphs to disk in plain text format,
which the shortest path implementations parse and load to memory. The graph
generation and loading steps are not timed.

5.3 Shortest Path Implementations

The worst case complexity of Dijkstra’s algorithm depends on the priority queue
implementation used to store the visited vertices. Cherkassky et al. [10] con-
ducted an extensive experimental evaluation of data structures for solving the
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shortest paths problem with non-negative integral edge weights. We use the code
from the SPLIB library [11] (that implements the data structures discussed in
[10]) for comparison with our two-level binary heap data structure. Note that
both our implementation and SPLIB use the same internal representation for the
graph (adjacency arrays), are coded in C, compiled with the same compiler (Intel
C compiler) and optimization flags, and execution time results are obtained with
an identical experimental test setup. We make straight-forward modifications to
the Fibonacci Heap and Binary Heap implementations in SPLIB to handle real
edge weights.

We compare the performance of Dijkstra’s algorithm for graphs with both
real and integer weights using the following priority queue representations:

– Queue: storing the visited vertices in an array, which results in a worst case
complexity of O(n2).

– BHeap: using a binary heap that runs in O(m log n) time.
– Fib: using Fibonacci heaps, that has a worst case O(m+n log n) complexity.
– TLHeap: our two-level heap data structure.

We also evaluate the performance of the Phased Dijkstra algorithm using all
the priority queue representations. We denote the implementations PhBHeap,
PhFib and PhTLHeap.

5.4 Experimental Results

For each graph family, we present two plots, one corresponding to Dijkstra’s
algorithm implementations and the second for phased Dijkstra implementations
with the same data structures. Figure 2 gives the performance of the various
data structures for the iRandom-n family, where the number of vertices varied
by two orders of magnitude from 218 to 224. We find that TLHeap outperforms
the other implementations for problem instances where n is greater than 220.
On an average, the TLHeap implementation is 1.6× faster than BHeap and
2.64× faster than Fib. The performance of the phase-based Dijkstra implemen-
tations for the heap and two level-heap implementations are comparable to the
regular Dijkstra implementations. However, the phase-based Dijkstra with a Fi-
bonacci heap priority queue implementation performs better than Fib (a 20%
improvement for the largest problem size). Note that in case of the iRandom
graph family, the number of vertices in the priority queue is typically large. Our
heuristic of maintaining a current array in the phased Dijkstra implementation
improves the performance of the Fibonacci heap implementation. As the prob-
lem size increases, the performance of the Fibonacci heap implementation does
not scale as well as the other data structures. This can be attributed to the
pointer-intensive nature of the Fibonacci heap data structure, which leads to
poor cache performance in comparison to the other implementations.

In Figure 3, we observe trends identical to integer-weighted case. For large
networks, TLHeap performs better than the other implementations. Phased Di-
jkstra results in a minor 5% improvement in performance of TLHeap and BHeap
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(a) (b)

Fig. 2. Execution time for graph instances from the iRandom-n family. n is varied from
218 to 224, and m is set to 4n.

(a) (b)

Fig. 3. Execution time for graph instances from the rRandom-n family. n is varied
from 218 to 224, and m is set to 4n.

(a) (b)

Fig. 4. Execution time for graph instances from the iLong-n family. n is varied from
218 to 224, and m is set to 4n.
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(a) (b)

Fig. 5. Execution time for graph instances from the rLong-n family. n is varied from
218 to 224, and m is set to 4n.

(a) (b)

Fig. 6. Execution time for graph instances from the iSW-n family. n is varied from 218

to 224, and m is set to 4n.

for this family. The results show that our implementations perform equally well
on graphs classes with integer and real-weighted edges.

Figure 4 and 5 give the performance of our implementations on integer and
real-weighted mesh networks respectively. These are high diameter graphs, and
the number of visited vertices in the priority queue is comparatively smaller than
the Random-n family of graphs. In this case, the running times of BHeap is nearly
twice as slow as the reference BFS. TLHeap is slightly slower than BHeap, as the
overhead for having two levels is not justified with a low number of vertices in
the priority queue in practice. The performance of Fib is comparable to TLHeap.
For smaller problem sizes, the running time of Queue may be comparable to the
other implementations. There are also no significant gains in using the phase-
based Dijkstra for any of the data structures.

Figure 6 gives the performance of the implementations for synthetic small-
world networks with integer-weighted edges. These are typically low diameter
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(a) (b)

Fig. 7. Execution time for graph instances from the iRandom-m family. n is set to 217,
and m is varied from 220 to 225.

graphs, and we expect the performance to be similar to the Random-n family.
TLHeap and PhTLHeap outperform the other Dijkstra-based implementations,
and the performance of PhFib is significantly better than Fib. The running time
of TLHeap is on an average 1.23× the time taken for BFS, which is the best
result across all graph families.

Next, we vary the network sparsity for the random graph family. Figure 7
plots the performance as m is varied across two orders of magnitude, keeping
n fixed. We observe the same trends as in the previous case of the iRandom-n
family. As m increases, the performance of TLHeap and BHeap is very similar,
and they are faster than Fib.

6 Conclusion

Our work in this paper was motivated primarily by the need to find a simpler
alternative to Fibonacci heaps. Towards this end, we designed the Two-Level
Heap structure, which is easy to implement and analyze. When the data struc-
ture was designed, we expected that its performance over Dijkstra computations
would be comparable (and perhaps somewhat inferior) to the performance of
Fibonacci heaps. Our empirical results seem to indicate that not only are Two-
Level heaps comparable to Fibonacci heaps, but that they are far superior to the
same. This observation is very surprising, considering that Two-Level heaps are
in fact asymptotically inferior to Fibonacci heaps over Dijkstra computations.
We also note that Two-Level heaps are stand alone structures and could con-
ceivably be used as priority queues in more general applications; consequently,
a more detailed study of this structure is merited.
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Abstract. Reingold et al. introduced the notion zig-zag product on
two different graphs, and presented a fully explicit construction of d-
regular expanders with the second largest eigenvalue O(d−1/3). In the
same paper, they ask whether or not the similar technique can be used
to construct expanders with the second largest eigenvalue O(d−1/2).
Such graphs are called Ramanujan graphs. Recently, zig-zag product
has been generalized by Ben-Aroya and Ta-Shma. Using this technique,
they present a family of expanders with the second largest eigenvalue
d−1/2+o(1), what they call almost-Ramanujan graphs. However, their con-
struction relies on local invertible functions and the dependence between
the big graph and several small graphs, which makes the construction
more complicated.

In this paper, we shall give a generalized theorem of zig-zag prod-
uct. Specifically, the zig-zag product of one “big” graph and several
“small” graphs with the same size will be formalized. By choosing the big
graph and several small graphs individually, we shall present a family of
fully explicitly almost-Ramanujan graphs with locally invertible function
waived.

1 Introduction

Expanders are graphs of low-degree and high connectivity. There are several ways
to measure the quantity of expansion. Geometrically, every subset of vertex set
has “many” neighbors. Algebraically, we consider the adjacency (or Laplacian)
matrix of the graph and expanders are those graphs whose second largest eigen-
value of adjacency matrix are small. From the probabilistic viewpoint, expanders
can be considered as the time reversible Markov chain which has low mixing time.

Since the first construction of expanders [8], there has been a number of ex-
pander constructions using number theory [7,8,9]. On the other hand, expanders
have been shown a powerful tool in Theoretical Computer Science and can be
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used to reduce the need of randomness, find good error-correcting codes, con-
struct new proofs of PCP Theorem, derandomize some complexity classes, and
so on. This line of research leads to a number of combinatorial construction for
expanders. Ajtai [1] presented a combinatorial construction of cubic expanders.
However, his construction leaked any simply described form as well as the ex-
plicitness level of the algebraic construction. Reingold et al. [10] proposed the
notion zig-zag product. Using this product as well as the replacement product,
which is widely used in Graph Theory, they constructed a family of expanders.
Relying on revised replacement products, Alon et al. [2] constructed constant-
degree expanders. In a very different setting, Reingold [11] used zig-zag product
and graph powering to reduce any graph into expanders. Using this technique, he
presented a logarithmic space algorithm for solving UNSTCON problem, which
implies SL=L in Complexity Theory, and was open for many years.

In the following, we use the second largest eigenvalue λ2(G) associated with
the normalized adjacency matrix of the graph G to characterize the algebraic
expansion. Furthermore, any d-regular graph satisfying λ2(G) ≤ 2

√
d− 1/d is

called Ramanujan graphs. Regarding this topic, Lubotzky et al. [7] firstly con-
structed a family of Ramanujan graphs. Following their work, there are several
constructions on Ramanujan graphs, see [9] for example.

On the other hand, it has been shown that there exist expanders with better
parameters [12], though the explicit construction is open. Friedman [5] showed
that almost all the random graphs are Ramanujan graphs. Relying on zig-zag
products and const-size Ramanujan graphs, Reingold et al. [10] obtained a family
of d-regular expanders with the second largest eigenvalue O(d−1/3). In the same
paper, they ask whether or not the similar technique can be used to construct
expanders with the optimal eigenvalue O(d−1/2). Very recently, Ben-Aroya et al.
[4] presented a fully constructible family of d-regular expanders {Gi} satisfying
λ2(Gi) ≤ d−1/2+o(1), what they call almost-Ramanujan graphs.

Here we call an N -vertex d-regular graph explicitly constructible if the con-
struction algorithm satisfies the following three properties: (1) We can build the
entire graph in poly(N) time; (2) From a vertex v, we can find the i-the neigh-
bor within running time poly(log N, log d); (3) Given vertices u and v, we can
determine whether or not they are adjacent in poly(log N) time.

Our Results: In this paper, we shall generalize the standard definition of zig-zag
product proposed in [10]. Compared with Ben-Aroya et al.’s definition [4], our
generalized zig-zag product is more natural and allows us to choose the big graph
as well as several small graphs independently. Employing this new zig-zag prod-
uct, we shall present a family of fully explicitly constructible almost-Ramanujan
graphs. Compared with the previously best construction, our method is simpler,
and makes the iterative construction more efficient.

More specifically, our construction shall be divided into four steps: (1) Choose
a set of small graphs H = (H1, · · · , Hk) from GN2,D2 uniformly and indepen-
dently, where N2 and D2 are constant numbers. Verify that each graph satisfies
the given spectral upper bound. (2) Choose constant-size graphs G1 and G2. (3)
Let Gt+1 =

(
G t−1

2 � ⊗G� t−1
2 �

)2 ©z H. (4) Iteratively construct the graph using
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(3) to obtain the family {Gi}. Our analysis shall show that each graph in {Gi}
is almost-Ramanujan.

2 Preliminaries

Notations: We use [N ] to express the set consisting of N elements. GN,d is
defined as the set of d-regular graphs with N vertices. For any vector α, |α|1 :=∑n

i=1 |αi|. For vectors α ∈ IRN1 and β ∈ IRN2 , the tensor product of α and β

is the vector α ⊗ β ∈ IRN1·N2 whose (i, j)’s entry is αi · βj . If A is an N1 × N1
matrix and B is an N2×N2 matrix, then (A⊗B)(α⊗ β) = (Aα)⊗ (Bβ) for all
α and β.

In addition, SΛ represents the permutation group over Λ.

Spectral Expansion: For the given undirected d-regular graph G with nor-
malized adjacency matrix M , denote λ2 be the second largest eigenvalue of M .
Furthermore, a graph is said to have spectral expansion λ if and only if λ2 ≤ λ.
In the following we use (N, d, λ) to express a d-regular graph consisting of N
vertices and the second largest eigenvalue is bounded by λ. On tensor prod-
uct, it has been shown in [10] that if G1 is an (N1, D1, λ1)-graph and G2 is an
(N2, D2, λ2)-graph, then G1 ⊗G2 is an (N1 ·N2, D1 ·D2, max(λ1, λ2))-graph.

It is well known that λ is a key quantity to estimate the “randomness” of
graph G, and also has close relationship with chromatic number, the size of
independent set, and some other combinatorial quantities. For those who are
not familiar with this topic, we refer to the excellent surveys [2,6].

It is easy to show that for any connected non-bipartite graph G, λ(G) < 1.
On the other hand, N. Alon et al. proved that for any d-regular n-vertex graph
λ ≥ 2

√
d− 1/d − on(1), where on(1) term is a quantity that tends to zero for

every fixed d as n →∞. Thus, any d-regular graph G satisfying λ(G) ≤ λRam :=
2
√

d− 1/d is called Ramanujan Graphs.

Theorem 1 ([5]). For every δ > 0 and for every even d, there exists a constant
c > 0, independent of N , such that

Pr
G∼GN,d

[λ(G) ≥ λRam + δ] ≤ c ·N−�(√d−1+1)/2�−1.

Graph Powering: Graph powering in our paper is used to decrease the spec-
tral expansion, with the cost of increasing degree. By the basic Linear Alge-
bra, we know that if G is an (N, d, λ)-graph, then Gk, the k-th powering of
the adjacency matrix of G, represents an (N, dk, λk)-graph. From the rotation
map’s perspective, if G is a d-regular graph with rotation map RotG, then
the k-th powering of G is a dk-regular graph whose rotation map is given by
RotGk(v0, (a1, · · · , ak)) = (vk, (bk, · · · , b1)), where the values b1, · · · , bk and vk
are computed via the rule (vi, bi) = RotG(vi−1, ai).

Replacement Product: Let G = (V, E) be a d-regular graph. Assume that for
every v ∈ V , its d edges are labeled from 1 to d. Let v[i] be the i-th neighbor of
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v in G. The rotation map of G, RotG : V × [d] �→ V × [d], is defined as follows:
RotG(v, i) = (u, j) if v[i] = u[j].

For D-regular graph G with N vertices and d-regular graph H with D vertices,
the replacement product, denoted as G©r H , is a (d + 1)-regular graph with
N ·D vertices. Each vertex in G is replaced by graph H , called a cloud. Moreover,
RotG©r H((u, k), i) = ((v, 	), j) if and only if u = v and RotH(k, i) = (	, j), or
i = j = d + 1 and RotG(u, k) = (v, 	).

Zig-Zag Product: Relying on rotation maps, zig-zag product is defined in the
following way.

Definition 1 ([10]). If G is a D-regular graph on [N ] with rotation map RotG
and H is a d-regular graph on [D] with rotation map RotH , then their zig-zag
product G©z H is defined to be the d2-regular graph on [N ] × [D] whose rota-
tion map RotG©z H is as follows: (1) Let (a′, i′) = RotH(a, i); (2) Let (w, b′) =
RotG(v, a′); (3) Let (b, j′) = RotH(b′, j); (4) Output ((w, b), (j′, i′)) as the value
of RotG©z H((v, a), (i, j)).

Zig-zag product corresponds to 3-step walks on the replacement product graph,
where the first and the last steps are in the inner-cloud edges and the middle
step is an inter-cloud edge, and each vertex in the cloud corresponds to an
edge starting from the vertex which the cloud represents. O. Reingold et al.
[10] showed that λ(G ©z H) was bounded by λ(G) and λ(H). Formally, if G
is an (N, D, λ1)-graph and H is a (D, d, λ2)-graph, then λ(G©z H) is an (N ·
D, d2, f(λ1, λ2))-graph where

f(λ1, λ2) =
1
2
(1− λ2

2)λ1 +
1
2

√
(1− λ2

2)2λ2
1 + 4λ2

2.

It is easy to show that if λ1 < 1, λ2 < 1 then f(λ1, λ2) < 1. Thus zig-zag product
can be used to reduce two expanders into a new expander. In that paper, two
variations of zig-zag product have also been discussed. In 2008, this standard
definition of zig-zag product, as shown in Definition 1, has been generalized
by Ben-Aroya et al. [4] in the following way. Instead of taking a random walk
on a big graph G and two steps on the same small graph H , A. Ben-Aroya
et al. considered the zig-zag product on one big graph G and several small
regular graphs H = (H1, · · · , Hk) with the same vertex number. However, the
analysis of the zig-zag product described in their paper relies on the notion local
invertible function, which makes their construction more complicated and lacks
the generally well-understood description. Moreover, in order to compute this
kind of zig-zag product, one have to deal with directed expanders and convert
such expanders into undirected ones.

3 Generalized Zig-Zag Product

In this section, we shall present a generalized zig-zag product. Compared with
the revised zig-zag product presented by A. Ben-Aroya et al., a more natural
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generalization of standard zig-zag product [10] will be studied. We start our
discussion with the notion local inversion function, which is used and plays a
critical role in A. Ben-Aroya et al.’s construction.

Definition 2 ([4]). A d-regular graph G is locally invertible if its rotation map
is of the form RotG(v, i) = (v[i], ψ(i)) for some permutation ψ : [d] �→ [d]. We
say that ψ is the local inversion function.

Lemma 1. Every d-regular graph G = (V, E) is locally invertible.

Proof. First of all, we consider the case that the vertex number of G = (V, E)
is even. In such case, G can be considered as the union of d perfect matchings
on V . For each perfect matching, we label the edges with respect to each vertex
the same number. Thus the identity mapping φ : [d] �→ [d] is the local inversion
function.

On the other hand, if |V | is odd, then the degree d is even and G can be seen
as the union of d/2 edge-disjoint cycles. For the i-th cycle, 1 ≤ i ≤ d/2, the
edges with respect to each vertex is labeled by 2i− 1 and 2i respectively. Thus
the local inversion function ψ can be written as

ψ(i) =

{
i + 1 i is odd
i− 1 i is even.

Thus every regular graph is locally invertible. �

Without loss of generality, we assume that the number of vertices for each graph
is even. However, as described in the following, this local inversion function of the
lemma above will be used throughout this paper. Actually this function suffices
to construct almost-Ramanujan graphs.

Now we turn to show the generalized definition of zig-zag product. The input
is as follows:

– A “big” graph G1 = (V1, E1) with parameter (N1, D1, λ1).
– k “small” graphs H = (H1, · · · , Hk), where each graph Hi is an (N2, D2, λ2)-

graph over the vertex set V2 such that |V2| = N2 = D4k
1 .

Let the resulting graph be G, a Dk
2 -regular graph with vertex number |V1| ×

|V2|. Each edge in G is expressed by i = (i1, · · · , ik) ∈ [D2]k. For any vertex
v = (v(1), v(2)) ∈ V1 × V2, RotG(v, i) is defined in the following way: We start
from vertex v =

(
v
(1)
0 , v

(2)
0

)
. For j = 1, · · · , 2k−1, if j is odd, we set t = (j+1)/2

and take one step on Ht(·, it), i.e. v
(1)
j = v

(1)
j−1 and (v(2)

j , it) = RotHt(v
(2)
j−1, it).

On the other hand, for even j, let v
(1)
j = v

(1)
j−1

[
π(v(2)

j−1)
]

and v
(2)
j = v

(2)
j−1 where

π(v) is the first D1 bits of v. Finally, Rot(v, i) =
(
(v(1)

2k−1, v
(2)
2k−1), (ik, · · · , i1)

)
.

In summary, we begin with a D1-regular graph over N1 vertices (we think
of D1 as a constant and N1 = |V1| as a growing parameter). We replace each
D1-degree vertex with a “cloud” of D4k

1 vertices, and map a cloud vertex to a
D1 instruction employing π. We then take a (2k−1)-step walk, with alternating



202 H. Sun and H. Zhu

H and G1 steps, over the resulting graph. Notice that, compared with zig-zag
product [4], our definition only relies on one “big” graph as well as several “small”
graphs. In this sense, we say our construction is a more natural generalization
of standard zig-zag products.

4 Analysis

Instead of dealing with graphs G1 and H , we consider the vertex sequence in-
duced by permutations. Intuitively, we want to prove that if every small graph is
almost-Ramanujan, then such sequence of graphs as well as a big const-size graph
can be used to construct the almost-Ramanujan graphs with increasing size. In
order to achieve this goal, one has to deal with the vertex sequence induced by
the resulting graph in the sense that almost-Ramanujan graphs, similarly with
random graphs, have low mixing time, and the vertex sequence is like random
ones after short steps over the resulting graph. To formulate this intuition, we
use the following definitions as well as lemmas to analyze the spectral expansion
of the resulting graph.

Definition 3 (Permutation sequence). Let γ1, · · · , γk−1 : V2 �→ V2 be per-
mutations. Denote γ = (γ1, · · · , γk−1). The permutation sequence q = (q0, · · · ,
qk−1) induced by γ is defined as follows:

– q0(v(2)) = v(2).
– For 1 ≤ i < k, qi(v(2)) = γi(qi−1(v(2))).

Notice that after graph G1, the second component v(2) is not changed, whereas
after a small graph Hi, corresponding to permutation γi, the second component
qi−1(v(2)) becomes γi(qi−1(v(2))). Thus qi(v) is the V2 value after (2i− 1) steps,
starting with v(2) and alternating between Hi and G1.

We know that the behavior of Markov chain on a good expander is similar with
randomly regular graphs, i.e. random walks on good expanders mix rapidly to
the stable distributions. On the other hand, Theorem 1 states that almost all the
random graphs are Ramanujan graphs. To characterize the randomness of the
vertex sequence q induced by H , we introduce the notion “ε-pseudorandomness”
as well as “ε-good”. Since G1 can be considered as permutations, such operations
do not change the randomness involving in q.

Definition 4. Let q0, · · · , qk−1 : V2 �→ V2 be the permutation sequence induced
by γ = (γ1, · · · , γk−1). γ is called ε-pseudorandom if∣∣∣π(q0(U)) ◦ · · · ◦ π(qk−1(U))− U[D1]k

∣∣∣
1
≤ ε,

where π(q0(U))◦· · ·◦π(qk−1(U)) is the distribution obtained by picking v(2) ∈ V2
uniformly at random and outputting π(q0(U)) ◦ · · · ◦ π(qk−1(U)) and U[D1]k is
the uniform distribution over [D1]k.
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Notice that every D2-regular graph Hi can be considered as the union of D2
permutations Hi,1, · · · ,Hi,D2 . For the i-th permutation, 1 ≤ i ≤ D2, we label
all the edges i with respect to each vertex. From this way, it is easy to see that
the local inversion function involving in the rotation map coincides with the one
used in Lemma 1.

Definition 5 (ε-good). Let H = (H1, · · · , Hk) be a k-tuple of D2-regular
graphs over V2. We say H is ε-pseudorandom, if we can express each graph
Hi as Hi = 1

D2

∑D2
j=1Hi,j such that

– Hi,j is the transition matrix of a permutation γi,j ∈ SV2 .
– For any 1 ≤ 	1 ≤ 	2 ≤ k, j1 , · · · , j2 ∈ [D2], the sequence γ1,j�1 , · · · , γ2,j�2

is ε-pseudorandom.

In addition, if for each i = 1, · · · , k, we have λ(Hi) ≤ λRam(D2)+ε, we say that
H is ε-good.

Now we follow the approach of [4] to show that with high probability the family
of randomly picked graphs from GN2,D2 is ε-good.

Lemma 2 ([4]). Let Ω be a universe and S1 ⊆ Ω a fixed subset of size m. Let
S2, · · · , Sk ⊆ Ω be uniformly random subsets of size m. Set μk = ES2,··· ,Sk

[
S1 ∩

· · · ∩ Sk
]

= mk/|Ω|k−1. Then for every 0 < ε ≤ 1/4k,

Pr
S2,··· ,Sk

[∣∣|S1 ∩ · · · ∩ Sk| − μk
∣∣ ≥ 2εkμk

]
≤ 2ke−ε

2μk/6.

Lemma 3. For every ε > 0 a sequence of uniformly random and independent
permutations γ = (γ1, · · · , γk−1) satisfies

Pr
γ1,··· ,γk−1

[
(γ1, · · · , γk−1) is not ε-pseudorandom

]
≤ Dk

1 · 2ke−Ω(εD3k
1 k−2).

Proof. Let q0, · · · , qk−1 : V2 �→ V2 be the permutation sequence induced by γ. Let
A be the distribution π(q0(U))◦ · · · ◦π(qk−1(U)) and B the uniform distribution
over [D1]k. Fix an arbitrary r = (r1, · · · , rk) ∈ [D1]k. For 1 ≤ i ≤ k, define
Si = {x ∈ V2|π(qi(x)) = ri}. Since qi is the permutation and π is regular, |Si| =
|V2|/D1, which implies that for each i, qi is a random permutation distributed
uniformly in SV2 . On the other hand, we know that q0, · · · , qk−1 are independent.
Define A = |S1 ∩ · · · ∩ Sk|/|V2|. Since

ES2,··· ,Sk

[
|S1 ∩ · · · ∩ Sk|

]
=

(|V2|/D1)k

|V2|k−1 =
|V2|
Dk

1
= D3k

1 ,

by Lemma 2 we have

Pr
r1,··· ,rk

[
|A(r)−B(r)| ≥ εD−k

1

]
≤ 2ke−Ω(εD3k

1 k−2).

Therefore the probability of event ∃r|A(r) − B(r)| > εD−k
1 is bounded by

Dk
12ke−Ω(εD3k

1 k−2). On the other hand we have |A−B|1 ≤ Dk
1 ·maxr{A(r)−B(r)}

and with probability 1−Dk
12ke−Ω(εD3k

1 k−2) we have |A−B|1 ≤ ε. �



204 H. Sun and H. Zhu

Theorem 2. For every even D2 ≥ 4, there exists a constant B, such that for
every D1 ≥ B and every k ≥ 3 the following holds: Set N2 = D4k

1 and ε = D−k
2 .

Pick H = (H1, · · · , Hk) with each Hi sampled independently and uniformly from
GN2,D2 . Then with high probability, H is ε-good.

Proof. Pick H = (H1, · · · , Hk) with each Hi sampled independently and uni-
formly from GN2,D2 , i.e. let {γi,j}i∈[k],j∈[D2/2] be a set of random permutations
chosen uniformly and independently from SV2 . For 1 ≤ i ≤ k, let Hi be the
undirected graph over V2 formed from the permutations {γi,j}j∈[D2]. Therefore
for every j1, · · · , jk ∈ [D2] the k-tuple γ = (γ1,j1 , · · · , γk,jk) is uniform in (SV2 )k.
By Lemma 3,

Pr
[
H is not ε− pseudorandom

]
≤ 2kDk

1Dk
2e−Ω(εD3k

1 k−2).

Taking ε = D−k
2 ≥ D−k

1 , the error term is at most D3k
1 e−Ω(εD3k

1 k−2).
On the other hand, by Theorem 1, the probability of choosing a graph Hi

with λ(Hi) ≥ λRam(D2) + ε is at most

c · |V2|−�(√D2−1+1)/2�−1 ≤ kcD−4k
1 .

Taking D1 large enough and applying union bound, we obtain that with high
probability H is ε-good. �

The rest of this section is devoted to prove the spectral expansion of the resulting
graph G = G1 ©z H .

Theorem 3. If G1 = (V1, E1) be an (N1, D1, λ1) graph, and H = (H1, · · · , Hk)
be a ε-good sequence of (N2 = D4k

1 , D2, λ2) graphs where each graph Hi satisfies
λ(Hi) ≤ 1/2. Then G = G1 ©z H is an

(
N1 · N2, D

k
2 , f(λ1, λ2, k)

)
graph for

f(λ1, λ2, k) = λk−1
2 + 2(ε + λ1) + λk2 .

In the resulting graph, each vertex in G1 is replaced by Hi, thus the number
of vertices in G is N1 ·N2. Notice that each edge in G is indexed by i1, · · · , ik,
where each ij ∈ [D2], 1 ≤ j ≤ k, thus G is Dk

2 -regular. So it suffices to analyze
the spectral gap of the resulting graph.

Following the approach of [4], we consider G1 as a linear operator on a dim-N1
vector space, and Ġ an operator on a vector space V of dimension N1 ·N2 that
is the adjacency matrix of the inter-clouds edges. Secondly, we let H̃ = I ⊗H .
In such case, the standard zig-zag product corresponds to H̃ĠH̃ and our goal
is to bound the second largest eigenvalue of H̃ĠH̃ . For the generalized case, we
need to bound the spectral expansion of H̃Ġ · · · ĠH̃ .

We decompose V = V1 ⊗ V2 to its parallel and perpendicular parts. V‖ is
defined by V‖ = Span{v(1)⊗1 : v(1) ∈ V1} and V⊥ is its orthogonal complement.
Intuitively, each vector in V‖ corresponds to a probability distribution on the
vertices of G = G1©z H such that the conditional distribution on the clouds are
uniform, whereas the element in V⊥ corresponds to a distribution so that the
conditional distribution on the clouds are all far from uniform. For any vector
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τ ∈ V , we denote by τ‖ and τ⊥ the projections of τ on V‖ and V⊥ respectively.
Define xi = Ġ1H̃x⊥

i−1 and yi = Ġ1H̃k−i+1y
⊥
i−1. Thus

yT
0 H̃kĠ1 · · · H̃2Ġ1H̃1x

⊥
0 = yT

0 H̃kĠ1 · · · H̃2x1,

which results in

yT
0 H̃kĠ1 · · · H̃2Ġ1H̃1x0

=yT
0 H̃kx

⊥
k−1 +

k∑
i=1

yTH̃kĠ1 · · · H̃i+1Ġ1H̃ix
‖
i−1

=yT
0 H̃kx

‖
k−1 +

k∑
i=1

(
y⊥
k−i

)T
x
‖
i−1 +

k∑
i=1

(
y⊥
k−i

)T
x
‖
i−1+∑

1≤i≤j≤k

(
y
‖
k−i

)T
Ġ1H̃j−1 · · · H̃i+1Ġ1x

‖
i−1

(1)

Lemma 4 ([4]).
∣∣∣∣yT

0 H̃kx
⊥
k−1

∣∣∣∣ ≤ λk2 ,
∑k

i=1

(
y⊥
k−i

)T
x
‖
i−1 = λk−1

2 .

Lemma 5 ([4]).
∑k

i=1

(
y⊥
k−i

)T
x
‖
i−1 = 0.

So it suffices to give the upper bound of the last term in Eq. (1).

Lemma 6 ([4]). Suppose γ = (γ1, · · · , γk) is ε-pseudorandom. Let Γ̃1, · · · , Γ̃k
be the operators corresponding to γ1, · · · , γk. Any Γ, ξ ∈ V‖ can be written as
τ = τ (1) ⊗ 1 and ξ = ξ(1) ⊗ 1. For any such τ, ξ,∣∣〈Ġ1Γ̃kĠ1 · · · Γ̃1τ, ξ

〉
−

〈
Gk+1Γ (1), ξ(1)〉∣∣ ≤ ε||τ || · ||ξ||.

Lemma 7. For every 	 ≥ 1 and τ, ξ ∈ V‖, τ, ξ ∈ 1V ,∣∣∣〈Ġ1Γ̃kĠ1 · · · Γ̃1τ, ξ
〉∣∣∣ ≤ (λ+1

1 + ε)||τ || · ||ξ||. (2)

Proof. Since H is ε-good, we can express each Hi as Hi = 1
D2

∑D2
j=1Hi,j so

that Hi,j is the transition matrix of a permutation γi,j ∈ SV2 and each of the
sequences γ1,j1 , · · · , γk,jk is ε-pseudorandom. Define Γi,j be the operator on V2

corresponding to the permutation γi,j and Γ̃i,j = I ⊗ Γi,j be the corresponding
operator on V1 ⊗ V2. As shown in [4], we have〈

Ġ1H̃i+Ġ1 · · · H̃i+1Ġ1τ, ξ
〉

= Ej1,··· ,j�∈[D2]

[〈
Ġ1Γ̃i+,j�Ġ1 · · · Γ̃i+1,j1Ġ1τ, ξ

〉]
.

Since H is ε-good, every subsequence of H is ε-pseudorandom. Therefore∣∣∣〈Ġ1H̃i+Ġ1 · · · H̃i+1Ġ1τ, ξ
〉
−

〈
G+1τ (1), ξ(1)〉∣∣∣ ≤ ε · ||τ || · ||ξ||. (3)

On the other hand, since τ, ξ⊥1, so does τ (1), ξ(1), and∣∣〈Gτ (1), ξ(1)〉∣∣ ≤ λ+1
1 ||τ (1)||||ξ(1)||. (4)

Combing Eq. (3) and (4), we obtain Eq. (2). �
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Combing the equations above, we obtain |yTGx| ≤ λk−1
2 + 2(ε+λ1)+λk2 , which

completes the proof of Theorem 3.

5 Iterative Construction

For the given even D of the form D = Dk
2 , let ε = D−k

2 and λ2 = λRam(D2)+ ε.
We use brute search to find a sequence of graphs H = (H1, · · · , Hk) that is
ε-good, where Hi, 1 ≤ i ≤ k, is a (D16, D2, λ2)-graph. Since D, D2 and λ2
are independent with the final graph size, H can be found within constant time.
Alternatively, we can choose each Hi from GD16,D2 uniformly and independently
and verify whether or not λ(Hi) ≤ λ2. Theorem 2 guarantees that with high
probability H is good.

Starting with a constant-size graph G1 of the form (N0, D, λ), G2 of the form
(N2

0 , D, λ), where N0 = D16, λ = 2λk−1
2 , and H = (H1, · · · , Hk), the family of

almost-Ramanujan graphs can be iteratively constructed by definition

Gt+1 =
(
G t−1

2 � ⊗G� t−1
2 �

)2
©z H.

We have the following theorem.

Theorem 4. Each graph Gt+1 is an (N t+1
0 , D, λ)-graph.

Proof. From the description of generalized zig-zag products, it is easy to see that
each vertex in Gt is replaced by a “cloud” Hi with size N0. Combining this fact
with the property of tensor product, it is not hard to show that the number
of vertices in Gt+1 is N t+1

0 . Since each edge in Gt corresponds to a walk with
length 2k − 1 indexed by i = (i1, · · · , ik), thus the degree of Gt+1 is D.

The spectral analysis of Gt+1 is directly from [4]. �

Corollary 1. Each graph Gt+1 is fully explicitly constructible.
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Abstract. Given a directed graph G with non-negative cost on the arcs,
a directed tour cover T of G is a cycle (not necessary simple) in G such
that either head or tail (or both of them) of every arc in G is touched
by T . The minimum directed tour cover problem (DToCP) which is to
find a directed tour cover of minimum cost, is NP -hard. It is thus inter-
esting to design approximation algorithms with performance guarantee
to solve this problem. Although its undirected counterpart (ToCP) has
been studied in recent years [1,6], in our knowledge, the DTCP remains
widely open. In this paper, we give a 2 log2(n)-approximation algorithm
for the DTCP.

1 Introduction

Let G = (V, A) be a directed graph with a (non-negative) cost function c : A ⇒
Q+ defined on the arcs. A directed tour( respectively tree) cover T is a subgraph
T = (U, F ) such that

1. for every e ∈ A, F contains an arc f intersecting e, i.e. f and e have at least
one end-node in common.

2. T is a closed directed walk (respectively branching).

We consider in this paper the minimum directed tour cover (DToCP) problem
which is to find a directed tour cover of minimum cost. As a directed tour cover
can visit a node more than one time, we can assume without loss of general-
ity that the vector cost c is a metric. A closely related problem of DToCP is
its undirected counterpart, the minimum tour cover (ToCP) problem which has
been studied in recent years. The ToCP is introduced in a paper by Arkin et al.
[1]. The authors prove that ToCP is NP -hard and give a purely combinato-
rial 5.5-approximation algorithm. Later, Konemann et al. [6] propose an integer
formulation for ToCP and using it to improve the approximation ratio to 3.

We can prove that DToCP is NP -hard by a reduction from the metric Asym-
metric Traveling Salesman Problem (ATSP). The proof is very similar to the
one for ToCP described in [1]. Given any instance G = (V, A) of metric ATSP,
for every node v ∈ V , we create a new node v′ and an arc (v, v′) of cost +∞
to obtain a new graph G′. Let us consider the DToCP on G′, we can see that
any directed tour cover on G′ must cover V . As the costs are metric, given any

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 208–218, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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directed tour cover, we can find a traveling salesman tour on G of no greater
cost. Hence, there is an one-one correspondance between the optimal solutions
of DToCP on G′ and the optimal traveling salesman tours on G. Moreover, this
reduction is approximation-preserving, i.e. if we have an α-approximation al-
gorithm for DToCP then we can approximate the metric ATSP with the same
ratio α. In our knowledge, the best approximation ratio for ATSP is so far
0.824 log2(n) achieved by Kaplan et al. [5]. Therefore, it is rather difficult to
design an algorithm of a constant approximation ratio for DToCP. In fact in
this paper, we will present a 2 log2(n)-approximation algorithm for the DTCP.
This ratio is more than 2 times the ratio for ATSP that can be explained by
the fact that our algorithm is inspired from the algorithm given by Konemann
et al. [6] for the undirected case which is based on the bound of the Held-Karp
relaxation for metric TSP. It is proved that the metric TSP costs no more than
3
2 the Held-Karp bound for the undirected case and the metric ATSP costs no
more than log2(n) the Held-Karp bound for the directed case [2,8]. Hence, our
ratio 2 log2(n) for DToCP follows logically the best ratio 3 for ToCP.

The paper is organized as follows: In Section 2, we present an integer formu-
lation for DToCP. We discuss in Section 3 about the parsimonious property of
Eulerian directed graphs, in particular in 3.1. we prove the equalivalent directed
version of Goemans and Bertsimas’s theorem on splitting operations. In 3.2.,
we derive an equivalent linear program to the Hald-Karp relaxation for met-
ric ATSP. This linear program will be useful in the analysis of our algorithm’s
performance guaranntee in Section 5. Before that, we state our approximation
algorithm for DToCP in Section 4.

Let us introduce the notation that will be used in the paper. Let G = (V, A) be
a digraph with vertex set V and arc set A. If x ∈ Q|A| is a vector indexed by the
arc set A and F ⊆ E is a subset of arcs, we use x(F ) to denote the sum of values
of x on the arcs in F , x(F ) =

∑
e∈F xe. Similarly, for a vector y ∈ Q|V | indexed

by the vertices and S ⊆ V is a subset of vertices, y(S) denotes the sum of values
of y on the vertices in the set S. For a subset of vertices S ⊆ V , let A(S) denote
the set of the arcs having both end-nodes in S. Let δ+(S)(respectively δ−(S))
denote the set of the arcs having only the tail (respectively head) in S. We will
call δ+(S) the outgoing cut associated to S, δ−(S) the ingoing cut associated to
S. For two subset U, W ⊂ V such that U ∩W = ∅, let (U : W ) be the set of the
arcs having the tail in U and the head in W . For u ∈ V , we say v an outneighbor
(respectively inneighbor) of u if (u, v) ∈ A (respectively (v, u) ∈ A). For the sake
of simplicity, in clear contexts, the singleton {u} will be denoted simply by u.
When we work on more than one graph, we precise the graph in the index of
the notation, e.g. δ+

G(S) will denote δ+(S) in the graph G.

2 Integer Formulation

Let
F = {S ⊆ V | A(S) 	= ∅, A(V \ S) 	= ∅}.
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Given any tour cover TC of G, by definition, for any S ∈ F we have TC∩δ+(S) ≥
1 and TC ∩ δ−(S) ≥ 1. Note that the condition TC ∩ δ−(S) ≥ 1 is equivalent
to TC ∩ δ+(V \ S) ≥ 1, and by definition of F , a vertex subset S belongs to
F if and only if V \ S belongs to F . This observation motivates our integer
formulation for DToCP. For any e ∈ A, let xe indicate the number of copies of e
included in the tour cover. We minimize the total weight of arcs included, under
the condition that every outgoing cut associated to some S ∈ F be crossed at
least one. In order to ensure that our solution is a tour we also need to specify
that for any node v ∈ V , the number of arcs entering v is equal to the number
of arcs leaving v in the tour. This integer formulation can be stated as follows:

min
∑
e∈A

cexe∑
e∈δ+(v)

xe =
∑

e∈δ−(v)

xe for all v ∈ V ;

∑
e∈δ+(S)

xe ≥ 1 for all S ∈ F ;

xe integer for all e ∈ A.

Replacing the integrality constraints by

xe ≥ 0 for all e ∈ A

we obtain the linear programming relaxation. We use DToC(G) to denote the
convex hull of all vectors x satisfying the constraints of the constraints above
(those of the linear programming relaxation).

Clearly minimizing the linear cost function
∑
e∈A cexe over DToC(G) can be

done in polynomial time since the separation problem of the cut constraint can
be solved in polynomial time. Indeed, given a candidate solution x and for every
e ∈ A, let us consider xe as the capacity on arc e. For each pair of arcs e1, e2 ∈ E,
we compute the a minimum capacity cuts δ+(U) separating them.

3 Parsimonious Property for Directed Eulerian Graphs

3.1 Connectivity and the Splitting Operation

Consider the following linear programs:

min
∑
e∈A

cexe (1)

subject to

x(δ+(u)) = k for all u ∈ V ;

x(δ−(u)) = k for all u ∈ V ;

x(δ+(S)) ≥ k for all S ⊂ V such that |S| ≥ 2;
xe ≥ 0 for all e ∈ A,
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and

min
∑
e∈A

cexe (2)

subject to

x(δ+(u)) ≥ k for all u ∈ V

x(δ+(u)) = x(δ−(u)) for all u ∈ V

x(δ+(S)) ≥ k for all S ⊂ V such that |S| ≥ 2
xe ≥ 0 for all e ∈ A

The following theorem states the parsimonious property for Eulerian directed
graphs which expresses the relation between (1) and (2).

Theorem 1. If the costs c satisfy the triangle inequality then the optimum of
(2) is equal to the optimum of (1).

The parsimonious property can be also formulated for undirected Eulerian
graphs. We simply replace the outgoing and ingoing cuts in (2) and (1) by
the corresponding cut to obtain the two linear programs for the undirected case.
The undirected version of Theorem 1 (in a little more general form) has been
proved by Goemans and Bertsimas [3]. Their proof consists mainly in showing
the following lemma.

Lemma 1. [3] Let G = (V, E) be an Eulerian multigraph. Let cG(i, j) (i, j ∈ V )
denote the maximum number of edge-disjoint paths between i and j. Let s be any
vertex of G and let u be any neighbor of s. Then there exists another neighbor
of s, say v, such that, by splitting su and sv i.e., removing the edges su and
sv and adding the edge uv, we obtain a multigraph G′ satisfying the following
conditions:

1. cG′(i, j) = cG(i, j) for all i, j ∈ V \ {s} and
2. cG′(s, j) = min{cG(s, j), dG(s)−2} for all j ∈ V \{s}, where dG(s) represents

the degree of the vertex s in G.

Condition 1 of Lemma 1 is a result due to Lovasz [7] on the connectivity prop-
erties of Eulerian multigraphs. Condition 2, added by Goemans et Bertsimas,
states that splitting operation can be performed while maintaining most connec-
tivity requirements involving vertex s.

For the connectivity of Eulerian multi-digraphs, Jackson [4] shows a similar
result as Lovasz’s one (i.e. Condition 1) for Eulerian multigraphs. This result
can be stated in the following lemma.

Lemma 2. [4] Let s be any node of G and let u be any outneighbor of s. Then
there exists another inneighbor of s, say v, such that, by splitting (s, u) and (v, s)
i.e., removing the arcs (s, u) and (v, s) and adding the arc (v, u), we obtain a
multigraph G′ satisfying

1. pG′(i, j) = pG(i, j) for all i, j ∈ V \ {s}.
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Like the work of Goemans and Bertsimas, we formulate Condition 2 to Lemma
2 about the connectivities involving s.

Lemma 3. Let s be any node of G and let u be any outneighbor of s. Then
there exists another inneighbor of s, say v, such that, by splitting (s, u) and (v, s)
i.e., removing the arcs (s, u) and (v, s) and adding the arc (v, u), we obtain a
multigraph G′ satisfying the following conditions:

1. pG′(i, j) = pG(i, j) for all i, j ∈ V \ {s} and
2. pG′(s, j) = min{pG(s, j), d+

G(s)− 1}.

Proof. Our proof for Lemma 3 is very similar to the Goemans and Bertsimas’
proof for Lemma 1. This proof also is in major part inspired from the one of
Lovasz for Lemma 1 (Condition 1) which proceeds along the following lines.

1. There exists at most one set S satisfying:

(a) s ∈ S, u /∈ S,
(b) |δG(S)| = cG(i, j) for some i, j ∈ V , i ∈ S, j /∈ S and i 	= s and
(c) S is minimal with respect to the above two conditions.

2. If there is no such S, then any neighbor v of s can be used for the splitting
operation.

3. If such a S exists then there exists at least one neighbor of s in S. Moreover,
any neighbor of s in S can be used for the splitting operation.

We will show that this proof procedure can be used for the directed case. Let us
remove the orientation on the arcs of G, then G becomes a undirected Eulerian
multigraph. Given any s ∈ V , applying the Lovasz’s procedure, we have

– either there exists a S as described above. Reconsider S in the original
directed G, we prove that S satisfies

(a) s ∈ S, u /∈ S,
(b) |δ+

G(S)| = pG(i, j) for some i, j ∈ V , i ∈ S, j /∈ S and i 	= s and
(c) S is minimal with respect to the above two conditions.

Indeed, since G is Eulerian then |δ+
G(S)|= |δ−G(S)| and consequently |δG(S)|=

2|δ+
G(S)| = 2|δ−G(S)| where δG(S) is the cut associated to S in the undirected

graph G without the orientation on the arcs. Thus if δG(S) = cG(i, j) =
min{|δ(T )| : i ∈ T , j ∈ V \ T} then δ+

G(S) = pG(i, j) = min{|δ+(T )| :
i ∈ T , j ∈ V \ T }. The conditions (a) and (c) are independent from the

fact that G is directed or not.
– otherwise, i.e. such a S does not exist. Then for all S ⊂ V such that s ∈ S

and u /∈ S, we have |δG(S)| > cG(i, j) for all i, j ∈ V , i ∈ S, j /∈ S and i 	= s.
By |δG(S)| = 2|δ+

G(S)| = 2|δ−G(S)|, we have also in the original directed
graph G, |δ+

G(S)| > cG(i, j) for all i, j ∈ V , i ∈ S, j /∈ S and i 	= s. By
|δG(S)| = 2|δ+

G(S)| = 2|δ−G(S)|, we have |δ+
G(S)| > pG(i, j) for all i, j ∈ V ,

i ∈ S, j /∈ S and i 	= s Hence, we can select any inneighbor v of s we can
do the splitting operation on (s, u) and (v, s) without affecting the value of
pG(i, j) for all i, j ∈ V \ {s}.
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Hence we can summarize below the directed version of Lovasz’s proof procedure.

1. There exists at most one set S satisfying:

(a) s ∈ S, u /∈ S,
(b) |δ+

G(S)| = pG(i, j) for some i, j ∈ V , i ∈ S, j /∈ S and i 	= s and
(c) S is minimal with respect to the above two conditions.

2. If there is no such S, then any inneighbor v of s can be used for the splitting
operation.

3. If such a S exists then there exists at least one inneighbor of s in S. Moreover,
any inneighbor of s in S can be used for the splitting operation.

To show Lemma 3, we add a new node ŝ to G and d+
G(s) − 1 arcs from ŝ to s

and d−G(s)− 1 arcs from s to ŝ. Let Ĝ be this new graph. Clearly, Ĝ is Eulerian.
Moreover,

pĜ(i, j) = pG(i, j) for all i, j ∈ V \ {s},

pĜ(ŝ, j) = min{pG(s, j), d+
G(s)− 1} for all j ∈ V \ {s}.

Along the below proof, when we use d+(s) or d−(s), it can be understood re-
spectively as d+

G(s) or d+
Ĝ

(s) and d−G(s) or d−
Ĝ

(s). Since d+
G(s) = d+

Ĝ
(s) and

d−G(s) = d−
Ĝ

(s), we do not distinguish them.

Now applying the proof procedure to Ĝ, we can see that there are two possible
cases:

1. There is no S ⊂ V ∪ {ŝ} that satisfies the condition described in the proof
procedure. Then we can select any inneighbor v 	= ŝ of s and do the split-
ting operation on the arcs (v, s) and (s, u). Let G′ be the resulted after this
splitting operation. Since the splitting operation does not affect the connec-
tivity of all the nodes in V ∪ {ŝ} \ {s}, we have pG′(ŝ, j) = pĜ(ŝ, j) for all
j ∈ V \ {s}. But as d+

G′(s) = d+
G(s)− 1,

pĜ(ŝ, j) = min{pG(s, j), d+
G(s)− 1} for all j ∈ V \ {s} and

pG′(ŝ, j) = min{pG′(s, j), d+
G′(s)} for all j ∈ V \ {s}.

As pĜ(ŝ, j) = pG′(ŝ, j) then pG′(s, j) can not strictly smaller than
min{pG(s, j), d+

G(s)−1} and as pG′(s, j) ≤ pG(s, j), by construction, pG′(s, j)
can not strictly greater than min{pG(s, j), d+

G(s)− 1}. Hence

pG′(s, j) = min{pG(s, j), d+
G(s)− 1}.

2. Otherwise, i.e. there exists exactly one set S ⊂ V ∪ {ŝ} satisfying

(a) s ∈ S, u /∈ S,
(b) |δ+

Ĝ
(S)| = pĜ(i, j) for some i, j ∈ V ∩ {ŝ}, i ∈ S, j /∈ S and i 	= s and

(c) S is minimal with respect to the above two conditions.

Proposition 1. If such a S exists then ŝ ∈ S.
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Proof. Indeed if ŝ /∈ S then |δ+
Ĝ

(S)| ≥ d+(s) since both u and ŝ /∈ S and Ĝ

is Eulerian. Moreover |δ+
Ĝ

(S)| would be equal to pĜ(i, ŝ) for some i ∈ S \ {s}.
This follows by (b) and the fact that |δ+(S ∪ {ŝ})Ĝ| < |δ+

Ĝ
(S)| (since s ∈ S)

which implies that there is no i and j in V \ {s} with i ∈ S and j /∈ S such
that |δ+

Ĝ
(S)| = pĜ(i, j). This leads to a contradiction since d+(s) ≤ |δ+

Ĝ
(S)| =

pĜ(i, ŝ) ≤ d−
Ĝ

(ŝ) < d−(s) = d+(s). Proposition 1 is proved. �

Proposition 2. If a S satisfying (a)-(c) exists there must exist some v ∈ S
with v 	= ŝ such that v is an inneighbor of s.

Proof. Indeed, if S does not contain any inneighbor of s other than ŝ then

|δ+
Ĝ

(S)| = |δ−
Ĝ

(S)| > d−(s) > d+(ŝ) ≥ pĜ(ŝ, j).

Hence, there would exist some i ∈ S, s 	= i 	= ŝ and j /∈ S such that δ+
Ĝ

(S) =
pĜ(i, j). This leads to a contradiction to the fact that S is minimal since S\{s, ŝ}
would separate i from j and as

|δ+(S \ {s, ŝ})Ĝ| = |δ+
Ĝ

(S)|+ |(S : {s})| − |({s} : V \ S)|

and |(S : {s})| = 0 and |({s} : V \ S)| > 0, we have |δ+(S \ {s, ŝ}Ĝ)| < |δ+
Ĝ

(S)|.
Proposition 2 is then proved. �
Therefore, there exists some v 	= ŝ such that by splitting of (s, u) and (v, s)
we obtain a graph Ĝ′ with pĜ(i, j) = pĜ′(i, j) for all i, j ∈ V ∪ {ŝ} \ {s}. After
removing ŝ, we obtain a graph G′ which can be also obtained from G by splitting
off (s, u) and (s, v). G′ satisfies

pG′(i, j) = pĜ′(i, j) = pĜ(i, j) = pG(i, j) for all i, j ∈ V \ {s}

and

pG′(s, j) = pĜ′(s, j) ≥ pĜ′(ŝ, j) = pĜ(ŝ, j)

= min{pG(s, j), d+
G(s)− 1} for all j ∈ V \ {s}.

Moreover, due to splitting operation

pG′(s, j) ≤ pG(s, j) and pG′(s, j) ≤ d+
G(s)− 1.

We finish here the proof of Lemma 3. �
Proof of Theorem 1: Let C be the optimal value of (2) and C′ be the optimal
value of (1). As (2) is a relaxation of (1), we have C ≤ C′. To show C ≥ C′ let
x be an optimal solution of (2), i.e. C =

∑
e∈A cexe. We can assume without

loss of generality that x is integer since there exists some integer p such that px
is integer and we can replace k by p.k in (2) and (1). Let G = (V, A) be the
multigraph which has xe copies of each arc e such that xe > 0. Applying Lemma
3 repeatedly with s chosen among the nodes of V such that x(δ+(v)) > k, we
will obtain a multigraph G′ such that

– pG′(i, j) ≥ k for all i, j ∈ V
– d+

G′(i) = k for all i ∈ V .
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Let x′ the point such that for each e ∈ A, x′
e is equal to the number of copies

of e in G′. We can see that x′ is a solution of (1). Since the costs satisfy the
triangle inequality, each time we perform a splitting operation the cost of the
solution does not increase which implies that

C =
∑
e∈A

cexe ≥
∑
e∈A

cex
′
e ≥ C′.

Theorem 1 is then proved. �

3.2 Held-Karp Relaxation for ATSP and the Parsimonious
Property

Let us consider the Asymmetric Travelling Salesman Problem (ATSP) on G.
The Held-Karp bound for this problem can be computed by solving the following
linear program:

min
∑
e∈A

cexe

subject to

x(δ+(S)) ≥ 1 for all S ⊂ V such that |S| ≥ 2;

x(δ+(v)) = 1 for all v ∈ V ;

x(δ−(v)) = 1 for all v ∈ V ;
0 ≤ xe ≤ 1 for all e ∈ A.

This linear program is called Held-Karp relaxation for ASTSP. In fact the
upper bound constraint xe ≤ 1 for all e ∈ A is redundant due to the degree
constraints x(δ+(v)) = 1 and x(δ−(v)) = 1 for all v ∈ V . Thus, we can rewrite
the Held-Karp relaxation as follows:

min
∑
e∈A

cexe (3)

subject to

x(δ+(S)) ≥ 1 for all S ⊂ V such that |S| ≥ 2;

x(δ+(v)) = 1 for all v ∈ V ;

x(δ−(v)) = 1 for all v ∈ V ;
xe ≥ 0 for all e ∈ A.

The following theorem is a direct application of Theorem 1.

Theorem 2. If the costs c satisfy the triangle inequality then the optimum of
(3) is equal to the optimum of:

min
∑
e∈A

cexe (4)
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subject to

x(δ+(S)) ≥ 1 for all ∅ 	= S ⊂ V (included S singleton);

x(δ+(v)) = x(δ−(v)) for all v ∈ V ;
xe ≥ 0 for all e ∈ A.

4 Algorithm

We are now ready to state our algorithm for directed tour cover.

(1) Let x∗ be the vector minimizing cx over DToC(G).
(2) Let U ← {v ∈ V |x∗(δ+({v})) ≥ 1

2}.
(3) Let GU be the subgraph of G induced by U with the same cost ce

for each arc e in GU .
(4) Run the Frieze, Galbiati and Maffioli heuristic [2]

to find an approximate minimum traveling salesman directed tour on GU .

Note that the linear program in step (1) can be solved in polynomial time by
using the ellipsoid method with a min-cut computation as separation oracle.

The algorithm outputs a directed tour which spans U . We can see that U
is vertex cover of G. Since for any arc e = (u, v) ∈ A, x∗(δ+({u, v})) ≥ 1 and
x∗(δ+({u, v})) = x∗(δ+(u)) + x∗(δ+(v)) − 2x∗

e, at least x∗(δ+(u)) or x∗(δ+(v))
is greater or equal to 1

2 , i.e. at least u or v should belong to U . Therefore, the
algorithm outputs a directed tour cover of G.

5 Performance Guarantee

Let x∗ be the vector minimizing
∑

e∈A cexe over DToC(G) and

U =
{
v ∈ V | x∗(δ+({v})) ≥ 1

2
}
.

Let y∗ = 2x∗, and k be the minimum integer such that ky∗ is integer. Let
G̃ = (V, Ã) be the multi-graph that has ky∗

e copies of arc e for each e ∈ Ã. Note
that G̃ is Eulerian. For any i 	= j ∈ V , let pG̃(i, j) be number of disjoint paths
from i to j in G̃.

Remark 1. pG̃(u, j) ≥ k for all u ∈ U and j ∈ V \ {u}.

Proof. To prove the remark, we will show that for any S ⊂ V such that u ∈ S
and j ∈ V \ S, we have |δ+

G̃
(S)| ≥ k. Indeed, if A(S) 	= ∅ then by con-

struction, x∗(δ+
G(S)) ≥ 1/2 which implies y∗(δ+

G(S)) ≥ 1 and consequently
|δ+
G̃

(S)| ≥ k. Otherwise, if A(S) = ∅ then x∗(δ+
G(S)) ≥ x∗(δ+(u)) ≥ 1

2 . Equiva-
lently, y∗(δ+

G(S)) ≥ y∗(δ+(u)) ≥ 1. Hence, we also have |δ+
G̃

(S)| ≥ k. �
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In G̃, for each i ∈ V \ U , doing repeatedly the splitting operation on i until
d+
G̃

(i) = d−
G̃

(i) = 0. Consequently, after these operations, all the arcs in G̃ having
the end-nodes in U . Let G̃U = (U, ÃU ) be the subgraph of induced by U of G̃.

Remark 2. After these splitting operations, pG̃U
(u, v) ≥ k for all u ∈ U and

v ∈ U \ {u}.

Let GU = (U, AU ) be the simple graph obtained from G̃U by taking only one
copie for each e ∈ ÃU . Let xU be the vector in R|AU | such that for each e ∈ AU ,
xUe = pe

k where pe is the number of copies of e in ÃU . Let PG(i, j) is the shortest
path from i to j in G for all i 	= j ∈ V . We define cU ∈ R

|AU |
+ as follows

cUij =

⎧⎨⎩ cij if (i, j) ∈ A;

c(PG(i, j)) otherwise.

for all arc (i, j) ∈ ÃU .

Lemma 4. We have 2cx∗ = cy∗ ≥ cUxU .

Proof. We have seen that kxU is obtained from ky∗ by repeatedly splitting
operations on the vertices in V \ U . Since c satisfies the triangle inequality,
we have cU (kxU ) ≤ c(ky∗) which implies cUxU ≤ cy∗ = 2cx∗. �

Let z∗ be an optimal solution of Held-Karp relaxation over GU .

Lemma 5. cUxU ≥ cUz∗.

Proof. We can see that xU satisfies the following linear inequalities

x(δ+
GU

(u)) = x(δ−GU
(u))

and
x(δ+

GU
(S)) ≥ 1 for all ∅ ⊂ S ⊂ U,

which are the inequalities of (4) applied to GU . By Theorem 2, z∗ minimizes the
cost function cUx over (4). Hence we have cUxU ≥ cUz∗. �

We are ready now to state the main theorem

Theorem 3. The algorithm outputs a directed tour cover of cost no more than
2 log2(n) times the cost of the minimum directed tour cover.

Proof. The algorithm return as a solution of DToCP, T the travelling salesman
directed tour output by Frieze et al’s heuristic applied on GU . Let xT be its
incidence vector. The cost of T is then equal to cUxT . Williamson [8] proved
that the cost of T is not more than log2(n) times the cost of the optimal solution
of Held-Karp relaxation over GU , i.e. cUxT ≤ log2(n)cUz∗. By Lemmas 5 and 4,
we have cUxT ≤ 2 log2(n)cx∗. �
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Abstract. We present an approximation algorithm for the Max 3-section
problem which divides a weighted graph into 3 parts of equal size so as
to maximize the weight of the edges connecting different parts. The algo-
rithm is based on a complex semidefinite programming and can in some
sense be viewed as a generalization of the approximation algorithm pro-
posed by Ye [17] for the Max Bisection problem. Our algorithm can hit
the 2/3 bound and has approximate ratio 0.6733 for Max 3-section that
sightly improves the 2/3 bound obtained by Andersson [1] and Gaur [8],
respectively.

1 Introduction

Given a graph G(V ; E), with node set V and edge set E, the Max 3-cut problem
is to find a partition S0 ⊂ V , S1 ⊂ V and S2 ⊂ V , of the set V , such that
S0

⋃
S1

⋃
S2 = V , Si

⋂
Sj = ∅ (i 	= j) and the sum of the weights on the edges

connecting the different parts is maximized.
Similar to the Max cut problem, the max 3-cut problem has long been known

to be NP-complete [14], even for any un-weighted graphs [7], and has also appli-
cations in circuit layout design, statistical physics and so on [2]. However, due to
the complexity of this problem, its research progresses is much lower than that
of Max cut. Goemans and Williamson [9] are the pioneers of using semidefinite
programming relaxation to solve the Max cut problem and obtained the splen-
did 0.878-approximate algorithm. Frieze and Jerrum [6] extended Goemans and
Williamson’s 0.878-approximate algorithms [9] to general Max k-Cut. Particular,
Frieze and Jerrum [6] obtained a 0.651-approximation algorithm for Max bisec-
tion and a 0.800217-approximation algorithm for Max 3-Cut. Recently, Goemans
and Williamson [10] improved Frieze and Jerrum’s 0.800217-approximation ratio
to 0.836 using random hyperplane based on a complex semidefinite programming
relaxation. Zhang and Huang [18] also obtained a 0.836-approximation algorithm
� This work is supported by National Natural Science Foundations of China, No.

10671152.
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for Max 3-Cut using complex semidefinite programming relaxation and complex-
valued multivariate normal distribution.

If we further require that |S0| = |S1| = |S2| = n/3 when the number of nodes
n is a multiple of 3, then Max 3-Cut becomes to the Max 3-section problem
that will be mainly considered in this paper. Comparing with Max bisection,
thought there exist several approximation algorithms for Max bisection, e.g. see
[3,6,16,17,5], as addressed by Frieze and Jerrum [6], their 0.651-approximation
algorithm is not directly generalized to Max 3-section such that their bisection
heuristic beat the 2/3 lower bound of a simple random selection heuristic. Ander-
sson [1] proposed a novel random algorithm that was also based on semidefinite
programming and obtained the approximation ratio (2/3)+ O( 1

n3 ). Andersson’s
approach may be viewed as a generation of Frieze and Jerrum’s random rounding
method. Recently, Gaur et al. [8] proposed a determinate approximation algo-
rithm for the capacitated Max k-Cut problem. Their determinate approximation
algorithm can beat the 2/3 lower bound for the Max 3-section problem.

In this paper, we also present an approximation algorithm for the Max 3-
section problem. The algorithm is based on a complex semidefinite programming
that is originally proposed by Goemans and Williamson [10] for Max 3-cut.
Our rounding method can in some sense be viewed as a generalization of the
approximation algorithm proposed by Ye [17] for the Max Bisection problem.
Our algorithm can hit the 2/3 lower bound. In particular, the proposed algorithm
can obtain the approximate ratio 0.6733 for Max 3-section that sightly improves
the bound obtained by Andersson [1] and Gaur [8], respectively.

This paper is organized as follows. In Section 2, we state the model of Max
3-section, give its complex semidefinite programming relaxation and random
rounding method. In Section 3, we present a fussy size adjusting procedure to
obtain three parts of V with equal sizes. We further verify that, this size adjusting
procedure can generate a good bound in this section. In Section 4, we analyze
the performance ratio of the proposed rounding method.

Throughout out of this paper, we use the following standard notations from
Goemans and Williamson [10] and Zhang and Huang [18]. For a complex number
y = a+ ib ∈ C, we denote its real part a by Re(y), its image part b by Im(y) and
its complex angle principal value by Arg(y) ∈ [0, 2π]. The complex conjugate
of y = a + ib is denoted by y = a − ib. For an n dimensional complex vector
y ∈ Cn written as bold letter and n dimensional complex matrix Y ∈ Cn×n,
we write y∗ and Y ∗ to denote their conjugate and transpose. That is y∗ = yT

and Y ∗ = Y
T
. We write ei to denote the vector with zeros everywhere except

for an 1 in the i-th cmponent. Let Sn denote the set of symmetric n × n real
matrices and Hn the set of complex n × n Hermitian matrices. For any two
complex vector u,v ∈ Cn, we use 〈u,v〉 = u · v = u∗v as their inner product.
For any two complex matrices A, B ∈ Hn, we let 〈A, B〉 = A · B be the inner
product of the two matrices; i.e. 〈A, B〉 = A ·B = Tr(B∗A) =

∑
i,j bijaij , where

A = (aij) and B = (bij). We denote a positive semidefinite Hermitian matrix A
by A � 0.
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2 Complex SDP Relaxation and Random Algorithm

We denote the third roots of unity by 1, ω = ei
2π
3 , ω2 = ei

4π
3 . Introduce a complex

variable yi ∈ {1, ω, ω2}, i = 1, · · · , n and denote Sk = {i : yi = ωk}, k = 0, 1, 2.
Then the Max 3-section problem can be expressed as

M3S : max
∑
i<j

wij(2
3 −

1
3yi · yj − 1

3yj · yi)

= 2
3

∑
i<j

wij(1− Re(yi · yj))

s.t.
∑n
i=1 yi = 0,

yi ∈ {1, ω, ω2}, i = 1, 2, · · · , n.

(2.1)

We relax the complex variable yi into an n dimensional complex vector yi,
then we get a CSDP relaxation of M3S as follows.

CSDP : max
∑
i<j

wij(2
3 −

1
3yi · yj −

1
3yj · yi)

= 2
3

∑
i<j

wij(1− Re(yi · yj))

s.t.
∑

i,j yi · yj = 0,

‖yi‖ = 1, i = 1, 2, · · · , n,
Ak
ij · Y ≥ −1, i, j = 1, 2, · · · , n, k = 0, 1, 2

Y � 0,

(2.2)

where Yij = yi · yj and Ak
ij = ωkeieTj + ω−kejeTi . It is easily to verify that

constraints Ak
ij · Y ≥ −1 can be expressed as

Re(ωkYij) ≥ −
1
2
, k = 0, 1, 2.

Let Y be an optimal solution of CSDP relaxation and θ ∈ [0, 1] be given.
Define

Ŷ = θY + (1− θ)I.

We randomly generate a complex vector ξ, such that ξ ∼ N(0, Ŷ ), and assign

yi =

⎧⎨⎩1, If Arg(ξi) ∈ [0, 2π
3 );

ω, If Arg(ξi) ∈ [2π3 , 4π
3 );

ω2, If Arg(ξi) ∈ [4π3 , 2π).
(2.3)

It has been verified by Zhang and Huang [18] that

E[yiyj ] = 9
8π2

(
arccos2(−Re(Ŷij)) + ω arccos2(−Re(ω2Ŷij))

+ω2 arccos2(−Re(ωŶij))

)

= 9
8π2

(
arccos2(−Re(θYij)) + ω arccos2(−Re(ω2θYij))

+ω2 arccos2(−Re(ωθYij))

)
.

(2.4)
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Let the partition of V that is corresponding to the round yi in (2.3) be S =
{S0, S1, S2} and the objective value be denoted by W (S). Define a real function

f(x) =
9

8π2 arccos2(−x)− arccos2(
1
2
x),

for x ∈ [−1, 1]. Then, we have the following result.

Lemma 1
E[W (S)] ≥ α(θ)W ∗, (2.5)

where

α(θ) = min
− 1

2≤x<1

1− f(θx)
1− x

.

Proof. Since arccos2(x) is a convex function (see Lemma 10 of [10]), it follows
that

Re(E[yiyj ]) = 9
8π2 Re

(
arccos2(−Re(θYij)) + ω arccos2(−Re(ω2θYij))

+ω2 arccos2(−Re(ωθYij))

)
= 9

8π2

(
arccos2(−Re(θYij))− 1

2 arccos2(−Re(ω2θYij))
− 1

2 arccos2 arccos2(−Re(ωθYij))

)
≤ 9

8π2

(
arccos2(−Re(θYij))− arccos2(− 1

2Re(ωθYij + ω2θYij))
)

= 9
8π2

(
arccos2(−Re(θYij))− arccos2(1

2Re(θYij))
)

= f(Re(θYij))

By the linearity of exception and Re(Yij) ≥ − 1
2 , we have

E[W (S)] = 2
3

∑
i<j

wij(1− ReE[yiyj ])

≥ 2
3

∑
i<j

wij(1− f(Re(θYij)))

= 2
3

∑
i<j

(1−f(Re(θYij)))
1−Re(Yij)

wij(1− Re(Yij))

≥ α(θ)W ∗

The proof is then finished. �
In order to measure the whole deviation of partition S for the constraint∑n

i=1 yi = 0, we introduce a new random variable M , that is,

M = |S0||S1|+ |S0||S2|+ |S2||S1|.

Clearly,

M ≤ (|S0|+ |S1|+ |S0|)2
3

=
n2

3
. (2.6)

The equality M = n2

3 holds if and only if |S0| = |S1| = |S0| = n
3 . Since

eTy = |S0|+ ω|S1|+ ω2|S2|.
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It follows that
M = 1

3n2 − 1
3 (eTy)∗(eTy)

= 1
3n2 − 1

3

∑
i,j

yiyj .
(2.7)

Denote

b(θ) = 1− f(θ), c(θ) = min
− 1

2≤x<1

f(θ)− f(θx)
1− x

.

Then we have the following result.

Lemma 2

E[
M

M∗ ] ≥ β(θ),

where M∗ = 1
3n2, β(θ) = (1− 1

n )b(θ) + c(θ).

Proof. By (2.7), it follows that

E[M ] = 1
3n2 − 1

3

∑
i,j

E[yiyj ] = 1
3n2 − 2

3

∑
i<j

Re(E[yiyj ])− 1
3n

= 2
3

∑
i<j

(1 − Re(E[yiyj ]))

≥ 2
3

∑
i<j

(1 − f(θYij))

= 2
3

∑
i<j

[(1 − f(θ)) + (f(θ)− f(θYij))]

= 2
3

∑
i<j

(1 − f(θ)) + 2
3

∑
i<j

(f(θ)− f(θYij))

= 2
3

∑
i<j

(1 − f(θ)) + 2
3

∑
i<j

f(θ)−f(θYij)
1−Yij

(1− Yij)

≥ 2
3

∑
i<j

b(θ) + 2
3c(θ)

∑
i<j

(1− Yij)

= 1
3 [(1 − 1

n )b(θ) + c(θ)]n2 = β(θ)M∗.

This completes the proof. �
By the structure of M for Max 3-section, we surprisedly find that the form of
β(θ) is exactly the same as the case of Max bisection considered in [17]. Note
that θ is used in the rounding method. If θ = 0.4035 is selected, it can get that,
when n > 2000,

α(0.4035) ≥ 0.7369,

b(0.4035) ≥ 0.7636, c(0.4035) ≥ 0.2279.

This obtains that
β(0.4035) ≥ 0.9911.

We mention that the value β(0.4035) is greater than β(0.89) given by Ye[17].
This means, As far as averagely speaking, from (2.6) that our rounding method
can get a near 3-section partition, but the performance ratio will decrease from
0.8360 to 0.7369.
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3 Size Adjusting Procedure

For the sake of analysis, without loss of generality, we assume that |S0| =
max{|S0|, |S1|, |S2|}. If |Sk| = max{|S0|, |S1|, |S2|}, k 	= 0, then we may set
yNi = wkyi, i = 1, · · · , n. The resulted new solution yN = (yN1 , · · · , yNi ) will not
change the objective value and moreover, the new partition SN = {SN0 , SN1 , SN2 }
based on yN satisfies |SN0 | = max{|SN0 |, |SN1 |, |SN2 |}. By the assumption, the
partition S = {S0, S1, S2} still exist four possible cases:

Case 1. |S0| ≥ |S1| ≥ n
3 ≥ |S2|. Case 2. |S0| ≥ n

3 ≥ |S1| ≥ |S2|.
Case 3. |S0| ≥ |S2| ≥ n

3 ≥ |S1|. Case 4. |S0| ≥ n
3 ≥ |S2| ≥ |S1|.

The size adjusting procedures of Case 3 and Case 4 are similar to Case 1
and Case 2. And because of the limitation of space, we mainly consider Case 1
and Case 2 is omitted for adjusting the partition of V from S = {S0, S1, S2} to
S̃ = {S̃0, S̃1, S̃2} such that |S̃k| = n/3, k = 0, 1, 2. Denote

δ0(i) =
∑

j∈S1∪S2

wij , i ∈ S0,

δ01(i) =
∑
j∈S1

wij , i ∈ S0, δ10(i) =
∑
j∈S0

wij , i ∈ S1,

δ02(i) =
∑
j∈S2

wij , i ∈ S0, δ20(i) =
∑
j∈S0

wij , i ∈ S2,

and
δ12(i) =

∑
j∈S2

wij , i ∈ S1, δ21(i) =
∑
j∈S1

wij , i ∈ S2.

Then, it follows from simple computation that

δ0(i) = δ01(i) + δ02(i), for each i ∈ S0, (3.1)∑
i∈Sk

δkl(i) =
∑
i∈Sl

δlk(i), k, l = 0, 1, 2, k 	= l

and
W (S) =

∑
i∈S0

δ0(i) +
∑
i∈S1

δ12(i)

=
∑
i∈S0

δ01(i) +
∑
i∈S0

δ02(i) +
∑
i∈S1

δ12(i)

= d01 + d02 + d12.

(3.2)

where d01 =
∑
i∈S0

δ01(i), d02 =
∑
i∈S0

δ02(i), d12 =
∑
i∈S1

δ12(i).

Size adjusting Procedure for Case 1: SAPC1.

1. Calculate

m02 =

∑
i∈S0

δ02(i)
|S0|

, m12 =

∑
i∈S1

δ12(i)
|S1|

.
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2. If m02 ≥ m12. Let S1 = {j1, j2, · · · , j|S1|}, where δ12(jl) ≥ δ12(jl+1), l =
1, 2, · · · , |S1|. set S̃1 = {j1, j2, · · · , jn

3
}, Ŝ2 = S2

⋃
(S1 \ S̃1) and renew to

calculate
δ′02(i) =

∑
j∈Ŝ2

wij ,

for each i ∈ S0. Let S0 = {i1, i2, · · · , i|S0|}, where δ′02(ik) ≥ δ′02(ik+1). Set
S̃0 = {i1, i2, · · · , in

3
} and S̃2 = Ŝ2

⋃
(S0 \ S̃0).

3. If m02 < m12. Let S0 = {i1, i2, · · · , i|S0|}, where δ02(ik) ≥ δ02(ik+1), k =
1, 2, · · · , |S0|, set S̃0 = {i1, i2, · · · , in

3
}, Ŝ2 = S2

⋃
(S0 \ S̃0) and then renew

to calculate
δ′12(i) =

∑
j∈Ŝ2

wij ,

for each i ∈ S1. Set S̃1 = {j1, j2, · · · , jn
3
} and S̃2 = Ŝ2

⋃
(S1 \ S̃1), where

δ′12(jk) ≥ δ′12(jk+1) here.
4. Return the current partition S̃ = {S̃0, S̃1, S̃2}, stop.

Let x0 = |S0|/n, x1 = |S1|/n, x2 = |S2|/n. In order to estimate the bound of
r, we first introduce the following lemma.

Lemma 3. Let a, b, c, d, c1 and d1 be any positive real numbers and satisfy c >
c1, d > d1 and

a

b
≥ c

d
,

c1

d1
≥ c

d
. (3.3)

Then
a + c1

b + d1
≥ a + c

b + d
. (3.4)

Now we state the bound of r using the following lemma.

Lemma 4. For SAPC1, we have

r(x) ≥ 2
3(x0 + x1)

,

where x = (x0, x1)T .

Proof. When m02 ≥ m12, then subset S1 is firstly adjusted to S̃1. It follows that∑
i∈S̃1

δ′12(i)
n/3

≥
∑
i∈S1

δ12(i)
|S1|

, (3.5)

where δ′12(i) =
∑

j∈Ŝ2
wij , for each i ∈ S̃0. Noting that the value

∑
i∈S0

δ0(i)

will not change when S1 is adjusted to S̃1 and before S0 is adjusted. Denote

δ′01(i) =
∑
j∈S̃1

wij , i ∈ S0, and d′01 =
∑
i∈S0

δ′01(i).
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Then ∑
i∈S0

δ0(i) = d′01 + d′02,

where d′02 =
∑
i∈S0

δ′02(i) and δ′02(i) given by Step 2 ofSAPC1. Since
∑

i∈S0
δ0(i) >∑

i∈S0
δ02(i), it follows that∑

i∈S0
δ0(i)

|S0|
> m02 ≥ m12 =

∑
i∈S1

δ12(i)
|S1|

.

Combining (3.5) and Lemma 4, it yields that∑
i∈S0

δ0(i)+
∑

i∈S̃1
δ′12(i)

|S0|+n/3 =
d′02+d

′
01+

∑
i∈S̃1

δ′12(i)
|S0|+n/3

≥ d′01+d
′
02+

∑
i∈S1

δ12(i)
|S0|+|S1|

= W (S)
|S0|+|S1| .

(3.6)

For the average weights,
∑

i∈S0
δ′02(i)

|S0| , between S0 and Ŝ2 before S0 is adjusted

to S̃0, there exist two possible cases. That is either∑
i∈S0

δ′02(i)
|S0|

≤
∑
i∈S̃1

δ′12(i)
n/3

, or

∑
i∈S0

δ′02(i)
|S0|

>

∑
i∈S̃1

δ′12(i)
n/3

. (3.7)

After S0 is adjusted to S̃0 by SAPC1,∑
i∈S̃0

δ′02(i)
n/3

≥
∑

i∈S0
δ′02(i)

|S0|
(3.8)

holds always. If the first mathematical relationship of (3.7) holds, i.e.∑
i∈S̃1

δ′12(i)
n/3

≥
∑
i∈S0

δ′02(i)
|S0|

,

then
d′01 +

∑
i∈S̃1

δ′12(i)
n/3

>

∑
i∈S̃1

δ′12(i)
n/3

≥
∑

i∈S0
δ′02(i)

|S0|
. (3.9)

Hence from (3.8), Lemma 4 and (3.6), we have

W (S̃)
2n/3 =

∑
i∈S̃0

δ0(i)+
∑

i∈S̃1
δ′′12(i)

2n/3

=
∑

i∈S̃0
δ′02(i)+d

′
01+

∑
i∈S̃1

δ′12(i)
2n/3

≥
∑

i∈S0
δ′02(i)+d

′
01+

∑
i∈S̃1

δ′12(i)
|S0|+n/3

=
d′02+d

′
01+

∑
i∈S̃1

δ′12(i)
|S0|+n/3

≥ W (S)
|S0|+|S1| ,

where δ′′12(i) =
∑

j∈S̃2
wij , i ∈ S̃1. This yields r(x) ≥ 2

3(x0+x1)
. Similarly, we can

get the same conclusions if the second mathematical relationship of (3.7) holds.
The proof is then finished. �
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4 Analysis of the Algorithm

To obtain an expected lower bound of W (S̃), from previous section, we need to
lower bound the expected value E[r(x) ·W (S)]/W ∗. However, it is essentially
hard to calculate this expected value since r(x), W (S) and their products are
random numbers. Our idea, initially due to Frieze and Jerrum [6], Ye [17] and
later extended in [5,11,12,13,15], is to construct a family of artificial random
variables, zS say, whose expected value would be easily estimated and bounded,
Particularly, whenever zS meets its expectation, i.e. zS is equal to or greater than
its expectation, we can get a performance ratio R(zS) satisfying r(x) ·W (S) ≥
R(zS) ·W ∗. Moreover, we will to select the zS such that the largest R(zS) is hit.

Recall that M = |S0||S1|+ |S0||S2| + |S2||S1| and M∗ = n2/3. Let γ ≥ 0 be
given and define

z(γ) : = W (S)
W∗ + γ |S0||S1|+|S0||S2|+|S2||S1|

n2/3

= W (S)
W∗ + γ M

M∗ .
(4.1)

To estimate the expectation E[z(γ)], we need to get the expectations E[W (S)/W ∗]
and E[M ]. By Lemma 1 and Lemma 2,

E[z(γ)] = E

[W (S)
W ∗

]
+ E

[
γ

M

M∗
]
≥ R(γ) := α(θ) + γβ(θ).

Since 0 < W (S)
W∗ ≤ 1, 0 < M

M∗ ≤ 1, the random variable z(γ) is bounded above by
a constant c0, i.e. 0 < z(γ) < 1 + γ = c0 for a given γ. Thus, from the approach
of [6,17] and Proposition 1 of [12], for any small ε > 0, we may independently
generate complex vector ξ at most K = O(1

ε log(1
ε )) times, then we will obtain K

values zi(γ)(i = 1, · · · , K) of random variable z(γ), denote zK(γ) = max
i
{zi(γ)}.

It follows that
Pr{zK(γ) ≤ R(γ)− (c0 −R(γ))ε} ≤ ε.

Since ε can be an arbitrarily small positive constant, we may assume that
zK(γ) ≥ R(γ) with probability almost one. Hence, for simplicity, we remove
this term (c0 −R(γ))ε and always assume that z(γ) ≥ R(γ), that is,

W (S)
W ∗ + γ

M

M∗ ≥ α(θ) + γβ(θ). (4.2)

holds always.
Let λ = W (S)

W∗ and μ = M/M∗. Recalling that |Sk| = xkn(k = 0, 1, 2) and
x = (x0, x1)T , we may write μ as μ(x) := μ = x0x1 + (x0 + x1)(1− x0 − x1). It
follows from (4.2) that

λ ≥ α(θ) + γβ(θ)− γμ(x).

Applying Lemma 4, we have

W (S̃)
W ∗ ≥ r(x)λ =

2[α(θ) + γβ(θ)− γμ(x)]
3(x0 + x1)

. (4.3)
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Denote R0(θ, γ; x) = 2[α(θ)+γβ(θ)−γμ(x)]
3(x0+x1)

. Minimizing R0(θ, x) with respect to
x0, x1 ∈ (0, 1) yields that

x0 = x1 =

√
α(θ) + γβ(θ)

3
√

γ

and
R1(θ, γ) := min

x
R0(θ, γ; x) = 2(

√
γ(α(θ) + γβ(θ))− γ).

We mention that the form of R1(θ, γ) is exactly coincide with the result of [17]
for Max-bisection. Maximizing R1(θ, γ) with respect to γ yields that

γ =
α(θ)
2β(θ)

( 1√
1− β(θ)

− 1
)

(4.4)

and

R(θ) := max
γ

R1(θ, γ) =
α(θ)

1 +
√

1− β(θ)
.

Based on the analysis above, we have the following theorem that extends the
result of [17] to the Max 3-section problem.

Theorem 5. For a fixed θ and any given γ ∈ ( α(θ)
9−β(θ) ,

α(θ)
1−β(θ) ], if random vari-

able z(γ) meets its expectation, i.e. z(γ) ≥ α(θ) + γβ(θ), then

W (S̃) ≥ R1(θ, γ) ·W ∗.

In particular, if γ is given by (4.4) which belongs to ( α(θ)
9−β(θ) ,

α(θ)
1−β(θ) ], then

W (S̃) ≥ R(θ) ·W ∗. (4.5)

Theorem 5 indicates that for any given θ ∈ [0, 1], if only random variable
z(γ) of (4.1) meets its expectation, our rounding method can generate a R(θ)-
approximate algorithm for Max 3-section. Hence, we can maximize R(θ) with
respect to variable θ, such that the approximate ratioR(θ) is as large as possible.
Let θ∗ maximize R(θ) and R∗ is the maximum value of R(θ), that is

θ∗ = arg max
θ∈[0,1]

R(θ).

Then

R∗ = R(θ∗) =
α(θ∗)

1 +
√

1− β(θ∗)

is the best approximate ratio for our rounding method.
If θ = 0.4035 is used in our rounding method, then, for sufficiently large n

(e.g. n > 104),
b(0.4035) ≥ 0.7636, c(0.4035) ≥ 0.2279
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implies that

β(0.4035) =
(
1− 1

n

)
b(0.4035) + c(0.4035) ≥ 0.9914,

and
α(0.4035) ≥ 0.7369.

This yields that

R∗ ≥ α(0.4035)
1 +

√
1− β(0.4035)

≥ 0.6733.

This sightly improves the 2
3 +O( 1

n3 ) lower bound obtained by Andersson [1] and
Gaur et al. [8] for sufficiently large n.

5 Conclusions

We proposed a random rounding method for the Max 3-section problem based
on complex semidefinite programs. the proposed method can beat the 2/3 lower
bound. It is very worth to consider the numerical application for the proposed
algorithm. We will further discuss these problems in the sequel work.
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Abstract. Cayley graphs arise naturally in interconnection networks
design in study of Akers and Krishnamurthy in 1989 [1]. Lakshmivara-
han, Jwo and Dhall studied a number of interconnection networks as
graphs in 1993 [12]. In this paper, we propose some conjectures related
to complete-transposition graph, alternating-group graph, folded hyper-
cube and binary orthogonal graph, respectively. The conjectures claim
that each of these graphs is Hamiltonian decomposable. In addition, we
prove that above conjectures are true for smaller order of the networks.

Keywords: Cayley graph; Hamiltonian decomposition.

1 Introduction

The ultimate utility of a parallel computer is largely dependent on the prop-
erties of the interconnection network that connects processors to memory or
processors among themselves. Almost all of the interconnection network may
broadly be classified into two categories-dynamic and static networks. Static
networks can be conveniently modeled using tools from graph theory [5]. Ac-
cording, the processors correspond to the vertices and the communication links
between processors are edges connecting the vertices. Henceforth we will use the
terms networks and graphs interchangeably. If each processor in the network is
connected to a fixed number of neighbors, then the underlying graph is regu-
lar graph. We consider the networks based on regular graphs. There are several
considerations leading to the choice of a network in the development of parallel
computers on a commercial basis. The simplest of these include the degree, di-
ameter,the distribution of the node disjoint paths between a pair of vertices in
the graph. More complex attributes need to be considered. These include:

(a) optimal algorithms for various made of packet communication,
(b) embeddability,
(c) Hamiltonian decomposition,
(d) symmetry properties,
(e) recursive scalability.

In this paper, we discuss Hamiltonian decomposition of the networks presented
in [12].

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 231–237, 2009.
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Let G be a regular graph with edge set E(G). We say that G is Hamiltonian
decomposable if either (i) deg(G) = 2k and E(G) can be partitioned into k
Hamiltonian cycles, or (ii) deg(G) = 2k + 1 and E(G) can be partitioned into k
Hamiltonian cycles and a perfect matching as in [6,2].

2 Main Results

We first study the Hamiltonian decompositions of complete-transposition graphs.
Complete-transposition graphs CTn are the Cayley graphs generated by Ω1 =
{(ij)|1 � i < j � n}. in the other words, graph CTn =< V, E > is a Cayley graph
of the symmetric group Sn based on the generator set Ω1 = {(ij)|1 � i < j � n}.
CTn is a regular bipartite graph of degree n(n−1)

2 and order n!. For CTn, we have

Conjecture 1. If n(n−1)
2 is even, then CTn is a union of n(n−1)

4 edge-disjoint
Hamiltonian cycles; If n(n−1)

2 is odd, then CTn is union of (n(n−1)
2 − 1)/2 edge-

disjoint Hamiltonian cycles and a perfect matching.

In other words, CTn is Hamiltonian decomposable. In the following we give an
algorithm for searching above Hamiltonian cycles.

Let n = 2, n(n−1)
2 = 1. Clearly, CT1 is a perfect matching: 12 − 21.

Let n = 3, n(n−1)
2 = 3. CT3 is union of a Hamiltonian cycle H1 and a perfect

matching M1, where H1 and M1 follows:

H1: 123 − 213 − 231 − 321 − 312 − 132 − 123

M1: 123 − 321, 213 − 312, 231 − 132

These verified that Conjecture 1 is true for n = 2, 3.
We next study the Hamiltonian decomposition of extension of Hypercube

version 1 denoted by ECn. Let Ω2 = {(3i−2, 3i−1)|1 � i � n}∪{(3i−2, 3i)|1 �
i � n}. (< 3n >, Ω2) is the transposition graph of order 3n. ECn is the Cayley
graph as generated by Ω2 in [12]. The degree of ECn is 2n, the order of EGn is
6n. For ECn, we have

Conjecture 2. ECn is union of n edge-disjoint Hamiltonian cycles.

In other words, ECn is Hamiltonian decomposable. In the following we give an
algorithm searching the Hamiltonian cycles.

Let n = 1, EC1 is one Hamiltonian cycle H1, where H1 is defined as follows:
H1: 123 − 213 − 312 − 132 − 231 − 321 − 123.
This verify that Conjecture 2 is true for n = 1.
We then study the Hamiltonian decomposition of extension of Hypercube

version 2 denoted by FCn. Let Ω3 = Ω2 ∪ {(3i − 13i)|1 � i � n} = {(3i −
23i− 1)|1 � i � n} ∪ {(3i− 23i)|1 � i � n}. (< 3n >, Ω3) is the transposition
graph of order 3n. Extension of hypercube of version 2 FCn is the Cayley graph
as generated by Ω3 in [12]. The degree and the order of ECn are 3n and 6n,
respectively. We thus have:
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Conjecture 3. FCn is a union of n edge-disjoint Hamiltonian cycles and one
perfect matching.

In other words, FCn is Hamiltonian decomposable. In the following we give an
algorithm for searching above n edge-disjoint Hamiltonian cycles and one perfect
matching.

Let n = 1, FC1 is union of the Hamiltonian cycle H1 and the perfect matching
where H1 and M1 follows:

H1: 123 − 213 − 312 − 132 − 231 − 321 − 123

M1: 123 − 132, 213 − 231, 312 − 321

This verifies that Conjecture 3 is true for n = 1.
We now study the Hamiltonian decomposition of alternating-group graph.

The alternating group An⊆ Sn consists of the set of all even permutations. It
can be show that Ω4 = {(2i), (i2)|3 � i � n} generates An as in [13]. The Cayley
graph generated by Ω4 is called alternating group graph AGn as in [12,10]. AGn

is a regular graph with degree 2(n−2), order n!
2 and the number of edges (n−2)n!

2 .
Hence we have

Conjecture 4. AGn is a union of n− 2 edge-disjoint Hamiltonian cycles.

In other words, AG4 is Hamiltonian decomposable. In the following we give an
algorithm searching the above Hamiltonian cycles.

Let n = 3, AG3 is a Hamiltonian cycle H1: 123 − 231 − 312
Let n = 4. AG4 is union of two edge-disjoint Hamiltonian cycles H1 and H2,

where

H1: 1342 − 3412 − 4213 − 2143 − 1423 − 3124 −
2314 − 1234 − 4132 − 2431 − 4321 − 3241 − 1342

H2: 1342 − 2143 − 3241 − 2431 − 1234 − 3124 −
4321 − 1423 − 4213 − 2314 − 3412 − 4132 − 1342

Therefore, AG3 and AG4 both are Hamiltonian decomposable.
Now we study the Hamiltonian decomposition of base-b hypercube or gen-

eralized hypercube. Base-b hypercube or generalized hypercube GCn(b) is the
Cayley graph generated by Ω5, which is defined as follows:

Ω5 = {(jj + 1 · · · j + b− 1)i|j = 1 + bk, 0 � k � n− 1 and 1 � i � b − 1},

where b � 2 and n � 1 are integers as in [12]:

GCn(b) = GCn−1(b)×Kb,

where ‘×’ denotes the standard Cartesian product operation on graphs [9,17].
It can be readily verified that GCn(2) is the n-dimensional binary (base b = 2)
hypercube as in [11,14,15] and GCn(b) corresponds to the n-dimensional base-b
hypercube as in [11,3].
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Let V (GCn(b)) = {(12 · · · b)i1(b + 1b + 2 · · · 2b)i2((n − 1)b + 1(n − 1)b +
2 · · ·nb)in |0 � ij � b− 1 and 1 � j � n}. Then the order and degree of GCn(b)
are bn and (b − 1)n, respectively. Therefore, we have

Conjecture 5. If (b− 1)n is even then GCn(b) is a union of (b−1)n
2 edge-disjoint

Hamiltonian cycles; If(b− 1)n is odd, then GCn(b) is a union of (b−1)n−1
2 edge-

disjoint Hamiltonian cycles and a perfect matching.

In other words, GCn(b) is Hamiltonian decomposable. In the following, we give
an algorithm searching above Hamiltonian cycles.

Clearly, GCn(2) is a Hamiltonian cycle H1: 1243 − 1234 − 2134 − 2143.
GC2(3) is a union of 2 edge-disjoint Hamiltonian cycles H1 and H2, where

H1: 231564 − 123564 − 312564 − 312645 −
123645 − 123456 − 312456 − 231456 − 231645 − 231564

H2: 231564 − 312564 − 312456 − 312645 −
231645 − 123645 − 123564 − 123456 − 231456 − 231564

Hence, for GC2(2) and GC2(3), Conjecture 5 is true.
We move on to study the Hamiltonian decomposition of generalized base-b

orthogonal graph denoted by OG4(b). As in [12], let
∑

b = {0, 1, · · · , b − 1}.
Then (

∑
b)
n, the set of all strings of length n over

∑
b, denotes the set of all

base-b integers of length n. We define an encoding as follows:

fb : V (GCn(b)) −→
(∑

b

)n
(1)

as fb((1 2 · · · b)i1(b+1 b+2 · · ·2b)i2((n−1)b+1 (n−1)b+2 · · ·nb)in) = i1 i2 · · · in.
We can denote GCn(b) = (V, E) as the base-b hypercube of dimension n,

where
V =

{
x1 x2 · · ·xn

∣∣xi ∈∑
b

}
=

(∑
b

)n
,

and E = {(x, y)|x = x1 x2 · · ·xn, y = y1 y2 · · · yn and for some i, 1 � i � n, xi 	=
yi and xj = yj , for j 	= i}.

A further generalization of GCn(b) is presented in [12]. For 1 � i � n and
1 � k � b − 1, define Zi(k) = {x|x ∈

∑n
b and xi = k and xj = 0 where j 	= i}.

