

Lecture Notes in Computer Science 5532
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jianer Chen S. Barry Cooper (Eds.)

Theory and Applications
of Models of Computation

6th Annual Conference, TAMC 2009
Changsha, China, May 18-22, 2009
Proceedings

13

Volume Editors

Jianer Chen
Department of Computer Science and Engineering
Texas A&M University
Texas, USA
E-mail: chen@cs.tamu.edu

S. Barry Cooper
School of Mathematics
University of Leeds
Leeds, U.K.
E-mail: pmt6sbc@maths.leeds.ac.uk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.2, F.3, F.4, G.2.2, H.1.1, G.4, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-02016-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02016-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12679799 06/3180 5 4 3 2 1 0

Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in computer science, mathematics (especially logic) and the
physical sciences. This crossdisciplinary character, together with its focus on al-
gorithms, complexity and computability theory, gives the conference a special
flavor and distinction.

TAMC 2009 was the sixth conference in the series. The previous five meetings
were held during May 17–19, 2004 in Beijing, May 17–20, 2005 in Kunming, May
15–20, 2006 in Beijing, May 22–25, 2007 in Shanghai, and April 25–29, 2008 in
Xi’an. TAMC 2009 was held in ChangSha, during May 18–22, 2009. Next year
will see a new departure, namely, the first TAMC conference to be held outside
of Asia. TAMC 2010 will be held in Prague, capital of the Czech Republic.

At TAMC 2009 we had three plenary speakers, Leslie Valiant (Harvard Uni-
versity, USA), Moshe Vardi (Rice University, USA) and Matthew Hennessy
(Trinity College, Ireland), giving one-hour talks each. Professor Valiant spoke
on “Neural Computations That Support Long Mixed Sequence of Knowledge
Acquisition Tasks,” Professor Vardi on “Constraints, Graphs, Algebra, Logic,
and Complexity,” and Professor Hennessy on “Distributed Systems and Their
Environments.” Their respective abstracts accompanying the talks are included
in these proceedings.

In addition, there were two special sessions organized by S. Barry Cooper on
“Models of Computation” and by Iyad A. Kanj on “Algorithms and Complex-
ity.” The invited speakers in the first session were Dan Browne (Imperial College,
London, UK), Alessandra Carbone (University Pierre et Marie Curie, France),
Barry Cooper (University of Leeds, UK) and Andrea Sorbi (University of Siena,
Italy). Invited speakers in the second session were Jiong Guo (Friedrich-Schiller-
Universität Jena, Germany), Iyad Kanj (DePaul University, USA), Henning
Fernau (University of Trier, Germany), and Binhai Zhu (Montana State Uni-
versity, USA). The Respective papers accompanying seven of the invited talks
are included in these proceedings.

The TAMC conference series arose naturally in response to important scien-
tific developments affecting how we compute in the twenty-first century. At the
same time, TAMC is already playing an important regional and international
role, and promises to become a key contributor to the scientific resurgence seen
throughout China and other parts of Asia.

The TAMC 2009 Program Committee selected 39 papers from 86 submissions
for presentation at the conference and inclusion in this LNCS volume.

We are very grateful to the Program Committee, and the many outside ref-
erees they called on, for the hard work and expertise which they brought to
the difficult selection process. We also wish to thank all authors who submitted

VI Preface

their work for our consideration. The submissions for TAMC 2009 were of a
particularly high standard, and inevitably many good-quality papers had to be
excluded.

Finally, we would like to thank the members of the Editorial Board of Lecture
Notes in Computer Science and the editors at Springer for their encouragement
and cooperation throughout the preparation of this conference.

Of course TAMC 2009 would not have been possible without the support of
our sponsors, Central South University, China, and the National Science Foun-
dation of China, and we therefore gratefully acknowledge their help in the real-
ization of this conference.

ChangSha 2009 Jianer Chen
S. Barry Cooper

Organization

Program Committee

Marat Arslanov Kazan State University, Russia
Giorgio Ausiello University of Rome, Italy
Hans Bodlaender University of Utrecht, The Netherlands
Liming Cai University of Georgia, USA
Cristian S. Calude University of Auckland, New Zealand
Alessandra Carbone University Pierre et Marie Curie, France
Jianer Chen,

PC Co-chair Central South University, China,
and Texas A&M University, USA

Xi Chen Princeton University, USA
Bob Coecke Oxford University, UK
S. Barry Cooper,

PC Co-chair University of Leeds, UK
Vincent Danos University of Edinburgh, UK
Anuj Dawar Cambridge University, UK
Frank Dehne Carleton University, Canada
Xiaotie Deng City University of Hong Kong, China
Rod Downey Victoria University, New Zealand
Mike Fellows University of Newcastle, Australia
Fedor Fomin University of Bergen, Norway
Lane A. Hemaspaandra University of Rochester, USA
Kazuo Iwama Kyoto University, Japan
Iyad Kanj DePaul University, USA
Mike Langston University of Tennessee, USA
Angsheng Li The Institute of Software, Chinese Academy

of Sciences, China
Ming Li University of Waterloo, Canada
Wei Li Beihang University, China
Giuseppe Longo Ecole Normale Superieure, France
Johann Makowsky Technion, Israel
Luay Nakhleh Rice University, USA
Luke Ong Oxford University, UK
Venkatesh Raman The Institute of Mathematical Sciences, India
Kenneth Regan University at Buffalo - SUNY, USA
Rudiger Reischuk University of Lubeck, Germany
Miklos Santha CNRS, University Paris-Sud, France
Ivan Soskov Sofia University, Bulgaria
Peter van Emde Boas University of Amsterdam, The Netherlands

VIII Organization

Jianxin Wang Central South University, China
Osamu Watanabe Tokyo Institute of Technology, Japan
Ke Xu Beihang University, China
Chee Yap New York University, USA

Organizing Committee

Weihua Gui, Co-chair Central South University, China
Shuquan Liang, Co-chair Central South University, China
Jianer Chen Texas A&M University, USA
S.Barry Cooper University of Leeds, UK
Zhaohui Dai Central South University, China
Angsheng Li Chinese Academy of Sciences, China
Ming Liu Central South University, China
Mingming Lu Central South University, China
Yu Sheng Central South University, China
Jianxin Wang Central South University, China
Beiji Zou Central South University, China

Sponsoring Institutions

South Central University, China
The National Natural Science Foundation of China

TAMC Steering Committee

Manindra Agrawal IIT Kanpur, India
Jin-Yi Cai University of Wisconsin-Madison, USA
S. Barry Cooper University of Leeds, UK
Angsheng Li Chinese Academy of Sciences, China

External Reviewers

Amano, Kazuyuki
Baramidze, Gregory
Batyrshin, Ilnur
Bentz, Cédric
Bezakova, Ivona
Birov, Dimiter
Blakey, Ed
Bonizzoni, Paola
Bose, Prosenjit
Bouyer, Patricia
Bulatov, Andrei

Canetti, Ran
Carrault, Guy
Che, Dongsheng
Chen, Jing
Corruble, Vincent
Creignou, Nadia
Cui, Peng
Dai, Decheng
Demetrescu, Camil
Desharnais, Josee
Durr, Christope

Organization IX

Eblen, John
Fragoudakis, Christodoulos
Franceschini, Gianni
Gasarch, William
Giannopoulos, Panos
Hazay, Carmit
Hoogeveen, Han
Hueffner, Falk
Itoh, Toshiya
Jay, Jeremy
Kalimullin, Iskander
Kari, Jarkko
Keliher, Liam
Kerenidis, Iordanis
Klaudel, Hanna
Kosub, Sven
Kullmann, Oliver
Lenisa, Marina
Liu, Chunmei
Lozin, Vadim
Maddy, Penny
Mahajan, Meena
Manyem, Prabhu
Mathelier, Anthony
Meister, Daniel
Moser, Hannes
Moss, Larry
Naswa, Sudhir
Ng, Keng Meng (Selwyn)

Okamoto, Yoshio
Ouaknine, Joel
Phillips, Charles
Regev, Oded
Richerby, David
Robertson, Joseph
Rogers, Gary
Rosen, Adi
Rotics, Udi
Sadrzadeh, Mehrnoosh
Segev, Danny
Shareghi, Pooya
Sikdar, Somnath
Slissenko, Anatoly
Soskova, Mariya
Speidel, Ulrich
Stefanescu, Gheorghe
Stephan, Frank
Tanaka, Keisuke
Tiomkin, Michael
Tsianos, Konstantinos
Vigliotti, Maria Grazia
Villanger, Yngve
Wang, Yingfeng
Wong, Duncan
Worrell, James
Yamamoto, Masaki
Zheng, Ying
Zimand, Marius

Table of Contents

Plenary Talks

Neural Computations That Support Long Mixed Sequences of
Knowledge Acquisition Tasks . 1

Leslie G. Valiant

Constraints, Graphs, Algebra, Logic, and Complexity 3
Moshe Y. Vardi

Distributed Systems and Their Environments . 4
Matthew Hennessy

Invited Special Session: Models of Computation

Co-evolution and Information Signals in Biological Sequences 6
Alessandra Carbone and Linda Dib

The Extended Turing Model as Contextual Tool . 18
S. Barry Cooper

Strong Positive Reducibilities . 29
Andrea Sorbi

Invited Special Session: Algorithms and Complexity

Fixed-Parameter Algorithms for Graph-Modeled Date Clustering 39
Jiong Guo

On Spanners of Geometric Graphs . 49
Iyad A. Kanj

Searching Trees: An Essay . 59
Henning Fernau and Daniel Raible

Approximability and Fixed-Parameter Tractability for the Exemplar
Genomic Distance Problems . 71

Binhai Zhu

Contributed Papers

A Quadratic Kernel for 3-Set Packing . 81
Faisal N. Abu-Khzam

XII Table of Contents

Quantitative Aspects of Speed-Up and Gap Phenomena 88
Klaus Ambos-Spies and Thorsten Kräling

Computing the Exact Distribution Function of the Stochastic Longest
Path Length in a DAG . 98

Ei Ando, Hirotaka Ono, Kunihiko Sadakane, and
Masafumi Yamashita

On the Connection between Interval Size Functions and Path
Counting . 108

Evangelos Bampas, Andreas-Nikolas Göbel, Aris Pagourtzis, and
Aris Tentes

On the Red/Blue Spanning Tree Problem . 118
Sergey Bereg, Minghui Jiang, Boting Yang, and Binhai Zhu

Undecidability of Cost-Bounded Reachability in Priced Probabilistic
Timed Automata . 128

Jasper Berendsen, Taolue Chen, and David N. Jansen

A Computational Proof of Complexity of Some Restricted Counting
Problems . 138

Jin-Yi Cai, Pinyan Lu, and Mingji Xia

Block-Graph Width . 150
Maw-Shang Chang, Ling-Ju Hung, Ton Kloks, and Sheng-Lung Peng

Minimum Vertex Ranking Spanning Tree Problem on Permutation
Graphs . 158

Ruei-Yuan Chang, Guanling Lee, and Sheng-Lung Peng

On Parameterized Exponential Time Complexity . 168
Jianer Chen, Iyad A. Kanj, and Ge Xia

Best-Order Streaming Model . 178
Atish Das Sarma, Richard J. Lipton, and Danupon Nanongkai

Behavioral and Logical Equivalence of Stochastic Kripke Models in
General Measurable Spaces . 192

Ernst-Erich Doberkat

Influence of Tree Topology Restrictions on the Complexity of
Haplotyping with Missing Data . 201

Michael Elberfeld, Ilka Schnoor, and Till Tantau

Improved Deterministic Algorithms for Weighted Matching and
Packing Problems . 211

Qilong Feng, Yang Liu, Songjian Lu, and Jianxin Wang

Table of Contents XIII

Parameterized Complexity of Coloring Problems: Treewidth versus
Vertex Cover (Extended Abstract) . 221

Jǐŕı Fiala, Petr A. Golovach, and Jan Kratochv́ıl

Discovering Almost Any Hidden Motif from Multiple Sequences in
Polynomial Time with Low Sample Complexity and High Success
Probability . 231

Bin Fu, Ming-Yang Kao, and Lusheng Wang

A Complete Characterisation of the Linear Clique-Width of Path
Powers . 241

Pinar Heggernes, Daniel Meister, and Charis Papadopoulos

Preserving Privacy versus Data Retention . 251
Markus Hinkelmann and Andreas Jakoby

Kolmogorov Complexity and Combinatorial Methods in Communication
Complexity . 261

Marc Kaplan and Sophie Laplante

An Almost Totally Universal Tile Set . 271
Grégory Lafitte and Michael Weiss

Linear Kernel for Planar Connected Dominating Set 281
Daniel Lokshtanov, Matthias Mnich, and Saket Saurabh

A Simple Greedy Algorithm for the k-Disjoint Flow Problem 291
Maren Martens

Minimizing AND-EXOR Expressions for Multiple-Valued Two-Input
Logic Functions (Extended Abstract) . 301

Takaaki Mizuki, Hitoshi Tsubata, and Takao Nishizeki

Exact and Experimental Algorithms for a Huffman-Based Error
Detecting Code . 311

Paulo Eustáquio Duarte Pinto, Fábio Protti, and
Jayme Luiz Szwarcfiter

Terminal Coalgebras for Measure-Polynomial Functors 325
Christoph Schubert

High Minimal Pairs in the Enumeration Degrees . 335
Andrea Sorbi, Guohua Wu, and Yue Yang

Searching a Circular Corridor with Two Flashlights 345
Bo Jiang and Xuehou Tan

On the Complexity of the Multiple Stack TSP, kSTSP 360
Sophie Toulouse and Roberto Wolfler Calvo

XIV Table of Contents

Linear Programming Based Approximation Algorithms for Feedback
Set Problems in Bipartite Tournaments . 370

Anke van Zuylen

An Online Algorithm for Applying Reinforcement Learning to Handle
Ambiguity in Spoken Dialogues . 380

Fangju Wang and Kyle Swegles

A Fixed-Parameter Enumeration Algorithm for the Weighted FVS
Problem . 390

Jianxin Wang and Guohong Jiang

On the Tractability of Maximal Strip Recovery . 400
Lusheng Wang and Binhai Zhu

Greedy Local Search and Vertex Cover in Sparse Random Graphs
(Extended Abstract) . 410

Carsten Witt

Embedding the Diamond Lattice in the c.e. tt-Degrees with Superhigh
Atoms . 420

Douglas Cenzer, Johanna N.Y. Franklin, Jiang Liu, and Guohua Wu

Feasibility of Motion Planning on Directed Graphs 430
Zhilin Wu and Stéphane Grumbach

Polynomial-Time Algorithm for Sorting by Generalized
Translocations . 440

Xiao Yin and Daming Zhu

The Two-Guard Polygon Walk Problem (Extended Abstract) 450
John Z. Zhang

Approximation and Hardness Results for Label Cut and Related
Problems . 460

Peng Zhang, Jin-Yi Cai, Linqing Tang, and Wenbo Zhao

An Observation on Non-Malleable Witness-Indistinguishability and
Non-Malleable Zero-Knowledge . 470

Zongyang Zhang, Zhenfu Cao, and Rong Ma

Author Index . 481

Neural Computations That Support Long Mixed
Sequences of Knowledge Acquisition Tasks

Leslie G. Valiant�

School of Engineering and Applied Sciences
Harvard University

valiant@seas.harvard.edu

In this talk we shall first give a brief review of a quantitative approach to un-
derstanding neural computation [4-6]. We target so-called random access tasks,
defined as those in which one instance of a task execution may need to access
arbitrary combinations of items in memory. Such tasks are communication in-
tensive, and therefore the known severe constraints on connectivity in the brain
can inform their analysis.

Crucial to any theory of neural computation is the set of basic task types that
are to be realized. We consider a set of task types that enable hierarchical struc-
tures to be built and a rich set of operations executed on them. The set consists
of the four operations: hierarchical memory formation, association, supervised
memorization of conjunctions, and inductive learning of certain threshold func-
tions. Our choice of task types is different from the classical so-called associative
memories, where a set of fixed strings of symbols are to be stored and accessed
in a flat dictionary [2].

Also crucial to any analysis is the model of computation considered. Ours
is the neuroidal model, which is designed to underestimate the capabilities of
neurons. It consists of a network of nodes each realizing a threshold element but
also having some additional states that allow for some programmability. The
model has numerical parameters that aim to capture fundamental quantitative
constraints on biological neurons. It has three such parameters, n the number
of neurons, d the number of connections from or to each neuron, and k the
inverse of the maximum strength of a synapse in comparison with the total
strength needed to cause a threshold firing. We assume that for each real-world
item there corresponds a set of neurons that are active when that item is being
computed on. We therefore have a fourth parameter r for the number of neurons
that are used typically to represent such an item.

Our algorithms for realizing these tasks are entirely distributed. The algo-
rithmic style is called vicinal, as neighborly communication realizes the needed
communication in a particularly simple way. In general, depending on the task
types to be implemented, the network has to be able to realize certain combinato-
rial properties. We call these vicinal graph properties for the similar reason that
they make possible direct interactions, via immediate neighborly connections,
among the sets of neurons that represent concepts. The following are examples
of these properties and refer to n node directed graphs where every node has

� This work was supported in part by NSF-CCF-04-27129.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 L.G. Valiant

indegree and outdegree about d: For the hierarchical memory formation task
we need the property that for every two sets A and B of r nodes each, there
are about r other nodes u in the graph that have the property that there are
edges to u from at least k nodes in A

⋃
B. For association to be done without

intermediate nodes, we need that for every two sets A and B of r nodes each, for
every node u in B there are edges directed to u from at least k elements of A.
As for other previously studied combinatorial properties, such as expansion [1],
for the properties needed here random graphs are sufficient, while in principle
those produced by deterministic or pseudorandom processes may also suffice.

The question of whether a random network with certain parameters has cer-
tain combinatorial properties can be often determined by analysis. However, to
gain an understanding of the cumulative effect of the updates made by sequences
of task instances executed on such a network, we resort to computer simulations.

We shall describe some recent computer simulation results, obtained jointly
with Vitaly Feldman [3], that show that, for biologically realistic ranges of our
four parameters n, d, k, and r, our model has substantial capacity for realizing
large numbers of instances of all our four task types together. These simulations
demonstrate that sequences of thousands of task instances, that intermingle the
first three types (association, supervised memorization of conjunctions, and in-
ductive learning of certain threshold functions) on items allocated by the first
type (hierarchical memory formation), can be executed without the later task
instances substantially degrading the functionality of the earlier ones. These re-
sults were obtained for two distinct general regimes that had been found through
earlier analysis to be effective for realizing this set of tasks. The first, regime alpha
[5], needs only the simplest algorithms and the weaker synapses, but apparently
has the smaller capacity. The second, regime beta [4], uses slightly more complex
algorithms and strong synapses, but can achieve extremely high capacities.

We conjecture that because of its simplicity, regime alpha is pervasive in neu-
ral computation and underlies the distributed representations often observed
experimentally. For human performance over a lifetime, capacities of the order
of several hundreds of thousands or a few million need to be explained. Our sim-
ulations show that regime beta offers an explanation, the first to our knowledge,
of how this remarkable feat can be accomplished at all with realistic parameters.

References

[1] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc. 43, 439–561 (2006)

[2] Graham, B., Willshaw, D.: Capacity and information efficiency of the associative
net. Network: Comput. Neural Syst. 8, 35–54 (1997)

[3] Feldman, V., Valiant, L.G.: Experience-induced neural circuits that achieve high
capacity. Neural Computation (to appear, 2009)

[4] Valiant, L.G.: Circuits of the Mind. Oxford University Press, Oxford (1994, 2000)
[5] Valiant, L.G.: Memorization and association on a realistic neural model. Neural

Computation 17(3), 527–555 (2005)
[6] Valiant, L.G.: A quantitative theory of neural computation. Biological Cybernet-

ics 95(3), 205–211 (2006)

Constraints, Graphs, Algebra, Logic, and
Complexity�

Moshe Y. Vardi

Department of Computer Science
Rice University

Houston, TX 77251-1892, USA
vardi@cs.rice.edu

http://www.cs.rice.edu/∼vardi

Abstract. A large class of problems in AI and other areas of computer
science can be viewed as constraint-satisfaction problems. This includes
problems in database query optimization, machine vision, belief mainte-
nance, scheduling, temporal reasoning, type reconstruction, graph the-
ory, and satisfiability. All of these problems can be recast as questions
regarding the existence of homomorphisms between two directed graphs.
It is well-known that the constraint-satisfaction problem is NP-complete.
This motivated an extensive research program into identify tractable
cases of constraint satisfaction.

This research proceeds along two major lines. The first line of research
focuses on non-uniform constraint satisfaction, where the target graph
is fixed. The goal is to identify those target graphs that give rise to
a tractable constraint-satisfaction problem. The second line of research
focuses on identifying large classes of source graphs for which constraint-
satisfaction is tractable. We show in how tools from graph theory, univer-
sal algebra, logic, and complexity theory, shed light on the tractability
of constraint satisfaction.

Reference

[1] Kolaitis, P.G., Vardi, M.Y.: A logical approach to constraint satisfaction. In: Com-
plexity of Constraints. LNCS, vol. 5250, pp. 125–155. Springer, Heidelberg (2008)

� Work supported in part by NSF grants CCR-0311326, CCF-0613889, ANI-0216467,
and CCF-0728882.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, p. 3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Systems and Their Environments

Matthew Hennessy�

Trinity College Dublin, Ireland

Abstract. Process description languages, such as the picalculus [SW01],
offer the possibility of formally describing system behaviour at vary-
ing levels of abstraction, and applying logical techniques to verify this
behaviour.

But system behaviour often depends on environmental considerations.
What a system can do depends on the current context in which it finds
itself. It is this context which determines what information is available
to the system, and therefore affects its future evolution. In a dual man-
ner the current context determines the knowledge of the system which
is available to its environment, and thus affects the use which can be
made of the system. Moreover this interplay between a system and its
environment is dynamic, changing as either or both evolve.

In this talk I will offer a survey of recent work on behavioural theories
of systems in which their environments play a crucial role. We will see
three instances in which environmental knowledge involves key features
of distributed systems.

– Access control: Capabilities on resources and access rights to sites are
determined by a static type system, [HRY05]; only partial knowledge
of these types are available to the environment.

– Network failure: Systems run on a dynamically changing network of
inter-connected nodes, where both the nodes and the connections
are subject to failure, [FH08]; this network is shared between the
system and its environment.

– Resource cost: Use of resources entail a cost, which must be borne by
the processes responsible, [HG08]; the environment determines the
overall funds available to processes for access to resources.

The focus will be on a particular process description language called
Dpi [Hen07], oriented towards distributed systems.

References

[FH08] Francalanza, A., Hennessy, M.: A theory of system behaviour in the presence
of node and link failures. Information and Computation 206, 711–759 (2008)

[Hen07] Hennessy, M.: A distributed picalculus. Cambridge University Press, Cam-
bridge (2007)

� The financial support of Science Foundation Ireland is gratefully acknowledged.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 4–5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Distributed Systems and Their Environments 5

[HG08] Hennessy, M., Gaur, M.: Counting the cost in the picalculus (extended ab-
stract). Electr. Notes Theor. Comput. Sci. (to appear) (2008); preliminary
version presented at First Interaction and Concurrency Experience (ICE
2008), Reykjavik (July 2008)

[HRY05] Hennessy, M., Rathke, J., Yoshida, N.: Safedpi: A language for controlling
mobile code. Acta Informatica 42, 227–290 (2005)

[SW01] Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

Co-evolution and Information Signals in
Biological Sequences

Alessandra Carbone and Linda Dib

1 Département d’Informatique, Université Pierre et Marie Curie-Paris 6
2 Génomique Analytique, FRE3214 CNRS-UPMC,

15, Rue de l’Ecole de Médecine, 75005, Paris
Alessandra.Carbone@lip6.fr, Linda.Dib@gmail.com

Abstract. Information content of a pool of sequences has been defined
in information theory through enthropic measures aimed to capture the
amount of variability within sequences. When dealing with biological se-
quences coding for proteins, a first approach is to align these sequences
to estimate the probability of each amino-acid to occur within alignment
positions and to combine these values through an ”entropy” function
whose minimum corresponds to the case where for each position, each
amino-acid has the same probability to occur. This model is too restric-
tive when the purpose is to evaluate sequence constraints that have to be
conserved to maintain the function of the proteins under random muta-
tions. In fact, co-evolution of amino-acids appearing in pairs or tuplets of
positions in sequences constitutes a fine signal of important structural,
functional and mechanical information for protein families. It is clear
that classical information theory should be revisited when applied to bi-
ological data. A large number of approaches to co-evolution of biological
sequences have been developed in the last seven years. We present a few of
them, discuss their limitations and some related questions, like the gener-
ation of random structures to validate predictions based on co-evolution,
which appear crucial for new advances in structural bioinformatics.

1 Introduction

Protein sequences are chains of amino acids folding into a 3-dimensional struc-
ture and forming functionally active organic compounds in the cell. Protein
sequences have evolved along billions of years and generated a number of ho-
mologous sequences, that is sequences with a same common ancestor, that are
found today in genomes of living species. Ancestral sequences mutated through
substitution, insertion or deletion of residues. It has been noticed that within a
family of homologous protein sequences observed today, not all positions in the
sequence have mutated with the same rate and that certain parts of the sequence
(typically those playing a structural or functional role for the protein) are more
conserved than others. Signals of conservation have been extracted from aligned
homologous protein sequences (where the multiple sequence alignment, in short
MSA, aims at piling up similar sub-sequences in the best way) from more than

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 6–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Co-evolution and Information Signals in Biological Sequences 7

forty years. In fact, these signals help to detect important functional or struc-
tural properties of proteins. Analysis have been based on the classical notion of
information content, and captured numerically the residue variability in a sin-
gle position of the MSA, by providing a global numerical score representing the
entropy of the set of sequences through the combination of local information on
alignment positions [25,14,2,41,47,32,33,48]. Extra information, such as physico-
chemical properties of the residues and the local preservation of these properties
along the MSA were also integrated in the analysis. Numerous interesting predic-
tions of functional interaction sites on the surface of proteins have been obtained
[26,27,3,37,23,4,15]. Yet, these methods demonstrated to work well for detecting
interaction sites of a protein with other molecules (that is, other proteins, RNA,
DNA, small molecules, etc) but not for detecting residues involved in allosteric
conformations (these are structural changes affecting the activation or the inac-
tivation of a protein function) or in certain structural features. This biological
information is also coded in protein sequences.

The information content of a biological molecule corresponds to the number
of sequence constraints that have to be conserved to maintain its function under
random mutations [1,9]. If a protein sequence occurs in the genome of a species,
it is likely to be also present in the genomes of phylogenetically close species and
that its function is maintained. To study homologous sequences across species
through their MSA, means to analyze residue conservation within single align-
ment positions, but also to analyze pairs, triplets or blocks of positions and check
whether they have been mutating in concert or not. In biology, the phenomenon
of “parallel” mutation is called co-evolution and experimental evidence supports
the idea that this signal is related to structural changes in proteins.

Co-evolution is a measure to describe the impact of functional and structural
constraints between residues on a pool of protein sequences. In the last ten years,
many different methods have been proposed to study this signal in sequences.
In this abstract we shall give an account of some of these computational ap-
proaches. The reason for doing this is that a convincing mathematical definition
of co-evolution is missing, but several different methods to detect some form
of co-evolution are proposed. These methods do not necessarily agree in their
results and the computer science community might be interested to pick up the
challenge of clearing out this goal by proposing a well founded framework where
to decompose biological signals in sequences. Sequences hiding correlations be-
tween symbols other than positional conservation, like co-evolution of positions
in biological sequences, demand to revisit the classical notion of entropy given
in information theory. In [8], a first step has been made to adapt the classical
notion of entropy and information content to protein sequences by taking into
explicit account the distance tree describing similarity between sequences. By so
doing, functional signals are shown to be more sharply detected.

On the methodological level, an original effort could be made in the unifica-
tion of the approaches towards an appropriate definition of co-evolution and an
understanding of the mathematical principles governing it. We shall rapidly dis-
cuss the fundamental problem of validating the methods analyzing co-evolution.

8 A. Carbone and L. Dib

The bibliography is not exhaustive but, hopefully, representative of the work
done in this field in these last years.

2 Basic Notions and Motivations

A biological sequence is a string of letters in a fixed alphabet of variable length.
This can be a 20 letters alphabet (where a letter corresponds to an amino-acid,
in short aa, also called residue) for proteins, or a 4 letters alphabet (where a
letter corresponds to a nucleotide A, T, C, G) for DNA sequences. There is a
map between the two alphabets that allows us to translate a DNA sequence into
a protein sequence. This map is surjective but not injective. Protein sequences
have an average length of 300-400aa, varying in an interval going from 30aa up
to approximately 2000aa. These sequences, during millions of years of evolution
transforming and creating new species, have been changing considerably. Today,
within the species that we can observe, we find similar sequences, which diverged
more or less radically. Assuming that we can reconstruct the common ancestor
of a set of sequences, we are interested to study the changes within different posi-
tions in the sequences. These signals provide useful information on the evolution
of the species. Sequences can evolve by three different operations: substitution,
insertion and deletion of residues. Substitution means that a residue is replaced
by another residue at a given position, insertion means that at a given position
the insertion of a new residue is allowed, and deletion means that a given residue
is lost from a sequence. Through these operations, sequences evolve by changing
positional content and length. We call them mutational changes.

Today, given a sequence S, we can find in available databases, sequences S′

which are homologous to S (that is, sequences S′ which share a common ancestor
with S, from which they both have evolved). The set of homologous sequences
can be organized into a metric tree where leaves are labeled by sequences (each
sequence labels exactly one leaf) and where the length of branches illustrates the

Fig. 1. Example of multiple sequence alignment. Point mutations appear as different
letters (amino acids) in an alignment column, and insertions or deletions (gaps) appear
as hyphens in the alignment sequences. Fully (partially) conserved positions are char-
acterized by a single residue occurring everywhere (with high frequency) in a column,
and co-evolved positions are characterized by several residues within columns such that
a mutation in one column records a mutation in another column.

Co-evolution and Information Signals in Biological Sequences 9

proximity or the divergence between sequences induced by mutational changes.
These trees turn out to be very useful for studying mutational processes affect-
ing several positions in a sequence [18]. Families of protein sequences display
regions which are more conserved (less mutated) than others as well as sets
of conserved positions, not necessarily close in sequence, which are close in 3-
dimensions. These latter often correspond to residues involved in the interaction
of the protein with other proteins, DNA, RNA, ligands, small molecules. The
nature of these interactions might be multiple, spanning among binding speci-
ficity, allosteric regulation and conformational change of the protein. They are
important for the function and for the mechanical properties of the protein.

With the large amount of undergoing sequencing, no more positions in se-
quences are fully conserved (see Fig. 1) and it is interesting not only to provide
a fine measure of conservation but also to give an appropriate one of co-evolution.
It is believed that mutations in non-conserved positions can occur because they
are either accompanied or preceded by compensatory changes in other variable
positions. Such compensations would result in a coupling between changes in
the two positions [19]. Clearly, not all mutated positions are under the pressure
of co-evolution and the question is to find which ones are. In particular, several
positions might be co-evolving together. Pairs of physically non contiguous sites
that evolve in a similar way so to insure and maintain protein functionality and
structure, are expected to belong to some network of co-evolving positions. This
network is made of a set of residues that are physically connected to each other
within the 3-dimensional structure of the protein. These residues might be sur-
face residues or buried in the structure. It is the entire ensemble of residues in
the network that will connect together non-contiguous co-evolved sites.

3 Approaches Detecting Residue Co-evolution

A number of different approaches to identify conserved and co-evolving positions
have been developed. Below, we shall explain several methods attempting to
define conservation and co-evolution. They use sequence information, at times
phylogenetic information coming from trees of distances between sequences, and
at times structural information coming from 3-dimensional structures known for
a protein family. The methods are organized into two groups, a large one based
on statistical approaches and another based on combinatorics. We consider only
a few representative methods here to highlight a few important conceptual steps.

3.1 Statistical Approaches

Mutual Information Methods. Shannon’s entropy H for column i in a MSA
of protein sequences is a measure of the randomness of the residues in the column.
It is calculated as H(i) = −∑

x p(x, i) log20 p(x, i), where p(x, i) is the frequency
of occurrences of each residue x in column i. The resulting value varies from 0, in
the case of complete conservation, to 1, which occur when all residues are equally
distributed. The observed joint entropy of a pair of positions i, j, is calculated

10 A. Carbone and L. Dib

similarly except that a pair of residues is used and that the sum extends over
all possible combinations: H(i, j) = −∑

x,y p(x, i, y, j) log20 p(x, i, y, j), where
p(x, i, y, j) is the probability of the pair of outcomes x, y at positions i, j respec-
tively. The joint entropy values vary from 0 to 2. Mutual information MI mea-
sures the reduction of uncertainty about one position given information about
the other. This can be thought of as the degree of correlation between two po-
sitions i and j in a MSA, MI(i, j) = H(i) + H(j) − H(i, j). By definition,
MI can vary between 1 and 0, with larger values reflecting a greater level of
interdependence between positions.

In the context of MSAs, MI is an attractive metric because it explicitly mea-
sures the dependence of one position on another. Its usefulness has been limited
by three factors though:

– positions with high variability or entropy will tend to have higher levels of
both random and non-random MI than positions of lower entropy, even though
the latter are more constraints and they might seem more likely to suffer of the
neighboring positions [20,29].
– random MI arises because the alignments do not contain enough sequences
for background noise to be negligible. Careful analysis show that a minimum
amount of sequences should be guaranteed to ensure that random noise cannot
compete with non-random signals [29].
– all position pairs present a (part of) MI which is due to the phylogenetic
relationships of the organisms represented in the MSA. This source can be limited
if very similar sequences are excluded from the MSA but it cannot be eliminated
completely [29,42].

At the biological level, MI seems to be characterized by several signals, com-
ing from structural-interaction, functional constraints, random noise and shared
ancestry [49]. Thus the challenge is to separate the signal caused by structural
and functional constraints from the others listed above. The effort should go into
the removal of interference factors.

It has been observed that by using the correcting factor MIr defined as
MI(a, b)/H(a, b), the influence of entropy can be partially removed [29]. In [13],
the problems caused by phylogenetic closeness have been also partially solved.
After removing the background noise due to phylogenetic and entropic signals,
this method confirms that co-evolved positions are observed in sites proximal
to regions with critical functions for the protein, where co-evolution occurs to
maintain the structural characteristics around these regions and consequently to
maintain the protein conformational and functional stability [21]. The estimation
of MI related to the background signal is computationally cheap and accurate
in contrast with other approaches based on bootstrapping for estimation of the
background that are computationally very expensive [16,49]. A significant num-
ber of sequences in the protein family is still required though.

Another conceptual improvement for methods based on covariance detection
of aligned sequences was highlighted in [16]. Here, the authors propose two types
of co-evolved sites to be distinguished during the analysis: pairs of sites that

Co-evolution and Information Signals in Biological Sequences 11

are spatially proximal, where compensatory mutations could maintain the local
structural stability, and clusters of distant sites that are located in functional
domains, suggesting a functional dependency between them. They observe that
all sites detected under adaptive evolution in proteins belong to co-evolution
groups, further underlining the importance of testing for co-evolution in selective
constraints analysis.

Statistical Coupling Analysis method. The ability to efficiently propagate
energy through tertiary structure is a fundamental property of many proteins
and is the physical basis for key biological properties such as allostery and signal
transmission. Pathways of co-evolved residues, also called coupled pathways, may
represent conduits along which energy distributes through a protein structure to
generate functional features. Based on this idea, a method detecting networks
of co-evolved residues has been introduced by Ranganathan in [28,40].

The method starts from the idea that a protein family is represented by the
associated MSA describing evolutionary constraints on the family. It demands
the MSA to be evolutionarily well sampled, that is the MSA be sufficiently
large and diverse where additional sequences do not significantly change the
distribution of amino-acids in an alignment position. Under this assumption, two
definitions guide the development of statistical parameters used by the method:

(i) (conservation) conservation at a given site in a MSA is defined as the overall
deviance of amino acid frequencies at that site from their mean values. This
means that if a site l contributes nothing to either the folding or function of the
protein, the corresponding amino acid frequencies in the MSA should be uncon-
strained and, therefore, should approach their mean values in all proteins (in a
database). However, if two (possibly more) sites i and j make some contribu-
tion, the amino acid distributions at these sites should deviate from these mean
values, and the extent of this deviation should provide a quantitative measure
of the underlying evolutionary constraint (that is, conservation).
(ii) (co-evolution) statistical coupling of two sites, i and j, is defined as the degree
to which amino acid frequencies at site i change in response to a “perturbation”
of frequencies at another site j. This definition of coupling does not require
that the overall conservation of site i changes upon perturbation at j, but only
that the amino acid population be rearranged. In other words, the functional
coupling of two sites i and j should exert a mutual evolutionary constraint
between these sites, which should be encoded in the statistical coupling of the
underlying distributions of amino acids. That is, the distribution of residues at
site j should depend on those at site i. It then follows that a lack of functional
interaction between two sites i and k should, regardless of conservation at both
sites, result in independence of their amino acid distributions.

Given a set S of homologuous aligned sequences, to measure the degree of co-
evolution, the method computes the distribution of amino acids at each position
of S and determines the set of positions P , that are highly conserved without
being fully conserved. For each position i of P , it induces a perturbation, that is
it keeps only the subset S′ of aligned sequences that contain the most conserved

12 A. Carbone and L. Dib

amino acids at positions i, and looks at all the other positions of S′. It checks the
new distribution of positions in S′ at positions i, and deduces energetically con-
nected positions with i based on the idea that connected positions are expected
to share a similar distribution, that is to change similarly.

For example, extracting only the sequences that contain amino-acid a at posi-
tion i results in a subalignment in which position i has experienced a substantial
statistical perturbation (the fraction of a changes from 0.6 to 1.0 for instance).
If the subalignment still retains sufficient size and diversity so that it remains a
representative ensemble of the fold family, then the following properties should
hold. First, sites l, which were not conserved in the parent alignment, should
still show an amino acid distribution near the mean in all proteins. Second, sites
k, which were conserved but not coupled to site i, should remain unchanged
in their amino acid distribution. Finally, the coupling of sites i and j should
induce a change in the observed distribution at site j upon perturbation at i.
The magnitude of this change can be quantitatively measured as a statistical
coupling energy between position j and the perturbation at i (with the notion
of ΔΔGstat

j,i defined in [28,40]). Several examples demonstrated the accuracy of
the method to detect networks of functional and allosteric sites.

The Statistical Coupling Analysis method might miss some signals on the
functional or mechanical properties of residues because of the hypothesis on the
number of aligned sequences and of sequence divergence which are required to
be both high by the statistical approach for a protein family. In general, these
constraints limit the domain of applicability of the method to well-described
families. By exploiting combinatorial information on the distance trees associated
to a protein family, an alternative method (described below) has been proposed
to drop divergence constraints [5].

3.2 Combinatorial Approaches

The Maximal SubTrees method. A sequence-based combinatorial alterna-
tive to statistical approaches has been proposed in [5] for the detection of func-
tionally important co-evolved residue networks using phylogenetic information.
This combinatorial approach is based on the analysis of a set of aligned se-
quences, on the associated distance tree and on the combinatorics of its subtrees
and does not need structural data nor the knowledge of functional residues as
the ATD method. The method is based on four main steps:

1. it selects conserved positions based on the scattering of residues (within the
position) in the tree. The combinatorics of the tree plays a crucial role here in
contrast with the analysis done on statistical approaches which are concerned
on computing the entropy of aligned columns. For this step, a novel notion of
rank for aligned positions in a MSA is used. It is defined to be the number of
Maximal SubTrees (MST) observed at the position, where a MST is the largest
subtree conserving a residue at the given position in all sequences labeling the
nodes of the subtree. This notion is purely based on combinatorial information
extracted from the distance tree.

Co-evolution and Information Signals in Biological Sequences 13

2. it evaluates all pairs of selected conserved positions accordingly to the dis-
tribution of their residues in the tree. Namely, for each selected position, we
parse the distance tree and apply numerical criteria to score co-evolution be-
tween pairs of residues conserved on subtrees and identify positions with similar
residue distribution. We construct a matrix, called correspondence matrix, that
collects scores between all pairs of positions in the MSA.
3. it identifies pairs of conserved and co-evolved positions during evolution, based
on new numerical criteria adapted to tree and subtree analysis. Intuitively, the
criteria compare and compute the difference between the correspondence matrix
and the “ideal” matrix, observable in case of “perfect” co-evolution.
4. it clusters co-evolved residue networks reconstruction through an ad hoc de-
signed clusterisation algorithm.

The method has been applied on the haemoglobin example studied in [40] and
new co-evolved positions were found that have not been observed previously due
to percentage identity constraints of Ranganathan method. It identifies pairs of
coupled ”residues” and not only pairs of positions. This property is of interest
for determining meaningful functional signatures specific to the protein family.

Residual co-evolution detected by blocks. Compensation often involves
residues that are proximal in the folded structure [19,36,46]. Based on this obser-
vation and on the analysis coming from [5] finding blocks of consecutive residues
with high index of co-evolution, we decided to look at co-evolved blocks and
check whether the analysis of their co-evolution can bring some information of
functional origin. We propose a method to detect co-evolved blocks of residues,
define an appropriate score of co-evolution between pairs of blocks, numerically
rank them depending on their level of co-evolution, and clusterize them to obtain
networks of co-evolved blocks (Dib and Carbone, manuscript, 2009). In contrast
to Ranganathan method and to the other statistical methods proposed in the
literature, where co-evolution of alignment columns is analyzed through a com-
parison of their residue distributions, our main focus is on groups of successive
positions in the aligned homologous proteins, called blocks.

Given a MSA of n sequences, we consider groups of m consecutive positions
in the MSA, where m ≥ 1. For each group of consecutive positions and for
each sequence in the MSA, there is a uniquely identified word that appears as a
subword in the sequence and occupies the given consecutive positions. We look at
the set of n words associated to a group of positions and study the combinatorial
properties of the distribution of words in the group to establish whether a group
is a block or not. Intuitively, we look at the space of all words of length m and
check the variability of the words associated to a group. There are n+1 different
dimensions that are used to evaluate the space of words, and they correspond to
the number of “errors” or “exceptions” that we want to accept: dimension 0 is
the most restrictive one and it accepts no error, while dimension n accepts errors
to occur in all sequences. For dimension i, we call a block, every maximal group of
positions that contains at least two occurrences of each word, with the exception
of at most i words (that might occur only once). Two blocks co-evolve when the
associated distribution of words satisfy certain combinatorial thresholds (aimed

14 A. Carbone and L. Dib

to ensure the mutual variability of words in the blocks) within a given dimension.
For each dimension, we evaluate the score of co-evolution between blocks and
predict, by a transitive rule, networks of co-evolved blocks. When applied to a
large number of sequences, the algorithm might have a very costly computational
time. A randomized version of the algorithm allows us to compute sets of co-
evolved residues in high dimensions, and to handle more easily sets of divergent
sequences typically displaying a high number of small blocks. The method has
been applied to different protein families, among which, the haemoglobin family
and a large scale analysis of the performance of the method is underway.

4 Random Generation of Sequences to Test the Method

Predictions should be tested against real biological data and at the moment
experimental evidence on the role of networks of co-evolved residues is limited to
less than ten protein families for which we know quite precisely, about functional
interactions and allosteric properties. This experimental limitation demands for
a theoretical validation of the predictions. A possible approach is to determine
appropriate statistical tests based on random generation of sets of sequences.
Co-evolved residue prediction could be made on randomly generated sets and
compared, at a large scale, to predictions on real data. If predictions on real data
could provide a number of residues (covering the 20-30% of the amino-acids in
the protein as estimated on experimental data) that would appear in clusters
within the 3-dimensional structure of the protein while the random generation
could not, this would be an evidence of the significativity of the results.

Also, some of the signals detected by co-evolutionary methods might be arti-
facts of the phylogenetic tree [16], that is they might be signals coming from a
niche of the large evolutionary tree of species. Niches might induce the detection
of stronger signals of conservation (due to the higher similarity of the sequences)
and inappropriate predictions on the maintaining of functional properties in pro-
tein families could be inferred. In order to make sure that positions in aligned
sequences are co-evolving for functional reasons, again, we can model a random
set of aligned sequences, sharing a number of suitable properties with the original
ones, and test whether the same amount of important residues can be detected
from both sets as an effect of the intrinsic properties of the sequences.

The generation of random sequences which seems appropriate needs to ex-
plicitly preserve:

- the percentage of gaps (corresponding to insertions or deletions in sequences,
see Figure 1 for an example) in real sequences
– the percentage of sequence identity between sequences in the set
– the phylogenetic relationship between sequences in the set
– hydrophobic blocks in sequences, that is consecutive highly hydrophobic blocks
– amino-acid frequency usage
– the frequency of residue types (aromatic, alphamatic, neutral ...)

Attempts to generate sets of random protein sequences have been made in
[38,39], where some of the conditions above have been taken into account. To

Co-evolution and Information Signals in Biological Sequences 15

study co-evolutionary signals, a new and different approach to the random gen-
eration of sets of sequences is required. In fact, it is not conservation of residues
on single positions that we need to capture but co-evolutionary relationships
between several positions. A novel idea for doing this should be proposed and
would be most welcome in structural bioinformatics. An approach to the testing
of co-evolution would be to produce a random set of aligned sequences, respect-
ing the phylogenetic tree, that would maintain the co-evolution signal in the
protein family. Then the methodology could be tested to verify the robustness
of it and the probability for a signal to be weakened by noise.

5 Conclusions

Conservation and mutual conservation, or co-evolution, might appear at first to
be distinguished concepts but the combinatorial approach in [5] exploits the idea
that along time evolution, conservation “comes before” co-evolution, in the sense
that before two positions start to co-evolve together both they are conserved,
and that conservation occupies a specific position within the continuum spectrum
where to measure different degrees of co-evolution. A unifying theory explaining
this intuition is missing.

Acknowledgments. We thank Anthony Mathelier for helpful comments.

References

1. Adami, C., Cerf, N.J.: Physical complexity of symbolic sequences. Physica D 137,
62–69 (2000)

2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

3. Armon, A., Graur, D., Ben-Tal, N.: ConSurf: An Algorithmic Tool for the Iden-
tification of Functional Regions in Proteins by Surface Mapping of Phylogenetic
Information. J. Mol. Biol. 307, 447–463 (2001)

4. Cheng,G.,Qian,B., Samudrala,R.,Baker,D.: Improvement inprotein functional site
prediction by distinguishing structural and functional constraints on protein family
evolution using computational design. Nucleic Acids Res. 33, 5861–5867 (2005)

5. Baussand, J.,Carbone,A.:Acombinatorial approach todetect co-evolvedamino-acid
networks in protein families with variable divergence (submitted manuscript) (2009)

6. Bickel, P.J., Kechris, K.J., Spector, P.C., Wedemayer, G.J., Glazer, A.N.: Find-
ing important sites in protein sequences. Proceedings of the National Academy of
Sciences USA 99, 14764–14771 (2002)

7. Capra, J.A., Singh, M.: Predicting functionnally important residues from sequences
conservation. Bioinformatics 23, 1875–1882 (2007)

8. Carbone, A., Engelen, S.: Information content of sets of biological sequences re-
visited. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.)
Algorithmic Bioprocesses. Natural Computing Series. Springer, Heidelberg (2008)

9. Carothers, J.M., Oestreich, S.C., Davis, J.H., Szostak, J.W.: Informational com-
plexity and functional activity of RNA structures. J. Am. Chem. Soc. 126, 5130–
5137 (2004)

16 A. Carbone and L. Dib

10. Chang, M.S.S., Benner, S.A.: Empirical analysis of protein insertions and deletions
determining parameters for the correct placement of gaps in protein sequence align-
ments. J. Mol. Biol. 341, 617–631 (2004)

11. Cheng, G., Qian, B., Samudrala, R., Baker, D.: Improvement in protein functional
site prediction by distinguishing structural and functional constraints on protein
family evolution using computational design. Nucleic Acids Research 33, 5861–5867
(2005)

12. del Alamo, M., Mateu, M.G.: Electrostatic repulsion, compensatory mutations,
and long-range non-additive effects at the dimerization interface of the HIV capsid
protein. J. Mol. Biol. 345, 893–906 (2005)

13. Dunn, S.D., Wahl, L.M., Gloor, G.B.: Mutual Information Without the Influence of
Phylogeny or Entropy Dramatically Improves Residue Contact Prediction. Bioin-
formatics 24, 333–340 (2008)

14. Duret, L., Abdeddaim, S.: Multiple alignment for structural functional or phyloge-
netic analyses of homologous sequences. In: Higgins, D., Taylor, W. (eds.) Bioinfor-
matics sequence structure and databanks. Oxford University Press, Oxford (2000)

15. Engelen, S., Trojan, L.A., Sacquin-Mora, S., Lavery, R., Carbone, A.: Joint Evo-
lutionary Trees: detection and analysis of protein interfaces. PLoS Computational
Biology 5(1), e1000267 (2009)

16. Fares, M.A., Travers, S.A.A.: A Novel Method for Detecting Intramolecular Co-
evolution: Adding a Further Dimension to Selective Constraints Analyses. Genet-
ics 173, 9–23 (2006)

17. Fares, M.A., McNally, D.: CAPS: coevolution analysis using protein sequences.
Bioinformatics 22, 2821–2822 (2006)

18. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)
19. Fitch, W.M., Markowitz, E.: An improved method for determining codon variabil-

ity in a gene and its application to the rate of fixation of mutations in evolution.
Biochem Genet. 4, 579–593 (1970)

20. Fodor, A.A., Aldrich, R.W.: Influence of conservation on calculations of amino acid
covariance in multiple sequence alignments. Proteins 56, 211–221 (2004a)

21. Gloor, G.B., Martin, L.C., Wahl, L.N., Dunn, S.D.: Mutual information in pro-
tein multiple sequence alignments reveals two two classes of coevolving positions.
Biochemistry 44, 7156–7165 (2005)

22. Halperin, I., Wolfson, H., Nussinov, R.: Correlated mutations: advances and limita-
tions. A study on fusion proteins and on the CohesinDockerin families. Proteins 63,
832–845 (2006)

23. Innis, C.A.: siteFiNDER–3D: a web-based tool for predicting the location of func-
tional sites in proteins. Nucleic Acids Res. 35(Web-Server-Issue), 489–494 (2007)

24. Kass, I., Horovitz, A.: Mapping pathways of allosteric communication in GroEL
by analysis of correlated mutations. Proteins: Structure, Function, and Bioinfor-
matics 48, 611–617 (2002)

25. Lecompte, O., Thompson, J.D., Plewniak, F., Thierry, J., Poch, O.: Multiple align-
ment of complete sequences (MACS) in the post-genomic era.Gene. 270, 17–30 (2001)

26. Lichtarge, O., Bourne, H.R., Cohen, F.E.: An evolutionary trace method defines
binding surfaces common to protein families. J. Mol. Biol. 257, 342–358 (1996)

27. Lichtarge, O., Sowa, M.E.: Evolutionary predictions of binding surfaces and inter-
actions. Current Opinions in Structural Biology 12, 21–27 (2002)

28. Lockless, S.W., Ranganathan, R.: Evolutionary conserved pathways of energetic
connectivity in protein families. Science 286, 295–299 (1999)

29. Martin, L.C., Gloor, G.B., Dunn, S.D., Wahl, L.M.: Using information theory to
search for co-evolving residues in proteins. Bioinformatics 21, 4116–4124 (2005)

Co-evolution and Information Signals in Biological Sequences 17

30. Mateu, M.G., Fersht, A.R.: Mutually compensatory mutations during evolution
of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-
oligomerization. Proc. Natl. Acad Sci. USA 96, 3595–3599 (1999)

31. Mintseris, J., Weng, Z.: Structure, function, and evolution of transient and obligate
proteinprotein interactions. Proc. Natl. Acad. Sci. USA 102, 10930–10935 (2005)

32. Notredame, C.: Recent progresses in multiple sequence alignment: a survey. Phar-
macogenomics 31, 131–144 (2002)

33. Notredame, C.: Recent evolutions of multiple sequence alignment algorithms.
PLOS Computational Biology 8, e123 (2007)

34. Pazos, F., Helmer-Citterich, M., Ausiello, G., Valencia, A.: Correlated mutations
contain information about proteinprotein interaction. J. Mol. Biol. 271, 511–523
(1997)

35. Pazos, F., Valencia, A.: In silico two-hybrid system for the selection of physically
interacting protein pairs. Proteins 47, 219–227 (2002)

36. Poon, A., Chao, L.: The rate of compensatory mutation in the DNA bacteriophage
X174. Genetics 170, 989–999 (2005)

37. Pupko, T., Bell, R.E., Mayrose, I., Glaser, F., Ben-Tal, N.: Rate4Site: an algorith-
mic tool for the identification of functional regions in proteins by surface mapping
of evolutionary determinants within their homologues. Bioinformatics 18, S71–S77
(2002)

38. Rambaut, A., Grassly, N.C.: Seq-Gen: An application for the Monte Carlo simula-
tion of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13,
235–238 (1997)

39. Strope, C.L., Scott, S.D., Moriyama, E.N.: indel-Seq-Gen: A new protein family
simulator incorporating domains, motifs, and indels. Mol. Biol. Evol. 24, 640–649
(2007)

40. Suel, G.M., Lockless, S.W., Wall, M.A., Ranganathan, R.: Evolutionary conserved
networks of residues mediate allosteric communication in proteins. Nature Struct.
Biol. 23, 59–69 (2003)

41. Thompson, J.D., Plewniak, F., Poch, O.: A comprehensive comparison of multiple
sequence alignment programs. Nucleic Acids Research 27, 12682–12690 (1999)

42. Tillier, E.R., Lui, T.W.: Using multiple interdependency to separate functional
from phylogenetic correlations in protein alignments. Bioinformatics 19, 750–755
(2003)

43. Tress, M., de Juan, D., Grana, O., Gomez, M.J., Gomez-Puertas, P., Gonzalez,
J.M., Lopez, G., Valencia, A.: Scoring docking models with evolutionary informa-
tion. Proteins 60, 275–280 (2005)

44. Yang, Z.: Adaptive molecular evolution. In: Balding, D., Bishop, M., Cannings, C.
(eds.) Handbook of statistical genetics, pp. 327–350. Wiley, New York (2001)

45. Yang, Z., Swanson, W.J., Vacquier, V.D.: Maximum likelihood analysis of molec-
ular adaptation in abalone sperm lysin reveals variable selective pressures among
lineages and sites. Mol. Biol. Evol. 17, 1446–1455 (2000)

46. Yanofsky, C., Horn, V., Thorpe, D.: Protein Structure Relationships Revealed by
Mutational Analysis. Science 146, 1593–1594 (1964)

47. Wallace, I.M., Blackshields, G., Higgins, D.G.: Multiple sequence alignments. Curr.
Opin. Struct. Biol. 15, 261–266 (2005)

48. Watson, J.D., Laskowski, R.A., Thornton, J.M.: Predicting protein function from
sequence and structural data. Curr. Opin. Struct. Biol. 15, 275–284 (2005)

49. Wollenberg, K.R., Atchley, W.R.: Separation of phylogenetic and functional as-
sociations in biological sequences by using the parametric bootstrap. Proc. Natl.
Acad. Sci. U S A 97, 3288–3291 (2000)

The Extended Turing Model as Contextual Tool

S. Barry Cooper�

School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
pmt6sbc@leeds.ac.uk

http://www.amsta.leeds.ac.uk/~pmt6sbc/

Abstract. Computability concerns information with a causal – typically
algorithmic – structure. As such, it provides a schematic analysis of many
naturally occurring situations. We look at ways in which computability-
theoretic structure emerges in natural contexts. We will look at how
algorithmic structure does not just emerge mathematically from infor-
mation, but how that emergent structure can model the emergence of
very basic aspects of the real world.

1 Introduction

The adequacy of the classical Turing model of computation — as first presented
in [19] — is in question in many contexts. There is widespread doubt concerning
the reducibility to this model of a broad spectrum of real-world processes and
natural phenomena, from basic quantum mechanics to aspects of evolutionary
development, or human mental activity.

In 1939 Turing [20] described an extended model providing mathematical
form to the algorithmic content of structures which are presented in terms of
real numbers. Most scientific laws with a computational content can be framed
in terms of appropriate Turing reductions. This can be seen in implicit form
in Newton’s Principia [15], published some 272 years before Turing’s paper.
Newton’s work was formative in established a more intimate relationship between
mathematics and science, and one which held the attention of Turing, in various
guises, throughout his short life (see Hodges [11]).

Just as the history of arithmetically-based algorithms, underlying many hu-
man activities, eventually gave rise to models of computation such as the Turing
machine, so the oracle Turing machine schematically addresses the scientific fo-
cus on the extraction of predictions governing the form of computable relations
over the reals. Whereas the inputting of data presents only time problems for
the first model, the second model is designed to deal with possibly incomputable
inputs, or at least inputs for which we do not have available an algorithmic
presentation. One might reasonably assume that data originating from observa-
tion of the real world carries with it some level of computability, but we are yet
to agree a mathematical model of physical computation which dispenses with

� Preparation of this article supported by E.P.S.R.C. Research Grant No.
EP/G000212.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 18–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Extended Turing Model as Contextual Tool 19

the relativism of the oracle Turing machine. In fact, even as the derivation of
recognisable incomputability in mathematics arises from quantification over al-
gorithmic objects, so definability may play an essential role in fragmenting and
structuring the computational content of the real world. The Turing model of
computability over the natural numbers appears to many people to be a poor
indicator of what to expect in science.

2 The Turing Landscape: From Local to Global

The oracle Turing machine, which made its first appearance in Turing [20],
should be familiar enough. The details are not important, but can be found in
most reasonable introductions to computability (see for instance [4]).

The basic form of the questioning permitted is modelled on that of everyday
scientific practice. This is seen most clearly in today’s digital data gathering,
whereby one is limited to receiving data which can be expressed, and transmitted
to others, as information essentially finite in form. But with the model comes
the capacity to collate data in such a way as enable us to deal with arbitrarily
close approximations to infinitary inputs and hence outputs, giving us an exact
counterpart to the computing scientist working with real-world observations. If
the different number inputs to the oracle machine result in 0-1 outputs from the
corresponding Turing computations, one can collate the outputs to get a binary
real computed from the oracle real, the latter now viewed as an input. This gives
a partial computable functional Φ, say, from reals to reals.

As usual, one cannot computably know when the machine for Φ computes
on a given natural number input, so Φ may not always give a fully defined real
output. So Φ may be partial. One can computably list all oracle machines, and
so index the infinite list of all such Φ, but one cannot computably sift out the
partial Φ’s from the list.

Anyway, put R together with this list, and we get the Turing Universe. De-
pending on one’s viewpoint, this is either a rather reduced scientific universe,
or a much expanded one. The familiar mathematical presentation of it is due to
Emil Post, in his search for the informational underpinnings of computational
structure.

Post’s first step was to gather together binary reals which are computationally
indistinguishable from each other, in the sense that they are mutually Turing
computable from each other. Mathematically, this delivered a more standard
mathematical structure to investigate — the familiar upper semi-lattice of the
degrees of unsolvability, or Turing degrees. There is no simple scientific counter-
part of the mathematical model, or any straightforward justification for what
Post did with the Turing universe for perfectly good mathematical reasons —
if one wants to get a material avatar of the Turing landscape one needs both a
closer and a more comprehensive view of the physical context.

In approaching with this, we are presented with very real and inescapable
causal structure, accompanied by the information content of its particular in-
stantiations, and the problem is to explain and characterise this connection. The

20 S.B. Cooper

difficulty is that recognition of these causal structures entails us taking a global
view of an environment of which we ourselves are a component. When we look
at the mysterious emergence of structure in nature, either subatomic laws, or
the richness of life forms, or large-scale galactic or super-galactic structures, we
are not just looking at information, but at expressions of patterns of a universal
nature. And patterns the origins of which science is as yet unable to explain.

When we inspect the intricacies of the Cat’s Eye Nebula, say, as revealed by
the Hubble Space Telescope, we feel we should be able to explain the remarkable
complexity observed on the basis of our understanding of the local physics. The
intuition is that it should be possible to describe global relations in terms of local
structure, so capturing the emergence of large-scale structure. The mathematics
pertaining to any particular example will be framed in terms of the specific
interactive structure on which it is based. But if one wants to reveal general
characteristics, and approach deep problems around the emergence of physical
laws and constants, which current theory fails to do, one needs something more
fundamental.

Schematically, as we have argued, any causal context framed in terms everyday
computable mathematics can be modelled in terms of Turing reductions. Then
emergence can be formalised as definability over the appropriate substructure
of the Turing universe; or more generally, as invariance under automorphisms
of the Turing universe. Simple and fundamental as the notions of definability
and invariance are, and basic as they are to everyday thought and discourse, as
concepts they are not well understood outside of mathematics.

This is seen most strikingly in the physicists’ apparent lack of awareness of the
concept in interpreting the collapse of the wave function. Quantum decoherence
and the many-worlds hypothesis comprise a far more outlandish interpretive
option than does speculating that measurements, in enriching an environment,
merely lead to an assertion of invariance. It appears a sign of desperation to
protect consistent histories by inventing new universes, when the mathematics
of our observable universes already contains a straightforward explanation. We
argue that many scientific puzzles can be explained in terms of failures of invari-
ance in different contexts, and that the key task is to identify useful theoretical
models within which to investigate the nature of invariance more fully. One of
the most relevant of these models has to be that of Turing, based as it is on a
careful analysis of the characteristics of algorithmic computation.

This brings us to a well-known research programme, initiated by Hartley
Rogers in his 1967 paper [17], in which he drew attention to the fundamental
problem of characterising the Turing invariant relations. Again, the intuition
is that these are key to pinning down how basic laws and entities emerge as
mathematical constraints on causal structure. It is important to notice how the
richness of Turing structure discovered so far becomes the raw material for a
multitude of non-trivially definable relations, matching in its complexity what
we attempt to model.

Unfortunately, the current state of Rogers’ programme is not good. For a
number of years research in this area was dominated by a proposal originating

The Extended Turing Model as Contextual Tool 21

with the Berkeley mathematician Leo Harrington, which can be (very) roughly
stated:

Bi-interpretability Conjecture: The Turing definable relations are exactly
those with information content describable in second-order arithmetic.

Most importantly, bi-interpretability is not consistent with the existence of non-
trivial Turing automorphisms. Despite decades of work by a number of leaders
in the field, the exact status of the conjecture is still a matter of controversy.

For those of us who have grown up with Thomas Kuhn’s 1962 book [14] on
the structure of scientific revolutions, such difficulties and disagreements are not
seen as primarily professional failures, or triggers to collective shame (although
they may be that too), but rather signs that something scientifically important
is at stake.

3 Foundational Problems in Physics

A far more public controversy currently shapes developments around important
issues affecting theoretical physics — see, for example the recent books of Lee
Smolin [18] and Peter Woit [22].

As Peter Woit [22, p.1] describes, according to purely pragmatic criteria par-
ticle physics has produced a standard model which is remarkably successful, and
has great predictive power:

By 1973, physicists had in place what was to become a fantastically
successful theory of fundamental particles and their interactions, a theory
that was soon to acquire the name of the standard model. Since that
time, the overwhelming triumph of the standard model has been matched
by a similarly overwhelming failure to find any way to make further
progress on fundamental questions.

The reasons why people are dissatisfied echo misgivings going back to Einstein
himself [9, p.63]:

. . . I would like to state a theorem which at present can not be based
upon anything more than upon a faith in the simplicity, i.e. intelligibil-
ity, of nature: . . . nature is so constituted that it is possible logically
to lay down such strongly determined laws that within these laws only
rationally completely determined constants occur (not constants, there-
fore, whose numerical value could be changed without destroying the
theory) . . .

If one really does have a satisfying description of how the universe is, it should
not contain arbitrary elements with no plausible explanation. In particular, a
theory containing arbitrary constants, which one adjusts to fit the intended
interpretation of the theory, is not complete.

22 S.B. Cooper

And as Woit observes [22]:

One way of thinking about what is unsatisfactory about the standard
model is that it leaves seventeen non-trivial numbers still to be explained
. . .

At one time, it had been hoped that string theory would supply a sufficiently
fundamental framework to provide a much more coherent and comprehensive
description, in which such arbitrary ingredients were properly pinned down.
But despite its mathematical attractions, there are growing misgivings about
its claimed status as “the only game in town” as a unifying explanatory theory.
Here is how one time string theorist Daniel Friedan [10] combatively puts it:

The longstanding crisis of string theory is its complete failure to explain
or predict any large distance physics. . . . String theory is incapable of
determining the dimension, geometry, particle spectrum and coupling
constants of macroscopic spacetime. . . . The reliability of string theory
cannot be evaluated, much less established. String theory has no credi-
bility as a candidate theory of physics.

Smolin starts his book [18]:

From the beginning of physics, there have been those who imagined they
would be the last generation to face the unknown. Physics has always
seemed to its practitioners to be almost complete. This complacency
is shattered only during revolutions, when honest people are forced to
admit that they don’t know the basics.

He goes on to list what he calls the “five great [unsolved] problems in the-
oretical physics”. Gathering these together, and slightly editing, they are [18,
pp.5-16]:

1. Combine general relativity and quantum theory into a single theory that can
claim to be the complete theory of nature.

2. Resolve the problems in the foundations of quantum mechanics.
3. The unification of particles and forces problem: Determine whether or not

the various particles and forces can be unified in a theory that explains them
all as manifestations of a single, fundamental entity.

4. Explain how the values of the free constants in the standard model of physics
are chosen in nature.

5. Explain dark matter and dark energy. Or, if they dont exist, determine how
and why gravity is modified on large scales.

Problems also occur with the picture that general relativity provides us with
of the early stages of cosmology. This is Martin Bojowald writing [1, p.383]:

The beginning was extremely violent with conditions such as diverg-
ing energy densities and tidal forces under which no theory can prevail
. . . there are situations in the universe which . . . can be described only

The Extended Turing Model as Contextual Tool 23

by solutions to general relativity which . . . must have a singularity in the
past or future . . . From the observed expansion of our current universe
one can conclude that according to general relativity there must have
been such a singularity in the past . . . but . . . it is clear that the singular-
ity does not so much present a boundary to the universe as a boundary
to the classical theory: The theory predicts conditions under which it
has to break down and is thus incomplete. . . . A definitive conclusion
about a possible beginning can therefore be reached only if a more com-
plete theory is found which is able to describe these very early stages
meaningfully.

That each of the above problems can be framed in terms of definability is
not so surprising, since that is exactly how, essentially, they are approached
by researchers. The question is the extent to which progress is impeded by a
lack of consciousness of this fact, and an imperfect grip of what is fundamental.
Quoting Einstein again (from a letter to Robert Thornton, dated 7 December
1944, Einstein Archive 61-754), this time on the relevance of a philosophical
approach to physics:

So many people today – and even professional scientists – seem to me
like someone has seen thousands of trees but has never seen a forest. A
knowledge of the historical and philosophical background gives that kind
of independence from prejudices of his generation from which most sci-
entists are suffering. This independence created by philosophical insight
is – in my opinion – the mark of distinction between a mere artisan or
specialist and a real seeker after truth.

Smolin’s comment [18, p.263] is in the same direction, though more specifically
directed at the string theorists:

The style of the string theory community . . . is a continuation of the cul-
ture of elementary-particle theory. This has always been a more brash,
aggressive, and competitive atmosphere, in which theorists vie to respond
quickly to new developments . . . and are distrustful of philosophical is-
sues. This style supplanted the more reflective, philosophical style that
characterized Einstein and the inventors of quantum theory, and it tri-
umphed as the center of science moved to America and the intellectual
focus moved from the exploration of fundamental new theories to their
application.

So what is it that is fundamental that is being missed? For Smolin [18, p.241],
it is causality:

It is not only the case that the spacetime geometry determines what the
causal relations are. This can be turned around: Causal relations can
determine the spacetime geometry . . . Its easy to talk about space or
spacetime emerging from something more fundamental, but those who
have tried to develop the idea have found it difficult to realize in prac-
tice. . . . We now believe they failed because they ignored the role that

24 S.B. Cooper

causality plays in spacetime. These days, many of us working on quan-
tum gravity believe that causality itself is fundamental – and is thus
meaningful even at a level where the notion of space has disappeared.

Citing Penrose as an early champion of the role of causality, Smolin also
mentions Rafael Sorkin, Fay Dowker, and Fotini Markopoulou, known in this
context for their interesting work on causal sets (see [2]), which abstract from
causality relevant aspects of its underlying ordering relation. Essentially, causal
sets are partial orderings which are locally finite, providing a model of spacetime
with built-in discreteness. Despite the apparent simplicity of the mathematical
model, it has had striking success in approximating the known characteristics of
spacetime. An early prediction, in tune with observation, concerned the value of
Einstein’s cosmological constant.

Of course, this preoccupation with causality might suggest to a logician a
need to also look at its computational content. Smolin’s comment that “Causal
relations can determine determine the spacetime geometry” touches on one of the
biggest disappointments with string theory, which turns out to be a ‘background
dependant’ theory with a vengeance — one has literally thousands of candidate
Calabi-Yau spaces for shaping the extra dimensions of superstring theory. In
current superstring models, Calabi-Yau manifolds are those qualifying as possible
space formations for the six hidden spatial dimensions, their undetected status
explained by the assumption of their being smaller than currently observable
lengths.

Ideally, a truly fundamental mathematical model should be background inde-
pendent, bringing with it a spacetime geometry arising from within.

4 Turing Invariance and the Laws of Physics

There are obvious parallels between the Turing universe and the material world.
Each of which in isolation, to those working with specific complexities, may seem
superficial and unduly schematic. But the lessons of the history of mathematics
and its applications are that the simplest of abstractions can yield unexpectedly
far-reaching and deep insights into the nature of the real world.

Most basic, science describes the world in terms of real numbers. This is
not always immediately apparent, any more that the computer on ones desk
is obviously an avatar of a universal Turing machine. Nevertheless, scientific
theories consist, in their essentials, of postulated relations upon reals. These
reals are abstractions, and do not come necessarily with any recognisable metric.
They are used because they are the most advanced presentational device we can
practically work with. There is no faith that reality itself consists of information
presented in terms of reals. In fact, those of us who believe that mathematics
is indivisible, no less in its relevance to the material world, have a due humility
about the capacity for our science to capture more than a surface description of
reality.

Some scientists would take us in the other direction, and claim that the uni-
verse is actually finite, or at least countably discrete. We have argued elsewhere

The Extended Turing Model as Contextual Tool 25

(see for example [8]) that to most of us a universe without algorithmic content
is inconceivable. And that once one has swallowed that bitter pill, infinitary ob-
jects are not just a mathematical convenience (or inconvenience, depending on
ones viewpoint), but become part of the mathematical mold on which the world
depends for its shape. As it is, we well know how essential algorithmic content
is to our understanding of the world. The universe comes with recipes for doing
things. It is these recipes which generate the rich information content we ob-
serve, and it is reals which are the most capacious receptacles we can humanly
carry our information in, and practically unpack.

Globally, there are still many questions concerning the extent to which one can
extend the scientific perspective to a comprehensive presentation of the universe
in terms of reals — the latter being just what we need to do in order to model
the immanent emergence of constants and natural laws from an entire universe.
Of course, there are many examples of presentations entailed by scientific models
of particular aspects of the real world. But given the fragmentation of science, it
is fairly clear that less natural presentations may well have an explanatory role,
despite their lack of a role in practical computation.

The natural laws we observe are largely based on algorithmic relations be-
tween reals. Newtonian laws of motion will computably predict, under reason-
able assumptions, the state of two particles moving under gravity over different
moments in time. And, as previously noted, the character of the computation
involved can be represented as a Turing functional over the reals representing
different time-related two-particle states. One can point to physical transitions
which are not obviously algorithmic, but these will usually be composite pro-
cesses, in which the underlying physical principles are understood, but the math-
ematics of their workings outstrip available analytical techniques.

Over forty years ago, Georg Kreisel [12] distinguished between classical sys-
tems and cooperative phenomena not known to have Turing computable be-
haviour, and proposed [13, p.143, Note 2] a collision problem related to the
3-body problem, which might result in “an analog computation of a non-recursive
function (by repeating collision experiments sufficiently often)”. However, there
is a qualitatively different apparent breakdown in computability of natural laws
at the quantum level — the measurement problem challenges us to explain how
certain quantum mechanical probabilities are converted into a well-defined out-
come following a measurement. In the absence of a plausible explanation, one is
denied a computable prediction. The physical significance of the Turing model
depends upon its capacity for explaining what is happening here. If the phe-
nomenon is not composite, it does need to be related in a clear way to a Turing
universe designed to model computable causal structure. We will need to talk
more about definability and invariance.

For the moment, let us think in terms of what an analysis of the automor-
phisms of any sufficiently comprehensive, sufficiently fundamental, mathematical
model of the material universe might deliver.

Let us first look at the relationship between automorphisms and many-worlds.
When one says “I tossed a coin and it came down heads, maybe that means

26 S.B. Cooper

there is a parallel universe where I tossed the coin and it came down tails”,
one is actually predicating a large degree of correspondence between the two
parallel universes. The assumption that you exist in the two universes puts a
huge degree of constraint on the possible differences — but nevertheless, some
relatively minor aspect of our universe has been rearranged in the parallel one.
There are then different ways of relating this to the mathematical concept of an
automorphism.

One could say that the two parallel worlds are actually isomorphic, but that
the structure was not able to define the outcome of the coin toss. So it and its
consequences appear differently in the two worlds. Or one could say that what
has happened is that the worlds are not isomorphic, that actually we were able
to change quite a lot, without the parallel universe looking very different, and
that it was these fundamental but hidden differences which forces the worlds to
be separate and not superimposed, quantum fashion. The second view is more
consistent with the view of quantum ambiguity displaying a failure of definabil-
ity. The suggestion here being that the observed existence of a particle (or cat!)
in two different states at the same time merely exhibits an automorphism of our
universe under which the classical level is rigid (just as the Turing universe dis-
plays rigidity above 0′′) but under which the sparseness of defining structure at
the more basic quantum level enables the automorphism to re-represent our uni-
verse, with everything at our level intact, but with the particle in simultaneously
different states down at the quantum level. And since our classical world has no
need to decohere these different possibilities into parallel universes, we live in
a world with the automorphic versions superimposed. But when we make an
observation, we establish a link between the undefined state of the particle and
the classical level of reality, which destroys the relevance of the automorphism.

To believe that we now get parallel universes in which the alternative states
are preserved, one now needs to decide how much else one is going to change
about our universe to enable the state of the particle destroyed as a possiblity
to survive in the parallel universe — and what weird and wonderful things one
must accommodate in order to make that feasible. It is hard at this point to
discard the benefits brought by a little mathematical sophistication. Quantum
ambiguity as a failure of definability is a far more palatable alternative than the
invention of new worlds of which we have no evidence or scientific understanding.

Another key conceptual element in the drawing together of a global picture
of our universe with a basic mathematical model is the correspondence between
emergent phenomena and definable relations. This gives us a framework within
which to explain the particular forms of the physical constants and natural laws
familiar to us from the standard model science currently provides. It goes some
way towards substantiating Penrose’s [16, pp.106-107] ‘strong determinism’, ac-
cording to which “all the complication, variety and apparent randomness that
we see all about us, as well as the precise physical laws, are all exact and un-
ambiguous consequences of one single coherent mathematical structure” — and
repairs the serious failure of the standard model pointed to by researchers such

The Extended Turing Model as Contextual Tool 27

as Smolin and Woit. It also provides a hierarchical model of the fragmentation
of the scientific enterprise.

This means that despite the causal connections between say particle physics
and the study of living organisms, the corresponding disciplines are based on
quite different basic entities and natural laws, and there is no feasible and infor-
mative reduction of one to another. The entities in one field may emerge through
phase transitions characterised in terms of definable relations in the other, along
with their distinct causal structures. In this context, it may be that the an-
swer to Smolin’s first ‘great unsolved problem in theoretical physics’ consists of
an explanation of why there is no single theory (of the kind that makes useful
predictions) combining general relativity and quantum theory.

The following table provides a summary of some of the main features of the
Turing interpretation, drawing out parallels between scientific activity and what
the Turing model provides. For further discussion of such issues, see [3], [5], [6],
[7] and [8].

Science Turing landscape
Physical entities treated as information Structures information
Theories describing relations over the
reals, enabling calculations

Functionals over the reals modelled on
real computational capabilities

An extensive basic causal structure
which is algorithmic

Models computable causal relations
over the reals

Descriptions of globally emerging laws
and constants elusive

Problems pinning down the nature of
Turing invariance and definability

Features quantum ambiguity and non-
locality

Explanation in terms of putative break-
down in Turing definability

Theoretical fragmentation involving
phase transitions

Incomputability, and algorithmic rela-
tions over emergent objects

References

1. Bojowald, M.: Loop quantum cosmology. In: Ashtekar, A. (ed.) 100 Years of Rel-
ativity — Space-Time Structure: Einstein and Beyond, pp. 382–414. World Scien-
tific, Singapore (2006)

2. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Spacetime as a causal set. Phys.
Rev. Lett. 59, 521–524 (1987)

3. Cooper, S.B.: Clockwork or Turing U/universe? - Remarks on causal determinism
and computability. In: Cooper, S.B., Truss, J.K. (eds.) Models and Computability.
London Mathematical Society Lecture Notes Series, vol. 259, pp. 63–116. Cam-
bridge University Press, Cambridge (1999)

4. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)
5. Cooper, S.B.: Definability as hypercomputational effect. Applied Mathematics and

Computation 178, 72–82 (2006)
6. Cooper, S.B.: How Can Nature Help Us Compute? In: Wiedermann, J., Tel, G.,

Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp.
1–13. Springer, Heidelberg (2006)

28 S.B. Cooper

7. Cooper, S.B.: Computability and emergence. In: Gabbay, M., Goncharov, S.S.,
Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic I. Logics for
the XXIst Century. Springer International Mathematical Series, vol. 4, pp. 193–231
(2006)

8. Cooper, S.B., Odifreddi, P.: Incomputability in Nature. In: Cooper, S.B.,
Goncharov, S.S. (eds.) Computability and Models, pp. 137–160. Kluwer Aca-
demic/Plenum, Dordrecht/New York (2003)

9. Einstein, A.: Autobiographical Notes. In: Schilpp, P. (ed.) Albert Einstein:
Philosopher-Scientist. Open Court Publishing (1969)

10. Friedan, D.: A Tentative Theory of Large Distance Physics. J. High Energy
Phys. JHEP10, 063 (2003)

11. Hodges, A., Turing, A.: The Enigma, Vintage, London, Melbourne, Johannesburg
(1992)

12. Kreisel, G.: Mathematical logic: What has it done for the philosophy of mathemat-
ics? In: Schoenman, R. (ed.) Bertrand Russell, Philosopher of the Century, Allen
and Unwin, London, pp. 201–272 (1967)

13. Kreisel, G.: Church’s Thesis: a kind of reducibility axiom for constructive mathe-
matics. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and proof theory:
Proceedings of the Summer Conference at Buffalo N.Y. 1968, pp. 121–150. North-
Holland, Amsterdam (1970)

14. Kuhn, T.S.: The Structure of Scientific Revolutions, 3rd edn. University of Chicago
Press, Chicago (1996)

15. Newton, I.: Philosophiae Naturalis Principia Mathematica, London (1687)
16. Penrose, R.: Quantum physics and conscious thought. In: Hiley, J., Peat, F.D. (eds.)

Quantum Implications: Essays in honour of David Bohm, pp. 105–120. Routledge
& Kegan Paul, London (1987)

17. Rogers Jr., H.: Some problems of definability in recursive function theory. In: Cross-
ley, J.N. (ed.) Sets, Models and Recursion Theory. Proceedings of the Summer
School in Mathematical Logic and Tenth Logic Colloquium, Leicester, pp. 183–
201. North-Holland, Amsterdam (1965)

18. Smolin, L.: The Trouble With Physics: The Rise of String Theory, the Fall of
Science and What Comes Next. Allen Lane/Houghton Mifflin, London, New York
(2006)

19. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 42, 230–265
(1936-1937); Turing, A.M.: Collected Works: Mathematical Logic, 18–53 (reprint)

20. Turing, A.: Systems of logic based on ordinals. Proceedings of the London Mathe-
matical Society 45, 161–228 (1939); Turing, A.M.: Collected Works: Mathematical
Logic, 81–148 (reprint)

21. Turing, A.M.: Collected Works: Mathematical Logic. In: Gandy, R.O., Yates,
C.E.M. (eds.). Elsevier, Amsterdam (2001)

22. Woit, P.: Not Even Wrong: The Failure of String Theory and the Continuing Chal-
lenge to Unify the Laws of Physics, Jonathan Cape, London (2006)

Strong Positive Reducibilities

Andrea Sorbi

University of Siena, 53100 Siena, Italy
sorbi@unisi.it

http://www.dsmi.unisi.it/~sorbi/

Abstract. The need of formalizing a satisfactory notion of relative com-
putability of partial functions leads to enumeration reducibility, which
can be viewed as computing with nondeterministic Turing machines us-
ing positive information. This paper is dedicated to certain reducibilities
that are stronger than enumeration reducibility, with emphasis given to
s-reducibility,which appears often in computability theory and applica-
tions. We review some of the most notable properties of s-reducibility,
together with the main differences distinguishing the s-degrees from the
e-degrees, both at the global and local level.

1 Motivations and Historical Background

Relative computability models computations using auxiliary information which
is stored and made available by some external resource, or “oracle”. The most
popular model of relative computability is provided by oracle Turing machines,
introduced by Turing, [36]. One could think of the following variation on the
classical model of an oracle Turing machine. The oracle stores information about
a total function f : the n-th cell of the oracle tape contains the value m = f(n);
the computing agent from time to time needs auxiliary information of the form
“Is f(n) = m?”, which is retrieved by accessing the n-th cell of the oracle tape.
This provides a way of computing a partial function relatively to f : in this
model of relative computability, access to the oracle database is immediate and
complete.

We propose an immediate generalization of the above model, in the case when
the oracle database stores data about a partial function ψ. Suppose that the com-
puting agent needs to know “Is ψ(n) = m?”; in order to answer this question
the computing agent gets access to the n-th cell of the oracle tape: how the
computation proceeds from now on depends on whether the cell stores m (affir-
mative answer: it is indeed ψ(n) = m), or some m′ �= m (negative answer: we
definitely know ψ(n) �= m), or no information is provided (i.e. n /∈ domain(ψ)):
in the last case the computation is stuck. This provides a very interesting model
of relative computability, with a corresponding reducibility notion on partial
functions, known as Sasso reducibility ≤T ([31]; see also [32]): keeping Sasso’s
notation, we use the same symbol as for Turing reducibility, since, as we will
see, on total functions the two reducibilities agree. There is a reasonable ma-
chine model that goes with this idea: the way the information is organized and

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 29–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.dsmi.unisi.it/~sorbi/

30 A. Sorbi

made available by the oracle takes the form of an enumeration of the graph of ψ.
Upon accessing the n-cell of the oracle tape, we wait for the oracle to enumerate
a pair 〈n, m′〉; thus we wait forever if n /∈ domain(ψ). Notice that in this model,
the computing agent has access to positive information (referring only to data
that are in ψ), in that negative information is available only when it can be
translated into positive information. However Sasso’s model does not do justice
to our intuitive idea of relative computability of partial functions. As argued
by Myhill, [23], let A be any noncomputable set; then in Sasso reducibility the
characteristic function c of A is not reducible to the semicharacteristic function
of A ⊕ A, s = {(2n, 0) : n ∈ A} ∪ {(2n + 1, 0) : n ∈ A} (where X denotes the
complement of a given set X) as if this were not the case then by monotonicity
we would also have that c is reducible to λx. 0, and then c would be computable.
On the other hand, the function c is intuitively computable relatively to s: on
input n, it is enough to search the oracle database for the information s(2n) = 0
or s(2n + 1) = 0. It is then clear that in order to allow for situations like this
one has to introduce some nondeterministic ingredients. This led Myhill [23] to
suggest the following reducibility notion on partial functions: φ ≤e ψ if there
exists a c.e. set W (of coded triples), such that

φ(n) = m ⇔ (∃ finite D)[〈〈n, m〉, D〉 ∈ W and D ⊆ ψ].

Notice that in this case for the two functions above we have that c ≤e s as is easily
seen: the reason for this lies in the fact that, in Sasso’s model, an oracle Turing
machine might get stuck after asking, for instance, the question “Is s(2n) = 0?”
if n ∈ A. In Myhill’s model, on the contrary, the computing agent can be viewed
as performing two computations in parallel: when needing information on a
particular n, the two different possibilities, i.e. both s(2n) = 0 and s(2n +
1) = 0 are tested at the same time, only one computation eventually giving
the output. In fact, Myhill reducibility can be characterized as nondeterministic
Sasso reducibility, as observed by Sasso, Cooper and McEvoy (see [21] for a
detailed proof): φ ≤e ψ if and only if there is a nondeterministic oracle Turing
machine which in Sasso’s model computes φ from oracle ψ.

It must be observed that Davis, [10], had previously taken yet another ap-
proach to relative computability of partial functions, introducing some ingredi-
ents of nondeterminism. He defines φ to be computable relative to ψ if φ ≤e ψ
via a c.e. set W of triples satisfying the following consistency condition: if
〈〈n, m〉, D〉, 〈〈n, m′〉, D′〉 ∈ W and m �= m′ then D ∪ D′ is not single-valued,
i.e. W maps partial functions to partial functions. However Davis reducibility
≤WT does not pass Myhill’s counterexample either, by an argument similar to
the one given for Sasso reducibility above.

Another advantage of Myhill’s definition is that it immediately extends to
sets, ([29]). Any computably enumerable (c.e.) set W defines an enumeration
operator (or e-operator), i.e. a mapping Φ : P(ω) → P(ω), where ω denotes the
set of natural numbers, and P(ω) its power set: if A ∈ P(ω) then

Φ(A) = {x : (∃ finite D)[〈x, u〉 ∈ W and D ⊆ A]}.

Strong Positive Reducibilities 31

Definition 1. If A = Φ(B) for some e-operator Φ then we say that A is enumer-
ation reducible to B (abbreviated by: A is e-reducible to B; in symbols: A ≤e B).

Enumeration reducibility is what Polyakov and Rozinas, [28], call a “positive”
reducibility, i.e. a reducibility in which the computing agent is typically allowed
to access only positive information about the oracle set. In particular, to an
oracle question like “n ∈ B?”, one may in general expect an answer only if
n ∈ B. If n /∈ B then the computing agent might get stuck waiting forever
for this information. One can convincingly argue that e-reducibility is the most
comprehensive positive reducibility, giving a formal counterpart to the idea of
a set A being “computably enumerable relatively to” a set B, i.e. there is an
effective procedure for enumerating A, given any enumeration of B. Here is
a suitable machine model for e-reducibility. The computing agent is a Turing
machine M , which step by step computably enumerates pairs 〈x, D〉 where x is
a number and D is a finite set; the oracle is independently providing positive
information about B by enumerating B (in an order and with a timing which
only depend on the oracle); if among the pairs enumerated by M by step s there
is a pair 〈x, D〉 and the elements of D have been already enumerated by the
oracle, then (if not already done) the computing agent enumerates x at stage s:
the set A consists exactly of the numbers that are enumerated in this way.

Our notations and terminology for computability theory are standard, and
can be found for instance in [8], which contains also an excellent introduction
to positive reducibilities. If ≤r is a reducibility, we denote by ≡r the equivalence
relation generated by ≤r; the r-degree of a set A, denoted by degr(A), is the
equivalence class of A under ≡r; we order r-degrees by degr(A) ≤r degr(B), if
A ≤r B. All reducibilities ≤r considered in this paper give rise to an upper
semilattice Dr with least element given by 0r = {W : W c.e.}; the least upper
bound is given by degr(A) ∨ degr(B) = degr(A ⊕ B). Any positive reducibility
≤r studied here can be viewed also as a reducibility on partial functions, via
identification of partial functions with their graphs. Whether one works with
sets or partial functions, the corresponding degree structures are isomorphic as
for every set A, A is ≡r to the semicharacteristic function of A. The degree
structure originated by a reducibility ≤r will be denoted by 〈Dr,≤r〉; the Turing
degrees will be denoted simply by 〈T,≤〉.

2 Strong Enumeration Reducibilities

Whether we work with sets or partial functions, by a strong enumeration re-
ducibility, we usually mean a positive reducibility that is stronger than enumer-
ation reducibility. Accordingly, Sasso and Davis reducibilities can be viewed as
strong enumeration reducibilities. Indeed, it immediately follows from the defi-
nitions that ≤T⊆≤WT⊆≤e: the former inclusion is proper as follows from item 2
below; the latter inclusion is proper by a result due to Myhill and Shepherdson
(see [29, Theorem 13.XIX]). Not much is known about the degree structures
corresponding to these reducibilities, with the following notable exceptions. For
a poset P, define Th(P) to denote the collection of all first order sentences σ (in

32 A. Sorbi

the language of partial orders with identity), which are true in P. Two posets
〈P1,≤1〉, 〈P2,≤2〉, are elementarily equivalent if Th(P1) = Th(P2). Then:

1. DT and T are not elementarily equivalent, ([5]): in T there is a cone made
up of joins of minimal degrees, whereas this is not the case of DT.

2. DWT is elementarily equivalent neither with the Turing degrees T, nor with
DT, since in DWT there is no minimal element (Gutteridge’s proof, [14], for
the e-degrees works fine here), although the structure is not dense (see proof
of Theorem 1 below). On the other hand, one can embed in DT every count-
able distributive lattice with 0 as an initial segment ([5]). As a consequence,
Th(DT) is computably isomorphic to second order arithmetic ([5]).

Moreover, see ([20]), Th(DWT) is computably isomorphic to second order arith-
metic. For the proof of this claim, one may use the same coding techniques as the
ones used in [33] for the e-degrees, by showing that every countable relation is
uniformly definable with parameters, thus reducing second order quantification
to quantification on elements of the structure.

Embedding the Turing degrees. If f and g are total functions then, see for instance
[29, Corollary 9.XXIV],

f ≤ g ⇔ f ≤T g ⇔ f ≤WT g ⇔ f ≤e g

(recall that ≤ denotes Turing reducibility). This shows that the Turing degrees T
embed into the three degree structures DT, DWT, De preserving 0 and suprema:
the embedding identifies the T-degrees as the r-degrees of total functions for
r ∈ {T, WT, e}.

Typically, strong enumeration reducibilities arise when there are constraints
or bounds to how the computing agent can retrieve oracle information. A par-
ticularly interesting example is provided by s-reducibility: an s-operator is an
enumeration operator containing only elements of the form 〈x, D〉, where D is
empty or a singleton. In many practical situations in which we have A ≤e B, we
have in fact A ≤s B (including Myhill’s example quoted above, in which c ≤s s).

