
An Almost Totally Universal Tile Set

Grégory Lafitte1,� and Michael Weiss2,��

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS – Aix-Marseille Université,

39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France
2 Università degli Studi di Milano,

Bicocca Dipartimento di Informatica, Sistemistica e Comunicazione,
336, Viale Sarca, 20126 Milano, Italy

Abstract. Wang tiles are unit size squares with colored edges. In this
paper, we approach one aspect of the study of tilings computability:
the quest for a universal tile set. Using a complex construction, based
on Robinson’s classical construction and its different modifications, we
build a tile set (pronounced ayin) which almost always simulates any
tile set. By way of Banach-Mazur games on tilings topological spaces,
we prove that the set of -tilings which do not satisfy the universality
condition is meager in the set of -tilings.

1 Introduction

Wang was the first to introduce in [Wan61] the study of tilings with colored tiles
where a tile is a unit size square with colored edges. Two tiles can be assembled
if their common edge has the same color. To tile consists in assembling tiles from
a tile set (a finite set of tiles) on the grid Z

2.
Since Berger [Ber66] it is known that Wang tilings can simulate Turing ma-

chines. As a model of computation, tilings raise computability questions. One of
the first, related to most models of computation, is the existence of universality.
To approach such a problem we need a proper notion of reduction. In [LW07], a
first approach to reduction, and by extension, universality, was given. Intuitively,
a tiling P simulates a tiling Q if the tiles of Q can be encoded with macro-tiles
of P .

This notion of simulation was then improved in [LW08a] (a close definition is
also introduced in [DRS08]) to obtain simulations between tile sets. A tile set τ
totally simulates a tile set τ ′ if any τ ′-tiling is simulated by a τ -tiling and if any τ -
tiling simulates a τ ′-tiling. In [LW08a], it has been proved that there exists a tile
set that totally simulates any periodic tile set, i.e., tile sets that generate at least
one periodic tiling (a tiling invariant by translation of two independent vectors).
The question of the existence of a totally universal tile set was asked: does there
exists a tile set totally simulating any tile set that tiles the plane? Because

� This author has been supported by the French ANR grant Sycomore.
�� This author has been supported by the Swiss FNS post-doc grant.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 271–280, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

272 G. Lafitte and M. Weiss

of the amount of properties that such a tile set would have (having maximal
Kolmogorov complexity [DLS01], non-recursivity [Han74, Mye74], self-similarity
of any kind [DRS08], Turing universality, invariance by recursive modification
[LW08b],. . .), it has been conjectured that it does not exist.

In this paper, we combine some of the most complex constructions on tilings
to build a tile set which is almost totally universal: almost all -tilings simulate
at least one tiling for any tile set (by almost we mean that the subset of -tilings
that do not satisfy this property is a meager set in the set of -tilings). And
therefore, has the particularity of having almost always1 all the properties
enumerated previously. The construction of uses different technical tools and
is mainly based on the aperiodic and self-similar tile set of Robinson within which
simulations of Turing machines can be carried out. A detailed explanation of this
construction can be found in [Rob71, Han74, Mye74, AD96, DLS01, DLS04]. In
[LW08a], and in [DRS08] (ingeniously avoiding the use of Robinson’s tilings
construction), it has been shown how a Turing machine can be used to simulate
a tile set, in the sense that the Turing machine produces space×time diagrams
isomorphic to the tiles of a tile set. With this simulation of Turing machines,
simulation of tile sets in Robinson’s tiling is made possible. The other tool used
for the construction is synchronization. This principle was first used by Hanf
and Myers [Han74, Mye74] to build a non-recursive tile set, i.e., a tile set that
generates only tilings that cannot be defined by a recursive function. We show
how to make a synchronization between squares of Robinson’s construction in a
new way. All these different tools make possible the construction of an almost
totally universal tile set.

The last step consists in proving the almost part. One of the main tool to prove
the meagerness of a set is to use topological games like Banach-Mazur games
[Oxt57]. This perfect information game is played by two players on a topological
space. A classical result on Banach-Mazur games shows that if Player II has a
winning strategy, then A is meager (or, in an equivalent way, the set X \ A is
residual).