If y(i) ∈ (
∑

b)
n, 1 � i � m, then define

m∏
i=1

y(i) = y(1)y(2) · · · y(m)

the concatenation of y(1), y(2), · · · , y(n). Clearly, for each 1 � k � b−1, Zi(k) ⊆
(
∑

b)
n and it can be verified that

Z =
n∏
i=1

( b−1∏
k=1

Zi(k)
)

is an encoding of Ω5 using fb which is defined in equation (1).
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Let A be a collection of non-empty subsets of < n >. Define ,for A ∈ A,

Z(A) =
∏
i∈A

( b−1∏
k=1

Zi(b)
)
.

Given A, consider
Ω6 = Ω5

⋃{ ⋃
A∈A

Z(A)
}

.

The Cayley graph generalized by this generator set Ω6 is called base-b gener-
alized orthogonal graph of dimension n and is denoted by OGn(b).

When b = 2,A = {A} and A =< n >, we have

Ω6 = {(2i− 1 2i)|1 � i � n} ∪ {(12)(34) · · · (2n− 1 2n)}
generated the binary folded hypercube of dimension n as in [8] and denoted
BFH(n). Thus we have

Conjecture 6. If n is even, then the binary folded hypercube of dimension n
BFH(n) is a union of n2 edge-disjoint Hamiltonian cycles and a perfect matching;
If n is odd, then the binary folded hypercube of dimension n BFH(n) is a union
of n+1

2 edge-disjoint Hamiltonian cycles.

In other words, BFH(n) is Hamiltonian decomposable. Furthermore, we give an
algorithm searching above Hamiltonian cycles.

Let n = 3. BFH(3) is a union of edge-disjoint Hamiltonian cycles H1 and
H2, where

H1: 123456 − 213456 − 214356 − 124356 −
124365 − 214365 − 213465 − 123465 − 123456

H2: 123456 − 124356 − 213465 − 213456 −
124365 − 123465 − 214356 − 214365 − 123456

Hence, for BFH(3), Conjecture 6 is true.
In the end we study the Hamiltonian decomposition of CGi

n. It is well known
[10] that for any 1 � i < n, the set {(1 2 · · ·n), (i i +1)} generates Sn. However,
since this set does not satisfy the condition for being a generator set for a Cayley
graph, we define

Ωi
7 = {(1 2 3 · · ·n), (1 n n− 1 · · · 3 2), (i i + 1)}

as a generator set. The Cayley graph CGi
n generated by Ωi

7 is a regular graph
of degree three. We thus have

Conjecture 7. For any 1 � i < n, CGi
n is a union of a Hamiltonian cycle and a

perfect matching.

Let n = 3, i = 1. CG1
3 is a union of a Hamiltonian cycle H3

11 and a perfect
matching M3

11, where

H3
11 : 123 − 231 − 312 − 132 − 321 − 213 − 123;

M3
11 : 123 − 312, 231 − 321, 132 − 213.
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Let n = 3, i = 2. CG2
3 is a union of a Hamiltonian cycle H3

21 and a perfect
matching M3

21, where

H3
21 : 123 − 231 − 312 − 321 − 213 − 132 − 123;

M3
21 : 123 − 312, 231 − 213, 312 − 132.

Let n = 4, i = 1. CG1
4 is union of a Hamiltonian cycle H4

11 and a perfect
matching M4

11, where

H4
11: 1234 − 2134 − 4213 − 2413 − 3241 − 2341 −

3412 − 4312 − 3124 − 1324 − 4132 − 1432 −
4321 − 3421 − 1342 − 3142 − 2314 − 3214 −
2143 − 1243 − 2431 − 4231 − 1423 − 4123 − 1234.

M4
11 : 1234 − 2341, 2134 − 1342, 4213 − 3421,

2413 − 4132, 3241 − 1342, 3412 − 4123,
4312 − 2431, 3124 − 1243, 1432 − 2143,
4321 − 3214, 3142 − 1423, 2314 − 4231.

Hence, for CG1
3, CG2

3, CG1
4, Conjecture 7 is true.
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Abstract. In 1970, Dirac conjectured that for each integer k ≥ 4, there
exists a vertex k-critical graph without any critical edge. In this paper, we
introduce strict-vertex critically (k−1)-de-chromatic pair, strict 2-vertex
decomposition graph and so on. By studying their relevant properties,
we obtain that any vertex k-critical graph without any critical edge gen-
erates an infinite family of vertex k-critical graphs without critical edges.

Keywords: Decomposition, Composition, De-chromatic, Critical graph,
Dirac conjecture.

1 Introduction

Dirac conjectured that for each integer k ≥ 4, there exists a vertex k-critical
graph without any critical edge, in 1970. A formal statement of this conjecture
can be found in [2]. There was little progress within near 20 years after the
presentation of the conjecture. It is excited that more and more papers such as
[1,3] have presented some good results on the conjecture since 1992. Especially,
in 2002, Lattanzio [6] presented vertex k-critical graphs without critical edges
for all k ≥ 5 except prime integers.

However, there remains a problem: almost each method is special. In other
words, if G is found as a vertex k-critical graph without any critical edge, then
no others relative to G, except G its self, are found. It raises a problem: Can
we construct other vertex k-critical graphs without critical edges from a given
vertex k-critical graph without any critical edge?

In order to solve this problem, we introduce (k − 1)-de-chromatic pairs and
strict-vertex critically (k−1)-de-chromatic pairs which are obtained by studying
vertex decomposition of vertex k-critical graph without any critical edge. Then,
we obtain, for each k ≥ 4, any vertex k-critical graph without any critical edge
constructs an infinite family of vertex k-critical graphs without critical edges.

The graphs considered in this paper are finite, undirected and simple. For a
given graph G, we denote the vertex set of G by V (G) and the edge set of G
by E(G). Also, we set n(G) = |V (G)|. A graph G is said to have a k-coloring
if and only if its all vertices can be painted with k different colors such that
no two adjacent vertices receive the same color. k-colorings are often denoted
by P1, P2, P3, · · · in this paper. A graph G is said to be k-colorable if it has

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 238–248, 2009.
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a k-coloring. The chromatic number X (G) of G is the least k such that G is
k-colorable. A graph G is k-chromatic if X (G) = k. k distinct colors, used by
a k-coloring of a k-chromatic graph, are often denoted by C1, C2, · · · , Ck in the
text, and also by 1, 2, · · · , k in the figures. The color of vertex v under coloring
P is written as CP (v) or simply C(v).

A graph G is said to be vertex k−critical if X (G) = k and X (G−v) ≤ k−1 for
every vertex v ∈ V (G). An edge e ∈ E(G) is said to be critical in G whenever
X (G − e) ≤ X (G) − 1. A graph G is said to be k−critical if X (G) = k and
each edge e ∈ E(G) is critical. Let H be a subgraph of G. NH(v), called the
neighborhood of vertex v in subgraph H , is defined as all those vertices of H
which are adjacent to v.

2 Conceptions and Properties

In this section, we will introduce some basic conceptions, such as k-de-chromatic
pair and strict 2-vertex decomposition, which play an important role in this
paper.

Definition 1. Let u and v be two nonadjacent vertices of a graph G. u and v
are said to be a k-de-chromatic pair of G if and only if CP (u) 	= CP (v) under

any k-coloring P of G, denoted by u
G, k
−− v, or u

G
−− v or u

k
−− v or simply

u−−v.

If u and v are a k-de-chromatic pair of G, we often say u and v are k-de-chromatic
in G, or G has a k-de-chromatic pair. Thus two vertices u and v of a graph G
are not k-de-chromatic in G if and only if there is a k-coloring P of G such that
CP (u) = CP (v). If G has a k-de-chromatic pair, then n(G) ≥ k + 1.

Example 1. In Figure 1, two vertices h and t of Graph (1) are 3-de-chromatic,
since CP (h) 	= CP (t) under any 3-coloring of Graph (1); and, h and t, u and v
of Graph (2) are also.

Definition 2. Let P1 and P2 be two k-colorings of a k-chromatic graph G. P2
is said to be a k-coloring of G based on P1 if and only if there is a nonempty
vertex set V ′ ⊂ V (G) such that CP1(v) = CP2(v) for all v ∈ V ′.

Fig. 1. Some 3-de-chromatic pairs
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Theorem 1. If G has a k-de-chromatic pair u−−v, then X (G) = k.

Proof. According to the definition of k-de-chromatic pair, G has at least one k-
coloring. Thus, X (G) ≤ k. We will now prove X (G) > k−1 by converse method.
Suppose there is a (k− 1)-coloring P of G, whose k− 1 different painting colors
are denoted as C1, C2, · · · , Ck−1.

If CP (u) = CP (v), then there are at leat two vertices w and w′ (other than
u and v) of G painted by some color of C1, C2, · · · , Ck−1, since G has at least
k + 1 vertices. Painting one of them such as w by a new color Ck to P , we
obtain a k-coloring P1 of G based on the (k− 1)-coloring P such that CP1(u) =
CP1(v) = CP (u) = CP (v), and CP1 (w) = Ck, and CP1(v′) = CP (v′) for any
v′ ∈ V (G)− {u, v, w}. Contrary to that u and v are k-de-chromatic in G.

If CP (u) 	= CP (v), there are three cases.
The first case is that there are two vertices (other than u and v) which are

painted by CP (u) and CP (v) respectively. Then, painting u and v by a new
color to P such as Ck, we obtain a k-coloring P2 of G based on the (k − 1)-
coloring P such that CP2(u) = CP2(v) = Ck, and CP2(v′) = CP (v′) for all
v′ ∈ V (G)− {u, v}. Contrary.

The second case is that there are no other vertices which are painted by
CP (u) or CP (v). Then, there are at least four vertices (other than u and v)
painted by two different colors of {C1, C2, · · · , Ck−1} − {CP (u), CP (v)}, since
n(G)− [(k− 1)− 2] ≥ k + 1− k + 3 = 4. Choose two of them, denoted by a and
b, and let a and b be painted by CP (u) and CP (v) respectively such that not to
decrease k− 1 different painting colors of P so that this case is put into the first
case.

The third case is that case which belongs to neither the first nor the second.
We can deal with it similarly.

These imply X (G) > k − 1. Thus, X (G) = k. �

According to this theorem, we have that, if u and v are k-de-chromatic in G,
then they are absolutely not t-de-chromatic for t 	= k.

Definition 3. Let u and v be a k-de-chromatic pair of a graph G. An edge e
of G is said to be k-de-chromatically critical for u and v if and only if u and v
are not k-de-chromatic in graph G − e. The collection of all k-de-chromatically

critical edges for u and v is denoted by CriE(u
G, k
−− v) or CriE(u

G
−− v) or

CriE(u
k
−− v) or simply CriE(u − −v). A vertex w ∈ V (G) − {u, v} is said

to be k-de-chromatically critical for u and v if and only if u and v are not k-
de-chromatic in graph G − w. The collection of all k-de-chromatically critical

vertices is denoted by CriV (u
G, k
−− v) or CriV (u

G
−− v) or CriV (u

k
−− v) or

simply CriV (u −−v).

Let u and v be a k-de-chromatic pair of a graph G. If an edge e of G is k-de-
chromatically critical for u and v, we often written as e is critical for u and v
in G. Similarly, if a vertex w of G is k-de-chromatically critical for u and v, we
often written as w is critical for u and v in G.
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Definition 4. Let u and v be a k-de-chromatic pair of a graph G. u and v are

said to be a vertex critically k-de-chromatic pair of G if and only if CriV (u
G, k
−−

v) = V (G) − {u, v}, denoted by [u
G, k
−− v} or [u

G
−− v} or [u

k
−− v} or simply

[u−−v}. u and v are said to be a strict-vertex critically k-de-chromatic pair of G

if and only if CriV (u
k
−− v) = V (G)−{u, v} and there is no k-de-chromatically

critical edge for u and v, denoted by {u
G, k
−− v} or {u

G
−− v} or {u

k
−− v} or

simply {u−−v}.

In other words, u and v are a strict-vertex critically k-de-chromatic pair of G if u
and v are k-de-chromatic in G, and each vertex of G is k-de-chromatically critical
for u and v, and each edge of G is not k-de-chromatically critical for u and v. It
is easy to verify that if u and v are a strict-vertex critically k-de-chromatic pair
of G, then u and v are still k-de-chromatic in G− e for each e ∈ E(G).

If u and v are a strict-vertex critically k-de-chromatic pair of G we often
written as u and v are strict-vertex critically k-de-chromatic in G, or G has
a strict-vertex critically k-de-chromatic pair. If G has a strict-vertex critically
k-de-chromatic pair {u−−v}, then G is often written as G

{u k−−v}
or G{u−−v}.

Definition 5. Let w be an arbitrary vertex of a graph H which has two
nonempty neighborhoods V1, V2 ⊂ NH(w) such that V1 ∩ V2 = φ and V1 ∪ V2 =
NH(w). A new graph G is said to be the strict 2-vertex decomposition graph by
decomposing vertex w into u and v if and only if we replace w by two new ver-
tices u and v and join u to all vertices of V1 and v to all vertices of V2, denoted
by H(w{V1,V2} → {u, v}), simply H(w → {u, v}). Conversely, H is said to be
the strict 2-vertex composition graph by composing u and v into w, denoted by
G({u, v} → w) (see Example 2).

Example 2. In Figure 2, Graph (4) is a strict 2-vertex decomposition graph by
decomposing vertex w of Graph (3) into u and v. Graph (3), of course, is the
strict 2-vertex composition graph by composing u and v of Graph (4) into vertex
w. Let H indicate Graph (3) with V1 = {a, d} and V2 = {b, c}, and G Graph
(4). Then, G = H(w{V1,V2} → {u, v}) and H = G({u, v} → w).

Definition 6. Let H and H ′ be two graphs with w1w2 ∈ E(H) and h, t ∈ V (H ′).
The new graph H(w1w2 → H ′|th), obtained from H and H ′, is said to be the edge
expansion graph of w1w2 replaced by H ′ on h and t if and only if we replace
w1w2 by H ′ and h replaces w1 and t replaces w2. Sometimes, H(w1w2 → H ′|th)
is simply written as H(w1w2 → H ′) if no confusion (see Example 3).

Definition 7. Let u1v1, u2v2, · · · , umvm be m edges of a graph H. Let hi, ti
be two vertices of a graph Hi, i = 1, 2, · · · , m. Denote H0 = H and H1 =
H0(u1v1 → H1|t1h1

), and Hi = Hi−1(uivi → Hi|tihi
) = H(u1v1→ H1|t1h1

, u2v2→
H2|t2h2

, · · · , uivi → Hi|tihi
), i = 1, 2, · · · , m. Hm is called the edge expansion graph

of u1v1, u2v2, · · · , umvm replaced by H1, H2, · · · , Hm on corresponding hi and ti
for i = 1, 2, · · · , m, simply denoted by H(

∑m
i=1(uivi→ Hi|tihi

)) (see Example 3).
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Fig. 2. Decomposition and composition

Fig. 3. Edge expansion graphs

Example 3. In Figure 3, Graph (7) is the edge expansion graph of edge ab of
Graph (5) replaced by Graph (6) on h and t. Graph (8) is the edge expansion
graph of two edges ab and cd of Graph (5) replaced by Graph (6) on h and t, and
u and v, that is, the edge expansion graph of cd of Graph (7) replaced by Graph
(6) on u and v. Let H1 be Graph (5), H2 be Graph (6). Let H be Graph (7),
and G be Graph (8). Then, H = H1(ab → H2|th), and G = H1(ab → H2|th, cd→
H2|vu) = H(cd→ H2|vu).

3 Main Results

In this section, we will show how to obtain infinite family of vertex k-critical
graphs without critical edges from a given vertex k-critical graph without any
critical edge, where k ≥ 4. If no special statement, we always let k ≥ 4 in this
section.

Theorem 2. Let G be a vertex k-critical graph without any critical edge, and w
be an arbitrary vertex of G. Then, a strict 2-vertex decomposition graph G(w →
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{h, t}) of G has the strict-vertex critically (k− 1)-de-chromatic pair {h−−t} if
and only if X (G(w → {h, t})) ≤ k − 1.

Proof. The necessity is obvious. Now, we prove the sufficiency.
Firstly, we prove h and t are (k − 1)-de-chromatic in G(w → {h, t}) when

X (G(w → {h, t})) ≤ k − 1. In fact, if there is a (k − 1)-coloring P ′ of G(w →
{h, t}) such that CP ′

(h) = CP ′
(t), then, by composing h and t into one vertex

(simply, using one vertex to replace two vertices h and t, and joining it to all
neighbors of h and t), P ′ becomes a (k− 1)-coloring of G. Contrary to that G is
a vertex k-critical graph. This implies that h and t are (k − 1)-de-chromatic in
G(w → {h, t}).

Secondly, we proceed to prove each edge of G(w → {h, t}) is not critical for
h and t. Let e be an arbitrary edge of G(w → {h, t}). Then, there is no (k − 1)-
coloring P1 of G(w → {h, t}) − e such that CP1 (h) = CP1(t). Otherwise, by
composing h and t into one vertex, P1 becomes a (k − 1)-coloring P1 of G − e.
Contrary to that G is a vertex k-critical graph without any critical edge. This
implies that each edge of G(w → {h, t}) is not critical for h and t.

Thirdly, we prove each vertex of G(w → {h, t})− {h, t} is critical for h and
t. Let u be an arbitrary vertex of G(w → {h, t}) − {h, t}. Then, there is a
(k − 1)-coloring P2 of G − u, since G is a vertex k-critical graph. Of course, P2
is also a (k − 1)-coloring of G(w → {h, t})− u = (G− u)(w → {h, t}) such that
CP2(h) = CP2(t) = CP2 (w). This shows that u is critical for h and t.

These imply that h and t are a strict-vertex critically (k − 1)-de-chromatic
pair of G(w → {h, t}). Thus, the sufficiency is finished. �

Theorem 3. Let G be a vertex k-critical graph without any critical edge, and
w be an arbitrary vertex of G. Then, we have at least one strict 2-vertex decom-
position graph by decomposing w into h and t which has a strict-vertex critically
(k − 1)-de-chromatic pair {h−−t}.

Proof. Since G is a vertex k-critical graph without any critical edge, there is a
(k − 1)-coloring P of G− w. Let C1 be an arbitrary color, used by P . After we
use two vertices h and t to replace w of G, and join h to all vertices V1 ⊂ NG(w)
which are not colored by C1, and join t to all vertices V2 ⊂ NG(w) which are
colored by C1, and paint h with C1, and paint t with any color which is not C1,
we obtain a strict 2-vertex decomposition graph G(w{V1,V2} → {h, t}). From the
construction, it has a (k− 1)-coloring. From Theorem 2, the theorem holds. �

According to the proof of the above theorem, we may have different strict-vertex
critically (k−1)-de-chromatic pairs from a given vertex k-critical graph without
any critical edge with change of w or color C1.

Lemma 1. Let u and v be vertex critically (k − 1)-de-chromatic in a graph G,
and C1 and C2 be two arbitrary different painting colors. Then there is a (k−1)-
coloring P of G such that CP (u) = C1 and CP (v) = C2.

Proof. Since u and v are vertex critically (k − 1)-de-chromatic in G, there is
a (k − 1)-coloring P1 of G such that CP1(u) 	= CP1(v). If CP1(u) 	= C1, we
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construct a (k − 1)-coloring P2 of G based on P1 by letting all vertices of G,
which are colored by CP1(u) under P1, be painted by C1, and all vertices of
G, which are colored by C1 under P1, be painted by CP1(u). Thus, under the
(k − 1)-coloring P2 of G, we have CP2(u) = C1. Similarly, if CP2(v) 	= C2, then
we construct a (k − 1)-coloring P of G based on P2 such that CP (v) = C2 and
CP (u) = C1. �

Lemma 2. Let u and v be vertex critically (k − 1)-de-chromatic in a graph G,
and w be an arbitrary vertex of G, and C1 be an arbitrary painting color. Then
we have

(1) if w ∈ CriV (u−−v) (that is, w 	= u and w 	= v), then there is a (k − 1)-
coloring P1 of G− w such that CP1 (u) = CP1(v) = C1;

(2) if w /∈ CriV (u − −v) (that is, w = u or w = v), then there is a (k − 1)-
coloring P2 of G−w such that CP2 (u) = C1 when w = v, or CP2(v) = C1 when
w = u.

Proof. (1) Since u and v are vertex critically (k− 1)-de-chromatic in G, there is
a (k−1)-coloring P1 of G−w such that CP1(u) = CP1(v). If CP1(u) = CP1(v) 	=
C1, then we construct a (k − 1)-coloring P of G − w based on P1 by letting all
vertices of G−w, which are colored by CP1(u) under P1, be painted by C1, and
all vertices of G− w, which are colored by C1 under P1, be painted by CP1 (u).
Thus, under the (k − 1)-coloring P of G− w, we have CP (u) = CP (v) = C1.

(2) Item 2 is easy to verify. �

Theorem 4. Let G be a k-critical graph with |E(G)| edges e1, e2, · · · , e|E(G)|,
and H be another graph which has a strict-vertex critically (k− 1)-de-chromatic
pair {h−−t}. Then, the edge expansion graph G(

∑|E(G)|
i=1 (ei → H |th)) is a vertex

k-critical graph without any critical edge.

Proof. Obviously, X (G(
∑|E(G)|

i=1 (ei → H |th))) = k. Let vv′ be an arbitrary edge
of G. In order to prove conveniently, let H{hvv′−−tvv′} denote the graph H (the
subgraph of G(

∑|E(G)|
i=1 (ei → H |th))) which replaces the edge vv′ of G on h and t.

Now, we prove that each edge of G(
∑|E(G)|

i=1 (ei → H |th)) is not k-critical. Let
e be an arbitrary edge of G(

∑|E(G)|
i=1 (ei → H |th)). Then, there is an edge ww′

of G such that e ∈ E(H{hww′−−tww′}). Since {hww′ −−tww′} is a strict-vertex
critically (k− 1)-de-chromatic pair, hww′ and tww′ are also (k− 1)-de-chromatic
in H{hww′−−tww′} − e. Thus, X (G(

∑|E(G)|
i=1 (ei → H |th)) − e) = k for any e ∈

E(G(
∑|E(G)|

i=1 (ei → H |th))). In other words, each edge of G(
∑|E(G)|

i=1 (ei → H |th))
is not critical.

Now, we proceed to prove that each vertex of G(
∑|E(G)|

i=1 (ei → H |th)) is k-
critical. Let u be an arbitrary vertex of G(

∑|E(G)|
i=1 (ei → H |th)). It has two cases.

One is that there is an edge w1w2 of G such that u ∈ CriV ({hw1w2 −−tw1w2}).
Another is that u = w1 or u = w2, that is, u /∈ CriV ({hw1w2 − −tw1w2}) or
belongs to V (G).

For the first case, since G is k-critical, there is (k−1)-coloring P1 of G−w1w2
such that CP1(w1) = CP1(w2). According to Item (1) of Lemma 2, there is
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a (k − 1)-coloring Pw1w2 of H{hw1w2−−tw1w2} − u such that CPw1w2 (hw1w2) =
CPw1w2 (tw1w2) = CP1(w1) = CP1(w2). Let ww′ be an arbitrary edge of
G − w1w2. Then, there is a (k − 1)-coloring Pww′ of H{hww′−−tww′} such that
CPww′ (hww′) = CP1(w) and CPww′ (tww′) = CP1(w′) according to Lemma 1.
Combining these |E(G)| − 1 (k − 1)-colorings and P1, we obtain a (k − 1)-
coloring of G(

∑|E(G)|
i=1 (ei → H |th))− u.

For the second case, there is a (k − 1)-coloring P2 of G − u, since G is k-
critical. Let w3w4 be an arbitrary edge of G − u. Then, there is a (k − 1)-
coloring Pw3w4 of H{hw3w4−−tw3w4} such that CPw3w4 (hw3w4) = CP2(w3) and
CPw3w4 (tw3w4) = CP2(w4) according to Lemma 1. The number of such (k − 1)-
colorings is |E(G)|−dG(u) where dG(u) indicates the degree of u in G. Let w5w6
be an arbitrary edge of G whose one endpoint is u, and another is not. We may
assume w5 is u. Then, there is a (k − 1)-coloring Pw5w6 of H{hw5w6−−tw5w6} −
u = H{huw6−−tuw6} − u such that CPw5w6 (tw5w6) = CPw5w6 (tuw6) = CP2(w6),
according to Item (2) of Lemma 2. The number of such (k−1)-colorings is dG(u).
Combining all |E(G)| = (|E(G)| − dG(u)) + dG(u) (k − 1)-colorings, we obtain
a (k − 1)-coloring of G(

∑|E(G)|
i=1 (ei → H |th))− u.

These imply X (G(
∑|E(G)|

i=1 (ei → H |th))−u) ≤ k− 1 for any u ∈ V (G(
∑|E(G)|

i=1
(ei → H |th))). Thus, the theorem holds. �

Theorem 5. Let G be a k-critical graph with |E(G)| edges e1, e2, · · · , e|E(G)|.
Let {hi−−ti} be a strict-vertex critically (k− 1)-de-chromatic pair of graph Hi

for i = 1, 2, · · · , |E(G)|. Then, the edge expansion graph G(
∑|E(G)|

i=1 (ei → Hi|tihi
))

is a vertex k-critical graph without any critical edge.

Proof. The proof is similar to that of Theorem 4. �

Let G be a general vertex k-critical graph. Then, some edges of G are critical,
and others not. Letting CriE(G) denote the edge set of all critical edges of G,
we have the following result.

Theorem 6. Let G be a vertex k-critical graph with |CriE(G)| critical edges
e1, e2, · · · , e|CriE(G)|. Let {hi − −ti} be a strict-vertex critically (k − 1)-de-
chromatic pair of graph Hi for i = 1, 2, · · · , |CriE(G)|. Then, the edge expansion
graph G(

∑|CriE(G)|
i=1 (ei → Hi|tihi

)) is a vertex k-critical graph without any critical
edge.

Proof. The proof is similar to that of Theorem 4. �

Corollary 1. Any vertex k-critical graph without any critical edge constructs,
by itself, infinite family of vertex k-critical graphs without critical edges.

Proof. It follows from Theorem 3 and Theorem 6. �

This result is not empty, since Lattanzio [6] presented a vertex k-critical graph
without any critical edge for any k (≥ 6 and not prime).
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Corollary 2. Let H1, H2, · · · , Hm be m vertex k-critical graphs without critical
edges. Then, they generates infinite family V of vertex k-critical graphs without
critical edges such that each member of V is relative to all given vertex k-critical
graphs without critical edges.

Proof. Let G be an infinite set of vertex k-critical graphs such that each graph
has more than m critical edges. From Theorem 3, we obtain at least one strict 2-
vertex decomposition graph Hi(wi → {hi, ti}) which has a strict-vertex critically
(k − 1)-de-chromatic pair {hi − −ti} for i = 1, 2, · · · , m. Then, It follows from
Theorem 6. �

When k = 4, Dirac Conjecture becomes very difficult. It appears in open prob-
lems in several papers such as [3][6]. If there is a graph which has a strict-vertex
critically 3-de-chromatic pair, then there are infinite vertex 4-critical graphs
without critical edges. Here, we present the following equivalent open problem.

Open Problem: Is there a graph which has a strict-vertex critically 3-de-
chromatic pair?

4 Example

Circulant graph C(17; 2, 6, 7, 8), denoted by GC17 , is a vertex 5-critical graph
without any critical edge (see Graph (9) in Figure 4). This can be easily verified
by computer. Thus, the strict 2-vertex decomposition graph GC17(w → {u, v})

Fig. 4. A strict-vertex critically 4-de-chromatic pair from decomposition
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Fig. 5. A new vertex 5-critical graph without any critical edge

(see Graph (10) in Figure 4) has a strict-vertex critically 4-de-chromatic pair
{u−−v}, according to Theorem 2.

Doubtlessly, the most important two vertices of Graph (10) are u and v so that
in order to draw conveniently, we may simply draw Graph (10) as Graph (11).
Then, when Graph (11) replaces all edges of Graph (3) ( a famous 5-critical
graph K5), we obtain a new vertex 5-critical graph without any critical edge
(see Graph (12) in Figure 5). Thus, we have, if there is a 5-critical graph H ,
then there is a vertex 5-critical graph without any critical edge, by Graph (11)
replacing all edges of H . As we know, 5-critical graphs are infinite. Let G be
an arbitrary infinite set of 5-critical graphs. Thus, when Graph (11) replaces all
edges of each graph of G, we obtain an infinite family of vertex 5-critical graphs
without critical edges.

5 Conclusion

This paper shows that, any vertex k-critical graph without any critical edge has
its own ’DNA’: strict-vertex critically (k−1)-de-chromatic pair, so that, by such
’DNA’, it easily generates new vertex k-critical graphs without critical edges.
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Abstract. Let H be the graph obtained from a 6-cycle C6 by adding
an edge which joins a pair of two vertices with distance two. We show
that if a planar graph does not contain H , then G is edge-t-choosable,
where t = 7 if Δ(G) = 5, and t = Δ(G) + 1, otherwise. This extends the
known results that a planar graph is edge-(Δ(G) + 1)-choosable when
Δ(G) �= 7 and G does not contain a k-cycle for some k ∈ {3, 5, 6}. It is
well-known that {3, 5, 6} are only integers for which the lack of a cycle
of length in {3, 5, 6} for a planar graph G implies 3-degeneracy of G. As
a by-product, we prove that if a planar graph G contains at most seven
3-cycles, G is 3-degenerate. We also answer a problem of Raspaud and
Wang (European J. Combin. 29(2008) 1064-1075) in negative.

Keywords: List coloring, Planar graphs.

1 Introduction

An edge-k-coloring of G is a mapping φ from E(G) to the set of colors {1, 2, · · · , k}
such that φ(e) 	= φ(e ′) for any adjacent edges e and e ′ of G. The chromatic in-
dex χ ′(G) is the smallest integer k for which G has an edge-k-coloring. The map-
ping L is said to be a list assignment of edges of G if it assigns a list L(e) of possible
colors to each edge e of G. If G has a proper edge coloring φ such that φ(e) ∈ L(e)
for all edges e, then we say that G is edge-L-colorable or φ is an edge-L-coloring
of G. We call G edge-k-choosable if it is edge-L-colorable for every list assignment
L satisfying |L(e)| ≥ k for all edges e. The list chromatic index χl

′(G) of G is the
smallest k for which G is edge-k-choosable.

Throughout the paper, H denotes the graph obtained from a 6-cycle C6 by
adding an edge which joins a pair of two vertices with distance two. It is easy
to see that H is the minimum supergraph of C3, C5 and C6. The main result
of this paper is to show that the following conjecture holds for a planar graph
G without H as a subgraph and Δ(G) 	= 5. This improves some earlier results
in [11, 12, 14].

Conjecture 1.1. Every simple graph G is edge-(Δ(G) + 1)-choosable.

The above conjecture was first proposed by Vizing (see [8]). An earlier result of
Harris [6] asserts that, if G is a graph with Δ(G) ≥ 3, then χl

′(G) ≤ 2Δ(G)−2.

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 249–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This implies that Conjecture 1.1 holds if Δ(G) = 3. Juvan, Mohar, and
S̆krekovski [7] settled the case when Δ(G) = 4. Conjecture 1.1 was confirmed
for other special cases such as complete graphs [5], and planar graphs with
Δ(G) ≥ 9 [1]. Chen et al. [2] recently proved Conjecture 1.1 is true for planar
graphs without C5 + e, where C5 + e denotes the graph obtained from the five
cycle C5 by adding a chord.

At the end of this paper, we will prove that if a planar graph G contains at
most seven 3-cycles, G is 3-degenerate. We also answer a problem of Raspaud
and Wang [10] in negative.

2 Main Results

For a plane graph G = (V (G), E(G)), F (G) denotes the set of faces of G. The
well-known Euler’s theorem states that |V (G)| − |E(G)| + |F (G)| = 2 if G is
connected. For a vertex v, the degree of a vertex v, denoted by d(v), is the
number of edges incident with v in G. The minimum degree and the maximum
degree of G are denoted δ(G) and Δ(G), respectively. For a face f ∈ F (G), the
degree of f , denoted by d(f), is the number of edges incident with f , in which
each cut edge is counted twice. For the sake of simplicity, we call a vertex v a
k-vertex if d(v) = k. Similarly, a face f is called a k-face if d(f) = k. For an
element x ∈ V (G) ∪ F (G) with d(x) ≥ k, x is called a k+-vertex if x ∈ V (G),
and a k+-face, otherwise.

Lemma 1. Let G be a planar graph without H as a subgraph. If d(u) + d(v) ≥
Δ(G) + 3 for any edge uv of G, then one of the following holds:

(1) G contains an edge uv such that d(u) + d(v) ≤ 8.
(2) Δ(G) = 6 and G contains a 4-cycle C = v1v2v3v4v1 such that d(v1) =
d(v3) = 3 and d(v2) = d(v4) = 6.

Proof. Suppose that the lemma is false and let G be a counterexample with
minimum order. Then G is connected. Since d(u) + d(v) ≥ Δ(G) + 3 for any
edge uv of G, δ(G) ≥ 3. Assume that G is embedded on the plane such a way
that the outer face of G is 6+-face if G is not 2-connected (This can be done
because the length of boundary of each end block is at least three). Hence the
boundary of each k-faces are cycles when k ≤ 5. In the rest of proof, we shall
apply the well-known discharging method.

Initial weight. We assign a weight to the vertices and faces of G by taking
w(x) = 2d(x)− 6 if x ∈ V (G) and w(x) = d(x)− 6 if x ∈ F (G). Euler’s formula
on a plane graph and the hand shaking lemma’s for the degree of vertices and
faces imply ∑

x∈V (G)∪F (G)

w(x) = −12.

This shows that the total weight of vertices and faces of G is negative.
To obtain a contradiction we redistribute the weight of vertices and faces by

applying Rule 1 to Rule 4 described later. A cluster of triangles is a subgraph
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of G which consists of a non-empty minimal set of 3-faces such that no other
3-face is adjacent to a member of this set. Since G is not contains a subgraph
isomorphic to H , there are four possible clusters of triangles in G as illustrated
in Figure 1, in which all triangles have a common vertex.

Fig. 1. The possible clusters of triangles in G

The number of triangles in a cluster of triangles is called the size of the cluster.
We say that a face f is adjacent to a cluster C of triangles if f is adjacent to a
face in C.

Claim 1. For a vertex v ∈ V (G) with d(v) ≥ 5, there are at most ! 3
4d(v)"

triangles containing v.

Proof of Claim 1. This is an immediate consequence of the fact that the size of
a cluster of triangles with a vertex v as their common vertex is at most three if
d(v) ≥ 5. �

A 4-face is adjacent to a a cluster of triangles of size two or three and a 5-face
is adjacent to a triangle or a cluster of size three in Figure 2, where the vertices
shown with black square is identified.

Fig. 2. Clusters of triangles and adjacent small faces

Claim 2. Let v ∈ V (G) and d(v) ≥ 5. Suppose v is incident to a cluster C of
triangles of size two or three. If f1 and f2 are the two faces adjacent to C and
are incident to v, then one of f1 and f2 is a 6+-face.

Proof of Claim 2. It is not hard to see from Figure 2 that, if each of f1 and f2
is 4-face or 5-face, then G cannot be planar or contains a subgraph isomorphic
to H . �

Claim 3. Let f1, f2 and f3 be three faces incident to v. If both f1 and f3 are
3-faces are adjacent to f2, then f2 is neither a 4-face nor a 5-face.
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Proof of Claim 3. Let k = d(v). Let vk, v1, v2, v3 be the four neighbors of v
that appears successively in clockwise order, and V (f1) = {v, vk, v1}, V (f3) =
{v, v2, v3}, where k = d(v). Suppose f2 is a 4-face. Since f2 is adjacent to both
f1 and f2, V (f) = {v, v1, v

′, v2}, where v′ ∈ V (G) and v′ /∈ {v, vk, v1, v2, v3}.
Clearly, G[{v, vk, v1, v

′, v2, v3}] contains H as its subgraph, a contradiction. Sim-
ilarly, we can see that if f2 is a 5-face, G[V (fi) ∪ V (f2)] contains a subgraph
isomorphic to H for some i ∈ {1, 3}. �

Claim 4. Let C be a cluster of triangle of size three, and v be the common vertex
of those triangle. If f is a 5-face incident to v, then either f is not adjacent to
C, or f is adjacent to C in the way as shown in Figure 2.

Proof of Claim 4. It is obvious, so omitted.

Let v be vertex with d(v) ≥ 4 and f ∈ F3(v) ∪ F4(v) ∪ F5(v). Let z(v, f) be the
amount of weight transferred from v to f . Now we redistribute the weight of G
according to the following rules.

Rule 1. If d(v) ≥ 7,

z(v, f) =

⎧⎨⎩
3
2 if f ∈ F3(v);
1 if f ∈ F4(v);
1
2 if f ∈ F5(v).

Rule 2. If d(v) = 6,

z(v, f) =

⎧⎪⎨⎪⎩
3
2 if f ∈ F3(v);

6− 3
2×|F3(v)|

|F4(v)∪F5(v)| if f ∈ F4(v) ∪ F5(v).

Rule 3. Let d(v) = 5. If v is incident to a cluster of triangles of size three and
|F4(v)| 	= 0, then

z(v, f) =

⎧⎨⎩
1
2 if f ∈ F4(v);

7
6 if f ∈ F3(v),

otherwise,

z(v, f) =

⎧⎪⎨⎪⎩
4
3 if f ∈ F3(v);

4− 4
3×|F3(v)|

|F4(v)∪F5(v)| if f ∈ F4(v) ∪ F5(v).

Rule 4. If d(v) = 4, z(v, f) = 1
2 for any f ∈ F3(v) ∪ F4(v) ∪ F5(v).

Let w′(x) be the new weight after the transfer is complete. We will check that
w′(x) ≥ 0 for any x ∈ V (G) ∪ F (G). Actually w′(x) = w(x) if x ∈ V (G) and
d(x) = 3, or x ∈ F (G) and d(x) ≥ 6, then w′(x) = w(x) ≥ 0. By Rule 4, if
x ∈ V (G) and d(x) = 4, then w′(x) ≥ w(x) − 1

2 × 4 = 2− 2 = 0.
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Now let v ∈ V (G) with d(v) ≥ 5. By Claim 1, since |F3(v)| ≤ ! 3
4d(v)", we

have 3
2 |F3(v)| + (d(v) − |F3(v)|) ≤ 2d(v) − 6 for d(v) ≥ 9. Thus, if d(v) ≥ 9,

w′(v) = w(v) − 3
2 |F3(v)| − (d(v) − |F3(v)|) ≥ 0.

If d(v) = 8, then |F3(v)| ≤ 6. If |F3(v)| = 6, by Claim 3, |F4(v) ∪ F5(v)| = 0,
and thus w′(v) = w(v) − 3

2 × 6 = (2 × 8 − 6) − 9 = 1. If |F3(v)| ≤ 4, then
w′(v) ≥ w(v) − (3

2 × 4 + 4) = 0. If |F3(v)| = 5, v is incident to a clusters of
triangles of size two or three. By Claim 2, there is a 6+-face incident to v. So,
w′(v) ≥ w(v) − (3

2 × 5 + 2) = 10− 9.5 = 0.5.
If d(v) = 7, then |F3(v)| ≤ ! 3

4d(v)" = ! 3
4 × 7" = 5. If |F3(v)| ≤ 2, then

w′(v) ≥ w(v) − (3
2 × 2 + 5) = 8 − 8 = 0. If |F3(v)| = 5, v is incident to exactly

a clusters of triangles of size two and a cluster of triangles of size three. By
Claim 3, the remaining two faces incident to v are 6+-faces. Hence, w′(v) =
w(v)− (3

2 × 5) = 8− 7.5 = 0.5. If |F3(v)| = 3 or |F3(v)| = 4, there must be a 6+-
face incident to v by Claim 2 and Claim 3. Thus, w′(v) ≥ w(v)− (3

2 ×4+2) = 0.
Suppose d(v) = 6. By Claim 1, |F3(v)| ≤ 4. If |F3(v)| = 4, then the remaining

two faces incident to v must be 6+-faces by Claim 2 and Claim 3, thus w′(v) =
w(v)− (3

2 × 4) = 6− 6 = 0. If |F3(v)| ≤ 3, it is clear that w′(v) ≥ 0 from Rule 2.
If d(v) = 5, |F3(v)| ≤ 3. If |F3(v)| 	= 3 or |F4(v)| = 0, then w′(v) ≥ 0 by

Rule 3. If |F3(v)| = 3 and |F4(v)| 	= 0, then by Claim 2, |F4(v)| = 1, and thus
w′(v) = w(v) − 1

2 −
7
6 × 3 = 0.

Now let f be a face with d(f) ≤ 5. We first consider the case d(f) = 3. For
convenience, let V (f) = {v1, v2, v3}, where d(v1) ≤ d(v2) ≤ d(v3). If d(v3) ≥
d(v2) ≥ 6, then by Rules 1 and 2, w′(v) ≥ w(v) + 3

2 × 2 = 0. If d(v1) = 3, then
d(v2) ≥ 6 and d(v3) ≥ 6 by the assumption that d(u)+d(v) ≥ max{9, Δ(G)+3}
for any edge uv of G. So, we assume that d(v1) ≥ 4. Clearly d(v3) ≥ d(v2) ≥ 5.
If d(v3) ≥ 6 then w′(f) ≥ w(f) + 1

2 + 7
6 + 3

2 > 0 by Rules 1-4. So, it remains to
consider the case when d(v2) = d(v3) = 5. We claim that z(vi, f) ≥ 4

3 for some
i ∈ {2, 3}. If this does not hold, then z(v2, f) = z(z3, f) = 7

6 , by Rule 3 and
Claim 2, each of v2 and v3 is incident to a cluster of triangles of size three, and
|F4(vi)| = 1 for i ∈ {2, 3}. But this implies that d(v1) = 3, which contradicts
d(v1) ≥ 4. Thus, we have w′(v) ≥ w(v) + 1

2 + 7
6 + 4

3 = 0.
If d(f) = 5, there are three vertices of V (f) with degree at least four. Let

v ∈ V (f) with d(v) ≥ 4. We claim that z(v, f) ≥ 1
2 . It is trivially true when

d(v) = 4 or d(v) ≥ 7, by Rule 1 and Rule 4. Now suppose d(v) = 5. Since v is
incident to a 5-face (i.e. f), by Claim 4, |F3(v)| ≤ 2. Hence, if |F3(v)| ≤ 1, then

z(v, f) ≥
4− 4

3

4
=

2
3
;

if |F3(v)| = 2, then by Claim 2 and Claim 3, v is incident to a 6+-face, and thus
by Rule 3,

z(v, f) ≥
4− 4

3 × |F3(v)|
|F4(v) ∪ F5(v)| ≥

4− 4
3 × 2
2

=
2
3
.

If d(v) = 6, by Claim 2 and Claim 3, |F3(v)| ≤ 3. By Rule 2,

z(v, f) =
6− 3

2 |F3(v)|
|F4(v) ∪ F5(v)| ≥

1.5
3

=
1
2
.
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Summing up the above, z(v, f) ≥ 1
2 when d(v) ≥ 4. So we have

w′(f) ≥ w(f) +
1
2
× 3 = −1 +

3
2

=
1
2
≥ 0.

Finally let us consider the case when d(f) = 4. If all vertices of V (f) are
4+-vertices, by the fact that z(v, f) ≥ 1

2 for any v ∈ V (f) as we have seen in the
previous paragraph, we have w′(f) ≥ w(f)+ 1

2×4 = −2+2 = 0. Now assume that
v1, v2, v3, v4 be the four vertices which appear on the boundary of f in clockwise,
and d(v1) = 3. Then d(v2) ≥ max{Δ(G), 6} and d(v4) ≥ max{Δ(G), 6}. If
Δ(G) ≥ 7, by Rule 1, z(vi, f) = 1 for i ∈ {2, 4}, hence w′(f) ≥ w(f)+ z(v2, f)+
z(v4, f) = −2 + 2 = 0. So, Δ(G) = 6. Then d(v2) = d(v4) = 6. Since both v2
and v4 are adjacent to a 4-face (i.e. f), |F3(vi)| ≤ 3 for each i ∈ {2, 4} by Claim
3. If |F3(vi)| = 3, vi is incident to a 6+-face for i ∈ {2, 4}, hence by Rule 2,

z(vi, f) =
6− 3

2 × |F3(v)|
|F4(v) ∪ F5(v)| ≥

1.5
2

=
3
4
;

if |F3(vi)| ≤ 2,

z(vi, f) =
6− 3

2 × |F3(v)|
|F4(v) ∪ F5(v)| ≥

3
4
.

Moreover, by the the choice of G, d(v3) ≥ 4. Thus z(v3, f) ≥ 1
2 . So,

w′(f) = w(f) + z(v2, f) + z(v3, f) + z(v4, f) ≥ −2 +
3
4
× 2 +

1
2

= 0.

Therefore,

−12 =
∑

x∈V (G)∪F (G)

w(x) =
∑

x∈V (G)∪F (G)

w′(x) ≥ 0,

a contradiction. The result follows. �

Theorem 1. If a planar graph G does not contain a subgraph isomorphic to
H, then G is edge-t-choosable, where t = 7 if Δ(G) = 5, and t = Δ(G) + 1,
otherwise.

Proof. The proof is by induction on the number of edges of G. Let L be a
list assignment of edges of G with |L(e)| ≥ t, where t = 7 if Δ(G) = 5, and
t = Δ(G) + 1 otherwise. If Δ(G) ≤ 4, then by the result of [7], G is edge
(Δ(G)+1)-choosable. So we suppose Δ(G) ≥ 5 and |E(G)| ≥ 5. First assume G
contains an edge e∗ = uv such that d(u)+ d(v) ≤ Δ(G) + 2. It means that there
are at most Δ(G) edges of G adjacent to e∗ in G. By the induction hypothesis,
G− e∗ has an L-coloring ϕ. Since |L(e∗)| = Δ(G) + 1, there must be a color not
used in ϕ on those edges adjacent to e∗. Thus we obtain an L-coloring of G.

Now we suppose d(x) + d(y) ≥ Δ(G) + 3 for any edge e = xy. If Δ(G) = 5,
by Lemma 1, G contains an edge e′ = uv such that d(u) + d(v) ≤ 8. Then
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G− e′ has an L′-coloring φ′, where L′ is the restriction of L on E(G− e). Since
d(u) + d(v) ≤ 8, again there will be a color which is available for e, which is
not assigned by φ′ to those edges adjacent to e′ . This proves that G is edge-7-
choosable. If Δ(G) ≥ 6, then d(x) + d(y) ≥ 9 for any edge e = xy. By Lemma 1,
Δ(G) = 6 and G contains a 4-cycle C with two 3-vertices and two 6-vertices. By
induction hypothesis, G − E(C) has an L-coloring ϕ for the list assignment L
restricted on E(G) \E(C). Let L′(e) be the set of colors not used in ϕ on those
edges adjacent to e in G. It is obvious that |L′(e)| ≥ 2 for any e ∈ E(C). Since
C is a 4-cycle, it is edge-L′-colorable. This completes the proof. �

3 Some Related Results on Degeneracy of Planar Graphs

Theorem 2. If a planar graph G does not contain a subgraph isomorphic to H,
then δ(G) ≤ 4.

Proof. Suppose the theorem is false and let G be a counterexample. Then δ(G) ≥
4 and we may assume G is a connected plane graph. We assign a weight function
for the elements of V (G) ∪ F (G) by w(x) = d(x) − 6 if x ∈ V (G) and w(x) =
2d(x)− 6 if x ∈ F (G). Then by Euler’s formula and the hand shaking lemma,∑

v∈V (G)

(d(v) − 6) +
∑

f∈F (G)

(2d(f)− 6) = −12.

So, there must be some 5-vertices in G, which are only elements with negative
weight. We redistribute the weight in the following rules.

Rule: every 4+−faces give w(f)
d(f) for its each incident 5-vertices.

Let w′(x) be the new weight after the transfer of weight is finished. Since G does
not contain H , there are at least two 4+−faces incident to a 5-vertex v. Thus

w′(v) ≥ w(v) + 2× w(f)
d(f)

= −1 + 2× 2d(f)− 6
d(f)

≥ −1 + 2× 1
2

= 0.

The theorem is proved. �

A graph is said to be a k-degenerate if every induced subgraph contains a vertex
of degree at most k. It is an easy consequence of Euler’s formula on planar graphs
that every planar graph without 3-cycles contains a vertex of degree at most
3. Wang and Lih [12], independently Lam et al. [9] proved that planar graph
without 5-cycles are 3-degenerate. Fijavz et al. [4] proved that planar graph
without 6-cycles are 3-degenerate. Note that icosidodecahedorm (i.e., the line
graph of dodecahedron) is not 3-degenerate [9]. Hence the lack of 4-cycles cannot
guarantee the 3-degeneracy of G. For each k ≥ 7, Choudum [3] constructed 4-
regular planar graphs without k-cycles. Since H is a minimum supergraph of
C3, C5 and C6, it is natural to ask that is every planar graph without H 3-
degenerate ? One can easily find that the dual of graphs Gm constructed in the
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following theorem are 4-regular and do not contain H . Moreover, the theorem
answers a question posed by Raspaud and Wang [10] in negative, which states
that is there a constant c such that every planar graph G without triangles at
distance less than c has δ(G) ≤ 3?

Theorem 3. For every positive integer n there is a 4-regular planar graph in
which every two triangles are at a distance greater than n.

Proof. Let Gm denote the planar graph obtained from the three-dimensional
cube by tiling each of its six faces with an m×m square grid. More rigorously,
the vertices of Gm are all vectors (x1, x2, x3) such that each of x1, x2, x3 is one
of the integers 0, 1, . . .m and at least one of of x1, x2, x3 is 0 or m; two such
vertices are adjacent if and only if their Euclidean distance is 1. Every face of
Gm is a 4-face; Gm has precisely eight vertices of degree three (these are the
eight corners of the cube) and every two of them are at a distance m or more.
The dual of Gm is 4-regular; Gm has precisely eight triangles and every two of
them are at a distance m− 1 or more. �
Note that there are exactly eight 3-cycles in the dual of Gm constructed in
Theorem 3.

Theorem 4. Let G be a planar graph with at most seven 3-cycles. Then G is
3-degenerate.

Proof. Suppose the theorem is false, and G is a minimal counterexample. Then
δ(G) ≥ 4 and G is connected. We assume G is embedded on the plane. Rewrite
Euler’s formula as ∑

v∈V (G)

(d(v) − 4) +
∑

f∈F (G)

(d(f)− 4) = −8.

Then 0 − |F3| ≤ −8, and thus |F3| ≥ 8, where F3 is the set of 3-faces in G.
Since for a connected plane graph, the number of 3-cycles is not less than that
of 3-faces unless G ∼= C3, the result follows. �
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Abstract. Riddle [15] showed that the forcing number of a bipartite
graph is bounded blow by the minimum number of trailing vertices of
the ordering of a color set. In the present work, we improve the trailing-
vertex method by Riddle and obtain a necessary condition for the match-
ing forcing number of a bipartite graph being equal to a given natural
number k; furthermore, we give a sufficient and necessary condition for
the minimum forcing number of bipartite graph being equal to the min-
imum number of trailing vertices of all standard orderings of a color set.

1 Introduction

Let G be a graph that admits a perfect matching. A forcing set for a perfect
matching M of G is a subset S of M , such that S is contained in no other perfect
matchings of G. The cardinality of a forcing set of M with the smallest size is
called the forcing number of M , and is denoted by f(G, M). The minimum
(resp. maximum) forcing number of G, denoted by f(G) (resp. F (G)), is the
minimum (resp. maximum) value of forcing numbers of all perfecting matchings
of G. The spectrum of forcing numbers of G is the set of forcing numbers of all
perfect matchings, denoted by Spec(G). Adams et al. [2] have proved that the
problem of determining the minimum forcing set of a bipartite graph, in which
the maximum degree is 3, is NP -complete .

The concept of perfect matching is corresponding to Kekulé structure in chem-
istry, and the (matching) forcing number is originated from the degree of freedom
of Kekulé structure [6,7,8] which has relation to the resonance of graphs inti-
mately [16,17]. The idea of “forcing” appears in many research fields in both
graph theory and combinatorics, such as graph coloring, geodetic set, Latin
square and block design. Recently, the matching forcing number has been exten-
sively studied, and new concepts, such as global forcing number [18], anti-Kekulé
number [19], anti-forcing number [5,20] and forcing hexagon [4], have been pro-
posed. The authors has investigated the forcing number of toroidal polydex inten-
sively [22]. From chemistry perspective, the freedom degree of Kekulé structure
has been studied [13,14,21].
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On the basis of Hall Theorem [3], by establishing ordering of a color set, Riddle
[15] obtained a lower bound for the forcing number of a bipartite graph. In this
paper, we improve the concept of ordering of a color set and the trailing-vertex
method and obtain a necessary condition for the matching forcing number of a
bipartite graph being equal to a given natural number k; furthermore, we give a
sufficient and necessary condition for the minimum forcing number of a bipartite
graph being equal to the minimum number of trailing vertices of all standard
orderings of a color set.

2 Basic Concepts and Some Lemmas

Throughout the paper, we only consider bipartite graphs with a perfect match-
ing. Let G be a bipartite graph with vertex set V (G) and edge set E(G). Suppose
that G has bipartition (B, W ) such that vertices in B (resp. W ) is black (resp.
white).

If T ⊆ V (G), then G[T ] denotes the subgraph induced by T . Let H ⊆ G
be a subgraph of G, then G − H denote the subgraph obtained from G by
deleting vertices in H as well as edges incident to vertices in H . Let A be
a finite set, we use |A| to denote the cardinality of A. If b ∈ B, then N(b)
denote the neighborhood of b, that is, the set of vertices adjacent to b. Define
N [b] := N(b)∪{b}. If T ⊆ B, define N(T ) :=

⋃
b∈T N(b) and N [T ] := N(T )∪T .

Define functions α and β on E(G) as follows: for any edge e = wb ∈ E(G)
with w ∈ W and b ∈ B, α(e) = w and β(e) = b. For S ⊆ E(G), define
α(S) := {α(e)|e ∈ S} and β(S) := {β(e)|e ∈ S}.

A set M of edges is called a matching of G if M consists of independent
edges. If a vertex v is incident to an edge in M , then v is called saturated by M ,
otherwise, v is unsaturated by M . If all the vertices are saturated by M , then
M is called a perfect matching (or Kekulé structure in chemistry) of G. A cycle
C of G is called M -alternating if the edges of C appear alternately in M and
E(G)\M . We denote by c(M) the maximum number of disjoint M -alternating
cycles in the perfect matching M of graph G. The set of all perfect matchings
is denoted by M.

For more concepts and notations, the readers are referred to [3,11].

Definition 1. Let G be a bipartite graph possessing a perfect matching M with
bipartition (B, W ), S ⊆ M ∈ M. For u ∈ V (G) \ V (S), we say S forces u if
|N(u) \ V (S)| = 1. In particular, S W -forces (resp. B-forces) an edge e if α(e)
(resp. β(e)) is forced by S. If there exists a sequence of edges e1, e2, . . . , ek and
a sequence of edge sets S = S0, S1, S2, . . . , Sk such that Si = Si−1 ∪ {ei} and
Si−1 W -forces (resp. B-forces) ei(i = 1, 2, . . . , k), then we say S W -forces (resp.
B-forces) the set Sk.

Lemma 1. [15] Let S ⊆ M ∈ M. Then S forces M if and only if S W -forces
M (or B-forces M).

Assign an ordering en > en−1 > . . . > e1 to the edges of M . Then bn > bn−1 >
. . . > b1 is the unique corresponding ordering on the vertices in B such that
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bi = β(ei)(i = 1, 2, . . . , n). Given an ordering of the vertices in B, we have the
following definitions:

Definition 2. [15] For a vertex b ∈ B, b leads N(w) if b is the largest vertex in
N(w). A vertex b is called a leading vertex if it leads at least one set N(w) for
some w ∈W , otherwise, it is called a trailing vertex.

If Ei = {e1, e2, . . . , ei}, Bi = β(Ei) = {b1, b2, . . . , bi}, denote by B̄i the set
{bn, bn−1, . . . , bi+1}.

Lemma 2. If Ei W -forces ei+1, then bi+1 leads the set N(wi+1), where β(ei+1)=
bi+1 and α(ei+1) = wi+1.

Proof. By the definition of Ei W -forces ei+1, all vertices in N(wi+1) belong to
β(Ei) = βi = {b1, b2, . . . , bi} except bi+1, so bi+1 is the largest vertex in N(wi+1),
that is, bi+1 leads N(wi+1). �

In matching theory of bipartite graphs, Hall Theorem [3] is well known.

Theorem 1. [3] Let G be a bipartite graph with bipartition (B, W ). Then G
contains a matching that saturates every vertex in B if and only if

|N(T )| ≥ |T | for all T ⊆ B.

By Hall Theorem, it is natural for us to consider the excess of the subset of B
as defined in the following.

Definition 3. [15,22] Let G be a bipartite graph with color sets B and W . For
T ⊆ B, the excess of T is defined as ε(T ) := |N(T )| − |T |. The maximum excess
of an ordering bn > bn−1 > . . . > bi > . . . > b1 of B is the maximum value of
ε(B̄i) for all i, that is, max{ε(B̄i)|i = 0, 1, . . . , n−1}. The excess of bi is defined
to be ε(bi) = ε(B̄i−1)− ε(B̄i). We call bi an m-excess vertex, simple m-ex vertex,
if ε(bi) = m.

Lemma 3. [15] Let G be a bipartite graph possessing a perfect matching M
with bipartition B and W . Then f(G) is bounded below by the smallest possible
maximum excess or by the minimum number of trailing vertices for all orderings
of B.

We proved the following proposition on trailing vertex, leading vertex and excess
of an ordering.

Proposition 1. [22] Let G be a bipartite graph with color sets B and W , and
bn > bn−1 > . . . > bi > . . . > b1 be an ordering of B. Then

1. the following statements are equivalent:

(a) bi is a trailing vertex;
(b) |N(B̄i−1)| = |N(B̄i)|;
(c) ε(B̄i−1) = ε(B̄i)− 1;
(d) bi is a (−1)-ex vertex.
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2. the following statements are equivalent:

(a) bi is a leading vertex;
(b) |N(B̄i−1)| − |N(B̄i)| ≥ 1;
(c) ε(B̄i−1) ≥ ε(B̄i);
(d) bi is a non-negative excess vertex, that is, ε(bi) ≥ 0.

For an ordering of B, this proposition gives the geometrical significations of the
leading vertex, trailing vertex and 0-ex vertex. In fact, given the ordering of B,
it is natural to obtain the ordering of W : vertices which are adjacent to vertices
with larger labelings in B have larger labelings. According to the labelings from
large to small, if we call vertices in N(bi) which are not labeled as simultaneously
labeled vertices with bi, which are not labeled, as the vertices which get labels
at the same then the leading vertices are those vertices in N(bi) have more than
one simultaneously labeled vertex with bi. The trailing vertices are those whose
neighbors are all labeled.

Definition 4. An ordering bn > bn−1 > . . . > b1 of B is standard if its smallest
leading vertex is larger than the largest trailing vertex; non-standard, otherwise.

In a standard ordering of B, denote the set of all the positive-excess vertices
by B+, the set of 0-ex vertices by B0, and B− the set of trailing vertices, then
B = B+ ∪B0 ∪B−. Denote the set of vertices which are simultaneously labeled
with B0 by W0. Let W̄0 = W\W0.

Lemma 4. Let G be a bipartite graph possessing a perfect matching with bi-
partition B and W . Then for any non-standard ordering of B, there exists a
standard ordering such that they have the same number of trailing vertices.

Proof. Suppose that |V (G)| = 2n. By the definition, the largest vertex of any
ordering must be leading vertex, and the smallest vertex must be trailing vertex.

Let
bn−k > . . . > bj1 > . . . > bi > . . . > bjr > . . . > bjk

be a non-standard ordering of B with trailing vertex set B− = {bj1 ,bj2 , . . .,bjk}
and leading vertex set {bn−k, bn−k−1, . . . , b1}. In what follows, we prove that the
ordering

bn−k > bn−k−1 > . . . > b1 > bj1 > bj2 > . . . > bjk

is a standard ordering.
For convenience, in the ordering

bn−k > bn−k−1 > . . . > b1 > bj1 > bj2 > . . . > bjk ,

we denote bjr by b
′
jr

(r = 1, . . . , k), and denote bi by b
′
i(i = n − k, . . . , 1), then

B̄′
jr and B̄′

i have the corresponding meaning.
Let us first prove bjr (r = 1, . . . , k) is a trailing vertex of the latter ordering.

By Proposition 1, |N(B̄jr−1)| = |N(B̄jr )|, hence we have

N(b
′
jr ) = N(bjr ) ⊆ N(B̄jr ) ⊆ N(B̄′

jr ).
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So |N(B̄
′
jr−1)| = |N(B̄′

jr )| and b
′
jr

(coinciding with bjr ) is a trailing vertex of
the latter ordering (r = 1, . . . , k).

In the following, we will show that bi (i = n− k, . . . , 1) is a leading vertex of
the latter ordering.

By Proposition 1, we know |N(B̄i−1)| ≥ |N(B̄i)|+ 1, that is,

N(bi)\N(B̄i) 	= ∅.

However,
N(B̄i) ⊇ N(B̄′

i), N(b
′
i) = N(bi),

then we have
N(b

′
i)\N(B̄′

i) 	= ∅,
that is,

|N(B
′
i−1)| ≥ |N(B

′
i)|+ 1.

By Proposition 1, b
′
i(i = n− k, . . . , 1) is a leading vertex of the latter ordering.

By Definition 4, we obtain that

bn−k > bn−k−1 > . . . > b1 > bj1 > . . . > bjk

is a standard ordering which has the same number of trailing vertex with non-
standard ordering

bn−k > . . . > bj1 > . . . > bi > . . . > bjr > . . . > bjk .

The proof is then finished. �

For short, we call the maximum excess of a standard ordering of B excess of the
standard ordering. By proposition 1, we easily obtain the following proposition.
The proof is omitted.

Proposition 2. For any standard ordering, the excess is equal to the number
of trailing vertices.

Basing on Lemma 4 and Proposition 2, instead of considering the excess and
number of trailing vertices of all orderings, we only need to consider excess and
number of trailing vertices of standard orderings. It not only reduces the range of
orderings, but also has a stronger geometrical property intuitionally. From now
on, if there is no special explanation, the orderings in consideration are standard
orderings. Denote by σG the smallest value of excess among all the standard
orderings.

By Lemma 3, Lemma 4 and Proposition 2, we can obtain the following con-
clusion:

Theorem 2. Let G be a bipartite graph possessing a perfect matching M with
bipartition W and B. Then the forcing number f(G, M) is bounded below by
the smallest value of trailing vertices in B (the minimum excess of standard
orderings ) over all standard orderings of B, i.e. f(G, M) ≥ σG.
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Fig. 1. The molecular graph of B12N12 (left) and another drawing of it (right)

Now we give an intuitional explanation to above concepts and results by Fig. 1. A
standard ordering of the molecular graph of Boron-Nitrogen Fullerenes B12N12
is shown in Fig. 1(b): b12 > b11 > . . . > b4 > b3 > b2 > b1, where B+ = {b12, b10},
B0 = {b11, b9, . . . , b4} and B− = {b3, b2, b1}.

According to Proposition 1, the leading vertex set is B+∪B0, and the trailing
vertex set is the isolated vertex set G − G[N [B+ ∪ B0]] which is obtained by
deleting B+ ∪ B0 and its neighbors. It is easy to see that M = {biwi|1 ≤ i ≤
12} ∈ M and S = {b1w1, b2w2, b3w3} is a forcing set of M .

By Lemma 1, see Fig. 1, from the bottom up on the left side, we have S
W -forces M , while from top to bottom on the right side, we can see that S
B-forces M .

Let G be a bipartite graph possessing a perfect matching with a bipartition
B and W , bn > . . . > bk+1 > bk > . . . > b1 is a standard ordering of B with the
number of trailing vertices k. Define

N∗(bi) ≡ N(bi) \N(B̄i) = N(B̄i−1) \N(B̄i)

as the simultaneously labelled set of bi (i > k), which indicates that the vertices
in W get their labelings according to the ordering of B. Vertices in N∗(bi) can
be labeled arbitrarily and it is easy to know |N∗(bi)| = ε(bi) + 1.

Lemma 5. Let G be a bipartite graph possessing a perfect matching with bipar-
tition B and W . If S is a minimum forcing set of M , then there exists a standard
ordering of B such that β(S) is the set of trailing vertices and B\β(S) is the set
of leading vertices.

Proof. Omitted. �
Lemma 6. [12] Let G be a planar bipartite graph with a perfect matching M .
Then the forcing number of M is equal to the maximum number of disjoint M -
alternating cycles, i.e. f(G, M) = c(M).
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3 Main Results

In this section we give a necessary condition for a natural number k belonging
to the spectrum of forcing number in G and a sufficient and necessary condition
for the minimum number of trailing vertices being equal to the forcing number
f(G).

Lemma 7. Let G be a bipartite graph possessing a perfect matching with a
bipartition B and W . If there is a standard ordering of B such that the induced
subgraph G[(B+∪B−)∪(

⋃
bi∈B+

N∗(bi))] has a perfect matching, then the number
of trailing vertices B− (excess) of the standard ordering is no less than the forcing
number f(G, M) of some perfect matching M .

Proof. By Proposition 2, for any standard ordering, the number of trailing ver-
tices is equal to the excess, that is,

|B−| =
∑
bi∈B+

ε(bi).

Since |N∗(bi)| = ε(bi) + 1, then we have∣∣∣B+ ∪B−
∣∣∣ =

∣∣∣∣∣ ⋃
bi∈B+

N∗(bi)

∣∣∣∣∣.
Denote the perfect matching in

G

[(
B+ ∪B−

)
∪
( ⋃
bi∈B+

N∗(bi)
)]

by S, then |S| = |B+|+ |B−|.
In the following, we prove S′ = {e|e ∈ S, β(e) ∈ B−} ⊂ S is a forcing set of

some perfect matching M in G.
In fact, G − S is a bipartite graph with unique perfect matching M ′. In M ′,

the double edges can be given one by one according to the order obtained by
restricting the standard ordering of G on G − S. Since for every 0-ex vertex,
there exists a unique vertex in G − S which is simultaneously labeled and the
edge connecting them is a double edge.

In addition, for G[(B+∪B−)∪(
⋃
bi∈B+

N∗(bi))], since there is only one vertex
which is not saturated by S in the simultaneously labelled set of every positive-
excess vertex, so S′ W-forces S. Then S′ is the forcing set of the perfect matching
M = S ∪ M ′ in G, and |S′| = |B−|. By the definition of f(G, M), we have
|B−| ≥ f(G, M). �

In Lemma 7, the property of a standard ordering can be suberized as “there is
a uniform matching between the trailing vertices and positive-excess vertices”.
The characterization of a standard ordering is that for every trailing vertex, there
exists at least one positive excess vertex such that they are at distance two.
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Fig. 2. Illustration for the proof of Theorem 3

Theorem 3. Let G be a bipartite graph possessing a perfect matching with a
bipartition B and W . If k ∈ Spec(G), then there exists a standard ordering with
the number of trailing vertices k such that the induced subgraph G[(B+ ∪B−) ∪
(
⋃
bi∈B+

N∗(bi))] has a perfect matching.

Proof. Let M ∈ M, f(G, M) = k and S = {wibi|i = 1, 2, . . . , k} ⊆ M be a
minimum forcing set of M .

By Theorem 1, S W-forces M , that is, there exists an edge sequence ek+1 =
wk+1bk+1, . . . ,en = wnbn in G. Denote Sk = S, Sj+1 = Sj ∪ {ej+1}, j = k, k +
1, . . . , n − 1, then Sj W -forces ej+1. Obviously, M = S ∪ {ei = wibi|i = k +
1, . . . , n}.

By Lemma 2 and Proposition 1, we know bj ∈ B+ ∪ B0, j = k + 1, . . . , n.
There is not edge between bj and wj′ (j > j

′ ≥ k+1) (see Fig. 2(a)). Otherwise,
it contradicts S W -forces edge sequence ek+1, . . . , en. Therefore, positive excess
vertex bj ∈ B+ is only adjacent to vertices in α(S) besides wj .

Thus, we obtain a standard ordering

bn > bn−1 > . . . > bk+1 > bk > . . . > b1,

such that {bj|j > k} ⊆ B+ ∪ B0 and B− ⊆ {bk, bk−1, . . . , b1}. Moreover,
{wibi|1 ≤ i ≤ n} is a perfect matching of G.

By the minimum of the forcing set S, we have B+ ∪ B0 = {bj|j > k},
B− = {bk, bk−1, . . . , b1} and every vertex in {wk, wk−1, . . . , w1} belongs to the
simultaneously labelled set of B+.

Otherwise, without loss of generality, suppose that w1 does not belongs to
the simultaneously labeled set of B+. Since w1 is not adjacent to vertices in
B0, it is only adjacent to vertices in B−. Suppose that w1 is adjacent to bk′ .
Then k′ ≤ k, which contradicts that bk′ is a trailing vertex. So {wibi|i ≤ k} is
a matching between the trailing vertex set and the simultaneously labelled set
of positive-excess vertices. The induced subgraph G[B− ∪ (

⋃
bi∈B+

N∗(bi))] has



266 H. Wang

a matching saturating B−, then G[(B+ ∪B−) ∪ (
⋃
bi∈B+

N∗(bi))] has a perfect
matching. The proof is completed. �

Theorem 4. Let G be a bipartite graph possessing a perfect matching with a
bipartition B and W . Then f(G) = δG if and only if there exists a standard
ordering with the number of trailing vertices δG such that the induced subgraph
G[(B+ ∪B−) ∪ (

⋃
bi∈B+

N∗(bi))] has a perfect matching.

Proof. The sufficiency can be obtained by Theorem 2 and Lemma 7, and the
necessity can be obtained by Theorem 3. �

4 Concluding Remarks

The new method to determine the forcing number of a bipartite graph by the
necessary condition given in Theorem 3 can be named “improved trailing-vertex
method” for short. The technique in this method lies in that there exists a
matching saturating B− in the induced subgraph G[B− ∪ (

⋃
bi∈B+

N∗(bi))]. By
the “improved trailing-vertex method”, we can give the forcing number of some
classes bipartite graphs, see [10,12,22,24]; Specially, for toroidal polyhexes, we
have designed a linear algorithm to compute the forcing number[22]. In addition,
by constructing a standard ordering with as few trailing vertices as possible, we
can obtain an upper bound for the forcing number of bipartite graphs, see [23].

There are some graphs which do not satisfy the condition in Theorem 4, such
as P6 × P4 and P8 × P4. For P6 × P4 and P8 × P4, it is easy to see that the
minimum number σG of trailing vertices is two among all orderings. The former
can achieve the lower bound since P6 × P4 = 2. However, the latter can not
achieve the lower bound since P. Afshani et al. [2] have proved that P8×P4 = 3.

Though Theorem 4 provides a sufficient and necessary condition for the small-
est number of trailing vertices among all standard orderings of color set B being
equal to the forcing number in a bipartite graph, there are two difficulties: one
is that the smallest number of trailing vertices is difficult to find out and the
other is that even if there exists a standard ordering satisfying the conditions,
we may not find a good algorithm to search for it. We need some new techniques
to conquer these difficulties. Different techniques and methods are required for
different classes of graphs, such as stop signs [10], square grids [12], and toroidal
polyhexes [22] and so on. In fact, determining the forcing number of a bipartite
graphs with the minimum degree 3 is a NP−complete problem [1,2].

By Theorem 3, it is easy to obtain the following result.

Corollary 1. [2] The forcing number of P2n × P2n is n.

Moreover, it should be mentioned that Kleinerman [9] discussed bipartite graphs
of which the forcing numbers achieve the lower bound in another way by the edge
packing.
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Abstract. The integrity of a graph G = (V, E) is defined as I(G) =
min{|S|+m(G−S) : S ⊆ V (G)}, where m(G−X) denotes the order of
the largest component in the graph G−X. This is a better parameter to
measure the stability of a network G, as it takes into account both the
amount of work done to damage the network and how badly the network
is damaged. In this paper, we give the exact values or bounds for the
integrity of Harary graphs.

Keywords: Networks, Integrity, Harary Graph, Independence Number.

1 Introduction

In an analysis of the vulnerability of a communication network to disruption,
Two qualities that come to mind are the number of elements that are not func-
tioning and the size of the largest remaining subnetwork within which mutual
communication can still occur. In particular, in an adversarial relationship, it
would be desirable for an opponent’s network to be such that the two qualities
can be made to be simultaneously small.

Thus, communication networks must be constructed to be as stable as possi-
ble, not only with respect to the initial disruption, but also with respect to the
possible reconstruction of the network. Many graph theoretical parameters have
been used in the past to describe the stability of communication networks. Most
notably, the vertex-connectivity and the edge-connectivity have been frequently
used. The difficulty with these parameters is that they do not take into account
what remains after the graph is disconnected. Consequently, a number of other
parameters have been introduced in an attempt to overcome this difficulty, in-
cluding toughness [5] and edge-toughness [11], integrity [3] and edge-integrity
[2], tenacity [8] and edge-tenacity [12], rupture-degree [9]. Unlike connectivity
measures, each of these parameters shows not only the difficulty to break down
the network but also the damage that has been caused.

Before we formally give the concept of integrity of a graph, we recall some
parameters. Let G be a finite simple graph with vertex set V (G) and edge set
E(G). For S ⊆ V (G), let ω(G − S) and m(G − S), respectively, denote the
number of components and the order of a largest component in G − S. A set
S ⊆ V (G) is a cut set of G, if either G − S is disconnected or G − S has only
one vertex. For comparing, the following graph parameters are listed.

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 269–278, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The Vertex-Connectivity of G:

κ(G) = min{|S| : S ⊆ V (G) is a cut set of G}.

The Vertex-Toughness of G (Chvátal (1973) [5]):

t(G) = min
{ |S|

ω(G− S)
: S ⊆ V (G) is a cut set of G

}
.

The Vertex-Tenacity of G (Cozzens et al (1995) [8]):

T (G) = min
{ |S|+ m(G− S)

ω(G− S)
: S ⊆ V (G) is a cut set of G

}
.

The Rupture-degree of G (Li et al (2005) [9]):

r(G) = max{ω(G− S)−m(G− S)− |S| : S ⊆ V (G) is a cut set of G}.

The corresponding edge analogues of these concepts are defined similarly, see
[11,12].

The integrity of a graph G = (V, E), which was introduced in [3] as a useful
measure of the vulnerability of the graph, is defined as follows:

I(G) = min{|S|+ m(G− S) : S ⊆ V (G)},

where m(G− S) denotes the order of the largest component in G− S.
A vertex set S of graph G = (V, E) is called an I-set of G if it satisfies that

I(G) = |S|+ m(G− S).
Unlike the connectivity measures, integrity shows not only the difficulty to

break down the network but also the damage that has been caused. In [3], Bare-
foot et al. give some basic results on integrity and Clark et al. proved that the
determination of integrity is NP-complete [6]. For knowing more about integrity,
one can see a survey of integrity in [1].

Throughout this paper, a graph G = (V, E) always means a finite simple
connected graph with vertex set V and edge set E. We shall use !x" to denote
the largest integer not larger than x, and �x� the smallest integer not smaller
than x. α(G) denotes the independence number of the graph G. We use Bondy
and Murty [4] for terminology and notations not defined here.

Since computing the integrity of a graph is NP-complete in general, it be-
comes an interesting question to calculate the integrity for some special classes
of interesting or practically useful graphs. In this paper, we consider the problem
of computing the integrity of Harary graphs. We give the exact values or bounds
for the integrity of Harary graphs. We will deal with this in the sequel.

2 Integrity of Harary Graphs

In 1962, Harary investigated a problem on reliable communication networks: For
given order n and a nonnegative integer l (l < n), how to construct a simple
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graph G of order n such that κ(G) = l, and G has as few edges as possible. For
any fixed integers n and p such that p ≥ n + 1, Harary constructed the class
of graphs Hn,p which are n-connected with the minimum number of edges on p
vertices. Thus Harary graphs are examples of graphs which in some sense have
the maximum possible connectivity and hence are of interests as possibly having
good stability properties. Hn,p is constructed as follows:

Case 1: If n is even, let n = 2r, then Hn,p has vertices 0, 1, 2, · · · , p − 1, and
two vertices i and j are adjacent if and only if |i− j| ≤ r, where the addition is
taken modulo p.

Case 2: If n is odd (n > 1) and p is even, let n = 2r + 1 (r > 0), then Hn,p

is constructed by first drawing H2r,p, and then adding edges joining vertex i to
vertex i + p/2 for 1 ≤ i ≤ p/2.

Case 3: If n is odd (n > 1) and p is odd, let n = 2r + 1(r > 0), then H2r+1,p is
constructed by first drawing H2r,p, and then adding edges joining the vertex i
to i +(p +1)/2 for 0 ≤ i ≤ (p− 1)/2. Note that under this definition, the vertex
0 is adjacent to both the vertices (p + 1)/2 and (p − 1)/2. Again note that all
vertices of Hn,p have degree n except for the vertex 0, which has degree n + 1.

0

1

5

4

3

26

7

Fig. 1. Graph H4,8

As a useful reliable network, Harary graphs have arouse interests for many
network designers. Harary [4] proved that the Harary graphs Hn,p is n-connected.
Ouyang et al [10] gave the scattering number of the Harary graphs. In [7] Cozzens
et al gave their exact values or good bounds for the tenacity. In this section, we
compute their integrity. Throughout this section, we set the connectivity n = 2r
or n = 2r + 1 and the number of vertices p = k(r + 1) + s for 0 ≤ s ≤ r + 1. So
we can see that p ≡ s mod (r + 1) and k = ! p

r+1". We assume that the graph
Hn,p is not complete, and so n + 1 < p, which implies that k ≥ 2.
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Fig. 2. (a) Graph H5,8; (b) Graph H5,9

Lemma 2.1. If S is a minimal I-set for the graph Hn,p, n = 2r, then S consists
of the union of sets of r consecutive vertices such that there exists at least one
vertex not in S between any two sets of consecutive vertices in S.

Proof. We assume that the vertices of Hn,p are labelled by 0, 1, 2, · · · , p − 1.
Let S be a minimal I-set of Hn,p and j be the smallest integer such that
T = {j, j + 1, · · · , j + t − 1} is a maximum set of consecutive vertices such
that T ⊆ S. Relabel the vertices of Hn,p as v1 = j, v2 = j +1, · · · , vt = j + t− 1,
· · · , vp = j − 1. Since S 	= V (Hn,p) and T 	= V (Hn,p), vp does not belong to
S. Since S must leave at least two components of G − S, we have t 	= p − 1,
and so vt+1 	= vp. Therefore, {vt+1, vp) ∩ S = ∅. Choose vi such that 1 ≤ i ≤ t,
and delete vi from S yielding a new set S

′
= S − {vi} with |S′ | = |S| − 1. Now

suppose t < r. By the definition of Hn,p (n = 2r) we know that the edges vivp
and vivt+1 are in Hn,p − S

′
. Consider a vertex vk adjacent to vi in Hn,p − S

′
.

If k ≥ t + 1, then k < t + r. So, vk is also adjacent to vt+1 in Hn,p − S
′
. If

k < p, then k ≥ p− r + 1 and vk is also adjacent to vp in Hn,p−S
′
. Since t < k,

then vp and vt+1 are adjacent in Hn,p − S
′
. Therefore, we can conclude that

deleting the vertex vi from S does not change the number of components, and
so ω(Hn,p − S

′
) = ω(Hn,p − S) and m(Hn,p − S

′
) ≤ m(Hn,p − S) + 1. Thus, we

have
|S′ |+ m(Hn,p − S

′
)

≤ |S|+ m(Hn,p − S)

= I(Hn,p).

This is contrary to our choice of S. Thus we must have t ≥ r. Now suppose
t > r. Delete vt from the set S yielding a new set S1 = S − {vt}. Since t > r,
the edge vtvp is not in Hn,p−S1. Consider a vertex vk adjacent to vt in Hn,p−S1.
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Then, k ≥ t + 1 and k ≤ t + r, and so vk is also adjacent to vt+1 in Hn,p − S1.
Therefore, deleting vt from S yields m(Hn,p − S1)=m(Hn,p − S) + 1. So,

|S1|+ m(Hn,p − S1)

≤ |S|+ m(Hn,p − S)

= I(Hn,p),

which is again contrary to our choice of S. Thus, t = s, and so S consists of the
union of sets of exactly r consecutive vertices. �
Lemma 2.2. There is an I-set S for the graph Hn,p, n = 2r, such that all
components of Hn,p − S have order m(Hn,p − S) or m(Hn,p − S)− 1.

Proof. Among all I-sets of minimum order, consider those sets with maximum
number of minimum order components, and we let s denote the order of a min-
imum component. Among these sets, let S be one with the fewest components
of order s. Suppose s ≤ m(Hn,p − S) − 2. Note that all of the components
must be sets of consecutive vertices. Assume that Ck is a smallest component.
Then |V (Ck)| = s, and without loss of generality, let Ck = {v1, v2, · · · , vs}.
Suppose Ce is a largest component, and so |V (Ce)| = m(Hn,p − S) = m and
let Ce = {vj , vj+1, · · · , vj+m−1}. Let C1, C2, · · · , Ca be the components with
vertices between vs of Ck and vj of Ce, such that |Ci| = pi for 1 ≤ i ≤
a, and let Ci = {vi1 , vi2 , · · · , vipi

}. Now we construct the vertex set S
′

as
S

′
= S − {vs+1, v1p1+1 , v2p2+1 , · · · , vapa+1} ∪ {v11 , v22 , · · · , va1 , vj}. Therefore,

|S′ | = |S|, m(Hn,p−S
′
) ≤ m(Hn,p−S) and ω(Hn,p−S

′
) = ω(Hn,p−S). So we

have
|S

′
|+ m(Hn,p − S

′
) ≤ |S|+ m(Hn,p − S).

Therefore, m(Hn,p−S
′
) = m(Hn,p−S). But, Hn,p−S

′
has one less components

of order s than Hn,p−S, a contradiction. Thus, all components of Hn,p−S have
order m(Hn,p − S) or m(Hn,p − S)− 1. So, m(Hn,p − S) = �p−rωω �. �
By the above two lemmas we give the exact values of integrity of the Harary
graphs for n = 2r.

Theorem 2.1. Let Hn,p be a Harary graph with n = 2r and p = k(r + 1) + s
for 0 ≤ s < r + 1. Then

I(Hn,p) =

⎧⎨⎩ r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1),

where m = !
√

p/r".
Proof. Let S be a minimum I-set of Hn,p. By Lemmas 2.1 and 2.2 we know that
|S| = rω and m(Hn,p − S) = �p−rωω �. Thus, from the definition of integrity we
have

I(Hn,p) = min
{
rω +

⌈p− rω

ω

⌉ ∣∣∣ 2 ≤ ω ≤ k
}
.
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Now we consider the function

f(ω) = rω +
⌈p− rω

ω

⌉
.

It is easy to see that f
′
(ω) = r + �−pω2 � = � rω

2−p
ω2 �. Since ω2 > 0, we have

f
′
(ω) ≥ 0 if and only if g(ω) = rω2 − p ≥ 0. Since the two roots of the equation

g(ω) = rω2 − p = 0 are ω1 = −
√

p
r and ω2 =

√
p
r . But ω1 < 0, and so it is

deleted. Then if 0 < ω ≤ �ω2�, we have f
′
(ω) ≤ 0, and so f(ω) is an decreasing

function; if ω ≥ �ω(2)�, then f
′
(ω) ≤ 0, and so f(ω) is a increasing function.

Thus, we have the following cases:

Case 1: If p ≤ 4(r − 1), then !ω2" ≤ 2. Since we know that 2 ≤ ω ≤ k, we
have that f(ω) is a increasing function and the minimum value occurs at the
boundary. So, ω = 2 and I(Hn,p) = f(2) = r + �p2�.
Case 2: If p > 4(r − 1), then !ω2" > 2. So, we have

Subcase 2.1: If 2 ≤ ω ≤ !ω2", then f(ω) is an decreasing function.

Subcase 2.2: If �ω2� ≤ ω ≤ k, then f(ω) is a increasing function.

Thus the minimum value occurs when ω = !ω2". Then, I(Hn,p) = f(!ω2") =
(m− 1)r + �p/m�, where m = !ω2" = !

√
p/r". The proof is now complete. �

The following two lemmas can be found in [7] or easily seen

Lemma 2.3 ([7]). Let Hn,p be a Harary graph with n = 2r+1 and p even. Then

α(Hn,p) =

⎧⎨⎩
k, if p 	= 0 mod(n + 1);

k − 1, if p = 0 mod(n + 1).

Lemma 2.4 ([3]). If H is a spanning subgraph of a connected graph G, then
I(G) ≥ I(H).

Lemma 2.5. Let G be a noncomplete connected graph of order n. Then I(G) ≤
n− α(G) + 1.

Proof. Let S be a maximum independence set of G, then |S| = α(G). Let A =
V (G) − S, then ω(G) = α(G), m(G − A) = 1, and |A| = n − α(G), so, by the
definition of the integrity, we have I(G) = min{|S|+m(G−S)} ≤ |A|+ m(G−
A) = n− α(G) + 1. �

Theorem 2.2. Let Hn,p be a Harary graph with p even, n odd and n = 2r + 1,
then

(1) If p ≤ 4(r − 1), then

r + �p/2� ≤ I(Hn,p) ≤

⎧⎨⎩ kr + s + 1, if p 	= 0 mod(n + 1)

kr + s + 2, if p = 0 mod(n + 1).
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(2) If p > 4(r − 1), then

(m− 1)r + �p/m� ≤ I(Hn,p) ≤

⎧⎨⎩ kr + s + 1, if p 	= 0 mod(n + 1);

kr + s + 3, if p = 0 mod(n + 1).

where m = !
√

p/r", k = !p/(r + 1)".

Proof. Since V (H2r+1,p) = V (H2r,p), E(H2r+1,p) ⊆ E(H2r,p), it is obvious that
H2r,p is a connected spanning subgraph of H2r+1,p. So, by Lemma 2.4 we have

I(H2r+1,p) ≥ I(H2r,p) =

⎧⎨⎩
r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1).

where m = !
√

p/r".
On the other hand, by Lemmas 2.3 and 2.5 we have

I(Hn,p) ≤

⎧⎨⎩ kr + s + 1, if p 	= 0 mod(n + 1);

kr + s + 3, if p = 0 mod(n + 1).

The theorem is thus proved. �
From above theorem, the following corollary is easily obtained.

Corollary 2.1. Let n be odd. If p is even and s 	= 0, then

kr + s + 1 ≥ I(Hn,p) ≥

⎧⎨⎩
r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1),

where m = !
√

p/r".

Corollary 2.2. Let n be odd. If p is even, s = 0 and k is odd, then

kr + 1 ≥ I(Hn,p) ≥

⎧⎨⎩ r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1),

where m = !
√

p/r".

Corollary 2.3. Let n be odd. If p is even, s = 0 and k is even, then

kr + 2 ≥ I(Hn,p) ≥

⎧⎨⎩
r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1),

where m = !
√

p/r".
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Lemma 2.6 ([7]). Let Hn,p be a Harary graph such that n is odd, n = 2r + 1, p
is even, r ≥ 2, 0 < s < r + 1, s < k, and k is odd. Then there exists a cut set S
with kr elements, such that ω(Hn,p − S) = k and m(Hn,p − S) = 2.

Theorem 2.3. Let Hn,p be a Harary graph such that n = 2r + 1, p is even,
r ≥ 2, 0 < s < r + 1, s < k, and k is odd. Then

kr + 2 ≥ I(Hn,p ) ≥

⎧⎨⎩ r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1).

where m = !
√

p/r".

Proof. First note that if r = 1, then s = 1 and so p = 2k + 1, a contradiction.
So, r ≥ 2. By Lemma 2.6 and the definition of integrity we have I(Hn,p ) ≤
|S| −m(Hn,p − S) = kr + 2.

On the other hand, by Theorem 2.2 we have

I(Hn,p) ≥

⎧⎨⎩ r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1).

The theorem is thus proved. �

Lemma 2.7 ([7]). Let Hn,p be a Harary graph such that n is odd, n = 2r + 1
and p is even, Then p ≡ 0mod(n + 1) if and only if s = 0 and k is even.

Theorem 2.4. Let Hn,p be a Harary graph such that n = 2r + 1 is odd and p is
even, s = 0 and k is even. Then

2 + kr ≥ I(Hn,p ) ≥

⎧⎨⎩
r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1).

where m = !
√

p/r".

In the following we will give some lower and upper bounds for I(Hn,p) such that
both n and p are odd.

Lemma 2.8 ([7]). Let Hn,p be a Harary graph such that both n and p are odd,
n = 2r + 1 and r > 0. Then

α(Hn,p) =

⎧⎨⎩ k − kr − s− 1, if p 	= 1 mod(n + 1);

k − kr − s− 3, if p = 1 mod(n + 1).

Theorem 2.5. Let Hn,p be a Harary graph such that both n and p are odd,
n = 2r + 1 and r > 0. Then
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(1) If p ≤ 4(r − 1), then

r + �p/2� ≤ I(Hn,p) ≤

⎧⎨⎩ (2 + k)r − k + s + 2, if p 	= 1 mod(n + 1);

(2 + k)r − k + s + 4, if p = 1 mod(n + 1).

(2) If p > 4(r − 1), then

(m− 1)r + �p/m� ≤ I(Hn,p ) ≤

⎧⎨⎩
(2 + k)r − k + s + 2, if p 	= 1 mod(n + 1);

(2 + k)r − k + s + 4, if p = 1 mod(n + 1).

where m = !
√

p/r".

Proof. The proof is similar to that of Theorem 2.2. �

Lemma 2.9 ([7]). Let Hn,p be a Harary graph such that n and p are all odd,
n = 2r + 1, r > 0. Then p ≡ 1mod(n + 1) if and only if s = 1 and k is even.

Theorem 2.6. Let Hn,p be a Harary graph such that n = 2r + 1 and p are all
odd, r > 0, s = 1, and k is even. Then

(2 + k)r − k + 5 ≥ I(Hn,p ) ≥

⎧⎨⎩ r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1).

where m = !
√

p/r".

Lemma 2.10 ([7]). Let Hn,p be a Harary graph such that n = 2r + 1 and p are
all odd, r ≥ 2, 1 < s < r + 1, s < k, and k is even. Then there exists a cut set
S with kr + 1 elements, such that ω(Hn,p − S) = k and m(Hn,p − S) = 2.

Theorem 2.7. Let Hn,p be a Harary graph such that n = 2r + 1 is odd and p is
odd, r ≥ 2, 1 < s < r + 1, s < k, and k is even. Then

3 + kr ≥ I(Hn,p ) ≥

⎧⎨⎩
r + �p/2�, if p ≤ 4(r − 1);

(m− 1)r + �p/m�, if p > 4(r − 1).

where m = !
√

p/r".

3 Conclusion

The robustness of a distributed system of computers can be represented by the
integrity of the graph describing the network. The authors present and prove a
formula to calculate the exact values or bounds for the rupture degrees of Harary
graphs.



278 F. Li, Q. Ye, and B. Sheng

Acknowledgements

This work was supported by NSFC (No.10871226). The authors are grateful to
the anonymous referees for helpful comments on an earlier version of this article.

References

1. Baggas, K.S., Beineke, L.W., Goddard, W.D., Lipman, M.J., Pippert, R.E.: A
Survey of Integrity. Discrete Applied Math. 37/38, 13–28 (1992)

2. Baggas, K.S., Beineke, L.W., Lipman, M.J., Pippert, R.E.: Edge-Integrity - a Sur-
vey. Discrete math. 124, 3–12 (1994)

3. Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in Graphs - A Comparative
Survey. J. Combin. Math. Combin. Comput. 1, 12–22 (1987)

4. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan/ Elsevier,
London, New York (1976)
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A Note on n-Critical Bipartite Graphs and Its
Application
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Abstract. In matching theory, n-critical graphs play an important role
in the decomposition of graphs with respect to perfect matchings. Since
bipartite graphs cannot be n-critical when n > 0, we amend the classical
definition of n-critical graphs and propose the concept of n-critical bipar-
tite graphs. Let G = (B, W ;E) be a bipartite graph with n = |W |− |B|,
where B and W are the bipartitions of vertex set, E is the edge set.
Then, G is n-critical if when deleting any n distinct vertices of W , the
remaining subgraph of G has a perfect matching. Furthermore, an al-
gorithm for determining n-critical bipartite graphs is given which runs
in O(|W ||E|) time, in the worst case. Our work helps to design a job
assignment circuit which has high robustness.

Keywords: Matching, n-critical graph, assignment.

1 Introduction

An important application of matching theory is the job assignment problem. An
instance of the problem is given in Fig. 1 by a bipartite graph G = (B, W ).
Assume that vertex set V (B) = {j1, . . . , ja} is a set of jobs demanding simulta-
neous handling, and vertex set V (W ) = {m1, . . . , mb} is a set of machines. The
edge set is determined as follows: If one job can be assigned to a certain machine
via the line of the circuit, i.e. the machine is able to accomplish the job, then
there is an edge connecting them. Otherwise, no edge lies between them. The
same as the classical job assignment, each job requires only a single machine for
processing and every machine can serve only one job at the same time.

Matching extendability of graphs was proposed to investigate whether arbi-
trary matching with fix cardinality can be extended to a perfect matching. When
the job assignment circuit is a k-extendable graph, any matching with k edges
can be extended to a perfect matching. It indicates that the assignment circuit
allows arbitrary k jobs specify the desired machines in advance. The remaining
jobs can find machines to process. It is a good virtue of the assignment circuit,
since it has high flexibility.

Different from matching extendability, our scenario is to evaluate the robust-
ness of the assignment circuit. It is usual that more than a machines are deployed
in order to obtain high robustness. Let the number of machines be a + n where

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 279–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Job assignment circuit

n is a positive integer, shown in Fig. 1. It is natural to ask whether the job
assignment circuit still works while no more than n machines are failed. That is,
each job can find a machine to process even n machines are unavailable.