This gives a very nice and natural reducibility ≤s, which is now being actively
studied. It is worth noticing that A ≤s B if and only if there exists a computable
function f such that (if B �= ω)

x ∈ A ⇔ Wf(x) ⊆ B,

which takes us to the definition of Q-reducibility ≤Q (introduced by Tennen-
baum: see [29, p. 159]): in other words A ≤s B if and only if A ≤Q B. Sev-
eral interesting applications of Q-reducibility and s-reducibility to algebra and
word problems of groups, [3], are known. Q-reducibility has also been studied
in connection with abstract complexity theoretic questions: see for instance [13].
Contrary to Sasso and Davis reducibilities, s-reducibility does not agree with
Turing reducibility on total functions: the only implication to hold is

f ≤s g ⇒ f ≤ g

thus the Π0
1 s-degrees (isomorphic with the c.e. Q-degrees) are not a copy of the

c.e. Turing degrees, as on Π0
1 sets s-reducibility only implies Turing reducibility.

Strong Positive Reducibilities 33

3 The Structure of the s-Degrees

The reducibility ≤s is properly contained in ≤e: as shown by Theorem 6 below,
every nonzero e-degree contains at least two s-degrees.

Theorem 1. In Ds there is no atom, although the structure is not dense (in
fact nontrivial empty intervals exist, in which the endpoints are Π0

2 s-degrees).

Proof. Gutteridge’s proof of the nonexistence of atoms in De carries over directly
to the s-degrees. As to nondensity, in their proof for the e-degrees Calhoun
and Slaman, [4], build a nontrivial empty interval, whose endpoints have as
representatives Π0

2 sets A and B such that in fact A ≤1 B. �
If one has in mind to use ≤s as a reducibility on partial functions, then one
might ask what is the role of the total s-degrees. Well, they “determine” the
whole structure, as shown by the following theorem.

Theorem 2. The total s-degrees generate Ds under infima. In other words, ev-
ery s-degree is the infimum of two bigger total s-degrees.

Proof. The proof is virtually the same as for the e-degrees, see [35]. In fact, if
a ≤s b then we can find a total c ≥s a such that a = b ∧ c. �
Although they share the above features, Ds and De are in many respects very
different from each other. A useful tool to measure how different two structures
of the same signature are is to exhibit elementary differences:

Theorem 3. [38] There is a nonzero s-degree a such that

(∀b, c)[a ≤s b ∨ c ⇒ a ≤s b or a ≤s c].

As a consequence, De and Ds are not elementarily equivalent.

Proof. Take the s-degree of any non c.e. retraceable set. Recall that a set A =
{a0 < a1 < . . .} is retraceable if there exists a partial computable function
ψ such that for all n, ψ(an+1) = an and ψ(a0) = a0. Then, [38], [2], if A is
retraceable and B ⊆ A is an infinite subset, then A ≤s B, via the s-operator
Γ = {〈x, {y}〉 : (∃k)[ψk(y) ↓= x]}, where ψk(y) denotes the k-th iteration of ψ
starting from y. It follows, [38], that if A is infinite retraceable then for every
B, C,

A ≤s B ⊕ C ⇒ A ≤s B or A ≤s C.

To see this, suppose that A ≤s B ⊕ C. Then by the s-operator witnessing the
reduction, we can construct a computable function f such that, for every x,

x ∈ A ⇔ Wf(x) ∩ (B ⊕ C) �= ∅.
Let B0, C0 be the subsets of A consisting of those x for which Wf(x) intersects
B⊕∅ and ∅⊕C, respectively. Then B0 ≤s B and C0 ≤s C and since A is infinite
we have that either B0 is infinite or C0 is infinite. If for instance B0 is infinite
then since B0 ⊆ A we have A ≤s B0 ≤s B.

The above property does not hold in De, as can be seen by standard forcing
techniques, and thus gives an elementary difference between De and Ds. �

34 A. Sorbi

4 The Local Structure of the s-Degrees

We deal here with two degree structures (the e-degrees and the s-degrees) which
are endowed with a jump operation, and so by local structure we mean the
degrees below the jump of the least element: call this first jump 0′

e or 0′
s according

to whether we are in the e-degrees or the s-degrees. (The e-jump was introduced
and studied in [6] and [22]; for the s-jump see [25].) Without giving detailed
definitions of the jump operations, suffice it to say that in both cases the local
structures partition the Σ0

2 sets: in particular 0′
e = dege(K) and 0′

s = degs(K).
For this reason we often refer to the elements of these local structures as Σ0

2
degrees. We recall that a set A is Σ0

2 if and only if A = {x : (∃t)(∀s ≥ t)[x ∈ As]}
for some computable sequence of sets {As}, called a Σ0

2 approximation to A; a
stage s in the approximation is good if As ⊆ A; the approximation is good if it has
infinitely many good stages. For r ∈ {e, s}, we denote by Lr the local structure
of Dr. We note that s-degrees consisting entirely of properly Σ0

2 sets do exist. In
fact, by the existence of e-degrees that are downwards properly Σ0

2 (i.e. nonzero
e-degrees a such that for all nonzero b ≤e a we have that b consists entirely of
properly Σ0

2 sets), and dually of e-degrees that are upwards properly Σ0
2 , and

even of e-degrees that are simultaneously downwards and upwards properly Σ0
2

(first exhibited in [9]), one concludes that similar results hold in Ls.
It is still an open question which lattices can be embedded into Ls. On the

positive side, it is possible to show that every countable distributive lattice is
embeddable. As every countable distributive lattice is embeddable in the free
Boolean algebra B on ω generators, it suffices to show that B is embeddable in
Ls. We can present B as a Boolean algebra of infinite computable sets (except
for the element 0, which is presented by ∅) and construct a Π0

1 set A such that
the assignment S �→ degs(AS) is the desired lattice embedding, where S ∈ B
and AS = {〈n, x〉 ∈ A : n ∈ S}. This shows in fact:

Theorem 4. [25] Every countable distributive lattice is embeddable in the Π0
1

s-degrees, preserving 0.

The local structure Ls is not distributive, though:

Theorem 5. The nonmodular five elements lattice N5 is embeddable in the Π0
1

s-degrees, via an embedding that preserves the least element.

The latter theorem was announced in [12], in the context of Q-reducibility. A
proof using s-reducibility can be found in [25].

5 Structure of the s-Degrees within the e-Degrees

It is known that in every e-degree there is a greatest s-degree, [38]: if A is any
set then A ≡e KA (where KA = {x : x ∈ Φx(A)} and we refer to some effective
listing {Φx} of the enumeration operators), and if B ≤e A then B ≤s KA (in
fact B ≤1 KA). Hence �a = degs(KA) is the greatest s-degree within dege(A).
Moreover, if GA is the set of good stages of some good Σ0

2 approximation of a

Strong Positive Reducibilities 35

Σ0
2 set A, then KA ≡s GA, and GA is hyperimmune, see [15]. We recall that

a sequence of finite sets {Fn} is a disjoint weak (strong) array if there exists a
computable function f such that Fn = Wf(n) (Fn = Df(n)) and on distinct in-
dices f lists disjoint sets. An infinite set X is hyperhyperimmune (hyperimmune)
if for every disjoint weak (strong) array {Fn}, we have that Fn ⊆ X for some n;
if X contains no infinite c.e. set then X is said to be immune.

Theorem 6. [38] Every nonzero e-degree a = dege(A) contains a set B <s KA:
thus there exist at least two s-degrees within a.

Proof. It can be shown that no non-c.e. semirecursive set nor any immune set
can be s-reduced to a superset of a simple set. Given a non c.e. A, take B =
S∪⋃n∈KA

Fn, where S is Post’s simple set (a c.e. set which is coimmune but not
cohyperrimune), and {Fn} is a disjoint strong array such that Fn∩S �= ∅ for each
n. Then B ≡e KA, hence B ≤s KA, but on the other hand KA �≤s B: if A ∈ Σ0

2 ,
this follows from the fact that GA ≤s KA, and GA is immune; otherwise by [17,
Theorem 3.6] take a semirecursive set R such that R ≤e KA ≤ R (recall that ≤
denotes Turing reducibility), hence R ≤s KA; but since we assume KA /∈ Δ0

2, R
is not c.e., and KA ≤s B would imply R ≤s B, a contradiction. �

The situation is much clearer if we limit our attention to Σ0
2 e-degrees.

Theorem 7. [18] Every nonzero Σ0
2 e-degree a consists of infinitely many s-

degrees. In fact within a there is no least s-degree, and one can embed any
countable partial order.

Particular cases of this result had been shown by Watson, [37] using the priority
method. Recently Kent, [18], has given a priority-free uniform proof that holds
of every nonzero Σ0

2 e-degree. Harris, [15], has further clarified the situation.
Using the fact that for every Σ0

2 set A, KA ≡s GA, by an argument similar to
the density proof for the Σ0

2 e-degrees as presented in [19], he shows the following
density result which extends the second claim of Theorem 7, and also gives, as
a corollary, upwards density of the Σ0

2 s-degrees, first proved in [25]:

Theorem 8. In any nonempty interval of Σ0
2 s-degrees (b,�a), one can embed

any countable partial order.

6 The First Order Theory of the Σ0
2 s-Degrees

The local structure Ls is not elementarily equivalent to Le. If we look at Theorem
3 again, we see that property therein pointed out gives indeed a difference also
at the level of local structures: for instance, it is not difficult to see that for every
total function f there is a retraceable B such that B ≡e f and f ≤s B: take
B = {〈f(0), . . . , f(n− 1)〉 : n ∈ ω}. Applying this to the characteristic function
cK we have that K ≡s B for some retraceable B. Thus:

Corollary 1. 0′
s is join-irreducible. Hence Th(Ls) �= Th(Le).

36 A. Sorbi

We now turn to show that Th(Ls) is undecidable. We do this by showing how
to code any Σ0

4 set in an independent family of Σ0
2 s-degrees. Recall that in an

upper semilattice 〈U,≤,∨〉, a countable A ⊆ U is called independent if for every
a ∈ A and any finite F ⊆ A, we have that a ≤ ∨

F implies a ∈ F . The key
result is:

Theorem 9. [1] There is an independent set of Σ0
2 s-degrees that is first-order

definable with parameters in Ls. In fact, there exist 2-c.e. s-degrees (i.e. degrees
containing sets of the form X \ Y , where X and Y are c.e.) {ai}i∈ω, a, b, c,
such that the ai’s form an independent set and are the minimal solutions of the
inequalities

x ≤s a and b ≤s x ∨ c,

i.e. b ≤s ai ∨ c for every i, and for every x,

x ≤s a and b ≤s x ∨ c ⇒ (∃i)[ai ≤s x].

The proof is by an infinite priority argument.
Consider now such an independent antichain, and call α(v, p), with parameters

p, the first order formula defining the antichain. By the Exact Degree Theorem
for the Σ0

2 e-degrees ([24]) which after inspection holds for the s-degrees as
well, every Σ0

4 set S can be uniformly associated with an s-degree d such that
S = Sd = {i : ai ≤s d} and thus (with p being the relevant list of parameters)

Sd ⊆ Se ⇔ Ls |= (∀a) ((α(a,p) ∧ a ≤ d) → a ≤ e) .

Therefore the first order theory of the poset 〈Σ0
4 -sets,⊆〉 (which is known to be

hereditarily undecidable, see [16]) is elementarily definable with parameters in
the Σ0

2 s-degrees, giving that the first order theory of Ls is undecidable.
Inspection of the proof, and the fact that for every 2-c.e. set C there exists a

Π0
1 -set D such that C ≡s D, ([25]), allow to conclude that there is an independent

set of Π0
1 s-degrees that is first-order definable with parameters. Together with

a suitable version of the Exact Degree Theorem for Π0
1 s-degrees we thus obtain

a different proof of a result in [11], stating that the first order theory of the c.e.
Q-degrees is undecidable:

Corollary 2. The first order theory of the Π0
1 s-degrees is undecidable.

7 s-Degrees and Immunity Properties

s-reducibility and its sibling Q-reducibility can be fruitfully used to study immu-
nity properties of sets (see definitions at the beginning of Section 5). Following
previous work of other authors (see for instance [13] and [34]: a set A is hyper-
hypersimple, i.e. c.e. and cohyperhyperimmune, if and only no c.e. superset of B
is Q-complete), Omanadaze and Sorbi, [26], prove that a Δ0

2 set A is hyperhy-
perimmume if and only if K �s B for every infinite Δ0

2 subset B of A. (Harris,
personal communication, has pointed out that this characterization extends to
the Σ0

2 hyperhyperimmume sets as well.) Moreover, as already observed, [15],
the top s-degree in any nonzero e-degree is hyperimmume (i.e. it contains an
hyperimmume set), hence degs(K) is hyperimmume. However:

Strong Positive Reducibilities 37

Theorem 10. [26] degs(K) does not contain any Δ0
2 hyperhyperimmune set.

It is known that the immune and hyperimmune e-degrees are upwards closed,
[30]. The following shows that neither the immune nor the hyperimmune s-
degrees are upwards closed:

Theorem 11. [27] There are Δ0
2 s-degrees a ≤s b such that a is hyperimmune,

but b does not contain any immune set.

8 Conclusions

We have focussed our attention on some features of the strong form of enumera-
tion reducibility known as s-reducibility, which we think are specially attractive
and interesting. A lot has still to be done towards a better understanding of
the corresponding degree structure, both at the global and local level. For in-
stance: Does every nonzero e-degree contain infinitely many s-degrees? Are the
Σ0

2 s-degrees dense (raised by [7]; the Π0
1 s-degrees are dense by [11])?

References

1. Affatato, M.L., Kent, T.F., Sorbi, A.: Undecidability of local structures of s-degrees
and Q-degrees. Tbilisi Mathematical Journal 1, 15–32 (2008)

2. Arslanov, M.M.: On a class of hypersimple incomplete sets. Mat. Zametki 38, 872–
874, 984–985 (1985) (English translation)

3. Belegradek, O.: On algebraically closed groups. Algebra i Logika 13(3), 813–816
(1974)

4. Calhoun, W.C., Slaman, T.A.: The Π0
2 e-degrees are not dense. J. Symbolic

Logic 61, 1364–1379 (1996)
5. Casalegno, P.: On the T-degrees of partial functions. JSL 50, 580–588 (1985)
6. Cooper, S.B.: Partial degrees and the density problem. Part 2: The enumeration

degrees of the Σ2 sets are dense. J. Symbolic Logic 49, 503–513 (1984)
7. Cooper, S.B.: Enumeration reducibility, nondeterministic computations and rela-

tive computability of partial functions. In: Ambos-Spies, K., Müller, G., Sacks, G.E.
(eds.) Recursion Theory Week, Oberwolfach 1989. Lecture Notes in Mathematics,
vol. 1432, pp. 57–110. Springer, Heidelberg (1990)

8. Cooper, S.B.: Computability Theory. Chapman & Hall/CRC Mathematics, Boca
Raton/London (2003)

9. Cooper, S.B., Copestake, C.S.: Properly Σ2 enumeration degrees. Z. Math. Logik
Grundlag. Math. 34, 491–522 (1988)

10. Davis, M.: Computability and Unsolvability. Dover, New York (1982)
11. Downey, R.G., Laforte, G., Nies, A.: Computably enumerable sets and quasi-

reducibility. Ann. Pure Appl. Logic 95, 1–35 (1998)
12. Fischer, P., Ambos-Spies, K.: Q-degrees of r.e. sets. J. Symbolic Logic 52(1), 317

(1985)
13. Gill III, J.T., Morris, P.H.: On subcreative sets and S-reducibility. J. Symbolic

Logic 39(4), 669–677 (1974)
14. Gutteridge, L.: Some Results on Enumeration Reducibility. PhD thesis, Simon

Fraser University (1971)

38 A. Sorbi

15. Harris, C.M.: Good Σ0
2 singleton degrees and density (to appear)

16. Herrmann, E.: The undecidability of the elementary theory of the lattice of recur-
sively enumerable sets. In: Frege conference, 1984, Schwerin, pp. 66–72. Akademie-
Verlag, Berlin (1984)

17. Jockusch Jr., C.G.: Semirecursive sets and positive reducibility. Trans. Amer. Math.
Soc. 131, 420–436 (1968)

18. Kent, T.F.: s-degrees within e-degrees. In: Agrawal, M., Du, D.-Z., Duan, Z., Li,
A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 579–587. Springer, Heidelberg (2008)

19. Lachlan, A.H., Shore, R.A.: The n-rea enumeration degrees are dense. Arch. Math.
Logic 31, 277–285 (1992)

20. Marsibilio, D., Sorbi, A.: Global properties of strong enumeration reducibilities (to
appear)

21. McEvoy, K.: The Structure of the Enumeration Degrees. PhD thesis, School of
Mathematics, University of Leeds (1984)

22. McEvoy, K.: Jumps of quasi–minimal enumeration degrees. J. Symbolic Logic 50,
839–848 (1985)

23. Myhill, J.: A note on degrees of partial functions. Proc. Amer. Math. Soc. 12,
519–521 (1961)

24. Nies, A.: A uniformity of degree structures. In: Sorbi, A. (ed.) Complexity, Logic
and Recursion Theory, pp. 261–276. Marcel Dekker, New York (1997)

25. Omanadze, R.S., Sorbi, A.: Strong enumeration reducibilities. Arch. Math.
Logic 45(7), 869–912 (2006)

26. Omanadze, R.S., Sorbi, A.: A characterization of the Δ0
2 hyperhyperimmune sets.

J. Symbolic Logic 73(4), 1407–1415 (2008)
27. Omanadze, R.S., Sorbi, A.: Immunity properties of s-degrees (to appear)
28. Polyakov, E.A., Rozinas, M.G.: Enumeration reducibilities. Siberian Math.

J. 18(4), 594–599 (1977)
29. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York (1967)
30. Rozinas, M.G.: Partial degrees of immune and hyperimmune sets. Siberian Math.

J. 19, 613–616 (1978)
31. Sasso, L.P.: Degrees of Unsolvability of Partial Functions. PhD thesis, University

of California, Berkeley (1971)
32. Sasso, L.P.: A survey of partial degrees. J. Symbolic Logic 40, 130–140 (1975)
33. Slaman, T., Woodin, W.: Definability in the enumeration degrees. Arch. Math.

Logic 36, 225–267 (1997)
34. Solov’ev, V.D.: Q-reducibility and hyperhypersimple sets. Veroyatn. Metod. i

Kibern. 10-11, 121–128 (1974)
35. Sorbi, A.: Sets of generators and automorphism bases for the enumeration degrees.

Ann. Pure Appl. Logic 94(3), 263–272 (1998)
36. Turing, A.M.: Systems of logic based on ordinals. Proc. London Math. Soc. 45,

161–228 (1939)
37. Watson, P.: On restricted forms of enumeration reducibility. Ann. Pure Appl.

Logic 49, 75–96 (1990)
38. Zacharov, S.D.: e- and s- degrees. Algebra and Logic 23, 273–281 (1984)

Fixed-Parameter Algorithms for Graph-Modeled
Date Clustering

Jiong Guo

Institut für Informatik, Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

jiong.guo@uni-jena.de

Abstract. We survey some practical techniques for designing fixed-
parameter algorithms for NP-hard graph-modeled data clustering prob-
lems. Such clustering problems ask to modify a given graph into a union
of dense subgraphs. In particular, we discuss (polynomial-time) kerneliza-
tions and depth-bounded search trees and provide concrete applications
of these techniques. After that, we shortly review the use of two further
algorithmic techniques, iterative compression and average parameteriza-
tion, applied to graph-modeled data clustering. Finally, we address some
challenges for future research.

1 Introduction

Clustering a given set of objects according to a given similarity or distance mea-
sure requires to partition the input objects into homogeneous and well-separated
subsets. This problem finds applications in many areas of computational biol-
ogy, such as analyzing gene expression [22, 23], proteins [19], gene networks [24],
etc. Using graph vertices to represent objects—such as genes or proteins—and
adding edges between two vertices iff the interrelation between the two corre-
sponding objects exceeds some threshold value, a clustering with respect to such
a graph is a disjoint union of dense subgraphs, also called clusters, such that
there are few or no edges between the clusters. A graph is dense if the vertices
in it are highly connected. Here, a dense group represents a set of highly similar
objects. When formulated as a graph modification problem, one thus asks for a
minimum-cardinality set of edge modifications such that in the resulting graph
every connected component is a cluster:

Π-Cluster Editing:
Input: An undirected graph G = (V, E), a density measure Π , and an
integer k ≥ 0.
Task: Decide whether there is a set of at most k edge modifications
(insertions or deletions) to transform G into a Π-cluster graph, that is,
a graph in which every connected component satisfies Π .

If the given objects admit a perfect cluster structure, namely, they form well-
separated groups and, inside each group, the objects are highly interrelated,

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 39–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 J. Guo

then the graph G should be a disjoint union of dense subgraphs. However, for
biological data, the input graph G usually is corrupted and we have to “correct”
it under the parsimony criterion to reconstruct the “best” clustering. This is
exactly what Π-Cluster Editing asks for.

One of the most prominent problems in this context is the NP-hard Cluster

Editing problem (also known as Correlation Clustering) [3, 23], where
the required density measure is Π :=“being a clique”. Cluster Editing has
been intensively studied from the viewpoints of polynomial-time approximability
as well as parameterized algorithmics [2, 5, 13]. Since the density requirement
of “being a clique” has been often criticized for its overly restrictive nature and
modeling disadvantages [9, 21], several other natural relaxations of cliques have
been considered in the literature, including s-defective cliques [25], s-plexes [21],
μ-cliques [1], etc. Already Cluster Editing being NP-hard [3, 23], we cannot
expect algorithms that can solve Π-Cluster Editing for more general Π ’s effi-
ciently. In practice, heuristic algorithms, approximation algorithms or similar
techniques have been employed to cope with the computational intractability
of NP-hard problems. However, there are many scenarios where the aforemen-
tioned techniques cannot provide satisfactory solutions. For instance, they typi-
cally fail when an optimal solution of a computationally hard problem is sought
and the solving algorithm should be reasonably efficient. Here, fixed-parameter
algorithms come into play, where one basically asks for exact algorithms whose
running time is exponential only with respect to a certain parameter k; in our
setting k denotes the number of modification operations. Thus, a Π-Cluster

Editing problem is called fixed-parameter tractable (FPT) if it can be solved
in f(k) · |V |O(1) time [20].

In this survey, several practically relevant techniques for designing fixed-
parameter algorithms for Π-Cluster Editing are addressed, in particular,
kernelization (polynomial-time data reduction with provable performance guar-
antee) and depth-bounded search trees that are based on forbidden subgraph char-
acterizations. Later, we briefly review two further algorithmic techniques and
conclude with some directions for future research.

Basic graph notations. We only consider undirected graphs G = (V, E), where
n := |V | and m := |E|. The (open) neighborhood N(v) of a vertex v ∈ V is the
set of vertices that are adjacent to v in G and N2(v) is the set of vertices that
have distance exactly two to v. The degree of a vertex v, denoted by deg(v), is
the cardinality of N(v). For a set U of vertices, N(U) :=

⋃
v∈U N(v) \ U . We

use N [v] to denote the closed neighborhood of v, that is, N [v] := N(v) ∪ {v}.
For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the
vertex set V ′ with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V , we use G−V ′

as an abbreviation for G[V \V ′] and for a vertex v ∈ V let G−v denote G−{v}.

2 Kernelizations

To solve NP-hard problems, polynomial-time preprocessing is a natural and
promising approach. Preprocessing is based on data reduction techniques that

Fixed-Parameter Algorithms for Graph-Modeled Date Clustering 41

take a problem’s input instance and try to perform a reduction to a smaller,
equivalent problem instance, called reduced instance. Many practical examples
have demonstrated the usefulness of the data reduction techniques [15, 17]. Data
reduction and problem kernelization results can explain, and prove, why prepro-
cessing works so well in many practical applications. The idea is to prove upper
bounds on the size of reduced problem instances, which are then called problem
kernels. These upper bounds shall be functions solely depending on a parameter
that typically is related with the size of a solution set of the problem under
study. The formal definition of problem kernels and kernelization reads as fol-
lows: Let (G, k) be an instance of a parameterized problem where k denotes
the parameter. A reduction to a problem kernel (or kernelization) means to re-
place (G, k) by a reduced instance (G′, k′) called problem kernel in polynomial
time such that (1) k′ ≤ k, (2) |G′| ≤ g(k) for some function g only depending
on k, and (3) (G, k) is a yes-instance if and only if (G′, k′) is a yes-instance.

In the following, we give two concrete applications of kernelization techniques.

General Data Reduction Rules and Average-s-Plex Editing. First, we present
two general data reduction rules that apply to Π-Cluster Editing for all
considered density measures Π but do not necessarily give a problem kernel.
Then, we show by the example of Average-s-Plex Editing that these rules,
however, can lead to fixed-parameter tractability results.

General rules. The following rule is clearly true and can be carried out in
polynomial time:

Rule 1. Remove connected components that satisfy Π from G.

The second rule is based on the easy-to-see observation that, if there are more
than k edge-disjoint paths between two vertices u and v, then u and v must
end up in the same Π-cluster after performing at most k edge modifications
to the input graph G. Then, we can merge u and v into a “super-vertex”. To
describe this rule, we introduce weight functions for the vertices and edges. For
each super-vertex X ∈ V , we define a set VX and two weight functions σ(X)
and δ(X): VX denotes the set of vertices merged into X , σ(X) := |VX |, and δ(X)
is equal to the number of edges between the vertices in VX . Note that, for each
of the original vertices u in V , we can set Vu = {u}, σ(u) := 1 and δ(u) := 0.
Moreover, for an edge e between two vertices u and v, we define ω(e) to be the
number of the edges between Vu and Vv. The next rule reads as follows:

Rule 2. If G contains two vertices u and v such that ω({u, v}) > k or u and v
have more than k common neighbors, then remove u from G and set

– σ(v) := σ(u) + σ(v),
– δ(v) := δ(u) + δ(v) + ω({u, v}), and
– ω({v, w}) := ω({v, w}) + ω({u, w}) for each w ∈ V .

Observe that this rule does not strictly follow the definition of data reduction
rules. Its application to an instance of Π-Cluster Editing results in an in-
stance of some kind of weighted version of Π-Cluster Editing. However, this

42 J. Guo

rule may not only be very useful in practice, but also leads to fixed-parameter
tractability results, as in the case of Average-s-Plex Editing.

Average-s-Plex Editing. A connected graph H = (VH , EH) is an average-s-
plex if the average degree of H is at least |VH |−s. In Average-s-Plex Editing,
we are given an undirected graph G = (V, E) and an integer k ≥ 0, and the task
is to decide whether it is possible to transform G into a vertex-disjoint union of
average-s-plexes for a fixed integer s ≥ 1. It is not hard to see that Rule 2 can be
applied to Average-s-Plex Editing and results in an instance of a weighted
version of this problem. This weighted version is defined as follows.

Extend the function σ(X) for super-vertices X to vertex sets S, namely,
σ(S) :=

∑
v∈S σ(v). The average degree d̄(G) of a connected graph G = (V, E)

with vertex weights and edge weights is defined as follows:

d̄(G) =
2
∑

v∈V δ(v) +
∑

v∈V

∑
u∈N(v) ω({u, v})

σ(V)
.

We say then that a graph is an average-s-plex graph if for every connected
component C = (VC , EC) the average degree d̄(C) is at least σ(VC) − s. The
weighted version of Average-s-Plex Editing, called Weighted Average-

s-Plex Editing, is defined as follows: Given a graph G = (V, E) with two
vertex weight functions σ : V → [1, n] and δ : V → [0, n2], an edge weight
function ω : E → [1, n2], and a nonnegative integer k, one asks whether there is
a set of edge modifications S with |S| ≤ k such that applying S to G yields an
average-s-plex graph.

For such a weighted graph G = (V, E), we have four kinds of edge modifica-
tions: we can increase ω({u, v}) by one for an edge {u, v} ∈ E, decrease ω({u, v})
by one for an edge {u, v} ∈ E, delete {u, v} ∈ E with ω({u, v}) = 1, and add
some edge {u, v} to E and set ω({u, v}) := 1. Each of these edge operations has
cost one, and the overall cost of an edge modification set S is thus exactly |S|.
We can easily reduce an instance (G = (V, E), k) of Average-s-Plex Editing

to an instance of the weighted version, by setting σ(v) := 1 and δ(v) := 0 for
each v ∈ V , and ω(e) := 1 for each edge e ∈ E. Note that this reduction is
parameter-preserving, that is, s and k are not changed.

Clearly, Rule 2 is a data reduction rule for Weighted Average-s-Plex

Editing, leading to a graph with a bounded number of vertices.

Theorem 1 ([16]). A yes-instance (G, k) of Weighted Average-s-Plex

Editing that is reduced with respect to Rules 1 and 2 contains at most 4k2 +8sk
vertices.

We obtain a fixed-parameter algorithm for Weighted Average-s-Plex Edit-

ing as follows. First, we exhaustively apply the reduction rules, which can clearly
be done in polynomial time. If the reduced instance contains more than 4k2+8sk
vertices, then it is a no-instance. Otherwise, we can solve the problem with run-
ning time only depending on s and k, for example, by brute-force generation of all
possible partitions of the graph. The fixed-parameter tractability of Average-s-
Plex Editing then directly follows from the described reduction to Weighted

Average-s-Plex Editing.

Fixed-Parameter Algorithms for Graph-Modeled Date Clustering 43

G C

Fig. 1. A graph G and its critical clique graph C. Ovals denote the critical cliques of G.

Cluster Editing. As mentioned in Section 1, Cluster Editing is the special
case of Π-Cluster Editing with Π :=“being a clique”. This means that, given
a graph G = (V, E) and k ≥ 0, Cluster Editing asks to decide whether G can
be transformed by at most k edge deletions and insertions into a cluster graph,
that is, a vertex-disjoint union of cliques. We describe a kernelization for this
problem which results in a graph with O(k) vertices [14]. First, we introduce the
concepts of critical clique and critical clique graph.

Definition 1. A critical clique of a graph G is a clique K where all vertices
of K have the same sets of neighbors in V \ K, and K is maximal under this
property. Given a graph G = (V, E), let K be the collection of its critical cliques.
Then the critical clique graph C is the graph (K, EC) with {Ki, Kj} ∈ EC ⇐⇒
∀u ∈ Ki, v ∈ Kj : {u, v} ∈ E. That is, the critical clique graph has the critical
cliques as nodes, and two nodes are connected iff the corresponding critical cliques
together form a larger clique.

See Figure 1 for an example of a graph and its critical clique graph. The critical
clique graph can be constructed in O(m + n) time [14]. Note that we use the
term nodes for the vertices in the critical clique graph. Moreover, we use K(v)
to denote the critical clique containing vertex v and use V (K) to denote the set
of vertices contained in the critical clique K ∈ K.

The basic idea behind introducing critical cliques is the following: suppose that
the input graph G = (V, E) has a solution with at most k edge modifications.
Then, at most 2k vertices are “affected” by these edge modifications, that is,
they are endpoints of edges added or deleted. Thus, in order to give a size bound
on V depending only on k, it remains to upper-bound the size of the “unaffected”
vertices. The central observation is that, in the cluster graph obtained after
making the at most k edge modifications, the unaffected vertices contained in
one clique must form a critical clique in the original graph G. By this observation,
it seems easier to derive data reduction rules working for the critical cliques and
the critical clique graph than to derive rules directly working on the input graph.
Concerning critical cliques, one can show that there is always a solution that does
not divide critical cliques. Moreover, large critical cliques, together with their
neighbors, must form clusters in the final cluster graph.

Rule 3. If a critical clique K contains more vertices than all the critical cliques
in NC(K) ∪ N2

C (K) together, then construct a clique C consisting of V (K)

44 J. Guo

and V (K ′) for all K ′ ∈ NC(K), remove all vertices in C from G, and de-
crease the parameter k by the number of edge insertions and deletions needed
to construct C and to separate C from the rest of G.

Combining Rules 1 and 3 gives the following problem kernel.

Theorem 2 ([14]). If a reduced graph for Cluster Editing has more than 6k
vertices, then it has no solution with at most k edge modifications.

Independently, Fellows et al. [11] achieved also the 6k-vertex kernel by using a
different approach. By adding a more intricate data reduction rule, the problem
kernel size can be improved to at most 4k vertices [14].

3 Forbidden Subgraph Characterization and Search Tree

The basic idea behind the depth-bounded search tree technique is to organize the
systematic and exhaustive exploration of the search space in a tree-like manner.
More precisely, given an instance (G, k) of Π-Cluster Editing, search tree
algorithms replace (G, k) by a finite set C of instances (Gi, ki) with 1 ≤ i ≤ |C|
and ki < k specified by some branching rules. If Gi for an i is not a Π-cluster
graph, then the algorithm recursively applies this replacing procedure to (Gi, ki).
The algorithm terminates when the replacing procedure is no longer applicable,
that is, there is a Gi being a Π-cluster graph or ki < 0. The recursive application
of the replacing procedure can be illustrated in a tree structure, yielding a search
tree. The depth of the search tree is bounded from above by a function of the
parameter and its size is clearly O(|C|k).

Many graph properties allow for characterizations in terms of forbidden sub-
graphs.

Definition 2. Let F be a collection of graphs. A graph property Π can be char-
acterized by the forbidden induced subgraphs in F iff each graph having Π
contains no graph in F as an induced subgraph. A graph having Π is called
F -free.

It is not hard to observe that finite forbidden subgraph characterizations lead to
the fixed-parameter tractability of the corresponding graph modification prob-
lems: Given a forbidden subgraph G′, a branching rule considers all possible ways
to destroy G′; in each case, an edge is deleted from or added to G′. Therefore,
the search tree size depends directly on the size of G′.

For many density measures Π , Π-cluster graphs admit such finite forbidden
subgraph characterizations. In the following, we give two applications of the
search tree technique that is based on forbidden subgraph characterizations.

Cluster Editing. For Π :=“being a clique”, it is easy to observe that the only
forbidden subgraph is an induced path of three vertices. An O(3k)-size search tree
follows immediately from this characterization: If the graph G is already a union
of disjoint cliques, then we are done: Report the solution and return; otherwise, if
k ≤ 0, then we cannot find a solution in this branch of the search tree. Otherwise,

Fixed-Parameter Algorithms for Graph-Modeled Date Clustering 45

identify u, v, w ∈ V with {u, v} ∈ E, {u, w} ∈ E, but {v, w} /∈ E. Recursively
call the branching procedure on the following three instances consisting of graphs
G′ = (V, E′) with nonnegative integer k′: (B1) E′ := E −{u, v} and k′ := k− 1,
(B2) E′ := E − {u, w} and k′ := k − 1, and (B3) E′ := E + {v, w} and k′ :=
k−1. The search tree size can be significantly reduced. More specifically, a more
sophisticated branching strategy gives a search tree size of O(2.27k) [13]. To
this end, we distinguish two cases concerning three vertices u, v, w ∈ V with
{u, v} ∈ E, {u, w} ∈ E, but {v, w} /∈ E: (C1) Vertices v and w do not share
a common neighbor, that is, �x ∈ V, x �= u : {v, x} ∈ E and {w, x} ∈ E; (C2)
Vertices v and w have a common neighbor x �= u.

The key observation for the improvement is the following observation, which
implies, regarding case (C1), a branching into two cases (B1) and (B2) suffices.

Lemma 1 ([13]). Given a graph G = (V, E), a nonnegative integer k and
u, v, w ∈ V with {u, v} ∈ E, {u, w} ∈ E, but {v, w} /∈ E. If v and w do
not share a common neighbor besides u, then branching case (B3) cannot yield
a better solution than both cases (B1) and (B2), and can therefore be omitted.

For case (C2), the standard branching into three subcases can be avoided by
taking a common neighbor of v and w into account [13]. Combining the analysis
for cases (C1) and (C2), one can show the following.

Theorem 3 ([13]). Cluster Editing can be solved by a search tree algorithm
with search tree size O(2.27k).

Note that, by considering more complicated case distinction, Böcker et al. [5]
achieved a search tree of size O(1.82k).

s-Defective Clique Editing. A connected graph G = (V, E) is an s-defective
clique if |E| ≥ |V | · (|V | − 1)/2 − s for an integer s ≥ 0. An s-defective clique
graphs consists of connected components that are s-defective cliques. In the
following, we present a forbidden subgraph characterization of s-defective clique
graphs for any s ≥ 0 as well as a search tree algorithm that makes use of this
characterization. First, we show that s-defective clique graphs are characterized
by forbidden subgraphs with O(s) vertices. Note that, if s = 0, then s-defective
clique graphs are equal to cluster graphs and the only forbidden subgraph is a
path induced by three vertices, as shown above. Here, a graph is called a minimal
forbidden subgraph if all its subgraphs are s-defective cliques.

Theorem 4 ([16]). For s ≥ 1, any minimal forbidden induced subgraph of s-
defective clique graphs contains at most 2(s + 1) vertices.

The forbidden subgraph characterization given in Theorem 4 directly leads to a
search tree algorithm for s-Defective Clique Editing: Given a graph G =
(V, E) that is not an s-defective clique graph, one can find in O(nm) time a
minimal forbidden subgraph [16]. Then, branch into all possibilities of adding or
deleting an edge between two vertices contained in the forbidden induced sub-
graph. Since the number of vertices of a minimal forbidden subgraph is bounded
by 2s + 2, there are at most

(2s+2
2

)
cases and in each case the parameter k is

46 J. Guo

decreased by one. Hence, the size of the search tree is bounded by O
((2s+2

2

)k
)
.

Putting all together leads to the following.

Theorem 5 ([16]). s-Defective Clique Editing is fixed-parameter tractable
with respect to the combined parameter (s, k).

4 Further Techniques
Iterative Compression and Cluster Vertex Deletion. Cluster Vertex Dele-

tion is the vertex-deletion version of Cluster Editing. The only difference is
the modification allowed. In Cluster Vertex Deletion, the only allowed op-
eration is the deletion of vertices. A solution for this problem is called a “cluster
vertex deletion set” (CVD, for short). Hüffner et al. [18] showed that the fairly
recently introduced iterative compression technique can be applied to this prob-
lem, resulting in an algorithm running in O(2kk6 log k + n3) time. The general
idea behind their iterative compression is as follows: Given a graph G = (V, E)
and k ≥ 0, start with V ′ = ∅ and X ′ = ∅; clearly, X ′ is a CVD for G[V ′]. Iterat-
ing over all graph vertices, step by step add one vertex v /∈ V ′ from V to both V ′

and X . Then X is still a CVD set for G[V ′], although possibly not a minimum
one. One can, however, obtain a minimum one by applying the compression rou-
tine. It takes a graph G and a CVD X for G, and returns a minimum CVD
for G. Therefore, it is a loop invariant that X is a minimum-size CVD for G[V ′].
Since eventually V ′ = V , one obtains an optimal solution for G once the algo-
rithm returns X . Together with the following lemma, the correctness and overall
running time of the iterative compression algorithm follow.

Theorem 6 ([18]). The compression routine for Cluster Vertex Deletion

runs in O(2k ·m√n log n) time.

Average Parameterization and Consensus Clustering. At the first sight, Con-

sensus Clustering is not a graph-modeled clustering problem. However, one
can reformulate it as a weighted version of Cluster Editing as stated in [8].
In Consensus Clustering, one is given a base set S and a set C of partitions
over S, and asks for a partition C of S minimizing

∑
Ci∈C d(C, Ci). The dis-

tance d(C, Ci) between two partitions is defined as follows: we call two elements
a, b ∈ S co-clustered with respect to a partition C if a and b occur together in a
subset of C and anti-clustered if a and b occur in different subsets of C. Define the
distance d(Ci, Cj) between two partitions Ci and Cj as the number of unordered
pairs {a, b} of elements from the base set S such that a and b are co-clustered in
one of Ci and Cj and anti-clustered in the other. Recently, Consensus Clus-

tering has been shown to be fixed-parameter tractable with respect to the
average distance between the input partitions [4] by deriving two data reduction
rules and showing the existence of a “pseudo-kernel”. By defining the average
distance between the input partitions as d :=

(∑
Ci,Cj∈C d(Ci, Cj)

)
/
(
n ·(n−1)

)
,

one can show the following:

Theorem 7 ([4]). Each Consensus Clustering instance can be reduced in
polynomial time to an equivalent instance with at most 9d + 4 elements.

Fixed-Parameter Algorithms for Graph-Modeled Date Clustering 47

5 Conclusion

As demonstrated by several experimental studies [6, 10], data reduction proves
extremely useful for practically solving hard problems. Even complex and large
graphs such as biological instances allow for exact solutions. Therefore, en-
countering an NP-hard graph clustering problem, one should always start with
designing data reduction rules. Even a data reduction that has no provable per-
formance guarantee may turn out to be very effective in practice. Concerning
the search tree technique, notice that the running times given here and in the
literature are based on worst-case analysis and, thus, often too pessimistic.

There still remain a lot of challenges concerning the design of fixed-parameter
algorithms for graph clustering problems: Until now, experimental studies of
fixed-parameter algorithms in the field of graph-modeled clustering concentrated
on Cluster Editing. There lack efficient implementations for other variants
of Π-Cluster Editing. For example, for s-Defective Clique Editing, no
polynomial-size kernel is known. A more general version of Cluster Editing

considers graphs with don’t care-edges, that is, edges with zero cost [3]. It is
open whether this problem is fixed-parameter tractable [7]. In some practical
applications, the dense clusters do not need to be disjoint. the graphs resulting
by the edge modifications are not necessarily vertex-disjoint dense clusters; some
vertices may be contained in more than one dense clusters. A very first step in
this direction has been undertaken recently [12], but this field is widely open.

References

[1] Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Ra-
jsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg
(2002)

[2] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. J. ACM 55(5), Article No. 23 (2008)

[3] Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-
3), 89–113 (2004)

[4] Betzler, N., Guo, J., Komusiewicz, C., Niedermeier, R.: Average parameterization
for computing medians (submitted) (2009)

[5] Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameter-
ized algorithms for cluster editing. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.)
COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)

[6] Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
Evaluation and experiments. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038,
pp. 289–302. Springer, Heidelberg (2008)

[7] Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos,
C., Rosamond, F.A.: Clustering with partial information. In: Ochmański, E.,
Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 144–155. Springer, Hei-
delberg (2008)

[8] Bonizzoni, P., Vedova, G.D., Dondi, R., Jiang, T.: On the approximation of cor-
relation clustering and consensus clustering. J. Comput. Syst. Sci. 74(5), 671–696
(2008)

48 J. Guo

[9] Chesler, E.J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H.C., Mountz,
J.D., Baldwin, N.E., Langston, M.A., Threadgill, D.W., Manly, K.F., Williams,
R.W.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic
networks that modulate nervous system function. Nature Genetics 37(3), 233–242
(2005)

[10] Dehne, F.K.H.A., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The
cluster editing problem: Implementations and experiments. In: Bodlaender, H.L.,
Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Hei-
delberg (2006)

[11] Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized
preprocessing for Cluster Editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007.
LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

[12] Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps (submitted) (2009)

[13] Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data cluster-
ing: Exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392
(2005)

[14] Guo, J.: A more effective linear kernelization for Cluster Editing. Theor. Comput.
Sci. 410(8-10), 718–726 (2009)

[15] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38(1), 31–45 (2007)

[16] Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into dense
clusters (submitted) (2009)

[17] Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-
parameter algorithms. The Computer Journal 51(1), 7–25 (2008)

[18] Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory Comput. Syst. (to appear, 2009)

[19] Kawaji, H., Takenaka, Y., Matsuda, H.: Graph-based clustering for finding distant
relationships in a large set of protein sequences. Bioinformatics 20(2), 243–252
(2004)

[20] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

[21] Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
Journal of Mathematical Sociology 6, 139–154 (1978)

[22] Seno, S., Teramoto, R., Takenaka, Y., Matsuda, H.: A method for clustering ex-
pression data based on graph structure. Genome Informatics 15(2), 151–160 (2004)

[23] Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Appl. Math. 144(1-2), 173–182 (2004)

[24] Voy, B.H., Scharff, J.A., Perkins, A.D., Saxton, A.M., Borate, B., Chesler, E.J.,
Branstetter, L.K., Langston, M.A.: Extracting gene networks for low-dose radia-
tion using grpah theoretical algorithms. PLoS Computational Biology 2(7), e89
(2006)

[25] Yu, H., Paccanaro, A., Trifonov, V., Gerstein, M.: Predicting interactions in
protein networks by completing defective cliques. Bioinformatics 22(7), 823–829
(2006)

On Spanners of Geometric Graphs�

Iyad A. Kanj��

School of Computing, DePaul University, 243 S. Wabash Ave., Chicago, IL 60604
ikanj@cs.depaul.edu

Abstract. We consider the problem of computing spanners of Euclidean
graphs embedded in the 2-dimensional Euclidean plane. We present an
O(n lg n) time algorithm that computes a spanner of a Euclidean graph
that is of bounded degree and plane, where n is the number of points
in the graph. Both upper bounds on the degree and the stretch fac-
tor significantly improve the previous bounds. We extend this algorithm
to compute a bounded-degree plane lightweight spanner of a Euclidean
graph.

Our results rely on elegant structural and geometric results that we
develop. Moreover, our results can be extended to Unit Disk graphs under
the local distributed model of computation.

1 Introduction

Given a Euclidean graph (complete graph) on n points in the plane, we con-
sider the problem of computing a spanner of the graph possessing certain useful
properties. The spanner properties we are interested in are: bounded degree, pla-
narity, and lightweight—by which we mean that the total weight of the spanner
is at most a constant times that of a Euclidean minimum spanning tree (of the
set of points), where the weight of an edge in the graph is the Euclidean distance
between its endpoints.

The problem of constructing a bounded degree or lightweight plane geo-
metric spanner has been extensively studied within computational geometry;
for example, see [1,3,8,9,12,14,16,20], and the following book on spanners [18].
More recently, wireless network researchers have approached the problem as well.
Spanners and lightweight spanners are fundamental to wireless systems because
they represent topologies that can be used for efficient unicasting, multicasting,
and/or broadcasting (see [3,5,12,13,15,17,19], to name a few). For these appli-
cations, spanners are typically required to be planar and have bounded degree:
the planarity requirement is for efficient routing, while the bounded degree re-
quirement is caused by interference issues and the physical limitations of wireless
devices [3,5,12,13,15,19].

In this paper we study the problem of computing spanners and lightweight
spanners of Euclidean graphs. We present state-of-the-art results on these prob-
lems that improve the previous work in several aspects. Our work reveals inter-
esting structural results that are of independent interest. We summarize below
� The results in this paper are obtained jointly with Ljubmoir Perković and G. Xia.

�� Supported in part by a DePaul University Competitive Research Grant.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 49–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

50 I.A. Kanj

the main results of the paper and how they compare to the relevant work in the
literature.

We start with the problem of constructing geometric spanners of Euclidean
graphs, a well studied problem (see, for example, the recent book [18] for a survey
on geometric spanners and their applications in networks). Dobkin et al. [11]
showed that the Delaunay graph is a plane geometric spanner of the Euclidean
graph with stretch factor (1 +

√
5)π/2 ≈ 5.08. This ratio was improved by Keil

et al [14] to Cdel = 2π/(3 cos (π/6)) ≈ 2.42, which currently stands as the best
upper bound on the stretch factor of the Delaunay graph. Many researchers
believe, however, that the lower bound of π/2 shown in [7] is also an upper
bound on the stretch factor of the Delaunay graph. While Delaunay graphs are
good plane geometric spanners of Euclidean graphs, they may have unbounded
degree. Other geometric (sparse) spanners were also proposed in the literature
including the Yao graphs [20], the Θ-graphs [14], and many others (see [18]);
however, most of these proposed spanners either do not guarantee planarity, or
do not guarantee bounded degree.

Bose et al. [2,3] were the first to show how to extract a subgraph of the Delau-
nay graph that is a bounded-degree, plane geometric spanner of the Euclidean
graph (with stretch factor bounded by ≈ 10.02 and degree bounded by 27).
Very recently, Bose et. al [6] improved the earlier result in [2,3] and showed how
to construct a subgraph of the Delaunay graph that is a geometric spanner of
the Euclidean graph with stretch factor: max{π/2, 1 + π sin (α/2)} · Cdel when
α < π/2, and (1 + 2

√
3 + 3π/2 + π sin (π/12)) · Cdel when π/2 ≤ α ≤ 2π/3, and

whose degree is bounded by 14 + 2π/α.
In this paper, we prove structural results about Delaunay graphs that allow us

to develop a very simple linear-time algorithm that, given a Delaunay graph, con-
structs a subgraph of the Delaunay graph with stretch factor 1+2π(k cos (π/k))−1

(with respect to the Delaunay graph) and degree at most k, for any integer pa-
rameter k ≥ 14. This result immediately implies an O(n lg n) time algorithm for
constructing a plane geometric spanner of a Euclidean graph with stretch factor
of (1 + 2π(k cos (π/k))−1) · Cdel and degree at most k, for any integer parameter
k ≥ 14 (n is the number of vertices in the graph). We also show that our spanner
includes a Euclidean minimum spanning tree as a subgraph.

This result significantly improves the previous results (described above) in
terms of the stretch factor and the degree bound. To show this, we compare our
results with previous results in more details. For a degree bound k = 14, our
result implies a bound of at most 3.54 on the stretch factor. As the degree bound
k approaches ∞, our bound on the stretch factor approaches Cdel ≈ 2.42. The
very recent results of Bose et al. [6] achieve a lowest degree bound of 17, and
that corresponds to a bound on the stretch factor of at least 23. If Bose et al. [6]
allow the degree bound to be arbitrarily large (i.e., to approach ∞), their bound
on the stretch factor approaches (π/2) · Cdel > 3.75.

Regarding the problem of constructing lightweight spanners, Levcopoulos and
Lingas [16] developed the first algorithm for this problem on Euclidean graphs.
Their O(n log n) time algorithm, given a rational λ > 2, produces a plane spanner

On Spanners of Geometric Graphs 51

with stretch factor (λ− 1) · Cdel and total weight (1 + 2
λ−2) · wt(EMST), where

the constant Cdel ≈ 2.42 is the stretch factor of the Delaunay subgraph of the
Euclidean graph. Althöfer et al. [1] gave a polynomial time greedy algorithm that
constructs a lightweight plane spanner of a Euclidean graph having the same up-
per bound on the stretch factor and weight as the algorithm by Levcopoulos and
Lingas [16]. The degree of the lightweight spanner in both [16] and [1], however,
may be unbounded: it is not possible to bound the degree without worsening the
stretch factor or the weight. A more recent O(n log n) time algorithm by Bose,
Gudmundsson, and Smid [3], succeeded in bounding the degree of the plane
spanner by 27 but at a large cost: the stretch factor of the obtained plane span-
ner is approximately 10.02, and its weight is O(wt(EMST)), where the hidden
constant in the asymptotic notation is undetermined. We note that any algo-
rithm for constructing a Euclidean bounded-degree plane spanner, including the
previously mentioned algorithms in [3,4,6], can be converted into an algorithm
for constructing a Euclidean bounded-degree plane spanner that is lightweight,
using the algorithm described in [12]. However, the multiplicative constant in
the upper bound of the weight of the spanner with respect to the weight of the
EMST will be undetermined.

Our contribution with regard to this problem is in designing an algorithm
that, for any integer constant Δ ≥ 14 and constant λ > 2, constructs a plane
spanner of a Euclidean graph having degree at most Δ, stretch factor (λ−1)·(1+
2π(Δ cos π

Δ)−1) ·Cdel, and weight at most (1+ 2
λ−2) ·wt(EMST) (Theorem 4.1).

We can compare our algorithm with the algorithm by Bose, Gudmundsson, and
Smid [3] if we let Δ = 14 and λ ≈ 2.475 in Theorem 4.1: we obtain an O(n log n)
time algorithm that, given a Euclidean graph on n points, computes a plane
spanner of the graph having degree at most 14, stretch factor at most 5.22, and
weight at most 5.22 · wt(EMST).

Most of the proofs have been omitted for lack of space.

2 Definitions and Background

Given a set of points P in the 2-dimensional Euclidean plane, the Euclidean
graph E on P is defined to be the complete graph whose point-set is P . Each edge
AB connecting points A and B is assumed to be embedded in the plane as the
straight line segment AB; we define its weight to be the Euclidean distance |AB|.

For a subgraph H ⊆ E , we denote by V (H) and E(H) the set of points and
the set of edges of H , respectively, and by wt(H) the sum of the weights of all
the edges in H , that is, wt(H) =

∑
XY ∈E(H) wt(XY). The length of a path P

(resp. cycle C) in a subgraph H ⊆ E , denoted |P | (resp. |C|), is the number of
edges in P (resp. C).

Let G be a subgraph of E . The cost of a simple path A = M0, M1, ..., Mr = B
in G is

∑r−1
j=0 |MjMj+1|. Among all paths between A and B in G, a path with

the smallest cost is defined to be a smallest cost path and we denote its cost
as cG(A, B). A spanning subgraph H of G is said to be a geometric spanner of
G if there is a constant ρ such that for every two points A, B ∈ G we have:

52 I.A. Kanj

cH(A, B) ≤ ρ · cG(A, B). The constant ρ is called the stretch factor of H (with
respect to the underlying graph G).

A spanning subgraph of E is said to have low weight, or to be lightweight, if its
weight is at most c ·wt(T) for some constant c, where T is a Euclidean minimum
spanning tree (EMST) of V (E).

For three non-collinear points X , Y , Z in the plane we denote by ©XY Z the
circumscribed circle of �XY Z. A Delaunay triangulation of a set of points P
in the plane is a triangulation of P in which the circumscribed circle of every
triangle contains no point of P in its interior [10]. It is well known that if the
points in P are in general position (i.e., no four points in P are cocircular) then
the Delaunay triangulation of P is unique [10]. In this paper—as in most papers
in the literature—we shall assume that the points in P are in general position;
otherwise, the input can be slightly perturbed so that this condition is satisfied.
The Delaunay graph of P is defined as the plane graph whose point-set is P and
whose edges are the edges of the Delaunay triangulation of P . An alternative
equivalent definition that we end up using is:

Definition 2.1. ([10]) An edge XY is in the Delaunay graph of P if and only
if there exists a circle through points X and Y whose interior contains no point
in P .

It is well known that the Delaunay graph of a set of points P is a spanning
subgraph of the Euclidean graph defined on P whose stretch factor is bounded
by Cdel = 4

√
3π/9 ≈ 2.42 [14].

Given integer parameter k > 6, the Yao subgraph [20] of a plane graph G is
constructed by performing the following Yao step at every point M of G: place
k equally-separated rays out of M (arbitrarily defined), thus creating k closed
cones of size 2π/k each, and choose the shortest edge in G out of M (if any) in
each cone. The Yao subraph consists of edges in G chosen by either endpoint.
Note that the degree of a point in the Yao subgraph of G may be unbounded.

Two edges MX , MY incident on a point M in a graph G are said to be
consecutive if one of the angular sectors determined by MX and MY contains
no neighbors of M .

Let X and Y be two points in the plane and let (O) be any circle passing
through X and Y . The chord XY subtends two regions of (O). If Z is a point in
the plane different from X and Y , then one of the two regions of (O) subtended
by the chord XY is on the same side of XY as Z, whereas the other is on the
opposite side of XY as Z. For convenience, we will refer to the former as the
region of (O) subtended by XY and closer to Z, and to the latter as the region
of (O) subtended by XY and farther or away from Z.

3 Computing Spanners of Delaunay and Euclidean
Graphs

Let P be a set of points in the plane and let E be the complete, Euclidean graph
defined on point-set P . Let G be the Delaunay graph of P . We have the following
theorem:

On Spanners of Geometric Graphs 53

Theorem 3.1. For every integer k ≥ 14, there exists a subgraph G′ of G such
that G′ has maximum degree k and stretch factor 1 + 2π(k cos π

k)−1.

A linear time algorithm that computes G′ from G is the key component to the
proof of the above theorem. This very simple algorithm essentially performs a
modified Yao step (see Section 2) and selects up to k edges out of every point of
G. G′ is simply the spanning subgraph of G consisting of edges chosen by both
endpoints.

In order to describe the modified Yao step, we must first develop a better
understanding of the structure of the Delaunay graph G. Let CA and CB be
edges incident on point C in G such that ∠BCA ≤ 2π/k and CA is the shortest
edge within the angular sector ∠BCA. The above theorem easily follows if, for
every such pair of edges CA and CB:

1. we show that there exists a path P from A to B in G such that:
|CA|+ wt(P) ≤ (1 + 2π(k cos π

k)−1)|CB|, and
2. we modify the standard Yao step to include the edges of this path in G′, in

addition to including the edges picked by the standard Yao step, and without
choosing more than k edges at any point.

This will ensure that: for any edge CB ∈ G that is not included in G′ by
the modified Yao step, there exists a path from C to B in G′, whose edges
are all included in G′ by the modified Yao step, and whose cost is at most
(1 + 2π(k cos π

k)−1)|CB|. The lemma below, proves the existence of this path
and shows some properties satisfied by edges of this path. We will then modify
the standard Yao step to include edges satisfying these properties. We describe
how the path in Lemma 3.1 can be constructed, and omit the proof about the
properties of the path for lack of space.

Lemma 3.1. Let k ≥ 14 be an integer, and let CA and CB be edges in G such
that ∠BCA ≤ 2π/k and CA is the shortest edge in the angular sector ∠BCA.
There exists a path P : (A = M0, M1, . . . , Mr = B) in G such that:

(i) |CA|+ ∑r−1
i=0 |MiMi+1| ≤ (1 + 2π(k cos π

k)−1)|CB|.
(ii) There is no edge in G between any pair Mi and Mj lying in the closed

region delimited by CA, CB and the edges of P , for any i and j satisfying
0 ≤ i < j − 1 ≤ r.

(iii) ∠Mi−1MiMi+1 > (k−2
k)π, for i = 1, . . . , r − 1.

(iv) ∠CAM1 ≥ π
2 − π

k .

We break down the construction of the path into two separate cases: when
�ABC contains no point of G in its interior, and when it does. We define
some additional notation and terminology first. We will denote by O the center
of ©ABC, and by Θ the measure of ∠BCA. Note that ∠AOB = 2Θ ≤ 4π/k.

We will use
�

AB to denote the arc of ©ABC determined by points A and B and
facing ∠AOB. We will make use of the following easily verified property:

Proposition 3.1. If there are two circles through C and A and through C and
B, respectively, that do not contain any points of G in their interior, then the

54 I.A. Kanj

region inside ©ABC subtended by chord CA and away from B and the region
inside ©ABC subtended by chord CB and away from A contain no points of G
in their interior.

3.1 The Outward Path

We consider first the case when no points of G are inside �ABC. Since CA
and CB are edges in G, by Definition 2.1 and Proposition 3.1, it follows that
the closed region ©ABC subtended by chord AB and containing C is devoid of
points of G. Keil and Gutwin [14] showed that, in this case, there exists a path
between A and B in G inside the region of ©ABC subtended by chord AB away

from C whose length is bounded by the length of
�

AB (see Lemma 1 in [14]); we
call this path the outward path between A and B.

For the case when no point of G lies inside �ABC, we define the path in
Lemma 3.1 to be the outward path between A and B. It can be proved that the
outward path enjoys the properties described in Lemma 3.1.

3.2 The Inward Path

We consider now the case when the interior of �ABC contains points of G.
Recall that CA and CB are edges of G such that CA is the shortest edge in the
angular sector ∠BCA, and such that ∠BCA ≤ 2π/k.

Let S be the set of points consisting of points A and B plus all the points
interior to �ABC (note that C /∈ S). Let CH(S) be the set of points on the
convex hull of S. Then CH(S) consists of points N0 = A and Ns = B, and
points N1, . . . , Ns−1 of G interior to �ABC.

Proposition 3.2. The following are true:

(a) For every i = 0, . . . , s − 1, the interior of �CNiNi+1 is devoid of point of
G.

(b) For every i = 0, . . . , s, there exists a circle passing through CNi whose inte-
rior is devoid of points of G.

From Proposition 3.2, for every pair of points (Ni, Ni+1), i = 0, . . . , s − 1,
the outward path Pi between points Ni and Ni+1 is well defined. Let A =
M0, M1, . . . , Mr = B be the concatenation of the paths Pi, for i = 0, . . . , s− 1.
We call the path A = M0, M1, . . . , Mr = B constructed above the inward path
between A and B.

We can prove that the inward path between A and B satisfies the properties
in Lemma 3.1.

3.3 The Modified Yao Step

We now augment the Yao step so edges forming the paths described in Lemma 3.1
are included in G′, in addition to the edges chosen in the standard Yao step.
Lemma 3.1 says that consecutive edges on such paths form moderately large

On Spanners of Geometric Graphs 55

Algorithm Modified Yao step

Input: A Delaunay graph G; integer k ≥ 14
Output: A subgraph G′ of G of maximum degree k

1. define k disjoint cones of size 2π/k around every point M in G;
2. in every non-empty cone, select the shortest edge incident on M in this cone;
3. for every maximal sequence of � ≥ 1 consecutive empty cones:

3.1. if � > 1 then select the first ��/2� unselected incident edges on M
clockwise from the sequence

of empty cones and the first ��/2� unselected edges incident on M
counterclockwise from the

sequence of empty cones;
3.2. else (i.e., � = 1) let MX and MY be the incident edges on M clockwise

and counterclockwise,
respectively, from the empty cone; if either MX or MY is selected then

select the other edge
(in case it has not been selected); otherwise select the shorter edge

between MX and MY
breaking ties arbitrarily;

4. G′ is the spanning subgraph of G consisting of edges selected by both endpoints.

Fig. 1. The modified Yao step

angles. The modified Yao step will ensure that consecutive edges forming large
angles are included in G′. The algorithm is described in Figure 1.

Since the algorithm selects at most k edges incident on any point M and since
only edges chosen by both endpoints are included in G′, each point has degree
at most k in G′.

We argue that the running time of the above algorithm is linear. Note first
that all edges incident on point M of degree Δ can be mapped to the k cones
around M in linear time in Δ. Then, the shortest edge in every cone can be
found in time O(Δ) (step 2 in the algorithm). Since k is a constant, selecting the
�/2 edges clockwise (or counterclockwise) from a sequence of � < k empty cones
around M (step 3.1) can be done in O(Δ) time. Noting that the total number
of edges in G is linear in the number of vertices completes the analysis.

To complete the proof of Theorem 3.1, we need the following lemma:

Lemma 3.2. If edge CB is not selected by the algorithm, let CA be the shortest
edge in the cone out of C to which CB belongs. Then the edges of the path
described in Lemma 3.1 are included in G′ by the algorithm.

Corollary 3.1. A Euclidean minimum spanning tree (EMST) on P is a sub-
graph of G′.

Proof. It is well known that a Delaunay graph (G) contains a EMST of its point-
set [10]. If an edge CB is not in G′, then, by Lemma 3.2, a path from C to B

56 I.A. Kanj

is included in G′. All edges on this path are no longer than CB, so there is a
EMST not including CB.

Since a Delaunay graph of a Euclidean graph of n points can be computed in
time O(n lg n) [10] and has stretch factor Cdel ≈ 2.42, we have the following
theorem:

Theorem 3.2. There exists an algorithm that, given a set P of n points in
the plane, computes a plane geometric spanner of the Euclidean graph on P
that contains a EMST, has maximum degree k, and has stretch factor (1 +
2π(k cos π

k)−1) · Cdel, where k ≥ 14 is an integer. Moreover, the algorithm runs
in time O(n lg n).

4 Computing Lightweight Spanners

In this section we present an algorithm that constructs a bounded-degree plane
lightweight spanner of E . We first need the following structural results.

Let G be a plane graph and let T be a spanning tree of G. Call an edge
e ∈ E(T) a tree edge and an edge e ∈ E(G)− T a non-tree edge. Every non-tree
edge induces a unique cycle in the graph T + e called the fundamental cycle of
e. Since T is embedded in the plane, we can talk about the fundamental region
of e, which is the closed region in the plane enclosed by the fundamental cycle
of e (other than the outer face of T + e).

Definition 4.1. Define a relationship � on the set E(G) as follows. For every
edge e, e � e. For two edges e and e′ in E(G), e � e′ if and only if e is contained
in the fundamental region of e′.

It is not difficult to verify that � is a partial order relation on E(G), and hence
(E(G),�) is a partially ordered set (POSET). Note that any two distinct tree
edges are not comparable by �, and that every tree edge is a minimal element
in (E(G),�). Therefore, we can topologically sort the edges in E(G) to form a
list L = 〈e1, . . . , er〉, in which no non-tree edge appears before a tree edge, and
such that if ei � ej then ei does not appear after ej in L.

Lemma 4.1. Let ei be a non-tree edge. Then there exists a unique face Fi in G
such that every edge ej of Fi satisfies ej � ei.

We will call the unique face associated with a non-tree edge ei, described in
Lemma 4.1, the fundamental face of ei. The following corollary can be proved
using the same techniques used in the proof of Theorem 2 in [1].

Corollary 4.1. Let G be a connected weighted plane graph with nonnegative
weights, and let T be a spanning tree in G. Let λ > 2 be a constant. Suppose that
for every edge e ∈ E(G)−T we have wt(Fe) ≥ λ·wt(e), where Fe is the boundary
cycle of the fundamental face of e in G. Then wt(G) ≤ (1 + 2

λ−2) · wt(T).

Now using the O(n log n) time algorithm described in Section 3, given a Eu-
clidean graph E on a set of n points in the plane, and an integer parameter

On Spanners of Geometric Graphs 57

Δ ≥ 14, we can construct a plane spanner G′ of E containing a EMST of V (E),
of degree at most Δ, and of stretch factor ρ = (1 + 2π(Δ cos π

Δ)−1) ·Cdel, where
Cdel ≈ 2.42 is the stretch factor of the Delaunay subgraph of E .

The spanner G′, however, may not be of light weight. Therefore, we need to
discard edges from G′ so that the resulting subgraph is of light weight, while at
the same time not affecting the stretch factor of G′ by much. To do so, since
G′ is a plane graph containing a EMST of V (G′), we would like to employ
Corollary 4.1. However, there is one technical problem: the fundamental faces of
G′ may not satisfy the condition of Corollary 4.1, namely that the weight of every
fundamental face Fe of a non-EMST edge e in G′ satisfies wt(Fe) ≥ λ · wt(e)
(λ > 2 is a constant). We will show next how to prune the set of edges in G′ so
that this condition is satisfied.

Let T be a EMST of V (G′) contained in G′. As described above, we can
order the non-tree edges in G′ with respect to the partial order � described
in Definition 4.1. Let L′ = 〈e1, e2, . . . , es〉 be the sequence of non-tree edges in
G′ sorted in a non-decreasing order with respect to the partial order �. Note
that, by the definition of the partial order �, if we add the edges in L′ to T
in the respective order they appear in L′, once an edge ei is added to form a
fundamental face in the partially-grown graph, this fundamental face will remain
a face in the resulting graph after all the edges in L′ have been added to T . That
is, the face will not be affected (i.e., changed/split) by the addition of any later
edge in this sequence.

Given a constant λ > 2, to construct the desired lightweight spanner G, we
first initialize G to the EMST T . We consider the non-tree edges of G′ in the
order that they appear in L′. Inductively, suppose that we have processed the
edges e1, . . . , ei−1 in L′. To process edge ei, let Fi be the fundamental face of ei

in G + ei. If wt(Fi) > λ · wt(ei), we add ei to G; otherwise, ei is not added to
G. Let G be the resulting graph at the end of the construction.

Lemma 4.2. Given the set of n points V (E) in the plane, the graph G can be
constructed in O(n log n) time.

Theorem 4.1. For any integer parameter Δ ≥ 14 and any constant λ > 2, the
subgraph G of E constructed above is a plane spanner of E containing a EMST
of V (E), whose degree is at most Δ, whose stretch factor is (λ − 1) · ρ, where
ρ = (1+2π(Δ cos π

Δ)−1)·Cdel, and whose weight is at most (1+ 2
λ−2)·wt(EMST).

Moreover, G can be constructed in O(n log n) time.

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

2. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 234–246. Springer, Heidelberg (2002)

3. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

58 I.A. Kanj

4. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4),
937–951 (2004)

5. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

6. Bose, P., Smid, M., Xu, D.: Diamond triangulations contain spanners of bounded
degree. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 173–182. Springer,
Heidelberg (2006)

7. Chew, P.: There are planar graphs almost as good as the complete graph. Journal
of Computers and System Sciences 39(2), 205–219 (1989)

8. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-
dimensional euclidean space. In: Proceedings of SoCG, pp. 53–62 (1993)

9. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean span-
ners. In: Proceedings of SoCG, pp. 132–139 (1994)

10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

11. Dobkin, D., Friedman, S., Supowit, K.: Delaunay graphs are almost as good as
complete graphs. Discrete Computational Geometry 5(4), 399–407 (1990)

12. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

13. Kanj, I., Perković, L.: On geometric spanners of euclidean and unit disk graphs.
In: Proceedings of STACS (2008)

14. Keil, J., Gutwin, C.: Classes of graphs which approximate the complete Euclidean
graph. Discrete & Computational Geometry 7, 13–28 (1992)

15. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
Proceeding of CCCG, pp. 51–54 (1999)

16. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-
plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3),
251–256 (1992)

17. Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation
with application in Ad Hoc wireless networks. IEEE Trans. on Parallel and Dist.
Systems. 14(10), 1035–1047 (2003)

18. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

19. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. Mobile Networks and Applications 11(2), 161–175
(2006)

20. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

Searching Trees: An Essay

Henning Fernau and Daniel Raible

Univ.Trier, FB 4—Abteilung Informatik, 54286 Trier, Germany
{fernau,raible}@uni-trier.de

Abstract. We are reviewing recent advances in the run time analysis of
search tree algorithms, including indications to open problems. In doing
so, we also try to cover the historical dimensions of this topic.

1 Introduction

Search trees are a basic tool for solving combinatorial problems. The underlying
idea is quite simple: decompose a given problem into finer and finer partial prob-
lems (applying a suitable branching operation) such that the generated partial
problems together solve the original problem. Hence, they have been investigated
from various points of views for about 50 years, so nearly through all the history
of computer science and its mathematics.

Despite of its long history, there are (to our knowledge) only few attempts to
develop a unifying view on this topic, apart from some quite old papers, rarely
quoted these days, as discussed below. This essay can be seen as a quest to resume
a generic research on search trees, with the specific aim to bring the sometimes
very successful applications of search trees in practice closer to the theoretical
(worst case) analysis. We believe there are many yet unsolved questions.

2 Historical Notes on Search Trees

Conceptual frameworks for search trees. A nice framework on search trees has
been developed by Ibaraki in 1978 [30]; actually, that paper sums up many early
works. That paper presented a framework that allows to justify the correctness of
branch-and-bound procedures. To this end, combinatorial optimization problems
are described in the form of discrete decision processes (ddp). This formalization
actually goes back to Karp and Held [33]. Branch-and-bound, from its very name,
implies (in the case of minimization problems) the existence of a lower-bound
test. In fact, this was in the focus of earlier formalizations of the principle as, e.g.,
the one by Mitten [40] that also sums up and reviews still earlier results from the
sixties. In those days, many seemingly different names were in use for search tree
algorithms; for example, the backtrack programming framework of Golomb and
Baumert [22] gives another formalization of search tree algorithms. This allows
to prune the search tree at node n, assuming it is known that better solutions
are already known, compared to the best possible solution that might be derived
upon further branching starting out from n. Good pruning hence necessitates

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 59–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 H. Fernau and D. Raible

good estimates on the values that could be obtained from n onwards (without
necessarily expanding n), which is a (practical and mathematical) problem on its
own right. Besides this test, Ibaraki considers two more types of tests (that are
quite related among themselves again): dominance tests and equivalence tests.
Roughly speaking, due to a dominance test (considered in details in [29]), we
can prune branches in the search tree, since we are sure that better solutions
can be found in other branches. Equivalence tests might prove two nodes to be
equivalent in the sense that they yield solutions of the same quality, so that
only one of the nodes need to be expanded; which one could be the matter of
choice due to other criteria. The mentioned early papers focus on the important
issue of correctness of the described methods (and how to ensure correctness
in concrete circumstances). Typical conceptual questions include: What are the
logical relations between abstract properties of discrete decision processes? or:
What kind of properties of dominance relations are needed to ensure correctness
of the implied pruning strategy?

Artificial Intelligence. A non-negligible part of the literature on Artificial Intelli-
gence deals with search spaces since the very early days. In this sense, search trees
play a prominent role in that area, as well. In particular, this remark is true when
considering game strategies (like how to play chess with a computer). There again,
many (mostly heuristic) decisions have to be made to find a successful path in the
underlying implicit configuration tree. We only mention that there are quite a lot of
nice internet resources available, like http://www.cs.ualberta.ca/~aixplore/.
Also in that area of expertise, search trees in the more technical sense of this es-
say have been examined. For example, Reiter’s theory of diagnosis is based upon
so-called Hitting Set Trees, see [45].

Specific communities have worked a lot to optimize and analyze their search
tree algorithms. Nice tools (and generalizable methodologies) have been devel-
oped there. For example, the search tree analysis of Kullmann [36,37] within the
Satisfiability Community has been a blueprint of similar approaches elsewhere;
it could be seen as one of the fathers of the measure-and-conquer paradigm
discussed below. Within the integer linear programming (ILP), and more gen-
eral, the mathematical programming community, branch-and-bound has been
very successfully combined with cutting (hyper-)planes and similar approaches,
leading to the so-called branch-and-cut paradigm.1 Branch-and-cut (and in par-
ticular, further refinements like branch-and-cut-price, see [32]) has been a very
successful paradigm in industrial practice for solving ILPs, up to the point that
solving these (NP-hard) problems is deemed to be practically feasible. However,
rather simple examples exist that show that a non-educated use of this approach
will lead to quite bad running times, see [31]. The arguably best modern book
on this topic [1] focuses on the Traveling Salesman Problem, which is a sort of
standard testbed for this approach, starting out from the very origins of branch-
and-cut [26]. Another community on its own is dealing with binary decision
diagrams [8]; we are not aware of any specific search tree analysis in that area.
1 We gratefully acknowledge discussions on ILP techniques with Frauke Liers.

http://www.cs.ualberta.ca/~aixplore/

Searching Trees: An Essay 61

3 Estimating Running Times

Most of the theory papers on search trees up to the seventies focus on conceptual
properties of search tree algorithms. Only few papers (to our knowledge), e.g.,
[27,28,34], try to attack the efficiency question of search tree algorithms from
an abstract point of view. Interestingly, one paper [28] shows that even in the
average case, exponential growth of branch-and-bound algorithms are not avoid-
able, while Knuth [34] shows that Monte-Carlo-methods can be used to assess
search tree sizes. It is not so clear how later research in the Artificial Intelligence
Community on backtracking programs fits into this line of research, see [38].

Run-time estimates of exponential-time algorithms (as being typical for search
tree algorithms) have only relatively recently found renewed interest, obviously
initiated by the steadily growing interest in parameterized complexity theory and
parameterized (and exact exponential-time) algorithms. Yet, the basic knowledge
in this area is not very new. This is possibly best exemplified by the textbook
of Mehlhorn [39]. There, to our knowledge, the very first parameterized algo-
rithm for the vertex cover problem was given, together with its analysis, much
predating the advent of parameterized algorithmics. This algorithm is quite sim-
ple: if any edge e = {v1, v2} remains in the graph, produce two branches in the
search tree, one putting v1 into the (partial) cover and the other one putting v2
into the cover. In both cases, the parameter k upperbounding the cover size is
decremented, and we consider G − vi instead of G in the recursive calls. Given
a graph G together with an upperbound k on the cover size, such a search tree
algorithm produces a binary search tree of height at most k; so in the worst
case, its size (the number of leaves) is at most 2k. Namely, if T (k) denotes the
number of leaves in a search tree of height k, the described recursion implies
T (k) ≤ 2T (k − 1), which (together with the anchor T (0) = 1) yields T (k) ≤ 2k.

This reasoning generalizes when we obtain recurrences of the form:

T (k) ≤ α1T (k − 1) + α2T (k − 2) + · · ·+ α�T (k − �) (1)

for the size T (k) of the search tree (which can be measured in terms of the
number of leaves of the search tree, since that number basically determines the
running time of a search tree based algorithm).

More specifically, αi is a natural number that indicates that in αi of the∑
j αj overall branches of the algorithm, the parameter value k got decreased

by i. Notice that, whenever � = 1, it is quite easy to find an estimate for T (k),
namely αk

1 . A recipe for the more general case is contained in Alg. 1. Why does
that algorithm work correctly? Please observe that in the simplest case (when
� = 1), the algorithm does what could be expected. We only mention here that

p(x) = x� − α1x
�−1 − · · · − α�x

0

is also sometimes called the characteristic polynomial of the recurrence given by
Eq. 1, and the base c of the exponential function that Alg. 1 returns is called the
branching number of this recurrence. Due to the structure of the characteristic
polynomial, c is the dominant positive real root.

62 H. Fernau and D. Raible

Algorithm 1. Simple time analysis for search tree algorithms, called ST-simple
Require: a list α1,. . . , α� of nonnegative integers, the coefficients of inequality (1)
Ensure: a tight estimate ck upperbounding T (k)

Consider inequality (1) as equation:

T (k) = α1T (k − 1) + α2T (k − 2) + · · · + α�T (k − �)

Replace T (k − j) by xk−j , where x is still an unknown to be determined.
Divide the equation by xk−�.
{This leaves a polynomial p(x) of degree �.}
Determine the largest positive real zero (i.e., root) c of p(x).
return ck.

Alternatively, such a recursion can be also written in the form

T (k) ≤ T (k − a1) + T (k − a2) + · · ·+ T (k − ar). (2)

Then, (a1, . . . , ar) is also called the branching vector of the recurrence.
As detailed in [23, pp. 326ff.], a general solution of an equation

T (k) = α1T (k − 1) + α2T (k − 2) + · · ·+ α�T (k − �)

(with suitable initial conditions) takes the form

T (k) = f1(k)ρk
1 + · · ·+ f�(k)ρk

� ,

where the ρi are the distinct roots of the characteristic polynomial of that re-
currence, and the fi are polynomials (whose degree corresponds to the degree of
the roots (minus one)). As regards asymptotics, we can conclude T (k) ∈ O∗(ρk

1),
where ρ1 is the dominant root.

The exact mathematical reasons can be found in the theory of polynomial
roots, as detailed in [23,13,24,36,37]. It is of course also possible to check the
validity of the approach by showing that T (k) ≤ ρk for the obtained solution ρ
by a simple mathematical induction argument.

Due to case distinctions that will play a key role for designing refined search
tree algorithms, the recurrences often take the form

T (k) ≤ max{f1(k), . . . , fr(k)},
where each of the fi(k) is of the form

fi(k) = αi,1T (k − 1) + αi,2T (k − 2) + · · ·+ αi,�T (k − �).

Such a recurrence can be solved by r invocations of Alg. 1, each time solv-
ing T (k) ≤ fi(k). This way, we get r upperbounds T (k) ≤ ck

i . Choosing c =
max{c1, . . . , cr} is then a suitable upper bound.

Eq. (1) somehow suggests that the entities aj that are subtracted from k in
the terms T (k−aj) in Eq. (2) are natural numbers. However, this need not be the

Searching Trees: An Essay 63

case, even in the case that the branching process itself suggests this, e.g., taking
vertices into the cover to be constructed. How do such situations arise? Possibly,
during the branching process we produce situations that appear to be more
favorable than the current situation. Hence, we could argue that we take a certain
credit on this future situation, this way balancing the current (bad) situation
with the future (better) one. Interestingly, this approach immediately leads to
another optimization problem: How to choose the mentioned credits to get a
good estimate on the search tree size? We will describe this issue in more detail
below in a separate section. This sort of generalization is the backbone of the
search tree analysis in so-called exact exponential algorithms, where the aim is,
say in graph algorithms, to develop non-trivial algorithms for hard combinatorial
graph problems with run-times estimated in terms of n (number of vertices) or
sometimes m (number of edges). One typical scenario where this approach works
is a situation where the problem allows for nice branches as long as large-degree
vertices are contained in the graph, as well as for nice branches if all vertices
have small degree, assuming that branching recursively generates new instances
with degrees smaller than before, see [16,17,44,46]

An alternative generalization is the following one: We arrive at systems of
equations. In its most general form, these will again include maximum operators
that can be treated as explained above. We are left with solving systems like
T (k, �) ≤ maxr

i=1 fi(k, �), where each of the fi(k, �) (1 ≤ i, � ≤ r) is of the form

fi(k, �) = αi,�,1T (k − 1, i) + αi,�,2T (k − 2, i) + · · ·+ αi,�,q�
T (k − q�, i).

This approach was successfully applied to problems related to Hitting Set,
see [9,10,11]. In the case of 3-Hitting Set, the auxiliary parameter � counts
how many hyperedges of small size have been generated, since branching on
them is favorable. We have seen in our examples that an upper bound to the
general situation, i.e., a bound on T (k) = T (k, 0), takes again the form ck.
Moreover, the other entities T (k, �) are upperbounded by β�c

k for suitable β� ∈
(0, 1). Now, if we replace T (j, �) by β�T (j) in the derived inequality system,
we are (after dividing inequalities with left-hand side T (k, �) by β�) back to
our standard form discussed above. All inequalities involved now take the form:
T (k) ≤∑

j≥0 γjT (k− j). Notice that j = 0 is feasible as long as γ0 < 1. Namely,
assuming again an upperbound ck on T (k), the term γ0T (k) on the right-hand
side can be re-interpreted as T (k + logc(γ0)). Due to γ0 < 1, the logarithmic
term is negative, so that the parameter is actually reduced. In fact, the system
of inequalities of the form

T (k) ≤ T (k + logc(γ0)) +
∑
j≥1

γjT (k − j)

would yield the same solution. Terms like γT (k) on the right-hand side can
be interpreted as a case not yielding direct improvement / reduction of the
parameter budget, but the knowledge that the overall search tree size is shrunk
by factor γ. Another interpretation is possible via the multivariate analysis of
Eppstein [6].

64 H. Fernau and D. Raible

Algorithm 2. A simple algorithm for Dominating Set

1: if possible choose a v ∈ BLND such that |N(v) ∩ (BLND ∪ INND)| ≥ 2. then
2: Binary branch on v (i.e., set v active in one branch, inactive in the other)
3: else if possible choose a v ∈ BLDO such that |N(v)∩ (BLND∪ INND)| ≥ 3. then
4: Binary branch on v.
5: else
6: Solve the remaining instance in polynomial time using an edge cover algorithm.

4 Measure-and-Conquer

In this separate section, we will discuss one of the most successful approaches
to run-time estimation of search trees developed in recent years. With this tech-
nique it was possible to prove run time upperbounds O∗(cn) with c < 2 for
several hard vertex selection problems. Among these problems (where for years
nothing better than the trivial 2n-algorithm was known) are many variants of
Dominating Set [16] like Connected or Power Dominating Set [17,44]
and Feedback Vertex Set [14]. The methodology resulted in simplifying al-
gorithms (Independent Set [18]) and in speeding up existent non-trivial ones
(Dominating Set [16,46], Independent Dominating Set [21] and Max-2-

Sat [43]). This approach also served for algorithmically proving upper bounds
on the number of minimal dominating [19] and feedback vertex sets [14].

In this approach, the complexity of an algorithm is not analyzed with respect
to n = |V | (or m = |E|) for a graph instance G = (V, E). Rather, one chooses
a tailored measure, call it μ, which should reflect the progress of the algorithm.
Nevertheless, in the end we desire an upperbound of the form cn. Hence, we
must assure that there is some constant � such that μ ≤ �n during the whole
algorithm. Then, a proven upperbound cμ entails the desired upperbound c�n.

A simple example. We give an algorithm for Dominating Set using less than
2n steps, see Alg. 2. It branches on vertices by deciding whether they should be
in the solution (active) or not (inactive). Regarding this we call them active and
inactive. A vertex for which this decision has not been made is called blank. If
a vertex is active, then its neighbors are dominated. Let BLND = {v ∈ V |
v is blank & not dominated }, INND = {v ∈ V | v is inactive & not dominated }
and BLDO = {v ∈ V | v is blank & dominated }. We now define our measure:

μ = |BLND|+ ω · (|INND|+ |BLDO|) ≤ n

In step 6, we create an edge cover instance GEC = (V (EEC), EEC): (1) For
all v ∈ BLND with N(v) ∩ (BLND ∪ INND) = {q}, adjoin e = {v, q} to EEC

and let α(e) = v; for all v ∈ BLDO with N(v) ∩ (BLND ∪ INND) = {x, y},
x �= y, put e = {x, y} into EEC and (re-)define α(e) = v. If C is a minimum
edge cover of GEC , set all v active where v = α(e) for some e ∈ C. (2) Set
all v ∈ BLND \ V (EEC) with N(v) ∩ (BLND ∪ INND) = ∅ active. (3) Set all
v ∈ BLDO such that |N(v)∩(BLND∪INND)| = 0 inactive. (4) Set all v ∈ BLDO
such that N(v) ∩ (BLND ∪ INND) = {s} �⊆ V (EEC) active.

Searching Trees: An Essay 65

Now we come to the analysis of the branching process in steps 2 and 4. Let
nbl = |N(v) ∩BLND| and nin = |N(v) ∩ INND|. If we set v to active in step 2,
we first reduce μ by one as v vanishes from μ. Then all vertices in N(v)∩BLND
will be dominated and hence moved to the set BLDO. Thus, μ is reduced by
an amount of nbl · (1 − ω). In the same way the vertices in N(v) ∩ INND are
dominated. Therefore, these do not appear in μ anymore. Hence, μ is lowered
by ninω. If we set v inactive we reduce μ by (1− ω), as v is moved from BLND
to INND. Hence, the branching vector is:

(1 + nbl(1− ω) + ninω, (1− ω)) (3)

where nbl + nin ≥ 2 due to step 1. In step 4, we have chosen v ∈ BLDO for
branching. Here, we must consider that in the first and second branch we only
get ω as reduction from v (v disappears from μ). But the analysis with respect
to N(v) ∩ (BLND ∪ INND) remains valid. Thus,

(ω + nbl(1− ω) + ninω, ω) (4)

is the branching vector with respect to nbl + nin ≥ 3 due to step 3.
Unfortunately, depending on nbl and nin we have infinite number of branching

vectors. But it is only necessary to consider the worst case branches. For (3) these
are the ones with nbl +nin = 2 and for (4) nbl +nin = 3. For any other branching
vector, we can find one among those giving a worse upperbound. Thus, we have
a finite set of recurrences R1(ω), . . . , R7(ω) depending on ω. The next task is to
choose ω in a way such that the maximum root of the evolving characteristic
polynomials is minimum. In this case we easily see that ω := 0.5. Then the worst
case branching vector for (3) and (4) is (2, 0.5). Thus, the number of leaves of the
search tree evolving from this branching vector can be bounded by O∗(1.9052μ).
Thus, our algorithm breaks the 2n-barrier using a simple measure. So, one might
argue that we should use a more elaborated measure to get a better upperbound:

μ′ = |BLND|+ ω1 · (|INND|) + ω2 · (|BLDO|)
Under μ′, (3) becomes (1+nbl(1−ω1)+ninω2, (1−ω2)); (4) becomes (ω1+nbl(1−
ω1) + ninω2, ω1). The right choice for the weights turns into a tedious task. In
fact, if ω1 = 0.637 and ω2 = 0.363, then we get an upperbound O∗(1.8899μ′

).
Nevertheless, the current best upperbound is O(1.5134n), see [16,46].

Generally, one wants the measure to reflect the progress made by the algorithm
best possible. This leads to more and more complicated measures with lots of
weights to be chosen. So at a certain point, this task can not be done by hand
and is an optimization problem of its own which can only be reasonable solved
with the help of a computer. One way of obtaining good weights is to use local
search. Starting from initial weights, we examine the direct neighborhood to see
if we can find an weight assignment which provides a better upperbound. In
practice, this approach works quite well, especially if we use compiled programs.
Then an amount of hundreds of characteristic polynomials and several weights
can be handled. There is also a formulation as a convex program [20]. For this
problem class there are efficient solvers available. An alternative is the approach
of Eppstein [6].

66 H. Fernau and D. Raible

5 Correctness of Search Tree Algorithms

In its most primitive form (making complete case distinction at each branch),
proving correctness of a search tree algorithm is not a real issue. However, this
does become an issue when less trivial branching rules are involved (designed
to improve on the running time of the algorithms). This was already noticed
in the early days: as said above, correctness was the key issue dealt with in
early theory papers on branch-and-bound algorithms. So the question was (and
is again): How can we design correct pruning rules that make the search tree
shrink as far as possible, without losing the ability to find an optimum solution?

As long as the trivial search tree algorithm is only modified to incorporate
certain heuristic priorities with respect to which the branching is performed, no
problem with respect to correctness incurs. Such priorities are mere implementa-
tions of the inherent nondeterministic selection of a branching item. To further
speed up the search, the instance might be modified using reduction rules. As
long as these reduction rules are valid for any instance, this is no problem either;
however, sometimes such rules are only valid in combination with branching (and
a further interplay with the heuristic priorities is possible).

Finally, one might think about transferring the already mentioned ideas about
dominance and equivalence of search tree nodes (and the corresponding in-
stances) into the search tree analysis. Here, things become tricky. Recall that
upon running a branch-and-bound algorithm, we have dynamically changing in-
formation about hitherto best or most promising (partial) solutions at hand.
Moreover, we have a certain direction of time in which the underlying static
search tree is processed. Both properties give (additional) possibilities to prune
search tree nodes, e.g., by not expanding nodes where no improvement over
the best solution found so far is to be expected. Nonetheless, it is tempting to
stop branching at certain nodes n when it has become clear that other branches
would lead to solutions no worse than the ones expected from n. Instead, we
would (conceptually) introduce a reference link from n to other nodes in the
search tree. However, we must avoid creating cycles in the graph consisting of
the search tree together with the conceptual links (viewed as arcs in the graph).
An according model named reference search tree was defined (and successfully
employed) in [44].

6 List of Questions and Research Topics

Is it possible to somehow use the basic principle of branch-and-bound,
namely the use of a bounding function, within the run-time analysis of
search tree algorithms? Possibly, the worst case approach is not suitable here.
However, are there any possibilities for a reasonable average-case analysis?
The main mathematical problem and challenge is that, even if we start out with a
random instance (in whatever sense), the graph will not be any longer “random”
after the first branching operations, since it will have been modified according
to some heuristic strategy. So, combinatorial and statistical properties will be

Searching Trees: An Essay 67

destroyed by branching. However, any progress in this direction would be highly
welcome, since the difference between theoretical worst-case analysis (making
many search tree approaches seemingly prohibitive) and the actual (fast) run
time in practice his far too large and can be best explained by the facts that (1)
many heuristics work very nice in practice and (2) a good branching strategy
enables to bound the search quite efficiently at a very early stage.

How can search trees techniques be applied in combination with
other algorithmic paradigms? This idea has been quite successful in connec-
tion with dynamic programming (DP). With DP (when used for solving hard
combinatorial problems), often the main problem is the exponential space re-
quirement. In general form, these ideas seem to go back to Morin and Marsten
[41], exemplified with the Traveling Salesman Problem (TSP). The simple idea
is to trade time and space, more specifically, to use search trees to lower the
prohibitive space requirements of DP. More recently, such space saving ideas
have been employed to obtain good (not necessarily best) solutions [2], as well
as (again) for TSP in [3]. From the early days of research onwards, the connec-
tion between search tree algorithms and DP was seen; e.g., in [33]. Karp and
Held investigate a kind of reverse question: which discrete decision processes can
be solved by DP? One can think to combine search tree algorithms with other
paradigms, as, e.g., iterative compression / expansion as known from parameter-
ized algorithms, see [42] for a textbook explanation. However, to the knowledge
of the authors, no such research has been carried out yet.