In [LW08c], a topological study of tilings has been made and games à la
Banach-Mazur on them have been introduced. These games are played on two
topological spaces: the Besicovitch one (where the distance between two tilings
is defined as the asymptotic proportion of different tiles between them) and the
Cantor one (where the distance between two tilings is related to the biggest
pattern centered around the origin that they have in common). In this paper we
restrict these games to the set of tilings generated by a tile set and we prove,
using these games, that the tile set is almost totally universal.

In the following section, we recall the basic notions concerning tilings and the
notions of simulation between tile sets. We also recall the two main topological
spaces that can be used on the set of tilings generated by a tile set. Then, in
section 3, we show how a synchronization can be made between the different
squares in Robinson’s construction. In the last section, we build the tile set
and show that it is almost totally universal.

1 Almost always means that almost all of its tilings have the properties.

An Almost Totally Universal Tile Set 273

2 Basic Notions

2.1 Tilings and Simulations

We start by recalling the basic notions of tilings. A tile is an oriented unit size
square with colored edges from C, where C is a finite set of colors. A tile set is
a finite set of tiles. To tile consists in placing the tiles of a given tile set on the
grid Z

2 such that two adjacent tiles share the same color on their common edge.
Since a tile set can be described with a finite set of integers, we can enumerate
the tile sets, and τi designates the ith tile set.

Let τ be a tile set. A tiling P generated by τ is called a τ -tiling. It is associated
to a tiling function fP where fP (x, y) gives the tile at position (x, y) in P . When
we say that we superimpose the tiles of a tile set τ on the tiles of a tile set τ ′,
we mean that for any tile t ∈ τ and any tile t′ ∈ τ ′, we build a tile u = t × t′

where the colors of the sides of u are the cartesian product of the colors of the
sides of t and t′. Then two tiles u1 = t1 × t′1 and u2 = t2 × t′2 match if and only
if t1 and t2 match and t′1 and t′2 match.

Different notions of reductions have been introduced in [LW07]. We recall
some of the basic notions here. A pattern is a finite tiling. If it is generated by
τ , we call it a τ -pattern. We say that a τ -tiling P simulates a τ ′-tiling Q if there
exist two integers a, b and an application R from the a× b τ -patterns to the tiles
of τ ′ and if we can cut regularly P in rectangular patterns of size a× b such that
if we replace these rectangular patterns in P by their corresponding tiles given
by R we obtain Q. One can see that P does with macro-tiles, i.e., rectangular
patterns which represent the tiles of another tile set, what Q does with tiles.
We denote the reduction by Q �R P . We generalize this notion to simulations
between a set of tilings and a tile set: a set of τ -tilings A totally simulates a tile
set τ ′ if there exist a, b ∈ Z and a reduction R from the a × b patterns of τ to
the tiles of τ ′ such that for any τ ′-tiling Q, there exists a τ -tiling P ∈ A such
that Q �R P , and such that for any τ -tiling P ∈ A, there exists a τ ′-tiling Q
such that Q �R P . We denote it by τ � A (or τ ′ �R A to specify the reduction
R). If A corresponds to the whole set of τ -tilings, then we say that τ simulates
τ ′, and we denote it by τ ′ � τ .

From this pseudometric we obtain a notion of universality: we say that a set
of τ -tilings A is totally universal if τ ′ � A for any tile set τ ′ that tiles the plane.
If A corresponds to the whole set of τ -tilings, then we say that τ is totally
universal. The existence of such a tile set is still open. In this paper we aim at
constructing a tile set which is almost always totally universal. To have a clear
definition of almost we recall some notions of topology and topological games.
A deeper study of these topological spaces can be found in [LW08c, BDJ08].

The topologies defined in the following subsections are topologies used in
cellular automata and adapted to tilings. Different definitions of these topologies
can be given and we present here the restrictive case where the distances are
defined only between tilings generated by the same tile set.

274 G. Lafitte and M. Weiss

2.2 The Besicovitch and Cantor Topologies on Tilings

The first metric we introduce is a metric à la Besicovitch. This metric deals with
the whole tiling and gives the asymptotic proportion of different tiles between
two tilings. For two τ -tilings P and Q, we call Pn and Qn the square patterns
of size 2n + 1 centered around the origin. The distance dB(P, Q) is given by:

δB(P, Q) = limsupn→∞
#{ (x, y) | fPn(x, y) �= fQn(x, y) }

(2n + 1)2
.