We propose the concept of “n-critical bipartite graph” to represent the cir-
cuit which has this property. We reveal the relation between n-critical bipartite
graphs and n-extendable connected bipartite graphs. Furthermore, an algorithm
for determining n-critical bipartite graphs is developed.

2 Definition and Preliminary Result

The graphs discussed in this paper will be finite and simple. Let G = (V, E) be
a simple graph with vertex-set V (G) and edge-set E(G). We use the notation
V (X) to denote the set of all the vertices in X . Similarly, E(Y ) denotes the set
of all the edges in Y .

A matching M is a subset of E(G) of which no edges share the same ver-
tex. A vertex is said to be saturated with respect to a matching if it appears
in a matching edge and unsaturated, otherwise. A matching containing k edges
is called to be a k-matching. A matching is perfect if it saturates all the ver-
tices. Furthermore, a matching is called a defect -d matching if it covers exactly
|V (G)| − d vertices of G.

Let M be a matching of graph G. A path p = e1, e2, . . . , ej is said to be an
M -alternating graph if and only if ei ∈ M ⇔ ei+1 	∈ M where 1 ≤ i < j. For a
vertex x, let Γ (x) denote the set of vertices that are adjacent to x.

Let G be a graph with at least 2k+2 vertices. If G has a k-matching and every
k-matching is contained in a perfect matching, then G is said to be k-extendable.
The extendability of G, denoted by ext(G), is defined to be the maximum in-
teger k0 such that graph G is k0-extendable. A great deal of results related to
extendable graphs have been obtained. For more details, we refer readers to [7,8].

A graph G is called n-critical if after deleting any n vertices the remaining
subgraph has a perfect matching. This concept is proposed by Favaron [1] and Yu
[10], independently. It is a generalization of the notions of factor-critical graphs
and bicritical graphs (the cases when n = 1 and n = 2). Many investigations
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of n-critical graphs have been presented in [1,2,10]. For example, degree sum,
toughness, binding number, connectivity, etc.

Liu and Yu [6] proposed the concept of “(n, k, d)-graph” for generalization of
matching extensions in graphs. Let G be a graph with vertex set V (G). Let n, k, d
be non-negative integers such that n+2k +d ≤ |V (G)|−2 and |V (G)|−n−d is
even. If when deleting any n vertices in V (G) the remaining subgraph contains a
k-matching and every k-matching can be extended to a defect-d matching, then
G is called an (n, k, d)-graph. It is clear that n-critical graph is equivalent to
(n, 0, 0)-graph.

Since the job assignment circuit is a bipartite graph, we discuss bipartite
graphs. We give some known results which will help to prove our main theorems.

Theorem 1. (Plummer [9]). Let G be a connected bipartite graph on v vertices
with bipartition (B, W ). Suppose that n is a positive integer such that n ≤ (v −
2)/2. Then the following are equivalent:

(i) G is n-extendable;
(ii) For all u1, u2, . . . , un ∈ B and w1, w2, . . . , wn ∈W ,

G = G− u1 − u2 − . . .− un − w1 − w2 − . . .− wn has a perfect matching.

Let G be a bipartite graph with bipartitions B and W . Suppose the vertices of W
(B, respectively) are colored white (black, respectively). An orientation is defined
as follows: orient all edges of M from the white vertices to the black ones and
orient the other edges of G from the black vertices to the white ones. The resulting
directed graph is denoted by

−→
G(M). An example is illustrated in Fig. 2.

Let D be a directed graph and u, v be a pair of distinct vertices. We call u to
v k-arc-connected if the removal of any fewer than k arcs results in a subgraph
which is connected from u to v. The arc-connectivity of D from u to v, denoted
by λ(u, v), defined as the maximum integer k such that u to v is k-arc-connected.
Let D = (B, W ) be a bipartite directed graph. Some terms are defined as follows:

λwb := min{λ(u, v) | u ∈W and v ∈ B}
λbw := min{λ(u, v) | u ∈ B and v ∈W}

Fig. 2. An example of orientation
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Theorem 2. (Zhang and Zhang [11]) Let G be a connected bipartite graph with
a perfect matching M . Then, ext(G) = λbw.

Furthermore, let G = (B, W ; E) be a bipartite graph, where B and W are the
bipartitions of vertex set, E is the edge set. Zhang and Zhang [11] proposed
an O(|B||E|) algorithm for determining whether G is k-extendable which is the
fastest one by far.

It is straightforward that a bipartite graph cannot be an (n, k, d)-graph where
n > 0. Thus, Li and Lou amended the definition of (n, k, d)-graph with respect
to bipartite graphs [5]. They required that the n vertices to be deleted lie in the
bipartition with more vertices. The reason is that if the vertices to be removed
can be chosen in different bipartitions, the graph can not be an (n, k, d)-graph, for
fixed n, k, d. They presented the relation of (n, k, 0)-bipartite graphs and (n+k)-
extendable bipartite graphs, in the case k > 0. In addition, they developed an
algorithm for determining (n, k, 0)-bipartite graphs, where k > 0.

We borrow the constrain of Li and Lou [5] to define n-critical bipartite graphs
which demands the n vertices to be removed belong to the bipartition with
more vertices. We show the relation of n-critical graphs (i.e., (n, 0, 0)-graphs)
and n-extendable graphs for bipartite graphs.

3 Main Results

It is clear that Theorem 1 and Theorem 2 require that the considered graph
should be connected. Thus, we firstly discuss the connectivity of n-critical graphs
in the following theorem.

Theorem 3. Let G = (B, W ) be a bipartite graph where |W | > |B| and n =
|W | − |B|. If G is n-critical where n > 0, then graph G is connected.

Proof. Suppose graph G is not connected. Suppose C1 and C2 are two connected
components of G. If C1 or C2 contains exactly one vertex, then graph G does
not have a matching to saturate such vertex. Hence, G cannot be n-critical. It
follows that the components of G have more than one vertex.

Case 1: |V (C1) ∩ V (W )| < |V (C1) ∩ V (B)|. In this case, since the n vertices
to be removed lie in the bipartition W , it can be concluded that the component
C1 does not have a perfect matching no matter how to choose these n vertices.
Therefore, graph G is not n-critical.

Case 2: |V (C1) ∩ V (W )| = |V (C1) ∩ V (B)|. In this case, we choose a vertex,
denoted by u, to be one of the n vertices which are supposed to be deleted. It is
clear that when these n vertices are removed, the component C1 does not have
a perfect matching. Hence, G cannot be n-critical in this case.

Case 3: |V (C1) ∩ V (W )| > |V (C1) ∩ V (B)|. This case is divided further into
three subcases.

Case 3.1. |V (C1)∩V (W )|− |V (C1)∩V (B)| > n. It is trivial that C1 does not
have a perfect matching after any n vertices are removed. So does graph G.
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Case 3.2. |V (C1) ∩ V (W )| − |V (C1) ∩ V (B)| = n. We can conclude that the
component C2 satisfies |V (C2) ∩ V (W )| = |V (C2)∩ V (B)| which is discussed in
Case 2. Thus, G is not n-critical.

Case 3.3. |V (C1) ∩ V (W )| − |V (C1) ∩ V (B)| < n. Let a = min{n, |V (C1) ∩
V (W )|}. We choose exactly a vertices of V (C1) ∩ V (W ) which are supposed to
be deleted. It is trivial that the component C1 does not have a perfect matching
after deleting these n vertices. So does graph G.

Hence, graph G is connected. �

A construction is introduced, secondly. For a bipartite graph G with bipartition
B and W . Without loss of generality, we suppose |W | ≥ |B|. Let d = |W | − |B|.
In our problem, the value of d is larger than 0. Add d new vertices, denoted by X ,
in bipartition B such that Γ (u) = V (W ) for every u ∈ X . The resulting graph is
denoted by G̃. An example of construction is shown in Fig. 3. It is straightforward
that the resulting graph of this construction is a connected graph.

Fig. 3. An example of construction

Theorem 4. Let G = (B, W ) be a bipartite graph where |W | > |B|. Let n =
|W | − |B|. Then graph G is n-critical if and only if graph G̃ is n-extendable.

Proof. Let the new added vertices in bipartition B in graph G̃ be the set X (i.e.,
X = V (G̃)\V (G)).

Sufficiency, first. Suppose that graph G̃ is n-extendable. Let S be arbitrary n
vertices of bipartition W in graph G. It is straightforward that S ⊆ V (G̃) and
|S| = |X | = n. By Theorem 1, G̃ − S −X has a perfect matching, denoted by
PM . Since V (PM) ∩ V (B) = ∅, the matching PM is also a matching of G. In
addition, PM is a perfect matching of G−S. It follows that graph G is n-critical.

Necessity. Suppose that graph G is n-critical. Before showing graph G̃ is
n-extendable, we need to point out G̃ has an n-matching. Assume that X =
{x1, x2, . . . , xn}. Let Y = {y1, y2, . . . , yn} be arbitrary n distinct vertices in
bipartition W of G̃. Since |V (W )| > n, the set Y exists. Each vertex in X is ad-
jacent to every vertex in W by the construction of G̃. Therefore, the edge (xk, yk)
belongs to E(G̃) for any k ∈ {1, 2, . . . , n}. It is clear that {(xk, yk)|1 ≤ k ≤ n}
is an n-matching of G̃.

Let M be any n-matching of G̃. We denote the matching edges in M which
have an end-vertex in X by M1 = {(b′1, w′

1), (b
′
2, w

′
2), . . . , (b

′
i, w

′
i)}, where {b′1,
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b′2, . . . , b′i} ⊆ X and {w′
1, w

′
2, . . . , w

′
i} ⊆ V (W ). Let M2 = {(b1, w1), (b2, w2), . . . ,

(bj , wj)} be the matching M −M1, where {b1, b2, . . . , bj} ⊆ V (B) and {w1, w2,
. . . , wj} ⊆ V (W ). It is straightforward that i + j = n.

Fig. 4. The matchings M and M ′
2

Let S = V (M)∩V (W ) and X ′ = X\V (M1). Since graph G is n-critical, G−S
has a perfect matching, denoted by M ′. Assume that the matching edges of M ′

saturate the vertices {b1, b2, . . . , bj} are (b1, w1), (b2, w2), . . . , (bj , wj), denoted
by M ′

2. Since i + j = n and |V (M1) ∩ X | = i, we have |X ′| = j. Suppose the
vertices of X ′ are b1, b2, . . . , bj . Since every vertex in X is adjacent to all vertices
of bipartition W , the edges (bk, wk) belong to E(G̃) for all k ∈ {1, 2, . . . , j}. It
can be verified that {(bk, wk)|1 ≤ k ≤ j} ∪M ∪ (M ′\M ′

2) is a perfect matching
of graph G̃. Since the matching M is contained in this perfect matching, graph
G̃ is n-extendable. �

Theorem 4 indicates that if the job assignment circuit is n-critical, the job can
be handed out even n machines fail. It is natural to investigate the situation
that fewer machines are out of work.

Corollary 1. Let G = (B, W ) be a bipartite graph where |W | > |B|. Let n =
|W | − |B|. If G is n-critical, then graph G − S has a matching M saturating
bipartition B, for any vertex set S where S ⊆ V (W ) and 0 ≤ |S| < n.

Proof. Let S be any vertex subset of bipartition W such that |S| < n. Let S′ be
any subset of V (W )\S such that |S′|+ |S| = n. Since G is n-critical, G−S−S′

has a perfect matching, denoted by M . It is straightforward that matching M
saturates every vertex of bipartition B. Therefore, M is a matching of G − S
saturating B. �

It is interesting to discuss the situation that n′ machines fail where n′ is less
than the number of extra machines.

Theorem 5. Let G = (B, W ) be a bipartite graph where |W | > |B|. Let n =
|W |−|B|. If graph G̃ is n′-extendable, then graph G−S has a matching saturating
bipartition B, for any vertex set S where S ⊆ V (W ) and 0 < |S| ≤ n′ < n.



A Note on n-Critical Bipartite Graphs and Its Application 285

Proof. Let X be the new added vertices in graph G̃ (i.e., V (G̃)\V (G)). Choose
arbitrary n′ distinct vertices of X , denoted by X ′. Since |X | = n, such vertex
set X ′ exists.

For any vertex set S where S ⊆ V (W ) and 0 < |S| ≤ n′ < n, let S′ be
any subset of V (W )\S such that |S′| + |S| = n′. Since G̃ is n′-extendable,
G̃−X ′−S−S′ has a perfect matching, denoted by M , by Theorem 1. It is clear
that V (B) ⊆ V (G̃ −X ′ − S − S′). Thus, M is a matching of G̃ −X ′ − S − S′

saturating bipartition B. Since (X ′∪S′)∩V (B) = ∅ and X∩V (B) = ∅, matching
M saturates B in graph G̃−X − S (i.e., G− S). �

Algorithms. The algorithm for determining n-critical bipartite graphs can be
derived from Theorem 4 and the algorithm for searching the extendability in [11].
Furthermore, the algorithms for some various versions mentioned in Corollary 1
and Theorem 5 can also be developed.

It is straightforward that the time complexity of these algorithms is bounded
by Zhang and Zhang’s algorithm [11], which is O(|V ||E|) where V is the vertex
set and E is the edge set. Thus, our algorithm runs in O(|W ||E|) time for
bipartite graph G = (B, W ; E), where |W | ≥ |B|.

4 Conclusion

We propose the concept of n-critical bipartite graphs motivated by the appli-
cation of job assignment problem. A relation between n-critical graphs and n-
extendable graphs for bipartite graphs is presented. Based on our result, an
algorithm for determining n-critical graphs is developed. Furthermore, algo-
rithms for some various application are also discussed.

Zhang and Zhang [11] stated that a graph is 1-extendable if and only if it
is strongly connected. Gabow and Jordan [3] developed an algorithm for aug-
menting a graph to be strongly connected by adding fewest edges. In the light
of this, Li and Lou [4] presented an algorithm for augmenting a graph to be
1-extendable. It is clear that Li and Lou’s algorithm is applicable for 1-critical
graphs. Furthermore, since Zhang and Zhang [11] revealed the connection of the
extendability and arc-connectivity by Theorem 2, we believe our results help to
investigate the problem of augmenting a graph to be n-critical. It is an impor-
tant issue in the design of job assignment circuit.
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Abstract. We consider a new kind of n-vehicle exploration problem.
Given n vehicles, respectively denoted by v1, v2, · · · , vn, the oil capacity
of vi is ai, and the oil consumption amount of vi is bi. The n vehicles
depart from the same place, and steer straight to the same direction.
Without oil supply in the middle, but some vehicles can stop wherever
and give its oil to any others. The question is how to arrange the order of
n vehicles to make one of the vehicles go the farthest. In this paper, we
propose a couple of heuristic algorithms and construct the real-time al-
gorithm scheme. We can find a solution in a reasonable time complexity
and approximation ratio under the real-time scheme. We simulate the
proposed algorithms, and the results show that the approximate ratio of
heuristic algorithm is as well as be above 98%.

Keywords: n-vehicle exploration problem, real-time algorithm scheme,
heuristic algorithm, efficient algorithm.

1 Introduction

Many very different-looking problems with direct or at least indirect connections
to real applications prove to be NP-hard or NP-complete. We cannot get their
exact solutions easily [1,2]. Actually, our research goal is to make better deci-
sion, so a better response is to find an optimal or sub-optimal polynomial time
algorithm under some circumstances. So we have to construct various models to
represent the original problem firstly and then to explore ’good’ algorithms to
get the right answers on decision maker’s demand.

Here, ’real-time’ characteristic is always ignored by algorithm designers. We
emphasize the real-time characteristic because we think it is very popular and
enjoyed by many NP-hard problems. As we all known, uncertainty is very per-
vasive in applications, and it makes a lot of problems complicated. When we
try to solve a problem, we have at least two choices: one is getting an optimal
solution by consuming a great amount of computational resources, the other is
getting a sub-optimal solution quickly but the solution might be far away from
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the exact answer. It seems like that we cannot make the best of both worlds.
but by considering real-time characteristic, maybe we can get a better strategy
to solve the problem, even in a compromised way. So although both the optimal
and approximate algorithms are fixed methods, by using real-time concept, we
can construct an algorithm scheme to make the algorithms dynamic [3].

The strategy we solve a problem is according to the external and subjective
requirements, including the structural complexity of the problem, the computer’s
capability, the computational time requirement, and the approximation ratio
target. For instance, given an n-vehicle exploration problem, we want to find the
distribution of its complexity by exploring the structure of the problem. Then
we can build an algorithm scheme to choose the most appropriate algorithm
according to the complexity degree of different instances, the requirements of
computational time, and the tolerance of approximation degree. All of these
work are based on the analysis of complexity and not done in a static way,
which means, by providing executive operations we try to get the most satisfied
strategy to choose the proper algorithm and to support decision.

Here, two fundamental goals in our real-time algorithm scheme are finding
algorithms with provably good run times and with provably good or optimal
solution quality. A heuristic is an algorithm that gives up one or both of these
goals. For example, it usually finds pretty good solutions, but there is no proof
the solutions could not get arbitrarily bad; or it usually runs reasonably quickly,
but there is no argument that this will always be the case [4]. Even though with
these pitfalls, heuristic algorithm is usually adopted in practice and engineering.
The other reason for us to adopt heuristic is that for many practical problems,
a heuristic algorithm may be the only way to get good solutions in a reasonable
amount of time [1,5].

In this paper, we will provide a heuristic and its improved algorithm, which
will solve the n-vehicle exploration problem in an efficient way. To make up the
pitfalls of heuristic, we pose a lot of numerical examples to testify our heuristic
algorithms and fail to find even one counterexample. The numerical experiment
results are very good no matter the scale of n is big or small.

The rest of this paper is organized as follows. Section 2 describes the modeling
of n-vehicle exploration problem and transforms it into a scheduling one. Section
3 explores a special case and proposes an efficient algorithm and Section 4 inves-
tigates the time complexity of n-vehicle exploration problem. Section 5 proposes
a heuristic algorithm with time complexity of O(n2), an improved heuristic al-
gorithms with time complexity of O(n3), and the real-time algorithm scheme.
Section 6 reports the results of the simulated algorithms. In the end, Section 7
provides conclusions.

2 Modeling of the n-Vehicle Exploration Problem

The n-vehicle exploration problem is stated as follows [6]:

Given n vehicles, respectively denoted by v1, v2, · · · , vn, the oil capacity of vi
is ai, and the oil consumption amount of vi is bi. The n vehicles depart from the
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same place, and steer straight to the same direction. Without oil supply in the
middle, but some vehicles can stop wherever and give its oil to any others. The
question is how to schedule the order to make one of the vehicles go farthest,
and at last all the vehicles can return to the start point?

Let vi1 ⇒ vi2 ⇒ · · · · · · ⇒ vin−1 ⇒ vin denotes the order, where vehicles in
arrow’s back provides oil to the vehicles in arrow’s head. which can be seen from
Figure 1.

0 Ai1 Ain-1 AinAi2

xi1 xi2 xin

Fig. 1. Order related to distance for n-vehicle

In Fig. 1, Aij denotes the farthest distance vij can arrive. xij denotes the
additional distance vij runs than vij−1 . Let Si denote the farthest distance of
the n vehicles, there is:

Si =
n∑
j=1

xij

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2xin × bin = ain

2xin−1 × (bin−1 + bin) + 2xin × bin = ain−1 + ain

· · · · · ·
2xi1 × (bi1 + bi2 + · · ·+ bin) + · · ·+ 2xin × bin = ai1 + ai2 + · · ·+ ain

(1)
The above Equations (1) can be solved and changed into the following format:

Si =
n∑
j=1

xij =
1
2

( ai1
bi1 + bi2 + · · ·+ bin

+
ai2

bi2 + · · ·+ bin
+ · · ·+ ain

bin

)
(2)

So the original n-vehicle exploration problem is transformed into a scheduling
problem as follows:

Given a1, a2, · · · , an; b1, b2, · · · , bn, an order i1, i2, · · · , in is being required to
maximize the value

Si =
1
2

( ai1
bi1 + bi2 + · · ·+ bin

+
ai2

bi2 + · · ·+ bin
+ · · ·+ ain

bin

)
.

Because each Si corresponds to a permutation of n vehicles, so there are n!
choices of S, then we can get Smax = max{Si|i = 1, 2, . . . , n!}.
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3 Design and Analysis of Efficient Algorithm

By modeling, we transform the original n-vehicle exploration problem to a
scheduling problem whose time complexity reaches to O(n!) . It’s an exponential
computational time complexity, and we need to investigate deeply the structure
of the problem to get some clues and to make the problem simpler. Before de-
signing the algorithm scheme, we will firstly analyze the 2-vehicle case, and find
the determinative parameter for obtaining the optimal solution. Then we will
extend the 2-vehicle to n-vehicle case, and obtain a special case that proved to
be efficiently solvable.

3.1 2-Vehicle Exploration Problem

Li and Cui [7] have investigated the 2-vehicle exploration problem, and proved
the following lemma.

Lemma 1. In an n-vehicle exploration problem, when n = 2, we can compare
the value a1/b2

1 and a2/b2
2, the smaller one related vehicle supports oil to the

other vehicle, can make the two vehicles go farthest.

According to Lemma 1, a/b2 is the unique parameter to determine the order.
Actually, this parameter is also quite useful in the heuristic algorithm.

3.2 A Special Case of n-Vehicle Model

If we extend the 2-vehicle to n-vehicle, we can find a special case which can
be solved efficiently (i.e. the time complexity is no greater than O(n3)). This
special instance was firstly found by Li and Cui, and the following theorem and
polynomial algorithm were also proved [7].

Theorem 1. In an n-vehicle exploration problem, if

a1

b2
1
≤ a2

b2
2
≤ · · · ≤ an−1

b2
n−1

≤ an
b2
n

and
a1

b1
≤ a2

b2
≤ · · · ≤ an−1

bn−1
≤ an

bn

are both satisfied, then we can get an order v1 ⇒ v2 ⇒ · · · ⇒ vn in which the n
vehicles can get the farthest distance and return to the start point at last.

Algorithm 1. (For Special Case of n-Vehicle Exploration Problem):

Step 1. Order n vehicles in terms with the value of a/b;
Step 2. Compute S by using the order calculated by Step 1;
Step 3. Output S and the order.

There are n! counts of S need to be computed in the original n-vehicle ex-
ploration problem, but in special case, we may only compute one S to get the
answer. It can be verified that the complexity of Algorithm 1 is O(n2).
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4 Complexity of n-Vehicle Exploration Problem

The special case introduced by Theorem 1 only takes up a small part of the
whole set of n-vehicle exploration problem. In general case, the condition of the
consistency of a/b and a/b2 is not satisfied. Is there an efficient algorithm can
solve the more complex instances? Before answering the question, it is necessary
to study the structure of the problem and analyze the complexity’s changing
pattern.

4.1 Primary Analysis of the Complexity

In an n-vehicle exploration problem, suppose that im, im+1 are respectively de-
noted by i, j, which are two adjacent vehicles in the order vi1 · · · ⇒ vim ⇒
vim+1 · · · ⇒ vin , then the following theorem can be obtained by adopting Equa-
tions (2).

Theorem 2. [8] Two kinds of situations need to be considered as follows:

(i) If ai/[bi × (bi + bim+2 + · · ·+ bin)] ≤ aj/[bj × (bj + bim+2 + · · ·+ bin)], then
keeping the order of vi and vj will get the farther distance;

(ii) If ai/[bi × (bi + bim+2 + · · ·+ bin)] > aj/[bj × (bj + bim+2 + · · ·+ bin)], then
changing the order of vi and vj will get the farther distance.

4.2 General Analysis of the Complexity

The special case introduced by Theorem 1 shows a strictly consistency of the
variable a/b and a/b2. The following theorem will extend the special case to
more disorder cases, and explore the complexity structure.

Theorem 3. In an n-vehicle exploration problem, if there are m vehicles not
satisfying the following consistency:

a1

b2
1
≤ a2

b2
2
≤ · · · ≤ an−1

b2
n−1

≤ an
b2
n

and
a1

b1
≤ a2

b2
≤ · · · ≤ an−1

bn−1
≤ an

bn
,

then the upper bound of the count of S is m!× (m + 1)n−m.

Proof. To get through the proof, we use inductive technique and divided the
proof into three parts.

Part 1: m = 0. In this part, according to Theorem 1, only 1 kinds of order need
to be considered. As 1 = 1× 1n, the theorem follows in this case.

Part 2: m = 1. In this part, suppose that v1 does not satisfy the consistency,
since the rest (n−1) vehicles can be considered as the special case of Theorem 1.
Then we don’t have to compute so many cases to get the optimal solution. For
example, if vi is adjacent to vj , and we also know that i > j > 1, then let
vj provide oil to vi will run farther. Similarly, if the other (n − 1) vehicles are
adjacent, then the order must be v2 ⇒ v3 ⇒ · · · · · · ⇒ vn−1 ⇒ vn. Next, we will
go into the detail about this case and list all the possibilities as follows.
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1) Assume that v1 runs farthest, then the optimal order in this case is v2 ⇒
· · · · · · ⇒ vn−1 ⇒ vn ⇒ v1. Only one kind of order need to be computed in this
situation.

2) Respectively assume that v2, v3, . . . , vn runs farthest, and v1 the second
farthest. Same with the above situation, the optimal order of the rest vehicles
can be easily got. (n− 1) kinds of order need to be computed and compared to
get the optimal order respectively.

3) Choose two vehicles from the rest (n − 1) vehicles and assume that only
these two vehicles go farther than v1. In this situation, C2

n−1 kinds of order need
to be computed and compared to get the corresponding optimal order.
· · · · · ·
n) Assume that v1 runs the nearest, and the corresponding optimal order is

v1 ⇒ v2 ⇒ · · · · · · ⇒ vn−1 ⇒ vn.
By summing up all the situations above, the counts of order need to computed

equals to C0
n−1 + C1

n−1 + · · ·+ Cn−1
n−1 = 2n−1. The optimal order must be in one

of these 2n−1 kinds, So when m = 1, the number of S needs to be computed is
1!× (1 + 1)n−1, which equals to m!× (m + 1)n−m.

Part 3: from m = k to m = k + 1. In this part, suppose that the theorem
follows when m ≤ k, which means that at most k! × (k + 1)n−k kinds of order
need to be considered when there are m vehicles don’t satisfy the consistency
of a/b and a/b2. Next, we will prove that when m = k + 1, the theorem also
follows.

As there is one more vehicle doesn’t satisfy the consistency, i.e. vk+1. Then the
original set of vehicles don’t satisfy the consistency, marked as A = {1, 2, . . . , k},
now changes into B = {1, 2, . . . , k, k + 1}.

Assume that p counts of vehicles, 0 ≤ p ≤ k, are chosen from set A, will run
farther than vk+1. Then fix the variable p, we will study in this case, at most
how many kinds of order need to be computed. Respectively, let vk+1 run the
1st, 2nd, . . ., nth position in the order.

1) Let vk+1 run the nearest, if p < k, no solution is corresponding to this
situation.

. . . . . .
k-p) Let vk+1 run the (k − p)th position of the order, no solution is corre-

sponding to this situation.
. . . . . .
k-p+1) Let vk+1 be in the (k−p+1)th position of the order, and the order can

be divided into two parts: left to vk+1, the count of order is C0
n−k−1× (k− p)!×

(k−p+1)0; then the corresponding right part’s count of order is p!×(p+1)n−k−1.
So the whole number of order in this situation is Cp

k ×C0
n−k−1 × (k− p)!× (k−

p + 1)0 × p!× (p + 1)n−k−1.
. . . . . .
n-p) Let vk+1 run the (n − p)th position of the order and the order can be

divided into two parts: left to vk+1, the count of order is Cn−k−1
n−k−1 ×(k−p)!×(k−

p + 1)n−k−1; then the corresponding right part’s count of order is p!× (p + 1)0.
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So the whole number of order in this situation is Cp
k ×Cn−k−1

n−k−1 × (k− p)!× (k−
p + 1)n−k−1 × p!× (p + 1)0.

. . . . . .
n-p+1) Let vk+1 run the (n − p + 1)th position of the order, no solution is

corresponding to this situation.
. . . . . .
n) Let vk+1 run the farthest, same with the above analysis, no solution is

corresponding to this situation.
Summing up all the categories above, the counts of order need to be computed

equals to Cp
k × p!× (k− p)!×

∑n−k−1
i=0 [Ci

n−k−1 × (p + 1)n−k−1−i × (k− p + 1)i],
which is equal to k!×(k+2)n−k−1. As can be seen that the number of order drops
the variable p. As 0 ≤ p ≤ k, and for different value of variable p, the number of
order is k!×(k+2)n−k−1, so the whole number of order is (k+1)!×(k+2)n−k−1.
The theorem follows. �

Theorem 3 provides an upper bound of the complexity for different instances.
When m = n, the complexity turns out to be n!. Here, the m! × (m + 1)n−m

is determined by two variables m, n. If the inconsistency only happens between
ns vehicles, and ns & n, the whole complexity decreases to m!× (m + 1)ns−m.
So to determine the whole complexity of a problem, it is necessary to make sure
that the m and ns are the right determinations.

Definition 1. [9] In an n-vehicle exploration problem, if there are m vehicles
distributed in ns vehicles not satisfying the consistency of a/b2 and a/b as dis-
played in Theorem 1, then the problem’s complexity entropy is denoted by E,
which is equals to logn m!× (m + 1)ns−m.

E reflects the the problem’s disorder degree, and gives the quantity reflection of
the problem’s complexity. By using E, we can set the benchmark for designing
the real-time algorithm scheme.

4.3 Other Special Complex Instances

Theorem 3 sets a gloomy result for finding the optimal solution of general case
of n-vehicle exploration problem. The upper bound of complexity means that a
lot of computing and comparison work should be taken in the seeking process
for optimal solution. According to Theorem 3 we can also deduct that there is
no ‘short cut’ to confirm the optimal order and to reach the farthest distance
Smax unless taking n! times of comparisons in the worst case. Even when only
one vehicle of all doesn’t match the consistency, the complexity is 2n−1. So the
analysis of complexity of the problem seems to lead to an annoying result, which
needs exponential time complexity for finding the optimal solution.

In Example 1, except v1 doesn’t satisfy the consistency, the other 8 vehicles
satisfy the condition of Theorem 1. The optimal order is v5 ⇒ v8 ⇒ v7 ⇒
v6 ⇒ v9 ⇒ v1 ⇒ v3 ⇒ v4 ⇒ v2, which maintains the other 8 vehicles’ order
of consistency. This kind of cases can be found a lot, and if we suppose that
only one vehicle doesn’t satisfy the consistency, that is: a1/b2

1 ≤ a2/b2
2 ≤ · · · ≤
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Table 1. Example 1

v1 v2 v3 v4 v5 v6 v7 v8 v9

a 51 60 62 65 120 135 140 150 155
b 9 7 10 8 30 26 28 32 27

an−1/b2
n−1 ≤ an/b2

n and a2/b2 ≤ · · · ≤ an−1/bn−1 ≤ an/bn ≤ a1/b1, can we seek
some simpler solution for this situation? To answer this question, we pose the
following observations, which need to be proved.

Observation 1. Given an n-vehicle exploration problem and an order v1 ⇒
v2 ⇒ · · · · · · ⇒ vn−1 ⇒ vn. If vk and vk+1 satisfy the consistency of a/b and a/b2,
and ak−1/bk−1 ≤ ak/bk ≤ ak+1/bk+1, ak/b2

k ≤ ak+1/b2
k+1 ≤ ak−1/b2

k−1, then the
order vk ⇒ vk−1 ⇒ vk+1 will run farther than the order vk+1 ⇒ vk−1 ⇒ vk.

Observation 2. Given an n-vehicle exploration problem and v1 doesn’t satisfy
the consistency of a/b and a/b2, which means that a1/b2

1 ≤ a2/b2
2 ≤ · · · ≤

an−1/b2
n−1 ≤ an/b2

n and a2/b2 ≤ · · · ≤ an−1/bn−1 ≤ an/bn ≤ a1/b1. In this
case, only n kinds of order need to be considered to get the optimal distance
Smax.

Observation 3. Given an n-vehicle exploration problem:

(i) If 2 vehicles don’t satisfy the consistency of a/b and a/b2, then
2n−1 + (n− 1)(n− 2) kinds of permutation need to be considered to get the
optimal distance Smax.

(ii) If 3 vehicles don’t satisfy the consistency of a/b and a/b2, then
3!×(C1

n−2+2C2
n−2+C3

n−2+2n−1) kinds of permutation need to be considered
to get the optimal distance Smax.

According to the above observations, we can assume that the lower bound of
the complexity is at least greater than m!, which means that when m = n,
the complexity is around O(n!). So maybe there exists some sort of “short cut”
(especially according to Observation 2), the whole complexity for the general
n-vehicle exploration problem is exponential type.

5 Real-Time Algorithm Scheme

To construct algorithm scheme, we need to delineate the boundary between cases
that can be efficiently solved and those that can only be solved with unreasonable
amount of computer resources. It’s quite an important job, which can help us to
know the structural complicatedness of the problem.

5.1 Basic Enumerate Algorithm

Before proposing the database of our algorithms to support the real-time scheme,
we provide the following exact algorithm by using enumerate technique. The ex-
act algorithm is realized by designing the following recursion program ‘recursion
(a, b, n)’. The initial data is a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn).
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Algorithm 2. (For General Case of n-Vehicle Exploration Problem)

Step 1. If n = 2, according to Lemma 1, let the vehicle which has the greater
a/b2 run farther. Calculate S according to formula (2).

Step 2. If n > 2, let v1, v2, . . . , vn respectively run the nearest position of the
order, use program “recursion()” to compute the farthest distance the
remaining (n− 1) vehicles can reach.

Step 3. Iteratively run Step 2 until (n− 1) decreases to 2, then according to
Step 1, calculate the S. Finally obtain n groups of distances. Compare
them to get the maximal distance S.

Step 4. Output the S.

It can be verified that the complexity of Algorithm 2 is O(n!).

5.2 Improved Enumerate Algorithm

According to Theorem 1, if one vehicle’s a/b and a/b2 are both the smallest of
all the vehicles, then the vehicle should run the nearest position. So we improve
Algorithm 2 to the following algorithm, which will save much more time to get the
optimal solution. The initial data is still a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn).

Algorithm 3. (For General Case of n-Vehicle Exploration Problem)

Step 1. If n = 2, according to Lemma 1, then let the vehicle which has the
greater a/b2 run farther. Calculate S according to Equation (2).

Step 2. If n > 2, find aj/bj = min{ai/bi, i = 1, 2, . . . , n}. From v1 to vn,
if vi satisfies ai/b2

i ≤ aj/b2
j , then let the vehicle run the nearest position,

use program “recursion()” to compute the farthest distance the
remaining (n− 1) vehicles can reach.

Step 3. Iteratively run Step 2 until (n− 1) decreases to 2,
then according to Step 1, calculate S. Finally get n groups of distances.
Compare them to get the maximal distance S.

Step 4. Output the S.

5.3 Heuristic Algorithm for General Large Scale Instance

We pick up two variables a/b and a/b2 from above analysis, and use them to
construct better algorithm. By considering Lemma 1, we construct the follow-
ing heuristic algorithm. (According to the numerical experimental, we drop the
variable a/b, and only keep a/b2 in heuristic algorithms.)

Algorithm 4. (For General Large Scale Instance)

Step 1. Let pi = i, api = ai, bpi = bi, i = 1, 2, . . . , n;
Step 2. If aj/b2

j = max{ai/b2
i , i = 1, 2, . . . , n}, then let in = j, pj = n,

apj = an, bpj = bn, xn = aj/bj, and
∑

b = bj ;
Step 3. For q = 2, q < n, q + +, find

aj
(bj +

∑
b)2

= max
{ ap1

(bp1 +
∑

b)2
,

ap2
(bp2 +

∑
b)2

, · · · ,
apn−q+1

(bpn−q+1 +
∑

b)2
}
.
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Let in−q+1 = j, pj = n− q + 1, apj = an−q+1, bpj = bn−q+1,
xn−q+1 = aj/(bj +

∑
b),

∑
b =

∑
b + bj ;

Step 4. Output x1, x2, · · · , xn, i1, i2, · · · , in.
(S = x1 + x2 + · · ·+ xn is the optimal solution.)

5.4 Improved Heuristic Algorithm

In Example 2, the order of a/b is (increasing order) v3 → v8 → v10 → v1 →
v2 → v6 → v7 → v9 → v5 → v4; and the order of a/b2 is (increasing order)
v3 → v8 → v10 → v6 → v2 → v1 → v7 → v9 → v5 → v4. We can see from the
two arrays and find that only the middle part (v1 → v2 → v6 Vs. v6 → v2 → v1)
don’t satisfy the consistency.

Table 2. Example 2

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 20 30 40 89 78 67 46 38 90 35
b 7 9 27 8 11 16 10 20 13 15

The optimal order of Example 2 is v3 ⇒ v8 ⇒ v10 ⇒ v1 ⇒ v2 ⇒ v6 ⇒ v7 ⇒
v9 ⇒ v5 ⇒ v4, and the order calculated by Algorithm 4 is v1 ⇒ v3 ⇒ v8 ⇒
v10 ⇒ v2 ⇒ v7 ⇒ v6 ⇒ v9 ⇒ v5 ⇒ v4.

Similar with Algorithm 3, according to Theorem 1, if one vehicle’s a/b and
a/b2 are both the smallest of all the vehicles, then the vehicle should run the
nearest position. By using this rule can improve the solution of Example 2.
Moreover, because the position in and xin play major contributions to the value
of Si, putting much more considerations in choosing the farthest vehicle will help
to improve the Algorithm 4.

Algorithm 5. (Improved Heuristic Algorithm):

Step 1. Let pi = i, api = ai, bpi = bi, i = 1, 2, . . . , n, C = Ø, I = Ø;
Step 2. Find aj/b2

j = max{ai/b2
i , i = 1, 2, . . . , n},for i = 1, 2, . . . , n, if

ai/bi ≥ aj/bj, then add i in the set C.
Step 3. For each index j in the set C, let in = j, pj = n, apj = an, bpj = bn,

xn = aj/bj, and
∑

b = bj. Run Step 4 to get the distance Sj ;
Step 4. For q = 2, q < n, q++, find aj/b2

j = max{api/b2
pi

, i = 1, 2, . . . , n−q+1};
For i = 1, 2, . . . , n, if ai/bi ≥ aj/bj, then add i in the set I.
Then find the aj/(bj +

∑
b)2 = max{ai/(bi +

∑
b)2, i ∈ I};

Let in−q+1 = j, pj = n− q + 1, apj = an−q+1, bpj = bn−q+1,
xn−q+1 = aj/(bj +

∑
b),

∑
b =

∑
b + bj , set I = Ø;

Step 5. Find Smax = max{Sj, j ∈ C};
Step 6. Output x1, x2, · · · , xn, i1, i2, · · · , in.

(S = x1 + x2 + · · ·+ xn is the optimal solution.)

It can be verified that the complexity of Algorithm 5 is O(n3).
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5.5 Algorithm Scheme

Given an n-vehicle exploration problem, we can compute its entropy E. Suppose
that the up limit of the complexity we can bear is equal to entropy Q:

1) If E = 0, choose efficient Algorithm 1;
2) If 0 < E ≤ Q, choose Algorithm 3;
3) If E > Q, choose approximation or heuristic algorithm.

Here, the real-time characteristic means that after determining the complex-
ity degree of the problem, decision maker can choose the proper algorithm by
considering requirements such as computer’s capability, requirement of compute
time and space, approximation ratio’s tolerance.

To determine the variable E, two variables m and ns need to be picked out.
This is a difficult procedure especially when the ns turns out to be very big, and
the following algorithm can be used to provide a rough method to estimate the
entropy E.

Algorithm 6. (For Determining the Entropy):

Step 1. Order the n vehicles according to their a/b value (increasing order),
get an array �;

Step 2. Order the n vehicles according to their a/b2 value (decreasing order),
get an array �;

Step 3. Set m = 0, ns = 0, a null set I to record the inconsistency vehicles;
Step 4. Let i respectively be v1, v2, . . . , vn of array �,

then let j respectively be v1, v2, . . . , vn of array �.
If vi of array � is the same vehicle with vj of array �,
then put vi into set I. Let ns = max{|n− j − i + 1|, ns}.
If n− j − i > m, set m = m + 1;

Step 5. Output m and ns.
(The approximate complexity entropy is logn m!× (m + 1)ns−m.)

6 Numerical Experiment and Results

Until now, we have given the model of n-vehicle exploration problem, and ana-
lyzed its complexity. According to the complexity analysis, it is not easy to get
the optimal solution unless taking an exponential time complexity. So we design
a heuristic algorithm and its improved edition to get near optimal solutions.
All of the heuristic algorithms we proposed are efficient, which means within
time complexity O(n3). Many numerical examples are provided as follows and
results’ comparison is presented at last. The numerical experiment shows that
the improved heuristic algorithm can get a very satisfied solution for each case of
complexity. Moreover when we increase the scale n into 14, see Example 12, and
the improved heuristic algorithm can still get an about 99.6% approximation
ratio. (Actually we have tried some examples when n equals to 10, 14, 20 30,
and run the heuristic algorithms. Because it needs enormous deal of computation
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time to find the optimal solution for large scale problems, in this case, to testify
the approximation degree of heuristic, we could only guess the optimal solution
by using local search method.) All the numerical experiments are programmed
in the Matlab plat, and the version 7.0.1 [10].

Table 3. Example 3 Table 4. Example 4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 130 60 62 65 120 135 140 150 155 68
b 30 7 10 8 30 26 28 32 27 8

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 51 60 62 65 120 135 140 150 155 68
b 9 7 10 8 30 26 28 32 27 8

The optimal order of Example 3 is v5 ⇒ v1 ⇒ v8 ⇒ v7 ⇒ v6 ⇒ v9 ⇒ v3 ⇒
v4 ⇒ v10 ⇒ v2. Example 3 satisfies the special case condition, which means that
the entropy of Example 3 is 0. So we can directly use Algorithm 1 to get its
optimal solution. The optimal order of Example 4 is v5 ⇒ v8 ⇒ v7 ⇒ v6 ⇒
v9 ⇒ v1 ⇒ v3 ⇒ v4 ⇒ v10 ⇒ v2.

Table 5. Example 5 Table 6. Example 6

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 51 60 62 65 120 135 140 150 155 55
b 9 7 10 8 30 26 28 32 27 12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 6 9 12 15 18 21 24 32 38 45
b 4 5 6 7 8 9 10 13 15 17

The optimal order of Example 5 is v5 ⇒ v8 ⇒ v7 ⇒ v6 ⇒ v9 ⇒ v10 ⇒ v1 ⇒
v3 ⇒ v4 ⇒ v2. The optimal order of Example 6 is v1 ⇒ v3 ⇒ v9 ⇒ v10 ⇒ v8 ⇒
v7 ⇒ v6 ⇒ v5 ⇒ v4 ⇒ v2.

Table 7. Example 7 Table 8. Example 8

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 12 23 11 26 16 31 19 21 44 25
b 2 4 3 5 3.4 5 4.3 7 7.8 4.5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 65 120 135 140 150 155 55 100 122 60
b 8 30 26 28 32 27 12 10 11 4

The optimal order of Example 7 is v8 ⇒ v3 ⇒ v7 ⇒ v5 ⇒ v9 ⇒ v4 ⇒ v10 ⇒
v6 ⇒ v2 ⇒ v1. The optimal order of Example 8 is v2 ⇒ v5 ⇒ v4 ⇒ v3 ⇒ v6 ⇒
v7 ⇒ v1 ⇒ v8 ⇒ v9 ⇒ v10.

Table 9. Example 9 Table 10. Example 10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 32 42 55 65 72 80 83 84 95 100
b 4 4.8 5.5 7.8 11 9.6 6.7 15 8.6 16

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 70 76 84 70 70 79 87 71 74 72
b 7.5 8.6 9.6 6.4 7.2 9 10 7.8 7 8
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The optimal order of Example 9 is v8 ⇒ v10 ⇒ v5 ⇒ v6 ⇒ v4 ⇒ v1 ⇒ v2 ⇒
v9 ⇒ v3 ⇒ v7. The optimal order of Example 10 is v7 ⇒ v3 ⇒ v6 ⇒ v2 ⇒ v10 ⇒
v8 ⇒ v1 ⇒ v5 ⇒ v9 ⇒ v4.

Table 11. Example 11

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

a 56 73 89 68 76 82 85 87 66 51
b 2 3 3.3 2.7 3.1 4 3.8 4.2 2.5 2.3

The optimal order of Example 11 is v6 ⇒ v8 ⇒ v7 ⇒ v10 ⇒ v2 ⇒ v5 ⇒ v3 ⇒
v4 ⇒ v9 ⇒ v1.

Table 12. Example 12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

a 30 32 40 42 45 50 53 70 72 72 74 76 78 80
b 4 5.2 4.8 5.1 6 6.2 6.4 7.5 11 8 7 8.6 12 13

The optimal order of Example 12 is v14 ⇒ v13 ⇒ v9 ⇒ v2 ⇒ v5 ⇒ v6 ⇒ v7 ⇒
v12 ⇒ v10 ⇒ v4 ⇒ v8 ⇒ v3 ⇒ v11 ⇒ v1.

Table 13 lists the simulated results of different examples. In Table 13, the
entropy corresponding to different examples are also provided, and according to
the entropy value, an algorithm is suggested for each example. This is a simple
reflection of the our motivation to construct the real-time algorithm scheme.

Table 13. Results of simulated algorithms

Exact Heuristic Improved Algorithm
algorithm O(n!) algorithm O(n2) heuristic O(n3) Scheme(Q = 3)

Smax Smax ratio Smax ratio entropy suggest
Example 1 11.9466 11.7532 98.4% 11.8345 99.1% 0.6 Algorithm 3
Example 2 11.0236 10.9680 99.5% 11.0236 100% 0.8 Algorithm 3
Example 3 12.7697 12.4763 97.7% 12.7697 100% 0 Algorithm 1
Example 4 12.7230 12.3035 96.7% 12.4895 98.2% 0.6 Algorithm 3
Example 5 12.1240 11.8963 98.1% 11.9735 98.8% 2.7 Algorithm 3
Example 6 3.6033 3.5113 97.5% 3.5387 98.2% 6.6 Algorithm 5
Example 7 9.4293 9.3540 99.2% 9.3774 99.5% 4.1 Algorithm 5
Example 8 18.2772 18.2303 99.7% 18.2363 99.8% 1.3 Algorithm 3
Example 9 15.5472 14.7718 95.0% 15.4277 99.2% 3.2 Algorithm 5
Example 10 15.4766 15.3166 99.0% 15.4766 100% 0 Algorithm 1
Example 11 41.4520 40.9312 98.7% 41.2120 99.4% 4.9 Algorithm 5
Example 12 15.2481 14.8997 97.7% 15.1848 99.6% 8.7 Algorithm 5
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(As has explained earlier, by guessing the optimal solution using local search
algorithm, we also testify the heuristic when n = 20, 30. The approximation
ratios of heuristic Algorithm 4 for n = 20 and n = 30 are both greater than
97%, and the approximation ratios of improved Algorithm 5 are both greater
than 99%.)

7 Conclusion

Given an n-vehicle exploration problem, we can find the distribution of its com-
plexity. Then we choose a polynomial time algorithm, which can get optimal or
sub-optimal solution. Our choice mainly depends on the requirements of compu-
tational time and approximation ratio based on the work of complexity analysis.
By using the structure of n-vehicle exploration problem, we provide a real-time
algorithm scheme.

A convenient way to accomplish the real-time algorithm scheme when the
problem’s scale is enormous is adopting the heuristic algorithm. Although there
are no obvious evidence to show that the heuristic algorithm will go well in any
case, but at least it is an efficient algorithm and runs very well in the numerical
experiment. Sometimes one can find specially crafted problem instances where
the heuristic will in fact produce very bad results; however, these instances might
never occur in practice because of their special structure. Besides according to
our many numerical experiments, the heuristic algorithm performs very well.
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Abstract. We consider updates to an n-dimensional frequency vector
of a data stream, that is, the vector f is updated coordinate-wise by
means of insertions or deletions in any arbitrary order. A fundamental
problem in this model is to recall the vector approximately, that is to
return an estimate f̂ of f such that

|f̂i − fi| < ε‖f‖p, for every i = 1, 2, . . . , n,

where ε is an accuracy parameter and p is the index of the �p norm used
to calculate the norm ‖f‖p. This problem, denoted by ApproxFreqp(ε),
is fundamental in data stream processing and is used to solve a number
of other problems, such as heavy hitters, approximating range queries
and quantiles, approximate histograms, etc..

Suppressing poly-logarithmic factors in n and ‖f‖1, for p = 1 the
problem is known to have Θ̃(1/ε) randomized space complexity [2,4] and
Θ̃(1/ε2) deterministic space complexity[6,7]. However, the deterministic
space complexity of this problem for any value of p > 1 is not known. In
this paper, we show that the deterministic space complexity of the prob-
lem ApproxFreqp(ε) is Θ̃(n2−2/p/ε2) for 1 < p < 2, and Θ(n) for p ≥ 2.

1 Introduction

In the data streaming model, computation is performed over a sequence of
rapidly and continuously arriving data in an online fashion by maintaining a
sub-linear space summary of the data. A data stream may be modeled as a se-
quence σ of updates of the form (index, i, v), where, index is the position of the
update in the sequence, i ∈ [n] = {1, 2, . . . , n} and v is the update indicated by
this record to the frequency fi of i. The frequency vector f(σ) of the stream σ
is defined as:

f(σ) =
∑

(index,i,v)∈σ
v · ei

where, e1, . . . , en are the elementary n-dimensional unit vectors (i.e., ei has 1 in
position i and 0’s elsewhere).

The problem of estimating the item frequencies of a data stream is to approx-
imately recall the frequency vector of the stream. More precisely, the problem,
denoted by ApproxFreqp(ε), is to design a data stream processing algorithm

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 301–312, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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that can return an n-dimensional vector f ′ satisfying errp(f ′, f(σ)) ≤ ε, for
p ≥ 1, where,

errp(f ′, f) =
‖f ′ − f‖∞
‖f‖p

.

This problem is fundamental in data stream processing. Solutions to this prob-
lem are used to find approximate frequent items (also called heavy hitters)
[4,5,12,13,15], approximate range queries and quantiles [9,4], and approximately
v-optimal histograms [8,10].

Review of algorithms for ApproxFreqp(ε). The problem ApproxFreqp(ε) is
widely studied for p = 1 and for p = 2. For p = 1 and for insert-only streams,
the algorithm of [15,5,12] uses space Θ((1/ε) log m), where m = maxi fi. The
algorithm works only for insert-only streams (i.e., no decrement updates) and
has optimal O(1) time complexity for processing each stream update. Other
algorithms presented for this problem include the sticky sampling technique [14]
that uses space O((1/ε)(log n)(log m)).

For general streams allowing arbitrary insertions and deletions, the ran-
domized algorithms Count-Min [4] and Countsketch [3] are applicable
for solving the problems ApproxFreq1(ε) and ApproxFreq2(ε) respec-
tively. These algorithms are randomized. The Count-Min uses space
O((1/ε)(log mn)(log 1/δ)), where 1 − δ is the confidence parameter of the ran-
domized algorithm. The Countsketch solves ApproxFreq2(ε) using space
O((1/ε2)(log mn)(log(1/δ))). Both algorithms are space-optimal up to poly-
logarithmic factors.

We now consider deterministic solutions to the problem ApproxFreqp(ε) for
general streams. Deterministic algorithms have certain advantages, as is exem-
plified by the following scenario. Consider a service provider that wishes to give a
discount to all its customers whose business with the company is a certain signif-
icant fraction (say 0.01%) of its revenue. The scheme is supposedly continuous,
namely, that if a customer becomes a highly-valued customer then s/he gets the
benefit immediately and vice-versa. For economy of space and time, the decision
about whether a customer should be given a discount is done by a stream pro-
cessing algorithm of the kind discussed earlier. If the algorithm is randomized,
there is a chance, albeit small, that a highly valued customer is misclassified,
resulting in an unhappy customer. Deterministic algorithms do not use random
coin tosses and cannot lead to such grievances.

The algorithms in [5,12,15] are deterministic, however, these algorithms are
applicable only for insert-only streams. The CR-precis algorithm [7] is a de-
terministic algorithm for ApproxFreq1(ε) for general streams with insertions
and deletions and uses space O(ε−2(log m log n)2) bits, where, m = ‖f(σ)‖∞.
The work in [6] shows that any total, deterministic algorithm for solving the
ApproxFreq1(ε) problem requires Ω

(
(log m)/ε2

)
bits. Thus, the deterministic

space complexity of ApproxFreqp(ε) is resolved to Θ̃(ε−2) for p = 1, where, Θ̃
notation suppresses poly-logarithmic factors in n and m.

No results are known so far for space bounds for deterministic algorithms for
ApproxFreqp(ε), for p > 1. The problem is fundamental, for instance, in the
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randomized case, the Countsketch algorithm solves ApproxFreq2(ε) using
space Θ̃(ε−2), and this important result is the basis for a number of space-optimal
algorithms for estimating frequency moments [11,1], approximate histograms [8],
etc.. Therefore, understanding the space complexity of a deterministic solution
to the problem ApproxFreqp(ε) is of basic importance.

Contributions. We present space lower and upper bounds for deterministic al-
gorithms for ApproxFreqp(ε) for p ≥ 1. We show that for p ≥ 2, solving
ApproxFreqp(ε) requires Ω(n) space. For p ∈ [1, 2), the space requirement is
Ω(n2−2/p(log m)/ε2). Finally, we show that the upper bounds are matched by
suitably modifying the CR-precis algorithm. The formal statement of our result
is as follows.

Theorem 1. For ε ≤ 1/8 and p ≥ 2, any deterministic algorithm that solves
ApproxFreqp(ε)over general data streams requires spaceΩ(n log m).For1 ≤ p <

2 and ε ≥ 0.5n1/p−1/2, any deterministic algorithm that solves ApproxFreqp(ε)
over general data streams requires space Ω(ε−2 n2−2/p log m). Further, these lower
bounds can be matched by algorithms up to poly-logarithmic factors.

Organization. The remainder of the paper is organized as follows. Section 2
reviews work on stream automaton, which is is used to prove the lower bounds.
Sections 3 and 4 presents lower and upper bounds respectively, for the space
complexity of streaming algorithms for ApproxFreqp(ε).

2 Review: Stream Automaton

We model a general stream over the domain [n] = {1, 2, . . . , n} as a sequence
of individual records of the form (index, a), where, index represents the po-
sition of this record in the sequence and a belongs to the set Σ = Σn =
{e1,−e1, . . . , en,−en}. Here, ei refers to the n-dimensional elementary vector
(0, . . . , 0, 1 (ith position), 0 . . . , 0). The frequency of a data stream σ, denoted by
f(σ) is defined as the sum of the elementary vectors in the sequence. That is,

f(σ) =
∑

(index,v)∈σ
v .

The concatenation of two streams σ and τ is denoted by σ ◦τ . The size of a data
stream σ is defined as follows.

|σ| = max
σ′ sub-sequence of σ

‖f(σ′)‖∞ .

A deterministic stream automaton [6] is an abstraction for deterministic
algorithms for processing data streams. It is defined as a two tape Turing ma-
chine, where the first tape is a one-way (unidirectional) input tape that contains
the sequence σ of updates that constitutes the stream. Each update is a member
of Σ, that is, it is an elementary vector or its inverse, ei or −ei. The second tape
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is a (bidirectional) two way work-tape. A configuration of a stream automaton
is modeled as a triple (q, h, w), where, q is a state of the finite control, h is the
current head position of the work-tape and w is the content of the work-tape.
The set of configurations of a stream automaton A that are reachable from the
initial configuration o on some input stream is denoted as C(A). The set of con-
figurations of an automaton A that is reachable from the origin o for some input
stream σ with |σ| ≤ m is denoted by Cm(A). A stream automaton may be viewed
as a tuple (n, C, o,⊕, ψ), where, ⊕ : C ×Σ → C is the configuration transition
function and ψ : C → O is the output function. The transition function, written
as s⊕ t, where, s ∈ C and t is a stream update, denotes the configuration of the
algorithm after it starts from configuration s and processes the stream record
t. We generally write the transition function in infix notation. The notation is
generalized so that a ⊕ σ denotes the current configuration of the automaton
starting from configuration and processing the records of the stream σ in a left
to right sequence, that is,

s⊕ (σ ◦ τ) def= (s⊕ σ)⊕ τ .

After processing the input stream σ, the stream automaton prints the output

outputA(σ) = ψ(o⊕ σ) .

The automaton A is said to have space function Space(A, m), provided, for all
input streams σ such that |σ| ≤ m, the number of cells used on the work-tape
during the processing of input is bounded above by Space(A, m). It is said to
have communication function Comm(A, m) = log|Cm(A)|. The communication
function can be viewed as a lower bound of the effective space usage of an
automaton. The space or communication function does not include the space
used by the automaton A to print its output. This allows the automaton to
print outputs of size Ω(Space(A, m)).

The approximate computation of a function g : Zn → O of the frequency
vector g(f(σ)) is specified by a binary approximation predicate Approx : E ×
E → {true, false} such that an estimate â ∈ O is considered an acceptable
approximation to the true value a ∈ O provided Approx(â, a) = true and is
not considered to be an acceptable approximation if Approx(â, a) = false. A
stream automaton A is said to compute a function g : Zn → O of the frequency
vector f(σ) of its input stream σ with respect to the approximation predicate
Approx, provided

Approx(ψ(σ), g(f(σ))) = true

for all feasible input streams σ. A stream automaton is said to be total if the
feasible input set is the set of all input streams over the domain [n] and is said to
be partial otherwise. The class STRfreq represents data streaming algorithms
for computing approximation of (partial or total) functions of the frequency
vector of the input stream. The notation Z2m+1 denotes the set of integers
{−m, . . . , 0, . . . , m}.

A stream automaton is said to be path independent if for any reachable config-
uration a ∈ C(A), the configuration obtained by starting from a and processing



Deterministically Estimating Data Stream Frequencies 305

any input stream σ is dependent only on a and f(σ). That is, a ⊕ σ depends
only on a and f(σ). The kernel of a path independent automaton is defined as

K(A) = {a ∈ C(A) | ∃σ s.t. o⊕ σ = o and f(σ) = 0} .

It is shown in [6] that the kernel of a path independent automaton is a sub-
module of Zn. A stream automaton is said to be free if it is path-independent and
its kernel is a free module. We present the basic theorem of stream automaton.

Theorem 2 ([6]). For every stream automaton A = (n, CA, oA,⊕A, ψA), there
exists a path-independent stream automaton B = (n, CB , oB,⊕B, ψB) such that
the following holds.

(1) For any Approx predicate and any total function g : Zn → O,
Approx(ψB(σ), g(σ)) holds if Approx(ψA(σ), g(σ)) holds.

(2) Comm(B, m) ≤ Comm(A, m).
(3) There exists a sub-module M ⊂ Zn and an isomorphic map ϕ : CB → Zn/M

where, (Zn/M,
⊕

) is viewed as a module with binary addition operation
⊕

,
such that for any stream σ,

ϕ(a⊕ σ) = ϕ(a)
⊕

[f(σ)]

where, x �→ [x] is the canonical homomorphism from Zn to Zn/M
(that is, [x] is the unique coset of M to which x belongs).

(4) Comm(B, m) = O((n−dim M) log m), where, dim M is the dimension of M .

Conversely, given any sub-module M ⊂ Zn, a stream automaton A = (n, CA, oa,
⊕A, ψA) can be constructed such that there is an isomorphic map ϕ : CA →
Zn/M such that for any stream σ,

ϕ(a⊕ σ) = ϕ(a)
⊕

[f(σ)] .

where,
⊕

is the addition operation of Zn/M , and

Comm(A, m) = log
⌈∣∣{[x] : x ∈ Zn2m+1}

∣∣⌉
= Θ((n − dim M) log m) �

3 Lower Bounds for ApproxFreqp

In this section, we establish deterministic space lower bounds for
ApproxFreqp(ε).

Theorem 2 enables us to restrict attention to path independent automata in
general, for all frequency-dependent computation. Lemma 1 further allows us to
restrict our attention to free automata, for the problem of ApproxFreqp(ε),
while incurring a factor of 4 relaxation.

Lemma 1. Suppose that A is a path independent stream automaton for solv-
ing ApproxFreqp(ε) over domain [n] and has kernel M . Then, there exists
a free automaton B with kernel M ′ such that M ′ ⊃ M , Zn/M ′ is free, and
errp(minp(x + M ′), x) ≤ 4ε .
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The proof is similar in spirit to a corresponding Lemma in [6] and is given in
the Appendix for completeness.

Consider a free automaton A over domain [n] with kernel M that is a free
module and let Me denote the unique smallest dimension subspace of Rn that
contains M . Let V be a n×k matrix whose columns are orthonormal and form a
basis of Rn/M e. Let U denote an orthonormal basis of M e, so that [V U ] forms
an orthonormal basis of Rn. For x ∈ Rn, the coset x + M e = {y : V T y = V Tx}.
For a given coset x+Me, let x̄ denote the element y ∈ x+M e with the smallest
value of ‖y‖2. Clearly, x̄ is the element in x + M e whose coordinates along U
are all 0. Therefore,

x̄ = [V U ]
[
V Tx

0

]
= V V Tx . (1)

Lemma 2. If err2(x̄, x) ≤ ε for all x, then, rank(V ) ≥ n(1 − ε).

Proof. Let rank(V ) = k. The condition err2(x̄, x) ≤ ε is equivalent to

‖(V V T − I)x‖∞ ≤ ε‖x‖2 .

In particular, this condition holds for the standard unit vectors x = e1, e2, . . . , en
respectively. Thus, ‖V V T ei − ei‖∞ ≤ ε, for i = 1, 2, . . . , n. This implies that
|(V V T )ii − 1| ≤ ε. Thus,

trace(V V T ) ≥ n(1− ε) .

Since V has rank k and has k orthonormal columns, the eigenvalues of V V T

are 1 with multiplicity k and 0 with multiplicity n− k. Thus, trace(V V T ) = k.
Therefore, n(1− ε) ≤ trace(V V T ) = k. �

The lower bound proof for 1 ≤ p < 2 is slightly more complicated. We first prove
the following lemma.

Lemma 3. For any orthonormal basis [V U ] of Rn such that rank(V ) = k and
for any 1 < p < 2, there exists i ∈ [n] such that ‖V V T ei‖2 ≤ 2k/n and
‖V V T ei‖p ≤ 2n1/p−1

√
k.

Proof. Since, V has orthonormal columns

‖V V T ei‖22 = ‖V T ei‖22 = (V V T ei)i . (2)

Therefore,

trace(V V T ) =
n∑
i=1

(V V T ei)i =
n∑
i=1

‖V V T ei‖22 (3)

The trace of V V T is the sum of the eigenvalues of V V T . Suppose rank(V ) = k.
Since, V has orthonormal columns and has rank k, V V T has eigenvalue 1 with
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multiplicity k and eigenvalue 0 with multiplicity n− k. Thus, trace(V V T ) = k.
By (3)

k = trace(V V T ) =
n∑
i=1

‖V V T ei‖22 . (4)

Further, since, ‖x‖p ≤ ‖x‖2 · n1/p−1/2

n∑
i=1

‖V V T ei‖p ≤
n∑
i=1

‖V V T ei‖2(n1/p−1/2)

≤
√

n

(
n∑
i=1

‖V V T ei‖22

)1/2

n1/p−1/2

{by Cauchy-Schwartz inequality }
= n1/p

√
k by (4) . (5)

Let

J = {i : ‖V V T ei‖22 ≤ 2k/n}, and

K = {i : ‖V V T ei‖p ≤ 2n1/p−1
√

k} .

Therefore, by (4) and (5), |J | > n
2 and |K| > n

2 . Hence, J ∩ K 	= φ, that is,
there exists i such that

‖V V T ei‖2 ≤ (2k/n)1/2 and ‖V V T ei‖p ≤ 2n1/p−1
√

k .

The lemma is then proved. �
Lemma 4. Let A be a free automaton that solves the problem ApproxFreqp(ε)
over the domain [n] for some 1 ≤ p < 2 and has kernel M . Let Me be the smallest
dimension subspace of Rn containing M . Let V, U be a collection of vectors that
forms an orthonormal basis for Rn such that U spans M e and V spans Rn/M e.
Then, for ε ≥ 2n1/2−1/p, rank(V ) ≥ n2−2/p

16ε2 .

Proof. By Lemma 3, there exists i such that

‖V V T ei‖22 ≤
2k

n
and

‖V V T ei‖p ≤ 2n1/p−1
√

k . (6)

Since, ei − V V T ei = UUT ei ∈M e, therefore,

ε ≥ errp(ei − V V T ei, 0)

=
‖ei − V V T ei‖∞
‖ei − V V T ei‖p

.

Therefore,

‖ei − V V T ei‖∞ ≤ ε‖V V T ei − ei‖p . (7)
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By (2),

(V V T ei)i = ‖V V T ei‖22 ≤
2k

n
.

Therefore,

‖ei − V V T ei‖∞ ≥ |(ei − V V T ei)i| = 1− ‖V V T ei‖22

≥ 1− 2k

n
, by (6).

Substituting in (7),

1− 2k

n
≤ ‖ei − V V T ei‖∞

≤ ε‖V V T ei − ei‖p
≤ ε

(
‖V V T ei‖p + 1

)
≤ ε(2n1/p−1

√
k + 1)

where, the second to last inequality follows from using triangle inequality over
pth norms and the last inequality follows from (6). Simplifying, we obtain that

k ≥ n2−2/p

16ε2
, provided, ε ≥ 2n1/2−1/p .

The lemma is then proved. �
We recall that as shown in [6], Comm(A, m) ≥ rank(V ) log(2m + 1).

Proof (Of Theorem 1). We first consider the case p = 2 and p > 2. By Theo-
rem 2, it follows that corresponding to any stream automaton An, there exists
a path independent stream automaton Bn that is an output restriction of An

and such that Comm(Bn, m) ≤ Comm(An, m). By Lemma 1, it follows that
if Bn solves ApproxFreqp(ε), then, there exists a free automaton Cn that
solves ApproxFreqp(4ε). Thus, by Theorem 2, it follows that if Bn solves
ApproxFreq2(ε) for 4ε ≤ 1, then,

Comm(An, m) ≥ Comm(Bn, m) ≥ Comm(Cn, m) ≥ rank(VCn log m

and
rank(VCn) ≥ n(1− 4ε) log(2m + 1), by Lemma 2 .

Here VCn is the vector space Rn/M e(Cn), where, M e(Cn) is the kernel of Cn.
Further, for p > 2, ‖f‖p ≤ ‖f‖2, for any f ∈ Rn. Therefore, errp(f̂ , f) ≤ ε

implies that err2(f̂ , f) ≤ ε. Thus, the space lower bound for err2 as given by
Lemma 2 holds for errp, for any p > 2.

By Lemma 4, it follows that if Bn solves ApproxFreqp(ε), for 4ε ≥ 2n1/2−1/p,
then,

Comm(An, m) ≥ Comm(Bn, m) ≥ Comm(Cn, m) ≥ rank(VCn) log m

≥ n2−2/p

64ε2
log m .
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Finally, we note that for any stream automaton An, Comm(An, m) is a lower
bound on the effective space usage Space(An, m).

This proves the lower bound assertion of Theorem 1. �

4 Upper Bound

Lemma 5 presents a (nearly) matching upper bound for the ApproxFreqp(ε)
problem, for 1 ≤ p < 2.

Lemma 5. For any 1 < p < 2 and 1 > ε > 1√
n
, there exists a total stream

algorithm for solving ApproxFreqp(ε) using space O(ε−2n2−2/p(log‖f(σ)1‖)
(p/(p− 1 + p(log(1/ε)/ logn)))2).

Proof. By a standard identity between norms, for any vector f ∈ Rn, ‖f‖1 ≤
n1−1/p‖f‖p. Therefore,

err1(f̂ , f) ≤ ε

n1−1/p implies errp(f̂ , f) ≤ ε .

So let ε′ = ε/n1−1/p, and use the CR-precis algorithm with accuracy parameter
ε′. This requires space

O((ε′)−2(log‖f(σ)‖1)(log2 n)/(log2(1/ε′)) .

Substituting the value of ε′, we obtain the statement of the lemma. �

The statement of the lemma is equivalent to the assertion of Theorem 1 for
upper bounds. This completes the proof of Theorem 1.
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A Proofs

Let M be the kernel of An and let M ′ be defined as follows.

M ′ = {x | ∃a ∈ Z, ax ∈M} (8)

It follows that M ′ is torsion-free.

Fact 3. Let b1, b2, . . . , br be a basis of M ′. Then, ∃ α1, . . . , αr ∈ Z − {0} such
that α1b1, . . . , αrbr is a basis for M . Hence, M e = (M ′)e.

Proof (Of Fact 3). It follows from standard algebra that the basis of M is of the
form α1b1, . . . , αrbr. It remains to be shown that the αi’s are non-zero. Suppose
that α1 = 0. For any a ∈ Z, a 	= 0, suppose ax ∈ M and x ∈ M ′. Then, x has
a unique representation as x =

∑r
j=1 xjbj . Thus, ax =

∑r
j=1(axj)bj ∈ M and

has the same representation in the basis {αjbj}j=1,...,n. Therefore, ax1 = 0 or
x1 = 0 for all x ∈ M ′, which is a contradiction.

Let {b1, b2, . . . , br} be a basis for M ′. Then, by the above paragraph, there
exist non-zero elements α1, . . . , αr such that {α1b1, α2b2, . . . , αrbr} is a basis for
M . Therefore, over reals, (b1, . . . , br) = (α1b1, . . . , αrbr). Thus, M e = (M ′)e. �
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Lemma 6. Let M be a sub-module of Zn. (1) if there exists hp such that errp(hp,
M) ≤ ε, then, errp(0, M) ≤ ε, and, (2) if errp(0, M) ≤ ε then errp(0, M e) ≤ ε.

Proof. Part (1). For any yi ∈ Z,

max(|(hp)i − yi|, |(hp)i + yi|) ≥ |yi|.

Therefore,
max(‖hp − y‖∞, ‖hp + y‖∞) ≥ ‖y‖∞ .

Let y ∈ M . Since, M is a module, −y ∈ M . Thus,

errp(0, y) = errp(0,−y) =
‖y‖∞
‖y‖p

≤ 1
‖y‖p

max(‖hp − y‖∞, ‖hp + y‖∞)

= max(errp(hp, y), errp(hp,−y)) ≤ ε

Part 2. Let z ∈M e. Let b1, b2, . . . , br be a basis of the free module M . For t > 0,
let tz be expressed uniquely as tz = α1b1 + . . . + αrbr, where, αi’s belong to R.
Consider the vertices of the parallelopiped Ptz whose sides are b1, b2, . . . , br and
that encloses tz.

Ptz = [α1]b1 + [α2]b2 + . . . + [αn]bn
+ {β1b1 + β2b2 + . . . + βrbr | βj ∈ {0, 1}, j = 1, 2, . . . , r}

where, [α] denotes the largest integer smaller than or equal to α. Since, 	∞ is
a convex function ‖tz‖∞ ≤ ‖y‖∞ for some y ∈ Ptz . Let y =

∑r
j=1 βjbj, for

βj ∈ {0, 1}, j = 1, 2, . . . , r.

‖y − tz‖1 = ‖
r∑
j=1

(βj − [αj ])bj‖1 ≤
r∑
j=1

‖(βj − [αj ])bj‖1 ≤
r∑
j=1

‖bj‖1

or, ‖tz‖1 ≥ ‖y‖1 −
r∑
j=1

‖bj‖1

Therefore,

errp(0, tz) =
‖tz‖∞
‖tz‖1

≤ ‖y‖∞
‖y‖1 −

∑r
j=1‖bj‖1

≤
(
‖y‖1
‖y‖∞

−
∑r

j=1‖bj‖1
‖y‖∞

)−1

≤
(

1
ε
−

∑r
j=1‖bj‖1
‖y‖∞

)−1

where, the last step follows from the assumption that y ∈ M and therefore,
errp(0, y) = ‖y‖∞

‖y‖1
≤ ε. The ratio

∑ r
j=1‖bj‖1

‖y‖∞
can be made arbitrarily small by

choosing t to be arbitrarily large. Thus, limt→∞ errp(0, tz)≤ε. Since, errp(0, tz) =
‖tz‖∞
‖tz‖1

= ‖z‖∞
‖z‖1

= errp(0, z), for all t, we have, errp(0, z) ≤ ε. �
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Proof (Of Lemma 1.). By construction, M ′ is the smallest module that contains
M as a sub-module and M ′ is free. This also implies that Zn/M ′ is free. For
x ∈ Zn, define

hp(x + M ′) = min
p

(x + M ′) .

That is, hp(x + M ′) is the element with the smallest 	p norm among all vectors
in x + M ′.

Let y ∈ x + M ′. Then, y ∈ xp + M for some xp. Let ŷ = outputA(xp + M)
denote the output of A for an input stream with frequency in xp + M (they all
return the same value, since, A is path independent and has kernel M) and let
y′
p = minp(xp + M). Let hp denote hp(x + M ′) and let ĥ = outputA(hp + M).

Therefore,

err(hp, y) =
‖y − hp‖∞
‖y‖p

≤ ‖y − ŷ‖∞
‖y‖p

+
‖ŷ − y′

p‖∞
‖y‖p

+
‖y′
p − hp‖∞
‖y‖p

(9)

The first and the second terms above are bounded by ε as follows. The first term
‖y−ŷ‖∞
‖y‖p

= errp(ŷ, y) ≤ ε, since, y ∈ xp + M and ŷ is the estimate returned by
An for this coset. The second term

‖ŷ − y′
p‖∞

‖y‖p
≤
‖ŷ − y′

p‖∞
‖y′
p‖p

= err(ŷ, y′
p) ≤ ε

since, ‖y′
p‖p ≤ ‖y‖p and y′

p lies in the coset xp + M . The third term in (9) can
be rewritten as follows. Since, M ′ is a free module, y′

p− hp ∈ M ′ and M ′ ⊂M e.
Therefore,

‖y′
p − hp‖∞
‖y‖p

≤
‖y′
p − hp‖∞
‖y′
p − h‖p

·
‖y′
p − hp‖p
‖y′
p‖p

, since, ‖y′
p‖p ≤ ‖y‖p

≤ ε ·
‖y′
p‖p + ‖hp‖p
‖y′
p‖p

by Lemma 6 and by triangle inequality

≤ 2ε, since, ‖hp‖p ≤ ‖y′
p‖p

By (9), err(h, y) ≤ ε + ε + 2ε = 4ε. The automaton Bn with kernel M ′ is
constructed as in Theorem 2. �



Positive Influence Dominating Set in Online
Social Networks

Feng Wang, Erika Camacho, and Kuai Xu

Mathematical and Natural Sciences, Arizona State University
P.O. Box 37100, Phoenix, AZ 85069, USA
{fwang25,erika.camacho,kxu01}@asu.edu

Abstract. Online social network has developed significantly in recent
years as a medium of communicating, sharing and disseminating infor-
mation and spreading influence. Most of current research has been on
understanding the property of online social network and utilizing it to
spread information and ideas. In this paper, we explored the problem of
how to utilize online social networks to help alleviate social problems in
the physical world, for example, the drinking, smoking, and drug related
problems. We proposed a Positive Influence Dominating Set (PIDS) se-
lection algorithm and analyzed its effect on a real online social network
data set through simulations. By comparing the size and the average
positive degree of PIDS with those of a 1-dominating set, we found that
by strategically choosing 26% more people into the PIDS to participate
in the intervention program, the average positive degree increases by ap-
proximately 3.3 times. In terms of the application, this result implies that
by moderately increasing the participation related cost, the probability of
positive influencing the whole community through the intervention pro-
gram is significantly higher. We also discovered that a power law graph
has empirically larger dominating sets (both the PIDS and 1-dominating
set) than a random graph does.

1 Introduction

Online social network is a network composed of individuals who share the same
interest and purpose which provides a powerful medium of communicating, shar-
ing and disseminating information, and spreading influence beyond the tradi-
tional social interactions within a traditional social network setting. Online social
network has developed significantly in recent years. For example, online social
network sites like Facebook, MySpace are among the most popular sites on the
Internet; online social networks have also raise special interest among commer-
cial businesses, medical and pharmaceutical companies as a channel to influence
the opinion of their customers; even police has utilize the information in online
social network sites to track down crimes.

Some research has been done to understand the properties of online social
networks [10,11,2] and how to effectively utilize social networks to spread ideas
and information within a group [8]. In this paper, we explore the problem of
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how to utilize online social networks to help alleviate social problems in the
physical world. Some examples of these type of problems include the drinking,
smoking, and drug related problems. These social issues are very intricate and
complex problems that require a system-level approach where the dynamics of
positive and negative influence resulting from individual-to-individual and from
individual-to-group interactions as well as the evolving status of individuals can
be fully captured. In a social setting, people can have both positive and negative
impact on each other and a person can take and move among different roles
since they are affected by their peers. For example, within the context of drink-
ing problem, a person can be an abstainer, or a binge drinker. An abstainer has
positive impact on his direct friends (called neighbors) but he might turn into a
binge drinker and have negative impact on his neighbors if many of his friends
are binge drinkers.

Alcohol intervention strategies and programs that consist of disseminated ed-
ucation and therapy via mail, Internet, or face-to-face interviews such as mo-
tivational feedback [13] are important tools to help combat some of the social
problems within today’s society. In an ideal world to truly alleviate the main
source of the drinking problem, one must educate as many binge drinkers as
possible. This will prevent an abstainer who might adopt the negative influence
of his close binge drinker friends from eventually turning into a binge drinker. If
too few people are selected to participate in an intervention program, there is a
high likelihood that the positive effect of the intervention will be overrun by the
negative effect exerted by the binge drinkers, not included in the intervention,
on those who are vulnerable. On the other hand, due to the financial limitations
in budget, it is impossible to include all the binge drinkers in the intervention
program. Therefore, how to choose a subset of individuals to be part of the in-
tervention program (or to educate) so that the effect of the intervention program
can spread through the whole group under consideration becomes the key item
of inquiry. In an effort to address this question, the specific problem we study
in this paper is the following: given an online social network of a community
and a specific social problem, how to identify a subset of the individuals within
the online social network to participate in an intervention program such that
the intervention/education can result in a globally positive impact on the entire
social network. We assume that 1) if more than half neighbors of an individual
have positive impact on him, then the probability that this individual positively
impact others in the network is high. 2) intervention program can convert a
negative influential individual to a positive influential person. Our first assump-
tion comes from an extensive body of evidence suggesting that one of the most
powerful predictors of negative/risky behavior in individuals is whether an in-
dividual has friends who also engage in that behavior. In fact research [7] has
shown that about 50% of the variance in adolescent personality primarily re-
flects the influence of peers. Due to Outside competition in terms of personality
traits attained from peer influence, the more neighbors/ friends exerting positive
influence, an individual has, the more likely he is to impact others in a positive
way. The overall average effect of his negative neighbors will be overpowered by
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the contributions of his positive neighbors. Our second assumption comes from
the work in [9] [12], where nearly every individual in the feedback intervention
program showed a reduction in drinking. With the above two assumptions, the
problem is equivalent to selecting a subset of the individuals to participate in the
intervention program such that each individual in the social network has more
positive neighbors than negative ones.

Online social network can be represented as a graph of relationships and
social interactions (edges) between individuals (nodes). We use the following
network model to illustrate the online social network in context of the social
problem: A undirected graph G = (V, E, C) is used to represent the online social
network. We use an undirected graph because friendship in an online social
network are mostly bi-directional. V is the set of nodes in which each node is
an individual in the online social network. E is the set of edges in which each
edge represents the existence of a social connection between the two endpoints.
C is the compartment vector that saves the compartment of each node. The
compartment of a node decides whether it has positive or negative impact on
its neighbors. For example, for the drinking problem [1], the compartment of
each node is one of the followings: abstainer, problem drinker, social drinker or
binge drinker. A node in the abstainer compartment has positive impact and
all nodes in any of the other three compartments have negative impact. With
the above network model, we define the problem of selecting a positive influence
dominating set (PIDS) in the online social network G as finding a subset P

of V such that any node u in V are dominated by at least �d(u)
2 � nodes in P

where d(u) is the degree of node u. We propose a PIDS selection algorithm and
evaluate its effect on a real online social network data set through simulations
by comparing the size and the average positive degree of PIDS with that of the
traditional 1-dominating set. The results illustrate that by strategically choosing
26% more people in PIDS than in the 1-dominating set to participate in the
intervention program, the average positive degree increases approximately by
3.3 times. This is a considerable increase in overall average positive influence
emitted in an individual in comparison to the nominal increase in number of
participants. Thus by moderately increasing the participation related cost, the
probability of positive influencing the whole community through the intervention
program is significantly higher. Our simulation results also reveal that a power
law graph has empirically larger dominating set size than a random graph even
though the dominating set problem is a theoretically easier problem in a power
law graph than in a random graph.

Our contributions in this paper include: 1) we introduce the PIDS problem
which formalizes the problem of utilizing online social network to help solving
social problems; 2) we propose and evaluate the PIDS selection algorithm with a
real online social network data set and compare the size of PIDS and traditional
1-dominating set; 3) we study the size of PIDS and 1-dominating set in both a
power law graph and a random graph.

The rest of this paper is organized as follows. Section 2 describes the related
work. In section 3, we present the PIDS selection algorithm. Section 4 shows the
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simulation results of PIDS on a real online social network topology. Section 5
concludes this paper and discusses our future plan.

2 Related Work

Most of the current research in online social network fall in two categories: one is
to understand the properties and characteristics of online social networks, such as
the work in [10,11,2]. The other is to study how to utilize social network to spread
ideas and information as presented in [8,4]. Our work focuses on exploring how
to utilize online social networks to help alleviate social problems in the physical
world. The social problem is different from spreading ideas and information.
The spread of ideas and information is one direction in that once a person in
influence to adopt an idea or learn some information, he cannot revert to his
original state by means of future influence. The positive or negative influence
in social problems can flow in two directions, that is a positive individual can
convert to a negative individual then can move back and forth between these
two states multiple times. Another different between our work and that of [8,4] is
that we find a set of individuals that guarantees the positive effect of education
will be injected into the entire group. They focus on finding a subset of a pre-
established fix size that maximize the spread of information, but not the subset
regardless of size that infuses information to the whole group.

3 Positive Influence Dominating Set Selection Algorithm

In this section, we present a PIDS selection algorithm for the positive dominating
set problem formalized in the earlier section. First we define and explain a few
terms and definitions used in the description of our algorithm. Each node can
have either positive or negative impact on its neighbor nodes. We call a node
with positive impact a positive node and a node with negative impact a negative
node. The positive degree of a node is the number of its positive neighbors. The
same holds for negative degree. The compartment of a node decides whether the
node is a positive or a negative node. For example, in the context of college
drinking [1], a node in the abstainer compartment is a positive node and a node
in any other compartment is a negative node. Nodes that are chosen into the
PIDS are marked as positive nodes. Thus a neighbor u of v is a positive neighbor
if u is initially a positive node or u is selected into the PIDS. A 1-dominating
set is S of a graph G is a subset of nodes in G such that every node not in S has
at least one neighbor in S. A positive influence dominating set P of a graph G

is a subset of nodes in G that any node u in G are dominated by at least �d(u)
2 �

nodes in P where d(u) is the degree of node u.
The main idea of PIDS algorithm is as follows: first prune the original graph

by removing the initial positive nodes, then iteratively choose a 1-dominating
set of the graph consisting of nodes with less than half neighbors as positive
neighbors until all nodes in the original graph are either positive nodes or have
more positive neighbors than negative ones. To choose a 1-dominating set of
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a graph, we use a greedy algorithm similar to the one in [5]. This algorithm
selects the node with the largest node degree into the dominating set. In our
greedy algorithm, we choose the node that can dominate most negative nodes
into the dominating set. [5] has proven that the simple greedy algorithm gives
a 1 + o(1) approximation with a small constant in o(1) to the 1-dominating
set problem in a power law graph. Algorithm 1 gives the details of the PIDS
algorithm. Compartment vector C contains the nodes that are initially in positive
compartment. C = φ means every node is an negative node.

Algorithm 1. Positive Influence Dominating Set Selection Algorithm
1: INPUT: A graph G = (V, E, C) where V is the set of nodes, E is the set of edges

that capture the social interactions of the nodes, C is the set of nodes that are
initially in positive compartment.

2: OUTPUT: A subset P of V such that any node u in V has at least 
 d(u)
2

� neighbors
in P

⋃
C, where d(u) is the degree of node u.

3: initialize the status of all nodes in V to NEGATIVE and P to empty
4: let V ′ = V − C and set the status of nodes in C to POSITIVE
5: calculate the degree and the positive degree of each node in V
6: T is the set of nodes in V ′ that have more positive neighbors, set the status of

nodes in T to POSITIVE
7: let V ′ = V ′ − T
8: while not every node in V ′ has more positive neighbors
9: find a 1-dominating set S that dominates all nodes in V ′ using greedy algorithm

as in [5]
10: update P = P

⋃
S

11: V ′ = V ′ − S
12: update the positive degree of each node in V
13: T is the set of nodes in V ′ that have more positive neighbors, set the status of

nodes in T to POSITIVE
14: V ′ = V ′ − T
15: end of while
16: let U = C

⋃
P

17: while not every w ∈ U has more positive neighbors
18: x is a neighbor of w that has maximum negative degree among all the neighbors

of w
19: let P = x

⋃
P

20: update the positive degree of each node in V
21: end of while
22: The nodes in set P are positive influence dominating set of G, and the positive

degree of each node is also calculated.

4 Performance Evaluations

To evaluate the effect of our PIDS algorithm, we first collect the data from one
of the popular gaming applications, Fighter’s Club (FC) [11] on Facebook social
networking site. The FC game has attracted over 3.4 million Facebook users
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Fig. 1. Node degree distribution of an gaming application of 2334 users on facebook

since it was initially launched on June 2007. The gaming application records the
players as well as their IP addresses. See [11] for a detailed descriptions of the
game. In our study, we choose a subset of 2,334 Facebook users that play the
online games together, and their IP addresses belong to the same IP network.
Figure 1 illustrates the distribution of the node degree in this online community.
Similar to the observations in prior studies [3], we find that the node degree in
this Facebook application community also follows a power-law distribution.

To understand the effect of PIDS, we need to answer the following questions:
1) how many nodes need to be selected into the PIDS and how influential these
nodes can be. To measure influence, we calculate the average over the number of
positive neighbors of each node (called positive degree). The higher the average
positive degree is, the more influential the PIDS can be. 2) what is the difference
between the size of PIDS and a 1-dominating set and what is the difference be-
tween the influence of these two sets. 3) what is the difference between the size
of dominating sets (both the PIDS and the 1-dominating set) of a power-law
graph and that of a random graph. There are two main 1-dominating set con-
struction algorithms, greedy algorithm (which is used in the step of generating
1-dominating set in the PIDS algorithm) or tree based algorithm as the one pro-
posed in [14]. Tree based algorithm first builds a depth first tree then chooses a
node that has the lowest level and most negative neighbors among all nodes on
the same level in the dominating set. We are also interested in the performance
of these two algorithms in the PIDS problem. In the remaining of this paper, we
call them greedy PIDS algorithm and tree-based PIDS algorithm respectively.

Table 1 illustrates the results on the topology retrieved from the FC gam-
ing application on the Facebook social network, whose node degree follows a
power-law distribution. The size of the community is 2334, and average degree
is 28.42, with 15% of all nodes initialized as positive. The result in the table
is the average over 100 runs. Note that for each run, the size and average de-
gree do not change. Since the abstainer nodes are randomly chosen, the network
topology is different for each run. As we can see, the greedy algorithm has better
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Table 1. Dominating set of a topology retrieved from the FC gaming application on
Facebook social network

Algorithm Size of dominating set Avg. positive degree
(percentage) (percentage)

greedy positive influence 1358 22.5
dominating set (58.2%) (79.3%)

greedy 744 6.87
1-dominating set (31.9%) (24.1%)

tree-based positive 1478 23.1
influence dominating set (63.3%) (81.4%)

tree-based 851 6.85
1-dominating set (36.5%) (24.1%)

performance over the tree-based algorithm in this power law graph. Applying
greedy PIDS algorithm, 58% of the nodes are chosen into the dominating set
and the resulting average positive degree is 22.5, which means that for a given
node, on average, approximately 79% of its neighbors are positive nodes. This
outcome of 79% is significant larger than our set goal, which is 50%. The high
average positive degree can greatly increase the possibility of the whole commu-
nity turning into a positive community. Furthermore, it indicates that we can
prune the dominating set and reduce its size while keeping the average positive
degree at around 50%. For greedy 1-dominating set algorithm, 31.9% nodes are
chosen into the dominating set and the resulting average positive degree is only
6.85, which means that for a given node, approximately 76% of its neighbors
are negative neighbors. Thus there exists a great possibility for the node of be-
coming a negative node and negatively impact others. The simulations reveal
that by strategically choosing 26% more people into PIDS to participate in an
intervention program, the average positive degree increases approximately by 3.3
times. In terms of the application, we can be confident that by moderately in-
creasing the participation related cost, the probability of positive influencing the
whole community through an intervention program where participants selection
is determined by the greedy PIDS is significantly higher. Another observation
is that the greedy algorithm gives smaller dominating sets than the tree-based
algorithm does in an online social network, in which the node degree follows a
power law distribution.

Table 2 illustrates the size of dominating sets in random graphs. We simu-
late a random graph by throwing a set of nodes to a square area and randomly
generate the (x, y) coordinates of each node. Each node is associated with a
variable range and if two nodes are within each other’s range, there exists a link
connecting them. We set the size of network to 2334 and initialize 15% nodes as
positive, which is the same as the real online social network retrieved from the
gaming application on the Facebook website, and adjust the parameters (area
edge length, minimum range and maximum range) to get an average node degree
close to the online social network topology (Note it is hard to generate a random
graph that has exactly the same average node degree as that in the online social
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Table 2. Dominating set of random networks

Algorithm Size of dominating set Avg. positive degree
(percentage) (percentage)

greedy positive 1166 19.3
influence dominating set (50%) (67%)

greedy 233 6.47
1-dominating set (10%) (22.5%)

tree-based positive 1196 18.8
influence dominating set (51.3%) (65.2%)

tree-based 253 6.32
1-dominating set (10.9%) (21.9%)

network). The average of the average degree over 100 runs is 28.82, and Com-
paring Table I and II, we can see that under similar settings (same node size
and similar density), a random graph has significantly smaller dominating set
than a online social network which is a power law graph. This contradicts our
conjecture. Heuristically, in a power law graph, a small set of nodes with high
degree should dominate most of the nodes in the graph and thus resulting in a
smaller dominating set. An explanation can be that even though the network
is clustered around the most influential (or connected) nodes in the power law
graph, there are more nodes that are sparse (has few neighbors) so more domi-
nator nodes are chosen to dominate these sparse nodes. This interesting result
needs further investigation.

In summary, in a typical online social network where average node degree is
about 28.42 and 15% nodes as initially positive nodes, approximately 60% nodes
are chosen into the PIDS, which results in an average percentage of positive de-
gree over node degree as high as approximately 79%. Furthermore, there are
26% more people in the PIDS than those in 1-dominating set, while the average
positive degree in the PIDS is approximately 3.3 times that in 1-dominating set.
In the case of college drinking where participants of an intervention program are
selected accord with the greedy PIDS, by moderately increasing the participa-
tion related cost, the probability of positive influencing the entire community is
significantly higher. We also found that power law graphs have larger dominating
set size than random graphs even though dominating set problem is theoretically
an easier problem in a power law graph than in a random graph [6].

5 Conclusions

In this paper, we introduced and studied the problem of how to utilize online so-
cial network as a medium to help alleviate a certain social problem. We proposed
the PIDS selection algorithm to evaluate the effect of educating a subset of the
entire target group susceptible to a social problem. Our simulation results reveal
that approximately 60% of the whole group under consideration needs to be
chosen into the PIDS to achieve the goal that every individual in the community
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has more positive neighbors than negative neighbors. We also discovered that
the dominating sets of a power-law graph is larger than that of a random graph.
Our future work includes applying a mathematical model to understand the in-
fluence of each individual and study the effect of PIDS over a period of time.
Since the PIDS is fairly large in power law graph, we will investigate what is an
empirically proper positive degree threshold that can spread the positive edu-
cation influence throughout the entire community under consideration through
additional modeling, experiment and data analysis.
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Abstract. In the problem of online time series search introduced by El-
Yaniv et al. [4], a player observes prices one by one over time and shall
select exactly one of the prices on its arrival without the knowledge of
future prices, aiming to maximize the selected price. In this paper, we
extend the problem by introducing profit function. Considering two cases
where the search duration is either known or unknown beforehand, we
propose two optimal deterministic algorithms respectively. The models
and results in the paper generalize those of El-Yaniv et al. [4].

Keywords: Time Series Search, Profit Function, Online Algorithm,
Competitive Ratio.

1 Introduction

The problem of online time series search was introduced by El-Yaniv et al.
[4], where a player observes a series of n prices sequentially in order to select
the highest price in the series. On the observation of each price presented, the
player has to decide immediately whether to accept the price or not without
the knowledge of future prices. The profit depends on the price selected by the
player. El-Yaniv et al. [4] proved that if the prices are bounded within interval
[m, M ] (0 < m < M), the optimal algorithm is to accept the first price no less
than

√
Mm and the competitive ratio is

√
M/m. Damaschke, Ha and Tsigas [3]

studied another case where the upper and lower bounds of prices vary as time
goes on. The approach is also adopted by Lorenz, Panagiotou and Steger [7] for
the k-search problem to search for the k highest (or lowest) prices in one series.
All the above work assumes that the profit to accept a price is exactly the price
itself, ignoring when the price shows up in the series. In many real scenarios,
however, this is not the case. For example, the player may need to pay a sampling
cost at each time period to observe a price, and then the accumulated sampling
cost increases as time goes on. Hence, the profit to accept a price at some period
can be regarded as a function of the price, such as equaling the accepted price
minus the accumulated sampling cost. In the paper we will extend the basic
� The work is supported by NSF grants of China, no. 70525004, 60736027 and

70702030.
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model in [4] by introducing profit function, and give more general results on
competitiveness.