Explore the measure-and-conquer paradigm within parameterized al-
gorithms. Only few examples of applying measure-and-conquer to (classical)
parameterization are known, see [12] for one such example. However, in those
examples, there is always a very close link between the non-parameterized view
(say, measured in terms of the number m of edges) and the parameterization
(e.g., the number of edges k found in an acyclic subgraph). The finite automata
approach of Wahlström [47], as well as the ideas expressed in Sec. 3 that offer
the re-interpretation of weights as search-tree reduction might show a way to
a broader application of measure-and-conquer to (classical) parameterization.
Here, Eppstein’s quasiconvex method [6] could be also of interest. Other forms
of amortized analysis (using potential functions that are analyzed on each path
of the search tree) are reported in [4] and could also find broader applicability.

For specific forms of recurrent (e.g., divide-and-conquer) algorithms, connec-
tions between the run time estimation and fractal geometry have been
shown [5]. How does this setting generalize towards time estimates of search-
tree algorithms as obtained by branch-and-bound? Notice that those fractal ge-
ometric objects in turn are quite related to finite automata, and there are many
connections between finite automata and search trees, see [30,47].

Is there a broader theory behind the idea of automization of search tree
analysis? Several attempts in the direction of employing computers to do the
often nasty and error-prone case-analysis have been reported [7,25,35]. Can such
ideas be combined with the measure-and-conquer approach that, in itself, already
needs a certain computer assistance?

68 H. Fernau and D. Raible

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton Univ. Press, Princeton (2006)

2. Bailey, M., Alden, J., Smith, R.L.: Approximate dynamic programming using
epsilon-pruning (working paper). TR, University of Michigan, Ann Arbor (2002)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The Travelling Salesman
Problem in bounded degree graphs. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I.
LNCS, vol. 5125, pp. 198–209. Springer, Heidelberg (2008)

4. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved
upper bounds for NP-hard problems. In: Ibaraki, T., Katoh, N., Ono, H. (eds.)
ISAAC 2003. LNCS, vol. 2906, pp. 148–157. Springer, Heidelberg (2003)

5. Dube, S.: Using fractal geometry for solving divide-and-conquer recurrences (ex-
tended abstract). In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin,
F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 191–200. Springer, Heidelberg
(1993)

6. Eppstein, D.: Quasiconvex analysis of multivariate recurrence equations for back
tracking algorithms. ACM Trans. Algorithms 2, 492–509 (2006)

7. Fedin, S.S., Kulikov, A.S.: Automated proofs of upper bounds on the running time
of splitting algorithms. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 248–259. Springer, Heidelberg (2004)

8. Feigenbaum, J., Kannan, S., Vardi, M.Y., Viswanathan, M.: The complexity of
problems on graphs represented as OBDDs. Chicago J. Theor. Comput. Sci. (1999)

9. Fernau, H.: Two-layer planarization: improving on parameterized algorithmics. J.
Graph Algorithms and Applications 9, 205–238 (2005)

10. Fernau, H.: Parameterized algorithms for hitting set: the weighted case. In: Cala-
moneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp.
332–343. Springer, Heidelberg (2006)

11. Fernau, H.: A top-down approach to search trees: improved algorithmics for 3-
hitting set. Algorithmica (to appear)

12. Fernau, H., Raible, D.: Exact algorithms for maximum acyclic subgraph on a su-
perclass of cubic graphs. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM 2008.
LNCS, vol. 4921, pp. 144–156. Springer, Heidelberg (2008)

13. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge Univ. Press, Cam-
bridge (2008)

14. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the Minimum Feed-
back Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52(2),
293–307 (2008)

15. Fomin, F., Golovach, P., Kratsch, D., Kratochvil, J., Liedloff, M.: Branch &
recharge: Exact algorithms for generalized domination. In: Dehne, F., Sack, J.-R.,
Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 507–518. Springer, Heidelberg
(2007)

16. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination – a case
study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

17. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster
than 2n. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
152–163. Springer, Heidelberg (2006)

Searching Trees: An Essay 69

18. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n)
independent set algorithm. In: SODA, pp. 18–25 (2006)

19. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications.
ACM Trans. Algorithms 5, 1–17 (2008)

20. Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds.
Ph.D thesis, University of Bergen, Norway (2008)

21. Gaspers, S., Liedloff, M.: A Branch-and-Reduce Algorithm for Finding a Minimum
Independent Dominating Set in Graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS,
vol. 4271, pp. 78–89. Springer, Heidelberg (2006)

22. Golomb, S.W., Baumert, L.D.: Backtrack programming. J. ACM 12, 516–524
(1965)

23. Graham, R., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley,
Reading (1989)

24. Gramm, J.: Fixed-Parameter Algorithms for the Consensus Analysis of Genomic
Data. Dissertation, Univ. Tübingen, Germany (2003)

25. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39, 321–347
(2004)

26. Hong, S.: A Linear Programming Approach for the Traveling Salesman Problem.
Ph.D thesis, The Johns Hopkins University, Baltimore, Maryland, USA (1972)

27. Ibaraki, T.: Theoretical comparison of search strategies in branch-and-bound algo-
rithms. Intern. J. Computer and Information Sciences 5, 315–344 (1976)

28. Ibaraki, T.: On the computational efficiency of branch-and-bound algorithms. J.
Operations Research Society of Japan 26, 16–35 (1977)

29. Ibaraki, T.: The power of dominance relations in branch-and-bound algorithms. J.
ACM 24, 264–279 (1977)

30. Ibaraki, T.: Branch-and-bound procedure and state-space representation of com-
binatorial optimization problems. Information and Control 36, 1–27 (1978)

31. Jeroslaw, R.G.: Trivial integer programs unsolvable by branch-and-bound. Mathe-
matical Programming 6, 105–109 (1974)

32. Jünger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algo-
rithms in integer programming and combinatorial optimization. Software: Practice
and Experience 30, 1325–1352 (2000)

33. Karp, R.M., Held, M.: Finite-state processes and dynamic programming. SIAM J.
Applied Mathematics 15, 693–718 (1967)

34. Knuth, D.E.: Estimating the efficiency of backtrack programs. Mathematics of
Computation 29, 121–136 (1975)

35. Kulikov, A.S.: Automated generation of simplification rules for SAT and MAXSAT.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 430–436. Springer,
Heidelberg (2005)

36. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoret-
ical Computer Science 223, 1–72 (1999)

37. Kullmann, O.: Fundaments of Branching Heuristics. In: Handbook of Satisfiability,
ch. 7, pp. 205–244. IOS Press, Amsterdam (2009)

38. McDiarmid, C.J.H., Provan, G.M.A.: An expected-cost analysis of backtracking
and non-backtracking algorithms. In: IJCAI 1991, vol. 1, pp. 172–177 (1991)

39. Mehlhorn, K.: Graph Algorithms and NP-Completeness. Springer, Heidelberg
(1984)

40. Mitten, L.G.: Branch-and-bound methods: general formulation and properties. Op-
erations Research 18, 24–34 (1970)

70 H. Fernau and D. Raible

41. Morin, T.L., Marsten, R.E.: Branch-and-bound strategies for dynamic program-
ming. Operations Research 24, 611–627 (1976)

42. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Univ. Press,
Oxford (2006)

43. Raible, D., Fernau, H.: A new upper bound for max-2-sat: A graph-theoretic
approach. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162,
pp. 551–562. Springer, Heidelberg (2008)

44. Raible, D., Fernau, H.: Power domination in O∗(1.7548n) using reference search
trees. In: ISAAC. LNCS, vol. 5369, pp. 136–147. Springer, Heidelberg (2008)

45. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)
46. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster

exact algorithm for dominating set. In: STACS, pp. 657–668. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl
(2008)

47. Wahlström, M.: Algorithms, Measures and Upper Bounds for Satisfiability and
Related Problems. Ph.D thesis, Linköpings universitet, Sweden (2007)

Approximability and Fixed-Parameter
Tractability for the Exemplar Genomic Distance

Problems�

Binhai Zhu

Department of Computer Science
Montana State University

Bozeman, MT 59717-3880 USA
bhz@cs.montana.edu

Abstract. In this paper, we present a survey of the approximability and
fixed-parameter tractability results for some Exemplar Genomic Distance
problems. We mainly focus on three problems: the exemplar breakpoint
distance problem and its complement (i.e., the exemplar non-breaking
similarity or the exemplar adjacency number problem), and the maximal
strip recovery (MSR) problem. The following results hold for the simplest
case between only two genomes (genomic maps) G and H, each containing
only one sequence of genes (gene markers), possibly with repetitions.

1. For the general Exemplar Breakpoint Distance problem, it was
shown that deciding if the optimal solution value of some given in-
stance is zero is NP-hard. This implies that the problem does not
admit any approximation, neither any FPT algorithm, unless P=NP.
In fact, this result holds even when a gene appears in G (H) at most
two times.

2. For the Exemplar Non-breaking Similarity problem, it was shown
that the problem is linearly reducible from Independent Set. Hence,
it does not admit any factor-O(nε) approximation unless P=NP and
it is W[1]-complete (loosely speaking, there is no way to obtain an
O(no(k)) time exact algorithm unless FPT=W[1], here k is the op-
timal solution value of the problem).

3. For the MSR problem, after quite a lot of struggle, we recently
showed that the problem is NP-complete. On the other hand, the
problem was previously known to have a factor-4 approximation and
we showed recently that it admits a simple FPT algorithm which
runs in O(22.73kn + n2) time, where k is the optimal solution value
of the problem.

1 Introduction

In bioinformatics and computational biology, we constantly need to process var-
ious biological data to extract meaningful biological relation, like building a
� This research is partially supported by NSF, NSERC, Louisiana Board of Regents un-

der contract number LEQSF(2004-07)-RD-A-35, and MSU-Bozeman’s Short-Term
Professional Development Leave Program.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 71–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 B. Zhu

phylogenetic tree. However, such a process usually involves solving hard combi-
natorial optimization problems which are typically NP-complete.

In the area of bioinformatics and computational biology, one would typically
apply three methods to handle these NP-complete problems. One is to find an
approximation solution, with the requirement being that the approximation fac-
tor is small (better close to one). The other is to look for an exact solution (FPT
algorithm) when the solution size of the problem is small. The vast majority
of practical solutions for bioinformatics and computational biology are heuris-
tic ones, which are possibly based on some formal methods like integer linear
programming, branch-and-bound, etc.

In this paper, we review the approximability and fixed-parameter tractability
results for three problems related to exemplar genomic distance computation.
In these problems, we are given some genomes or genomic maps and we try to
optimize some solutions values by deleting some genes or gene markers. So these
problem fit naturally for approximation and/or FPT solutions. Unfortunately,
as we will review a bit later, some of these problems are very hard in both
aspects. In other words, it might be impossible to design good approximation
and/or FPT algorithms for them, unless P=NP or FPT=W[1]. On the other
hand, many problems are still open along these lines.

The paper is organized as follows. In Section 2, we review the approxima-
bility and fixed-parameter tractability for the Exemplar Breakpoint Distance
(EBD) problem. In Section 3, we review the approximability and fixed-parameter
tractability for the Exemplar Non-breaking Similarity (ENbS) problem (which
is the dual of EBD). In Section 4, we review the approximability and fixed-
parameter tractability for the Maximal Strip Recovery (MSR) problem. In Sec-
tion 5, we list a set of open problems to conclude this paper.

2 Approximability and Fixed-Parameter Tractability for
EBD

In the genome comparison and rearrangement area, a standard problem is to
compute the number (i.e., genetic distances) and the actual sequence of genetic
operations needed to convert a source genome to a target genome. This problem
is important in evolutionary molecular biology. Typical genetic distances include
edit [23], signed reversal [26,24,6] and breakpoint [30], etc. (The idea of signed
reversal and, implicitly, breakpoint, was initiated as early as in 1936 by Sturte-
vant and Dobzhansky [29].) In the past years, conserved interval distance was
also proposed to measure the similarity of multiple sequences of genes [9]. Inter-
ested readers are referred to [21,22] for a summary of the research performed in
this area.

However, in genome rearrangement research, it is almost always assumed that
each gene appears in a genome exactly once. Under this assumption, the genome
rearrangement problem is in essence the problem of comparing and sorting signed
permutations [21,22]. However, this assumption is very restrictive and is only
justified in several small virus genomes. For example, this assumption does not

Approximability for the Exemplar Genomic Distance Problems 73

hold on eukaryotic genomes where paralogous genes exist [25,27]. On the one
hand, it is important in practice to compute genomic distances, e.g., Hannenhalli
and Pevzner’s method [21], when no gene duplications arise; on the other hand,
one might have to handle this gene duplication problem as well.

Sankoff first considered the problem of computing genomic distance with du-
plicated genes. About ten years ago, Sankoff proposed a way to select, from the
duplicated copies of genes, the common ancestor gene such that the distance
between the reduced genomes (exemplar genomes) is minimized [27]. A general
branch-and-bound algorithm was also implemented in [27]. In [25], Nguyen, Tay
and Zhang proposed to use a divide-and-conquer method to compute the exem-
plar breakpoint distance empirically.

For the theoretical part of research, it was shown that both of the problems
of computing the signed reversal and breakpoint distances between exemplar
genomes are NP-complete [7]. A few years ago, Blin and Rizzi further proved
that computing the conserved interval distance between exemplar genomes is
NP-complete [8]; moreover, it is NP-complete to compute the minimum con-
served interval matching (i.e., without deleting the duplicated copies of genes).
Recently we showed much stronger inapproximability result for the exemplar
conserved interval distance problem (even under a weaker model of approxi-
mation) [12]. While various exemplar genomic distances have been researched
before, in this survey we will focus on the exemplar breakpoint distance. In
fact, all the inapproximability result for exemplar breakpoint distance under the
normal model of approximation holds for any other genomic distance d(−,−)
satisfying d(G, H) = 0 implies G = H or G = −H .

2.1 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes. (In general a genome could
contain a set of such sequences. The genomes we focus on are typically called
singletons.) The order of the genes corresponds to the position of them on the
linear chromosome and the signs correspond to which of the two DNA strands
the genes are located. While most of the past research are under the assumption
that each gene occurs in a genome once, this assumption is problematic in reality
for eukaryotic genomes or the likes where duplications of genes exist [27]. Sankoff
proposed a method to select an exemplar genome, by deleting redundant copies
of a gene, such that in an exemplar genome any gene appears exactly once;
moreover, the resulting exemplar genomes should have a property that certain
genetic distance between them is minimized [27].

The following definitions are very much following those in [8]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that
each element is with a sign (+ or −). In general, we allow the repetition of a
gene family in any genome. Each occurrence of a gene family is called a gene,
though we will not try to distinguish a gene and a gene family if the context
is clear. Given a genome G = g1g2...gm with no repetition of any gene, we say
that gene gi immediately precedes gj if j = i + 1. Given genomes G, H , if gene

74 B. Zhu

a immediately precedes b in G and neither a immediately precedes b nor −b
immediately precedes −a in H , then they constitute a breakpoint in G. The
breakpoint distance is the number of breakpoints in G (symmetrically, it is the
number of breakpoints in H).

The number of a gene g appearing in a genome G is called the cardinality of
g in G, written as card(g,G). A gene in G is called trivial if g has cardinality
exactly 1; otherwise, it is called non-trivial. A genome G is called r-repetitive,
if all the genes from the same gene family appear at most r times in G. For
example, G = c− adc− bdeb is 2-repetitive.

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears
exactly once in G′. For example, let G = −bcaadag − e, there are two exemplar
genomes: −bcadg − e and −bcdag − e.

The Exemplar Breakpoint Distance (EBD) problem is defined as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.

Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the breakpoint distance between them is at most K?

In the next subsection, we present some hardness results on the approximability
and fixed-parameter tractability for EBD, namely, the hardness to compute or
approximate the minimum value K in the above formulation. Given a minimiza-
tion (maximization) problem Π , let the optimal solution value of Π be OPT.
We say that an approximation algorithm A provides a performance guarantee of
α for Π if for every instance I of Π , the solution value returned by A is at most
α×OPT (at least OPT/α). Usually we say that A is a factor-α approximation
for Π . For the obvious reason, we are only interested in polynomial time approx-
imation algorithms. Readers are referred to [16,19] for more details regarding the
definitions related to approximation algorithms and NP-completeness.

As a well-known subject as well, an FPT algorithm for an optimization prob-
lem Π with optimal solution value OPT = k is an algorithm which solves the
problem in O(f(k)nc) time, where f is any function only on k and c is some
fixed constant not related to k. More details on FPT algorithms can be found
in [18].

2.2 Hardness Results

In [10], we presented the first set of inapproximability and approximation re-
sults for the Exemplar Breakpoint Distance problem, given two genomes each
containing only one sequence of genes drawn from n identical gene families. We
showed that even if a gene appears at most three times, deciding whether the op-
timal exemplar breakpoint distance is zero, i.e, whether G = H , is NP-complete.
It was left as an open problem whether the result holds when each gene ap-
pears at most twice in each of the input genomes [10,1]. This year, this open

Approximability for the Exemplar Genomic Distance Problems 75

question was finally answered, i.e., it remains NP-complete even when each gene
appears at most two times [4]. Combining these results, we have the following
inapproximability result.

Theorem 1. If both G and H are 2-repetitive genomes, then the Exemplar
Breakpoint Distance problem does not admit any polynomial time approxima-
tion (regardless of its approximation factor), unless P=NP.

Proof. If we view the Exemplar Breakpoint Distance problem as a minimization
problem, then the result in [4] implies that deciding whether OPT = 0 is NP-
complete (even if the input genomes are 2-repetitive). Let A be any approxima-
tion algorithm for EBD with factor α. By definition, A returns an approximation
solution value APP, with

APP ≤ α×OPT.

When OPT = 0, clearly APP must also satisfy APP = 0. In other words, A
would be able to solve the instance in [4] in polynomial time. This, however,
contradicts with the corresponding NP-completeness result (unless P=NP). !
Regarding the fixed-parameter tractability for EBD, we have the following the-
orem.

Theorem 2. If both G and H are 2-repetitive genomes, then the Exemplar
Breakpoint Distance problem does not admit any FPT algorithm, unless P=NP.

Proof. Again, if we view the Exemplar Breakpoint Distance problem as a mini-
mization problem, then the result in [4] implies that deciding whether OPT = 0
is NP-complete (even if the input genomes are 2-repetitive). Let B be any FPT
algorithm for EBD which runs in O(f(k)nc) time. When OPT = k = 0, B solves
EBD in O(f(0)nc) = O(nc) time. In other words, B would be able to solve the
instance in [4] in polynomial time. This, again, contradicts with the correspond-
ing NP-completeness result, unless P=NP. !

3 Approximability and Fixed-Parameter Tractability for
ENbS

We comment that the negative results in Section 2.2 hold for any genomic dis-
tance d(−,−) satisfying that d(G, H) = 0 implies G = H or G = −H . This, of
course, implies that all the exemplar genomic distance problems (like exemplar
reversal, exemplar transposition, and exemplar conserved interval distances) do
not admit any polynomial time approximation algorithms or any FPT algorithm,
unless P=NP.

There have been two ways to handle this problem. One is to use a weak model
of approximation, which will be covered as related to open problems in Section 5.
The other, on the other hand, is to use a different similarity measure. In this case,
one would try to maximize certain similarity measure. The most notably such
measures include non-breaking similarity (or number of adjacencies) [13] and

76 B. Zhu

the number of common intervals [3]. (A common interval is a pair of substrings
appearing in the two genomes with the same genes, but possibly different orders.
Example. G = abced, H = deacb. (abc, acb) is a length-3 common interval.) We
will focus the non-breaking similarity, which is really the complement of the
breakpoint distance.

For two exemplar genomes G and H over the same alphabet of size n, a
breakpoint in G is a two-gene substring gigi+1 such that neither gigi+1 nor
−gi+1 − gi is a substring in H . A non-breaking point (or an adjacency) is a
common two-gene substring gigi+1 that appears either as gigi+1 or as −gi+1−gi

in G and H . The number of non-breaking points between G and H is also
called the non-breaking similarity between G and H , denoted as nbs(G, H).
Clearly, we have nbs(G, H) = n − 1 − bd(G, H). For two genomes G and H,
their exemplar non-breaking similarity enbs(G,H) is the maximum nbs(G, H),
where G and H are exemplar genomes derived from G and H. Again we have
enbs(G,H) = n− 1− ebd(G,H).

The Exemplar Non-breaking Similarity (ENbS) problem is formally defined
as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n identical
gene families (i.e., at least one gene from each of the n gene families appears in
both G and H); integer K.

Question: Are there two respective exemplar genomes of G and H, G and H ,
such that the non-breaking similarity between them is at least K?

We have the following negative results which have been proved in [13].

Theorem 3. If one of G and H is exemplar and the other is 2-repetitive, then
the Exemplar Non-breaking Similarity problem does not admit any factor-nε poly-
nomial time approximation unless P=NP.

Proof. We give a sketch of proof from [13]. In [13], it was shown that Independent
Set can be linearly reduced to ENbS; i.e., the input graph has an independent
set of size k iff the constructed ENbS instance has a non-breaking similarity (or
number of adjacencies) equal to k. As Independent Set cannot be approximated
within a factor of nε unless P=NP [20], the theorem follows. !
Theorem 4. If one of G and H is exemplar and the other is 2-repetitive, the
Exemplar Non-breaking Similarity problem does not admit an FPT algorithm
unless FPT=W[1].

Proof. It is noted that the reduction from Independent Set to ENbS in [13] is in
fact an FPT reduction. As Independent Set is W[1]-complete [18], the theorem
simply follows. !
In fact, with the lower bound results proved in [15], Independent Set (hence
ENbS) cannot be solved in O(f(k)no(k)) time even if k is bounded by an arbitrar-
ily small function of n, unless ETH fails. (ETH — Exponential Time Hypothesis:
3SAT cannot be solved in subexponential time.)

Approximability for the Exemplar Genomic Distance Problems 77

4 Approximability and Fixed-Parameter Tractability for
MSR

Given two genomic maps G and H represented by a sequence of n gene markers,
a strip (syntenic block) is a sequence of distinct markers of length at least two
which appear as subsequences in both of the input maps, either directly or in
reversed and negated form. The problem Maximal Strip Recovery (MSR) is to
find two subsequences G′ and H ′ of G and H , respectively, such that the total
length of disjoint strips in G′ and H ′ is maximized An example is as follows:
G = abcde, H = cbdae and the optimal solution is G′ = H ′ = cde.

The MSR problem was proposed to handle the elimination of noise and am-
biguities in genomic maps. This is related to the well-known problem in com-
parative genomics — to decompose two given genomes into syntenic blocks, i.e.,
segments of chromosomes which are deemed to be homologous in the two in-
put genomes. Two years ago, a heuristic method was proposed to handle the
MSR problem [17,32]. In [14], a factor-4 polynomial time approximation algo-
rithm was proposed for the problem. This was done by applying the Maximum
Weight Independent Set on 2-interval graphs, which admit a factor-4 approx-
imation [5]. We also proved that several close variants of MSR, MSR-d (with
d > 2 input maps), MSR-DU (with marker duplications), and MSR-WT (with
markers weighted) are all NP-complete. It was left as an open problem whether
the problem can be solved in polynomial time or is NP-complete [14].

Recently, in [31] we showed that MSR is in fact NP-complete, via a polynomial
time reduction from One-in-Three 3SAT (which was shown to be NP-complete
in [28,19]). We summarize the results in [14,31] as follows.

Theorem 5. MSR is NP-complete, and it admits a factor-4 polynomial time
approximation.

As an effort to solve the MSR problem practically, we tried to solve MSR and its
variants exactly with FPT algorithms, i.e., showing that MSR is fixed-parameter
tractable [31]. Let k be the minimum number of markers deleted in various
versions of MSR, the running time of our algorithms are O(22.73kn+n2) for MSR,
O(22.73kdn+dn2) for MSR-d, and O(25.46kn+n2) for MSR-DU respectively. We
summarize this result in [31] as follows.

Theorem 6. Let k be the optimal number of gene markers deleted from the
input genomic maps. MSR can be solved in O(22.73kn + n2) time; i.e., MSR is
fixed-parameter tractable.

Note that as k is typically greater than 50 in real datasets, our FPT algorithms
are not yet practical.

5 Concluding Remarks and Open Problems

The negative results on EBD and ENbS do not mean that we have absolutely
no way to tackle these problems. For instance, in [2], with integer linear pro-
gramming, very nice empirical results are obtained. Here, we try to present a
different way to handle these problems formally.

78 B. Zhu

In many biological problems, the optimal solution value OPT could be zero.
(Besides EBD, in some minimum recombination haplotype reconstruction prob-
lems the optimal solution value could be zero.) As implied by Theorem 1, if
computing such an optimal solution with zero solution value is NP-complete
then the problem does not admit any polynomial time approximation (unless
P=NP). However, in reality one would be satisfied to obtain a solution with
value one or two. Due to this reason, we can relax the traditional definition of
approximation to a weak approximation. Given a minimization problem Π , let
the optimal solution of Π be OPT. We say that a weak approximation algorithm
W provides a performance guarantee of α for Π if for every instance I of Π , the
solution value returned by W is at most α× (OPT + 1).

In [10,11,12] we showed that EBD and the exemplar conserved interval dis-
tance problems are both hard to approximate even under the weak approxima-
tion model. But for the exemplar reversal distance problem, no such result is
known yet.

For the exemplar common interval number problem [3], the only negative
result is its NP-hardness. It would also be interesting to know whether it admits
an efficient polynomial time approximation. We conclude this paper with a list
of open problems.

1. For the exemplar reversal distance problem, does there exist a good weak
approximation?

2. For the exemplar common interval number problem, does there exist a good
approximation?

3. For the MSR problem, does there exist a polynomial time approximation
with factor better than 4?

4. For the MSR problem, does there exist a more efficient FPT algorithm?

Acknowledgments

I would like to thank my collaborators for this series of research: Zhixiang Chen,
Richard Fowler, Bin Fu, Minghui Jiang, Lusheng Wang, Jinhui Xu, Boting Yang,
and Zhiyu Zhao. Special thanks to Jianer Chen for answering many questions
regarding FPT.

References

1. Angibaud, S., Fertin, G., Rusu, I.: On the approximability of comparing genomes
with duplicates. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM 2008. LNCS,
vol. 4921, pp. 34–45. Springer, Heidelberg (2008)

2. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for
computing the number of breakpoints and the number of adjacencies between two
genomes with duplicate genes. J. Computational Biology 15, 1093–1115 (2008)

3. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with
duplicates: a computational complexity point of view. IEEE/ACM Trans. on Com-
putational Biology and Bioinformatics 4, 523–534 (2007)

Approximability for the Exemplar Genomic Distance Problems 79

4. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The exemplar breakpoint distance for
non-trivial genomes cannot be approximated. In: Proc. 3rd Workshop on Algorithm
and Computation, WALCOM 2009 (to appear, 2009)

5. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.:
Scheduling split intervals. SIAM Journal on Computing 36, 1–15 (2006)

6. Bafna, V., Pevzner, P.: Sorting by reversals: Genome rearrangements in plant or-
ganelles and evolutionary history of X chromosome. Mol. Bio. Evol. 12, 239–246
(1995)

7. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D.,
Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families,
pp. 207–212. Kluwer Acad. Pub., Dordrecht (2000)

8. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial
genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer,
Heidelberg (2005)

9. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its appli-
cations to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003.
LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

10. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance
problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp.
291–302. Springer, Heidelberg (2006)

11. Chen, Z., Fu, B., Fowler, R., Zhu, B.: Lower bounds on the approximation of the
exemplar conserved interval distance problem of genomes. In: Chen, D.Z., Lee,
D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 245–254. Springer, Heidelberg
(2006)

12. Chen, Z., Fu, B., Fowler, R., Zhu, B.: On the inapproximability of the exemplar con-
served interval distance problem of genomes. J. Combinatorial Optimization 15(2),
201–221 (2008)

13. Chen, Z., Fu, B., Yang, B., Xu, J., Zhao, Z., Zhu, B.: Non-breaking similarity of
genomes with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS,
vol. 4580, pp. 119–130. Springer, Heidelberg (2007)

14. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from com-
parative maps. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS,
vol. 5165, pp. 319–327. Springer, Heidelberg (2008)

15. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational
lower bounds. In: Proceedings of the 36th ACM Symposium on Theory of Com-
puting (STOC 2004), pp. 212–221 (2004)

16. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge (2001)

17. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny
blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI
2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

18. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
19. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, San Francisco (1979)
20. Hästad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,

105–142 (1999)
21. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-

rithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)
22. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University

Press, Oxford (2004)

80 B. Zhu

23. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and in-
sertions. Theoretical Computer Science 325(3), 347–360 (2004)

24. Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional
alternatives in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–
1480 (1988)

25. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar
breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

26. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but
slowly in sequence. J. Mol. Evolut. 27, 87–97 (1988)

27. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–
917 (1999)

28. Schaefer, T.: The complexity of satisfiability problem. In: Proceedings of the 10th
ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

29. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of
drosophila pseudoobscura, and their use in the study of the history of the species.
Proc. Nat. Acad. Sci. USA 22, 448–450 (1936)

30. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion prob-
lem. J. Theoretical Biology 99, 1–7 (1982)

31. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Chen, J.,
Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532 (2009)

32. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from compara-
tive maps in rearrangement analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 4, 515–522 (2007)

A Quadratic Kernel for 3-Set Packing�

Faisal N. Abu-Khzam

Department of Computer Science and Mathematics
Lebanese American University

Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

http://www.csm.lau.edu.lb/fabukhzam

Abstract. We present a reduction procedure that takes an arbitrary
instance of the 3-Set Packing problem and produces an equivalent in-
stance whose number of elements is bounded by a quadratic function
of the input parameter. Such parameterized reductions are known as
kernelization algorithms, and each reduced instance is called a problem
kernel. Our result improves on previously known kernelizations and can
be generalized to produce improved kernels for the r-Set Packing problem
whenever r is a fixed constant. Improved kernelization for r-Dimensional-
Matching can also be inferred.

Keywords: Fixed-parameter algorithms, kernelization, crown decompo-
sition, Set Packing.

1 Introduction

Let π be a problem that is parameterized by some positive integer k. An f(k)
kernelization algorithm for π is a polynomial-time pre-processing procedure that
takes an instance (I, k) of π as input and produces an equivalent instance (I ′, k′)
whose size is bounded by f(k′), where k′ ≤ k.

When such an algorithm exists, we say that the problem has an f(k) kernel
and each reduced instance is a problem kernel. Such reductions are desired when
f is a low-order polynomial function of k.

Let C be a collection of subsets of a finite universe S. A packing of C is a
sub-collection of pair-wise disjoint elements of C. Finding a packing of maximum
cardinality has applications in many areas including scheduling, computational
biology and code optimization [8]. The corresponding decision problem, dubbed
Set Packing, is defined formally as follows:

Given: A collection C of sets, and a positive integer k.

Question: Does C have a packing of cardinality k?

Set Packing is NP-Complete [5], unless every set in the given collection is a
pair, in which case it coincides with the Maximum Matching problem in simple
� This research has been supported in part by the research council of the Lebanese

American University.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 81–87, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

82 F.N. Abu-Khzam

undirected graphs. When the maximum cardinality of every element of C is
bounded by some integer r, the problem is known as r-Set Packing. If r is
a small constant, r-Set Packing is fixed-parameter tractable [3]. In short, this
means that it can be solved by an algorithm that runs in time O(f(k)nc), where
n is the total input size, c is a constant and f is an arbitrary function of the
input parameter only.

In this paper, we consider the parameterized search version of 3-Set Packing,
henceforth 3SP , which received a great deal of attention lately. Following the
above mentioned work of Downey and Fellows in [3], there was a sequence of
improved fixed-parameter algorithms for 3SP (see [4,6,7]). In particular, Fellows
et al. showed that 3SP has a problem kernel whose size is in O(k3) [4]. In this
paper, we present an algorithm that produces kernels whose number of elements
(i.e., |S|) is in O(k2)1.

2 Background

Throughout this paper, we describe a sequence of reduction procedures that
apply to a given input instance (S, C, k) of 3SP . We shall assume that ele-
ments of C are size-three subsets of S. Dealing with the more general case is
a simple modification of our algorithm and would only improve the size of the
resulting kernel. We start with a few definitions, some of which were used in [4]
and [6].

For a collection C′ ⊂ C, we denote by val(C′) the union of all elements of
C′. For S′ ⊂ S, C(S′) = {e ∈ C : e ∩ S′ �= φ}, and for x ∈ S, we denote by
C(x) the set of all elements of C that contain x. Moreover, we denote by G(x)
the simple graph whose vertex set, V (x), is val(C(x)) and whose edge set is
E(x) = {yz : {x, y, z} ∈ C}.

When (S, C, k) is a yes instance, the target solution is denoted by P . An
element of the target packing P will be called a packing-set, while the elements
of val(P) will be called packed-elements. We say that a yes instance (S, C, k) is
an extreme yes instance if (S, C, k + 1) is a no instance.

We introduce the notion of a pair cover, which plays a key role in our reduction
procedure. A pair cover T of (S, C) is a collection of size-two subsets of S such
that every element of C contains (as a subset) an element of T .

The notion of a crown decomposition also plays a major role in our algorithm.
A crown decomposition of a simple connected undirected graph G is a triple
(H, I, M) such that I is an independent set of G, H = NG(I), and M is a
matching in G that satisfies:

(i) Every edge of M joins a vertex from H to a vertex of I.
(ii) Every vertex of H is matched, under M , to a vertex of I.

Not all graphs have crowns. An extreme example of a crown-free graph is any
complete graph on three or more vertices. A necessary and sufficient condition for

1 The cardinality of S is in O(k3) in the previously known kernel.

A Quadratic Kernel for 3-Set Packing 83

a graph to have a crown is to have an independent set I such that |NG(I)| ≤ |I|.
This can be easily deduced from [2], in which a construction procedure was
described.

The size of a crown (H, I, M) is the number of edges in M . A crown of maxi-
mum size can be constructed in O(|V (G)|2.5), as described in [1]. The maximum
crown construction procedure, which we call Construct Crown, can be applied
whenever an independent set I that satisfies the above condition (|NG(I)| ≤ |I|)
is found. See [1] for more details.

A cubic-size kernelization algorithm for 3SP was described by Fellows et al.
in [4]. In this paper, the main focus is on how to obtain a quadratic upper bound
on the number of elements of a 3SP kernel. We shall omit the complete details
of efficiency analysis whenever it is clear that the run time is polynomial in the
input size, which is in θ(|S|+ |C|).

3 A Reduction Procedure

Our reduction process consists of three steps. The first two are based on simple
counting arguments. We shall assume (S, C, k) is a given instance of 3SP and
that P is a potential solution, if any.

3.1 The High-Degree Rule

During the search for a large packing, we may determine that an element of S
can be packed in at least one solution. Such is the case of elements that belong
to a sufficiently large number of sets.

The high-degree rule: If k ≥ 0 and {x} ⊂ S is the intersection of 3k − 2
elements of C, then delete x and all the sets of C(x), and decrement k by one.

The soundness of this reduction rule is due to a simple observation: if C(x)
contains 3k − 2 sets whose pair-wise intersection is {x}, then any solution (or
packing) of (S\{x}, C\C(x), k − 1) has an empty intersection with at least one
element of C(x). Since C(x) can contribute at most one element to any packing,
it follows easily that: (S, C, k) has a solution if and only if (S\{x}, C\C(x), k−1)
has a solution.

From this point on, we say that an instance (S, C, k) is preprocessed if the
high-degree rule cannot be applied to reduce it further.

3.2 Using Pair Covers

Given a preprocessed instance (S, C, k), we construct a pair cover using the
following procedure. (Note that a maximal packing of (S, C) can be constructed
in O(|C|) time using a simple greedy approach.)

84 F.N. Abu-Khzam

Procedure Construct Pair Cover

Input: Preprocessed instance (S, C, k) of 3SP

Output: Either a packing of size ≥ k of (S, C), or a pair cover T

Begin

Construct a maximal packing P of (S, C)
If |P | ≥ k

Return P
H = val(P)
For each x ∈ H do

Construct a maximal matching Mx in G(x)
For each edge {y, z} of Mx do

T ← T ∪ {{x, y}, {x, z}}
Return T .

End

The correctness of construct Pair Cover is obvious. If a greedily constructed
packing P has less that k sets, then the output is a set T of size-two subsets of S.
Each triple {u, v, w} in C contains at least one element, say u, from H = val(P).
At least one of v and w, say v, is in Mu. Thus {u, v} is an element of T . This
proves that T is a pair cover. We now prove that its size is quadratic in k.

Lemma 1. There is a polynomial time algorithm that takes an arbitrary in-
stance (S, C, k) of 3SP as input and produces any of the following:

– a packing of size k or more;
– a No answer if it detects that no solution exists;
– a pair cover whose size is at most 2(3k − 3)2.

Proof. Given an arbitrary instance (S, C, k) of 3SP , we apply the high-degree
rule followed by the construct Pair Cover procedure. If we fail to find a solu-
tion and we do not detect that (S, C, k) is a no instance, then the output of
construct Pair Cover is a collection T of size-two subsets of S. In this case,
the set H found in the construct Pair Cover procedure has size 3|P | ≤ 3k− 3.
Every element x of H can be the unique intersection of at most 3k− 3 elements
of C(x). Therefore, Mx has at most 3k − 3 elements. It follows that at most
2(3k − 3) pairs of T contain x. This completes the proof.

3.3 Using Crown Decomposition

Assume that (S, C, k) is a preprocessed yes instance of 3SP . Let T be a pair
cover and let I = {x ∈ S : x /∈ val(T)}. Observe that no two elements of I
belong to the same element (or triple) of C. This is the case because any triple
of C that contains two elements of I is not covered by T .

A Quadratic Kernel for 3-Set Packing 85

If |I| ≤ |T | then we already have a quadratic number of elements in S. Assume,
in the sequel, that |I| > |T |. In this case, our algorithm proceeds by constructing
a simple bipartite graph, GI,T , whose vertex set is I ∪ T and whose edge set is
{(x, {y, z}) : x ∈ I, {y, z} ∈ T and {x, y, z} ∈ C}. Then a crown decomposition,
(T ′, MG, I ′), of GI,T is used.

Our 3SP kernelization algorithm, shown below, uses the three steps discussed
in this section. A crown reduction is used by identifying the set I ′′ ⊂ I ′ ⊂ I that
can be deleted. The correctness of this step is due to Lemma 2 below. Note
that we used val(MG) to denote the union of all pairs of T ′ together with the
elements of I that are matched under MG.

Algorithm 3SP -Kernel

Input: Instance (S, C, k) of 3SP , such that every element of C contains
exactly 3 elements of S

Output: Either No if (S, C) has no set packing of size ≥ k, or a solution,
or an instance (S′, C′, k′) such that |S′| ≤ 4(3k − 3)2

Begin

Apply the high-degree rule
If k > 0 and C = φ

Return No
T ← Construct Pair Cover(S, C, k)
If T is a matching of size ≥ k

Return T

Construct the simple bipartite graph GI,T

If |I| > |T |
(T ′, MG, I ′) ← Construct Crown(GI,T)
I ′′ ← I ′ \ val(MG)
Remove I ′′ and C(I ′′)

Return the (possibly) new instance

End

Lemma 2. Let I and G(I, T) be as defined above and assume |I| > |T |. Let
(T ′, MG, I ′) be a maximum crown in GI,T and let I ′′ be the set of vertices of I ′

that are not matched under MG. Then (S, C, k) has a solution if and only if the
instance (S \ I ′′, C \ C(I ′′), k) has a solution.

Proof. Again, let P be a maximum packing in (S, C), and recall that T is a pair
cover constructed by Construct Pair Cover. Let P ′ = {e ∈ P : e ∩ I ′′ �= φ}.
In other words, P ′ is the set of packing-sets that contain elements of I ′ that are
not matched under MG. Let T ′′ = {p ∈ T ′ : p is contained in an element of P ′}.
It is easy to observe that |T ′′| = |P ′|.

86 F.N. Abu-Khzam

Now let A denote the set of elements of I ′ that are matched in the crown
(under MG) with elements of T ′′. Since A∩ val(T ′′) = φ, we can have a packing
P ′′ = {{x, y, z} : {x, y} ∈ T ′′ and z ∈ A}. It follows that |P ′′| = |T ′′| = |P ′|.
Therefore P ′ can be replaced by P ′′ and the packed elements (under P) of I ′′

can be deleted. This completes the proof.

Note that, in the above discussion, I \ I ′ is smaller than its neighborhood in T .
Otherwise, a larger crown can be constructed, contrary to our assumption. We
now state our kernelization theorem.

Theorem 1. There is a polynomial-time algorithm that, for an arbitrary in-
put instance (S, C, k) of 3SP , either determines that (S, C, k) is a no instance,
or finds a solution, or computes a kernel instance (S′, C′, k′) such that |S′| is
bounded above by 4(3k − 3)2.

Proof. Based on the above reduction procedures and lemmas, the number of
elements that remain in I cannot exceed the number of pairs in T . The theorem
follows from the fact that T has at most 2(3k − 3)2 pairs.

4 Conclusion

We presented work in progress on the r-Set packing problem. We showed how
to obtain an improved kernelization algorithm for 3-Set Packing that achieves a
quadratic bound (in the parameter) on the number of elements in the reduced
kernel instance. The use of the notion of a pair cover played a key role in our
reduction procedure. We believe that pair covers can be used for an improved
fixed-parameter algorithm.

Our method can be generalized to a kernelization algorithm for r-Set Packing,
where r is a small constant. To do this, the number of sets in the condition of the
high-degree rule becomes r(k − 1), and the pair cover is replaced by an (r − 1)-
tuple cover. A similar approach can be applied to r-Dimensional Matching.

References

1. Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown Structures
for Vertex Cover Kernelization. Theory of Computing Systems (TOCS) 41(3), 411–
430 (2007)

2. Chor, B., Fellows, M.R., Juedes, D.: Linear Kernels in Linear Time, or How to Save
k Colors in O(n2) Steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
4. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thi-

likos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching
and packing problems. Algorithmica 52(2), 167–176 (2008)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

A Quadratic Kernel for 3-Set Packing 87

6. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing.
J. Algorithms 50, 106–117 (2004)

7. Koutis, I.: A faster parameterized algorithm for set packing. Information Processing
Letters 94, 7–9 (2005)

8. Liu, Y., Chen, J., Wang, J.: Parameterized Algorithms for Weighted Matching and
Packing Problems. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS,
vol. 4484, pp. 692–702. Springer, Heidelberg (2007)

Quantitative Aspects of Speed-Up and Gap
Phenomena

Klaus Ambos-Spies and Thorsten Kräling

Institut für Informatik, University of Heidelberg, D-69120 Heidelberg, Germany
ambos@math.uni-heidelberg.de, kraeling@informatik.uni-heidelberg.de

Abstract. We show that, for any abstract complexity measure in the
sense of Blum and for any computable function f (or computable oper-
ator F), the class of problems which are f -speedable (or F -speedable)
does not have effective measure 0. On the other hand, for sufficiently fast
growing f (or F), the class of the nonspeedable problems does not have
effective measure 0 too. These results answer some questions raised by
Calude and Zimand in [CZ96] and [Zim06]. We also give a short quantita-
tive analysis of Borodin and Trakhtenbrot’s Gap Theorem which corrects
a claim in [CZ96] and [Zim06].

1 Introduction

In the early 1990s Lutz [Lu92] started a program for a quantitative analysis
of phenomena in structural complexity theory. This program, which attracted
quite a number of researchers, built on resource-bounded variants of Schnorr’s
effective measure [Sch73] and Mehlhorn’s effective Baire category [Me73] which
allowed to apply these classical classification tools to the (countable) computable
universe. While most of Lutz’s program was devoted to complexity classes in the
lower part of the intractable world, like the exponential time classes, Calude and
Zimand [CZ96] exploited these tools for the quantitative analysis of more general
phenomena encountered in all of the common complexity measures, thereby
taking up some earlier lines of research by Mehlhorn and others.

In particular, Calude and Zimand applied effective measure and category to a
quantitative analysis of the fundamental theorems in Blum’s abstract complexity
theory [Blu67] like the Speed-Up Theorem and the Gap Theorem. For instance,
they have shown that, in the sense of effective category, speedable sets are not
rare, namely, for any complexity measure and for any effective operator F , the
class of the computable sets which are F -speedable is not effectively meager in
the sense of Mehlhorn. Calude and Zimand [CZ96] raised the question whether
this observation is true in the sense of effective measure too.

Here we answer this question affirmatively by showing that (in any Blum
space) the class of F -speedable problems does not have effective measure 0 in
the sense of Schnorr (Section 3). We also show, however, that for sufficiently fast
growing f (or F) the class of the nonspeedable problems does not have effective
measure 0 too, and we obtain the corresponding result for Mehlhorn’s effective

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 88–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Quantitative Aspects of Speed-Up and Gap Phenomena 89

category (Section 4). Our results may be interpreted so that the effective measure
and category concepts of Schnorr and Mehlhorn, respectively, are too coarse in
order to give a complete quantitative analysis of the speed-up phenomena.

In case of another important result of abstract complexity theory, however,
namely the Gap Theorem, we give a complete quantitative analysis. For suffi-
ciently fast growing effective operators F , F -gaps are rare, i.e., the class of the
computable complexity bounds t at which F -gaps occur is effectively meager
and has effective measure 0 (in the Baire space). The former corrects a claim by
Calude and Zimand in [CZ96] while the latter answers a question raised there
(Section 5).

Before we present our results, in the next section we shortly review some
basic concepts and results of Blum’s abstract complexity theory ([Blu67]) and
of effective measure which we will need. For a more complete account of this
material see e.g. the recent monograph of Zimand [Zim06].

2 Preliminaries

Abstract Complexity Measures. An abstract complexity measure (or Blum
space for short) is a pair (ϕ, Φ) of binary partially computable functions where ϕ
is a Gödel numbering of the unary partially computable functions and Φ satisfies
the following two conditions, called Blum axioms:

(B1) dom(ϕ) = dom(Φ)
(B2) graph(Φ) = {(e, x, y) : Φe(x) = y} is computable.

In the following we will focus on the complexity of computable sets. So we
will assume that the functions ϕe are 0-1-valued and identify a set with its
characteristic function.

Among the most interesting phenomena which hold for all Blum spaces are the
Speed-Up Theorem and the Gap Theorem. Blum’s Speed-Up Theorem says that
there are computable problems without optimal solutions even if we measure
the costs only up to a very large (e.g. exponential) factor. Formally, given a
computable function f : N × N → N, a computable set A is f -speedable with
respect to Blum space (ϕ, Φ) if

(∀e)(ϕe = A ⇒ (∃e′)(ϕe′ = A and f(x, Φe′ (x)) ≤a.e. Φe(x))) (1)

(where g ≤a.e. h denotes that g(x) ≤ h(x) for almost all x).

Theorem 1. (Speed-Up Theorem – Function Version; [Blu67]) Let f be a com-
putable function of type N × N → N and let (ϕ, Φ) be a Blum space. There is a
computable f -speedable set A, i.e.,

SPEED((ϕ, Φ), f) = {A ∈ REC : A f -speedable} �= ∅.
As Meyer and Fischer have shown, the Speed-Up Theorem can be strength-
ened by replacing the computable function f by a total effective operator F . A
computable set A is F -speedable with respect to (ϕ, Φ) if

(∀e)(ϕe = A ⇒ (∃e′)(ϕe′ = A and F (Φe′)(x) ≤a.e. Φe(x))). (2)

90 K. Ambos-Spies and T. Kräling

Theorem 2. (Speed-Up Theorem – Operator Version; [MF72]) Let F be a total
effective operator and let (ϕ, Φ) be a Blum space. There is a computable F -
speedable set A, i.e.,

SPEED((ϕ, Φ), F) = {A ∈ REC : A F -speedable} �= ∅.

The second fundamental observation on arbitrary complexity measures which
we will discuss is Trakhtenbrot and Borodin’s Gap Theorem which states that
for any total effective operator F there is a computable cost function t such that
an increase of the complexity bound t by the factor F will not allow the solution
of any additional problems. For the formal statement let

C(ϕ,Φ)
t = {A ∈ REC : (∃e)(ϕe = A and Φe(x) <a.e. t(x))} (3)

denote the (ϕ, Φ)-complexity class with bound (name) t.

Theorem 3. (Gap Theorem; [Tra67], [Bor72]) Let (ϕ, Φ) be a Blum space and
let F be a total effective operator such that, for every partial computable function
ψ, F (ψ)(n) ≥a.e. ψ(n). There is a computable function t such that C(ϕ,Φ)

t =
C(ϕ,Φ)

F (t) .

For our proofs we will need Blum’s observation that all Blum spaces are com-
putably related to each other as follows.

Theorem 4. (Recursive-Relatedness Theorem; [Blu67]) Let (ϕ, Φ) and (ψ, Ψ)
be Blum spaces and let h be a computable translation function from ϕ to ψ.
There is a strictly increasing 2-ary computable function g such that

(∀e)(Ψh(e)(x) ≤a.e. g(x, Φe(x)) and Φe(x) ≤a.e. g(x, Ψh(e)(x))). (4)

Effective Measure. We identify a set A of natural numbers with its character-
istic sequence whence A may be viewed as an element of the Cantor space 2ω.
The classical Lebesgue measure on 2ω can be described in terms of martingales
(betting games). By considering only computable martingales this yields an ef-
fective measure on 2ω (Schnorr [Sch73]). For developing this theory it suffices to
consider rational valued martingales d of norm 1 (see e.g. [ASM97]).

Definition 1. (Schnorr [Sch73], Lutz [Lu92]).
(a) A (rational valued, normed) martingale d is a function d : 2<ω → Q≥0 such
that d(λ) = 1 and d satisfies the fairness condition

d(w) =
d(w0) + d(w1)

2
. (5)

A martingale d succeeds on a set A ∈ 2ω if limsupn→∞d(A � n) = ∞ (where
A � n = A(0) . . .A(n − 1)), and d succeeds on a class C ⊆ 2ω if d succeeds on
all sets A ∈ C.

Quantitative Aspects of Speed-Up and Gap Phenomena 91

(b) A class C ⊆ 2ω has effective measure 0 if there is a computable martingale
which succeeds on C, and C has effective measure 1 if the complement of C has
effective measure 0.
(c) A class C has measure 0 in REC if C∩REC has effective measure 0, and C
has measure 1 in REC if the complement of C has measure 0 in REC.

Intuitively, a class C of computable sets is small if it has effective measure 0 (or,
equivalently, measure 0 in REC), non-small if it does not have effective measure
0 (or, equivalently, does not have measure 0 in REC), and large if it has measure
1 in REC.

3 A Measure-Theoretic Version of the Speed-Up
Theorem

Our first result is the measure theoretic analog of Calude and Zimand’s quan-
titative analysis of the Speed-Up Theorem in terms of category. It answers the
central open question of [CZ96].

Theorem 5. (Operator Speed-Up – Measure-Theoretic Version) Let F be a
total effective operator and let (ϕ, Φ) be a Blum space. Then the class of the
F -speedable sets, SPEED((ϕ, Φ), F), does not have effective measure 0.

Since the basic ideas of the proof can already be found in the less involved proof
of the weaker function version, here we will only sketch a proof of the latter.

Theorem 6. (Function Speed-Up – Measure-Theoretic Version) Let f be a com-
putable function of type N × N → N and let (ϕ, Φ) be a Blum space. Then the
class SPEED((ϕ, Φ), f) does not have effective measure 0.

Proof. (SKETCH) By the Recursive-Relatedness Theorem, for any Blum spaces
(ϕ, Φ) and (ψ, Ψ) and any computable function f there is a computable function
f ′ such that SPEED((ψ, Ψ), f ′) ⊆ SPEED((ϕ, Φ), f). Hence it suffices to prove
the theorem for an appropriately chosen Blum space (ϕ, Φ). Here we let (ϕe)e∈N

be the Gödel numbering induced by a standard enumeration of the Turing ma-
chines (Me)e∈N, and let Φe = timeMe be the run time of Me.

So, given a computable martingale d, it suffices to construct a set A in
SPEED((ϕ, Φ), f) for the given Blum space (ϕ, Φ) such that d does not succeed
on A. In fact, since SPEED((ϕ, Φ), g) ⊆ SPEED((ϕ, Φ), f) for any computable
function g dominating f , we may replace f by a computable function g > f such
that g and its diagonal h(n) = g(n, n) have the following properties:

(i) g(m, n) is strictly increasing in m and n;
(ii) for some Turing machine M computing d, h(n) > timeM (w) for all

strings w of length n + 1;
(iii) h(0) > 0 and for all n, h(n + 1) > 2h(n) ≥ 2n+1;
(iv) h is time constructible, i.e., there is a Turing machine M ′ such that

timeM ′(n) = h(n) for all n ≥ 0.

92 K. Ambos-Spies and T. Kräling

Note that a function g > f with the above properties can be easily constructed
by the standard technique for constructing a time constructible function above
a given computable function.

Now, a g-speedable set A on which the given computable martingale d does
not succeed is constructed by a slow diagonalization (or wait-and-see argument)
where A(s) is determined at stage s of the construction.

For making A g-speedable we use a sequence of functions (ue)e∈N defined by

ue(x) = hx−̇e(x).

Note that, by choice of h, the functions ue are time constructible and

∀x > e (h(ue+1(x)) = ue(x) ≥ x) (6)

(e ≥ 0). I.e., the eth function ue exceeds the (e+1)th function ue+1 by the factor
h on all inputs x > e.

Then, in order to guarantee that A is g-speedable, it suffices to ensure

(∀e)(∃e′)(A = ϕe′ and timeMe′ (x) ≤a.e. ue(x)) (7)

and to meet the requirements

Re : A = ϕe ⇒ timeMe(x) >a.e ue(x) (8)

for all e ≥ 0. Namely, given a machine Me with ϕe = A, we obtain a machine
Me′ which computes A and satisfies

g(x, timeMe′ (x)) <a.e. timeMe(x) (9)

as follows. By (7), there is an index e′ such that ϕe′ = A and timeMe′ (x) ≤a.e.

ue+1(x). Since g is increasing in both arguments and since x ≤ ue+1(x), it follows
that

g(x, timeMe′ (x)) ≤a.e. g(ue+1(x), ue+1(x)) = h(ue+1(x)).

This implies (9) since, by (8) and (6), timeMe(x) >a.e. ue(x) =a.e. h(ue+1(x)).
The basic strategy for satisfying the requirements Re, e ≥ 0, is as follows. If

there are infinitely many numbers x such that timeMe(x) ≤ ue(x) (note that Re

is trivially met otherwise) then requirement Re is met by diagonalization, i.e.,
by ensuring A(x) �= ϕe(x) for some such x. To be more precise, at any stage
s > e such that Re has not been satisfied at any previous stage and such that
timeMe(s) ≤ ue(s) we say that requirement Re requires attention at stage s. If
Re is the highest priority requirement which requires attention at stage s (i.e.,
e is the least number e′ such that Re′ requires attention at stage s) then let
A(s) = 1−̇ϕe(s) and declare Re to be active and satisfied at stage s. (If no
requirement requires attention, let A(s) = 0.)

Note that, by the Blum axioms, we can decide whether Re requires attention
at stage s (in fact, by time constructibility of ue, this can be done in ue(s)
steps), and – if so – ϕe(s) is defined (and can be computed in timeMe(s) ≤ ue(s)

Quantitative Aspects of Speed-Up and Gap Phenomena 93

steps), whence A(s) �= ϕe(s) if Re becomes satisfied at stage s. Moreover, any
requirement will become active at most once.

So, by defining A according to the above strategy, A will be computable, and,
by a straightforward induction, any requirement which is not trivially met will
eventually become satisfied.

Moreover, the above strategy for meeting the requirements Re is compatible
with ensuring condition (7). Given e, it suffices to define a Turing machine M
computing A(s) in ≤ ue(s) steps for almost all s. Such a machine is obtained as
follows. Since any requirement acts at most once, we may fix a stage se > e such
that no requirement Re′ with e′ ≤ e acts after stage se. So if we let SAT be the
finite list of requirements Re′ with e′ > e satisfied by the end of stage se then, for
s > se, in the above described procedure for computing A(s) we may ignore all
requirements Re′ such that e′ ≤ e or e′ ∈ SAT and we will still get the correct
value of A(s). Since, for any e′ such that Re′ has not been satisfied prior to stage
s, in a total of O(ue′ (s)) steps we can decide whether Re′ requires attention at
stage s and if so compute the value of ϕe′(s), it follows (by a straightforward
induction) that a Turing machine M formalizing the thus simplified procedure
for computing A(s) will run in time timeM(s) ≤ s · O(ue+1(s) + · · · + us(s))
whence, by (6) and by property (iii) of h, timeM (s) ≤ ue(s).

Having explained the basic strategy for making A g-speedable, we next will
show how this strategy can be modified so that the martingale d does not succeed
on A. In order to guarantee that d does not succeed on A, it suffices to meet the
requirements

Qs : d(A � s + 1) ≤ 1 (10)

(s ≥ 0). Note that there is a trivial strategy for meeting these requirements: If
we let A(s) = 0 if d((A � s)0) ≤ d((A � s)1) and A(s) = 1 otherwise then, by the
fairness property (5) of d, d(A � s + 1) ≤ d(A � s). (If A(s) will be defined this
way then we say that A(s) is defined according to the basic Q-strategy.) So using
this strategy the value of d(A � s) is nonincreasing in s whence, by d(λ) = 1, all
Q-requirements are met. Of course this basic Q-strategy is too strict and it has
to be relaxed in order to become compatible with our strategy for meeting the
requirements Re.

Recall that, for a requirement Re which is not trivially met, there are infinitely
many stages at which Re may become satisfied by becoming active. (In the
following call such a requirement nontrivial.) So it suffices to ensure that at at
least one of these stages s requirement Re can become satisfied without hurting
the corresponding Q-requirement Qs. One might be tempted to allow the highest
priority requirement Re which requires attention at stage s to act if letting
A(s) = 1−̇ϕe(s) will not injure Qs. But this procedure is not fair and may
result in some of the nontrivial requirements never becoming satisfied. So we
have to design a slightly more involved strategy which will treat the individual
R-requirements fairly and will guarantee that any nontrivial requirement will
eventually become satisfied.

The idea of this refined strategy is roughly as follows. If requirement Re is
entitled to become satisfied at stage s but instead of satisfying requirement Re

94 K. Ambos-Spies and T. Kräling

(by letting A(s) = 1 − ϕe(s)) we define A(s) according to the basic Q-strategy
then (by (5)) the value of d will strictly decrease at stage s, i.e., d(A � s + 1) <
d(A � s) (since otherwise d((A � s)0) = d((A � s)1) whence there were no reason
to prevent Re from becoming satisfied at stage s). Now, whenever Re is entitled
to act but not allowed to do so, then the resulting decrease d(A � s)−d(A � s+1)
in the value of d is paid into an “account” of Re, and Re will be allowed to become
satisfied at a stage at which it is entitled to act, if the increase of d caused by
this action is bounded by the current balance of Re’s account. This will work
since a nontrivial requirement Re which were never satisfied were entitled to act
infinitely often and the balance of its account were unbounded. So, eventually,
the balance will cover the growth of d caused by satisfying Re (which is bounded
by 1) whence Re will become satisfied.

More formally, the construction of A is as follows (using the concepts intro-
duced above when describing the basic R- and Q-strategies). If Re is the highest
priority requirement which requires attention at stage s then we say that Re is
entitled to act at stage s and we call s an e-stage (and we call s a −1-stage if no
requirement requires attention at stage s).

If s is an e-stage but Re does not become active at stage s or if s is a −1-
stage then we define A(s) according to the basic Q-strategy, i.e., let A(s) = 0 if
d((A � s)0) ≤ d((A � s)1) and A(s) = 1 otherwise.

In order to decide whether the requirement which is entitled to act at stage s
(if any) actually becomes active, we attach to any requirement Re and any stage
s a rational be(s) (denoting the balance of Re’s account at the end of stage s)
where

be(s) =
∑

s′<s, s′ e-stage

d(A � s′)− d(A � s′ + 1).

if s > 0 and Re has not been satisfied by stage s, and bs(e) = 0 otherwise.
Now, if Re is entitled to act at stage s and

d((A � s)(1− ϕe(s))) ≤ d(A � s) + be(s− 1), (11)

then let A(s) = 1 − ϕe(s) and say that requirement Re becomes active and
satisfied at stage s.

This completes the actual construction of A. The correctness of the construc-
tion of A is established along the following lines.

By a straightforward induction on s, be(s) ≥ 0 and

d(A � s + 1) +
∞∑

e=0

be(s) ≤ 1. (12)

So, in particular, the requirements Qs are met whence d does not succeed on A.
Moreover, every requirement Re is met and will be entitled to act at most

finitely often. Namely, for a contradiction, fix e minimal such that Re is not met
or is entitled to act infinitely often. Then Re will be nontrivial, never satisfied,
and, by minimality of e, entitled to act infinitely often. It follows that be(s)
is nondecreasing in s; for the first e-stage s0, be(s0) > 0; and, for any of the

Quantitative Aspects of Speed-Up and Gap Phenomena 95

following e-stages s′, be(s′) > 2be(s′ − 1) (by (5) and by failure of (11) for
s = s′). So be(s) is unbounded contrary to (12).

Finally, to show that A satisfies (7), we can argue as in the case of the prelim-
inary construction above. It suffices to note that, by property (ii) of h, the added
parts involving computations of the martingale d will not lead to an essential
increase of the complexity of the construction.

This completes the proof.

4 A Refined Quantitative View of the Speed-Up Theorem

Our measure theoretic version of the Speed-Up Theorem shows that in any Blum
space the class of F -speedable (hence the class of f -speedable) sets does not have
effective measure 0, hence is not small. But is this class large? By Definition 1
(c) we may formalize this question, by asking whether SPEED((ϕ, Φ), F) has
measure 1 in REC, i.e., whether the class of the computable non-F -speedable
sets has effective measure 0. Our next theorem shows that for sufficiently fast
growing functions f (hence for sufficiently fast growing operators F) the answer
is negative.

Theorem 7. Let (ϕ, Φ) be a Blum space. There is a computable function f
such that for C = SPEED((ϕ, Φ), f) the class Cc ∩ REC does not have effective
measure 0.

Proof. (IDEA) By the Recursive-Relatedness Theorem it suffices to prove the
theorem for the Blum space (ϕ, Φ) of the Turing computable functions together
with time complexity.

We exploit some facts on time-bounded random sets (compare e.g. with the
corresponding results for resource-bounded random sets of strings in [ASM97]).
For a computable function t(n), a set A is t(n)-random if there is no martingale
d which can be computed in time t(n) and which succeeds on A. Randomness is
related to measure as follows. A class does not have effective measure 0 iff for
any computable function t there is a t(n)-random set in the class.

Now, as one can easily show, there is a number k ≥ 1 such that, for any
nondecreasing time constructible function t(n) ≥ n, there is a t(n)2-random set
At which can be computed in time t(n)k while, on the other hand, no t(n)2-
random set can be computed in time t(n). So, At is not f -speedable for the
exponential function f(m, n) = 2n. We deduce that for any computable t there
is a computable non-f -speedable t(n)-random set A whence Cc ∩REC does not
have effective measure 0.

By a similar argument, we obtain the corresponding result in terms of effective
Baire category.

Theorem 8. Let (ϕ, Φ) be a Blum space. There is a computable function f such
that for C = SPEED((ϕ, Φ), f) the class Cc ∩ REC is not effectively meager.

96 K. Ambos-Spies and T. Kräling

So it seems that both, effective measure and effective category, are too weak
in order to decide whether a typical computable set is speedable or not. For a
weaker property, namely almost-everywhere complexity, there is a similar situ-
ation in case of category. Both, the class of the computable a.e.-t(n)-complex
sets and the class of the computable sets which are not a.e.-t(n)-complex, are
not effectively meager (see e.g. [CZ96] and Mayordomo [May94], respectively).
For a refinement of Mehlhorn’s effective Baire category concept based on par-
tial extension functions (see [ASR97]), however, the question of which case is
the typical one can be resolved. Namely, for this stronger concept, the class of
the computable sets which are not a.e.-t(n)-complex is effectively meager (see
[AS96]). As we can show, however, this refined effective category concept does
not answer the corresponding question for speedability.

5 The Gap Theorem – The Quantitative View

We close our quantitative analysis of the fundamental results of abstract com-
plexity theory by a short look at the Gap Theorem. Calude and Zimand give
a quantitative analysis of this theorem in terms of Mehlhorn’s effective Baire
category [Me73] on the Baire space. They claim that, for any Blum space (ϕ, Φ)
and for any total effective operator F satisfying F (ψ) ≥a.e. ψ for all partial
computable functions ψ, the class

GAP(ϕ,Φ)
F = {t ∈ FREC : C(ϕ,Φ)

t = C(ϕ,Φ)
F (t) }

is not effectively meager (see [CZ96], Theorem 4.1 and [Zim06], Theorem 2.4.1).
So, in a topological sense, F -gaps are not uncommon. The proof of this result,
however, is erroneous. In fact, for any Blum space and for any sufficiently large
effective operator F , the gap class GAP(ϕ,Φ)

F is effectively meager, i.e., F -gaps
are rare in the sense of effective Baire category.

Theorem 9. Let (ϕ, Φ) be a Blum space. There is a total effective operator F ,
where F (ψ)(n) ≥ ψ(n) for all partial computable functions ψ and almost all
numbers n, such that GAP(ϕ,Φ)

F is effectively meager.

Proof. (IDEA) Given a computable function g : N → N, the class

Ca.e. 	=g = {t ∈ FREC : t(n) �=a.e. g(n)} is effectively meager (13)

since, for any m ≥ 0, the class {t ∈ FREC : (∀n ≥ m)(t(n) �= g(n))} is effectively
nowhere dense via the computable extension function fm(α) = α0mg(|α| + m)
whence Ca.e. 	=g is the union of uniformly effectively nowehere dense classes (for
the basic definitions of effective Baire category, see e.g. [Zim06]). Since, for any
time bound t such that C(ϕ,Φ)

t �= ∅, t(n) >a.e. 0, i.e., t(n) �=a.e. g(n) for the
constant null function g, we may conclude that

NE(ϕ,Φ) = {t ∈ FREC : C(ϕ,Φ)
t �= ∅} is effectively meager. (14)

Quantitative Aspects of Speed-Up and Gap Phenomena 97

Now take any computable set A, let e be an index of A in (ϕ, Φ), and define the
total effective monotone operator F by letting F (ψ)(n) = max(ψ(n), Φe(n)+1).
Then, for any computable time bound t, A ∈ C(ϕ,Φ)

F (t) , whence C(ϕ,Φ)
t = C(ϕ,Φ)

F (t)

implies that C(ϕ,Φ)
t �= ∅. So GAP(ϕ,Φ)

F is contained in the class NE(ϕ,Φ), hence
effectively meager by (14).

The proof of Theorem 9 shows that a quantitative analysis of computable time
bounds in terms of effective Baire category is rather useless since the class of
the computable time bounds of the nontrivial complexity classes is effectively
meager, hence small. The analog of Theorem 9 for effective measure holds too. If
we let f be a computable function f : N → Q defining a nonvanishing measure
on N (i.e. satisfying f(n) > 0 for all n and

∑
n∈N

f(n) = 1) then, for the
corresponding effective product measure μf on the Baire space, μf (GAP(ϕ,Φ)

F) =
0 for all sufficiently large effective functionals F .

References

[AS96] Ambos-Spies, K.: Resource-bounded genericity. In: Cooper, S., Slaman, T.,
Wainer, S. (eds.) Computability, enumerability, unsolvability. Directions in
recursion theory, pp. 1–60. Cambridge University Press, Cambridge (1996)

[ASM97] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and random-
ness. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory, pp. 1–47.
Dekker, New York (1997)

[ASR97] Ambos-Spies, K., Reimann, J.: Effective Baire category concepts. In: Proc.
Sixth Asian Logic Conference 1996, pp. 13–29. Singapore University Press
(1997)

[Blu67] Blum, M.: A machine-independent theory of the complexity of recursive
functions. Journal of the ACM 14(2), 322–336 (1967)

[Bor72] Borodin, A.: Computational complexity and the existence of complexity
gaps. Journal of the ACM 19(1), 158–174 (1972)

[CZ96] Calude, C., Zimand, M.: Effective category and measure in abstract com-
plexity theory. Theoretical Computer Science 154(2), 307–327 (1996)

[Lu92] Lutz, J.: Almost everywhere high nonuniform complexity. Journal of Com-
puter and System Sciences 44, 220–258 (1992)

[May94] Mayordomo, E.: Almost every set in exponential time is P-bi-immune. The-
oretical Computer Science 136, 487–506 (1994)

[Me73] Mehlhorn, K.: On the size of sets of computable functions. In: Proceedings of
the 14th IEEE Symposium on Switching and Automata Theory, pp. 190–196
(1973)

[MF72] Meyer, A.R., Fischer, P.C.: Computational speed-up by effective operators.
Journal of Symbolic Logic 37(1), 55–68 (1972)

[Sch73] Schnorr, C.: Process complexity and effective random tests. Journal of Com-
puter and System Sciences 7, 376–388 (1973)

[Tra67] Trakhtenbrot, B.A.: Complexity of algorithms and computations. Course
Notes, Novosibirsk (in Russian) (1967)

[Zim06] Zimand, M.: Computational Complexity: A Quantitative Perspective. Else-
vier, Amsterdam (2006)

Computing the Exact Distribution Function of
the Stochastic Longest Path Length in a DAG

Ei Ando1, Hirotaka Ono1,2, Kunihiko Sadakane1, and Masafumi Yamashita1,2

1 Department of Computer Science and Communication Engineering,
Graduate School of Information Science and Electrical Engineering,

Kyushu University
2 Institute of Systems, Information Technologies and Nanotechnologies

Abstract. Consider the longest path problem for directed acyclic
graphs (DAGs), where a mutually independent random variable is as-
sociated with each of the edges as its edge length. Given a DAG G and
any distributions that the random variables obey, let FMAX(x) be the dis-
tribution function of the longest path length. We first represent FMAX(x)
by a repeated integral that involves n− 1 integrals, where n is the order
of G. We next present an algorithm to symbolically execute the repeated
integral, provided that the random variables obey the standard exponen-
tial distribution. Although there can be Ω(2n) paths in G, its running
time is bounded by a polynomial in n, provided that k, the cardinal-
ity of the maximum anti-chain of the incidence graph of G, is bounded
by a constant. We finally propose an algorithm that takes x and ε > 0
as inputs and approximates the value of repeated integral of x, assum-
ing that the edge length distributions satisfy the following three natural
conditions: (1) The length of each edge (vi, vj) ∈ E is non-negative, (2)
the Taylor series of its distribution function Fij(x) converges to Fij(x),
and (3) there is a constant σ that satisfies σp ≤ ∣∣(d

dx

)p
Fij(x)

∣∣ for any
non-negative integer p. It runs in polynomial time in n, and its error is
bounded by ε, when x, ε, σ and k can be regarded as constants.

1 Introduction

Let G = (V, E) be a directed acyclic graph (DAG), where V and E are the sets
of of n vertices and m edges, respectively. Each edge (vi, vj) is associated with a
random variable Xij representing its length. Although the longest path problem
for DAGs is solvable in linear time when edge lengths are constant values, the
same problem with stochastic edge lengths is formidable. Actually, there are at
least two different problem formulations; to find a path that has the highest
probability of being the longest [12], or to compute the distribution function
FMAX(x) of the longest path length [1,2,3,4,5,7,8,10,11]. In this paper, we adopt
the second formulation.

The longest path problem in G with uncertain edge lengths is known as the
classic problems such as Program Evaluation and Review Technique (PERT) [6]
or Critical Path Planning (CPP) [9]. In these problems, the lower and the upper

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 98–107, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computing the Exact Distribution Function 99

bounds of the edge lengths (the activity duration) are given as static values, and
their goal is to obtain the lower and upper bounds on the longest path length in
G, the duration of the whole project. However, we assume, in this paper, that
edge lengths are random variables; we are not to determine the edge lengths but
to cope with the resulting edge lengths that realize with some probability.

Delay analysis of logical circuits is a killer application of this problem, and
besides Monte Carlo simulations, many heuristic approximation algorithms have
been proposed so far (see e.g., [3,5,7]). They run fast but their general drawback
is that they do not have a theoretical approximation guarantee. To theoreti-
cally guarantee an approximation ratio, some authors of this paper proposed an
algorithm to construct a primitive function that approximates FMAX(x) [1,2].

Computing the exact distribution function has also a long research history.
Martin [11] proposed a series-parallel reduction based method, assuming that
each edge length obeys a polynomial distribution. Kulkarni and Adlakha [10]
proposed an algorithm that is based on the analysis of continuous time Markov
chain. Both algorithms unfortunately take an exponential time with respect to
the graph size. Indeed, when edge lengths obey discrete distributions, the prob-
lem is #P-complete [8], and is NP-hard even for the series-parallel graphs [4].

We first show that FMAX(x) is represented by a repeated integral that involves
n − 1 integrals, for any instance of the problem. The problem of computing
FMAX(x) for any x is thus reducible to the problem of evaluating the repeated
integral for x. The evaluation of the repeated integral is possible by making use
of standard numerical methods at the expense of accuracy and time.

In this paper, we pursuit the possibility of exact computation using the re-
peated integral. That only n− 1 integrals are involved might give us a chance to
symbolically compute it in polynomial in n, although there can be Ω(2n) paths
in G (and the above NP-hardness results essential suggest that any algorithm
would need to evaluate each of the Ω(2n) paths).

Assuming that the random variables obey the standard exponential distribu-
tion, we show that there is an algorithm to transform the repeated integral into
a product of primitive functions. It runs in polynomial time in n, provided that
k, the cardinality of the maximum anti-chain of the incidence graph of G, is
bounded by a constant.

We (of course) cannot present a polynomial time algorithm that works for
any distribution of edge length. Naive numerical methods to approximate the
repeated integral, on the other hand, need sufficiently long computation time
and do not guarantee approximation performance. We thus assume that the
distribution function Fij associated with any edge (vi, vj) satisfies the following
three natural conditions: (1) The length of each edge is positive (i.e., Fij(x) = 0

for x ≤ 0), (2) there is a constant σ that satisfies
∣∣∣(d

dx

)p
Fij(x)

∣∣∣ ≤ σp for any non-
negative integer p, and (3) the Taylor series of Fij(x) converges to Fij(x), and
then present, for any ε > 0, an approximation algorithm that evaluates FMAX(x)
(i.e., the repeated integral) with an error less than ε. It runs in polynomial time
in n, when x, ε, σ and k can be regarded as constants.

100 E. Ando et al.

This paper is organized as follows: After giving basic definitions and formulas
in Section 2, we derive the repeated integral form of FMAX(x) in Section 3. Sec-
tion 4 is devoted to the first case in which an exact formula is derived assuming
the standard exponential distribution, and Section 5 proposes an approximation
algorithm for the second case. Section 6 concludes this paper.

2 Preliminaries

Let G = (V, E) be a directed acyclic graph with vertex set V = {v1, v2, . . . , vn}
and directed edge set E ⊆ V ×V of m edges. We assume that each edge (vi, vj) ∈
E is associated with its length Xij that is a random variable. A source (resp.
terminal) of G is a vertex in V such that its in-degree (resp. out-degree) is 0.
We define the (directed) incidence graph of G = (V, E) as a directed graph G′

with vertex set V ′ = V ∪ E and edge set E′ = {(vi, e), (e, vj)|e = (vi, vj) ∈ E}
⊆ (V ×E)∪ (E × V). We denote the incidence graph of G by L(G). A subset A
of V is called an antichain of G if each va ∈ A is not reachable from any other
vertex vb ∈ A. If (vi, vj) ∈ E, two vertices vi and vj are neighbors to each other,
vi is a parent of vj , and vj is a child of vj . By N(W) we denote the set of all
neighbors of vertices in W . Let P be the set of all source-terminal paths. The
longest path length XMAX of G is given as XMAX = maxπ∈P

{∑
(vi,vj)∈π Xij

}
.

Let X be a random variable. The probability P (X ≤ x) is called the (cumu-
lative) distribution function of X . The density function of X is the derivative of
P (X ≤ x) with respect to x. We say X obeys the standard exponential distribu-
tion if the distribution function P (X ≤ x) is given by P (X ≤ x) = 1− exp(−x)
if x ≥ 0 and P (X ≤ x) = 0 if x < 0.

Let X1 and X2 be two mutually independent random variables. Let f1(x) and
f2(x) be the density functions of X1 and X2, respectively. The sum X1 + X2 is
also a random variable whose distribution function is given as

P (X1 + X2 ≤ x) =
∫
R

P (X1 + t ≤ x | X2 = t)f2(t)dt =
∫
R

F1(x− t)f2(t)dt, (1)

where F1(x) and F2(x) are the distribution functions of X1 and X2, respectively.
The distribution function of max{X1, X2} is given as

P (max{X1, X2} ≤ x) = P (X1 ≤ x ∧X2 ≤ x) = F1(x)F2(x).

3 Repeated Integral Representation of FMAX(x)

In this section, we show that the distribution function FMAX(x) of the longest
path length is represented by a repeated integral that involves n − 1 integrals.
By definition,

FMAX(x) = P (XMAX ≤ x) = P

(∧
π∈P

(∑
e∈π

Xe ≤ x

))
. (2)

Computing the Exact Distribution Function 101

Although this formula is compact, this fact does not directly implies an effi-
cient computability, since it would take into account all source-terminal paths in
G, which can be as many as Ω(2n). Next theorem shows that FMAX(x) is rep-
resented by a repeated integral that involves n− 1 integrals. Thus FMAX(x) can
be computed by executing only n−1 integrals, which may be dramatically more
efficient than the calculation of Eq. (2). Let H(x) be a function that satisfies
H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0. Let 1(x) be a constant function that
maps every x to 1. Note that if P (X ≤ x) = H(x) (resp. P (X ≤ x) = 1(x)) for
any x, X is always equal to 0 (resp. −∞).

Theorem 1. Let G = (V, E) is a DAG. Without loss of generality, we assume
that V = {v1, v2, . . . , vn} is topologically ordered. For any edge (vi, vj) ∈ E, let
Fij(x) be the distribution function that Xij obeys. We associate a function Fij(x)
with each edge (vi, vj) �∈ E as follows: If (vi, vj) connects two sources or two
terminals, then Fij(x) = H(x); otherwise, Fij(x) = 1(x). Then the distribution
function FMAX(x) is given as

P (XMAX ≤ x) =
∫

Rn−1

H(x− z1)
∏

1≤i≤n−1

⎛⎝ d

dzi

∏
i+1≤j≤n

Fij(zi − zj)

⎞⎠ dzi. (3)

Proof. Given a DAG G = (V, E), we first add edges as many as possible in such
a way that the added edges do not change the topological order. This yields a
complete graph with acyclic orientations, which is denoted by

−→
Kn = (V, EK),

where EK = {(vi, vj) | 1 ≤ i < j ≤ n}. Notice that
−→
Kn has a unique source

v0 and a unique terminal vn. For each of the edge (vi, vj) ∈ EK , we associate a
random variable Xij whose distribution function is shown in the statement of this
theorem. Since the lengths of the edges in EK \E do not have any contribution
to the longest path length, FMAX(x) is exactly the same for G and

−→
Kn. In what

follows, we assume G =
−→
Kn.

Define several notations: P(i, j) is the set of all paths from vi to vj , Pk(i, j) is
the set of all vi-vj paths that do not pass a vertex in Uk = {vk, vk+1, . . . , vn−1},
and Zn−1 = Xn−1,n is the longest path length from vn−1 to the unique terminal
vn of

−→
Kn. Since Zn−1 = Xn−1,n and Xij ’s are mutually independent, we have

P(XMAX ≤ x)=P

⎛⎝ ∧
π∈Pn−1(1,n)

⎛⎝∑
(vi,vj)∈π

Xij≤x

⎞⎠ ∧
∧

π∈P(1,n−1)

⎛⎝∑
(vi,vj)∈π

Xij +Zn−1≤x

⎞⎠⎞⎠. (4)

Let Gn−1(x) = Fn−1,n(x) and gn−1(x) be the distribution function of Zn−1
and its density function, respectively. Since dGn−1(zn−1) = gn−1(zn−1)dzn−1,
like the derivation of Eq.(1), by introducing an integral, the right-hand side of
Eq. (4) is represented as

102 E. Ando et al.

∫
R

P

⎛⎜⎜⎜⎜⎜⎝
∧

π∈Pn−1(1,n)

⎛⎝∑
(vi,vj)∈π

Xij≤x

⎞⎠
︸ ︷︷ ︸

(A)

∧
∧

π∈P(1,n−1)

⎛⎝∑
(vi,vj)∈π

Xij +zn−1≤x

⎞⎠
︸ ︷︷ ︸

(B)

⎞⎟⎟⎟⎟⎟⎠dGn−1(zn−1). (5)

We calculate the contribution of each edge by repeating the transforma-
tion of representing (and replacing) the contribution by an integral. For Zk =
maxk+1≤l≤n{Xkl+zl}, we divide the paths from v1 to vn into two groups accord-
ing to whether they pass vk. We then introduce one more integral to aggregate
the probability that Zk takes a constant value zk, which is the dummy variable of
an integral. Note that zn = 0 by definition.1 Now for each of Zn−1, Zn−2, . . . , Z2,
an integral has been introduced with respect to zi, and (4) is transformed into

∫
Rn−2

P

⎛⎝ ∧
2≤l≤n

∧
π∈P2(1,l)

⎛⎝∑
(vi,vj)∈π

Xij +zl≤x

⎞⎠∧ ∧
π∈P(1,2)

⎛⎝∑
(vi,vj)∈π

Xij +z2≤x

⎞⎠⎞⎠∏
1≤i≤n−1

Gi(zi, . . . , zn−1)dzi,

(6)

where Gi(zi, . . . , zn−1) =
d

dzi

∏
i+1≤j≤n

P (Xij + zj ≤ zi) =
d

dzi

∏
i+1≤j≤n

Fij(zi − zj).

By definition, P(1, 2)={(v1, v2)} and P2(1, l)={(v1, vl)}. Hence (6) is equal to

∫
Rn−2

∏
2≤l≤n

F1l(x − zl)
∏

2≤i≤n−1

⎛⎝ d

dzi

∏
i+1≤j≤n

Fij(zi − zj)

⎞⎠ dzi, (7)

which implies the theorem. �

It is worth noting that Theorem 1 is applicable, even if the length cij of each
edge (vi, vj) is a constant value. The step function H(x− cij) is the distribution
function of Xij . Let di be the (definite) longest path length from vi to vn. Then
the step function FMAX(x) = H(x− d1) is obtained by Theorem 1.

Let Q1(z1, z2, . . . , zn−1; x) = H(x− z1) and

Ql+1(zl+1, . . . , zn−1; x) =
∫
R

Ql(zl, zl+1, . . . , zn−1; x)Gl(zl, zl+1, . . . , zn−1)dzl.

Theorem 1 states that we can calculate Qn(x) = FMAX(x) by repeating integrals.
In the following, we call dummy variable zi the corresponding variable of vi.

1 Notice that we define Zk after zk+1, zk+2, . . . , zn−1; if we define Yi as the length of
the longest path from vk to vn at a time, then Yi’s are dependent on each other,
which implies that the above proof cannot be applied to Yi’s.

Computing the Exact Distribution Function 103

4 Exact Computation of the Repeated Integral

This section considers the case in which the edge lengths are given by mutually
independent random variables that obey the standard exponential distribution
function. We present an algorithm to compute each of Q1, Q2, . . . , Qn symbol-
ically in this order by expanding the integrand into a sum of products before
calculating each integral. Let k be the cardinality of the maximum anti-chain of
L(G). By bounding the number of different terms that can appear during the
symbolic calculation, we show that its running time is a polynomial in the size
of G, if k is bounded by a constant.

Proposition 1. Let Wi = {vj | 1 ≤ j ≤ i}. If vl ∈ Wi \ {vi} or (u, vl) �∈ E for
any u ∈ Wi, then Qi(zi, . . . , zn−1; x) does not depend on zl.

Proof. Since zl is a dummy variable of an integral if l < i, it is obvious that zl

never shows up in Qi(zi, . . . , zn−1; x) after the integrals are computed.
Suppose otherwise that l > i. Then vl �∈ N(Wi) \ Wi. By Theorem 1,

Gi(zi, . . . , zn−1) does not depend on zl. �

Let m = |E|, n = |V | and Vi be the set of children of vi.

Theorem 2. Let G = (V, E) be a DAG such that the cardinality of the maxi-
mum anti-chain of L(G) is at most k. Assume that each random variable Xij,
which represents the length of edge (vi, vj), obeys the standard exponential dis-
tribution. Then the distributed function FMAX(x) of the longest path length in G
is computable in O((k + 1)!nk+2(2m + 1)k+1) time.

Proof. We first show how we calculate Qi+1(zi+1,...,zn−1;x) from Qi(zi,...,zn−1;x)
by symbolically executing the integral with respect to zi. For example, we have

Q3(z3, . . . , zn−1; x) =
∫
R

Q2(z2, . . . , zn−1; x)G2(z2, . . . , zn−1)dz2, (8)

where Q2(z2, . . . , zn−1; x) =
∏

vj∈V1
F1j(x − zj). Since H(x) = 0 for x < 0,

Q3(z3, . . . , zn−1; x)=0 if x<0. Since H(x)=1 if x≥0,

Q3(z3, . . . , zn−1; x)=

b∫
a

∏
vj∈V1

(1−exp(−(x−zj)))
d

dz2

∏
vl∈V2

(1−exp(−(z2−zl)))dz2, (9)

where a = maxv�∈V2 z� and b = x, since otherwise the contribution to the integral
becomes 0 because of the effect of H . Since each of zl’s can take the maximum,
at most |V2| different formulas appear, corresponding to different a = zl, as
possible results of Q3(z3, . . . , zn−1; x). Once a is fixed to a zl, executing symbolic
integration of the right-hand side of Eq. (9) is easy, since possible terms appearing
in the integrand have a form of c1 exp(−c2z2) for some constant c1 and c2. In
general, we obtain Qi+1(zi+1, . . . , zn−1; x) from Qi(zi, . . . , zn−1; x) in this way.

104 E. Ando et al.

To estimate the time complexity of the algorithm, let us estimate the number
of terms that are possible to appear in the execution. By Proposition 1, the
number of variables appeared in Qi(zi, . . . , zn−1; x) is at most k + 1 for any i.
As explained, to obtain Q3(z3, . . . , zn−1; x), we need to consider at most k + 1
different cases corresponding to different a = zl. It is easy to see that to obtain
Q4(z4, . . . , zn−1; x), for each of the cases for Q3, we need to consider at most
k different cases. Although this leads to that there may be O(ki) cases for Qi

in general, the number of variables on which Qi depends is at most k + 1 by
Proposition 1, which implies that, in general in Qi, there can be no more than
(k + 1)! distinct cases. To complete the proof, we show that at most nk+1(2m +
1)k+1) terms are possible to appear, for each of at most (k + 1)! cases.

Let us consider the number of the terms in the integrand in each case. Since
it is easy to see that each term is a product of xα0 , z

αj

j , exp(β0x) and exp(βjzj),
where αj ’s and βj ’s are integers, we bound the number of terms by the number of
possible terms. By the form of Theorem 1, we can see that the maximum degrees
of zj’s and x that appear in the terms in Qi(zi, . . . , zn−1; x)Gi(zi, . . . , zn−1) of
each case can only increase by one in one integral and hence αj ’s are non-
negative integer and less than n. Similarly, we can also see that the degrees βj ’s
of exp(zj)’s and exp(x) can only increase or decrease by one in a multiplication
of two distribution functions and hence βj ’s are integers between −m and m.
Therefore, the integrand in each cases consists of at most nk+1(2m + 1)k+1

terms, which amounts to that the calculation of each Qi+1(zi+1, . . . , zn−1; x)
from Qi(zi, . . . , zn−1; x) takes O((k + 1)!nk+1(2m + 1)k+1) time. �

Corollary 1. A closed form of FMAX(x) consisting of primitive functions is
obtained in polynomial time if k is bounded by a constant, provided that the edge
lengths obey the standard exponential distribution.

5 Approximation of the Repeated Integral

In this section, we assume that the cardinality of the incidence graph L(G) of
a given DAG G is bounded by a constant k. We show that FMAX(x) can be
approximately calculated in polynomial time in n, if the length of each edge
(vi, vj) ∈ E is non-negative and the Taylor series of its distribution function
Fij(x) converges to Fij(x). Here by “Taylor polynomial of a function f”, we
mean the Taylor polynomial generated by f at the origin.

We must be careful for the order of computing the Taylor polynomial of the
repeated integral that is shown in Theorem 1. Let p be the order of the Taylor
polynomial. The most intuitive idea is computing the Taylor polynomial of the
whole integrand of (3) in Theorem 1 treating it as a function of n variables
(i.e., x, z1, z2, . . . , zn−1). However, this intuitive way of computing the Taylor
polynomial is not efficient for obtaining the value of FMAX(x) with an error less
than ε; the running time may be more than exponential with respect to the size
of G even if k is a constant.

In order to lower the running time, we approximate Qi(zi, . . . , zn−1; x) by
Ap

i (zi, . . . , zn−1; x) that is computed by the following: (1) Ap
2(z2, . . . , zn−1; x) is

Computing the Exact Distribution Function 105

the Taylor polynomial of order p generated by Q2(z2,. . ., zn−1; x)=
∏

vj∈V1
F1j(x−

zj), and (2) Ap
i (zi, . . . , zn−1; x) is the Taylor polynomial of order p generated by∫
R

Ap
i−1(zi−1, . . . , zn−1; x)Gi−1(zi−1, . . . , zn−1)dzi−1. (10)

This integral can be calculated using integration by parts, which yields a sum
of products of polynomials and some anti-derivatives of Gi−1(zi−1, . . . , zn−1) =∏

i≤j≤n Fi−1,j(zi−1 − zj). The procedure (2) can be repeated for i = 3, 4, . . . , n.
Since all edge lengths are non-negative by assumption, the anti-derivative of

Gi−1(zi−1, . . . , zn−1) of positive order is equal to 0 at the origin x = zi = zi+1 =
· · · = zn−1 = 0, which allows us to compute Ai(zi, . . . , zn−1; x) without knowing
the form of the anti-derivatives of Gi−1(zi−1, . . . , zn).

In the next theorem, we show that the time to compute Ap
n(x) where p is large

enough to keep the error less than ε is polynomial of the size of G, assuming
that x, ε and the maximum size k of an antichain in L(G) is a constant. We also
assume the existence of a constant σ, that satisfies σp ≥

∣∣∣(d
dx

)p
Fij(x)

∣∣∣ for any
non-negative integer p and any edge (vi, vj) ∈ E.

Notice that σ must be bounded by a constant for the assumption that x is
bounded by a constant. If there is an algorithm A that gives the value of FMAX(x)
in the same time regardless of σ, we can consider the “compressed edge length”
X ′

e = Xe/s, where Xe is the length of e and s ≥ 1. Then we can define the
“compressed” distribution function F ′

MAX(x) = P (
∧

π∈P(
∑

e∈π X ′
e ≤ x)) of the

longest path length. Since A gives the value of F ′
MAX(x) = FMAX(sx) for any s

in the same running time, A can be used for obtaining the value of FMAX(x) for
arbitrary x. Therefore, it is essential to bound σ by a constant as well as x.