Therefore, the Besicovitch distance between two τ -tilings corresponds to the
assymptotic proportion of different tiles between them. This is a pseudometric
on the set of tilings generated by a tile set. We can obtain a metric by adding
the condition that two tilings are equivalent if the distance between them is 0.
Two tilings not generated by the same tile set are at distance 1. We obtain a
topological space by defining the open sets as the balls BB(Q, ε), i.e., all tilings
at distance at most ε of Q.

The second metric, the Cantor one, deals with the local structure of the tilings
while the Besicovitch one deals with their global behavior. We first define the
function p : N → Z

2 such that p(0) = (0, 0), p(1) = (0, 1), p(2) = (1, 1), p(3) =
(1, 0) . . . and p keeps having the behavior of a spiral afterward. The metric dC

between two τ -tilings P and Q is defined as dC(P, Q) = 2−i, where i is the
smallest integer such that fP (p(i)) �= fQ(p(i)), i.e., i is the size of the greatest
common pattern of P and Q centered around the origin.

dC is a metric on the set of τ -tilings. As before, we can obtain naturally a
topological space by defining the open sets as the balls BC(Q, ε), i.e., all tilings at
distance at most ε of Q. One can note that in Cantor topology, the set of tilings
having in common the same pattern centered around the origin is a clopen set
[LW08c, BDJ08].

2.3 Games on Tilings

Now that we have defined notions of topologies on sets of tilings generated by
a tile set, the natural next step for studying these sets is to consider infinite
games on tilings. In [LW08c], the following definitions of Banach-Mazur games
on tilings have been given:

Let X be a set of tilings generated by a tile set and C be a subset of X.
The first game G(X, C)B is played on Besicovitch topology and has the fol-

lowing rules: Player I chooses a τ-tiling P1 and an integer n1. Player II chooses
a tiling P2 ∈ BB(P1, 1/n1) and chooses an integer n2 > n1 and so on. Player II
wins the game if

⋂
n>1 BB(Pi, 1/ni) ∈ C.

The second game G(X, C)C is played on Cantor topology and has the following
rules: Player I chooses a square pattern A1 centered around the origin. Player II
chooses a square pattern A2 which is an extension of A1, i.e., the tiling function
of A2 restricted to the domain of A1 is the tiling function of A1, and so on. From
the sequence of patterns {Ai} we can obtain an infinite tiling P . Player II wins
the game if P ∈ C.

An Almost Totally Universal Tile Set 275

The main application of Banach-Mazur games is the study of meager sets. A
classical topological result is that a subset C of X is meager, i.e., is the the union
of countably many nowhere dense subsets, if and only if Player II has a winning
strategy for the game G(X, X \ C). Meagerness is thus a topological notion of
small or negligible subsets. We obtain the notion of almost total universality:
a tile set τ is almost totally universal if there exists a set of τ -tilings A which
is totally universal and such that A is residual in the set of τ -tilings in both
Besicovitch and Cantor topologies.

Therefore, an almost totally universal tile set is a tile set totally universal
up to a meager set: just a small subset (of its tilings) prevents it to be totally
universal. In the following section, we explain some constructions needed to build
an almost totally universal tile set.

3 Synchronization within Robinson’s Construction

In this section, we show how to synchronize squares of Robinson’s tiling (we
refer the reader to [AD96] for an explanation of this construction). By synchro-
nization, we mean that any square of any level works on an initial segment of an
infinite input. Synchronization was first introduced in [Han74, Mye74] and used
in [DLS01]. We propose our own synchronization, adapted for our purpose.

3.1 Synchronization between Squares of Same Level

The first goal to achieve, is to prove that all the squares of a same level have the
same information, i.e., any square of a certain level in Robinson’s construction
have the same input word w on their first line. Since two neighbor squares, either
vertical or horizontal, can share the information they have on their facing sides
then we need to prove that we can obtain a square which has on its four sides
the same input word w. We just need to pass the bits of the input word from
the south side to the west side. Then, we can transmit these bits to the north
and east sides.

The information going from the south to the west side will pass through three
kinds of tiles: it first goes through a tile that transmits the information vertically,
then passes a corner and finally goes through tiles that transmit the information
horizontally until it reaches the west side. The only condition to add to be sure
that all the bits will pass from the south to the west side (like in figure 1) is to
force any tile which is not obstructed (obstructions are colored in gray in figure
1) to be one of the three kinds of tiles that transmit information. The obstructed
tiles can either transmit vertical or horizontal information, or transmit nothing.
Finally, neighbor squares of same level can check if they are computing on the
same input word. Therefore all squares of a same level work on the same input
word.