1.1 Related Work

The problem of time series search has received considerable attention in mathe-
matical economics and operations research since 1960’s. It is quite related to the
optimal stopping problem (see [8]) and the secretary problem (see [5,2]), both of
which have many extensions such as secretary problem with discounts (see [1])
and with inspection costs (see [6]). Most of the previous work follows Bayesian
approach, and algorithms are developed under assumption that prices are gen-
erated by some (e.g. uniform) distribution which is known beforehand (see [2]).
Since the distribution of prices may not be known to the player in many situa-
tions, some research attempts to relax the assumption. Rosenfield and Shapiro
[9] studied the case where the price distribution is a random variable.

1.2 Competitive Ratio

Sleator and Tarjan [10] proposed to evaluate the performance of online algo-
rithms by competitive analysis. For an arbitrary given price sequence σ, the
profit of an online algorithm ALG is compared with that of an offline player’s
algorithm OPT , which knows all the prices in advance. Let ALG(σ) and OPT (σ)
denote the profits of ALG and OPT in σ respectively. The competitive ratio of
ALG is then defined as

α = sup
σ

OPT (σ)
ALG(σ)

We also say that ALG is α-competitive. Given that there are not any online
algorithms with competitive ratio less than α, ALG is called an optimal online
algorithm.

The rest of the paper is organized as follows. Section 2 models the time series
search problem and gives some assumptions as well. In Section 3 we investigate
the case with known duration, and in Section 4 we discuss the case with unknown
duration. Finally, Section 5 concludes the paper.

2 Problem Statement and Assumptions

The problem: A player is searching for one price of some asset in a price quotation
sequence aiming to maximize the profit. There is only one chance for the player
to select a price. At each time period i = 1, 2, · · · , n where the time horizon n
is a natural number, a price quotation pi is received. The player has to decide
immediately whether to accept the price. Once it is accepted at period i, the
player cannot accept another price in later periods and the profit for pi is denoted
by fi(pi), i.e., the profit function at period i. Otherwise pi expires and pi+1
arrives in the next period. Note that the price series may end at some period
l ≤ n, i.e., the last price is pl, and we call l the duration of the series.
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For the online time series search problem, there are four basic assumptions in
below.

(1) The values of n, m, M and the functions fi(p), i = 1, 2, · · · , n are known
beforehand to the player.

(2) n ≥ 2. Otherwise if n = 1, both online and offline players have to accept
the only price with optimal profit.

(3) The profit function fi(p) (i = 1, 2, · · · , n) is continuous and increasing in
p, which vary within interval [m, M ] where 0 < m < M .

(4) For an arbitrary p ∈ [m, M ], f1(p) ≥ f2(p) ≥ · · · ≥ fn(p) > 0.

The third assumption and the fourth assumption tell that at each period
larger price results in larger profit and for a specific price p, the profit is larger
in an earlier period than in a later one, respectively. In the following, we will
divide the problem into two cases according to the knowledge of duration.

Variant 1: Known duration. The duration of the price quotation sequence is
equal to n which is known to the player at the first beginning. The player can
at least has a profit of fn(pn) by accepting the last price pn.

Variant 2: Unknown duration. The player has the only information that the du-
ration of the price quotation sequence is at most n beforehand. At the beginning
of each period the player is told whether the sequence ends at the period or not.

Note that in both variants, it is sufficient to analyze the case where fi+1(M) >
fi(m) for i = 1, 2, · · · , n− 1, otherwise if fi+1(M) ≤ fi(m) holds at some period
i, the player will accept a price and the game ends on or before period i since
he gains a profit fj(pj) ≥ fi(m) to accept pj (1 ≤ j ≤ i) at period j more
than that to accept pk (i + 1 ≤ k ≤ n) at period k with fk(pk) ≤ fi+1(pk) ≤
fi+1(M) ≤ fi(m). In the rest of the work, we will focus on the case such that
fi+1(M) > fi(m) for 1 ≤ i ≤ n− 1 in a price series.

3 Online Time Series Search Problem with Known
Duration

In the section, we will discuss the case with known duration n, and present an
optimal deterministic algorithm.

3.1 The Online Algorithm

Before describing the algorithm, we give some preliminary definitions. Let

α = min
{{

max{fi+1(M)
fi(m)

,

√
f2(M)
fi(m)

}, i = 1, 2, · · · , n− 1
}
,

√
f2(M)
fn(m)

}
(1)

Note that α ≥ 1 since fi+1(M) > fi(m) and f2(M) ≥ fn(m). By the definition
of α, there exists a natural number r such that either

α =
fr+1(M)
fr(m)

, for r ≤ n− 1
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or

α =

√
f2(M)
fr(m)

, for r ≤ n.

Ties are broken by selecting the smallest r. If α = fr+1(M)/fr(m), let p∗i (1 ≤
i ≤ r) either be the solution of equation αfi(p∗i ) = fi+1(M) or p∗i = m in the
case that there is no solution for the equation. Ties are broken by selecting the
p∗i with the smallest value. Otherwise if α =

√
f2(M)/fr(m), then let i∗ =

max{i|fi+1(M) ≥
√

f2(M)fr(m)}. Let p∗i = m for min{i∗, r − 1} < i ≤ r,
and for 1 ≤ i ≤ min{i∗, r − 1}, p∗i either be the solution of equation αfi(p∗i ) =
fi+1(M) or p∗i = m in the case that there is no solution for the equation. Note
that for i = 1, f2(M) > f1(m) and then

max
{f2(M)

f1(m)
,

√
f2(M)
f1(m)

}
=

f2(M)
f1(m)

.

Together with formula (1), we obtain

α ≤ f2(M)
f1(m)

and thus

f1(m) ≤ f2(M)
α

≤ f2(M) ≤ f1(M),

implying that p∗1 is only defined by the solution of equation αf1(p∗1) = f2(M).
Moreover, p∗r = m by the above discussion.

Algorithm AKD (Algorithm with Known Duration):

Step 1. Let i = 1.
Step 2. At period i, if pi ≥ p∗i then accept pi with profit fi(pi),

otherwise if pi < p∗i , go to Step 3.
Step 3. i = i + 1 and go to Step 2.

Note that AKD will accept a price on or before period r since p∗r = m.

3.2 Competitive Analysis

Lemma 1. If AKD accepts pi at some period i (1 ≤ i ≤ r), then m < p∗j ≤M
for 1 ≤ j ≤ i− 1.

Proof. For the first inequality, if otherwise p∗j = m, AKD will accept a previous
price on or before period j since pj ≥ m. Moreover, p∗j ≤ M due to fj(p∗j ) =
fj+1(M)/α ≤ fj+1(M) ≤ fj(M) and assumption (3). The lemma follows. �

Lemma 1 implies that p∗j shall be the solution of equation αfj(p∗j ) = fj+1(M)
for 1 ≤ j ≤ i− 1.
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Theorem 1. AKD has competitive ratio of α for the online time series search
problem with known duration.

Proof. Let ε denote an arbitrarily small positive real number. We discuss two
cases according to different values of α.

Case 1. α = fr+1(M)/fr(m). According to formula (1), we have

fr+1(M)
fr(m)

≥

√
f2(M)
fr(m)

,

which implies

fr+1(M) ≥ f2(M)fr(m)
fr+1(M)

=
f2(M)

α
= f1(p∗1).

As AKD accepts a price on or before period r, assume without loss of generality
that it accepts pi at period i (1 ≤ i ≤ r). By Lemma 1, m < p∗j − ε < M for
j = 1, 2, · · · , i−1. So, the worst price sequence to AKD is σ1 = (p∗1−ε, · · · , p∗i−1−
ε, p∗i , M, · · ·). The profit of AKD in σ1 is

AKD(σ1) = fi(p∗i ) =
fi+1(M)

α
.

For OPT , combining

fj(p∗j ) =
fj+1(M)

α
, 1 ≤ j ≤ i− 1,

and assumption (4), f1(p∗1) ≥ · · · ≥ fi(p∗i ) As ε → 0, OPT ’s profit is as follows.

OPT (σ1) ≈ max{f1(p∗1), · · · , fi(p∗i ), fi+1(M)}
= max{f1(p∗1), fi+1(M)}
= fi+1(M)

The last equation holds since fi+1(M) ≥ fr+1(M) ≥ f1(p∗1). So in this case, we
have

OPT (σ1)
AKD(σ1)

= α.

Case 2. α =
√

f2(M)/fr(m). According to formula (1), if r ≤ n− 1, then√
f2(M)
fr(m)

≥ fr+1(M)
fr(m)

.

By the definition of p∗i in the case of α =
√

f2(M)/fr(m), p∗min{i∗,r−1}+1 = m.
So, AKD will accept a price on or before period min{i∗, r − 1} + 1. Assume
without loss of generality that it accepts pi at some period i (1 ≤ i ≤ min{i∗, r−
1}+ 1). We divide the case into two sub-cases according to different values of i.
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Case 2.1. 1 ≤ i ≤ min{i∗, r − 1}. In this sub-case, noting that since i ≤ i∗,
fi+1(M) ≥

√
f2(M)fr(m) = f2(M)

α = f1(p∗1), the worst price sequence and the
following discussion are the same as those in Case 1.

Case 2.2. i = min{i∗, r − 1}+ 1. i = i∗ + 1 if i∗ ≤ r − 2 and i = r if i∗ > r − 2.
We already know that m < p∗j −ε < M for j = 1, 2, · · · , i−1. So, the worst price
sequence to AKD is

σ2 =

⎧⎨⎩ (p∗1 − ε, p∗2 − ε, · · · , p∗i−1 − ε, m, M, · · ·) : i = i∗ + 1
(p∗1 − ε, p∗2 − ε, · · · , p∗i−1 − ε, m, M, · · ·) : i = r ≤ n− 1

(p∗1 − ε, p∗2 − ε, · · · , p∗i−1 − ε, m) : i = r = n

We further discuss three sub-cases according to the three worst price sequences.

Case 2.2.1. i = i∗ +1 and σ2 = (p∗1−ε, p∗2−ε, · · · , p∗i−1−ε, m, M, · · ·). The profit
of AKD is AKD(σ2) = fi(m). For OPT , as ε→ 0,

OPT (σ2) ≈ max{f1(p∗1), · · · , fi−1(p∗i−1), fi(m), fi+1(M)}
= max{f1(p∗1), fi+1(M)}
= f1(p∗1)

where the second equation holds since f1(p∗1) ≥ · · · ≥ fi−1(p∗i−1) ≥ fi(m), and
the third equation holds since fi+1(M) <

√
f2(M)fr(m) = f1(p∗1) due to i > i∗

and the definition of i∗. Hence in this sub-case
OPT (σ2)
AKD(σ2)

=
f1(p∗1)
fi(m)

≤ f1(p∗1)
fr(m)

=
f2(M)/α

fr(m)
= α.

Case 2.2.2. i = r ≤ n− 1 and σ2 = (p∗1 − ε, p∗2 − ε, · · · , p∗i−1 − ε, m, M, · · ·). Then
AKD(σ2) = fi(m) = fr(m). For OPT , OPT (σ2) ≈ max{f1(p∗1), fr+1(M)} with
similar reasoning as in Case 2.2.1. In the previous sub-case, we already have

f1(p∗1)
fr(m)

= α.

Moreover,
fr+1(M)
fr(m)

≤

√
f2(M)
fr(m)

= α,

where the inequality holds by the condition of Case 2 and r ≤ n− 1. So in this
sub-case

OPT (σ2)
AKD(σ2)

≤ α.

Case 2.2.3. i = r = n and σ2 = (p∗1 − ε, p∗2− ε, · · · , p∗i−1− ε, m). In this sub-case,
AKD(σ2) = fi(m) = fr(m). For OPT , combining f1(p∗1) ≥ · · · ≥ fi−1(p∗i−1) ≥
fi(m) with ε → 0, OPT (σ2) ≈ f1(p∗1). Hence we have

OPT (σ2)
AKD(σ2)

= α.

The theorem follows. �
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In the following, we will show that no deterministic algorithms behave better
than AKD in competitiveness for Variant 1 of the problem.

Theorem 2. For the online time series search problem with known duration,
no deterministic algorithm has competitive ratio less than α.

Proof. Let ALG be any deterministic algorithm. We will construct a price se-
quence σ̂ = (p̂1, p̂2, · · · , p̂n) such that ALG cannot achieve a competitive ratio
less than α.

The sequence σ̂ is constructed as follows. First, similar to the discussion on
the existence of p∗1 to equation αf1(p∗1) = f2(M), we can define price p̂1 ∈ [m, M ]
given by equation αf1(p̂1) = f2(M). At period 1, we present p̂1 to ALG, if ALG
accepts the price, we further present the rest n − 1 prices p̂2 = · · · = p̂n = M ,
otherwise we present p̂2 = m and go to the next period. Similarly, at period 2, if
ALG accepts p̂2, then we further present the rest n−2 prices p̂3 = · · · = p̂n = M ,
otherwise we present p̂3 = m and go to the next period. This is repeated until
either at some period i (2 ≤ i ≤ n − 1), ALG accepts p̂i or ALG accepts
p̂n = m at period n. In the first case, we further present the rest n − i prices
p̂i+1 = · · · = p̂n = M .

Assume that ALG accepts p̂i at period i. We discuss three cases depending
on the value of i.

Case 1. i = 1. In this case OPT (σ̂) ≥ f2(M) and ALG(σ̂) = f1(p̂1) implying

OPT (σ̂)
ALG(σ̂)

≥ f2(M)
f1(p̂1)

= α.

Case 2. 2 ≤ i ≤ n− 1. In this case we further divide the case into the following
two sub-cases.

Case 2.1. fi+1(M)/fi(m) ≥
√

f2(M)/fi(m). By the definition of α,

fi+1(M)
fi(m)

≥ α.

OPT will gain a profit satisfyingOPT (σ̂)≥fi+1(M)whileALG’s profitALG(σ̂)=
fi(m). Hence we have

OPT (σ̂)
ALG(σ̂)

≥ fi+1(M)
fi(m)

≥ α.

Case 2.2. fi+1(M)/fi(m) <
√

f2(M)/fi(m). In this case,√
f2(M)
fi(m)

≥ α.

For OPT , OPT (σ̂) ≥ f1(p̂1) while ALG’s profit ALG(σ̂) = fi(m). Hence we
have

OPT (σ̂)
ALG(σ̂)

≥ f1(p̂1)
fi(m)

≥ f2(M)
αfi(m)

≥ α2

α
= α.
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Case 3. i = n. By the definition of α,
√

f2(M)/fn(m) ≥ α. OPT ’s profit satisfies
OPT (σ̂) ≥ f1(p̂1) while ALG’s profit ALG(σ̂) = fn(m). Hence we obtain

OPT (σ̂)
ALG(σ̂)

≥ f1(p̂1)
fn(m)

≥ f2(M)
αfn(m)

≥ α2

α
= α.

According to the above discussion, ALG cannot have a competitive ratio less
than α. The theorem follows. �

4 Online Time Series Search Problem with Unknown
Duration

4.1 The Online Algorithm

Before describing the algorithm, we give some preliminary definitions. For every
natural number l (2 ≤ l ≤ n), let

αl = min
{{

max{fi+1(M)
fi(m)

,

√
f2(M)
fi(m)

}, i = 1, 2, · · · , l − 1
}
,

√
f2(M)
fl(m)

}
(2)

Note that αl ≥ 1 since fi+1(M) > fi(m) and f2(M) ≥ fl(m). Let

L̄ = max
{
L|L = arg max

2≤l≤n
αl

}
.

Obviously, αL̄ ≥ αl for every l (2 ≤ l ≤ n). By the definition of αL̄, there exists
a natural number s such that either

αL̄ =
fs+1(M)
fs(m)

, for s ≤ L̄− 1,

or

αL̄ =

√
f2(M)
fs(m)

, for s ≤ L̄.

Ties are broken by selecting the smallest s. If αL̄ = fs+1(M)/fs(m), let p̄∗i
(1 ≤ i ≤ s) either be the solution of equation αL̄fi(p̄∗i ) = fi+1(M) or p̄∗i = m in
the case that there is no solution for the equation. Ties are broken by selecting
the p̄∗i with the smallest value. Otherwise if αL̄ =

√
f2(M)/fs(m), then let

ī∗ = max{i|fi+1(M) ≥
√

f2(M)fs(m)}. Let p̄∗i = m for min{ī∗, s− 1} < i ≤ s,
and for 1 ≤ i ≤ min{ī∗, s− 1}, p̄∗i either be the solution of equation αL̄fi(p̄∗i ) =
fi+1(M) or p̄∗i = m in the case that there is no solution for the equation. For
i = 1, f2(M) > f1(m) and then

max
{f2(M)

f1(m)
,

√
f2(M)
f1(m)

}
=

f2(M)
f1(m)

.
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Combining formula (2) and the definition of L̄, we obtain

αL̄ ≤
f2(M)
f1(m)

,

and thus

f1(m) ≤ f2(M)
αL̄

≤ f2(M) ≤ f1(M),

implying that p̄∗1 is defined by the solution of equation αL̄f1(p̄∗1) = f2(M).
Moreover, according to the above discussion, p̄∗s = m.

Algorithm AUD (Algorithm with Unknown Duration):

Step 1. Let i = 1.
Step 2. At period i, if pi ≥ p̄∗i or the duration is exactly i

then accept pi and the game ends; otherwise go to Step 3.
Step 3. i = i + 1 and go to Step 2.

Note that AUD will accept a price on or before period s since p̄∗s = m.

4.2 Competitive Analysis

Let L = min{L|L = arg max
2≤l≤n

αl}. Obviously, αL̄ = αL. In the following we will

give several lemmas.

Lemma 2. If AUD accepts pi at some period i (1 ≤ i ≤ s), then m < p̄∗j ≤ M
for 1 ≤ j ≤ i− 1.

The proof of Lemma 2 is the same as that of Lemma 1. Lemma 2 implies that
p̄∗j shall be the solution of equation αL̄fj(p̄∗j ) = fj+1(M) for 1 ≤ j ≤ i− 1.

Lemma 3. For each natural number l < L, αl =
√

f2(M)/fl(m) < αL.

Proof. By the definition of αl, there exists a natural number i < l such that
either

αl = max{fi+1(M)
fi(m)

,

√
f2(M)
fi(m)

}

or

αl =

√
f2(M)
fl(m)

.

If αl = max{fi+1(M)/fi(m),
√

f2(M)/fi(m)} together with i < l < L,

αL ≤ max
{fi+1(M)

fi(m)
,

√
f2(M)
fi(m)

}
= αl,

contradicting to the definition of L. So, αl =
√

f2(M)/fl(m), and by the defini-
tion of L, αl < αL. The lemma follows. �
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Lemma 4. For each natural number i < s,
√

f2(M)/fi(m) < αL.

Proof. By the definition of αL, there exists a natural number t such that either

αL =
ft+1(M)
ft(m)

for t ≤ L− 1

or

αL =

√
f2(M)
ft(m)

for t ≤ L.

Ties are broken by selecting the smallest t. Combining the definitions of t and s
and equation αL̄ = αL, we have t = s and then i < s = t ≤ L. By Lemma 3 we
obtain

√
f2(M)/fi(m) = αi < αL. �

Theorem 3. AUD has competitive ratio of αL̄ for the online time series search
problem with unknown duration.

Proof. Let ε denote an arbitrarily small positive real number. Assume that AUD
accepts pi at some period i. We will discuss two cases according to different
conditions for AUD to accept pi.

Case 1. AUD accepts pi due to pi ≥ p̄∗i . We will discuss two sub-cases according
to different values of αL̄.

Case 1.1. αL̄ = fs+1(M)/fs(m). The discussion of this case is the same as that
of Case 1 in Theorem 1, replacing p∗k by p̄∗k (k = i, j).

Case 1.2. αL̄ =
√

f2(M)/fs(m). By the definition of p̄∗i in the case,

p̄∗min{ī∗,s−1}+1 = m.

So AUD will accept a price on or before period min{ī∗, s−1}+1. Assume without
loss of generality that it accepts pi at period i (1 ≤ i ≤ min{ī∗, s− 1}+ 1). We
further discuss two sub-cases according to different values of i.

Case 1.2.1. 1 ≤ i ≤ min{ī∗, s−1}. The discussion of this case is the same as that
of Case 2.1 in Theorem 1, replacing p∗k by p̄∗k (k = i, j), and replacing i∗ and r
by ī∗ and s respectively.

Case 1.2.2. i = min{ī∗, s− 1}+ 1. There are four sub-cases in this case. For the
cases where i = ī∗+1 and where i = s = n, the discussions are the same as those
of Case 2.2.1 and Case 2.2.3 respectively in Theorem 1. For the case where i =
s ≤ n−1 and s 	= L̄, the discussion is the same as that of Case 2.2.2 in Theorem
1. So we will focus on the fourth case where i = s = L̄ ≤ n−1. By case condition,
αL̄ =

√
f2(M)/fL̄(m). By Lemma 2, m < p̄∗j −ε < M for j = 1, 2, · · · , i−1. The

worst price sequence to AUD is σ1 = (p̄∗1 − ε, p̄∗2 − ε, · · · , p̄∗̄
L−1 − ε, m, M, · · ·).

The profit of AUD is AUD(σ1) = fL̄(m). For OPT we have

fj(p̄∗j ) =
fj+1(M)

αL̄
, 1 ≤ j ≤ L̄,



332 Y. Xu, W. Zhang, and F. Zheng

and assumption (4), f1(p̄∗1) ≥ · · · ≥ fL̄−1(p̄∗̄L−1) ≥ fL̄(m) implying OPT (σ1) ≈
max{f1(p̄∗1), fL̄+1(M)}. We claim by s = L̄ ≤ n− 1 that

fL̄+1(M)
fL̄(m)

<

√
f2(M)
fL̄(m)

= αL̄

since otherwise by the definitions of αL̄ and αL̄+1, αL̄+1 ≥ αL̄ which contradicts
to the definition of L̄. Moreover,

f1(p̄∗1)
fL̄(m)

=
f2(M)

αL̄fL̄(m)
=

α2
L̄

αL̄
= αL̄.

Hence we have

OPT (σ1)
AUD(σ1)

≈ max{f1(p̄∗1), fL̄+1(M)}
fL̄(m)

≤ αL̄.

Case 2. AUD accepts pi due to the duration is met in period i (i < s). By
Lemma 2, m < p̄∗j − ε < M for j = 1, 2, · · · , i− 1. The worst price sequence to
AUD is σ2 = (p̄∗1−ε, p̄∗2−ε, · · · , p̄∗i−1−ε, m). In this case, AUD(σ2) = fi(m). For
OPT , as ε → 0, OPT (σ2) ≈ f1(p̄∗1) due to f1(p̄∗1) ≥ · · · ≥ fi−1(p̄∗i−1) ≥ fi(m).
Thus we have

OPT (σ2)
AUD(σ2)

≈ f1(p̄∗1)
fi(m)

=
f2(M)

αL̄fi(m)
.

Combining i < s and Lemma 4, we obtain f2(M)/fi(m) < α2
L. Hence we have

OPT (σ2)
AUD(σ2)

<
α2
L

αL̄
=

α2
L̄

αL̄
= αL̄.

The theorem follows. �
In the following we will prove that no deterministic algorithm can do better

than AUD in competitiveness for variant 2 of the problem.

Theorem 4. For the online time series search problem with unknown duration,
no deterministic algorithm has a competitive ratio less than αL̄.

Proof. We construct a price sequence σ̂ = (p̂1, p̂2, · · · , p̂L̄), that is, L̄ = n, and
it is sufficient to prove that an arbitrary online algorithm ALG cannot have a
profit larger than 1/αL̄ times of OPT ’s in σ̂. The rest reasoning is the same as
that in the proof of Theorem 2.

Remark. Note that in formulas (1) and (2), if the profit function satisfies fi(pi) =
pi for 1 ≤ i ≤ n, then α = αl =

√
M/m and thus algorithms AKD and AUD

have optimal competitive ratio the same as that in El-Yaniv et al. [4].

5 Conclusion

In the paper, we extended the original online time series search problem by
introducing profit function. We investigate two cases where the player knows
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the duration of price series and where he has not the knowledge of duration
beforehand. We propose two algorithms AKD and AUD, and prove that they
are optimal in the two cases respectively. The problem with profit function is a
generalization of that in El-Yaniv et al. [4]. For the problem with different profit
functions, it is an interesting work to design randomized algorithms to break the
lower bounds of competitive ratio.
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Abstract. Recently, the single-period, single-item newsboy problem
with limited distributional information (e.g., range, mean, mode, vari-
ance, symmetry) has been widely studied. However, the existing news-
boy models with partial information are only fit to risk-neutral inventory
managers. This paper considers the newsboy problem with range infor-
mation. Based on the competitive ratio analysis, which guarantees a cer-
tain performance level under all possible input sequences, we construct
a framework to manage risk and reward of newsboy problems under dif-
ferent forecasts (i.e. certain forecasts; probability forecasts; probability
distributions). Comparing the existing studies, this approach helps the
newsboy flexibly choose the optimal reward strategies, according to his
own risk tolerance levels and different forecasts.

1 Introduction

The interest in the newsboy problem and its extensions has remained high since
it was first introduced by Within [12]. Newsboy problem and its extensions
have been presented and studied since then. These extensions include dealing
with different objectives and utility functions, different supplier pricing policies,
different newsboy pricing policies and discounting structures, different states of
information about demand, constrained multi-products, multiple-products with
substitution, random yields, and multi-location models.

Traditional newsboy models focus on risk-neutral decision makers, i.e., op-
timizing the expected profit or cost. But experimental findings state that the
actual quantity ordered deviates from the optimal quantity derived from the
classical newsboy model. In view of this, a number of papers have been devoted
to risk analysis of newsboy problems [1,3,11,13].

Moreover, traditional newsboy models assume full knowledge of the demand
probability distribution. However, in reality, it is often difficult to completely
characterize the demand. Therefore, some researchers recently focused on the
newsboy problem with partial (or limited) information. Savage [9] presented min-
imax regret. The aim of this approach is to minimize the maximum opportunity
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cost from not making the optimal decision. Using minimax absolute regret, Yue
et al. [15] and Perakis and Roels [8] studied the newsboy problem with partial
(or limited) information. Zhu et al. [16] used minimax relative regret to study
the same problem. For most of the cases, two models based on minimax regret
will tend to favor similar decisions. Perakis and Roels [8] also argued that the
minimax regret was analogous to the competitive ratio [2,4,5,6,10,14], popular
in computer science. Following the line of competitive ratio analysis, Ma et al.
[7] investigated a newsboy-type model (i.e., the number of snacks problem) with
partial information.

However, the existing newsboy models with partial information are fit to risk-
neutral inventory managers. Range is a familiar format of partial information.
This paper uses competitive ratio analysis to investigate the newsboy problem
with range information. In newsboy problems with range information, the de-
mand is uncertain and only has a support. The newsboy needs to determine the
order quantity before the selling season. The main aim of this paper is to develop
a framework for managing reward and risk of the newsboy problem with range
information. The remains of this paper is organized as follows. In Section 2, we
generalize the risk-reward model presented in Al-Binali [2], by introducing the
notion of the probabilistic forecast. In Section 3, we respectively design the opti-
mal reward strategies for the newsboy problem under certain forecasts, probabil-
ity forecasts, probability distributions. In Section 4, we provide some numerical
examples to illustrate the proposed approach. Finally, concluding remarks and
future research are included in Section 5.

2 Competitive Ratio Analysis and the Extended
Risk-Reward Model

Karp [6] and Sleator and Tarjian [10] proposed the concept of the competi-
tive ratio to study on-line problems, by comparing the performance of on-line
strategies to a benchmark (optimal off-line) strategy. During this classical com-
petitive analysis, there are a strategy set S for the on-line decision-maker and
an uncertain information set I dominated by the off-line opponent. The on-line
decision-maker’s goal is to design a good strategy q ∈ S to deal with the un-
certainty input sequence σ ∈ I of the off-line rival. For a known sequence σ, let
Costopt(σ) be the total cost of the optimal off-line strategy to complete σ. For
an on-line strategy q, if there are constants λq and ζ satisfying

Costq(σ) ≤ λqCostopt(σ) + ζ. (1)

for any σ ∈ I, then q is called a λq-competitive strategy and λq is called the
competitive ratio of q, where Costq(σ) is the total cost taken with strategy q to
complete σ. That is to say,

λq = sup
σ∈I

Costq(σ)
Costopt(σ)

.

We denote λ∗ = inf
q∈S

(λq) as the optimal competitive ratio for the on-line problem.

If λq∗ = λ∗, then q∗ is called the optimal on-line strategy.
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The classic competitive analysis is the most fundamental and significant ap-
proach, yet it is not very flexible, especially in the economic management issues,
many investors want to manage their risk and reward. Al-Binali [2] first defined
the concepts of risk and reward for on-line financial problems. Al-Binali defined
the risk of a strategy q to be tq = λq

λ∗ . The greater the value of tq, the higher the
risk of q. Let F ⊂ I be a forecast, then denote

λq = sup
σ∈F

Costq(σ)
Costopt(σ)

as the restricted competitive ratio of q restricted to cases when the forecast is
correct. The optimal restricted competitive ratio under the forecast F is

λ∗ = inf
q∈S

(λq).

When the forecast is correct, Al-Binali defined the reward of the strategy q to
be Rq = λ∗/λq.

The above reward definition is based on the certain forecast that is described
to be a subset of I. When the forecast selected is correct, it will bring re-
ward; otherwise bring risk. Dong et al. [4] extended the certain forecast to
the probability forecast. Let F1, F2, ..., Fm be a group of subsets of I, where⋃

Fi = I and Fi
⋂

Fj = φ for i 	= j. Denote Pi as the probability that the
on-line decision maker anticipates that σ ∈ Fi, where

∑m
i=1 Pi = 1. We call

{(Fi, Pi)|i = 1, 2, ..., m} a probability forecast. Let

λq,i = sup
σ∈Fi

Costq(σ)
Costopt(σ)

be the restricted competitive ratio under the forecast Fi. Let Rq,i = λ∗/λq,i be
the reward after the success of the forecast Fi. Based on this, we define λ̃q =∑m

i=1 Piλq,i as the restricted competitive ratio under the probability forecast
{(Fi, Pi)|i = 1, 2, ..., m}, and define R̃q = λ∗

λ̃q
as the reward under the probability

forecast.
The reward definition based on the probability forecast has some desired prop-

erties [4].

Property 1. For any q ∈ S, min
i
{Rq,i} ≤ R̃q ≤ max

i
{Rq,i}.

Let {(Fi, Pi)|i = 1, 2, ..., m} be a probability forecast. We divide Fi into Fi,1 and
Fi,2, where Fi,1 ∪ Fi,2 = Fi and Fi,1

⋂
Fi,2 = φ. We also divide Pi into Pi,1 and

Pi,2, where Pi,1 + Pi,2 = Pi. In this way, we can construct a more detailed prob-
ability forecast based on {(Fi, Pi)|i = 1, 2, ..., m}, that is {(F1, P1), (F2, P2), ...,
(Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1), ..., (Fm, Pm)}. Denote

˜̃
Rq =

λ∗˜̃
λq

as the reward under the newly constructed probability forecast.
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Property 2. For any q ∈ S, R̃q ≤ ˜̃
Rq.

Property 2 shows that if a probability forecast can be described more detailedly,
the reward under the probability forecast will be greater.

Based on these newly introduced concepts, we propose a generalized risk-
reward model under the probability forecast. If t is the risk tolerance level of the
on-line decision maker (where t ≥ 1 and higher values of t denote a higher risk
tolerance), then denote St = {q|λq ≤ tλ∗} by the set of all strategies with the risk
level ≤ t. Our main aim is to look for an optimal reward strategy q∗ ∈ St that
maximizes the reward under the probability forecast {(Fi, Pi)|i = 1, 2, ..., m},
that is

R̃q∗ = sup
q∈St

λ∗

λ̃q
.

The mathematic model can be described as follows.{
max
q

R̃q = λ∗

λ̃q

s.t. λq ≤ tλ∗ . (2)

On the other hand, let R be the reward level of the on-line decision maker
(where R ≥ 1 and higher values of R denote a higher reward level), and then
denote SR = {q|λ̃q ≤ λ∗/R} by the set of all strategies with the reward level
≥ R under the probability forecast {(Fi, Pi)|i = 1, 2, ..., m}. Our main task is to
look for an optimal risk strategy q∗

′ ∈ SR that minimizes the risk, that is

t̃q∗′ = inf
q∈SR

λq
λ∗ .

The mathematic model can be described as follows.{
min
q

tq = λq

λ∗

s.t. λ̃q ≤ 1
Rλ∗

. (3)

Remark. The proposed framework is a generalization of the risk-reward model
presented in Al-Binali [2], and has two new characters: (a) instead of certain
forecasts, it considers probability forecasts; (b) under probability forecast en-
vironments, it formally presents two versions (i.e., the optimal reward strategy
and the minimal risk strategy) of the risk-reward model to more flexibly manage
the risk and reward in the financial and investment issues.

3 The Optimal Reward Order Strategies

In this section, we propose some familiar forecast formats of the newsboy problem
with range information, such as basic certain forecast, basic probability forecast
and probability distribution. We use model (2) to obtain the optimal reward
order strategies under these forecasts.
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3.1 Certain Forecast

In newsboy problems with range information, the demand z is uncertain and
only has a support [m, M ]. We denote c as the unit ordering cost, b as the unit
inventory holding cost, and l as the unit stock-out cost. The newsboy needs to
determine the order quantity q before the selling season. To avoid unrealistic
and trivial cases, we assume that l ≥ c > 0 and b > 0. Obviously, this problem
is a typical on-line problem.

For off-line newsboy problem, the newsboy chooses demand z as order quantity
to minimize its cost, that is,

Costopt(z) = cz (4)

For on-line newsboy problem, we have that

Costq(z) = cq + l(z − q)+ + b(q − z)+, (5)

where (z − q)+ = max{z − q, 0} and (q − z)+ = max{q − z, 0}.

Lemma 1. For the online newsboy problem, if the newsboy knows the lower and
upper bounds of the demand, namely, the two extreme demand M and m, the
optimal on-line order strategy is

q∗ =
Mm(b + l)

M(b + c) + m(l − c)

and the optimal competitive ratio equals

λq∗ =
Ml(b + c)−mb(l− c)
Mc(b + c) + mc(l − c)

.

Proof. Let

f(z, q) =
Costq(z)

Costopt(z)
=

cq + l(z − q)+ + b(q − z)+

cz
, (6)

According to the definition of the competitive ratio, we know that

λq = sup
z∈I

f(z, q)

= max{supz≥q f(z, q), supz≤q f(z, q)}
= max{f+(q), f−(q)}

(7)

where f+(q) = supz≥q f(z, q) and f−(q) = supz≤q f(z, q).
Based on monotony properties of f+(q) and f−(q), we get

f+(q) =
cq + l(M − q)

cM
, f−(q) =

cq + b(q −m)
cm

. (8)

To minimize λq = max{f+(q), f−(q)}, we need to find the intersection point
of f+(q) and f−(q), which is the optimal order strategy we need.
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Denote q∗ satisfying f+(q∗) = f−(q∗), we have

q∗ =
Mm(b + l)

M(b + c) + m(l − c)
. (9)

Applying (7), (8) and (9), we obtain the optimal competitive ratio

λq∗ = inf
q∈[m,M ]

λq =
Ml(b + c)−mb(l− c)
Mc(b + c) + mc(l − c)

(10)

This completes the proof of Lemma 1. �

Lemma 2. When setting the risk tolerance level t ≥ 1, the feasible strategy set
of online newsboy problem with range information is St = {q| q− ≤ q ≤ q+},
where

q− = max
{Mm(tb + l)(l − c)− (t + 1)M2l(b + c)

(l − c)[M(b + c) + m(l − c)]
, m

}
,

and

q+ = min
{Mm(tl + b)(b + c)− (t− 1)m2l(l− c)

(b + c)[M(b + c) + m(l − c)]
, M

}
.

Proof. According to the definition of the risk, the strategy set is St = {q| λq ≤
tλq∗}. Applying (7), (8) and (10), we have

λq ≤ tλq∗ ,

that is
max{f+(q), f−(q)} ≤ t

Ml(b + c)−mb(l− c)
Mc(b + c) + mc(l − c)

.

Consequently, ⎧⎪⎨⎪⎩
cq+l(M−q)

cM ≤ tMl(b+c)−mb(l−c)
Mc(b+c)+mc(l−c)

cq+b(q−m)
cm ≤ tMl(b+c)−mb(l−c)

Mc(b+c)+mc(l−c)
m ≤ q ≤ M

Further, we have q− ≤ q ≤ q+, where

q− = max{Mm(tb + l)(l − c)− (t− 1)M2l(b + c)
(l − c)[M(b + c) + m(l − c)]

, m},

and

q+ = min{Mm(tl + b)(b + c)− (t− 1)m2l(l− c)
(b + c)[M(b + c) + m(l − c)]

, M}.

This completes the proof of Lemma 2. �

We analyze the newsboy problem with range information under the risk-reward
framework presented in Al-Binali [2]. We consider the following forecast: F =
{z|m′ ≤ z ≤ M

′}, where m
′
> m and M

′ ≤ M . In this paper, we call F a basic
certain forecast.
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Theorem 1. When setting the risk tolerance level t ≥ 1, the optimal reward
order strategy under the basic certain forecast F is

q∗ = min
{

max
{ M

′
m

′
(b + l)

M ′(b + c) + m′(l − c)
, q−

}
, q+

}
(11)

Proof. The restricted competitive ratio under forecast F is

λq = sup
z∈F

f(z, q) = max
{cq + l(M

′ − q)
cM ′ ,

cq + b(q −m
′
)

cm′

}
.

Analyzing λq, we know λq is monotony decreasing at q ≤ M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) ,

and monotony increasing at q > M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) .

From the above monotony properties of λq and Lemma 2, we can look for the
optimal reward strategy q∗ ∈ St that makes λq minimum, that is equations (11).
This completes the proof of Theorem 1. �

3.2 Probability Forecast

We construct the following probability forecast:

Forecast F1: F1 = {k|m′ ≤ k ≤ M
′}, where m

′
> m and M

′
< M . The

probability when F1 appears is P1.
Forecast F2: F2 = {k|m ≤ k < m

′
or M

′
< k ≤ M}. The probability when

F2 appears is P2, where P1 + P2 = 1.
In this paper, we call {(F1, P1), (F2, P2)} the basic probability forecast.

Theorem 2. When setting the risk tolerance level t ≥ 1, under the basic prob-
ability forecast {(F1, P1), (F2, P2)} we have

(1) when M
′
m

′
(b+l)

M ′ (b+c)+m′ (l−c) < Mm(b+l)
M(b+c)+m(l−c) , the optimal reward order strategy is

q∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mm(b+l)

M(b+c)+m(l−c) , if P1 < m
′
(l−c)

M(b+c)+m′ (l−c)[
max{ M

′
m

′
(b+l)

M ′ (b+c)+m′(l−c) , q−},
Mm(b+l)

M(b+c)+m(l−c) )
]

if P1 = m
′
(l−c)

M(b+c)+m′ (l−c)

max{ M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) , q−}, if P1 > m
′
(l−c)

M(b+c)+m′ (l−c)
(12)

(2) when M
′
m

′
(b+l)

M ′ (b+c)+m′ (l−c) ≥
Mm(b+l)

M(b+c)+m(l−c) , the optimal reward order strategy is

q∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mm(b+l)

M(b+c)+m(l−c) , if P1 < M
′
(b+c)

m(l−c)+M ′ (b+c)[
Mm(b+l)

M(b+c)+m(l−c) , min{ M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) , q+}
]

if P1 = M
′
(b+c)

m(l−c)+M ′(b+c)

min{ M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) , q+}, if P1 > M
′
(b+c)

m(l−c)+M ′ (b+c)
(13)
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Proof. We only discuss the case that M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) < Mm(b+l)
M(b+c)+m(l−c) , and the

case that M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) ≥
Mm(b+l)

M(b+c)+m(l−c) can be discussed similarly.
We first compute the restricted competitive ratio under the basic probability

forecast

λ̃q =
2∑
i=1

Piλqi , where λqi = sup
z∈Fi

{ Costq(z)
Costopt(z)

}
.

Consequently,

λ̃q = P1λq1 + P2λq2 = P1 sup
z∈F1

f(z, q) + P2 sup
z∈F2

f(z, q),

which can be formulated as

λ̃q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P1

cq+l(M
′−q)

cM ′ + P2
cq+l(M−q)

cM , if q < M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c)
P1

cq+b(q−m′
)

cm′ + P2
cq+l(M−q)

cM , if M
′
m

′
(b+l)

M ′ (b+c)+m′ (l−c) ≤ q ≤ Mm(b+l)
M(b+c)+m(l−c)

P1
cq+b(q−m′

)
cm′ + P2

cq+b(q−m)
cm , if q > Mm(b+l)

M(b+c)+m(l−c)

Solving ∂λ̃q

∂q , we find that

(a) when P1 < m
′
(l−c)

M(b+c)+m′(l−c) , λ̃q is monotony decreasing at q ≤ Mm(b+l)
M(b+c)+m(l−c) ,

and monotony increasing at q > Mm(b+l)
M(b+c)+m(l−c) ;

(b) when P1 = m
′
(l−c)

M(b+c)+m′ (l−c) , λ̃q is monotony decreasing at q < M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) ,

constant at m
′
(l−c)

M(b+c)+m′ (l−c) ≤ q ≤ Mm(b+l)
M(b+c)+m(l−c) and monotony increasing at

q < Mm(b+l)
M(b+c)+m(l−c) ;

(c) when P1 > m
′
(l−c)

M(b+c)+m′ (l−c) , λ̃q is monotony decreasing at q ≤ M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) ,

and monotony increasing at q > M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) .

From the monotony properties of λ̃q and Lemma 2, we can look for the op-
timal reward order strategy, that is equations (12). This completes the proof of
Theorem 2. �

Corollary 1. When P1 = 1, q∗ = min{max{ M
′
m

′
(b+l)

M ′ (b+c)+m′(l−c) , q−}, q+}; When

P1 = 0, q∗ = Mm(b+l)
M(b+c)+m(l−c) .

Corollary 1 shows that probability forecast is a generalization of certain forecast.

3.3 Probability Distribution

By dividing Fi into Fi,1 and Fi,2 (where Fi,1 ∪ Fi,2 = Fi and Fi,1
⋂

Fi,2 = φ),
and dividing Pi into Pi,1 and Pi,2 (where Pi,1 + Pi,2 = Pi), we construct a more
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detailed probability forecast based on {(Fi, Pi)|i = 1, 2, ..., m}, that is {(F1, P1),
(F2, P2), ..., (Fi−1, Pi−1), (Fi,1, Pi,1), (Fi,2, Pi,2), (Fi+1, Pi+1), ..., (Fm, Pm)}. For
the newsboy problem, we obtain the probability distribution of the demand z,
when repeatedly dividing {(F1, P1), (F2, P2)} in the above way. Thus, probabil-
ity distributions are special cases of probability forecasts. Let the demand be a
stochastic variable z, which is drawn from a known probability distribution with
probability density function g(z), with support [m, M ]. The restricted competi-
tive ratio under the probability distribution g(z) is

˜̃
λq = Ez

Costq(z)
Costopt(z)

=
∫ M

m

Costq(z)
Costopt(z)

g(z). (14)

According to (4), (5) and (14), we have that

˜̃
λq =

c + b

c

∫ q

m

q

z
g(z)dz − b

c

∫ q

m

g(z)dz +
c− l

c

∫ M

q

q

z
g(z)dz +

l

c

∫ M

q

g(z)dz.

Theorem 3. When setting the risk tolerance level t ≥ 1, under the probability
distribution g(z), the optimal reward order strategy is

q∗ = min{max{q0, q−}, q+}, (15)

where q0 satisfies c+b
c

∫ q0
m

1
z g(z)dz + c−l

c

∫M
q0

1
z g(z)dz = 0.

Proof. Differentiating ˜̃
λq, we get that

∂
˜̃
λq
∂q

=
c + b

c

∫ q

m

1
z
g(z)dz +

c− l

c

∫ M

q

1
z
g(z)dz,

and
∂2˜̃λq
∂q2 =

b + l

c

g(q)
q

.

It is easy to verify that

lim
q→m

∂
˜̃
λq
∂q

=
c− l

c

∫ M

m

1
z
g(z)dz < 0,

lim
q→M

∂
˜̃
λq
∂q

=
c + b

c

∫ M

m

1
z
g(z)dz > 0,

and

lim
q→M

∂2˜̃λ2
q

∂q
=

b + l

c

g(q)
q

> 0.

Therefore, there is a unique q0 satisfying

∂
˜̃
λq
∂q

∣∣∣
q=q0

= 0.
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Based on Lemma 2, we can find the optimal reward order strategy that makes˜̃
λq minimum, which is equation (15). This completes the proof. �

Since the expression

∂
˜̃
λq
∂q

∣∣∣
q=q0

= 0

is a non-linear equation on q, we have difficulty in obtaining an analytic rep-
resentation of q0. In general, we may use the dichotomous search algorithm to
determine the value q0 in the polynomial time O(nlog(n)).

From Theorem 3, we have Corollary 2.

Corollary 2. When setting the risk tolerance level r ≥ 1, under the uniform
distribution,

f(z) =
{ 1
M−m , m ≤ z ≤ M

0, other

the optimal reward order strategy is

q∗ = min{max{e
(l−c)lnM+(b+c)lnm

b+l , q−}, q+}.

4 Numerical Examples

In this section, we present numerical examples to illustrate our approach. Con-
sider the following newsboy example:

c = 3, b = 1, l = 6

For different value of the fixed ordering support [m, M ], we calculate the
optimal on-line order strategy and the optimal competitive ratio, which are
summarized in Table 1.

Table 1. The optimal order strategies with support [m, M ]

[m, M ] the optimal order strategies q∗ the optimal competitive ratio λq∗
[100, 200] 127.27 1.36
[100, 300] 140 1.53
[100, 400] 147.34 1.63
[100, 500] 152.17 1.7

Table 1 shows the more uncertain on demand, namely the greater the ratio
of upper/lower on demand, the greater the optimal competitive ratio of the
newsboy problem. To improve the optimal competitive ratio, the newsboy may
designs the optimal reward order strategies under the established forecasts on
input sequence of the off-line rival. Without loss of generality, we set t = 1.3,
and then design the optimal reward strategies under the basic certain forecast,
the basic probabilistic forecast and the uniform distribution respectively. The
results are listed in Table 2, Table 3 and Table 4.
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Table 2. The optimal reward order strategies under certain forecast

[m,M ] St [m
′
, M

′
] q∗

[100, 200] [100, 147.73] [110, 150] 124.2
[100, 300] [100, 167] [120, 160] 134.4
[100, 400] [100, 178.16] [160, 300] 178.16
[100, 500] [100, 185.43] [200, 400] 185.43

Table 3. The optimal order strategies under probabilistic forecast

[m,M ] St [m
′
, M

′
] P1 q∗

[100, 200] [100, 147.73] [110, 150] 0.2 127.27
0.6 124.2

[100, 300] [100, 167] [120, 160] 0.2 140
0.6 134.4

[100, 400] [100, 178.16] [160, 300] 0.5 147.34
0.9 178.16

[100, 500] [100, 185.43] [200, 400] 0.5 152.17
0.9 185.43

Table 4. The optimal reward order strategies under the uniform distribution forecast

[m,M ] St q∗

[100, 200] [100, 147.73] 134.59
[100, 300] [100, 167] 160.13
[100, 400] [100, 178.16] 178.16
[100, 500] [100, 185.43] 185.43

5 Conclusions

Traditional newsboy models assume full knowledge of the demand probability
distribution. Recently, some researchers [15,8,16,7] focused on the newsboy prob-
lem with partial information (e.g., rang, mean, mode, variance, symmetry). The
models given by Yue et al. [15] and Perakis and Roels [8] were to minimize the
absolute regret, the model given by Zhu et al. [16] was to minimize the relative
regret, and the model given by Ma et al. [7] used the competitive ratio analy-
sis. Perakis and Roels [8] noted that the minimax regret was analogous to the
competitive ratio. However, the existing newsboy models with partial informa-
tion are fit to risk-neutral inventory managers. This paper analyzes the newsboy
problem from the line of competitive ratio. Based on the approach presented in
Al-Binali [2], we further develop a framework to manage reward and risk of the
newsboy problem with range information. This approach can help the newsboy
flexibly choose the optimal reward strategies, according to his own risk tolerance
levels and different forecasts.
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The proposed approach is a generic approach to manage reward and risk,
so it also can be applied to other cases of newsboy problem. Moreover, since
the minimax regret is analogous to the competitive ratio, we easily develop a
similar framework based on the minimax regret. A comparative study of these
two research lines may be an interesting future research.
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Abstract. We consider two semi-online scheduling problems on a sin-
gle batch (processing) machine with jobs’ nondecreasing processing times
and jobs’ nonincreasing processing times, respectively. Our objective is
to minimize the makespan. A batch processing machine can handle up
to B jobs simultaneously. We study an unbounded model where B = ∞.
The jobs that are processed together construct a batch, and all jobs in
a batch start and complete at the same time. The processing time of a
batch is given by the longest processing time of any job in the batch. Jobs
arrive over time. Let pj denote the processing time of job Jj . Given job Jj

and its following job Jj+1, we assume that pj+1 ≥ αpj , where α ≥ 1 is a
constant number, for the first problem with jobs’ nondecreasing process-
ing times. For the second problem, we assume that pj+1 ≤ αpj , where
0 < α < 1 is a constant number. We propose an optimal algorithm for

both problems with a competitive ratio
√

α2+4−α

2
+ 1 for the first prob-

lem and
√

4α+1+1
2

for the second problem.

Keywords: Online scheduling, Batch processing, Makespan.

1 Introduction

Batch processing machine scheduling has been motivated by burn-in operations
in the final testing stage of semiconductor manufacturing in [7] and [6]. Batch
scheduling means that a machine can process up to B jobs simultaneously as a
batch, and the processing time of a batch is equal to the longest processing time
of the jobs assigned to it. Unbounded model means that B is sufficiently large
and the bounded model means that B is a constant positive integer.

In recent years, one of the basic assumptions made in deterministic schedul-
ing was that all the useful information of the problem instance was known in
advance. However, this assumption is usually not realistic. This reason promotes
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the emergence of online scheduling. Three online models are commonly consid-
ered in [5]. The first one assumes that there are no release times and that the
jobs arrive in a list (one by one). The online algorithm has to schedule (or as-
sign) the first job in this list before it sees the next job in the list. The second
model assumes that the running time of a job is unknown until the job finishes.
The online algorithm knows whether a job is still running or not. The third
model assumes that jobs arrive over time. At each time when the machine is
idle, the online algorithm decides which one of the available jobs is scheduled, if
any. When all information is available at the beginning (before scheduling), the
problem is called offline.

We use the competitive analysis [1] to measure the performance of an on-
line algorithm. For any input job sequence I, let CON (I) denote the objective
(function) value of the schedule produced by the online algorithm AON and
COPT (I) denote the objective value of the optimal schedule. We say that AON
is ρ-competitive if

ρ = sup
{

CON (I)
COPT (I)

}
.

We also say that ρ is the competitive ratio of AON . An algorithm is called
optimal if the competitive ratio of this algorithm matches the lower bound of
competitive ratio for all online algorithms.

In this paper, we consider the third model where jobs arrive over time. Zhang
et al. [10] considered the problem of online scheduling on a batch processing
machine. They provided an optimal online algorithm with a competitive ratio√

5+1
2 . Based on their results, we study the semi-online problems by using ad-

ditional jobs’ information. We present an optimal semi-online algorithm with a
competitive ratio no more than

√
5+1
2 . Let pj denote the processing time of job

Jj . Given job Jj and its following job Jj+1, we assume that pj+1 ≥ αpj , α ≥ 1
is a constant number, in the first problem with jobs’ nondecreasing processing
times. For the second problem, we assume that pj+1 ≤ αpj , 0 < α < 1 is a
constant number.

Online scheduling on a (parallel) batch processing machine has been studied in
the last decade. In the unbounded model, for the problem of online scheduling
on a single batch machine to minimize the makespan, Zhang et al. [10] and
Deng et al. [2] independently provided an online algorithm with a competitive
ratio

√
5+1
2 . Poon et al. [9] showed that for the same problem in the bounded

model, any FBLPT-based (Full Batch Longest Processing Time) algorithm is 2-
competitive. Moreover, they presented an algorithm with a competitive ratio 7

4
for batch size B = 2. If a batch is allowed to restart, Fu et al. [4] showed that for
minimizing makespan on an unbounded batch machine there is no algorithm with
a competitive ratio less than 5−√

5
2 . Further, they provided an online algorithm

with a competitive ratio 3
2 . For this problem, Fu et al. [3] further considered

limited restarts which means that any batch containing a job has already been
restarted once cannot be restarted any more. They present an optimal algorithm
with a competitive ratio 3

2 . Recently, Nong et al. [8] considered family jobs
constraint in the single batch machine scheduling problem. For the unbounded
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case, they provided an optimal online algorithm with a competitive ratio 2. For
the bounded case, they gave a 2-competitive algorithm.

For convenience, we use online algorithm to denote semi-online algorithm in
the remainder. The rest of this paper is organized as follows. In Section 2, we
give the problem definitions and some notations. In Section 3, we present a
lower bound ϕ =

√
α2+4−α

2 + 1 (α ≥ 1) for the first problem and a lower bound
ϕ =

√
4α+1+1

2 (0 < α < 1) for the second problem, respectively. In Section 4,
we use the lower bounds obtained in the above section to design algorithm H∞

α .
After that, we prove that this algorithm is optimal for both problems.

2 Problem Definitions and Notations

We are given a job instance I = {J1, ..., Jn} (n ≥ 2) where each job Jj is associated
with a release time rj and a processing time pj . The jobs are to be processed by
a batch processing machine of capacity B =∞, i.e., we study unbounded model.
The processing time of a batch is the longest processing time of any job in the
batch. Jobs arrive over time, i.e., each job’s character, such as processing time,
becomes known at its arrival. Let pj denote the processing time of job Jj . Let
Ji+1 denote the following job of Ji. In the first problem with jobs’ nondecreasing
processing times, we assume that pj+1 ≥ αpj , where α ≥ 1 is a constant number.
For the second problem, we assume that pj+1 ≤ αpj , where 0 < α < 1 is a constant
number. Our objective is to minimize the makespan. Using three field notations,
our problems can be denoted by 1|online, rj, B = ∞, nondecreasing|Cmax and
1|online, rj, B = ∞, nonincreasing|Cmax, respectively.

We use U(t) to denote the set of unscheduled jobs available at time t.

3 Lower Bounds for Both Problems

In this section, we deal with the problems of online scheduling on a batch ma-
chine with jobs’ nondecreasing processing times and jobs’ nonincreasing pro-
cessing times, respectively. We study unbounded model, i.e., the batch’s size is
sufficiently large. We first respectively give a lower bound of competitive ratio
for each problem, then we provide an optimal algorithm for both problems. Let
ϕ =

√
α2+4−α

2 + 1 when α ≥ 1 and ϕ =
√

4α+1+1
2 when 0 < α < 1. Note that

1 < ϕ ≤
√

5+1
2 and we will use it in the remainder for simplicity.

Given an job instance I, let CON and COPT denote the makespan obtained
by an online algorithm AON and the value of an optimal (offline) schedule,
respectively.

Lemma 1. For 1|online, rj, B = ∞, nondecreasing|Cmax, there is no algorithm
with a competitive ratio less than

√
α2+4−α

2 + 1, where α ≥ 1.

Proof. For any online algorithm AON , we construct a special job instance I such
that CON/COPT is as large as possible. Let ε be a sufficiently small positive
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number. At time 0, we give the first job J1 with p1 = 1. We assume that AON

schedules this job at time TA. Depending on TA, we discuss the following two
cases.

Case 1. TA ≥
√
α2+4−α

2 .
No job arrives in future. We know that CON ≥

√
α2+4−α

2 +1. An optimal scheme
consists of scheduling J1 at time 0, i.e., COPT = 1. Therefore,

CON
COPT

≥
√

α2 + 4− α

2
+ 1 = ϕ.

Case 2. 0 ≤ TA <
√
α2+4−α

2 .
We further generate job J2 with p2 = α at time TA + ε. We obtain CON ≥
TA + 1 + α. An optimal schedule consists of scheduling J1 and J2 in a batch at
time TA + ε. Therefore, COPT = TA + ε + α due to α ≥ 1. It follows that

CON
COPT

≥ TA + 1 + α

TA + ε + α
= 1 +

1
TA + α

> 1 +
1

√
α2+4−α

2 + α
= ϕ, ε → 0.

According to the above two cases, the lemma holds.

Lemma 2. For 1|online, rj, B = ∞, nonincreasing|Cmax, there is no algorithm
with a competitive ratio less than

√
4α+1+1

2 , where 0 < α < 1.

Proof. For any online algorithm AON , we construct a special job instance I such
that CON/COPT is as large as possible. Let ε be a sufficiently small positive
number. At time 0, we give the first job J1 with p1 = 1. We assume that AON

scheduling this job at time TA. Depending on TA, we discuss the following two
cases.

Case 1. TA ≥
√

4α+1−1
2 .

No job arrives in future. We know that CON ≥
√

4α+1+1
2 . An optimal scheme

consists of scheduling J1 at time 0, i.e., COPT = 1. Therefore,

CON
COPT

≥
√

4α + 1 + 1
2

= ϕ.

Case 2. 0 ≤ TA <
√

4α+1−1
2 .

We further give job J2 with p2 = α at time TA+ε. We obtain CON ≥ TA+1+α.
An optimal schedule consists of scheduling J1 and J2 in a batch at time TA + ε.
Therefore, COPT = TA + ε + 1 due to α < 1. It follows that

CON
COPT

≥ TA + 1 + α

TA + ε + 1
= 1 +

α

TA + 1
> 1 +

α
√

4α+1−1
2 + 1

= ϕ, ε → 0.

According to the above cases, the lemma holds.
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4 An Optimal Algorithm for Both Problems

Considering the proofs of two lower bounds of competitive ratios, we realize that
the algorithm should wait for a while rather than scheduling the jobs immediately
after their arrivals. We shift the release time of job Jj to rj = ϕrj + (ϕ − 1)pj
in order to contain the waiting time. This equation can guarantee that if Jj is
scheduled at time ϕrj + (ϕ − 1)pj, its completion time cannot exceed ϕ times
the optimal value, i.e., ϕrj + (ϕ − 1)pj + pj = ϕ(rj + pj). This idea is used in
[10]. We design the following algorithm using the same idea.

Algorithm H∞
α works as follows.

Step 1: Wait until a decision point, where the batch machine is idle and at
least one job is available (If all jobs have been scheduled, output the schedule).
Suppose this happens at time t. Choose a job Jj with the longest processing
time in U(t).
Step 2: If rj ≤ t, schedule all jobs in U(t) as a single batch;

otherwise, wait until a new job arrive or until time rj , whichever
happens first.
Step 3: Go to Step 1.

We adopt some notations and definitions from [10]. Given an job instance, we
assume that H∞

α generate m batches in total. We index these batches in nonde-
creasing order of their completion times. For convenience, in batch i, denote by
J(i) the job with the longest processing time in that batch. Let p(i) and r(i) be
the processing time and the release time (or arrival time) of job J(i), respectively.
Let s(i) be the starting time of batch i. Note that batch i is processed either at
time ϕr(i) + (ϕ− 1)p(i) or after batch i− 1 is finished at time s(i−1) + p(i−1).

If batch i starts at time ϕr(i)+(ϕ−1)p(i), we call it a regular batch; otherwise,
it is called a delayed batch.

Similar to Lemma 2 in [10], we have the following lemma.

Lemma 3. If batch i is a regular batch, then batch i + 1 or batch i + 2 is also a
regular batch.

Proof. We prove this lemma for two cases: α ≥ 1 and 0 < α < 1.

(1) α ≥ 1.
By contradiction. Suppose both batches i + 1 and i + 2 are delayed batches. We
know that each job in batch i + 1 arrives later than the starting time of batch
i. Therefore, considering job J(i+1), we have r(i+1) > ϕr(i) + (ϕ − 1)p(i). Since
batch i + 1 is a delayed batch, we obtain

ϕ(r(i) + p(i)) > ϕr(i+1) + (ϕ− 1)p(i+1) > ϕ2r(i) + ϕ(ϕ − 1)p(i) + (ϕ− 1)p(i+1).

It follows that

(2ϕ− ϕ2)p(i) > (ϕ2 − ϕ)r(i) + (ϕ− 1)p(i+1) ≥ (ϕ− 1)p(i+1). (1)
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Considering ϕ =
√
α2+4−α

2 + 1 and α ≥ 1, we have

p(i+1) <
2ϕ− ϕ2

ϕ− 1
p(i) =

[
1

ϕ− 1
− (ϕ− 1)

]
p(i) = αp(i).

This contradicts to the assumption that p(i+1) ≥ αp(i) for 1|online, rj, B =
∞, nondecreasing|Cmax.

(2) 0 < α < 1.
By contradiction. Suppose both batches i + 1 and i + 2 are delayed batches. We
know that each job in batch i + 2 arrives later than the starting time of batch
i + 1. Therefore, considering job J(i+2), we have r(i+2) > ϕ(r(i) + p(i)). Since
batch i + 2 is a delayed batch, we obtain

ϕ(r(i) + p(i)) + p(i+1) > ϕr(i+2) + (ϕ− 1)p(i+2) > ϕ2(r(i) + p(i)) + (ϕ− 1)p(i+2).

It follows that

p(i+1) > (ϕ2 − ϕ)(r(i) + p(i)) + (ϕ− 1)p(i+2) ≥ (ϕ2 − ϕ)p(i) = ϕ(ϕ− 1)p(i). (2)

Considering ϕ =
√

4α+1+1
2 and α < 1, we have ϕ(ϕ− 1) = α, which implies

p(i+1) > αp(i).

This contradicts to the assumption that p(i+1) ≤ αp(i) for 1|online, rj, B =
∞, nonincreasing|Cmax.

The lemma follows.

Corollary 1. In the schedule obtained by algorithm H∞
α , there do not exist two

successive delayed batches.

Proof. By the algorithm, the first batch must be a regular batch. Then we have
the desired result.

Let CH and C∗ denote the value obtained by algorithm H∞
α and the optimal

objective value (for an instance), respectively.

Lemma 4. If the last batch is a regular batch, i.e., s(m) = ϕr(m) + (ϕ− 1)p(m),
then CH/C∗ ≤ ϕ.

Proof. Since CH = s(m) + p(m) = ϕ(r(m) + p(m)) and C∗ ≥ r(m) + p(m), the
lemma follows.

Theorem 1. Algorithm H∞
α is optimal for both problems: 1|online, rj, B =

∞, nondecreasing|Cmax and 1|online, rj, B = ∞, nonincreasing|Cmax. (α ≥ 1
in the first problem and 0 < α < 1 in the second problem.)

Proof. By contradiction. By Lemma 4, we only need to consider the case where
the last batch m is a delayed batch. By algorithm, we know that the first batches
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must be a regular batch. Thus, in this case, there must be some batch processed
before batch m. By Corollary 1, there do not exist two successive delayed batches
in the schedule obtained by algorithm H∞

α . Therefore, batch m − 1 must be a
regular batch. It follows that

s(m−1) = ϕr(m−1) + (ϕ− 1)p(m−1) ≥ (ϕ− 1)p(m−1). (3)

We know
CH = s(m−1) + p(m−1) + p(m). (4)

Note that
r(m) > s(m−1). (5)

In the following, we respectively discuss two cases: α ≥ 1 and 0 < α < 1.

(1) α ≥ 1.
We further discuss two cases depending on whether J(m) and J(m−1) are in the
same batch in an optimal schedule.

Case 1. In an optimal schedule, J(m) and J(m−1) are in the same batch.
By the assumption that pj+1 ≥ αpj , we have C∗ ≥ r(m) + p(m) and p(m) ≥

αp(m−1). Note that ϕ =
√
α2+4−α

2 + 1.
Considering equation (4) and inequalities (3) and (5), it follows

CH
C∗ ≤

s(m−1) + p(m−1) + p(m)

r(m) + p(m)
< 1 +

p(m−1)

s(m−1) + p(m)
≤ 1 +

1
ϕ− 1 + α

= ϕ.

Case 2. In an optimal schedule, J(m) and J(m−1) are in different batches.
It follows that C∗ ≥ r(m−1) + p(m−1) + p(m). Considering equations (4) and

(3), we have

CH
C∗ ≤

s(m−1) + p(m−1) + p(m)

r(m−1) + p(m−1) + p(m)
=

ϕ(r(m−1) + p(m−1)) + p(m)

r(m−1) + p(m−1) + p(m)
< ϕ.

(2) 0 < α < 1.
We discuss two cases depending on whether J(m) and J(m−1) are in the same
batch in an optimal schedule.

Case 1. In an optimal schedule, J(m) and J(m−1) are in the same batch.
By the assumption that pj+1 ≤ αpj , we have C∗ ≥ r(m) + p(m−1) and p(m) ≤

αp(m−1). Note that ϕ =
√

4α+1+1
2 .

Considering equation (4) and inequalities (3) and (5), it follows

CH
C∗ ≤

s(m−1) + p(m−1) + p(m)

r(m) + p(m−1)
< 1 +

p(m)

s(m−1) + p(m−1)
≤ 1 +

α

ϕ
= ϕ.

Case 2. In an optimal schedule, J(m) and J(m−1) are in different batches.
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It follows that C∗ ≥ r(m−1) + p(m−1) + p(m). Considering equations (4) and
(3), we have

CH
C∗ ≤

s(m−1) + p(m−1) + p(m)

r(m−1) + p(m−1) + p(m)
=

ϕ(r(m−1) + p(m−1)) + p(m)

r(m−1) + p(m−1) + p(m)
< ϕ.

The theorem follows.
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Abstract. We investigate the problem of on-line scheduling for jobs
with arbitrary release times on m identical parallel machines. The goal
is to minimize the makespan. We derive a best possible online algorithm
with competitive ratio of 2 for m = 2. For a special case that all the
jobs have unit processing times, we prove that Algorithm LS has a tight
bound of 3/2 for general m machines.

Keywords: On-line scheduling, Makespan, Competitive ratio, Identi-
cal parallel machines.

1 Introduction

Online scheduling has received great attention in decades. The most basic model
is the classical on-line scheduling problem on m identical parallel machines which
was proposed by Graham [1]. In the classical on-line scheduling problem, jobs
arrive one by one (or over a job list), we do not know any information about the
job list in advance, whenever a job arrives, it must be scheduled immediately
on one of the machines without knowledge of any future jobs. Only after the
current job is scheduled can the next job appear. The objective is to minimize
the makespan. It is well known that the first online algorithm in scheduling
theory, namely List Scheduling (LS) algorithm, for the problem was proposed
by Graham [1].

Note that in the above model all jobs in the job list have release times zero. A
more general version of the classical on-line scheduling problem on m identical
parallel machines was given by Li and Huang [2]. In the general version, all jobs
appear in form of orders at time zero. When a job appears, the scheduler is
informed of the release time and processing time of the job. The problem can be
formally defined as follows. A list of jobs is to be scheduled on m identical parallel
machines, M1, M2, ..., Mm. We assume that all jobs appear on-line in a job list.
Whenever a job Jj with release time rj and processing time pj appears, the
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scheduler has to assign a machine and a processing slot for Jj irrevocably without
knowledge of any future jobs. The goal is to minimize the makespan. In this
general on-line situation, the jobs’ release times are assumed arbitrary, whereas
in the existing literature the jobs’ release times are normally non-decreasing.
That is to say, although a job may appear first in the job sequence, but its
release time may be greater than the release time of the job which appears later
in the job sequence. It is obvious that the above model is just the model of
classical on-line scheduling problem on m identical parallel machines if all the
jobs have release time zero. The problem is called on-line scheduling problem for
jobs with arbitrary release times [3].

The quality of an online algorithm A is usually measured by its competitive
ratio

R(m, A) = supL
CA

max(L)
C∗

max(L)

where CA
max(L) and C∗

max(L) denote the makespans of the schedule produced by
algorithm A and an optimal off-line algorithm, respectively.

Li and Huang considered the on-line scheduling problem for jobs with arbi-
trary release times first. For the general model of the problem where job pro-
cessing times are arbitrary, Li and Huang [2] gave a lower bound of 2, and then
showed an algorithm LS with tight bound of 3−1/m. A modified algorithm MLS
is also proposed which is better than LS for any m ≥ 2, and the competitive
ratio of MLS is bounded by 2.9392 for any m ≥ 2. For the special model where
the job length is in [p, rp](r ≥ 1), the performance of algorithm LS is analyzed
in [3]. They first gave an upper bound of

R(m, LS) =

⎧⎪⎨⎪⎩
3− 1

m −
1
r , r ≥ m

m−1 ;

1 + 2r
1+2r + (m−1)r

m(1+2r) , 1 ≤ r < m
m−1 ,

for general m and showed that the tight bound for m = 1 is 1 + r
1+r . When

m = 2, they presented a tight bound of the competitive ratio 1 + 5r+4
2(r+2) for

r ≥ 4; For r < 4, they gave a lower bound and showed that 2 provides an upper
bound for the competitive ratio.

Our results. In this paper, we consider the on-line scheduling problem for jobs
with arbitrary release times. For the general model where job processing times
are arbitrary, we derive a best possible online algorithm with competitive ratio
of 2 for m = 2. Then we show that the idea of the algorithm for m = 2 cannot
be extended to the case with m ≥ 3 machines by a counterexample. Finally,
for a special model that all the jobs have unit processing times, we prove that
algorithm LS has a tight bound of 3/2 for general m machines.

2 A Best Possible Online Algorithm for m = 2

Before we give the best possible online algorithm for m = 2, we first describe
the following definition which is defined in Li and Huang [2].



356 J. Ding and G. Zhang

Definition 1. Suppose that Jj is the current job with release time rj and pro-
cessing time pj. We say that machine Mi has an idle time interval for job Jj ,
if there exists a time interval [T1, T2] satisfying the following conditions:

1. Machine Mi is currently idle in interval [T1, T2] and a job has been assigned
on Mi to start processing at T2.

2. T2 −max{T1, rj} ≥ pj.

For the job set J(i) = {J1, J2, . . . , Ji} that has been scheduled by the algorithm,
let M i

1 = max1≤j≤i(rj + pj), M i
2 = 1

2

∑i
j=1 pj and M i = max{M i

1, M
i
2}. It is

obvious that M i is a lower bound of the optimal makespan for job set J(i) =
{J1, J2, . . . , Ji}.

Algorithm:

1. Let Li1 and Li2 be the completion time of the last job on machine M1 and
M2 immediately after Ji has been scheduled by the algorithm, respectively.
Let Ji+1 be a new job given to the algorithm.

2. If there exist some machines which have idle intervals for job Ji+1, select
a machine Mi which has an idle interval [T1, T2] for job Ji+1 with minimal
T1. Then we start job Ji+1 on machine Mi at time max{T1, ri+1} in the idle
interval. Otherwise, go to step 3.

3. If ri+1 > max{Li1, Li2}, then we assign job Ji+1 to machine M1 to start at
time ri+1. Otherwise, go to step 4.

4. If ri+1 ≤ max{Li1, Li2} and Li1 > Li2 and Li1 + pi+1 ≤ 2M i+1, then we assign
job Ji+1 to machine M1 to start at time Li1. Otherwise, go to step 5.

5. Start job Ji+1 on machine M2 at time max{Li2, ri+1}.

When it is our turn to schedule the next job Ji+1, if ri+1 > max{Li1, Li2},
then we always assign job Ji+1 to machine M1 to start at time ri+1. For the
case that ri+1 ≤ max{Li1, Li2}, unless there is idle interval for job Ji+1, the main
idea of the algorithm is that we always assign job Ji+1 to machine with larger
load if the completion time of job Ji+1 is no more than 2M i+1. Otherwise we
will assign job Ji+1 to another machine to start as soon as possible.

Theorem 1. The competitive ratio of the algorithm is 2.

Proof. Let J(n) = {J1, J2, . . . , Jn} be an arbitrary job list. The optimum
makespan for job set J(i) = {J1, J2, . . . , Ji} is denoted by OPT i. For each
i, 1 ≤ i ≤ n, we will prove that max{Li1, Li2} ≤ 2OPT i holds immediately
after job Ji has been scheduled by the algorithm. If i = 1, then it is obvi-
ous that the conclusion holds. Now we assume max{Li1, Li2} ≤ 2OPT i holds
immediately after job Ji has been scheduled by the algorithm. Next we will
show max{Li+1

1 , Li+1
2 } ≤ 2OPT i+1 holds immediately after job Ji+1 has been

scheduled by the algorithm. It is obvious that OPT i+1 ≥ M i+1. So we have
max{Li+1

1 , Li+1
2 } ≤ 2OPT i+1 if job Ji+1 is scheduled by Step 2 or Step 3 or
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Step 4 of the algorithm. In the following we will show max{Li+1
1 , Li+1

2 } ≤
2OPT i+1 if job Ji+1 is scheduled by Step 5 of the algorithm.

Case 1. Li1 > Li2 and Li1 + pi+1 > 2M i+1.
Case 1.1. If ri+1 ≥ Li2, then the algorithm will assign job Ji+1 to machine M2

to start at time ri+1. By the inductive assumption and the fact that OPT i+1 ≥
M i+1, we have max{Li+1

1 , Li+1
2 } ≤ 2OPT i+1.

Case 1.2. If ri+1 < Li2, then the algorithm will assign job Ji+1 to machine
M2 to start at time Li2. Let T2 be the least time point from which machine
M2 is busy to Li2 + pi+1, namely Li+1

2 . Let l2 = Li2 − T2. We can describe
the completion time of job Ji+1 as T2 + l2 + pi+1. If T2 = 0, then by the fact
that OPT i+1 ≥ 1

2 (l2 + pi+1) = 1
2Li+1

2 and the inductive assumption we have
max{Li+1

1 , Li+1
2 } ≤ 2OPT i+1. If T2 > 0, then let Jk(k < i + 1) be the first job

scheduled on machine M2 in time interval [T2, L
i
2]. According to the algorithm,

just before the algorithm will schedule job Jk, we must have Lk−1
1 > Lk−1

2 and
Lk−1

1 + pk > 2Mk. Otherwise, job Jk will be scheduled on machine M1. So the
start time of job Jk is rk.

Let T1 be the least time point from which machine M1 is busy to Lk−1
1 . Let

l1 = Lk−1
1 −T1, then we have Lk−1

1 +pk = T1 + l1 +pk > 2(rk+pk). Furthermore
we have Mk ≥ T1, so T1+l1+pk > 2Mk ≥ 2T1. Combining the above inequalities
we can get l1 > rk. Therefore we have

Li+1
2 = T2 + l2 + pi+1 ≤ rk + l2 + pi+1 ≤ l1 + l2 + pi+1 ≤ 2OPT i+1.

So max{Li+1
1 , Li+1

2 } ≤ 2OPT i+1.

Case 2. Li1 ≤ Li2. By the algorithm we have ri+1 ≤ Li2, so the completion
time of Jn is Li2 +pi+1. Similar to the Case 1.2, We can find the same T2 and Jk
on machine M2, and T1 on machine M1. Completely repeat the above process,
we can get

Li+1
2 = T2 + l2 + pi+1 ≤ rk + l2 + pi+1 ≤ l1 + l2 + pn ≤ 2OPT i+1.

Hence we have max{Li+1
1 , Li+1

2 } ≤ 2OPT i+1. �
Although the above algorithm is very simple, but the idea of it is impossible
to extended to more machines case, even for 3 machines. In the following, a
counterexample I for 3 machines is given to show the fact. For the sake of
simplicity, let j = (rj , pj) denote job j which has release time rj and processing
time pj .

I = {(1− ε, ε), (0, 1), (1− ε, ε), (1/3− ε, ε), (1/3− ε, ε), (2/3− ε, ε), (2/3− ε, ε),
(0, 1/3), (0, 1/3), (0, 1/3), (1− ε, ε), (0, 1), (0, 1)}.

It is easy to verify the optimal makespan for I is 4
3 +3ε. Let H be the algorithm

designed completely by the idea of the algorithm for two-machine case. Then the
makespan of Algorithm H for I is 3, see Fig. 1.

3 A Special Case for Jobs with Unit Processing Time

In this part, we give a tight bound of Algorithm LS for a special case that all
the jobs have unit processing time. In the following we will describe Algorithm
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Fig. 1. A counterexample shows that the ratio is not smaller than 3
1+1/3

= 9
4
. The

label on each job denotes not only the order but also the job.

LS which is defined in Li and Huang [2]. Essentially, the algorithm assigns a job
to be processed as early as possible when its order arrives.

Algorithm LS

1. Assume that Li is the scheduled completion time ofmachine Mi(i = 1, · · · , m).
Reorder machines so that L1 ≤ L2 ≤ · · · ≤ Lm and let Jn be a new job
given to the algorithm with release time rn and running time pn = 1. Let
t = max{rn, L1}.

2. If there exist some machines which have idle intervals for job Jn, select a
machine Mi which has an idle interval [T1, T2] for job Jn with minimal T1.
Then start job Jn on machine Mi at time max{T1, rn} in the idle interval.
Otherwise, assign job Jn to machine M1 to start the processing at time t.

In order to give the proof of the result. We first give some explanation of
symbols. [s]: the integral part of s; (s): the fractional part of s; �s�: the smallest
integer that is not smaller than s.

The following Lemma gives a estimate of the number of jobs completed in time
interval [0, T ] on one machine in schedule of Algorithm LS on the assumption
that there is no idle time interval with length equal to or greater than 1.

Lemma 1. Let N denote the number of jobs completed on one machine in time
interval [0, T ]. If the length of all the idle intervals in schedule of Algorithm LS
is smaller than 1, then we have (1) N ≥ T/2 if T is even; (2) N ≥ (T − 1)/2 if
T is odd and there is one job with start time smaller than T which is completed
after time T . (3) N ≥ (T + 1)/2 if T is odd and there is no job with start time
smaller than T which is completed after time T .

Proof. At most N + 1 idle intervals are generated by the process of N jobs in
[0, T ] on one machine. Then the total length of these idle intervals is smaller
than N + 1. So we have (N + 1) + N > T − 1. From the inequality we can get
N > (T − 2)/2. Therefore N ≥ T/2 if T is even;
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If T is odd and there is one job with start time smaller than T which is
completed after time T . Then we also have (N + 1) + N > T − 1. So we can get
k ≥ (T − 1)/2.

If T is odd and there is no job with start time smaller than T which is
completed after time T . Then we have (N +1)+N > T , namely N ≥ (T +1)/2.
The proof is then finished. �

Theorem 2. The competitive ratio of LS is RLS = 3/2.

Proof. We assume L = {J1, J2, . . . , Jn} is an arbitrary job list. Let CLS
max(L)

and C∗
max(L) denote the makespans of the schedule produced by Algorithm LS

and an optimal schedule, respectively. Without loss of generality, we assume Jn
is the last job completed in schedule of Algorithm LS and Jn is the only job
with completion time CLS

max(L). Let sn be the start time of job Jn in schedule
of Algorithm LS. If sn = rn, then it is obvious that RLS ≤ 3/2. If sn > rn,
then job Jn must be assigned on machine M1 to start at time sn = L1 by the
algorithm. In schedule of Algorithm LS, let s be the least time point from which
all the m machines are busy to L1, and let k be the number of jobs(including
job Jn) completed after time s on machine M1, then it is obvious that at least
(k − 1) jobs are completed after time s on each of the other m − 1 machines.
So at least m(k − 1) + 1 jobs in total are completed after time s in schedule of
Algorithm LS. We have CLS

max(L) ≤ s + k and C∗
max(L) ≥ s + 1, because at least

one job has release time s by the algorithm.
We first consider the case that all the idle intervals in schedule of Algorithm

LS have length smaller than 1.

Case 1. [s] is even. By Lemma 1, it is easy to know the optimal schedule com-
pletes at most m · [s]/2 more jobs before time [s] than the schedule of Algorithm
LS does.

Case 1.1. If 2k ≤ s + 3, then we have:

CLS
max(L)

C∗
max(L)

≤ s + k

s + 1
≤ 2s + s + 3

2(s + 1)
=

3
2
.

Case 1.2. If 2k ≥ s + 3 = [s] + 2 + 1 + (s), namely 2k ≥ s + 4. Then at least
m(k− 1) + 1−m · [s]/2 jobs are processed after time [s] in optimal schedule. So
we have

C∗
max(L) ≥ [s] +

⌈
1
m

[
m(k − 1) + 1−m · [s]

2

]⌉
=

1
2
[s] + k.

Therefore:

CLS
max(L)

C∗
max(L)

≤ s + k
1
2 [s] + k

≤ 2s + [s] + 4
2([s] + 2)



360 J. Ding and G. Zhang

=
3([s] + 2) + 2(s)− 2

2([s] + 2)

≤ 3
2
.

Case 2. [s] is odd.

Case 2.1. If 2k ≤ s + 3, then:

CLS
max(L)

C∗
max(L)

≤ s + k

s + 1
≤ 2s + s + 3

2(s + 1)
=

3
2
.

Case 2.2. If 2k > s + 3 = [s] + 2 + 1 + (s), namely, 2k ≥ s + 5. By Lemma 1,
one machine in optimal schedule completes at most [s]+1

2 more jobs before [s]
than it does in schedule of Algorithm LS, and at least one machine in optimal
schedule(the machine is idle immediately before s) completes at most [s]−1

2 more
jobs before [s] than it does in schedule of Algorithm LS. So at least [m(k−1)+1]−[
(m− 1) [s]+1

2 + [s]−1
2

]
jobs must be processed after time [s] in optimal schedule.

Hence we can derive

C∗
max(L) ≥ [s] +

⎡⎢⎢⎢
[m(k − 1) + 1]−

[
(m− 1) [s]+1

2 + [s]−1
2

]
m

⎤⎥⎥⎥
= [s] + (k − 1)− [s] + 1

2
+ 1

=
1
2
[s] + k − 1

2
.

Case 2.2.1. If (s) ≤ 1
2 , then:

CLS
max(L)

C∗
max(L)

≤ s + k
1
2 [s] + k − 1

2

≤ 2s + [s] + 5
[s] + [s] + 5− 1

=
3([s] + 2) + 2(s− [s])− 1

2([s] + 2)

≤ 3
2
.

Case 2.2.2. (s) > 1
2 . In this case we need to estimate the number of jobs

completed after time s in schedule of Algorithm LS more carefully.

Case 2.2.2.a. The time point s appears exactly on machine M1, namely M1
is idle immediately before time s, and p jobs with start time smaller than [s]
are completed after time s in schedule of Algorithm LS. For the p machines that
process such p jobs, k jobs are completed after time s on each of them in schedule
of Algorithm LS. By Lemma 1, each of the p machines in optimal schedule
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completes at most [s]+1
2 more jobs before time [s] than it does in schedule of

Algorithm LS and each of the the other m − p machines in optimal schedule
completes at most ([s]− 1)/2 more jobs before time [s] than it does in schedule
of Algorithm LS. So we have:

C∗
max(L) ≥ [s] +

⌈
1
m

{
[m(k − 1) + p + 1]−

[
p · [s] + 1

2
+ (m− p)

[s]− 1
2

]}⌉
= [s] + (k − 1)− [s]− 1

2
+ 1

=
1
2
[s] + k +

1
2
.

Therefore:

CLS
max(L)

C∗
max(L)

≤ s + k
1
2 [s] + k + 1

2

≤ 2s + [s] + 5
2([s] + 3)

=
3([s] + 3) + 2(s− [s])− 4

2([s] + 3)

≤ 3
2
.

Case 2.2.2.b. The time point s does not appear on machine M1 and the start
time of the first completed job after time s on machine M1 is not greater than
[s]. Then we have

CLS
max(L) ≤ k + [s].

Hence

CLS
max(L)

C∗
max(L)

≤ [s] + k
1
2 [s] + k − 1

2

≤ 2[s] + [s] + 5
[s] + [s] + 5− 1

=
3([s] + 2)− 1

2([s] + 2)

≤ 3
2
.

Case 2.2.2.c. The time point s does not appear on machine M1, and p jobs with
start time smaller than [s] are completed after time s in schedule of Algorithm
LS, and the start time of the first completed job after time s on machine M1 is
greater than [s]. Similar to the analysis in Case 2.2.2.a, we have

C∗
max(L) ≥ [s] +

⌈
1
m

{
[m(k − 1) + p + 1]−

[
p · [s] + 1

2
+ (m− p)

[s]− 1
2

]}⌉
= [s] + (k − 1)− [s]− 1

2
+ 1

=
1
2
[s] + k +

1
2
.
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So

CLS
max(L)

C∗
max(L)

≤ s + k
1
2 [s] + k + 1

2

≤ 2s + [s] + 5
2([s] + 3)

=
3([s] + 3) + 2(s− [s])− 4

2([s] + 3)

≤ 3
2
.

Secondly, if there exist idle time intervals with length not smaller than 1 in
schedule of Algorithm LS. We select a such idle time interval with latest over
time, say b, and choose a time point a such that b − a = 1. By the Algorithm
LS, all the jobs with start time greater than a must have release time greater
than a also. So similar to the analysis in the first part of the proof, we can get
RLS ≤ 3/2.

Finally, the following instance shows that the bound of Algorithm LS is tight.
The instance consists 2m jobs in total, the first m jobs have release time 1 − ε
and the last m jobs have release time zero. It is easy to know the makespan
of Algorithm LS for the instance is 3 − ε, but the optimal makespan is 2. So
RLS ≥ (3− ε)/2, let ε tend to zero, we get the bound is tight. �

4 Final Remarks

We consider the problem of scheduling for jobs with arbitrary release times on m
identical parallel machines. For m = 2, we gave a best possible online algorithm.
It must be a challenging work to design best possible online algorithm for m ≥ 3.
For a special model where all the jobs have processing time 1, we derived that
Algorithm LS has a tight bound of 3/2. Furthermore, some other special models
of the problem are also worth to considering in future.
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Abstract. In the Multicast k-Tree Routing Problem, a data copy is sent
from the source node to at most k destination nodes in every transmis-
sion. The goal is to minimize the total cost of sending data to all destina-
tion nodes, which is measured as the sum of the costs of all routing trees.
This problem was formulated out of optical networking and has appli-
cations in general multicasting. Several approximation algorithms, with
increasing performance, have been proposed in the last several years; The
most recent ones are heavily relied on a tree partitioning technique. In
this paper, we present a further improved approximation algorithm along
the line. The algorithm has a worst case performance ratio of 5

4
ρ + 3

2
,

where ρ denotes the best approximation ratio for the Steiner Minimum
Tree problem. The proofs of the technical routing lemmas also provide
some insights on why such a performance ratio could be the best possible
that one can get using this tree partitioning technique.

Keywords: Capacitated Multicast Tree Routing, Approximation Al-
gorithm, Tree Partitioning.

1 Introduction

Multicast is a point-to-multipoint communication that a source node sends data
to multiple destinations [2,19,13,11,18]. In computer and communication net-
works supporting multimedia applications, such as news feed and video distri-
bution, multicast is an important service. Implementing multicast on local area
networks (LANs) is easy because nodes connected to a LAN usually commu-
nicate over a broadcast network. In contrast, implementing multicast on wide
area networks (WANs) is yet quite challenging [20,9] because nodes connected
to a WAN typically communicate via a switched/routed network. Basically, to
perform multicast in WANs, the source node and all the destination nodes must
be interconnected. So, finding a multicast routing in a WAN is equivalent to
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finding a multicast tree T in the network such that T spans the source node and
all the destination nodes. The objective of the routing is to minimize the cost of
T , which is defined to be the total weight of edges in T .

In certain networks such as wavelength-division multiplexing (WDM) optical
networks with limited light-splitting capabilities, during each transmission, only
a limited number of destination nodes can be assigned to receive the data copies
sent from the source node. A routing model for such networks, called the multi-
tree model [14,9,10,12], has been introduced in the literature. Under this model,
we are interested in the problem of finding a collection of routing trees such
that each tree spans the source node and a limited number of destination nodes
that are assigned to receive data copies, and every destination node must be
designated to receive a data copy in one of the routing trees. We call this prob-
lem the capacitated multicast routing problem. In particular, when the number of
destination nodes in each routing tree is limited to a pre-specified number k, we
call it the multicast k-tree routing (kMTR) problem. Correspondingly, a feasible
routing solution is called a k-tree routing. Compared with the traditional mul-
ticast routing model without the capacity constraint — the Steiner Minimum
Tree (SMT) problem, which allows any number of receivers in the routing tree,
this simpler model makes multicast easier and more efficient to be implemented,
at the expense of increasing the total routing cost.

We next formally define the kMTR problem. For a graph G, we denote its
node set by V (G). The underlying communication network is modeled as a triple
(G, s, D), where G is a simple, undirected, and edge-weighted complete graph,
s ∈ V (G) is the source node, and D = {d1, d2, . . . , dn} ⊆ V (G) − {s} is the
set of destination nodes. The weight of each edge e in G, denoted by w(e),
is nonnegative and represents the routing cost of e. The weight (or cost, used
interchangeably) of a subgraph T of G, denoted by w(T ), is the total weight
of edges in T . Let k be a given positive integer. The kMTR problem asks for
a minimum-weight k-tree routing, that is, a partition of D into disjoint sets
D1, D2, . . . , D, such that each Di contains no more than k destination nodes,
and a Steiner tree Ti spanning the source node s and the destination nodes in Di

for i = 1, 2, . . . , 	, such that
∑

i=1 w(Ti) is minimized. It is worth pointing out
that the union of all these routing trees does not necessarily remain as a tree,
since some destination nodes in Di could appear as Steiner nodes for purely
routing purpose in Tj for j 	= i (i.e., they are not counted as destination nodes
towards Dj). In the following, we assume without loss of generality that the edge
weight function (the shortest path metric) satisfies triangle inequality.

When k ≥ |D|, kMTR reduces to the well-known SMT problem. The SMT
problem is NP-hard, and its current best approximation ratio is ρ ≈ 1.55 [8,17].
(We reserve ρ to denote this best approximation ratio throughout the paper.)
On the other hand, when k = 1 or 2, kMTR can be solved efficiently [9,10]. The
algorithmically most interesting case is 3 ≤ k < |D|, where kMTR differs from
the SMT problem yet remains NP-hard [3,15].

Let {T ∗
1 , T ∗

2 , . . . , T ∗
m} be the set of trees in an optimal k-tree routing. Let

w(T ∗
j ) denote the weight of tree T ∗

j , the sum of the weights of edges in T ∗
j .
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Let R∗ =
∑m

j=1 w(T ∗
j ) be the weight of this optimal k-tree routing. Since every

destination node di in tree T ∗
j satisfies w(s, di) ≤ w(T ∗

j ), due to non-negative
edge weights, we have

n∑
i=1

w(s, di) ≤ k ×R∗. (1)

Let T be a tree in (G, s, D) containing a subset DT of destination nodes.
For ease of presentation, we define the size of tree T to be |DT |, though T
might contain other non-destination nodes. Tree T can be used in a feasible k-
tree routing to route as many as k destination nodes in DT . For doing so, the
incurred routing cost will be the weight of tree T , w(T ), plus a connection cost,
c(T ), which is measured as the minimum weight of edges between the source
node s and all nodes in V (T ). It follows that if source node s is in V (T ), then
c(T ) = 0; In the other cases, we can always have

c(T ) ≤ min
d∈DT

w(s, d) ≤ 1
|DT |

∑
d∈DT

w(s, d). (2)

As noted by Jothi and Raghavachari [12], an algorithm presented by Altinke-
mer and Gavish [1] about twenty years ago for a slightly different problem serves
as a (2ρ + 1)-approximation algorithm for kMTR. Hu and his colleagues [9,10]
are probably the first to study the kMTR problem, and they presented an ap-
proximation algorithm starting with a Hamiltonian cycle on s ∪ D obtained
by the 3

2 -approximation algorithm for the metric Traveling Salesman Problem
(TSP) [7], partitioning it into segments each containing exactly k destination
nodes (except one segment), and then connecting these segments to source node
s separately via the minimum weight edge to form a k-tree routing. Note that
the weight of an optimal TSP tour on s ∪D is upper bounded by 2R∗. By Eqs.
(1) and (2), the connection cost for this k-tree routing is bounded from above
by 1

k

∑n
i=1 w(s, di) ≤ R∗. Therefore, the weight of this k-tree routing is at most

(3
2 ×2+1)R∗ = 4R∗, and their algorithm is a 4-approximation, an improvement

over the (2ρ + 1)-approximation [1,12].
Lin [15] proposed to start with a good Steiner tree on s∪D, obtained by any

current best approximation algorithms for the SMT problem, partition it into
small trees of size at most k without duplicating any edges (and thus does not
increase the weight of the Steiner tree), and then connect each such obtained tree
to the source via the minimum weight edge. He demonstrated that in a top-down
fashion the Steiner tree can be partitioned into a collection of feasible routing
trees, such that each tree has size in (1

6k, k] and its connection cost is less than
or equal to the minimum edge weight of a distinct set of at least 5

12k source-
to-destination edges. Equivalently speaking, on average, each routing tree has
size at least 5

12k. By Eqs. (1) and (2), the connection cost for this k-tree routing
is bounded from above by 12

5 k
∑n
i=1 w(s, di) ≤ 2.4R∗. Thus it is an improved

(ρ + 2.4)-approximation algorithm for kMTR.
Subsequently, two groups of researchers [3,6,12] independently designed (ρ +

2)-approximation algorithms for kMTR. Cai and his colleagues [3,6] continued
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the study from [9,10,15]; Jothi and Raghavachari [12] were directed from [1] to
consider a variant of kMTR in which the destination nodes have varying integral
amounts of request and no destination nodes can be used as Steiner points to
assist the routing. When the given network is completely connected, Jothi and
Raghavachari [12] designed an approximation algorithm for the variant. This
approximation algorithm turns out to be a (ρ + 2)-approximation algorithm for
kMTR. The two (ρ+2)-approximation algorithms are surprisingly similar in the
design nature that, both algorithms start with a Steiner tree on s∪D, partition it
into feasible routing trees without duplicating any edges, and then connect each
such obtained tree to the source via the minimum weight edge. The difference
between them is that the algorithm by Cai et al. partitions the tree in a top-down
fashion to guarantee that, equivalently speaking, each tree has size in the range
[ 12k, k], while the algorithm by Jothi and Raghavachari cuts iteratively from the
Steiner tree a subtree of size in the range [12k, k]. It follows from Eqs. (1) and
(2) that the connection cost of both k-tree routings are at most 2R∗, implying
that the two algorithm are both (ρ + 2)-approximations for kMTR.