Theorem 3. Let G = (V, E) be a DAG and assume that the cardinality of the
anti-chain of its incidence graph L(G) is at most k. Let Fij(x) be the distribution
function of the length of an edge (vi, vj) that is defined in Theorem 2. Let σ be a
value such that σp ≥ ∣∣(d

dx)p(Fij(x)
)∣∣ for any non-negative integer p and any edge

(i, j) ∈ E. We further assume that the Taylor series of Fij(x) converges to Fij(x)
itself and that the time complexity of computing the p-th derivative of Fij(x) is
O(exp(p)). Then Ap

n(x) such that |Ap
n(x) − FMAX(x)| ≤ ε holds is calculated in

time O((k + 1)!(p + 1)kkp+1 exp(p)), where p = O(k2xσ + lnn + ln 1/ε).

Proof. By the similar argument in the previous section, it can be shown that
the time to compute Ap

n(x) is O((k + 1)!n(p + 1)kkp+1 exp(p)).
Now we concentrate on proving that p = O(k2xσ + lnn + ln 1/ε) is sufficient

for |Ap
n(x)−FMAX(x)| ≤ ε. For each edge (vi, vj), we consider a random variable

X ′
ij = Xij/(kσ). Consider that the length of each edge (vi, vj) is X ′

ij instead of
Xij . Let F ′

MAX(x) be the corresponding distribution function. Since FMAX(x) =
F ′

MAX(kxσ), we consider the normalized edge length X ′
ij and the normalized

distribution function F ′
MAX(x) instead of Xij and FMAX(x) in the following. For

the simplicity, we give the proof for the case σ = 1/k. The proof for the general
σ can be given by replacing x in the following by kxσ.

106 E. Ando et al.

Let εi be the difference between Ap
i (zi, . . . , zn; x) and Qi(zi, . . . , zn−1; x). We

first bound the error of Ap
2(z2, . . . , zn−1; x). Since the distribution functions of

edge lengths are normalized by the above manner, it can be shown that

|ε2| ≤ (xk)p+1

(p + 1)!
, (11)

by the evaluation of the Taylor polynomials in [13] and Proposition 1.
Let us bound the error that is created when Ap

i+1(zi+1, . . . , zn−1; x) is com-
puted with respect to zi. By definition, we have

εi+1=Ap
i+1(zi+1, . . . , zn−1; x)−

∫
R

(Ap
i(zi, . . . , zn−1; x)−εi)Gi(zi, . . . , zn−1)dzi. (12)

By the similar argument as in obtaining (11), we have

|εi+1| ≤ (kx)p+1

(p + 1)!
+
∫
R

|εi| d

dzi

∏
i+1≤j≤n−1

Fij(zi − zj)dzi =
(kx)p+1

(p + 1)!
+ |εi|. (13)

This leads to |εn| ≤ (n− 1)
(kx)p+1

(p + 1)!
by (11) and (13) for i = 2, 3, . . . , n.

If kx ≤ 1, the error εn converges to 0 very quickly. If kx > 1, p = O(ln(n −
1) + kx + ln 1/ε) is sufficient to have |εn| = |Ap

n(x)−Qn(x)| less than ε. �

We immediately obtain the following corollary.

Corollary 2. If x, ε, k and σ are constants, the proposed algorithm computes
the value of FMAX(x) within error ε in a polynomial time of the size of G.

6 Conclusion

In this paper, we have investigated the longest path problem for DAGs, where
the edge lengths are mutually independent random variables. We have shown
that the distribution function FMAX(x) of the longest path length is given as
a form of repeated integral that involves n − 1 integrals, where n is the order
of DAG G. We can thus approximately evaluate FMAX(x) for any fixed x by
applying numerical methods to the form, at the expense of accuracy and time.

We however suggest that an important application of the repeated integral
is in symbolic computation of FMAX(x). Because only n − 1 integrals are in-
volved, it may give us a chance to symbolically compute it in polynomial in
n, although there are Ω(2n) paths in G. In fact, we have shown that a rep-
resentation of FMAX(x) by a combination of primitive functions is obtained in
O((k +1)!nk+2(2m+1)k+1) time, provided that the edge lengths obey the stan-
dard exponential distribution, where k is the maximum anti-chain cardinality of
the incidence graph L(G). Recall that the problem is NP-hard even for series-
parallel graphs when the edge lengths obey discrete distributions. A natural open

Computing the Exact Distribution Function 107

question is thus to find another class of distribution functions for which there is
a polynomial algorithm to symbolically execute the repeated integral.

We have proposed an approximation algorithm to compute FMAX(x) with er-
ror smaller than ε for any given x and ε, assuming that the distribution function
Fe(x) of each e ∈ E satisfy the following three natural conditions; 1) Fe(x) = 0
for x ≤ 0, 2) the Taylor series of Fe(x) converges to Fe(x), and 3) for any non-
negative integer p, there is a constant σ satisfying σp ≥

∣∣∣(d
dx

)p
Fe(x)

∣∣∣. The run-
ning time is a polynomial in n, when k, x, ε and σ can be regarded as constants.
In other words, we showed the existence of PTAS for computing FMAX(x) for
fixed x, DAGs with constant k, and the edge lengths that satisfy the above three
conditions. A natural open question is to propose an approximation algorithm
that works for any distribution of edge length.

References

1. Ando, E., Nakata, T., Yamashita, M.: Approximating the longest path length of
a stochastic DAG by a normal distribution in linear time. Journal of Discrete
Algorithms (2009), doi:10.1016/j.jda.2009.01.001

2. Ando, E., Ono, H., Sadakane, K., Yamashita, M.: A Generic Algorithm for Ap-
proximately Solving Stochastic Graph Optimization Problems (submitted for pub-
lication)

3. Ando, E., Yamashita, M., Nakata, T., Matsunaga, Y.: The Statistical Longest Path
Problem and Its Application to Delay Analysis of Logical Circuits. In: Proc. TAU,
pp. 134–139 (2002)

4. Ball, M.O., Colbourn, C.J., Proban, J.S.: Network Reliability. In: Ball, M.O., Mag-
nanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbooks in Operations Re-
search and Management Science. Network Models, vol. 7, pp. 673–762. Elsevier
Science B. V., Amsterdam (1995)

5. Berkelaar, M.: Statistical delay calculation, a linear time method. In: Proceedings
of the International Workshop on Timing Analysis (TAU 1997), pp. 15–24 (1997)

6. Clark, C.E.: The PERT model for the distribution of an activity time. Operations
Research 10, 405–406 (1962)

7. Hashimoto, M., Onodera, H.: A performance optimization method by gate sizing
using statistical static timing analysis. IEICE Trans. Fundamentals E83-A(12),
2558–2568 (2000)

8. Hagstrom, J.N.: Computational Complexity of PERT Problems. Networks 18, 139–
147 (1988)

9. Kelley Jr., J.E.: Critical-path planning and scheduling: Mathematical basis. Oper-
ations Research 10, 912–915 (1962)

10. Kulkarni, V.G., Adlakha, V.G.: Markov and Markov-Regenerative PERT Net-
works. Operations Research 34, 769–781 (1986)

11. Martin, J.J.: Distribution of the time through a directed, acyclic network. Opera-
tions Research 13, 46–66 (1965)

12. Nikolova, E.: Stochastic Shortest Paths Via Quasi-convex Maximization. In: Azar,
Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 552–563. Springer, Heidel-
berg (2006)

13. Thomas Jr., G.B.: Thomas’ Calculus International Edition, pp. 965–1066. Pearson
Education, London (2005)

On the Connection between Interval Size
Functions and Path Counting�

Evangelos Bampas1, Andreas-Nikolas Göbel1, Aris Pagourtzis1,
and Aris Tentes2

1 School of Elec. & Comp. Eng., National Technical University of Athens
Polytechnioupoli Zografou, 157 80 Athens, Greece

ebamp@cs.ntua.gr, agob@corelab.ntua.gr, pagour@cs.ntua.gr
2 New York University, USA

tentes@cs.nyu.edu

Abstract. We investigate the complexity of hard counting problems
that belong to the class #P but have easy decision version; several well-
known problems such as #Perfect Matchings, #DNFSat share this
property. We focus on classes of such problems which emerged through
two disparate approaches: one taken by Hemaspaandra et al. [1] who
defined classes of functions that count the size of intervals of ordered
strings, and one followed by Kiayias et al. [2] who defined the class TotP,
consisting of functions that count the total number of paths of NP com-
putations. We provide inclusion and separation relations between TotP
and interval size counting classes, by means of new classes that we define
in this work. Our results imply that many known #P-complete prob-
lems with easy decision are contained in the classes defined in [1]—but
are unlikely to be complete for these classes under certain types of re-
ductions. We also define a new class of interval size functions which
strictly contains FP and is strictly contained in TotP under reasonable
complexity-theoretic assumptions. We show that this new class contains
some hard counting problems.

1 Introduction

Valiant’s pioneering work on counting problems associated with NP computa-
tions [3] revealed the existence of functions that are quite hard to compute ex-
actly (#P-complete), despite the fact that deciding whether the function value is
nonzero is easy (in P). This category contains the problem of evaluating the per-
manent of a 0-1 matrix (Permanent), which is equivalent to counting perfect
matchings in bipartite graphs (#PM), the problem of counting satisfying assign-
ments to monotone Boolean formulae in 2-CNF form (#Mon2Sat), and many
more [4]. A common feature of all these problems is that their #P-completeness
property is based on the Cook (poly-time Turing) reduction which blurs struc-
tural differences between complexity classes; for example, Permanent is also
� Research supported in part by a Basic Research Support Grant (ΠEBE 2007) of the

National Technical University of Athens.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 108–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Connection between Interval Size Functions and Path Counting 109

complete in the Cook sense for the whole counting version of the Polynomial
Hierarchy [5,6], but also for subclasses of #P [7]. Hence, #P is not considered
to be the most appropriate class to describe the complexity of these problems.

During the last twenty years there has been constant interest for identify-
ing subclasses of #P that contain hard counting problems with easy decision
version [1,2,8,9,10,11,12] and may therefore be more adequate to describe their
complexity. In this paper we investigate the relation among subclasses of #P
defined and studied through two independent lines of research: (a) classes IF≺

p
and IF≺

t [1] that consist of functions that count the size of intervals of strings
under poly-time decidable partial or total (resp.) orders equipped with efficient
adjacency checks, and (b) the class TotP [2] that consists of functions that count
the total number of paths of NPTMs, and the class #PE [11] that contains all
functions of #P for which telling whether the function value is nonzero is easy
(in P). Since it is clear from properties of IF≺

p shown in [1] that IF≺
p = #PE we

turn our focus to the relation between IF≺
t and TotP, which are subclasses of

IF≺
p . To this end we define new interval size function classes by replacing efficient

adjacency checks with other suitable feasibility constraints. Our results can be
summarized as follows (see also Figure 1):

– TotP is equal to IFLN
t , that is, to the class of interval size functions defined on

total p-orders with efficiently computable lexicographically nearest function.
– IFLN

t , hence also TotP, is contained in IF≺
t . The inclusion is strict unless

P = UP ∩ coUP. This, among others, implies that several problems that lie
in TotP are unlikely to be IF≺

t -complete via reductions under which TotP is
closed downwards (for example, under Karp reductions); in particular, the
class of problems that reduce to #MonSat by such reductions is strictly
contained in IF≺

t unless P = UP ∩ coUP. This partially answers an open
question posed in [1].

– One of our new classes, namely IFrmed
t , lies between FP and IFLN

t = TotP.
We show that IFrmed

t contains hard counting problems: we define #SAT+2n ,
which is #P-complete under Cook reductions, and prove that it lies in IFrmed

t .
We also show that any #P function can be obtained by subtracting a function
in FP from a function in IFrmed

t . Therefore IFrmed
t is Cook-interreducible with

TotP, IF≺
t , IF≺

p = #PE, and #P but not Karp-interreducible with any of
these classes under reasonable assumptions.

2 Definitions–Preliminaries

In the following we assume a fixed alphabet Σ, conventionally Σ = {0, 1}. The
symbol Σ� denotes the set of all finite strings over the alphabet Σ. The length
of a string x ∈ Σ� is denoted by |x|. If S is a set, ‖S‖ denotes the cardinality
of S.

A binary relation over Σ� is a partial order if it is reflexive, antisymmetric,
and transitive. A partial order A is a total order if for any x, y ∈ Σ�, it holds
that (x, y) ∈ A or (y, x) ∈ A. An order A is called a p-order if there exists a
bounding polynomial p such that for all (x, y) ∈ A it holds that |x| ≤ p(|y|).

110 E. Bampas et al.

?

#P

P �= NP

IF≺
p = #PE

IF≺
t

IF����
t = IF����

t

UP �= PH

P �= UP ∩ coUP

TotP = IF�	
t

IF�
��
t

FP = IF
��
t

P �= NP

FP �= #P

Fig. 1. Inclusions among interval size function classes. Next to each arrow appear the
assumptions under which the inclusions are proper; it is open whether TotP = IFsucc

t

implies an unlikely collapse.

Definition 1 (Notation for orders, cf. [1]). For any order A we will use the
following notation:

1. x ≤A y is equivalent to (x, y) ∈ A,
2. x <A y is equivalent to (x ≤A y ∧ x �≡ y),
3. x ≺A y is equivalent to (x <A y ∧ ¬∃z ∈ Σ�(x <A z <A y)) (we say that x

is the predecessor of y, or y is the successor of x),
4. A≺

def= {(x, y) : x ≺A y}, and
5. (x, y)A

def= {z ∈ Σ� : x <A z <A y} ((x, y)A will be called an interval, even
if A is a partial order). We will also use [x, y]A, [x, y)A, and (x, y]A for the
closed, right-open, and left-open intervals respectively.

We will use lex to denote the standard lexicographic order of the strings in Σ�.

Remark 1. For any p-order A with bounding polynomial p and any y ∈ Σ�,
‖{x : x ≤A y}‖ ≤ 2p(|y|)+1 − 1. As a corollary, every p-order has a minimal
element.

Definition 2 (Notation for total orders). For any total order A we will use
the following notation:

1. succA : Σ� → Σ� is the successor function for A,
2. predA : Σ� → Σ� is the predecessor function for A (if A contains a bottom

element, predA is undefined for that element),

On the Connection between Interval Size Functions and Path Counting 111

3. medA : Σ� × Σ� → Σ� is the median function for A, defined recursively as
follows:
– if y <A x then medA(x, y) is undefined,
– otherwise if x = y or x ≺A y then medA(x, y) = y,
– otherwise medA(x, y) = medA(succA(x), predA(y)).

4. LNA : Σ� × Σ� × Σ� → Σ� is the lexicographically nearest function for A:
LNA(x, y, z) is the string w ∈ [x, y]A such that w is as close to z as possible
in the lexicographic order (breaking ties arbitrarily).

5. rmedc
A : Σ� × Σ� → Σ�, c ∈ (

0, 1
2

]
, is some relaxed median function for A,

that satisfies the following properties:
– if y <A x then rmedc

A(x, y) is undefined,
– otherwise if x = y or x ≺A y then rmedc

A(x, y) = y,
– otherwise rmedc

A(x, y) is a string z ∈ (x, y)A such that ‖[x, z)A‖ ≥
c · ‖[x, y]A‖� and ‖[z, y]A‖ ≥ �c · ‖[x, y]A‖�.

Remark 2. For a total order A, we will say that rmedA ∈ FP if there is some
c ∈ (

0, 1
2

]
such that some relaxed median function rmedc

A ∈ FP. Observe that

medA is a function that satisfies the properties of rmed
1
2
A, therefore if medA ∈ FP

then also rmedA ∈ FP.

We say that an order A is P-decidable if A ∈ P, and we say that it has ef-
ficient adjacency checks if A≺ ∈ P. We also say that a function f ∈ FP is
FP-computable.

We say that a function f : Σ� → IN is an interval size function defined on an
order A if there exist boundary functions b, t : Σ� → Σ� such that for all x ∈
Σ�, f(x) = ‖(b(x), t(x))A‖. In the following, we will primarily be concerned
with interval size functions defined on P-decidable p-orders via polynomial-time
computable boundary functions.

Definition 3 (Hemaspaandra et al. [1])
IF≺

p (IF≺
t) is the class of interval size functions defined on P-decidable partial

(total) p-orders with efficient adjacency checks via polynomial-time computable
boundary functions.

Remark 3. Note that in [1], IF≺
p and IF≺

t were called IFp and IFt, respectively.
We will use superscript in order to distinguish these classes from other classes
that we will define below.

Furthermore, we will be interested in interval size functions defined on P-decidable
p-orders with various other feasibility constraints, apart from A≺ ∈ P. We define
the following classes:

Definition 4. IFsucc
t (resp. IFpred

t , IFLN
t , IFrmed

t , IFmed
t) is the class of interval

size functions each of which is defined on some P-decidable total p-order A via
polynomial-time computable boundary functions, where in addition succA ∈ FP
(resp. predA, LNA, rmedA, medA ∈ FP).

112 E. Bampas et al.

The computational model we are going to use is the Non-deterministic Polyno-
mial-time Turing Machine (NPTM). For an NPTM M we denote with M(x)
the computation of M on input x. We say that M is in normal form if we
can represent the computation M(x) with a full, complete binary tree of depth
exactly p(|x|), where p is the polynomial that bounds the running time of M .

Valiant in [4] defines as #P the class of all total functions f for which there
exists an NPTM M such that for all x, f(x) is the number of accepting paths
of M(x).

In [11] the class #PE is defined as the class of #P functions with their under-
lying language in P, where for a function f , its underlying language is defined to
be the language Lf = {x | f(x) > 0}. In [2] the class TotP is defined as the class
that contains the functions f for which there exists an NPTM M such that for
all x, f(x) is the number of the computation paths of the computation of M(x)
minus one. The functions of TotP are usually denoted with totM (x), where M is
the associated NPTM, and x the input. In [12] TotP is proven to be exactly the
closure under Karp (parsimonious) reduction of the set of self-reducible functions
of #PE. The results can be summarized by the following chain of inclusions:

FP ⊆ TotP ⊆ #PE ⊆ #P ,

where all the inclusions are proper unless P = NP.
In [1] it is (implicitly) proven that #PE = IF≺

p , and furthermore that:

FP ⊆ IF≺
t ⊆ IF≺

p ⊆ #P .

Again the inclusions are proper unless unlikely complexity class collapses occur.

Definition 5. Polynomial-time reductions between functions:

– Cook (poly-time Turing): f ≤p
T g : f ∈ FPg.

– Karp (parsimonious): f ≤p
m g : ∃h ∈ FP,∀x f(x) = g(h(x)).

Proposition 1. Every interval size function class F that contains functions
defined via polynomial-time boundary functions is downward closed under Karp
reductions.

Proof. Consider f ∈ F via an arbitrary order A and boundary functions b, t ∈
FP. That is, for every x, f(x) = ‖(b(x), t(x))A‖. Assume also that g ≤p

m f , that
is ∃h ∈ FP such that ∀x, g(x) = f(h(x)). This implies that g(x) = f(h(x)) =
‖(b(h(x)), t(h(x)))A‖, therefore g ∈ F via the same order A and boundary func-
tions b′ = b ◦ h ∈ FP and t′ = t ◦ h ∈ FP. ��

3 The status quo between TotP and IF≺
t

As we have seen in the previous section, both TotP and IF≺
t are contained in

#PE = IF≺
p . In this section we will investigate the relationship between these

two classes. Namely we will show that TotP ⊆ IF≺
t , and that the inclusion is

proper unless P = UP ∩ coUP.

On the Connection between Interval Size Functions and Path Counting 113

Theorem 1. TotP ⊆ IFsucc
t ⊆ IF≺

t .

Proof (sketch). Intuitively, given a path encoding of a TotP computation tree,
it is easy to find the next one. The idea is to map computation path encod-
ings to appropriately ordered strings. The detailed proof will appear in the full
version. ��
We now proceed to show that IFsucc

t , and therefore also TotP, is strictly contained
in IF≺

t , under the assumption that P �= UP ∩ coUP. We need a new definition
and a couple of lemmata.

Definition 6. For any constant k ≥ 0, we define the operator C>k . If F is any
function class, then C>k · F defines the following class of languages:

C>k · F = {L | ∃f ∈ F ∀x (x ∈ L ⇐⇒ f(x) > k)} .

Remark 4. Observe that C>0 · coincides with the ∃· operator used by Hemas-
paandra et al. in [1], which in turn coincides with the Sig· operator defined
by Hempel and Wechsung in [13].

Lemma 1. UP ∩ coUP ⊆ C>1 · IF≺
t .

Proof. Let L ∈ UP ∩ coUP, so there is an NPTM M that decides L with the
property that, for any input x, M has exactly one decisive path (either accepting
or rejecting) and all the other paths output “?”. We assume that M is normalized
so that its computation for any input x is a full complete binary tree in which
all computation paths have length exactly p(|x|), where p is the polynomial that
bounds the running time of M .

We construct an order A that coincides with the lexicographic order of Σ�,
except that for every x ∈ Σ� the interval between x0p(|x|)+2 and x1p(|x|)+2

(inclusive) is ordered in the following way:

– First comes x0p(|x|)+2,
– if x �∈ L next comes x01z, where z encodes the unique rejecting path of

M on input x, while if x ∈ L next come x01z and x10z, where z encodes
the unique accepting path of M on input x,

– next comes x110p(|x|),
– and last come the rest of the strings of the form xw, where |w| = p(|x|) + 2,

in the lexicographic order.

It is easy to see that A is a p-order with efficient adjacency checks. We define
the boundary functions b, t ∈ FP: for any x ∈ Σ�, b(x) = x0p(|x|)+2 and t(x) =
x110p(|x|). It holds that, for any x ∈ Σ�, ‖(b(x), t(x))A‖ > 1 if and only if x ∈ L.
Therefore, L ∈ C>1 · IF≺

t . ��
Lemma 2. C>1 · IFsucc

t = P.

Proof. For any f ∈ IFsucc
t , we can decide in polynomial time whether for a

given x, f(x) > 1 or not. Just compute succA(b(x)) and succA(succA(b(x))),

114 E. Bampas et al.

where A is the underlying total p-order with succA ∈ FP and b, t ∈ FP the
boundary functions for f . If any of the computed strings is equal to t(x) then
reject, else accept. Therefore, C>1 · IFsucc

t ⊆ P. For the other direction, note that
P = C>1 · FP ⊆ C>1 · IFsucc

t . ��
Theorem 2. If IF≺

t = IFsucc
t , then P = UP ∩ coUP.

Proof. Assuming that IF≺
t = IFsucc

t , from Lemma 1 and Lemma 2 we get that
UP ∩ coUP ⊆ C>1 · IF≺

t = C>1 · IFsucc
t = P. ��

4 TotP as an Interval Size Function Class

In this section we prove that TotP coincides with the class of interval size func-
tions defined on orders with polynomial-time computable lexicographically near-
est functions. To this end, we will employ two variations of the LN function and
show a useful property of them.

Definition 7. For a p-order A we define the following partial functions:

1. LN+
A(u, v, x) is the lexicographically smallest y ∈ [u, v]A such that x ≤lex y.

2. LN−
A(u, v, x) is the lexicographically largest y ∈ [u, v]A such that x ≥lex y.

Lemma 3. For a total p-order A, if LNA ∈ FP then also LN+
A ∈ FP and

LN−
A ∈ FP.

Proof. We will prove the claim for LN+
A only; the proof for LN−

A is symmetric.
Let p be the bounding polynomial of A. We will compute LN+

A(u, v, x). Let
y = LNA(u, v, x). If x ≤lex y, then LN+

A(u, v, x) = y. For the rest of the proof,
assume that y <lex x and let δ = ‖[y, x)lex‖.

We compute a sequence of strings x = x0 <lex x1 <lex . . . <lex xk where for
all i, ‖[y, xi)lex‖ = 2i · δ, and k is the smallest index such that LNA(u, v, xk) �=
y. It is clear that for all i, [u, v]A ∩ (y, xi)lex = ∅, therefore LN+

A(u, v, x) =
LN+

A(u, v, xk) = LNA(u, v, xk). If, during this process, we reach some xj such
that |xj | > p(|v|), then for all w ≥lex xj we have |w| ≥ |xj | > p(|v|), which
implies that w >A v. So we can safely conclude that [u, v]A contains no string
lexicographically larger than x and halt the computation leaving LN+

A(u, v, x)
undefined. Note that the size of [y, xi)lex is doubled after each iteration, therefore
the length of xi will exceed p(|v|) after at most O(p(|v|)) iterations. ��
Theorem 3. TotP = IFLN

t .

Proof. We first prove that TotP ⊆ IFLN
t . The intuition behind it is that given

a TotP computation M(x) and a string z, we can efficiently find a computation
path, the encoding of which is lexicographically closest to z.

Let f be a TotP function, i.e. there exists an NPTM M such that on all
x ∈ Σ�, f(x) = totM (x). We assume that all paths of M(x) are of length
exactly p(|x|).

On the Connection between Interval Size Functions and Path Counting 115

We define a total order A on Σ� as follows: A coincides with the lexico-
graphic order except that, for every x ∈ Σ�, the interval between x00p(|x|)+1

and x10p(|x|)+1 (inclusive) is ordered in the following way: first comes x00p(|x|)0,
next come the elements of {x0y0 | |y| = p(|x|) ∧ y encodes a path of M(x)},
in lexicographic order, next comes x10p(|x|)0, and last come the elements of
{x0y0 : |y| = p(|x|)∧ y does not encode a path of M(x)}∪ {x0y1 : |y| = p(|x|)},
in lexicographic order.

We will show that LNA(u, v, z) can be computed in polynomial time. If z ∈
[u, v]A then LNA(u, v, z) = z. If z /∈ [u, v]A we distinguish among three cases:

Case 1. Let u = x0yu0 and let v = x0yv0, where both yu, yv encode paths
in M(x), and let z = x0y0, for some y, |y| = p(|x|), where y does not encode
a path in M(x). Let also yu <lex y <lex yv (if not, the output is u or v).
We simulate M(x) following the non-deterministic choices according to the bits
of y, until we encounter a choice that is not available. Assume without loss of
generality that this choice is ‘1’. Then we follow the available choice, ‘0’, and
we continue the simulation by choosing ‘1’ whenever this is available. This way
we obtain the “rightmost” computation path of M(x) which is lexicographically
smaller than y, call it y′. Then by following a standard procedure we obtain
the “leftmost” path of M(x) which is lexicographically larger than y, call it y′′.
Return the lexicographically closest to y between y′ and y′′.

Case 2. Let u = x0yuau and v = x0yvav, where yu (yv) encodes a path in M(x)
and au = 1 (av = 1), or yu (yv) is of length p(|x|) and au ∈ Σ (av ∈ Σ). And,
furthermore let z = z0y0, where y encodes a computation path of M(x), and
yu <lex y <lex yv (if not, the output is u or v). Return x0y1.

Case 3. The remaining cases are either trivial or can be dealt with by combining
techniques used for the above two cases. Details are left for the full version.

We now give a sketch of the proof for the inclusion IFLN
t ⊆ TotP. Let f be

an IFLN
t function, via a total p-order A ∈ P with bounding polynomial p and

boundary functions b, t ∈ FP. By definition, LNA ∈ FP, therefore by Lemma 3
we have that LN+

A ∈ FP and LN−
A ∈ FP.

We outline the operation of an NPTM N that, on input x, performs a compu-
tation with exactly ‖(b(x), t(x))A‖+1 computation paths. It first computes b(x)
and t(x) and halts if b(x) ≺A t(x), otherwise it branches into two paths: one of
them is a dummy path that halts immediately, and the other one runs a recur-
sive procedure that accepts as input two strings u, v which satisfy the conditions
u <lex v and u, v ∈ [b(x), t(x)]A. This procedure first computes z = medlex(u, v),
z+ = LN+

A(b(x), t(x), z), and z− = LN−
A(b(x), t(x), z). It then branches into ei-

ther one or two paths that halt immediately, depending on whether z− = z+ or
not. Furthermore, it branches into two recursive calls of this procedure with in-
puts (u, z−) and (z+, v), respectively. The effect of this procedure, when initially
called with inputs u = LNA(b(x), t(x), ε) and v = LNA(b(x), t(x), 0p(|t(x)|)+1)
(that is, the lexicographically smallest and largest string in [b(x), t(x)]A, re-
spectively) is to output exactly ‖(b(x), t(x))A‖ computation paths. We omit the
details of how to avoid branching into a recursive call that would have to count

116 E. Bampas et al.

the strings of an empty interval, but it should be clear that it is possible to check
if the upcoming procedure call will have to count zero strings or more before the
machine actually branches into it. ��
The above result, combined with the fact that TotP contains all problems in #PE
which possess a natural self-reducibility property [12], implies that a number of
known problems are contained in IFLN

t . Actually, Theorem 3 from [12] can be
restated as follows:

Corollary 1. The problems #DNFSat, #MonSat, NonNegative Perma-

nent, #Perfect Matchings, Ranking are IFLN
t -complete under Cook-1 re-

ductions.

Remark 5. Note that in [12] it was shown that #Mon2Sat is in TotP but the
proof can be easily adapted to show that #MonSat is in TotP as well. In fact, by
slightly extending a property shown in [1], namely that it is easy to find the least
satisfying assignment that is lexicographically greater than a given assignment,
it is possible to show directly that #MonSat is in IFLN

t .

5 Inside TotP

In this section we give a characterization of FP as an interval size function class,
and show that IFrmed

t is a class that contains FP and is contained in TotP.

Theorem 4. FP = IFmed
t ⊆ IFrmed

t ⊆ TotP. The first inclusion is proper unless
#P = FP and the second inclusion is proper unless P = NP.

Proof. The detailed proof is left for the full version. We only sketch some key
ideas. For showing that FP = IFrmed

t implies #P = FP, we consider any function
f ∈ #P and derive a function g(x) = f(x) + 2p(|x|), where p is a polynomial
bounding the computation length of the NPTM that corresponds to f . We next
show that g ∈ IFrmed

t ; it then suffices to notice that if g ∈ FP, then so does f .
For the proof of the assumptions under wich the second inclusion is proper, we
introduce the exponential gap operator, Ceg·, defined as follows: if F is a function
class, then Ceg · F contains exactly the languages L for which there exist some
f ∈ F , q ∈ poly, and q′ ∈ ω(1) such that for all x: if x �∈ L then f(x) ≤ 2q(|x|),
while if x ∈ L then f(x) ≥ 2q(|x|)·q′(|x|). We then prove that NP ⊆ Ceg ·TotP and
Ceg · IFrmed

t ⊆ P. ��
Let us now define a problem that lies in IFrmed

t :

#SAT+2n : given a Boolean formula ϕ with n variables, count the number of
satisfying assignments of the formula ϕ ∨ xn+1, where xn+1 is a fresh variable
not appearing in ϕ.

Proposition 2. #SAT+2n is IFrmed
t -complete under Cook-1 reductions.

Proof. Membership can be shown by similar techniques to those used for proving
the first part of Theorem 4 (omitted due to lack of space). For completeness it
suffices to observe that #SAT can be immediately reduced to #SAT+2n by
subtracting 2n. ��

On the Connection between Interval Size Functions and Path Counting 117

From the argument used in the above proof, the following is immediate (for
function classes F , G, let F -G = {f − g | f ∈ F , g ∈ G}):
Corollary 2. #P ⊆ IFrmed

t -FP.

Acknowledgements. We would like to thank Taso Viglas and Stathis Zachos for
stimulating discussions, and the anonymous referees for their useful comments
and suggestions.

References

1. Hemaspaandra, L.A., Homan, C.M., Kosub, S., Wagner, K.W.: The complexity of
computing the size of an interval. SIAM J. Comput. 36(5), 1264–1300 (2007)

2. Kiayias, A., Pagourtzis, A., Sharma, K., Zachos, S.: The complexity of determin-
ing the order of solutions. In: Proceedings of the First Southern Symposium on
Computing, Hattiesburg, Mississippi, December 4-5 (1998); Extended and revised
version: Acceptor-definable complexity classes. LNCS 2563, pp. 453–463. Springer,
Heidelberg (2003)

3. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

4. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

5. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),
865–877 (1991)

6. Toda, S., Watanabe, O.: Polynomial time 1-Turing reductions from #PH to #P.
Theor. Comput. Sci. 100(1), 205–221 (1992)

7. Kiayias, A., Pagourtzis, A., Zachos, S.: Cook reductions blur structural differences
between functional complexity classes. In: Panhellenic Logic Symposium, pp. 132–
137 (1999)

8. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity
of approximate counting problems. Algorithmica 38(3), 471–500 (2003)

9. Àlvarez, C., Jenner, B.: A very hard log space counting class. In: Structure in
Complexity Theory Conference, pp. 154–168 (1990)

10. Saluja, S., Subrahmanyam, K.V., Thakur, M.N.: Descriptive complexity of #P
functions. J. Comput. Syst. Sci. 50(3), 493–505 (1995)

11. Pagourtzis, A.: On the complexity of hard counting problems with easy decision
version. In: Proceedings of 3rd Panhellenic Logic Symposium, Anogia, Crete, July
17-21 (2001)

12. Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision
version. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
741–752. Springer, Heidelberg (2006)

13. Hempel, H., Wechsung, G.: The operators min and max on the polynomial hierar-
chy. Int. J. Found. Comput. Sci. 11(2), 315–342 (2000)

On the Red/Blue Spanning Tree Problem

Sergey Bereg1, Minghui Jiang2, Boting Yang3, and Binhai Zhu4

1 Department of Computer Science, University of Texas at Dallas
besp@utdallas.edu

2 Department of Computer Science, Utah State University
mjiang@cc.usu.edu

3 Department of Computer Science, University of Regina
boting@cs.uregina.ca

4 Department of Computer Science, Montana State University
bhz@cs.montana.edu

Abstract. A geometric spanning tree of a point set S is a tree whose
vertex set is S and whose edge set is a set of non-crossing straight line
segments with endpoints in S. Given a set of red points and a set of
blue points in the plane, the red/blue spanning tree problem is to find
a geometric spanning tree for red points and a geometric spanning tree
for blue points such that the number of crossing points of the two trees
is minimum. If no three points are collinear, we show that the minimum
number of crossing points is completely determined by the number of
maximal red chains on the convex hull of all red points and blue points.
We design an optimal algorithm for constructing a geometric spanning
tree of all the red points and a geometric spanning tree of all the blue
points with the minimum number of crossing points. If collinear points
are allowed, we prove that the problem of deciding whether there exists
a geometric spanning path of all the red points and a geometric spanning
path of all the blue points without crossing is NP-complete.

1 Introduction

Let R be a set of red points and B be a set of blue points in the plane. In this
paper, we investigate the problem of finding a geometric spanning tree for R
and a geometric spanning tree for B such that the number of crossing points of
the two trees is minimum. This problem has many applications. For instance, a
hydro company may wish to connect their water pipelines to a set of sites R, and
an energy company may want to connect their gas pipelines to a set of sites B in
the same area. They want to design a network with fewest intersections between
water pipelines and gas pipelines. Similar problems come up in other applications
such as telecommunications, road network design, VLSI, and medical imaging.

For a pair of points a and b in the plane, we use ab to denote the straight line
segment (edge) with endpoints a and b. A polygon is defined by a finite set of
edges such that every endpoint of edges is shared by exactly two edges and no
subset of edges has the same property. A polygon is simple if there is no pair
of nonconsecutive edges sharing a point. A simple polygon partitions the plane

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 118–127, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Red/Blue Spanning Tree Problem 119

into two regions, the interior (bounded) and the exterior (unbounded) that are
separated by the simple polygon. The union of a simple polygon and its interior
is called a polygonal region. For a sequence of ordered points p1, p2, . . . , pn in the
plane, we use p1p2 . . . pn (n ≥ 3) to denote a polygon with vertices p1, p2, . . . , pn,
and use (p1, p2, . . . , pn) (n ≥ 1) to denote a chain with vertices p1, p2, . . . , pn,
where p1 and pn are endpoints of the chain. For a pair of straight line segments,
if their intersection is an interior point of at least one of the segments, then this
point is called a crossing point; if their intersection is a segment, then they have
an infinite number of crossing points. Let S be a set of points in the plane. We
use |S| to denote the number of points in S. The convex hull of S, denoted by
CH(S), is the boundary of the smallest convex domain in the plane containing
S. A geometric spanning tree of S, denoted by ST(S), is a tree whose vertex
set is S and whose edge set is a set of non-crossing straight line segments with
endpoints in S. For a polygonal region A, the boundary of A is a simple polygon,
denoted by bd(A).

Throughout this paper, let R be a set of red points and B be a set of blue
points in the plane satisfying R ∩ B = ∅. The red/blue spanning tree problem
is to find ST(R) and ST(B) such that the number of crossing points of two
trees is minimum. We use ST∗(R) and ST∗(B) to denote an optimal solution for
the red/blue spanning tree problem, and use cr(R, B) to denote the number of
crossing points between ST∗(R) and ST∗(B).

Suppose that CH(R ∪ B) contains at least one red point and at least one
blue point. A red (resp. blue) chain (u1, u2, . . . , um) (m ≥ 1) on CH(R ∪ B) is
maximal if any longer chain on CH(R∪B) which contains (u1, u2, . . . , um) must
contain at least one blue (resp. red) point. If CH(R ∪ B) contains both red and
blue points, then the number of the maximal red chains is equal to that of the
maximal blue chains.

The main results of this paper can be stated as follows:

Theorem 1. Let R be a set of red points and B be a set of blue points such
that R ∩ B = ∅ and no three points in R ∪ B are collinear. If CH(R ∪ B)
is monochromatic, then cr(R, B) = 0; if CH(R ∪ B) consists of k maximal red
chains and k maximal blue chains, then cr(R, B) = k−1. Moreover, the red/blue
spanning tree problem can be solved in O((|R| + |B|) log(|R| + |B|)) time.

Note that O((|R| + |B|) log(|R| + |B|)) running time is optimal because even
constructing a geometric spanning tree for R takes Ω(|R| log |R|) time when
collinearity of points is allowed.

The red/blue spanning tree problem can be considered as a special geometric
version of the crossing number problem [4,5].

2 Lower Bound for cr(R, B)

Theorem 2. Let R be a set of red points and B be a set of blue points such that
R∩B = ∅. If no three points in R∪B are collinear and CH(R∪B) consists of k
(k ≥ 2) maximal red chains and k maximal blue chains, then cr(R, B) ≥ k − 1.

120 S. Bereg et al.

Proof. Let ST∗(R) and ST∗(B) be an optimal solution for the red/blue spanning
tree problem. From each maximal red (resp. blue) chain on CH(R∪B), we arbi-
trarily select one endpoint and let R′ (resp. B′) be the set of all such endpoints.
Note that |R′| = |B′| = k. For each leaf of ST∗(R), if it is not in R′, then delete
it. Recursively running this process we obtain a tree, denoted by T (R′), which is
a subtree of ST∗(R). Notice that T (R′) contains all the points of R′ and each leaf
of T (R′) is a point in R′. Similarly, Let T (B′) be a subtree of ST∗(B) such that
T (B′) contains all the points of B′ and each leaf of T (B′) is a point in B′. Since
T (B′) is a tree and each leaf is on CH(R∪B), we know that CH(R∪B)∪T (B′)
decomposes the plane into a set S of polygonal regions and the boundary of each
bounded polygonal region must contain at least an edge on CH(R∪B). Consider
a bounded polygonal region A ∈ S. Let L = bd(A) ∩ CH(R ∪ B) be a chain.
Since T (B′) is a subtree of ST∗(B), we know that the two endpoints of L must
be blue.

We first show that L contains at most one point of R′. Suppose that L contains
at least two points r1 and r2 of R′. Since there exists a maximal blue chain
between r1 and r2, there must exist a blue point b on L which is in B′ and is
between r1 and r2. Note that there exists a path on T (B′) from b to an endpoint
b′ of L, and this path does not contain any red point. Thus, this path and the
subchain of L between b and b′ must form a region which is enclosed in A. This
is a contradiction. Thus, L contains at most one point of R′.

We now show that L contains at least one point of R′. Suppose that L does
not contain any point of R′. Since the two endpoints of L are blue, we know that
L is a subchain of a maximal blue chain on CH(R ∪B). Consider the two leaves
of T (B′) which is on L. Since bd(A) contains only blue points and T (B′) is a
tree, we know that at least one leaf of T (B′) on L is not in B′. This contradicts
the fact that every leaf of T (B′) belongs to B′. Therefore, L contains exactly
one point of R′.

Recall that every leaf of T (R′) belongs to R′ and each tree has at least two
leaves. Arbitrarily select a red point in R′ as the root of T (R′), denoted by r0.
For a leaf r1(�= r0) of T (R′), there is a unique bounded region Ar1 ∈ S such
that the chain Lr1 = bd(Ar1) ∩ CH(R ∪ B) contains r1. Since no three points
in R ∪ B are collinear, there must exist an edge er1 in the path from r0 to r1
on T (R′) such that er1 intersects an edge in bd(Ar1) ∩ T (B′) at cr1 and there
is no other crossing point between T (B′) and the path from cr1 to r1 on T (R′).
Let T (R′ \ {r1}) be a subtree of ST∗(R) such that T (R′ \ {r1}) contains all the
points of R′ \ {r1} and each leaf of T (R′ \ {r1}) is a point in R′ \ {r1}. Since Ar1

contains only r1 and there is no crossing point between T (B′) and the path from
cr1 to r1 on T (R′), we know that er1 is not on T (R′ \ {r1}). Similarly, for a leaf
r2(�= r0) of T (R′ \ {r1}), there is a unique bounded region Ar2 ∈ S such that
the chain Lr2 = bd(Ar2) ∩ CH(R ∪ B) contains r2. Thus, there exists an edge
er2 in the path from r0 to r2 on T (R′ \ {r1}) such that er2 intersects an edge
in bd(Ar2) ∩ T (B′) at cr2 and there is no other crossing point between T (B′)
and the path from cr2 to r2 on T (R′ \ {r1}). Repeat the above process k − 1
times until R′ \ {r1, r2, . . . , rk−1} = {r0}. Thus, we have found k − 1 different

On the Red/Blue Spanning Tree Problem 121

crossing points cr1 , cr2 , . . . , crk−1 . Hence the number of crossing points between
T (R′) and T (B′) is at least k−1. Since T (R′) and T (B′) are subtrees of ST∗(R)
and ST∗(B) respectively, we have cr(R, B) ≥ k − 1.

3 Optimal Solutions

First, we prove a key lemma providing an useful tool for constructing spanning
trees with minimum crossings.

LetP = p1p2 . . . pmq1q2 . . . qn be a polygon of red/blue points such that (1)both
polygons p1p2 . . . pmq1 and q1q2 . . . qnp1 are convex, (2) vertices q2, . . . , qn are in-
side the polygon p1p2 . . . pmq1, and (3) each pi has the same color that is different
from the color of any qi. Such a polygon is called a crescent, in which (p1, . . . , pm)
is called the outer chain and (q1, . . . , qn) is called the inner chain. Let S be a set of
points inside P . We now consider how to construct a ST(S ∪ {p1, . . . , pm}) whose
edges are on or inside P . It is easy to see that the triangulation of P , denoted by
T (P), can be constructed in linear time. For each triangle in T (P) containing a
subset of points S′ ⊆ S, since at least one vertex, say p, of the triangle belongs
to {p1, . . . , pm}, we can link p with every points in S′. In this way, every point
of S is linked to a point in {p1, . . . , pm}. Thus, all the added edges and the chain
(p1, p2, . . . , pm) form a ST(S ∪ {p1, . . . , pm}) whose edges are on the outer chain
or inside P . Therefore, we have the following lemma.

Lemma 1. If P = p1p2 . . . pmq1q2 . . . qn is a crescent with outer chain (p1, p2,
. . . , pm) and the inner chain (q1, q2, . . . , qn), and S is a set of points inside P ,
then there exists a ST(S ∪ {p1, . . . , pm}) whose edges are on the outer chain or
inside P .

3.1 One Maximal Red/Blue Chain on CH(R ∪ B)

Let CH(R∪B) = u0u1 . . . umvn . . . v1v0 with the maximal red chain (u0, u1, . . . ,
um) (m ≥ 0) and the maximal blue chain (v0, v1, . . . , vn) (n ≥ 0). If m = n = 0,
then CH(R ∪ B) is an edge. Since no three points in R ∪ B are collinear, we
have R = {u0} and B = {v0}. Thus, ST∗(R) is an empty graph (only vertex
u0) and ST∗(B) is also an empty graph. In the remaining of this subsection, we
suppose that at least one of the maximal chains has at least two vertices. We
will decompose the interior of CH(R ∪ B) into a sequence of crescent regions.

Let CH(B ∪ {u0}) = v0v1 . . . vnvn+1 . . . vn′u0. Note that the polygon P =
u0u1 . . . umvnvn+1 . . . vn′ is a crescent with outer chain (u0, u1, . . . , um) and in-
ner chain (vn, vn+1, . . . , vn′), and all the points inside this polygon are red points.
From Lemma 1, we can construct a geometric spanning tree for {u0, u1, . . . , um}
and all the points inside P . Let R1 be the set of all the red points inside
CH({u0} ∪ B). Let P1 be the polygon between CH({u0} ∪ B) and CH(R1 ∪
{u0, v0}) which is a crescent with a blue outer chain and a red inner chain. All
the points inside P1 are blue. From Lemma 1, we can construct a geometric
spanning tree for all the points on the outer chain and inside P1. Let B1 be
the set of all the blue points inside CH(R1 ∪ {u0, v0}). Let P2 be the polygon

122 S. Bereg et al.

between CH(R1 ∪ {u0, v0}) and CH(B1 ∪ {u0, v0}) which is a crescent with a
red outer chain and a blue inner chain. We can construct a geometric spanning
tree for all the red points on the outer chain and inside P2. Repeat this process
until every red point is linked to a red tree and every blue point is linked to a
blue tree. Since every red tree of crescents contains u0 and every blue tree of
crescents contains v0, we know that all the red trees form a ST(R), all the blue
trees form a ST(B), and there is no crossing point between them. Thus, we have
the following theorem.

Theorem 3. Let R be a set of red points and B be a set of blue points such that
R ∩ B = ∅. Let CH(R ∪ B) = u0u1 . . . umvn . . . v1v0 with the maximal red chain
(u0, u1, . . . , um) (m ≥ 0) and the maximal blue chain (v0, v1, . . . , vn) (n ≥ 0). If
no three points in R ∪ B are collinear, then cr(R, B) = 0.

3.2 Only Red or Blue Points on CH(R ∪ B)

In this subsection, we consider the case that all the vertices on CH(R ∪ B) have
the same color, say red. Let CH(R ∪ B) = u0u1 . . . um and CH({u0} ∪ B) =
u0v0v1 . . . vn. Similar to the crescent polygon, we can triangulate the polygonal
region P between CH(R ∪ B) and CH({u0} ∪ B). Since each triangle in the
triangulation must have a red vertex that is different from u0, we link this
red vertex to every red vertex inside this triangle. All the added edges and
the chain (u0, u1, . . . , um) form a geometric spanning tree of all the points in
{u0, u1, . . . , um} and inside P . Since CH({u0} ∪ B) consists of one maximal
red chain and one maximal blue chain, it follows from Theorem 3 that we can
construct a geometric spanning tree for all the red points on and inside CH({u0}∪
B) and a geometric spanning tree for all the blue points on and inside CH({u0}∪
B). Thus, we have the following result.

Theorem 4. Let R be a set of red points and B be a set of blue points such
that R ∩ B = ∅. If no three points in R ∪ B are collinear and all the vertices of
CH(R ∪ B) have the same color, then cr(R, B) = 0.

3.3 Two Red and Two Blue Vertices on CH(R ∪ B)

In this subsection, we consider the case that CH(R ∪ B) = u0v0u1v
′
0 with two

maximal red chains, (u0) and (u1), and two maximal blue chains, (v0) and (v′0).
By linking u0 with u1, we can decompose the problem into two subproblems. Let
B1 and B2 be sets of blue points in triangles u0u1v0 and u0u1v

′
0 respectively. Let

P1 be the crescent between triangle u0u1v0 and CH(B1 ∪ {u0, v0}), and vn be
the vertex of P1 which is adjacent to u0. Let P2 be the crescent between triangle
u0u1v

′
0 and CH(B2 ∪ {u0, v

′
0}), and v′n be the vertex of P2 which is adjacent to

u0. Note that all the points inside P1 and P2 are red. For each red point inside
P1 and P2, if it is inside triangle u0vnv′n, then link it with u0, otherwise, link it
to u1. Thus, all the added edges form a geometric spanning tree of {u0, u1} and
all the points inside P1 and P2.

On the Red/Blue Spanning Tree Problem 123

Let R′ and R′′ be sets of red points in triangles u0u1v0 and u0u1v
′
0 respectively.

Since CH(B1∪{u0, v0}) consists of one maximal red chain and one maximal blue
chain, it follows from Theorem 3 that we can construct ST∗(R′ ∪ {u0, u1}) and
ST∗(B1 ∪ {v0}) without any crossing point. Similarly, we can also construct
ST∗(R′′ ∪ {u0, u1}) and ST∗(B2 ∪ {v′0}) without any crossing point. The union
of ST∗(R′ ∪ {u0, u1}) and ST∗(R′′ ∪ {u0, u1}) forms ST(R), and the union of
ST(B1 ∪ {v0}), ST(B2 ∪ {v′0}) and the edge vnv′n forms ST(B). From the above
construction, we know that there is only one crossing point between ST(R)
and ST(B) which is the intersection point of u0u1 and vnv′n. It follows from
Theorem 2 that ST(R) and ST(B) is an optimal solution. Thus, we have the
following result.

Lemma 2. Let R be a set of red points and B be a set of blue points such that
R∩B = ∅ and no three points in R∪B are collinear. If CH(R∪B) = u0v0u1v

′
0,

where u0, u1 ∈ R and u0, v
′
0 ∈ B, then cr(R, B) = 1.

3.4 More Than One Maximal Red/Blue Chains on CH(R ∪ B)

In this subsection, we consider the case that CH(R ∪ B) consists of k (k ≥ 2)
maximal red chains and k maximal blue chains. Let CH(R ∪ B) = u1

1 . . . u1
m1

u2
1 . . . u2

m2
. . . uk

1 . . . uk
mk

vk
nk

. . . vk
1 . . . v2

n2
. . . v2

1 v1
n1

. . . v1
1 , where k ≥ 2, mi ≥ 1,

ni ≥ 1, 1 ≤ i ≤ k and each chain (ui
1, . . . , u

i
mi

) is a maximal red or blue chain
and each chain (vi

1, . . . , v
i
ni

) is also a maximal red or blue chain. We first add
the following edges u1

1v
1
1 , u1

m1
v1

n1
, u2

1v
2
1 , u2

m2
v2

n2
, . . . , uk

1v
k
1 , uk

mk
vk

nk
. These edges

decompose the problem into at most 2k − 1 subproblems with the following
convex hulls: u1

1 . . . u1
m1

v1
n1

. . . v1
1 , u1

m1
u2

1v
2
1v

1
n1

, u2
1 . . . u2

m2
v2

n2
. . . v2

1 , u2
m2

u3
1v

3
1v2

n2
,

. . . , uk
1 . . .uk

mk
vk

nk
. . . vk

1 .
For every convex polygon ui

1 . . . ui
mi

vi
ni

. . . vi
1, 1 ≤ i ≤ k, from Theorem 3, we

can construct a geometric spanning tree for red points and a geometric spanning
tree for blue points on and inside the polygon without any crossing point. For
every quadrilateral ui

mi
ui+1

1 vi+1
1 vi

ni
, 1 ≤ i ≤ k − 1, from Lemma 2, we can

construct a geometric spanning tree for red points and a geometric spanning
tree for blue points in the quadrilateral with one crossing point. The union of
all the red geometric spanning trees forms ST(R) and the union of all the blue
geometric spanning trees form ST(B), and there are k−1 crossing points between
ST(R) and ST(B). From Theorem 2, we know ST(R) and ST(B) are the optimal
solution. Therefore, we have the main result of this paper.

Theorem 5. Let R be a set of red points and B be a set of blue points such that
R ∩ B = ∅ and no three points in R ∪ B are collinear. If CH(R ∪ B) consists of
k maximal red chains and k maximal blue chains, then cr(R, B) = k − 1.

4 Algorithms

We first describe the algorithms as follows.

124 S. Bereg et al.

Algorithm RBT(R, B)
/* Given a red point set R and a blue point set B such that R ∩ B = ∅ and no
three points are collinear, find ST(R) and ST(B) with minimum crossings. */

1. Compute CH(R ∪ B).
2. If CH(R ∪ B) is monochromatic then call RBT-mono(R, B).
3. Compute k, the number of red chains in CH(R ∪ B).
4. If k = 1 then call RBT-one(R, B).
5. If k ≥ 2 then

(a) partition both R and B into 2k − 1 sets R = R1 ∪ . . . R2k−1 and B =
B1 ∪ . . .B2k−1 as in section 3.4.

(b) For each i = 1, 3, . . . , 2k − 1 call RBT-one(Ri, Bi).
(c) For each i = 2, 4, . . . , 2k − 2 call RBT-quad(Ri, Bi).

Algorithm RBT-mono(R, B)
/* Find ST(R) and ST(B) without crossing if CH(R ∪B) is monochromatic. */

1. If CH(R∪B) = u0 . . . um is red, then compute a crescent P between CH(R∪
B) and CH({u0} ∪ B). Let S be the set of red points inside P .
Call Crescent(P, S, u0, um).
Call RBT-one(R1, B1), where R1 and B1 is the sets of red and blue points
on and inside CH({u0} ∪ B) respectively.

2. If CH(R ∪ B) is blue, then compute a crescent P between CH(R ∪ B) and
CH(R ∪ {u0}). Let S be the set of blue points inside P .
Call Crescent(P, S, u0, um).
Call RBT-one(R1, B1), where R1 and B1 is the sets of red and blue points
on and inside CH(R ∪ {u0}) respectively.

Algorithm RBT-one(R, B)
/* Find ST(R) and ST(B) without crossing if CH(R∪B) consists of one maximal
red chain and one maximal blue chain. */

1. Let CH(R∪B) = u0u1 . . . umvn . . . v1v0 with the maximal red chain (u0, u1,
. . . , um) and the maximal blue chain (v0, v1, . . . , vn). If m = n = 0, then
return.

2. If n ≥ 1, compute CH({u0} ∪ B) and the crescent P between CH(R ∪ B)
and CH({u0} ∪ B). Let S be the set of red points in P . Let R1 and B1 be
the sets of red and blue points on and inside CH({u0} ∪ B) respectively.
Call Crescent(P, S, u0, um).
Call RBT-one(R1, B1).

3. If n = 0, compute CH(R∪{v0}) and the crescent P between CH(R∪B) and
CH(R ∪ {v0}). Let S be the set of blue points in P . Let R1 and B1 be the
sets of red and blue points on and inside CH(R ∪ {v0}) respectively.
Call Crescent(P, S, v0, vn).
Call RBT-one(R1, B1).

Algorithm RBT-quad(R, B)
/* Find ST(R) and ST(B) with one crossing point if CH(R ∪ B) = u0v0u1v

′
0,

where u0, u1 ∈ R and v0, v
′
0 ∈ B. */

On the Red/Blue Spanning Tree Problem 125

1. Let CH(R ∪ B) = u0v0u1v
′
0, where u0, u1 ∈ R and v0, v

′
0 ∈ B. Let B1 and

B2 be sets of blue points inside triangles u0u1v0 and u0u1v
′
0 respectively.

2. Compute the crescent P1 between triangle u0u1v0 and CH(B1 ∪ {u0, v0}).
Compute the crescent P2 between triangle u0u1v

′
0 and CH(B2 ∪ {u0, v

′
0}).

3. Find the vertex vn on P1 which is adjacent to u0, and find the vertex v′n on
P2 which is adjacent to u0. Connect vn with v′n.

4. For each red point inside P1 and P2, if it is inside triangle u0vnv′n, then link
it with u0, otherwise, link it to u1.

5. Let R1 and R2 be sets of red points in CH(B1 ∪ {u0, v0}) and CH(B2 ∪
{u0, v

′
0}) respectively.

Call RBT-one(R1 ∪ {u0}, B1 ∪ {v0}).
Call RBT-one(R2 ∪ {u0}, B2 ∪ {v′0}).

Algorithm Crescent(P, S, p1, pm)
/* Given a crescent P with outer chain (p1, . . . , pm) and a set of points S inside
P , find a ST(S ∪ {p1, . . . , pm}) whose edges are on the outer chain or inside P .
*/

1. For i = 1, . . . , m − 1, link pi with pi+1, where (p1, . . . , pm) is the outer chain
of the crescent P .

2. Compute the triangulation T of P .
3. For each point v ∈ S, find the triangle in T which contains v, and link v

with a vertex of the triangle which is on the outer chain of P .

Theorem 6. Algorithm RBT(R, B) can be implemented with O((|R| + |B|)
log(|R| + |B|)) running time.

Proof. In Crescent(P, S, p1, pm), it takes O(|P |) time in Steps 1 and 2, and it
takes O(|S| log |P |) in Step 3. Thus, the running time of Crescent is O(|P | +
|S| log |P |).

For RBT-one(R, B), we first use the following procedure to compute the cres-
cent P between CH(R ∪ B) and CH({u0} ∪ B) in Step 2.

i. Set u = u0 initially.
ii. Find the vertex u′ that is next to u in counterclockwise order on the convex

hull. If u′ = vn, then stop.
iii. If u′ is red, then delete u′ and update the convex hull; otherwise set u = u′

and go to Step ii.

Since the data structure described in [1] can support insertions and deletions in
O(log n) amortized time, we know that Steps ii and iii take O(k log(|R| + |B|))
time, where k is the number of red points deleted in Step iii. Similarly, it take
O(k′ log(|R| + |B|)) time to compute the crescent P between CH(R ∪ B) and
CH(R ∪ {v0}) in Step 3, where k′ is the number of deleted blue points. (The
difference is that we delete blue points in clockwise order starting from v0).
Hence, the running time of RBT-one is O((|R| + |B|) log(|R| + |B|)).

We now consider RBT-quad(R, B). Step 2 takes O(k′ + k log(|R|+ |B|)) time,
where k and k′ are the number of red and blue points in P1 and P2 respec-
tively. Step 3 takes O(log(|R| + |B|)) time. Step 4 takes O(k) time. Step 5

126 S. Bereg et al.

takes O((|R| + |B|) log(|R| + |B|)) time. Thus, the running time of RBT-quad is
O((|R| + |B|) log(|R| + |B|)).

It is easy to see that the running time of RBT-mono is O((|R| + |B|) log(|R| +
|B|)). Therefore, the total running time of RBT(R, B) is O((|R| + |B|) log(|R| +
|B|)).

5 Red/Blue Paths

In this section, we consider the red/blue path problem, a variation of the red/blue
tree problem. Given a red point set R and a blue point set B in the plane, the
red/blue path problem is to find a geometric spanning path of R and a geometric
spanning path of B such that the number of crossing points between two paths
is minimum.

Theorem 7. The RB-path problem is NP-complete.

Proof. It is easy to see that the RB-path problem belongs to NP. We will show
it is NP-hard by a reduction from the planar Hamilton path problem that is
NP-complete. Given a planar graph G, the planar Hamilton path problem is
to determine whether G contains a Hamilton path. From [3], there is a planar
straight line embedding of G, denoted as G′, such that no three vertices are
collinear. Let δ be the minimum distance between a vertex and an edge in G′.
Let the vertex set of G′ be the blue point set B in the RB-path problem. For
each vertex v in G′, let circ(v) be a circle with center v and radius γ satisfying
γ < δ/2. Let Ḡ′ be the complement graph of G′. For every intersection point
between an edge of Ḡ′ and a circle around a vertex of G′, we mark it red. Let R1
be the set of all these intersection points. For every vertex v of G′, the edges of
G′ incident with v divide circ(v) into deg(v) arcs, where deg(v) is the degree of v
on G′. For each arc not containing any red point, we mark the mid-point of the
arc red, and let R2 be the set of all such midpoints. For every vertex v of G′, if v
is not inside the convex hull of red points on circ(v), then we can choose at most
three points on circ(v) to mark them red such that v is inside the convex hull of
red points on circ(v). Let R3 be the set of these additional red points. Finally,
let R = R1 ∪R2 ∪R3 be the set of all the red points. So we have constructed an
instance of the RB-path problem in polynomial time.

We now show that G′ (or G) has a Hamilton path if and only if there is a red
path spanning R and a blue path spanning B without crossing. First, suppose
that G′ has a Hamilton path H . Then this path H spans B. So we only need
to find the red path. For each vertex v of G′, we first construct the convex hull
of all the red points on circ(v), denoted by conv(v). For any edge uv on H , let
u′u′′ be an edge on conv(u) which intersects uv, and v′v′′ be an edge on conv(v)
which intersects uv. Delete edges u′u′′ and v′v′′, and add edges u′v′ and u′′v′′

(suppose that they do not intersect). After running this operation on every edge
of H , we have a cycle spanning R and surrounding H . Note that this cycle has
no self-intersection because γ < δ/2. Arbitrarily deleting an edge form this cycle,
we obtain a spanning path of R that does not intersect H .

On the Red/Blue Spanning Tree Problem 127

Conversely, if there is a red path spanning R and a blue path spanning B
without crossing, then it follows from the construction of R1 and B that every
edge on the blue path must be an edge of G′. Thus, this blue path is a Hamilton
path of G′.

6 Conclusions

Let R be a set of red points and B be a set of blue points such that R∩B = ∅ and
no three points in R ∪ B are collinear. We have designed an algorithm with the
optimal running time O((|R| + |B|) log(|R| + |B|)) for constructing a geometric
spanning tree of R and a geometric spanning tree of B with the minimum number
of crossing points. If collinearity of points is allowed, we have shown that the
problem of determining whether there exists a geometric spanning path of R
and a geometric spanning path of B without crossing is NP-complete.

Note that the method used to compute crescents can be extended to compute
the convex layers of R and B (refer to [2]). Suppose that CH(R∪B) contains only
red points. Let R0 = CH(R∪B), and then, for i = 0, 1, 2, . . . , we can recursively
define Bi to be the convex hull of all the blue points inside Ri, and Ri+1 to be
the convex hull of all the red points inside Bi. Suppose that Bh, h ≥ 0, is the last
nonempty hull. Similar to the procedure for computing crescents in the proof of
Theorem 6, we can design an O((|R| + |B|) log(|R| + |B|)) time algorithm for
computing all Ri and Bi, 0 ≤ i ≤ h.

An interesting extension of the red/blue tree problem is the degree constrained
red/blue tree problem: Given two degree bounds kr and kb, find a geometric
spanning tree of R with maximum degree at most kr and a geometric spanning
tree of B with maximum degree at most kb such that the number of crossing
points is minimum. We can also define other variations of the red/blue tree
problem. By using a reduction similar to the one used in Theorem 7, we can
prove most of them are NP-complete. Note that in the proof of Theorem 7, we
use the collinearity as a tool to construct the reduction. We conjecture that the
RB-path problem is still NP-complete if all the points are in general position.

References

1. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp.
617–626 (2002)

2. Chazelle, B.: On the convex layers of a planar set. IEEE Transactions on Information
Theory IT-31, 509–517 (1985)

3. Fary, I.: On straight line representations of planar graphs. Acta Sci. Math.
(Szeged) 11, 229–233 (1948)

4. Garey, M., Johnson, D.: Crossing number is NP-complete. SIAM J. Algebraic and
Discrete Methods 4, 312–316 (1983)

5. Hliněný, P.: Crossing number is hard for cubic graphs. Journal of Combinatorial
Theory, Series B 96, 455–471 (2006)

Undecidability of Cost-Bounded Reachability
in Priced Probabilistic Timed Automata�

Jasper Berendsen1, Taolue Chen2, and David N. Jansen1

1 Radboud University Nijmegen, Institute for Computing and Information Sciences,
Nijmegen, The Netherlands

2 CWI, Department of Software Engineering, Amsterdam, The Netherlands

Abstract. Priced Probabilistic Timed Automata (PPTA) extend timed
automata with cost-rates in locations and discrete probabilistic branch-
ing. The model is a natural combination of Priced Timed Automata and
Probabilistic Timed Automata. In this paper we focus on cost-bounded
probabilistic reachability for PPTA, which determines if the maximal
probability to reach a goal location within a given cost bound (and time
bound) exceeds a threshold p ∈ (0, 1]. We prove undecidability of the
problem for simple PPTA in 3 variants: with 3 clocks and stopwatch
cost-rates or strictly positive cost-rates. Because we encode a 2-counter
machine in a new way, we can also show undecidability for cost-rates in
Z and only 2 clocks.

1 Introduction

Digital technology has been widely deployed in safety-critical situations and real-
life environments, which leads to increased interest in computer systems that
satisfy quantitative timing constraints. Timed automata [1] are a prominent and
well-established formalism for modeling, analysis and verification of such real-
time systems, which have received much attention both in terms of theoretical
and practical developments.

In addition to computation time, systems also use other finite resources, e. g.
energy, memory, or bandwidth. In many cases, some resources are scarce; the
system should not use more resources than a certain budget. Priced (or weighted)
timed automata [2,3] model resource use and resource constraints.

Traditional approaches to the formal description of real-time systems usually
express the system model purely in terms of nondeterminism. However, many
real-life systems, such as multimedia equipment, communication protocols and
networks, exhibit random behavior. Thus we may ask for the likelihood that
certain properties are satisfied. This suggests the study of probabilistic models.
In this paper, we investigate priced probabilistic timed automata (PPTAs) [4],
which are a probabilistic extension of priced timed automata. This model is an
orthogonal extension of priced as well as probabilistic timed automata [5].
� Research supported by NWO/EW project 612.000.103 FRAAI, the Dutch Bsik

project BRICKS. and the European Community’s 7th Framework Programme
No. 214755 (QUASIMODO).

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 128–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Undecidability of Cost-Bounded Reachability in PPTA 129

One of the most fundamental problems for timed automata and their variants
is reachability. In the setting of PPTA, cost-bounded probabilistic reachability
asks: “Is it possible to reach a goal state with probability ≥ p within a given
cost (and time) bound?” This problem has been studied in [4], where the authors
provided a semi-algorithm: If the answer is affirmative or the symbolic state
space is finite, the algorithm terminates; however, the decidability of the problem
remained open. In this paper, we show its undecidability. The proof reduces a
2-counter machine to a PPTA with three clocks; the 2-counter machine does not
terminate iff some state in the PPTA is reachable with probability 1. Moreover,
the PPTA can be restricted to: 1. either only cost-rates ∈ {0, 1} or only cost-rates
> 0, 2. no difference constraints nor strict constraints, and 3. no probabilistic
resets. So, even when cost must increase with time passing, it may be necessary
for the semi-algorithm of [4] to investigate infinitely many symbolic states. Un-
decidability also holds for PPTA with two clocks that allow cost-rates ∈ Z.

Related Work. Although greatly inspired by [6], there are some thorough changes
in our encoding of a 2-counter machine. First, we use a single clock to encode
both counters, similar to [7]. We find our encoding simpler, since it uses the
third clock only in one subautomaton. Second, [6] shows undecidability in the
setting of the logic WCTL on priced timed automata, as well as in the setting
of weighted timed games. In both settings the goal state is reached by simu-
lating a terminating execution, or by doing a test after simulating an initial
fragment of any execution. The 2-counter machine terminates iff the goal state
cannot be avoided indefinitely. For our setting this would not work, because tests
are entered probabilistically; the (now probabilistic) choice whether to continue
simulation or do a test cannot avoid testing infinitely often.

The other way around, our undecidability results carry over to the setting of
[6]. Our Theorem 1 shows a somewhat stronger result, since our PPTA forbid
strict guards. Theorem 2 shows a new result on only two clocks, while often three
clocks are necessary. Because of the strictly positive cost-rates, Theorem 3 also
gives new insight in the setting of [6]. The innovative construction for Theorem 3
ensures that the time to reach the goal state is always 9 time units; it uses the
third clock to measure the runtime. Theorem 2 also carries over to the game
setting of [7] for two clocks and a lower bound.

Outlook. A possible continuation of this work is by having the slightly different
notion of cost-bounded probabilistic reachability as in [4], namely to have > p
instead of ≥ p on reachability. The semi-algorithm in [4] does not necessarily
terminate for = p on probability. Can this crack between the two results be
closed?

2 Preliminaries

A probability distribution over a finite set Q is a function μ : Q → [0, 1] with∑
q∈Q μ(q) = 1. For set Q′, let Dist(Q′) be the set of distributions over finite

subsets of Q′.

130 J. Berendsen, T. Chen, and D.N. Jansen

A clock is a real-valued variable that can be used to measure the elapse of
time. A clock valuation is a mapping X → R≥0, assigning a value to each clock in
some finite set X. Let RX

≥0 denote the set of all clock valuations. For v ∈ RX

≥0 and
d ∈ R≥0, let v+d denote the clock valuation that maps each x ∈ X to v(x) + d.
For r ⊆ X, let v[r:=0] denote the reset of the clocks in r, i. e. v[r:=0](x) equals
0 if x ∈ r and v(x) otherwise. Valuation vzero ∈ RX

≥0 assigns 0 to all clocks in X.
A zone or constraint is a conjunction of non-strict inequalities where the value

of a single clock is compared to an integer. Formally, for the set X of clocks the
set Zones(X) of zones Z is defined by the grammar: Z ::= x ≤ b | x ≥ b | Z ∧ Z,
where x ∈ X, b ∈ N. Note that some other definitions [1] allow strict inequalities
and inequalities on the difference between clocks, e. g. x > 2, x − y < 3.

2.1 Priced Probabilistic Timed Automata

The next definition a PPTA differs from [4] by: having no invariants, having
only edges that incur cost 0, using our restricted notion of zones, and allowing
negative cost-rates.

Definition 1. A PPTA is a tuple (L, linit, X, edges, $̇), where L is a finite set
of locations; linit ∈ L is the initial location; X is a finite set of clocks; edges ⊆
L × Zones(X) × Dist(2X × L) is a finite set of edges; and $̇ : L → Z associates a
cost-rate with each location.

For edge (l, g, p) ∈ edges, l denotes the source location, g the guard (which
is a zone), and p a distribution on pairs of a set of clocks to be reset and a
destination location. Figure 1 shows a PPTA with clock x. The locations are
represented by circles, with branching arrows between them denoting the edges
of the PPTA. The initial location l0 is marked with a dangling arrow. The cost-
rates are written next to the locations. Guards (e. g. x≥1) are next to the source
location; the probabilities and resets are at the branches (e. g. probability 0.1
and x:= 0.) Cost-rate 0, probability 1, and guards that always hold are omitted.

l0
3 l2

x:=0

0.5

l1

0.5

x≥1

−2
0.1

0.9

Fig. 1. Example PPTA

Intuitively, a PPTA behaves as follows. It always is
in a state consisting of a location l, a clock valuation
v and the amount of cost already incurred. A policy
fills in the non-deterministic choice between the outgo-
ing edges to take, or delaying. Only edges with guards
satisfying the current valuation are available. Delaying
will increase each clock by the amount of delay, and
the accumulated cost by the amount of delay times the
the cost-rate ($̇(l)). When taking an edge, one reset set
and a destination location are chosen probabilistically, these clocks are reset and
the system enters the destination.

Definition 2. A Markov Decision Process (MDP) is a tuple (S, sinit, Act, π),
where S is a set of states, sinit ∈ S is the initial state, Act is a set of action
labels, and π ⊆ S × Act × Dist(S) is a probabilistic transition relation such that
for each s ∈ S, there exist a ∈ Act and μ ∈ Dist(S) such that (s, a, μ) ∈ π.

Undecidability of Cost-Bounded Reachability in PPTA 131

A (in)finite run ω in an MDP (S, sinit, Act, π) is a (in)finite sequence: s0
a0,μ0−−−→

s1
a1,μ1−−−→ s2

a2,μ2−−−→ · · · such that s0 = sinit, (si, ai, μi) ∈ π, and μi(si+1) > 0 for
all i. Let ωi denote the i-th state in the run ω, i. e. ωi = si. Let last(ω) denote
the last state in the finite run ω. A policy (also called scheduler, adversary, or
strategy) is a function mapping every finite run ω in some MDP (S, sinit, Act, π)
to a pair (a, μ) ∈ Act × Dist(S) such that (last(ω), a, μ) ∈ π. For a policy A, let
RunsA denote the set of all infinite runs that are induced by A. ProbA denotes
the probability measure on RunsA, defined using classical techniques [8].

Definition 3 (PPTA Semantics). Given PPTA Aut = (L, linit, X, edges, $̇),
its semantics is the MDP: MDP(Aut) = (S, (linit, vzero, 0), R≥0, π), where S =
L × RX

≥0 × R so that a state consists of a location, a clock valuation, and the
accumulated cost; and ((l, v, c), d, μ) ∈ π if one of the following conditions holds:

– time transitions: d > 0 and μ(l, v + d, c + $̇(l)d) = 1
– discrete transitions: d = 0 and there exists (l, g, p) ∈ edges such that v |= g

and for any (l′, v′, c) ∈ S: μ(l′, v′, c) =
∑

r⊆X∧v′=v[r:=0] p(r, l′)

Definition 4 (CBPR). Given PPTA Aut = (L, linit, X, edges, $̇), cost-bounded
probabilistic reachability asks the question: “It is possible to reach location lG ∈
L with probability at least p ∈ (0, 1] and with cost at most κ ∈ N.”, denoted
∃P≥pF

≤κlG . It holds iff there exists a policy A of MDP(Aut) such that

ProbA{ω ∈ RunsA | ∃i ∈ N.ωi ∈ {lG} × RX

≥0 × (−∞, κ]} ≥ p

3 Undecidability Results

Our undecidability results hold for restricted PPTA, called simple PPTA.

Definition 5 (Simple PPTA). We call a PPTA Aut = (L, linit, X, edges, $̇)
simple if the resolution of probabilities does not influence the set of clocks being
reset: ∀(l, g, p) ∈ edges.∃r ∈ 2X.∀r′ ∈ 2X.∀l′ ∈ L.p(r′, l′) > 0 =⇒ r′ = r.

Theorem 1. CBPR of simple PPTA with three clocks and $̇ : L → {0, 1} (stop-
watch cost) is undecidable.

Theorem 2. CBPR of simple PPTA is undecidable even with two clocks.

Theorem 3. CBPR of simple PPTA with three clocks and $̇ : L → N>0 (strictly
positive cost-rates) is undecidable.

Note that our definition of policy is deterministic: a run is mapped to exactly one
distribution. There exist other classes of policies, for which the undecidability
results will hold in case the class allows the deterministic policies we have used.

The rest of this work contains the proofs. Sections 3.1–3.6 give the proof of
Theorem 1. Sections 3.7 and 3.8 prove Theorems 2 and 3, respectively.

132 J. Berendsen, T. Chen, and D.N. Jansen

3.1 Proof of Theorem 1

Definition 6. A 2-counter Minsky machine [9] is a computational model, con-
sisting of a finite sequence of instructions, labeled l1, l2, . . . , lH . Computation
starts at l1 and halts at lH . Instructions l1, . . . , lH−1 are of the following two
types, where c ∈ {a, b} is one of the counters:

increment c li : c := c + 1; goto lj;
test-and-decrement c li : if c = 0 then goto lk;

else c := c − 1; goto lj ;

We will encode the halting problem for 2-counter Minsky machine M using a
PPTA Aut with a special goal location lG that satisfies the following property:

∃P≥1F
≤8lG holds for Aut ⇐⇒ ¬(M terminates)

Aut has one location for each instruction label l1, . . . , lH . Each transition, when
taken at the correct time, corresponds to the execution of one instruction. After
the transition, a test may check whether the right edge was taken at the correct
time. There is a unique policy that chooses the correct time and edge in every
state and so simulates the execution of M; we call it the fulfilling policy. Any
other policy will fail some test, which implies that it misses lG or the cost bound
with positive probability. So, the fulfilling policy is the only one that may satisfy
CBPR. However, if M terminates, it leads to lH with positive probability, so the
maximal probability to reach lG is still < 1. It is well-known that termination of
a 2-counter machine is undecidable, implying Theorem 1.

Aut uses only 3 clocks x, y, z; it is not simple, and it allows resets of the form
x:=y, where clock x is set to the value of clock y. Section 3.6 shows how Aut can
be changed to a simple PPTA with only resets to zero.

Upon entering location li (under the fulfilling policy), auxiliary clock y = 0,
and the values of the counters a and b are encoded by x as: x = 2−a · 3−b. A
value for x uniquely determines a and b. Since both counters start at 0, we have
initial location l0 with an edge to l1 guarded by x = 1 and reset y:=0.

Ineq(x≤3y)

Ineq(3y≤x)

lj
x:=y, y:=0li

Fig. 2. Automaton for incre-
menting counter a

CBPR for p < 1 (e. g., Aut |= ∃P≥0.7F
≤clG) is

also undecidable. Just add a probabilistic choice
to the edge from l0: enter l1 with probability p,
and let the remaining probability of 1 − p go to
lH .

In the rest of this section we assume a uniform
distribution on all edges, and a cost-rate of 0 in
every location, unless a different cost-rate is ex-
plicitly given. We now discuss the subautomata
needed to let the fulfilling policy simulate the
2-counter machine.

3.2 Increment Subautomata

Figure 2 shows the subautomaton for incrementing counter a. We denote the value
of x and y upon entering li by xi and yi, respectively. Assume xi = 2−a · 3−b (for

Undecidability of Cost-Bounded Reachability in PPTA 133

some a, b ∈ N) and yi = 0. (The fulfilling policy guarantees these assumptions.)
The automaton ensures that under the fulfilling policy, the value upon entering lj
is xj = 1

2xi = 2−(a+1) · 3−b, which indeed encodes an increment on counter a: Let
di be the time spent in li, and xIneq, yIneq be the values of the clocks upon entering
the Ineq subautomata.

In subautomaton Ineq(ϕ), lG is reachable with probability 1 within the cost
bound only if ϕ holds and 0 ≤ yIneq ≤ xIneq ≤ 2. Thus the fulfilling policy will only
take the edge at a time when xIneq = 3yIneq. Now yIneq = di and 0 ≤ yIneq ≤ xIneq

due to yi = 0. Since xj = yIneq due to reset x:=y, we have:

xi = xIneq − di = 3yIneq − di = 3di − di = 2di = 2yIneq = 2xj (1)

and xIneq = 3yIneq = 3
2xi ≤ 3

2 . The automaton for incrementing b is the same
with the exception that we test for xi = 3xj with Ineq(x ≤ 4y) and Ineq(4y ≤ x).

3.3 Power Subautomata

Ineq(2x≤3y)

Ineq(3y≤2x)
y=0

y:=0
x:=y,

y≤1

Fig. 3. Power(2): automaton for multiply-
ing x a number of times by 2

We now introduce an auxiliary au-
tomaton called Power(k). The fulfill-
ing policy will multiply x with a power
of k ∈ N. In particular, a concate-
nation of Power(2) and Power(3) is
used to check whether x has the form
2−a·3−b: under the fulfilling policy x is
doubled a times, leading to x = 3−b,
and then tripled b times, leading to
x = 1. If x does not have the required
form, it is impossible to reach x = 1.
Figure 3 shows Power(2). The number of times x is doubled is the number of
times the loop is taken. The guard y ≤ 1 excludes a policy that always doubles
and never takes the exit edge. Such a policy would pass a test with probability
1, because the probability to stay in the loop indefinitely is 0.

Let xi be the value of x when entering the location for the i-th time. A similar
argument as for Eq. 1 shows that xi = 1

2xi+1. The power automaton can only
be left with x = xi for some i, because of the guard y = 0, so x upon leaving
the power automaton is 2i−1 · x1. For Power(3) and Power(5) (used later), the
corresponding tests are 3x = 4y and 5x = 6y, respectively.

3.4 Decrement Subautomata

Figure 4 shows the subautomaton for test-and-decrement of counter a. In loca-
tion li, the fulfilling policy takes the edge from li to lk only if a = 0, because the
test branch only succeeds if xi has the form 20 · 3−b. Below, we will see that the
fulfilling policy takes the other edge only if a > 0.

Decrementing a is very similar to incrementing counters. With the same no-
tations as in Sect. 3.2, assume xi = 2−a · 3−b (for some a, b ∈ N) and yi = 0.
Then, the Ineq subautomata ensure that the fulfilling policy lets xi = 1

2xj .

134 J. Berendsen, T. Chen, and D.N. Jansen

lG

li

Ineq(2x≤3y) Ineq(3y≤2x)

lj

y=0

lk

x:=y, y:=0

Power(2) Power(3)
x=1

x:=y, y:=0

Fig. 4. Automaton for test-and-decrement of counter a

Add(2−y)Add(x)Add(x)

p times q times

lG
Add(2−y) z:=0

2

z=4−q

Fig. 5. Ineq(px ≤ qy): automaton for testing px ≤ qy

The fulfilling policy will take the edge from li to lj only if a �= 0. Otherwise,
assume the edge is taken while a = 0, then xi = 3−b. Recall that the fulfilling
policy will ensure that xj = 2xi = 2 · 3−b. But then the branch leading from li
to Power(2) will not reach lG , since it would have to divide x by 2.

The construction for test-and-decrement of counter b is very similar: on the
edge from li to lk, one would test for xi = 2−a · 30, and on the edge from li to
lj , one would test for 3x = 4y.

3.5 Ineq Subautomata

la
z:=0 x=2, x:=0

y=2,
y:=0

x=2, x:=0

0

0

lb

y=2,
y:=0

z=21

1

lc ld

Fig. 6. Add(x): automaton adding x
to the accumulated cost

Figure 5 shows the Ineq(px ≤ qy) subau-
tomaton. Location lG is reached within the
cost bound of 8 under a policy only if the
clocks satisfy px ≤ qy and 0 ≤ y ≤ x ≤ 2
upon entering Ineq. Subautomata Add(x)
and Add(2−y) are used to add x respec-
tively 2−y to the accumulated cost of a
run under any policy that enters and exits
the subautomaton, while all clocks have the
same values upon exiting as upon entering.
The accumulated cost when entering lG is:

px + q(2 − y) + (4 − q)2 = px − qy + 8

So lG is reached within the cost bound of 8 only if px ≤ qy.
Figure 6 depicts Add(x). The automaton has the same effect as in [6]1. Sub-

automaton Add(2−x) is easily obtained by swapping the cost-rates 0 and 1. The
reader easily verifies the needed effect of passing through Add(x) or Add(2−x).
1 Add(x) in [6] contains a glitch: when y = 1 on entrance, possibly y = 0 on exit.

Undecidability of Cost-Bounded Reachability in PPTA 135

li li′

1

(a)

lG

lj

x:=0

x:=0li(b)x:=0 lj

x=81
Fig. 7. Removing probabilistic resets

la lb lc
x=2 y=2 y=4 lG

p−qqq−p

Fig. 8. Ineq(px ≤ qy): automaton for testing px ≤ qy

3.6 Adaption to Simple PPTA

To render the PPTA simple, we change the encoding as follows. The resets
x:=y, y:=0 are replaced by x:=0. This swaps the role of x and y in the target
location, i. e. y now encodes the counters. The fact that the clocks are swapped
in some location will be captured by a copy of that location, where x and y are
swapped on all guards and resets of outgoing edges.

The obtained PPTA still has resets x:=0 that depend on the resolution of
probability. Figure 7a shows such an edge, and Fig. 7b shows how we can replace
it using an intermediate location li′ and a reset that does not depend on the
resolution of probability. The fulfilling policy will not let time advance in li′ ,
because this incurs cost, and upon leaving li′ , a test may be invoked to check
whether the cost incurred up to that point is still 0.

3.7 Proof of Theorem 2

In this section, we allow PPTA to have any positive or negative integer cost rate.
This relaxation will allow us to encode the 2-counter machine with two clocks
only, because we can simplify the Ineq subautomata.

Figure 8 shows the alternative Ineq subautomaton. The cost-bound of the
CBPR problem is changed to 0. (It may happen that a run exceeds the cost
bound temporarily; however, upon entry into lG , its cost has to be ≤ 0.) Let
da, db, dc denote the time that elapses in locations la, lb, lc respectively. Let
xa, ya, ca denote the values of the clocks and accumulated cost when entering la.
A run that reaches lG has the following accumulated cost:

ca + (q − p)da + qdb + (p − q)dc (2)

Since all the locations a run visits before entering la have cost-rate 0 we have ca =
0. We need to ensure that da, db, dc are nonnegative (under the fulfilling policy).
da = 2 − xa, and non-negativity follows from the fact that when xa > 1 the
encoding of the counters is incorrect, which is only possible under a non-fulfilling
policy. db = 2 − (ya + da) = xa − ya, and non-negativity follows from the fact

136 J. Berendsen, T. Chen, and D.N. Jansen

lG

li

Ineq(7y≤2x)

lj

y=0

lk

x:=y, y:=0

Power(2)

x:=y, y:=0

Power(3) Power(5)
x=1

Ineq(2x≤7y)

Fig. 9. New automaton for test-and-decrement of counter a

that ya ≤ xa whenever Ineq is entered. Clearly dc = 2. By filling in Eq. 2 we get
the following accumulated cost: (q−p)(2−xa) + q(xa−ya) + (p−q)2 = pxa − qya.
Therefore, Ineq(px ≤ qy) reaches lG with cost ≤ 0 iff px ≤ qy upon entering.

3.8 Proof of Theorem 3

We now want to construct a simple PPTA with only strictly positive cost rates.
As a starting point, we take the PPTA obtained in the previous section. We will
again add a third clock z, but now, z is never reset, so it equals the duration of
the run in all states.

The PPTA is adapted by adding 6 to all cost-rates. For all locations that had
cost-rate 0 this clearly enforces a strictly positive cost-rate. The only negative
cost-rates appear in Ineq subautomata (Fig. 8), but they are all larger than −6,
so the new rates are all strictly positive.

All runs of the fulfilling policy that reach lG should have an accumulated cost
below the cost bound of the cost-bounded reachability problem. Because of the
strictly positive cost-rate, we therefore need an overall time bound for all these
runs, which we will show later to be 9. To accomodate the time bound, next to
the counters a and b, clock x will encode the integer n, which is used to count
the number of times a test-and-decrement instruction decremented any of the
two counters. The encoding becomes: x = 2−a · 3−b · 5−n.

The new test-and-decrement automaton is shown in Fig. 9. The values for the
two Ineq automata are changed to accommodate that on entering lj : xj = 2

5xi

(which corresponds to decrementing a and incrementing n.) From Power(3) there
is now an edge to Power(5) which has the edge guarded by x = 1 to lG . The
Power(5) automaton is needed here, because this part was used to check the
correctness of the encoding by x, which now includes the factor 5−n.

6

l′G
z=9 lG

Fig. 10. Subautomaton
to reach lG in exactly 9
time units

The final change to the total automaton is that on
every run where lG was entered, the run now has to pass
by a new location l′G . Figure 10 depicts l′G and how from
there lG is reachable. Because z measures the duration
of a run, which is bounded by 9 (as explained below),
and time is spent in l′G until z becomes 9, the additional
cost for any run is: 9 · 6 = 54. Indeed the cost bound
for the CBPR problem is changed to 54.

We will now show that every run that enters l′G has a duration bounded by
9. First of all 1 time unit is spent in l0. Under the fulfilling policy, as long as

Undecidability of Cost-Bounded Reachability in PPTA 137

no Ineq or Power subautomaton is entered, every passage through an increment
or decrement subautomaton multiplies x with 1

2 , 1
3 , 2

5 or 3
5 , so the new value of

x is at most 3
5 times its old value. Further, the time spent in some subautoma-

ton is equal to the new value of x. (If in a test-and-decrement subautomaton,
the tested counter is = 0, then x is not changed and no time is spent in the
subautomaton, so we can ignore this case in the runtime calculation.) There-
fore, the total runtime until entering some Power or Ineq automaton is less than
1 +

∑∞
i=1(

3
5)i = 2 1

2 .
Similarly, one can see that each iteration in a concatenation of Power sub-

automata takes at most 1
2 times the time of the next iteration, and the last

iteration (all under the fulfilling policy) takes time 1. Therefore, the maximal
time spent in Power subautomata is

∑∞
i=0(

1
2)i = 2.

Finally, an Ineq subautomaton takes at most 4 time units. Summing up, we
get a total upper bound on the runtime of 2 1

2 + 2 + 4 ≤ 9 upon entering l′G .

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001)

4. Berendsen, J., Jansen, D.N., Katoen, J.P.: Probably on time and within budget: On
reachability in priced probabilistic timed automata. In: QEST, pp. 311–322. IEEE
Computer Society Press, Los Alamitos (2006)

5. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theoretical Computer Sci-
ence 282(1), 101–150 (2002)

6. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

8. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
New York (1976)

9. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper
Saddle River (1967)

A Computational Proof of Complexity of Some
Restricted Counting Problems

Jin-Yi Cai1,�, Pinyan Lu2, and Mingji Xia1,3

1 Computer Sciences Department, University of Wisconsin
Madison, WI 53706, USA

jyc@cs.wisc.edu
2 Microsoft Research Asia
Beijing, 100190, P.R. China

lupinyan@gmail.com
3 State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences
Beijing 100190, P.R. China

xmjljx@gmail.com

Abstract. We explore a computational approach to proving intractabil-
ity of certain counting problems. More specifically we study the com-
plexity of Holant of 3-regular graphs. These problems include concrete
problems such as counting the number of vertex covers or independent
sets for 3-regular graphs. The high level principle of our approach
is algebraic, which provides sufficient conditions for interpolation to
succeed. Another algebraic component is holographic reductions. We then
analyze in detail polynomial maps on R2 induced by some combinatorial
constructions. These maps define sufficiently complicated dynamics of R2

that we can only analyze them computationally. We use both numerical
computation (as intuitive guidance) and symbolic computation (as proof
theoretic verification) to derive that a certain collection of combinatorial
constructions, in myriad combinations, fulfills the algebraic requirements
of proving #P-hardness. The final result is a dichotomy theorem for a
class of counting problems.

1 Introduction

In this paper we study some counting problems which can be described in the
following way. We are given a graph G = (V, E). At each vertex v ∈ V there
is a function fv, and at each edge e ∈ E there is a function ge. We also call
these functions fv and ge signatures. These functions take 0-1 inputs and output
real values in R. Now consider all 0-1 assignments σ at each end of every edge
e = (x, y), i.e., a value σ(e, x) and σ(e, y). The counting problem is to compute∑

σ

∏
v fv(σ |v)

∏
e ge(σ |e), where the sum is over all 0-1 assignments σ of

products of function evaluations over all v ∈ V and e ∈ E. Here σ |v denotes the
values assigned locally by σ at v, i.e., the ends of all edges incident to v, and σ |e
� Supported by NSF CCF-0830488 and CCF-0511679.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 138–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Computational Proof of Complexity 139

denotes the values assigned by σ at the two ends of e. If each fv is the Equality

function (of arity = deg(v)), then σ can be thought of as 0-1 assignments over
the vertex set V . Similarly if each ge is the Equality function (of arity two),
then σ can be taken as 0-1 assignments over E.