3.2 Synchronization between Levels

We now want to synchronize the input word between different levels, i.e., that
if wi is the input word of the squares of level i then wi is the central word of wj

276 G. Lafitte and M. Weiss

w4w0 w1w2w3

Fig. 1. The transmission of the bits of w from the south side to the west side

for any j > i, i.e., there exists two words w1 and w2 of same length such that
wj = w1wiw2. In this way all squares of all levels obtain the same computation.
We recall that in Robinson’s tilings, the squares of level even are colored in black
and the squares of level odd are colored in light-gray.

We need to choose a square (the only one) that communicates its input word
to the higher level. We give sixteen different labels to the black squares (one of
them is labeled in gray) and two kinds of label for the light-gray squares. this in
enough to guarantee that any black square of a level n, has a gray square of level
n − 1 in its south-west corner (figure 2.a). This is this gray square who passes
the information from its east side to the south side of the square of level n.

To pass the information, we use the induction process of figure 2.b. The same
technique as before is used. We can do this since the number of columns between
two neighbor squares is the same as the number of columns in a square. Then,
with an induction process, we will pass all the bits from the east side of the gray
square to the south side of the black square of higher level.

At the end of the process, the gray row contains the bits of w and the black
square of upper level has access to this code and can compute on it. Therefore,
any square computes on an initial segment of the same infinite input.

4 An Almost Totally Universal Tile Set

4.1 Description of the Construction

In this section we construct an almost totally universal tile set. We use three
Turing machines M , N and P that we simulate in the synchronized construction
explained previously. The three machines works on an infinite string i1$i2$. . .
where ij is the code of a tile set of j tiles that tiles the plane. M checks if the
input is well written. If not, M stops. We add another restriction to M : we want
that the code of appears as an input. The tile set will have access to its own

An Almost Totally Universal Tile Set 277

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

2 1

22

(a) The coloring of the black, gray
and light-gray squares

w0w1w2

w0

w1

w2

w0w1w2

(b) The synchronization between
squares of different levels

Fig. 2.

code. One can prove, using Kleene’s recursion theorem, that a tile set can have
access to its own code (see [LW08b, DRS08]). Let m be the number of tiles of
. M checks that the input contains two codes of tile sets of m tiles, and checks

that one of them is the code of . Therefore, the input has to be of the following
form: i1$i2$. . . im$i′m$im+1$. . ., where i′m is the code of .

The second machine N checks for any n such that any of the τij ’s, ij < n,
can tile a square of size n. If there exists an integer m such that a tile set τij

cannot tile a square of size m, then N stops.
The last machine P is a machine that simulates the tile sets of the input, i.e.,

it generates space times diagrams isomorphic to the tiles of the tile sets (for more
detailed explanations on simulation between tile sets, see [LW08a, DRS08]).

To start the simulations of these machines in our tilings, we first force that
the only computation tile which exists in the squares of level 1 is the tile, say t0,
representing the initial state of M , N and P . By synchronization, this means that
any middle tile of the first line of any square of this construction corresponds
also to this tile, and therefore, the computation will begin in any square. We
now allow the completion of the first line of any square with tiles representing
any letter from the alphabet {0, 1, $}. We obtain a tiling where any first line of
any square represents the central subword of a bi-infinite input w ∈ {0, 1, $} and
all of these subwords contain in their middle the tile t0 representing the initial
states of the Turing machines.

In all squares of our construction, the computation on the same infinite input is
carried out. If one of these machines reaches a final state, then the tiling remains
incomplete. Therefore, if the tiling is complete, then M , N and P compute on a
word of the form: i1$i2$. . . im$i′m$im+1$. . ., as stated before. Then P simulates
any of the tile set ij , and thus, totally simulates any tile set τij . Since the
index of is given also in input, then P also simulates a -tiling. In fact, by
transitivity of the simulation, it self-simulates infinitely many times. Each time

self-simulates, it also simulates a set of tile sets {τi′j}j>0 since it simulates a

278 G. Lafitte and M. Weiss

-tiling that simulates this set. So, a -tiling simulates an infinite number of tile
sets of n tiles for any n. Since the set of tile sets of n tiles is finite, and a fortiori
the set of tile sets of n tiles that tiles the plane, then a -tiling must simulate
infinitely many times some tile sets.