All the above approximation algorithms [1,9,10,3,6,12] show that the total
cost of a k-tree routing consists of two components: the weight of the initial
infeasible solution subgraph (such as a Hamiltonian cycle or a Steiner tree) and
the connection cost depending on the size range of the achieved routing trees
using Eqs. (1) and (2). These two components are seemingly independent but
actually closely related to each other. Efforts have been invested in developing
better tree partitioning schemes without increasing the total weight of the rout-
ing trees too much, compared with the weight of the initial infeasible solution
subgraph. For example, Morsy and Nagamochi [16] presented a tree partitioning
scheme that can, roughly speaking, guarantee a lower bound of 2

3k on the size of
the routing trees at a cost of 1

3 the weight of the starting Steiner tree. This gives
a new approximation algorithm with a worst-case performance ratio of (4

3ρ+ 3
2 ).

Unfortunately, this is not an improvement over the (ρ + 2)-approximation al-
gorithms unless ρ < 1.5 [16]. Cai et al. [5] were able to do better. Last year,
they presented at COCOA 2008 a slightly different but better tree partitioning
scheme to guarantee a lower bound of 5

8k on the size of the routing trees at
the expense of 1

4 the weight of the starting Steiner tree. Their algorithm is thus
a (5

4ρ + 8
5 )-approximation, a genuine improvement over the (ρ + 2)-algorithms,

given that ρ ≈ 1.55. Most recently, Cai et al. [4] further improved their tree
partitioning scheme to guarantee a better lower bound of 80√

2089+77
k on the size

of the routing trees, giving rise to a (5
4ρ +

√
2089+77

80 )-approximation algorithm
for kMTR.

In this paper, we show that at the same expense of 1
4 the weight of the

starting Steiner tree, the lower bound of 2
3k on the size of the routing trees can

be guaranteed. This results in a (5
4ρ+ 3

2 )-approximation algorithm for the kMTR
problem. On one hand, this algorithm outperforms the previous best by 0.0338;
On the other hand, it beats the (4

3ρ + 3
2 )-approximation algorithm by Morsy

and Nagamochi [16] for any possible value of ρ. The following Table 1 contains
a historical record of the approximation algorithms for kMTR, to the best of
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Table 1. A historical record of the approximation algorithms for kMTR

Year References Performance Ratio
1988 [1] 2ρ + 1 = 4.10
2004 [9,10] 4

2004/2005 [3,15] ρ + 2.4 = 3.95
2004/2005 [3,12,6] ρ + 2 = 3.55

2008 [16] 4
3
ρ + 3

2
= 3.5667

2008 [5] 5
4
ρ + 8

5
= 3.5375

2009 [4] 5
4
ρ +

√
2089+77

80
= 3.4713

2009 this paper 5
4
ρ + 3

2
= 3.4375

our knowledge. Nevertheless, it is worth pointing out that our new design and
analysis presented here are nothing but more careful case analysis, yet we doubt
that any further improvement is achievable along this tree partitioning line of
research, if no new techniques are introduced.

2 A (5
4
ρ + 3

2
)-Approximation Algorithm for kMTR

Following previous design, we first apply the best known ρ-approximation al-
gorithm for the SMT problem to obtain a Steiner tree T 0 on {s} ∪ D in the
underlying network (G, s, D). As discussed earlier, w(T 0) ≤ ρR∗, where R∗ de-
notes the weight of an optimal k-tree routing. Root tree T 0 at source s and
denote it as T 0

s . One may use n
k copies of tree T 0

s to form a k-tree routing, which
is apparently very expensive. In the sequel, we use Tv to denote the rooted sub-
tree at v in T 0

s , and Dv denotes the associated destination node set of Tv (i.e.,
Dv = D ∩ Tv). Also, for a child u of v in Tv, the subtree Tu together with edge
(v, u) is called the branch rooted at v and containing u. In the algorithm to be
presented, we will iteratively cut from T 0

s a rooted subtree Tr of certain size if
|T 0
s | > 4

3k. This cutting process does not duplicate any edge and thus would
not increase the tree weight. Nonetheless, (at most) one node might need to
be duplicated for connectivity purpose. We then show that using tree Tr, the
destination nodes in Dr can be routed at a cost

≤ 5
4
w(Tr) +

3
2
× 1

k

∑
d∈Dr

w(s, d). (3)

Given the rooted tree T 0
s , for any internal node v, we have the destination node

set Dv for the rooted subtree Tv. For ease of presentation, we say v has size |Dv|.
We assume the non-trivial case that source s has size > 4

3k. At each iteration,
the cutting process examines T 0

s in a bottom-up fashion. First of all, for any
u1, u2 being two children of v, if their total size is ≤ k, then the corresponding
two branches are merged into one (via a copy of v, say v′, and a dummy edge
(v, v′) of cost 0). If the process locates a node r of size in the range [23k, k], it
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cuts Tr off the tree and the destination nodes in Dr are routed by Lemma 1 with
the routing cost bounded by Eq. (3); Otherwise, define a node as extreme if its
size is > k but none of its children has size > k. It follows that every extreme
node v has at least two children (of size < 2

3k).
If there exists an extreme node r having more than two children, the process

cuts off exactly three branches rooted at r, together with a copy of r, to form a
three-branch subtree Tr. From the fact that the total size of every pair of two
subtrees is greater than k, one concludes that the size of Tr is in the open interval
(3
2k, 2k). The destination nodes in Dr are routed by Lemma 3 with the routing

cost accordingly bounded by Eq. (3). When every extreme node has only two
children, the process searches for a node of size in the range [43k, 2k].

If a such node is found, say u, then u will have exactly one descendent, say r,
which is extreme. The process cuts Tu off the Steiner tree and re-roots it at r,
subsequently denoted as Tr. Two cases are distinguished depending on the size
of Dr, the set of destination nodes in Tr. If |Dr| ≥ 3

2k, then these destination
nodes are routed again by Lemma 3 with the routing cost accordingly bounded
by Eq. (3); If |Dr| < 3

2k, then the destination nodes are routed by Lemma 4
with the routing cost accordingly bounded by Eq. (3). The remaining case is
that every extreme node has exactly two children, and every node has size in
the range (0, 2

3k] ∪ (k, 4
3k) ∪ (2k, n].

Now, for any node v of size > 2k, if none of its children has size > 2k, then
v is called super. Clearly, a super node must have at least two children, each of
which has size in the range (0, 2

3k] ∪ (k, 4
3k). Note that if there are two children

of size ≤ 2
3k, we can merge the two corresponding branches into one (via a copy

of v, say v′, which becomes an extreme node, and a dummy edge (v, v′) of cost
0). It follows that we may assume without loss of generality that there is at most
one child of size ≤ 2

3k. Consequently, there are at least two children of size in
the open interval (k, 4

3k). The process locates a super node r, cuts off exactly
two of its branches of size > k, together with a copy of r, to form a two-branch
subtree Tr. The number of destination nodes in this subtree Tr, |Dr|, is thus in
the range (2k, 8

3k). Two cases are distinguished depending on the actual size of
Dr: If |Dr| ≤ 5

2k, then these destination nodes are routed by Lemma 5 with the
routing cost accordingly bounded by Eq. (3); If |Dr| > 5

2k, then the destination
nodes are routed by Lemma 6 with the routing cost accordingly bounded by
Eq. (3).

At the end, when no subtree can be cut out of the base Steiner tree, still
denoted as T 0

s , we conclude that the size of T 0
s is in the range (0, 2

3k] ∪ (k, 4
3k).

In the former case, this residual tree is taken as a routing tree to route the
destination nodes therein, with routing cost w(T 0

s ); In the latter case, the residual
tree is split into two routing trees to route the destination nodes therein, with
the total routing cost ≤ w(T 0

s ) + 1
k

∑
d∈Ds

w(s, d) [5]. Summing up, the main
result is the following:

Theorem 1. kMTR (k ≥ 3) admits a (5
4ρ+ 3

2 )-approximation algorithm, where
ρ is the currently best performance ratio for approximating the Steiner Minimum
Tree problem.
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Proof. Notice that whenever a subtree Tr is cut out of the base Steiner tree T 0
s ,

we do not increase the weight of the trees, though we might need to duplicate a
certain (Steiner or destination) node for connectivity purpose. The total routing
cost for Tr, as proven in Lemmas 1 and 3–6, is upper bounded by Eq. (3):
5
4w(Tr) + 3

2 ×
1
k

∑
d∈Dr

w(s, d). The total routing cost for the residual Steiner
tree is also upper bounded by Eq. (3). Therefore, the total routing cost for the
output k-tree routing is R ≤ 5

4w(T 0
s ) + 3

2 ×
1
k

∑
d∈D w(s, d) ≤ 5

4w(T 0
s ) + 3

2R∗,
where the last inequality follows from Eq. (1). Since w(T 0

s ) ≤ ρR∗, we have
R ≤ (5

4ρ + 3
2 )R∗. �

2.1 Technical Lemmas

Lemma 1. [5] Given a Steiner tree Tr such that

– 2
3k ≤ |Dr| ≤ k,

the routing cost for Tr is ≤ w(Tr) + 3
2 ×

1
k

∑
d∈Dr

w(s, d).

Lemma 2. [3,6] Given a Steiner tree Tr such that

– k < |Dr| ≤ 3
2k.

It is always possible to partition T into two subtrees of size ≤ k, such that the
total routing cost for these subtrees is ≤ w(Tr) + 2× 1

k

∑
d∈Dr

w(s, d).

Lemma 3. [5] Given a Steiner tree Tr such that

– 3
2k < |Dr| ≤ 2k;

– root node r has exactly three child nodes v1, v2, v3; and
– |Dv1 | < 2

3k, |Dv2 | < 2
3k, and |Dv1 |+ |Dv2 | > k.

It is always possible to partition Tr into two or three subtrees of size ≤ k, such
that the total routing cost for these subtrees is ≤ 5

4w(Tr) + 3
2 ×

1
k

∑
d∈Dr

w(s, d).

Lemma 4. Given a Steiner tree Tr such that

– 4
3k ≤ |Dr| < 3

2k;
– root node r has exactly three child nodes v1, v2, v3; and
– |Dv1 | < 2

3k, |Dv2 | < 2
3k, and |Dv1 |+ |Dv2 | > k.

It is always possible to partition Tr into two subtrees of size ≤ k, such that the
total routing cost for these subtrees is ≤ 5

4w(Tr) + 3
2 ×

1
k

∑
d∈Dr

w(s, d).

Proof. By the conditions in the lemma, |Dv3 | < 1
2k. Without loss of generality,

we assume that |Dv1 | ≤ |Dv2 |. Then, |Dv2 | > 1
2k. For each i ∈ {1, 2, 3}, let Bi be

the branch rooted at r and containing vi. We distinguish two cases as follows.

Case 1: [4] |Dv3 |+ |Dv2 | ≤ k. In this case, |Dv3 |+ |Dv1 | ≤ k. Among the nodes
in Dr, we find the 2

3k closest nodes to s, and form them into a set C. Similarly,
among the nodes in Dr, we find the 2

3k farthest nodes from s, and form them
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into a set F . Since |Dr| ≥ 4
3k, F ∩ C = ∅. Moreover, since |Dvi | < 2

3k for each
i ∈ {1, 2, 3}, there are at least two indices i ∈ {1, 2, 3} such that (Dvi) ∩ C 	= ∅.
If (Dv3) ∩ C = ∅, then we set X1 = B1 and construct X2 by initializing it
as the union of B2 and B3 and then minus r. Otherwise, we find an index
i ∈ {1, 2} with (Dvi) ∩ C 	= ∅, set X1 = Bi and construct X2 by initializing
it as the union of Bj and B3 and then minus r, where j is the other index in
{1, 2} − {i}. In any case, |Dr ∩ X1| ≤ k, |Dr ∩ X2| ≤ k, (Dr ∩ X1) ∩ C 	= ∅,
and (Dr ∩ X2) ∩ C 	= ∅. Obviously, one of Dr ∩ X1 and Dr ∩ X2 contains d′

which is the closest destination node to s among the nodes in Dr. We assume
that Dr ∩X1 contains d′; the other case is symmetric. Then, c(X1) ≤ w(s, d′) ≤
3
2 ×

1
k

∑
d∈C w(s, d). Moreover, since (Dr ∩X2)∩C 	= ∅, c(X2) ≤ w(s, d′′) where

d′′ is the farthest destination node from s among the nodes in C. Furthermore,
since C∩F = ∅, w(s, d′′) ≤ w(s, d′′′) where d′′′ is the closest destination node to s
among the nodes in F . Thus, c(X2) ≤ w(s, d′′′) ≤ 3

2×
1
k

∑
d∈F w(s, d). Therefore,

c(X1) + c(X2) ≤ 3
2 ×

1
k

∑
d∈Dr

w(s, d). Consequently, the total routing cost of
X1 and X2 is at most w(Tr) + 3

2 ×
1
k

∑
d∈Dr

w(s, d), and the lemma is proved.

Case 2: |Dv3 | + |Dv2 | > k. We assume that |Dv2 | = (1
2 + p)k. Note that since

|Dv1 |+ |Dv2 | > k, we have |Dv1 | > (1
2 −p)k; Likewise, we have |Dv3 | > (1

2 −p)k.
These two together imply that |Dv1 |+ |Dv3 | ∈ ((1 − 2p)k, (1− p)k). Therefore,
in the first routing option, we set X1 = B2 and construct X2 by initializing it
as the union of B1 and B3 and then minus r. It follows that the connection
cost c(X1) ≤ 1

1
2+p ×

1
k

∑
d∈Dv2

w(s, d), and the connection cost c(X2) ≤ 1
1−2p ×

1
k

∑
d∈Dv1∪Dv3

w(s, d). Since p ∈ (0, 1
6 ), the total routing cost of X1 and X2 is

w1 ≤ w(Tr) + 1
1
2+p ×

1
k

∑
d∈Dr

w(s, d).
Next, among the three branches, we select the one having the minimum weight

and duplicate it. Assume without loss of generality that B1 has the minimum
weight. Then, w(B1) ≤ 1

3w(Tr). We create two routing trees out of this tree,
one is the union of one copy of branch B1 and branch B2 and the other the
union of the other copy of branch B1 and branch B3 and then minus r. The
destination nodes routed by the first routing tree include the ones in Dv2 and a
subset of Dv1 , such that their number is exactly 1

2 |Dr|, which is > (3
4 −

1
2p)k;

The destination nodes routed by the second routing tree include the ones in Dv3

and the remainder of Dv1 . It follows that the total routing cost of the second
routing option is w2 ≤ 4

3w(Tr) + 1
3
4− 1

2p
× 1

k

∑
d∈Dr

w(s, d).

Note that min{w1, w2} ≤ 1
4w1 + 3

4w2 = 5
4w(Tr) +

(
1

4( 1
2+p) + 3

4( 3
4− 1

2p)

)
×∑

d∈Dr
w(s, d) = 5

4w(Tr) + 9+10p
(2+4p)(3−2p)

∑
d∈Dr

w(s, d). From 0 < p < 1
6 , we

conclude that min{w1, w2} < 5
4w(Tr)+ 3

2×
1
k

∑
d∈Dr

w(s, d), since 9+10p
(2+4p)(3−2p)−

3
2 = p(6p−1)

(1+2p)(3−2p) < 0. Therefore, in this case, choosing the better option between
the two proves the lemma. �

Lemma 5. [5] Given a Steiner tree Tr such that:

– 2k < |Dr| ≤ 5
2k;

– root node r has exactly two child nodes v1, v2, and k < |Dv1 |, |Dv2 | < 4
3k;
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– for i = 1, 2, within Tvi , there is a node ui which has exactly two child nodes
xi1 and xi2;

– for i = 1, 2, |Dxi1 | < 2
3k, |Dxi2 | < 2

3k, and |Dxi1 |+ |Dxi2 | > k.

It is always possible to partition Tr into three subtrees of size ≤ k, such that the
total routing cost for these subtrees is ≤ 5

4w(Tr) + 3
2 ×

1
k

∑
d∈Dr

w(s, d).

Lemma 6. [4] Given a Steiner tree Tr such that

– 5
2k < |Dr| < 8

3k;
– root node r has exactly two child nodes v1, v2, and k < |Dv1 |, |Dv2 | < 4

3k;
– for i = 1, 2, within Tvi , there is a node ui which has exactly two child nodes

xi1, xi2;
– for i = 1, 2, |Dxi1 | < 2

3k, |Dxi2 | < 2
3k, and |Dxi1 |+ |Dxi2 | > k.

It is always possible to partition Tr into three or four subtrees of size ≤ k, such
that the total routing cost for these subtrees is ≤ 5

4w(Tr) + 3
2 ×

1
k

∑
d∈Dr

w(s, d).

Proof. The proof of this lemma is included in Appendix for reviewing purpose,
since the submission to Theoretical Computer Science is still under review. �

3 Conclusions

We have presented a (5
4ρ + 3

2 )-approximation algorithm for kMTR. This perfor-
mance ratio was targeted in several previous works [16,5,4], but never achieved.
We conjecture that this ratio is the best possible by this line of tree-partitioning
based approximation algorithms. To design better approximations, certain new
techniques other than tree-partitioning might need to be introduced.
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Appendix: Proof of Lemma 6

The proof is provided here since Ref [4] is still under review.

Proof. We give two options to route all the destination nodes in Dr. In the first
option, we obtain four routing trees each of size at most k by applying Lemma 2
separately to Tv1 and to the branch rooted at r and containing v2. The total
routing cost of these four resultant trees is w1 ≤ w(Tr) + 2× 1

k

∑
d∈Dr

w(s, d).
We next describe the second option. For each i ∈ {1, 2} and each j ∈ {1, 2},

let Bi,j be the branch rooted at ui and containing xi,j . For each i ∈ {1, 2}, let
Bi be the branch rooted at r and containing vi. Let T3 be the tree obtained
from B1 by deleting x1,1, x1,2, and their descendants. Similarly, let T4 be the
tree obtained from B2 by deleting x2,1, x2,2, and their descendants. Clearly,
Dr = Dx1,1 ∪Dx1,2 ∪ (Dr ∩T3)∪ (Dr ∩T4)∪Dx2,1 ∪Dx2,2 . Moreover, |Dr ∩T3| ≤
|Dv1 |−|Dx1,1 |−|Dx1,2 |+1 ≤ (4

3k−1)−(k+1)+1 < 1
3k. Similarly, |Dr∩T4| < 1

3k.
We distinguish two cases as follows.

Case 1: w(B1,2) + w(B2,2) ≤ min{w(T4) + w(B1,1), w(T3) + w(B2,1)}. In this
case, w(B1,2) + w(B2,2) ≤ 1

3w(Tr). We find a subset Q1 of Dx1,2 such that
|Dx1,1 | + |Q1| =

⌈1
3 |Dr|

⌉
. Set Q1 exists because |Dx1,1 | < 2

3k, |Dx1,2 | < 2
3k,

|Dx1,1 | + |Dx1,2 | > k, and 5
6k <

⌈1
3 |Dr|

⌉
≤ k. Similarly, we find a subset Q2 of

Dx2,2 such that |Dr∩B2,1|+ |Q2| =
⌊1

3 |Dr|
⌋
. Set Q2 exists because |Dx2,1 | < 2

3k,
|Dx2,2 | < 2

3k, |Dx2,1 | + |Dx2,2 | > k, and 5
6k ≤

⌊1
3 |Dr|

⌋
≤ k. We are now ready

to construct three routing trees X1, X2, and X3 as follows. For i ∈ {1, 2},
we construct Xi by initializing it as Tui , with its destination node set being
Dui − (Dxi,2 −Qi) and minus ui if it has been routed. We construct X3 from Tr
by deleting x1,1, x2,1, and all of their descendants, and further excluding nodes
of Q1∪Q2 from the routing. X3 has its destination node set Dr−Dx1,1−Dx2,1−
Q1 − Q2. Note that |Dr ∩ X3| is equal to

⌊ 1
3 |Dr|

⌋
or

⌈1
3 |Dr|

⌉
. Obviously, the

total routing cost of X1, X2, and X3 is w2 ≤ 4
3w(Tr) + 6

5 ×
1
k

∑
d∈Dr

w(s, d).
Since min{w1, w2} ≤ 1

4w1 + 3
4w2 ≤ 5

4w(Tr) + 7
5 ×

1
k

∑
d∈Dr

w(s, d). So, choosing
the better option among the two proves the lemma.

Case 2: w(B1,2) +w(B2,2) > min{w(T4)+ w(B1,1), w(T3)+ w(B2,1)}. Without
loss of generality, we assume that w(T4) + w(B1,1) ≤ w(T3) + w(B2,1). Then,
w(T4)+w(B1,1) < 1

3w(Tr). We find a subset Q1 of Dx1,1 such that |Q1|+|Dx1,2 | =
k. Note that |Dx1,1−Q1|+ |Dr∩T3| ≤ 1

3k because |Dv1 | < 4
3k. We are now ready

to construct three routing trees X1, X2, and X3 as follows. We construct X1 by
initializing it as Tu1 , with its destination node set being Du1 − (Dx1,1 − Q1)
and minus u1 if it has been routed. Note that the connection cost of X1 is
c(X1) ≤ 1

k

∑
d∈(Dx1,1−Q1)∪Dx1,2

w(s, d).
We construct X2 and X3 as follows. First, we obtain a subtree Y from Tr

by removing x1,2, x2,1, x2,2, and all of their descendants, and further excluding
nodes of Q1 ∪ (Dr ∩ T4) from the routing. Note that |Dr ∩ Y | = |Dx1,1 −Q1|+
|Dr ∩T3| ≤ 1

3k. We then sort the nodes in Dr−Dx1,2 −Q1 in ascending order of
their distances to s in G. Let F contain the last 3

4k nodes in the sorted sequence,
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and let C contain the other nodes in the sequence. Since |Dr−Dx1,2−Q1| ≥ 3
2k,

we have |C| ≥ 3
4k. We now look at the four sets: Dx2,1 , Dx2,2 , Dr ∩ T4, and

Dr ∩ Y . Each of the first two sets is of size at most 2
3k− 1 while each of the last

two sets is of size at most 1
3k. Thus, at least two of the four sets contain at least

one node of C. Consequently, we can always divide the four sets into two groups
G1 and G2 that satisfy the following two conditions:

1. G1 contains Dx2,1 and one of Dr ∩ T4 and Dr ∩ Y , while G2 contains Dx2,2

and the other of Dr ∩ T4 and Dr ∩ Y . (Comment: The total size of sets in
G1 is at most k and the total size of sets in G2 is at most k.)

2. At least one set in G1 contains a node of C and at least one set in G2 contains
a node of C.

If G1 contains Dr ∩ T4, then we let X2 be the union of B2,1 and T4 and let
X3 be the union of B2,2 and Y ; otherwise, we let X2 be the union of B2,1
and Y and let X3 be the union of B2,2 and T4. In any case, we exclude u2

in one of X2 and X3 for routing if it has been routed in Tr. By Condition 1,
|Dr ∩ X2| ≤ k and |Dr ∩ X3| ≤ k. By Condition 2, (Dr ∩ X2) ∩ C 	= ∅ and
(Dr ∩X3) ∩ C 	= ∅. Obviously, one of Dr ∩X2 and Dr ∩X3 contains d′ which
is the closest destination node to s among the nodes in (Dr ∩X2) ∪ (Dr ∩X3).
We assume that Dr ∩ X2 contains d′; the other case is similar. It follows that
the connection cost c(X2) ≤ w(s, d′) ≤ 4

3 ×
1
k

∑
d∈C w(s, d). Moreover, since

(Dr∩X3)∩C 	= ∅, the connection cost c(X3) ≤ w(s, d′′) where d′′ is the farthest
destination node from s among the nodes in C. Furthermore, since C ∩ F = ∅,
w(s, d′′) ≤ w(s, d′′′) where d′′′ is the closest destination node to s among the
nodes in F . Thus, c(X3) ≤ w(s, d′′′) ≤ 4

3 ×
1
k

∑
d∈F w(s, d). Therefore, c(X2) +

c(X3) ≤ 4
3 ×

1
k

∑
d∈Dr−(Dr∩X1) w(s, d). Consequently, the total routing cost of

X1, X2, and X3 is w2 ≤ 4
3w(Tr)+ 4

3×
1
k

∑
d∈Dr

w(s, d), because w(X1)+w(X2)+
w(X3) = w(Tr) + w(B1,1) + w(T4) ≤ 4

3w(Tr). Finally, since min{w1, w2} ≤
1
4w1 + 3

4w2 ≤ 5
4w(Tr) + 3

2 ×
1
k

∑
d∈Dr

w(s, d), choosing the better option among
the two proves the lemma. �
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Abstract. We present a routing algorithm that finds n disjoint short-
est paths from the source node to n target nodes in the n-dimensional
hypercube in O(n3) = O(log3 N) time, where N = 2n, provided that
such disjoint shortest paths exist which can be verified in O(n5/2) time,
improving the previous O(n3 log n) routing algorithm. In addition, the
development of this algorithm also shows strong relationship between the
problems of the disjoint shortest paths routing and matching.

1 Introduction

One of several well-known disjoint path paradigms [1,2,16] for any interconnec-
tion network is as follows: given a source node and k target nodes, find k disjoint
paths from the source to each target node (node-to-set). Other paradigms include
node-to-node and set-to-set. There are large amount of work done on many well-
known interconnection networks for various paradigms that are too numerous
to list, among them, vast number of publications in the literature are devoted
to various routing algorithms on the hypercube alone. This specific node-to-set
routing problem has also been studied extensively for the hypercube in, for ex-
ample, [6,10,11], to list just a few. Algorithms for this routing are shown to be
useful in designing efficient and fault tolerant routings for the corresponding
network [2].

In this paper, we study a special version of this disjoint path problem for
the hypercube: given a fixed node (source) and n other nodes (targets) in a
hypercube of dimension n, find n disjoint shortest paths from the source node
to all target nodes, where two paths are disjoint if they do not share any node
except the source node, if these paths do exist. Because of the symmetry, without
loss of generality, from now on, we assume that the source is the node 0. To the
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best of our knowledge, [13] and [4] are two of the earliest works on this subject.
Most of the routing algorithms for the hypercube find disjoint paths from 0 to n
target nodes in an n-cube with N = 2n nodes whose lengths are bounded but are
not necessarily the shortest. For example, it is shown in [15] that there exist n
disjoint paths in an n-cube such that all paths have lengths no longer than n+1
while in [13], it is shown that n disjoint paths exist such that at most one path
has length n + 1 and all other paths have length no more than n. Please refer
to [3] for the general problem of finding the Rabin Number of interconnection
networks. Note that a path from 0 to node u is shortest if d(0, u) = H(u), the
Hamming weight of u. Also note that some routing algorithms may find the
disjoint paths that are shortest possible for the set of target nodes but not the
shortest.

When we impose the condition that these disjoint paths be the shortest, it is
clear that such paths exist only for certain sets of n target nodes in an n-cube.
A necessary and sufficient condition was presented for such paths (disjoint and
shortest) to exist for a set of n target nodes in [13]. This condition was later
generalized in [4]. In addition, an O(n4) = O(log4 N) routing algorithm was
given to find n disjoint shortest paths in cases they do exist. An O(n3 log n)
algorithm was given later in [14].

In the next section, we present an O(n3) routing algorithm that finds n disjoint
shortest paths from n target nodes to the node 0, thus improving the previous
algorithms given in [4] and [14]. The possible relationship among different disjoint
path paradigms is briefly discussed in Section 3.

2 Node-to-Set Disjoint Shortest Paths Routing

Before we present our routing algorithm, we briefly describe the following result
given in [13,4]:

Given n non-zero distinct target nodes u1, u2, ..., un in a hypercube of di-
mension n with N = 2n nodes, there exist n disjoint shortest paths from node 0
to them if and only if for any 1 ≤ k ≤ n− 1, at most k nodes in the set of target
nodes all have 0 at the same n− k coordinates.

Although the proof was somewhat involved, simply stated, this condition says
that such paths exist if and only if no k-subcube containing the node 0 contains
more than k target nodes.

We can state this condition yet another way that is crucial to developing our
routing algorithm as follows.

Assume that the n target nodes’ binary representations are

u11u12...u1n,

u21u22...u2n,

...
un1un2...unn.
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The binary representations of the n nodes can be viewed as the adjacency matrix
of a bipartite graph and the condition that for any 1 ≤ k ≤ n−1, at most k nodes
in the set of target nodes all have 0 at the same n − k coordinates means that
Hall’s condition [8] is satisfied, i.e., n disjoint shortest paths exist if and only if
there exists a permutation i1i2 · · · in of symbols from {1, 2, · · · , n} such that u1,i1
= u2,i2 = · · · = un,in = 1. This is a direct result of Corollary 1 [4]. In other words,
there exists a perfect matching for the bipartite graph or, equivalently, there is
an optimal solution with cost n to the corresponding classic assignment problem
[12] represented by the cost matrix which is the set of binary representations
(note that to view the problem as an assignment problem, all 0 entries should
be changed to a fixed value greater than 1). This description of the necessary
and sufficient condition plays a critical role in our routing algorithm.

For example, for the following four nodes represented as a 4× 4 cost matrix⎛⎜⎜⎝
0 1 1 0
1 0 0 0
0 1 1 1
1 0 0 1

⎞⎟⎟⎠
it represents a bipartite graph G = ({A, B, C, D, a, b, c, d}, {(A, b), (A, c), (B, a),
(C, b), (C, c), (C, d), (D, a), (D, d)}). One possible assignment is⎛⎜⎜⎝

0 1 1© 0
1© 0 0 0
0 1© 1 1
1 0 0 1©

⎞⎟⎟⎠
where the assignment solution is circled. This particular assignment is equivalent
to a perfect matching of {(A, c), (B, a), (C, b), (D, d)}. Note that the solution to
the assignment problem (and thus the perfect matching problem) is not unique.

Finding a maximum (perfect) matching for a bipartite graph with 2n vertices
can be done in O(n5/2) [9].

We will first describe a key step in our routing algorithm in the next subsec-
tion. We then discuss its implementation and the analysis.

2.1 Node Reduction

The key step in our routing algorithm is based on the following simple observa-
tion:

Theorem 1. Given n non-zero nodes satisfying the necessary and sufficient
condition for n disjoint shortest paths to exist,

u1 = u11u12...u1n

u2 = u21u22...u2n

...
un = un1un2...unn,
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then for any node ui, we can find u
′
i such that H(u

′
i ⊕ ui) = 1, that is, H(u

′
i) =

H(ui) − 1 and (ui, u
′
i) is an edge in the hypercube. Furthermore, if H(ui) > 1,

i.e., u
′
i 	= 0, then nodes u1, u2, ..., ui−1, u

′
i, ui+1, ..., un still satisfy the necessary

and sufficient condition.

The theorem is trivially true since we can simply take the node next to ui on
its shortest path to 0 as u

′
i. We call the process to find such an u

′
i from ui a

reduction. We now show how a reduction can be performed.
We assume that an assignment has been found.
For node ui, for each 1 other than the 1 in the assignment solution, remove

it and see whether the resulting u
′
i is not equal to any of the other n− 1 nodes.

If such a 1 exists, remove it and we have found our u
′
i. Otherwise (removing

any such a 1 results in a node equal to uj for some j ∈ {1, 2, · · · , n} − {i}), the
situation can be illustrated below when removing the bold 1 will result in ui
becoming uj :

u1

u2

...
uj uj1uj2 · · · 0 · · · 1©· · · 1 · · ·ujn

...
ui uj1uj2 · · ·1 · · · 1 · · · 1©· · ·ujn
...

un

Note that because the n target nodes satisfy the necessary and sufficient condi-
tion, there have to be two indices l and m (l 	= m) such that

ujl = ujm = uil = uim = 1,

and ujl and uim are part of the assignment. We can get a new assignment by
switching the two 1©’s while keeping the remaining assignment intact as follows:

u1

u2

...
uj uj1uj2 · · · 0 · · · 1 · · · 1©· · ·ujn

...
ui uj1uj2 · · · 1 · · · 1©· · ·1 · · ·ujn
...

un
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Note that because the nodes do satisfy the necessary and sufficient condition for
disjoint shortest paths to exist and crossing any 1 in ui other than 1 results in
another target node, we know for sure that removing the 1 will generate a node
that is different from any other target node. More precisely, let v = v1v2 · · · vn
be the node such that v and ui only differ at position m, namely, vk = uik for
k 	= m, uim = 1, and vm = 0. Let P = {p ∈ {1, 2, · · · , n} − {m}|uip = 1},
i.e., the collection of positions except at the position m where ui takes a 1.
By assumption, for every p ∈ P , there is a target node u such that u = ui,
except that u has a 0 at position p. Hence, the assignment as guaranteed by the
sufficient and necessary condition must include a position p′ ∈ P − {p}, where
u has a 1 at position p′. Since every such a position p corresponds to such a u,
every position in P is included in the aforementioned assignment for |P | such
nodes.

Now consider v. For all positions q /∈ P , including position m, v has a 0 at
position q. Therefore, no such position q may be included in the assignment for
v. Furthermore, by the definition of such an assignment, no position p ∈ P , at
which position v has a 1, can be included in the assignment for v, either. Thus,
none of the 1’s in v can be “circled”, a contradiction to the assumption that “an
assignment has been found.” Hence, v is indeed different from any other target
node.

Now we can remove the 1 (in bold) formerly as part of the assignment in ui to
get u

′
i and clearly, the new set of nodes still satisfy the necessary and sufficient

condition as an assignment still exists, H(ui⊕ u
′
i) = 1, and subsequently, H(u

′
i)

= H(ui) - 1.

2.2 Implementation and Analysis

We now discuss how to perform the above reduction and its time.
Before the reduction, the following pre-processing is done:

1. Convert the n binary representations into integers, also compute the Ham-
ming weights of all target nodes. Both sequences are then sorted.

2. Find an assignment (perfect matching).

Step 1 takes O(n2 + n log n) = O(n2) time while Step 2 takes O(n5/2) time.
Note that both steps are done only once at the very beginning of the entire
routing algorithm.

Note that in order to reduce a node ui, if we delete 1’s that are not in the
assignment solution, in the order from the most significant position to the least
significant position, we will get a sorted sequence of numbers. This observation
leads to an O(n) reduction:

If deleting a 1 results in a number v that is not equal to any of the remaining
n − 1 target nodes (O(1) time), delete this 1, the new value v is inserted into
the list of sorted targets (O(n) time). Similarly, the Hamming weight of the new
node is also computed in constant time since it is H(ui) - 1 and inserted to a
sorted list of Hamming weights.
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For example, for the cost matrix

u1 : 1 0 1 1©
u2 : 0 0 1© 1
u3 : 1 1© 0 1
u4 : 1© 0 1 0

and we want to reduce u1. The sorted sequence of target nodes is 3, 10, (11,)
13. Crossing out the first 1 results in 3; Crossing out the second 1 results in 9.
So we delete the second 1 and insert 9 into the sorted sequence of target nodes.

On the other hand, if no matter which 1 is deleted, the resulting node becomes
one of the remaining target nodes, as illustrated in the two cases below where
node u1 is to be reduced, then we can simply find any one of the remaining target
nodes and perform the reduction (by switching the 1’s in the assignment first)
and the updating mentioned above. The time for this operation is also O(n).

u1 : 1 1 1©
u2 : 0 1© 1
u3 : 1© 0 1

u1 : 1 0 1© 1
u2 : 0 0 1 1©
u3 : 1 1© 0 1
u4 : 1© 0 1 0

Therefore, a node reduction can be done in O(n) time.

2.3 The Routing Algorithm

We can now state the routing algorithm as follows:

1. While there exist nodes whose Hamming weights are all greater than 1, select
one node w such that H(w) = max

u
{H(u) > 1}; (The Hamming weights of

nodes can be computed at the beginning of the algorithm and updated after
each reduction so that this step takes O(n) time)

2. Perform a reduction as described above.

The routing algorithm is to simply apply the reduction O(n2) times, as there
are O(n2) 1’s in the n target nodes, until they are reduced to an assignment
solution, namely, the n neighbours of the node 0.

As for the total time t(n) of the routing algorithm for an n-cube, we need
O(n2) time to convert the n nodes to integer values, O(n log n) time to sort
them, O(n5/2) to find a perfect matching to get an assignment (these two steps
need to be done only once), and perform the O(n)-time reduction O(n2) times,
resulting in a total time of O(n3) = O(log3 N).
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Note that from the algorithm we always pick a node with the largest Hamming
weight to reduce at any time. This is important in order to avoid routing conflict
as described below.

...
· · · 1̄ · · · 1 · · · 1 · · · : u

...
· · · 1 · · · 1 · · · 1 · · · 1 · · · : v

...

where H(u) = 3 and H(v) = 4 and 1̄ indicates that the 1 was previously deleted
from u. If u is reduced first, we would have such a situation as described above.
Then when v is reduced, the leftmost 1 is tried first and it is found that the
resulting node is different from any of the other node, so that 1 is incorrectly
removed, while in fact, the resulting node is actually u.

The proof that the paths so obtained are disjoint is thus clear: if after a reduc-
tion, the resulting node becomes a node that is reduced earlier, then it means
that a node with smaller Hamming weight is reduced earlier, a contradiction.

Similarly, the paths found are the shortest since for each node, a 1 is removed
each time.

We end this section by an example. Given n = 5 nodes as follows:

u1 : 1© 1 0 0 0
u2 : 0 1 1© 0 0
u3 : 1 1© 1 0 0
u4 : 0 0 0 1© 1
u5 : 0 0 1 1 1©

with assignment solution circled. Since H(u3) = 3, we do the reduction on u3.
We first try the first 1 (from the left) and the resulting node is u2. We then
try the third 1 and the resulting node is u1. We then switch the two 1’s in the
assignment solution in u1 and u3 and remove the second 1 in u3 to get:

u1 : 1 1© 0 0 0
u2 : 0 1 1© 0 0
u3 : 1© 0 1 0 0
u4 : 0 0 0 1© 1
u5 : 0 0 1 1 1©

The next node to reduce is u5. When the third 1 is removed, the resulting node
becomes u4. So we remove the fourth 1 to obtain

u1 : 1 1© 0 0 0
u2 : 0 1 1© 0 0
u3 : 1© 0 1 0 0
u4 : 0 0 0 1© 1
u5 : 0 0 1 0 1©
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The next five reductions are straightforward and will end up with:

u1 : 0 1© 0 0 0
u2 : 0 0 1© 0 0
u3 : 1© 0 0 0 0
u4 : 0 0 0 1© 0
u5 : 0 0 0 0 1©

The five disjoint shortest paths are:

11000→ 01000→ 00000
01100→ 00100→ 00000
11100→ 10100→ 10000→ 00000
00011→ 00010→ 00000
00111→ 00101→ 00001→ 00000

3 Conclusion

We have developed an O(n3) = O(log3 N) routing algorithm that route n nodes
to the node 0 in an n-cube with N = 2n nodes, such that all n paths are disjoint
and shortest, provided that these paths exist. This time is an improvement over
the previously best known O(n3 log n) routing algorithm.

A trivial lower bound to this particular routing problem of finding disjoint
shortest paths in an n-cube is Ω(n2) as there are n paths each of length O(n)
(Indeed, if we drop the condition that the disjoint paths be the shortest, then
n-disjoint paths can be found in the optimal O(n2) time [6]). It remains to be
seen whether a better algorithm can be found. It is also clear from our discussion
that disjoint shortest paths for n nodes in an n-cube imply a perfect matching.
It remains to be seen what other possibly deeper relations exist between the
problems of finding disjoint shortest paths and matching.

It is worth pointing out that the node-to-set disjoint shortest paths problem
is a special instance of the disjoint shortest paths for pairs of vertices where
given m pairs of vertices [ui, vi], 1 ≤ i ≤ m, we are to find m disjoint shortest
paths from ui to vi such that each path is the shortest with distance H(ui ⊕ vi)
and these paths are disjoint [5] (A more general discussion of the problem of
finding pairwise disjoint paths in the hypercube can be found in [7]). This is
so because after the first step in the node-to-set disjoint shortest paths routing,
it becomes a routing from these n neighbours of 0 to the n target nodes. (An
O(n4) routing algorithm is given in [5] for a specific case of this problem for pairs
where H(ui⊕vi) = n.) Therefore, an efficient routing algorithm for the pair-wise
routing problem could be useful for our problem. Of course, before we use such
an algorithm, we have to pair these vertices (target nodes and the neighbours of
node 0) which itself is nontrivial.

It is also tempting to relate the two routing problems in other ways. For
example, one intuition is that there exist m disjoint shortest paths for m pairs
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if and only if there exist a source node in the m-cube such that there exist
m disjoint shortest paths from the source node to m target nodes ui or vi,
1 ≤ i ≤ m, and these paths pass through vi or ui. However, although this is
indeed the case for some instances, examples can be found where such a claim
is not true. Nevertheless, it is hoped that our approach can be used in routing
algorithms for other disjoint paths paradigms in some way.
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Abstract. In this paper we propose a new design for rearrangeable
multicast switching networks, which uses the minimum number of
intermediate nodes and a comparable number of switches. The newly
designed 3-stage N × N switching network has the minimum 2N inter-
mediate nodes and O(N5/3) switches and an efficient routing algorithm,
while the best known wide-sense nonblocking (and hence rearrangeable)
multicast 3-stage network uses O(N log N/ log log N) intermediate nodes
and O(N3/2 log N/ log log N) switches. The new design is constructed by
adding switches to a rearrangeable unicast Clos network. The design
and analysis of the design is done by a combinatorial approach, which
represents a switching network as a multistage bipartite graph, and the
middle stage as bipartite switch box, and routing requirements as hyper-
graph. The new routing algorithm is done by the edge ordering of regular
hypergraphs, a technique originated from job scheduling.

1 Introduction

Our study on rearrangeable multicast switching networks was motivated by the
design and implementation of on-chip reconfigurable interconnection networks
for multiple applications. A specific application calls for a subset of functional
modules with a specific interconnection pattern, and a switching network is used
to make different interconnections through switch reconfiguration. The objec-
tives of the on-chip switching network design is to yield a rearrangeable multicast
capability with a minimized number of switches and nodes for area and power
efficiency, a less number of depths for short signal delay, an efficient routing
algorithm for reconfiguration computing, and a simple structure for fabrication.

Switching networks have been studied extensively in the fields of commu-
nication networks and parallel/distribuited computing since the early work of
Clos [3]. Various routing capabilities such as strictly/wide-sense nonblocking,
rearrangable, unicast and multicast have been proposed and studied [8]. For
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instance, the most well-known Clos network c(m, n, r) is strictly nonblocking
for unicast when m ≥ 2n − 1 [3], and rearrangeable when m ≥ n [10,9]. For
multicast, it was known that a k-stage rearrangeable multicast N ×N network
(of N inputs and N outputs) has a lower bound of O(N1+1/k) switches and an
upper bound of O((N log N)1+1/k) switches [4]. While the best known construc-
tive design with an efficient routing algorithm is the Clos network c(m, n, r) with
m ≥ 2(n−1)(log r/ log log r)+(log r)1/2(n−1)+1, which is wide-sense nonblock-
ing with linear time routing algorithm. As a result, the corresponding N × N
3-stage wide-sense nonblocking (and hence rearrangeable) multicast network has
O(N3/2 log N/ log log N) switches [12].

In the application of reconfigurable interconnection network designs, we are
primarily interested in rearrangeable multicast networks and we consider both
switches and intermediate nodes as hardware cost. Since a nonblocking network
is also rearrangeable, nonblocking networks can be used for reconfigurable inter-
connection network designs. However, the known nonblocking multicast network
designs have a high cost on intermediate nodes. For instance, the wide-sense
nonblocking multicast N × N Clos network in [12] has O(N log N/ log log N)
intermediate nodes, while the minimum number of intermediate nodes required
in a 3-stage N ×N switching network is 2N . Our design strategy is to minimize
the number of switches under the condition of using the minimum number of
intermediate nodes.

In this paper we propose a new design for rearrangeable multicast switching
networks, which uses the minimum number of intermediate nodes and has a
low cost on the number of switches. As for 3-stage N × N networks, the new
design has O(N5/3) switches and 2N intermediate nodes and an efficient routing
algorithm. The new design is derived by adding switches to the middle stage of
the rearrangeable unicast Clos network c(n, n, r), while the analysis is done by a
combinatorial approach. We represent a 3-stage switching network by a 3-stage
directed graph (or digraph) [8]. We then model the middle stage of a Clos type
network as a switch box. By FPGA switch box design theory in [5], the 3-stage
network is rearrangeable for multicast if the middle switch box is hyperuniversal.
The middle switch box of Clos network c(n, n, r) is not hyperuniversal, however,
we proved that by adding some extra switches, a hyperuniversal switch box can
be obtained. In Section 2, we give the graph definitions of switching networks,
switch boxes, routing requirements, and routings in switch box and networks.
Section 3 proves the rearrangebility of the newly designed network using the
edge ordering of regular hypergraphs and a theorem from job scheduling.

2 Definitions

In this section we first describe the graph representation of a switching network,
then give the definition of bipartite switch box and hyperuniversal switch box,
and the relation between hyperuniversal switch box and rearrangeable multicast
3-stage switching network, and finally present the new rearrangeable multicast
network design.
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(a) Clos network c(2, 2, 2) (b) Clos network in mutistage bipartite graph

(c) Routing for unicast calls (d) Routing for multicast calls 
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Fig. 1. Graph modeling of switching networks

2.1 The Graph Representation of Switching Networks

We use a multistage bipartite graph to represent a multistage switching network.
A k-stage bipartite graph is a digraph G = (V0 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek), where
V0, . . . , Vk are disjoint vertex sets, and each edge (or arc) in Ei is from a vertex in
Vi−1 to a vertex in Vi. The vertices of Vi are said to be at rank i, and the subgraph
Gi = (Vi−1∪Vi, Ei) is called the i-th stage of G, and we write G = G1 + · · ·+Gk.

A multistage bipartite graph represents a switching network with edges as
switches and vertices as nodes. Particularly, vertices in V0 and Vk represent
input nodes and output nodes, and vertices in Vi, 1 ≤ i ≤ k− 1 are intermediate
nodes. Denoted by e(G) and n(G) the numbers of edges and vertices of G. With
the graph modeling, the routing of a unicast (or one-to-one) call/request is a
path from an input vertex to an output vertex, and the routing of a multicast
(or one-to-many) call/request is a tree with root at an input vertex and leaves
at output vertices. Fig.1(a), (b), (c) and (d) show the Clos network c(2, 2, 2),
its representation as a 3-stage bipartite graph, and a routing for the unicast
calls {(p0,1,1, {p3,2,2}), (p0,1,2, {p3,1,1}), (p0,2,1, {p3,1,2}), (p0,2,2, {p3,2,1})}, and a
routing for the multicast calls {(p0,1,1, {p3,1,2, p3,2,1}), (p0,2,2, {p3,1,1, p3,2,2})}.

A switching network modeled as a multistage bipartite graph can be imple-
mented by a circuit of multistage crossbar, in which an edge corresponds to a
crosspoint switch, and a vertex corresponds to a wire (either vertical or hori-
zontal). Fig.2(a) shows the multistage crossbar of Fig.1(b). It can also be im-
plemented by a multiplexor network, in which an edge corresponds to a wire
and a non-input vertex corresponds to a multiplexor, see Fig.2(b). In both
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Fig. 2. Implementations of multistage switching networks

implementations, vertices and edges in the multistage bipartite graph contribute
hardware costs. Therefore, we want to minimize the usage of both edges and ver-
tices in switching network design for efficient implementations.

2.2 The Switch Box of Clos Network

We use the 3-stage Clos network as a base structure. Fig.3(a) shows the general
Clos network c(m, n, r), which can be represented as a 3-stage bipartite graph
as, c(m, n, r) = (V0 ∪ V1 ∪ V2 ∪ V3, E1 ∪ E2 ∪ E3), where

V0 = {p0,j,s : j = 1, . . . , r, s = 1, . . . , n},
V1 = {p1,j,s : j = 1, . . . , r, s = 1, . . . , m},
V2 = {p2,j,s : j = 1, . . . , r, s = 1, . . . , m},
V3 = {p3,j,s : j = 1, . . . , r, s = 1, . . . , n},
E1 = {(p0,j,s, p1,j,t) : 1 ≤ j ≤ r, 1 ≤ s ≤ n, 1 ≤ t ≤ m},
E2 = {(p1,j,t, p2,h,t) : 1 ≤ j, h ≤ r, 1 ≤ t ≤ m},
E3 = {(p2,j,s, p3,j,t) : 1 ≤ j ≤ r, 1 ≤ s ≤ m, 1 ≤ t ≤ n}.

Fig.3(b) shows the graph representation of c(n, n, r).
In terms of switch boxes [5], the middle stage of c(m, n, r) is a bipartite switch

box of r sides on each part and m vertices on each side. That is, the middle
stage G2 = (V1 ∪ V2, E2) has part one V1 consisting of r sides Ij = {p1,j,s :
s = 1, . . . , m}, j = 1, . . . , r, and part two V2 consisting of r sides Oj = {p2,j,s :
s = 1, . . . , m}, j = 1, . . . , r. An edge in E2 is joining a vertex in V1 to a vertex
in V2. We refer to this type of switch box as (2r, m)-bipartite switch box (or
(2r, m)-BSB).

In general, let G′
2 = (A1 ∪ · · · ∪Ar ∪B1 ∪ · · · ∪Br, E) denote a (2r, m)-BSB,

where |A1| = · · · = |Ar| = |B1| = · · · = |Br| = m, and each edge in E is joining a
vertex in A1∪· · ·∪Ar and a vertex in B1∪· · ·∪Br. A multipin net on a (2r, m)-
BSB is a pair (a, b), where a ∈ {1, . . . , r}, b ⊂ {1, . . . , r}. Particularly, when
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Fig. 3. Clos network c(m, n, r)) and its graph representation

|b| = 1, it is called a 2-pin net. A routing of net (a, b) in G′
2 is a star shaped tree

subgraph T with the root in Aa and |b| leaves, one in each Bi for i ∈ b. A routing
requirement on G′

2 is a collection of nets R′ = {(ai, bi) : i = 1, . . . , t} such that for
each j = 1, . . . , r, |{i : ai = j, i = 1, . . . , t}| ≤ m, |{i : j ∈ bi, i = 1, . . . , t}| ≤ m.
This constraint means that the number of nets going to each side does not
exceed m, the number of vertices on the side. The routing of R′ in G′

2 is a forest
(a disjoint union of subtrees) T = T1 + · · · + Tt such that Ti is a routing of
(ai, bi), i = 1, . . . , t. We say, G′

2 is hyperuniversal if it has a routing for every
routing requirement on G′

2. Particularly, G′
2 is called universal [2] if it has a

routing for every routing requirement consisting of 2-pin nets.

2.3 Hyperuniversal Bipartite Switch Box and Rearrangeable
Multicast Network

Next we consider the Clos network c(m, n, r) with m = n. The middle stage G2
of c(n, n, r) is a (2r, n)-BSB. Each side of the BSB is connected with a complete
n×n bipartite graph in stage one/three. With such a construction, if the middle
BSB is universal/hyperuniversal, then the 3-stage network is rearrangeable for
unicast/multilcast. To illustrate this relation, we next show that the Clos network
c(n, n, r) is rearrangeable for unicast by showing that its middle (2r, n)-BSB G2
is universal.

Clearly, G2 is a disjoint union of n complete r × r bipartite graphs, i.e.,
G2 = M1 + · · ·+ Mn, where Ms = ({p1,j,s, p2,j,s : j = 1, . . . , r}, {(p1,j,s, p2,j′,s) :
j, j′ = 1, . . . , r}), s = 1, . . . , n. Any 2-pin routing requirement R′ on G2 can be
represented as a multiple bipartite graph over vertex set {i1, . . . , ir}∪{o1, . . . , or}
of degree at most n by converting 2-pin net (a, {a′}) to an edge (a, a′). Then
by applying Hall’s theorem [7], R′ can be decomposed into at most n 1-factors
(subgraph of maximum degree 1), R′ = F1 + · · · + Fn. Since Mi is a complete
r × r bipartite graph, Fi has a routing in Mi, i = 1, . . . , n. This implies that G2
is universal. Given a unicast call R on c(n, n, r), R induces a 2-pin net routing
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requirement R′ on G2 by converting each request (p0,j,s, {p3,j′,s′}) to a 2-pin
net (ij , {oj′}). R′ has a routing T in G2 as G2 is universal. The routing T on
the middle switch box can then be extended to a routing of R on c(n, n, r).
Therefore, c(n, n, r) is rearrangeable for unicast.

For example, Fig.4(a) shows the (4, 2)-BSB of c(2, 2, 2). The unicast call R =
{(p0,1,1, {p3,2,2}), (p0,1,2, {p3,1,1}), (p0,2,1, {p3,1,2}), (p0,2,2, {p3,2,1})} induces a 2-
pin routing requirement R′ = {(i1, {o2}), (i1, {o1}), (i2, {o1}), (i1, {o2})} shown
in (b) and its decomposition in (c). Fig.4(d) gives the routing of R′ in the (4, 2)-
BSB, and (e) the routing of R on c(2, 2, 2) extended from the routing R′ on
(4, 2)-BSB.

The routing of a multicast call can be done similarly in a Clos network. For ex-
ample, the multicast call R = {(p0,1,1, {p3,1,2, p3,2,1}), (p2,2,2, {p3,1,1, p3,2,2})} in-
duces a multi-pin routing requirement R′ = {(i1, {o1, o2}), (i2, {o1, o2})}, shown
as a hypergraph in Fig.5(a). The routing of R′ in the (4, 2)-BSB is shown
Fig.5(b), and the extended routing on c(2, 2, 2) is given in Fig.5(c).

It can be proved that the middle stage (2r, n)-BSB of the Clos network
c(n, n, r) is not hyperuniversal when r ≥ 4. Our idea is to redesign the middle
(2r, n)-BSB G2 such that the resulting (2r, n)-BSB G′

2 is hyperuniversal. Since
any multicast call R = {(pi, Qi) : i = 1, . . . , t} on G′ = G1 + G′

2 + G3 induces a
routing requirement R′ = {(ij, Bij ) : j = 1, . . . , t} on G′

2. If G′
2 is hyperuniveral,

then R′ has a routing {Tj : j = 1, . . . , t} on G′
2. Extend Tj to G1 and G2, a

routing of R on G′ = G1 + G′
2 + G3 is obtained. Thus G′ is rearrangeable for

multicast if G2 is hyperuniversal.
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This observation leads us to consider the problem of designing an optimal
(i.e., with the minimum number of edges) hyperuniversal (2r, n)-BSB. But it is
difficulty to find an optimal hyperuniversal (2r, n)-BSB due to the difficulty in
the verification of hyperuniversality. No polynomial algorithm time algorithm is
known to find the routing of a given routing requirement in a BSB. Our approach
is to find specially structured (2r, n)-BSBs, such that an efficient routing algo-
rithm exits. The new hyperuniversal (2r, n)-BSB design we proposed is defined
as follows.

Let G2 = (V1 ∪V2, E2) be the middle stage of the Clos network c(n, n, r). For
any non-negative integer w, define

E2(w) = {(p1,j,h, p2,j′,h′) : |h− h′| ≤ w},
G2(w) = G2 + E2(w),

cw(n, n, r) = G1 + G2(w) + G3 = c(n, n, r) + E2(w).
(1)

Clearly, E2(0) = E2 and c0(n, n, r) = c(n, n, r). When w > 0, G2(w) is obtained
by adding additional edges to G2. In the next section, we will prove that G2(4r)
is a hyperuniversal (2r, n)-BSB and therefore c4r(n, n, r) is rearrangeable for
multicast.

3 Edge Ordering of Regular Hypergraphs

This section proves that G2(4r) defined in relation (1) is hyperuniveral. We
use the property of edge ordering of regular hypergraphs and a job scheduling
theorem.

Let H = (V, E) be a multiple hypergraph, where V is the vertex set and E the
edge set. E is a collection of subsets of V , namely, e ⊂ V for every e ∈ E, and
repetition of edges is allowed. The degree of a vertex u in H , denoted by dH(u),
is the number of edges which contain (cover) u, i.e., dH(u) = |{e ∈ E : u ∈ e}|.
H is said to be w-regular if all its vertices have the same degree w. A regular
hypergraph is said to be minimal if it does not contain a proper spanning (with
the same vertex set) regular sub-hypergraph.

Given a regular hypergraph H = (V, E) with V = {1, . . . , k} and E =
{e1, . . . , em}. Let π be a permutation on {1, . . . , m}, then (eπ(1), . . . , eπ(m)) is an
ordering of the edges, and it determines a sequence of m + 1 sub-hypergraphs

Hj = ({1, . . . , k}, {eπ(1), . . . , eπ(j)}), j = 0, . . . , m,

or H0 = ({1, . . . , k}, ∅), Hj+1 = Hj + eπ(j+1), j = 1, . . . , m. We define

g(H, π) = max{max{|dHj (u)− dHj (v)| : u, v ∈ eπ(j+1)} : j = 0, . . . , m− 1} (2)

g(H) = min{g(H, π) : over all permumations π} (3)

For any integer k ≥ 2, we define

g(k) = max{g(H) : over all regular hypergraphs H on k vertices}. (4)
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First, we see that g(k) is well-defined. Let H be any regular hypergraph on
k vertices, then H can be decomposed into a union of edge disjoint minimal
spanning regular hypergraphs R1, . . . , Rt, H = R1 + · · · + Rt, where a regular
hypergraph is minimal if it can not be decomposed further. Since we can obtain
an ordering of edges of H by ordering edges of R1, . . . , Rt respectively and then
put them together one following another, we have the following relations g(H) ≤
max{g(R1), . . . , g(Rt)},

g(H) ≤ max{g(R) : over all minimal regular hypergraphs R on k vertices},

g(k) ≤ max{g(R) : over all minimal regular hypergraphs R on k vertices}.
On the other hand, since a minimal regular hypergraph on k vertices is also a
regular hypergraph, by (4) we have

g(k) ≥ max{g(R) : over all minimal regular s-hypergraphs R on k vertices}

g(k) = max{g(R) : over all minimal regular hypergraphs R on k vertices} (5)

Since there are a finite number of minimal regular hypergraphs on k vertices[6],
g(k) is well-defined by (5).

Edge Ordering Problem of Regular Hypergraphs: Given an integer k ≥ 2,
determine the value of g(k). Given a regular hypergraph H on k vertices, find
an edge permutation π such that g(H, π) ≤ g(k).

The above edge ordering problem has not been solved. No value of g(k) is
known for k ≥ 7. However, we prove an upper bound for g(k) using the following
the vector sum theorem in job scheduling theory [11,1].

Lemma 3.1 ([11]). Let v1, . . . ,vt be a sequence of k-dimensional vectors with∑t
i=1 vi = 0, ||vi|| ≤ 1(i = 1, . . . , t), there is a permutation i1, . . . , it, such that

max ||
∑j

h=1 vih || ≤ k for every 1 ≤ j ≤ t, where the super norm ||v|| of a vector
v is defined to be the maximum of the absolute values of the components of v.

Theorem 3.2. g(k) ≤ 2k for any k ≥ 2.

Proof. Let H = (V, E) be any w-regular hypergraph on k vertices. Suppose that
V = {1, . . . , k} and E = {e1, . . . , em}. Let vi = (ni,1, . . . , ni,k) ∈ Rk be the
vector representation of ei, i = 1, . . . , m.

For i = 1, . . . , m, let v′
i = vi, and for i = m + 1, . . . , m + w, let v′

i =
(−1, . . . ,−1) ∈ Rk. Then

∑m+w
i=1 v′

i = 0. By Lemma 3.1, there is a permuta-
tion i′1, . . . , i′m+w of 1, . . . , m+w such that v′

i′1
, . . . ,v′

i′m+w
satisfy ||

∑j
h=1 v′

i′h
|| ≤

k, 1 ≤ s ≤ m + w.
Removing the vectors equal to (−1, . . . ,−1) from the sequence v′

i′1
, . . . ,v′

i′m+w
,

we obtain a permutation vi1 , . . . ,vim of v1, . . . ,vm.
For any 1 ≤ j ≤ m−1, let v′

i′
j′

correspond to vij . Then there are j′− j vectors

in v′
i′1

, . . . ,v′
i′
j′

which are equal to (−1, . . . ,−1). Then, for every 1 ≤ j ≤ m− 1,

we have
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max{|dHj (u) − dHj (v)| : u, v ∈ eij+1}
= max{dHj (u) : u ∈ eij+1} − min{dHj (v) : v ∈ eij+1}
= max{

∑j
h=1 ni,h : i ∈ eij+1} − min{

∑j
h=1 ni,h : i ∈ eij+1}

≤ max{
∑j

h=1 ni,h : 1 ≤ i ≤ k} − min{
∑j

h=1 ni,h : 1 ≤ i ≤ k}
= max{

∑j
h=1 ni,h : 1 ≤ i ≤ k} + (j′ − j) − (min{

∑j
h=1 ni,h : 1 ≤ i ≤ k} + (j′ − j))

= max{
∑j

h=1 ni,h + (j − j′) : 1 ≤ i ≤ k} − min{
∑j

h=1 ni,h + (j′ − j) : 1 ≤ i ≤ k}
≤ 2||

∑j′
h=1 v′

i′
h
|| ≤ 2k.

By the definitions (1)-(3) for g(k), we have g(k) ≤ 2k. �

In [1], a polynomial time algorithm was given to find a permutation of the
vectors with max ||

∑j
h=1 vih || ≤ 3k/2 for every 1 ≤ j ≤ t in time O(t2k3 + tk4).

Applying that algorithm, we can find an edge ordering π for regular hypergraph
H in polynomial time with g(H, π) ≤ 3k in time O(m2k3 + mk4).

Next we use the unicast call on (2r, n)-BSB G2 of c(n, n, r) to illustrate edge
the ordering based routing algorithm. Let H be an n-regular bipartite graph
obtained from a 2-pin net routing requirement R′ on G2 = M1 + · · · + Mn.
By Hall’s theorem, H can be decomposed into n 1-factors, H = F1 + · · · + Fn.
Let π be the edge ordering that orders the edges in F1, followed by an edge
ordering of F2, and so on, until an ordering of Fn. Then we have g(H, π) = 0.
Next we find the routing of R′ by the edge ordering as follows. At step i − 1,
we have partial hypergraph Hi−1, let (ai, bi) be the next edge and assume that
dHi−1(a) = dHi−1 (b) = j, then route (ai, bi) in Mj+1 and let Hi = Hi−1+(ai, bi).
By induction we know this routing algorithm will end with a routing of R′ in
G2. For example, Fig.4(b) shows an edge ordering π1 of regular graph H1 =
({i1, i2} ∪ {o1, o2}, {{i1, o2}, {i2, o1}, {i1, o1}, {i2, o2}} labeled 1, 2, 3, 4. We have
g(H1, π1) = 0. Fig.4 (d) shows the routing of the routing requirements following
the edge ordering of H1.

The edge ordering routing method can be applied to multicast. Fig.5(a) gives
an edge ordering π2 of the 2-regular hypergraph H2 = ({i1, i2} ∪ {o1, o2},
{{i1, o1, o2}, {i2}, (i2, o1, o2}, {i1}} labeled 1, 2, 3, 4. Then g(H2, π2) = 0, Fig.5(b)
shows the routing of the routing requirements according to this edge ordering
π2. Applying the edge ordering method, we have the following theorem.

Theorem 3.3. If w ≥ g(2r), then G2(w) is hyperuniversal (2r, n)-BSB with at
most (2w + 1)r2n switches.

Proof. Let R′ = {(ai, bi) : i = 1, . . . , t} be a routing requirement on (2r, n)-BSB
G2(w). Then R′ corresponds to a hypergraph H = ({i0, . . . , ir, o1, . . . , or}, N)
of degree at most n, where N = {{ai} ∪ bi : i = 1, . . . , t}. If H is not n-regular,
then add singletons to H to obtain an n-regular hypergraph, still denoted by H .

Suppose that H = ({i1, . . . , ir} ∪ {o1, . . . , or}, {e1, . . . , em}). By the defi-
nition of g(2r) in relation (3), there is an edge ordering π of H such that
g(H, π) ≤ g(2r) ≤ w. Then we find a routing of R′ in G2(w) according to
the edge ordering (eπ(1), . . . , eπ(m)) as follows. For i = 1, suppose that eπ(1)
corresponds to multi-pin net (aπ(1), bπ(1)) and bπ(1) = {b1,1, . . . , b1,k1}), then
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route eπ(1) by edges (p1,aπ(1),1, p2,b1,1,1), . . . , (p1,aπ(1),1, p2,b1,k1 ,1). Assume that
eπ(i−1) has been routed. Next we route eπ(i). Suppose that eπ(i) = (aπ(i), bπ(i))
and bπ(i) = {bi,1, . . . , bi,ki}). Then route eπ(i) by edges (p1,aπ(i),c, p2,bi,1,c1),. . . ,
(p1,aπ(i),c, p2,bi,ki

,cki
), where c is the smallest index such that p1,aπ(i),c is not used

by previous nets in Iaπ(i) , and cj is the smallest index such that p1,bi,j ,cj is not
used by previous nets in Obi,j . By the definition of G2(w), the edge set of G2(w) is
E2(w) = {(p1,j,h, p2,j′,h′) : |h−h′| ≤ w}. Since g(H, π) ≤ g(2r) ≤ w, we have |c−
cj | ≤ w, j = 1, . . . , ki, therefore, (p1,aπ(i),c, p2,bi,1,c1), . . . , (p1,aπ(i),c, p2,bi,ki

,cki
) ∈

E2(s), the routing for eπ(i) is feasible. Continue this process, we obtain the rout-
ing of all nets eπ(1), . . . , eπ(m).

Since the degree of each vertex of V1 of G2(w) is at most (2w +1)r and it has
rn vertices, therefore G2(w) has at most (2w + 1)r2n edges. �

Theorem 3.4. G2(4r) is a hyperuniveral (2r, n)-BSB and c4r(n, n, r) is rear-
rangeable for multicast and has 2nr intermediate nodes and at most (8r+1)r2n+
2rn2 switches.

Proof. By Theorem 3.2, we have g(2r) ≤ 4r, and by Theorem 3.3 we have that
G2(4r) is a hyperuniversal (2r, n)-BSB. Therefore, the 3-stage switching network
c′2r(n, n, r) = G1 + G2(4r) + G3 is rearrangeable for multicast, and it has 2nr
intermediate nodes and at most (8r + 1)r2n + 2rn2 switches. �

When rn = N , choose n = N2/3, r = N1/3. Then by Theorem 3.4, we know that
c4N1/3(N2/3, N2/3, N1/3) is rearrangeable for multicast and it has 2N interme-
diate nodes and (8N1/3 + 1)N1/3N2/3 + 2N1/3(N2/3)2 = O(N5/3) switches.
Moreover, if we choose w = 6r, then c6N1/3(N2/3, N2/3, N1/3) is rearrangeable
for multicast and has 2N intermediate nodes, O(N5/3) switches, and a routing al-
gorithm in time O(m2N+mN1/3), where m is the number of connection requests.

Remarks

1. Even though c4N1/3(N2/3, N2/3, N1/3) provides a better solution in terms
of intermediate nodes and switches, it is not practical for a large N . In a
practical implementation, we choose cw(N1/2, N1/2, N1/2) for a small value of
w = 0, 1, 2, 3. Such a network will have O(N3/2) switches though the mulicast
rearrangeability is not guaranteed when N is large. We also apply heuristic rout-
ing algorithm for such switching networks. One open question is that what is
the lower bound of w such that cw(n, n, r) is rearrangeable for multicast.

2. The fanout of the above routing algorithm is at stage two and three. If we
also do the fanout at the first stage, then the routing capacity can be further
increased with the current design.

3. On the other hand, the routing capacity can be improved by increasing
the number of intermediate nodes with cw(m, n, r) = c(m, n, r) + E2(w), m > n.
However, there is no result on a better bound for w and m for rearrangeable
multcast networks.

4. If we substitute each middle r×r crossbar of c(N2/5, N2/5, N3/5) by the new
c4N3/10(N3/10, N3/10, N3/10), we obtain a 5-stage Clos network with O(N7/5)
switches and the minimum 4N intermediate nodes.
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4 Conclusions

We presented a new rearrangeable multicast 3-stage switching network design.
As a tradeoff between the number of switches and intermediate nodes, the newly
designed N ×N network uses O(N5/3) switches and the minimum 2N interme-
diate nodes. The new design has a simple structure, obtained by adding extra
switches to a unicast Clos network. The new network also accommodate an ef-
ficient routing algorithm. The design and analysis was done by a combinatorial
approach, which makes use of existing graph theory, scheduling results and al-
gorithms. The combinatorial approach reveals a new investigation direction to
explore the tradeoff among the number of switches, the number of intermediate
nodes, delays, routing capacity, and routing algorithms for efficient implementa-
tions of on-chip switching networks.
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Abstract. In this paper, we consider the single machine scheduling prob-
lem with inventory operations. The objective is to minimize makespan
subject to the constraint that the total number of tardy jobs is minimum.
We show the problem is strongly NP-hard. A polynomial (1+1/(m−1))-
approximation scheme for the problem is presented, where m is defined as
the total job’s processing times

∑
pj divided by the capacity c of the stor-

age, and an optimal algorithm for a special case of the problem, in which
each job is one unit in size, is provided.

Keywords: scheduling, bicriteria, NP-hardness, approximation algo-
rithm, performance ratio.

1 Introduction

We consider a maker-to-order production-distribution system consisting of one
supplier and more customers. At the beginning of a planning horizon, each cus-
tomer places a order with the supplier. The supplier needs to process these orders
and deliver the completed orders to the customers. Each order has a due date
specified by the customer and is required to be delivered by its due date. How-
ever, that all orders would just be completed at their respective due dates by
the supplier is great difficulty. Some orders have to be scheduled to complete
ahead of their due dates so that the supplier can deliver orders on time as much
as possible.

The problem is often faced by the manufactures who make time-sensitive
products such as perishable food, which must be stored in the special storage
for those jobs(products) completed ahead of their due dates. Another factor the
manufacturer has to consider is that the capacity of the storage is limited. The
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total size of the jobs stored should not be more than such capacity in any time.
The problem we study in this paper is to find a schedule for the jobs so that some
objectives are optimized. For example, to minimize the total number of tardy
jobs or makespan. To be able to refer to the problems under study in a concise
manner, we shall use the notation of Graham et al. [9], extended to job field
with inventory operations. The problem of scheduling jobs on single machine
with inventory operations is represented by 1|inven|γ, where inven stands for
the jobs with inventory operations.

As for bicriterion scheduling problems, two different criteria are considered
together. This can be accomplished in a number of ways. One approach is to
minimize the less important criterion, subject to the restriction that the most
important criterion is optimized. The two criteria are assumed to be prioritized
as primary and secondary and the objective is to find the best schedule for
the secondary criterion among all alternative optimal schedules for the primary
criterion. This problem is denoted by 1||Lex(γ1, γ2), where γ1 is the primary
criterion and γ2 is the secondary criterion.

In this paper, considering a single machine scheduling problem, where n jobs
{J1, J2, · · · , Jn} are ready for processing at time zero. Each job Jj has a pro-
cessing time pj , a size vj and a due date dj . If π is a schedule of the n jobs, we
let Cj denote the completion time of job Jj in π. If Cj < dj , the job needs to
be stored until its due date. If Cj ≥ dj , the job would be delivered immediately
by its completion time. We are given a storage with capacity c meaning that
the total size of inventory is up to c at any time. The objective is to minimize
makespan subject to minimize the total number of tardy jobs

∑
Uj, where Uj

is 0 − 1 indicator variable that takes the value 1 if Jj is tardy, i.e., if Cj > dj ,
and the value 0 if Jj is on time, i.e., Cj ≤ dj . We represent the two dual criteria
scheduling problems by 1|inven|Lex(

∑
Uj , Cmax).

When the capacity of the storage is unlimited or
∑n
j=1 vj ≤ c, our problem

becomes a normal bicriterion scheduling problem 1||Lex(
∑

Uj, Cmax), which is
equal to scheduling problem 1||

∑
Uj . For the problem, a schedule with minimum

number of tardy jobs can be obtained by the Hodgson-Moore algorithm [15],
which schedules jobs in ascending order of due dates. Most of the work reported
about multicriterion scheduling has been concerned with bicriterion scheduling
problems on a single machine. Smith [17] may be the first researcher to study
bicriterion scheduling problem on a single machine. He developed a polynomial-
time algorithm to minimize the total completion time, subject to the constraint
that no job is late. In 1975, Emmons [7] studied the problem 1||Lex(

∑
Uj ,

∑
Cj).

He proposed a branch-and-bound algorithm which in the worst case runs in
exponential time. Later, Chen and Bulfin [4] proved that the problem is NP-
hard with respect to id-encoding. Vairaktarakis and Lee [19] studied the problem
1||Lex(

∑
Uj ,

∑
Tj). They gave a polynomial-time algorithm when the set of

tardy jobs is specified. As well, a branch-and-bound algorithm was given for the
general problem. In 2007, Huo et al. [12] proved the problem is binary NP-hard.
Cheng [5] developed a solution methodology for minimizing the flow time and
missed due dates. Surveys on algorithms and complexity results of bicriterion
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scheduling problems have been given by Chen and Bulfin [3], Nagar et al. [16]
and Hoogeveen [11].

If we consider the inventory cost instead of capacity constrain, and the tardi-
ness penalty instead of

∑
Uj, the problem 1|inven|Lex(

∑
Uj , Cmax) becomes a

normal JIT (just-in-time) scheduling problem 1||
∑

(Ej + Tj). Hall and Posner
[10] showed the problem is NP-hard. When all jobs have a common due date
dj ≡ d, they provided an O(n

∑
pj) pseudo-polynomial time algorithm. For such

problem, Bagchi et al. [1] proved that the number of optimal schedules is 2
n
2 �.

Further results about single machine JIT scheduling problems can be found in
[2,6,13,14].

In Section 2, we prove that the problem 1|inven|Lex(
∑

Uj, Cmax) is strongly
NP-hard and a polynomial approximation scheme for the problem is presented.
A special case of the problem, in which each job is one unit in size, is provided
an optimal algorithm. Section 3 is a brief conclusion.

2 To Minimize Lex(
∑

Uj, Cmax)

Without loss of generality, we assume that vj ≤ c, pj ≤ dj(j = 1, 2, · · · , n) and∑n
j=1 pj > c. In many applications, job has a larger size if its processing time

is larger. In the following, we consider the case that vj = pj(j = 1, 2, · · · , n).
Firstly, we show that the problem of minimizing makespan on single machine
with inventory operations is strongly NP-hard.

2.1 The Proof of the NP-Hardness

The problem 1|inven|Lex(
∑

Uj, Cmax) is strongly NP-hard. This is done by
reducing the strongly NP-hard 3-Partition[8] to the decision version of our
problem.

3-Partition. Given positive integers t, A and a set of integers S = {a1, a2, · · · ,

a3t} with
∑3t

j=1 aj = tA and A/4 < aj < A/2 for 1 ≤ j ≤ 3t, does there exit a
partition 〈S1, S2, · · · , St〉 of S into 3-element sets such that∑

aj∈Si

aj = A

for each i?

Theorem 1. The problem 1|inven|Lex(
∑

Uj, Cmax) is strongly NP-hard.

Proof. Given the 3-partition problem t, A and a set of integers {a1, a2, · · · , a3t}.
We will first describe the decision version I of the problem 1|inven|Lex(

∑
Uj =

0, Cmax).
There are basically two classes of jobs in I. The first class, {J1

j |1 ≤ j ≤ t},
where job lengths and due date times are specified as follows:{

p1
j = tA + 1, j = 1, 2, · · · , t;

d1
j = j(t + 1)A + j, j = 1, 2, · · · , t.
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The second class, {J2
j |1 ≤ j ≤ 3t}, with job lengths and due dates specified as

follows: {
p2
j = aj , j = 1, 2, · · · , 3t;

d2
j = t2A + tA + t, j = 1, 2, · · · , 3t.

The job sizes vj = pj , j = 1, 2, · · · , 4t. We define the capacity of the storage is
c, where c = tA. The bound is given by δ = t2A + tA + t. All the remains is to
show that the desired partition of S exists if and only if a schedule for I exists,
which length less than or equal to δ and all jobs are on time.

� A �

J2
1,1J

2
1,2J

2
1,3 J1

1

� A �

J2
2,1J

2
2,2J

2
2,3 J1

2
· · ·

� A �

J2
2,1J

2
2,2J

2
2,3 J1

t �
time

�

0
�

d1
1

�

d1
2

�

d1
t

Fig. 1. Illustration of the scheduling π

Firstly, suppose a partition 〈S1, S2, · · · , St〉 exists which has the desired form.
That is each set Si consists of three elements ai1, ai2 and ai3, such that for all 1 ≤
i ≤ t,

∑3
j=1 aij = A. Then the following schedule π has length δ = t2A + tA + t.

About the first class jobs in such schedule, the job J1
j is processed with the

completed time

C(J1
j ) = d1

j = j(t + 1)A + j, j = 1, 2, · · · , t.

From Fig.1, we note that this basic framework just leaves a series of t ”time
slots” open before the time t2A + tA + t, each of which length exactly A, and
the due date of the second class jobs is t2A+ tA+ t. These are precisely tailored
so that we can fit the second class jobs as follows. For each i = 1, 2, · · · , t,

s(J2
i1) = d1

i−1

s(J2
i2) = d1

i−1 + ai1

s(J2
i3) = d1

i−1 + ai1 + ai2

Since
∑3
j=1 aij = A(1 ≤ i ≤ t) and the total size of jobs in storage is less than

the capacity c in any time, this yields a valid schedule with Cmax(π) = δ and no
tardy job.

Conversely, suppose a schedule π with Cmax(π) = δ does exist. Because the
total length of jobs in I is

∑
pj = t2A + tA + t, we must have Cmax(π) = δ =

t2A+ tA+ t, and the machine is no idle in π. Because of no tardy job in π, from
the constructor of the jobs and the capacity c = tA, the first class jobs must
be scheduled as the same way they are in Fig.1. Thus there are again t slots of
length A into which the second class jobs can be placed.

Since the total length of the second class jobs is
∑3t

j=1 p2
j = tA, every one

of these t slots must be filled completely, and hence must contain a set of the
second class jobs whose total length is exactly A. Now since every aj > A/4, no
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such set can contain more than three jobs. Similarly, since aj < A/2, no such set
can contain less than three jobs. Thus each set contains exactly three jobs of the
second class. Hence, by setting Si = {ai|d1

i−1 < SJ2
i

< di − p1
i }, i = 1, 2, · · · , t,

we obtain our desired partition. �

2.2 Approximating Optimal Makespan in Polynomial Time

Since the problem 1|inven|Lex(
∑

Uj = 0, Cmax) is strongly NP-hard, we design
an approximation algorithm for the problem. Let

∑n
j=1 pj = mc, where m is

defined as the total job’s processing times
∑

pj divided by the capacity c of the
storage. From

∑n
j=1 pj > c, m > 1. Firstly, we introduce some useful properties

associated with optimal schedules as follows.

Lemma 1. For the problem 1|inven|Lex(
∑

Uj = 0, Cmax), if⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
j=k

pj > c

n∑
j=k+1

pj ≤ c

(1)

then
C∗

max ≥ dk,

where k ∈ {1, 2, · · · , n− 1} and C∗
max is the value of the optimal schedule.

Proof. If every job is completed before the time dk, there are at less n − k
stocking jobs such as {Jk, Jk+1, · · · , Jn} at the time dk. Since

∑n
j=k pj > c, it

follows that there must exist some jobs to be processed after the time dk, or the
job Jk to be completed at the time dk. Thus the optimal value of the problem
is C∗

max ≥ dk. �

If the problem exists a feasible schedule, there exists a partly feasible schedule
about the jobs {J1, J2, · · · , Jj} before the time dj , j = 1, 2, · · · , n. However,
tardy job is possible if the jobs {Jk+1, · · · , Jn} begin to process at time dk. To
avoid the tardy job, we need to look for an more useful boundary dr(k + 1 ≤
r < n). From the Lemma 1, there is a conclusion as follows.

Lemma 2. For the problem 1|inven|Lex(
∑

Uj = 0, Cmax), let

dk +
r∑

i=k+1

pi − dr = max{dk +
j∑

i=k+1

pi − dj , j = k + 1, · · · , n}.

If

dk +
r∑

i=k+1

pi − dr > 0,
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then there exists an optimal schedule π with jobs {Jr+1, · · · , Jn} begin to process
at time dr and

Cmax(π) ≤ dk +
n∑

j=k+1

pj. (2)

Where k + 1 ≤ r ≤ n and k subject to the Lemma 1.

Based on the Lemma 1 and Lemma 2, we now provide an approximating algo-
rithm for the problem 1|inven|Lex(

∑
Uj = 0, Cmax).

Heuristic Alg.1

Step 1. To search for the k ∈ {1, 2, · · · , n} s.t.
∑n
j=k pj > c and

∑n
j=k+1 pj ≤ c.

Step 2. Let dk +
∑r
i=k+1 pi− dr = max{dk+

∑j
i=k+1 pi− dj, j = k +1, · · · , n}.

If dk +
∑r
i=k+1 pi − dr > 0, then k

.= r.
Step 3. Let Ck = dk, Cj = min{dj , Cj+1 − pj+1}, j = k − 1, · · · , 1,

and sj = Cj−1, j = k + 1, · · · , n.

By (1) and
∑n
j=1 pj = mc, we have

dk ≥
k∑
j=1

pj > (m− 1)c,

then
n∑

j=k+1

pj <
1

m− 1
dk.

This, together with (2), implies that the makespan of the schedule π found by
the Alg.1 satisfies

Cmax(π) ≤
(
1 +

1
m− 1

)
dk.

From the above discussions, we have the following theorem.

Theorem 2. For 1|inven|Lex(
∑

Uj = 0, Cmax), the Alg.1 has a worst-case
competitive ratio of 1 + 1

m−1 (m > 1), and the time complexity of the Alg.1 is
O(n2logn).

2.3 Each Job Is One Unit in Size

Consider the following inventory operations. Each job is one unit in size, vj ≡
1(j = 1, 2, · · · , n). We are given a storage of capacity c. Thus the storage can
store up to c jobs in any time.

For the remainder of this section, we suppose that all jobs have be indexed
by EDD rule, d1 ≤ d2 ≤ · · · ≤ dn. We first provide a optimality property for the
problem.
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Lemma 3. For the problem 1|vj ≡ 1, inven|Lex(
∑

Uj = 0, Cmax), there exists
an optimal schedule, in such schedule the jobs are processed by the EDD rule.

Proof. Suppose π is an optimal schedule, in which the jobs are not processed by
the EDD rule. Since all jobs are completed on time in π and have the same size,
the result can be established by a standard job interchange argument about the
schedule π. �

For any schedule π of {J1, J2, · · · , Jn}, in which the jobs are processed by the
EDD rule, let Idk

= {Ji|Ci < dk, i ≥ k} denote those jobs which are stored
at the time dj . If the number of the jobs stored is not more than c, such that
‖Idk

‖ ≤ c(j = 1, 2, · · · , n), the schedule π is feasible.

Algorithm Qusia-EDD

Step 1. Set d0 = 0, C0 = 0 and C1 = p1.
Step 2. For j = 1, 2, · · · , n.

Let dk−1 ≤ Cj−1 + pj < dk, k ≤ j,
and compute Idk

= {Ji|Ci < dk, i ≥ k}.
If ‖Idj‖ ≤ c, set Cj = Cj−1 + pj .
Else, set Cj = dk.
Set j = j + 1.

Given Lemma 3, the optimality of this algorithm can be easily proved. Hence
we state the following result without proof.

Theorem 3. Algorithm Qusia-EDD can find an optimal schedule for the prob-
lem 1|vj ≡ 1, inven|Lex(

∑
Uj = 0, Cmax) in O(n2) time.

3 Concluding Remarks

In this paper, we address the problem 1|inven|Lex(
∑

Uj , Cmax) and give the proof
of strongly NP-hard. A polynomial time 2-approximation scheme for the prob-
lem is presented and an optimal algorithm for a special case of the problem. We
will go on researching this problem with other objective (i.e. Lex(

∑
Uj ,

∑
Cj),

Lex(
∑

Uj , Tmax) and Lex(Tmax,
∑

Cj)). Another research topic is about the com-
plexity of the open problem 1||Lex(

∑
Uj , Cmax).
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Abstract. We consider the problem of minimizing the weighted number
of tardy jobs (

∑n
j=1 wjUj) on an unbounded batch processing machine.

The batch processing machine can process up to B (B ≥ n) jobs simul-
taneously. The jobs that are processed together form a batch, and all
jobs in a batch start and complete at the same time. For a batch of jobs,
the processing time of the batch is equal to the largest processing time
among the jobs in this batch. In this paper, we design a fully polyno-
mial time approximation scheme (FPTAS) to solve the unbounded batch
scheduling problem 1|B ≥ n|

∑n
j=1 wjUj . This is the strongest possible

polynomial time approximation result that we can derive for an NP-hard
problem (unless P = NP holds).
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1 Introduction

An unbounded batch machine or batch processing machine is a machine that
can process up to B (B ≥ n) jobs simultaneously. The jobs that are processed
together form a batch. Specifically, we are interested in the so-called burn-in
model, in which the processing time of a batch is equal to the maximum pro-
cessing time of any job assigned to it. All jobs contained in the same batch start
and complete at the same time, since the completion time of a job is equal to
the completion time of the batch to which it belongs. This model is motivated
by the problem of scheduling burn-in operations for large-scale integrated circuit
(IC) chips manufacturing (see Lee [7] for the detailed process). In this paper, we
study the problem of scheduling n independent jobs on an unbounded machine
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to minimize the weighted number of tardy jobs. Denote by Cj the completion of
job Jj in some scheduling.

• if Cj ≤ dj , then job Jj is early and Uj = 0.
• if dj < Cj , then job Jj is tardy and Uj = 1.

Using the notation of Graham et al [4], we denote this problem as 1|B ≥
n|

∑n
j=1 wjUj. Brucker [2] showed that the problem 1|B ≥ n|

∑n
j=1 wjUj is NP-

hard in the ordinary sense.

Previous related work: Brucker [2] showed that 1|B ≥ n|
∑n

j=1 wjUj is
NP-hard in the ordinary sense and proved that it is maximal pseudopolyno-
mially solvable. For the problem of 1|pj = p, rj |

∑n
j=1 wjUj, Baptiste [1] has

shown that it is maximal polynomially. Lawler [5] proved that the problem
1|ri, pmtn|

∑n
j=1 wjUj is maximal pseudopolynomially solvable. Lawer [6] and

Karp [9] respectively proved that the problem 1||
∑n
j=1 wjUj is maximal pseu-

dopolynomially solvable. It is shown in [8] that 1|B ≥ n|
∑n
j=1 Tj is binary NP-

hard. Also, they establish the pesudopolynomial solvability of the unbounded
batch machine scheduling problem with job release dates and any regular ob-
jective. Concerning 1|B ≥ n, rj |

∑n
j=1 wjCj , Deng and Zhang [3] establish its

NP-hardness and present polynomial algorithms for several special cases.

Our contributions: In this paper, we design a fully polynomial time approx-
imation scheme (FPTAS) to solve the unbounded batch scheduling problem
1|B ≥ n|

∑n
j=1 wjUj .

2 Problem Description, Notation, and Elementary
Definitions

The scheduling model that we study is as following. There are n independent
jobs J1, J2, · · · , Jn that have to be scheduled on an unbounded batch machine.
Each job Jj(j = 1, 2, · · · , n) has a processing time pj , a positive weight wj , and
a due date dj . All jobs are available for processing at time 0. The goal is to
scheduling the jobs without preemption on the unbounded batch machine such
that the weighted number of tardy jobs is minimized.

The set of real numbers is denoted by IR, and the set of non-negative integers
is denoted by IN ; note that 0 ∈ IN . The base two logarithm of z denoted by
log z, and the natural logarithm by ln z.

We recall the following well-known properties of binary relations * on a set
Z. The relation * is called

• reflexive if for any z ∈ Z: z * z,
• symmetric if for any z, z′ ∈ Z: z * z′ implies z′ * z,
• anti-symmetric if for any z, z′ ∈ Z: z * z′ and z′ * z implies z′ = z,
• transitive if for any z, z′, z′′ ∈ Z: z * z′ and z′ * z′′ implies z * z′′.

A relation on z is called a partial order, if it is reflexive, anti-symmetric, and
transitive. A relation on Z is called a quasi-order, if it is reflexive and transitive.
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A quasi-order on Z is called a quasi-linear order, if any two elements of Z are
comparable.

For Z ′ ⊆ Z, an element z ∈ Z ′ is called a maximum in Z
′
with respect to *,

if z′ * z holds for all z′ ∈ Z ′. The element z ∈ Z ′ is called a maximal in Z
′
with

respect to *, if the only z′ ∈ Z ′ with z * z′ is z itself.

Proposition [6]. For any binary relation * on a set Z, and for any finite
subsetZ ′ of Z the following holds.

(i) If * is a partial order, then there exists a maximal element in Z.
(ii) If * is a quasi-line order, then there exists at least one a maximum

element in Z.

Woeginger [10] showed that dynamic programming algorithms with a special
structure automatically lead to a fully polynomial time approximation scheme.
Assume that we have an approximation algorithm that always returns a near-
optimal solution whose cost is at most a factor of ρ away from the optimal cost,
where ρ > 1 is some real number: In minimization problems the near-optimal
is at most a multiplicative factor of ρ above the optimum, and in maximization
problems it is at most a factor of ρ below the optimum. Such an approximation al-
gorithm is called a ρ-approximation algorithm. A family of (1+ε)-approximation
algorithms over all ε > 0 with polynomial running times is called a polynomial
time approximation scheme or PTAS, for short. If the time complexity of a PTAS
is also polynomially bounded in (1/ε), then it is called a fully polynomial time
approximation scheme or, FPTAS, for short. An FPTAS is the strongest possible
polynomial time approximation result that we can derive for an NP-hard prob-
lem (unless, of course, P=NP holds). Woeginger et al. [10] considered a GENEric
optimization problem GENE and provided a natural and uniform approach to
design the fully polynomial time approximation scheme for it.

A DP-simple optimization problem GENE is called DP-benevolent iff there
exist a partial order *dom, a quasi-line order *qua, and a degree-vector D such
that its dynamic programming formulation DP fulfills the Conditions C.1-C.4.
The DP-benevolent problem is easy to approximate.

Lemma 1. [10] If an optimization problem GENE is DP-benevolent, then the
dynamic program TDP is an FPTAS for it.

3 The Dynamic Programming and Algorithm MTDP

As we can firstly schedule all jobs whose processing times are zero, delete all
jobs with due dates being zero and let all non-zero processing times and due
date be integers by multiplying the same suitable positive number and keep
the same structure of optimal schedule, in the following we assume that all pj
(j = 1, 2, · · · , n) and dj (j = 1, 2, · · · , n) are non-negative integers. We renumber
the jobs such that d1 ≤ d2 ≤ · · · ≤ dn. A straightforward job interchange
argument can prove the following lemma.
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Lemma 2. Under this numbering, there exists an optimal schedule in which all
early jobs are processed before all tardy jobs and all early jobs are processed in
increasing order of indices. Moreover, an optimal schedule will not contain any
idle time.

3.1 The Dynamic Programming

Now let α = 3 and β = 4. For k = 1, 2, · · · , n we define the input vector
Xk = [pk, wk, dk]. A state S = [s1, s2, s3, s4] ∈ Sk encodes a partial schedule
for the first jobs J1, J2, · · · , Jk: the coordinate s1 measures the total processing
time of the scheduled early jobs in the partial schedule, and s2 measures the
total weight of the tardy jobs which is scheduled on the machine in the partial
schedule. s3 stores the due date of the job with lowest index in the latest batch
which is scheduled early on the machine in the partial schedule. s4 stores the
largest processing time in the latest batch which are scheduled early on the
machine in the partial schedule. Set F consists of three functions F1, F2, F3.

F1[pk, wk, dk, s1, s2, s3, s4] = [s1 + max{0, pk − s4}, s2, s3, max{s4, pk}].

F2[pk, wk, dk, s1, s2, s3, s4] = [s1 + pk, s2, dk, pk].

F3[pk, wk, dk, s1, s2, s3, s4] = [s1, s2 + wk, s3, s4].

Intuitively speaking, the function F1 adds the job Jk to the last batch of the
partial schedule S = [s1, s2, s3, s4] ∈ Sk for the jobs J1, J2, · · · , Jk and schedule
it early, i.e. adds job Jk to the l-th machine so that it does not start the last
batch.