For example, choosing Equality for every edge, the problems of counting
matchings or perfect matchings correspond to taking the At-Most-One or
Exact-One function at each vertex, respectively. Similarly counting all vertex
covers on a 3-regular graph G = (V, E) corresponds to choosing fv to be the
Equality function of arity three, and ge the Or function on two inputs.
Yet another example is Independent Set, which corresponds to Equality for
fv and At-Most-One for ge. This framework of counting problems is called
Holant problems [4,5], and in general the assignments σ can take values in any
finite set [q]. Classically, when fv is fixed to be Equality, and each edge is
given the same Boolean function (but σ takes values in [q]) this problem is
known as graph homomorphism problem (or H-colorings or H-homomorphisms,
or partition functions) [10,11,12,13]. Here H is a fixed directed or undirected
graph (with possible self loops) given by a q × q Boolean adjacency matrix. A
mapping σ : V (G) → V (H) is a homomorphism iff for every edge (x, y) ∈ E(G),
H(σ(x), σ(y)) = 1. Then the quantity

∑
σ

∏
(x,y)∈E(G) H(σ(x), σ(y)) counts the

number of H-homomorphisms. Vertex cover is the special case where the two-
vertex graph H is ({0, 1}, {(0, 1), (1, 0), (1, 1)}). Dichotomy theorems (i.e., the
problem is either in P or #P-hard, depending on H) for H-homomorphisms with
undirected graphs H and directed acyclic graphs H are given in [11] and [10]
respectively. H-homomorphisms can also be studied for more general functions
than Boolean valued functions. A dichotomy theorem for any symmetric matrix
H with non-negative real entries is proved in [2]. Very recently Goldberg et. al.
in a most impressive 73-page paper [12] have proved a dichotomy theorem for
any real symmetric matrix H . We will make use of these results [2,12].

Another related incarnation of these problems is known as Constrained
Satisfaction Problems (CSP) [1,7,8,9]. In a Boolean CSP, there is a set of Boolean
variables represented by vertices U on the left hand side (LHS) of a bipartite
graph (U, W, E). The right hand side (RHS) vertices W represent constraint
functions. It is usually implicitly assumed that each vertex in U is labeled
by an Equality function and each vertex in W is labeled by a constraint
function. Thus Equality of arbitrary arity is implicitly assumed to exist in
input instances. If each vertex w ∈ W is of degree 2 and is assigned the same
function, then effectively we can treat w as “an edge” (by merging the two edges
incident to w), and we return to the setting of H-homomorphisms. Furthermore
if each u ∈ U has degree 3 then this is effectively a 3-regular graph. We call a
bipartite graph (U, W, E) 2-3 regular if deg(u) = 3 and deg(w) = 2 for u ∈ U
and w ∈ W . As indicated, this encompasses 3-regular graphs. It turns out that
if Equality gates of arbitrary arity are freely available in possible input graphs
then it is technically easier to prove #P-hardness. For Holant problems the
Equality gates are not freely available unless explicitly given, proofs of #P-
hardness become more challenging, because we are more constricted to design

140 J.-Y. Cai, P. Lu, and M. Xia

gadgets in possible reductions. Furthermore there are indeed cases within this
class of counting problems where the problem is #P-hard for general graphs,
but solvable in P when restricted to 3-regular (or 2-3 regular) graphs.

In this paper we consider 2-3 regular graphs (U, W, E) where each u ∈ U
is assigned the Equality function (of arity 3) and each w ∈ W is assigned a
real symmetric function on two bits. We denote a symmetric function on n bits
as [f0, f1, . . . , fn] where fi is the value of the function on inputs of Hamming
weight i. Then our problem can be denoted as #[1, 0, 0, 1] | [x0, x1, x2] for some
x0, x1, x2 ∈ R. Our main result in this paper is a complexity dichotomy theorem
for this class of problems.

It turns out that studying counting problems in this framework has a
close connection with holographic algorithms and reductions [16]. One can
transform the general counting problem #[y0, y1, y2, y3]|[x0, x1, x2] on 2-3 regular
graphs for any pair of symmetric functions to either #[1, 0, 0, 1] | [z0, z1, z2]
or #[1, 1, 0, 0] | [z0, z1, z2] by holographic reductions [4]. In [4] a dichotomy
theorem was shown for all problems in this class where xi and yj are 0-1
valued. The two cases #[1, 0, 0, 1] |[z0, z1, z2] or #[1, 1, 0, 0]| [z0, z1, z2] correspond
to a certain characteristic polynomial having distinct roots or double roots,
with the first case being the generic case of distinct roots. Thus our problem
#[1, 0, 0, 1]|[x0, x1, x2] for x0, x1, x2 ∈ R corresponds to the case with two distinct
real characteristic roots. By holographic reductions our dichotomy theorem for
#[1, 0, 0, 1] | [x0, x1, x2] has extensions to more general forms. The framework of
Holant problems was formally introduced in our previous work; we refer to [4,5]
for formal definitions and notations. The problems studied in this paper are a
very restricted class, over 2-3 graphs, but we find it the simplest class for which
it is still non-trivial to prove a dichotomy theorem. It is also a simple class which
includes some interesting combinatorial problems. Compared to CSP problems,
generally it is more difficult to prove dichotomy theorems for Holant problems
where equality gate is not for free. As shown in [5], the 2-3 regular graphs are the
most basic and also technically the most difficult cases. The dichotomy theorems
of general cases in [5] are reduced to these 2-3 regular ones.

The absence of Equality gates of arbitrary arity in problem specification is a
real hindrance to proving #P-hardness. Proofs of previous dichotomy theorems
make extensive use of constructions called thickening, stretching and pinning.
Unfortunately all these constructions require the availability of Equality gates
of arbitrary arity to carry out.

Our approach is to reduce H-homomorphism problems (where vertices take
0-1 values) to our problem. The former is known to be #P-hard. This amounts
to proving the reduction

#{=1, =2, =3, . . . , =k, . . .} | [x0, x1, x2] ≤T #[1, 0, 0, 1] | [x0, x1, x2].

We use a set of signatures on one side to mean that any signature from that
set can be used for vertices on that side of the bipartite graph. The desired
Equality gates {=1, =2, =3, . . . , =k . . .} will be “produced” by simulation in a
chain of reductions.

A Computational Proof of Complexity 141

The main effort of this paper is to prove that a suitable collection of
combinatorial constructions succeed in the aggregate. We give a “computational”
proof of this fact. The constructions give rise to a set of polynomial maps on
R2. These maps define sufficiently complicated dynamics of R2 that we can
only analyze them computationally. We use computation in our investigations
in two separate ways. First we use numerical computation (mainly MatlabTM)
to guide our choice and pruning of combinatorial designs. Second we use
symbolic computation (mainly CylindricalDecomposition in MathematicaTM)
to produce proofs about semi-algebraic sets. Along the way many “engineering”
approaches were needed to coax symbolic computation to produce a definite
result.

2 A Dichotomy Theorem and Reduction Chain

Our main theorem is the following dichotomy theorem.

Theorem 1. The counting problem #[1, 0, 0, 1] | [x0, x1, x2] is #P-hard unless
one of the following conditions holds: (1) x2

1 = x0x2; (2) x0 = x2 = 0 or x1 = 0;
(3) x0 = x1 = −x2 or x0 = −x1 = −x2; the problem #[1, 0, 0, 1] | [x0, x1, x2] is
polynomial time computable in these three cases.

We remark that if we restrict ourselves to planar graphs, there is a 4th category of
tractable cases x0 = x2, which can be solved in polynomial time by holographic
algorithms [16,3].

If x1 = 0, the problem is easily computable in polynomial time. So we consider
the case x1 �= 0, and by a scalar factor, we can assume x1 = 1. Then the problem
#[1, 0, 0, 1] | [a, 1, b] can be described by a point (a, b) in the real plane R2.

Now we give a chain of reductions. For any (a, b) such that ab �= 1 and (a, b) �∈
{(0, 0), (1,−1), (−1, 1)}, the problem #{=1, =2, =3, . . . , =k, . . .} | [a, 1, b] is #P-
hard, while for all the exceptional cases, the problem is tractable in P [2,12].
The tractability of our problem follows from this. To show #P-hardness we use
the following chain of reductions,

#{=1, =2, =3, . . . , =k, . . .} | [a, 1, b] ≤T #[1, 0, 0, 1] | {[a, 1, b], [1, 0, 1]} (1)
≤T #{[1, 0, 0, 1], [1, 0, 1]} | [a, 1, b] (2)
≤T #[1, 0, 0, 1] | {[a, 1, b], [1, 1]} (3)
≤T #[1, 0, 0, 1] | [a, 1, b]. (4)

The goal of this reduction chain is to “simulate” Equality of arbitrary arity.
Step (1) is easy. With [1, 0, 1] on the RHS and [1, 0, 0, 1] on the LHS we can
simulate any =k. To prove step (2) we use the following lemma. It shows that if
we have [1, 0, 1] on the LHS, we can do stretching and interpolate [1, 0, 1] on the
RHS. It is a special case of Lemma 3.4 in [11] by Dyer and Greenhill:

Lemma 1. If ab �= 1 and F is a set of signatures, then

#F | {[a, 1, b], [1, 0, 1]} ≤T #F ∪ {[1, 0, 1]} | [a, 1, b].

142 J.-Y. Cai, P. Lu, and M. Xia

However we don’t have the signature [1, 0, 1] on LHS yet. The way we accomplish
this is to realize a unary signature [1, 1] on the RHS. If we have [1, 1] on the RHS,
we can realize [1, 0, 1] on the LHS by the small gadget in Fig. 1, which proves
step (3).

1],0 ,0,1[

1],1[

Fig. 1. A small gadget

]1[, ba,]1[, ba,

1],0 ,0,1[

Fig. 2. A gadget for [1, 1] when a = b

Then, the main task is step (4): to realize [1, 1] on the RHS. If a = b �∈ {0,−1},
we can realize [1, 1] by the gadget in Fig. 2. The signature of the F -gate is
[a2 + a, a2 + a], and we can take the common factor a2 + a �= 0 out to get [1, 1]
given that a �∈ {0,−1}. Note that a = b = 0 or a = b = −1 fall in the tractable
cases in Theorem 1.

If a �= b, we do not know how to realize [1, 1] directly for a generic pair (a, b).
However, it turns out that we can interpolate all the unary functions on the
RHS. This is our main lemma in this paper.

Lemma 2. If ab �= 1, a �= b and (a, b) �∈ {(1,−1), (−1, 1)}, then

#[1, 0, 0, 1] | {[a, 1, b]} ∪ U ≤T #[1, 0, 0, 1] | [a, 1, b],

where U denotes the set of all unary signatures.

We note that when a = b, the reduction in Lemma 2 does not hold. So the case
a = b must be handled separately as above.

3 Interpolation Method

In this section, we discuss the interpolation method we will use for our main
lemma. Polynomial interpolation is a powerful tool in the study of counting
problems initiated by Valiant and further developed by Vadhan, Dyer and
Greenhill [15,11]. We want to show that for all unary signatures f = [x, y], we
have #[1, 0, 0, 1] | {[a, 1, b], [x, y]} ≤T #[1, 0, 0, 1] | [a, 1, b], under some conditions
on a and b. Let Ω = (G, [1, 0, 0, 1] | {[a, 1, b], [x, y]}) be a signature grid. Here
[x, y] appears on the RHS. We want to compute HolantΩ in polynomial time
using an oracle for #[1, 0, 0, 1] | [a, 1, b].

Let Vf be the subset of vertices in G assigned f in Ω. Suppose |Vf | = n. These
vertices are on the RHS, all with degree 1, and all connected to some vertex on
the LHS of degree 3. We can classify all 0-1 assignments σ in the holant sum

A Computational Proof of Complexity 143

according to how many vertices in Vf whose incident edge is assigned a 0 or a 1.
Then the holant value can be expressed as

HolantΩ =
∑

0≤i≤n

cix
iyn−i, (5)

where ci is the sum over all edge assignments σ, of products of evaluations at all
v ∈ V (G) − Vf , where σ is such that exactly i vertices in Vf have their incident
edges assigned 0 (and n − i have their incident edges assigned 1.) If we can
evaluate these ci, we can evaluate HolantΩ.

Now suppose {Gs} is a sequence of F -gates using signature pairs [1, 0, 0, 1] |
[a, 1, b]. Each Gs has one dangling edge which is to be connected externally to a
vertex of degree 3. Denote the signature of Gs by fs = [xs, ys], for s = 0, 1,
If we replace each occurrence of f by fs in Ω we get a new signature grid Ωs on
signature pairs [1, 0, 0, 1] | [a, 1, b] with

HolantΩs =
∑

0≤i≤n

cix
i
sy

n−i
s . (6)

One can evaluate HolantΩs by oracle access to #[1, 0, 0, 1] | [a, 1, b]. Note that
the same set of values ci occurs. We can treat ci in (6) as a set of unknowns
in a linear system. The idea of interpolation is to find a suitable sequence {fs}
such that the evaluation of HolantΩs gives a linear system (6) of full rank, from
which we can solve for all ci.

In this paper, the sequence {Gs} will be constructed recursively using suitable
gadgetry. There are two gadgets in a recursive construction: one gadget has
arity 1, giving the initial signature g = [x0, y0]; the other has arity 2, giving the
recursive iteration. It is more convenient to use a 2 × 2 matrix A to denote it.
We remark that the dangling edge of the arity 1 gadget is expected to connect
externally to a vertex of degree 3; from the gadget of arity 2, one dangling edge
is to be connect externally to a vertex of degree 3 and the other to a vertex of
degree 2. So we can recursively connect them as in Figure 3 and get {Gs}.

g A A

Fig. 3. Recursive construction

The signatures of {Gs} have the relation
[
xs

ys

]
= A

[
xs−1
ys−1

]
, where A =[

a11 a12
a21 a22

]
and g =

[
x0
y0

]
. In the following, we will call this gadget pair (A, g)

the recursive construction. It follows from lemma 6.1 in [15] that

Lemma 3. Let α, β be the two eigenvalues of A. If det(A) �= 0, g is not a
column eigenvector of A (nor the zero vector), and α/β is not a root of unity,
then the recursive construction (A, g) can be used to interpolate all the unary
signatures.

144 J.-Y. Cai, P. Lu, and M. Xia

Notice that both A and g are functions of (a, b). Here we relax the condition
that α

β is not a root of unity to |α
β | �= 1 so that all the conditions can be

described by polynomial equalities or inequalities of (a, b). We denote by [Ag, g]
the 2×2 matrix with first column Ag and second column g. Then det[Ag, g] = 0
is equivalent to g being a column eigenvector of A (or the zero vector). If trA �= 0
and the discriminant (trA)2 − 4 det(A) > 0, then it is easy to see that the two
eigenvalues α and β have unequal norms.

Definition 1. The failure set of a recursive construction (A, g) is the following
semi-algebraic set F(A, g):

[det(A) = 0] or [trA = 0] or [(trA)2 − 4 det(A) ≤ 0] or [det[Ag, g] = 0] .

Denote by

E = {(a, b) ∈ R2 | ab = 1 or a = b or (a, b) = (1,−1) or (a, b) = (−1, 1)},
the exceptional cases of Lemma 2. We prove there are a finite number of gadgets
(Ai, gi), where i = 1, 2, . . . , C, such that⋂

i

F(Ai, gi) ⊆ E. (7)

4 Computational Proof

We prove Lemma 2 by establishing (7). We will give an account of the many
steps taken to overcome various difficulties. Some of the difficulties are not of a
logical nature, but a matter of computational complexity, in a practical sense.
It will be a combination of mathematical derivation (in a traditional sense)
and an “engineering” undertaking. We find it amusing that we must contend
with practical computational complexity in proving theorems of computational
complexity.

We will construct some combinatorial gadgets. As described earlier each
gadget will depend on two components: an initiation component and an iterative
component. We start with the simplest gadget in Fig 4 and Fig 5. (In our figures,
unless otherwise specified, all vertices of degree 3 and 2 have signatures [1, 0, 0, 1]
and [a, 1, b], respectively.)

The gadget in Fig 4 has a unary signature [a2+b, a+b2], and must be externally
connected to a vertex of degree 3. The gadget in Fig 5 has one dangling edge
connecting to a degree 2 vertex and another dangling edge connecting to a degree

3 vertex. The matrix A for the gadget in Fig 5 is
[
a(a2 + b) a + b2

a2 + b b(a + b2)

]
.

We consider the failure set F(A, g) for this gadget. The inequality is our main
concern as the equalities define a lower dimensional set. We now focus on the
main failure set F∗(A) = {(a, b) ∈ R2 − E | (tr(A))2 − 4 det(A) ≤ 0}. This set
is depicted in Fig 6. We remark that this main failure set only depends on the
iterative gadget A and in the following discussion we focus on this component.

A Computational Proof of Complexity 145

Fig. 4. The initiation component g Fig. 5. The iterative component A

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Fig. 6. The Failure set of the first gadget

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Fig. 7. The failure set using g′

This picture is produced by numerical computation. We will use numerical
computation, not as proof, but as intuitive guidance in our search of gadgets.
For example, suggested by the numerical computation, after some standard
estimation we can prove (traditionally) that this set F∗(A) is bounded by
the square [−2, 1] × [−2, 1]. A consequence of this is that for every (a, b) �∈
[−2, 1]× [−2, 1], except on a lower dimensional set, the problem is already proved
to be #P-hard. Another side benefit of this boundedness is that, going forward,
all numerical detective work will be restricted to a bounded region, which would
have been hard to do without the boundedness.

Our goal, then, is to somehow shrink this failure set, by finding good gadgets.
In Figure 5, the dashed box can be replaced by another unary gadget whose
dangling edge is to be connected to a vertex of degree 3. Let this unary
gadget have signature [c, d], then the iterative component will have signature

A =
[
ac d
c bd

]
. Thus a natural idea is to design another gadget replacing that

part with another unary gadget. Here is another such gadget.

146 J.-Y. Cai, P. Lu, and M. Xia

This gadget has the unary signature g′ = [a5 + 3a2 + ab2 + 2b + b4, b5 + 3b2 +
ba2 + 2a + a4], and can be used instead of g in the dashed box. The result of
using g′ instead of g is illustrated in Figure 7.

If we take numerical computation as trustworthy, then outside of the
intersection of Figures 6 and 7, modulo a lower dimensional set, #P-hardness
has already been established. Our hope then is to find enough gadgets such that
the intersection becomes empty (as a subset of R2 − E). We note crucially that
the intersection, together with the lower dimensional set, is a semi-algebraic set.
Thus it is decidable, by Tarski’s theorem [14], whether a particular collection
of gadgets produces an empty intersection. Thus to prove that for all (a, b)
not in the known tractable set the problem is #P-hard, “all we need to do” is
to find a sufficient number of gadgets, and apply Tarski’s theorem. Of course
this plan can only succeed if the statement is actually true, and we can in
fact find a finite number of gadgets whose intersection of failure sets is indeed
empty. Certainly there is no point to apply Tarski’s theorem when numerical
computation indicates that the gadgets found so far are manifestly insufficient.

Off we go to hunt for more gadgets. The next idea is to use the iterative
construction for a different purpose. We will use the iterative construction now
to construct many unary signatures, each to be used inside the dashed box for
the original iterative construction. More precisely, if we use g (or g′) as the initial
unary signature inside the dashed box, and iterate the construction k times, we
will obtain k new unary signatures, say, g1, g2, . . . , gk, each of which can be
used as the initial signature [c, d] inside the dashed box to start the iterative
construction for the purpose of interpolation.

After some numerical computation the evidence is that while the intersection
of failure sets gets thinner, these gadgets are still not enough. The next idea
is that in our iterative construction for the initial unary signatures, we can use
either g or g′ in the dashed box interchangeably, per each iteration. Thus, to
iterate this process k times, we can produce 2k initial signatures usable as [c, d],
with which to start its own iterative construction for the purpose of interpolation.
After some experiment (numerical computation again) we decided that this is not
so trivial. And so we started a computer search, with iteration depth k = 1, 2, . . .,
and with a random choice of g or g′ per each iteration.

Our computation reveals that at depth k = 15 certain sequences g and g′’s
seem to have produced a collection of [c, d]’s to start the iterative construction,
whose failure sets have an empty intersection. We then hand-pick and prune it
down: A particular sequence of 7 copies of g and g′ in succession produced a
collection, whose failure sets seem to have an empty intersection. All of this is
not proved, but strongly suggested by numerical computation.

At this point, it seems that we just need to hand this to Tarski’s theorem.
But we encountered an unexpected problem. The 7 gadgets produced a well
defined semi-algebraic set which is presumably empty and this fact is decidable;
however, the emptiness computation simply won’t terminate. (In fact it did not
terminate even for 6 gadgets.) Thus our problem has turned into a practical
misfortune: fewer gadgets are not sufficient (numerical evidence); more gadgets

A Computational Proof of Complexity 147

seem to suffice, but they are too complicated to handle analytically and beyond
the capability of symbolic computation. We should note that this insistence on
proofs beyond numerical evidence is absolutely necessary; we had many instances
in this proof where numerically indicated assertions are actually false.

We next assessed what feature of a gadget appears to have the greatest impact
on the practical performance of the decision procedure on semi-algebraic sets.
And this appears to be the degree of the polynomial, which translates to the
number of degree 2 vertices. For 2-3 regular graphs, this is proportional to the
number of degree 3 vertices. We call this number m. By a parity argument,
taking into account of dangling edges, it can be shown that m must be even.

So we systematically enumerated all gadgets with m = 2, 4 or 6. There are
over 170 gadgets with m = 6. On the other hand, symbolic computation cannot
even handle a single gadget with m = 8 (the computation does not terminate).
Yet, numerically even all gadgets with m = 6 together do not suffice.

At this point we decided to modify our strategy. Instead of looking for a set
of gadgets which will completely cover all the points in R2 − E, we will settle
for a set of gadgets with relatively low degree signature polynomials (m ≤ 6,
so that symbolic computation can handle) and whose failure set is small and
easy to delineate. We search for such gadgets numerically, and once we settle
on such a set of gadgets, we will bound it by a box defined by piece-wise linear
segments such as a triangle. We use symbolic computation to confirm that the
box indeed contain the failure set. Outside such boxes the problem is already
proved #P-hard. Then we deal with the boxes separately.

The next idea is somewhat different. We consider an F -gate with two dangling
edges, both to be connected externally to vertices of degree 3. In Figure 8 we
depict such an F -gate. Note that such an F -gate can replace a vertex of degree
2 everywhere. It can be verified that its signature is [a2(a2 + b) + a + b2, a(a2 +
b) + b(a + b2), a2 + b + b2(a + b2)]. Logically, if the counting problem with the
above transformed signature is #P-hard, then so is the counting problem with
[a, 1, b].

The dehomogenized form of the signature map is

f1 : (a, b) �→ (
a2(a2 + b) + a + b2

a3 + 2ab + b3 ,
a2 + b + b2(a + b2)

a3 + 2ab + b3). (8)

The subset of (a, b) in a box which is mapped by f1 to a point within the box
is a semi-algebraic set. Because of the relaxation of the original failure set to
the box, the defining polynomials of this semi-algebraic set is of relatively low
degree. Had we not enlarged the failure set to the box, this degree would have
been too high for symbolic computation.

In fact we will need another F -gate (Fig. 9), where it has the dehomogenized
form of transformation

f2 : (a, b) �→ (
a(a3 + 1) + a + b2

a3 + ab + 1 + b3 ,
a2 + b + b(1 + b3)
a3 + ab + 1 + b3). (9)

Note that at least one map of f1 and f2 is well defined at every (a, b) ∈ R2−E,
since a3 + 2ab + b3 and a3 + ab + 1 + b3 simultaneously vanish only at ab = 1.

148 J.-Y. Cai, P. Lu, and M. Xia

Fig. 8. One edge transformation Fig. 9. Another edge transformation

There is another idea that we use to lower the degree, which makes symbolic
computation feasible. It can be seen that the various signatures are symmetric
functions of a and b. Once we make a change of coordinates, such that the y-axis
is the line a = b, then the functions all become even functions of x. Also it appears
that the point (a, b) = (−1,−1) is where most of the trouble reside (at least
numerically). Thus we use the transformation a = −√

x + y − 1, b =
√

x + y − 1,
and we still get signatures which are polynomial functions of x and y. This
transformation further lowers the degree. In fact from now on we operate in the
xy plane, forming our boxes there. We also note that on the xy plane we only
need to consider x > 0. (Note that x = 0 corresponds to the line a = b and is
excluded in R2 − E.)

It turns out that we can find seven gadgets (one with m = 2, one with m = 4
and five with m = 6) such that the combined failure set can be proved by
symbolic computation to be the union of: (1) a small region bounded by a small
box (2) a small number of curves defined by polynomial equations (each with
several branches), and (3) a small number of isolated points. It is somewhat
awkward to bound the curves in part (2) individually. However we can prove
by symbolic computation that it is contained in the box 0 < x < 0.14 and
0 ≤ y ≤ 1.

Let B be the union of two boxes from part (1) and (2). It can be proved
by symbolic computation that both f1 and f2 are well defined within the box
for part (1) and for any point of part (2) belonging to the curves. Every point
(x, y) not in B and not in part (3) has its corresponding [a, 1, b] already proved
#P-hard. We use (8) and (9) (and in one case, a third rational transformation
corresponding to another F -gate) to prove that for all points in part (3), after a
finite number of transformations they all fall outside of the union of three parts.

For points in B, we apply the rational transformations (8) and (9), again in
combination and in iteration. Each iteration is as follows. Starting with B, in
one iteration we define B̃ = {(x, y) ∈ B | f1(x, y) ∈ B and f2(x, y) ∈ B}. B̃
is a smaller subset of B. We then bound B̃ by a slightly larger new “box” B′.
B′ is still smaller than B, and this re-bounding is necessary since our symbolic
computation can only handle polynomials of degrees with an absolute upper
bound. Then we replace B with B′, and iterate.

After several iterations the “box” becomes a very thin strip, but it does not
vanish. Our final knock is to realize that the “box” after several iterations has
become so small, that we can in fact apply one of the seven gadgets to eliminate
it completely in one step. This concludes our description of the proof of (7).

A Computational Proof of Complexity 149

References

1. Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting
constraint satisfaction problem. Inf. Comput. 205(5), 651–678 (2007)

2. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput.
Sci. 348(2-3), 148–186 (2005)

3. Cai, J.-Y., Lu, P.: Holographic Algorithms: From Art to Science. In: Proceedings
of STOC 2007, pp. 401–410 (2007)

4. Cai, J.-Y., Lu, P., Xia, M.: Holographic Algorithms by Fibonacci Gates and
Holographic Reductions for Hardness. In: FOCS 2008, pp. 644–653 (2008)

5. Cai, J.-Y., Lu, P., Xia, M.: Holant Problems and Counting CSP. In: STOC 2009
(to appear, 2009)

6. Collins, G.: Quantifier Elimination for Real Closed Fields by Cylindric Algebraic
Decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975)

7. Creignou, N., Hermann, M.: Complexity of Generalized Satisfiability Counting
Problems. Inf. Comput. 125(1), 1–12 (1996)

8. Creignou, N., Khanna, S., Sudan, M.: Complexity classifications of boolean
constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and
Applications (2001)

9. Dyer, M.E., Goldberg, L.A., Jerrum, M.: The Complexity of Weighted Boolean
#CSP CoRR abs/0704.3683 (2007)

10. Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed
acyclic graphs. J. ACM 54(6) (2007)

11. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms.
Random Struct. Algorithms 17(3-4), 260–289 (2000)

12. Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for
partition functions with mixed signs. CoRR abs/0804.1932 (2008)

13. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser.
B 48, 92–110 (1990)

14. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, Univ. of
Calif. (1951)

15. Vadhan, S.P.: The Complexity of Counting in Sparse, Regular, and Planar Graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

16. Valiant, L.G.: Holographic Algorithms (Extended Abstract). In: Proc. 45th IEEE
Symposium on Foundations of Computer Science, pp. 306–315 (2004)

Block-Graph Width�

Maw-Shang Chang1, Ling-Ju Hung1, Ton Kloks, and Sheng-Lung Peng2

1 Department of Computer Science and Information Engineering
National Chung Cheng University
Ming-Shiun, Chia-Yi 621, Taiwan
{mschang,hunglc}@cs.ccu.edu.tw

2 Department of Computer Science and Information Engineering
National Dong Hwa University

Shoufeng, Hualien 97401, Taiwan
slpeng@mail.ndhu.edu.tw

Abstract. The G-width of a class of graphs G is defined as follows. A
graph G has G-width k if there are k independent sets N1, . . . , Nk in G

such that G can be embedded into a graph H ∈ G such that for every
edge e in H which is not an edge in G, there exists an i such that both
endpoints of e are in Ni. For the class B of block graphs we show that
B-width is NP-complete and we present fixed-parameter algorithms.

1 Introduction

For two sets A and B we write A + B and A − B instead of A ∪ B and A \ B.
We write A ⊆ B if A is a subset of B with possible equality and we write A ⊂ B

if A is a subset of B and A �= B. For a set A and an element x we write A + x

instead of A + {x} and A − x instead of A − {x}.
We denote edges of an undirected simple graph G = (V , E) as (x, y) and we

call x and y the endvertices of the edge. For a vertex x we write N(x) for its set
of neighbors and for a subset W ⊆ V we write N(W) =

⋃
x∈W N(x) − W. We

write N[x] = N(x) + x for the closed neighborhood of x and for a subset W we
write N[W] = N(W) + W. A vertex x is universal if N[x] = V and it is isolated
if N(x) = ∅. Usually we use n = |V | to denote the number of vertices of G and
m = |E| to denote the number of edges.

For a graph G = (V , E) and a subset S ⊆ V of vertices we write G[S] for the
subgraph induced by S, that is, the graph with S as its set of vertices and with
those edges of E that have both endvertices in S. For a subset W ⊆ V we write
G − W for the graph G[V − W]. A hole in G is an induced subgraph isomorphic
to a cycle of length at least 4. For a vertex x we write G−x rather than G[V −x].

Definition 1. Let G be a class of graphs which contains all cliques. The G-width
of a graph G is the minimum number k of independent sets N1, . . . , Nk in G such
that there exists an embedding H ∈ G of G such that for every edge e = (x, y) in
H which is not an edge of G there exists an i with x, y ∈ Ni.
� This research is supported by the National Science Council of Taiwan under grant

NSC97–2221–E–194–055.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 150–157, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Block-Graph Width 151

The collection of independent sets Ni, i = 1, . . . , k for which there exists an
embedding H as stipulated in Definition 1 is called a witness of H.

In this paper we investigate the width-parameter for the class B of block
graphs, henceforth called the block-graph width, or B-width. If a graph G has
B-width k then we call G also a k-probe block graph. We refer to the partitioned
case of the problem when a collection of independent sets Ni, i = 1, . . . , k is a
part of the input. For historical reasons we call the set of vertices P = V−

⋃k
i=1 Ni

the set of probes and the vertices of
⋃k

i=1 Ni the set of nonprobes .
Block graphs were introduced in [7]. They are special ptolemaic graphs, i.e.,

gem-free chordal graphs, in which every maximal 2-connected subgraph is a
clique. We adapt the definition as it is presented in [1, Definition 10.2.3], to
allow for disconnected graphs.

�

�

�

�

��
��

��
��

� �

�

�

��

�

�

�

� �

��
���

��
����

�
�

�
�
�

Fig. 1. A diamond, a hole, and a gem. A graph has rankwidth at most 1 if and only if
it has no vertex minor isomorphic to the gem [10].

Definition 2 ([1,7]). A graph G is a block graph if every biconnected compo-
nent, or ‘block,’ is complete. Equivalently, G is a block graphs if G is chordal
and has no induced subgraph isomorphic to K4 − e, that is, the diamond.

2 B-Width Is Fixed-Parameter Tractable

In this section we show that for constant k, k-probe block graphs can be recog-
nized in O(n3) time.

Definition 3 ([11]). A rank-decomposition of a graph G = (V , E) is a pair
(T , τ) where T is a ternary tree and τ a bijection from the leaves of T to the
vertices of G. Let e be an edge in T and consider the two sets A and B of leaves
of the two subtrees of T − e. Let Me be the submatrix of the adjacency matrix
of G with rows indexed by the vertices of A and columns indexed by the vertices
of B. The width of e is the rank over GF(2) of Me. The width of (T , τ) is the
maximum width over all edges e in T and the rankwidth of G is the minimum
width over all rank-decompositions of G.

Lemma 1. Block graphs have rankwidth at most one.

Proof. Obviously, the class of graphs with rankwidth at most one is heredi-
tary. This class is exactly the class of distance-hereditary graphs [2,11]. Every
block graph is a ptolemaic graph, and the ptolemaic graphs are the distance-
hereditary graphs that are chordal (see, e.g., [1]). ��

152 M.-S. Chang et al.

Theorem 1. k-probe block graphs have rankwidth at most 2k.

Proof. Consider a rank-decomposition (T , τ) with width 1 for an embedding H

of G. Consider an edge e in T and assume that Me is an all-1s-matrix. Each
independent set Ni creates a 0-submatrix in Me. If k = 1 this proves that the
rankwidth of G is at most 2. In general, for k � 0, note that there are at most
2k different neighborhoods from one leaf-set of T − e into the other. A fortiori ,
the rank of Me is at most 2k. ��
Lemma 2. A graph is a block graph if and only if every connected induced
subgraph is a clique or else has a cutvertex.

Proof. Let G = (V , E) be a block graph and let G[W] be a subgraph induced
by W ⊆ V . Assume G[W] is connected. Then G[W] is a block graph, since
by Definition 2, ‘to be a block graph’ is a hereditary property. If G[W] is not
complete then it has a cutvertex by Definition 2.

Assume every connected induced subgraph of a graph G has a cutvertex or
is a clique. Then every biconnected component of G is a clique. Thus G is a
block graph. ��
Lemma 3. Suppose that G is a k-probe block-graph and suppose that H is a
minimal k-probe block-graph embedding of G. Then a vertex is a cutvertex of H

if and only if it is a cutvertex of G.

Proof. Suppose G has � biconnected components C1, C2, . . . , C�. Let H∗ be the
graph (V ,∪�

j=1E(H[Ci])). Note that a vertex is a cutvertex of H∗ if and only if
it is a cutvertex of G. We prove the lemma by showing that H∗ is a k-probe
block-graph embedding of G.

Suppose that H∗ is not a block graph. Then H∗ has a forbidden induced
subgraph which is a diamond or a hole. Let F be a set of vertices that induces
a forbidden subgraph. Thus H∗[F] is either a diamond or a hole. All forbidden
induced subgraphs are biconnected thus F is contained in some Ci. But every
H∗[Ci] is a block. This proves the lemma. ��
Corollary 1. A graph G is a k-probe block graph if and only if there exist in-
dependent sets Ni, i = 1, . . . , k such that every connected induced subgraph of G

either

(1) has a cutvertex, or
(2) for every pair of vertices x and y either (x, y) ∈ E, or there exists i ∈

{1, . . . , k} such that {x, y} ⊆ Ni.

Theorem 2. For each k � 0 there exists an O(n3) algorithm which checks
whether a graph G with n vertices is a k-probe block graph. Thus B-width is in
FPT .

Proof. k-Probe block graphs have bounded rankwidth. Every graph problem
specified by a formula of monadic second-order logic (without edge set quantifi-
cations) can be solved in O(n3) time for graphs of bounded rankwidth [3,6,11].
By Corollary 1, the recognition of k-probe block graphs is such a problem. ��

Block-Graph Width 153

3 Partitioned k-Probe Block Graphs

Obviously, the result of the previous section holds as well when the collection
of independent sets N1, . . . , Nk is a part of the input. Thus for each k there is
an O(n3) algorithm that checks whether a graph G with k independent sets Ni

can be embedded into a block graph with these independent sets as a witness.
However, there are a few drawbacks to this solution. First of all, Theorem 2 only
shows the existence of an O(n3) recognition algorithm. A priori , it is unclear how
to obtain the algorithm. Furthermore, the constants involved in the algorithm
make the solution impractical. Already there is an exponential blow-up when
one moves from B-width to rankwidth.

In this section we show that there exists a polynomial-time algorithm for the
recognition of partitioned k-probe block graphs.

By Corollary 1 we have:

Proposition 1. A graph G with independent sets Ni, i = 1, . . . , k, is a parti-
tioned k-probe block graph if and only if every biconnected component of G, with
the induced independent sets, is a partitioned k-probe complete graph.

Theorem 3. For every k there exists an O(n2)-time algorithm to check whether
a graph G, equipped with a collection of k independent sets is a partitioned k-
probe block graph.

Proof. By Proposition 1 it is sufficient to describe an algorithm which checks
if a partitioned graph can be embedded into a complete graph. To check if a
partitioned k-probe graph is a k-probe complete graph, we can simply add all
the possible edges and check if it is a complete graph.

A biconnected-component decomposition of a graph can be found in linear
time. It takes O(n2) time to add all possible edges in each biconnected compo-
nent and to check if the embedding of each biconnected component is a clique.
Hence a partitioned k-probe block graph can be recognized in O(n2) time. ��
Remark 1. Note that the algorithm described in Theorem 3 is fully polynomial.
As a corollary we obtain that also the sandwich problem for complete graphs
can be solved in O(n2) time. This result was independently obtained in [4].

Remark 2. It is interesting that we can decompose a partitioned k-probe com-
plete graph into a k-geometric graph T(k). The vertices of T(k) are the 2k 0, 1-
vectors of length k. Two of these vertices a and b are adjacent in T(k) if the
vectors have no 1 in any common entry. A T(k)-decomposition of G maps a ver-
tex x of G to the vertex L(x) of T(k). Thus the probes are mapped to the all-0
vector. We call the collection of vertices that are mapped to the same vertex
in T(k), the bags of this T(k)-decomposition. Note that, if vertices are in bags
that are adjacent in T(k), then no edge can be added between them since they
are not in any common Ni. This gives the proof that the unpartitioned case of
complete-width is in FPT. The bags are equivalent classes. Two vertices are in
the same bag if they have the same neighborhood in G.

154 M.-S. Chang et al.

4 A Fixed-Parameter Algorithm to Compute B-Width

In this section we present an explicit algorithm which checks for each k whether
the B-width of a graph G is at most k.

Definition 4. A label of a vertex x is a 0, 1-vector of length k. Let {Ni | i =
1, . . . , k} be a witness of an embedding. A label L(x) is an indicator of this witness
if the ith component of L(x) is 1 if and only if x ∈ Ni.

We use a decomposition tree T on the biconnected components of G defined as
follows.

Definition 5. A biconnected-component decomposition for a graph G is a pair
(T , S), where T is a tree and S = {Si | i ∈ V(T)} a collection of bags in one-to-one
correspondence with the vertices of T , such that

(i) S is the collection of biconnected components of G, and
(ii) if i and j are two adjacent nodes in T then Si ∩ Sj is a cutvertex in G.

A biconnected-component decomposition (T , S) of a graph G can be computed
in linear time [13].

Definition 6. Let i be a node in T . An input set is a set L(x) of labels for each
vertex x ∈ Si, such that:

1. If x is not a cutvertex of G, or if x is the unique cutvertex which separates Si

from its parent in T , then L(x) is the collection of all 0, 1-vectors of length k.
2. If x is a cutvertex which separates Si from one of its children Sj, then L(x) is

the set of indicators of x for witnesses of embeddings of the graph Gj induced
by the bags in the subtree rooted at j.

Definition 7. Let Si be a biconnected component of G. Define the following
equivalence relations on the vertices of Bi = G[Si].

(a) two nonadjacent vertices x and y are equivalent if NBi
(x) = NBi

(y), and
(b) two adjacent, universal vertices x and y in Bi are equivalent.

The representative Ri of Si is the graph defined on the equivalence classes, where
two classes C1 and C2 are adjacent in Ri if there are adjacent vertices x ∈ C1
and y ∈ C2.

Lemma 4. If Ri has more than 2k vertices, then the B-width of G is more
than k.

Proof. If the B-width of G is at most k then the biconnected component Si is
embedded as a clique. For every indicator L the set CL = {x | L(x) = L} is a set of
equivalent vertices. Since there are at most 2k of these indicators, there can be
at most 2k vertices in Ri since each vertex is a union of some of the sets CL. ��

Block-Graph Width 155

Definition 8. Let Ri be a representative with vertex set V(Ri). For each vertex
C ∈ V(Ri) let Q(C) be a subset of labels. The set Q = {Q(C) | C ∈ V(Ri)} is a
feasible extension if

i. If C is an independent set then every pair of labels Q1, Q2 ∈ Q(C) has a 1
in a common entry.

ii. If C is a clique then every pair of labels Q1, Q2 ∈ Q(C) has no 1 in any
common entry.

iii. If C1 and C2 are adjacent in Ri then every pair Q1 ∈ Q(C1) and Q2 ∈ Q(C2)
have no 1 in any common entry.

iv. If C1 and C2 are not adjacent in Ri then every pair Q1 ∈ Q(C1) and Q2 ∈
Q(C2) have a 1 in some common entry.

Consider the input set of a node i in the biconnected-component decomposition.
Consider two children p and q of i incident with the same cutvertex x ∈ Si. A
reduction of the input set replaces both L(p) and L(q) by L(p) ∩ L(q). Thus a
reduced input set has only one set of labels for each cutvertex in Si.

Lemma 5. Let i be a node in the biconnected-component decomposition and let
Gi be the graph induced by the bags in the subtree of T rooted at node i. For a
vertex x ∈ Si let Cx be the equivalence class of Ri that contains x. Then Gi has
B-width at most k if and only if there exists a feasible extension Q of Ri such
that each vertex x has a label L(x) in the reduced input set which is an element
of Q(Cx).

Proof. Assume there exists a witness {Ni | i = 1, . . . , k} for the graph Gi.
Consider the labels L(x) for x ∈ Si of this witness. Define a labeling Q on
the equivalence classes C of Ri as follows: For each equivalence class C let
Q(C) = {L(x) | x ∈ C}. We claim that Q is a feasible extension of Ri. Indeed, the
conditions of Definition 8 are easy to check.

To prove the converse, consider a feasible extension Q of Ri such that each
vertex x has a label L(x) in the reduced input which is an element of Q(Cx).
Choose such a label for each x ∈ Si. By definition of a (reduced) input set, there
exist embeddings for each graph Gj induced by bags in the subtree rooted at
cutvertex s ∈ Sj ∩Si with label L(s). By Definition 8 of a feasible extension, the
independent sets extend to Si since any two vertices with labels that have a 1
in a common entry are nonadjacent. ��
Theorem 4. For every k there exists an O(n3)-time algorithm which check if
the B-width of a graph G is at most k.

Proof. The algorithm computes a witness for an embedding (if it exists) by
dynamic programming on the biconnected-component decomposition tree. By
Lemma 5 it is sufficient to prove that the set of feasible labelings of each repre-
sentative Ri can be computed in constant time. There are at most 2k possible
labels. Thus there are O(22k

) subsets of labels that may be assigned to the dif-
ferent equivalence classes of Ri. By Lemma 4, Ri has O(2k) vertices. Thus there
are O(222k

) feasible extensions Q for a representative Ri. For each, the algorithm
checks if the input labeling satisfies Lemma 5. ��

156 M.-S. Chang et al.

5 B-Width Is NP-Complete

Let T be the collection of complete graphs (cliques). We first show that T-width
is NP-complete.

Theorem 5. T-Width is NP-complete.

Proof. Let G be a partitioned k-probe complete graph. Thus every non-edge
of G has its endvertices in one of the independent sets Ni. Thus the collection
Ni forms a clique-cover of the edges of Ḡ. This shows that a graph G has T-
width at most k if and only if the edges of Ḡ can be covered with k cliques.
The problem to cover the edges of a graph by a minimum number of cliques is
NP-complete [9]. ��
Theorem 6. B-Width is NP-complete.

Proof. Assume that there is a polynomial-time algorithm to compute B-width.
We show that we can use that algorithm to compute T-width. Let G be a graph
for which we wish to compute T-width. Add two universal vertices to G, that is,
two adjacent vertices ω1 and ω2 both adjacent to all other vertices of G. Let G′

be this graph. Note that the only way to embed G′ into a block graph is to
make it a clique, since G′ is biconnected. The minimum number of independent
sets needed for this embedding is exactly the T-width of G. This proves the
NP-completeness of B-width. ��

6 A Finite Obstruction Set

Let T(k) be the class of graphs with T-width at most k. The following theorem
shows that T(k) can be characterized by a finite set of forbidden induced sub-
graphs. A similar result was obtained in [12]. Basically, graphs with complete
width at most k, and similar structures, are well-quasi-ordered by an induced-
subgraph relation. The result can be derived from Higman’s classic work on
well-quasi-orderings [5].

Theorem 7. There exists a set F(k) of graph with at most 2k+1+1 vertices such
that G ∈ T(k) if and only if G has no element of F(k) as an induced subgraph.

Proof. Let F be a graph with T-width more than k and assume that for any
vertex x of F the graph F − x has T-width at most k. Let x be a vertex of F and
consider an embedding of F − x. Then the vertices of F − x can be partitioned
into at most 2k modules, of which one is a clique and the others are independent
sets. Consider such a module M and consider N(x) ∩ M. If M has more than
2 vertices, then two of them must be a twin in F. Since we assume that F is a
minimal forbidden induced subgraph, it cannot contain such a twin. It follows
that each module in F− x has at most two vertices. Thus F has at most 2k+1 + 1
vertices. ��
We have not found a proof that the class B(k) of k-probe block graphs can be
characterized by forbidden induced subgraphs.

Block-Graph Width 157

7 Concluding Remarks

The recognition problem of probe interval graphs was introduced by Zhang et al.
[8,14]. This problem stems from the physical mapping of chromosomal DNA of hu-
mans and other species. Since then probe graphs of many other graph classes have
been investigated by various authors. In this paper we generalized the problem
to the width-parameter of graph classes. Sofar we restricted to classes of graphs
that have bounded rankwidth. For classes such as threshold graphs and cographs
we were able to show that the width parameter is fixed-parameter tractable. One
class for which this is still open is the class of distance-hereditary graphs.

Acknowledgement

Ton Kloks is currently a guest of the Department of Computer Science and Infor-
mation Engineering of National Chung Cheng University. He gratefully acknowl-
edges the funding for this research by the National Science Council of Taiwan.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: A survey. In: SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia (1999)

2. Chang, M.-S., Hsieh, S.-Y., Chen, G.-H.: Dynamic programming on distance-
hereditary graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS,
vol. 1350, pp. 344–353. Springer, Heidelberg (1997)

3. Courcelle, B., Oum, S.: Vertex minors, monadic second-order logic, and a conjecture
by Seese. Journal of Combinatorial Theory, Series B 97, 91–126 (2007)

4. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of
Algorithms 19, 449–473 (1995)

5. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-
don Mathematical Society 2, 326–336 (1952)

6. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Computer Journal 51, 326–362 (2008)

7. Kay, D.C., Chartrand, G.: A characterization of certain ptolemaic graphs. Cana-
dian Journal of Mathematics 17, 342–346 (1965)

8. McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied
Mathematics 88, 315–324 (1998)

9. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae 39, 406–424 (1977)

10. Oum, S.: Rank–width and vertex–minors. Journal of Combinatorial Theory, Series
B 95, 79–100 (2005)

11. Oum, S.: Graphs of bounded rank-width. PhD Thesis. Princeton University, Prince-
ton (2005)

12. Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete
Mathematics 244, 375–388 (2002)

13. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal of Com-
puting 1, 146–160 (1972)

14. Zhang, P., Schon, E.A., Fischer, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne,
P.E.: An algorithm based on graph theory for the assembly of contigs in physical
mapping of DNA. CABIOS 10, 309–317 (1994)

Minimum Vertex Ranking Spanning Tree
Problem on Permutation Graphs

Ruei-Yuan Chang, Guanling Lee, and Sheng-Lung Peng�

Department of Computer Science and Information Engineering
National Dong Hwa University, Hualien 974, Taiwan

slpeng@mail.ndhu.edu.tw

Abstract. The minimum vertex ranking spanning tree problem on
graph G is to find a spanning tree T of G such that the minimum vertex
ranking of T is minimum among all possible spanning trees of G. In this
paper, we propose a linear-time algorithm for this problem on permuta-
tion graphs. It improves a previous result that runs in O(n3) time where
n is the number of vertices in the input graph.

1 Introduction

Let G = (V, E) be a finite, simple, and undirected graph. Let n = |V | and
m = |E|. Let N(v) = {u | (u, v) ∈ E}. In this paper, we denote |G| = |V (G)| for
convenient. A shortest path P between u, v ∈ V (G) is a path with |P | is minimum
among all possible paths between u, v. The diameter of G is the longest shortest
path among all possible shortest paths in G.

A vertex ranking of a graph G is a function γ : V → N such that every
u, v path in G with γ(u) = γ(v) contains at least one vertex w in the path
with γ(w) > γ(u). In a vertex ranking γ, γ(v) is called the rank of v. A vertex
ranking γ is minimum if the largest rank used in γ is the minimum among all
possible vertex rankings of G. We denote the largest rank used in the minimum
vertex ranking of G by rank(G). The minimum vertex ranking problem on G
is to find a minimum vertex ranking of G. This problem has applications to,
e.g., communication network design, planning efficient assembly of products in
manufacturing systems [4,5,6,12], and VLSI layout design [3,7].

The minimum vertex ranking spanning tree (MVRST for short) problem on
G is to find a spanning tree of G such that the vertex ranking of the spanning
tree is minimum among all possible spanning trees of G [9]. This problem has
applications in scheduling the parallel assembly of a multi-part product from its
components and in relational database. Miyata et al. proved that the decision
version of MVRST problem is NP-complete on general graphs [8]. However, it
can be solved in O(n3), O(n3), O(n5), and O(n5 log4 n) time on interval graphs
[9], permutation graphs [10], outerplanar graphs [11], and series-parallel graphs
[1], respectively. Recently, Chang et al. showed that the problem on interval
graphs, split graphs, and cographs can be solved in linear time [2].
� Corresponding author.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 158–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs 159

In this paper, we propose a linear-time algorithm for the MVRST problem on
permutation graphs. Our result improves an O(n3)-time result of [10].

2 Permutation Graphs

Let π be a permutation of (1, . . . , n). The matching diagram of π is obtained
as follows. Write the integers (1, . . . , n), horizontally from left to right. Under-
neath, write the integers (π1, . . . , πn), also horizontally from left to right. Draw
n straight line segments connecting the two 1’s, the two 2’s, and so on. A graph
is a permutation graph if it is isomorphic to the intersection graph of the line
segments of a matching diagram.

Masuyama and Nakayama proposed an O(n3) algorithm for solving the
MVRST problem on permutation graphs [10]. The idea proposed in [10] is as
follows. At the beginning, they found a path P which is the shortest among the
four shortest paths from v1 to vn, v1 to vπn , vπ1 to vn, and vπ1 to vπn . Then
they proved that each vertex in V \ P is adjacent to some vertex in each path
of the four shortest paths [10]. Next, they partition the vertices in V \ P into
three subsets. Finally, they construct a spanning tree T with minimum vertex
ranking by linking the vertices in V \ P to P directly or via another vertices
in V \ P . Actually, they use the dynamic programming technique to determine
how to link the vertices in V \ P . However, it takes much time in many useless
cases. To reduce the time complexity, we try to construct the MVRST directly
without considering those useless cases.

In this paper, we use diameter as P . Note that it is not hard to check one of
the four shortest paths mentioned above must be a diameter. It is easy to see
that the rank of any spanning tree of G must be greater than or equal to the
rank of the diameter. In [10], they proved the lower bound of a path and the
upper bound of the MVRST in permutation graphs. Therefore, we can easily
obtain the following lemma.

Lemma 1. For a permutation graph G, the MVRST T satisfies the following
inequality: rank(P) ≤ rank(T) ≤ rank(P) + 1 where P is a diameter of G.

Our idea on permutation graphs is similar to the one used in [2] for interval
graphs. The difference is that permutation graphs contain C4. It makes us need
to consider more cases during linking the vertices in V \ P to P . As mentioned
in [2], the minimum vertex ranking of a path is not unique. Thus it is hard to
determine how to link the vertices in V \ P to P . To construct the MVRST of
G, we need more powerful property. If the minimum vertex ranking of a path
could be unique, then we can easily determine how to link the vertices in V \P .
Fortunately, if a path satisfies some properties, then there is a unique minimum
vertex ranking for this path. The following lemmas mentioned in [2] show the
properties.

Lemma 2 ([2]). Let P be a path with |P | = 2r − 1 where r ∈ N. Then, the
minimum vertex ranking of P is unique and rank(P) = r.

160 R.-Y. Chang, G. Lee, and S.-L. Peng

Lemma 3 ([2]). Let P1 and P2 be two paths such that 2�log2 |P1|� − 1 < |P1| ≤
2�log2 |P1|�+1 − 1 = |P2|. Then, rank(P1) = rank(P2). Moreover, if P3 is a path
with |P3| > |P2|, then rank(P3) > rank(P2).

Our idea is that we link the vertices in V \ P to P by our connecting ways and
we map (and extend) P to the corresponding path P ∗ whose vertex ranking
is unique and rank(P) = rank(P ∗). Then we determine the case that when
will the rank of MVRST be rank(P) or rank(P) + 1 by checking whether we
can map P to P ∗ or not. If we can map P to P ∗, then we obtain an MVRST
with rank equal to rank(P). If not, then we show that the rank of the MVRST
of G is at least rank(P) + 1. By Lemma 1, it is optimal. More specifically, if
|P | < 2r − 1 for some r ∈ N, we try to link the vertices in V \ P to P as many
as possible before using total ranking numbers of P ∗ such that P cannot map
to P ∗ with |P ∗| = 2�log2 |P |�+1 − 1 by Lemma 3. If we can link all the vertices
in V \ P before using total ranking numbers of P ∗ such that P can map to P ∗,
we obtain an MVRST whose rank is equal to rank(P). Otherwise, we will do
the following operation. Let P = [u1, u2, . . . , ud] and γ′ be an optimal ranking
on the subpath P \ {u1, ud}. The levelup operation on P is a ranking γ on P
by letting γ(u1) = γ(ud) = 1 and γ(ui) = γ′(ui) + 1 for 1 < i < d. If we do
this operation on P , we can directly link every vertex v in V \ P to a vertex in
{u2, . . . , ud−1} by letting γ(v) = 1. It lets us obtain a vertex ranking spanning
tree of G. In this paper, we call the number 2�log2 |P |�+1 − 1 the corresponding
minimum vertex ranking bound (CMV RB for short) of the path P . We will
use CMV RB to compute the mapping from P to P ∗. The following lemma
mentioned in [2] shows that we can do levelup on P for some P .

Lemma 4 ([2]). Let P be a diameter of permutation graph G. If |P | is either
2�log2 |P |� or 2�log2 |P |� + 1, then the rank of the MVRST of G is �log2 |P |� + 1.

Let P be the diameter of the permutation graph G = (V, E) mentioned above.
In [10], vertices in V \ P can be partitioned into three subsets, namely, V ′

1 , V ′
2 ,

and V ′
3 as follows.

– V ′
1 contains the vertices that are exactly adjacent to one vertex of P .

– V ′
2 contains the vertices which are adjacent to two or three consecutive ver-

tices of P .
– V ′

3 contains the vertices that are adjacent to two vertices of P and there is
a vertex between these two vertices in P .

The rank of the vertex in P ′ which is directly connected by the vertex v in
V ′

1 is ranked at least 2 and γ(v) = 1 . The rank of the vertex in P ′ which is
connected to a vertex v in V ′

1 via the vertex u ∈ V ′
2 or u ∈ V ′

3 is ranked more
than 2 and γ(v) = 1, γ(u) = 2.

For our algorithm, we partition V ′
1 into three subsets, namely, V ′

1−1, V ′
1−3,

and V ′
1−2 as follows.

– V1 contains the vertices in V ′
1 which have no neighbor in V ′

1 .
– V ′

1−1 contains the vertices in V ′
1 whose connected vertex in P is also con-

nected by V1.

Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs 161

– V ′
1−3 contains the vertices in V ′

1 whose connected vertex u in P is not con-
nected by V1 and can connect to both of {u1, u2} = N(u)∩P via some vertex
w in V ′

2 or V ′
3 .

– V ′
1−2 contains the vertices in V ′

1 whose connected vertex u in P is not con-
nected by V1 and can connect to only one of N(u) ∩ P via some vertex w in
V ′

2 or V ′
3 .

Figure 1 gives an example of these three subsets.

V '1 -1

V '1 -3

V '1- 2

P

V1

V2 V2

Fig. 1. V1, V ′
1−1, V ′

1−3, and V ′
1−2

Since P is the diameter of G and the vertices in V2 (respectively, V ′
1−3) is

adjacent to two or three (respectively, three) consecutive vertices of P , we can
easily obtain the following lemma. Thus we can process the vertices in V2 ∪V ′

1−3
after solving the other cases.

Lemma 5. Let T be the MVRST of G[V ′
2∪V ′

1−3∪P]. Then rank(T) = rank(P).

There are some vertices in V \P which have a unique connecting way. Consider
the vertices in V1. They have only one choice to connect to P . So we connect
vertices of V1 directly. The proofs of the following two lemmas are easy, so we
omit them.

Lemma 6. Let v ∈ V1 be adjacent to u ∈ P . Then there exists a minimum
vertex ranking γ of G[P ∪ V1] such that γ(u) ≥ 2 and γ(v) = 1.

Lemma 7. Let T be the MVRST of G[V ′
1−1 ∪ V1 ∪ P]. Then rank(T) =

rank(G[V1 ∪ P]).

As showed in Lemmas 6 and 7, we can connect V1 and V ′
1−1 at the same time

and the vertices in P which are connected by V1 and V ′
1−1 must be ranked more

than 1 in a minimum vertex ranking. Thus, all we have to do is to connect
vertices of V ′

1−2 and V3 to P such that the rank is as unchanged as possible.
Since the vertices in P which are connected by V1 and V ′

1−1 must be ranked
more than 1 in some minimum vertex ranking, we mark these vertices black
to denote these vertices to be ranked more than 1. By the following lemma
proved in [2], we also mark the second and the second to last vertices of P black
since the first and the last vertices of P can be treated as the vertices in V1 or
V ′

1−1.

162 R.-Y. Chang, G. Lee, and S.-L. Peng

Lemma 8 ([2]). Let P be a path. Then there exists a minimum vertex ranking
of P such that the first and last vertices in P are both ranked 1.

Consider the minimum vertex ranking for the path with unique minimum vertex
ranking. The number of vertices of the path must be odd and the rank of every
vertex in odd (respectively, even) position must be 1 (respectively, more than 1).
For an arbitrary minimum vertex ranking of P , if two adjacent vertices or an
endvertex is ranked more than 1, there can be an ignored hidden vertex which
is ranked as 1. This is because when we are going to map P to P ∗ with |P ∗| =
CMV RB, any two consecutive vertices in P ∗ are not both ranked more than 1.
So we have to ignore one vertex in odd position of P ∗ for mapping. In this paper,
we call such an ignored hidden vertex a division. Clearly, if two adjacent vertices
in P are marked black, then there exists a division between these two vertices.We
denote the division set Ds = {u | u is a division between two consecutive black
vertices}. Also, the following lemma proposed in [2] implies that if the number
of vertices of a subpath between two black vertices in P is even, then there is at
least one division in this subpath.

Lemma 9 ([2]). If P is a path with |P | being even, then there must be at least
one division in P .

These black vertices partition P into P1, P2, . . . , Ps with |Pi| > 0 for 1 ≤ i ≤ s.
For P ∗, it is clear that all the odd vertices can be ranked as 1 and all the even
vertices can be ranked with k > 1. Since all the black vertices in P must be
ranked more than 1, we have to keep the black vertices to be located in the even
position in P ∗. Note that we also count position of each division. Hence we can
extend the even path Pi to an odd path P ′ such that the black vertices can be
in the even location of P ′. We denote Peven = {Pi | 1 ≤ i ≤ s and |Pi| is even}.
Then we can count the number of divisions in even subpaths by |Peven|. We have
the following lemma according to Lemma 9.

Lemma 10. There exists a division in each element of Peven.

Let free vertex number (FV N for short) be the number of vertices that can
be added into P such that the number of vertices of the resulting path P ∗ is
CMV RB. Then we can compute FV N = CMV RB − |Ds| − |Peven| − |P |.For
example as Figure 2, suppose that P contains ten vertices and the black vertices
are in the location as shown in Figure 2. Then we have FV N = (24 − 1) − 2 −
1 − 10 = 2.

P

FV N= (24-1)-2 -1 -10 =15 -1 3=2

Fig. 2. Compute FVN

Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs 163

Now, we are going to connect the vertices in V ′
1−2 and V ′

3 to P . There are three
ways to connect v ∈ V ′

1−2 to P . Let u ∈ P ∩ N(v). The first way is to connect
v to u directly when γ(u) > 1. The second way is to connect v to a vertex w in
{V2 ∪ V ′

3} ∩ N(v) when γ(u) = 1 and there exists a vertex u′ ∈ N(w) ∩ P with
γ(u′) > 2. These two ways would not decrease FV N since they do not change
the minimum vertex ranking and the size of P . When both two ways cannot
work, then we have the last way as follows. We choose one of the two vertices in
N(v) ∩ P and change its ranking number to the next mapping ranking number,
i.e. we map it to the next vertex of P ∗. However, the last operation makes |Ds|
increase 1 and FV N decrease 1. If FV N = 0 and there are still some vertices
in V ′

1−2 that can only connect to P by the last way, then it will increase the
rank of P such that the remaining vertices can be added to the spanning tree.
That is, we have to do levelup on P . Figures 3(a), 3(b), and 3(c) show the three
connecting ways respectively.

2 1 3 1 2

1

P
2 1 3 1 2

1

P
2 3 1 2 4

P

2

(a) (b) (c)

V 2

V 1 -2'

1

Fig. 3. The three connecting ways for vertices in V ′
1−2

Now we consider the vertex v ∈ V ′
3 . Although v is adjacent to two vertices u

and w in P , these two vertices are not consecutive. Thus we cannot make sure
if any one of the ranks of u and w is greater than 2 or not. This is because the
class of permutation graphs is not C4 −free. To connect v, we do it by a similar
way as the vertices in V ′

1−2. The first way is choosing one of u and w whose rank
is more than 1. If none of these two vertices is ranked more than 1, then we do
the following way. The Second way is choosing a vertices in N(v) \ P which can
connect to a vertex in P whose rank is more than 2. Then we connect v via this
vertex to P . If both two ways cannot work, then we do the last way. The last
way is as follows. Since vertices in V ′

1−2 may connect to P via vertices in V ′
3 ,

we could keep the structure. The last connecting way is that we choose one of
u and w to give the rank more than 1, i.e., we map it to the next vertex of P ∗.
However, the last operation makes the number of divisions increase 1 but FV N
decrease 1. Figure 4 shows the three connecting ways.

Note that some vertices in V ′
3 may be adjacent to some black vertices in P .

Before starting to process the vertices in V ′
1−2 ∪ V ′

3 , we mark these vertices in
V ′

3 “OK” since these vertices can do the first connecting way. For convenience,
we let Vok denote the vertex set in which every vertex is marked “OK”. Then
we mark the vertices in P which can be connected to V ′

1−2 as red to denote that
these vertices need to be considered especially. Also, we mark the left vertex in

164 R.-Y. Chang, G. Lee, and S.-L. Peng

2 1 3 1 2

1

P
2 1 3 1 2

1

P
4

1

13 22
P

2

(a) (b) (c)

V \ P

V3'

Fig. 4. The three connecting ways for vertices in V ′
3

P which is adjacent to the vertex in V ′
3 \ Vok yellow. If a vertex in P is adjacent

to a vertex in V ′
1−2 and a vertex in V ′

3 \ Vok, then we mark this vertex purple.
The following lemma shows that the connecting order of V ′

1−2 and V ′
3 \ Vok will

not affect the rank of the MVRST of G. Because of the limitation of the space
of this paper, we omit the proof of this lemma.

Lemma 11. Let P be a diameter of a permutation graph G with v, v′ ∈ V ′
1−2

and w, w′ ∈ V3. Then connecting v, v′, w, or w′ first leads to the same result.

Hence by Lemma 11 we can start to scan the vertices in P from left to right
to link vertices in V ′

1−2 and V ′
3 \ Vok. If the red vertex u ∈ P which is adjacent

to v ∈ V ′
1−2 is going to be mapped to the odd position of P ∗, then v can only

be applied the second or third connecting way. Otherwise, v can be applied the
first operation. Our Procedure Process-Red-Vertices is as follows.

Procedure. Process-Red-Vertices(u)
for v ∈ N(u) ∩ V ′

1−2 do
check if ∃w ∈ N(v) ∩ {V ′

2 ∪ V ′
3} such that ∃u′ ∈ N(w) ∩ P whose position

is in 4x-th position in P ;
if w exist then

mark v OK;

if ∀v ∈ N(u) ∩ V ′
1−2 is marked OK then

connect v to w and w to u′;
rank(v) = 1 and rank(w) = 2;

else
do the third operation;
FV N = FV N − 1;
j = j + 1;
division = division + 1;
connect v to u and rank(v) = 1;

mark u white;

If the yellow vertex u ∈ P which is adjacent to v ∈ V ′
3 \ Vok is going to

be mapped to the odd position of P ∗, then we will add a division between

Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs 165

the next two vertices in P such that the other one vertex in N(v) ∩ P is
mapped to the vertex in P ∗ with ranking number more than 1. Our Procedure
Process-Yellow-Vertices is as follows.

Procedure. Process-Yellow-Vertices(u)
if u is yellow and its position j mod 2 = 0 then

if the right neighbor vertex u′ ∈ P is red or purple then
map u to j-th position in P ∗;
connect N(u′) ∩ V ′

1−2 to u′;
if u′ is in the 4x-th position in P then

connect N(u′) ∩ V ′
3 ;

else
mark N(u′) ∩ V ′

3 “OK”;
mark u and u′ white and map u′ to j + 1-th position in P ∗;
map the right neighbor vertex of u′ to j + 3-th position in P ∗;
division = division + 1 and FV N = FV N − 1;

We now consider the case of purple vertices. If the purple vertex u ∈ P which
is adjacent to v ∈ V ′

1−2 and v′ ∈ V ′
3 \ Vok, then we first check if for all v ∈ V ′

1−2
can connect to a vertex in P which is mapped to a vertex in P ∗ whose ranking
number is more than 2. If it does, then we process the purple vertex as a yellow
vertex. Otherwise, we process it as a red vertex.

We keep the position j to compute if u is mapped to the even position of
P ∗. Note that the divisions are also computed in j. If u is mapped to the
odd position in P ∗, then we will do the operation mentioned above. That is,
if u is marked red and needs to do the third operation, then we will let j in-
crease 1 which means that we map u to the next vertex in P ∗. At the same
time, we also let |Ds| = |Ds| + 1 and FV N = FV N − 1 to determine if
we need to do levelup. Note that each Pi in Peven has at least one division.
Therefore, when we finish scanning a subpath, we will increase FV N since we
have computed a division in a subpath in Peven. A good property of P ∗ is
that for all vertices in 4x-th positions in P ∗ where x ∈ N, the ranking num-
bers of these vertices are more than 2. That is, we can determine if a ver-
tex in P is mapped to a vertex in P ∗ with ranking number more than 2 by
seeing if j mod 4 = 0. When we finish the vertices in N(u) ∩ {V ′

1−2 ∪ V ′
3},

we mark u white to denote this vertex has been processed and keep going
to scan the next vertex in P . If FV N = 0 and there is at least one vertex
v ∈ V ′

1−2 ∪ V ′
3 which cannot do the first or second operation, we know that the

rank limitation is broken. Hence we need to increase the rank of the resulting
path. Thus we do levelup. The detail of our algorithm MVRST-Permutation is as
follows.

Due to the space limitation of the paper, we omit the proof of the following
theorem.

Theorem 1. The MVRST of a permutation graph can be determined in linear
time.

166 R.-Y. Chang, G. Lee, and S.-L. Peng

Algorithm. MVRST-Permutation
Data: A Permutation graph G.
Result: An MVRST T of G.

1.Find a diameter P from the four shortest paths of G;
2.if |P | ≤ 2�log2 |P |� + 1 then

done (i.e., rank(T) = �log2 |P |� + 1);
3.Partition V \ P into V1, V ′

1−1, V ′
1−3, V ′

1−2, V ′
3 , and V ′

2 ;
4.Connect V1 and V ′

1−1 to P and mark the connected vertices in P black;
5.Partition P into P1, P2, . . . , Ps according to the black vertices;
5-1.Compute Peven and Ds;
5-2.FV N = CMV RB − |P | − |Peven| − |Ds|;
5-3.if FV N < 0 then

done (i.e., rank = �log2 |P |� + 2 and do levelup);

5-4.if V ′
1−2 ∪ V ′

3 = ∅ then
done (i.e., rank = �log2 |P |� + 1);

6.Mark the vertices in P which can be connected to V ′
1−2 red, V ′

3 \ Vok yellow,
and both V ′

1−2 and V ′
3 purple;

7.Scan the vertex u of P from left to right (initially, the position j = 1):
7-1.if the position j mod 2 = 0 and u is red then

Process-Red-Vertices(u);
scan the next vertex of u in P ;

7-2.if the position j mod 2 = 0 and u is yellow then
Process-Yellow-Vertices(u);
scan the next vertex of u′ in P ;

7-3.if the position j mod 2 = 0 and u is purple then
if ∀v ∈ N(u) ∩ V ′

1−2∃w ∈ V ′
2 ∪ V ′

3 such that ∃u′ ∈ N(w) ∩ P is mapped to
4x-th position in P ∗ then

do Step 7-2;
else

do Step 7-1;

7-4.if u is black then
if the left-hand vertex u′ of u is mapped to 2x-th vertex in P ∗ then

map u to the (j + 1)-th vertex in P ∗;
division = division + 1 and FV N = FV N − 1;

if u′ is not black and u′ is in an even subpath then
if division > 1 then

FV N = FV N + 1;

if u′ is black then
FV N = FV N + 1;

division = 0;
if FV N < 0 then

done (i.e., rank = �log2 |P |� + 2 and do levelup on original P);
scan the next vertex of u in P ;

8.Connect a ∈ V ′
2 to the even position of P ;

Connect b ∈ V ′
1−3 to the 4x-th position of P where x ∈ �;

Finally, we obtain T and rank(T) = �log2 |P |� + 1;
return The spanning tree T ;

Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs 167

3 Conclusion

In this paper, we show that the MVRST problem on permutation graphs can be
solved in linear time. Currently, only few results about this problem are known.
It seems that the diameter is important for this problem if the diameter is also
a dominating path in the input graph. Thus, it seems that our idea can be
generalized to the class of AT-free graphs.

References

1. Bhattacharjee, A., Hasan, C.S., Kashem, M.A.: An Algorithm for Solving the Min-
imum Vertex Ranking Spanning Tree Problem on Series-Parallel Graphs. In: 4th
International Conference on Electrical and Computer Engineering, pp. 328–332
(2006)

2. Chang, R.-Y., Lee, G., Peng, S.-L.: Minimum Vertex Ranking Spanning Tree Prob-
lem on Some Classes of Graphs. In: International Conference on Intelligent Com-
puting, pp. 758–765 (2008)

3. Deng, H., Guha, S., Sen, A.: On a Graph Partition Problem with Application to
VLSI Layout. Information Processing Letters 43, 87–94 (1992)

4. Greenlaw, R., Schäffer, A.A., de la Torre, P.: Optimal Edge Ranking of Trees in
Polynomial Time. Algorithmica 13, 592–618 (1995)

5. Iyer, A.V., Ratliff, H.D., Vijayan, G.: Parallel Assembly of Modular Products–an
Analysis. Technical Report, Georgia Institute of Technology (1988)

6. Iyer, A.V., Ratliff, H.D., Vijayan, G.: On Edge Ranking Problems of Trees and
Graphs. Discrete Applied Mathematics 30, 43–52 (1991)

7. Leiserson, C.E.: Area Efficient Graph Layouts for VLSI. In: 21st Annual IEEE
Symposium of Foundations of Computer Science, pp. 270–281 (1980)

8. Masuyama, S., Miyata, K., Nakayama, S., Zhao, L.: NP-Hardness Proof and an Ap-
proximation Algorithm for the Minimum Vertex Ranking Spanning Tree Problem.
Discrete Applied Mathematics 154, 2402–2410 (2006)

9. Masuyama, S., Nakayama, S.: An Algorithm for Solving the Minimum Vertex Rank-
ing Spanning Tree Problem on Interval Graphs. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences 86-A(5), 1019–1026
(2003)

10. Masuyama, S., Nakayama, S.: An 0(n3) Time Algorithm for Obtaining the Min-
imum Vertex Ranking Spanning Tree on Permutation Graphs. In: 4th Japanese-
Hungarian Symposium on Discrete Mathematics and Its Applications (2005)

11. Masuyama, S., Nakayama, S.: A Polynomial Time Algorithm for Obtaining a Mini-
mum Vertex Ranking Spanning Tree in Outerplannar Graphs. IEICE Transactions
on Information and Systems 89-D(8), 2357–2363 (2006)

12. Nevins, J., Whitney, D.: Concurrent Design of Products and Processes. McGraw-
Hill, New York (1989)

On Parameterized Exponential Time Complexity

Jianer Chen1, Iyad A. Kanj2, and Ge Xia3

1 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843, USA

chen@cs.tamu.edu
2 School of CTI, DePaul University, 243 S. Wabash Avenue, Chicago, IL 60604, USA

ikanj@cs.depaul.edu
3 Department of Computer Science, Lafayette College, Easton, PA 18042, USA

gexia@cs.lafayette.edu

Abstract. In this paper, we show that special instances of parameter-
ized NP-hard problems are as difficult as the general instances in terms of
their subexponential time computability. For example, we show that the
Planar Dominating Set problem on degree-3 graphs can be solved in
2o(

√
k)p(n) parameterized time if and only if the general Planar Dom-

inating Set problem can. Apart from their complexity theoretic im-
plications, our results have some interesting algorithmic implications as
well.

1 Introduction

Parameterized complexity theory [12] was motivated by the observation that
many important NP-hard problems in practice are associated with a parameter
whose value usually falls within a small or a moderate range. Thus, taking the
advantage of the small size of the parameter may significantly speedup the com-
putation. Formally, a parameterized problem consists of instances of the form
(x, k), where x is the problem description and k is an integer called the parame-
ter. A parameterized problem is fixed parameter tractable if it can be solved by
an algorithm of running time f(k)nO(1), where f is a function independent of
the input size n = |x|.

Recently, a lot of progress has been made in the design of efficient algorithms
for parameterized problems. As a case study, consider a canonical problem in
parameterized complexity theory—the parameterized Vertex Cover problem:
given a graph G and a parameter k, decide if G has a vertex cover of at most
k vertices. Since the development of the first parameterized algorithm for the
problem which runs in O(kn + 2kk2k+2) time (described in [3]), there has been
a long list of improved algorithms for the problem, whose running time is of the
form cknO(1), where c is a constant progressively shown to be bounded by 1.3248,
1.3196, 1.2918, 1.2852, 1.2832, and 1.2745. The current best algorithm [10] runs
in time O(1.2738k + kn) and uses polynomial space. It is natural to ask whether
it is possible to reduce c from 1.2738 to a constant that is arbitrarily close to 1.
More generally, we would like to know whether a parameterized problem can be
solved in time 2δf(k)nO(1) for every constant δ > 0.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 168–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Parameterized Exponential Time Complexity 169

A parameterized problem is solvable in parameterized subexponential time if it
can be solved in time 2o(k)p(n), where p is a polynomial. Very few parameterized
NP-hard problems are known to be solvable in parameterized subexponential
time, most of which are problems restricted to planar graphs. Alber et al. [1] gave
parameterized subexponential time algorithms for the Planar Vertex Cover,
Planar Independent Set, and Planar Dominating Set problems that
run in time 2O(

√
k)n. In particular, improving the upper bounds on the running

time of subexponential time algorithms for Planar Dominating Set has been
receiving a lot of attention [1,14,17]. Currently, the most efficient algorithm for
Planar Dominating Set is by Fomin and Thilikos, and runs in O(215.13

√
kn)

time [14].
On the other hand, deriving lower bounds on the precise complexity of pa-

rameterized NP-hard problems has also started attracting more and more atten-
tion [4,5,7,8]. Most of the known results in this line of research assume the so
called Exponential Time Hypothesis (ETH): n-variable 3-SAT cannot be solved
in time 2o(n). Cai and Juedes [4] proved that certain parameterized problems
such as Vertex Cover, Max Cut, Max c-Sat cannot be solved in 2o(k)p(n)
time unless ETH fails, which is unlikely according to the common belief among
researchers in the field. Similarly, they also showed that certain constraint pa-
rameterized problems such as Planar Vertex Cover, Planar Independent

Set, and Planar Dominating Set cannot be solved in 2o(
√

k)p(n) time unless
ETH fails. Subsequently, Chen et al. [5,7,8] showed that a large class of pa-
rameterized problems, including Weighted SAT, Dominating Set, Hitting

Set, Set Cover, and Feature Set cannot be solved in time f(k)no(k), for
any function f , unless the first level W[1] of the W-hierarchy collapses to FPT.

In this paper we show that restricted instances of well-know parameterized
NP-hard problems are as difficult as the general instances in terms of their pa-
rameterized subexponential time computability. In particular, we show that the
Planar Dominating Set problem on degree-3 graphs (henceforth abbreviated
Planar-3DS) can be solved in 2o(

√
k)p(n) (p is a polynomial) parameterized

time if and only if the general Planar Dominating Set (abbreviated Planar-

DS) problem can. Our results parallel the result in [16] for the Independent

Set problem, in the context of the standard exponential time computability.
Apart from their complexity theoretic implications, our results also have an

algorithmic flavor. For instance, in our proof of the above mentioned result we
give a reduction from Planar-DS to Planar-3DS. This reduction shows that if
Planar-3DS can be solved in time O(25

√
k/7n), then the Planar-DS problem

can be solved in time O(215
√

kn). Given that the currently most efficient algo-
rithm for Planar-DS has running time O(215.13

√
kn) [14], and that the structure

of the Planar-3DS problem looks much simpler than that of Planar-DS, one
could see a possibility of improving the algorithms for Planar-DS by working
on Planar-3DS.

Throughout the paper, we assume basic familiarity with graphs and standard
NP-hard problems. The reader is referred to [11,15] for more details.

170 J. Chen, I.A. Kanj, and G. Xia

2 Preliminaries

We first give precise definitions for the notion that a parameterized problem can
be solved in parameterized subexponential time.

Definition 1. A parameterized problem Q is solvable in time O(2δf(k)p(n)) (p is
a polynomial) for every constant δ > 0 if there exists a parameterized algorithm
A for Q such that, on any given instance (x, k) of Q with |x| = n, and any
constant δ > 0, the running time of the algorithm A is bounded by hδ2δf(k)p(n),
where hδ is independent of k and n.

Definition 2. A parameterized problem Q is solvable in time 2o(f(k))q(n), where
q is a polynomial, if there exists a nondecreasing unbounded function r(k) such
that the problem Q can be solved in time O(2f(k)/r(k)q(n)), where the constant
hidden in the O() notation is independent of k and n.

Based on the above definitions, we have the following equivalence theorem that
can be derived from Lemma 16.1 of [13].

Theorem 1 ([13], Lemma 16.1). Let f(k) be a nondecreasing and unbounded
function, and let Q be a parameterized problem. Then the following statements
are equivalent:

(1) Q can be solved in time O(2δf(k)p(n)) for every constant δ > 0, where p is
a polynomial;
(2) Q can be solved in time 2o(f(k))q(n), where q is a polynomial.

3 VC and VC-3

A set of vertices C is a vertex cover for a graph G if every edge in G is incident
to at least one vertex in C. In the parameterized VC problem (shortly the VC

problem) we are given a pair (G, k) as input, where G is an undirected graph
and k is a positive integer (the parameter), and we are asked to decide if G has
a vertex cover of size bounded by k. The VC-3 problem is the set of instances
of the VC problem in which the underlying graph has degree bounded by 3.
For a graph G, denote by τ(G) the size of a minimum vertex cover of G. We
will show in this section that the VC-3 problem can be solved in parameterized
subexponential time if and only if the general VC problem can. Let (G, k) be
an instance of the VC problem. We will need the following propositions.

Proposition 1. [NT-Theorem] ([2,19]). There is an O(
√

nm) time algorithm
that, given a graph G of n vertices and m edges, constructs two disjoint subsets
C0 and V0 of vertices in G such that

(1) Every minimum vertex cover of G(V0) plus C0 forms a minimum vertex cover
for G; and
(2) A minimum vertex cover of G(V0) contains at least |V0|/2 vertices.

On Parameterized Exponential Time Complexity 171

Proposition 1 allows us to assume, without loss of generality, that in an instance
(G, k) of the VC problem, the graph G contains at most 2k vertices.

Let v be a degree-2 vertex in the graph G with two neighbors u and w such
that u and w are not adjacent. We construct a new graph G′ as follows: remove
the vertices v, u, and w and introduce a new vertex v0 adjacent to all neighbors
of the vertices u and w in G (of course except the vertex v). We say that the
graph G′ is obtained from the graph G by folding the vertex v. See Figure 1 for
an illustration of this operation.

�
v

�
u

�
w

�
v0���

���

�
�

x1

�
�

x2

�
�

x3

�
�

x4

�
�

�

x1

	
	

x2

x3

�
�

�

x4

�fold

unfold

Fig. 1. Vertex folding and unfolding

Proposition 2 ([9]). Let G′ be a graph obtained by folding a degree-2 vertex v
in a graph G, where the two neighbors of v are not adjacent to each other. Then
τ(G) = τ(G′) + 1. Moreover, a minimum vertex cover for G can be constructed
from a minimum vertex cover for G′ in linear time.

We define an inverse operation of the folding operation that we call unfold. Given
a vertex v0 in a graph G where the degree of the vertex d(v0) > 3, and with
neighbors x1, . . . , xr (in an arbitrary order), we construct a graph G′ as follows.
Remove v0 and introduce three new vertices v, u, and w. Connect v to u and
w, connect u to x1 and x2, and connect w to x3, . . . , xr (see Figure 1). For the
parameterized VC problem, we accordingly increase the parameter k by 1.

From Proposition 2, we know that τ(G′) = τ(G)+1. Moreover, the unfold(v0)
operation replaces v0 with three new vertices: v of degree 2, u of degree 3, and
w of degree d(v0) − 1. Now if d(w) > 3, we can apply the unfold(w) operation,
and so on, until all the newly introduced vertices have degree bounded by 3. It is
easy to check that exactly d(v0) − 3 operations are needed to replace v0 by new
vertices each having a degree bounded by 3. Let us call this iterative process
initiated at the vertex v0 iterative-unfold(v0). If G′′ is the resulting graph from
G after applying iterative-unfold(v0), then from the above discussion we have
τ(G′′) = τ(G) + d(v0) − 3. Since each unfold() operation increases the number
of vertices in the graph by 2, the number of vertices n′′ in G′′ is n + 2d(v0) − 6,
where n is the number of vertices in G.

Theorem 2. The VC-3 problem can be solved in 2o(k)p(n) time if and only if
the VC problem can be solved in 2o(k)q(n) time, where n is the number of vertices
in the graph, and p, q are two polynomials.

Proof. Obviously, if VC can be solved in 2o(k)q(n) time then so can VC-3. To
prove the other direction, suppose that VC-3 can be solved in 2o(k)p(n) time for

172 J. Chen, I.A. Kanj, and G. Xia

some polynomial p. By Theorem 1, VC-3 can be solved in time O(2εkp(n)) for
every 0 < ε < 1. To show that VC can be solved in time 2o(k)q(n), by Theorem 1,
it suffices to show that it can be solved in O(2δkq(n)) time (q is a polynomial) for
every 0 < δ < 1. Let (G, k) be an instance of the VC problem, and let 0 < δ < 1
be given. Consider the scheme in Figure 2.

VC-scheme
Input: an instance (G, k) of VC and a constant 0 < δ < 1
Output: a vertex cover C of G of size bounded by k in case it exists
1. apply Proposition 1 to G; (without loss of generality, assume the resulting
instance is (G, k))
2. let d = �−2 lg (2δ/2 − 1)/δ�;
3. while there exists a vertex v of degree > d do

branch by either include v in the vertex cover and recursively call
VC-scheme(G− v, k − 1) or include N(v) in the vertex cover and
recursively call VC-scheme(G − v − N(v), k − |N(v)|);

4. while there exists a vertex v of degree > 3 do
iterative-unfold(v);

5. call the VC-3 scheme on the resulting graph and parameter, with
ε = δ/(4d − 10), to compute the desired vertex cover C′ in case it exists;

6. if C′ exists then using Proposition 2 and C′ output the desired vertex
cover C of G;

Fig. 2. A scheme for VC

We are implicitly assuming that at each step the above algorithm, the graph
and the parameter are updated appropriately. Keeping this in mind, it is not
difficult to see the correctness of the above algorithm. The only step that may
need additional explanation is step 3. Basically, in step 3, we remove large degree
vertices by branching on them and creating subproblems. For any vertex v in
G, it is easy to see that either there exists a minimum vertex cover containing
v, or a minimum vertex cover containing its set of neighbors N(v). In the first
case, we remove the vertex v from G and reduce the parameter k by 1. In the
latter case, we remove the vertex v and its neighbors N(v) from G and reduce
the parameter k by |N(v)|. In both cases, we recursively call VC-scheme on
the new graph and the new parameter. Thus, the branch in step 3 is correct.
Also note that at the end of step 4 every vertex in the resulting graph has degree
bounded by 3. The correctness of the other steps follows from Proposition 1 and
Proposition 2.

We analyze the running time of the algorithm. By proposition 1, step 1 takes
polynomial time in n, and the resulting parameter is not larger than the initial
parameter k. In the branching of step 3, we reduce the parameter k either by
1 or by |N(v)| ≥ d + 1. Let T (k) denote the number of leaves in the resulting
branch-tree as a function of the parameter k. Then we have a recurrence relation

On Parameterized Exponential Time Complexity 173

T (k) ≤ T (k − d − 1) + T (k − 1), which has a solution T (k) = O(rk), where r
is the unique root of the polynomial p(x) = xd+1 − xd − 1 in the interval [1, 2]
(see [9]). It is easy to verify that, with the choice of d in step 2, this recurrence
relation has solution T (k) = O(2δk/2) [9]. In step 4 we apply the subroutine
iterative-unfold to every vertex of degree > 3. For every vertex v in the graph
of degree > 3, iterative-unfold(v) can increase the parameter by no more than
d(v) − 3 ≤ d − 3, and the number of vertices in the graph by no more than
2(d− 3), since at this point of the algorithm the degree of the graph is bounded
by d (note that d > 3). By Proposition 1, the number of vertices in the graph
is bounded by 2k, and hence, after step 4, the new parameter k′ is bounded
by k + 2k(d − 3) = (2d − 5)k, and the number of vertices n′ is bounded by
2k + 4k(d − 3) = (4d − 10)k. Clearly, the running time of step 4 is polynomial.
In step 5, the VC-3 scheme is called with ε = δ/(4d − 10). By our assumption,
the VC-3 scheme runs in time O(2εk′

p(n)). It follows that step 5 takes time
O(2δ(2d−5)k/(4d−10)p(n)) = O(2δk/2p(n)). Since step 3 creates T (k) = O(2δk/2)
subproblems, and each subproblem can be solved in time O(2δk/2q(n)), for some
polynomial q, the total running time of the algorithm is O(2δk/2 · 2δk/2q(n)) =
O(2δkq(n)). The theorem follows. ��

4 Planar-DS and Planar-3DS

A dominating set D in a graph G is a set of vertices such that every vertex
in G is either in D or adjacent to a vertex in D. The parameterized Planar-

DS problem takes as input a pair (G, k), where G is a planar graph, and asks
to decide if G has a dominating set of size bounded by k. The Planar-3DS

problem is the Planar-DS problem restricted to graphs of degree bounded by
3. For a graph G, denote by η(G) the size of a minimum dominating set in G. Let
(G, k) be an instance of the Planar-DS problem. We will need the following
propositions.

Proposition 3. ([6]). There is an O(n3) time algorithm that, given an instance
(G, k) of Planar-DS, where G has n vertices, produces an instance (G′, k′) of
Planar-DS, where G′ has n′ vertices, such that: (1) n′ ≤ n and k′ ≤ k; (2)
n′ ≤ 67k′; (3) G′ has a dominating set of size ≤ k′ if and only if G has a
dominating set of size ≤ k; and (4) from a solution D′ of G′ a solution D of G
can be constructed in linear time.

By Proposition 3, we can assume that in an instance (G, k) of the Planar-DS

problem, the graph G contains at most 67k vertices.
Assume that the planar graph G is embedded in the plane. Let v be a vertex

in the graph G of degree > 3 and let w1, . . . , wr, r > 3, be the neighbors of
v. Without loss of generality, assume that they appear in a counter-clockwise
order around v. We construct a new graph G′ from G as follows. Remove v and
introduce four new vertices x, x′, y, y′. Connect x to w1 and w2, y to w3, . . . , wr,
x′ to x, y′ to y, and x′ to y′. We say that the graph G′ is obtained from the
graph G by expanding the vertex v. It is clear that this operation can be carried

174 J. Chen, I.A. Kanj, and G. Xia

�
v

�
�

�

w1

�
�

w2 w3

�
�

w4

�
�

�

w5

�expand

�x � y

�x′
� y′

�
�

w1

�
�

w2

�
�

w3 w4

�
�

w5

Fig. 3. Vertex expansion

out while preserving the planarity of the graph. See Figure 3 for an illustration
of this operation.

The following theorem shows that the above vertex expansion operation can
be used to reduce the maximum vertex-degree of a graph without significantly
reducing the difficulty of the minimum dominating set problem.

Theorem 3. Let G′ be a graph obtained by expanding a vertex v of degree > 3
in a planar graph G. Then η(G) = η(G′)− 1. Moreover, a minimum dominating
set for G can be constructed from a minimum dominating set for G′ in linear
time.

Proof. We first show that η(G′) ≤ η(G) + 1. Let D be a minimum dominating
set for G. If D contains v, then clearly (D − {v}) ∪ {x, y} is a dominating set
for G′ of size η(G) + 1. If D does not contain v, then D must contain at least
one vertex in {w1, . . . , wr} (since v must be dominated). If D contains a vertex
in {w1, w2} then D ∪ {y′} is a dominating set for G′ of size η(G) + 1, whereas if
D contains a vertex in {w3, . . . , wr}, then D ∪ {x′} is a dominating set for G′ of
size η(G)+1. It follows that in all cases G′ has a dominating set of size η(G)+1,
and hence η(G′) ≤ η(G) + 1. Now to prove that η(G) ≤ η(G′) − 1, let D′ be a
minimum dominating set for G′. We distinguish the following cases.

Case 1. D′ contains both x and y. In this case (D′ − {x, y, x′, y′}) ∪ {v} is a
dominating set for G of size bounded by η(G′) − 1.

Case 2. D′ contains exactly one vertex in {x, y}, without loss of generality, let
this vertex be x (the other case is symmetrical). Then D′ must contain at least
one vertex in {x′, y′}. Thus, (D′ − {x, x′, y′}) ∪ {v} is a dominating set for G of
size bounded by |D| − 1 = η(G′) − 1.