4.2 The Construction Gives an Almost Totally Universal Tile Set

We have obtained a tile set such that any -tiling simulates, for any n, with
repetitions, an infinity of tile sets composed of n tiles. We now show that this
tile set is almost totally universal.

Theorem 1. The tile set is almost totally universal.

Proof. Let A be the set of -tilings that simulate at least one tiling for any tile
set and B = T \ A, where T is the set of -tilings. A is totally universal. We
show that A is residual in T in both topologies:

We first show that A is residual in T (in the Cantor topology) by showing
that Player II has a winning strategy in the game G(A, T)C . In this game,
Player I first chooses a -pattern centered around the origin. Player II extends
this pattern and so on. Player II wants to obtain a final -tiling that simulates
any tile set that tiles the plane. Player I wants to obtain a final tiling such that
at least one tile set is never simulated.

Let Ω = {τ1, τ2, . . .} be the set of tile sets that tile the plane, and ordered by
the number of their tiles first, and then by a lexicographic order of the colors
of the tiles. The following strategy is, of course, not recursive since Ω is Π1.
At step n, Player II wants to force the simulation of the nth tile set of Ω. Let
mn be the -pattern played by Player I. Player II wants to force the code of
τn to appear somewhere in the tiling. When done, by synchronization the final
tiling has to simulate a τn-tiling. If the code of the tile set τn can be written
on the input word, then Player II writes this code and forces the simulation of
τn. Otherwise, we know that self-simulates infinitely many times, which means
that there exists, for any -tiling and for any s, an integer m > s such that
self-simulates with squares of size m. Any of these self-simulations represents a
-tiling which simulates other tile sets depending on the infinite input on which

it is computing. Therefore, it is enough for Player II to look for the smallest self-
simulation where it is possible to write the code of τn+1. Such a self-simulation
always exists. By transitivity of the simulation, this guarantees that the final
tiling will simulate τn+1.

By induction, Player II builds a tiling which simulates at least one tiling for
any tile set in Ω. Therefore this tile set is in A, and A is residual in T with the
Cantor topology.

We now show that B is meager in T , in the Besicovitch topology. The first
move of Player I consists in playing a -tiling P1 and an integer n1 to define the
open ball BB(P1, 1/n1). P1 simulates at least one tile set of one tile. Without
loss of generality, we can suppose that this tile set is the first of our enumeration
of tile sets that tile the plane (it can be reordered if necessary). Player II wants

An Almost Totally Universal Tile Set 279

to be sure that after he has played, the code of τ1 cannot be removed. This code
appears regularly in the tilings which means that there exists an m such that all
bits of τ1 appear in all squares of size m in P1. If Player II chooses an integer m1

bigger than m2 then he is sure that no bits of τ1 can be changed by Player I since
any tiling that has at least one bit of the code τ1 changed is at least at distance
1/m2 of P1 (by synchronization, changing one bit corresponds to changing one
bit in any square of size m).

We now suppose that Player II has already chosen a tiling Pi that simulates
all the tile sets in {τ1, τ2, . . . , τi−1} and has chosen an integer big enough to
force Player I to play a tiling which simulates also {τ1, τ2, . . . , τi−1}. Player I
chooses a tiling Pi and an integer ni. We show that Player I can choose a tiling
Qi ∈ BB(Pi, 1/ni) that simulates all of {τ1, τ2, . . . , τi−1} ∪ {τi}.

We first make some remarks. If a -tiling P simulates a tile set τ , it means that
there exists a level of squares j in P where the simulation of the tiles of τ is made.
Of course, not all the tiles of P are concerned by this simulation. We can bound
the proportion of tiles that are concerned by this simulation. Indeed, only the tiles
which are in squares of level j, and the tiles which are in communication zones be-
tween these squares are influenced by this simulation. Therefore the bound is close
to 3/4. The exact proportion is not important, since we just need the proportion
of tiles concerned by a simulation to be strictly less than 1.

Let S be a -tiling. self-simulates, therefore S simulates a -tiling, say S1.
By the previous remark, at most 3/4 of the tiles of S are used to simulate S1.
Since S1 is also a -tiling, then S1 simulates a -tiling, say S2. 3/4 of the tiles of
S1 are used to simulate S2, and by transitivity, (3/4)2 of the tiles of S are used
to simulate S2. By induction, we obtain a sequence {S, S1, S2, . . .} of -tilings
such that (3/4)n of the tiles of S are used to simulate Sn.