The function F2 adds the job Jk to the end of the partial schedule S = [s1, s2,
s3, s4] ∈ Sk for the jobs J1, J2, · · · , Jk and schedules it early. i.e. adds job Jk so
that it starts the last batch. The function F3 schedules the job Jk tardy. The
functions H1, H2 and H3 in H correspond to F1, F2 and F3 respectively.

H1[pk, wk, dk, s1, s2, s3, s4] = s1 + max{0, pk − s4} − s3

H2[pk, wk, dk, s1, s2, s3, s4] = s1 + pk − dk

H3[pk, wk, dk, s1, s2, s3, s4] ≡ 0

Now the iterative computation in Line 5 of DP for all functions in F reads

If s1+max{0, pk−s4}−s3 ≤ 0 then add [s1+max{0, pk−s4}, s2, s3, max{s4, pk}]
If s1 + pk − dk ≤ 0 then add [s1 + pk, s2, dk, pk]
If 0 ≤ 0 then add [s1, s2 + wk, s3, s4]

Finally, set G[s1, s2, s3, s4] = s2 and initialize the space S0 = {[0, 0, 0, 0]}.
Next we proof the problem 1|B ≥ n|

n∑
j=1

wjUj is benevolent.
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Let the degree vector D = [1, 1, 0, 0]. Note that the coordinates according to
the state variables s1, s2 are 1 and the other two coordinates are 0. Let

S = [s1, s2, s3, s4] ∈ Sk, S
′ = [s′1, s

′
2, s

′
3, s

′
4] ∈ Sk.

The dominance relation is defined as follows:

S *dom S′ ⇔ s′1 ≤ s1, s′2 ≤ s2, s′h = sh h = 3, 4.

The quasi-linear order is defined:

S *qua S′ ⇔ s′1 ≤ s1.

Theorem 1. For any Δ > 1, for any F ∈ F , for any S, S′ ∈ IN4, the following
holds:

(i) If S is [D, Δ]-close to S′ and if S *qua S′, then (a) F (X, S) *qua F (X, S′)
holds and F (X, S) is [D, Δ]-close to F (X, S′), or (b) F (X, S) *dom F (X, S′).

(ii) If S *dom S′, then F (X, S) *dom F (X, S′), where X = [pk, wk, dk],
k = 1, 2, · · · , n.

Proof. (i) Consider a real number Δ > 1, two vectors S = [s1, s2, s3, s4] and
S′ = [s′1, s′2, s′3, s′4] that fulfill S is [D, Δ]-close to S′ and S *qua S′. From S is
[D, Δ]-close to S′, we get that

Δ−1s1 ≤ s′1 ≤ Δs1 (1)

Δ−1s2 ≤ s′2 ≤ Δs2 (2)

s′h = sh for h = 3, 4. (3)

As S *qua S′, so
s′1 ≤ s1 (4)

From (3) and (4) we have

s′1 + max{0, pk − s′4} ≤ s1 + max{0, pk − s4}, and s′1 + pk ≤ s1 + pk (5)

(5) and (4) yield that
F1(X, S) *qua F1(X, S′),

F2(X, S) *qua F2(X, S′),

F3(X, S) *qua F3(X, S′).

From (1-4) and Δ > 1 we have

Δ−1(s1 + max{0, pk − s4}) ≤ s′1 + Δ−1 max{0, pk − s4}
= s′1 + Δ−1 max{0, pk − s′4}
≤ s1 + max{0, pk − s′4}
≤ Δ(s1 + max{0, pk − s4}). (6)
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Δ−1(s1 + pk) ≤ s′1 + Δ−1pk ≤ s1 + pk ≤ Δ(s1 + pk) (7)

Δ−1(s2 + wk) ≤ s′2 + Δ−1wk ≤ s2 + wk ≤ Δ(s2 + wk) (8)

max{s′4, pk} = max{s4, pk} (9)

(1-3) and (6-9) imply that F1(X, S) is [D, Δ]-close to F1(X, S′), F2(X, S) is
[D, Δ]-close to F2(X, S′) and F3(X, S) is [D, Δ]-close to F3(X, S′). Hence, for
functions F1, F2 and F3, Theorem 1(i) holds.
(ii) As S *dom S′, we have

s′1 ≤ s1, s′2 ≤ s2, s′h = sh for h = 3, 4. (10)

s′1 + max{0, pk − s′4} ≤ s1 + max{0, pk − s4}, s′2 ≤ s2, s′3 = s3 (11)

and
max{s′4, pk} = max{s4, pk} (12)

Then (10), (11) and (12) imply that F1(X, S) *dom F1(X, S′), and that F1
satisfies Theorem 1(ii).

Similarly, we can verify that F2(X, S) *dom F2(X, S′) and F3(X, S) *dom
F3(X, S′). �

Theorem 2. For any Δ > 1, for any H ∈ H, for any S, S′ ∈ IN4, the following
holds:

(i) If S is [D, Δ]-close to S′ and S *qua S′, then H(X, S′) ≤ H(X, S).
(ii) If S *dom S′, then H(X, S′) ≤ H(X, S).

Proof. (i) By S is [D, Δ]-close to S′ and S *qua S′, from (3) and (4) we can
easily get

s′1 + max{0, pk − s′4} − s′3 ≤ s1 + max{0, pk − s4} − s3 (13)

s′1 + pk − dk ≤ s1 + pk − dk (14)

Then (12) and (13) yield that H1(X, S) ≤ H1(X, S′) and H2(X, S) ≤ H2(X, S′).
As H3(X, S) ≡ 0, so H3(X, S) = H3(X, S′) holds.
(ii) From S *dom S′ applying (10), we also can easily get

H1(X, S) ≤ H1(X, S′), H2(X, S) ≤ H2(X, S′), and H3(X, S) = H3(X, S′). �

Theorem 3. Let g = 1, then for any Δ > 1, and for any S, S′ ∈ IN4, the
following holds:

(i) If S is [D, Δ]-close to S′ and if S *qua S′, then G(S′) ≤ ΔgG(S) = ΔG(S).
(ii) If S *dom S′, then G(S′) ≤ G(S).

Proof. (i) from S is [D, Δ]-close to S′ and S *qua S′, applying the definitions of
[D, Δ]-close and The quasi-order relation we get

Δ−1s2 ≤ s′2 ≤ Δs2 (15)

As G[s1, s2, s3, s4] = s2, Applying (15), we get G(S′) ≤ ΔG(S).
(ii) From S *dom S′, we have s′2 ≤ s2 Then holds G(S′) ≤ ΔG(S). �
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Theorem 4. (i) Every F ∈ F can be evaluated in polynomial time. Every H ∈
H can be evaluated in polynomial time. The function G can be evaluated in
polynomial time. The relation *qua can be decided in polynomial time.

(ii) The cardinality of F is polynomially bounded in n and log x.
(iii) For every instance I of 1|B ≥ n|

∑n
j=1 wjUj, the state space S0 can be

computed in time that is polynomially bounded in n and log x. As a consequence,
also the cardinality of the state space S0 is polynomially bounded in n and log x.

(iv) For an instance I of 1|B ≥ n|
∑n
j=1 wjUj, and for a coordinate l (1 ≤

l ≤ 4), let Vl(I) denote the set of the l-th components of all vectors in all state
spaces Sk (1 ≤ k ≤ n). Then the following holds for every instance I.

For all coordinate l (1 ≤ l ≤ 4), the natural logarithm of every value in Vl(I) is
bounded by a polynomial π1(n, log x) in n and log x. Moreover, for coordinate l
with dl = 0, the cardinality of Vl(I) is bounded by a polynomial π2(n, log x) in n
and log x.

Proof. (i-iii) are straightforward. For (iv), note that the coordinates with dl = 0
only take the job processing times or job due dates these elements. Hence, (iv)
is also true. �

3.2 The Algorithm MTDP

Based on the above dynamic programming we give following algorithm.

Algorithm MTDP

Step 0 Delete all jobs with zero processing times and jobs with due dates are
zero, moreover change all other processing times into integers by
multiplying the same positive number. We denote the new instance I ′.
For I ′ go to Step 1

Step 1 Initialize T0 := S0
Step 2 For k = 1 to n do
Step 3 Let Uk := φ
Step 4 For every T ∈ T k−1 and every F ∈ F do
Step 5 If HF (Xk, wk, dk, T ) ≤ 0 then add F (Xk, wk, dk, T ) to Uk
Step 6 End-for
Step 7 Compute a trimmed copy Tk of Uk
Step 8 End-for
Step 9 Output min {G(S) : S ∈ Sn}
Step 10 Schedule the jobs of instance I according to I ′ and insert sufficient zero

batches scheduling jobs (deleted in Step 0) with zero processing times
in the ahead of partial scheduling.

Theorems 1-4, which just express that the above dynamic programming ful-
fills the Conditions C.1-4, show that the problem 1|B ≥ n|

∑n
j=1 wjUj is DP-

benevolent. Applying Lemma 1 we can get the following result.
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Theorem 5. There is an FPTAS for 1|B ≥ n|
∑n
j=1 wjUj that constructs a

(1 + ε)-approximation in time O�n2(1 + 2gn/ε)�2, where x =
∏n
j=1 pjwjdj.

Proof. From Lemma 1 we get that MTDP is an FPTAS for problem 1|B ≥
n|

∑n
j=1 wjUj. Note, |F|=4, Tk ≤ (L + 1) × (L + 1) × n × n = (n(L + 1))2 =

�n(1 + 2gn/ε)�2 and the running time of deciding the relation *qua on Tk is
O(n2). So the total running time of Algorithm MTDP is O�n2(1 + 2gn/ε)�2,
where Δ = 1 + 2gn/ε is the trimming parameter. �
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Abstract. In this paper, we consider the scheduling with rejection. The
objective functions are to minimize the maximum completion time of the
processed ones when the total compression cost is given. Firstly, we prove
that the problem 1|rej|Cmax/TCP is NP-hard, which implying that
Pm|rej|Cmax/TCP, 1|rej, rj |Cmax/TCP, 1|rej, on− line|Cmax/TCP are
all NP-hard. Secondly, for problem Pm|rej|Cmax/TCP , we design a pseu-
dopolynomial time dynamic programming algorithm that solves it ex-
actly and an FPTAS (full polynomial time approximation scheme) when
m is a constant. We also design a pseudopolynomial time dynamic pro-
gramming algorithm and an FPTAS for the case of non-identical job
arrival problem 1|rej, rj |Cmax/TCP . In the end, we consider the on-line
problem 1|rej, on − line|Cmax/TCP and prove that there doesn’t exist
any on-line algorithm with a constant competitive ratio for it, even if the
jobs only have two different release times.

Keywords: Approximation algorithm, scheduling with rejection, dy-
namic programming, worst case performance ratio.

1 Introduction

In classical scheduling models, it is usually assumed that jobs must be processed
and that the processing times are given unchanged. While in many applications,
a job could not be processed if it’s processing time or processing cost is very large.
We could choose to pay some charge to send it to outside for “out processing”, or
buy finished product. That is, it needs a decision to choose some jobs processed,
and some jobs rejected (namely process with rejection). Here, the scheduling
problem we considered are not only to minimize the regular objective functions
(such as maximum completion time or weighted completion time, maximum
lateness etc), but also make the total cost of rejected job’s be in an acceptable
interval. This is the so-called problem of scheduling with rejection. There is
not many results researched in this field. In 1996, Bartal et al. [2] consider the
problem Pm|rej|Cmax + TCP , which is the first paper to study the problem
� Supported by the National Natural Science Foundation(Grant Number 10671108)

and the Province Natural Science Foundation of Shandong (Grant Number
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of scheduling with rejection. For off-line model, they give an FPTAS and a
2 − 1/m approximation algorithm with running time O(nlogn), and for on-line
model, they give a (3+

√
5)/2 approximation algorithm which is the best possible

result for it. He and Min [7] provide the best competitive ratio algorithm for the
special cases when the number of uniform machines is two or three. In 1998,
Engels et al. [4] study 1|rej|

∑
wjCj + TP and prove it’s NP − hard and also

provide pseudo-polynomial time algorithm and an FPTAS for it. Epstein et al.
[5] consider the problem 1|on − line, rej, pj ≡ 1|

∑
Cj + TP and give a greedy

algorithm with competitive ratio (2 +
√

3)/2 and a lower bound of 1.633 for it.
In 2003, Sengupta et al. [9] study the scheduling problem with rejection which
objective function is to minimize the sum of the maximum lateness and the
total rejection cost and design their PTAS. For unrelated case and when the
objective function is to minimize the sum of maximum completion time and
the total rejection cost, Seiden et al. [8] prove that the problem is APX-hard
and give a 1.58-approximation algorithm for it. While for identical or uniform
model, they prove that the problem is NP-complete and design an FPTAS for
it. They also point out that the results on unrelated machines can be extended
to multi-stage scheduling of free operation with preemption. It has been recently
proved by Cao et al. [3] that the problem 1|rej, rj |Cmax +

∑
j∈R ej is NP-hard,

even jobs only have two different arrival times. They also design a PTAS for
off-line case and give a (

√
5 + 1)/2 -competitive algorithm for on-line case when

jobs have two different arrival times, which is the best possible result for it.
Next, we give some notations concerning in this paper. Let J = {1, 2, · · · , n}

denote the set of jobs, where job j processing time is pj ≥ 0, arrival time is
rj ≥ 0, and rejection cost is ej ≥ 0. For job j, if we accept to process it, then
job j’s processing time is pj , and completion time is denoted as Cj . While if we
reject (to process) it, then we should pay rejection cost ej . Given a scheduling
π, let S(π) ⊆ J be the set of jobs accepted, then R(π) = J/S(π) is the set
of jobs rejected. Let H is any a given bound of total rejection cost, our object
is to find a scheduling π such that TCP =

∑
j∈R(π) ej ≤ H and minimize

Cmax(π) =
∑

j∈S(π) pj . Using the 3−field notation of Graham et al [6], we denote
our problems as:

(1) 1|rej|Cmax/TCP ;
(2) Pm|rej|Cmax/TCP ;
(3) 1|rej, rj |Cmax/TCP ;
(4) 1|rej, on− line|Cmax/TCP .

Where rej implies that the job can be rejected; Pm denotes m (where m is a
constant) identical machines.

2 The NP-Hardness

We prove it’s NP-hardness by reduction from the 0/1 knapsack problem:
There is a set of n positive integers (vj , wj) and a integer B, given any threshold
L, does there exist an index set K ⊆ {1, 2, · · · , n} such that

∑
j∈K vj ≥ L and∑

j∈K wj ≤ B?
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Theorem 1. 1|rej|Cmax/TPC is NP-hard.

Proof. Given any instance I = {(B, vj , wj) : 1 ≤ j ≤ n} of knapsack problem,
we define an instance I ′ of the scheduling problem 1|rej|Cmax/TPC with n jobs
J1, J2, · · · , Jn, where pj = vj , ej = wj (j = 1, 2, · · · , n) and H = B.

Obviously, the construction of I ′ can be done in polynomial time of the input
size. Let S(π) and R(π) be the set of jobs accepted and rejected by the schedule
π, respectively. Given any threshold L, we only need to prove the following two
conditions are equivalent:

(a) There exists a schedule π of I ′ such that

Cmax(π) =
∑

j∈S(π)

pj ≤ L and
∑

j∈R(π)

ej ≤ H ;

(b) There exists a set K of I ′ such that

∑
j∈K

vj ≥
n∑
j=1

pj − L and
∑
j∈K

wj ≤ B.

(a) ⇒ (b) Suppose π is a feasible schedule of I ′ such that

Cmax(π) =
∑

j∈S(π)

pj ≤ L and
∑

j∈R(π)

ej ≤ H.

As pj = vj , ej = wj and
n∑
j=1

pj =
∑

j∈S(π)
pj +

∑
j∈R(π)

pj . Set K = R(π), then

∑
j∈K

vj ≥
n∑
j=1

pj − L and
∑
j∈K

wj ≤ B.

(b) ⇒ (a) can be proved similarly. �

The following three lemmas can be proved easily from the Theorem 1.

Lemma 1. Pm|rej|Cmax/TPC is NP-hard.

Lemma 2. 1|rej, rj |Cmax/TPC is NP-hard.

Lemma 3. 1|rej, on− line|Cmax/TPC is NP-hard.

3 Dynamic Programming Algorithm and an FPTAS for
the Problem Pm|rej|Cmax/TPC

3.1 Dynamic Programming Algorithm for Pm|rej|Cmax/TCP

Let {Jj = (pj , ej) : 1 ≤ j ≤ n} be the set of jobs, m be the number of identical
parallel machines {M1, M2, · · · , Mm}, H be the upper bound about the total
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penalties (TPC) of rejected jobs, where m is a constant. We will get a sched-
ule which minimizing the makespan and having TPC at most H by a dynamic
programming algorithm. For any partial schedule for jobs {J1, J2, · · · , Jj}, we
say that its state is C = (c1, c2, · · · , cm), where ci is the finish time of ma-
chine Mi. If (j, C) can be obtained by some partial schedule, we say it’s fea-
sible. Let Sj denote the jth state space, i.e., the set of all the feasible states
obtained by partial schedules for jobs {J1, J2, · · · , Jj}. For any (j, C) ∈ Sj, us-
ing Γ (j, C) represents the minimum TPC of partial schedules whose states are
(j, C).

Algorithm A

Step 1 Set S1 := {(1, 0), (1, p1Ev)} (v = 1, 2, · · · , m), Sj := φ (j = 2, · · · , n),
Γ (1, 0) := e1 and Γ (1, p1Ev) := 0.

Step 2 For j = 2 to n; if Γ (j − 1, C) + ej > H , set Sj := {(j, C + pjEl)};
if Γ (j − 1, C) + ej ≤ H, then set Sj := {(j, C), (j, C + pjEl)}.
Calculate the corresponding Γ (j, C).

Step 3 Output the state vector (n, C) ∈ Sn that minimizes the makespan Cmax.
Step 4 Give the corresponding schedule of the original instance

according to (n, C).

As every coordinate of C = (c1, c2, · · · , cm) comes from the interval [0, Psum]
where Psum =

∑n
j=1 pj, the cardinality of any Sk is upper bounded by O(Pm

sum).
So the running time is

O
[
n(psum)m

]
.

Algorithm A is a pseudo-polynomial algorithm. As the cardinality of Tj is at
most (⌈

lognpmax
1+ε0

⌉)m
,

and the total cycle of the algorithm is n, so the total running time is

O
[
n
(⌈

lognpmax
1+ε0

⌉)m]
.

3.2 Algorithm MA and FPTAS for Pm|rej|Cmax/TCP

In order to get an FPTAS, we have to trim the state space Sj into a new one
whose cardinality is polynomial in the input size and the trimming cost should
be small enough. Using Tj denotes the trimmed state space of Sj . Given any
accuracy parameter ε > 0, let ε0 = ε/(2n). We divide the time interval [0, psum]
into t intervals I0 = [0, 1], I1 = ((1+ε0)0, (1+ε0)1], I2 = ((1+ε0)1, (1+ε0)2],· · ·,
It = ((1 + ε0)t−1, (1 + ε0)t], where t = �logpsum

1+ε0 �.
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Algorithm MA

Step 1 Trim S1 into T1 according to the method of the following Step 2.
Step 2 For j = 1 to n, calculate Sj from Tj−1 using the Algorithm A,

and trim Sj to Tj according to the following rules:
For any (j, C) ∈ Sj , if ct (1 ≤ t ≤ m) falls into the time interval Ii
(i ≥ 1), set c′t = (1 + ε0)i; if ct = 0 or ct = 1, then set c′t = ct.
Nextly, we set Tj = {(j, C′)|(j, C) ∈ Sj} and Γ (j, C′) = Γ (j, C),
where C′ = (c′1, c

′
2, · · · , c′m).

Step 3 Output the state vector (n, C∗) from Sn such that M(n, C′) ≤ H and
minimizing the makespan Cmax.

Step 4 Give the corresponding schedule of the original instance according to
(n, C∗).

Theorem 2. Algorithm MA yields a (1 + ε)-factor approximation algorithm
(FPTAS) for Pm|rej|Cmax/TPC, which runs in time O[n(1 + 2n/ε)m|I|m].
Where |I| is the input size of I under the binary encoding.

Proof. Time complexity: As the cardinality of Tj is at most (�logpsum

1+ε0 �)
m, and the

total cycle of the algorithm is n, so the total running time is O[n(�logpsum

1+ε0 �)
m].

Note that

|I| ≥ logpsum

2 =
ln(psum)

ln2
,⌈

logpsum

1+ε/(2n)

⌉
=

⌈ ln(psum)
ln
(
1 + ε/(2n)

)⌉ ≤ ⌈(
1 +

2n

ε

)
ln(psum)

⌉
≤

⌈(
1 +

2n

ε

)
|I|ln2

⌉
.

The second inequality is derived from lnz ≥ (z − 1)/z (∀z ≥ 1). And then the
total running time of the algorithm is O[n(1+2n/ε)m|I|m]. Algorithm accuracy:
Suppose π is the schedule get by Algorithm MA, we will prove that the makespan
of π is at most (1 + ε) times that of the optimal schedule. We first establish the
inequality (1 + x/k)k ≤ 1 + 2x, for any 0 ≤ x ≤ 1 and any real k ≥ 1. The
left-hand side of the inequality is a convex function in x, and the right-hand side
is a linear function in x. Moreover, the inequality holds at x = 0 and x = 1.
Hence, it holds for any 0 ≤ x ≤ 1. In particular, setting x = ε/2 and k = n, we
have (

1 +
ε

2n

)n
≤ (1 + ε).

Suppose C = (c1, c2, · · · , cm) is the completion state of π on machines, and
using (π, C) or (n, C) denotes the current state. Let (π, C′) or (n, C′) be the
corresponding state of Tn, where C′ = (c′1, c

′
2, · · · , c′m). By Step 2, ci may be

smaller than c′i. Let π∗ be the optimal schedule for the original instance and the
corresponding completion state on machines be C∗ = (c∗1, c

∗
2, · · · , c∗m). Similar, we

let (n, C∗′
) denote the corresponding state of Tn, where C∗′

= (c∗
′

1 , c∗
′

2 , · · · , c∗′m).
Suppose p∗i1 and p∗is denote the first and the last job’s processing time on machine
Mi in π∗. Although the load c∗i also may be smaller than corresponding c∗

′
i on

machine Mi, we can recursively stretch p∗ij (1 ≤ j ≤ s) as little as possible into
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p∗
′
ij

, such that c∗i =
∑s
j=1 p∗ij being an integer power of 1 + ε0 and (n, C∗′

) ∈ Tn.
Applying

c∗
′
i =

s∑
j=1

p∗
′
ij ≤

(
1 + ε0

)( s−1∑
j=1

p∗
′
ij + p∗is

)

≤
(
1 + ε0

)(
1 + ε0

)( s−2∑
j=1

p∗
′
ij + p∗is−1

+ p∗is
)

=
(
1 + ε0

)2
(
s−2∑
j=1

p∗
′
ij + p∗is−1

+ p∗is

)
≤ · · ·

≤
(
1 + ε0

)(is−i1+1)
s∑
j=1

p∗ij

≤
(
1 + ε0

)n s∑
j=1

p∗ij

≤
(
1 + ε

)
c∗i .

That is for any i (1 ≤ i ≤ m). It holds that c∗
′
i ≤ (1 + ε0)c∗i . And thus,

Cmax(π∗, C∗′
) ≤ (1 + ε)Cmax(π∗, C∗) (1)

By the Step 2 of the Algorithm MA

Cmax(π, C) ≤ Cmax(π, C′) (2)

By the Step 3 of the Algorithm MA

Cmax(π, C′) ≤ Cmax(π∗, C∗′
) (3)

Applying (1), (2) and (3), we get

Cmax(π, C) ≤ (1 + ε)Cmax(π∗, C∗) (4)

Where Cmax(π, C) and Cmax(π, C′) are the makespan corresponding to the state
(π, C) and (π, C′), respectively. The meaning of Cmax(π∗, C∗′

) and Cmax(π∗, C∗)
are similar. �

3.3 Algorithm MA(ε) for Pm|rej|Cmax/TCP

From the expression of the running time, the running time of the above algorithm
MA becomes longer as the job’s processing time increase. Next, we give another
FPTAS for Pm|rej|Cmax/TCP whose running time isn’t influenced by the job’s
processing time.
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We renumber all the jobs such that p1 ≥ p2 ≥ · · · ≥ pn. We denote Ai as
the dynamic programming algorithm A which schedules jobs without processing
times {p1, p2, · · · , pi}. We also denote A as algorithm A0.

Algorithm MA(ε)

Step 1 Input an instance I = {Jj = (pj , ej) : 1 ≤ j ≤ n}.
Step 2 For k = 0 to n− 1, set Mk = ε

n+1pk+1.
Construct a rounded instance I ′k = {Jj = (p′j , ej) : 1 ≤ j ≤ n} and
go to Step 3, where p′j = Mk!pj/Mk".

Step 3 Find out the optimal schedule π̃k of I ′k by calling algorithm Ai:
if π̃k exists, obtain the corresponding schedule πk of π̃k;
else set s = k and go to Step 4.

Step 4 Find out πi0 that minimizes the makespan from {πk : 0 ≤ k ≤ s− 1},
then πi0 is a schedule of I.

Theorem 3. Algorithm MA(ε) yields a (1 + ε)-factor approximation algorithm
(FPTAS) for Pm|rej|Cmax/TPC, which runs in time O[nm+2ε−m].

Proof. Time complexity: As the jobs of I ′k = {Jj = (p′j , ej) : 1 ≤ j ≤ n} have
the common factor, we can delete the factor in executing algorithm Ai and get
the corresponding schedule of I ′k. So, the running time of A0 is:

O
[
np′max

]m
= O

[
n
⌊pmax

M0

⌋]m
= O

[
nm+1(1

ε

)m]
, where Psum =

n∑
j=1

pj.

In the same way, the running time of Ai (1 ≤ i ≤ s− 1) is also O[nm+1ε−m].
Since the main running time of the algorithm MA(ε) is calling algorithms Ai

(0 ≤ i ≤ s− 1), the total running time of MA(ε) is O[nm+2ε−m].
Algorithm accuracy: For any schedule π, denote it’s state as (π, C). Suppose

π∗ is the optimal schedule of the original instance and it’s state is denoted as
(π∗, C). Let the largest processing time of job’s in π∗ is pt, then holds pt ≥ pk,
Let π̃∗ is the schedule corresponding to that after π∗ is rounded. Obviously,
the schedule π̃∗ is a feasible schedule of instance I ′t−1. We only need to prove:
Cmax(πi0 ) ≤ (1 + ε)Cmax(π∗).

Due to rounded, the processing time of job’s in πt−1 may be longer than that
of corresponding job’s in π̃t−1, but at most longer by a factor Mt−1.

So

Cmax(πt−1) ≤ Cmax(π̃t−1) + nMt−1

≤ Cmax(π∗) + εpt

≤ Cmax(π∗) + εCmax(π∗)
= (1 + ε)Cmax(π∗).

Applying Cmax(πi0) ≤ Cmax(πt−1), we get Cmax(πi0) ≤ (1 + ε)Cmax(π∗). �
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4 Dynamic Programming Algorithm and FPTAS for the
Problem 1|rej, rj|Cmax/TPC

For any set of jobs {Jj = (pj , rj , ej) : 1 ≤ j ≤ n} and an upper bound H
about the total penalties (TPC) of rejected jobs. We first design a dynamic
programming algorithm for 1|rej, rj |Cmax/TPC and get a schedule with the
minimum makespan, while it’s TPC is at most H.

For any partial schedule for jobs {J1, J2, · · · , Jj}, if it’s makespan is P , we
denote its state as (j, P ). If (j, P ) can be obtained by some partial schedule, we
say it’s feasible. Let Sj denote the jth state space, i.e., the set of all the feasible
states obtained by partial schedules for jobs {J1, J2, · · · , Jj}. For any (j, C) ∈ Sj ,
using Γ (j, P ) represents the minimum TPC of partial schedules whose states are
(j, P ).

We give the followingdynamicprogramming algorithmfor1|rej, rj|Cmax/TPC.

Algorithm DP

Step 1 Initialize S1; = {(1, 0), (1, p1)}, Sj := φ (j = 1, 2, · · · , n), Γ (1, 0) := e1
and Γ (1, p1) := 0.

Step 2 For j = 2 to n, check every (j − 1, P ) ∈ Sj−1:
(i) If P ≥ rj and Γ (j − 1, C) + ej > H , set Sj := {(j, P + pj)};

if P ≥ rj and Γ (j − 1, C) + ej ≤ H, set Sj := {(j, P + pj), (j, P )}.
(ii) If P < rj and Γ (j − 1, C) + ej > H, set Sj := {(j, rj + pj)};

if P < rj and Γ (j − 1, C) + ej ≤ H, set Sj := {(j, rj + pj), (j, P )}.
Calculate the corresponding Γ (j, C).

Step 3 Output the state vector (n, P ∗) with M(n, P ) ≤ H that
minimizes the makespan Cmax.

Step 4 Give the corresponding schedule of the original instance
according to (n, P ∗).

It is straightforward that the running time is O[n(pmax+rmax)], where Pmax =
max{pj : 1 ≤ j ≤ n} and rmax = max{rj : 1 ≤ j ≤ n}. Which is a pseudo-
polynomial algorithm. In order to further get FPTAS for 1|rej, rj |Cmax/TCP ,
we round down job’s processing times and arrive times by the way offered
in [1].

Lemma 4. [9] With 1 + ε loss, we can assume that all processing times and
arrive times are integer powers of 1 + ε.

From lemma 4, all processing time and arrive times of the rounded instance
I ′ = {Jj = (p′j , r

′
j , ej) : 1 ≤ j ≤ n} are integer powers of 1 + ε, and at most have

�logrmax
1+ε � different processing times and �logpmax

1+ε � different arrive times. They
are all the polynomial in the size of the corresponding instance.
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Algorithm MDP (ε)

Step 1 Input instance I={Jj = (pj , rj , ej) : 1 ≤ j ≤ n};
Step 2 Construct the new instance I ′ = {Jj = (p′j , r

′
j , ej) : 1 ≤ j ≤ n}

by the way of lemma 4;
Step 3 Calling the algorithm DP obtains the optimal schedule π̃ of I ′;
Step 4 Give the corresponding schedule π of the original instance I

according to π̃.

From the property of the algorithm DP and the above Lemma 4, the follows
theorem can be proved easily.

Theorem 4. Algorithm MDP (ε) yields a (1 + ε)-factor approximation algo-
rithm (FPTAS) for 1|rej, rj |Cmax/TCP, which runs in time �lognpmaxrmax

1+ε �.

5 The Nonexistence of Infinite Worst Case Performance
Ratio Approximation for 1|rej, on − line|Cmax/TCP

The three models aforementioned are all off-line cases, i.e., for any instance of
scheduling problems, all information (such as the number of jobs, processing
times, compression cost etc) about the jobs are known before schedule. While in
many applications, the jobs are arrive one by one and any information of job’s
are not to be known until it arrives. The jobs are scheduled with the passage
of time and, at any point of time, the scheduler only has knowledge of those
jobs that have already arrived. It is assumed that the scheduler’s decision to
assign and schedule a job is irrevocable. Under the circumstance, we call the
corresponding scheduling as on-line scheduling (or scheduling over time). As the
information about jobs’ are released alone with the jobs’ arriving, which increases
the complexity.

Theorem 5. There doesn’t exist any on-line algorithm with a constant competi-
tive ratio for 1|rej, on− line|Cmax/TCP , even if the jobs only have two different
release times.

Proof. For any algorithm E, we only need to consider the following two cases.
Case 1. If by enforcing the algorithm E, the job J1 = {p1, e1}: p1 = M , r1 = 0

is accepted, then another (also the last) job J2 = {p2, e2}: p2 = ε, e1 + e2 > H
arrives at the time r = ε. Obviously, by algorithm E, the job J2 should be
rejected. Thus Cmax(E) = M and C�

max = 2ε, so

Cmax(E)
C�

max
=

M

2ε
→ +∞ (ε → 0).

Case 2. If by enforcing the algorithm E, the job J1 = {p1, e1}: p1 = M
(M > 1), r1 = 0 is rejected, then another (also the last) job J2 = {p2, e2}:



420 Y. Zhang, J. Ren, and C. Wang

p2 = Mk and e1 + e2 > H arrives at the time r = ε. Obviously, by algorithm E,
the job J2 should be accepted. Thus Cmax(E) = ε + Mk and C�

max = M , so

Cmax(E)
C�

max
=

ε + Mk

M
→ +∞ (k → +∞).

The proof is then finished. �
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Abstract. In this paper we study a cross-docking problem minimizing
the total flow time of inbound and outbound jobs. Using the theories and
methodologies of scheduling, we formulate the problem into a two-stage
scheduling problem and propose heuristics with worst-case performance
analysis under parallel, uniform and open-shop machines, respectively.
For each of problems studied, some polynomially solvable special cases
are also introduced.

Keywords: Scheduling; Cross docking; Heuristics.

1 Introduction

In the past decade, the cross-docking problem has led to relatively new logis-
tics techniques in the retail, grocery and distribution industries. The idea is to
transfer shipments directly from incoming to outgoing trailers without storage in
between. Shipments typically spend less than 24 hours in a crossdock, sometimes
less than an hour. In a traditional model, the warehouse maintains stock until a
customer orders, then the product is picked, packed, and shipped. When replen-
ishments arrive at the warehouse, they are stored until a customer is identified.
In a crossdocking model, the customer is known before the product gets to the
warehouse and there is no need to move it to storage. Clearly, cross docking
will consolidate shipments from disparate sources and will help distributors to
realize economies of scale in outbound transportation.

In fact cross docking system has been widely applied for many years to de-
cayed or time sensitive product in many industries. Many famous companies
such as Wal-Mart, Home Depot, Costco, Canadian Tire , Fedex Freight, etc, are
now implementing cross docking system. Wal-mart is well know as a pioneer in
implementing cross-docking operations. Due to the cross docking system, Wal-
Mart essentially eliminates all inventory holding costs. At one distribution center
� Supported by the National Science Foundation of China (No. 70731160015) and the
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in California, direct freight accounts for a whopping 60% of all items shipped.
Recently cross docking technique is also extensively implemented in most logistic
companies in China.

In 2003, Ratliff et al. [10] studied the design of cross docking network. Moti-
vated by vehicle loading, they determined the number of cross docks, locations
and material assignment strategies through a mixed integer programming. Also
in 2003, Donaldson et al. [3] studied the cross docking network design under
timetable constraint. Based on vehicle dispatch constraint, they have proposed
vehicle routes and the number of vehicles on each of the routes. Heragu et al.
[6] further studied warehousing design with cross dock and goods assignment.
They created a mathematical programming to minimize the total cost according
to material flow in warehouse and proposed heuristics to solve the mathematical
programming. In 2004, Mahnet Gumus [5] addressed the number of cross docks
and its influence to the total cost. Based on the time window of delivery and
order picking, Chen et al. [1] proposed for the cross docking network problem an
integer programming to minimize the total cost of transportation and inventory.
They proved the NP hardness of the problem and proposed a greedy algorithm
and a tabu search algorithm. Xu et al. [11,12] studied the transshipment prob-
lem in cross docking system with stochastic demand in 2004. Ma Deliang [9]
proposed an integrated storage and transportation model under VMI system.

In this paper, we study the efficiency of the cross-docking system from a
scheduling point of view. In a cross-dock setting, there are inbound and outbound
products. Each of inbound products needs to be downloaded and unpacked while
outbound products need to be collected and packed. We formulate the cross
docking problem with inbound and outbound products as a two-machine flow
shop problem F2||Cmax, where an operation on the first machine is to download
and unpack the inbound jobs, while collecting and packing those products with
the same destination into an outbound trailer is considered as an operation
on the second machine. Use the theories and methodologies of scheduling, we
develop heuristics for the crossing docking problems. This paper is organized as
follows. In Section 2, we mathematically define the problem and provide some
optimality properties. In Section 3 a heuristic is presented for cross docking
problem with parallel machines and some special cases that are polynomially
solvable are addressed. Section 4 proposes heuristics for cross docking problem
with uniform machines and open shop problems, respectively. Some polynomially
solvable special cases are also introduced. Section 5 includes concluding remarks
and further research directions.

2 Concepts and Notations

Consider a cross-dock setting in a third party logistics company in which we
assume that there are n inbound jobs. Different jobs can be needed by same
destination. Each inbound job needs to be downloaded and unpacked. In the
meanwhile, there are m outbound trailers each carries several products with the
same destination. We assume that due to space constraint, there is only one out-
bound trailer working at any time and it will work only if all products needed
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to be loaded on to that trailer are ready. In this situation, the scheduling of
inbound products download-and-unpack operations and that of outbound prod-
ucts collect-and-pack operations will affect the efficiency of the cross-docking
system as well as that of the total supply chain system. Our purpose is to se-
quence the download-and-unpack operations for the inbound jobs as well as the
collect-and-pack operations for the outbound jobs to minimize the makespan.

Based on the cross-dock setting mentioned above, we can formulate the cross
docking problem as a two-machine flow shop problem F2||Cmax, where an op-
eration on the first machine M1 is to download and unpack the inbound jobs,
while collecting and packing those products with the same destination into an
outbound trailer is considered as an operation on the second machine M2. Note
that an operation on the second machine M2 can not start unless the corre-
sponding job has been downloaded and unpacked on the first machine M1. But
our problem studied here is more complicate than two-machine flow shop prob-
lem because of the following two reasons. (1)The processing facility at the first
stage is not a single machine, but parallel, uniform or open-shop machine.(2)The
number of the first stage operations could be different from that of the second
stage operations.

We denote inbound jobs as N1 = {Ji1, i = 1, 2..., n}, which need to be
downloaded and unpacked. We refer these jobs as the first stage jobs. Job
Ji1(i = 1, 2..., n) requires a processing time of pi1. In the meanwhile, we de-
note outbound jobs as N2 = {Jj2, j = 1, 2, ..., m}, which need to be collected
and packed. We call them the second stage jobs. The processing time of Jj2 is
pj2. For each Jj2, j = 1, 2, ..., m, there is a corresponding subset of the first stage
jobs, call it as Sj , such that Jj2 can be processed only after all jobs in Sj have
been completed on the first stage machine. Without loss of generality, assume
N1 = ∪mj=1Sj . We study the scheduling of all jobs at the first and second stage,
such that the makespan Cmax, the time by which all of the first and second
jobs are completed, is minimal. Assume that the first stage has a k parallel,
uniform or open-shop machine problem and the second stage has a single ma-
chine problem. Use the three parameters notation, these problems are denoted
by (Pk, F2)|CD|Cmax, (Qk, F2)|CD|Cmax and (Ok, F2)|CD|Cmax, respectively,
where k is the number of machines.

For clarity, we summarize the notations mentioned above in the following
table.

inbound/outbound jobs processing times
N1 = {Ji1, i = 1, 2..., n} pi1, i = 1, 2..., n
N2 = {Jj2, j = 1, 2..., m} pj1, j = 1, 2..., m

Due to the NP hardness of problems Pk||Cmax[8] and Om||Cmax[4], the fol-
lowing Lemma 1 holds.

Lemma 1. (Pk, F2)|CD|Cmax, (Qk, F2)|CD|Cmax, (Ok, F2)|CD|Cmax are all
NP-hard.
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Property 1. There exists an optimal schedule for problems (Pk, F2)|CD|Cmax
and (Qk, F2)|CD|Cmax such that inbound jobs are processed consecutively on the
first stage machines.

Proof. If not, we can move forwardly jobs at the first stage such that inbound jobs
are processed consecutively. The new solution is still feasible without increasing
the makespan. �

Property 2. There exists an optimal schedule for problems (Pk, F2)|CD|Cmax,
(Qk, F2)|CD|Cmax and (Ok, F2)|CD|Cmax such that if the completion time of
jobs in Sj is earlier than that of Sk on the first stage machines, then Jj2 is
processed before Jk2 on the second stage machine.

Proof. If not, i.e., Jj2 is processed after Jk2 at the second stage, we can move
Jj2 forwardly to start at the starting time of Jk2 and move all jobs originally
between Jk2 and Jj2 (including Jk2) to the right by pj2. The new solution is still
feasible without increasing the makespan. Continue the similar shift and we can
obtain the required optimal schedule. �

Due to the proof of Property 2, we have

Property 3. There exists an optimal schedule for problems (Pk, F2)|CD|Cmax,
(Qk, F2)|CD|Cmax and (Ok, F2)|CD|Cmax such that Jk2 is processed after Jj2
at the second stage if Sj ⊆ Sk for j, k ∈ N2.
Finally, we introduce Johnson’s algorithm for F2||Cmax problem which will be
cited in the following two sections.

Johnson’s Algorithm [7]
(1) Let the jobs be labelled as 1, 2, ..., n and construct sets X and Y as

X = {j|τj1 < τj2}, Y = {j|τj1 ≥ τj2},

where τj1, τj1 are the processing times of job j on the first and second machine,
respectively.
(2) Arrange jobs in X in nondecreasing τj1-order. Arrange jobs in Y in nonin-
creasing τj2-order. Call these ordered sets X̂ and Ŷ.
(3) Concatenate X̂ and Ŷ forming the permutation { X̂ Ŷ } which is the pro-
cessing order for both machines.

3 (Pk, F2)|CD|Cmax

Firstly, we study (Pk, F2)|CD|Cmax problem where the first stage has a k par-
allel machine problem and the second stage has a single machine problem.
Obviously, when m = 1 or k = 1, the problem is equivalent to Pk||Cmax or
F2|prec|Cmax[2], respectively. Both of the two problem are NP hard. The fol-
lowing is a polynomial approximation algorithm for (Pk, F2)|CD|Cmax.
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Algorithm HP
(1) Let ui = pi1

k , vi =
∑

j:Ji1∈Sj

pj2
|Sj| , i = 1, 2, ..., n.

(2) Apply Johnson’s algorithm to the two-machine flow problem F2||Cmax with
n jobs and with processing times (ui, vi) and obtain its optimal solution F =
(σ∗, σ∗).
(3) At the first stage, schedule the first available job from the list σ∗, whenever
any machine of the k parallel machines becomes available. At the second stage,
process Jj2 as early as possible after all jobs in Sj have been completed by the
list of σ∗ on k parallel machines.

Theorem 1. Using Algorithm HP, an approximation solution to (Pk, F2)
|CD|Cmax can be obtained in polynomial time and the performance ratio is no
more than 2− 1

max
j=1,2,...,m

{k,|Sj |} .

Proof. Let τ be the last finished job at the first stage and CHP be the makespan
of schedule obtained by HP. We have

CHP ≤ CF +
m∑
j=1

p2j

(
1− 1

|Sj |

)
+

(k − 1
k

τ +
∑n
i=1 pi1
k

)
−

n∑
i=1

pi1
k

≤ CF +
m∑
j=1

p2j

(
1− 1

|Sj |

)
+

k − 1
k

τ

≤ C∗ +
m∑
j=1

p2j

(
1− 1

max
j=1,2,...,m

Sj

)
+

k − 1
k

max
i=1,2,...,n

pi1

≤ C∗ +
( m∑
j=1

p2j + max
i=1,2,...,n

pi1

)[
1− 1

max
j=1,2,...,m

{k, |Sj|}

]
≤ C∗

(
2− 1

max
j=1,2,...,m

{k, |Sj|}

)
,

where CF be the makespan of two-machine flow shop problem obtained at step
2 of HP Algorithm. �

Next we discuss some polynomially solvable cases of (Pk, F2)|CD|Cmax.

Property 4. For (Pk, F2)|CD|Cmax, there exists an optimal schedule such
that (1) if jobs in N2 are processed on the second stage machine in the se-
quence (J12, J22, ..., Jm2), then the jobs of N1 are processed on each of k parallel
machines in the following order: S1, S2\S1, ..., Sm\(∪m−1

j=1 Sj). (2)if Sj ∩ Sk =
∅, ∀k(	= j) and a given Jj2 ∈ N2, the jobs in Sj are processed consecutively on
each of k parallel machines.

Proof. (1) If jobs in S1 are not processed first on some machine of k parallel
machines, we just on that machine move them to the first positions and move
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other affected jobs to the right accordingly. After the move, the schedule is still
feasible without increasing the makespan. We can then move jobs in S2\S1 to
be processed immediately after S1 and move other affected jobs to the right
accordingly. After the move, the schedule is still feasible without increasing the
makespan. Repeat the process eventually we reach our goal.

(2) If jobs in Sj are not consecutive on some machine, we just move all jobs
in Sj on that machine to the right to make them be processed consecutively and
finish at the same time as before. Those jobs affected and not in Sj will be moved
to the left accordingly. The new solution is still feasible without increasing the
makespan. �

Polynomially solvable case 1 of n ≤ k.
In this situation, the problem can be transferred to 1|rj |Cmax which is polyno-
mially solvable.

Polynomially solvable case 2 of k = 1, S1 ⊆ S2 ⊆ · · · ⊆ Sm.
By Properties 3 and 4, the optimal schedule is that jobs in N1 are processed at
the first stage in the order of S1, S2\S1, ..., Sm\(∪m−1

j=1 Sj) while jobs in N2 are
processed in the sequence (J12, J22, ..., Jm2).

Polynomially solvable case 3 of k = 1, Sj ∩ Sl = ∅, ∀j, l ∈ {1, 2, ..., m}.

Algorithm P
(1) Let uj =

∑
i:Ji1∈Sj

pi1, vj = pj2, j = 1, 2, ..., m.

(2) Apply Johnson’s algorithm to the two-machine flow problem F2||Cmax with
n jobs and with processing times (ui, vi) and obtain its optimal solution F =
(σ∗, σ∗).
(3) At the second stage, jobs in N2 are processed in the order of σ∗. At the first
stage, the sequence of jobs in N1 is ordered according to Property 4(1).

Theorem 2. The optimal solution to Case 3 of (Pk, F2)|CD|Cmax can be ob-
tained by Algorithm P in polynomial time.

Proof. By Property 4(2), there exists an optimal solution such that jobs in each
Sj(j = 1, 2, ..., m) are processed consecutively at the first stage. We thus can
combine those jobs in Sj into a combined one with processing time uj. Thus the
problem is same as F2||Cmax. �

4 (Qk, F2)|CD|Cmax, (Ok, F2)|CD|Cmax

In this section we first study (Qk, F2)|CD|Cmax problem with k uniform ma-
chines at the first stage. Assume machine speeds si, i = 1, 2, ..., k satisfy that

s1 ≥ s2 ≥ ... ≥ sk.

Based on the HP algorithm, we first construct HQ to solve (Qk, F2)|CD|Cmax.
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Algorithm HQ
(1) Let ui = pi1

ks1
, vi =

∑
j:Ji1∈Sj

pj2
|Sj | , i = 1, 2, ..., n;

(2) Apply Johnson’s algorithm to the two-machine flow problem F2||Cmax with
n jobs and with processing times (ui, vi) and obtain its optimal solution F =
(σ∗, σ∗).
(3) At the first stage, schedule the first available job from the list σ∗ on an
available machine of the k uniform machines such that the job last selected
finish as early as possible. At the second stage, process Jj2 as early as possible
after all jobs in Sj have been completed on k uniform machines.

Theorem 3. Using Algorithm HQ, an approximation solution to the problem
(Qk, F2)|CD|Cmax can be obtained in polynomial time and the performance ratio
is no more than 3− 1

max
j=1,2,...,m

|Sj | −
sk

s1
.

Proof. Let CHQ be the makespan of schedule obtained by HQ. We have

CHQ ≤ CF +
m∑
j=1

p2j

(
1− 1

|Sj |

)
+

(∑n
i=1 pi1
ksk

−
∑n
i=1 pi1
ks1

)

≤ CF +
m∑
j=1

p2j

(
1− 1

maxj |Sj |

)
+

∑m
i=1 pi1
ksk

(
1− sk

s1

)
≤ C∗ + C∗

(
1− 1

maxj=1,2,...,m Sj

)
+ C∗

(
1− sk

s1

)
≤ C∗

(
3− 1

maxj=1,2,...,m |Sj |
− sk

s1

)
,

where CF be the makespan of two-machine flow shop problem obtained at step
2 of Algorithm HQ. �

Note. Problem (Qk, F2)|CD|Cmax with pi1 = 1, m = 1, can be transformed
into Qk|pi = 1|Cmax which is equivalent to the Assignment problem and thus
can be solved Polynomially.

Next we study the problem (Ok, F2)|CD|Cmax with k open shop machines at
the first stage. Let {M1, M2, · · · , Mk} be the set of machines. Each job Ji1(i =
1, 2, ..., n) consists of a set {O1i1, · · · , Oki1} of operations, and operation Oti1
has to be processed on machine Mt for pti1 time units. Similarly based on HP
algorithm, we construct HO algorithm to solve (Ok, F2)|CD|Cmax.

Algorithm HO

(1) Let ui =

k∑
t=1

pti1

k , vi =
∑

j:Ji1∈Sj

pj2
|Sj| , i = 1, 2, ..., n;

(2) Apply Johnson’s algorithm to the two-machine flow problem F2||Cmax with
n jobs and with processing times (ui, vi) and obtain its optimal solution F =
(σ∗, σ∗).
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(3) At the first stage, select the first available job from the list σ∗ and construct
dense schedule for open shop problem at the first stage by greedy algorithm. At
the second stage, process Jj2 on the second stage machine as early as possible
after all jobs in Sj have been completed on k open shop machines.

Theorem 4. Using Algorithm HO, an approximation solution to the problem
(Ok, F2)|CD|Cmax can be obtained in polynomial time and the performance ratio
is no more than 4− 1

maxj=1,2,...,m |Sj| .

Proof. Let CHO be the makespan of schedule obtained by HO. We have

CHO ≤ CF +
m∑
j=1

p2j

(
1− 1

|Sj |

)
+ 2C∗

Ok||Cmax

≤ C∗ +
m∑
j=1

p2j

(
1− 1

max
j=1,2,...,m

|Sj |

)
+ 2C∗

≤ C∗
(
4− 1

max
j=1,2,...,m

|Sj |

)
,

where C∗
Ok||Cmax

be the optimal makespan of the problem Ok||Cmax and CF be
the makespan of two-machine flow shop problem obtained at Step 2 of Algorithm
HO. �

Two polynomially solvable cases to (Ok, F2)|CD|Cmax:

Polynomially solvable case 1 of k = 2, m = 1.
In this situation, the problem is equivalent to O2||Cmax which is polynomial.

Polynomially solvable case 2 of pti1 = pi, m = 1.
The problem is equivalent to Ok|pij = fj |Cmax which is polynomial.

5 Conclusion

In this paper, we have formulated the cross-docking problems into two-stage
scheduling problems and propose several heuristic algorithms to address the
scheduling problems with performance analysis. Three different types of machines,
parallel, uniform, and open-shop, are considered in the scheduling problem and
in each case, besides heuristic algorithms and approximation ratio analysis, some
special polynomially solvable cases are introduced. Future research direction in-
cludes developing good heuristics with better error bound and considering the
model with other objective functions.
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Abstract. We investigate the problems of scheduling n jobs to m = m1 +
m2 identical machines where m1 machines are always available, m2

machines have some specified unavailable intervals.The objective is tomin-
imize the makespan. We assume that if a job is interrupted by the unavail-
able interval, it can be resumed after the machine becomes available.

We show that if at least one machine is always available, i.e. m1 > 0,
then the PTAS for Multiple Subset Sum problem given by Kellerer [3] can
be applied to get a PTAS; otherwise, m = m2, every machine has some un-
available intervals, we show that if (m− 1) machines each of which has un-
available intervalswith total length boundedby α(n)·Psum/m where Psum

is the total processing time of all jobs and α(n) can be any non-negative
function, we can develop a (1 + α(n) + ε)−approximation algorithm for
any constant 0 < ε < 1; finally we show that there does not exist any poly-
nomial time (1 + α(n) − o(1))−approximation unless P=NP.

Keywords:makespan,machine availability constraints,inapproximation,
PTAS.

1 Introduction

Scheduling problems with machine availability constraints have received consid-
erable attention from researchers in the last two decades. These models reflect
the real-world situations where the machines have unavailable intervals for pro-
cessing jobs due to breakdown, preventive maintenance or processing unfinished
jobs from a previous planning horizon. Various criteria and machine environ-
ments have been studied, see for example [1,2,10,11,12,13,16,20,21], etc. More
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information can be found in the surveys by Saidy et. al [17], Schmidt ([19]), Lee
([14]) and the references therein.

In this paper we study the problems of scheduling n jobs to m identical
machines. We use J = {J1, J2, · · · , Jn} to denote the job set. Each job Ji has a
processing time pi. Let Psum =

∑n
j=1 pj . Let M = {M1, M2, · · · , Mm1 , Mm1+1,

· · · , Mm1+m2} be a set of m = m1 + m2 identical machines, where machines
M1, M2, · · · , Mm1 are always available and machines Mm1+1, · · · , Mm1+m2 have
some unavailable intervals. We assume that the unavailable intervals are known
beforehand and all jobs are available to process from the beginning. Given a
schedule S, the completion time of job Ji in S is denoted by Ci(S). If S is clear
from the context, we use Ci for short. The goal is to schedule the set of n jobs to
m identical machines so as to minimize the makespan, Cmax = max{Ci}. Two
cases have been considered in the literature with regard to the jobs’ resumability.
A job is nonresumable (nr − a) if interrupted by the unavailable interval, a job
has to be restarted after the interval; and a job is resumable (r − a) if it can
be resumed after the interval. By extending the 3-field notation, the problems
can be denoted by Pm1,m2 | nr − a | Cmax and Pm1,m2 | r − a | Cmax for the
non-resumable and resumable cases, respectively. In this paper, we consider the
resumable case.

Literature Review. When the machines are always available, the parallel machine
scheduling problem, denoted as P || Cmax, is strongly NP-Hard; see Garey and
Johnson [7]. Hochbaum and Shmoys [8] have given a PTAS for this problem. For
more results about this problem, please see the survey paper by Chen et al. [4].

With the constraint of limited machine availability, some research has been
done on the problem of minimizing makespan. Lee [15] and Kellerer [10] gave
constant approximation algorithms for the special case of machine availability
where each machine Mi has a release time ri, i.e the machine is not available
until time ri. Note that the technique of [8] can be used to obtain a PTAS
for this problem. Lee [13] studied the problem P1,m | nr − a | Cmax with the
constraint that each machine has at most one unavailable period and analyzed
the performance of LPT rule. Hwang et. al [9] also studied the same problem
with additional constraint that at most λ ∈ [m−1] machines are permitted to be
unavailable simultaneously. They proved a tight bound of the LPT rule. In [18],
Scharbrodt et al. give approximation schemes and inapproximation results for
the problems such that some machines are not available for some periods due to
the fixed jobs scheduled there. Recently, Diedrich et al. [5] show that no constant
approximation exists for P0,m | nr − a | Cmax when m ≥ 2 and develop a PTAS
for P1,m | nr− a | Cmax based on PTAS for multiple subset sum problems given
by Kellerer [3].

When the jobs are resumable, Lee [13] studied the problem P1,m | r−a | Cmax
with the constraint that each machine has at most one unavailable period. He
showed that LPT rule can yield an arbitrarily large performance ratio while a
modified LPT rule has a tight worst case performance of 3

2 −
1

2(m+1) .
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New Contributions. In this paper, we study the resumable scheduling problem
Pm1,m2 | r − a | Cmax. We first study the case m1 ≥ 1, i.e. at least one machine
is always available. We show that the PTAS for Multiple subset sum problem
given by Kellerer [3] can be applied to obtain a PTAS. Otherwise m1 = 0. We
consider the case that all but one machine each has unavailable intervals whose
total length is bounded by α(n)Psum/m. For convenience, we denote our problem
as P0,m, α(n) | r−a | Cmax. We show that there is a (1+α(n)+ε)−approximation
algorithm for any constant 0 < ε < 1. and we show that there does not exist any
polynomial time (1 + α(n)− o(1))−approximation unless P=NP.

Organization. Our paper is organized as follows. In Section 2 and 3, we study
the problems Pm1≥1,m2 | r−a | Cmax and P0,m, α(n) | r−a | Cmax, respectively.
In Section 4, we draw the conclusion.

2 Pm1≥1,m2 | r − a | Cmax

In this section, we study the problem such that at least one machine is always
available. We will show that PTAS for Multiple Subset Sum Problem (MSSP)
with different knapsack capacities given by Kellerer [3] can be applied to solve
this problem. The MSSP with different knapsack capacities is the problem of
assigning items from a given ground set to a given number of knapsacks such
that the sum of the item weights in every knapsack does not exceed its capacity
and the total sum of the weights of the packed items is as large as possible.

For any instance of Pm1≥1,m2 | r − a | Cmax, if we knew the value of the
optimal makespan C∗

max, then we can apply Kellerer’s PTAS for MSSP to obtain
a schedule whose makespan is at most (1 + ε)C∗

max as follows: for each job Ji,
create an item i whose weight is the same as the job’s processing time; for each
machine Mi, 1 ≤ i ≤ m1 + m2, we create a knapsack with the capacity (C∗

max −
Ai(C∗

max)) where Ai(C∗
max) is the total length of unavailable intervals before time

C∗
max on Mi; then by applying Kellerer’s PTAS, a set of items with total weight

of (1− ε/m)Psum can be selected and assigned to these m knapsacks; finally we
schedule the jobs basing on the assignment of the items to the knapsacks, that
is, if item i is assigned to a knapsack corresponding to machine Mi, then we
schedule the job Ji to Mi; if item i is not assigned to any knapsack, then we
schedule job Ji to machine M1 which is always available by our assumption.

Since all jobs are resumable and the jobs assigned to Mi, i 	= 1, correspond to
the items packed in the knapsack with capacity (C∗

max−Ai(C∗
max)), it is easy to

see that the completion time of the last job on machine Mi, is at most C∗
max. On

the other hand, the completion time of the last job on machine M1, is at most
C∗

max plus the total weight of the jobs corresponding to the unselected items,
which is at most εPsum/m. Since Psum/m is a lower bound of C∗

max, therefore
the makespan of the produced schedule is at most (1 + ε)C∗

max.
To find the optimal C∗

max, we operate a binary search on the range of [Psum/m,
Psum].

Theorem 1. There is a PTAS for Pm1≥1,m2 | r − a | Cmax.
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3 P0,m, α(n) | r − a | Cmax

In this section, we study the problem P0,m, α(n) | r − a | Cmax. In this case,
there are m machines. We consider the case that machine Mi, 1 ≤ i ≤ m − 1,
each has unavailable intervals whose total length is bounded by α(n)Psum/(m),
where α(n) can be any non-negative function; machine Mm may have arbitrary
unavailable intervals. We first show that for any constant 0 < ε < 1, there is a
(1 + α(n) + ε)-approximation algorithm. Then we will show that there does not
exist any polynomial time (1 + α(n) − o(1))−approximation unless P=NP.

3.1 Approximation Algorithm

Our algorithm is similar to the one in [6] which is used to minimize the total
weighted completion time.

A feasible schedule S partitions the jobs in J = {J1, J2, · · · , Jn}, into m sets,
X1, · · · , Xm, where Xi (1 ≤ i ≤ m) contains the jobs allocated to machine Mi.
Without loss of generality, one can assume that S does not contain any idle time
between the jobs on each machine. Since the order of the jobs on each machine
does not have any effect on the makespan, we consider two schedules to be same
if they have the same set of jobs on each machine. In this way, there is a one-to-
one correspondence between a schedule S of the jobs and a tuple (X1, · · · , Xm)
that partitions the jobs into m sets. Our algorithm is described below.

Main-Algorithm(I,ε)

Input: I, an instance of P0,m, α(n) | r−a | Cmax; ε: a constant with 0 < ε < 1
1. Let f = (1 + ε

2 logn )
2. Let L be the list of tuples returned by Sub-Algorithm(I, f)
3. Return the schedule that corresponds to a tuple in L and has minimum

makesapn.

End of Main-Algorithm

Sub-Algorithm(I,f)

Input: I, an instance of P0,m, α(n) | r − a | Cmax; f , the error control
parameter which is a positive constant

1. If n = 1, there is only a single job J1, return a set of m tuples L =
((J1, ∅, · · · , ∅, ∅), (∅, J1, · · · , ∅, ∅), · · · , (∅, ∅, · · · , ∅, J1)

2. Let I1 and I2 be the instances derived from I that contain jobs J1 =
{J1, J2, · · · , Jn

2 �}, and J2 = {Jn
2 �+1, · · · , Jn}, respectively.

3. Let L1=Sub-Algorithm(I1, f).
4. Let L2=Sub-Algorithm(I2, f).
5. Merge L1, L2 into a single set L:

For each tuple u ∈ L1, u = (u1, · · · , um)
for each tuple v ∈ L2, v = (v1, · · · , vm)

generate a tuple (u1 ∪ v1, · · · , um ∪ vm), insert into L.
6. Return Tuple-Prune(L, f) (described below)

End of Sub-Algorithm
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To complete the algorithm, we show how tuples are pruned so that the size of L is
not large while one of the tuple in L still corresponds to a good approximation of
the optimal solution. Given the error control parameter f , we divide the interval
[0, Psum] into segments at points f i, 0 ≤ i ≤ !logf Psum". We use I0, I1, . . . ,
to denote the segments. For a subset of jobs Q, we define P (Q) =

∑
Ji∈Q pi.

For the purpose of prune, we associate each tuple (u1, · · · , um) with a vector in
Rm, (P (u1), · · · , P (um)). We say two tuples (u1, · · · , um) and (v1, · · · , vm) are
in the same region if there exist segments Ik1 , Ik2 , · · · , Ikm such that the vectors
associated with these two tuples are both in Ik1 × Ik2 × · · · × Ikm . It is obvious
that there are at most O((logf Psum)m) different regions.

Given a list L of tuples and the error control parameter f , Tuple-Prune(L,
f), selects for each region the tuple (u1, · · ·um−1, um) such that P (um) is the
least among all tuples in the region.

Next we analyze the Sub-Algorithm. For convenience, we assume that n = 2i

for some integer i ≥ 0. Otherwise, we can always append some dummy jobs with
pj = 0, which does not change the makespan of any schedule.

Lemma 1. For any schedule S =(X1, · · · ,Xm), there exists a tuple (u1, · · · , um)
in the list returned by Sub-Algorithm such that the following conditions hold:

(1) P (uj) ≤ f i · P (Xj) for 1 ≤ j ≤ m− 1
(2) P (um) ≤ P (Xm).

Proof. We prove the lemma by induction based on i.When i=0, the proof is trivial.
Assuming that the claim is true for i−1, we now verify the hypothesis for i.

The Sub-Algorithm divides the n = 2i jobs into J1 and J2 and call itself
recursively on J1 and J2. For any two sets of jobs, A and B, we define A[B] to be
the jobs in A

⋂
B. By inductive hypothesis, in L1, there is a tuple (u[1]

1 , · · · , u[1]
m )

that partitions the jobs in J1 such that the two conditions hold for (u[1]
1 , · · · , u[1]

m )
and (X1[J1], · · · , Xm[J1]). Similarly, in L2, there is a tuple (u[2]

1 , · · · , u[2]
m ) that

partitions jobs in J2 such that the two conditions hold for (u[2]
1 , · · · , u[2]

m ) and
(X1[J2], · · · , Xm[J2]).

Consider the tuple(u#
1 , · · · , u#

m) obtained by merging (u[1]
1 , · · · , u

[1]
m ) and (u[2]

1 ,
· · · , u

[2]
m ). If it is not in the list returned by Sub-Algorithm, then there must

exist a tuple (u1, · · · , um) that is in the list returned by Sub-Algorithm and is
in the same region as (u#

1 , · · · , u#
m). Furthermore, according to the Tuple-Prune

process, we must have P (um) ≤ P (u#
m) and P (uj) ≤ f ·P (u#

j ) for 1 ≤ j ≤ m−1.
By using the inductive hypothesis, we have for 1 ≤ j ≤ m− 1,

P (uj) ≤ fP (u#
j ) = f(P (u[1]

j ) + P (u[2]
j ))

≤ f(f i−1 · P (Xj [J1]) + f i−1 · P (Xj [J2]))
= f i · (P (Xj [J1]) + P (Xj [J2])) = f i · P (Xj) ,

and

P (um) ≤ P (u#
m) = P (u[1]

m ) + P (u[2]
m )

≤ P (Xm[J1]) + P (Xm[J2]) ≤ P (Xm).
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The lemma is then proved. �

For the time complexity, one can easily show that the running time of the Sub-
Algorithm(I, f) is O(mn(logf Psum)2m).

Theorem 2. For any function α(n) and 0 < ε < 1, the Main-Algorithm returns
a (1+α(n)+ε)-approximation for the scheduling problem P0,m, α(n) | r−a | Cmax
and the algorithm runs in O(mn( log Psum

ε )2m)-time.

Proof. Let I be any instance of the problem P0,m, α(n) | r − a | Cmax. Assume
that the optimal schedule for I is S∗ = (X∗

1 , · · · , X∗
m). For all 1 ≤ i ≤ m, let

J[i∗] be the job with the largest completion time on Mi in S∗.
We apply the Main-Algorithm with f = (1 + ε

2 logn ) to the instance I. By
Lemma 1, we know that there is a tuple S = (X1, · · · , Xm) returned by the
Sub-Algorithm, such that (1)P (Xj) ≤ f i · P (X∗

j ), 1 ≤ j ≤ m − 1 and (2)
P (Xm) ≤ P (X∗

m).
Use the two mathematical facts, (a) For any y ≥ 1, (1 + 1

y )y < e, where e is
the base of the natural logarithm; (b)For 0 < x < 1, ex < 1 + x + x2, we get
f i = (1 + ε

2 log n )logn < (1 + ε). Thus P (Xj) ≤ (1 + ε)P (X∗
j ) for 1 ≤ j ≤ m− 1.

Let J[i],i = 1, · · · , m, be the jobs with the largest completion time on Mi in
S. Then we must have C[m](S) ≤ C[(m)∗](S∗) since P (Xm) ≤ P (X∗

m). Let Ai be
the total length of the unavailable intervals on machine Mi, then by assumption
we have Ai ≤ α(n)Psum/m ≤ α(n)C∗

max. For i = 1, . . .m− 1, we have

C[i](S) ≤ P (Xi) + Ai ≤ (1 + ε)P (X∗
i ) + Ai ≤ (1 + ε)C[i∗](S∗) + α(n)C∗

max .

Therefore, the makespan of S is

Cmax(S) ≤ max
(

max
1≤i≤m−1

(1 + ε)C[i∗](S∗) + α(n)C∗
max, C[m](S)

)
≤

(
(1 + ε) + α(n)

)
C∗

max .

Let S′ be the schedule returned by the Main-Algorithm, then Cmax(S′) ≤
Cmax(S) ≤ ((1 + ε) + α(n))C∗

max.
For the running time, plugging f = 1 + ε

2 logn into the running time of Sub-
Algorithm and using the fact that

logf Psum =
ln Psum

ln f
and

x

2
≤ ln(1 + x) < x, for 0 < x < 1,

we get the running time

O
(
mn(

1
ε

log n log Psum)m
)
.

The lemma is then proved. �
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3.2 Lower Bounds of Approximation

Define the k-partition problem to be the problem of partitioning a set of integers
a1, · · · , an into k subsets X1, · · · , Xk so that

∑
aj∈Xi

aj = A for all 1 ≤ i ≤
k, where A = 1

k

∑n
i=1 ai. Without loss of generality, we assume that ai > 0

and A is an integer. It is obvious that for any fixed integer k > 1, k-partition
problem is NP-complete. Furthermore, one can reduce the m-partition problem
to the problem of finding a (1+α(n) -approximation for the scheduling problem
P0,m, α(n) | r − a | Cmax. Therefore, we have the following theorem.

Theorem 3. For each function α(n), the problem P0,m, α(n) | r− a | Cmax has
no polynomial time (1 + α(n)− o(1))-approximation unless P = NP .

Theorems 2 and 3 together imply the following dense hierarchy for polynomial
time approximation for NP-hard optimization problems.

Theorem 4. For every constant c > 1 and any small positive δ, there exists
a NP -hard problem that has a polynomial time c-approximation, but has no
polynomial time c− δ-approximation unless P=NP.

4 Conclusions

In this paper, we study two problems: Pm1≥1,m2 | r − a | Cmax and P0,m, α(n) |
r − a | Cmax. For the former problem we show that the PTAS for Multiple
subset sum problem given by Kellerer [3] can be applied to obtain a PTAS.
For the latter problem, we show that there is a (1 + α(n) + ε)−approximation
algorithm for any constant 0 < ε < 1, and we show that there does not exist
any polynomial time (1 + α(n) − o(1))−approximation unless P=NP. Thus we
derive a tight polynomial approximation algorithm for this problem.
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Abstract. This paper considers an online hierarchical scheduling prob-
lem on parallel identical machines. We are given a set of m machines
and a sequence of jobs. Each machine has a different hierarchy, and each
job also has a hierarchy associated with it. A job can be assigned to a
machine only if its hierarchy is no less than that of the machine. The
objective is to minimize makespan. Two models are studied in the pa-
per. For the fractional model, we present an improved algorithm and
lower bounds. Both algorithm and lower bounds are based on solutions
of mathematical programming. For any given m, our algorithm is opti-
mal by numerical calculation. For the integral model, we present both
a general algorithm for any m, and an improved algorithm with better
competitive ratios of 2.333 and 2.610 for m = 4 and 5, respectively.

1 Introduction

In this paper, we considers an online hierarchical scheduling problem on par-
allel machines. We are given a set of m parallel machines {M1, M2, · · · , Mm}.
Machine Mi has hierarchy i and speed si, i = 1, 2, · · · , m. A sequence of jobs
J = {J1, J2, · · · , Jn} arrive one by one over list. Job Jj has hierarchy gj ∈
{1, 2, · · · , m} and size pj , j = 1, 2, · · · , n. Job Jj can be assigned to the machine
Mi only if gj ≥ i, and the time needed for Mi to process Jj is pj/si. The objec-
tive is to minimize makespan, i.e., the maximum load of all machines. Here the
load of a machine is the completion time of any part of jobs assigned to it.

The performance of an algorithm A for online problem is often evaluated by
its competitive ratio, which is defined as the smallest number γ such that for
any job sequence J , CA(J ) ≤ γC∗(J ), where CA(J ) (or in short CA) denotes
the makespan produced by A and C∗(J ) (or in short C∗) denotes the optimal
makespan in an offline version. An online problem has a lower bound ρ if no
online algorithm has a competitive ratio smaller than ρ. An online algorithm is
called optimal if its competitive ratio matches the lower bound.

The online hierarchical scheduling problem was first studied by [3], and has
many applications came from service industry, computer system, hierarchical
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databases, etc. Two models have been studied in the literature. The first is
fractional model, where each job can be arbitrarily split between the machines,
and parts of the same job can be processed on different machines in parallel.
The second is integral model, where each job should be assigned completely to
one machine. For the fractional model on identical machines, where all machines
have the same speed 1, Bar-Noy et al. [3] presented a e-competitive algorithm.
The algorithm can be modified to solve the integral model with competitive ratio
e + 1 (see also [5]). They also showed a lower bound e for both fractional and
integral model when the number of machines tends to infinity.

When the number of machines is small, optimal algorithms with better com-
petitive ratios can be obtained, even when machines have different speeds. Park
et al. [11] and Jiang et al. [9] independently presented an optimal algorithm
with a competitive ratio of 5/3 for the integral model on two identical machines.
When two machines have different speeds, Chassid and Epstein [4] proved the
optimal algorithm has a competitive ratio 1+2s+s2

1+s+s2 for the fractional model, Tan
and Zhang [12] proved the optimal algorithm has a competitive ratio of⎧⎪⎨⎪⎩

min{1 + s, 2+2s+s2
1+s+s2 }, 0 < s ≤ 1,

min{ 1+s
s , 1+3s+s2

1+s+s2 }, 1 ≤ s <∞,

for the integral model, here s = s2
s1

is the ratio of speed of two machines. Recently,
Zhang et al. [13] proposed an algorithm with a competitive ratio of 2 for the
integral model on three identical machines, and showed that this ratio is optimal.

A strongly related problem is online hierarchical scheduling problem on m
identical machines with two hierarchy. In this problem, machines and jobs have
hierarchy either high or low. Jobs with high hierarchy can only be assigned to
the machine with high hierarchy, while jobs with low hierarchy can be assigned
to all machines. Jiang [10] proposed an online algorithm with a competitive ratio
of (12 + 4

√
2)/7 ≈ 2.522 for the integral model. The result was improved to

1 +
m2 −m

m2 − km + k2 <
7
3

by Zhang et al. [14], where k is the number of machines with high hierarchy. They
also proved a lower bound of 2 when k ≥ 3 and m ≥ 3

2 (k + 1). For the fractional
model, Zhang et al. [13] proposed an optimal algorithm with competitive ratio
m2/(m2 − km + k2).

A more general problem is the online restricted assignment model [2], where
each job may be processed on a subset of the machines. Azar et al. presented an
online algorithm with a competitive ratio of log22m for any machine number m.
On the contrary, if all jobs have the same hierarchy, online hierarchical scheduling
reduces to the classical online scheduling problem, which has been well studied
during the last half century ([7,1,6]).

In this paper, we consider both fractional and integral models on identical
machines. For the fractional model, we present an online algorithm and lower
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bounds. Both algorithm and lower bounds are based on solutions of mathemati-
cal programming. For any given m, our algorithm is better than that in [3] and is
optimal by numerical calculation. For the integral model, we first use a method
similar as that in [3] to obtain a general algorithm for any m with better com-
petitive ratio. Then an improved algorithms are given with competitive ratios
2.333 and 2.610 for m = 4 and 5, respectively.

The rest of the paper is organized as follows. Section 2 gives some useful
lemmas. Section 3 considers online algorithm and lower bounds for the fractional
model. Section 4 is dedicated to the integral model.

2 Preliminaries

Denote by Ti the total size of jobs with hierarchy i, i = 1, · · · , m. We have the
following results about the optimal makespan of two models, respectively.

Lemma 1. [3] For the fractional model, the optimal makespan

C∗
f = max

i=1,···,m
1
i

i∑
l=1

Tl.

For the integral model, the optimal makespan

C∗
g ≥ max

{
max

i=1,···,m
1
i

i∑
l=1

Tl, max
j=1,···,n

pj

}
.

The following technical lemma will be used frequently in the rest of the paper.

Lemma 2. Let 1 = (1, 1, · · · , 1)T , x = (x1, x2, · · · , xq)T be q × 1 matrices and
c = (c1, c2, · · · , cq) be a 1 × q matrix. A = (aij)q×q is an invertible matrix, and
the i-th row vector of A is denoted as αi. If cA−1 ≥ 0, then for any x

cx ≤ (cA−11)max{α1x, α2x, · · · , αqx}.

Proof. As A is invertible, it’s clear that cx=(cA−1)(Ax). Moreover, by cA−1 ≥
0, we can conclude that

cx=(cA−1)(α1x, α2x, · · · , αqx)T ≤ (cA−11)max{α1x, α2x, · · · , αqx}. �

3 Fractional Model

3.1 LP-Based Algorithm

In this subsection, we give an online algorithm for the fractional model. The
algorithm is based on an optimal solution of a linear programming, and performs
better than that of Bar-Noy et al. [3] for any given m. Besides, the algorithm
has very simple structure. The proportion of jobs assigned to each permitted



A Mathematical Programming Approach for Online Hierarchical Scheduling 441

machine only depends on the hierarchy of the job and machine, regardless the
size of the job.

For any fixed m ≥ 2, consider the following linear programming:

min γ

s.t.
j∑
i=1

xij = 1, j = 1, · · · , m, (1)

LP(m) ixii +
m∑

j=i+1

xij ≤ γ, i = 1, · · · , m, (2)

xij ≥ xi,j+1, j = i, · · · , m− 1, i = 1, · · · , m, (3)
xij ≥ 0, j = i, · · · , m, i = 1, · · · , m.

Note that LP(m) has 1 + (m2 + m)/2 nonnegative decision variables and (m2 +
3m)/2 constraints. Since

{xii = 1, i = 1, 2, · · · , m, xij = 0, i < j, i, j = 1, 2, · · · , m, γ = m}

is clearly a feasible solution of LP (m) with objective value m, LP(m) always
has optimal solution with bounded objective value. Denote by

{x(m)
ij , i ≤ j, i, j = 1, 2, · · · , m, γ(m)}

the optimal solution of LP (m) with optimal objective value γ(m).

Algorithm LP
For the fractional model of online hierarchical scheduling on m identical ma-
chines, when a job Jk with size pk and hierarchy gk = j arrives, assign part of
Jk with size of x

(m)
ij pk to Mi, i = 1, · · · , j.

Theorem 1. For the fractional model of online hierarchical scheduling on m
identical machines, algorithm LP has a competitive ratio of γ(m).

Proof. Note that (1) ensures the feasibility of algorithm LP , since parts of Jk
are assigned to permitted machines M1, · · ·Mj , and total size of parts assigned
equals

j∑
i=1

x
(m)
ij pk = pk

j∑
i=1

x
(m)
ij = pk.

Let Li be the load of Mi when algorithm terminates, i = 1, · · · , m. Since only
jobs of hierarchy j, j ≥ i will be assigned to Mi, and the proportion of jobs
assigned to each machine is independent of its size, we have

Li =
m∑
j=i

x
(m)
ij Tj , i = 1, · · · , m. (4)
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Suppose CLP = Li for some i. Let x(i) = (Ti, Ti+1, · · · , Tm)T and c(i) =
(x(m)
ii , x

(m)
i,i+1, · · · , x

(m)
im ), then CLP = c(i)x(i). Let

A(i) =

⎛⎜⎜⎝
1
i 0 0 · · · 0
1
i+1

1
i+1 0 · · · 0
· · · · · ·

1
m

1
m

1
m · · · 1

m

⎞⎟⎟⎠
be an (m− i + 1)× (m− i + 1) matrix, and the inventory matrix of A(i) is

A−1
(i) =

⎛⎜⎜⎜⎜⎜⎜⎝
i 0 0 · · · 0 0
−i i + 1 0 · · · 0 0
0 −(i + 1) i + 2 · · · 0 0

· · · · · · · · ·
0 0 0 · · · m− 1 0
0 0 0 · · · −(m− 1) m

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since

c(i)A
−1
(i) =(i(x(m)

ii −x
(m)
i,i+1), (i+1)(x(m)

i,i+1−x
(m)
i,i+2), · · · , (m−1)(x(m)

i,m−1−x
(m)
im ), mx

(m)
im ),

we have c(i)A
−1
(i) ≥ 0 by constraint (3) of LP(m). On the other hand, by

Lemma 1, we have

C∗
f = max

j=1,···,m
1
j

j∑
l=1

Tl ≥ max
j=i,···,m

1
j

j∑
l=i

Tl = max
j=1,···,m−i+1

αijx(i),

where αij is the j-th row vector of A(i). Hence, by Lemma 2, we have

CLP = c(i)x(i) ≤
(
c(i)A

−1
(i) 1

)
max

j=1,···,m−i+1
αijx(i) ≤

(
c(i)A

−1
(i) 1

)
C∗
f .

Since for any i,

c(i)A
−1
(i) 1 = ix

(m)
ii + x

(m)
i,i+1 + · · ·+ x

(m)
im ≤ γ(m)

by constraint (2) of LP(m), we have CLP ≤ γ(m)C∗
f , and thus the competitive

ratio of LP is γ(m). �

3.2 Lower Bounds

Theorem 2. Any algorithm for the fractional model of online hierarchical
scheduling on m ≥ 2 identical machines has a competitive ratio of at least ρ(m),
where ρ(m) is the optimal objective value of the following nonlinear programming
NLP (m):

max ρ

NLP(m) s.t. pi + qi+1 − qi ≥ ρ max
j=i,···,m

1
j

j∑
l=i

pl, i = 1, · · · , m, (5)

ρ ≥ 1, pi ≥ 0, i = 1, · · ·m,

q1 = qm+1 = 0, qi ≥ 0, i = 2, · · · , m.
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Proof. Since

{pi = 1, i = 1, · · · , m, qi = 0, i = 1, · · · , m + 1, ρ = 1}

is a feasible solution of NLP (m), the feasible region of NLP(m) will not be
empty. Denote by

{p(m)
i , i = 1, · · · , m, q

(m)
i , i = 1, · · · , m + 1, ρ(m)}

an optimal solution of NLP (m). To derive the lower bound for m machines,
consider the job sequence with m jobs. The i-th job has size p

(m)
m−i+1 and hierarchy

m− i +1, i = 1, · · · , m. By Lemma 1, the optimal makespan of the first i jobs is

C∗
f = max

k=1,···,i
1

m− k + 1

m−k+1∑
l=m−i+1

p
(m)
l

= max
j=m−i+1,···,m

1
j

j∑
l=m−i+1

p
(m)
l , i = 1, · · · , m. (6)

We will prove by induction that for any i, 1 ≤ i ≤ m − 1, in order to be ρ(m)-
competitive, A must assign parts of the first i jobs with total size more than
q
(m)
m−i+1 to the first m− i machines M1, · · · , Mm−i.

If any algorithm A assigns part of the first job with size no more than q
(m)
m to

all machines except Mm, then the sequence terminates. The load of Mm should
be no less than p

(m)
m − q

(m)
m . Thus

CA

C∗
f

≥ p
(m)
m − q

(m)
m

p
(m)
m

m

≥ ρ(m),

where the last inequality is due to (5). The claim is true for i = 1.
Suppose the claim is true for i, then the (i + 1)-th job with size p

(m)
m−i and

hierarchy m − i comes. Parts of the first i jobs that should be assigned to the
first m − i machines and the (i + 1)-th job, has a total size of p

(m)
m−i + q

(m)
m−i+1.

If total size assigned to to the first m − i − 1 machines M1, · · · , Mm−i−1 is no
more than q

(m)
m−i, then the sequence terminates. The load of Mm−i should be no

less than p
(m)
m−i + q

(m)
m−i+1 − q

(m)
m−i. Thus by (5) and (6),

CA ≥ p
(m)
m−i + q

(m)
m−i+1 − q

(m)
m−i ≥ ρ(m) max

j=m−i,···,m

(1
j

j∑
l=m−i

p
(m)
l

)
= ρ(m)C∗

f .

Hence, A must assign parts of the first i + 1 jobs with total size more than q
(m)
m−i

to the first m− i− 1 machines M1, · · · , Mm−i−1. The claim is true for i + 1.
When the last job with size p

(m)
1 and hierarchy 1 comes, total size of parts of

all jobs should be assigned to M1 is at least p
(m)
1 + q

(m)
2 . Hence
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CA ≥ p
(m)
1 + q

(m)
2 ≥ ρ(m) max

j=1,···,m

{1
j

j∑
l=1

p
(m)
l

}
= ρ(m)C∗

f

by (5) and (6), the desired results follow. �

3.3 Discussion on Optimality of LP

For any fixed m ≥ 2, LP (m) and NLP (m) can be solved numerically. For
example, the optimal solutions of LP (4) and NLP (4) are{

x
(4)
11 = 1, x

(4)
12 =

14
27

, x
(4)
13 =

1
9
, x

(4)
14 = 0, x

(4)
22 = x

(4)
23 =

13
27

, x
(4)
24 =

5
27

,

x
(4)
33 = x

(4)
34 = x

(4)
44 =

11
27

, γ(4) =
44
27

}
and{

p
(4)
1 = p

(4)
2 = p

(4)
3 =

3
2
, p

(4)
4 = 1, q

(4)
2 =

17
18

, q
(4)
3 =

29
27

, q
(4)
4 =

16
27

, ρ(4) =
44
27

}
respectively. It is interesting to note that the optimal objective values of LP (m)
and NLP (m) always coincide for any m that we have examined by computer,
which implies that algorithm LP is optimal for these values of m. Some selected
value of m and corresponding optimal bounds are listed in the following table.
Moreover, the bounds tends to e when m tends to ∞, which coincides with the
result in [3]. Therefore, though we have not give analytical solution of LP (m)
or NLP (m), or prove the optimal objective value of LP (m) and NLP (m) are
identical theoretically, we still conjecture that LP is an optimal algorithm for
any m.

m 2 3 4 5 6 7 8 9 10 20 50 100
bound 4

3
3
2

44
27

245
143

16
9

1071
586

1168
625

383
201

3676
1899

74811780
35531293

≈ 1.333 1.500 1.630 1.713 1.778 1.828 1.869 1.905 1.936 2.106 2.265 2.351

4 Integral Model

4.1 De-fractional LP Algorithm

In this subsection, we propose an de-fractional LP algorithm for the integral
model. The competitive ratio of the algorithm for the integral model is always
larger than that of the fractional model by one. The idea was first suggested
by Bar-Noy et al. ([3]). However, our algorithm is based on a more effective
algorithm LP for the fractional model, and hence it performs better than that
in [3] for any given m.
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Algorithm De-fractional LP (DF for short)
Denote by Lj−1

k the current load of machine Mk just before job Jj arrives, k =
1, · · · , m. Let L

j

k be the load of Mk in the schedule generated by algorithm LP
for the job sequence containing first j jobs, 1 ≤ k ≤ m. Let kj = max{k|Lj−1

k ≤
L
j

k, for some 1 ≤ k ≤ gj}, assign Jj entirely to Mkj .
The feasibility of algorithm DF is based on the following lemma. We omit

the detailed proof due to lack of space.

Lemma 3. For any j, j = 1, · · · , n,
(i) Lj−1

1 ≤ L
j

1.
(ii) Let Bj

i =
∑i

k=1 Ljk and Aj
i =

∑i
k=1 L

j

k, then Bj
i ≤ Aj

i for any i = 1, · · · , m.

Theorem 3. For the integral model of online hierarchical scheduling problem
on m identical machines, algorithm DF has a competitive ratio of γ(m) + 1.

Proof. Note that (i) of Lemma 3 implies that kj always exists for any j, then DF
is well-defined. Without loss of generality, suppose the last job Jn determines
makespan. Hence, CDF = Ln−1

kn
+ pn. By the definition of kn, we have Ln−1

kn
≤

L
n

kn
. Combining with Theorem 1 and Lemma 1, it follows that

CDF ≤ L
n

kn
+ pn ≤ CLP + pn ≤ γ∗C∗

f + pn ≤ (γ(m) + 1)C∗
g . �

4.2 Improved Algorithm for Small m

Though LP have good performance for the fractional model, the competitive
ratio of DF seems a bit large, especially for small m. In fact, current results show
that optimal algorithms for the integral model of online hierarchical scheduling
on two and three machines have competitive ratios of 5/3 and 2, respectively
([11,9,13]), both smaller than that of DF . Hence, in this subsection, we propose
an improved algorithm which has better performance than DF for m = 4, 5.
Though the algorithm can be used to the cases with more machines as well, the
analysis is extremely difficult and it may not beat DF in such cases.

We first generalize result of Lemma 1. Denote by Vji = {k|1 ≤ k ≤ j and gk =
i} and Tji =

∑
l∈Vji

pl for any i = 1, · · · , m. Let

LBj = max
{

max
i=1,···,m

1
i

i∑
l=1

Tjl, max
l=1,···,j

pl

}
. (7)

Clearly, LBj is a nondecreasing function of j.

Lemma 4. For the job sequence containing first j jobs J1, J2, · · · , Jj, the opti-
mal makespan of the integral model is at least LBj.

Algorithm Hierarchial Threshold(m; α) (HT for short)
Let Jj be the currently arriving job, Lj−1

i be the current load of Mi just before
Jj arrives, i = 1, · · · , m.
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1. If gj = 1 or gj = 2, assign Jj to M1.
2. If gj ≥ 4, then let Ij = {i|pj + Lj−1

i ≤ (1 + α)LBj and 4 ≤ i ≤ gj}.
If Ij 	= ∅, assign Jj to Mk, where k = arg max Ij . Otherwise, goto Step 3.

3. If Lj−1
2 ≤ Lj−1

3 , assign Jj to M2. Otherwise, assign Jj to M3.

In fact, HT use three different methods according to hierarchy of jobs. M1 is
specialized for processing jobs of hierarchy 1 or 2. The load of M1 will not be
too large since the expected competitive ratio is greater than 2. The assignment
of jobs with hierarchy no less than 4 is according to dual greedy idea. Jobs
are assigned to the machine with hierarchy as large as possible, unless such
assignment will either is not permitted due to hierarchy constraint, or will cause
the load of that machine exceed a certain threshold, which is determined by
Lemma 4. Since jobs with hierarchy 2 are already scheduled on M1, we use M2
and M3 to process jobs with hierarchy 3, and all remaining jobs which can not
be assigned to machines with larger hierarchy. Since no hierarchy constraints
should be concerned now, we assign these jobs using primal greedy idea. As we
will see in the following, combination of these methods makes the loads of all
machines as evenly as we can, and greatly simplify case by case analysis.

Theorem 4. For m = 4 and α = 4/3, HT (4; α) is no more than (1 + α)-
competitive.

Theorem 5. For m = 5 and α ≈ 1.610, which is the smaller positive solution
of equation 2x3 + 11x2 − 85x + 100 = 0, HT (5; α) is no more than (1 + α)-
competitive.

Proof. Without loss of generality, suppose the last job Jn determines makespan.
If it is assigned to M5 or M4, then clearly we have

CHT = pn + Ln−1
i ≤ (1 + α)LBn ≤ (1 + α)C∗

g , i = 4, 5,

where the last inequality is due to Lemma 1. If the algorithm assigns Jn to M1,
then we have

CHT = Ln1 = Tn1 + Tn2 = 2
Tn1 + Tn2

2
≤ 2C∗

g ,

since jobs assigned to M1 are either of hierarchy 1 or 2. Now suppose Jn is
assigned to M2 or M3 by the algorithm. Since HT always assigns jobs to one of
the two machines which has a smaller load, we have

CHT ≤ Ln−1
2 + Ln−1

3

2
+ pn. (8)

If there are only jobs with hierarchy 3 assigned to M2 and M3, then Tn3 ≥
Ln−1

2 + Ln−1
3 + pn. Together with Lemma 1, it follows

C∗
g ≥ max

{∑3
i=1 Tni

3
, pn

}
≥ max

{Ln−1
2 + Ln−1

3 + pn
4

, pn

}
.
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Let c = (1, 1),

x =
(Ln−1

2 + Ln−1
3

2
, pn

)T
and A =

( 1
2

1
4

0 1

)
.

By (8), it is easy to verify that

CHT ≤ cx, C∗
g ≥ max{α1x, α2x}, cA−1 = (1, 1)

(
2 − 1

2
0 1

)
=

(
2,

1
2

)
≥ 0,

By Lemma 2, we can get

CHT ≤ cA−11C∗
g =

5
2
C∗
g < (1 + α)C∗

g .

Therefore, we assume that there exist jobs with hierarchy greater than 3
assigned to M2 or M3 in the following. Denote by Jj the last one from the
sequence which is assigned to M2 or M3 and does not have hierarchy 3. In
other words, each job assigned to M2 and M3 and arrived after Jj must be of
hierarchy 3. Hence, due to Lemma 1,

C∗
g ≥

∑3
i=1 Tni

3
≥ Tn3

3
≥ 1

3
(
Ln−1

2 + Ln−1
3 + pn

)
− 1

3
(
Lj−1

2 + Lj−1
3 + pj

)
. (9)

We distinguish two cases according to the value of gj .
Case 1. gj = 5. Since Jj cannot be assigned on M4 or M5 by the algorithm,
we must have Lj−1

4 + pj > (1 + α)LBj and Lj−1
5 + pj > (1 + α)LBj . By (7), we

have LBj ≥ pj and

LBj ≥
∑5

i=1 Tji
5

=
∑5

i=1 Lj−1
i + pj
5

≥ (Lj−1
2 + Lj−1

3 + pj) + (Lj−1
4 + Lj−1

5 )
5

.

It follows that Lj−1
4 + Lj−1

5 > 2αLBj and thus

Lj−1
2 + Lj−1

3 + pj ≤ (5− 2α)LBj <
5− 2α

2α

(
Lj−1

4 + Lj−1
5

)
.

By Lemma 1, we have

C∗
g ≥

∑5
i=1 Tni

5
≥ (Ln−1

2 + Ln−1
3 ) + (Lj−1

4 + Lj−1
5 ) + pn

5

≥ 1
5
pn +

1
5
(Ln−1

2 + Ln−1
3 ) +

2α

5(5− 2α)
(
Lj−1

2 + Lj−1
3 + pj

)
(10)

Let y1 = pn, y2 = (Ln−1
2 +Ln−1

3 )−(Lj−1
2 +Lj−1

3 +pj) and y3 = (Lj−1
2 +Lj−1

3 +pj).
Combining with Lemma 1 and (9), (10), we have

C∗
g ≥ max

{
y1,

1
3
y1 +

1
3
y2,

1
5
y1 +

1
5
y2 +

1
5− 2α

y3

}
. (11)
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Let c = (1, 1
2 , 1

2 ), x = (y1, y2, y3)T and

A =

⎛⎝ 1 0 0
1
3

1
3 0

1
5

1
5

1
5−2α

⎞⎠
it can be verified from (8) and (11) that CHT ≤ cx, C∗

g ≥ max{α1x, α2x, α3x}
and

cA−1 =
(

1,
1
2
,
1
2

)⎛⎝ 1 0 0
−1 3 0
0 6α

5 − 3 5− 2α

⎞⎠ =
(

1
2
,
3α

5
,
5− 2α

2

)
≥ 0.

Thus by Lemma 2, we have CHT ≤ cA−11C∗
g = (3− 2

5α)C∗
g < (1 + α)C∗

g .
Case 2. gj = 4. By Algorithm HT and the definition of LBj, it follows that
pj + Lj−1

4 > (1 + α)LBj ≥ pj + αLBj and

LBj ≥
Lj−1

2 + Lj−1
3 + Lj−1

4 + pj
5

≥ Lj−1
2 + Lj−1

3 + αLBj + pj
5

,

which lead to
Lj−1

4 > αLBj >
α

5− α
(Lj−1

2 + Lj−1
3 + pj). (12)

If no job assigned to M2 or M3 before the arrival of Jj has hierarchy 5, we must
have Tn3 + Tn4 ≥ Ln−1

2 + Ln−1
3 + pn. By Lemma 1,

C∗
g ≥ max

{
pn,

∑4
i=1 Tni

4

}
≥ max

{
pn,

Ln−1
2 + Ln−1

3 + pn
4

}
.