Case 3. D′ does not contain any vertex in {x, y}, then D′ has to contain at
least one vertex in {x′, y′}. If D′ contains at least one vertex in {w1, . . . , wr},
then D′ − {x′, y′} is a dominating set for G of size bounded by η(G′) − 1. On
the other hand if D′ does not contain any vertex in {w1, . . . , wr}, then D′ must
contain both x′ and y′ in order to dominate x and y. Now (D′ − {x′, y′}) ∪ {v}
is a dominating set for G′ of size η(G′) − 1.

Thus, in all cases G has a dominating set of size bounded by η(G′) − 1. It
follows that η(G) ≤ η(G′) − 1, and hence, η(G′) = η(G) + 1. Moreover, given a
dominating set D′ of G′, it should be clear how the corresponding dominating
set D of G can be constructed in linear time according to one of the above three
cases. ��

On Parameterized Exponential Time Complexity 175

If v is a vertex in G such that d(v) > 3, the operation expand(v) replaces v
with four new vertices: x of degree 3, x′ of degree 2, y′ of degree 2, and y of
degree d(v) − 1. If d(y) > 3, we can apply the expand(y) operation, and so on,
until all the newly introduced vertices have degree bounded by 3. Again exactly
d(v)−3 operations are needed to replace v by new vertices each having a degree
bounded by 3. We denote this iterative process initiated at the vertex v iterative-
expand(v). If G′′ is the resulting graph from G after applying iterative-expand(v),
then we have η(G′′) = η(G) + d(v) − 3, and the number of vertices n′′ of G′′ is
n + 3d(v) − 9.

Theorem 4. The Planar-3DS problem can be solved in 2o(
√

k)p(n) time if and
only if the Planar-DS problem can be solved in 2o(

√
k)q(n) time, where n is the

number of vertices in the graph, and p, q are two polynomials.

Proof. The proof of this theorem has the same flavor as Theorem 2. First if
Planar-DS can be solved in 2o(

√
k)q(n) time then so can Planar-3DS. To

prove the other direction, we suppose that Planar-3DS can be solved in time
O(2ε

√
kp(n)) for any 0 < ε < 1, and for some polynomial p, and we show that

Planar-DS can be solved in O(2δ
√

kq(n)) time (q is a polynomial) for every
0 < δ < 1. By Theorem 1, this will be sufficient. Let (G, k) be an instance of
the Planar-DS problem, and let 0 < δ < 1 be given. Consider the scheme in
Figure 4.

DS-scheme
Input: an instance (G, k) of Planar-DS and a constant 0 < δ < 1
Output: a dominating set D of G of size bounded by k in case it exists
1. apply Proposition 3 to G;
2. while there exists a vertex v of degree > 3 do iterative-expand(v);
3. call the Planar-3DS scheme on the resulting graph and parameter,

with ε = δ/
√

403, to compute the desired dominating set D′ in case it
exists;

4. if D′ exists then using Theorem 3 and D′ output the desired dominating
set D of G;

Fig. 4. A scheme for Planar-DS

The analysis of the algorithm and its correctness follows a similar line to that
of Theorem 2. However, few things need to be clarified. First, after step 1, we
know by Proposition 3 that the number of vertices n in G is bounded by 67k.
In step 2, the iterative-expand() operation increases both the parameter and
the number of vertices in G. Let G′ be the resulting graph at the end of step 2,
and let k′ and n′ be the parameter and number of vertices in G′, respectively.
Each call to iterative-expand(v), where d(v) > 3, increases k by d(v) − 3 and
n by 3d(v) − 9. It follows that

176 J. Chen, I.A. Kanj, and G. Xia

k′ = k +
∑

v∈G,d(v)>3

(d(v) − 3) ≤ k +
∑
v∈G

d(v)

≤ k + 6n − 12 < k + 402k = 403k. (1)

The last two inequalities follow from the fact that the number of edges in a
planar graph of n vertices is bounded by 3n − 6 [11], and from Proposition 3.
Similarly, we can show that n′ ≤ 19n. It is easy now to see that the theorem
follows. ��
Observing that by Inequality (1),

√
k′ <

√
403k < 21

√
k, we have the following

corollary.

Corollary 1. If the Planar-3DS problem can be solved in 25
√

k/7p(n) time
then the Planar-DS problem can be solved in 215

√
kq(n) time, where n is the

number of vertices in the graph, and p, q are two polynomials.

5 Max-SAT and Max-Cut

The parameterized Max-SAT problem is defined as follows. Given a boolean
formula F in conjunctive normal form and a positive integer k, decide if F has
a truth assignment that satisfies k or more clauses. The parameterized Max-

3SAT problem is the parameterized Max-SAT problem restricted to formulas
in which each clause contains at most three literals. Mahajan and Raman [18]
showed the following.

Proposition 4 ([18]). Given a formula F and a positive integer k, then in
linear time, we can compute a formula F ′ and a positive integer k′ ≤ k with the
length of the formula |F ′| ∈ O(k′2), such that F has an assignment satisfying at
least k clauses if and only if F ′ has an assignment satisfying at least k′ clauses.
Moreover, such an assignment for F is computable from an assignment for F ′

in linear time.

Using Proposition 4, the standard reduction from SAT to 3-SAT [15], and The-
orem 1, we can show the following theorem.

Theorem 5. If parameterized Max-3SAT can be solved in time 2o(
√

k)p(n) then
parameterized Max-SAT can be solved in time 2o(k)q(n), where p and q are two
polynomials.

In the parameterized Max-Cut problem we are given an undirected graph G
and a positive integer k, and we are asked to decide if the vertex set of G can
be partitioned into two parts so that at least k edges cross the partitioning. The
parameterized Max-3Cut problem is the parameterized Max-Cut problem on
graphs of degree bounded by 3. Using the techniques similar to those used in
the previous sections, we have the following theorem.

Theorem 6. Parameterized Max-3Cut can be solved in time 2o(k)p(n) if and
only if parameterized Max-Cut can be solved in time 2o(k)q(n), where p and q
are two polynomials.

On Parameterized Exponential Time Complexity 177

References

1. Alber, J., Bodlaender, H.L., Ferneau, H., Niedermeier, R.: Fixed parameter algo-
rithms for Dominating Set and related problems on planar graphs. Algorithmica 33,
461–493 (2002)

2. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)

3. Buss, J., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing 22,
560–572 (1993)

4. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences 67(4), 789–807 (2003)

5. Chen, J., Chor, B., Fellows, M.R., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.:
Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation 201(2), 216–231 (2005)

6. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM Journal on Computing 37(4),
1077–1106 (2007)

7. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear FPT reductions and computational
lower bounds. In: STOC 2004, pp. 212–221 (2004)

8. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong Computational Lower Bounds
via Parameterized Complexity. Journal of Computer and System Sceiences 72(8),
1346–1367 (2006)

9. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further im-
provements. Journal of Algorithms 41, 280–301 (2001)

10. Chen, J., Kanj, I.A., Xia, G.: Improved Parameterized Upper Bounds for Vertex
Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

11. Diestel, R.: Graph Theory. Springer, New York (1996)
12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

(1999)
13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
14. Fomin, F., Thilikos, D.: Dominating sets in planar graphs: branch-width and ex-

ponential speed-up. SIAM Journal on Computing 36(2), 281–309 (2006)
15. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-completeness. Freeman, San Francisco (1979)
16. Johnson, D., Szegedy, M.: What are the least tractable instances of max indepen-

dent set? In: SODA 1999, pp. 927–928 (1999)
17. Kanj, I.A., Perkovic, L.: Improved parameterized algorithms for planar dominating

set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410.
Springer, Heidelberg (2002)

18. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Max-Sat and
Max-Cut. Journal of Algorithms 31, 335–354 (1999)

19. Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural properties and algo-
rithms. Mathematical Programming 8, 232–248 (1975)

Best-Order Streaming Model

Atish Das Sarma, Richard J. Lipton, and Danupon Nanongkai

Georgia Institute of Technology
{atish,rjl,danupon}@cc.gatech.edu

Abstract. We study a new model of computation called stream checking
on graph problems where a space-limited verifier has to verify a proof
sequentially (i.e., it reads the proof as a stream). Moreover, the proof
itself is nothing but a reordering of the input data. This model has a
close relationship to many models of computation in other areas such as
data streams, communication complexity, and proof checking and could
be used in applications such as cloud computing.

In this paper we focus on graph problems where the input is a sequence
of edges. We show that checking if a graph has a perfect matching is
impossible to do deterministically using small space. To contrast this,
we show that randomized verifiers are powerful enough to check whether
a graph has a perfect matching or is connected.

1 Introduction

This paper is motivated by three fundamental questions that arise in three widely
studied areas in theoretical computer science - streaming algorithms, communi-
cation complexity, and proof checking. The first question is how efficient can
space restricted streaming algorithms be. The second question, is whether the
hardness of a communication problem holds for every partition of the input.
Finally, in proof checking, the question is how many (extra) bits are needed for
the verifier to establish a proof in a restricted manner. Before elaborating these
questions, we first describe one application that motivates our model.

Many big companies such as Amazon [1] and salesforce.com are currently
offering cloud computing services. These services allow their users to use the
companies’ powerful resources for a short period of time, over the Internet. They
also provide some softwares that help the users who may not have knowledge of,
expertise in, or control over the technology infrastructure (“in the cloud”) that
supports them.1 These services are very helpful, for example, when a user wants
a massive computation over a short period of time.

Now, let’s say that you want the cloud computer to do a simple task such
as checking if a massive graph is strongly connected. Suppose that the cloud
computer gets back to you with an answer “Yes” suggesting that the graph is
strongly connected. What do you make of this? What if there is a bug in the
code, or what if there was some communication error? Ideally one would like a
1 http://www.ebizq.net/blogs/saasweek/2008/03/

distinguishing cloud computing/

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 178–191, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

salesforce.com
http://www.ebizq.net/blogs/saasweek/2008/03/distinguishing_cloud_computing/
http://www.ebizq.net/blogs/saasweek/2008/03/distinguishing_cloud_computing/

Best-Order Streaming Model 179

way for the cloud to prove to you that the answer is correct. This proof might
be long due to the massive input data; hence, it is impossible to keep everything
in your laptop’s main memory. Therefore, it is more practical to read the proof
as a stream with a small working memory. Moreover, the proof should not be
too long – one ideal case is when the proof is the input itself (in different order).
This is the model considered in this paper.

Coincidentally, this model has connections with many previously studied mod-
els in many areas. We now continue with describing previous models studied
specifically in the stream, computational complexity and proof checking domains
and contrast them with our model.

Data Streams: The basic premise of streaming algorithms is that one is dealing
with a humongous data set, too large to process in main memory. The algorithm
has only sequential access to the input data; this called a stream. In certain
settings, it is acceptable to allow the algorithm to perform multiple passes over
the stream. However, for many applications, it is not feasible to perform more
than a single pass. The general streaming algorithms framework has been studied
extensively since the seminal work of Alon, Matias, Szegedy [3].

Models diverge in the assumptions made about what order the algorithm can
access the input elements. The most stringent restriction on the algorithm is to
assume that the input sequence is presented to the algorithm in an adversarial
order. A slightly more relaxed setting, that has also been widely studied is where
the input is assumed to be presented in randomized order [7,15,16]. However,
even a simple problem like finding median, which was considered in the earliest
paper in the area by Munro and Patterson [24], in both input orders, was shown
recently [7] to require many passes even when the input is in a random order (to
be precise, any O(polylog n) algorithm requires Ω(log log n) passes). This might
be undesirable.

More bad news: Graph problems are extremely hard when presented in an
adversarial order. In [19], one of the earliest paper in this area, it was shown
that many graph problems require prohibitively large amount of space to solve.
It is confirmed by the more recent result [11] that most graph problems cannot
be solved efficiently in a few passes. Since then, new models have been proposed
to overcome this obstruction. Feigenbaum et. al. [12] proposed a relaxation of
the memory restriction in what is called the semi-stream model. Aggarwal et
al. [2] proposed that if the algorithm has a power to sort the stream in one pass
then it is easier to solve some graph problems (although not in one or constant
passes). Another model that has been considered is the W-Stream (write-stream)
model [26,8]. While the algorithm processes the input, it may also write a new
stream to be read in the next pass.

We ask the following fundamental question:

If the input is presented in the best order possible, can we solve problems
efficiently?

A precise explanation is reserved for the models in Section 2; however, intuitively,
this means that the algorithm processing the stream can decide on a rule on

180 A. Das Sarma, R.J. Lipton, and D. Nanongkai

the order in which the stream is presented. We call this the best-order stream
model. For an example, if the rule opted by the algorithm is to read the input
in sorted order, then this is equivalent to the single pass sort stream model.
Another example of a rule, for graphs presented as edge streams could be that the
algorithm requires all edges incident on a vertex to be presented together. This
is again equivalent to a graph stream model studied earlier called an incidence
model (and corresponds to reading the rows of the adjacency matrix one after
the other). A stronger rule could be that the algorithm asks for edges in some
perfect matching followed by other edges. As we show in this paper, this rule
leads to checking if the graph has a perfect matching and as a consequence shows
the difference between our model and the sort-stream model.

It would be nice to obtain a characterization of problems that can be solved by
a poly-log space, single pass, best-order stream algorithm. Studying this model,
like all other related streaming models, is likely to yield new insights and might
lead to an improvement of worst case analysis and an adjustment of models.

Communication Complexity: Another closely related model is the communi-
cation complexity model [27,20]. This model was extensively studied and found
many applications in many areas. In the basic form of this model, two players,
Alice and Bob, receive some input data and they want to compute some func-
tion together. The question is how much communication they have to make to
accomplish the task. There are many variations of how the input is partitioned.
The worst-case [21] and the best-case [25] partition models are two extreme cases
that are widely studied over decades. The worst case asks for the partition that
makes Alice and Bob communicate the most while the best case asks for the
partition that makes the communication smallest. Moreover, even very recently,
there is a study for another variation where the input is partitioned according
to some known distribution (see, e.g., [6]). The main question is whether the
hardness of a communication problem holds for almost every partition of the
input, as opposed to holding for perhaps just a few atypical partitions.

The communication complexity version of our model (described in Section 2)
asks the following similar question: Does the hardness of a communication prob-
lem hold for every partition of the input? Moreover, our model can be thought of
as a more extreme version of the best-case partition communication complexity.
We explain this in more details in Section 2.

Proof Checking: From a complexity theoretic standpoint, our model can be
thought of as the case of proof checking where a polylog-space verifier is allowed
to read the proof as a stream; additionally, the proof must be the input itself in
a different order.

We briefly describe some work in the field of proof checking and its relation to
our setting. The field of probabilistically checkable proofs (PCPs) [4,5,9] deals
with verifier querying the proof at very few points (even if the data set is large
and thus the proof) and using this to guarantee the proof with high probability.
While several variants of proof checking have been considered, we only state the

Best-Order Streaming Model 181

most relevant ones. A result most related to our setting is by Lipton [23] where it
showed that membership proofs for np can be checked by probabilistic logspace
verifiers that have one-way access to the proof and use O(log n) random bits. In
other words, this result almost answers our question except that the proof is not
the reordered input.

Another related result that compares streaming model with other models is
by Feigenbaum et. al. [10] where the problem of testing and spot-checking on
data streams is considered. They define sampling-tester and streaming-tester.
A sampling-tester is allowed to sample some (but not all) of the input points,
looking at them in any order. A streaming-tester, on the other hand is allowed
to look at the entire input but only in a specific order. They show that some
problems can be solved in a streaming-tester but not by a sampling-tester, while
the reverse holds for other problems. Finally, we note that our model (when we
focus on massive graphs) might remind some readers of the problem of property
testing in massive graphs [13].

Notice that in all of the work above, there are two common themes. The first
is verification using small space. The second is some form of limited access to the
input. The limited access is either in the form of sampling from the input, limited
communication, or some restricted streaming approach. Our model captures both
these factors.

Our Results
In this paper, we partially answer whether there are efficient streaming algo-
rithms when the input is in the best order possible. We give a negative answer
to this question for the deterministic case and show an evidence of a positive
answer for the randomized case. Our positive results are similar in spirit to
W-stream and Sort-stream papers [2,8,26].

For the negative answer, we show that the space requirement is too large even
for a simple answer of checking if a given graph has a perfect matching deter-
ministically. In contrast, this problem, as well as the connectivity problem, can
be solved efficiently by randomized algorithms.

Organization: The rest of the paper is organized as follow. In Section 2 we
describe our stream proof checking model formally and also define some of the
other communication complexity models that are well-studied. The problem of
checking for distinctness in a stream of elements is discussed in Section 3. This
is a building block for most of our algorithms. The following section, Section 4
talks about how perfect matchings can be checked in our model. We discuss
the problem of stream checking graph connectivity in Section 5. Our techniques
can be extended to a wide class of graph problems such as checking for regular
bipartiteness, non-bipartiteness, hamiltonian cycles etc. While we are unable
to mention all details in this paper due to space limitations, we describe the
key ideas for these problems in Section 6. Finally, we conclude in Section 7
by stating some insights drawn from this paper, mention open problems and
describe possible future directions.

182 A. Das Sarma, R.J. Lipton, and D. Nanongkai

2 Models

In this section we explain our main model and other related models that will be
useful in subsequent sections.

2.1 Stream Proof Model

Recall the streaming model where an input is in some order e1, e2, ..., em where
m is the size of the input. Consider any function f that maps these input stream
to {0, 1}. The goal of the typical one-pass streaming model is to calculate f using
the smallest amount of memory possible.

In the streamproof model, we consider any function f that is order-independent.
Our main question is how much space a one-pass streaming algorithm needs to
compute f if the input is provided in the best order. Formally, for any function
s of m and any function f , we say that a language L determined by f is in the
class Stream-Proof(s(m)) if there exists an algorithm A using space at most
s(m) such that if f(e1, e2, ..., em) = 1 then there exists a permutation π such that
A(eπ(1), eπ(2), ..., eπ(m)) answers 1; otherwise, A(eπ(1), eπ(2), ..., eπ(m)) answers 0
for every permutation π.

The other way to see this model is to consider the situation where there are two
players in the setting, prover and verifier. The job of the prover is to provide the
stream in some order so that the verifier can compute f using smallest amount
of memory possible. We assume that the prover has unlimited power but restrict
the verifier to read the input in a streaming manner.

The model above can be generalized to the following.

– Stream(p, s): A class of problems that, when presented with best-order,
can be checked by a deterministic streaming algorithm A using p passes
O(s) space.

– RStream(p, s): A class of problems that, when presented with best-order,
can be checked by a randomized streaming algorithm A using p passes O(s)
space and with correct probability more than 1/2.

It is important to point out that when the input is presented in a specified
order, we still need to check that the adversary is not cheating. That is, we indeed
need a way to verify that we receive the input based on the rule we asked for.
This often turns out to be the difficult step.

To contrast this model with well-studied communication complexity models,
we first define a new communication complexity model, magic-partition, that
closely relates to our proof checking model.

2.2 Magic-Partition Communication Complexity

In this subsection, we define magic-partition communication complexity which
will be the main tool to prove the lower bound of the best-order streaming model.

Recall that in the standard 2-player communication complexity, Alice and
Bob gets input x and y and want to compute f(x, y). We usually consider when

Best-Order Streaming Model 183

the input is partitioned in an adversarial order, i.e., we partition input into x
and y in such a way that Alice and Bob have to communicate as many bits as
possible.

For the magic-partition communication complexity, we consider the case when
x and y are partitioned in the best way possible. One way to think of this protocol
is to imagine that there is an oracle who looks at the input and then decides
how to divide the data between Alice and Bob so that they can compute f using
smallest number of communicated bits. We restrict that the input data must be
divided equally between Alice and Bob.

Let us consider an example. Suppose the input is a graph G. Alice and Bob
might decide that the graph be broken down in topological sort order, and Al-
ice receives the first half of the total edges, starting with edges incident on the
vertices (traversing them in topological order). It is important to note the dis-
tinction that Alice and Bob actually have not seen the input; but they specify a
rule by which to partition the input, when actually presented.

The following lemma is the key to prove our lower bound results.

Lemma 1. For any function f , if the (deterministic) magic-partition commu-
nication complexity of f is at least s, for some s, then for any p and t such that
(2p − 1)t < s, f /∈ Stream(p, t).

Proof. Suppose that the lemma is not true; i.e., f has magic-partition commu-
nication complexity at least s, for some s, but there is a best-order stream-
ing algorithm A that computes f using p passes and t space such that
(2p − 1)t < s. Consider any input e1, e2, ..., en. Let π be a permutation such
that eπ(1), eπ(2), ..., eπ(n) is the best ordering of the input for A. Then, define
the partition of the magic-partition communication complexity by allocating
eπ(1), eπ(2), ..., eπ(�n/2�) to Alice and the rest to Bob.

Alice and Bob can simulate A as follows. First, Alice simulates A on
eπ(1), eπ(2), ..., eπ(�n/2�). Then, she sends the data on memory to Bob. Then,
Bob continues simulating A using data given by Alice (as if he simulates A on
eπ(1), eπ(2), ..., eπ(�n/2�) by himself). He then sends the data back to Alice and
the simulation of the second pass of A begins.) Observe that this simulations
need 2p − 1 rounds of communication and each round requires at most t bits.
Therefore, Alice and Bob can compute f using (2p − 1)t < s bits, contradicting
the original assumption. ��
Note that this type of communication complexity should not be confused with
the best-partition communication complexity (defined below). Also, the converse
of the above lemma clearly does not hold.

We now describe some previously studied communication complexity models
that resemble ours.

2.3 Related Models

Best-case partition Communication Complexity. For this model, Alice
and Bob can pick how to divide the data among them (must be half-half)

184 A. Das Sarma, R.J. Lipton, and D. Nanongkai

before they see the input. Then, the adversary gives an input that makes them
communicate the most.

This model was introduced by Papadimitriou and Sipser [25] and heavily used
for proving lower bounds for many applications (see [20] and references therein).

Similar to the best-partition communication complexity, this model makes
many problems easier to solve than the traditional worst case communication
complexity where the worst case input is assumed. One example is the set dis-
jointness problem. In this problem, two n-bit vectors x and y that is a charac-
teristic vector of two sets X and Y are given. Alice and Bob have to determine
if X ∩ Y = ∅.

In the worst case communication complexity, it is proved that Alice has
to send roughly n bits to Bob when x is given to Alice and y is given to
Bob. However, for the best-partition case, they can divide the input this way:
x1, y1, x2, y2, ..., xn/2, yn/2 go to Alice and the rest go to Bob. This way, each of
them can check the disjointness separately.

We note that this model is different from the magic-partition model in that, in
this model the players have to pick how data will be divided before they see the
input data. For example, if the data is the graph of n vertices then, for any edge
(i, j), Alice and Bob have to decide who will get this edge if (i, j) is actually in
the input data. However, in the magic-partition model, Alice and Bob can make
a more complicated partitioning rule such as giving (1, 2) to Alice if the graph
is connected. (In other words, in the magic-partition model, Alice and Bob have
an oracle that decide how to divide an input after he sees it).

One problem that separates these model is the connectivity problem. Hajnal
et al. [17] showed that the best-case partition communication complexity of
connectivity is Θ(n log n). In contrast, we show that O((log n)2) is possible in
our model in this paper.

Nondeterministic Communication Complexity. Alice and Bob receives x
and y respectively. An oracle, who sees x and y, wants to convince them that
“f(x, y) = 1”. He does so by giving them a proof. Alice and Bob should be able
to verify the proof with small amount of communication.

Example: f(x, y) = 1 if x �= y where x and y are n-bit strings. The proof
is simply the number i where xi �= yi. Alice and Bob can check the proof by
exchanging xi and yi. If x = y then there is no proof and Alice and Bob can
always detect the fake proof.

This model is different from our model because our model has no proof but
the oracle’s job is to help Alice and Bob find the answer (whether f(x, y) is 0 or
1) by appropriately partitioning the input.

3 Detecting Duplicate and Checking Distinctness

In this section, we consider the following problem which is denoted by distinct.
Given a stream of n numbers a1, a2, ..., an where ai ∈ {1, 2, ..., n}. We want to
check if every number appears exactly once (i.e., no duplicate). This problem

Best-Order Streaming Model 185

appears as a main component in solving all the problems we considered and we
believe that it will be useful in every problem.

Our goal in this section is to find a one-pass algorithm for this problem.
An algorithm for this problem will be an important ingredient of all algorithm
we consider in this paper. In this section, we show that 1) any deterministic
algorithm for this problem needs Ω(n) space, and 2) there is a randomized
algorithm that solves this problem in O(log n) space with error probability 1

n .

3.1 Space Lower Bound of Deterministic Algorithms

Since checking for distinctness is equivalent to checking if there is a duplicate,
a natural problem to use as a lower bound is the set disjointness problem. We
define a variation of this problem called full set disjointness problem, denoted
by f-disj.

For this problem, a set X ⊆ N is given to Alice and Y ⊆ N is given to Bob
where N = {1, 2, 3, ..., n} and |X | + |Y | = n.2

Now we show that f-disj is hard for the deterministic case. The proof is the
same as the proof of the set disjointness problem.

Theorem 1. The communication complexity of f-disj is Ω(n).

Proof. Consider the fooling set F = {(A, Ā) : ∀A ⊆ N}. Since |F | = 2n,
the number of bits needed to sent between Alice and Bob is at least
log |F | = Ω(n). ��
The communication complexity lower bound of f-disj implies the space lower
bound of distinct.

Corollary 1. Any deterministic algorithm for distinct needs Ω(n) space.

This lower bound is for worst-case input. The reason we mention this here is be-
cause this is an inherent difficulty in our algorithms. Our randomized algorithms
use randomness only to get around this step of checking distincness.

3.2 Randomized Algorithm

In this subsection we present a randomized one-pass algorithm that solves this
problem using O(log n) space. This algorithm is based on the Fingerprinting
Sets technique introduced by Lipton [22,23]. Roughly speaking, given a multi-
set {x1, x2, ..., xk}, its fingerprint is defined to be

Πk
i=1(xi + r) mod p

2 Note that this problem is different from the well-known set disjointness problem in
that we require |X|+ |Y | = n. Although the two problems are very similar, they are
different in that the set disjointness problem has Ω(n) randomized algorithm while
the f-disj has an O(log n) randomized protocol (shown in the next section). We also
note that the lower bound of another related problem called k-disjointness problem
([20, example 2.12] and [18]) does not imply our result neither.

186 A. Das Sarma, R.J. Lipton, and D. Nanongkai

where p is a random prime and r ∈ {0, 1, ..., p−1}. We use the following property
of the fingerprints.

Theorem 2. [23] Let {x1, x2, ..., xk} and {y1, y2, ..., yk} be two multi-sets. If
the two sets are equal then their fingerprints are always the same. Moreover, if
they are unequal, the probability that they get the same fingerprints is at most

O(
log b + log m

bm
+

1
b2m

)

where all numbers are b-bit numbers and m = max(k, l) provided that the prime
p is selected randomly from interval

[(bm)2, 2(bm)2].

Now, to check if a1, a2, ..., an are all distinct, we simply check if the fingerprints
of {a1, a2, ..., an} and {1, 2, ..., n} are the same. Here, b = log n and m = n.
Therefore, the error probability is at most 1/n.

Remark: We note that the fingerprinting sets can be used in our motivating
application above. That is, when the cloud compute sends back a graph as a
proof, we have to check whether this “proof” graph is the same as the input
graph we sent. This can be done using the fingerprinting set. This enables us
to concentrate on checking the stream without worrying about this issue in the
rest of the paper.

We also note that the recent result by Gopalan et al. [14] can be modified to
solve distinct as well.

4 Perfect Matching

This section is devoted to the study of perfect matchings. We discuss lower
bounds as well as upper bounds.

Problem: Given the edges of a graph G in a streaming manner e1, e2, ..., em,
we want to compute f(e1, ..., em) which is 1 if and only if G has a perfect
matching. Let n be the number of vertices. We assume that the vertices are
labeled 1, 2, ..., n.

We now present the main upper bound of this section and follow it up with the
checking protocol in the proof.

Theorem 3. The problem of determining if there exists a perfect matching can
be solved by a randomized algorithm in O(log n) space best-order stream checking.

Proof. Protocol: The prover sends n/2 edges of a perfect matching to the ver-
ifier, followed by the “sign” which can be implemented by flipping the order of
vertices in the last edge. Then the prover sends the rest edges. The verifier has
to check three things.

Best-Order Streaming Model 187

1. Find out n by counting the number of edges before the “sign” is given.
2. Check if the first n/2 edges form a perfect matching. This can be done by

checking if the sum of the labels of vertices in the first n/2 edges equals
1 + 2 + 3 + ... + n.

3. Check if there are n vertices. This is done by checking that the maximum
vertex label is at most n.

The verifier outputs 1 if the input passes all the above tests. The correctness
of this protocol is straightforward. ��
In the next subsection, we present a lower bound.

4.1 Hardness

We show that deterministic algorithms have Ω(n) lower bound if the input is
reordered in an explicit way; i.e., each edge cannot be split. This means that
an edge is either represented in the form (a, b) or (b, a). The proof follows by a
reduction from the magic-partition communication complexity (cf. Section 2) of
the same problem by using Lemma 1.

Theorem 4. If the input can be reordered only in an explicit way then any
deterministic algorithm solving the perfect matching problem needs Ω(n) space.

Proof. Let n be an even integer. Let g(n) denote the number of matchings in
the complete graph Kn. Observe that g(n) = n!

(n/2)!2n/2 . Denote these matchings
by M1, M2, ..., Mg(n). Let P be any magic-partition protocol. For any integer i,
let Ai and Bi be the best partition of Mi according to P (Ai and Bi are sent to
Alice and Bob respectively). Observe that for any i, there are at most g(n/2)2

matchings that vertices are partitioned the same way as Mi. (I.e., if we define
Ci = {v ∈ V | ∃e ∈ Ai s.t. v ∈ e} then for any i, |{j |Ci = Cj}| ≤ g(n/2)2.) This
is because n/2 vertices on each side of the partition can make g(n/2) different
matchings.

Therefore, the number of matchings such that the vertices are divided differ-
ently is at least

n!
(n/2)!2n/2 (

(n/4)!2n/4

(n/2)!
)2 =

(
n

n/2

)
/

(
n/2
n/4

)
≥

(
n/2
n/4

)
where the last inequality follows from the fact that

(
n

n/2

)
is the number of n/2-

subsets of {1, 2, ..., n} and
(n/2
n/4

)2
is the number of parts of these subsets.

In particular, if we let Mi1 , ..., Mit , where t =
(n/2
n/4

)
, be such matchings then

for any j �= k, (Aij , Bik
) is not a perfect matching. Now, let t′ = log t. Note that

t′ = Ω(n). Consider the problem eqt′ where Alice and Bob each gets a t′-bit
vector x and y, respectively. They have to output 1 if x = y and 0 otherwise.
By [20, example 1.21], D(eqt′) ≥ t′ + 1 = Ω(n).

Now we reduce eqt′ to our problem: Map x to Mix and y to Miy . Now, x = y if
and only if (Mix , Miy) is a perfect matching. This shows that the magic-partition
communication complexity of the matching problem is Ω(n). ��

188 A. Das Sarma, R.J. Lipton, and D. Nanongkai

Note the the above lower bound is asymptotically tight since there is an ob-
vious protocol where Alice sends Bob all vertices she has (using O(n) bits of
communication).

5 Graph Connectivity

Graph connectivity is perhaps the most basic property that one would like
to check. However, even graph connectivity does not admit space-efficient
algorithms in traditional streaming models. There is an Ω(n) lower bound for
randomized algorithms. To contrast this, we show that allowing the algorithm
the additional power of requesting the input in a specific order allows for very
efficient, O((log n)2) space algorithms for testing connectivity.

Problem: We consider a function where the input is a set of edges and
f(e1, e2, ..., em) = 1 if and only if G is connected. As usual, let n be the number
of vertices of G. As before, we assume that vertices are labeled 1, 2, 3, ..., n.

We will prove the following theorem.

Theorem 5. Graph connectivity can be solved by a randomized algorithm in
O((log n)2) space best-order stream checking.

Proof. We use the following lemma which is easy to prove.

Lemma 2. For any graph G of n edges, G is connected if and only if there exists
a vertex v and trees T1, T2, ..., Tq such that for all i,

– there exists a unique vertex ui ∈ V (Ti) such that uv ∈ E(Ti), and
– |V (Ti)| ≤ 2n/3 for all i.

Suppose G is connected, i.e., G is a tree. Let v and T1, T2, ..., Tq be as in the
lemma. Define the order of G to be

Order(G) = vu1, Order(T ′
1), vu2, Order(T ′

2), ..., vuq, Order(T ′
q)

where T ′
i = Ti \ {vui}. Note that T ′

i is a connected tree and so we present edges
of T ′

i recursively.
Now, when edges are presented in this order, the checker can check if the

graph is connected as follows. First, the checker reads vu1. He checks if T ′
1 is

connected by running the algorithm recursively. Note that he stops checking T ′
1

once he sees vu2. Next, he repeats with vu2 and T ′
2 and so on.

The space needed is for vui and for checking T ′
i . I.e., space(|G|) =

space(maxi |Ti|) + O(log n). That is, space(n) ≤ space(2n/3) + O(log n). This
gives the claimed space bound.

Note that the checker has to make sure every vertex appears in the graph. He
does so by applying result in Section 3 once to each vertex v used as a root (as
in above) and all leaf nodes of the tree. Also note that if G is not connected then
such ordering cannot be made and the algorithm above will detect this fact. ��

Best-Order Streaming Model 189

6 Further Results

The previous sections give us a flavor of the results that can be obtained in this
model. We describe a few more and mention the intuition behind the protocol
(without giving details, due to space constraints).

6.1 Bipartite k-Regular Graph

The point is that a k-regular bipartite graph can be decomposed into k disjoint
sets of perfect matchings. So the adversary can do this and present each of the
perfect matchings one after the other. Now our previously described algorithm
can be used to verify each perfect matching. In addition, a fairly simple algorithm
can take care of verifying that we indeed receive k different sets (and to also know
when one perfect matching ends and the new one is presented).

6.2 Hamiltonian Cycle

It can be shown that Hamiltonian-Cycle∈ RStream(1, log n). The intuition
is for the protocol to request the hamiltonian cycle first (everything else is ig-
nored). The checker then checks if the first n edges presented indeed form a
cycle; this requires two main facts. First that every two consecutive edges share
a vertex, and the n-th edge shares a specific vertex with the first. This is easy.
The second key step is to check that these edges indeed span all n vertices (and
not go through same vertex more than once). This can be done by using the set
distinctness approach.

6.3 Non-bipartiteness

Non-bipratitiness of graphs can again be checked in our model by requesting the
adversary to present an odd length cycle. Verifying that this is indeed a cycle
and that it is of odd length is again done in a manner very similar to verifying
hamiltonian cycle.

We do not have an algorithm to verify general bipartiteness of graphs and
leave it as an open question.

7 Conclusions

This paper describes a new model of stream checking, that lies at the inter-
section of extremely well-studied and foundational fields of computer science.
Specifically, the model connects several settings relating to proof checking, com-
munication complexity, and streaming algorithms. The motivation for this paper,
however, draws from recent growth in data sizes and the advent of powerful cloud
computing architectures and services. The question we ask is, can verification
of certain properties (on any input) be accompanied with a streaming proof of
the fact? The checker should be able to verify that the prover is not cheating.

190 A. Das Sarma, R.J. Lipton, and D. Nanongkai

We show that if the checker (or algorithm in the streaming algorithms setting)
is given the power of choosing a specific rule for the prover to send the input,
then many problems can be solved much more efficiently in this model than in
the previous models.

While non-obvious, our algorithms and proofs are fairly simple. However,
the nice aspect is that it uses several interesting techniques and areas such as
fingerprinting, and covert channels. Fingerprinting is used in a crucial way to
randomly test for distinctness of a set of elements presented as a stream. The
protocol between the prover and check also allows for covert communication
(which gives covert channels a positive spin as opposed to previous studies in
security and cryptography). While the prover is only allowed to send the input,
re-ordered, the prover is able to encode extra bits of information with the special
ordering requested by the checker. The difficulty in most of our proof techniques
is in how the checker or algorithm verifies that the prover or adversary is sending
the input order as requested.

We have given O(polylog n) space algorithms for problems that previously,
in the streaming model, had no sub-linear algorithms. There are still a lot of
problems in graph theory that remain to be investigated. A nice direction is to
consider testing for graph minors, which could in turn yield efficient methods
for testing planarity and other properties that exclude specific minors. We have
some work in progress in this direction. It is also interesting to see whether
all graph problems in the complexity class P can be solved in our model with
O(polylog n) space. Apart from the study of our specific model, we believe that
the results and ideas presented in this paper could lead to improved algorithms
in previously studied settings as well as yield new insights to the complexity of
the problems.

References

1. Amazon elastic compute cloud (amazon ec2)
2. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model

augmented with a sorting primitive. In: Annual IEEE Symposium on Foundations
of Computer Science, pp. 540–549 (2004)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

5. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np.
J. ACM 45(1), 70–122 (1998)

6. Chakrabarti, A., Cormode, G., McGregor, A.: Robust lower bounds for communi-
cation and stream computation. In: STOC, pp. 641–650 (2008)

7. Chakrabarti, A., Jayram, T.S., Pǎtraşcu, M.: Tight lower bounds for selection in
randomly ordered streams. In: Proc. 19th ACM/SIAM Symposium on Discrete
Algorithms (SODA), pp. 720–729 (2008)

8. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: SODA 2006: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pp. 714–723. ACM, New York (2006)

Best-Order Streaming Model 191

9. Dinur, I.: The pcp theorem by gap amplification. J. ACM 54(3), 12 (2007)
10. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: Testing and spot-

checking of data streams (extended abstract). In: SODA 2000: Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA,
USA, pp. 165–174. Society for Industrial and Applied Mathematics (2000)

11. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances
in the streaming model: the value of space. In: SODA 2005: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia,
PA, USA, pp. 745–754. Society for Industrial and Applied Mathematics (2005)

12. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

13. Goldreich, O.: Property testing in massive graphs, pp. 123–147 (2002)
14. Gopalan, P., Radhakrishnan, J.: Finding duplicates in a data stream. In: SODA

2009: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete al-
gorithms, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics
(to appear, 2009)

15. Guha, S., McGregor, A.: Approximate quantiles and the order of the stream. In:
PODS 2006: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 273–279. ACM, New York (2006)

16. Guha, S., Mcgregor, A.: Lower bounds for quantile estimation in random-order and
multi-pass streaming. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 704–715. Springer, Heidelberg (2007)

17. Hajnal, A., Maass, W., Turán, G.: On the communication complexity of graph
properties. In: STOC, pp. 186–191 (1988)

18. H̊astad, J., Wigderson, A.: The randomized communication complexity of set dis-
jointness. Theory of Computing 3(1), 211–219 (2007)

19. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams, pp.
107–118 (1999)

20. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, New York (1997)

21. Lam, T.W., Ruzzo, W.L.: Results on communication complexity classes. J. Com-
put. Syst. Sci. 44(2), 324–342 (1992)

22. Lipton, R.J.: Fingerprinting sets. Cs-tr-212-89. Princeton University (1989)
23. Lipton, R.J.: Efficient checking of computations. In: STACS, pp. 207–215 (1990)
24. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. In: FOCS,

pp. 253–258 (1978)
25. Papadimitriou, C.H., Sipser, M.: Communication complexity. J. Comput. Syst.

Sci. 28(2), 260–269 (1984)
26. Ruhl, J.M.: Efficient algorithms for new computational models. Ph.D thesis,

Supervisor-David R. Karger (2003)
27. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-

liminary report). In: STOC, pp. 209–213 (1979)

Behavioral and Logical Equivalence of Stochastic
Kripke Models in General Measurable Spaces

Ernst-Erich Doberkat

Chair for Software Technology
Technische Universität Dortmund

doberkat@acm.org

Abstract. We show that logical and behavioral equivalence for stochastic Kripke
models over general measurable spaces are the same. Usually, this requires some
topological assumptions and includes bisimilarity; the results here indicate that a
measurable structure on the state space of the Kripke model suffices. In contrast
to a paper by Danos et al. we focus on the measurable structure of the factor space
induced by the logic. This technique worked well in the analytic case, and it is
shown to work here as well. The main contribution of the paper is methodological,
since it provides a uniform framework for general measurable as well as more
specialized analytic spaces.

1 Introduction

Bisimilarity and behavioral equivalence of Markov transition systems permit compar-
ing the expressive power of these systems through a span resp. a cospan of morphisms.
Given a modal logic, logical equivalence indicates that each state in one system ac-
cepts exactly the same formulas as a suitable state in the other system, in this way
comparing the expressivity of the system with respect to the logic. It is well known
that these ways of relating the behavior of Markov transition systems are equivalent
even for very simple negation free Hennessy-Milner logics, provided the base spaces
are Polish or analytic1, see [2,3], topological assumptions and constructions entering
substantially through the argumentation. So at least a partial answer to the question of
relating these fundamental notions seemed to be hopeless except for the case of count-
able state spaces [8], but in a paper [1] that was as important as it was surprising it could
be established that behavioral and logical equivalence are the same without any topo-
logical assumptions, hence for general measurable spaces. The proof technique devel-
oped in that paper is essentially coalgebraic in nature, emphasizing event bisimulations
and introducing cocongruences. In the meantime, the analytic point of view was fur-
ther developed into more general coalgebraic logics [5], refining the approach through
congruences and factorizations, which, in contrast to the techniques above, might be
referred to as the universal algebra point of view.

1 A Polish space is a topological space the topology of which has a countable base, and which
can be generated by a complete metric, an analytic space is the continuous image of a Polish
space.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 192–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Behavioral and Logical Equivalence of Stochastic Kripke Models 193

The present paper shows that the latter collection of proof techniques may be adapted
for obtaining the essential results of [1]. It utilizes techniques which have been devel-
oped from general considerations on stochastic relations and Kripke models [5], but
in contrast to [1] it uses only elementary measure-theoretic tools. Consequently, we
have two fairly different approaches at our disposal. They might be interesting enough
to compare. Work in progress [12] indicates that the present approach proposed here
generalizes to a setting which utilizes the power of predicate liftings [9] for general
measure polynomial endofunctors on the category of measurable spaces, opening up a
whole new spectrum of functors for which the results above apply.

The paper is organized as follows: we briefly collect some preliminaries in Section 2,
develop a strategy in Section 3, discuss the equivalence relation induced by the logic
under consideration in Section 4 and prove the main technical result in Section 5. Sec-
tion 6 wraps it all up by indicating some avenues to go from here. Lack of space prevents
giving complete proofs. They may be found in [6].

2 Preliminaries

A measurable space (M,M) consists of a set M with a σ-algebra M, which is an alge-
bra of subsets of M that is closed under countable unions (hence countable intersections
and countable disjoint unions). If M0 is a family of subsets of M , then σ

(M0
)

is the
smallest σ-algebra on M which contains M0. Take for example as a generator T all
open sets in a topological space X , then σ(T) =: B(X) is the σ-algebra of Borel sets.
The elements of a σ-algebra are usually referred to as measurable sets.

An important tool is the π-λ-Theorem which makes it sometimes simpler to identify
the σ-algebra generated from some family of sets.

Theorem 1 (π-λ-Theorem). Let P be a family of subsets of a set X that is closed
under finite intersections. Then σ(P) is the smallest set of subsets containing P which
is closed under complements and countable disjoint unions.

The basic probabilistic structure is described by stochastic relations (a. k. a. sub Markov
kernels).

Definition 1. K : (M,M) � (N,N) is a stochastic relation on the measurable spaces
(M,M) and (N,N) iff K(m) is a subprobability measure on (N,N) for each m ∈ M
such that the map m �→ K(m)(Q) is M-measurable for each measurable set Q ∈ N .

Denote by S (M,M) the set of all subprobabilities on the measurable space
(M,M); this space is rendered a measurable space by endowing it with the weak-*-σ-
algebra M∇; this is the initial σ-algebra with respect to the evaluation maps μ �→ μ(A)
for A ∈ M. Then K : (M,M) � (N,N) is a stochastic relation iff K induces a
map M → S (N,N) which is M-N∇-measurable. S acts as an endofunctor on the
category of measurable spaces, where the measurable map f : N → M is mapped to
S (f) (μ)(B) := μ(f−1 [B]). The endofunctor is the functorial part of the Giry monad
which may be perceived as the probabilistic analogue to the power set monad [7,4].

A stochastic Kripke model K =
(
(S,S), (ka)a∈Act

)
has a measurable state space

(S,S) and for each action a ∈ Act a transition subprobability ka : (S,S) � (S,S).

194 E.-E. Doberkat

Given action a in state s, ka(s)(D) is the probability that the next state is a member of
the measurable set D ⊆ S. Since ka(s)(S) < 1 is admissible, the Kripke model may
be in no successor state at all: mass may vanish.

This very simple Lemma which is occasionally of use.

Lemma 1. Let f : M → N be a map; call A ⊆ M f -invariant iff a ∈ A and f(a) =
f(a′) together imply a′ ∈ A. Then f [A1 ∩ A2] = f [A1] ∩ f [A2], whenever A1 and
A2 are f -invariant, also f−1 [f [A]] = A for f -invariant A ⊆ M. �

Equivalence classes are invariant w.r.t. the factor map. Let ρ be an equivalence relation
on a measurable space (M,M), then the factor space M/ρ is usually endowed with the
σ-algebra M/ρ which is final with respect to the factor map ηρ : x �→ [x]ρ.

3 Defining the Logic L and Developing a Strategy

We address in the present paper the question of behavioral and logical equivalence
without topological assumptions; thus we will work in general measurable spaces, and
we will show that both notions are equivalent as well. We did not include bisimilarity
in this discussion for the following reason. If we want to show that two behavioral
equivalent models are bisimilar, we are requested to construct a mediating model, and it
is currently not clear how this can be done without constructing a semi-pullback which
in turn requires at least analytic base spaces; the ground breaking paper [2] deserves to
be mentioned, the results assume an analytic space, and yield a universally measurable
solution, which is strictly weaker than analycity (the latter is provided in [3]). The
constructions in the present paper will be carried out for the negation free Hennessy-
Milner logic L = L(Act, [0, 1]) the formulas of which are given through the grammar

� | φ1 ∧ φ2 | 〈a〉rφ
Here a ∈ Act is an action, and the threshold r is a real number from the unit interval.
We do not require here the set Act of possible actions to be countable, and we do
not restrict ourselves to rationals as the value for thresholds. Because the logic is so
simple we can keep the interpreting Kripke models simple, too. Given a Kripke model
K =

(
(S,S), (ka)a∈Act

)
, we define for the state s ∈ S validity of 〈a〉rφ in s through

K, s |= 〈a〉rφ iff ka(s)([[φ]]K) ≥ r, [[φ]]K being the set of states in which φ holds.
Validity for the other formulas is defined as usual. Define the theory ThK(s) for s as
the set of all formulas which hold in state s ∈ S.

Let us briefly review the strategy for the analytic case, where we have a countable
number of actions, and where the thresholds are taken from the rational numbers. Given
a Kripke model K over an analytic space, the logic defines an equivalence relation rK
which is countably generated. This equivalence relation is used for factoring, and be-
cause of its countable generation, we obtain as a factor space an analytic space again.
This σ-algebra has a fairly rich structure. In particular the amalgamated sum which is
introduced in Section 5 leads to an analytic space which in turn can be made the state
space of a Kripke model through standard constructions. The logic influences these
discussions only through the corresponding equivalence relations, witnessed by the ob-
servation that the general criterion for bisimilarity from [3] enters the discussion, this

Behavioral and Logical Equivalence of Stochastic Kripke Models 195

criterion being formulated in terms of general countably generated equivalence relations
(which are of considerable importance in other areas of Mathematics as well, see [10]
for a comprehensive overview).

We show that it is possible to construct a cospan of Kripke models without relying
on the machinery of Polish and analytic spaces. So we start from general measurable
spaces, investigating the equivalence relation which is induced by the logic on the state
space. Since analycity is not available, we will not be able to observe the convenient
interplay of the measurable structures induced by the logic on the state space and on
the factor space, specifically we are no longer able to observe that the rK-invariant mea-
surable sets are exactly the inverse images of the elements of the final σ-algebra with
respect to the factor map ηrK . Thus we need to construct explicitly an σ-algebra on the
factor space which is closely adapted to the logic, and to derive a Kripke model from
it which plays the rôle of the factor model. Similarly, the amalgamation of the equiv-
alences on the individual models needs to be investigated more closely, the interesting
properties no longer being made automatically available through analycity. The leading
idea, however, is still based on the observation that the equivalence classes induced by
the logic on the state spaces of logically equivalent Kripke models are in a one-to-one
correspondence.

4 The Equivalence Relation Induced by L

Fix a Kripke model K =
(
(S,S), (ka)a∈Act

)
with a measurable state space (S,S), thus

ka : (S,S) � (S,S) is a stochastic relation for each action a. A morphism f : K →(
(T, T), (�a)a∈Act

)
between Kripke models is an S-T -measurable map f : S → T

such that ∀a ∈ Act : �a ◦ f = S (f) ◦ ka holds. This translates for each label a ∈ Act
into �a(f(s))(Q) = ka(s)(f−1 [Q]) for all measurable sets Q ∈ T , s ∈ S. Note that
we do not require f to be onto. Just for the record:

Lemma 2. Let f : K → L be a morphism and φ a formula in L, then K, s |= φ ⇔
L, f(s) |= φ holds for each state s of K, and f−1 [[[φ]]L] = [[φ]]K. �

The equivalence relation rK induced by L on S is defined as usual through

s rK s′ iff ∀φ : K, s |= φ ⇔ K, s′ |= φ.

It is noted that taking all real numbers from the unit interval as threshold values is
not particularly mandatory: we can do with less. Define L† := L(Act, Q ∩ [0, 1]) as the
fragment of L(Act, [0, 1]) in which only rational numbers are admitted as indices to the
modal operators, and define r†K exactly as rK but restricted to formulas from L†. Using
σ-additivity of the transition laws ka and the fact that the rationals are dense shows that
r†K = rK, see [5, Lemma 3.4.1]. In any case, two states are considered equivalent iff
they cannot be separated by a formula.

Put EK := {[[φ]]K | φ is a formula}, the set of all extensions of formulas, and define
as σ-algebra S�

rK on the factor space S/rK as the smallest σ-algebra which contains all
the sets the inverse image of which are in EK:

S�
rK := σ

({A ⊆ S/rK | η−1
rK [A] ∈ EK}).

196 E.-E. Doberkat

We analyze this construction, and then we enter a discussion of behavioral and logical
equivalence.

Lemma 3. The set A := {ηrK [[[φ]]K] | φ is a formula} is a generator of S�
rK which is

closed under finite intersections.

Proof. Each extension [[φ]]K is ηrK-invariant, and the logic L is closed under conjunc-
tion, so A is closed under finite intersections. Because [[φ]]K is ηrK -invariant, we have
[[φ]]K = η−1

rK [ηrK [[[φ]]K]] , thus σ(A) ⊆ S�
rK . On the other hand, if η−1

rK [A] ∈ EK
for some A ⊆ S/rK, then there exists a formula φ such that [[φ]]K = η−1

rK [A] , hence
A = ηrK [[[φ]]K] , since ηrK is onto. �

This has some immediate consequences.

Corollary 1. The factor map ηrK : S → S/rK is S-S�
rK-measurable. Let S/rK be the

final σ-algebra with respect to ηrK : S → S/rK and S. Then S�
rK ⊆ S/rK. �

Comparing the construction for the general case with the one for analytic spaces, we see
that in the latter case we can determine the crucial σ-algebra S�

rK through the Borel sets
on the factor space. This is the distinguishing and important feature of the analytic case:
The factor σ-algebra is then exactly the σ-algebra of the Borel sets on the factor space
(or, very loosely speaking, factoring and forming the Borel σ-algebra commutes for the
analytic case). Denote for a closer analysis by Σ

(S, rK
)

the σ-algebra of ηrK-invariant
measurable sets.

Proposition 1. Assume that the set Act of actions is countable, and that

σ
({[[φ]]K | φ is a formula}) = Σ

(S, rK
)
.

Then S�
rK = S/rK. �

This yields immediately

Corollary 2. S�
rK = B(S/rK), if S is an analytic space with S = B(S), and if the set

Act of actions is countable. �

Now consider the Kripke model K. Let a ∈ Act be an action; the factor relation ka,rK
on (S,S�

rK) is defined through

ka,rK
(
[s]rK

)
(A) := ka(s)(η−1

rK [A]),

whenever A ∈ S�
rK . This definition is possible since η−1

rK [A] ∈ S for A ∈ S�
rK (Corol-

lary 1). It determines in fact a stochastic relation.

Proposition 2. ka,rK : (S/rK,S�
rK) � (S/rK,S�

rK) is a stochastic relation.

Proof. It is clear that ka,rK
(
[s]rK

)
is a subprobability on S�

rK for each s ∈ S. The
S�

rK-measurability of v �→ ka,rK(v)(A) is established through the π-λ-Theorem 1 and
Lemma 3, capitalizing on the construction of S�

rK . �

The factor map defines a morphism between the stochastic relations ka and ka,rK , as we
will see now. In fact, define the Kripke model

KL :=
(
(S/rK,S�

rK), (ka,rK)a∈Act

)
,

Behavioral and Logical Equivalence of Stochastic Kripke Models 197

then we make this observation which will be useful for the investigations of behavioral
and logical equivalence.

Corollary 3. ηrK : K → KL is a morphism. �

Now let L =
(
(T, T), (�a)a∈Act

)
be another Kripke model. Denote the equivalence re-

lation defined by the logic L on T by rL. All constructions with the σ-algebra S and the
equivalence relation rK are carried out with T and rL, so we may construct a σ-algebra
T �

rL on T/rL, and we obtain a new Kripke model LL =
(
(T/rL, T �

rL), (�a,rK)a∈Act

)
together with the morphism ηrL : L → LL.

Models K and L are behaviorally equivalent iff there exists a cospan

K f �� M Lg��

of surjective morphisms for a suitable model M. Define the relation # := {〈s, t〉 ∈
S × T | ThK(s) = ThL(t)}. Consequently, s # t iff s and t satisfy exactly the same
formulas. In particular, we know that in this case ka(s)([[φ]]K) = �a(t)([[φ]]L) holds
for all formulas φ. Put #0 := {〈[s]rK , [t]rL〉 | 〈s, t〉 ∈ #}. K and L are said to be
logically equivalent iff the relation # is both right and left total. This is but a simple
reformulation of the usual definition of logical equivalence which states that K and L
are logically equivalent iff given a state s in K there exists a state t in L such that
ThK(s) = ThL(t), and vice versa. Assume for the rest of this Section that the Kripke
models K and L are logically equivalent.

Lemma 4. #0 is the graph of a bijection τ : S/rK → T/rL; τ is S�
rK-T �

rL-measurable.
Similarly, #−1

0 is the graph of a bijection θ : S/rK → T/rL which is T �
rL-S�

rK-measurab-
le. τ and θ are inverse to each other. �

If # would not be a left total relation, the map τ would only be partially defined; if
would not be right total, τ would not be surjective. Consequently, this construction
works only with logically equivalent Kripke models. But actually τ and θ are even
richer in structure.

Lemma 5. Define τ and θ as in Lemma 4. Then τ : KL → LL and θ : LL → KL are
morphisms. �

5 Logical vs. Behavioral Equivalence

The construction will go through a sequence of technical steps which will be sketched
now. Form the sum S + T of the state space with injections iS : S → S + T and
iT : T → S+T , resp. Let rK$rL be the amalgamation of rK and rL [3]. This equivalence
relation is defined for v, v′ ∈ S + T as follows

v rK $ rL v′ ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s rK s′, v = iS(s), v′ = iS(s′),
t rL t′, v = iT (t), v′ = iT (t′),
〈s, t〉 ∈ #, v = iS(s), v′ = iT (t),
〈t, s〉 ∈ #−1, v = iT (t), v′ = iS(s)

198 E.-E. Doberkat

The construction entails (∗) [iS(s)]rK�rL = iS
[
[s]rK

] ∪ iT
[
τ
(
[s]rK

)]
, similar for

[iT (t)]rK�rL . Thus the equivalence class of an element of S + T has both a non void
component from S and from T , and these components are linked through τ and θ, resp.
Now define maps IS : S/rK → (S + T)/rK $ rL and IT : T/rL → (S + T)/rK $ rL
through IS

(
[s]rK

)
:= [iS(s)]rK�rL , IS

(
[t]rL

)
:= [iT (t)]rK�rL , so we assign to each

class in the participating spaces the class of its representative in the sum; it is clear from
the characterization in (∗) that both maps are well defined.

Lemma 6. IS [ηrK [[[φ]]K]] = IT [ηrL [[[φ]]L]] holds for each formula φ, and the set
{IS [ηrK [[[φ]]K]] | φ is a formula} is closed under finite intersections. �

Define the σ-algebra W on (S + T)/rK $ rL as

W := σ
({IS [ηrK [[[φ]]K]] | φ is a formula}),

then W = σ
({IT [ηrL [[[φ]]L]] | φ is a formula}) follows from Lemma 6, and the maps

IS and IT turn out to be measurable.

Lemma 7. IS : S → (S + T)/rK $ rL is S�
rK -W-measurable,

and IT : T → (S + T)/rK $ rL is T �
rL-W-measurable. �

This construction yields a measurable space
(
(S + T)/rK $ rL,W)

. It will serve as
the state space for a Kripke model for which we will construct the transition law now.
Before we do that, we need to make sure that the transition laws ka,rK and �a,rL coincide
on certain crucial sets.

Lemma 8. Assume that s # t, then ka,rK([s]rK)(I−1
S [C]) = �a,rL([t]rL)(I−1

T [C]) for
all C ∈ W . �

Now we are poised to define the transition law on the compound factor space.
Put ma([iS(s)]rK�rL)(C) := ka,rK([s]rK)(I−1

S [C]) for C ∈ W . By Lemma 8
ma([iT (t)]rK�rL)(C) = �a,rL([t]rL)(I−1

T [C]), provided [iS(s)]rK�rL = [iT (t)]rK�rL .
This is so because the latter condition is equivalent to 〈[s]rK , [t]rL〉 ∈ #0 which in
turn is equivalent to 〈s, t〉 ∈ #. Thus we obtain for each action a ∈ Act a map
ma : (S + T)/rK $ rL → S ((S + T)/rK $ rL,W) , and we have to make sure that
it defines a Kripke model, i.e., that it is a stochastic relation. This means that we have
to establish measurability.

Lemma 9. ma :
(
(S + T)/rK $ rL,W)

�
(
(S + T)/rK $ rL,W)

is a stochastic re-
lation for each action a ∈ Act. �

Thus we may use ma as the transition law for a Kripke model.

Corollary 4. KL
IS �� M LL

IT�� is a cospan of morphisms. �

This is the main result.

Proposition 3. Logical and behavioral equivalence are the same for Kripke models
over general measurable spaces for the negation free Hennessy-Milner logic L.

Behavioral and Logical Equivalence of Stochastic Kripke Models 199

Proof. Since morphisms preserve and reflect validity, behaviorally equivalent Kripke
models are logically equivalent. Let K =

(
(S,S), (ka)a∈Act

)
and L =

(
(T, T),

(�a)a∈Act

)
be the Kripke models under consideration. Construct the factor space

(S + T)/rK $ rL for the amalgamation rK $ rL of the equivalence relations rK and rL
which are constructed from logic L over S resp. T together with the maps IS : S/rK →
(S + T)/rK $ rL and IT : T/rL → (S + T)/rK $ rL. Construct the σ-algebra W from
these data, and define the stochastic relation ma as in Lemma 9. Put

M :=
((

(S + T)/rK $ rL,W)
, (ma)a∈Act

)
.

Then this diagram gives the desired cospan of morphisms.

K
ηrK �� KL

IS �� M LL
IT�� L

ηrL��

The factor maps ηrK and ηrL are morphisms by Corollary 3, IS and IT are morphisms
by Corollary 4. �

6 Conclusion and Further Work

We show that behavioral and logical equivalence can shown to be equivalent on general
measurable spaces without assuming any Polish or analytic structure. In contrast to [1]
we use the machinery which has been developed in a series of papers [3,5] for the
analytic case and adapt it to the situation at hand. The core ingredient turned out to be
the direct investigation of the measurable structure induced by the logic. As we have
argued elsewhere, the kernel logic may be extended by additional operators to gain
expressivity, without, however, making it necessary to change the algebraic core of the
arguments.

This gives some hope for extending the present work to the case that we replace
modal operators by predicate liftings for some measure polynomial endofunctor on the
category of all measurable spaces. It is important to see how far we may be carried with-
out topological assumptions, which appears to be one of the urgent messages from [1];
the elegant and far-reaching results obtained in [11] witness another step into this di-
rection. Technically, the results presented here indicate somewhat surprisingly that it is
promising to concentrate on the measurable structure of the spaces involved rather than
on the transition probabilities proper.

Acknowledgements. The author wants to thank Vincent Danos for discussing with him
some finer points from [1], and Christoph Schubert for some technical discussions.

References

1. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for
probabilistic systems. Information and Computation 204(4), 503–523 (2006)

2. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation of labelled Markov-processes. In-
formation and Computation 179(2), 163–193 (2002)

200 E.-E. Doberkat

3. Doberkat, E.-E.: Stochastic relations: congruences, bisimulations and the Hennessy-Milner
theorem. SIAM J. Computing 35(3), 590–626 (2006)

4. Doberkat, E.-E.: Kleisli morphisms and randomized congruences for the Giry monad. J. Pure
Appl. Alg. 211, 638–664 (2007)

5. Doberkat, E.-E.: Stochastic coalgebraic logic. Technical Report 174, Chair for Software
Technology, TU Dortmund, November 2008. Springer, Heidelberg (2009)

6. Doberkat, E.-E.: Behavioral and logical equivalence of stochastic Kripke models in general
measurable spaces. Technical Report 176, Chair for Software Technology, Technische Uni-
versität Dortmund (January 2009)

7. Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology
and Analysis. Lect. Notes Math., vol. 915, pp. 68–85. Springer, Berlin (1981)

8. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Compu-
tation 94, 1–28 (1991)

9. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame
J. Formal Logic 45(1), 19–33 (2004)

10. Schneider, S., Thomas, S.: Countable Borel equivalence relations, Athens, OH, November
2007. Lecture Notes, Appalachian Set Theory Seminar (2007)

11. Schubert, C.: Final coalgebras for measure-polynomial functors. Technical Report 175, Chair
for Software Technology, Technische Universität Dortmund (December 2008)

12. Schubert, C.: Coalgebraic logic over measurable spaces: Behavioral and logical equivalence.
Technical Report 177, Chair for Software Technology, Technische Universität Dortmund
(February 2009)

Influence of Tree Topology Restrictions on the
Complexity of Haplotyping with Missing Data

Michael Elberfeld, Ilka Schnoor, and Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck, 23538 Lübeck, Germany

{elberfeld,schnoor,tantau}@tcs.uni-luebeck.de

Abstract. Haplotyping, also known as haplotype phase prediction, is
the problem of predicting likely haplotypes from genotype data. One fast
haplotyping method is based on an evolutionary model where a perfect
phylogenetic tree is sought that explains the observed data. Unfortu-
nately, when data entries are missing as is often the case in laboratory
data, the resulting incomplete perfect phylogeny haplotyping problem
ipph is NP-complete and no theoretical results are known concerning its
approximability, fixed-parameter tractability, or exact algorithms for it.
Even radically simplified versions, such as the restriction to phylogenetic
trees consisting of just two directed paths from a given root, are still NP-
complete; but here a fixed-parameter algorithm is known. We show that
such drastic and ad hoc simplifications are not necessary to make ipph

fixed-parameter tractable: We present the first theoretical analysis of an
algorithm, which we develop in the course of the paper, that works for ar-
bitrary instances of ipph. On the negative side we show that restricting
the topology of perfect phylogenies does not always reduce the com-
putational complexity: while the incomplete directed perfect phylogeny
problem is well-known to be solvable in polynomial time, we show that
the same problem restricted to path topologies is NP-complete.

1 Introduction

Haplotype phase prediction is an important preprocessing step in genomic asso-
ciation studies. In these studies two groups of people are considered, where one
group has a certain disease or medical condition while the other has not, and
one tries to find correlations between group membership and the genomic data
of the individuals in the groups. The genomic data typically consists of informa-
tion about which bases are present in an individual’s dna at so-called snp sites
(single nucleotide polymorphism sites). While the dna sequences of different in-
dividuals are mostly identical, at snp sites there may be variations. Low-priced
methods for large-scale inference of genomic data can read out, separately for
each snp site, the bases present. At a site two bases can be present because we
inherit one chromosome from our father and one from our mother. Since the
bases at different sites are determined independently, we have no information
on which chromosome a base belongs to. For homozygous sites, where the same

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 201–210, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

202 M. Elberfeld, I. Schnoor, and T. Tantau

base is present on both chromosomes, this is not a problem, but for heterozy-
gous sites this information, called the phase of a snp site, is needed for accurate
correlations. The idea behind haplotype phase prediction or just haplotyping is
to computationally predict likely phases based on the laboratory data (which
misses this information). For an individual, the genomic input data without
phase information is called the genotype while the two predicted chromosomes
are called haplotypes.

From a mathematical point of view haplotypes can be conveniently coded as
strings over the alphabet {0, 1}, where for a given site 0 stands for one of the
bases that can be observed in practice, while 1 encodes a second base that can
also be observed. (The case that three bases are observed happens so seldom
that it can be ignored.) A genotype g is, conceptually, a sequence of sets that
arises from two haplotypes h1 and h2 as follows: The ith set in the sequence g is
{h1[i], h2[i]}. However, it is customary to encode the set {0} as 0, to encode {1}
as 1, and {0, 1} as 2, so that a genotype is actually a string over the alphabet
{0, 1, 2}. For example, the two haplotypes 0110 and 0101 give rise to (we also
say explain) the genotype 0122; and so do 0100 and 0111.

Since different haplotype pairs can explain the same genotype and any single
haplotype is equally likely a priori, haplotyping is not possible if only a single
genotype is given. However, if a set of genotypes from a larger group of different
individuals is given, certain sets of explaining haplotypes are more likely than
others. For instance, a small set of explaining haplotypes is more likely than a
large set since haplotypes mutate only rarely. It is customary to formalize sets
of genotypes as matrices (each row is a genotype) and also sets of explaining
haplotypes (each row contains a haplotype and rows 2i−1 and 2i of the haplotype
matrix explain exactly the genotype in row i of the genotype matrix).

One important method of haplotyping is based on the perfect phylogeny ap-
proach proposed by Gusfield [13]. The idea is to seek a haplotype matrix that
explains the genotype matrix and whose rows (which are the haplotypes) can
be arranged in a perfect phylogenetic tree. This means the following: A haplo-
type matrix B admits a perfect phylogeny if there exists a tree (an undirected,
connected, acyclic graph) TB such that:

1. Each column of B labels exactly one edge of TB and each edge is labeled by
at least one column.

2. Each row of B labels exactly one node of TB.
3. For every two rows h1 and h2 of B and every column i, we have h1[i] �= h2[i]

if, and only if, i lies on the path from h1 to h2 in TB.

The intuition behind these properties is as follows. The nodes of the tree TB

correspond to haplotypes. The edges between the nodes correspond to mutation
events: When we move from one node to another node along a single edge,
the label(s) of the edge name exactly those columns in which the node labels
differ. This means that when we remove an edge labeled by a column c, the two
resulting components have the property that all nodes in one component have
a 0 in column c and all nodes in the other component have a 1 in that column.

Influence of Tree Topologies on the Complexity of Haplotyping 203

When a haplotype matrix B admits a perfect phylogeny TB and, at the same
time, explains a genotype matrix A, we also say that A admits a perfect phy-
logeny. In this case, it is useful to define a tree TA as follows: Its topology is
the same as TB’s and so are the node labels, but the edges are labeled by the
columns of A instead of the columns of B. We call TA a perfect phylogeny for A.
The formal perfect phylogeny haplotyping problem (pph) is the set of all geno-
type matrices that admit a perfect phylogeny. Gusfield [13] showed that pph is
solvable in polynomial time.

In practice, laboratory data is never perfect and some entries may be missing
in the input genotype matrices. In this case, the input matrices may contain ?-
entries in addition to the 0-, 1-, and 2-entries. The objective is then to replace the
missing entries by normal entries such that the resulting matrix is in pph. This
problem is known as ipph, where the i stands for incomplete (in the following,
the prefix i denotes that the input matrix may contain ?-entries that need to be
filled up). Unfortunately, ipph is NP-complete [20].

In order to tackle the problem, one can try to exploit properties of typical
input data that may make the problem easier to solve. The first simplification
is the notion of directedness. In real data, some genotype is typically completely
known and is completely homozygous, which means that one haplotype of the
sought haplotype matrix is already known. Since the roles of 0-entries and 1-
entries can be exchanged individually for each column, we may assume that the
known haplotype is the all-0-haplotype. This problem variant is called “directed”
because the position of the all-0-haplotype in the phylogenetic tree singles out a
root node and gives an orientation to the tree. The resulting problem is called
idpph, with d standing for “directed.” It is still NP-complete [15].

A second, rather radical simplification (which is nevertheless often backed by
the data) was proposed by Gramm, Nierhoff, Sharan and the third author [11]:
In addition to being directed, we required that the (undirected) phylogenetic
tree must form a simple path. The resulting problem was called incomplete
directed perfect path phylogeny haplotyping. It is still NP-complete, but in [11]
we presented a fixed-parameter algorithm for it, where the parameter is the
maximum number of ?-entries per column.

A third radical simplification is to forbid heterozygous sites. This is the same
as getting already phased haplotypes as input and the question is just whether
they can be arranged in a perfect phylogeny. It turns out that ipp (note the
missing h, since no haplotyping needs to be done) is still NP-complete [20], but
the directed variant idpp is solvable in polynomial time [2,17].

In the present paper we further the study of the computational complexity
of ipph and the above variants. We are especially interested in the following
question: How do restrictions on the tree topology influence the complexity of
the problem? In other words, what is the complexity of ipphleafs≤l, where the
explaining phylogenetic tree may have at most l leafs. As stated above, the best
known result is that idpphleafs≤2 is NP-complete, but lies in FPT.

Our Contributions. Our first main result, Theorem 2.1 presented in Section 2,
is the following hardness result: idppleafs≤l is NP-complete for every l ≥ 2.

204 M. Elberfeld, I. Schnoor, and T. Tantau

In sharp contrast, idpp ∈ P. As detailed in the section on related work, past
experience has indicated that restricting the topology of perfect phylogenies
makes haplotyping problems easier, not harder. Theorem 2.1 shows that idpp

is a notable exception. Naturally, there are other examples of such exceptions:
Finding a spanning tree for a graph is easy, finding a spanning path is hard.

Our second main contribution, presented in Section 3, is an algorithm for
solving ipph that allows a rigorous runtime analysis. In detail, we present an
algorithm that on input of a number l and an incomplete n × m genotype
matrix A with at most k many ?-entries per column correctly outputs: either
“A /∈ ipphleafs≤l” or a completion of A and a perfect phylogeny for this comple-
tion with at most l leafs. This algorithm runs in time f(k, l)n2mO(l) and, hence,
allows us to make formal statements about the fixed-parameter tractability of
ipph. First, ipph lies in the class XP for the parameter pair (k, l). Second and
more importantly, for each fixed l ≥ 2 the problem ipphleafs≤l is fixed-parameter
tractable with respect to the number of unknown entries per column, see The-
orem 3.1. This settles the central problem that we had to leave open in [11],
namely whether the fixed-parameter tractability of idpphleafs≤2 extends to the
undirected case and to larger numbers of leafs. On both accounts, we answer
this question affirmatively.

Due to lack of space, we omit all proofs in the present paper, they can be
found in our technical report [6].

Related Work. Haplotyping methods can be split into two groups: Statistical,
see [9] for a literature starting point, and combinatorial. There are two main
combinatorial methods: Maximum parsimony haplotyping [4,12] and the more
recent perfect phylogeny approach that was introduced by Gusfield [13] and later
explored by numerous authors [1,3,5,8,16,18].

The idea of considering restricted tree topologies to speed up haplotyping is
due to Gramm et al. [11] and was recently also investigated in the context of find-
ing block partitions [10]. A different approach to deal with the NP-completeness
of ipph is due to Halperin and Karp [14]. They present a polynomial-time al-
gorithm for ipph that works for special instances satisfying the so-called “rich
data hypothesis.” A heuristic for ipph was proposed in [19], but no guarantees
can be made concerning its runtime.

For complete data, numerous results on the complexity of pph and its vari-
ants are known. Gusfield showed that the problem can be solved in polynomial
time [13], further papers first presented simpler polynomial-time algorithms [1,8]
and later even linear-time algorithms [3,5,16,18]. In [7] we have shown that pph

is hard for logarithmic space and lies in NC2.
The influence of restricting the tree topology on the complexity of haplotyping

problems has, prior to the present paper, always been benign: In [11] it is shown
that idpphleafs≤2 has a fixed-parameter algorithm, which is not known to be
the case for ipph. In [10] it is shown that partitioning a complete genotype
matrix into a minimal number of column sets such that each set admits a perfect
path phylogeny is equivalent, in complexity theoretic terms, to finding maximal
matchings; while the same problem for arbitrary perfect phylogenies is NP-hard

Influence of Tree Topologies on the Complexity of Haplotyping 205

and even very hard to approximate. Finally, in [7] it is shown that dpphleafs≤2
lies in AC0, while dpph is L-hard.

2 Hardness Result

Theorem 2.1. idppleafs≤l is NP-complete for every l ≥ 2.

Since idpp ∈ P, the above theorem is a first example of a perfect path phy-
logeny problem being harder than the corresponding problem for general perfect
phylogenies. Our proof is based on a reduction from the NP-complete problem
monotone nae3sat and is similar to the reduction presented in [11], which
starts, however, from nae3sat. By starting our reduction from a (conceptually)
simpler problem we are able to prove a stronger result than the one in [11].

The problem idppleafs≤l reduces to idpphleafs≤l via the identity mapping. It
also reduces to ippleafs≤l and ipphleafs≤l by appending an all-0-haplotype. Indeed,
all previously known NP-completeness results for variants of ipph follow from
Theorem 2.1, except for the NP-completeness of ipp.

3 Fixed Parameter Tractability Result

Theorem 3.1. For each l ≥ 2, the problem ipphleafs≤l is fixed-parameter tract-
able with respect to the maximal number of ?-entries per column.

The theorem, proved in the present section, generalizes the result from [11]
by Gramm, Nierhoff, Sharan and the third author that idpphleafs≤2 is fixed-
parameter tractable. The algorithm from [11] relies strongly on Gusfield’s char-
acterization [13]: Given a genotype matrix A, a directed perfect phylogeny T
for it, and any genotype g of A, the 1-entries of g label a path from the root
to some node v of T and the 2-entries of g label a path containing v. Most
algorithms for pph and its variants from the literature exploit this property as
follows: They first reduce the problem to the directed version dpph and then
build the phylogeny by placing columns with many 1-entries and 2-entries near
to the root and columns with fewer such entries far from the root. The notions
“should be placed near to the root” and “should be placed far from the root”
can be quantified using Gusfield’s notion of leaf count [13].

When the data is incomplete and question marks are present, no reduction
from the undirected to the directed case is known. (Indeed, ipp is NP-complete
while idpp ∈ P.) To solve the undirected problem variant ipphleafs≤l we need a
replacement for the notion of leaf counts and a new characterization of genotype
matrices admitting undirected perfect phylogenies. We present such a replace-
ment, which we call the light component size, and also a new characterization
in terms of the new notion of mutation trees. The characterization allows us
to construct phylogenies in a stepwise fashion from the “outside” (columns far
removed from the root, having a small light component size) to the “inside”
(columns near to the root, having a large light component size). In each step,

206 M. Elberfeld, I. Schnoor, and T. Tantau

we only need to remember the inner part of the partial phylogeny constructed
so far, making a dynamic program feasible.

In the following two sections, we first introduce the new notion and charac-
terization and then show how they can be used in an algorithm.

3.1 A Characterization of Undirected Perfect Phylogeny
Haplotyping

A major tool in the development of efficient algorithms for the dpph problem
has been the leaf count of a column, which is twice the number of 1-entries
plus the number of 2-entries. The name “leaf count” stems from the following
observation: In a perfect phylogeny for a genotype matrix A, the number of
haplotypes (which are typically attached to leafs) below the edge labeled by a
column equals exactly its leaf count. This means that if two columns occur on
a path from the root (recall that this is always the all-0-haplotype in a directed
perfect phylogeny) to a leaf, the column with a greater leaf count is located
nearer to the root.

For undirected perfect phylogenies the leaf count is no longer meaningful since
there is no distinguished root node that is known in advance. To tackle this
problem, we introduce the new notion of light component sizes. For a column c
and x ∈ {0, 1, 2} let nx(c) denote the number of x-entries in c.

Definition 3.2. For a column c of a genotype matrix A its light component
size and heavy component size are defined as follows:

lcs(c) := n2(c) + 2 · min{n0(c), n1(c)},
hcs(c) := n2(c) + 2 · max{n0(c), n1(c)}.

The key observation is that when we remove an edge labeled by a column c
from a perfect phylogeny TA, then two components result and the number of
node labels in one of these components will be lcs(c) and we call the component
the light component, the other will contain hcs(c) labels and we call it the heavy
component. (In case lcs(c) = hcs(c), the choice is arbitrary.) The properties of TA

assure that all node labels in one component have a 0 in column c (and a 1 in
the other component). Each of the n0(c) many 0-entries of c contributes two
nodes labels to this component, while each 2-entry contributes one node label,
which means that the number of node labels in this component is either lcs(c)
or hcs(c). The argument is similar for the other component and for 1-entries.

We have just seen that the value in column c of all node labels in the light
component is the same. Let us call this value the light component value lcv(c).
Clearly, lcv(c) = 0 if n0(c) < n1(c) and lcv(c) = 1 if n0(c) > n1(c). For n0(c) =
n1(c) we remarked earlier that the light component can be chosen arbitrarily; at
this point we implicitly fix that choice by setting lcv(c) = 1. Symmetrically, we
set the heavy component value hcv(c) = 1 − lcv(c).

Our next aim is to define a quasi-ordering & on columns that tells us some-
thing about how columns can possibly be arranged in a perfect phylogeny. Sup-
pose that for two columns c and d we know that the light component of d is a

Influence of Tree Topologies on the Complexity of Haplotyping 207

superset of the light component of c. Consider a node label h and suppose the
value of h at the position of column c happens to be the light component value
of c. Then we know that h must lie in the light component of c and, thus, also
in the light component of d, which in turn means that at position d in h we
must have the light component value of d. Phrased more succinctly: for every
i ∈ {1, . . . , n} we have c[i] = lcv(c) =⇒ d[i] = lcv(d) and, by a similar argu-
ment, also d[i] = hcv(d) =⇒ c[i] = hcv(c). Let us write c & d whenever these
two implications hold for every i. Then c & d is a necessary, but not a sufficient
condition for c’s light component being contained in d’s light component.

The ordering & tells us something about containment of light components. We
can similarly say something about columns whose light components are disjoint:
then for every i ∈ {1, . . . , n} we have c[i] = lcv(c) =⇒ d[i] = hcv(d) and
d[i] = lcv(d) =⇒ c[i] = hcv(c). We write c ⊥ d whenever these two implications
hold for every i.

Our algorithm is only concerned with building a tree whose edges are labeled
with columns of the input genotype matrix; the nodes of the tree are not labeled
and the rows of the explaining haplotype matrix B are irrelevant to the algo-
rithm. Since edge labels correspond to mutation events, we call the tree that is
constructed by the algorithm a mutation tree.

Definition 3.3. Let A be a genotype matrix. A mutation tree T for A is an
undirected tree whose edges are bijectively labeled by A’s columns and which has
a distinguished root node r such that the following conditions hold:

1. Ordering condition: For every path originating at the root with edge labels
c1, c2, . . . , ck we have c1 (c2 (· · · (ck.

2. Compatibility condition: For every two columns c and d that are incident to
a common node v and that do not lie on the path from r to v we have c ⊥ d.

3. Two-path condition: For every three columns c, d, and e that are incident
to the same node, there is no i ∈ {1, . . . , n} such that c[i] = d[i] = e[i] = 2.

Lemma 3.4. A genotype matrix A admits a perfect phylogeny with l leafs if,
and only, if, there exists a mutation tree for A with l leafs.

3.2 The Fixed-Parameter Algorithm

Our fixed-parameter algorithm for ipphleafs≤l works in two stages. The first stage
is a preprocessing of the input matrix. After the preprocessing the maximal
number of columns with the same light component size is bounded by a function
in k and l. The basic idea is that if there are many different columns with the
same light component size, they must lie on many different paths and, thus, at
some point it is no longer possible to arrange them in a perfect phylogeny with
only l leafs. For a detailed description of the preprocessing phase we refer to the
technical report version of this paper [6].

The second stage is the main part of the algorithm. Here we test whether a
preprocessed matrix A can be completed in such a way that it admits a mutation
tree with at most l leafs. For the presentation of this step we need some addi-
tional terminology: Given a set of columns A or a matrix A, let A|lcs=i, A|lcs≤i,

208 M. Elberfeld, I. Schnoor, and T. Tantau

and A|lcs>i denote the set of all columns c of A with lcs(c) = i, lcs(c) ≤ i, and
lcs(c) > i, respectively. A completion of a set of columns with ?-entries is ob-
tained by replacing all ?-entries by 0-, 1-, or 2-entries. Note that a completion of
a column with light component size i can have a light component size between i
and i + 2k, where k is, as always, the number of ?-entries in the column. The
inner part of a mutation tree T is the set inner(T) of edges that are incident to
the root of T .

The mutation tree construction algorithm works in iterations i = 1, 2, . . . , n.
In iteration i it processes all completions of the set A|lcs=i. The algorithm keeps
track of what it has already found out about completions of A|lcs<i in previous
iterations in what we call tree records (I, λ, U). Such a record consists of an inner
part I, a number λ ∈ {0, . . . , l} of leafs, and a set of unprocessed columns U . The
following definition formalizes the properties that tree records should have:

Definition 3.5. Let A be an incomplete n × m genotype matrix and let i ∈
{1, . . . , n}. A tree record (I, λ, U) is good for A and i if there exists a completion
Si of A|lcs≤i such that (a) I = inner(Ti) for some mutation tree Ti for Si|lcs≤i,
(b) λ is the number of leafs of Ti, and (c) U = Si|lcs>i.

The job of the algorithm is to compute in each iteration i the set Ri of all good
tree records for A and i. Clearly, if Rn is nonempty after the last iteration,
there exists a completion for A and a mutation tree with at most l leafs; and
otherwise no such completion exists. Figure 1 shows the pseudo-code of the
algorithm, Figure 2 shows an example of the algorithm in action.

The following two lemmas imply that the algorithm is correct and that it is
a fixed-parameter algorithm for ipphleafs≤l. Together, they prove Theorem 3.1.

Lemma 3.6. After each iteration i of algorithm solve-ipphleafs≤l, the set Ri

contains exactly the good tree records for A and i.

Lemma 3.7. Algorithm solve-ipphleafs≤l runs in time O(f(k)mln2).

Algorithm solve-ipphleafs≤l.
Input: An n × m genotype matrix A with at most k missing entries per column.
1 A ← preprocess(A)
2 R0 ← {(∅, 0, ∅)}
3 for increasing light component sizes i ← 1, 2, . . . , n do
4 Ri ← ∅
5 for each completion C of A|lcs=i do
6 for each tree record (I, λ, U) ∈ Ri−1 do
7 for each mutation tree T for I ∪ C|lcs=i ∪ U |lcs=i

with λ′ − λ + |I | leafs for some λ′ ≤ l
where all columns from I are incident to leafs of T do

8 Ri ← Ri ∪
{
(inner(T), λ′, C|lcs>i ∪ U |lcs>i)

}
9 if Rn is nonempty then output “A ∈ ipphleafs≤l” else output “A /∈ ipphleafs≤l”

Fig. 1. Our decision algorithm for ipphleafs≤l

Influence of Tree Topologies on the Complexity of Haplotyping 209

Input
matrix A:

„ a

2

b

?

c

1

d

0

e

2

f

2
1 2 ? 0 ? 2
? 0 2 2 2 ?
? 0 ? 2 ? 2

«

Iteration:
(picked in
line 3)
i ← 3

Completion:
(picked in
line 5)

C ←
j f ′

2
2
0
2

ff

A|lcs=1

A|lcs=2

A|lcs=3

Tree record
from R2:
(picked in line 6)

„j b′
0
2
0
0

,

d′
0
0
2
2

,

e′
2
1
2
1

ff
, 3,

j c′
1
2
2
2

ff«

This is a tree record
for the following tree
T2 and completion S2

of A|lcs≤2:

r

b′
0
2
0
0

d′
0
0
2
2

a′
2
1
1
1

e′
2
1
2
1

S2 =
j a′

2
1
1
1

,

b′
0
2
0
0

,

c′
1
2
2
2

,

d′
0
0
2
2

,

e′
2
1
2
1

ff

Mutation tree T :
(picked in line 7)

r

f ′
2
2
0
2

e′
2
1
2
1

b′
0
2
0
0

d′
0
0
2
2

c′
1
2
2
2

Tree record added
to R3:
(added in line 8)

„j c′
1
2
2
2

,

e′
2
1
2
1

,

f ′
2
2
0
2

ff
, 4, ∅

«

This is a tree record
for the following tree
T3 and completion
S3 of A|lcs≤3:

r

f ′
2
2
0
2

a′
2
1
1
1

e′
2
1
2
1

b′
0
2
0
0

d′
0
0
2
2

c′
1
2
2
2

S3 =
j a′

2
1
1
1

,

b′
0
2
0
0

,

c′
1
2
2
2

,

d′
0
0
2
2

,

e′
2
1
2
1

,

f ′
2
2
0
2

ff

Fig. 2. Example of the third iteration of solve-ipphleafs≤l for the indicated input
matrix A. We depict a set of possible values for the loop variables for which a new tree
record is added to R3.

4 Conclusion

Restrictions on the topologies of perfect phylogenies can greatly influence the
complexity of ipph and its variants. They can make the complexity jump from
P to NP-complete (as for idpp), but they also provide the first parameter for
which a theoretical analysis is possible of an algorithm that works on arbitrary
instances of the ipph problem. Our new notions of mutation trees and light
and heavy component sizes have turned out to be useful in the study of undi-
rected perfect phylogenies; we suggest applying them to other problem versions
as well.

The first main open problem is to improve the runtime of the fixed-parameter
algorithm since the runtime is the range of 3O(k!), which is not feasible even
for small values like k = 5 that are common in practice. The second main
open question is whether ipph is fixed-parameter tractable with respect to the
maximal number of ?-entries per column.

210 M. Elberfeld, I. Schnoor, and T. Tantau

References

1. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny:
A direct approach. J. Comput. Biol. 10(3–4), 323–340 (2003)

2. Benham, C.J., Kannan, S., Paterson, M., Warnow, T.: Hen’s teeth and whale’s
feet: Generalized characters and their compatibility. J. Comput. Biol. 2(4), 515–
525 (1995)

3. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype problem.
Algorithmica 48(3), 267–285 (2007)

4. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid pop-
ulations. J. of Mol. Biol. and Evol. 7(2), 111–122 (1990)

5. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny
haplotyping (PPH) problem. J. Comput. Biol. 13(2), 522–553 (2006)

6. Elberfeld, M., Schnoor, I., Tantau, T.: Influence of tree topology restrictions on
the complexity of haplotyping with missing data. Tech. Rep. SIIM-TR-A-08-05,
Universität zu Lübeck (2008)

7. Elberfeld, M., Tantau, T.: Computational complexity of perfect-phylogeny-related
haplotyping problems. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008.
LNCS, vol. 5162, pp. 299–310. Springer, Heidelberg (2008)

8. Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure
via perfect phylogeny. J. of Bioinform. and Comput. Biol. 1(1), 1–20 (2003)

9. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Mol. Biol. and Evol. 12(5), 921–927 (1995)

10. Gramm, J., Hartman, T., Nierhoff, T., Sharan, R., Tantau, T.: On the complexity of
SNP block partitioning under the perfect phylogeny model. Discrete Math. (2008)
(to appear), doi:010.1016/j.disc.2008.04.002

11. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data
via perfect path phylogenies. Discrete and Appl. Math. 155(6-7), 788–805 (2007)

12. Gusfield, D.: Inference of haplotypes from samples of diploid populations: Com-
plexity and algorithms. J. Comput. Biol. 8(3), 305–323 (2001)

13. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. In: Proc. RECOMB 2002, pp. 166–175. ACM Press, New York (2002)

14. Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Proc.
RECOMB 2002, pp. 10–19. ACM Press, New York (2004)

15. Kimmel, G., Shamir, R.: The incomplete perfect phylogeny haplotype problem. J.
Bioinform. and Comput. Biol. 3(2), 359–384 (2005)

16. Liu, Y., Zhang, C.-Q.: A linear solution for haplotype perfect phylogeny problem.
In: Proc. Int. Conf. Adv. in Bioinform. and Appl., pp. 173–184. World Scientific,
Singapore (2005)

17. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny.
SIAM J. Comput. 33(3), 590–607 (2004)

18. Vijaya Satya, R., Mukherjee, A.: An optimal algorithm for perfect phylogeny hap-
lotyping. J. Comput. Biol. 13(4), 897–928 (2006)

19. Vijaya Satya, R., Mukherjee, A.: The undirected incomplete perfect phylogeny
problem. IEEE/ACM T. Comput. Biol. and Bioinform. 5(4), 618–629 (2008)

20. Steel, M.: The complexity of reconstructing trees from qualitative characters and
subtrees. J. Classif. 9(1), 91–116 (1992)

Improved Deterministic Algorithms for
Weighted Matching and Packing Problems�

Qilong Feng1, Yang Liu2, Songjian Lu2, and Jianxin Wang1,��

1 School of Information Science and Engineering, Central South University,
Changsha 410083, P.R. China

2 Department of Computer Science and Engineering
Texas A&M University

College Station, Texas 77843-3112, USA
jxwang@mail.csu.edu.cn

Abstract. For the weighted rD-Matching problem, we present a de-
terministic parameterized algorithm with time complexity O∗(4(r−1)k),
improving the previous best upper bound O∗(4rk). In particular, the
algorithm can be applied to solve the unweighted 3D-Matching prob-
lem with time O∗(16k), improving the previous best result O∗(21.26k).
For the weighted r-Set Packing problem, we present a deterministic
parameterized algorithm with time complexity O∗(2(2r−1)k), improv-
ing the previous best result O∗(22rk). The algorithm, when applied to
the unweighted 3-Set Packing problem, has running time O∗(32k), im-
proving the previous best result O∗(43.62k). Moreover, for the weighted
rD-Matching and weighted r-Set Packing problems, we get a kernel of
size O(kr).

1 Introduction

Matching and packing problems form an important class of NP-hard problems.
In this paper, we are mainly focused on the weighted rD-Matching and weighted
r-Set Packing problems, which are formally defined as follows.

Weighted rD-Matching: Given a collection S ⊆ A = A1 × A2 × · · · × Ar

of r-tuples and an integer k, where A1, A2, · · · , Ar are pair-wise disjoint
sets and each r-tuple in S has a weight value, find a subcollection S′ of
k r-tuples in S with the maximum weight sum such that no two r-tuples
in S′ have common elements, or report that no such subcollection exists.