Because of this remark, Player I can modify Pi such that it simulates a new
-tiling St by changing a proportion of tiles in Pi smaller than 1/ni. This tiling

St has the particularity of having the code of the ith tile set of Ω in its input
and thus, simulates τi. Player II plays this tilings Qi which is at distance less
than 1/ni of Pi and which simulates τi. Any index of the different tile sets of
{τ1, τ2, . . . , τn+1} appears, or is simulated, regularly in the tiling P2n+2: there
exists an integer m such that any bit of these indexes appears in all squares of size
m. As before, if Player II chooses an integer greater than m2, he guarantees that
none of these tiles can be changed, and therefore, the only possibility for Player
I is to choose a -tiling that simulates any tile set of the set {τ1, τ2, . . . , τn+1}.

By induction, the tiling obtained at the end of the game is a tiling that
simulates all tile sets of Ω. Therefore this tile set is in A, and A is residual in T
within the Besicovitch topology. ��

Acknowledgements

We warmly thank Guillaume Theyssier who, in the first place, convinced one of
the co-authors of the possible existence of the previously described tile set. We
are also indebted to Bruno Durand for his pertinent remarks on previous work
that undoubtedly encouraged us in pursuing in this direction.

280 G. Lafitte and M. Weiss

References

[AD96] Allauzen, C., Durand, B.: Appendix A: Tiling problems. The classical de-
cision problem, 407–420 (1996)

[BDJ08] Ballier, A., Durand, B., Jeandel, E.: Structural aspects of tilings. In: Pro-
ceeding of the Symposium on Theoretical Aspects of Computer Science, pp.
61–72 (2008)

[Ber66] Berger, R.: The undecidability of the domino problem. Mem. Amer. Math
Soc. 66, 1–72 (1966)

[DLS01] Durand, B., Levin, L.A., Shen, A.: Complex tilings. In: STOC, pp. 732–739
(2001)

[DLS04] Durand, B., Levin, L.A., Shen, A.: Local rules and global order. Mathemat-
ical Intelligencer 27(1), 64–68 (2004)

[DRS08] Durand, B., Romashchenko, A.E., Shen, A.: Fixed point and aperiodic
tilings. In: Developments in Language Theory, pp. 276–288 (2008)

[Han74] Hanf, W.P.: Nonrecursive tilings of the plane. I. J. Symb. Log 39(2), 283–285
(1974)

[LW07] Lafitte, G., Weiss, M.: Universal tilings. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 367–380. Springer, Heidelberg (2007)

[LW08a] Lafitte, G., Weiss, M.: Simulations between tilings. In: Beckmann, A., Dim-
itracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms, 4th Con-
ference on Computability in Europe, CiE 2008, Athens, Greece, June 2008,
University of Athens (2008)

[LW08b] Lafitte, G., Weiss, M.: Computability of tilings. In: International Feder-
ation for Information Processing, Fifth IFIP International Conference on
Theoretical Computer Science, vol. 273, pp. 187–201 (2008)

[LW08c] Lafitte, G., Weiss, M.: A topological study of tilings. In: Agrawal, M., Du,
D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 375–387.
Springer, Heidelberg (2008)

[Mye74] Myers, D.: Nonrecursive tilings of the plane. II. J. Symb. Log 39(2), 286–294
(1974)

[Oxt57] Oxtoby, J.C.: Tilings: recursivity and regularity. Contribution to the theory
of games III(39), 159–163 (1957)

[Rob71] Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane.
Inv. Math. 12, 117–209 (1971)

[Wan61] Wang, H.: Proving theorems by pattern recognition II. Bell Systems Jour-
nal 40, 1–41 (1961)

	An Almost Totally Universal Tile Set
	Introduction
	Basic Notions
	Tilings and Simulations
	The Besicovitch and Cantor Topologies on Tilings
	Games on Tilings

	Synchronization within Robinson's Construction
	Synchronization between Squares of Same Level
	Synchronization between Levels

	An Almost Totally Universal Tile Set
	Description of the Construction
	The Construction Gives an Almost Totally Universal Tile Set

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