By the same analysis as before, we can get CHT ≤ 5
2C∗

g .
Hence, suppose there are some jobs with hierarchy 5 which arrive before Jj

and is assigned to M2 or M3. Let Jk be the one among them which arrived
latest. In other words, all jobs assigned to M2 or M3 arrived after Jk must have
hierarchy 3 or 4. Thus we have

C∗
g ≥

∑4
i=1 Tni

4
≥ (Ln−1

2 + Ln−1
3 + pn)− (Lk−1

2 + Lk−1
3 + pk)

4
. (13)

Note that algorithm prefer to assign jobs with hierarchy 5 to M5 or M4, it follows
that

pk + Lk−1
5 > (1 + α)LBk ≥ αLBk + pk

and
pk + Lk−1

4 > (1 + α)LBk ≥ αLBk + pk.

Hence,

LBk ≥
(Lk−1

2 + Lk−1
3 + pk) + (Lk−1

4 + Lk−1
5 )

5
≥ (Lk−1

2 + Lk−1
3 + pk) + 2αLBk

5
,
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which further results in

Lk−1
5 > αLBk >

α

5− 2α

(
pk + Lk−1

2 + Lk−1
3

)
.

Combining it with Lemma 1 and (12), we have

C∗
g ≥

∑5
i=1 Tni

5
≥ pn + Ln−1

2 + Ln−1
3 + Lj−1

4 + Lk−1
5

5

≥ pn + Ln−1
2 + Ln−1

3

5
+

α

5(5− α)
(
pj + Lj−1

2 + Lj−1
3

)
+

α

5(5− 2α)
(
pk + Lk−1

2 + Lk−1
3

)
. (14)

Let z1 = pn, z2 = (Ln−1
2 +Ln−1

3 )−(pj+Lj−1
2 +Lj−1

3 ), z3 = (pj+Lj−1
2 +Lj−1

3 )−
(pk +Lk−1

2 +Lk−1
3 ) and z4 = pk+Lk−1

2 +Lk−1
3 . By Lemma 1 and (9), (13) (14),

we can conclude

C∗
g ≥ max

{
z1,

z1 + z2

3
,
z1 + z2 + z3

4
,
z1 + z2

5
+

z3

5− α
+

25− 5α− α2

5(5− α)(5 − 2α)
z4

}
.

(15)
Let

c =
(

1,
1
2
,
1
2
,
1
2

)
,x = (z1, z2, z3, z4)T ,A =

⎛⎜⎜⎝
1 0 0 0
1
3

1
3 0 0

1
4

1
4

1
4 0

1
5

1
5

1
5−α

25−5α−α2

5(5−α)(5−2α)

⎞⎟⎟⎠ ,

it can be verified from (8) and (15) that CHT ≤ cx, C∗
g ≥max{α1x, α2x, α3x,

α4x} and

cA−1 =
(

1,
1
2
,
1
2
,
1
2

)⎛⎜⎜⎝
1 0 0 0
−1 3 0 0
0 −3 4 0
0 15α−6α2

25−5α−α2
40α−100

25−5α−α2
125−75α+10α2

25−5α−α2

⎞⎟⎟⎠
=

(
1
2
,

3α(5− 2α)
50− 10α− 2α2 ,

2α(5 − α)
25− 5α− α2 ,

125− 75α + 10α2

50− 10α− 2α2

)
≥ 0.

Thus by Lemma 2, we have

CHT ≤ cA−11C∗
g =

150− 45α− α2

50− 10α− 2α2 C∗
g = (1 + α)C∗

g ,

where the last equality holds by the definition of α. �
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Abstract. In the context of scheduling and timetabling, we study a
challenging combinatorial problem which is very interesting for both
practical and theoretical points of view. The motivation behind it is
to cope with scheduled activities which might be subject to unavoidable
disruptions, such as delays, occurring during the operational phase. The
idea is to preventively plan some extra time for the scheduled activities
in order to be “prepared” if a delay occurs, and absorb it without the
necessity of re-scheduling all the activities from scratch. This realizes the
concept of designing robust timetables. During the planning phase, one
should also consider recovery features that might be applied at runtime if
disruptions occur. This leads to the concept of recoverable robust timeta-
bles. In this new concept, it is assumed that recovery capabilities are
given as input along with the possible disruptions that must be consid-
ered. The main objective is the minimization of the overall needed time.
We show that finding an optimal solution for this problem is NP-hard
even though the topology of the network, which models dependencies
among activities, is restricted to trees. However, we manage to design a
pseudo-polynomial time algorithm based on dynamic programming.

1 Introduction

In many real world applications, the design of a solution is divided in two main
phases: a strategic planning phase and an operational planning phase. The two
planning phases differ in the time in which they are applied. The strategic plan-
ning phase aims to plan how to optimize the use of the available resources accord-
ing to some objective function before the system starts operating. The operational
planning phase aims to have immediate reaction to disturbing events that can
occur when the system is running. In general, the objectives of strategic and op-
erational planning might be in conflict with each other. As disturbing events are
unavoidable in large and complex systems, it is fundamental to understand the
interaction between the objectives of the two phases. An example of real world
systems, where this interaction is important, is the timetable planning in rail-
ways systems. It arises in the strategic planning phase, and requires to compute a
� This work was partially supported by the Future and Emerging Technologies Unit of
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timetable for passenger trains that determines minimal passenger waiting times.
However, many disturbing events might occur during the operational phase, and
they might completely change the scheduled activities. The main effect of the
disturbing events is the arising of delays. The conflicting objectives of strategic
against operational planning are evident in timetable optimization. In fact, a
train schedule that lets trains sit in stations for some time will not suffer from
small delays of arriving trains, because delayed passengers can still catch poten-
tial connecting trains. On the other hand, large delays can cause passengers to
lose trains and hence imply extra traveling time. The problem of deciding when
to guarantee connections from a delayed train to a connecting train is known
as delay management [2,8,14,15,10,11]. Although its natural formalization, the
problem turns out to be very complicated to be optimally solved. In fact, it
is NP-hard in the general case, while it is polynomial in some particular cases
(see [2,14,15,10,11]).

To cope with the management of delays, we follow the recent recoverable ro-
bustness approach provided in [1,13], continuing the recent studying in robust
optimization. Our aim is the design of timetables in the strategic planning phase
in order to be “prepared” to react against possible disruptions. If a disruption
(delay) occurs, the designed timetable should guarantee to recover the scheduled
events by means of allowed operations represented by given recovery algorithms.
Events and dependencies among events are modeled by means of an event ac-
tivity network (see [2,15]). This is a directed graph where the nodes represent
events (e.g., arrival or departure of trains) and arcs represent activities occurring
between events (e.g., waiting in a train, driving between stations or changing to
another train). We assume that only one delay of at most α time might occur at
a generic activity of the scheduled event activity network. An activity may ab-
sorb the delay if it is associated with a so called slack time. A slack time assigned
to an activity represents some extra available time that can be used to absorb
limited delays. Clearly, if we associate a slack time of at least α to each activity,
every delay can be locally absorbed. However, this approach is not practical as
the overall duration time of the scheduled events would increase too much. We
plan timetables able to absorb the possible occurring delay in a fixed amount of
steps, Δ. This means that, if a delay occurs, it is not required that the delay is
immediately absorbed (unless Δ = 0) but it can propagate to a limited number
of activities in the network. Namely, the propagation might involve at most Δ
activities. The objective function is then to minimize the total time required by
the events in order to serve all the scheduled activities and to be robust with
respect to one possible delay. The challenging combinatorial problem arising by
those restrictions is of its own interest. We restrict our attention to event ac-
tivity networks whose topology is a tree. In fact, in [2], the authors show that
the described problem is NP -hard when the event activity network topology is
a DAG, and they provide approximation algorithms which cope with the case
of Δ = 0. In [3], these algorithms have been extended to Δ ≥ 0. In [4], the
authors provide polynomial time algorithms for Δ ≥ 0 when the network is a
path. In [6], practical motivations to the use of trees in real world scenarios have
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been provided. In the same paper, the algorithms proposed in [7], which have
O(nΔ+1) time complexity, have been applied.

In this paper, we study event activity networks which have a tree topology.
Surprisingly, the described problem turns out to be NP -hard even in this re-
stricted case. Then we present algorithmic results. We provide an algorithm that
solves the problem for Δ ≥ 1 in O(Δ2n) time and O(Δn) space where n is the
number of events in the input event activity network. While it requires O(n)
time and space when Δ = 0. The result implies that the problem can be solved
in pseudo-polynomial time. The algorithm exploits the tree topology in order to
choose which arc must be associated with some slack time. Intuitively, on trees,
we prove that the choice to carefully postpone the assignment of a slack time
to descendent activities as much as possible leads to cheapest solutions. Due to
space restrictions, omitted proofs can be found in [5].

2 Recoverable Robustness Model

In this section, we summarize the model of recoverable robustness given in [1].
Such a model describes how an optimization problem P can be turned into
a robustness problem P . Hence, concepts like robust solution, robust algorithm
for P and price of robustness are defined. In the remainder, an optimization
problem P is characterized by the following parameters. A set I of instances
of P ; a function F , that associates to any instance i ∈ I the set of all feasible
solutions for i; and an objective function f : S → R, where S =

⋃
i∈I F (i) is

the set of all feasible solutions for P . Without loss of generality, from now on
we consider minimization problems. Additional concepts to introduce robustness
requirements for a minimization problem P are needed:

– M : I → 2I – a modification function for instances of P . Let i ∈ I be the
considered input to the problem P . A disruption is meant as a modification
to the input i. Hence, M(i) represents the set of disruptions of the input of
P that can be obtained by applying all possible modifications to I.

– A – a class of recovery algorithms for P . Algorithms in A represent the
capability of recovering against disruptions. An element Arec ∈ A works as
follows: given (i, π) ∈ I×S, an instance/solution pair for P , and j ∈M(i), a
disruption of the current instance i, then Arec(i, π, j) = π′, where π′ ∈ F (j)
represents the recovered solution for P .

Definition 1. A recoverable robustness problem P is defined by the triple
(P, M, A). All the recoverable robustness problems form the class RRP.

Definition 2. Let P = (P, M, A) ∈ RRP. Given an instance i ∈ I for P , an
element π ∈ F (i) is a feasible solution for i with respect to P if and only if the
following relationship holds: ∃Arec ∈ A : ∀j ∈ M(i), Arec(i, π, j) ∈ F (j).

In other words, π ∈ F (i) is feasible for i with respect to P if it can be recovered
by applying some algorithm Arec ∈ A for each possible disruption j ∈ M(i).
The solution π is called a robust solution for i with respect to problem P . The
quality of a robust solution is measured by the price of robustness.
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Definition 3. Let P = (P, M, A) ∈ RRP. A robust algorithm for P is an
algorithm Arob such that, for each i ∈ I, Arob(i) is a robust solution for i wrt P .

Definition 4. Let P ∈ RRP and let Arob be a robust algorithm for P. The
price of robustness of Arob is: Prob(P , Arob) = maxi∈I

{
f(Arob(i))

min{f(π):π∈F (i)}
}

. The
price of robustness of P is: Prob(P) = min{Prob(P , Arob) : Arob is robust for P}.
Arob is P-optimal if Prob(P , Arob) = Prob(P). A robust solution π for i ∈ I is
P-optimal if f(π) = min {f(π′) : π′is feasible for i} .

3 Robust Timetabling Problem

In this section, we turn a particular timetable problem into a recoverable ro-
bustness problem, the Robust Timetabling problem (RTT ).

Given a DAG G = (V, A), where the nodes represent events and the arcs
represent the activities, the timetabling problem consists in assigning a time
to each event in such a way that all the constraints provided by the set of
activities are respected. Specifically, given a function L : A → N that assigns the
minimal duration time to each activity, a solution π ∈ R

|V |
≥0 for the timetable

problem on G is found by assigning a time π(u) to each event u ∈ V such that
π(v)− π(u) ≥ L(a), for all a = (u, v) ∈ A.

Given a function w : V → R≥0 that assigns a weight to each event, an optimal
solution for the timetabling problem minimizes the total weighted time for all
events. Formally, the timetabling problem TT is defined as follows.

TT

given: A DAG G = (V, A), functions L : A→ N and w : V → R≥0.
prob.: Find a function π : V → R≥0 such that π(v) − π(u) ≥ L(a) for all

a = (u, v) ∈ A and f(π) =
∑
v∈V w(v)π(v) is minimal.

Then, an instance i of TT is specified by a triple (G, L, w), where G is a DAG,
L associates a minimal duration time to each activity, and w associates a weight
to each event. The set of feasible solutions for i is: F (i) = {π : π(u) ∈ R≥0, ∀u ∈
V and π(v)− π(u) ≥ L(a), ∀a = (u, v) ∈ A}.

A feasible solution for TT may induce a positive slack time sπ(a) = π(v) −
π(u) − L(a) for each a ∈ A. That is, the planned duration π(v) − π(u) of an
activity a = (u, v) is greater than the minimal duration time L(a).

When in TT the DAG is an out-tree T = (V, A), any feasible solution satisfies,
for each v ∈ V , π(v) ≥ π(r)+

∑
a∈P (r,v) L(a), where r is the root of T and P (r, v)

the directed path from r to v in T . Moreover, without loss of generality, we can
fix our attention only on instances of TT with L(a) = 1, ∀a ∈ A. Indeed, as
proved below, the cost f(π) of a feasible solution π for an instance of TT with
an arbitrary function L easily derives from the cost f(π′) of a feasible solution
π′ for the same instance of TT with L′(a) = 1, ∀a ∈ A.

Lemma 1. Given a tree T = (V, A) and an instance i = (T, L, w) of TT ,
if i′ = (T, L′, w) where L′(a) = 1, ∀a ∈ A, then for any feasible solution
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π of i, there exists a feasible solution π′ of i′ such that f(π) = f(π′) +∑
v∈V

∑
a∈P (r,v) w(v)(L(a) − 1).

TT can be solved in linear time by assigning the minimal possible time to each
event (i.e. by using the Critical Path Method [12]). However, such a solution
cannot always cope with possible delays occurring at running time to the ac-
tivities. Recovery (on-line) strategies might be necessary. For this reason, let
now transform TT into a recoverable robustness problem RTT = (TT , M, A),
according to Section 2. Given an instance i = (G, L, w) for TT , and a con-
stant α ∈ G, we limit the modifications on i by admitting a single delay
of at most α time. We model it as an increase on the minimal duration
time of the delayed activity. Formally, M(i) is defined as follows: M(i) =
{(G, L′, w) : ∃ ā ∈ A : L(ā) ≤ L′(ā) ≤ L(ā) + α, L′(a) = L(a) ∀a 	= ā} .

We define the class of recovery algorithms A for TT by introducing the concept
of events affected by one delay as follows.

Definition 5. Given a DAG G = (V, A), a function s : A→ R≥0, and a number
α ∈ R≥0, a node x is α-affected by a = (u, v) ∈ A (or a α-affects x) if there exists
a path p = (u ≡ v0, v ≡ v1, . . . , vk ≡ x) in G, such that

∑k
i=1 s((vi−1, vi)) < α.

The set of nodes α-affected by an arc a = (u, v) is denoted as Aff(a).

In the following, given a feasible solution π for TT , we will use the slack times
sπ defined by π as the function s in the previous definition. Thus, an event x
is affected by a delay α occurring on the arc a = (u, v) if the sum of the slack
times assigned by the function π to the events on the path from u to x is smaller
than α. That is, the planned duration of the activities are not able to absorb
the delay α, which cannot be hidden from x .

We assume that the recovery capabilities allow us to change the time of at
most Δ events. Formally, each algorithm in A is able to compute a solution
π′ ∈ F (j) if, for each a ∈ A, |Aff(a)| ≤ Δ, where Δ ∈ N. This implies that a
robust solution for RTT must guarantee that, if a delay of at most α time occurs,
then it affects at most Δ events. Note that, RTT only requires to find a feasible
solution. Nevertheless, it is worth to find a solution that minimizes the objective
function of TT . Moreover, we focus on RTT , where the DAG is an out-tree. The
above optimization problem, denoted by RTT opt, is defined as follows:

RTT opt
given: A tree T = (V, A), a function w : V → R≥0, and α, Δ ∈ N.
prob.: Find a function π : V → R≥0 s. t. each arc in A α-affects at most

Δ nodes, according to the function sπ : A → R≥0 defined as sπ(a =
(i, j)) = π(j)− π(i)− 1, and s. t. f(π) =

∑
v∈V π(v)w(v) is minimal

In the next lemma, we prove that, when the modifications are confined to a
single delay of at most α time, there exists a solution for the RTT opt problem
which assigns only slack times equal to α.

Lemma 2. Given an instance i of RTT , for each feasible solution π for i there
exists a solution π′ for i such that f(π′) ≤ f(π) and, for each arc a = (x, y),
either π′(y) = π′(x) + 1 or π′(y) = π′(x) + 1 + α.
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4 Complexity
We call RTTdec the decision problem corresponding to RTTopt.

RTTdec
given: A tree T = (V, A), function w : V → R≥0, α, Δ ∈ N, and K ′ ∈ R≥0.
prob.: Is there a function π : V → R≥0 such that each arc in A α-affects

at most Δ nodes, according to the function sπ : A → R≥0 defined as
sπ(a = (i, j)) = π(j)− π(i)− 1, and such that

∑
v∈V π(v)w(v) ≤ K ′?

In the next theorem, we show thatRTTdec is NP-complete by a transformation
from Knapsack [9].

Knapsack

given: A finite set U, for each u ∈ U a size S(u) ∈ Z+, a value v(u) ∈ Z+,
and positive integers B, K ∈ Z+.

prob.: Is there a subset U ′ ⊆ U s. t.
∑

u∈U ′ S(u) ≤ B and
∑

u∈U ′ v(u) ≥ K?

Theorem 1. RTTdec is NP-complete.

Proof. A solution for RTTdec can be verified in polynomial time, as we only need
to find out whether there exists a subtree of size bigger than Δ where no slack
time α has been added. This can be performed by counting for each node v, how
many descending nodes are affected if a delay of α is assumed to occur at the
in-arc of x. Starting from the leaves of the tree and moving up until the root,
the procedure needs a simple visit of the tree, hence RTTdec is in NP.

Given an instance I of Knapsack where U = {u1, u2, . . . , u|U|}, we define an
instance I ′ of RTTdec. See Fig. 1 in [5] for a visualization of I ′. Without loss
of generality, we assume that S(ui) ≤ B, for each ui ∈ U . The set of nodes is
made of: nodes r, r′ and the sets of nodes Xi = {x1

i , x
2
i , . . . , x

S(ui)
i ≡ zi}, for

each ui ∈ U . The set of arcs A is made of: arc (r, r′); arcs (r′, x1
i ), for each

i = 1, 2, . . . , |U |; and for each ui such that S(ui) > 1, arcs (xji , x
j+1
i ), for each

i = 1, 2, . . . , |U | and for each j = 1, 2, . . . , S(ui)− 1.
The weight of each node in V is 0 except for nodes zi, i = 1, 2, . . . , |U |, where

w(zi) = v(ui). Finally, Δ = B +1, α = 1 and K ′ =
∑
ui∈U v(ui)(S(ui)+2)−K.

It is worth noting that the particular tree construction preserves the size of
the Knapsack instance, as each path of nodes of the same weight w can be
compacted and implicitly be represented by two numbers, namely, the number
of nodes of the path and the weight w of each node. This implies that each path
(x1
i , x

2
i , . . . , x

S(ui)−1
i ) of our construction will be represented by the pair (S(ui)−

1, 0). Also the operations performed on such paths do not need the explicit
representation of the tree. In particular, the check needed to verify whether a
solution is feasible can be done efficiently with respect to the compacted instance.

Now we show that, if there exists a “yes” solution for Knapsack , then there
exists a “yes” solution for RTTdec.

Given a set U ′ ⊆ U for I, we define the following solution π for I ′: π(r) = 0;
π(r′) = 1; π(x1

i ) = 2 for each ui ∈ U ′ and π(x1
i ) = 3 for each ui 	∈ U ′; π(xji ) =

π(x1
i ) + j − 1, for each i = 1, 2, . . . , |U | and for each j = 2, 3, . . . , S(ui).
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Note that, for each ui ∈ U ′, π(zi) = S(ui) + 1 while for each ui 	∈ U ′,
π(zi) = S(ui)+ 2. As the weight of each node in V is 0 except for nodes zi, then
f(π) =

∑|U|
i=1 π(zi)·w(zi) =

∑
ui∈U ′(S(ui)+1)·v(ui)+

∑
ui 	∈U ′(S(ui)+2)·v(ui) =∑

ui∈U (S(ui)+2)·v(ui)−
∑
ui∈U ′ v(ui) ≤

∑
ui∈U (S(ui)+2)·v(ui)−K = K ′. We

have to show that each arc in A α-affects at most Δ nodes. As Δ = B+1 > S(ui),
for each ui ∈ U , then all the arcs but (r, r′) do not α-affect more than Δ nodes.
Moreover, for each ui 	∈ U ′, π(x1

i )−π(r′) = 1+α. Hence, the arc (r, r′) α-affects
r′ and nodes xji for each ui ∈ U ′ and for each j = 1, 2, . . . , S(ui). Then, the
overall number of affected nodes is 1 +

∑
ui∈U ′ S(ui) ≤ 1 + B = Δ.

Now we show that, if there exists a “yes” solution for RTTdec, then there
exists a “yes” solution for Knapsack . Given a “yes” solution π′ for I ′, we define
a “yes” solution π that assigns slack times only to arcs (r′, x1

i ), i = 1, 2, . . . , |U |
as follows: π(r) = 0; π(r′) = 1; π(x1

i ) = 3 for each i such that π′ assigns at least
a slack time in the path from r′ to zi, i.e. π′(zi)− π′(r′) ≥ S(ui) + α; π(x1

i ) = 2
for each i such that π′(zi) − π′(r′) < S(ui) + α; π(xji ) = π(x1

i ) + j − 1, for
each i = 1, 2, . . . , |U | and for each j = 2, 3, . . . , S(ui). Note that, if π′ is a “yes”
solution for I ′ then π is also a “yes” solution for I ′. In fact, π(zi) ≤ π′(zi) and
then f(π) ≤ f(π′) ≤ K ′. Moreover, the number of nodes α-affected by (r, r′) in
π is at less than or equal to the number of nodes α-affected by (r, r′) in π′.

We define a solution for I as U ′ = {ui : π(x1
i ) = 2}. We have to show

that
∑

u∈U ′ S(u) ≤ B and
∑

u∈U ′ v(u) ≥ K. As the number of nodes α-
affected by (r, r′) in the solution π is less than or equal to Δ, then Δ ≥
1+

∑
i:π(x1

i )=2 |Xi| = 1+
∑
ui∈U ′ S(ui). Hence

∑
ui∈U ′ S(ui) ≤ Δ−1 = B. As the

weight of each node in V is 0 except for nodes zi, then f(π) =
∑|U|

i=1 π(zi)·w(zi) =∑
i:π(x1

i )=2(S(ui)+1) ·w(zi)+
∑

i:π(x1
i )=3(S(ui)+2) ·w(zi) =

∑
i:π(x1

i )=2(S(ui)+

1)·v(ui)+
∑

i:π(x1
i )=3(S(ui)+2)·v(ui) =

∑|U|
i=1(S(ui)+2)·v(ui)−

∑
i:π(x1

i )=2 v(ui)
=

∑
ui∈U (S(ui)+2) ·v(ui)−

∑
ui∈U ′ v(ui) ≤ K ′ =

∑
ui∈U (S(ui)+2) ·v(ui)−K.

Hence
∑
ui∈U ′ v(ui) ≥ K. �

Corollary 1. RTTopt and computing Prob(RTT ) are NP-hard.

5 Pseudo-polynomial Time Algorithm

Based on the dynamic programming techniques, in this section we devise a
pseudo-polynomial time algorithm for RTT opt.

Let us introduce further notation. Note that, RTT -optimal denote a solution
forRTT opt. Let T = (V, A) be an arbitrarily ordered rooted tree, i.e. for each node
v we can distinguish its children denoted as No(v) as an arbitrarily ordered set
{v1, v2, . . ., v|No(v)|}. For an arbitrary subtree S(v) rooted at v ∈ V , let No(S(v))
denote the set of nodes y such that (x, y) ∈ A, x ∈ S(v) and y 	∈ S(v). Clearly,
when S(v) = {v}, No(S(v)) ≡ No(v). In addition, for each node v ∈ T , let T (v)
be the full subtree of T rooted in v and let Ti(v) denote the full subtree of T
rooted at v limited to the first (according to the initially chosen order) i children
of v. Moreover, recalling that T is a weighted tree, let c(v) =

∑
x∈T (v) w(x) be

the sum of the weights of the nodes in T (v) and let |T (v)| be the number of
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nodes belonging to T (v). Note that, the values |T (v)| and c(v) for all v ∈ V can
be computed in linear time by visiting T (r) where r is the root of T .

Lemma 3. Given a tree T , consider two feasible solutions π′ and π such that,
for an arc ā = (u, v), sπ′(ā) = sπ(ā) + α and sπ(a) = sπ′(a), for each a 	= ā.
Then, f(π′) = f(π)− αc(v).

Definition 6. Given a feasible solution π for the RTT problem and a node
v ∈ V , a ball Bπ(v) is the maximal subtree rooted in v such that each node in
Bπ(v) has its incoming arc a with sπ(a) = 0.

In other words, Bπ(v) represents the set of nodes in solution π which are affected
by the delay occurring at a = (u, v). Due to the feasibility of π, no more than Δ
nodes can belong to Bπ(v). Note that, if sπ(a) = α, then Bπ(v) is empty.

Lemma 4. For each instance of RTT , an RTT -optimal solution π is such that,
for each v ∈ V , Bπ(v) cannot be extended by adding any node in No(Bπ(v)),
while keeping feasibility.

Lemma 5. For each instance of RTT , with Δ ≥ 1, there exists a RTT -optimal
solution such that at most one of two consecutive arcs has a slack time of α.

Let us now consider an optimal solution π for the RTT problem on T . Since the
root r of T has no incoming arcs, it cannot be affected by any delay. In other
words, r can be considered as a node reached by an arc associated with a slack
time of α, hence, by Lemma 5, for each arc a outgoing from the root r, sπ(a) = 0.
By Lemma 4, for each v ∈ No(r), π induces a ball Bπ(v) of size min{|T (v)|, Δ}.

In order to compute an RTT -optimal solution π, by applying dynamic pro-
gramming techniques, we obtain an algorithm which requires O(Δ2n) time com-
plexity and O(Δn) space. The algorithm makes use of two procedures, called
SA-DP and BUILD illustrated in Fig. 2 and 3, respectively. Algorithm SA-DP con-
siders an arbitrarily ordered tree T in input and performs a visit of T . It uses for
each node v ∈ T two matrices Gv and SOLv, both of size (No(v)+1)× (Δ+1).

Let f∗ denote the cost of an RTT -optimal solution on T when Δ = 0, that
is, the cost of the solution which associates to each arc a slack time of α. The
SA-DP algorithm stores in each entry Gv[i, j] the maximum gain with respect
to f∗ achievable with a solution π by constructing a ball Bπ(v) of size at most
j when considering only the first i children of v, i.e. |Bπ(v) ∩ Ti(v)| ≤ j. As
Gv[i, j] must be the maximum gain, solution π must be optimal with respect to
Ti(v). Formally, we denote as fvi (π) the value of the objective function computed
only on the nodes in Ti(v), i.e. fvi (π) =

∑
u∈Ti(v) π(u)w(u) and by π∗ an RTT -

optimal solution on T when Δ = 0. When the objective function is computed
on the nodes in the whole T (v), we simply write fv. Then, Gv[i, j] is defined as:
Gv[i, j] = maxπ {fvi (π∗)− fvi (π) : |Bπ(v)| ≤ j}. Note that, nodes not in Ti(v)
are not considered in the computation of fvi and hence, there always exists a
solution π which gives the gain Gv[i, j] and Bπ(v) ⊆ Ti(v) .

In practice, for each node v and each integer j ≤ Δ, we have to decide the
most profitable way of building a ball of size j, rooted at v. Since any node v
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Fig. 1. The three configurations that must be considered when computing matrix Gv

belonging to the ball gains a profit of αc(v), independent of the shape of the ball
itself, each ball can be easily partitioned in maximal sub-balls, possibly empty,
rooted at the children v1, v2, . . . , v|No(v)| of v. Moreover, note that, by Lemma
4, if j ≥ |T (v)|, the maximum gain is obtained by setting Bπ(v) ≡ T (v).

The following lemma shows sub-optimality properties of matrices Gv needed
by SA-DP. For a node v in T , Fig. 1 shows the possible configurations to consider
when evaluating Gv[i, j].

Lemma 6. For each instance of RTT and for each node v,

1. Gv[i, 0] =
∑i
=1 Gv�

[|No(v)|, Δ], for 0 ≤ i ≤ |No(v)|;
2. Gv[0, j] = αc(v), for 1 ≤ j ≤ Δ;
3. Gv[i, j] = max0≤s<j {Gv[i− 1, j − s] + Gvi [|No(vi)|, s]}, otherwise.

Proof. 1. By definition, Gv[i, 0] = maxπ {fvi (π∗)− fvi (π) : |Bπ(v)| = 0}. As
|Bπ(v)| = 0, by definition of ball, the incoming arc of v has a slack time of
α and by Lemma 4, nodes v in No(v) have a ball of size min{Δ, T (v)}.
It follows that Gv[i, 0] =

∑i
=1 maxπ{fv�(π∗) − fv�(π) : |Bπ(v)| ≤ Δ} =∑i

=1 Gv�
[|No(vell)|, Δ].

2. It directly follows from Lemma 3. In fact, as i = 0, and j > 0, Bπ(v) is
composed only by v. Then, the required solution π differs from π∗ only for
the slack time removed from the incoming arc to v.

3. By definition, max0≤s<j {Gv[i− 1, j − s] + Gvi [|No(vi)|, s]} = max0≤s<j{

max
π

{
fvi−1(π

∗)−fvi−1(π) : |Bπ(v)|≤j − s
}

︸ ︷︷ ︸
(1)

+max
π
{fvi(π∗)−fvi(π) : |Bπ(vi)|≤s}︸ ︷︷ ︸

(2)

}.

Let us denote as π′ and π′′ two solutions which maximize (1) and (2), respec-
tively and such that π′(u) = π′′(u) = π∗(u), for each u 	∈ T (v). Note that,
the set of nodes where functions fvi−1 and fvi are defined are disjoint as the
former is defined in Ti−1(v) and the latter is defined in T (vi). Without loss
of generality, we can assume that π′(u) = π∗(u), for each u ∈ T (v)\Ti−1(v),
that is Bπ′(v) ⊆ Ti−1(v). In fact, nodes in T (v) \ Ti−1(v) are not considered
in the computation of function fvi−1 and then there always exists a timetable
which fulfills such a condition and maximizes (1). Hence, we define a solution
πs as follows:
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πs(u) =

⎧⎨⎩
π′(u) if u ∈ Ti−1(v)
π′′(u) if u ∈ T (vi)
π∗(u) otherwise,

for each node u in T . It follows that, the value of (1) + (2) is given by
fvi (π∗) − fvi (πs) and that πs induces a ball Bπs(v) such that Bπs(v) ∩
Ti−1(v) ≤ j − s and Bπs(v) ∩ T (vi) ≤ s, and then |Bπs(v)| ≤ j. There-
fore, max0≤s<j {Gv[i− 1, j − s] + Gvi [|No(vi)|, s]} = max0≤s<j{fvi (π∗) −
fvi (πs)} = maxπ {fvi (π∗)− fvi (π) : |Bπ(v)| ≤ j} = Gv[i, j]. �

Informally, if j = 0 (Fig. 1(a) and Item 1 of Lemma 6), then Gv[i, 0] is defined
as the maximum gain of a solution π wrt f∗ achievable by an empty ball Bπ(v).
Thus, solution π must have the slack time on the in-arc of v set to α. Therefore,
by Lemma 5, all the out-arcs of v have a slack time equal to 0, and so the
optimal solution π wrt Ti(v) in each subtree rooted at v, 1 ≤ 	 ≤ i, of v
has a ball Bπ(v) of maximal size, as proved in Lemma 4. Specifically, Bπ(v)
has size min{Δ, |T (v)|}. Hence, the overall gain Gv[i, 0] wrt f∗ is recursively
computed as the sum of the gains achieved at the first i children of v, that is,
Gv[i, 0] =

∑i
=1 Gv�

[|No(v)|, Δ].
If i = 0 and j > 0 (Fig. 1(b) and Item 2 of Lemma 6), then Gv[0, j] is

defined as the maximum gain of a solution π wrt f∗ achievable by constructing
a ball Bπ(v) of size j without considering the children of v, that is |Bπ(v)| = 1
independently from j. By Lemma 3, Gv[0, j] = αc(v), for each 1 ≤ j ≤ Δ.

If i > 0 and j > 0 (Fig. 1(c) and Item 3 of Lemma 6), then Gv[i, j] takes its
most general meaning. Since j > 0, the considered solution π sets the slack time
incoming into v to 0. Exploiting the sub-optimality property, Bπ(v) is built recur-
sively on the subtrees Ti−1(v) and T (vi) where two balls, whose sizes sum up to
j, are considered. For a chosen size s of Bπ(vi), the gain is recursively computed
as Gv[i− 1, j − s] + Gvi [|No(vi)|, s]. Thus, Gv[i, j] is determined by considering
all the possible sizes s, with 0 ≤ s ≤ j− 1, of Bπ(vi). Note that, since j > 0, the
in-arc of v has the slack time set to 0, and hence Bπ(vi) cannot have size larger
than j − 1. Finally, Gv[i, j] = max0≤s<j {Gv[i− 1, j − s] + Gvi [|No(vi)|, s]}.

For each node v, the SA-DP algorithm also memorizes in SOLv the choices
that lead to the optimal gains computed in the corresponding matrix Gv (Lines
9 and 11 of the algorithm). All matrices SOLv, v ∈ T , are first initialized by
assigning 0 to each entry. Then, if i, j > 0, the entry SOLv[i, j] stores the size s
of the ball Bπ(vi) rooted at the i-th child vi of v which gives the maximum gain
when evaluating Gv[i, j]. Basically, if SOLv[i, j] 	= 0, then the arc (v, vi) has no
slack time. Viceversa, if SOLv[i, j] = 0, either the arc (v, vi) has a slack time of
α (i.e., |Bπ(vi)| = 0 that is j = 0) or such an arc does not exist (i.e., i = 0).

Now, we have to show how to construct the optimal solution π from matrices
SOLv, i.e. how to assign to each v ∈ T the value π(v). Recall first that, by
Lemma 5, π(r) = 0 and, for each v ∈ No(r), π(v) = π(r) + 1 = 1. Moreover,
a ball Bπ(v) of size min = {|T (v)|, Δ} is rooted at each v ∈ No(r). An
optimal solution is computed by calling, for each child v ∈ No(r), the procedure
BUILD(v, |No(v)|, Δ), depicted in Fig. 3. Algorithm BUILD(v, i, j) recursively



Recoverable Robust Timetables on Trees 461

Algorithm SA-DP

Input: v ∈ V
Output: SOLv , for each v ∈ V

1. for i = 1 to k
2. SA-DP(vi)
3. Gv[i, 0] =

∑i
�=1 Gv� [|No(v�)|, Δ], for 0 ≤ i ≤ No(v)

4. Gv[0, j] = αc(v), for 1 ≤ j ≤ Δ
5. for i = 1 to k
6. for j = 1 to Δ
7. if j ≤ |Ti(v)| then
8. Gv[i, j] = max0≤s<j {Gv[i − 1, j − s] + Gvi [|No(vi)|, s]}
9. let s∗ be the index determining the maximum at Line 8, SOLv [i, j] = s∗

10. else Gv[i, j] = Gv [i, j − 1]
11. SOLv [i, j] = SOLv [i, j − 1]

Fig. 2.

Algorithm BUILD

Input: v ∈ V , i ∈ [0, |No(v)|], j ∈ [0, Δ]
Output: π

1. if i > 0 then
2. if SOLv [i, j] > 0 then
3. s := SOLv [i, j]; π(vi) := π(v) + 1
4. BUILD(vi, |No(vi)|, s)
5. BUILD(v, i − 1, j − s)
6. else
7. π(vi) := π(v) + 1 + α
8. for each w ∈ No(vi)
9. π(w) := π(vi) + 1
10. BUILD(w, |No(w)|, Δ)
11. BUILD(v, i − 1, j)

Fig. 3.

builds the most profitable ball Bπ(v) of size j with respect to Ti(v). At first, it
determines the slack time on the arc (v, vi) depending on SOLv[i, j].

If SOLv[i, j] > 0, then the slack time on the arc (v, vi) is equal to 0, and the
ball Bπ(v) consists of two sub-balls: one of size SOLv[i, j] in T (vi) and one of
size j−SOLv[i, j] in Ti−1(v). Whereas, if SOLv[i, j] = 0, the ball of size j in the
subtree T (v) does not extend over T (vi) and it completely belongs to Ti−1(v).
However, since the slack time on the arc (v, vi) is equal to α, by Lemma 5, all the
arcs outgoing from vi, say (vi, wk) for 1 ≤ k ≤ |No(vi)|, have slack time equal to
0. The balls of size at most Δ rooted at the nodes w ∈ No(vi), are recursively
built by invoking |No(vi)| times Algorithm BUILD, one for each child of vi.

Finally, we define the Algorithm SA-DP BUILD which outputs a robust
timetable π by performing first SA-DP(r), and then BUILD(v, |No(v)|, Δ), for
each v ∈ No(r).
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Theorem 2. SA-DP BUILD is RTT -optimal.
For Δ ≥ 1, Prob(RTT , SA-DP BUILD) ≤ 1 + α

2 and Prob(RTT ) ≥ 1 + α
Δ+1 .

Theorem 3. For Δ ≥ 1, SA-DP BUILD requires O(Δ2n) time and O(Δn) space.
For Δ = 0, SA-DP BUILD requires O(n) time and O(n) space.
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Abstract. This work presents a simple graph based heuristic that em-
ploys a roulette wheel selection mechanism for solving exam timetabling
problems. We arrange exams in non-increasing order of the number of
conflicts (degree) that they have with other exams. The difficulty of each
exam to be scheduled is estimated based on the degree of exams in con-
flict. The degree determines the size of a segment in a roulette wheel,
with a larger degree giving a larger segment. The roulette wheel selec-
tion mechanism selects an exam if the generated random number falls
within the exam’s segment. This overcomes the problem of repeatedly
choosing and scheduling the same sequence of exams. We utilise the pro-
posed Roulette Wheel Graph Colouring heuristic on the un-capacitated
Carter’s benchmark datasets. Results showed that this simple heuristic
is capable of producing feasible solutions for all 13 instances.

Keywords: scheduling, examination timetabling, graph colouring
heuristics, roulette wheel selection.

1 Introduction

Examination timetabling problems deal with assigning a given set of exams into
a given set of timeslots, subject to sets of hard and soft constraints [15]. A
timetable is feasible if all exams have been assigned to timeslots and all required
hard constraints are satisfied. Soft constraints are represent features that we
wish to avoid but we can violate them if necessary. However, violations of soft
constraints should be minimized as much as possible, and it is the minimization
of the soft constraints that indicates the quality of the generated timetable.

Various approaches have been used to construct examination timetables such
as graph colouring [15,10], fuzzy logic [2], ant algorithms [23] and neural networks
[18]. Graph colouring heuristics represent exams as vertices and conflicts between
exams as edges. The aim is to colour adjacent vertices with a different colour.
Every colour represents a time period in the timetable. In the literature, various
heuristics have been used to construct a conflict free timetable by using graph
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colouring models [15,20,26,13,3]. These heuristics prioritize exams according to
the level of scheduling difficulty. The rationale behind this is to make sure the
most difficult exams are scheduled first. Examples of the most common graph
colouring/timetabling heuristics are:

– Largest Degree First (LD): The exams are ordered according to the number
of conflicts, in decreasing order.

– Least Saturation Degree First (LS): Exams are dynamically ordered by the
number of available timeslots, in ascending order.

– Largest Enrolment First (LE): The exams are ordered according to the num-
ber of students enrolled, in decreasing order.

Asmuni et al. [2] used fuzzy logic to order exams based on graph colouring
heuristics. When ordering the exams, by their degree of difficulty, fuzzy functions
were introduced to evaluate the degree of difficulty. Results show that the fuzzy
approach is capable of producing good quality solutions (when tested on Carter’s
benchmark datasets). However, they noted that different fuzzy functions need
to be used on different problems to obtain the best results.

Corr et al. [18] utilized a neural network to determine the level of difficulty of
assigning exams, with the most difficult exam being scheduled first. The neural
network was built by storing feature vectors using three graph heuristics. The
research demonstrated the feasibility of employing neural network based methods
as an adaptive and generally applicable technique to timetabling problems.

More recently, Eley [23] applied an ant algorithm to simultaneously construct
and improve the timetables. He used two ant colony approaches; MMAS-ET
that is based on Max-Min Ant System (MMAS) (used by Socha et al. [27] on
course timetabling) and ANTCOL-ET which is a modified version of ANTCOL
(originally used by Costa and Hertz [19] to solve graph colouring problems). Both
ant algorithms were hybridized with a hill climber and found that the simple ant
system, ANTCOL, outperformed the more complex Max-Min algorithm. It was
concluded that the performance of ant systems can be improved by adjusting
the algorithm parameters.

Meta-heuristic approaches have also been used to improve solutions. Examples
include tabu search [21,24,29], simulated annealing [11,28], genetic algorithms [7],
memetic algorithms [12,9] great deluge algorithms [5], ant Colony [22], particle
swarm optimization [17] and hybridizations of different techniques [14,25,1,6].

There are a number of survey papers on examination timetabling, which is
essential reading for those new to the area [8,26,13].

In this work, we propose the Roulette Wheel Graph coloring heuristic (RWG)
to construct examination timetables. We utilize the Largest Degree First heuris-
tic to compute the difficulty of exams to be scheduled. Then, the degree of exams
in conflict is used to determine the size of a segment in a roulette wheel. Finally, a
roulette wheel selection mechanism is used select the next exam to be scheduled,
in order to generate a feasible timetable.

The aim of this work is to investigate the capability of using a probability
selection mechanism to construct examination timetables. The overall idea is to
overcome the problem of repeatedly choosing the same sequence of exams to be
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scheduled, which is a common problem when using a deterministic graph coloring
heuristic. In order to demonstrate the efficiency of the proposed heuristic, test
it on the un-capacitated Carter’s benchmark examination timetable dataset [16]
(variant b, type I, see [26]) using the standard evaluation function given in [16].

2 Roulette Wheel Graph Coloring

In 1987 Baker [4] presented a simple selection schema called roulette wheel se-
lection. This is a stochastic algorithm and is described as follows:

1. The individuals are mapped to contiguous segments of a line, such that each
individual’s segment is equal in size to its fitness.

2. A random number is generated and the individual whose segment spans the
random number is selected.

3. The process is repeated until the desired number of individuals is obtained.

This technique is analogous to a roulette wheel with each segment proportional
to its fitness. However, in this work, we compute the segment area by using Eq. 1:

S(i) = S(i− 1) +
di∑n

i=1 d(i)
for all i ∈ (1, · · · , n), S(i− 1) = 0 if i = 1, (1)

where S(i) is the segment area and d(i) is the number of exams in conflict. To see
how roulette wheel selection mechanism works, we give the following example.
Suppose we have the exams as shown in Table 1, the number of exams in conflict
is shown in column 3.

Then, the area of Segment can be calculated by using Eq.1. For example, the
Segment size for exams A and B in Table 1 are calculated as follows:

d(1) = 10, d(2) = 9 and
n∑
i=1

d = 72.

So the sector size for A and B will be S(1) = S(1−1)+10/72 = 0+0.13 = 0.13;
S(2) = S(2− 1) + 9/72 = 0.13 + 0.12 = 0.25, respectively.

Indeed, based on Table 1, exam C is the fittest one and occupies the largest
interval (biggest segment); whereas exam number B is the least fit exam and has

Table 1. An illustrative example of roulette wheel selection

Exam No Exams Number of exams Segment Size Segment Area
in conflicts (using Eq. 1)

1 A 10 0.13 0.00-0.13
2 B 9 0.12 0.14-0.25
3 C 20 0.27 0.26-0.53
4 D 15 0.20 0.54-0.73
5 E 18 0.25 0.74-1.00
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1st Exam

C=0.27

2nd Exam

E=0.25

3rd Exam

D=0.20

4th Exam

A=0.12

5th Exam

B=0.11

Fig. 1. Sector sizes of exams calculated using Eq. 1 for the example in Table 1

the smallest interval on the line. Based on the sector size in calculated in Table
1. Fig. 1 shows the exams sector order. The pseudo-code of the Roulette Wheel
Graph coloring heuristic is presented in Fig. 2.

Step 1 Initialization
- Calculate the degree of difficulty for each unscheduled exam e

in a non-increasing order of the number of conflicts they have
with other exams in unscheduled exam list E

- Calculate the maximum span for each unscheduled exam e using Eq. (1).
Step 2 Schedule exams into timeslots

While (E∅)
{
- Generate a random number r between [0, 1].
- Select the exam e where r falls within its segment span.
- Calculate the number of available clash free timeslots

for the chosen exam e.
- If number of available clash free timeslots > 0

then
{

• Schedule e to the minimum penalty period.
• Remove e from Unscheduled list E.

}
- Else Break; // Terminate the procedure.
} // end of while E∅
If E = ∅ then return the solution

Fig. 2. Pseudo-code of the Roulette Wheel Graph colouring heuristic

In the initialization step, all exams in E are sorted on a decreasing order of the
number of conflict they have with other exams. Then, we calculate the segment
size for all exams based on Eq. 1. In the second step, we generate a random
number r between [0, 1]. The exam whose segment span the random number
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is selected. Next, we calculate the number of available clash free timeslots for
the selected exam e. If the number of available clash frees timeslots is greater
than zero, allocate exam e to the minimum penalty clash free timeslot and
remove exam e from unscheduled list E. If there is more than one timeslot that
has the same minimum penalty, the timeslot is randomly selected from the set
of minimum cost timeslots. If there is no available clash free timeslots for the
current exam terminate the procedure and returns an infeasible solution.

3 Results on Benchmark Examination Timetabling
Dataset

The Roulette Wheel Graph colouring heuristic was tested on Carter’s
un-capacitated examination timetablingbenchmarkdatasets [16] (variant b, type I,
[26]) which contains 13 problem instances. These datasets have been used by many
researchers in the literature since 1996 [26]. Table 2 shows the number of timeslots,
number of exams and the number of student enrolments for these datasets.

The results (out of 20 runs for each instance) are shown in Table 3, comparing
the results against other constructive heuristics. Results indicate that this simple
heuristic is able to produce feasible initial solutions for all instances. Note that
all the other algorithms being compared in Table 3 employed more advanced
techniques i.e. fuzzy techniques, neural networks, ant algorithms (constructive
and improvement heuristics) and tabu search hyper-heuristic. Our constructive
heuristic is simple and generally applicable to produce feasible solutions for all
13 instances being studied.

It is known from the literature that for the benchmark dataset tested here,
by employing the mostly used graph colouring heuristics such as largest degree

Table 2. Un-capacitated standard Carter benchmark exam timetabling dataset

Data sets Number of Number of Number of
timeslots examinations Students

Car-f-92 32 543 18419
Car-s-91 35 682 16925
Ear-f-83 24 190 1125
Hec-s-92 18 81 2823
Kfu-s-93 20 461 5349
Lse-f-91 18 381 2726
Pur-s-93 43 2419 30032
Rye-s-93 23 486 11483
Sta-f-83 13 139 611
Tre-s-92 23 261 4360
Uta-s-92 35 622 21267
Ute-s-92 10 184 2750
Yor-f-83 21 181 941
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and saturation degree, etc, alone cannot obtain feasible solutions for some of the
difficult instances in Table 2. Other intelligent mechanisms need to be employed,
or the graph colouring heuristics are repeated to obtain feasible solutions for
advanced meta-heuristics [26]. Our new graph colouring heuristic with roulette
wheel selection presents an effective and simple construction heuristic, and may
be subsequently be improved by using a wide range of meta-heuristics.

Table 3. Results obtained from Roulette wheel Graph Colouring compared to con-
structive heuristics in the literature

Data sets Best % Standard Asmuni Corr Eley [23] Burke
feasible deviation et al. [2] et al. [18] et al. [10]

Car-f-92 6.21 80 0.26 4.56 6.24 4.8 4.53

Car-s-91 7.01 90 0.11 5.29 7.21 5.7 5.36
Ear-f-83 42.81 85 0.35 37.02 49.44 36.8 37.92
Hec-s-92 12.90 70 0.08 11.87 13.57 11.3 12.25
Kfu-s-93 18.47 90 0.17 15.81 19.9 15.0 15.2
Lse-f-91 15.62 95 0.16 12.09 14.99 12.1 11.33

Pur-s-93 7.92 30 0.34 - - 5.4 -
Rye-s-93 10.5 60 0.29 10.35 - 10.2 -
Sta-f-83 161.00 100 0.14 160.42 159.28 157.2 158.19
Tre-s-92 10.98 100 0.31 8.67 10.77 8.8 8.92
Uta-s-92 4.76 85 0.10 3.57 4.48 3.8 2.88

Ute-s-92 29.69 80 0.50 27.78 31.25 27.7 28.01
Yor-f-83 39.83 100 0.35 40.66 - 39.6 41.37

4 Conclusion

We have proposed a Roulette wheel Graph coloring heuristic for solving ex-
amination timetabling problems. We first utilize the Largest Degree First graph
coloring heuristic to order exams. Then, based on the degree of exams in conflict,
we determine the size of its segment in a roulette wheel. An exam is then selected
if a generated random number falls within the exam segment. This overcomes
the problem of repeatedly choosing the same sequence of exams to be scheduled.
The current constructive heuristics shown in the literature quite often lead to
low quality timetables or infeasible timetable especially for the more difficult
problem instances in the benchmark dataset considered here. Our results show
that the Roulette wheel Graph coloring heuristic is capable of producing feasible
solutions for all problem instances.
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Abstract. Consider a company that manufactures perishable goods.
The company relies on a third party to deliver goods, which picks up
delivery products at regular times. At each delivery time, there is a time
window that products can be produced to be delivered at that delivery
time. Suppose we have a set of jobs with each job specifying its delivery
time, processing time and profit. The company can earn the profit of the
job if the job is produced and delivered at its specified delivery time.
From the company point of view, we are interested in picking a subset of
jobs to produce and deliver so as to maximize the total profit. The jobs
that are not picked will be discarded without penalty. We consider both
the single machine case and the parallel and identical machines case.

In this article we consider two kinds of profits: (1) arbitrary profit, (2)
profit proportional to its processing time. In the first case, we give a fully
polynomial time approximation scheme (FPTAS) for a single machine
with running time O(n3

ε
). In the second case, we give a faster FPTAS

for a single machine with running time O(n2

ε
). All of our algorithms can

be extended to parallel and identical machines with a degradation of
performance ratios.

Keywords: Perishable goods, Single machine, Parallel and identical ma-
chines, NP-hard and strong NP-hard, Fully polynomial time approxima-
tion schemes.

1 Introduction

Consider a company that produces perishable goods. The company relies on a
third party to deliver goods, which picks up delivery products at regular times
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Fig. 1. Illustrating the Definitions of Time Window, Leading Interval, and Time Frame

(for example, at 10:00am every morning). Because the goods are perishable, it
is infeasible to produce the goods far in advance of the delivery time. Thus,
at each delivery time, there is a time window that the goods can be produced
and delivered at that delivery time. Consider a planning horizon T . We have
a set of jobs with each job specifying its delivery time, processing time and
profit. The company can earn the profit of the job if the job is produced and
delivered at its specified delivery time. From the company point of view, we are
interested in picking a subset of jobs to produce and deliver so as to maximize the
total profit. The jobs that are not picked will be discarded without any penalty,
which is realistic since the manufacture may reject some orders quickly without
incurring any penalty.

Formally, we have a planning horizon T = {d1, d2, · · · , dz}, consisting of z
delivery times. For each delivery time dj , there is a time instant wj < dj such
that a job must be completed in the time window [wj , dj ] if it were to be delivered
at time dj . We denote the time window [wj , dj ] by Wj . The time windows are
assumed to be disjoint. Thus, we have w1 < d1 < w2 < d2 < · · · < wz < dz .
Let d0 = 0 be a dummy delivery time. Preceding each time window Wj is the
leading interval Lj = (dj−1, wj). We call a time window together with its leading
interval a time frame, and it is denoted by Fj = Lj ∪Wj . Figure 1 depicts the
definitions of time window, leading interval and time frame. Let W be the length
of a time window and L be the length of a leading interval. We assume that all
time windows have the same length W , and all leading intervals have the same
length L, although our algorithms still work when this restriction is relaxed.

Within the planning horizon, there is a set of jobs J = {J1, J2, · · · , Jn}.
Associated with each job Ji is a processing time pi, a delivery time dj ∈ T ,
1 ≤ j ≤ z, and a profit pfi. The job Ji is supposed to be delivered at the
delivery time di, its processing time is pi, and the company can earn a profit pfi
if the job can be finished producing in the time window Wi and delivered at the
delivery time di. From the company point of view, we are interested in picking a
subset of jobs to produce and deliver so as to maximize the total profit. The jobs
that are not produced and delivered will be discarded without any penalty. We
assume that all job information is known in advance, preemption is not allowed,
and there is no vehicle limitation at any delivery date.
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In the past, production scheduling have focused on the issue of how machines
are allocated to jobs in the production process so as to obtain an optimal or
near-optimal schedule with respect to some objective functions. In the last two
decades, integrated production and delivery scheduling problems have received
considerable interest. However, most of the research for this model is done at
the strategic and tactical levels (see [2,3,4,6,10,13,14] for examples), while very
little is known at the operational scheduling level. Chen [4] classified the model
at the operational scheduling level into four classes: (1) Models with individual
and immediate delivery; (2) Models with batch delivery to a single customer;
(3) Models with batch delivery to multiple customers; and (4) Models with fixed
delivery departure date. In the models with individual and immediate delivery,
Garcia and Lozano [7] is the only paper that studies a model with delivery time
windows. They gave a tabu-search solution procedure for the problem and their
objective function is the maximum number of jobs that can be processed. In
the models with individual and immediate delivery, problems with fixed delivery
date are also studied in [8,9]. In the models with fixed delivery departure date,
no time window constraint is considered and the focus is on the delivery cost.

Bar-Noy et al. [1] considered a more general version of our scheduling prob-
lem. There are given n jobs to be scheduled nonpreemptively on m machines.
Associated with each job is a release time, a deadline, a weight (or profit), and
a processing time on each of the machines. The goal is to find a nonpreemptive
schedule that maximizes the weight (or profit) of jobs that meet their respective
deadlines. (Note that in the problem studied by Bar-Noy et al. [1], the intervals
in which the jobs can execute can overlap in an arbitrary manner.) This problem
is known to be strongly NP-hard, even for a single machine. They obtained the
following results [1]:

– For identical job weights and unrelated machines: a greedy 2-approximation
algorithm.

– For identical job weights and m identical machines: the same greedy algo-
rithm achieves a tight (1+1/m)m

(1+1/m)m−1 approximation factor.
– For arbitrary job weights and a single machine: an LP formulation achieves

a 2-approximation for polynomially bounded integral input and a 3-
approximation for arbitrary input. For unrelated machines, the factors are
3 and 4, respectively.

– For arbitrary jobs weights and m identical machines: the LP-based algorithm
applied repeatedly achieves a (1+1/m)m

(1+1/m)m−1 approximation factor for polyno-

mially bounded integral input and a (1+1/2m)m

(1+1/2m)m−1 approximation factor for
arbitrary input.

– For arbitrary job weights and unrelated machines: a combinatorial (3+2
√

2)-
approximation algorithm.

In this article we consider two kinds of profits: (1) arbitrary profit, (2) profit
proportional to its processing time. In the first case, we give a pseudo-polynomial
time algorithm to find an optimal schedule on a single machine. Based on
the pseudo-polynomial time algorithm, we develop a fully polynomial time
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approximation scheme (FPTAS) with running time O(n
3

ε ). It should be noted
that this FPTAS still work when the window sizes are not equal and windows
are not disjoint. In the second case, we give a FPTAS with an improved running
time, O(n

2

ε ) versus O(n
3

ε ). And this FPTAS still work when the window sizes
are not equal. All of our algorithms can be extended to parallel and identical
machines with a degradation of performance ratios.

The article is organized as follows. In the next section we consider the arbitrary
profit case. We first give the pseudo-polynomial time algorithm and the FPTAS
on a single machine. We then describe the extension of the algorithm to the
parallel and identical machines case. In Section 3, we consider the case of profit
proportional to its processing time. We give a FPTAS with running time O(n

2

ε ),
and describe the extension to the case of parallel and identical machines. Finally,
we draw some conclusions in Section 4.

2 Arbitrary Profit

In this section we consider the arbitrary profit case. In Section 2.1, we give
a pseudo-polynomial time algorithm for a single machine; the algorithm has a
running time O(nV ), where V =

∑n
i=1 pfi. In Section 2.2, we give a FPTAS for

a single machine; the FPTAS has running time O(n
3

ε ). Finally, in Section 2.3,
we extend the algorithm to parallel and identical machines.

2.1 Pseudo-polynomial Time Algorithm

In this section we present a dynamic programming algorithm for a single ma-
chine. The running time of the algorithm is O(nV ), where V =

∑n
i=1 pfi is the

total profit of all the jobs.
For each 1 ≤ t ≤ z, let J t denote the set of jobs whose delivery time is dt. We

relabel all the jobs in J such that jobs in earlier time frame get smaller labels
than jobs in later time frame, and for the jobs in the same time frame, jobs with
longer processing time get smaller labels than jobs with shorter processing time.
That is, for any pair of jobs Ji ∈ J t and Ji+1 ∈ J t

′
, either t < t′, or t = t′ and

pi ≥ pi+1.

Lemma 1. For any feasible schedule with total profit P and finishing time t,
there exists a feasible schedule S = {Ji1 , Ji2 , · · · , Jik} with the same profit P
and the same finishing time t and i1 < i2 < · · · < ik.

Proof. First, for any pair of jobs from any feasible schedule, if they are finished in
different time windows, then the job that finished in the earlier time window must
have smaller label than the job that finished in the later time window. Therefore,
we only need to consider the order of jobs from the same time window. Suppose
in the feasible schedule, Ji1 , Ji2 , · · · , Jix is the set of jobs that finished in the
same time window, say [wt, dt], and Ji1 is the first job that starts executing at
time s. Let us rearrange these jobs after the time instant s in descending order
of their processing times. It is easy to see that after rearranging: (1) all jobs are



Integrated Production and Delivery Scheduling with Disjoint Windows 475

finished at or before dt, and (2) all jobs are finished at or after wt. The reason is
that the processing time of the first job is greater than or equal to the processing
time of Ji1 , and s+pi1 ≥ wt. So, after rearranging, the finishing time of the first
job is greater than or equal to wt. Therefore, the finishing time of all other jobs
after rearranging is also greater than or equal to wt. �

Let us define a table T (i, j), where 0 ≤ i ≤ n and 0 ≤ j ≤ V . T (i, j) contains the
minimum finishing time for scheduling the first i jobs such that a total profit of
exactly j can be obtained. If there is no feasible schedule, we let T (i, j) contain
∞. Here is the rule to compute T (i, j).

(1) For i = 0, T (0, 0) = 0 and T (0, j) =∞ for j > 0.
(2) For i ≥ 1, let Ji ∈ J t. Then,

T (i, j) = min

⎧⎪⎪⎨⎪⎪⎩
T (i − 1, j)
T (i − 1, j − pfi) + pi if j ≥ pfi and wt ≤ T (i − 1, j − pfi) + pi ≤ dt

wt if j ≥ pfi and T (i − 1, j − pfi) + pi < wt

∞ if j ≥ pfi and T (i − 1, j − pfi) + pi > dt

After filling in the whole table, we check the last row (row n) from right to
left until we find the first entry T (n, j) such that T (n, j) < ∞; j is the total
profit of the optimal schedule. The running time of the algorithm is simply the
size of the table which is O(nV ), where V =

∑n
i=1 pfi. Next, we will show that

the table is computed correctly.

Theorem 1. The above algorithm correctly computes the optimal schedule.

Proof. We will prove the theorem by induction on the number of rows in the
table. The basis case, row 0, is filled correctly because we can only get zero
profit from an empty job set.

Assume that rows 0, 1, . . . , i − 1 are computed correctly, we now show that
row i is also computed correctly. For row i, there are two cases to consider:
(1) job Ji is not scheduled, and (2) job Ji is scheduled. In the former case, the
minimum finishing time to obtain a profit exactly j is T (i−1, j), by the induction
hypothesis. In the latter case, we can always assume that Ji is the last job to be
scheduled, by Lemma 1. In this case, we want to find a schedule with total profit
exactly j and job Ji will be finished as early as possible in this schedule. There
are several sub-cases to consider: (1) If j ≥ pfi and wt ≤ T (i−1, j−pfi)+pi ≤ dt,
then the minimum finishing time is T (i − 1, j − pfi) + pi. This is because, by
the induction hypothesis, T (i − 1, j − pfi) is the minimum finishing time to
obtain a profit exactly j − pfi from the first i− 1 jobs, so by scheduling job Ji
immediately after, job Ji will finish at time T (i− 1, j − pfi) + pi. (2) If j ≥ pfi
and T (i− 1, j − pfi) + pi < wt, then the minimum finishing time is wt. This is
because job Ji does not finish at or beyond wt. Therefore, we have to right-shift
job Ji so that it finishes at exactly wt. (3) If j ≥ pfi and T (i−1, j−pfi)+pi > dt,
then job Ji finishes beyond its delivery time. Hence, T (i, j) = ∞. �
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2.2 Fully Polynomial Time Approximation Scheme

The above dynamic programming algorithm is a pseudo-polynomial time algo-
rithm. It is efficient only when the total profit is not too large. Using the method
from [10], we can obtain a FPTAS for one machine.

The algorithm works as follows. Let K be a parameter to be determined later.

– Create a new set of job instance by replacing each job Ji with a job J ′
i such

that pf ′
i = !pfi

K ", and keep all other parameters unchanged.
– Run the dynamic programming algorithm to obtain an optimal solution for

the new job instance.
– Translate the solution for the new job instance back to the solution for the

original job instance.

It is clear that the running time of this algorithm is O(nVK ). Let PFopt be the
total profit of the optimal schedule of the original job instance and PFopt′ be the
total profit of the optimal schedule of the new job instance. Clearly, PFopt′ can
be obtained by the dynamic programming algorithm for the new job instance.
For each job Ji, since pf ′

i = !pfi

K ", we have pfi − K · pf ′
i ≤ K. It follows that

PFopt−K ·PFopt′ ≤ Kn. Let PFalg be the total profit of our algorithm. It is clear
that PFalg ≥ K · PFopt′ . By setting Kn = ε·vmax

(1+ε) , where vmax = maxni=1{pfi},
we have

PFopt − PFalg ≤ PFopt −K · PFopt′

≤ Kn

≤ ε · vmax

(1 + ε)

≤ ε · PFopt
(1 + ε)

.

It follows that PFopt

PFalg
≤ (1 + ε). The running time is

O
(nV

K

)
= O

(n2 · vmax

K

)
= O

( n2 · vmax

ε · vmax/n(1 + ε)

)
= O

(
n3(1 +

1
ε
)
)

= O
(n3

ε

)
.

Theorem 2. There is a FPTAS for arbitrary profits on a single machine with
running time O(n

3

ε ).

2.3 Arbitrary Number of Machines

We use the same technique as in [1] to extend the algorithm for a single machine
to arbitrary number of machines. Suppose we have an Algorithm A with approx-
imation ratio β. We repeatedly use Algorithm A to schedule jobs, one machine
after another, until all m machines are scheduled. The following lemma can be
proved.

Lemma 2. For any β-approximation algorithm on one machine, we can extend
it to m machines with approximation ratio at most 1

1−e−1/β .
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Proof. Let J be the entire set of jobs, S∗ be the optimal schedule for J on m
machines and PFopt be its total profit. Let us apply Algorithm A repeatedly on
the m machines, one machine after another, until all m machines are scheduled.
Let PFA be the total profit obtained by this algorithm. Let Si be the set of jobs
scheduled on machine i and Ai =

∑
Jk∈Si

pfk. Let U be the set of jobs scheduled
on the first k − 1 machines, i.e., U = ∪k−1

i=1 Si. Let us consider the scheduling of
the set of jobs J \ U on m totally unoccupied machines. Let S∗

1 be the optimal
schedule on one machine for the set of jobs J \ U , and let PFopt′ be the total
profit of S∗

1 . We have the following claim.

Claim: PFopt′ ≥ PFopt−
∑k−1

i=1 Ai

m .

Proof. For any job Ji ∈ U , if Ji is scheduled in S∗, we delete it from S∗. We
then get a new schedule Ŝ. Suppose that jobs Ji1 , Ji2 , · · · , Jir are deleted from
S∗. Then the total profit of Ŝ will be PFopt −

∑r
j=1 pfij ≥ PFopt −

∑k−1
i=1 Ai.

Clearly, Ŝ is a feasible schedule for the set of jobs J \ U . And in this feasible
schedule, there must be one machine containing jobs whose total profit is at least
PFopt−

∑k−1
i=1 Ai

m . Therefore, PFopt′ ≥ PFopt−
∑k−1

i=1 Ai

m . �

Now, if we use Algorithm A to schedule the set of jobs J \ U on one machine,
we will get the same schedule as Sk. Since Algorithm A is a β-approximation
algorithm, we have Ak ≥

PFopt′
β , and hence we have Ak ≥ 1

βm (PFopt−
∑k−1
i=1 Ai).

Adding
∑k−1

i=1 Ai to both sides, we obtain

k∑
i=1

Ai ≥
1

β m
PFopt +

(
1− 1

β m

) k−1∑
i=1

Ai.

Letting f(k) =
∑k

i=1 Ai, we have

f(k) ≥ 1
β m

PFopt +
(
1− 1

β m

)
f(k − 1), or

f(k)− PFopt ≥
(
1− 1

β m

)
(f(k − 1)− PFopt), or

f(m)− PFopt ≥
(
1− 1

β m

)m
· (f(0)− PFopt), or

f(m) ≥ PFopt −
(
1− 1

β m

)m
· PFopt ≥ (1− e−1/β)PFopt.

Therefore, we have

PFopt
PFA

=
PFopt
f(m)

≤ 1
1− e−1/β . �

Theorem 3. There is an e
e−1 -approximation algorithm for m machines with

running time O(mnV ). Moreover, for any ε > 0, there is an approximation
algorithm with approximation ratio at most 1

1−e−1/β = 1
1−e−1/(1+ε) and running

time O(mn
3

ε ).
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Proof. The pseudo-polynomial time algorithm for a single machine is optimal; so,
β = 1. By extending it to m machines, we obtain a e

e−1 -approximation algorithm
whose running time is O(mnV ).

By Lemma 2, the FPTAS can be extended to m machines to obtain an ap-
proximation algorithm with approximation ratio at most 1

1−e−1/β = 1
1−e−1/(1+ε)

and running time O(mn
3

ε ). �

3 Profit Proportional to Processing Time

In this section, we study the case where the profit of a job Ji is proportional to
its processing time; i.e., pfi = α·pi for some constant α. Since α is a constant, we
can scale it and consider only α = 1. We will show that in this case, the running
time of the FPTAS can be reduced to O(n

2

ε ). This compares favorably with the
running time of the FPTAS for the arbitrary profit case, which is O(n

3

ε ).
Let us change the original problem to a slightly different problem: In each

time frame, we set the length of the time window to be 0 and the length of the
leading interval to be the length of the entire time frame; i.e., wi = di for each
1 ≤ i ≤ z. In this new problem, a job must be finished at the end of the time
frame, and each time frame can schedule at most one job. We will show that
this problem can be solved optimally in O(n2) time.

Let G(i) be the maximum total profit that can be obtained by scheduling the
jobs whose delivery time is di or earlier. We will compute G(1), G(2), · · · , G(z),
and the maximum total profit will be given by G(z). The base case can be
computed easily: G(1) is the profit of the longest job that can be finished at
time d1. Assume that G(1), G(2), · · · , G(i−1) have been computed correctly, we
now compute G(i) as follows.

Algorithm B

max = G(i− 1)
For each job Jk ∈ J i

– Suppose di − pk is in the time frame Fi′ .
– If G(i′ − 1) + pfk > max, then max = G(i′ − 1) + pfk.

G(i) = max

The correctness of the algorithm is straightforward: At most one job can be
scheduled in the time frame Fi and the above procedure tries all possibilities.
Moreover, for each job Jk ∈ J i and di − pk in the time frame Fi′ , the maximum
total profit that we can obtain is G(i′ − 1) + pfk, since we cannot schedule
any other jobs in the time frames Fi′ , · · · , Fi. The running time of the dynamic
programming algorithm is O(n2), since there are at most O(n) time frames and
for each time frame we spend at most O(n) time.

Let S be the schedule produced by Algorithm B for the modified problem.
We now convert the schedule S into the schedule Ŝ for the original problem as
follows. In the schedule S, we change back each time window Wi into its original
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length W and we change back each leading interval Li into its original length
L. Clearly, in S, at most one job is completed in any time window. We scan the
schedule S, window by window, to construct the schedule Ŝ. When we scan the
first window W1, we have two cases to consider.

Case I: No job of J1 is completed in this time window. We have two sub-cases
to consider.

– Case I(a): No job is scheduled in this time window.
In this case, we do nothing and scan the next time window W2.

– Case I(b): There is a job, say job Jk, scheduled in this time window.
In this case, it is easy to see that job Jk is not in J1. Assume that job Jk is
completed at time di. We scan the next time window Wi+1.

Case II: There is one job, say Jk, completed in the time window W1. We again
have two sub-cases to consider.

– Case II(a): pk ≥ W
2 .

If the processing time of Jk is greater than or equal to W
2 , then keep the

position of Jk unchanged; i.e., the completion time of Jk will be at d1. Scan
the next time window W2.

– Case II(b): pk < W
2 .

If the processing time of Jk is less than W
2 , then move the job Jk as far left

as possible. That is, schedule the job Jk as early as possible but keep it in
the time frame F1. Schedule the jobs of J1 \ {Jk} in the remaining space
of the time window W1 by the Largest-Processing-Time (LPT) rule until no
jobs can be scheduled or the total processing time of the scheduled jobs is
greater than or equal to W

2 . Scan the next time window W2.

We scan the schedule S, window by window, until the last window. Finally, we
obtain the schedule Ŝ.

Let PFS be the total profit obtained by S and PFŜ be the total profit obtained
by Ŝ. Clearly, we have PFS ≤ PFŜ . Let S∗ be an optimal schedule and PFS∗

be the total profit obtained by S∗. By Lemma 1, we may assume that within
each time frame, the jobs are scheduled in descending order of their processing
times. We divide S∗ into two schedules, say S1 and S2, such that S1 contains
the longest job from each time frame and S2 contains all the remaining jobs.
Figure 2 shows a schedule S∗ and its subdivision into S1 and S2.

WLWLWLWLWLWLWLWL

S∗ 1 2 3 4 5 6 7 8 9 10

WLWLWLWLWLWLWLWL

S1 1 2 5 6 7 9

WLWLWLWLWLWLWLWL

S2 01843

Fig. 2. Decomposition of S∗ into S1 and S2
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We consider the schedule S1 first. Let us label all the jobs from S1 from left
to right as J1, J2, · · · , Jx. We divide S1 further into S′

1 and S′′
1 such that S′

1
contains the jobs with odd labels and S′′

2 contains the jobs with even labels.
Figure 3 shows the schedule S1 and its subdivision into S′

1 and S′′
2 . In S′

1, for
each time frame, there is at most one job that completes in that time frame.
Moreover, any pair of jobs in S′

1 do not share a time window. So, S′
1 is a feasible

schedule for the new instance where each time window has length zero. Therefore,
the total profit of S′

1 is less than or equal to PFS . Similarly, the total profit of
S′′

1 is less than or equal to PFS as well. Therefore, the total profit of S1 is less
than or equal to 2 · PFS . Since PFS ≤ PFŜ , the total profit of S1 is less than
or equal to 2 · PFŜ .

Fig. 3. Decomposition of S1 into S′
1 and S′′

1

We now consider the schedule S2 and compare it with Ŝ. We have the following
lemma.

Lemma 3. Let PFŜ be the total profit of Ŝ and PFS2 be the total profit of S2.
We have PFS2 ≤ 2 · PFŜ .

Finally, we have the following result for the case of profit proportional to its
processing time.

Theorem 4. There is an O(n
2

ε )-time FPTAS for the case of profit proportional
to its processing time on a single machine. The algorithm can be extended to
m ≥ 2 machines with running time O(mn

2

ε ) and performance bound 1
1−e−1/(1+ε) .

4 Conclusion

In this article we give a model of production and delivery scheduling where each
job is supposed to be completed within a specified time window and the time
windows are disjoint. We consider two of profits: (1) arbitrary profit, and (2)
profit proportional to its processing time. In the first case, we give a pseudo-
polynomial time algorithm to find an optimal schedule for a single machine.
Based on the pseudo-polynomial time algorithm, we develop a FPTAS with run-
ning time O(n

3

ε ). In the second case, we give an improved FPTAS with running
time O(n

2

ε ). All of our algorithms can be extended to parallel and identical
machines with a certain degradation of performance bounds.
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In our model, we have assumed that all time windows have the same length
W and all leading intervals have the same length L. This assumption can in fact
be relaxed to allow for variable window lengths and variable leading interval
lengths. Our pseudo-polynomial time algorithm and polynomial time algorithm
will work under this relaxation.

Our model can be extended in several directions. First, we have assumed that
a job not scheduled can be discarded without any penalty. In some applications,
the job that is not scheduled incurs a small penalty. We have not been able to
extend our pseudo-polynomial time algorithm for this more general case. Second,
we have assumed that there is no vehicle limitation at any delivery time. Suppose
that at each delivery time, we can ship at most c jobs. For this problem, we have
been able to extend the pseudo-polynomial time algorithm to handle this case
for a single machine, but we are unable to solve the parallel machines case.
Third, we have assumed that each job has a specified delivery time. A more
general problem may be that each job has several specified delivery times, and
the scheduler can decide which delivery time to deliver.

For future research, we believe that the above problems are worthwhile to
pursue.
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Abstract. This paper addresses the problem of fault-tolerant many-to-
one routing in static wireless networks with asymmetric links, which is
important in both theoretical and practical aspects. The problem is to
find a minimum energy subgraph for a given subset and a destination
node such that there are k node-disjoint paths from each node in the sub-
set to the destination node in the subgraph. We prove that the problem
is NP-hard, and propose two efficient heuristic approaches, namely, the
minimum weight k node-disjoint paths based (MWkNDPB) approach
and the minimum energy k node-disjoint paths based (MEkNDPB) ap-
proach. Extensive simulations have been conducted to show that pro-
posed algorithms are efficient.

Keywords: wireless networks, fault-tolerant, k-inconnected many-to-
one routing, heuristics.

1 Introduction

All-to-one or many-to-one routing is one of the important and primary com-
munication methods in wireless networks for the data collection. In most cases,
wireless networks are deployed under a harsh environment, thus wireless nodes
and links are easy to experience frequent failures. However, because node or link
failures have a significant impact on the performance and reliability of wireless
networks, how to ensure fault tolerance all-to-one or many-to-one routing be-
comes a very important issue in wireless networks. On the other hand, energy
efficiency is also an important issue in wireless networks since nodes are powered
by batteries that may not be possible to be recharged or replaced during a mis-
sion. How to provide energy efficient fault tolerance all-to-one or many-to-one
routing in wireless networks is very challenging.

There are four classes of the communication models in wireless networks: any-
cast; unicast; all-to-one or one-to-all communication; and many-to-one or one-
to-many communication. Most of the previous studies for fault tolerant focused
on anycast, unicast and all-to-one or one-to-all routing. For example, some ap-
proximation algorithms are proposed in [3,4,7] for constructing minimum power
� Corresponding author.

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 483–493, 2009.
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k node-disjoint paths between any two nodes. An optimal solution is constructed
in [13] that gives k node-disjoint paths between the given source and destina-
tion. Two approaches are proposed in [15] for all-to-one and one-to-all commu-
nication model, namely minimum weight based approach and nearest neighbor
augmentation approach. And it is proved that the minimum weight approach
has k-approximation algorithms for all-to-one fault topology control (where k is
the number of disjoint paths).

There are little works on the fault tolerant many-to-one routing. However it is
very meaningful and practical in wireless networks. For example, the important
and main tasks of wireless sensor networks are monitoring a geographical region
and collecting the relevant data. We need to collect data from sensors in relevant
region to sink. In this paper, we address the k-inconnected many-to-one routing
problem: to construct a routing with minimum total energy in which there are
k node disjoint paths from any node in a given subset of nodes to one specific
node. We first prove that the k-inconnected many-to-one problem is NP-hard,
and then propose two heuristics for the problem. The simulation results evaluate
the efficiency of the algorithms.

2 Related Work

Previous work related to fault tolerant topology control in static wireless networks
focus on the following cases: 1) k-fault tolerant anycast, 2) k-fault tolerant unicast,
3) k-fault tolerant all-to-one problem and k-fault tolerant one-to-all problem.

For minimum total power all-to-all k-fault tolerance problem, authors in
[10,11,2] used the algorithm BICONNECTED-KR proposed in [5] to construct a
minimum weight 2-connected subgraph as an approximation for minimum power
all-to-all 2-connected problem, and analyzed its approximation ratio. [2] gave the
best approximation ratio 4. [1] proposed a localized algorithm FTCBTC, which
generalized the well-known Cone-Based Topology Control ([16,6]). [12,7] pro-
posed greedy algorithms for minimum maximal power consumption for 2-node
and k-node connectivity, respectively. A localized implementation of the central-
ized algorithm is proposed [7].

A novel polynomial time algorithm is proposed in [13] that optimally solves
the minimum energy 2-link-disjoint paths problem for unicast, as well as a poly-
nomial time algorithm called Source Transmit Power Selection (STPS) for min-
imum energy k node-disjoint paths problem for unicast, based on the minimum
weight k node-disjoint S-D path algorithm [14]. In addition, some efficient heuris-
tic algorithms for link/node-disjoint paths problems are presented in [13].

The minimum energy broadcast/multicast problem [8,9] is a special case of
the one-to-all(one-to-many) k-fault-tolerant problem. The work in [8] proved that
the minimum energy broadcast problem is NP-hard. And gave three algorithms,
and one of them is 1 + 2ln(n− 1)-approximation algorithm. For minimum total
power all-to-one and/or one-to-all k-fault tolerance, two approaches are proposed
in [15]: minimum weight based approach and nearest neighbor augmentation
approach. And they gave theoretical analysis for the proposed algorithms. The
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minimum weighted based approach is a k-approximation algorithm for all-to-one
k-fault tolerant topology control.

In this paper, we study the minimum energy many-to-one k-fault tolerant
problem.

3 Problem Formulations

In this paper, we use the following network model. A wireless network consists of N
nodes, each of which is equipped with an omni-directional antenna with a maximal
transmission range rmax. The power required for a node to attain a transmission
range r is at least Crα, where C is a constant, α is the power attenuation expo-
nent and usually chosen between 2 and 4. For any two nodes u and v, there exists
a directed edge from u to v if the Euclidean distance d(u, v) ≤ ru, where ru is
the transmission range of node u determined by its power level. In this paper, we
consider asymmetric networks in which the existence of a directed edge from u to
v does not guarantee the existence of a directed edge from v to u.

The network can be modeled by an edge-weight directed graph G = (V, E, c).
V is a set of N nodes. For any pair of nodes u and v, there is a directed edge
from u to v if and only if d(u, v) ≤ rmax. We assign a weight to a directed edge
(u, v) by c(u, v) = Cd(u, v)α. In fact, since each node has the same maximal
transmission range rmax, the graph G is a symmetric directed graph, i.e., if
there is a directed edge from u to v, then there is a directed edge from v to u.
But, because each node may not have the same transmission assignment, the
graph induced by the assignment will be a directed graph.

Suppose H is a subgraph of G. Let p(u) be the power assignment of node u,
c(u, v) be the cost of a directed edge (u, v), and p(H) be the total energy of H ,
c(H) be the total cost of H , then we have:

p(u) = max(u,v)∈Hc(u, v) (1)

c(H) =
∑

(u,v)∈H
c(u, v) (2)

p(H) =
∑
u∈H

p(u) (3)

Minimum Energy k-inconnected Many-to-One Routing Problem.
Given a directed graph G = (V, E, c), a root r and a subset S of nodes along
with a positive integer k, find the power assignment of each node such that the
sub-graph H induced by the power assignment has minimum energy, and for
any s ∈ S, H contains k node-disjoint paths from s to r. We call this problem
as MEkinMRP in short.

4 Algorithms

In the section, we first prove the minimum energy k-inconnected many-to-one
routing problem is NP-hard. Then propose two algorithms to solve the problem.
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Theorem 1. For any k ≥ 2, the minimum energy k-inconnected many-to-one
routing problem (MEkinMRP) is NP-hard.

Proof. We will prove it by two cases:

Case 1: k = 2, we transfer the vertex-cover problem to the MEkinMRP problem.
Suppose G = (V, E) is instance of vertex-cover problem. We construct a new
directed graph G1 = (V1, E1) as followings:

(1) For each edge (u, v) of G, add a node suv at the middle. i.e., {u, v, suv} ⊆ V1
and (suv, u) ∈ E1, (suv, v) ∈ E1. Assign distance 6 between u and v such
that d(suv, u) = 3 and d(suv, v) = 3.

(2) Let r, a, b be three additional new nodes in G1. Connect each node u of G
to a and b with distance 1 and 2 respectively, i.e. for any u ∈ V , (u, a) ∈
E1, (u, b) ∈ E1, and d(u, a) = 1, d(u, b) = 2.

(3) Connect a and b to r with distance d(a, r) = 1 and d(b, r) = 1.

Therefore we get an edge-weight directed graph G1 = (V1, E1), where,

V1 = V ∪ {suv|∀e = (u, v) ∈ E} ∪ {a, b, r}
E1 = {(suv, u), (suv, v)|∀(u, v) ∈ E} ∪ {(u, a), (u, b)|∀u ∈ V } ∪ {(a, r), (b, r)}
An example is shown in Figure 1.

u

v

w

Suv
Svw

v

u w

a b

r

3

3

3

3
2

2

2

1

1

1

1 1

(b) G1 = (V1, E1)

(a) G = (V, E)

Fig. 1. An example of the transformation for k = 2

Set S = {suv|∀(u, v) ∈ E(G)}. Then G has a vertex cover of size h if and
only if there is k-inconnected routing from S to r in G1 using power at most
|E(G)| × 3α + (|V | − h)× 1α + h× 2α + 2× 1α, where we suppose it need power
dα(u, v) from u to v.

Case 2: general k, we reduce the hitting set of hypergraph problem to the
MEkinMRP problem.

The hitting set of hypergraph problem is formally represented as follows:
A given hypergraph G = (V, E), where V is a set of nodes, and for each e ∈ E, e
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is a subset of V . Find minimum cardinality set of nodes S that covers all edges
of G, i.e. every edge contains at least one node of S.

Suppose G is a hypergraph with uniform k-edge (i.e. each edge contains k
nodes), we construct a new directed graph G1 = (V1, E1). For each edge e in
hypergraph, we add a new node v(e), let v(e) connect each node of edge e, and
assign distance 3 for these edges. Let r, a1, a2, · · · , ak−1, b be k + 1 additional
nodes, connect each node u of G to a1, a2, · · · , ak−1 and b with distance 1, 1, · · · , 1
and 2, respectively. And connect a1, a2, · · · , ak−1 and b to r with distance 1.

We get an edge-weight directed graph G1 = (V1, E1), where

V1 = V ∪ {v(e)|∀e ∈ E} ∪ {r, a1, a2, · · · , ak−1, b}

E1 = {(v(e), u)|∀e ∈ E, ∀u ∈ e} ∪ {(u, a1), (u, a2), · · · , (u, ak−1), (u, b)|∀u ∈ V }
∪{(a1, r), · · · , (ak−1, r), (b, r)}

An example for this construction is shown in Figure 2.

(a) G = (V, E)

e1 e2

(b) G1 = (V1, E1)

……

3
3 3

3

1 2

2

1

1

1

1
1

1

v(e1) v(e2)

a1 a2 b

r

Fig. 2. An example of the transformation for general k

Set S = {v(e)|∀e ∈ E}. Then G has a hitting set of size h if and only if
there is k-inconnected routing from S to r in G1 with using power at most
|E(G)| × 3α + (|V | − h)× 1α + h× 2α + k × 1α.

Because the vertex-cover problem and the hitting set of uniform hypergraph
problem are both NP-hard, the minimum energy k-inconnected many-to-one
routing problem (MEkinMRP) is NP-hard, for any k ≥ 2. �

Since the MEkinMRP is NP-hard, we need to find approximation algorithms or
heuristic algorithms for this problem. In the following, we will propose two heuris-
tic algorithms: minimum weight k node-disjoint paths based (MWkNDPB) algo-
rithm and minimum energy k node-disjoint paths based (MEkNDPB) algorithm.
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4.1 MWkNDPB Algorithm

Before introducing MWkNDPB algorithm, we first address the minimum weight
k node-disjoint paths of node pair problem.

Minimum Weight k Node-disjoint Paths Problem(MWkNDP). Given
an edge-weighted digraph G = (V, E, c) and a pair nodes (s, r) in V , find a
subgraph H of G with minimum c(H) =

∑
(u,v)∈H c(u, v) such that H contains

at least k node-disjoint paths from s to r.

In the following, we propose minimum weight k node-disjoint paths flow based
(MWkNDPFB) algorithm for MWkNDP problem.

It is well known that all the classical flow algorithms are applied to solve
edge-disjoint paths problem, but the MWkNDP problem is to find node-disjoint
paths. Therefore we first construct a new graph Ga = (Va, Ea, ca), and transform
MWkNDP problem in G to the edge-disjoint paths problem in Ga.

Given a graph G = (V, E, c), the graph Ga = (Va, Ea, ca) is constructed as
following:

(1) For each node i ∈ V , there are two nodes it and ih in Va coressponding to i.
And (it, ih) ∈ Ea with ca(it, ih) = 0.

(2) For each edge (i, j) in G, there is an edge (ih, jt) ∈ Ea with ca(ih, jt) = c(i, j).

Therefore, we got Ga = (Va, Ea, ca), where

Va = ∪i∈V {it, ih};
Ea = ∪i∈V {(it, ih)} ∪ {(ih, jt)|∀(i, j) ∈ E}.
For a pair nodes (s, r) in V , there is a corresponding pair nodes (sh, rt) in Ga.

The minimum weight k node-disjoint paths problem for (s, r) in G is transformed
to the minimum weight k edge-disjoint paths problem for (sh, rt) in Ga, which
can be modeled to the following minimal cost flow problem:

minimize
∑

ca(i, j) · xij∑
xij −

∑
xji =

⎧⎨⎩
k if i = sh
0 if i 	= sh, rt (for any i ∈ Va)

−k if i = rt
xij = 0, 1, for any(i, j) ∈ Ea

(4)

Note that: we split each node i ∈ V into two nodes it and ih along with
an edge (it, ih) in Va, which guarantees that the subgraph obtained from the
solution of ILP (4) is node-disjoint after contracting all the (it, ih) edges.

Because the relaxation of ILP has an integer solution since the ILP (4) is an
integer flow problem, ILP can be solved in polynomial time. Therefore, there is
an optimal algorithm for the MEkinMRP.

MWkNDPFB Algorithm for the MEkinMRP:
Input: G(V, E, c), a pair of nodes (s, r) and constant k.
Output: A subgraph H , in which there are k node-disjoint paths from s to r

with minimum c(H).



Fault-Tolerant Routing 489

1. Construct a new graph Ga = (Va, Ea, ca) according G.
2. Solve the relaxation linear programming of (4) to get the optimal solution

of (4).
3. Construct a subgraph of Ga by the solution of (4).
4. Contract all the (it, ih) edges in the subgraph into a node, and we get the

subgraph H of G.

Based on the MWkNDPFB algorithm, we propose MWkNDPB algorithm for
the minimum energy k-inconnected many-to-one routing problem. The main idea
of MWkNDPB algorithm is that: given the (S, r), for each s ∈ S, we invoke the
MWkNDPFB to get a subgraph Hsr. Then we can get a subgraph H =

⋃
Hsr.

H guarantees that there are k node-disjoint paths from any s ∈ S to r.

MWkNDPB Algorithm:
Input: (G, k, r, S), where G = (V, E, c) is a directed weight graph of network

topology and r is the root, S ⊆ V − r, k is a constant integer.
Output: A subgraph H that is k-inconnected from S to r.

1. For each s ∈ S, invoke the MWkNDPFB routine to get a subgraph Hsr.
2. Union all the subgraphs Hsr got in step 1, that is H =

⋃
s∈S Hsr.

4.2 MEkNDPB Algorithm

In this section, we propose another algorithm:MEkNDPB algorithm. Before in-
troducing the algorithm, we first introduce the minimum energy k node-disjoint
paths of node pair problem.

Minimum Energy k Node-disjoint Paths Problem: Given an edge-weighted
digraph G = (V, E, c) and a node pair (s, r) in V , find a subgraph H of G such
that H contains at least k node-disjoint paths from s to r and p(H) =

∑
u∈H p(u)

is minimized where p(u) = max(u,v)∈Ec(u, v).

Suppose H is a subgraph which contains k node-disjoint paths from s to r.
Each node in H except s and r has exactly one ingoing edge and one outgo-
ing edge. s has at least k outgoing edges and no ingoing edge. r has at least
k ingoing edges and no outgoing edge. Therefore, p(s) = max(s,v)∈Hc(s, v),
p(r) = 0, and p(i) = max(i,v)∈Hc(i, v), i ∈ H and i 	= s, r. Then p(H) =
p(s)+

∑
u	=s,(u,v)∈H c(u, v). The authors in [13] proposed the STPS algorithm to

the minimum energy k node-disjoint paths of node pair problem by using that
the value p(s) must be s’s some outgoing edge’s weight c(s, v).

STPS Algorithm:
Input: G(V, E, c), a pair of nodes (s, r) and a constant integer k.
Output: A subgraph H , in which there are k node-disjoint paths from s to r

with minimum p(H).
Initialize: order s’s M outgoing edges as m1, m2, . . . , mM , where c(mi) >
c(mj) ⇔ i > j, where c(mi) is the weight of the edge mi. Let pi(s) repre-
sent the current iteration transmission power of s, corresponding to i-th closest
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nodes “reached” by s. Initialize i = k and thus pi(s) = c(mk). Note that starting
with i < k would be fruitless, as the existence of k node-disjoint paths requires
at least k outgoing edges from s. Finally, let Emin represent the overall energy
cost of the k minimum energy node-disjoint paths. Initialize Emin to ∞.

1. Construct a new graph Gi, where Gi is a modified version of G. Accordingly,
let Gi be equal to G, except removing the outgoing edges mi+1, mi+2, . . . , mM

for s whose cost are bigger than pi(s), and setting the costs of all the other
outgoing edges m1, m2, . . . , mi of s to zero.

2. Run a minimum weight k node-disjoint paths algorithm on Gi. Let c(Hi) =∑
(u,v)∈Hi

c(u, v) represent weight of subgraph Hi. If k-disjoint paths cannot
be found by the minimum weight k node-disjoint paths algorithm, then set
c(Hi) = ∞ and continue.

3. Evaluate the following condition: If c(Hi) + pi(s) < Emin, then set Emin =
c(Hi) + pi(s).

4. Increment i = i + 1 and correspondingly increase s’s transmission power,
i.e. pi+1(s) = c(mi+1). Repeat Steps 1-4 until i > M , at which point all
relevant p(s) will have been considered, and the overall minimum energy k
node-disjoint subgraph H for node pair (s, r) is determined.

Based on the STPS algorithm, we propose MEkNDPB algorithm for the min-
imum energy k-inconnected many-to-one routing problem. The main idea of
MEkNDPB algorithm is that: given the (S, r), for each s ∈ S, we invoke the
STPS algorithm in [13] to get a subgraph Hsr, and STPS guarantees that sub-
gragh Hsr is minimum energy cost for a pair nodes (s, r). Then we can get a
subgraph H =

⋃
s∈S Hsr. H guarantees that there are at least k node-disjoint

paths from any s ∈ S to r.

MEkNDPB Algorithm:
Input: (G, k, r, S), where G = (V, E, c) is a directed weight graph of network

topology and r is the root, S ⊆ V − r, k is a constant integer.
Output: A subgraph H that is k-inconnected from S to r.

1. For each s ∈ S, invoke the STPS routine to get a subgraph Hsr.
2. Union all the subgraphs Hsr got in step 1, that is H =

⋃
s∈S Hsr.

5 Simulations

In the simulations, we focus on comparing our two heuristic algorithms
MWkNDPB and MEkNDPB since the MEkinMRP problem has been little
studied.

We study how the total energy cost is affected by varying three parameters
over a wide range: the total number of nodes in the network(N), the number of
source nodes group(M), the maximum transmission range of all nodes(rmax).

The simulation is conducted in a 100 × 100 2-D free-space by randomly al-
locating N nodes. The unit of rmax is respect to the length of one side in the
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Fig. 3. rmax = 1/2 · (R)

square region, i.e., when rmax =
√

2R, a node’s transmission range using rmax
covers the whole region. The power model is: P = r2, where P is the transmis-
sion power and r the radius that the signal can reach. Each node has the same
maximum transmission range rmax and the transmission range of each node can
be any value between zero to rmax. We fix k = 2, i.e., each source node has at
least 2 node-disjoint paths to the destination node.