� This work is supported by the National Natural Science Foundation of China (No.
60773111), the National Grand Fundamental Research 973 Program of China (No.
2008CB317107), the Excellent Youth Foundation of Hunan province of China (No.
06JJ10009), Program for New Century Excellent Talents in University (No. NCET-
O5-0683) and Program for Changjiang Scholars and Innovative Research Team in
University (No. IRT0661).

�� Corresponding author.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 211–220, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

212 Q. Feng et al.

Weighted r-Set Packing: Given a collection S of r-sets (i.e., sets that
contain exactly r elements) and an integer k, where each r-set in S has a
weight value, find a subcollection S′ of k r-sets in S with the maximum
weight sum such that no two r-sets in S′ have common elements, or
report that no such subcollection exists.

For the weighted rD-Matching and weighted r-Set Packing problems, Downey
and Fellows [1] gave the first deterministic parameterized algorithm of time com-
plexity O∗((rk)!(rk)3rk) 1. Liu, Chen, and Wang [2] further reduced the above
time complexity to O∗(12.8rk). For the weighted 3D-Matching problem, Wang
and Feng [3] gave a more efficient algorithm of time complexity O∗(7.563k). Chen
et al. [4] presented a deterministic parameterized algorithm with time complex-
ity O∗(4rk), which is currently the best result for the weighted rD-Matching and
weighted r-Set Packing problems.

We remark that there is also a very active research line on parameterized
algorithms for the unweighted versions of the problems. Fellows et al. [5] gave
a deterministic algorithm with running time O∗(25rk−4k

(6(r−1)k+k
rk

)
). Chen et

al. [6] and Jia et al. [7] presented deterministic algorithms for unweighted
rD-Matching and unweighted r-Set Packing problems, with time complexity
O∗((r − 1)k((r − 1)k/e)k(r−2)). Koutis [8] gave an improved deterministic pa-
rameterized algorithm with running time O∗(2O(rk)) for the unweighted r-Set
Packing problem. For the case of r = 3, Liu et al. [9] presented a determinis-
tic algorithm with time O∗(21.26k) for the unweighted 3D-Matching problem,
which is currently the best result. For the unweighted 3-Set Packing problem,
Liu et al. [9] gave a deterministic algorithm with time complexity O∗(97.98k),
which was further reduced by Wang and Feng [10] to O∗(43.62k). This is cur-
rently the best result for the unweighted 3-Set Packing problem. It should be
pointed out that all these algorithms [6,7,8,9,10] cannot be applied to solve the
weighted versions. Very recently, Koutis [11] proposed a randomized algorithm
of time complexity O∗(8k) for the unweighted 3D-Matching and unweighted 3-
Set Packing problems. However, as remarked in [12], the algorithms in [11] are
only workable for unweighted case and do not appear to extend to the weighted
versions. Moreover, whether the algorithms can be extended to the rD-Matching
and r-Set Packing problems for r > 3, and whether the randomized algorithm
can be derandomized are still unknown.

In this paper, we derive deterministic parameterized algorithms of time
O∗(4(r−1)k) and O∗(2(2r−1)k) respectively for the weighted rD-Matching and
weighted r-Set Packing problems, improving the corresponding previous best re-
sult O∗(4rk) and O∗(22rk). In fact, our algorithms can be applied to solve the the
unweighted 3D-Matching and unweighted 3-Set Packing problems in time O∗(16k)
and O∗(32k) respectively, which are much better than the corresponding previous
best result O∗(21.26k) and O∗(43.62k). Moreover, a kernel of size O(kr) for the
weighted rD-Matching and weighted r-Set Packing problems is presented.

We first give a brief review on the necessary background.

1 Following the recent convention, we denote by O∗(f(k)) the bound O(f(k)nO(1)).

Improved Deterministic Algorithms 213

Assume that n and k are integers such that n > k. Denote by Zn the set
{0, 1, · · · , n − 1}. A splitting function over Zn is a {0, 1} function over Zn. A
subset W of Zn is called a k-subset if it contains exactly k elements. Let (W0, W1)
be a partition of the k-subset W , i.e., W0 ∪ W1 = W and W0 ∩ W1 = ∅. We
say that a splitting function f over Zn implements the partition (W0, W1) if
f(x) = 0 for all x ∈ W0 and f(y) = 1 for all y ∈ W1.

Definition 1. [13] A set Ψn,k of splitting functions over Zn is an (n, k)-
universal set if for every k-subset W of Zn and any partition (W1, W2) of W ,
there is a splitting function f in Ψn,k that implements (W1, W2). The size of an
(n, k)-universal set Ψn,k is the number of splitting functions in Ψn,k.

Lemma 1. [13] There is an O(n2k+12 log2 k) time deterministic algorithm that
constructs an (n, k)-universal set Ψn,k of size bounded by n2k+12 log2 k+2.

A function f on Zn is injective from a subset W of Zn if for any two different
elements x and y in W , f(x) �= f(y).

By Bertrand’s postulate, proved by Chebyshev in 1850 (see [15], Section 5.2),
there is a prime number q such that n ≤ q < 2n. Moreover, the smallest prime
number q0 between n and 2n can be constructed in time O(n).

Lemma 2. [14] Let n and k be integers, n ≥ k, and let q0 be the smallest
prime number such that n ≤ q0 < 2n. For any k-subset W in Zn, there is
an integer z, 0 ≤ z < q0, such that the function gn,k,z over Zn, defined as
gn,k,z(a) = (az mod q0) mod k2, is injective from W .

2 Improved Algorithm for Weighted rD-Matching

Let S ⊆ A1 × · · · × Ar be a collection of r-tuples. Denote by Vali(S) the set of
all elements from Ai in S, 1 ≤ i ≤ r, and let Val(S) =

⋃r
i=1 Vali(S). Without

loss of generality, we assume that |Vali(S)| = n for all i. A matching of size k is
called a k-matching.

Let (S, k) be an instance of the weighted rD-Matching problem. Suppose that
a k-matching of the maximum weight in S is M∗. Our improved algorithm for the
weighted rD-Matching problem is based on the idea of Divide-and-Conquer. Let
Val1(S) = {a1, . . . , an}. Then it is easy to see that there is an index h such that
{a1, . . . , ah} contains k/2 elements in Val1(M∗) and {ah+1, . . . , an} contains the
other k/2 elements in Val1(M∗). In particular, this implies that the maximum
weighted k-matching M∗ can be partitioned into two (k/2)-matchings M∗

1 and
M∗

2 such that {a1, . . . , ah} contains all elements in Val1(M∗
1) and {ah+1, . . . , an}

contains all elements in Val1(M∗
2). The index h can be found by enumerating all

indices from 1 to n. Therefore, finding the correct partition of the elements in
Val1(S) takes only n rounds. This idea is implemented in Figure 1.

We only need to prove that when the collection S contains k-matchings, the
algorithm WRDM(S, k) must return a k-matching of the maximum weight in S.

214 Q. Feng et al.

Theorem 1. The algorithm WRDM in Figure 1 correctly solves the weighted
rD-Matching problem in time O∗(4(r−1)k).

Proof. First note that the collection Q returned by the algorithm WRDM is
initialized as the empty set ∅ in step 4. Only when step 5.1 of the algorithm finds
a k-matching Q1 in S, step 5.2 of the algorithm replaces Q by a k-matching.
Therefore, if the collection S has no k-matching, then the algorithm WRDM
will always correctly return the empty set ∅.

Without loss of generality and by renaming the elements, we can assume that
the set Val1(S) is the set Zn, and that the set Val(S)−Val1(S) is the set Z(r−1)n.

Algorithm WRDM (S, k)
Input: S ⊆ A = A1 × A2 × · · · × Ar and an integer k
Output: a maximum weighted k-matching in S if such a matching exists
1. for h = 1 to k do

construct a (((r − 1)k)2, (r − 1)h)-universal set Ψ((r−1)k)2,(r−1)h;
2. let q1 be the smallest prime number such that n ≤ q1 < 2n;
3. let q2 be the smallest prime number such that (r − 1)n ≤ q2 < 2(r − 1)n;
4. Q = ∅;
5. for 0 ≤ z1 ≤ q1 and 0 ≤ z2 ≤ q2 do
5.1 Q1 = Matching-ext(S, z1, z2, k);
5.2 if Q1 �= ∅ and Q1 is a k-matching with weight larger than that of Q

then Q = Q1;
6. return Q;

Subroutine Matching-ext(S′, z1, z2, h)
Input: a collection S′ of r-tuples and an integer h ≤ k, z1 gives a pre-partition

of Val1(S′), and z2 gives a pre-partition of Val(S′) − Val1(S′).
Output: an h-matching with maximum weight in S′ if such a matching exists
1. if h = 1 then return the r-tuple with the maximum weight in S′;
2. Q′ = ∅;
3. for i = 0 to k2 − 1 do

for each splitting function f in Ψ((r−1)k)2,(r−1)h do

3.1 V0 = {a | a ∈ Val1(S′) and gn,h,z1(a) ≤ i};
3.2 V1 = {a | a ∈ Val1(S′) and gn,h,z1(a) > i};
3.3 W0 = {a | a ∈ Val(S′) − Val1(S′) and f(g(r−1)n,(r−1)k,z2(a)) = 0};
3.4 W1 = {a | a ∈ Val(S′) − Val1(S′) and f(g(r−1)n,(r−1)k,z2(a)) = 1};
3.5 let S′

0 be the subcollection of r-tuples in S′ that contain only elements
in V0 ∪ W0;

3.6 let S′
1 be the subcollection of r-tuples in S′ that contain only elements

in V1 ∪ W1;
3.7 Q′

0 = Matching-ext(S′
0, z1, z2, h/2);

3.8 Q′
1 = Matching-ext(S′

1, z1, z2, h/2);
3.9 if Q′

0 �= ∅, Q′
1 �= ∅ and the sum of the weights of Q′

0 and Q′
1 is larger

than that of Q′ then Q′ = Q′
0 ∪ Q′

1;
4. return Q′;

Fig. 1. The algorithm WRDM

Improved Deterministic Algorithms 215

In particular, for an h-matching M in S for any integer h, Val1(M) is a subset of h
elements in Zn and Val(M)−Val1(M) is a subset of (r − 1)h elements in Z(r−1)n.

We prove the following claim for the subroutine Matching-ext(S′, z1, z2, h)
by induction on the integer h.

Claim. Let M∗ be an h-matching of the maximum weight in the col-
lection S′, where S′ ⊆ S and h ≤ k. If z1 is an integer that makes
the function gn,k,z1 injective from Val1(M∗), and if z2 is an integer that
makes the function g(r−1)n,(r−1)k,z2 injective from Val(M∗)−Val1(M∗),
then the subroutine Matching-ext(S′, z1, z2, h) returns an h-matching
of the maximum weight in the collection S′.

The Claim obviously holds true for the case h = 1 by step 1 of the subroutine
(for any given z1 and z2). Now we consider the case h > 1. Recall that the
function gn,k,z1 is from Zn to Zk2 . Since the function gn,k,z1 is injective from
Val1(M∗), we can assume that gn,k,z1 maps the h elements in Val1(M∗) to h
different elements i1, i2, . . ., ih in Zk2 , where 0 ≤ i1 < i2 < · · · < ih ≤ k2 − 1.
Take the index ih/2 and let M∗

0 be the set of h/2 r-tuples in M∗ such that
∀a ∈ Val1(M∗

0), gn,h,z1(a) ≤ ih/2, and let M∗
1 be the rest h/2 r-tuples in M∗

such that ∀b ∈ Val1(M∗
1), gn,h,z1(b) > ih/2.

Now consider the set Val(M∗) − Val1(M∗). First of all, by our assumption,
the function g(r−1)n,(r−1)k,z2, which is from Z(r−1)n to Z((r−1)k)2 , is injective
from Val(M∗) − Val1(M∗). Therefore, the function g(r−1)n,(r−1)k,z2 maps the
set Val(M∗) − Val1(M∗) of (r − 1)h elements to a set X of (r − 1)h different
elements in Z((r−1)k)2 . In particular, the function g(r−1)n,(r−1)k,z2 maps the set
Val(M∗

0) − Val1(M∗
0) of (r − 1)h/2 elements to a set X0 of (r − 1)h/2 different

elements in Z((r−1)k)2 , and maps the set Val(M∗
1) − Val1(M∗

1) of (r − 1)h/2
elements to a set X1 of (r − 1)h/2 different elements in Z((r−1)k)2 . That is

g(r−1)n,(r−1)k,z maps Val(M∗
0) − Val1(M∗

0) to X0, (1)

g(r−1)n,(r−1)k,z maps Val(M∗
1) − Val1(M∗

1) to X1. (2)

Note that (X0, X1) makes a partition of X (i.e., X0 ∩ X1 = ∅ and X0 ∪ X1 =
X). Since X is a subset of (r − 1)h elements in Z((r−1)k)2 , by the definition
of the (((r − 1)k)2, (r − 1)h)-universal set Ψ((r−1)k)2,(r−1)h, there is a splitting
function f0 in Ψ((r−1)k)2,(r−1)h that implements the partition (X0, X1), that is
f0(a) = 0 for all a ∈ X0, f0(b) = 1 for all b ∈ X1.

Now consider step 3 of the subroutine Matching-ext(S′, z1, z, h), when the
integer i = ih/2 is picked and the splitting function f = f0 is picked. For these
selections of the index i = ih/2 and the function f = f0, we can derive that
Val1(M∗

0) ⊆ V0 and Val1(M∗
1) ⊆ V1. Moreover, based on the step 3.3-3.4 of

the subroutine, we derive that Val(M∗
0) − Val1(M∗

0) ⊆ W0, and Val(M∗
1) −

Val1(M∗
1) ⊆ W1.

It is easy to get that all elements in M∗
0 are contained in V0 ∪ W0, and all

elements in M∗
1 are contained in V1 ∪W1. By steps 3.5–3.6, the subcollection S′

0

216 Q. Feng et al.

contains the (h/2)-matching M∗
0 , and the subcollection S′

1 contains the (h/2)-
matching M∗

1 . Note that M∗
0 must be an (h/2)-matching of the maximum weight

in S′
0 – otherwise, a maximum weighted (h/2)-matching in S′

0 plus the (h/2)-
matching M∗

1 in S′
1 would form an h-matching whose weight is larger than that

of M∗, contradicting the maximality of M∗. Since the function gn,k,z1 is injec-
tive from Val1(M∗), the integer z1 also makes the function gn,k,z1 injective from
Val1(M∗

0). Similarly, the integer z2 makes the function g(r−1)n,(r−1)k,z2 injective
from Val(M∗

0) − Val1(M∗
0). Therefore, by the induction hypothesis, the subrou-

tine call Matching-ext(S′
0, z1, z2, h/2) in step 3.7 will return an (h/2)-matching

M ′
0 of the maximum weight in S′

0, where the (h/2)-matching M ′
0 should have the

same weight as that of M∗
0 . Completely similar analysis shows that the subrou-

tine call Matching-ext(S′
1, z1, z2, h/2) in step 3.8 will return an (h/2)-matching

M ′
1 of the maximum weight in S′

1, where the (h/2)-matching M ′
1 should have the

same weight as that of M∗
1 . Since the collections S′

0 and S′
1 share no common

elements, the union of M ′
0 and M ′

1 is an h-matching in S′ whose weight is equal
to that of the maximum weighted h-matching M∗, we conclude that after step
3.9 of the subroutine for the selections of the index i = ih/2 and the splitting
function f = f0, the collection Q becomes an h-matching of the maximum weight
in S′. In particular, when the subroutine Matching-ext(S′, z1, z2, h) returns at
step 4, it returns an h-matching of the maximum weight in S′. This completes
the proof of the Claim.

For the algorithm WRDM(S, k), suppose that the collection S has a k-
matching M̄ of the maximum weight. Since the set Val1(M̄) is a subset of k
elements in Val1(S) = Zn, by Lemma 2, there is an integer z1, 0 ≤ z1 ≤ q1,
such that the function gn,k,z1 is injective from Val1(M̄). Similarly, since the set
Val(M̄)−Val1(M̄) is a subset of (r−1)k elements in Val(S)−Val1(S) = Z(r−1)n,
by Lemma 2, there is an integer z2, 0 ≤ z2 ≤ q2, such that the function
g(r−1)n,(r−1)k,z2 is injective from Val(M̄)−Val1(M̄). When these values of z1 and
z2 are selected in step 5 of the algorithm, by the Claim proved above, the sub-
routine call Matching-ext(S, z1, z2, k) in step 5.1 will return a k-matching of
the maximum weight in S. Now by step 5.2 of the algorithm, the final collection
Q returned by the algorithm in step 6 is a k-matching of the maximum weight
in S. This completes the proof of the correctness for the algorithm WRDM.

Finally, we study the complexity of the algorithm WRDM. We first consider
the complexity for the subroutine Matching-ext(S′, z1, z2, h). By Lemma 1,
the (((r − 1)k)2, (r − 1)h)-universal set Ψ((r−1)k)2,(r−1)h contains at most ((r −
1)k)22(r−1)h+12 log2((r−1)h)+2 splitting functions. Therefore, the loop body, i.e.,
steps 3.1–3.9, of the subroutine is executed at most

k2((r − 1)k)22(r−1)h+12 log2((r−1)h)+2

≤ 2(r−1)hk2((r − 1)k)2212 log2((r−1)k)+2

= 2(r−1)h212 log2((r−1)k)+4 log((r−1)k)+2

times (note that r ≥ 3). Let T (m, h) be the running time of the subroutine
Matching-ext(S′, z1, z2, h), where m = O(nr) is the size of the collection S′.
T (m, h) satisfies the following recurrence relation:

Improved Deterministic Algorithms 217

T (m, 1) ≤ cm;

T (m, h) ≤ 2(r−1)h212 log2((r−1)k)+4 log((r−1)k)+2 · (2T (m, h/2) + cm),

where c is a constant. It is not difficult to verify that there are constants
c1 and c2 such that T (m, h) ≤ c14(r−1)h+c2 log3(r−1)km. This shows that the
running time of the subroutine Matching-ext(S′, z1, z2, h) is bounded by
O(4(r−1)h+O(log3(r−1)k)m).

Since the prime number q1 is bounded by 2n, and the prime num-
ber q2 is bounded by 2(r − 1)n, from the analysis for the complexity of
the subroutine Matching-ext(S′, z1, z2, h), now it is straightforward to con-
clude that the running time of the algorithm WRDM(S, k) is bounded by
O(4(r−1)k+O(log3(r−1)k)m3) = O∗(4(r−1)k), where m = O(nr) is the size of the
input collection S. This completes the proof of the theorem. ��
We point out that the algorithm WRDM(S, k) can be used directly to solve
the unweighted rD-Matching problem in time O∗(4(r−1)k), which improves the
previous best deterministic algorithm of running time O∗(4rk) for the problem
[4]. Particularly, for the unweighted 3D-Matching problem, we can get a deter-
ministic algorithm of running time O∗(16k), improving the previous best result
O∗(21.26k) [9].

3 Improved Algorithm for Weighted r-Set Packing

A k-packing is a packing of size k. Let (S, k) be an instance of the weighted
r-Set Packing problem, and assume Val(S) is the set of elements occurring in S,
Val(S)=n. Given an instance (S, k), assume that V al(S) = {1, 2, ..., n}. Given a
set s, the element with smallest value in s is the pivot of s. Then let Pivot(S) =
[a1, · · · , al] be those elements which are pivots and ai < aj if i < j.

Lemma 3. Given an instance (S, k), let P be the k-packing with maximum
weight in S. Suppose s1, · · · , sk are sets in P and are sorted in increasing order by
their pivots. Let aj be the pivot of si, then a1, · · · , aj are not in sets sj+1, · · · , sk

for 1 ≤ i ≤ k.

Proof. Since s1, · · · , sk are sorted in increasing order by their pivots, aj+1, · · · , al

are larger than a1, · · · , aj . By definition, any element in sp are larger than the
pivot ap for j + 1 ≤ p ≤ k. So a1, · · · , aj can not be in sj+1, · · · , sk. ��
Given an instance (S, k), let P be a k-packing with maximum weight in S.
Suppose s1, · · · , sk are k sets in P and all sets are sorted in increasing order
by their pivots. It is obvious that Pivot(S) can be found in polynomial time.
Also we can find some j such that a1, · · · , aj are not in sk/2+1, · · · , sk accord-
ing to lemma 3. That j can be found by trying 1, 2, · · · , j sequentially. Then
we divide Val(S)−{a1, · · · , aj} into two disjoint parts W0 and W1 such that
Val(s1, · · · , sk/2)⊆ W0 ∪{a1, · · · , aj}, and Val(sk/2+1, · · · , sk)⊆ W1. The idea is
implemented in the algorithm WRSP given in figure 2.

218 Q. Feng et al.

Algorithm WRSP (S, k)
Input: a collection S of sets with |Val(S)| = n, and an integer k
Output: a maximum weighted k-packing in S if such Packing exists
1. for h = 1 to (2r − 1)k/2 do construct a (n, h)-universal set Ψn,h;
2. Q = ∅;
3. find Pivot(S)=[a1, · · · , al];
4. Q1=Packing-ext(S, k, [a1, · · · , al]);
5. if Q1 is a k-packing then Q = Q1;
6. return Q;

Subroutine Packing-ext(S′, h, [ap..aq])
Input: a collection S′ of sets, an integer h, and Pivot(S′): ap, · · · , aq

Output: a maximum weighted h-packing in S′ if such Packing exists
1. Q′ = ∅;
2. if h = 1 then return the set with maximum weight in S′;
3. for j = h/2 to q − h/2 do
3.1 for each splitting function f in Ψn,(2r−1)h/2 do
3.2 A1 = {a1, a2, · · · , aj};
3.3 W0 = {x|x ∈Val(S′)-A1 and f(x) = 0};
3.4 W1 = {x|x ∈Val(S′)-A1 and f(x) = 1};
3.5 let S′

0 be the subcollection of S′ that contains only elements in
W0

⋃A1;
3.6 let S′

1 be the subcollection of S′ that contains only elements in W1;
3.7 Q′

0 =Packing-ext(S′
0, h/2, ap, · · · , aj);

3.8 Q′
1 =Packing-ext(S′

1, h/2, aj+1, · · · , aq);
3.9 if Q′

0 �= ∅, Q′
1 �= ∅ and the sum weight of Q′

0 and Q′
1 is larger than

Q′ then replace the Q′ with Q′
0 ∪Q′

1;
4. return Q′;

Fig. 2. The algorithm WRSP

Theorem 2. The algorithm WRSP correctly solves the weighted r-Set Packing
problem in time O(m2 log k2(2r−1)k+O(log3((2r−1)k/2))), where m is the size of S.

The proof of Theorem 2 is similar to Theorem 1, which is neglected here.
Now the time complexity is related to m, which is the size of S. However, m

can be replaced by O(kO(r)). We just apply lemma 2 to have multiple problems
of size bounded by O((rk)2r).

Given an instance (S, k) of the weighted r-Set Packing problem, let P ∗ be a
k-packing with maximum weight in S. By lemma 2, there must exist an integer
z3 such that makes the function gn,rk,z3 mapping from S to Z(rk)2 injective
from Val(P ∗). Given two sets s1 = {x1, · · · , xr} and s2 = {y2, · · · , yr} in S, s1
and s2 are conflicted if xi and yi are mapped to the same element in Z(rk)2 by
g(n, rk, z3). Given integer z3, we can reorganize the sets of S in the following way:
(1) If a set s in S contains two or more elements mapping to the same element
of Z(rk)2 , delete s from S. (2) If two sets s1 and s2 are conflicted, delete the

Improved Deterministic Algorithms 219

set with smaller weight, or delete any one if they have the same weight. Let S′

be the remaining sets after the above process. Since z3 is an integer that makes
gn,rk,z3 injective from Val(P ∗), there must exist a k-packing P ′ in S′ having the
same weight as P ∗ by our operations. Therefore, any k-packing with maximum
weight in S′ is also a k-packing with maximum weight in S. We note that the
size of the S′ is bounded by (rk)2r , since the number of elements in S′ is (rk)2.

Lemma 4. Given an instance (S, k) of the weighted r-Set Packing problem, let
P ∗ be a k-packing with maximum weight in S. The instance (S, k) can be reduced
to at most 2n new instances (S′, k) such that (1) the size of S′ is bounded by
(rk)2r, and (2) at least one new instance contains a k-packing P ′ of the same
weight as P ∗.

Given an instance (S, k) of the weighted r-Set Packing problem, we first use
Lemma 4 to reduce the instance (S, k) to many new instances (S′, k). Then we
apply our algorithm WRSP(S′, k). If none of the new instances find a k-packing,
return ∅. Otherwise, return the k-packing of the maximum weight.

Corollary 1. The weighted r-Set Packing problem can be solved in time
O(2n(rk)2r log k2(2r−1)k+O(log3((2r−1)k/2))) = O∗(2(2r−1)k).

We point out that the algorithm WRSP(S, k) can be directly applied to
solve the unweighted r-Set Packing problem in time O∗(2(2r−1)k), and greatly
improves the previous best result O∗(22rk) [4]. Particularly, for unweighted
3-Set Packing problem, we can have an algorithm of time O∗(32k), which
greatly improves the previous best result O∗(43.62k) [3].

Remark: For the weighted r-Set Packing and weighted rD-Matching problems,
a kernel of size O(kr) can be obtained to replace the m in Theorem 2. Because
of the page limitation, the process of getting that kernel is neglected here and
can be found in the full paper.

4 Conclusions

In this paper, we study improved algorithms for the weighted rD-Matching and
weighted r-Set Packing problems. We present an improved algorithm with time
complexity O∗(4(r−1)k) for the weighted rD-Matching problem, which greatly
improves the previous best result O∗(4rk). For the weighted r-Set Packing prob-
lem, a more efficient parameterized algorithm in time O∗(2(2r−1)k) is presented,
which greatly improves the current best result O∗(22rk). Moreover, the proposed
algorithms can be applied to solve the unweighted 3D-Matching and unweighted
3-Set Packing problems with time complexity O∗(16k) and O∗(32k) respectively,
greatly improving the corresponding previous best results. At last, a kernel of
size O(kr) is obtained for the weighted r-Set Packing and weighted rD-Matching
problems.

220 Q. Feng et al.

References

1. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
2. Liu, Y., Chen, J., Wang, J.: On efficient FPT algorithms for weighted matching

and packing problems. In: Proc. 4th Ann. Conference on Theory and Applications
of Models of Computation (TAMC 2007). LNCS, vol. 4484, pp. 575–586 (2007)

3. Wang, J., Feng, Q.: Improved parameterized algorithms for weighted 3-set packing.
In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 130–139. Springer,
Heidelberg (2008)

4. Chen, J., Kneis, J., Lu, S., Mölle, D., Richter, S., Rossmanith, P., Sze, S., Zhang,
F.: Randomized divide-and-conquer: improved path, matching, and packing algo-
rithms. SIAM Journal on Computing (to appear)

5. Fellows, M., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thi-
likos, D., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching
and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221,
pp. 311–322. Springer, Heidelberg (2004)

6. Chen, J., Friesen, D., Jia, W., Kanj, I.: Using nondeterminism to design efficient
deterministic algorithms. Algorithmica 40, 83–97 (2004)

7. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set pack-
ing. Journal of Algorithms 50, 106–117 (2004)

8. Koutis, I.: A faster parameterized algorithm for set packing. Information Processing
Letters 94, 7–9 (2005)

9. Liu, Y., Lu, S., Chen, J., Sze, S.H.: Greedy localization and color-coding: improved
matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

10. Wang, J., Feng, Q.: An O∗(3.523k) parameterized algorithm for 3-set packing. In:
Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp.
82–93. Springer, Heidelberg (2008)

11. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

12. Williams, R.: Finding paths of length k in O∗(2k) time, arXiv:0807.3026v2 [cs.DS]
(2008)

13. Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proc. 39th Annual Symposium on Foundatins of Computer Science (FOCS
1995), pp. 182–190 (1995)

14. Fredman, M., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the ACM 31, 538–544 (1984)

15. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd
edn. Cambridge Univesity Press, New York (2008)

Parameterized Complexity of Coloring
Problems: Treewidth versus Vertex Cover

(Extended Abstract)

Jǐŕı Fiala1, Petr A. Golovach2,�, and Jan Kratochv́ıl1

1 Institute for Theoretical Computer Science�� and Department of Applied
Mathematics, Charles University, Prague, Czech Republic

{fiala,honza}@kam.mff.cuni.cz
2 Institutt for informatikk, Universitetet i Bergen, Norway

petr.golovach@ii.uib.no

Abstract. We compare the fixed parameter complexity of various vari-
ants of coloring problems (including List Coloring, Precoloring

Extension, Equitable Coloring, L(p, 1)-Labeling and Channel

Assignment) when parameterized by treewidth and by vertex cover
number. In most (but not all) cases we conclude that parametrization by
the vertex cover number provides a significant drop in the complexity of
the problems.

1 Introduction

An important aspect in the parameterized complexity theory is the choice of
the parameter for a problem. One of the best investigated structural parameters
for graph problems is the treewidth of the input graph (see e.g. surveys [4,6]).
While many problems are FPT when parameterized by the treewidth, there are
problems which are NP-hard even for graphs of small fixed treewidth (or even
for trees). Also, there are problems which can be solved in polynomial time
for graphs of bounded treewidth, but the exponent of the polynomial depends
on the width (i.e., they are in XP if parameterized by the treewidth). Some
of these problems are known to be W-hard, when parameterized by treewidth,
which contributes to the fine structure of the FPT hierarchy. New results in
this direction on FPT-complexity of variants of graph coloring and domination
problems were recently obtained in [13,9].

For problems which are difficult for graphs of bounded treewidth, it is in-
teresting to consider different structural parameterizations that impose stronger
restrictions. Fellows et al. proposed to study parametrization by the vertex cover
number and they applied it to graph layout problems in [12]. The goal of this
paper is to pursue the road opened in [12] and apply this angle of view to several
variants of graph coloring problems, including problems coming from the area
of Frequency Assignment.

� Supported by Norwegian Research Council.
�� Supported by the Ministry of Education of the Czech Republic as project 1M0545.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 221–230, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

222 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

The vertex cover number of a graph G (denoted by vc(G)) is the minimum
size of a set W of vertices of G such that I = V (G)\W is an independent set. For
such a partition, the star K1,|I| with the central bag W and leaf-bags W ∪ {x}
for x ∈ I is a tree-decomposition of G of width W . Hence tw(G) ≤ vc(G)
and parametrization by the vertex cover number indeed has a chance to make
problems easier. In most (but not all) coloring and labeling cases considered in
this paper, we conclude that parametrization by vertex cover number does make
the problem more tractable.

Recall that a (proper) vertex coloring of a graph is an assignment c of colors
to the vertices of the graph such that for any two adjacent vertices u and v,
c(u) �= c(v). Many variants of graph coloring have been intensively studied. We
will consider List Coloring (where the input graph comes equipped with lists
of admissible colors for the vertices, and the question is if there is a proper
coloring such that each vertex is colored by a color from its list), Precoloring

Extension (where some vertices of the input graph are precolored and the
other ones are free to be colored by any color; this is a special version of List

Coloring when each list has either one element or contains all colors), and
Equitable Coloring (in which case it is asked that any two color classes
differ by at most one in size). All these variants of graph coloring are NP-hard
in the general case [21,3] and it is natural to explore their FPT-complexity under
different parameterizations as well [5].

Distance constrained labeling of graphs is a concept generalizing graph coloring
that stems from the Frequency Assignment Problem. Here the colors (we prefer
to call them labels) are nonnegative integers and requirements are posed on the
difference of labels assigned to vertices that are close to each other [22,7]. In
particular, given numbers p and q, an L(p, q)-labeling of span k of a graph is
a labeling of its vertices by integers from {0, 1, . . . , k} such that the labels of
adjacent vertices differ by at least p, and the labels of vertices at distance two
in the graph differ by at least q. This concept was intensively studied both for
the practical motivation and for interesting theoretical properties. E.g., L(2, 1)-
Labeling is polynomial time solvable for trees [8] but NP-complete for graphs
of treewidth two [14], and for every p > q > 1, p and q relatively prime, L(p, q)-
labeling becomes NP-complete already for trees [15].

In this paper, we concentrate on the case q = 1; in this case it is simply
required that labels assigned to vertices at distance two are distinct. Note also
that in the case p = q = 1, L(1, 1)-labeling coincides with coloring the second
distance power of the input graph (just beware of the offset 1 between the span
of a labeling and the number of colors in a coloring), also previously intensively
studied [2,11]. Also because of this meaningful correlation, we treat the case
p = q = 1 in more detail and consider List L(1, 1)-Labeling and L(1, 1)-
Prelabeling Extension problems.

Finally, we consider the Channel Assignment problem whose input is a
graph equipped with integer weights on its edges, and the task is to assign
nonnegative integers to its vertices so that the difference of labels assigned to a
pair of adjacent vertices is greater or equal than the weight of the corresponding

Parameterized Complexity of Coloring Problems 223

edge, while minimizing the span of the assignment (i.e., the largest label used).
This formulation also stems from the Frequency Assignment Problem, and e.g.,
the L(p, q)-Labeling problem with input graph G coincides with Channel

Assignment for the second distance power of G and weights having only two
values — p and q. However, note that the transition from G to its second power
does not preserve bounded treewidth, so the FPT-complexity results do not
follow from one another. Yet Channel Assignment is known NP-hard for
graphs of treewidth at most three [20] (note only that in this case the size of
the input is measured as n + log w where n is the number of vertices and w the
maximum weight of an edge).

A comparison of known and new results on the fixed parameter complex-
ity of the above mentioned problems for parametrization by treewidth versus
parametrization by vertex cover number is summarized in Table 1.

Table 1. Complexity of coloring and labeling problems parameterized by treewidth
and vertex cover, the results of this paper being denoted by [*]. In the last four rows,
k is the parameter (treewidth or vertex cover number).

Treewidth Vertex cover
List Coloring W[1]-hard[13] W[1]-hard[12],[*]

Precoloring Extension W[1]-hard[13] FPT[*]
Equitable Coloring W[1]-hard[13] FPT[*]

L(0, 1)-Labeling W[1]-hard[*] FPT[*]
L(1, 1)-Labeling W[1]-hard[*] FPT[*]
L(2, 1)-Labeling NP-c for k ≥ 2[14] FPT[*]

List L(1, 1)-Labeling NP-c for k ≥ 2[*] NP-c for k ≥ 4[*]
L(1, 1)-Prelabeling Extension NP-c for k ≥ 2[*] FPT[*]

Channel Assignment NP-c for k ≥ 3[20] in XP[*]

In this extended abstract we only present samples of proofs of our results.
The reader is referred to the full version of the paper for the omitted ones. We
also expect that the reader is familiar with the theory of tree decompositions
and parameterized complexity. We refer to the book of Downey and Fellows [10]
for an excellent exposition of this concept. We consider finite undirected graphs
and use standard graph theory notation and terminology.

2 Complexity of Coloring Problems

It has been mentioned without proof in the conclusion of [12] that List Col-

oring remains W[1]-hard when parameterized by the vertex cover number. We
note that the problem remains hard even for a special class of split graphs. (A
graph G is a split graph if its vertex set can be partitioned into a clique and an
independent set.)

Theorem 1. The List Coloring problem is W[1]-hard for split graphs with
the size of the maximum clique being the parameter.

224 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

Since the size of the maximum clique of a split graph differs from its vertex
cover number by no more than one, it also follows (perhaps somewhat surpris-
ingly), that List Coloring of split graphs is W[1]-hard when parameterized
by the vertex cover number. In contrast with the closely related Precoloring

Extension:

Theorem 2. The Precoloring Extension problem is FPT when parameter-
ized by the vertex cover number.

Proof. Suppose that W is a vertex cover of G, and let |W | = k. Let = I1, . . . , Is

be the partition of the independent set I = V (G)\W such that any two vertices
of I belong to the same Ii if and only if they have the same set of neighbors in W .
Clearly, s ≤ 2k − 1, provided G is connected. Let X be the set of non-precolored
vertices of I and let cU : V (G) \ X −→ {1, ..., r} be the given precoloring.

We reduce the problem to the list coloring problem for the subgraph H of G
induced by W ∪ X . For each vertex v ∈ X , we let L(v) := {1, . . . , r}. If w ∈ W
is precolored, then we let L(w) := {cU (w)}, otherwise L(w) := {1, . . . , r} \
cU (N(wj)), i.e., we exclude the colors of precolored neighbors of wj . Clearly,
G allows a precoloring extension with at most r colors if and only if H has a
feasible list coloring.

Denote by F the subgraph of H induced by W . We distinguish two cases:
If r > k then any feasible list coloring of F can be extended to a list coloring

of H by the greedy algorithm. If |L(w)| ≥ k for some w ∈ W , then we can
remove this vertex since it is always possible to extend any list coloring of the
obtained graph to the list coloring of F . The existence of a list coloring of the
remaining vertices w ∈ W with |L(w)| < k can be resolved in O(kk−1) time.

If r ≤ k then |L(w)| ≤ k for any vertex w ∈ W . We consider all colorings of
W , and their extensions to H by the greedy algorithm. Since W has at most kk

colorings, the running time is O(kk+1n)
Since H can be constructed in time O(r(n + m)) where n = |V (G)| and

m = |E(G)|, the total running time of the algorithm is O(kk+1n + r(n + m)).

The third variant of graph coloring we want to explore is Equitable Color-

ing. When showing that this problem becomes easy when parameterized by the
vertex cover number, we utilize the approach used in [12]. The main idea is to
reduce our problem to the integer linear programming problem which is FPT
when parameterized by the number of variables. Formally, we use the following
problem:

p-Variable Integer Linear Programming Feasibility

Input: A p × q matrix A with integer elements, an integer vector b ∈ Zq.
Parameter: p.
Question: Is there a vector x ∈ Zp such that A · x ≤ b?

It was proved by Lenstra [19] that this problem is FPT, and this algorithmic
result was improved afterward by different authors (see, e. g., a survey [1]):

Parameterized Complexity of Coloring Problems 225

Theorem 3 ([19,18,16]). The p-Variable Integer Linear Programming

Feasibility problem can be solved using O(p2.5p+o(p) · L) arithmetic operations
and space polynomial in L, where L is the number of bits of the input.

Theorem 4. The Equitable Coloring problem is FPT when parameterized
by the vertex cover number.

Proof. Let W be a vertex cover of size k of a graph G on n vertices, and let
again {I1, . . . , Is} be the partition of the remaining vertices according to their
neighborhoods.

Let r be the required number of colors. Set t = �n
r �. Any equitable coloring

of G contains a = n − rt color classes of cardinality t + 1 and b = r − a color
classes of cardinality t. We distinguish two cases:

If r ≤ k, then for each proper coloring V1, . . . , Vr of W we construct a system of
linear integer inequalities with sr variables xi,j , i ∈ {1, . . . , s} and j ∈ {1, . . . , r},
where xi,j is the number of vertices of color j in the set Ii:⎧⎪⎪⎨⎪⎪⎩

xi,j ≥ 0,
xi,j = 0, if color j is used in N(Ii),
x1,j + · · · + xs,j = t + 1 − |W ∩ Vj |, if j ∈ {1, . . . , a},
x1,j + · · · + xs,j = t − |W ∩ Vj |, if j ∈ {a + 1, . . . , r}.

It can be easily seen that this problem has an integer solution if and only if there
is an equitable coloring of G which extends the starting coloring of W . Since W
has at most kk colorings and the number of variables is at most k(2k − 1), the
Equitable Coloring problem can be solved in FPT-time.

If r > k then we impose the following assumptions on the desired equitable
coloring: Vertices of W are colored by colors {1, . . . , k} and there exists an integer
l between max{0, k − b} and min{k, a} such that the color classes V1, . . . , Vl

contain t + 1 vertices and the color classes Vl+1, . . . , Vk only t vertices.
By permuting the names of colors, every equitable coloring of G gives rise

to a coloring satisfying the above conditions. On the other hand, if a partial
coloring of G with k colors exists, such that all vertices of W are colored and
the conditions are satisfied, then it can be extended to an equitable coloring of
G: Any color from the set {k + 1, . . . , r} can be used for coloring of an arbitrary
vertex of I.

Hence we consider all at most kk colorings of W by colors 1, . . . , k, and for
every l such that max{0, k − b} ≤ l ≤ min{k, a}, we construct a system of linear
integer inequalities with sk variables xi,j , i ∈ {1, . . . , s} and j ∈ {1, . . . , k},
where xi,j is the number of vertices of color j in the set Ii:⎧⎪⎪⎨⎪⎪⎩

xi,j ≥ 0,
xi,j = 0, if color j used in N(Ii),
x1,j + · · · + xs,j = t + 1 − |W ∩ Vj |, if j ∈ {1, . . . , l},
x1,j + · · · + xs,j = t − |W ∩ Vj |, if j ∈ {l + 1, . . . , k}.

Since the number of variables is bounded by k(2k −1), we again conclude that
the problem is solvable in FPT time.

226 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

3 Complexity of the L(p, 1)-Labeling Problems

In this section we consider the L(p, 1)-Labeling problems for p = 0, 1. It was
proved in [14] that the L(2, 1)-Labeling problem is NP-complete even for graphs
of treewidth two (and this result can be extended for any fixed p ≥ 2). On the
other hand, it was shown in [23] that the L(1, 1)-Labeling problem can be
solved by a dynamic programming algorithm in time O(Δ28(t+1)+1 · n) + O(n3),
for n-vertex graphs of treewidth at most t with maximum degree Δ, and the
same holds for L(0, 1)-Labeling. We show here that it is impossible to solve
these problems in FPT-time unless FPT = W[1].

Theorem 5. The L(0, 1)-Labeling and L(1, 1)-Labeling problems are W[1]-
hard when parameterized by the treewidth.

Proof. As a sample of a hardness proof, we show the result for L(1, 1)-Labeling,
the proof for L(0, 1)-Labeling is analogous. We reduce from the Equitable

Coloring problem. It was proved in [13] that it is W[1]-hard when parameter-
ized both by the treewidth and r.

Let us start with auxiliary constructions. Suppose that l ≤ λ − 2 is a positive
integer. We define the graph F (l) with vertices a1, . . . , al, b1, . . . , bl, f, g and
c1, . . . , cλ−l−2 as follows. Each vertex ai is joined by an edge with f , each vertex
bi is joined with g, and f and g are joined with each other and with all vertices
cj . We call the vertices ai the A-roots of F (l), and the vertices bi the B-roots.
The vertex f is called the F-vertex, vertex g is called the G-vertex, and vertices
cj are called the C-vertices. We need the following property of F (l).

Lemma 1. For any L(1, 1)-labeling of F (l) of the span λ, the set of labels used
on the A-roots is the same as the set of labels used on the B-roots, and all A-roots
(B-roots) are labeled by different labels. Also any labeling of A-roots by different
integers from the set {1, . . . , λ} can be extended to an L(1, 1)-labeling of F (l).

Now we describe the reduction. Let G be a graph on n vertices u1, . . . , un with m
edges, for which an equitable coloring by r colors is questioned. Assume without
loss of generality that r divides n, and let l = n

r . Define λ = n + m + 1. Let
({Xi | i ∈ V (T)}, T) be a tree decomposition of G of width t = tw(G). We
assume that T has maximum degree three, and for any two adjacent nodes i
and j of T , |Xi \ Xj| + |Xj \ Xi| ≤ 1 (this may increase the size of T linearly).
Choose some walk P = i1 . . . is in T which contains all nodes and visits any node
at most three times. Let e1, . . . , em be edges of G enumerated in the order in
which they occur in bags Xi1 , . . . , Xim . It is assumed also that |Xi1 | = 1 (it is
possible to choose a leaf of T as the starting point of the walk).

For every i ∈ {1, . . . , r}, m copies of F (l) are constructed and joined con-
secutively by gluing B-roots of each copy with A-roots of the next copy (see
Fig. 1). Denote by Ai A-roots of the first copy, and by Bi,j (Ci,j , fi,j and gi,j

correspondingly) B-roots (C-vertices, F-vertices and G-vertices correspondingly)
of the j-th copy. We proceed by adding a copy of F (n) with A-roots v1, . . . , vn

and with B-roots united with vertices of A1 ∪ · · · ∪ Ar. Denote by f0, g0 and

Parameterized Complexity of Coloring Problems 227

Ci,1Ai Bi,1 Ci,m Bi,m

gi,1 gi,mfi,1 fi,m

Fig. 1. Construction of chains of graphs F (l)

C0 F-vertices, G-vertices and C-vertices of F (n) correspondingly. For each edge
ej = upuq, a vertex wj is introduced and joined by edges with vp, vq, and with
l − 1 vertices of sets Bi,j for i ∈ {1, . . . , r}. Denote the obtained graph by H
(see Fig. 2). The proof is concluded by the following lemma (whose proof can be
found in the full version of the paper).

wj

B1,j

Br,j

v1

vn

vp

vq

f0

g0

C0

Fig. 2. Construction of H

Lemma 2. The graph G has an equitable coloring by r colors if and only if H
has an L(1, 1)-labeling of span λ. Moreover, tw(H) ≤ (2r + 2)t + 3r + 2.

In the case of L(p, 1)-Labeling problems, the decrease in complexity is most
visible (note that for p > 1 even from NP-hardness to FPT):

Theorem 6. For every p, the L(p, 1)-Labeling problem is FPT when param-
eterized by the vertex cover number.

Proof. As in the case of the Equitable Coloring problem we use reductions
to systems of integer linear inequalities. We only note here that the case p = 0, 1
is considerably simpler than the case p > 1, since we have to be careful about
the linear ordering of the label space in the latter case.

4 Labeling as Coloring of the Distance Power

We have already mentioned that the special case of L(p, q)-Labeling for p =
q = 1 coincides with the coloring of the second distance power of the input

228 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

graph. As such, it has attracted attention of many graph theorists, and we also
want to reserve some extra space to refining our results from the previous sec-
tion. In particular, we will pay closer attention to the List and Prelabeling

variants of the problem. We prefer to stay in the labeling setting because the
FPT result holds for general p. (The hardness results are new and interesting
just for p = 1, since it was known that the List L(p, 1)-Labeling and L(p, 1)-
Prelabeling Extension problems for p ≥ 2 are NP-complete for graphs of
treewidth two [17,14].)

Theorem 7. The List L(1, 1)-Labeling problem is NP-complete for graphs of
treewidth at most two, as well as for graphs of vertex cover number at most four,
even if all lists have at most three elements.

Somewhat surprisingly, the complexity of L(1, 1)-Prelabeling Extension dif-
fers when parameterized by treewidth or vertex cover number:

Theorem 8. The L(1, 1)-Prelabeling Extension problem is NP-complete
for graphs of treewidth at most two.

Theorem 9. For every p, the L(p, 1)-Prelabeling Extension problem is in
the class FPT when parameterized by the vertex cover number.

5 Complexity of the Channel Assignment Problem

Recall that for the Channel Assignment problem, the span of the assign-
ment - as a part of the input - is measured in binary encoding. Since Channel

Assignment is known to be NP-complete for graphs of treewidth 3, the follow-
ing theorem proves a drop in complexity under parametrization by the vertex
cover number. However, it does not settle its FPT status, and we thus leave this
question as an open problem.

Theorem 10. For every k, the Channel Assignment problem is solvable in
polynomial time for graphs of vertex cover number bounded by k.

Proof. We will actually show that the minimum span of a feasible labeling can
be computed in polynomial time, if the input graph has bounded vertex cover
number. Towards this end suppose that G comes equipped with a weight function
w : E(G) −→ Z+ with all weights at most wmax. Let V (G) = W∪I be a partition
into a vertex cover W of size k and an independent set I.

Suppose G, w allows a channel assignment of span λ, and consider a (hy-
pothetical) assignment f : V (G) −→ {0, 1, . . . , λ} which minimizes the sum∑

x∈V (G) f(x). Construct an auxiliary directed graph G̃ with vertex set W ∪ X

for some X ⊂ I as follows: For every u ∈ W , follow one of the following rules (if
more than one are applicable, choose an arbitrary one)

1. if there is an x ∈ I such that f(x) = 0, xu ∈ E(G) and f(u) = w(xu), then
add one such x to X and the arc ux to E(G̃),

Parameterized Complexity of Coloring Problems 229

2. if there is a v ∈ W such that uv ∈ E(G) and f(u) = f(v) + w(uv), then add
one such arc uv to E(G̃),

3. if there are x ∈ I, v ∈ W , such that vx, xu ∈ E(G) and f(x) = f(v)+w(vx)
and f(u) = f(x) + w(xu), then add one such vertex x to X , and the arcs
ux, xv to E(G̃).

This auxiliary graph is a directed forest, all sinks are labeled 0, and all other
vertices have outdegree 1 (if some u ∈ W had outdegree 0, then reassigning
f ′(u) = f(u) − 1 would yield a valid assignment with a smaller sum of labels).
Let us call such a directed graph a scenario. Since each vertex of W which is not
a sink can be adjacent to n− k sinks from I or can be adjacent to at most k − 1
vertices of W or can be connected by directed paths of length two to a vertex in
W in at most (n − k)(k − 1) ways, the number of possible scenarios is at most
(k(n − k + 1))k = O(kknk).

For each scenario, we check if it extends to a valid channel assignment and
what would be the minimum span of such an extension. For a particular sce-
nario with vertex set W ∪ X , the labels of the vertices W ∪ X are uniquely
determined by the scenario. We first check all O(k2) edges between the vertices
of W ∪ X , and then we attend to the vertices of I \ X . Let u1, u2, . . . , uk be
an ordering of W determined by the scenario such that f(u1) ≤ f(u2) ≤ . . . ≤
f(uk). For each vertex z ∈ I \ X , we check whether it fits in some interval
[f(ui)..f(ui+1)]. This can be done in time linear in (log wmax +log n)k by check-
ing if maxj≤i(f(uj) + w(ujz)) ≤ minj≥i+1(f(uj) − w(ujz)). If none of these
intervals is available for f(z), and neither is the interval [0..f(u1)], we have to
label z by f(z) = min1≤j≤k(f(uj)+ w(ujz)). Finally we compute the maximum
of all labels used to get the span. In this way we compute the minimum possible
span of a channel assignment in time O(kk+2nk+1(log wmax + log n)).

References

1. Aardal, K., Weismantel, R., Wolsey, L.A.: Non-standard approaches to integer
programming. Discrete Appl. Math. 123, 5–74 (2002); Workshop on Discrete Op-
timization, DO 1999, Piscataway, NJ (1999)

2. Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. SIAM J.
Discrete Math. 16, 651–662 (2003) (electronic)

3. Alon, N.: Restricted colorings of graphs, in Surveys in combinatorics, 1993 (Keele).
London Math. Soc. Lecture Note Ser., vol. 187, pp. 1–33. Cambridge Univ. Press,
Cambridge (1993)

4. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

5. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs.
Theoret. Comput. Sci. 349, 22–30 (2005)

6. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51, 255–269 (2008)

7. Calamoneri, T.: The l(h, k)-labelling problem: A survey and annotated bibliogra-
phy. Comput. J. 49, 585–608 (2006)

230 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

8. Chang, G.J., Kuo, D.: The L(2, 1)-labeling problem on graphs. SIAM J. Discrete
Math. 9, 309–316 (1996)

9. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination
and covering: A parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008)

10. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

11. Dvořák, Z., Král, D., Nejedlý, P., Škrekovski, R.: Coloring squares of planar graphs
with girth six. European J. Combin. 29, 838–849 (2008)

12. Fellows, M., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout
problems parameterized by vertex cover. In: ISAAC (2008)

13. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider,
S., Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616,
pp. 366–377. Springer, Heidelberg (2007)

14. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Distance constrained labelings of graphs
of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg
(2005)

15. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Computational complexity of the dis-
tance constrained labeling problem for trees (extended abstract). In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 294–305. Springer, Heidelberg
(2008)

16. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation
in combinatorial optimization. Combinatorica 7, 49–65 (1987)

17. Golovach, P.A.: Systems of pairs of q-distant representatives, and graph colorings.
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 293, 5–25, 181
(2002)

18. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

19. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8, 538–548 (1983)

20. McDiarmid, C., Reed, B.: Channel assignment on graphs of bounded treewidth.
Discrete Math. 273, 183–192 (2003); EuroComb 2001 (Barcelona)

21. Tuza, Z.: Graph colorings with local constraints—a survey. Discuss. Math. Graph
Theory 17, 161–228 (1997)

22. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete
Math. 306, 1217–1231 (2006)

23. Zhou, X., Kanari, Y., Nishizeki, T.: Generalized vertex-coloring of partial k-trees.
IEICE Trans. Fundamentals of Electronics, Communication and Computer Sci-
ences E83-A, 671–678 (2000)

Discovering Almost Any Hidden Motif from
Multiple Sequences in Polynomial Time with
Low Sample Complexity and High Success

Probability

Bin Fu1, Ming-Yang Kao2, and Lusheng Wang3

1 Dept. of Computer Science, University of Texas – Pan American
TX 78539, USA

binfu@cs.panam.edu
2 Department of Electrical Engineering and Computer Science,

Northwestern University, Evanston, IL 60208, USA
kao@northwestern.edu

3 Department of Computer Science, The City University of Hong Kong,
Kowloon, Hong Kong

lwang@cs.cityu.edu.hk

Abstract. We study a natural probabilistic model for motif discovery
that has been used to experimentally test the effectiveness of motif dis-
covery programs. In this model, there are k background sequences, and
each character in a background sequence is a random character from
an alphabet Σ. A motif G = g1g2 . . . gm is a string of m characters.
Each background sequence is implanted a probabilistically generated ap-
proximate copy of G. For a probabilistically generated approximate copy
b1b2 . . . bm of G, every character is probabilistically generated such that
the probability for bi �= gi is at most α. It has been conjectured that
multiple background sequences can help with finding faint motifs G.

In this paper, we develop an efficient algorithm that can discover a
hidden motif from a set of sequences for any alphabet Σ with |Σ| ≥ 2 and
is applicable to DNA motif discovery. We prove that for α < 1

4
(1 − 1

|Σ|)
and any constant x ≥ 8, there exist positive constants c0, ε, δ1 and δ2

such that if the length ρ of motif G is at least δ1 log n, and there are k ≥
c0 log n input sequences, then in O(n2 +kn) time this algorithm finds the
motif with probability at least 1− 1

2x for every G ∈ Σρ−Ψρ,h,ε(Σ), where
ρ is the length of the motif, h is a parameter with ρ ≥ 4h ≥ δ2 log n, and
Ψρ,h,ε(Σ) is a small subset of at most 2−Θ(ε2h) fraction of the sequences
in Σρ. The constants c0, ε, δ1 and δ2 do not depend on x when x is
a parameter of order O(log n). Our algorithm can take any number k
sequences as input.

1 Introduction

Motif discovery is an important problem in computational biology and com-
puter science. It has applications to coding theory [3,5], locating binding sites

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 231–240, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

232 B. Fu, M.-Y. Kao, and L. Wang

and conserved regions in unaligned sequences [19,11,7,18], genetic drug target
identification [10], designing genetic probes [10], and universal PCR primer de-
sign [14,2,17,10].

This paper focuses on the application of motif discovery to finding conserved
regions in a set of given DNA, RNA, or protein sequences. Such conserved regions
may represent common biological functions or structures. Many performance
measures have been proposed for motif discovery. Let C be a subset of 0-1
sequences of length n. The covering radius of C is the smallest integer r such
that each vector in {0, 1}n is at a distance at most r from C. The decision
problem associated with the covering radius for a set of binary sequences is
NP-complete [3]. Another similar problem called closest string problem was also
proved to be NP-hard [3,10]. Some approximation algorithms have also been
proposed. Li et al. [13] gave an approximation scheme for the closest string
and substring problems. The related consensus patterns problem is that give n
sequences s1, · · · , sn, find for a region of length L in each si, and a median string
s of length L so that the total Hamming distance from s to these regions is
minimized. Approximation algorithms for the consensus patterns problem were
reported in [12]. Furthermore, a number of heuristics and programs have been
developed [16,8,9,20,1].

In many applications, motifs are faint and may not be apparent when two
sequences are compared alone but may become clearer when more sequences are
compared together [6]. It has been conjectured that comparing more sequences
can help with identifying faint motifs. In this paper, we give an analytical proof
for this conjecture by providing an algorithm that can find almost any hidden
motif from multiple sequences in polynomial time with low sample complexity
and high success probability.

We study a natural probabilistic model for motif discovery. In this model,
there are k background sequences and each character in the background se-
quence is a random character from an alphabet Σ. A motif G = g1g2 . . . gm

is a string of m characters. Each background sequence is implanted a proba-
bilistically generated approximate copy of G. For a probabilistically generated
approximate copy b1b2 . . . bm of G, every character is probabilistically generated
such that the probability for bi �= gi (mutation) is at most α. This model was
first proposed in [16] and has been widely used in experimentally testing motif
discovery programs [8,9,20,1]. We note that a mutation in our model converts a
character gi in the motif into a different character bi without probability restric-
tion. This means that a character gi in the motif may not become any character
bi in Σ − {gi} with equal probability.

We design an algorithm that for a reasonably large k can discover the im-
planted motif with high probability. Specially, we prove that for α < 1

4 (1 − 1
|Σ|)

and any constant x ≥ 8, there exist positive constants c0, ε, δ1 and δ2 such that if
the length of the hidden motif is at least δ1 log n and there are k ≥ c0 logn input
sequences, then in O(n2 + kn) time this algorithm finds the motif with proba-
bility at least 1− 1

2x for every G ∈ Σρ −Ψρ,h,ε(Σ), where Σ is the alphabet with
|Σ| ≥ 2, ρ is the length of the motif, h is a parameter with ρ ≥ 4h ≥ δ2 logn,

Motif Discovery from Multiple Sequences 233

n is the longest length of any input sequence, and Ψρ,h,ε(Σ) is a small subset of
a 2−Θ(ε2h) fraction of the sequences of Σρ. If x is considered as a parameter of
order O(log n), then c0, δ1 and δ2 do not depend on x.

Our algorithm can take any number k sequences as input. We give an anal-
ysis of how the motif is recovered with probability depending on k. The more
sequences we have, the more likely the algorithm recovers the motif.

Our algorithm is a deterministic algorithm that has a provable high success
probability to return the exact correct hidden motif. The randomness in the input
sequences is the only source of randomness for the algorithm. The algorithm
needs the motif to be long enough but does not need to know the length of the
motif. In a related work [4], we need that for the alphabet has large constant
size.

2 The Sequence Model and Some Preliminaries

For a set A, |A| denotes the number of elements in A. Σ is an alphabet with
|Σ| = t ≥ 2. For an integer n ≥ 0, Σn is the set of sequences of length n with
characters from Σ. For a sequence S = a1a2 · · · an, S[i] denotes the character
ai, S[i, j] denotes the substring ai · · · aj for 1 ≤ i ≤ j ≤ n, and |S| denotes the
length of the sequence S. We use ∅ to represent the empty sequence, which has
length 0.

Let G = g1g2 · · · gm be a fixed sequence of m characters. G is the hidden
motif to be discovered by our algorithm. A Θα(n,G)-sequence has the form
S = a1 · · · an1b1 · · · bman1+1 · · · an2 , where n2 + m ≤ n, each ai has probability
1
t to be equal to π for each π ∈ Σ, and bi has probability at most α not equal
to gi for 1 ≤ i ≤ m, where m = |G|. ℵ(S) denotes the motif region b1 · · · bm of
S. A mutation converts a character gi in the motif into an arbitrary different
character bi without probability restriction. This allows a character gi in the
motif to change into any character bi in Σ−{gi} with even different probability.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length, let
diff(S1, S2) = |{i|ai 	=bi(i=1,···,m)}|

m , i.e., the ratio of difference between the two
sequences.

Theorem 1 ([15]). Let X1, · · · , Xn be n independent random 0-1 variables,
where Xi takes 1 with probability pi. Let X =

∑n
i=1 Xi, and μ = E[X]. Then

for any δ > 0, 1. Pr(X < (1 − δ)μ) < e−
1
2 μδ2

, and 2. Pr(X > (1 + δ)μ) <[
eδ

(1+δ)(1+δ)

]μ

.

Corollary 1 ([13]). Let X1, · · · , Xn be n independent random 0-1 variables and
X =

∑n
i=1 Xi. Then 1. If Xi takes 1 with probability at most p, then for any

1
3 > ε > 0, Pr(X > pn + εn) < e−

1
3 nε2 ; and 2. If Xi takes 1 with probability at

least p, then for any 1
3 > ε > 0, Pr(X < pn − εn) < e−

1
2 nε2 .

234 B. Fu, M.-Y. Kao, and L. Wang

3 An Overview of the Main Algorithm

The main algorithm Discover-Motif has two phases. Phase 1 consists of a sub-
routine called Align-Sequences. Phase 2 consists of a subroutine called Recover-
Motif. We outline theses subroutines below.

In Phase 1, we select a pair of Θα(n,G)-sequences S1, S2 and find two equal
length substrings U and V of S1 and S2 respectively such that U and V are
of length at least c0 logn for some constant c0 and U and V only have a small
difference. The substring U of S1 is extracted.

In Phase 2, we use U to search for similar patterns in other input sequences
and align the sequences so that their copies of the motif will start at the same
column. A new set of Θα(n,G)-sequences S3, S4, · · · , Sk will be used for these
input sequences. The subsequence U extracted in the first phase is used to match
a substring Xi of Si for i = 2, · · · , k. Assume that X2, · · · , Xk are derived from
matching U to all sequences S2, S2, · · · , Sk. We align S1, · · · , Sk by putting them
into k different rows so that all Xi (i = 2, · · · , k) stay in the same column region
with U in S1. This is shown in the transformation from Figure 1 to Figure 2.

For each column in the motif region, the i-th character G[i] of G can be
recovered by voting among the characters of S1, · · · , Sk in the same column. In
other words, G[i] is the character that appears more than the other characters
in the same column. We will prove in Section 4 that with high probability, each
G[i] can be recovered correctly.

On the other hand, if a column is not in the region of the motif, we can prove
that with high probability, all characters appear with similar frequencies in the
column.

In the following, Definition 1 characterizes the motifs which are difficult for
our algorithm to discover. Lemma 1 shows that such difficult motifs are relatively
few. Lemma 1 is based on the fact that for a random sequence, two equal length
subsequences are not similar to each other if they are long enough.

Definition 1. Let Σ be an alphabet with at least 2 characters. Let h and m be
integers with h ≤ m. Define Φm,h,ε(Σ) be the set of all sequences S in Σm such
that diff(S[i, i + h − 1], S[j, j + h − 1]) ≤ (1 − 1

|Σ|) − ε for some two i �= j with
1 ≤ i < j ≤ m−h+1. Define Ψm,h,ε(Σ) = ∪m

u=hΦm,u,ε(Σ). We note that diff(,)
is defined in Section 2.

S1
ℵ(S1)� �

S2

ℵ(S2)� �

ℵ(S3)
S3

� �

Fig. 1. The motif regions of S1, S2 and S3 are not aligned

Motif Discovery from Multiple Sequences 235

Lemma 1. For every constant ε > 0, |Ψρ,h,ε(Σ)|
|Σρ| ≤ ρ2 ch

1−c , where c = e−
ε2
3 < 1.

Proof. Assume that S is a random sequence of Σρ. Let u ≥ h. We consider
S[i, i+u−1] and S[j, j+u−1]. The probability that the t-th characters of these
two subsequences are not the same is 1 − 1

|Σ| . By Corollary 1, with probability

at most e−
ε2u
3 , diff(S[i, i+u− 1], S[j, j+u− 1]) ≤ (1− 1

|Σ|)− ε. Therefore, with

probability at most ρ2e−
ε2u
3 , there exist i and j with 1 ≤ i < j ≤ ρ− u+ 1 such

that diff(S[i, i + u − 1], S[j, j + u − 1]) ≤ (1 − 1
|Σ|) − ε.

Therefore, with probability at most
∑ρ

u=h ρ2e−
ε2u
3 ≤ ρ2 ch

1−c , there are integers
i, j, and u with 1 ≤ i < j ≤ ρ − u + 1 and h ≤ u ≤ ρ such that diff(S[i, i + u −
1], S[j, j + u − 1]) ≤ (1 − 1

|Σ|) − ε.

For an intuitive understanding of Lemma 1, note that Ψρ,h,ε(Σ) is a subset of
Σρ. If y and ε are constants, we can select constant c such that ρ2 ch

1−c < 1
2y with

h ≥ c log ρ. Therefore, Ψρ,h,ε(Σ) is a small portion of sequences in Σρ when, for
example, y ≥ 10.

S1
ℵ(S1)� �

S2

ℵ(S2)� �

ℵ(S3)
S3

� �

Fig. 2. S1, S2 and S3 with their motifs in the same column region

4 Main Theorem and Main Algorithm Discover-Motif

Definition 2. Assume σ1 > 0. Given k Θα(n,G)-sequences S1, · · · , Sk, an
alignment puts them into k rows such that each sequence Si is arranged in |Si|
consecutive positions at row i for the |Si| characters of Si. An alignment for
S1, · · · , Sk is a σ1-error alignment for S1, · · · , Sk if at least (1 − σ1)k sequences
have their ℵ(Si) in the same columns. We often use an array A of k rows to
hold an alignment of k sequences.

Our main algorithm Discover-Motif consists two sub-routines. The first sub-
routine Align-Sequences aligns the input sequences so that most copies of the
motif are in the same column regions. The second sub-routine Recover-Motif re-
covers the motif based on the output of the first sub-routine. The performance of
Discover-Motif, Align-Sequences, and Recover-Motif is described in the following
theorem.

236 B. Fu, M.-Y. Kao, and L. Wang

Theorem 2. Assume that α with α < 1
4 (1 − 1

|Σ|) and x are positive constants.
Then, there exist constants σ1, δ1, δ2, ε > 0 such that given an input of Θα(n,G)-
sequences S1, · · · , Sk with G ∈ Σρ − Ψρ,h,ε(Σ) and ρ ≥ 4h ≥ δ2 logn, Discover-
Motif which consists sub-routines Align-Sequences and Recover-Motif satisfies
the following two conditions for all sufficiently large n (the maximum length of
the input sequences):

1. With probability at most e−Ω(h) + e−Ω(k), Align-Sequences fails to return a
σ1-error alignment for S1, · · · , Sk. Align-Sequences runs in O(n2 + kn logn)
worst-case time.

2. Given a σ1-error alignment for S1, · · · , Sk, Recover-Motif returns g′1 · · · g′s
such that with probability at most e−Ω(k), s �= |G| and for each i = 1, · · · , s,
with probability at most e−Ω(k), each g′i �= G[i]. Recover-Motif runs in time
O(kn) + O(n log n).

Proof. The algorithms Discover-Motif, Align-Sequences, and Recover-Motif are
detailed in Sections 4.3, 4.1, and 4.2, respectively.

The proof of the theorem has two stages. We first set up some constants and
parameters as follows. Afterwards, the statements i and ii of the theorem will be
proved by a series of lemmas.

Let β = 0.5, and c = e
−ε2
3 .

Select constant ε such that

4α + 5ε < 1 − 1
|Σ| . (1)

Select constants (as large as possible) σ0 = σ2 > 0, σ4 > 0, and σ1 > 0 such
that

(1 − (α + σ1 + σ2)) >
1

|Σ| + σ1 + σ2, and (2)

(σ4 + σ0) ≤ σ1. (3)

Let constants σ3 > 0 and c1 = 24
ε2 . Let h ≥ c1 log n

1−2σ3
and z = h

4 . From the above
selections, we have that cz ≤ n−2e−2σ3h. It is easy to see that

cz

1 − c
+ n2cz + 4n2cz < e−σ3h for all sufficiently large n. (4)

Let constant σ4 > 0 be selected so that n 2cz

1−c + n 2cz

1−c ≤ σ4 for all sufficiently
large n.

It is easy to see the existence of those constants ε, c0 and c1 to satisfy in-
equalities (1) to (4). The existence of ε for inequality (1) is due to the condition
α < 1

4 (1 − 1
|Σ|) of the theorem.

Let μ0 = 1 − (α + σ1 + σ2), and μ1 = (1 − (σ1 + σ2)).

Motif Discovery from Multiple Sequences 237

4.1 Phase 1 of Algorithm Discover-Motif — Align-Sequences

Align-Sequences uses a subroutine Find-a-Piece-of-Motif(S, S′) to find a similar
subsequence of length at least 4z = 4 c1 logn� between S1 and S2. The subse-
quence returned by Find-a-Piece-of-Motif(S, S′) will then be used to align the
motif regions among input sequences S1, S2, · · · , Sk as shown in Figure 2.

Find-a-Piece-of-Motif(S, S′)
Input: two Θα(n,G)-sequences S and S′;
Steps:
let guess-motif-length = |S|;
repeat

jump-step = guess-motif-length/4;
i = 1;
repeat

let U = U1U2 = S[i, i + 4z − 1] with |U1| = |U2| = |U |/2 = 2z;
let t = 1;
repeat

let V = V1V2 = S′[t, t + 4z − 1] with |V1| = |V2| = |V |/2 = 2z;
if diff[U1, V1] ≤ 2(α + ε) and diff[U2, V2] ≤ 2(α + ε)
then return U and stop;
let t = t + 1;

until t > |S′| − 4z + 1
i = i+jump-step;

until i > |S| − 4z + 1;
guess-motif-length = guess-motif-length/2;

until jump-step < 2z;
return “failure”;

End of function Find-a-Piece-of-Motif

Algorithm Align-Sequences(S1, · · · , Sk) calls subroutine Find-a-Piece-of-Motif
(S1, S2) to obtain a similar region U of length 4z between S1 and S2. We will
show that the subsequence U is most likely from the motif region of S1. Align-
Sequences then aligns all the sequences S1, S2, · · · , Sk by putting those subse-
quences of S2, S3, · · · , Sk that are similar to U into the same column regions as
illustrated in Figure 2.

Align-Sequences(S1, · · · , Sk)
Input: k Θα(n,G)-sequences S1, · · · , Sk for some unknown motif G to be de-

tected.
Steps:
let U = Find-a-Piece-of-Motif(S1, S2);
partition U into U = U ′

1U
′
2U

′
3U

′
4 with |U ′

1| = |U ′
2| = |U ′

3| = |U ′
4| = z;

for each Sr with 2 ≤ r ≤ k
find a subsequence Yr = X1X2X3X4 of Sr such that diff[U ′

i , Xi] ≤ 2α+ ε
for i = 1, 2, 3, 4;

let A be a k × 3n array (with k rows and 3n columns);

238 B. Fu, M.-Y. Kao, and L. Wang

put S1 into the middle of the first row of A (i.e., let S1 be arranged at
positions A[1][n + 1], A[1][n + 2], · · · , A[1][n + |S1|]);
for each Si with 2 ≤ i ≤ k

put Si in row i so that U [1] and Yi[1] are in the same column (which
implies U [j] and Yi[j] are also in the same column for j = 1, 2, · · · , |U |);

return A;
End of function Align-Sequences

4.2 Phase 2 of Algorithm Discover-Motif — Recover-Motif

Recover-Motif will detect the columns that contain the motif from a σ1-error
alignment. Each character of the motif is recovered by voting on the characters
in the same column. Each column that does not contain motif character does
not have a character that appears as frequently as in the motif region.

Let Maj(A, j) denote the character that appears the largest number of times
in the column j of A. For a character a ∈ Σ, Occur(a, j, A) denotes the number
of times that a appears in the column j of A.

The subroutine Recover-Motif uses a subroutine called Detect-Motif-Boundary
(A) that finds a pair of column indices jL and jR such that most copies of the
motif in the input sequences will be located from column jL + 1 to column jR − 1.
We will show that if the alignment has a suitably small error, then Detect-Motif-
Boundary returns the boundaries of the motif region with high probability if the
number of the input sequences is reasonably large.

Detect-Motif-Boundary(A)
Input: a k × 3n matrix A that holds k aligned sequences S1, · · · , Sk;
Steps:
Case 1: 2k > h.

Select the leftmost column jL in A such that Occur(Maj(A, jL + 1),
jL + 1, A) ≥ μ0k;
Select the rightmost column jR in A such that Occur(Maj(A, jR − 1),
jR − 1, A) ≥ μ0k;

Case 2: 2k ≤ h.
Select the leftmost column jL in A such that

(L1) diff(A[1][jL, jL + i], A[2][jL, jL + i]) ≤ 2α + σ2 for all i = 2j

(j is an integer ≥ 0) with k ≤ i ≤ h, and
(L2) Occur(Maj(A, jL + i), jL + i, A) ≥ μ0k for every i with i = 2j

≤ k for some non-negative integer j ≥ 0;
Select the rightmost column jR in A such that

(R1) diff(A[1][jR, jR − i], A[2][jR, jR − i]) ≤ 2α + σ2 for all i = 2j

(j is an integer ≥ 0) with 1 ≤ i ≤ min(k, h), and
(R2) Occur(Maj(A, jR − i), jR − i, A) ≥ μ0k for every i with
i = 2j ≤ k for some non-negative integer j ≥ 0;

return (jL, jR);
End of function Detect-Motif-Boundary

Motif Discovery from Multiple Sequences 239

Recover-Motif(A) recovers the motif by voting on the character in each column
of A in the motif region, which is between the boundaries returned from the
function Detect-Motif-Boundary.

Recover-Motif(A)
Input: k × 3n matrix A that holds k aligned sequences S1, · · · , Sk;
let (jL, jR) = Detect-Motif-Boundary(A);
let g′s be the character that appears the largest number of times in column
jL + s of A for 0 < s < jR − jL;
return g′1 · · · g′h as the motif G;

End of function Recover-Motif

4.3 Algorithm Discover-Motif

Now we can describe our main algorithm Discover-Motif by using the subroutines
already described in Sections 4.1 and 4.2.

Discover-Motif (S1, · · · , Sk)
Input: k Θα(n,G)-sequences S1, · · · , Sk for some unknown motif G.
Steps: let A = Align-Sequences(S1, · · · , Sk);

return Recover-Motif(A);
End of Discover-Motif
The proof about the correctness of the algorithm is too long to be included.

Theorem 3. Assume that α < 1
4 (1− 1

|Σ|) and x are constants. Then there exist
constants δ1, δ2, ε > 0 such that given an input of Θα(n,G)-sequence sequences
S1, · · · , Sk with k > c0 logn, Discover-Motif returns the motif G with probability
at least 1 − 1

2x for all G ∈ Σρ − Ψρ,h,ε(Σ) and runs in O(n2) time, where ρ is
the length of the motif G, ρ ≥ δ1 logn, and ρ ≥ 4h ≥ δ2 logn.

Proof. By Theorem 2, there exist constants δ1, δ2, ε > 0 such that Align-Sequences
and Recover-Motif fail each with probability at most 1

2x+1 .

Acknowledgements. We thank Miklós Csürös and Manan Sanghi for helpful
discussions. Bin Fu is supported in part by National Science Foundation Early
Career Award 0845376. Ming-Yang Kao is supported in part by National Science
Foundation Grant CNS-0627751. Lusheng Wang is fully supported by a grant
from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CityU 1196/03E).

References

1. Chin, F., Leung, H.: Voting algorithms for discovering long motifs. In: Proceedings
of the 3rd Asia-Pacific Bioinformatics Conference, pp. 261–272 (2005)

2. Dopazo, J., Rodŕıguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for PCR am-
plification of highly variable genomes. Computer Applications in the Biosciences 9,
123–125 (1993)

240 B. Fu, M.-Y. Kao, and L. Wang

3. Frances, M., Litman, A.: On covering problems of codes. Theoretical Computer
Science 30, 113–119 (1997)

4. Fu, B., Kao, M.-Y., Wang, L.: Efficient algorithms for model-based motif discovery
from multiple sequences. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC
2008. LNCS, vol. 4978, pp. 234–245. Springer, Heidelberg (2008)

5. Ga̧sieniec, L., Jansson, J., Lingas, A.: Efficient approximation algorithms for the
Hamming center problem. In: Proceedings of the 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. S905–S906 (1999)

6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

7. Hertz, G., Stormo, G.: Identification of consensus patterns in unaligned DNA and
protein sequences: a large-deviation statistical basis for penalizing gaps. In: Pro-
ceedings of the 3rd International Conference on Bioinformatics and Genome Re-
search, pp. 201–216 (1995)

8. Keich, U., Pevzner, P.: Finding motifs in the twilight zone. Bioinformatics 18,
1374–1381 (2002)

9. Keich, U., Pevzner, P.: Subtle motifs: defining the limits of motif finding algorithms.
Bioinformatics 18, 1382–1390 (2002)

10. Lanctot, J.K., Li, M., Ma, B., Wang, L., Zhang, L.: Distinguishing string selection
problems. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 633–642 (1999)

11. Lawrence, C., Reilly, A.: An expectation maximization (EM) algorithm for the
identification and characterization of common sites in unaligned biopolymer se-
quences. Proteins 7, 41–51 (1990)

12. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proceedings
of the 31st Annual ACM Symposium on Theory of Computing, pp. 473–482 (1999)

13. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal
of the ACM 49(2), 157–171 (2002)

14. Lucas, K., Busch, M., Mossinger, S., Thompson, J.: An improved microcom-
puter program for finding gene- or gene family-specific oligonucleotides suitable
as primers for polymerase chain reactions or as probes. Computer Applications in
the Biosciences 7, 525–529 (1991)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (2000)

16. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA se-
quences. In: Proceedings of the 8th International Conference on Intelligent Systems
for Molecular Biology, pp. 269–278 (2000)

17. Proutski, V., Holme, E.C.: Primer master: a new program for the design and anal-
ysis of PCR primers. Computer Applications in the Biosciences 12, 253–255 (1996)

18. Stormo, G.: Consensus patterns in DNA. In: Doolitle, R.F. (ed.) Molecular evolu-
tion: computer analysis of protein and nucleic acid sequences. Methods in Enzy-
mology, vol. 183, pp. 211–221 (1990)

19. Stormo, G., Hartzell III, G.: Identifying protein-binding sites from unaligned DNA
fragments. In: Proceedings of the National Academy of Sciences of the United
States of America, vol. 88, pp. 5699–5703 (1991)

20. Wang, L., Dong, L.: Randomized algorithms for motif detection. Journal of Bioin-
formatics and Computational Biology 3(5), 1039–1052 (2005)

A Complete Characterisation of the Linear
Clique-Width of Path Powers�

Pinar Heggernes1, Daniel Meister1, and Charis Papadopoulos2

1 Department of Informatics, University of Bergen, Norway
pinar.heggernes@ii.uib.no, daniel.meister@ii.uib.no

2 Department of Mathematics, University of Ioannina, Greece
charis@cs.uoi.gr

Abstract. A k-path power is the k-power graph of a simple path of
arbitrary length. Path powers form a non-trivial subclass of proper in-
terval graphs. Their clique-width is not bounded by a constant, and no
polynomial-time algorithm is known for computing their clique-width or
linear clique-width. We show that k-path powers above a certain size
have linear clique-width exactly k +2, providing the first complete char-
acterisation of the linear clique-width of a graph class of unbounded
clique-width. Our characterisation results in a simple linear-time algo-
rithm for computing the linear clique-width of all path powers.

1 Introduction

Clique-width is a graph parameter that describes the structure of a graph and
its behaviour with respect to hard problems [6]. Many NP-hard graph problems
become solvable in polynomial time on graphs whose clique-width is bounded
by a constant [21, 27]. If the problem, in addition, is expressible in a certain
type of monadic second order logic, it becomes fixed parameter tractable when
parameterised by clique-width [7]. Clique-width can be viewed as a generalisa-
tion of the more widely studied parameter treewidth, since there are graphs of
bounded clique-width but unbounded treewidth (e.g., complete graphs), whereas
graphs of bounded treewidth have bounded clique-width [9]. As pathwidth is a
restriction on treewidth, linear clique-width is a restriction on clique-width, and
hence graphs of bounded clique-width might have unbounded linear clique-width
(e.g., cographs [16]). Both clique-width and linear clique-width are NP-hard to
compute [11]. These two closely related graph parameters have received much
attention recently, and the interest in them is increasing [4,7,9,13,8,1,10,23,24,
25,2, 5, 16, 3, 11, 14, 15,22,20,17, 12].

In this paper, we give a complete characterisation of the linear clique-width
of path powers, which form a subclass of proper interval graphs. Hereditary
subclasses of proper interval graphs have bounded clique-width [22], however
path powers are not hereditary, and they have unbounded clique-width [13] and
thus unbounded linear clique-width. This is the first graph class of unbounded
clique-width whose linear clique-width is hereby completely characterised. More
� This work is supported by the Research Council of Norway.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 241–250, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

242 P. Heggernes, D. Meister, and C. Papadopoulos

precisely, we show that k-path powers above a certain size have linear clique-
width exactly k + 2. A k-path power is the k-power graph of a simple path. We
also characterise the linear clique-width of smaller k-path powers. Our character-
isation results in a simple linear-time algorithm for computing the linear clique-
width of path powers, making this the first graph class on which clique-width
or linear clique-width is unbounded, and linear clique-width can be computed
in polynomial time. In addition, we give a characterisation of the linear clique-
width of path powers through forbidden induced subgraphs. The main difficulty
to overcome in obtaining these results has been to prove a tight lower bound on
the linear clique-width of path powers.

To review related results, we can mention that graphs of clique-width at most
2 [9] and at most 3 [4] can be recognised in polynomial time. Also graphs of linear
clique-width at most 2 [14] and at most 3 [20] can be recognised in polynomial
time. Several graph classes have been studied with respect to whether or not
their clique-width is bounded by a constant [1, 2, 3, 10, 13, 17, 22, 23, 24]. For
specific graph classes of unbounded clique-width and thus unbounded linear
clique-width, little is known on the computation of their clique-width or linear
clique-width. So far the only result that computes either of these parameters
exactly is given by Golumbic and Rotics [13], who show that a k × k grid has
clique-width k + 1. (Notice that for fixed k, there are infinitely many k-path
powers, but only one k×k grid.) Other than this, mainly some upper [11,17] and
lower [13,5] bounds have been given some of which are mentioned below. Typical
for lower bounds is that they are not tight, and therefore they do not lead to exact
computation of the clique-width or the linear clique-width efficiently. For lower
bounds, Golumbic and Rotics gave lower bounds on the clique-width of some
subclasses of proper interval graphs and permutation graphs [13], and Corneil
and Rotics showed an exponential gap between clique-width and treewidth [5].

Specifically for path powers, the results of Gurski and Wanke on the linear
clique-width of power graphs imply that the linear clique-width of a k-path power
is at most (k + 1)2 [17]. Fellows et al. showed that the linear clique-width of a
graph is bounded by its pathwidth plus 2 [11], which gives k + 2 as an upper
bound on the linear clique-width of k-path powers. For lower bounds, Golumbic
and Rotics showed that the clique-width and thus the linear clique-width of a
k-path power on (k + 1)2 vertices is at least k + 1 [13]. The authors conjecture
that the clique-width of k-path powers on (k + 1)2 vertices is exactly k + 2 [13].
This conjecture is still open. The same upper and lower bounds are still the
best known bounds also on the linear clique-width of k-path powers on (k + 1)2

vertices. In this paper, we prove the conjecture to be true for linear clique-width.
The results that we present in this paper contribute to better understanding

of linear clique-width and clique-width. The knowledge on these graph param-
eters is still limited, and there is no general intuition on what makes a graph
structurally more complicated (larger clique-width) than other graphs. To prove
the lower bound k + 2 on the above mentioned k-path powers (in Section 5),
the technique we apply is through identifying maximal k-path powers of linear
clique-width at most k + 1 (in Section 4).

A Complete Characterisation of the Linear Clique-Width of Path Powers 243

2 Basic Definitions, Notation, and Linear Clique-Width

We consider undirected finite graphs with no loops or multiple edges. For a
graph G = (V,E), we denote its vertex and edge set by V (G) = V and E(G) =
E, respectively. Two vertices u and v of G are called adjacent if uv ∈ E; if
uv �∈ E then u and v are non-adjacent. A path in G is a sequence of vertices
(v1, v2, . . . , vl) such that vivi+1 ∈ E for 1 ≤ i ≤ l−1. For a vertex set S ⊆ V , the
subgraph of G induced by S is denoted by G[S]. Moreover, we denote by G−v the
graph G[V \{v}]. The neighbourhood of a vertex x in G is NG(x) = {v | xv ∈ E}
and its degree is |NG(x)|. For two vertices x and y, if another vertex z is adjacent
to exactly one of them then we say that z distinguishes x and y.

Let G and H be two vertex-disjoint graphs. The disjoint union of G and
H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The
notion of clique-width was first introduced in [6]. The clique-width of a graph G
is the minimum number of labels needed to construct G using the following
four operations: create new graph on a single vertex with label i, disjoint union,
change all labels i to j, add all edges between vertices with label i and vertices
with label j where i �= j. The linear clique-width of a graph, denoted by lcwd(G),
is defined by the above operations with the restriction that at least one of the
operands of the disjoint union operation must be a graph on a single vertex
[16,25]. This results in a linear structure, and linear clique-width can be viewed
as a graph layout problem [15, 19].

A layout for a graph G = (V,E) is a linear ordering of its vertices, usually
defined as a bijective mapping from the set {1, . . . , |V |} to V . For A ⊆ V , a
group in A is a maximal set of vertices with the same neighbourhood in V \ A.
Note that two groups in A are either equal or disjoint, implying that the group
relation defines a partition of A. By νG(A), we denote the number of groups in
A. Let β be a layout for G. Let x be a vertex of G and let p be the position of
x in β, i.e., p = β−1(x). The set of vertices to the left of x with respect to β is
{β(1), . . . , β(p − 1)} and denoted as Lβ(x), and the set of vertices to the right
of x with respect to β is {β(p + 1), . . . , β(|V |)} and denoted as Rβ(x). We write
Lβ[x] and Rβ [x] if x is included. Function adβ is a {0, 1}-valued function on the
vertex set of G with respect to β. Given a vertex x of G, if one of the following
conditions is satisfied then adβ(x) = 1; if none of the conditions is satisfied then
adβ(x) = 0:

(1) all (other) vertices in the group in Lβ[x] that contains x are neighbours of x
(2) {x} is not a group in Lβ[x], and there are a non-neighbour y of x in the

group of Lβ[x] containing x and a neighbour z of x in Lβ(x) such that y and
z are non-adjacent

The groupwidth of a graph G with respect to a layout β for G, denoted as
gw(G, β), is the smallest number k such that νG(Lβ(x)) + adβ(x) ≤ k for all
x ∈ V (G). The groupwidth of a graph G, denoted as gw(G), is the smallest num-
ber k such that there is a layout β for G satisfying gw(G, β) ≤ k. Based on the
function ad, the following result was proved in [19]. Analogous results already
existed [15,25] using different formulations of function ad.

244 P. Heggernes, D. Meister, and C. Papadopoulos

Theorem 1 ([15,25,19]). For every graph G, lcwd(G) = gw(G).

For a given graph G, the k-power graph of G is the graph that has the same
vertex set as G such that two vertices are adjacent if and only if the distance
(length of a shortest path) between them is at most k in G. For a given l ≥ 1, Pl is
the graph with vertex set {x1, x2, . . . , xl} and edge set {x1x2, x2x3, . . . , xl−1xl}.
A k-path power is a graph that is the k-power graph of Pl for some l. Notice
that the k-power graph of Pl for any k ≥ l − 1 is a complete graph. Observe
that for a k-path power that is not complete, a largest clique contains exactly
k + 1 vertices. A path power is a k-path power for some k. For a path power, a
vertex of smallest degree is called endvertex. A path power that is not complete
has exactly two endvertices, that are non-adjacent.

Lemma 1. Let P be a path power and let β be a layout for P . If adβ(x) = 0
for a vertex x of P then x is an endvertex of P .

3 Groups in Induced Subgraphs of Path Powers

The linear clique-width bounds that we present in this paper are all proved by
applying Theorem 1. The main technique is to count groups in subgraphs. As
a main tool, we use a representation of path powers that arranges vertices into
rows and columns of a 2-dimensional array. Let G be a graph. A bubble model
for G is a 2-dimensional structure B = 〈Bi,j〉1≤j≤s,1≤i≤rj such that the following
conditions are satisfied:

– for 1 ≤ j ≤ k and 1 ≤ i ≤ rj , Bi,j is a (possibly empty) set of vertices of G
– the sets B1,1, . . . , Brk,k are pairwise disjoint and cover V (G)
– two vertices u, v of G are adjacent if and only if there are 1 ≤ j ≤ j′ ≤ s

and 1 ≤ i ≤ rj and 1 ≤ i′ ≤ rj′ such that u, v ∈ Bi,j ∪ Bi′,j′ and (a) j = j′

or (b) j + 1 = j′ and i > i′.

A similar structure is given by Golumbic and Rotics [13]. The sets Bi,j are
called bubbles. If every bubble Bi,j contains exactly one vertex, we also write
〈bi,j〉1≤j≤s,1≤i≤rj . A graph is a proper interval graph if and only if it has a
bubble model [18]. For 1 ≤ j ≤ s, we combine the sets B1,j , . . . , Brj ,j to the jth
column, also denoted as Bj. We say that B is a bubble model on a columns and
b rows if s = a and r1 = · · · = rs−1 = max{r1, . . . , rs} = b.

Theorem 2. Let k ≥ 1. A graph G is a k-path power if and only if there is
s ≥ 1 such that G has a bubble model on s columns and k + 1 rows and all
bubbles contain exactly one vertex.

Proof. Due to space restrictions, we only prove one implication. Let G be the
k-power graph of Pl. We rename the vertices of the path as follows. For 1 ≤ i ≤ l,
let bb,a =def xi where a and b are such that i = a(k + 1) + b and 1 ≤ b ≤ k + 1.
Let s be smallest such that l ≤ s(k + 1), and let r1 =def · · · =def rs−1 =def k + 1
and rs =def n − (s − 1)(k + 1). Let B =def 〈bi,j〉1≤j≤s,1≤i≤rj . Let xi and xi′

A Complete Characterisation of the Linear Clique-Width of Path Powers 245

be vertices of G with i < i′. Let a, a′, b, b′ be such that 1 ≤ b, b′ ≤ k + 1 and
i = a(k + 1) + b and i′ = a′(k + 1) + b′. Clearly, if a = a′ then b′ − b ≤ k and
therefore i′ − i ≤ k. If a < a′ then i′ − i ≤ k if and only if b > b′. Hence, B is
a bubble model for G. And by construction, B is a bubble model on k + 1 rows
and all bubbles contain exactly one vertex.

We call the bubble model of a path power that is constructed in the proof
of Theorem 2 canonical. Observe that the proof of Theorem 2 gives a simple
linear-time algorithm for constructing a canonical bubble model for a given path
power.

In our lower bound proofs, the main task is to determine the number of groups.
Let G be a graph with bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj . Let A ⊆ V (G) and
let 1 ≤ ĵ ≤ s. The ĵ-boundary of B[A] is the set Φĵ(B[A]) of pairs (i, ti) that
satisfy one of the following conditions:

– ti = ĵ and i < rĵ and Bi,ti ⊆ A and Bi′,ĵ �⊆ A for all i < i′ ≤ rĵ

– ti < ĵ and 1 ≤ i ≤ min{rti , . . . , rĵ} and Bi,ti ⊆ A and Bi,j �⊆ A for all
ti < j ≤ ĵ.