We present averages of 100 separate runs for each result shown in the following
figures. In each run of the simulations, for given N, M, rmax, we randomly place
N nodes in the square, and randomly select M source nodes and a destination.
Then we assign each node with the maximum transmission range rmax, and
any topology that is not k node-connected is discarded. Then we run the two
algorithms on this network.

In Fig.3, we fix M = 10 and M = 15, rmax = 1/2 · (R) while vary N . As
we can see, the total energy cost of the subgraph decreases as the growth of
N approximately. It is comprehensible that the number of hops between source
and destination increases with N increasing, and as we know, more hops between
source and destination implies smaller total energy cost approximately. It is also
shown that the MWkNDPB algorithm is better than MEkNDPB algorithm all
the time in this condition.

In Fig.4, we fix N = 40 and N = 50, rmax = 1/2 · (R) while vary M .
As we can see, the total energy cost of the subgraph increases as the growth
of M . It is intelligible that since there must be k node-disjoint paths between
each source and destination, some nodes all in the subgraph should increase
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their transmission range or some nodes not in the subgraph should assign a
transmission range to provide more paths. It is also shown that the MWkNDPB
algorithm is better than MEkNDPB algorithm all the time in this condition.

In Fig.5, we fix M = 15, N = 40 and N = 50 while vary rmax. In this
simulation, we keep the location of all the nodes invariably when vary rmax.
As we can see, the total energy cost of the subgraph is invariable. It is appre-
hensible that since the graph with all nodes having smaller rmax is subgraph
of the graph with bigger rmax, the subgraph obtained from MWkNDPB and
MEkNDPB algorithms for smaller rmax must be a feasible subgraph for bigger
rmax. Considering that the total energy cost is not the sum of weights of edges
in the subgraph, the total energy cost of the subgraph changes a little. It is also
shown that the MWkNDPB algorithm is better than MEkNDPB algorithm all
the time in this condition.

6 Conclusion

We have studied the minimum energy k-inconnected many-to-one routing prob-
lem in wireless networks. Two heuristic algorithms MWkNDPB and MEkNDPB
for this problem have been proposed. Extensible simulations have been conducted
to compare the two heuristic algorithms. And simulation results have shown that
the two heuristic algorithms have comprehensible characteristic, and MWkNDPB
algorithm has better simulation evaluation than MEkNDPB algorithm.
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Abstract. In this paper, we study the minimum energy symmetric con-
nectivity problem in wireless sensor networks. This problem is to assign
transmission power to each sensor node in a wireless sensor network such
that all the sensor nodes are connected by bidirectional links and the
overall power consumption is minimized. The determined transmission
powers must support the communication session between each pair of
nodes along a single-hop path or a multi-hop path. We view this feature
as strong symmetric connectivity defined on a digraph. We present two
mixed integer programming formulations involving an exponential num-
ber of constraints. By introducing some logical constraints, we give the
first formulation. Based on this formulation, we further produce some
strong cuts which result in the second stronger formulation. Using these
formulations, we then devise a branch-and-cut algorithm. Computational
results demonstrate that our algorithm is an efficient algorithm for the
instances with up to 100 nodes.

1 Introduction

Recently wireless networks have attracted a great deal of attention for their po-
tential for many applications in scenarios such as military target tracking and
surveillance, health monitoring, natural disaster relief, and hazardous environ-
ment exploration and seismic sensing [2,12]. Generally a wireless network has
no infrastructure and is composed of a number of sensor nodes. A communica-
tion session is achieved either through single-hop transmission if the recipient is
within the transmission range of the source node, or by relaying through inter-
mediate nodes [3]. As the sensor nodes operate on limited, generally irreplaceable
power sources, the energy usage is an issue of common concern in wireless net-
works. Therefore there has been extensive research in wireless networks literature
focusing on minimizing the energy consumption.

In this paper, we consider the minimum power symmetric connectivity prob-
lem (MPSC). This problem can be formally defined as follow: given a set of
sensors in the plane, assign transmission power to each sensor such that the
sensors are connected by using only bidirectional links, and the sum of all the
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transmission powers is minimized. Throughout this paper, unless otherwise spec-
ified, a sensor is equivalent to a node. As in [3], we adopt the most commonly
used power-attenuation model [10] to deal with the MPSC. Based on a typical
assumption that all nodes have the same transmission efficiency and detection
sensitivity coefficients, the energy requirement for supporting a link between
nodes i and j is defined as

fi,j = fj,i = dκ (1)

where κ is the attenuation coefficient, which is typically between 2 and 4 (It is
set to 4 in our experiments), and d is the distance between nodes i and j. Using
the model described above the power function is symmetric. However results in
this paper are valid in models where fij 	= fji. Let wi be a transmission range
function associated with node i. A unidirectional link from node i to node j is
established only if wi ≥ fi,j ; and a bidirectional link between nodes i and j is
established only when wi ≥ fi,j and wj ≥ fj,i.

Let G = (N, E) be a complete graph where N is the set of n sensor nodes
and E is the set of all undirected edges. Throughout this paper, we use (i, j)
and {i, j} to represent the directed arc from i to j, and the undirected edge
between nodes i and j respectively. From the perspective of graph theory, the
MPSC can be defined as follows: given a complete undirected graph G and
the energy function defined in equation (1), determine the transmission ranges
{w∗

1 , w
∗
2 , · · · , w∗

n} such that the induced undirected graph G0 = (N, E0) with
E0 = {{i, j} : w∗

i ≥ fi,j and w∗
j ≥ fj,i, i, j ∈ N} is connected and the total

energy consumption of
∑n
i=1 w∗

i is minimized. Since any spanning tree of G
results in a feasible solution, the MPSC can also be equivalently defined as
finding a spanning tree of G with minimum power consumption.

Clementi et al. first prove that the MPSC is NP-hard [7]. The approximation
algorithms and heuristics are studied for this problem. Kirousis et al. design
a minimum spanning tree (MST) based 2-approximation algorithm [8]. Using
the similarities between the MPSC and the steiner tree problem, Cǎlinescu et al.
decrease the approximation ratio to below 2 [5]. Blough et al. give the asymptotic
bounds on the solution for the randomly generated Euclidean instances [4].

Althaus et al. formulate the MPSC in ad hoc wireless networks as a minimum
power-cost spanning tree problem and presented an integer programming (IP)
formulation [3]. Using this formulation, the authors develop a branch-and-cut
algorithm, which is experimentally shown to be practical for instances with up
to 35-40 nodes within about one hour.

Montemanni and Gambardella study exact algorithms for the MPSC [9]. Two
mixed integer programming (MIP) formulations are presented. One is a single-
commodity flow model where one node is chosen as the source of the flow and
one unit of flow is sent from this source to every other node. Another formulation
uses cut-based inequalities to guarantee the connectivity in the spanning tree.
The authors give two exact algorithms where MIP formulation is directly solved
by CPLEX 6.0, and possible cuts are derived from the integer solution, added to
the formulation, and augmented MIP formulation is resolved by CPLEX. The
experimental results in instances with up to 40 nodes show that (1) the first
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algorithm requires average 2.7 hours to optimally solve the instances; (2) the
second algorithm can decreased the average CPU time to about 80 seconds.

In this paper, we study the branch-and-cut algorithm for the MPSC. We
cast the MPSC on the complete digraph, requiring that the induced topology of
the solution must be not only strongly connected, but also connected using only
bidirectional links. The remainder of this paper is organized as follows. In section
2, we present two formulations for the MPSC. A branch-and-cut algorithm is
proposed in Section 3. We carry out a series of experiments to evaluate the
proposed approach in Section 4. Finally, we summarize this paper in Section 5.

2 Formulations

We deal with the MPSC from the perspectives of a digraph and an undirected
graph. The previous section has indicated that any spanning tree corresponds to
a feasible solution to the MPSC where the connectivity requirement is defined
on an undirected graph. In addition, the power associated with such a spanning
tree must support the communication session between each pair of nodes. We
therefore deal with a strong connectivity defined on a digraph. For this purpose,
we define a digraph G′ = (N, A) derived from G = (N, E) by defining corre-
spondingly two arcs in A for each edge in E. Accordingly we define two types of
binary variables, i.e., range variables and tree variables. The range variables xi,j
defined in digraph G′, equals 1 if the transmission power of node i can support
the direct communication session from nodes i to j, and 0, otherwise. The tree
variable ze is set to 1 if edge e belongs to the induced spanning tree, which is
defined in the undirected graph G. These two kinds of “connectivity” constraints
are used to develop the following formulations. For any given set S of nodes with
S 	= N , and S 	= ∅, let (S, S) be the set of arcs going from S to N\S, and δ(S)
be the set of edges e ∈ E that have one endpoint in S.

We first introduce some logical constraints that are derived from the incremen-
tal mechanism in wireless networks. As explained below, we re-label the outgoing
arcs at each node. For each node i, we sort the outgoing arcs in the ascending
order of transmission energy fi,j and label the arcs as (i, i1), (i, i2), · · · , (i, in−1)
such that fi,i1 ≤ fi,i2 , · · · ,≤ fi,in−1 . A transmission operated by one node can
also be received by all nodes within its transmission range. Accordingly we have
xi,i1 = xi,i2 = · · · = xi,ij−1 = 1 for a solution x with xi,ij = 1. For each node i,
we therefore can define the following logical constraints

xi,ij − xi,ij+1 ≥ 0 ∀j = 1, 2, · · · , n− 2. (2)

For each node i, we can also consider another kind of constraints

xij ,i ≥ xi,ij − xi,ij+1 ∀j = 1, 2, · · · , n− 2. (3)

We argue this constraint as follows. Suppose xi,ij = 1 and xi,ij+1 = 0. It means
the transmission power of node i can only support the communication from i to
ik with k = 1, 2, · · · , j. The only reason is that there exists a bidirectional link
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{i, ij} in G0. We thus have xij ,i = 1. If xi,ij = 1 and xi,ij+1 = 1, or xi,ij = 0
and xi,ij+1 = 0, constraint (3) always holds and has no contribution. These
constraints are also used in [9]. Further, for the outgoing arc (i, in−1) of node i,
another logical constraint can be added as

xin−1,i ≥ xi,in−1 ∀i ∈ N. (4)

This constraint has the contribution only when xi,in−1 = 1. We can argue as
follows. xi,in−1 = 1 means that the power of node i support the communication
from i to in−1. We also know that (i, in−1) is the longest outgoing arc of node
i. Therefore the only reason for supporting such a communication is that there
exists a bidirectional link {i, in−1} in G0 since (i, in−1) is the longest outgoing
arc of node i. These constraints are used in [9] as well.

Using the above incremental mechanism and constraints, we could describe
the first mixed integer programming formulation (MIP) as

(MIP) min
n∑
i=1

wi (5)

s.t. wi ≥ fi,jze ∀e = {i, j} ∈ A, ∀i ∈ N (6)

(2)− (4) (7)

xi,in−1 ≥ 0 ∀i ∈ N (8)

∑
(i,j)∈(S,S)

xi,j ≥ 1 ∀S ⊂ N, S 	= N, S 	= ∅ (9)

ze ≤ xi,j ∀e = {i, j} ∈ E (10)

ze ≤ xj,i ∀e = {i, j} ∈ E (11)

∑
e∈δ(R)

ze ≥ 1 ∀1 ∈ R, R ⊂ N, R 	= N, R 	= ∅ (12)

xi,j ∈ {0, 1} ∀(i, j) ∈ A (13)

ze ∈ {0, 1} ∀e ∈ E (14)

wi ≥ 0 ∀i ∈ N. (15)

where constraint (6) defines the transmission power associated with each node
and guarantees that w∗

i = maxj{fi,j : e = {i, j} ∈ E}. Constraint (9) ensures
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that the induced graph G′ is strongly connected for the purpose of commu-
nication sessions. Constraints (10) and (11) connect x-variables to z-variables.
Constraint (12) indicates that the induced graph in terms of z-variables (that
is, those edges with ze = 1) must be connected.

In the following we give the second formulation, through which we develop
some strong cuts. Using the previous incremental mechanism, we first redefine
the transmission power associated with each arc. For each node i, we change the
power of the outing arcs as follows: ci,i1 = fi,i1 , and ci,ij = fi,ij − fi,ij−1 for all
j = 2, · · · , n−1. We therefore have fi,ij =

∑j
k=1 ci,ik . Accordingly in the second

formulation, we can replace the objective function in (5) with
∑

(i,j)∈A ci,jxi,j
and provide the following equivalent formulation:

(BIP) min
∑

(i,j)∈A
ci,jxi,j (16)

s.t. (7)− (14). (17)

Using formulation (BIP), we present an equivalent formulation with strong
cuts. The x-variables and the formulation are first rewritten in the matrix form.
We first define some notations. Let T be an upper triangular non-singular matrix
of order n− 1 with T = (tp,q) defined as:

tp,q =

⎧⎨⎩
1, if p = q

−1, if q = p + 1
0, otherwise.

(18)

Define Xi = (xi,i1 , xi,i2 , · · · , xi,in−1)T , and X = (X = (XT
1 , XT

2 , · · · , XT
n )T . For

each node, the logical constraints defined in (2) as well as constraint (8) can be
written in the matrix form as TXi ≥ 0. Define Ci = (ci,i1 , ci,i2 , · · · , ci,in−1) for
each node i ∈ N ; and let E be the cut-arc incidence matrix with arcs listed in
the same order as variables in X . We can rewrite formulation (BIP) as follows:

(IP1) min
n∑
i=1

CiXi (19)

s.t. xi,i1 = 1 ∀i ∈ N (20)

TXi ≥ 0 ∀i ∈ N (21)

EX ≥ 1 (22)

(3)− (4), and (10)− (14) (23)

X = 0/1-vector. (24)
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where 1 is a column vector with n 1’s. If let Yi = TXi, i ∈ N , then Xi =
T−1Yi. Furthermore if vector Xi satisfies the logical constraints with xi,i1 =
xi,i2 , · · · , xi,ij = 1, and xi,ij+1 , · · · , xi,in−1 = 0, then Yi is a unit vector with
yi,ij = 1. Let Γ be an |A| × |A| square matrix with T along the diagonal. Γ and
the inverse matrix Γ−1 are defined as

Γ =

⎡⎢⎣T 0 · · · 0
...

...
...

...
0 0 · · · T

⎤⎥⎦ and Γ−1 =

⎡⎢⎣T−1 0 · · · 0
...

...
...

...
0 0 · · · T−1

⎤⎥⎦ .

We thus have Y = (Y T
1 , Y T

2 , · · · , Y T
n )T = ΓX , and X = Γ−1Y . Further let

Di = (di,i1 , di,i2 , · · · , di,in−1) = CiT
−1. Accordingly we can present the following

equivalent of formulation (IP1)

(IP2) min
n∑
i=1

DiYi (25)

s.t. eTi Yi = 1 ∀i ∈ N (26)

EΓ−1Y ≥ 1 (27)

(3)− (4), and (10)− (14) (28)

Y = 0/1-vector. (29)

where eTi is a row vector with n− 1 1’s.
In the following section, we deduce the second formulation with strong cuts.

Let B = EΓ−1. Then constraint (27) can be rewritten as BY ≥ 1. In the
previous section, we have stated that E is the cut-arc incidence matrix in terms
of x-variables. Now we consider p-th row (Ep) of E as follows:

Ep = (ap,(1,11), · · · , ap,(1,1n−1)

∣∣ap,(2,21), · · · , ap,(2,2n−1)

∣∣ · · · ∣∣ap,(n,n1), · · · , ap,(n,nn−1) ).
(30)

And we have the corresponding p-th row of B as

Bp = (bp,(1,11), · · · , bp,(1,1n−1)

∣∣bp,(2,21), · · · , bp,(2,2n−1)

∣∣ · · · ∣∣bp,(n,n1), · · · , bp,(n,nn−1) ).
(31)

We therefore have

bp,(i,ij) =
j∑

k=1

ap,(i,ik), j = 1, · · ·n− 1; i = 1, · · ·n. (32)

The stronger formulation can be produced by replacing B with a new matrix
B̂. This matrix B̂ is defined as follows: for each entry in B, the corresponding
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entry b̂p,(i,j) in B̂ is set to 1 if bp,(i,j) ≥ 1, and 0 otherwise. We present the
following stronger formulation (IP3):

(IP3) min
n∑
i=1

DiYi (33)

s.t. eTi Yi = 1 ∀i ∈ N (34)

B̂Y ≥ 1 (35)

(3)− (4), and (10)− (14) (36)

Y = 0/1-vector. (37)

Let Ê = B̂Γ . Since X = Γ−1Y , we have B̂Y = B̂ΓX = ÊX , and thus
have Ê = B̂Γ . We first rewrite Ep in (30) as (Ep,1|Ep,2| · · · |Ep,n) with Ep,i =
(ap,(i,i1), ap,(i,i2), · · · , ap,(i,in−1)). Similarly, the p−th rows of Ê and B̂ are rewrit-
ten as (Êp,1|Êp,2| · · · |Êp,n) and (B̂p,1|B̂p,2| · · · |B̂p,n) respectively. Now Êp,i =
B̂p,iT . The previous transformation indicates that B̂p,i is a row vector of size n−1
with a sequence of zeros (possibly empty) followed by a sequence of 1’s (again
possibly empty). Êp,i therefore is a unit row with 1 at the position where the first
1 appears in Ep,i, if at least one coefficient 1 exists in B̂p,i. We use the following
example to show the above transformations. Given Ep,i = (0, 1, 0, 1, 1, 0, 1, 1),
we then have the following transformations:

Epi = (0, 1, 0, 1, 1, 0, 1, 1)⇒ Bpi = (0, 1, 1, 2, 3, 3, 4, 5)⇒
B̂pi = (0, 1, 1, 1, 1, 1, 1, 1)⇒ Êpi = (0, 1, 0, 0, 0, 0, 0, 0).

Using Ê and X = Γ−1Y , we transfer formulation (IP3) to formulation (IP4) as

(IP4) min
n∑
i=1

CiXi (38)

s.t. xi,i1 = 1 ∀i ∈ N (39)

TXi ≥ 0 ∀i ∈ N (40)

ÊX ≥ 1 (41)

(3)− (4), and (10)− (14) (42)

X = 0/1-vector. (43)
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Based the fractional solution x of the linear relaxation of (IP4), we can efficiently
identify any violated constraint not satisfying EX ≥ 1 (See the separation in
the next section). We thus can get a possibly strong cut using the above trans-
formation between E and Ê.

3 A Branch-and-Cut Algorithm

The branch-and-cut algorithm is a branch-and-bound algorithm where cut-
ting planes are generated throughout the search tree. Algorithm 1 outlines our
branch-and-cut (B&C) algorithm for the MPSC. We first list some notations.

X ∗: the optimal solution to the MPSC;
Z ∗: the objective function value of optimal solution X ;
Pi: the LP relaxation problem at node i;
X k: the optimal solution to subproblem Pi;
Z k: the objective function value of X k;
P : the set of the subproblems Pi.

(1) Starting incumbent
In our B&C, we present a starting incumbent to accelerate the solution process
by eliminating part of the solution space. Prim’s algorithm is first implemented
to find an MST in G [1]. We then set ze to 1 if edge e appears in the MST;
and 0 otherwise. x-variables in the starting solution are determined as follows.
For each edge e = {i, j} in the MST, we set xi,j = 1 and xj,i = 1; For each
node i, xi,i1 = 1. Furthermore, for each node and xi,ij = 1, we set xi,ik = 1(k =
1, 2, · · · , j), and xi,ik = 1(k = j + 1, · · · , n− 1).

(2) Separation
The separation problem is solved to identify a violated inequality, if one exists.
As stated previously, our proposed formulations contain an exponential number
of constraints for strong connectivity in terms of x-variables, and symmetric
connectivity in terms of z-variables. Our B&C starts to solve each formulation
only with a few cuts of the connectivity: for each node i, it adds

∑
e∈δ({i}) ze ≥ 1

and
∑

(i,j)∈A xi,j ≥ 1. Based on the intermediate solutions to LP subproblems,
B&C gradually identifies valid inequalities and adds them to the subproblem.
Two classes of cuts are identified, i.e., constraints in (9) or (12). Furthermore,
each kind of cut can be identified based on whether the current LP solution is
fractional or integer but infeasible. Let x and z be the x- and z-parts in the
current LP solution respectively.

If the current LP solution is fractional, we identify the the first kind of cuts by
solving an overall min-cut problem in digraph Ĝ = (N, Â) with Â = A\{(i, j) :
xi,j is set to zero by branching}. The capacity ui,j on each arc (i, j) is set as
follows: ui,j = ∞ if xi,j has been set to 1 in the enumeration tree; otherwise
ui,j = xi,j . We implement the approach in [6] to solve the all-pair min-cut
problem defined for more general symmetric cut functions. Let πst be the max-
flow value from source s to sink t, and define v(s, t) = min{πst, πts}. By the
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Algorithm 1. Branch-and-cut algorithm

Step 1. Initialization
input instance data and a starting incumbent X .
set P = {P0}, X ∗ = X .

Step 2. if |P | = ∅, then go to Step 3; else do
Step 2.1. select one subproblem Pk, and set P ← P\{Pk}.
Step 2.2. Solving LP relaxation
solve subproblem Pk.
if X k is infeasible, then prune this node and goto Step 2.
if X k is integer, then goto Step 2.4.
if X k is not integer, and Z k > Z ∗, then prune this node and goto Step 2.1.

Step 2.3. Separation
identify possibly violated inequalities.
if no cut is found, then goto Step 2.6.
else add this cut as local cut and goto Step 2.2.
end if

Step 2.4. Connectivity check for integer solution
if X k is an infeasible integer solution, then
a valid cut is found, and added to Pk as a local cut; goto Step 2.2.

end if
Step 2.5. Pruning
if Z k < Z ∗, then set X ∗ ← X k and Z ∗ ← Z k.
prune node k and goto Step 2.

Step 2.6. Branching
select a fractional variable xi,j or ze for the branching.
check (strong) connectivity after the branching.
if the graph is (strongly) connected, then

create two nodes with xi,j = 0 and xi,j = 1, or ze = 0 and ze = 1 respectively.
else create one node with xi,j = 1 or ze = 1.
end if
add created subproblems to P , and goto Step 2.1.

Step 3. Output the best-found solution X ∗ and Z ∗

approach in [6], we can get n − 1 values of v(s, t) by solving 2(n − 1) max-
flow problems. Let v0 = min{v(s, t) : s 	= t, s, t ∈ N} and (S0, S0) be the
corresponding min-cut. If v0 < 1, then we have a violated cut∑

(i,j)∈(S0,S0)

xi,j ≥ 1.

For formulation (IP4), the above cut can be further strengthened. The violated
cut is added to the current subproblem and the resulting LP problem is resolved.

If the current LP solution is an integer solution with x violating constraint (9),
the induced graph in terms of x-variables is not strongly connected, which results
in another violated cut. We implement forward and reverse search to determine
such kinds of cuts [1]. This method is to identify the maximum components
that are reachable by directed paths from any specific node s, or identify the
maximum components from which we can reach any given node t along directed
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paths. In our implementation, both s and t are set to 1. The forward and reverse
searches are implemented on an auxiliary digraph G = (N, A) with A = {(i, j) ∈
A : xi,j = 1}. If the set R0 of maximum connected components is not equal to
N , we can identify a violated cut

∑
(i,j)∈(R0,R0)

⋂
Â xi,j ≥ 1.

The second class of cuts can be identified based on z, if they exist. If the LP
solution is fractional, we try to get a violated cut by solving an overall min-cut
problem in the undirected graph. The approach in [11] is implemented to find
the overall min-cut of an undirected edge-weighted graph G̃ = (N ′, Ẽ). We first
describe how to create this undirected graph. Since some z-variables may have
been set to 0 in the search tree, the corresponding edges cannot appear in graph
G̃. Further, those edges with ze = 1 are not allowed to appear in the minimum
cut. We first initialize Ẽ as E\{e ∈ E : ze has been set to 0}, and N ′ as N . The
arc weights in Ẽ is set as we = ze. If there is at least one acnode in N ′, a violated
cut with the value of 0 has been found, and this procedure terminates. Otherwise
we continue the following merging procedure. For each edge e = {i, j} ∈ Ẽ where
ze is set to 1 in the search tree, these two vertices i and j are merged, that is,
these two vertices are replaced by a new vertex, and any edges from these two
vertices to a remaining vertex are replaced by an edge weighted by the sum of the
weights of the previous two edges. We repeat the above merging procedure and
create a new undirected edge-weighted graph G̃ = (N ′, Ẽ) where N ′ is the new
set of nodes. Based on such a graph, we implement the algorithm in [11] to get
the minimum cut, of which the overall running time is O(|N ′||Ẽ|+|N ′|2 log |N ′|).
If the weight of the minimum cut is less than 1, we have identified a violated cut
defined in G̃ = (N ′, Ẽ). We then replace these new vertices in the cut by original
vertices, which results in a violated cut defined in z-variables. If the current LP
solution is an infeasible integer solution with the infeasibility in z part, we can
identify the cut by implementing the above forward search for undirected edge-
weighted graph G̃ = (N, Ẽ) with Ẽ = {e ∈ E : ze = 1}.

(3) Branching rule
The strategy of choosing the branching variables is fundamental to the perfor-
mance of B&C. Clever choice of branching variables can significantly reduce the
number of nodes explicitly examined and the computational time. In our B&C,
we will compare two well-known branching rules as well as the CPLEX default
branching strategy: (1) Minimum integer infeasibility; (2) Maximum integer in-
feasibility and (3) The default branching rule in CPLEX.

4 Experiments and Computational Results

In this section, we report our computational experience with the B&C. The
algorithm is coded in C language and complied on VC++ 6.0. CPLEX 11.1 is
used as the solver of the linear relaxation problem at each enumeration tree node.
All experiments are carried out on a PC with Intel CPU 2.2 G under Windows
XP. In the following experiments, the computation time is reported in seconds.
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Table 1. Comparing branching rules

Problem n
Max Integer Infeasibility Min Integer Infeasibility CPLEX Strategy
CPUs Node CPUs Node CPUs Node

1 45 9.94 139 11.14 174 4.19 21
2 45 9.62 157 9.06 144 6.66 36
3 45 1404.22 33852 1297.71 33418 10.48 60
4 45 28.87 785 167.74 5228 5.32 28
5 45 15.4 377 64.32 1889 6.16 40
6 45 9.17 215 6.17 114 4.36 24
7 45 204.36 6891 - - 6.36 33
8 50 23.19 468 42.57 991 6.75 17
9 50 28.17 511 32.53 677 7.16 24
10 50 141.46 3106 - - 13.69 79
11 50 408.91 6306 775.7 16621 7.44 31
12 50 152.08 2302 56.85 1069 11.34 83
13 50 98.14 2299 218.78 5760 12.61 74
14 50 1.97 14 2.19 26 2.39 16
15 50 58.48 1243 463.1 11314 12.65 41

4.1 Testing Problems

We first need to generate some testing instances. The underlying networks in all
instances are complete graphs. 17 sets of instances are generated and each set
contains 10 instances. The number n of nodes ranges from 20 to 100 with step of
5. As in [9], we randomly choose n nodes in [0, 10, 000]2 according to a uniform
distribution and define the transmission power fi,j as (di,j)4, where di,j is the
distance between nodes i and j.

4.2 Computational Results

We conduct the first experiment to compare different branching rules. B&C using
the second formulation is implemented to solve a set of 15 instances. The results
are reported in Table 1. For each branching rule, we give the number of nodes
explored in the search tree and the CPU time required to verify an optimal
solution. “-” means that no optimal solution is obtained within 1800 seconds.
The results show that the best branching rule is the default strategy of CPLEX.
With this branching, B&C is able to solve the instances within 13 seconds. With
other two strategies, more nodes are explored before B&C returns the optimal
solutions. In the following experiments, we use this default branching rule.

The second experiment is conducted to demonstrate the significance of strong
cuts in (IP4). B&C is implemented to solve formulations (MIP) and (IP) re-
spectively. Since only small instances can be solved within acceptable CPU time
using formulation (MIP), we only test B&C in 20 instances with 25 and 30 nodes.
The results are reported in Table 2. For each pair of instance and formulation,
we present two statistics: the number of the search tree nodes explored and the
corresponding CPU time before reaching optimality. The results show that the
strong cuts in (IP4) do significantly improve the performance of our B&C. Us-
ing formulation (IP4), B&C can solve all these instances within about 1 seconds.
However it requires about 1132.48 seconds to deal with these instances by our
approach with formulation (MIP).
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Table 2. Effects of strong cuts

Problem n
MIP IP4

CPUs Node CPUs Node
1 25 90.14 1950 0.13 10
2 25 405.6 4184 0.54 43
3 25 41.14 871 0.16 11
4 25 170.18 5522 0.42 13
5 25 210.37 5240 0.48 17
6 25 229.74 2521 0.3 15
7 25 38.9 791 1.11 7
8 25 149.35 2193 0.19 3
9 25 550.72 6175 0.39 12
10 25 548.33 2853 0.17 20
11 30 890.96 3989 1.31 16
12 30 2185.51 10895 1.13 21
13 30 2359.07 15274 1.11 24
14 30 5045.88 25780 1.01 15
15 30 739.72 5011 1.21 10
16 30 2856.76 12167 1.04 21
17 30 1353.07 8755 0.87 8
18 30 1401.42 6396 0.33 5
19 30 1918.39 10798 1.3 22
20 30 1464.32 9395 2.15 20

Average 1132.48 7038 0.77 16

Table 3. Computational results on larger instances

Set n Node
Computational times

Min Max Avg.
1 55 53 6.81 19.68 13.28
2 60 88 8.56 63.41 22.40
3 65 129 5.52 101.25 44.24
4 70 185 19.86 148.25 85.27
5 75 191 29.59 209.92 101.70
6 80 458 40.53 541.84 266.87
7 85 227 66.83 227.88 142.54
8 90 386 65.27 669.17 278.02
9 95 372 98.58 727.22 361.79
10 100 325 178.85 1058.83 413.60

Using formulation (IP4), we further demonstrate the performance of B&C
in larger instances in other 10 sets. The result are reported in Table 3. For
ten instances in each set, we report the average number of nodes explored, the
minimum (Min), maximum (Max), and the average (Avg.) of computational
times required to find and verify an optimal solution. It takes, on the average,
414 seconds to optimally solve the instances with 100 nodes.

5 Conclusion

This paper studies the minimum energy topology problem in wireless networks.
This problem is to assign transmission powers to the sensor nodes so that the
energy consumption is minimized while ensuring the network connectivity by
bidirectional links. We develop two formulations for this problem. The first for-
mulation contains some logical constraints derived from the general incremental
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mechanism. Based on the first formulation, we then generate some strong cuts
and thus present a stronger formulation. We further develop a branch-and-cut
algorithm, of which the performance is verified by a series of experiments.
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Abstract. In this paper we discuss minimum energy broadcast routing
with directional antennas in ad hoc and sensor networks. We assume that
the network consists of sensor nodes whose antennas are Switched beam
directional antennas. The problem of our concern is: given a set V with n
nodes and each node vi has l(i) transmission directions (i.e. the antenna
sectors) and a broadcast request sourced at s, how to find a broadcast
tree rooted at s and spanning all nodes in V such that the total energy is
minimized. This problem involves with the choice of transmitting nodes
and their transmission directions, which is NP-hard. We propose a |V |-
approximation algorithm and one heuristic for the problem. Extensive
simulations have demonstrated the efficiency of our algorithms.

Keywords: ad hoc and sensor networks, energy efficient, broadcast, di-
rectional antenna, approximation algorithm.

1 Introduction

With the emergency of the smart antennas (i.e. directional antennas) technology,
using the smart directional antennas to improve network performance becomes
more and more popular in recent years. Previous researches have shown that the
application of directional antennas can further reduce the energy consumption
and the radio interference, improve the throughout [3,9,11]. As a result, the
use of directional antennas has a great potential in wireless ad hoc and sensor
networks.

Broadcasting is an important function in applications of wireless ad hoc
and sensor networks. Most of the existing works on energy efficient broad-
cast/multicast routing focused on omni-directional antenna. In this paper, we
consider the energy efficient broadcast routing problem in wireless ad hoc and
sensor networks with directional antennas model. Note that the directional char-
acteristic discussed in this paper is from the viewpoint of transmitting, but not
from receiving (i.e. the reception beam is omni-directional).

There are two techniques used in smart directional antenna systems: switched
beam and steerable beam [9,11]. The Switched beam directional antennas model
� Corresponding author.
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(a) (b) (c) (d)

Fig. 1. Some illustrations of directional antennas model

divides the transmission range of each node into different sectors. Each node
can switch on one or several sectors for transmission, as shown in Fig.1(a). The
steerable beam directional antennas model, as shown in Fig.1(d), allows that the
antenna orientation of each node can be steered to any desired direction and the
beam-width can be adjusted from θmin to 3600, where θmin is a threshold for
communication. This paper uses the Switched beam directional antennas model.

In this paper, we address the minimum energy broadcast routing with di-
rectional antennas problem(D-MEB), in which each node equips a number of
antennas sectors. The problem needs to determine a set of transmitting nodes
and which directions of each transmissing node should be switched on. We use a
general antennas model and remove some assumptions about the directional an-
tenna model in [12,10], and assume each node has a switched beam directional
antenna and different sectors can be irregular, overlapping and have different
shapes. We consider asymmetric networks for removing the assumption [4] that
links are bidirectional. The only constraint is that each antenna sector must have
a fixed size and shape (See the Fig.1c). This is more practical in real systems
because the radio performance may degenerate dramatically, i.e. although the
antenna sectors are identical in idealizing model, their transmission range may
become very different in practice.

The energy efficient broadcasting/multicasting with switched beam direc-
tional has also been studied in [12,10,4,8]. However, most of their algorithms
are heuristics without any performance guarantee. And the author in [12] pro-
posed an O(log2 n)-approximation algorithm but its time complexity is quasi-
polynomial time (O((Kn)3 logn), where n and K are the numbers of nodes in
network and their directions. In this paper, we propose an approximation algo-
rithm with a provably performance ratio n in polynomial time. And also propose
another heuristic with lower time complexity and, from simulation results, we
can show that the performances of our algorithms are better than the best heuris-
tic in [12] and the BIP-based algorithm [10]. To our best knowledge, this is the
first paper proposing an approximation algorithm with a provably performance
ratio in polynomial time for the D-MEB problem.

The rest of the paper is organized as follows: In Section 2, we briefly summa-
rize some related work. Section 3 describes the directional antennas model, the
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network model and problem specification. Two algorithms for the D-MEB prob-
lem are proposed in Section 4. Simulation results about proposed algorithms are
exhibited in Section 5. Finally, we give a conclusion in Section 6.

2 Related Work

Most of the previous studies on energy efficient broadcast/multicast have focused
on omni-directional antennas. Different from the scenarios of omni-directional
antennas, using directional antennas can further reduce the energy consumption
while increasing the complexity of the problems [9]. For the steerable beam di-
rectional antennas model, the most famous and initial work was produced in
[14], where two heuristic algorithms for broadcast routing problem: RB-BIP and
D-BIP, were proposed as extensions of BIP algorithm [13]. Guo et. al. in [5] con-
structed the MILP (Mixed Integer Linear Programming) for the multicasting
with directional antennas model. Li et. al. in [7] proposed a greedy heuristic for
the broadcasting problem with directional antennas model. Cartigny et. al. [1]
also developed the localized algorithms D-RBOP and A-DLBOP for the broad-
casting with directional antennas model.

For the switched beam directional antennas model, Tang et. al. [12] extended
the work in [6] to directional antennas scenario, and presented an O(log2 n)-
approximation algorithm with O((Kn)3 logn) time complexity. The authors also
proposed several heuristics for D-MEB problem. Roy et. al. [10] investigated the
MEB problem under a wide spectrum of directional antenna models and showed
that the MEB problem under each of the antenna models is NP-complete. In
addition, a heuristic based on BIP algorithm was proposed for the MEB problem
under each directional antenna model. The work in [4] assumed that the shape
and size of each sector must be fixed and wireless links in the network must
be bidirectional links (i.e. the network is symmetric). The authors presented
a distributed broadcasting protocol DSP, which is a nontrivial generalization
of their previous work based on omni-directional antennas model. Kang and
Poovendran [8] extended their GPBE algorithm to solve the minimum energy
broadcast problem with directional antennas. It was assumed that each antenna
sector’s radius can be adjusted from 0 to Rmax (Rmax is the longest Euclidean
distance between two nodes in networks) and the beam-with of each sector is
fixed, as shown in Fig.1b.

3 Network Models and Problem Specification

In this section, we first introduce the switched beam directional antennas and
network model. Then, we formally formulate the minimal energy broadcast rout-
ing with directional antennas problem (D-MEB) and prove that this problem is
NP-Complete.

For the coherence of terminology, we use directions to denote antenna sec-
tors in following discussion. Using such directional antennas model, only nodes
located within one node’s directions can receive the signal sent by the node.
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We adopt the following notations throughout the paper.

• V : the set of network nodes.
• n: the number of network nodes, where n = |V | and we will use |V | and n

interchangeably to denote the number of nodes in the following.
• l(i): the number of directions of node vi in V .
• dij : the jth direction of the ith node, 1 ≤ i ≤ n, 1 ≤ j ≤ l(i). In addition,

the shape and size of each direction are fixed. Directions can also be over-
lapping and irregular. Switching on a direction will lead to corresponding
transmission power consumption of a node.

• wij : the transmission power consumption of node vi switched on its jth direc-
tion, 1 ≤ i ≤ n, 1 ≤ j ≤ l(i). The switched beam directional antenna model
allows that each node can transmit message by using multiple directions.

• N+(dij): the set of nodes within transmission range of the jth direction of
node vi. Since directions of a node maybe overlapping, a node may locate in
several directions.

For a broadcast request (s, V − {s}), let T be a broadcast tree rooted at s.
There are two kinds of nodes: the non-leaf nodes in T that need to transmit/relay
messages and the leaf nodes in T that only receive message. We assume that a
node costs energy only when it does transmissions. Let RT (T ) denote the set of
transmitting nodes. Let ON(i) denote IDs of vi’s all directions switched on in
T . The power consumption of node vi in a communication session is formulated
as:

p(vi) =
∑

j∈ON(i)

wij (1)

The total power of broadcast routing tree can be represented as:

C(T ) =
∑

vi∈RT (T )

p(vi) (2)

Where the power consumption p(vi) is defined by formula (1).
The Minimum energy broadcast routing with directional antennas problem(D-

MEB) can be formally represented as following: Given a broadcast request (s, V −
{s}), and each node vi equips a switched beam directional antenna, to determine
the set of transmitting nodes, RT (T ), and ON(i) of node i in RT (T ) such that
the broadcast tree induced by RT (T ) and ON(i) is rooted at s and spans all
nodes in V and the total energy defined in (2) is minimized.

Theorem 1. The D-MEB problem is NP-hard.

Proof. It is known that when each node has only one direction and sector is
a disk, the D-MEB problem becomes the MEB problem [6]. Since the MEB
problem is special case of D-MEB problem, and the MEB problem is NP-Hard
[6], therefore the D-MEB problem is NP-hard. �
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4 Algorithms for D-MEB Problem

In this section, we will propose a |V |-approximation algorithm and one heuristic
for D-MEB problem. Firstly, we construct a directed, edge-weighted auxiliary
graph GA(N, EA) as follows. For each node vi (1 ≤ i ≤ n) in V , we also use
vertex vi in GA represents original network node vi and then, vertices dij , j =
1, 2, . . . , l(i) represent vi’s directions. As shown in Fig. 2, arc(vi, dij) means that
network node vi switches on its direction j to transmit message, and weight
assigned to arc(vi, dij) is the power consumption wij . If vk is located in the
transmission sector of vi’s direction j, there is a directed edge(dij , vk) from dij
to vk. The weight of arc (dij , vk) is assigned to 0. For the sake of convenience,
vertex vi is called as the network vertex, vertex dij is called the direction vertex,
which is derived from vi.

We get an edge-weighted directed graph GA = (N, EA, w), where N = V ∪
{dij |1 ≤ i ≤ n, 1 ≤ j ≤ l(i)}, EA = {(vi, dij)|1 ≤ i ≤ n, 1 ≤ j ≤ l(i)} ∪
{(dij , vk)|vk is located in vi’s jth direction}, w((vi, dij)) = wij and w((dij , vk)) =
0 for any i, j, k. For each direction vertex, it has only one in-arc which is from its
network node. Having the edge-weighted, directed auxiliary graph GA(N, EA),
any broadcast request (s, V −{s}) in original network is transformed to multicast
request in GA, we still denote (s, V − {s}) as multicast request in GA.

The minimum energy broadcast routing with directional antennas problem
is equivalently transformed to the minimum edge-weight directed Steiner tree
in GA(N, EA) rooted at s and spanning all nodes in V − {s}. When a Steiner
tree T in GA(N, EA) is got, using information provided by T , we can determine
the transmitting nodes set and which directions should be switched on for each
transmitting node to get a broadcast tree for D-MEB problem. This can be done
as follows: for each transmitting node vi in T , if there is a directed edge (vi, dij)
in T , then the direction j of vi should be switched on.

For the minimum edge-weight directed Steiner tree problem, it was well known
that there is O(|D|ε)-approximation algorithm for any 0 ≤ ε ≤ 1 with time
complexity O(n3/ε|D|1/ε), where n and D are the number of graph vertices and
Steiner terminals respectively [2]. Therefore, we can use the algorithm in [2]
to get an approximation algorithm for D-MEB problem in the above auxiliary
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Fig. 2. The transformation from real network to the auxiliary graph
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graph GA (i.e. O(nε)-approximation algorithm in time O(n3/εk1/ε), where n
is the number of nodes in network and k = max{l(i), i = 1, 2, . . . , n}. But its
time complexity is very high; we will propose other algorithms with lower time
complexity. In addition, when ε is set to 1, this approximation algorithm [2]
degenerates to the trivial SPT algorithm (i.e. O(n)-approximation algorithm in
time O(n3k)) and, by simulation results, we can demonstrate our algorithms are
better than the SPT algorithm.

4.1 A Shortest Path-Based Approximation Algorithm

In this subsection, we propose a Shortest Path-based Greedy algorithm for D-
MEB problem by using the specialty of graph GA(N, EA) and then, prove the
correctness and efficiency of this algorithm. For the conveniency of description,
in the following, we use (s, B) to denote a broadcast request in original network,
where s is the source node and B = V − {s}.

According the property of auxiliary graph GA(N, EA), we know: each direction
vertex dij has only one in-arc which is from its network node and N+(dij) is
a subset of B for a request (s, B), where N+(dij) = {vk|(dij , vk) ∈ EA}. In
addition, the weight of all arcs (dij , vk) in EA is zero. This property means that
each direction node dij derived from a network node vi can cover |N+(dij)| nodes
in B simultaneously without additional power cost (node dij covers node vk, if
and only if there exists an arc (dij , vk) in EA). We use N(P ) to denote the set
of network nodes covered by a path P , N(P ) = ∪dij∈PN+(dij) and N(P ) ⊆ B,
where B = V − {s}. We give a definition:

Definition 1 (Power Density). Let Gs(Ns, Es) is a subgraph of GA and C(Gs)
is total energy cost of Gs. N(Gs) ⊆ B is a set of network nodes covered by Gs,
i.e. for each node vk in N(Gs), there exists a direction node dij in Ns and an arc
(dij , vk) in Es. The Power Density of Gs, denoted by D(Gs), is C(Gs)/|N(Gs)|.

Obviously, the power density of the optimal directed Steiner tree is minimal.
Motivated by this fact, we can construct a directed Steiner tree T on GA(N, EA)
in this way: Initially, T only contains source node s. At each iterative step, finding
a shortest path P from T to a direction vertex not in T to construct a subtree
Tsub(P ), which induced by P and the network nodes in B−T covered by P , with
minimal power density. Then merging subtree Tsub(P ) into T . Since the power
cost of arc from a direction vertex to a network node is zero, C(Tsub(P )) = C(P ).
This Shortest Path-based Minimum Power Density algorithm can be formally
described as follows:

Theorem 2. Algorithm 1 is an approximation algorithm with ratio |V | and its
time complexity is O(k2n3), where k = max{l(i), i = 1, 2, . . . , n}.

Proof. It is easy to know that Algorithm 1 can correctly get a broadcast tree
sourced at s.

Let Topt be optimal directed Steiner tree rooted at s and spanning all nodes
in B(B = V −{s}) in auxiliary graph GA. Let T1, T2, . . . , Tr denote the subtrees
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Algorithm 1. Shortest Path-based Minimum Power Density Greedy Algorithm
C(P ): total cost of a path P .
N(P ): set of network nodes covered by path P .
U : a set of destinations uncovered. Initially, U = B.
SP (T, dij): a shortest path such that C(SP (T, dij) = min{C(SP (t, dij)) | ∀ t ∈ T} ,
where dij is a direction vertex not in T .
Tsub(P ): a subtree induced by P and the network nodes in U covered by P .
For improving efficiency of our algorithm, the power density of subtree T (P ) is modified
to: D(T (P )) = C(P )

|N(P )∩U| .
Input: n nodes in V , each of them equipped with a switched beam directional antenna,

a broadcast request (s, B), where B = V − {s}.
Output: a broadcast routing tree rooted at s and spanning all nodes in B.
1: Initially, construct an edge-weighted directed auxiliary graph GA(N, EA), and the

broadcast request (s, B) in original network is transformed to a multicast request
in GA;

2: Let T = {s} and U = B
3: while U �= ∅ do
4: Find a shortest path SP (T, dij) with minimum power density

D(Tsub(SP (T, dij))) from T to ∀dij /∈ T ;
5: Merge T and Tsub(SP (T, dij)) into a new tree T ;
6: U = U \ N(SP (s, dij)).
7: end while
8: Switch on the directions for each non-leaf network node (i.e. relay node) to transmit

broadcast message by using the information provide by T .

obtained at r iterative steps of algorithm 1 respectively and Ta = T1 ∪ T2 ∪
. . .∪Tr, r ≤ |B|. From the property of graph GA discussed above, we know that
C(T1), C(T2), . . . , C(Tr) are equal to corresponding shortest paths’ energy cost
C(SP1), C(SP2), . . . , C(SPr) respectively. Clearly, C(Ta) = C(T1) + C(T2) +
. . . + C(Tr) ≤ r max{C(SPi)|1 ≤ i ≤ r} ≤ |B| × max{C(SPi)|1 ≤ i ≤ r}.
Additionally, because SPi, ∀i is the shortest path from some s to other node d
in B, its cost is not longer than the cost of path from s to d in Topt. Therefore,
C(Ta) ≤ |B| ×max{C(SPi)|1 ≤ i ≤ r} ≤ |B|C(Topt) and then Algorithm 1 is
|V |-approximation.

The while-loop has at most n iterations. For each loop, computing the shortest
path SP (T, dij) from T to all direction nodes takes time O((nk + n)2)(k =
max{l(i)|i = 1, 2, . . . , n}), in which, we can set weight of arcs in T to zero,
and finding the shortest paths from s to all other nodes to get. Finding subtree
T (SP (s, dij)) with minimal power density takes time O(nk). Thus, the while-
loop takes time O(k2n2). Therefore, the whole algorithm ends in time O(k2n3)
in the worst case. �

4.2 A Heuristic Algorithm

In this subsection, we will propose a simpler heuristic algorithm whose time com-
plexity is O(kn2), where k = max{l(i), i = 1, 2, . . . , n}. According the property
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of graph GA(N, EA), we have known: each direction vertex dij has only one in-
arc which is from corresponding network node, and N+(dij) must be a subset
of B (B = V − {s}). We also can observe that subgraph Gij(Nij , Eij), where
Nij = {vi, dij}∪N+(dij) and Eij = (vi, dij)∪{(dij , vk)|vk ∈ N+(dij)}, is the ba-
sic block of any Steiner tree on GA. In other words, an optimal directed Steiner
tree on GA must be composed by such subgraphs. From definition 1, we know
that an optimal directed Steiner tree has minimum power density. This fact mo-
tivates us to construct a directed Steiner tree by minimizing local power density.
Clearly, subgraph Gij(Nij , Eij) is a tree rooted at network node vi and all its
leaf nodes are the network nodes in B. We use subtree Tij and L(Tij) to denote
the subgraph G(Nij , Eij) and its leaf nodes set respectively. Let Son(vi) be the
set of all subtrees Tij rooted at vi. We can know C(Tij) = wij , where wij is the
weight of arc (vi, dij).

Suppose U is uncovered set. We let U be B initially. For improving efficiency
of our algorithm, Tij ’s power density D(Tij) can be modified as C(Tij)

|L(Tij)∩U| .
A greedy algorithm can be implemented as follows. Initially, T = {s}. At

each iterative step, T is grown by a subtree Tij with minimal power density in
Son(vi) corresponding to each network node vi in T . This operation is repeated
until U becomes empty, which means all nodes in B have been covered by T .
We formally describe this algorithm as follows:

Algorithm 2. Minimum Local Power Density Algorithm
L(T ): the leaf node set of tree T .
Son(vi): a set of all subtrees Tij rooted at network node vi.
U : a set of destinations uncovered. Initially, U = B.
D(Tij) = C(Tij )

|L(Tij )∩U| is called as the modified power density of Tij .
Input: n nodes in V , each node equips a switched beam directional antenna,

a broadcast request (s, B), where B = V − {s}.
Output: a broadcast tree rooted at s and spanning all nodes in B.
1: Initially, construct an edge-weighted directed graph GA(N, EA) , and the broadcast

(s, B) in original network is transformed to a multicast request in GA;
2: Let T = {s} and U = B
3: while U �= ∅ do
4: Find a Tij with minimum modified power density in ∪vi∈T Sons(vi);
5: Merge T and Tij into T and pruning redundant arcs;
6: U = U \ L(Tij).
7: end while
8: Switch on the directions for each non-leaf network node (i.e. relay node) to transmit

broadcast message by using the information provided by T .

Clearly, the while-loop has at most n iterations. At each loop, finding the
subtree with minimum power density at most take O(kn) time in the worst
case. Thus the time complexity of algorithm 2 is O(kn2), where k = max{l(i)|i =
1, 2, . . . , n}.
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5 Simulations

In this section, we evaluate the performance of our algorithms via simulations.
We compare the performance of our SPT-MPD (Shortest Path-based Minimum
Power Density algorithm) and MLPD (Minimum Local Power Density algo-
rithm) algorithms with the SPT, BIP-based algorithm [10] and the Greedy al-
gorithm, which is the best heuristic in [12]. We use the Average Total Energy
Cost (ATEC) of computed trees as the performance metric. The simulations
were carried out on our own simulation environment created by ANSI C.

We study how the total energy cost is affected by varying three system param-
eters over a wide range: the total number of nodes (n) in the network, the average
number of directions of each node (DK) and the average length of transmission
radii of all nodes’ directions (R). The simulation is conducted in a 1000× 1000
2-D free-space by randomly allocating n nodes. The power model of each direc-
tion is: P = Cθ/360× rα, where θ is the beam-width of each direction, r is the
length of transmission radius and the constant C and α are set to 0.0001 and
2 respectively in all simulations. The number of directions of each node is gen-
erated form a Gauss distribution with mean and variance (DK, 2) and must be
more than 1. For each node, the radius r and beam-width θ of each its direction
are generated from a Gauss distribution with mean and variance (E, V ) equal
to (R, R) and (360/DK, 180/DK) respectively.

First, we present averages of 100 separate runs for each result shown in the
following figures. In each run of the simulations, for given n, we randomly place n
nodes in the square, and randomly select a source node. Network topology got by
switching on all directions of each node, which is not connected from source node
to all other nodes, is discarded. Then we run the five algorithms on this network.

In Fig.3, we fixed R, DK while vary n. All four subfigures in Fig.3 are ob-
tained by setting R = 600. As we can see, our algorithm SPT-MPD is the best in
all algorithms. With the growth of n, both average total energy costs of Greedy,
MLPD and SPT-MPD are smaller than SPT and BIP-based algorithms dra-
matically. The performance of the Greedy and our algorithm MLPD are similar
and more effective than SPT and BIP-based algorithms, both the energy cost
and the time complexity. In addition, the average total energy cost of broadcast
routing increases as the growth of n in most subfigures. However, the SPT-MPD
is an exception in Fig.3(a). We find out that, when DK is very small (< 3), the
layer of the broadcast tree constructed by SPT-MPD algorithm in the auxiliary
graph become less with the increment of network density. It will decrease the
total energy cost of the broadcast tree.

In Fig.4, we fixed R while vary n, we compare DK = 2, 4, 6 and 8 for
SPT-MPD and MLPD. As we can see, the total energy cost decreases with the
growth of directions number DK for the two algorithms. This is because when
DK becomes more, each node can switched off more directions which not cover
any other nodes, and the total energy cost is less. Some anomalistic points of
these curves in Fig.4(a) are acceptable since the network is different among every
running when the n is varying. From the figures, we also get fact that the energy
saved is more when the number of sectors increases.
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(d) DK = 8

Fig. 3. Average total energy cost vs. the number of nodes in network
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In Fig.5, we fixed DK and n while vary R. We make the following observations
from the simulation results. The SPT-MPD algorithm performs the best at all
different cases. The MLPD and the Greedy algorithm also have similar perfor-
mance. However, the Greedy algorithm is the best heuristic in [12], we can know
our SPT-MPD and MLPD algorithms outperform the other heuristics in [12].
The average total energy cost of broadcast routing increases as the growth of R
in all subfigures. With the growth of the average length of transmission radii of
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(c) DK = 8, n = 50
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Fig. 5. Average total energy cost vs. the average length of transmission radius(R)

all nodes’ directions (R), there are more arcs in auxiliary graph but the weights
of these arcs also become heavier. Therefore, the networks, in which the nodes
have relatively longer transmission radii, not always have good performance of
energy efficiency.

6 Conclusion

We have studied the minimum energy cost broadcast routing problem with direc-
tional antennas in ad hoc wireless networks. We proposed a |V |-approximation
algorithm SPT-MPD and one heuristic MLPD for this problem. Extensive sim-
ulations have been conducted to compare our SPT-MPD and MLPD algorithms
with the Greedy algorithm [12], BIP-based algorithms [10] and the approxima-
tion algorithm in [2]. And simulation results have shown that our SPT-MPD
algorithm outperform these three algorithms dramatically.
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Abstract. As an important technique, traffic grooming aggregates the
traffic of multiple connections into a single wavelength channel, and sig-
nificantly increases the utilization of bandwidth of wavelength channels.
In this paper, for the problem of grooming multicast traffics in unidirec-
tional SONET/WDM rings, an efficient approximation algorithms with
approximation factor of 2lng + lnM + o(ln(M ·g)) for any given number
of multicast requests M and grooming factor g is proposed.

1 Introduction

Wavelength-division multiplexing (WDM) is emerging as a dominant technology
used in backbone networks. WDM technology can significantly increase the ca-
pacity of a fiber by allowing simultaneous transmission of multiple wavelengths
(channels). A WDM network consists of switching nodes interconnected by op-
tical fiber links. In the WDM network architecture, a WDM wavelength channel
can either carry a high-speed traffic stream (e.g. OC-48), or a number of low-
speed traffic streams (e.g. OC-3). In a communication system, most of the con-
nections have a small bandwidth requirement, such as voice data or text data.
Without grooming, each connection would occupy a dedicated wavelength. Since
wavelength is a limited resource in a WDM network, there are usually not enough
wavelengths to support each connection with a dedicated wavelength. Therefore,
it is necessary to allow multiple low-bandwidth connections to share the same
wavelength. Traffic grooming is a technique that has one function, which aggre-
gates the traffic of multiple connections into a single wavelength channel. Traffic
� The work is supported by NNSF (60373012, 10871119) of China, the French-Chinese

foundation for sciences and their applications and the China scholarship Coun-
cil, Promotional Foundation (2005BS01016) for Middle-aged or Young Scientists
of Shandong Province, SRI of SPED(J07WH05), DRF and UF(XJ0609)of QFNU.

�� The corresponding author.

D.-Z. Du, X. Hu, and P.M. Pardalos (Eds.): COCOA 2009, LNCS 5573, pp. 519–529, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



520 J. Yu, S. Cui, and G. Wang

grooming can significantly increase the utilization of bandwidth of wavelength
channels.

The problem of effectively packing lower rate traffic streams onto the avail-
able wavelengths in order to achieve some desired goal is called traffic grooming.
If the traffic demands are known in advance, then the problem is called static,
otherwise the problem is called dynamic. In static traffic grooming, usually the
aim is to minimize the overall network cost. Here the network cost includes the
cost of electronics (this is the dominant cost) as well as the cost of optics (wave-
lengths per fiber). In dynamic traffic grooming, the aim is to groom the incoming
traffic demands such that the blocking probability is minimum. Grooming mul-
ticast traffic is different from the case of unicast traffic, the former has efficient
grooming in multicast traffic(one source and several destinations nodes) while
the latter has efficient grooming in unicast traffic(one source and one destina-
tion). Grooming multicast traffic is an area of active research and although a lot
of literature is available, not many results are known.

In WDM networks, an important issue is that the burden on electronic switch-
ing equipments become enormous, and their cost is the dominant cost in the
networks. Fortunately, it is not necessary to electronically process all the incom-
ing traffic at each node since most of the incoming traffic is neither sourced at
that node nor destined to it. So to reduce the cost of electronic components at
each node, we can selectively drop the wavelengths carrying traffic that requires
electronic processing at that node and allow the remaining wavelengths optically
bypass the node. So if a node (say n) does not act as a source or a destination
for any traffic on some wavelength (say λ), then there is no need for an ADM
corresponding to wavelength λ at node n. Since the cost of the ADMs (electron-
ics) form the bulk of the network cost [1], we can see that intelligent grooming
of low-rate traffic onto wavelengths can result in ADM savings, which results in
a lower network cost.

When the various parameters comprising the switching mechanism in these
networks became clearer, the focus of studies shifted, and today a large por-
tion of research concentrates with the total hardware cost. This is modeled by
considering the basic switching unit of Add-Drop-Multiplexer (ADM), and fo-
cusing on the total number of these ADMs. The key point here is that each
lightpath uses two ADMs, one at each endpoint. If two adjacent lightpaths are
assigned the same wavelength, then they can use the same ADM. An ADM may
be shared by at most two lightpaths. Moreover, in studying the hardware cost,
the issue of grooming became central. This problem stems from the fact that
the network usually supports traffic that is at rates which are lower than the full
wavelength capacity, and therefore the network operator has to be able to put
together (groom) low-capacity demands into the high capacity fibers. In graph-
theoretic terms, this can viewed as assigning colors to the lightpaths so that at
most g lightpaths can share one edge. In terms of ADMs, each lightpath uses
two ADMs, one at each endpoint, and in case g lightpaths of the same wave-
length enter through the same edge to one node, they can all use the same ADM
(thus saving g − 1 ADMs). Moreover, all the same colored paths ending at the
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node through two given incident edges can share the same ADM. The goal is to
minimize the total number of ADMs. Note that the above coloring problem is
simply the case of g = 1.

2 Related Work

Grooming static unicast subwavelength traffic to minimize either the number of
ADMs or the number of wavelengths required per fiber in WDM ring networks
is a well studied problem [5,21]. Different traffic scenarios such as uniform all-to-
all traffic [22], distance dependent traffic [5] and non-uniform traffic [21,1] have
been studied. Work has also been done on other cost functions such as the overall
network cost [15], which includes the cost of transceivers, wavelengths and the
number of required hops. Recently there has been a lot of work on grooming both
static [23] as well as dynamic [10] traffic in mesh networks. Although multicast
traffic grooming in mesh WDM networks is a general case of the same problem
in WDM rings, the ideas that are applied for mesh networks in [6,16,7] are not
very attractive for unidirectional rings, since for unidirectional rings the routing
is already fixed and the only way to effectively groom traffic is by using intelligent
wavelength assignment. There has been some work in the case of WDM rings
also. More specifically, in [18] the authors look at the problem of grooming given
multicast traffic demands in a bidirectional WDM ring. They present a heuristic
algorithm inspired by the algorithm to groom unicast traffic demands on WDM
rings given in [21]. In [19], Rawat presented a node architecture with tap-and-
continue capability. They also showed a lower bound and an upper bound for
an algorithm, which has an approximation ratio of 3(N+zmin)

2zmin
, where zmin is the

minimum possible size of multicast sessions.
The problem of minimizing the number of ADMs for the case g = 1 was

introduced in [14] for ring networks. For such a topology it was shown to be
NP-complete in [8] and an approximation algorithm with approximation ratio 3

2
was presented in [13] and improved in [20,9] to 10

7 + ε and 10
7 respectively. For

general topologies [13] described an algorithm with approximation ratio 8
5 and

an improved 3
2 +ε-approximation one was presented in [2]. Finally, an algorithm

with approximation ratio of 2lng + o(lng) for any fixed g in a ring topology has
been given in [12]. In a different scenario, the problem of minimizing hardware
components in optical networks using grooming in order to exploit large band-
width has been studied in [3] for ring networks and in [4] for stars networks. An
approximating algorithm with approximation ratio of 2lng + lnΔ+o(ln(Δ · g))
in tree networks is given in [11], where Δ is the maximum degree of nodes in
tree networks.

In this paper we extend the results to multicast requests in unidirectional
ring and the general topology networks. Namely, we provide a polynomial time
algorithm with approximation factor of 2lng + lnM + o(ln(M · g)) for any given
number of multicast sessions M and grooming factor g.

The rest of the paper is organized as follows: In the next section, we give
our contribution, firstly we give some problem definitions and assumptions in
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subsection 3.1, subsequently we give an approximated solutions for multicast
traffic grooming in unidirectional ring in subsection 3.2, and in subsection 3.3
we also get an approximated solutions for the traffic grooming problem in general
topology networks. Finally, we make a conclusion in section 4.

3 Our Contribution

3.1 Definition and Assumption

An instance of the traffic grooming problem is a triple (G, P, g) where G = (V, E)
is a graph, P is a set of simple paths in G and g is a positive integer, namely
the grooming factor.

Definintion 3.1.1. Given a subset Q ⊆ P and an edge e ∈ E, Qe is the set
of paths from Q using edge e. lQ(e) is the number of these paths, or in network
terminology, the load induced on the edge e by the paths in Q. LQ is the maximum
load induced by the paths in Q on any edge of G.

Definintion 3.1.2. A coloring (or wavelength assignment) of (G, P ) is a func-
tion P �−→ N+ = {1, 2, ...}. We extend the definition of ω on any subset Q of
P as ω(Q) = ∪p∈Qω(p). For a coloring ω, a color λ and any Q ⊆ P , Qω

λ is the
subset of paths from Q colored λ by ω.

Definintion 3.1.3. A proper coloring (or wavelength assignment) ω of (G, P, g)
is a coloring of P in which for any edge e at most g paths using e are colored
with the same color. Formally, ∀λ ∈ N+, LPω

λ
≤ g.

Definintion 3.1.4. A coloring ω is a 1-coloring of Q ⊆ P , if it colors the paths
of Q using one color. A set Q is 1-colorable if there exists a proper 1-coloring
for it. Note that a set Q ⊆ P is 1-colorable iff LQ ≤ g.

Definintion 3.1.5. For a coloring ω of P and a node v ∈ V , Qv is the subset of
paths from Q having an endpoints in v, v may be a source node or destination
node. The degree of one node v(v ∈ Qv) is the number of paths which v as the
source node or destination node, formally, d(v) = |Qv|. The degree of Q is the
summation of the degree of all nodes in Q. ADMω

λ is the minimum number of
ADMs operating at wavelength λ in all the network and ADMω is the mini-
mum total number of ADMs in the network, that is for all the used wavelengths.
Formally,

d(Q) =
∑

v
d(v) =

∑
v
|Qv|, ADMω

λ (Q) = d(Qω
λ),

and
ADMω =

∑
λ

ADMω
λ (P ) =

∑
λ

d(Pω
λ ).

The traffic grooming problem is the optimization problem of finding a proper
coloring ω of (G, P, g) minimizing ADMω. Now we have a review of some as-
sumption of multicast traffic grooming problem in unidirectional SONET/WDM
rings.



Approximating the Multicast Traffic Grooming Problem 523

Assumption 1(Physical network) [19]. The physical network is assumed
to be a clockwise unidirectional SONET/WDM ring with N nodes numbered
0, 1, ..., N−1 distributed on the ring in the clockwise direction as shown in Figure
1. We assume that there is a single fiber between adjacent nodes, which can sup-
port W wavelengths given by λ0, λ1, ..., λW−1 and the capacity of each wavelength
is assumed to be C units.

Assumption 2 (Traffic [19]). We assume that there are M given multicast
traffic requests denoted by R0, R1, ..., RM−1. Every multicast request specifies a
source node and a set of destination nodes. We assume that each multicast request
is for r units of traffic. Also, the wavelength capacity C is assumed to be an
integral multiple of the required traffic rate r, i.e. C = g × r. We refer to g,
the number of subwavelength multicast demands that can be groomed on a single
wavelength channel, as the grooming ratio.

k
j

N -1

0 1
2

lightpath
inita ted

lightpath
tapped

lightpath
terminated

i

Fig. 1. Node model in Unidirectional SONET ring

As already remarked in the introduction, in order to reduce the cost of electronic
components at each node, we can selectively drop the wavelengths carrying the
traffic that requires electronic processing at that node and allow the remaining
wavelengths to optically bypass the node. Figure 2 shows all the multicast traffic
requests that pass through network node i. The solid arcs correspond to the
requests that contain node i as source or one of the destinations and the dotted
arcs represent the traffic requests that pass through node i but do not contain
it as source or one of the destinations.

3.2 Approximated Solutions for Multicast Traffic Grooming in
Unidirectional SONET/WDM Rings

In this section we present and analyze a modified approximation algorithm for
unidirectional rings, GROOMBYSC(k) where has a parameter k, depending only
on g, that will be properly determined in the analysis.

Algorithm GROOMBYSC(k). Note that a multicast session can be seen as
a combination several unicast requests, or several sets of paths.
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i

i be the intermediate
    nod e

i be  the destina tion
    nod e

i be  the
source  nod e

Fig. 2. Multicast traffic requests that pass node i

Let z represent the maximum possible size of multicast sessions, here by the
size of a session, we mean the total number of source and destination nodes in
that session. In the following discussion, provided there are M multicast sessions.

Generally, the algorithm GROOMBYSC(k) [12] described below has three
phases. During Phase 1 it computes 1-colorable sets and their corresponding
weights. It considers subsets of the paths P of size at most k · g. Whenever
a 1-colorable set Q is found, it is added to the list of relevant sets, together
with a corresponding weight, that is the minimum number of ADMs requied
by Q (when its path receive the same color). In Phase 2 it finds a set cover of
P using subsets calculated in Phase 1. It uses the GREEDYSC approximation
algorithm for the minimum weight set cover problem presented in [17]. In Phase
3 it transforms the set cover into a partition by eliminating intersections and
then colors the paths belonging to each set with the same color, different from
the one of the other sets of the partition.

Now we give a small modification in the algorithm GROOMBYSC(k) pre-
sented in [12]. we add a outer loop to apply for grooming several multicast
sessions in phase 1, and we also simplified the weight as the degree of one path.

a) Phase 1- Prepare the input for GREEDY:
S ←− ∅

For each Ri ⊆ R = {R1, R2, ..., RM},
such that |Ri| ≤ z {

For each U ⊆ V , such that |U | ≤ k {
For each Q ⊆ PU , such that |Q| ≤ k · g {

If Q is 1-colorable then {
S ←− S ∪ {Q}

weight[Q]=d(Q)
}

}
}

}
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b) Phase 2- Run GREEDYSC:
// Assume w.l.o.g SC = {S1, S2, ..., SW }
SC ←− GREEDY SC(S, weight).

c) Phase 3- Transform the Set Cover SC into a Partition
PART:

PART ←− ∅
For i = 1 to W {PARTi ←− Si}

As long as there are two intersecting sets
PARTi, PARTj {

PARTi ←− PARTi \ PARTj

}
For λ = 1 to W (ω(Q) = W ) {

PART ←− PART ∪ {PARTλ}
For each p ∈ PARTλ {ω(p) = λ}

}

Correctness and Running Time. The correctness and time complexity of
the algorithm follow the arguments of [12]. In particular, it can be shown that
its running time is polynomial in n = |P | and m = |E|, for any fixed k and
g and for all instances (G, P, g), by taking into account the given M multicast
sessions.

Lemma 1. Given an integer z, there exists a solution SC for the instance of the
set cover problem determined on Phase 2 of GROOMBYSC(k), with k = M · z,
such that weight(SC) ≤ ADM∗(1 + 2g/z).

Proof. Let ω∗(P) = {1, 2, ..., W∗} and 1 ≤ λ ≤W∗. Consider the set V∗
λ of node

v having at least one ADM operating at wavelength λ at node v, we divide V∗
λ

into sets of at least z by starting from an arbitrary node(see Fig. 3) , going
clockwise along the unidirectional ring, and at most k nodes in the following
way.

Let Vλ,j(j = 1, ..., Pλ) be the subsets of nodes obtained in this way, and qλ be
the number of them having at least z nodes in V∗

λ. Let rλ ≤ z be the number
of nodes in the residual set, if it exists. Formally, let ADM∗

λ= |V
∗
λ| = zqλ + rλ,

where rλ = |V∗
λ| mod z, and 0 ≤ rλ ≤ z.

Notice that if no set with less than z nodes is in the partition, pλ = qλ, and
rλ = 0, otherwise, pλ = qλ + 1.

Clearly, ∀1 ≤ j ≤ qλ, |Vλ,j | = z, and in case rλ > 0, we have |Vλ,qλ+1| < z.
In both cases |Vλ,j | ≤ z. Therefore, each Vλ,j is considered in the outer loop of
phase 1 of the algorithm, and hence, is added to S.

For Vλ,j , we define Sλ,j to be the set of paths colored by ω∗ with both source
and destination clockwise endpoints in Vλ,j , or only one of the two endpoints
in Vλ,j . As Vλ,j has at most z nodes, and every node may be the clockwise
endpoint of at most g paths from a 1-colorable set, so by the feasibility of the
coloring at most g paths are charged to each node in Vλ,j , we have |Sλ,j| ≤ g · k.
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S ,j

V ,j

V ,j

a t m o st g pa ths

Fig. 3. The sets of Vλ,j

Therefore, Sλ,j is considered by the algorithm in the inner loop of phase 1, thus
Sλ,j ∈ S.

Notice that every p with ω∗(p) = λ is contained in exactly one set Sλ,j,
therefore SCλ = ∪j{Sλ,j} is a cover of all the paths colored λ by ω∗. Consid-
ering all colors 1 ≤ λ ≤ W∗, we conclude that SC = ∪W∗

λ=1SCλ is a cover of
P with sets from S. It remains to show that its weight has the claimed prop-
erty.

First observe that ADM∗
λ = zqλ + rλ, summing up over all possible values of

λ, we obtain: ADM∗ = z
∑

λ qλ +
∑

λ rλ, which implies∑
λ

qλ ≤
ADM∗

z
(1)

We consider two cases as follows:

Case 1: We claim that ∀j ≤ qλ, weight(Sλ,j)=d(Sλ,j) ≤ z + g. This is be-
cause:

-The endpoints of the paths with both source and destination node in Sλ,j
are in Vλ,j and |Vλ,j | = z.

-The number of paths having only one of source or destination endpoints in
Vλ,j is at most g.

Case 2: For the set j = qλ+1, we have weight(Sλ,j) ≤ g ·qλ+rλ[19]. The reasons
are:

-The same discussion as above, the number of paths having only one endpoint
in Vλ,qλ+1 are at most g.

-The endpoints of the paths with both source and destination nodes in Sλ,qλ+1
are in Vλ,qλ+1, and |Vλ,qλ+1| = rλ.
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Then, summing up for all 1 ≤ j ≤ qλ + 1, we have

weight(SCλ) ≤
qλ∑
j=1

(z + g) + g · qλ + rλ.

As ADM∗ = z
∑
λ qλ +

∑
λ rλ, and

∑
λ qλ ≤ ADM∗

z , This is clear that

weight(SC) =
∑

λ
weight(SCλ) ≤ ADM∗ + 2g

∑
λ

qλ

≤ ADM∗ + 2g · ADM∗

z
= ADM∗

(
1 +

2g

z

)
(2)

The proof is then finished. �

Theorem 1. There is a 2lng + lnM + o(ln(M ·g))-approximation algorithm for
the multicast traffic grooming problem in unidirectional SONET/WDM rings.

Proof. The greedy algorithm for the Minimum Weight Set Cover Problem is a
Hf -approximation algorithm, where f is the maximum cardinality of the sets
in the input and Hf = 1 + 1

2 + ... + 1
f be the f -th harmonic number.

As ADMω = Hf · weight(SC), which obtained in [19], we have ADMω =
Hf · ADM∗ · (1 + 2g

z ), which equivalent to

ρ ≤ Hf ·
(
1 +

2g

z

)
(3)

Let z = glng and f = M · g · z. Then,

ρ ≤ HM·g·z ·
(
1 +

2g

z

)
≤

[
1 + ln(M · g2lng)

](
1 +

2
lng

)
= (1 + 2lng + lnM + lnlng)

(
1 +

2
lng

)
= 2lng + lnM + o

(
ln(M · g)

)
. (4)

The proof is then finished. �

From the above, we know that the approximation ratio of the algorithm depends
on the number of multicast requests in unidirectional SONET/WDM rings.

4 Conclusion

In this paper, we addressed the traffic grooming problem with respect to the
minimization of ADMs. An approximation algorithm with approximation ratios
logarithmic in g is studied. we modified the algorithm to solve the multicast
traffic grooming problem in unidirectional SONET/WDM rings, and gave the
approximation ratio of 2lng + lnM + o(ln(M · g)).
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Abstract. The goal for the problem of efficient grooming of given non-
uniform multicast traffic demands on a unidirectional SONET/WDM
ring is to try to minimize the network cost as given by (i) the number
of wavelengths required per fiber and (ii) the number of electronic Add-
Drop Multiplexers (ADMs) required in the ring. The problem with cost
function (i) can be reduced to a corresponding traffic grooming problem
for unicast traffic which can then be modeled as a standard circular-
arc graph coloring problem.The function (ii) is a main research topic
in recent studies.The problem is NP hard for both the cost functions.
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and upper bound for the number of ADMs.

1 Introduction

Wavelength Division Multiplexing (WDM) significantly increases the available
network bandwidth capacity by delivering data over multiple wavelengths (chan-
nels) simultaneously. With each channel operating at a high rate and multiple
channels deployed per fiber, very high transmission capacity can be achieved.
An important issue with such a high capacity network is that it places enormous
burden on the electronic switches. Hence, it is hardly surprising that the dom-
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that node nor destined to it. So to reduce the cost of electronic components at
each node, we can selectively drop the wavelengths carrying traffic that requires
electronic processing at that node and allow the remaining wavelengths optically
bypass the node.

In a SONET/WDM ring each wavelength operates at a line rate of OC-N
and can carry several low rate OC-M (M ≤ N) traffic channels using Time
Division Multiplexing (TDM). The timeslots on a wavelength are referred to as
the subwavelength channels. Electronic Add-Drop Multiplexers (ADMs) are re-
quired to add (drop) the subwavelength traffic at the source (destination) node.
On receiving a wavelength channel, the ADM, corresponding to that particular
wavelength, can add/drop timeslots on the wavelength channel without disrupt-
ing the onward transmission of other timeslots on the wavelength. So if a node
(say n) does not act as a source or a destination for any traffic on some wave-
length (say λ), i.e., if no add/drop of any timeslot on λ is required at n, then
there is no need for an ADM corresponding to wavelength λ at node n. Since
the cost of the ADMs (electronics) form the bulk of the network cost [1], we can
see that intelligent grooming of low-rate traffic onto wavelengths can result in
ADM savings, which results in a lower network cost.

Typically in WDM based optical networks, the bandwidth available per wave-
length is much larger than the bandwidth required per session, and with the ad-
vancement of optical technology, it seems likely that this mismatch will continue
to grow in the near future. Hence for efficient bandwidth usage, it is prudent to
combine several low rate traffic sessions onto a single wavelength. The problem
of effectively packing lower rate traffic streams onto the available wavelengths
in order to achieve some desired goal is called traffic grooming. If the traffic
demands are known in advance, then the problem is called static, otherwise
the problem is called dynamic. In static traffic grooming, usually the aim is to
minimize the overall network cost. Here the network cost includes the cost of
electronics (this is the dominant cost) as well as the cost of optics (wavelengths
per fiber). In dynamic traffic grooming, the aim is to groom the incoming traffic
demands such that the blocking probability is minimum.

Grooming multicast traffic is different from unicast traffic, the former has ef-
ficient grooming in multicast traffic(one source and several destinations nodes)
while the latter has efficient grooming in unicast traffic(one source and one des-
tination node). While most of the earlier studies of the traffic grooming problem
have dealt exclusively with the unicast traffic, it is expected that in the future a
sizable portion of the traffic will be multicast in nature. This is mainly because
of the increasing demands of multicast services such as multimedia conferencing,
video distribution, collaborative processing, etc.. Grooming multicast traffic is
still an area of active research and although a lot of literature is available, not
many results are known.

In this paper we concentrate on three points as follows, (i) the static traffic
grooming; (ii) the multicast traffic grooming and (iii) the minimum number of
ADMs required in networks.
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2 Related Work

Grooming static unicast subwavelength traffic to minimize either the number
of ADMs or the number of wavelengths required per fiber in WDM ring net-
works is a well studied problem [2]. Different traffic scenarios such as uniform
all-to-all traffic [12], distance dependent traffic [2] and non-uniform traffic [13,1]
have been studied. Work has also been done on other cost functions such as the
overall network cost [6], which includes the cost of transceivers, wavelengths and
the number of required hops. Recently there has been a lot of work on groom-
ing both static [14] as well as dynamic [4] traffic in mesh networks. Although
multicast traffic grooming in mesh WDM networks is a general case of the same
problem in WDM rings, the ideas that are applied for mesh networks in [1,3,7]
are not very attractive for unidirectional rings, since for unidirectional rings the
routing is already fixed and the only way to effectively groom traffic is by using
intelligent wavelength assignment. More specifically, in [8] the authors look at
the problem of grooming given multicast traffic demands in a bidirectional WDM
ring. They present a heuristic algorithm inspired by the algorithm to groom uni-
cast traffic demands on WDM rings given in [13]. In [9], Anuj Rawat presented
a node architecture with tap-and-continue capability. They also showed a lower
bound and a upper bound for an algorithm, which has an approximation ratio
of 3(N+zmin)

2zmin
, where zmin is the minimum size of all the multicast sessions, and

N is the number of nodes in the ring.
In this paper we consider the problem of static grooming of non-uniform

multicast traffic on a unidirectional SONET/WDM ring. We previously consider
the problem of the number of wavelengths required per fiber can be modeled as
a circular-arc graph coloring problem. Thus, we can apply the standard coloring
techniques to the problem. We then suggest a graph based heuristic for cost
function (ii). We extend the traffic grooming heuristic for non-uniform unicast
traffic given in [6] to the multicast case. We show a lower bound on the number of
ADMs which is presented in [9] depends on the number of nodes in the networks.
Additionally, we present an algorithm with a better approximation ratio and give
a better upper bound on the number of ADMs.

The rest of the paper is organized as follows: some problem statements such
as assumption, node architecture and modeling are presented in section 3. In
section 4, we develop an algorithm and give the analysis. Conclusion is made in
section 5.

3 Problem Statement

3.1 Assumption and Node Architecture

Assumption 1(Physical network) [9]. The physical network is assumed
to be a clockwise unidirectional SONET/WDM ring with N nodes numbered
0, 1, ..., N−1 distributed on the ring in the clockwise direction as shown in Fig.1,
which with a tap-and-continue nodes presented in [9]. We assume that there is
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a single fiber between adjacent nodes, which can support W wavelengths given by
λ0, λ1, ..., λW−1 and the capacity of each wavelength is assumed to be C units.

Assumption 2 (Traffic) [9]. We assume that there are M given multicast
traffic requests denoted by R0, R1, ..., RM−1. Every multicast request specifies a
source node and a set of destination nodes. We assume that each multicast request
is for r units of traffic. Also, the wavelength capacity C is assumed to be an
integral multiple of the required traffic rate r, i.e. C = g × r. We refer to g,
the number of subwavelength multicast demands that can be groomed on a single
wavelength channel, as the grooming ratio.

k
j

N -1

0 1
2

lightpath
inita ted

lightpath
tapped

lightpath
terminated

i

Fig. 1. Node model in Unidirectional SONET ring

As shown in Fig.1 [9], if a lightpath is set-up between nodes i and j on wavelength
λ, and traffic from i to an intermediate node k is also groomed on λ or i has
to send the same traffic to k (this is the case that i is the source and j and k
are the destinations of a multicast traffic request), then instead of terminating
the lightpath at k. We can drop a small amount of light of wavelength λ at k
to extract the required data packets and let the rest of the light flow through,
i.e. we can tap the lightpath at any intermediate node. It should be clear that
if we want to add (groom) some subwavelength traffic on wavelength λ at node
k, then we have to tear down the lightpath at k, carry out the grooming and
then set-up a new lightpath on wavelength λ at node k. Note that in case we
are sending different traffic to nodes j and k from node i on a single lightpath
(by tapping the lightpath at intermediate node k), then using the above scheme,
after passing node k there would be some unnecessary traffic on the lightpath
(traffic sent from i to k). Clearly there is no such bandwidth wastage when we
are sending the same traffic to both the nodes j and k.

Note that for SONET rings, without loss of generality, we can assume that r
is equal to the capacity of individual subwavelength channel (timeslot). Hence,
the grooming ratio g is equal to the number of subwavelength channels available
on each wavelength.
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With the above traffic model we can consider multicast requests of different
bandwidth requirements also. The important requirement is that each request
should be splittable into several individual multicast requests of granularity r.

3.2 Modeling

Since we assume the network to be a clockwise unidirectinal ring, each traffic
request can be treated as an arc on the ring starting from the source and go-
ing clockwise through the intermediate destinations up to the final destination.
Each arc should be assigned one subwavelength channel. So if any two multicast
requests share some fiber, i.e. the corresponding arcs overlap, then they cannot
be groomed on the same subwavelength channel. Consider a graph G = (V, E)
where V = {v0, v1, ..., vM−1} is the set of vertices with each vertex vi repre-
senting a multicast request Ri and there is an edge vivj ∈ E if and only if
the multicast requests Ri and Rj share some fiber, i.e. the arcs corresponding
to requests Ri and Rj overlap. We call the graph G Request Graph. Thus, we
can model the problem of minimizing the number of wavelengths per fiber as a
proper graph coloring problem, which is equivalent to coloring the vertices of the
Request Graph with the minimum number of colors such that no two adjacent
vertices have the same color.

We observe that the Request Graph G belongs to the family of circular arc
graphs [11]. Since minimum coloring of circular arc graphs is NP complete [5]
and any instance of minimum arc graph coloring can be reduced to the traffic
grooming problem under study, grooming multicast (or unicast) traffic on a
unidirectional ring to minimize the number of wavelengths required per fiber is
NP complete.

For the problem of minimizing the number of ADMs required in the network,
we also use the Request Graph. Consider the vertex set Ci ⊆ V representing
all the multicast traffic requests groomed on wavelength λi. Note that the re-
quest graph corresponding to the traffic requests represented by Ci is exactly
equal to G[Ci], the subgraph induced by vertex set Ci on the Request Graph
G. Now the minimum number of subwavelength channels required to groom the
traffic requests represented by Ci is given by χ(G[Ci]), the chromatic number
of the request graph corresponding to the particular set of traffic requests. So
the traffic requests represented by Ci can be groomed on a single wavelength
only if χ(G[Ci]) ≤ g, i.e., the subgraph G[Ci] induced on the request graph G by
the vertex set Ci is g-colorable. Hence, given a set of multicast traffic requests
modeled by the Request Graph G = (V, E), any valid traffic grooming can be
modeled as a cover C = {V0, V1, ...} of the vertex set V into non-overlapping
clusters V0, V1, ... such that ∪iVi = V , Vi ∩ Vj = ∅ for all i 	= j and G[Vi] is
g-colorable for all i. Therefore, the number of ADMs required in the network
is given by

∑
i

| ∪v∈Vi Sv|, where Sv denotes a set of source and the destination

node for request Ri.
Note that the problem of grooming multicast traffic on unidirectional rings to

minimize the number of ADMs is NP hard.
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4 GreedyGroom(M) Algorithm and Analysis

4.1 GreedyGroom(M) Algorithm

We randomly group M traffic requests into clusters of g requests each. As each g
requests can model as a circular-arc graph, we try to using the minimum number
of colors to color the graph. Then grouping g colors(subwavelength channels)
together to form one wavelength and to groom these requests greedily.

Algorithm GreedyGroom(M).
Minimizing the number of ADMs for grooming the given M multicast requests.
Phase-1:
Randomly group M traffic requests into clusters of g requests each.

Phase-2:
Do {
For a graph Gi = (V, E), try to use the minimum number of colors

to coloring the graph.
// Gi is a circular-arc graph, and it can use proper coloring.

} while ( i ≤ �M/g� )
Phase-3:
After coloring each graph Gi, group g colors (subwavelength channels) to-

gether to form one wavelength.

From the algorithm above, we observe that each g requests can be modeled
as a circular-arc graph which is g-colorable. Let the chromatic number of graph
Gi be χi, and it can be colored by Karapetian’s algorithm [10] using at most
!3χi/2" colors.

4.2 Performance Analysis

Lower Bound. When each g requests can be assigned the same wavelength,
in other words, they can use the same number of colors to complete the proper
coloring. Then we can use the minimum number of wavelengths, it is given by
�χi/g�. We know that if network node i does not act as source or destination
node for any multicast request, then since no traffic is being added or dropped
at i, there is no need to equip i with ADM on any wavelength. Hence the total
number of ADMs required at each node of the network is at least as large as L
given by

L =
N−1∑
i=0

⌈
χi
g

⌉
(1)

where N is the number of nodes in the ring, and χi is the chromatic number of
the graph Gi, g is the grooming ratio.

In [9] showed that the lower bound does not depend on the number of nodes in
the ring by considering each node of the ring in isolation. Now we will prove that
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it will depend on the number of nodes by looking at a pair of nodes. To explain
this, we try to calculate the expected value of the lower bound for grooming M
multicast traffic requests on a SONET ring having N nodes and grooming ratio
g. The process is similar to [9].

Let zi represent the size of the i-th multicast session Ri. Here by the size of a
session, we mean the total number of source and destination nodes in that ses-
sion. We assume that the multicast session sizes z0, z1, ..., zM−1 are independent
and identically distributed according to some cumulative distribution function
F having mean μF . We can randomly select a pair of nodes from N nodes, then
the probability of one of the pair of nodes be a source or a destination is

2
C2
N

=
4

N(N − 1)
.

Thus, for each of multicast Ri having size zi, the probability of the node j which
is source or destination selected is 4zi

N(N−1) .
We can estimate the expected value of the following which approximates the

lower bound [9].

L̂ =
N−1∑
i−0

⌈ki
g

⌉
(2)

where ki is the number of multicast sessions that having node i as either source
or one of the destinations.

Then the expected value of the approximate lower bound L̂ is given [9] by

E(L̂) = E
(N−1∑
i−0

⌈ki
g

⌉)
=

N−1∑
i=0

E
(⌈ki

g

⌉)
= N · E

(⌈k

g

⌉)
. (3)

Note that
E
(k

g

)
≤ E

(⌈k

g

⌉)
≤ E

(k

g
+ 1

)
. (4)

Also, the number of multicast sessions selecting a particular network node as
source or one of the destinations can be written as

k = x0 + x1 + ... + xM−1

where random variable xi is distributed according to a Bernoulli trial, and it
takes value 1 if the i-th multicast session Ri selects the node under consideration
as source or one of the destination and 0 otherwise. Then,

E(k) =
M−1∑
i=0

E(xi) =
M−1∑
i=0

E
(
E(xi|zi)

)
=

M−1∑
i=0

E
(

4zi

N(N−1)

)
= 4

N(N−1)

M−1∑
i=0

E(zi) = 4
N(N−1)MμF .

(5)

Clearly, we have

E
(k

g

)
=

4MμF
N(N − 1)g

(6)
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and

E
(k

g
+ 1

)
=

4MμF
N(N − 1)g

+ 1. (7)

Combine (3),(4),(6),(7), we can get

4MμF
(N − 1)g

≤ E(L̂) ≤ 4MμF
(N − 1)g

+ N (8)

Note that

E(L̂) =
4MμF

(N − 1)g
, if

4MμF
(N − 1)g

, N.

From the above, we know that the lower bound we obtained depends on the
number of nodes in the network by considering a pair of nodes.

Upper bound. Now we investigate some upper bounds on the number of ADMs
required in the network. We study the upper bounds for the GreedyGroom(M)
algorithms.

In the algorithm, we randomly group the traffic requests into clusters of g
requests each. Then for each g requests which can model as a g-colorable circular-
arc graph, we use the minimum number of colors to coloring the graph and
grouping g colors to form one wavelength. The circular-arc graph can be colored
by Karapetian’s algorithm [10] using at most !3χi/2" colors, then the number
of ADMs required in the network as follows:

Um = N
′ ·

∑�M/g�
i=1

⌈⌊
3
2χi

⌋
g

⌉
(9)

where N
′
denote the number of nodes that act as source or destination node for

at least one multicast request. Clearly, N ≥ N
′
.

Then we recall some results presented in [9],

L2 = zmin

⌈
χi
g

⌉
, (10)

where L2 is a lower bound other than one previously presented, and zmin is
the minimum size of all the multicast sessions. Let zavg be the average size of
multicast sessions, i.e. let

N−1∑
i=0

ki = zavgM. (11)

Additionally,
ki ≤ 2χi

which is proved in [9].
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Using the above results, we get

Um = N
′ ·

∑�M/g�
i=1

⌈⌊3
2χi

⌋
g

⌉
≤ N

′ ·
∑�M/g�

i=1

⌈3
2

χi
g

⌉
≤ N

′ ·
∑⌈∑N−1

i=0 ki
gzavg

⌉
i=1

⌈3
2

χi
g

⌉
≤ N

′ ·
∑⌈∑N−1

i=0 2χi
gzavg

⌉
i=1

⌈3
2

χi
g

⌉
≤ N

′ ·
∑⌈∑N−1

i=0 χi
g

⌉
i=1

⌈3
2

χi
g

⌉
≤ N

′ ·
∑L

i=1

⌈
3
2

χi
g

⌉
. (12)

Here the fourth inequality is due to the fact that zavg ≥ 2. Let

χi
g

= 2n + δ + ε (13)

where n is a non-negative integer, δ ∈ {0, 1} and 0 ≤ ε ≤ 1.
From (10) and (13), we have

L2 = zmin

⌈
χi
g

⌉
= zmin �2n + δ + ε�

= zmin(2n + δ + �ε�). (14)

Thus,

Um ≤ N
′ ∑L

i=1

⌈
3
2

χi
g

⌉
= N

′ ∑L

i=1

⌈
3
2
(2n + δ + ε)

⌉
(15)

= N
′ ∑L

i=1

⌈
3n + 3

⌈δ + ε

2
⌉⌉

. (16)

Now we can see two cases possibly.
1) δ + ε = 0 ⇔ δ = 0, ε = 0

L2 = zmin(2n + δ + �ε�) = 2nzmin.

Clearly,

Um ≤ N
′ ·

∑L

i=1
(3n + 3

⌈
δ + ε

2

⌉
)

= N
′ ·

∑L

i=1
(3n) = 3nN

′ · L =
3L2

2zmin
N

′ · L,

and

L2 = zmin

⌈
χi
g

⌉
=

zmin

N − 1

∑N−1

i=0

⌈
χi
g

⌉
=

zmin

N − 1
· L,
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then

Um ≤
3L2

2zmin
N

′ · L ≤ 3N
′ · zmin · L

2zmin(N − 1)
· L

≤ 3N
′

2(N − 1)
L · L ≤ 3N

2(N − 1)
· L3 (17)

where L3 is another lower bound on the number of required ADMs given by

L3 = max
{
L2, N

′}
.

2) δ + ε > 0 ⇔ 0 < δ + ε < 2
In this case, we get

L2 = zmin(2n + δ + �ε�) ≥ zmin(2n + 1), (18)

and

Um ≤ N
′ ·

∑L

i=1

(
3n + 3

⌈δ + ε

2

⌉)
= N

′ ·
∑L

i=1

(
3n + 3

)
= N

′ · L
(3

2
(
2n + 1

)
+

3
2

)
≤ N

′ · L
(3

2
L2

zmin
+

3
2

)
=

3
2

L2

zmin
N

′ · L +
3
2
N

′ · L

=
3
2

L · zmin

(N − 1)zmin
N

′
· L +

3
2
N

′
· L

=
3
2

L

N − 1
N

′ · L +
3
2
N

′ · L

≤ 3
2

N
′

N − 1
· L2 +

3
2
N

′ · L

≤ 3
2
(

N
′

N − 1
+ 1) · L3

≤ 3
2
(

N

N − 1
+ 1) · L3. (19)

From the above results, we observe that the algorithm has an approximation ratio
3(N/(N−1)+1)/2, which is better than the previously computed approximation
ratio of 3(N+zmin)

2zmin
whenever zmin ≤ N − 1.

5 Conclusion

In this paper, we studied the problem of grooming non-uniform multicast traf-
fic on a unidirectional SONET/WDM ring. We consider two different costs, (i)
the number of wavelengths, and (ii) the number of ADMs. We observe that
minimizing the number of wavelengths can be modeled as a standard graph col-
oring problem. Then we presented an algorithm to groom the multicast requests
greedily, and show that a better approximation ratio of 3

2 ( N
N−1 + 1).
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