Lemma 2. Let G be a graph with bubble model B = 〈Bi,j〉1≤j≤s,1≤i≤rj on s ≥ 2
columns and l ≥ 2 rows. Let A ⊆ V (G) and let 1 ≤ ĵ ≤ s. The bubbles in
Φĵ(B[A]) appear in pairwise different groups in A.

4 Maximal k-Path Powers of Linear Clique-Width k + 1

In the next section we will show that the linear clique-width of a k-path power
containing k(k + 1) + 2 vertices is at least k + 2. In fact they will turn out to
be the smallest k-path powers of maximum linear clique-width. This result is
achieved by showing that a k-path power containing k(k + 1) + 1 vertices has
layouts of groupwidth at most k + 1 of only very restricted type. This is exactly
what we prove in this section, through a series of results. More precisely, we
concentrate on the beginning of a possible layout of groupwidth at most k + 1,
identify the earliest point where the maximum group number is reached, and
we show that the two vertices on either side of this point are uniquely defined,
hence the restriction on the layout. This restriction in the layouts is used in the
next section to show that it is not possible to extend such a k-path power by
even a single vertex without increasing the linear clique-width.

The main result of this section is given in Lemmas 7 and 8. To make the
statements of the results shorter, we avoid repeating the following definitions.
Throughout this section, let

– P be a k-path power on k(k + 1) + 1 vertices, with k ≥ 3,
– β be a layout for P such that gw(P, β) ≤ k + 1,
– B = 〈bi,j〉1≤j≤k+1,1≤i≤rj be a canonical bubble model for P (Theorem 2)

such that b1,1 ≺β b1,k+1.

Note that β indeed exists, which is shown later (Lemma 10). Note also that
r1 = · · · = rk = k + 1. For A ⊆ V (P) and 1 ≤ j ≤ k, we say that column Bj

246 P. Heggernes, D. Meister, and C. Papadopoulos

is full with respect to A if b1,j, . . . , bk+1,j ∈ A. Let xf be the leftmost vertex
of P with respect to β such that there is an index jf between 1 and k with
Bjf

full with respect to Lβ [xf]. By the choice of xf , jf is uniquely defined.
Let L−

f =def Lβ(xf) and Lf =def Lβ[xf]. Denote by xf+1, xf+2, xf+3 the three
vertices that follow xf in β.

By Lemma 1 and the fact that non-complete path powers have at most two
endvertices, there are at most two vertices for which function ad can have value 0.
We can be even more specific.

Lemma 3. If adβ(b1,1) = 0 then b1,1 and b1,2 are in the same group in Lβ[b1,1].
If adβ(b1,k+1) = 0 then b1,k+1 and b1,k are in the same group in Lβ[b1,k+1].

Lemma 4. Let u ∈ V (P). Let K be a group in Lβ [u]. Let bi,j and bi′,j′ be two
vertices in K. Then, NP (bi,j)*NP (bi′,j′) ⊆ Lβ[u]. In particular, if |j − j′| ≥ 2
then Bj and Bj′ are full with respect to Lβ[u].

From Lemma 4, it follows that a group in Lf can contain vertices from only the
same column or from two consecutive columns, since exactly one column is full
with respect to Lf .

Lemma 5. There is no 1 ≤ j ≤ k such that b1,j, . . . , bk+1,j �∈ Lf .

Let A ⊆ V (P). For every 1 ≤ j ≤ k, we denote by gj(A) the number of groups
in A that contain a vertex from column Bj but not from any of the columns
Bj+1, . . . ,Bk+1. Note that if there is at most one column that is full with respect
to A then it suffices to forbid vertices from Bj+1 due to Lemma 4.

Lemma 6. Let u ∈ L−
f be such that for every 1 ≤ j ≤ k, there is 1 ≤ i ≤ k + 1

with bi,j ∈ Lβ [u]. Then, g1(Lβ [u]), . . . , gk−1(Lβ[u]) ≥ 1.

Lemma 7. The vertices b1,k and b1,k+1 are not in Lf .

Proof. By definition of xf , we know that b1,k+1 �= xf . It can be shown that
b1,k+1 �∈ Lf . Suppose for a contradiction that b1,k ∈ Lf . Suppose that jf = k.
Let 1 ≤ i ≤ k + 1 be such that xf = bi,k. We consider L−

f . With Lemma 6
and b1,k+1 �∈ L−

f , g1(L−
f), . . . , gk(L−

f) ≥ 1. If there is 1 ≤ j ≤ k such that
gj(L−

f) ≥ 2 then νP (L−
f) ≥ k+1, and since bi,k is not endvertex of P , gw(P, β) >

k + 1. Therefore, g1(L−
f) = · · · = gk(L−

f) = 1. If i ≥ 2 then L−
f contains b1,k

and another vertex from Bk. Since they are distinguished by b1,k+1, this gives
gk(L−

f) ≥ 2, which is a contradiction. Thus, i = 1, i.e., xf = b1,k. In particular,
b1,k �∈ L−

f . As an auxiliary result, the following can be shown by induction. For
every 2 ≤ j ≤ k:

(1) bk+2−j,j , . . . , bk+1,j ∈ L−
f and b1,j �∈ L−

f

(2) the vertices from Bj in L−
f form a group in L−

f .

Observe that b1,k is in a singleton group in Lf and every group in L−
f is a group

in Lf . Thus, νP (Lf) = k + 1 and g1(Lf) = · · · = gk−1(Lf) = 1 and gk(Lf) = 2.

A Complete Characterisation of the Linear Clique-Width of Path Powers 247

Then, adβ(xf+1) = 0, i.e., xf+1 is an endvertex of P . Since xf+1 = b1,1 yields
a contradiction, xf+1 = b1,k+1, and therefore, b1,1 ∈ Lf . Furthermore, b1,1 is
the only vertex from B1 in Lf . We show that νP−b1,k+1(Lf) = k + 1. Consider
B[Lf\{b1,1}]. Let B′ be defined as in the proof of Lemma 5. We apply Lemma 2 to
B′[Lf \{b1,1}] and its (k+1)-boundary: there are (at least) k boundary vertices.
Suppose that b1,1 is in the same group as a boundary vertex in Lf . Since no
other vertex from B1 is in Lf , b1,1 can be in group only with b1,2. This, however,
contradicts b1,2 �∈ Lf due to the auxiliary result. Hence, b1,1 is not in the same
group as any vertex from the boundary, and therefore νP−b1,k+1(Lf) = k + 1.
We obtain νP (Lβ [xf+1]) = k + 1, and since xf+2 is not an endvertex of P ,
we conclude a contradiction to the groupwidth assumption for β, and therefore
jf < k.

It can be shown that there is no 2 ≤ i ≤ k+1 with bi,k ∈ L−
f . The k-boundary

of B[Lf] contains k vertices, and due to Lemma 2, they are in pairwise different
groups in Lf . Since no vertex in columns B1, . . . ,Bk−1 is adjacent to bk+1,k,
which is not contained in Lf , b1,k is vertex in a singleton group, and therefore
νP (Lf) ≥ k + 1 and adβ(xf+1) = 0. According to Lemma 1, xf+1 is endvertex
of P . If xf+1 = b1,1 then jf > 1, and no vertex from B1 is in the same group as
a vertex from another column in Lf because of b1,1. Then, the above arguments
show that Lf has at least k + 2 > k + 1 groups, which is a contradiction to the
groupwidth assumption for β. Thus, xf+1 = b1,k+1. Then, νP (Lβ[xf+1]) ≥ k+1,
since no vertex in Lf is adjacent to b1,k+1. However, xf+2 is no endvertex of
P , which yields νP (Lβ(xf+2)) + adβ(xf+2) > k + 1, a contradiction to the
groupwidth assumption for β. Hence, the assumption b1,k ∈ Lf is false, and we
conclude the lemma.

Lemma 8. The following holds for layout β:

– νP (Lf) = k + 1 and xf = b1,2 and xf+1 = b1,1

– b3,1, . . . , bk+1,1 ∈ Lf and b2,k, b3,k ∈ Lf

– the vertices from B1 in Lf are in the same group and the vertices from Bk

in Lf are in the same group in Lf .

5 The Linear Clique-Width of Path Powers

In this section, we are finally ready to give a complete characterisation of the
linear clique-width of path powers of all sizes. We start with the previously
mentioned lower bound.

Lemma 9. Let G be a k-path power on k(k +1)+ 2 vertices, with k ≥ 1. Then,
lcwd(G) ≥ k + 2.

Proof. For k = 1, G is a 1-path power on four vertices, i.e., G = P4. It holds
that lcwd(P4) = 3. For k = 2, G is a 2-path power on eight vertices. It can be
checked that lcwd(G) = 4. So, let k ≥ 3. Suppose for a contradiction that there
is a layout β for G such that gw(G, β) ≤ k+1. Let a be an endvertex of G. Then,

248 P. Heggernes, D. Meister, and C. Papadopoulos

G−a is a k-path power on k(k + 1) + 1 vertices. Let β′ be obtained from β by
deleting a. Then, gw(G−a, β′) ≤ k+1, and the results of Section 4 can be applied
to G−a and β′. Let B = 〈bi,j〉1≤j≤k+1,1≤i≤ri be a canonical bubble model for
G−a such that b1,1 ≺β′ b1,k+1. Let xf and Lf and L−

f for G−a and β′ be defined
as in Section 4. Due to Lemma 8, bk,1, bk+1,1 ∈ Lf , and b2,k, b3,k ∈ Lf , and bk,1
and bk+1,1 are in the same group in Lf , and b2,k and b3,k are in the same group in
Lf . Furthermore, b1,1, b1,2 �∈ L−

f and b1,k, b1,k+1 �∈ Lf (Lemma 7). By the choice
of a as an endvertex of G, a is adjacent to bk,1 and non-adjacent to bk+1,1 or a
is adjacent to b3,k and non-adjacent to b2,k in G. If xf ≺β a then a distinguishes
bk,1 and bk+1,1 in the former case, and b2,k and b3,k in the latter case. With
νG−a(Lf) = k + 1 due to Lemma 8, it follows that νG(Lf) ≥ k + 2, which is a
contradiction to our assumption. Hence, a ≺β xf . Since νG−a(Lf) = k + 1 and
adβ′(xf) = 1, νG−a(L−

f) = k. Note also that adβ(xf) = 1 due to Lemmata 1
and 8, so that νG(Lβ(xf)) = k by our assumptions. Remember that there is
a vertex for every column of B that is not in L−

f . If the neighbours of a are
in B1 then a is vertex in a singleton group in Lβ(xf), particularly because of
b1,1, b1,2 �∈ Lβ(xf). If the neighbours of a are in Bk and Bk+1 then a is vertex in a
singleton group in Lβ(xf), particularly because of b1,k, b1,k+1 �∈ Lβ(xf). Hence,
νG(Lβ(xf)) > k, which yields a contradiction to our assumption together with
xf = b1,2 and adβ(b1,2) = 1. Therefore, gw(G) ≥ k + 2.

Now we give the upper bounds. It is known that lcwd(G) ≤ pw(G) + 2 for G
an arbitrary graph [11], where pw(G) is the pathwidth of G. For path powers,
the pathwidth is equal to the maximum clique size minus 1, which implies the
first statement of the next result. For path powers on few vertices, the second
statement gives an even better bound.

Lemma 10
1) Let G be a k-path power, with k ≥ 1. Then, lcwd(G) ≤ k + 2 ([11]).
2) Let G be a k-path power on l(k + 1) + 1 vertices, with 2 ≤ l ≤ k. Then,
lcwd(G) ≤ l + 1.

Proof. It remains to prove the second statement. Let B = 〈bi,j〉1≤j≤l+1,1≤i≤rj

be a canonical bubble model for G. Let β = 〈bk+1,l, . . . , bk+1,1, bk,l, . . . , b2,1, b1,2,
b1,1, b1,3, . . . , b1,l+1〉 , i.e., the vertices in B appear in β row by row, starting
from the bottom row, and within a row, from right to left, except for the
first row. We show that gw(G, β) ≤ l + 1. Let x = bi,j be a vertex of G. If
i ≥ 2 then νG(Lβ [x]) ≤ l. To see this, observe that bi+1,j′ , . . . , bk+1,j′ ∈ Lβ[x]
and b1,j′ , . . . , bi,j′ �∈ Lβ [x] for all j′ < j and bi,j′ , . . . , bk+1,j′ ∈ Lβ [x] and
b1,j′ , . . . , bi−1,j′ �∈ Lβ [x] for all j′ ≥ j. Hence, the vertices of every column that
are in Lβ[x] are in the same group. Since there are l columns in B with vertices
in Lβ[x], the claim holds. Now, let i = 1. It holds that b2,j′ , . . . , bk+1,j′ ∈ Lβ[x]
for all 1 ≤ j′ ≤ l. If x = b1,2 then Lβ[x] has exactly l+1 groups, since b1,2 is not
in the same group as any other vertex. It holds that adβ(b1,1) = 0, which is easy
to check with the definition of function ad. Thus, νG(Lβ(b1,1)) + adβ(b1,1) =
l + 1 + 0 ≤ l + 1. For j ≥ 3, b1,1, . . . , bk+1,1, b1,2, . . . , bk+1,j−2, b1,j−1 are in the
same group, and in Lβ[x], and νG(Lβ[x]) ≤ l. We conclude that gw(G, β) ≤ l+1.

A Complete Characterisation of the Linear Clique-Width of Path Powers 249

With the lower and upper linear clique-width bounds, we are ready to give the
complete characterisation.

Theorem 3. Let G be a k-path power on n vertices, with k ≥ 1 and n ≥ k + 2.

– If n ≥ k(k + 1) + 2 then lcwd(G) = k + 2.
– If k + 2 ≤ n ≤ k(k + 1) + 1 then lcwd(G) = n−1

k+1 � + 1.

Note that k-path powers on at most k + 1 vertices are complete graphs and
therefore have linear clique-width at most 2.

Corollary 1. Let k ≥ 1 and let G be a path power on at least two vertices.
Then, lcwd(G) ≤ k + 1 if and only if G does not contain the k-path power on
k(k + 1) + 2 vertices as induced subgraph.

With the characterisation in Corollary 1, we can construct a simple algorithm
that computes the linear clique-width of path powers.

Theorem 4. There is a linear-time algorithm that computes the linear clique-
width of path powers.

Proof. LetG be a path power. A canonical bubble model forG can be computed in
linear time. Applying Corollary 1, lcwd(G) = l+1 where l is the smallest number
such that G does not contain an l-path power on l(l + 1) + 2 vertices as induced
subgraph. This number is easy to determine from the computed bubble model.

6 Concluding Remark

It would be very interesting to see if our results can be extended to clique-width
of path powers. We suspect that for large enough path powers, their clique-width
is equal to their linear clique-width. We leave the resolution of this as an open
problem and a future research direction.

Acknowledgements. Wearegrateful toanonymousreferees forvaluableremarks.

References

1. Boliac, R., Lozin, V.: On the Clique-Width of Graphs in Hereditary Classes. In:
Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 44–54. Springer,
Heidelberg (2002)

2. Brandstädt, A., Dragan, F., Le, H.-O., Mosca, R.: New Graph Classes of Bounded
Clique-Width. Theory of Computing Systems 38, 623–645 (2005)

3. Brandstädt, A., Engelfriet, J., Le, H.-O., Lozin, V.: Clique-Width for 4-Vertex
Forbidden Subgraphs. Theory of Computing Systems 39, 561–590 (2006)

4. Corneil, D.G., Habib, M., Lanlignel, J.-M., Reed, B.A., Rotics, U.: Polynomial time
recognition of clique-width ≤ 3 graphs. In: Gonnet, G.H., Viola, A. (eds.) LATIN
2000. LNCS, vol. 1776, pp. 126–134. Springer, Heidelberg (2000)

5. Corneil, D.G., Rotics, U.: On the Relationship between Clique-width and
Treewidth. SIAM Journal on Computing 34, 825–847 (2005)

250 P. Heggernes, D. Meister, and C. Papadopoulos

6. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. Journal of Computer and System Sciences 46, 218–270 (1993)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150
(2000)

8. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics 108, 23–52 (2001)

9. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101, 77–114 (2000)

10. Espelage, W., Gurski, F., Wanke, E.: Deciding clique-width for graphs of bounded
tree-width. J. Graph Algorithms Appl. 7, 141–180 (2003)

11. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width Minimization
is NP-hard. In: STOC 2006, pp. 354–362 (2006)

12. Fomin, F., Golovach, P., Lokshtanov, D., Saurabh, S.: Clique-width: On the Price
of Generality. In: SODA 2009, pp. 825–834 (2009)

13. Golumbic, M.C., Rotics, U.: On the Clique-Width of Some Perfect Graph Classes.
International Journal of Foundations of Computer Science 11, 423–443 (2000)

14. Gurski, F.: Characterizations for co-graphs defined by restricted NLC-width or
clique-width operations. Discrete Mathematics 306, 271–277 (2006)

15. Gurski, F.: Linear layouts measuring neighbourhoods in graphs. Discrete Mathe-
matics 306, 1637–1650 (2006)

16. Gurski, F., Wanke, E.: On the relationship between NLC-width and linear NLC-
width. Theoretical Computer Science 347, 76–89 (2005)

17. Gurski, F., Wanke, E.: The NLC-width and clique-width for powers of graphs of
bounded tree-width. Discrete Applied Mathematics 157, 583–595 (2009)

18. Heggernes, P., Meister, D., Papadopoulos, C.: A new representation of proper in-
terval graphs with an application to clique-width. Electronic Notes in Discrete
Mathematics 32, 27–34 (2009)

19. Heggernes, P., Meister, D., Papadopoulos, C.: Graphs of small bounded linear
clique-width. Tech. rep. 362 in Informatics, University of Bergen (2007)

20. Heggernes, P., Meister, D., Papadopoulos, C.: Graphs of Linear Clique-Width at
Most 3. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 330–341. Springer, Heidelberg (2008)

21. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics 126, 197–221 (2003)

22. Lozin, V.: From tree-width to clique-width: excluding a unit interval graph. In:
ISAAC 2008. LNCS, vol. 5369, pp. 872–883. Springer, Heidelberg (2008)

23. Lozin, V., Rautenbach, D.: Chordal bipartite graphs of bounded tree- and clique-
width. Discrete Mathematics 283, 151–158 (2004)

24. Lozin, V., Rautenbach, D.: On the Band-, Tree-, and Clique-Width of Graphs
with Bounded Vertex Degree. SIAM Journal on Discrete Mathematics 18, 195–206
(2004)

25. Lozin, V., Rautenbach, D.: The relative clique-width of a graph. Journal of Com-
binatorial Theory, Series B 97, 846–858 (2007)

26. Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few P4s. Interna-
tional Journal of Foundations of Computer Science 10, 329–348 (1999)

27. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing Graph Polyno-
mials on Graphs of Bounded Clique-Width. In: Fomin, F.V. (ed.) WG 2006. LNCS,
vol. 4271, pp. 191–204. Springer, Heidelberg (2006)

Preserving Privacy versus Data Retention

Markus Hinkelmann and Andreas Jakoby

Institut für Theoretische Informatik, Universität zu Lübeck, Germany
{hinkelma,jakoby}@tcs.uni-luebeck.de

Abstract. The retention of communication data has recently attracted
much public interest, mostly because of the possibility of its misuse. In
this paper, we present protocols that address the privacy concerns of
the communication partners. Our data retention protocols store streams
of encrypted data items, some of which may be flagged as critical (rep-
resenting misbehavior). The frequent occurrence of critical data items
justifies the self-decryption of all recently stored data items, critical or
not. Our first protocol allows the party gathering the retained data to de-
crypt all data items collected within, say, the last half year whenever the
number of critical data items reaches some threshold within, say, the last
month. The protocol ensures that the senders of data remain anonymous
but may reveal that different critical data items came from the same
sender. Our second, computationally more complex scheme obscures this
affiliation of critical data with high probability.

1 Introduction

Recently, governments all over the world have increased their surveillance ef-
forts. In 2006 the European Union adopted directive 2006/24/EC [10], on “the
retention of data generated or processed in connection with the provision of pub-
licly available electronic communications services or of public communications
networks”. Member states have to implement the directive by 2009 as national
law. By then, communication service providers must retain data that identify
the source and the destination of communication, its type, date and duration
for at least six months. Additionally, information about the location of mobile
communication equipment has to be recorded. Officials want to use retained data
to detect and investigate critical activities.

Certainly, these issues mean a conflict between investigational interests and
preserving the sphere of personal privacy. A simple solution may be as follows:
The communication providers encrypt the retained data of an user. If some suspi-
cious facts justify a judicial order to open the stored data, the private decryption
key is disclosed to the officials. Thus, the provider has always access to the re-
tained data, at least to decryption keys of the users. The goal of this paper is
to present protocols that implement such encryption and decryption processes
and feature advanced properties. Our protocols allow the self-decryption of re-
tained data if a threshold of critical activities is passed. Encrypted data that are
stored before a prescribed period cannot be decrypted. We also care about the

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 251–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

252 M. Hinkelmann and A. Jakoby

anonymity of users, i.e. the stored data are only related to the encrypted identity
of a user. Furthermore, the provider is not responsible to store any user related
data except for data needed for the encryption and classification of the actual
message. I.e. the provider is not responsible to retain any information about the
users’ behaviors. For enhanced data privacy third parties (the providers) should
not be allowed to store private data longer than necessary. This includes the
knowledge about the number of critical activities of a user, too.

Additionally, we propose techniques that data can only be associated with
user if it has been retained in the prescribed period and that critical activities
cannot be traced for a longer period of time. Up to our knowledge our protocols
are the first that ensure this kind of privacy.

Related Work: With the introduction of the Internet data retention, surveil-
lance and privacy have drawn a lot of attention in the fields of sociology and
computer science. Marx [17] identified four conditions under that data reten-
tion raises ethical concerns: Collecting data involves physical or psychological
harm, produce invalid results, crosses a personal boundary without notice, or
violates trust. Having access to the data the temptation to misusing them is
great. Blanchette and Johnson [4] argue that the important value of social for-
getfulness is slipping away since the introduction of electronic data retention.
Cryptography provides some hope to counter this threat, e.g. by introducing
digital pseudonyms [7,8]. Nevertheless, electronic wiretapping means an archi-
tectured security breach and it is necessary to limit its use to appropriate scenar-
ios [16]. Several papers deal with the technical implementation of data retention
[1,23,19]. But to our knowledge no scheme proposes solutions for an increased
level of privacy in data retention.

Our scheme has the feature that the retained data automatically allow their
decryption if a threshold of misbehavior is reached. Hence, secret sharing will
be one important tool. Shamir [22] and Blakley [3] independently introduced
secret sharing schemes. Several schemes using general access structures have been
presented (e.g. [2,13]). Since original shares are as large as the secret, one might
ask to reduce the size of the shares. Czimraz [9] showed that this is impossible for
every access structure. Using an information dispersal algorithm [20] Krawczyk
[15] proposes a scheme to reduce the share size.

Using Shamir shares our protocols allow that a secret can be decrypted only
if a threshold is reached within a determined period of time. If the messages
are too old they become useless for the decryption. Rivest et al. [21] introduced
the notion of time-release crypto. They propose to use computational puzzles as
time-locks to schedule the first point in time when it is possible to decrypt data.
In a similar way timed commitments and signatures are implemented by Boneh
and Naor [6]. Haber et al. [11] presented protocols for cryptographical times-
tamping that ensure the privacy of the data and the integrity of the timestamp.
As second technique, we use pseudorandom number generators (PRNG) to create
keys and identification information. Blum and Micali [5], and Yao [24] introduced
the notion for cryptographically robust PRNG. In Sections 3 and 4 we present
basic protocols. We discuss these protocols and identify a new problem type:

Preserving Privacy versus Data Retention 253

the history of messages. Our main scheme, presented in section 5, obscures the
message history with high probability (w.h.p.).

2 Preliminaries

Let X be a discrete random variable that takes values from the set of real
numbers or strings over the alphabet Σ. If X is uniformly distributed, we
also write X ∈R Σ∗. Using a function symbol f we write Pr[f(X) = y] for∑

x : f(x)=y Pr[X = x].

Pseudorandom Number Generators: Pseudorandom number generators
(PRNG) are functions having special properties which make them very suitable
for cryptography. If the input (the so called seed) of a PRNG is unknown, the
output is indistinguishable from random strings for computationally bounded
adversaries. On the other hand, PRNGs are deterministic functions. Thus, if the
seed is known, we are able to reproduce the output of a PRNG.

Definition 1. Let h : N → N be a polynomial stretch function with h(�) > �
for all �. Let S and Y be uniformly distributed random variables taking values
in Σ and Σh(), respectively. We call a function G : Σ → Σh() a PRNG if for
all probabilistic polynomial-time bounded algorithms A, for all polynomials p and
for all sufficiently large � it holds that |Pr[A(Y) = 1]−Pr[A(G(S)) = 1]| < 1

p() .

The following proposition describes how to stretch the output of a PRNG. It
appears in [12] and is due to an observation made by Goldreich and Micali.
For a string w = w1 . . . w and 1 ≤ a ≤ b ≤ � let w{a,...,b} be the substring
wa . . . wb. The operator ◦ denotes the concatenation of strings. Let G : {0, 1} →
{0, 1}+1 be a PRNG. We define G(1)(S) = G(S), and inductively, for all i ≥ 1,
G(i+1)(S) = G(G(i)(S){1,...,}) ◦ G(i)(S){+1,...,+i}. Then, for every polynomial
q and sufficiently large � it holds that G(q()) : {0, 1} → {0, 1}+q() is a PRNG.

Thus, for every polynomial h the function Ĝ = G(h(l)) is a PRNG. As seen
above, we inductively define the PRNGs Ĝ(1)(S) = Ĝ(S) and Ĝ(i+1)(S) =
Ĝ(Ĝ(i)(S){1,...,}) ◦ Ĝ(i)(S){+1,...,+i·h()} for i ≤ q(�).

Definition 2. Let S ∈R {0, 1} be a random string and i ∈ N. We define the
seed generating function seed(i) : {0, 1} → {0, 1} and the pseudorandom string
function rand(i) : {0, 1} → {0, 1}h() such that seed(0)(S) = S, and for i ≥ 1 it
holds that seed(i)(S) = Ĝ(i)(S){1,...,} and rand(i−1)(S) = Ĝ(i)(S){+1,...,+h()}.

We observe that for i ∈ N we can use seed(i)(S) to calculate the values seed(i+1)(S)
and rand(i)(S) by Ĝ(seed(i)(S)) = seed(i+1)(S)◦rand(i)(S) . Starting with a seed
S we can generate sequences {seed(i)(S)}τ

i=0 and {rand(i)(S)}τ
i=0 efficiently. For

a time step t we will use rand(t)(S) to encrypt some data. Note that if τ gets large,
the probability to distinguish between random strings and pseudorandom strings
increases. To work against this we may increase �. But to inhibit this threat we
can additionally substitute such a seed seed(t)(S) by a new random string from

254 M. Hinkelmann and A. Jakoby

time to time. In the following we will focus only on the way how we use the two
sequences. Although we can efficiently compute seed(j)(S) and rand(j)(S) for
j ≥ i on input seed(i)(S), no probabilistic polynomial time algorithm on input
seed(i)(S) or rand(i)(S) is able to deduce more than negligible information about
the strings seed(k)(S) and rand(k−1)(S) for k < i due to the cryptographical
robustness of the PRNG G.

Shamir’s Secret Sharing: Let F be a field with more than n elements. In
[22] Shamir presented a threshold scheme to divide some data D ∈ F into n
shares D1, . . .Dn such that D can only be reconstructed if one knows at least
k shares Di. I.e. let p be a random polynomial over the field F of degree k − 1
with p(0) = D. For 1 ≤ i ≤ n we can choose Di := p(i). Having access to k
shares we can compute the polynomial p by Lagrange interpolation. If we have
obtained less than k shares, then for each value D′ we can generate a polynomial
p′ with p′(0) = D′ that is consistent with the obtained shares. Thus, this scheme
provides information-theoretical privacy.

Anonymity: Let subj(M) be the decrypted subject of interest about a mes-
sage M . For example, this may be the information about its sender, receiver,
or contents. We assume that subj(M) is encrypted in the message. Since our
protocols are randomized we regard subj(M) as a random variable. The set
SU = {subj(M ′) |M ′ is a possible message} describes the set of all possible sub-
jects of interest from all messages.

Definition 3. Let I be a uniformly distributed random variable taking values
from SU . For a message M we call the information about a message subj(M)
anonymous for a party A if for all probabilistic polynomial-time bounded al-
gorithms A, for every polynomial p, for all communication strings c and any
content r of the random string of A, for all sufficiently large security parame-
ters k for encryption of subj(M) it holds that |Pr[A(subj(M),M, c, r) = 1] −
Pr[A(I,M, c, r) = 1]| ≤ 1

p(k) .

In the following we usually encrypt the subject of a message using a bitwise XOR
(⊕) with a pseudorandom string. Then, we regard the security parameter k as
the length of the seed for the PRNG.

3 Basic Structure and Types of Messages

We divide the participating parties that into three groups.

1. Users, who e.g. surf in the Internet or send emails. They want to use these
services privately. We also refer to users as senders or receivers.

2. Communication service providers offer and control access to the system.
Providers are corporations that want to maximize their profit and minimize
their costs and responsibilities.

3. The officials (government, police, . . .) ensure that other parties respect the
law. In the context of data retention we call them gathering party.

Preserving Privacy versus Data Retention 255

To control the senders some governments have already prescribed data reten-
tion. I. e. providers are responsible for collection and storage of information about
the communication of the senders. If the officials lawfully demand the retained
data for a certain user, the providers have to disclose them. This approach of
data retention rises severe concerns about privacy and massively increasing stor-
age costs of the providers [25]. In the following we present protocols that ensures
the privacy of the senders, liberates the providers from storing the retained data
items, and allows officials to inspect all data items from a predetermined period
if a party has recently committed too many critical actions.

A critical interaction might occur if a user sends an email to a party that
is already a subject of investigation. Depending on the type of interaction we
distinguish between critical and non-critical interactions and, thus, between crit-
ical and non-critical messages. We assume that the gathering party supplies the
provider with a blacklist of critical actions. Whenever a sender interacts with the
system the provider classifies this action as critical or non-critical. The provider
prepares an encrypted data retention message for this interaction and sends the
message to the gathering party. We will investigate the problem of permitting
a gathering party the decryption of recorded messages only if it has received
enough critical messages within a predetermined period of time.

A message M can be described as a four tuple M = 〈time, id, share, load〉 .
where time(M) denotes the initiating time (the time the message was sent),
id(M) denotes some kind of message ID or sender pseudonym, and share(M)
denotes the shares corresponding to that message. load(M) consists of further
information associated with M – we assume that this part of a message includes
the subject subj(M) of the message. If M is non-critical we choose id(M) =
share(M) = 0. The sequence of messages belonging to the same sender may
reveal information about his (critical) activities if the sender can be identified.
We denote the sequence of messages belonging to the same sender as the history
of the sender. Given a message M we also call the sequence of messages M ′

belonging to the sender of M with time(M) > time(M ′) the history of M .

Encryption of the Load: We assume there are n different senders. The iden-
tity of a sender is a unique code word of a binary blockcode I with Hamming
distance δ and more than n code words. If a sender Ii commits an activity, the
gathering party wants to retain data corresponding to that activity. Depending
on the type of the activity, critical or not, the provider prepares a message M ,
critical or not, including the encrypted retained data (the encrypted subject) in
load(M). Then, the provider sends the message to the gathering party. The gath-
ering party stores all retained data in a pool of messages. If we have obtained a
decryption key from critical messages, we must identify the messages that can be
decrypted with this key. Therefore, we introduce an indicator string R, a pseudo-
random seed L, and the (encrypted) fingerprint fpR,L(Ii) that corresponds to the
identity of the sender. The implementation of the fingerprint is based on Naor’s
commitment scheme [18]. We define load(M) = 〈R, fpR,L(Ii), encK(subj(M))〉 .

Let t be the time step when M is sent. For the random string S ∈ {0, 1} we
generate the keys K and L ∈ {0, 1} from seed(t)(S) by rand(t)(S) = K ◦ L.

256 M. Hinkelmann and A. Jakoby

Let G′ : {0, 1} → {0, 1}|subj(M)| be a PRNG. Then, we define the encryption
function as encK(subj(M)) = G′(K) ⊕ subj(M).

Let m ∈ N be the security parameter for the fingerprint and G′′ : {0, 1} →
{0, 1}m·|Ii| be a PRNG. Let G′′(L) = B1 ◦ . . . ◦ B|Ii| and R = R1 ◦ . . . ◦ R|Ii|
with Bi, Ri ∈ {0, 1}m and Ri is a random string containing at least one 1. Then,
we define fpR,L(Ii) = B̃1 ◦ . . . ◦ B̃|Ii| as follows: If the jth bit bj of Ii is 0 then
we choose B̃j := Bj and if bj = 1 choose B̃j := Bj ⊕ Rj . Having access to
the message M and the keys K and L by expanding seed(t)(S), we can decrypt
Ii and check whether it matches a fingerprint fpR,L(Ii). Let K ′, L′ denote two
keys generated by seed(t)(S′) with S �= S′, then, fpK,L(Ii) should be different
to fpK′,L′(Ij) for every different identity Ij ∈ I. If the unwanted case happens,
i.e. we associate the message M to the wrong identity Ij , we say that a collision
occurs. Assume that with probability (1 − q) all strings K and G′(K), L, and
G′′(L), respectively, are different for all messages. If for the security parameter it
holds that m ≥ �+1, then the collision probability is at most q+(1−q)·2−(δ−1).
We can ensure that q is very small by increasing the seed length. Next, we analyze
the information about Ii and subj(M) that can be deduced from load(M).

Lemma 4. For any probabilistic polynomial algorithm A, all polynomials p and
for all sufficiently large � it holds that Pr[A(load(M)) = Ii] < 1

n + 1
p() and

Pr[A(load(M)) = subj(M)] < 1
|SU| + 1

p() .

If we do not have any information about the decryption keys K and L then the
advantage to guess Ii and subj(M) for a message M is negligible.

Allocation and Generation of the Keys: We propose that critical messages
themselves contribute to obtaining the decryption key if a sender commits too
many misbehaviors within a specific period of time. Let Ti ⊂ N with i ∈ N
denote the ith period. Let Πt be the set of all periods i such that t ∈ Ti and let
tmin(Ti) = mint∈Ti t. To implement the wanted behavior of self decryption we
will assign a Shamir shares [22] of the key to each message: For each sender and
each period Ti we generate a random polynomial p of degree d− 1 over a field F
that is sufficiently large such that p(0) = seed(tmin(Ti))(S). If we send a critical
message M in time step t ∈ Ti, then we attach the share p(t− tmin(Ti)+1) to M .
Thus, if we receive d messages within Ti, we can reconstruct seed(tmin(Ti))(S) by
Lagrange interpolation. Afterwards, we can generate the sequence of seed(t)(S)
and rand(t)(S) for all t ∈ Ti. According to the used encryption of the load of a
message we can identify those (critical and non-critical) messages where we can
correctly decrypt the fingerprint fpR,L(Ii). For each of these identified messages
M we can also decrypt subj(M).

4 A Threshold Scheme for Critical Data

In this section we present a scheme to construct critical messages.

Scheme Initialization: The gathering party supplies the provider with a black-
list of critical activities. Then, for each user i the provider performs the

Preserving Privacy versus Data Retention 257

following steps: The provider generates an initial seed S and a unique ran-
dom number u. For each period Tj we choose a random polynomial pj with
pj(0) = seed(tmin(Tj))(S).

Sending a critical message: Assume that user i performs a critical activity at
round t. The provider identifies it by his blacklist. Using the user-specific seed S
and random number u the provider generates the message M with time(M) = t,
id(M) = u, share(M) = 〈pj1(xj1), pj2(xj2), . . . , pj�

(xj�
)〉 where Πt = {j1, . . . , j}

and xj = t − tmin(Tj) + 1, as well as load(M) = 〈R, fpR,L(Ii), encK(subj(M))〉.
Then, the provider sends M to the gathering party.

Identification and Decryption: If the gathering party has received d critical
messages with the same id u within Tj it reconstructs seed(tmin(Tj))(S) by
Lagrange interpolation. This reconstruction can be done efficiently if the critical
messages are sorted according to their id(M). Afterwards, it can generate all
subsequent values seed(t)(S) and rand(t)(S). Using these values the gathering
party is able to identify all (critical and non-critical) messages where it can
correctly decrypt the fingerprint fpR,L(Ii). For each of these identified messages
M the gathering party decrypts subj(M).

Let IUunident be the set of all identities that the gathering party has not been
able to identify, i.e., for any Ii ∈ IUunident and all periods Tj the gathering party
has not received d critical messages associated with Ii within period Tj .

Theorem 5. Let M be a message that is associated with Ii ∈ IUunident. Then,
M is anonymous to the gathering party with respect to IUunident.

If we restrict ourselves to use only one period Ti = T0, then we can also use the
protocols proposed by Jarecki and Shmatikov [14] since they may only encrypt a
constant number of messages of a tag (user). If the messages can be decrypted,
all messages with the same tag can be decrypted. A PRNG as key generator
allows us to encrypt a polynomial number of messages with the same tag and
also prevents the decryption of messages with the same tag that were encrypted
long ago.

Privacy of the Message History: Now, we are going to analyze the situation
where the gathering party has received d or more critical messages with the same
id u. Let t′ be the earliest time step such that we can recover a seed seed(t′)(S)
from these messages. Then, we can decrypt the identity Ii and all messages from
the corresponding sender that are initiated at time step t ≥ t′. In addition, we are
able to identify the complete history of critical messages since all critical message
have the same id u. Therefore, we can also determine partial knowledge about
the history of the identified sender. Recall that even for an identified user one of
our goals is to ensure the anonymity of messages initiated at steps t < t′. We can
guarantee this for non-critical messages since we cannot compute seed(t)(S) for
t < t′ by construction. But the history of critical messages is still disclosed. One
may use, for instance, the following approach to obscure the history: We allow
that every user We allow that every user can use a fixed number α of different
ids. Hence, it is possible that a user can choose one of his IDs to be used in a

258 M. Hinkelmann and A. Jakoby

message. If we assume that each id is only valid for a fixed period of time and
if the user performs only a small number of critical activities he can hide the
history that is associated with a specific id. Hence, in the worst case, the sender
might be able to send (2α+1)(d− 1) critical messages within Δ time steps such
that he cannot be identified. However, in most cases it is desirable that a sender
of critical messages is identified whenever the threshold d of critical messages is
reached.

5 A Protocol for Obscuring the History

In the previous section we have presented a protocol that allows an observer
to gain some knowledge on the history of the parties. This knowledge includes
the appearance of critical data even if the content of the critical data remains
decrypted. In the following protocol we will change the way how critical mes-
sages are generated. This allows us to mix and thereby obscure the histories
of the critical messages. This protocol does not change the generation of non-
critical messages. More precise, we will replace the polynomial or pseudo sender
ID of every critical message by an ambiguous randomly chosen message ID
idact ∈R {1, . . . , N}, i.e. by an ID that may appear for several messages of sev-
eral senders. To connect consecutive messages of the same sender we will include
the message ID idpre ∈ {1, . . . , N} of the preceding message (or a randomly
chosen message ID if the actual message is the first message of the sender) in
the actual message. Hence, we modify the structure of a message M as follows:
M = 〈time, idact, idpre, share, load〉 . Recall, that we assume that the IDs are
chosen randomly and are not unique, i.e. within a certain period of time several
messages with the same ID will be used with a non negligible probability.

Let M[t] denote the set of all messages collected by the gathering party until
step t. We can draw a message graph G[t] := (M[t], E[t]) where for M1,M2 ∈
M[t] it holds that (M1,M2) ∈ E[t] iff time(M1) > time(M2) and idpre(M1) =
idact(M2). A directed path from a source in G[t] to a sink denotes the possible se-
quence of all messages of a sender. We have to describe an algorithm that detects
a correct sequence if the threshold of critical messages is reached. Analogously
to the identification mechanism, we add the encrypted sender ID to the load of
each critical message and we assume that, as in the previous protocols, share(M)
gives us a share of the seed of a pseudorandom number generator. Having the
desired number of d consecutive critical messages M1, . . . ,Md we can compute
a corresponding seed and by using this seed we can determine (decrypt) a value
for the sender ID of every message idi on this sequence. If all values idi are equal,
then we assume that these messages were initiated by the sender with ID idi.
Note that if such a sequence is initiated by one sender the ID of this sender will
be detected. On the other hand, following our analysis to identify the sender of
non-critical data it follows that the probability of a false positive, i.e. that we
claim that a sequence is initiated by the wrong sender, is negligible.

Lemma 6. Let � be the length of S and m be the block length of indicator string.
If the security parameter m ≥ �+ 1 then probability of a false positive is at most

Preserving Privacy versus Data Retention 259

q + (1 − q) · 2−(δ−1) where (1 − q) is the probability that all seeds and pseudo-
random strings used for encrypting and fingerprinting are different.

Now, we investigate the efficiency of our algorithm to detect a sequence of consec-
utive critical messages M1, . . . ,Md that are initiated by the same sender within
a time period Ti of length Δ. Let mt denote the number of messages M with
timestamp t = time(M), let mmax := maxt mt and let mmin := mint mt. If we as-
sume that at every round every party initiate a critical message with probability
pcm, then by some standard calculations one can show that Pr[mt ≤ 2

3 · pcmn] ≤
e−2pcmn/9 and Pr[mt ≥ 4

3 · pcmn] ≤ e−4pcmn/3 where n denotes the number of
participating parties. Hence, if we choose N such that N ∈ 2o(pcmn) then with
probability 1−N−z we have 2

3pcmn ≤ mt ≤ 4
3pcmn for every constant z. Hence,

we can assume that mmin and mmax only deviate form each other by a factor
of 2. In the following we assume that mmax = Nε for some appropriate chosen
values ε < 1.

Lemma 7. With probability 1 − (e ·Δ ·Nε−1)−(k−1)·Δ for every constant k > 1
the number of different sequences of d consecutive critical messages ending with
message M within a period of length Δ is bounded by (e · Δ · Nε−1)d.

If we have ε = 1
2 , then mmax =

√
N ∈ ω(lnN) and cd = (e ·Δ/

√
N)d where the

polynomial degree d is a constant given by the system. Whenever a new message
arrives at the gathering party, it has to search in the message graph whether
there exists a sequence of d consecutive critical messages in the actual period
that ends with the recently received message. Thus, the lemma above gives us a
time bound for our algorithm for detecting such a sequence. Let m̃t denote the
number of messages M with timestamp t = time(M) that do not belong to a
sequence of d consecutive critical messages within a period of length Δ and let
m̃min := mint m̃t. Analyzing the randomized message graph we can show:
Theorem 8. For every k > 3 and every message M with probability 1−N−(k−3)

we cannot deduce any information about the history of M if we investigate mes-
sages that are initiated in a round t ≤ time(M) − N

m̃min
·
(
k · N2·log2 N

N−m̃min
+ Δ

d−1

)
.

Asymptotically, the time until |I(t,M)| = N is in O(N2 log(N)/min{m̃min, N −
m̃min}). Hence, if m̃min=ε·N for ε < 1, then the required time is in O(N log(N)).

6 Conclusions

In this paper we presented a scheme for data retention that allows self-decryption
if the number of critical messages reaches a threshold. As long as the messages
cannot be decrypted the sender is anonymous to the gathering party. Further-
more, we introduced the history of messages as subject of privacy. Our scheme
ensures the privacy of the history of non-critical messages. For critical messages
we propose a protocol that obscures the history. The runtime of this protocol is
polynomial in the parameters Nε−1 and Δ but exponential in d. In our proto-
cols all messages of a user are encrypted by the same provider. An interesting
question is whether we can extend our protocols such that users can use several
providers that do not share information about their customers.

260 M. Hinkelmann and A. Jakoby

References

1. Agarwal, A., Li, H., Roy, K.: Drg-cache: a data retention gated-ground cache for
low power. In: DAC, pp. 473–478. ACM, New York (2002)

2. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidel-
berg (1990)

3. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS (1979)
4. Blanchette, J.-F., Johnson, D.G.: Data retention and the panoptic society: The

social benefits of forgetfulness. The Information Society 18, 33–45 (2002)
5. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo

random bits. In: FOCS, pp. 112–117 (1982)
6. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)
7. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.

Commun. ACM 24(2), 84–88 (1981)
8. Chaum, D.: Security without identification: Transaction systems to make big

brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)
9. Csirmaz, L.: The size of a share must be large. J. Cryptology 10(4), 223–231 (1997)

10. European Parliament and Council. Directive 2006/24/EC (March 2006)
11. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol-

ogy 3(2), 99–111 (1991)
12. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator

from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
13. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access

structure. In: Globecom, pp. 99–102 (1987)
14. Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction

escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 590–608. Springer, Heidelberg (2004)

15. Krawczyk, H.: Distributed fingerprints and secure information dispersal. In: PODC,
pp. 207–218 (1993)

16. Landau, S.: Security, liberty, and electronic communications. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 355–372. Springer, Heidelberg (2004)

17. Marx, G.T.: An ethics for the new surveillance. Inf. Soc. 14(3) (1998)
18. Naor, M.: Bit commitment using pseudorandomness. J. Crypt. 4(2), 151–158 (1991)
19. Ng, K., Liu, H.: Customer retention via data mining. Artif. Intell. Rev. 14(6),

569–590 (2000)
20. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and

fault tolerance. J. ACM 36(2), 335–348 (1989)
21. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto. Technical report, Cambridge, MA, USA (1996)
22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
23. van Wanrooij, W., Pras, A.: Data on retention. In: Schönwälder, J., Serrat, J. (eds.)

DSOM 2005. LNCS, vol. 3775, pp. 60–71. Springer, Heidelberg (2005)
24. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: FOCS, pp. 80–91

(1982)
25. Zuccato, A., Rannenberg, K.: Data retention has serious consequences. CEPIS

Position Paper, LSI SIN (04)01 (2004)

Kolmogorov Complexity and Combinatorial
Methods in Communication Complexity

Marc Kaplan and Sophie Laplante

LRI, Université Paris-Sud XI, 91405 Orsay CEDEX, France
{kaplan,laplante}@lri.fr

Abstract. We introduce a method based on Kolmogorov complexity to
prove lower bounds on communication complexity. The intuition behind
our technique is close to information theoretic methods [1,2]. Our goal is
to gain a better understanding of how information theoretic techniques
differ from the family of techniques that follow from Linial and Shraib-
man’s work on factorization norms [3]. This family extends to quantum
communication, which prevents them from being used to prove a gap
with the randomized setting.

We use Kolmogorov complexity for three different things: first, to
give a general lower bound in terms of Kolmogorov mutual information;
second, to prove an alternative to Yao’s minmax principle based on Kol-
mogorov complexity; and finally, to identify worst case inputs.

We show that our method implies the rectangle and corruption bounds
[4], known to be closely related to the subdistribution bound [2]. We ap-
ply our method to the hidden matching problem, a relation introduced
to prove an exponential gap between quantum and classical communica-
tion [5]. We then show that our method generalizes the VC dimension
[6] and shatter coefficient lower bounds [7]. Finally, we compare one-way
communication and simultaneous communication in the case of distri-
butional communication complexity and improve the previous known
result [7].

1 Introduction

Yao introduced the model of communication complexity in 1979 [8]. It has since
become a central model of computation, studied for itself as well as for its numer-
ous applications. The model addresses problems whose inputs are shared among
different players, who have to communicate in order to solve them.

We wish to determine, for a given communication problem, how many bits
the players have to exchange in order to solve it. A simple answer is that the
messages should contain at least enough information to solve the problem. For
example, they need to distinguish between inputs that produce different outputs.
This idea has led to many lower bound techniques, and in particular to proofs
involving information theory.

Shannon’s information theory’s original purpose was to study communication
problems [9], so it seems natural that these techniques found applications in the

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 261–270, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

262 M. Kaplan and S. Laplante

field of communication complexity. Information complexity is a general lower
bound method [1], but in many other cases, ad hoc proofs have been given for
specific problems [7,10,5]. One of the appealing features of these proofs is the
way they capture the intuition of the hardness of the problem very naturally.
However, by using elaborate results in information theory which in turn are
based on statistics and probability, the essential mechanics of the proof is not
always so readily apparent.

The use of Kolmogorov complexity has proven to be useful for lower bounds in
various models, such as time complexity [11], average-case complexity, communi-
cation complexity [12], communication complexity of individual instances [13,14],
and randomized and quantum query complexity [15]. The intuition that arises
from both Kolmogorov complexity and information theory is often close, but
they differ in their underlying mechanics: where information theory uses statis-
tics, Kolmogorov complexity uses combinatorics. One of our goals is to capture
the intuition of the information theoretic approach, while bringing out the com-
binatorial nature of these proofs. The main tool from Kolmogorov complexity
that we use is incompressibility. It allows us to identify inputs that require a
large amount of communication. The second is mutual information between the
input and the transcript, which gives us a general expression on the amount of
information that the player must exchange.

One of the main open problems in quantum communication complexity is to
show an exponential gap between classical and quantum communication com-
plexity, for a total function. The hidden matching relation was introduced to
exhibit such a gap [5]. However, this problem falls short of this goal since the
problem is a relation. More recently, it has been proved that the gap holds for a
partial function [16], but the question remains open for total functions.

Linial and Shraibman’s work on randomized and quantum communication
complexity [3], and recent subsequent work, such as [17,18], can be viewed as
mounting evidence that there is at most a polynomial gap between classical and
quantum communication complexity, for total functions. Indeed, their method
generalizes most of the previously known lower bound techniques, including dis-
crepancy, trace norm [19], and some Fourier based techniques [20]; and these
techniques all extend to the quantum setting. It was recently shown that there are
problems where information theoretic techniques can prove significantly stronger
randomized lower bounds than the factorization norm and related methods [21],
which indicates that information theoretic and related techniques are essential
for proving gaps between randomized and quantum communication complexity.

Main results. We give a general technique based on Kolmogorov complexity to
prove lower bounds on deterministic and randomized communication complexity.
Its formulation is very similar to the information complexity method [1].

We also prove a version of Yao’s theorem based on Kolmogorov complexity,
which allows us to restrict the random choices to a single incompressible string.
By choosing both the worst case input and the random choices of the algorithm
to be incompressible, we get the advantage of having them be independent of
one another, which tends to simplify the proofs.

Kolmogorov Complexity and Combinatorial Methods 263

We show that our method is related to the corruption [4] and subdistribution
bounds [2], placing it on the side of information theoretic methods.

We apply our method to the hidden matching problem [5], and also prove that
our technique generalizes the VC dimension [6] and shatter coefficient lower
bound [7]. Kolmogorov complexity turns out to be a very good tool in these
cases, since it highlights very nicely the combinatorial nature of the proofs.
Finally, we use combinatorial techniques to compare one-way and simultaneous
communication in the multi-player setting. The result was previously known [7],
but we significantly improve the error dependence.

2 Preliminaries

2.1 Communication Complexity

Let X , Y and Z be finite sets and f : X × Y → Z. In the communication
complexity model, two players, Alice and Bob, each receive an input, and their
goal is to compute f . Neither of them sees the other input. To perform this task,
they communicate, and at the end, Bob outputs the value of the function.

Messages are sent according to a communication protocol. The cost of the
protocol is the sum of messages’ length (in the worst case). The communication
complexity of the function f is the cost of the best protocol that computes f . We
denote it D(f). Notice that, since we are only interested in the communication
between the players, we can assume that they have unlimited computational
power. We will consider these variants of the model:

– One way communication DA→B(f): Alice sends a single message to Bob.
– Simultaneous messages D‖(f): Alice and Bob each send a single message to

a referee, who outputs f(x, y).
– Communication complexity of relations: Let R ⊆ X × Y × Z be a ternary

relation. Alice receives x ∈ X and Bob y ∈ Y . Bob has to output any z such
that (x, y, z) ∈ R.

One important notion is the transcript of the protocol on input (x, y). This is the
concatenation of the messages sent by Alice and Bob when they receive inputs
x and y. We assume for simplicity that the protocol has the property that the
length of the messages in each round depends only on the round, and the length
of the inputs. (We may always pad the messages so that this holds.) For one-way
communication, the transcript is just the message sent by Alice to Bob.

A monochromatic rectangle for f is a set R = S × T with S ⊆ X and T ⊆ Y
such that there exists b ∈ {0, 1} and for all (x, y) ∈ R, f(x, y) = b. A classical re-
sult in communication complexity states that a deterministic protocol partitions
the set of inputs into monochromatic rectangles, each rectangle corresponding to
a transcript of the protocol [22]. Let μ be a probability distribution over X × Y
and ε > 0. A rectangle is called (μ, ε)-monochromatic for f if there exists a
b ∈ {0, 1} such that μ({(x, y) ∈ R|f(x, y) = b}) ≥ (1 − ε)μ(R).

In randomized communication complexity, Alice and Bob can toss coins, and
the protocols may err with some small probability.

264 M. Kaplan and S. Laplante

Definition 1. Let 0≤ε≤ 1
2 . A probabilistic communication protocol P is ε-correct

for f if for all (x, y)∈X × Y , Prob(P(x, y) �= f(x, y)) ≤ ε, where the probability
is taken over the randomness of P.

The randomized communication complexity is the cost of the best probabilistic
ε-correct protocol that computes f , and is denoted by Rε(f). We usually consider
the randomness used in communication protocols explicitly, that is, we assume
that before the execution of the protocol, each player receives a random string rA

and rB from sets RA, RB ⊆ {0, 1}∗. If the randomness is shared, then RA = RB

and rA = rB . We denote by Rpub
ε (f) the randomized communication complexity

with shared randomness.
In the distributional model, inputs are chosen according to a distribution, but

protocols are deterministic, and can err on some inputs.

Definition 2. Let 0≤ε≤1
2 and μ a distribution over the inputs X ×Y . A distribu-

tional communication protocol P is (μ, ε)-correct if Probμ(P(x, y) �= f(x, y)) ≤ ε.

We denote by Dμ
ε (f) the cost of best distributional (μ, ε)-correct protocol. The

distributional communication complexity Dε(f) is maxμD
μ
ε (f). We will consider

the special case where μ ranges over rectangular (or product) distributions only.
These are distributions μ over X × Y such that μ = μ1 ⊗ μ2 where μ1 is a
distribution over X and μ2 a distribution over Y . In this special case, we denote
the communication complexity by D

[]
ε (f). In the general case, Yao’s minmax

theorem states that distributional communication complexity is equivalent to
randomized communication complexity with shared randomness.

Theorem 1. [23] For any f : X × Y → {0, 1} and ε > 0, Dε(f) = Rpub
ε (f).

2.2 Kolmogorov Complexity

We recall some basic definitions and properties of Kolmogorov complexity that
we use extensively in the rest of the paper [11].

Definition 3

– A set of strings is called prefix free if no string in the set is a prefix of
another.

– Let ϕ be a universal Turing machine and P a prefix free set. The prefix free
Kolmogorov complexity of a string x given y with respect to ϕ,P is Kϕ(x|y) =
min{|p| : p ∈ P and ϕ(p, y) = x}.

If ε is the empty string, we just write Kϕ(x) for Kϕ(x|ε). Henceforth, we fix a
universal Turing machine ϕ, a prefix free set P, and write K instead of Kϕ.

Proposition 1

1. For any finite set X and string σ, there exists a constant c such that for all
x ∈ X K(x|σ) ≤ log |X | + c.

2. For any finite set X and string σ, there exists an element x ∈ X such that
K(x|σ) ≥ log |X |. Such elements are called incompressible.

3. There exists a constant c such that, for all x, y, σ: K(x|σ) ≤ K(x|y, σ) +
K(y) + c.

Kolmogorov Complexity and Combinatorial Methods 265

Corollary 1. Let X and Y be finite sets. For x ∈ X and y ∈ Y, ∀σ, if
K(x, y|σ) ≥ log |X | + log |Y | then K(x|y, σ) ≥ log |X | and K(y|x, σ) ≥ log |Y |.
Such strings x, y are called independent Kolmogorov-incompressible strings.

Given a distribution on strings, they can be coded using the Shannon-Fano
code. The next proposition shows how this translates to Kolmogorov complexity.

Proposition 2

1. Fix a finite set X and a probability distribution μ over X. There exists a
constant c ≥ 0 such that for all σ ∈ {0, 1}∗, and for all x ∈ X such that
μ(x) �= 0, K(x|σ) ≤ log(1

μ(x)) + c.
2. Fix a finite set X and a probability distribution μ over X. For all σ ∈ {0, 1}∗,

there exists x ∈ X such that μ(x) �= 0 and K(x|σ) ≥ log(1
μ(x)).

We also use the following asymptotic approximation.

Proposition 3. Let n ∈ N and 0 < ε < 1. Then log
(

n
�εn�

) ∼ nH2(ε), where
H2(ε) is the entropy of a random variable following a Bernoulli distribution
with parameter ε.

3 Lower Bounds

3.1 Main Theorem in the Deterministic Case

We give a general lower bound on deterministic communication complexity in
terms of Kolmogorov mutual information between an input of the problem and
the transcript of the protocol. The mutual information between x and y is
K(x) − K(x|y), which can be interpreted as how much information about x
is gained when y is given, compared to when it is not given. It is a measure of
the information that y contains on x. Buhrman et al. have also used Kolmogorov
mutual information to analyze the communication of individual instances, but
they consider the mutual information between the players’ inputs [13,14].

Theorem 2. Fix f : X × Y → {0, 1} and P an optimal deterministic protocol
for f . Denote by T (x, y) the transcript of P on input (x, y). Then ∀σ ∈ {0, 1}∗,

D(f) ≥ max
(x,y)∈X×Y

K(x, y|σ) − K(x, y|T (x, y), σ).

Proof. Fix (x, y) ∈ X × Y . By Propositions 3 and 1, K(x, y|σ) ≤
K(x, y|T (x, y), σ) + K(T (x, y)), and K(T (x, y)) ≤ |T (x, y)| ≤ D(f).

We show that our method implies the corruption lower bound [4].

Definition 4. For f : X × Y → {0, 1}, a distribution μ over X × Y and ε > 0,
define monoμ(f, ε) = max{μ(S) | S is a (μ, ε)-monochromatic rectangle for f}.
Theorem 3 ([4]). For f : X × Y → {0, 1}, μ a distribution over X × Y and
1/2 > ε > 0, Dμ

ε (f) ≥ log 1
monoμ(f,2ε) .

266 M. Kaplan and S. Laplante

Proof. Fix an (μ, ε)-correct protocol P for f , and by Proposition 2, let (x∗, y∗) be
a pair of inputs such that K(x∗, y∗|μ,P , f) ≥ log 1

μ(x∗,y∗) . Recall that P induces
a partition R of the input into rectangles. For S ⊆ X×Y , let Err(S) = {(x, y) ∈
S|P(x, y) �= f(x, y)}, and R̃ = {S ∈ R|μ(Err(S)) > 2εμ(S)}. Let E =

⋃
S∈R̃ S

be the inputs not in (μ, 2ε)-monochromatic rectangles.
Notice that μ(E) =

∑
S∈R̃ μ(S) ≤ 1/2, otherwise μ(Err(X × Y)) > ε, which

contradicts the correctness of the protocol. If (x∗, y∗) ∈ E, one could encode
(x∗, y∗) by giving an index in E, using the probability distribution induced by
μ on E and a Sannon-Fano code (Proposition 1), so log 1

μ(x∗,y∗) ≤ K(x∗, y∗) ≤
log μ(E)

μ(x∗,y∗) ≤ log 1
2μ(x∗,y∗) , a contradiction. Hence, (x∗, y∗) /∈ E.

Since (x∗, y∗) /∈ E, the transcript T = T (x∗, y∗) determines a rectangle R con-
taining (x∗, y∗) such that μ(Err(R)) < 2ε. By definition, μ(R) ≤ monoμ(f, 2ε).
Given T , one can encode (x∗, y∗) by giving its index in R, using the prob-
ability distribution induced by μ on R and a Sannon-Fano code. Therefore,
K(x∗, y∗|μ,P , f, T) ≤ log μ(R)

μ(x∗,y∗) ≤ log monoμ(f,2ε)
μ(x∗,y∗) . Using Theorem 2 with

σ = (μ,P , f), we get Dμ
ε (f) ≥ log 1

monoμ(f,2ε) , as claimed.

3.2 The Randomized Case: A Kolmogorov Alternative to Yao’s
Min-Max Principle

We show how to derive a deterministic protocol from a randomized one, with the
same complexity and performance in terms of errors. In the communication com-
plexity model, Alice and Bob have full computational power, so the players can
choose an incompressible string in advance (which is in general not computable),
and simulate a randomized protocol P using this string for randomness.

We denote by PrA,rB the deterministic protocol obtained by executing a ran-
domized protocol P with fixed random strings (rA, rB). This protocol makes
errors for some inputs, but the next lemma shows that using incompressible
strings, the distribution of errors in the resulting protocol has good properties.

Lemma 1. Let P be an ε-correct randomized protocol for f : X × Y → {0, 1}
and μ a probability distribution on X × Y . For all S ⊆ X × Y , we define
ErrrA,rB (S) = {(x, y) ∈ S : PrA,rB (x, y) �= f(x, y)}. Fix r∗Aet r∗B such that
K(r∗A, r∗B |μ, P, S) ≥ log(|RA||RB|). Then μ(Errr∗

A,r∗
B
(S)) ≤ 2εμ(S).

Proof. Let R̃ denote the bad random strings: R̃ = {μ(rA, rB) : μ(ErrrA ,rB (S)) >

2εμ(S)}. We will prove that |R̃| < |RA||RB |
2 . This is sufficient to conclude that

(r∗A, r∗B) /∈ R̃; otherwise, one could compute it by giving an index in R̃, which con-
tradicts the assumption K(r∗A, r∗B|μ, P, S) ≥ log(|RA||RB|). P being ε-correct,
we get by summing over RA × RB

∑
rA,rB

μ(ErrrA ,rB (S)) ≤ |RA||RB |εμ(S).
On the other hand,

∑
rA,rB

μ(ErrrA ,rB (S)) ≥ ∑
R̃ μ(ErrrA,rB (S)) > 2εμ(S)|R̃|.

Combining the two inequalities, we obtain |R̃| < |RA||RB |
2 .

Compared to the original proof, what we gain by using the Kolmogorov al-
ternative is that we do not require distributional complexity. In distributional

Kolmogorov Complexity and Combinatorial Methods 267

complexity, we have to analyse the behavior of deterministic protocols with re-
spect to a distribution μ over the inputs. Here, by choosing a single random
string, and an independent Kolmogorov random hard instance, we analyze a de-
terministic algorithm acting on a single input. Theorem 4 generalizes Theorem 2
to the randomized case.

Theorem 4. Fix f : X × Y → {0, 1} and P an optimal randomized ε-correct
protocol for f . If T (x, y, rA, rB) is the transcript of PrA,rB on input (x, y), then
for all S ⊆ X × Y , (rA, rB) ∈ RA × RB and σ ∈ {0, 1}∗,

Rε(f) ≥ max
(x,y)∈S

K(x, y|σ) − K(x, y|T (x, y, rA, rB), σ).

Proof. Fix rA and rB in P . By Proposition 1, Rε(f) ≥ K((Tx, y, rA, rB)|σ).
Using Proposition 3, K(x, y|σ) ≤ K(x, y|T (x, y, rA, rB), σ) +K(T (x, y, rA, rB)),
So Rε(f) ≥ K(x, y|σ) − K(x, y|T (x, y, rA, rB), σ).

4 Applications

4.1 The Hidden Matching Problem

In this section, we study the communication complexity of the hidden matching
problem. This relation was introduced to show a gap between randomized and
quantum communication complexity [5]. The following theorem is the random-
ized lower bound for the hidden matching problem.

Definition 5. In the Hidden Matching problem HMn(x,M), Alice receives a
string x ∈ {0, 1}n, and Bob a matching M on n vertices. At the end, Bob has to
output a triple (i, j, b) such that xi ⊕ xj = b and (i, j) ∈ M .

Theorem 5. [5] RA→B
ε (HMn) ≥ Ω(

√
n).

Proof (Sketch). The complete proof will appear in the full version. As in [5], the
idea is that each output provides a linear equation xi⊕xj = b. Since the protocol
is one-way, a single transcript can be used to get many equations of this form,
providing substantial information on x.

We fix M a set of n disjoint matchings. Using Proposition 2 and Corollary 1,
we pick independent incompressible input x∗, randomness r∗A, r∗B and a subset
M∗ ⊂ M of size

√
n. Incompressibility plays several key roles:

– get a lower bound on the complexity x∗,
– prove that Ω(

√
n) linearly independent equations can be retrieved from M∗,

– prove that the protocol induces few errors in the equations.

To use Theorem 4, we have to prove an upper bound on K(x∗|T (x∗)). Using the
stated properties, the algorithm goes as follows:
1. Simulate the one-way protocol using message T (x∗) on every M ∈ M∗,
2. Correct the errors. The errors are given as an auxilliary input,
3. Use the equations to learn Ω(

√
n) coordinates of x. The n − √

n remaining
ones are given as an auxiliary input.

The size of the auxiliary input to this program is n − √
n + H2(2ε)

√
n, which

proves the theorem.

268 M. Kaplan and S. Laplante

4.2 VC Dimension and Shatter Coefficients Lower Bounds

In this section, we consider a general lower bound on one-way communication
complexity. This lower bound was previously proved using combinatorial tech-
niques [6] and later re-proved and extended using information theory techniques
[7]. Our proof uses only elementary counting arguments.

To any function f : X × Y → {0, 1}, we associate the communication matrix
Mf(x, y) = f(x, y). We identify Mf (or any submatrix) with the set of its rows,
which we think of as boolean strings. The VC dimension of Mf is the size
of the largest set Y0 ⊆ Y such that there exists some X0 ⊆ X of size 2|Y0|

and Mf |X0,Y0= {0, 1}|Y0|. For l ≥ V C(Mf), the l-th shatter coefficient of Mf ,
denoted by SC(l,Mf), is the size of the largest set X0 ⊆ X such that there
exists some Y0 ⊆ Y of size l and all rows of Mf|X0,Y0 are different. A witness for
SC(l,MF) is a set S ⊆ X ×Y such that if S=U ×V , |V |=l and |U |=SC(l,Mf)
and all rows in S are different.

Theorem 6. [6,7] For every function f : X×Y → {0, 1}, there exists a constant
c > 0 such that for every l > V C(Mf):

RA→B
ε (f) ≥ V C(Mf)(1 − (1 + c)H2(2ε))

RA→B
ε (f) ≥ log(SC(Mf , l)) − l(1 + c)H2(2ε)

Proof. Notice that log(SC(l,Mf))=V C(Mf) for l=V C(Mf). Therefore, we just
have to prove the second point. Fix an optimal ε-correct randomized one-way
protocol P for f . Let S = U × V be a witness for SC(l,Mf). Pick x∗ ∈ U ,
and (r∗A, r∗B) ∈ RA ×RB incompressible. By Corollary 1, K(r∗A, r∗B |f,P , S, x∗) ≥
log |RA| + log |RB| and K(x∗|r∗A, r∗Bf,P , S) ≥ log |U |. Let S′ = {x∗} × V . By
Lemma 1, |Errr∗

A ,r∗
B
({x∗} × V)| < 2ε|{x∗} × V |.

Let T (x, rA) denote the transcript of the protocol PrA,rB on input x. We
define an algorithm that computes any x ∈ U knowing T (x, r∗A) and r∗B .

1. Simulate Pr∗
A,r∗

B (x, y) using T (x, r∗A) for every y ∈ Y .
2. Correct the errors in {x}×V . The set of errors is given as an auxiliary input

of the program.
3. Compare the obtained row with every row of S. As they are all different,

only one corresponds to x.

This program uses log
(

l
2εl

) ∼ lH2(2ε) bits to describe the set of errors (Propo-
sition 3). Therefore, there exists a constant c such that K(x∗|T (x∗, r∗A), r∗B) ≤
l(1+c)H2(2ε). By Theorem 4, we get RA→B

ε (f) ≥ log |U |− l(1+c)H2(2ε). Since
|U | = SC(l,Mf), this suffices to conclude.

5 One Way versus Simultaneous Messages

In the multiparty number-in-hand model, n players have to compute an n-
variable function f : X1×· · ·×Xn → {0, 1}. In a simultaneous message protocol,

Kolmogorov Complexity and Combinatorial Methods 269

every player receives an input and sends a message to a referee, who outputs the
value of the function. DX1||···||Xn(f) denotes the complexity of f in this model.

We wish to compare this with two-player protocols in which one player re-
ceives one variable, say xi ∈ Xi, and the other one receives all the other vari-
ables. The complexity of f in this model is DXi→X−i(f). Here, we compare the
distributional versions of simultaneous and one-way communication, restricted
to rectangular distributions. We improve the previous bound [7] on the error
probability, from

∑
i H2(εi) to

∑
i εi.

Theorem 7. [7] Fix f : X1×· · ·×Xn → {0, 1}. Then for ε ≥ (1+1/n)
∑n

i=1 εi,
D

[],X1||···||Xn
ε (f) ≤ ∑n

i=1 D
[],Xi→X−i
εi (f).

Proof (Sketch). Fix a probability distribution on the inputs and n one-way pro-
tocols. We design a simultaneous protocol, where each player sends to the referee
the message he would have sent in the one-way protocol. The referee outputs
the value on which most one-way protocols agree.

In analyzing the errors made by this protocol, the crucial step is to prove that
most inputs on which the simultaneous protocol is wrong were already errors
in at least one one-way protocol. This relies on the fact that the distribution is
product. By combinatorial arguments, we give an upper bound the measure of
the set of remaining inputs on which the simultaneous protocol is wrong whereas
all one-way protocols are correct.

Acknowledgments

We wish to thank Troy Lee for many useful discussions. The research was sup-
ported by the EU 5th framework program QAP, by the French ANR Blanc
AlgoQP, and by French ANR Defis program ANR-08-EMER-012 QRAC.

References

1. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci. 68,
702–732 (2004)

2. Jain, R., Klauck, H., Nayak, A.: Direct product theorems for classical communi-
cation complexity via subdistribution bounds: extended abstract. In: Proc. of the
40th Annual ACM Symposium on Theory of Computing (STOC), pp. 599–608
(2008)

3. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on
factorization norms. Random Structures and Algorithms (to appear)

4. Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A strong direct product the-
orem for corruption and the multiparty communication complexity of disjointness.
Computational Complexity 15, 391–432 (2006)

5. Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential separation of quantum and
classical one-way communication complexity. SIAM J. Comput. 38, 366–384 (2008)

6. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication com-
plexity. Computational Complexity 8, 21–49 (1999)

270 M. Kaplan and S. Laplante

7. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information theory meth-
ods in communication complexity. In: Proc. of the 17th Annual IEEE Conference
on Computational Complexity (CCC), pp. 93–102 (2002)

8. Yao, A.C.C.: Some complexity questions related to distributive computing (pre-
liminary report). In: Proc. of the 11h Annual ACM Symposium on Theory of
Computing (STOC), pp. 209–213. ACM, New York (1979)

9. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

10. Jayram, T.S., Kumar, R., Sivakumar, D.: Two applications of information com-
plexity. In: Proc. of the 35th Annual ACM Symposium on Theory of Computing
(STOC), pp. 673–682. ACM, New York (2003)

11. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Ap-
plications. Springer, Berlin (1993)

12. Buhrman, H., Jiang, T., Li, M., Vitanyi, P.: New applications of the incompress-
ibility method: Part ii. Theoretical Computer Science 235, 59–70 (2000)

13. Buhrman, H., Klauck, H., Vereshchagin, N., Vitányi, P.: Individual communication
complexity. J. Comput. Syst. Sci. 73, 973–985 (2007)

14. Buhrman, H., Koucký, M., Vereshchagin, N.: Randomised individual communica-
tion complexity. In: Proc. of the 23rd Annual IEEE Conference on Computational
Complexity (CCC), pp. 321–331 (2008)

15. Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query com-
plexity using kolmogorov arguments. SIAM J. Comput. 38, 46–62 (2008)

16. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential sep-
arations for one-way quantum communication complexity, with applications to
cryptography. SIAM J. Comput. 38, 1695–1708 (2008)

17. Lee, T., Shraibman, A.: Disjointness is hard in the multi-party number-on-the-
forehead model. In: Proc. of the 23rd Annual IEEE Conference on Computational
Complexity (CCC), pp. 81–91 (2008)

18. Lee, T., Shraibman, A., Špalek, R.: A direct product theorem for discrepancy. In:
Proc. of the 23rd Annual IEEE Conference on Computational Complexity (CCC),
pp. 71–80 (2008)

19. Razborov, A.: Quantum communication complexity of symmetric predicates.
Izvestiya: Mathematics 67, 145–159 (2003)

20. Raz, R.: Fourier analysis for probabilistic communication complexity. Computa-
tional Complexity 5, 205–221 (1995)

21. Degorre, J., Kaplan, M., Laplante, S., Roland, J.: The communication complexity
of non-signaling distributions. Technical Report quant-ph/0804.4859, arXiv e-Print
archive (2008)

22. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

23. Yao, A.C.C.: Lower bounds by probabilistic arguments (extended abstract). In:
Proc. of the 24th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 420–428. IEEE, Los Alamitos (1983)

An Almost Totally Universal Tile Set

Grégory Lafitte1,� and Michael Weiss2,��

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS – Aix-Marseille Université,

39, rue Joliot-Curie, F-13453 Marseille Cedex 13, France
2 Università degli Studi di Milano,

Bicocca Dipartimento di Informatica, Sistemistica e Comunicazione,
336, Viale Sarca, 20126 Milano, Italy

Abstract. Wang tiles are unit size squares with colored edges. In this
paper, we approach one aspect of the study of tilings computability:
the quest for a universal tile set. Using a complex construction, based
on Robinson’s classical construction and its different modifications, we
build a tile set (pronounced ayin) which almost always simulates any
tile set. By way of Banach-Mazur games on tilings topological spaces,
we prove that the set of -tilings which do not satisfy the universality
condition is meager in the set of -tilings.

1 Introduction

Wang was the first to introduce in [Wan61] the study of tilings with colored tiles
where a tile is a unit size square with colored edges. Two tiles can be assembled
if their common edge has the same color. To tile consists in assembling tiles from
a tile set (a finite set of tiles) on the grid Z2.

Since Berger [Ber66] it is known that Wang tilings can simulate Turing ma-
chines. As a model of computation, tilings raise computability questions. One of
the first, related to most models of computation, is the existence of universality.
To approach such a problem we need a proper notion of reduction. In [LW07], a
first approach to reduction, and by extension, universality, was given. Intuitively,
a tiling P simulates a tiling Q if the tiles of Q can be encoded with macro-tiles
of P .

This notion of simulation was then improved in [LW08a] (a close definition is
also introduced in [DRS08]) to obtain simulations between tile sets. A tile set τ
totally simulates a tile set τ ′ if any τ ′-tiling is simulated by a τ -tiling and if any τ -
tiling simulates a τ ′-tiling. In [LW08a], it has been proved that there exists a tile
set that totally simulates any periodic tile set, i.e., tile sets that generate at least
one periodic tiling (a tiling invariant by translation of two independent vectors).
The question of the existence of a totally universal tile set was asked: does there
exists a tile set totally simulating any tile set that tiles the plane? Because

� This author has been supported by the French ANR grant Sycomore.
�� This author has been supported by the Swiss FNS post-doc grant.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 271–280, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

272 G. Lafitte and M. Weiss

of the amount of properties that such a tile set would have (having maximal
Kolmogorov complexity [DLS01], non-recursivity [Han74, Mye74], self-similarity
of any kind [DRS08], Turing universality, invariance by recursive modification
[LW08b],. . .), it has been conjectured that it does not exist.

In this paper, we combine some of the most complex constructions on tilings
to build a tile set which is almost totally universal: almost all -tilings simulate
at least one tiling for any tile set (by almost we mean that the subset of -tilings
that do not satisfy this property is a meager set in the set of -tilings). And
therefore, has the particularity of having almost always1 all the properties
enumerated previously. The construction of uses different technical tools and
is mainly based on the aperiodic and self-similar tile set of Robinson within which
simulations of Turing machines can be carried out. A detailed explanation of this
construction can be found in [Rob71, Han74, Mye74, AD96, DLS01, DLS04]. In
[LW08a], and in [DRS08] (ingeniously avoiding the use of Robinson’s tilings
construction), it has been shown how a Turing machine can be used to simulate
a tile set, in the sense that the Turing machine produces space×time diagrams
isomorphic to the tiles of a tile set. With this simulation of Turing machines,
simulation of tile sets in Robinson’s tiling is made possible. The other tool used
for the construction is synchronization. This principle was first used by Hanf
and Myers [Han74, Mye74] to build a non-recursive tile set, i.e., a tile set that
generates only tilings that cannot be defined by a recursive function. We show
how to make a synchronization between squares of Robinson’s construction in a
new way. All these different tools make possible the construction of an almost
totally universal tile set.

The last step consists in proving the almost part. One of the main tool to prove
the meagerness of a set is to use topological games like Banach-Mazur games
[Oxt57]. This perfect information game is played by two players on a topological
space. A classical result on Banach-Mazur games shows that if Player II has a
winning strategy, then A is meager (or, in an equivalent way, the set X \ A is
residual).

In [LW08c], a topological study of tilings has been made and games à la
Banach-Mazur on them have been introduced. These games are played on two
topological spaces: the Besicovitch one (where the distance between two tilings
is defined as the asymptotic proportion of different tiles between them) and the
Cantor one (where the distance between two tilings is related to the biggest
pattern centered around the origin that they have in common). In this paper we
restrict these games to the set of tilings generated by a tile set and we prove,
using these games, that the tile set is almost totally universal.

In the following section, we recall the basic notions concerning tilings and the
notions of simulation between tile sets. We also recall the two main topological
spaces that can be used on the set of tilings generated by a tile set. Then, in
section 3, we show how a synchronization can be made between the different
squares in Robinson’s construction. In the last section, we build the tile set
and show that it is almost totally universal.

1 Almost always means that almost all of its tilings have the properties.

An Almost Totally Universal Tile Set 273

2 Basic Notions

2.1 Tilings and Simulations

We start by recalling the basic notions of tilings. A tile is an oriented unit size
square with colored edges from C, where C is a finite set of colors. A tile set is
a finite set of tiles. To tile consists in placing the tiles of a given tile set on the
grid Z2 such that two adjacent tiles share the same color on their common edge.
Since a tile set can be described with a finite set of integers, we can enumerate
the tile sets, and τi designates the ith tile set.

Let τ be a tile set. A tiling P generated by τ is called a τ -tiling. It is associated
to a tiling function fP where fP (x, y) gives the tile at position (x, y) in P . When
we say that we superimpose the tiles of a tile set τ on the tiles of a tile set τ ′,
we mean that for any tile t ∈ τ and any tile t′ ∈ τ ′, we build a tile u = t × t′

where the colors of the sides of u are the cartesian product of the colors of the
sides of t and t′. Then two tiles u1 = t1 × t′1 and u2 = t2 × t′2 match if and only
if t1 and t2 match and t′1 and t′2 match.

Different notions of reductions have been introduced in [LW07]. We recall
some of the basic notions here. A pattern is a finite tiling. If it is generated by
τ , we call it a τ -pattern. We say that a τ -tiling P simulates a τ ′-tiling Q if there
exist two integers a, b and an application R from the a× b τ -patterns to the tiles
of τ ′ and if we can cut regularly P in rectangular patterns of size a× b such that
if we replace these rectangular patterns in P by their corresponding tiles given
by R we obtain Q. One can see that P does with macro-tiles, i.e., rectangular
patterns which represent the tiles of another tile set, what Q does with tiles.
We denote the reduction by Q �R P . We generalize this notion to simulations
between a set of tilings and a tile set: a set of τ -tilings A totally simulates a tile
set τ ′ if there exist a, b ∈ Z and a reduction R from the a × b patterns of τ to
the tiles of τ ′ such that for any τ ′-tiling Q, there exists a τ -tiling P ∈ A such
that Q �R P , and such that for any τ -tiling P ∈ A, there exists a τ ′-tiling Q
such that Q �R P . We denote it by τ � A (or τ ′ �R A to specify the reduction
R). If A corresponds to the whole set of τ -tilings, then we say that τ simulates
τ ′, and we denote it by τ ′ � τ .

From this pseudometric we obtain a notion of universality: we say that a set
of τ -tilings A is totally universal if τ ′ � A for any tile set τ ′ that tiles the plane.
If A corresponds to the whole set of τ -tilings, then we say that τ is totally
universal. The existence of such a tile set is still open. In this paper we aim at
constructing a tile set which is almost always totally universal. To have a clear
definition of almost we recall some notions of topology and topological games.
A deeper study of these topological spaces can be found in [LW08c, BDJ08].

The topologies defined in the following subsections are topologies used in
cellular automata and adapted to tilings. Different definitions of these topologies
can be given and we present here the restrictive case where the distances are
defined only between tilings generated by the same tile set.

274 G. Lafitte and M. Weiss

2.2 The Besicovitch and Cantor Topologies on Tilings

The first metric we introduce is a metric à la Besicovitch. This metric deals with
the whole tiling and gives the asymptotic proportion of different tiles between
two tilings. For two τ -tilings P and Q, we call Pn and Qn the square patterns
of size 2n + 1 centered around the origin. The distance dB(P,Q) is given by:

δB(P,Q) = limsupn→∞
#{ (x, y) | fPn(x, y) �= fQn(x, y) }

(2n + 1)2
.

Therefore, the Besicovitch distance between two τ -tilings corresponds to the
assymptotic proportion of different tiles between them. This is a pseudometric
on the set of tilings generated by a tile set. We can obtain a metric by adding
the condition that two tilings are equivalent if the distance between them is 0.
Two tilings not generated by the same tile set are at distance 1. We obtain a
topological space by defining the open sets as the balls BB(Q, ε), i.e., all tilings
at distance at most ε of Q.

The second metric, the Cantor one, deals with the local structure of the tilings
while the Besicovitch one deals with their global behavior. We first define the
function p : N → Z2 such that p(0) = (0, 0), p(1) = (0, 1), p(2) = (1, 1), p(3) =
(1, 0) . . . and p keeps having the behavior of a spiral afterward. The metric dC

between two τ -tilings P and Q is defined as dC(P,Q) = 2−i, where i is the
smallest integer such that fP (p(i)) �= fQ(p(i)), i.e., i is the size of the greatest
common pattern of P and Q centered around the origin.

dC is a metric on the set of τ -tilings. As before, we can obtain naturally a
topological space by defining the open sets as the balls BC(Q, ε), i.e., all tilings at
distance at most ε of Q. One can note that in Cantor topology, the set of tilings
having in common the same pattern centered around the origin is a clopen set
[LW08c, BDJ08].

2.3 Games on Tilings

Now that we have defined notions of topologies on sets of tilings generated by
a tile set, the natural next step for studying these sets is to consider infinite
games on tilings. In [LW08c], the following definitions of Banach-Mazur games
on tilings have been given:

Let X be a set of tilings generated by a tile set and C be a subset of X.
The first game G(X,C)B is played on Besicovitch topology and has the fol-

lowing rules: Player I chooses a τ-tiling P1 and an integer n1. Player II chooses
a tiling P2 ∈ BB(P1, 1/n1) and chooses an integer n2 > n1 and so on. Player II
wins the game if

⋂
n>1 BB(Pi, 1/ni) ∈ C.

The second game G(X,C)C is played on Cantor topology and has the following
rules: Player I chooses a square pattern A1 centered around the origin. Player II
chooses a square pattern A2 which is an extension of A1, i.e., the tiling function
of A2 restricted to the domain of A1 is the tiling function of A1, and so on. From
the sequence of patterns {Ai} we can obtain an infinite tiling P . Player II wins
the game if P ∈ C.

An Almost Totally Universal Tile Set 275

The main application of Banach-Mazur games is the study of meager sets. A
classical topological result is that a subset C of X is meager, i.e., is the the union
of countably many nowhere dense subsets, if and only if Player II has a winning
strategy for the game G(X,X \ C). Meagerness is thus a topological notion of
small or negligible subsets. We obtain the notion of almost total universality:
a tile set τ is almost totally universal if there exists a set of τ -tilings A which
is totally universal and such that A is residual in the set of τ -tilings in both
Besicovitch and Cantor topologies.

Therefore, an almost totally universal tile set is a tile set totally universal
up to a meager set: just a small subset (of its tilings) prevents it to be totally
universal. In the following section, we explain some constructions needed to build
an almost totally universal tile set.

3 Synchronization within Robinson’s Construction

In this section, we show how to synchronize squares of Robinson’s tiling (we
refer the reader to [AD96] for an explanation of this construction). By synchro-
nization, we mean that any square of any level works on an initial segment of an
infinite input. Synchronization was first introduced in [Han74, Mye74] and used
in [DLS01]. We propose our own synchronization, adapted for our purpose.

3.1 Synchronization between Squares of Same Level

The first goal to achieve, is to prove that all the squares of a same level have the
same information, i.e., any square of a certain level in Robinson’s construction
have the same input word w on their first line. Since two neighbor squares, either
vertical or horizontal, can share the information they have on their facing sides
then we need to prove that we can obtain a square which has on its four sides
the same input word w. We just need to pass the bits of the input word from
the south side to the west side. Then, we can transmit these bits to the north
and east sides.

The information going from the south to the west side will pass through three
kinds of tiles: it first goes through a tile that transmits the information vertically,
then passes a corner and finally goes through tiles that transmit the information
horizontally until it reaches the west side. The only condition to add to be sure
that all the bits will pass from the south to the west side (like in figure 1) is to
force any tile which is not obstructed (obstructions are colored in gray in figure
1) to be one of the three kinds of tiles that transmit information. The obstructed
tiles can either transmit vertical or horizontal information, or transmit nothing.
Finally, neighbor squares of same level can check if they are computing on the
same input word. Therefore all squares of a same level work on the same input
word.

3.2 Synchronization between Levels

We now want to synchronize the input word between different levels, i.e., that
if wi is the input word of the squares of level i then wi is the central word of wj

276 G. Lafitte and M. Weiss

w4w0 w1w2w3

Fig. 1. The transmission of the bits of w from the south side to the west side

for any j > i, i.e., there exists two words w1 and w2 of same length such that
wj = w1wiw2. In this way all squares of all levels obtain the same computation.
We recall that in Robinson’s tilings, the squares of level even are colored in black
and the squares of level odd are colored in light-gray.

We need to choose a square (the only one) that communicates its input word
to the higher level. We give sixteen different labels to the black squares (one of
them is labeled in gray) and two kinds of label for the light-gray squares. this in
enough to guarantee that any black square of a level n, has a gray square of level
n − 1 in its south-west corner (figure 2.a). This is this gray square who passes
the information from its east side to the south side of the square of level n.

To pass the information, we use the induction process of figure 2.b. The same
technique as before is used. We can do this since the number of columns between
two neighbor squares is the same as the number of columns in a square. Then,
with an induction process, we will pass all the bits from the east side of the gray
square to the south side of the black square of higher level.

At the end of the process, the gray row contains the bits of w and the black
square of upper level has access to this code and can compute on it. Therefore,
any square computes on an initial segment of the same infinite input.

4 An Almost Totally Universal Tile Set

4.1 Description of the Construction

In this section we construct an almost totally universal tile set. We use three
Turing machines M , N and P that we simulate in the synchronized construction
explained previously. The three machines works on an infinite string i1$i2$. . .
where ij is the code of a tile set of j tiles that tiles the plane. M checks if the
input is well written. If not, M stops. We add another restriction to M : we want
that the code of appears as an input. The tile set will have access to its own

An Almost Totally Universal Tile Set 277

1, 1

1, 2

1, 3

1, 4

2, 1

2, 2

2, 3

2, 4

3, 1

3, 2

3, 3

3, 4

4, 1

4, 2

4, 3

4, 4

2 1

22

(a) The coloring of the black, gray
and light-gray squares

w0w1w2

w0

w1

w2

w0w1w2

(b) The synchronization between
squares of different levels

Fig. 2.

code. One can prove, using Kleene’s recursion theorem, that a tile set can have
access to its own code (see [LW08b, DRS08]). Let m be the number of tiles of
. M checks that the input contains two codes of tile sets of m tiles, and checks

that one of them is the code of . Therefore, the input has to be of the following
form: i1$i2$. . . im$i′m$im+1$. . ., where i′m is the code of .

The second machine N checks for any n such that any of the τij ’s, ij < n,
can tile a square of size n. If there exists an integer m such that a tile set τij

cannot tile a square of size m, then N stops.
The last machine P is a machine that simulates the tile sets of the input, i.e.,

it generates space times diagrams isomorphic to the tiles of the tile sets (for more
detailed explanations on simulation between tile sets, see [LW08a, DRS08]).

To start the simulations of these machines in our tilings, we first force that
the only computation tile which exists in the squares of level 1 is the tile, say t0,
representing the initial state of M , N and P . By synchronization, this means that
any middle tile of the first line of any square of this construction corresponds
also to this tile, and therefore, the computation will begin in any square. We
now allow the completion of the first line of any square with tiles representing
any letter from the alphabet {0, 1, $}. We obtain a tiling where any first line of
any square represents the central subword of a bi-infinite input w ∈ {0, 1, $} and
all of these subwords contain in their middle the tile t0 representing the initial
states of the Turing machines.

In all squares of our construction, the computation on the same infinite input is
carried out. If one of these machines reaches a final state, then the tiling remains
incomplete. Therefore, if the tiling is complete, then M , N and P compute on a
word of the form: i1$i2$. . . im$i′m$im+1$. . ., as stated before. Then P simulates
any of the tile set ij , and thus, totally simulates any tile set τij . Since the
index of is given also in input, then P also simulates a -tiling. In fact, by
transitivity of the simulation, it self-simulates infinitely many times. Each time

self-simulates, it also simulates a set of tile sets {τi′j}j>0 since it simulates a

278 G. Lafitte and M. Weiss

-tiling that simulates this set. So, a -tiling simulates an infinite number of tile
sets of n tiles for any n. Since the set of tile sets of n tiles is finite, and a fortiori
the set of tile sets of n tiles that tiles the plane, then a -tiling must simulate
infinitely many times some tile sets.

4.2 The Construction Gives an Almost Totally Universal Tile Set

We have obtained a tile set such that any -tiling simulates, for any n, with
repetitions, an infinity of tile sets composed of n tiles. We now show that this
tile set is almost totally universal.

Theorem 1. The tile set is almost totally universal.

Proof. Let A be the set of -tilings that simulate at least one tiling for any tile
set and B = T \ A, where T is the set of -tilings. A is totally universal. We
show that A is residual in T in both topologies:

We first show that A is residual in T (in the Cantor topology) by showing
that Player II has a winning strategy in the game G(A, T)C . In this game,
Player I first chooses a -pattern centered around the origin. Player II extends
this pattern and so on. Player II wants to obtain a final -tiling that simulates
any tile set that tiles the plane. Player I wants to obtain a final tiling such that
at least one tile set is never simulated.

Let Ω = {τ1, τ2, . . .} be the set of tile sets that tile the plane, and ordered by
the number of their tiles first, and then by a lexicographic order of the colors
of the tiles. The following strategy is, of course, not recursive since Ω is Π1.
At step n, Player II wants to force the simulation of the nth tile set of Ω. Let
mn be the -pattern played by Player I. Player II wants to force the code of
τn to appear somewhere in the tiling. When done, by synchronization the final
tiling has to simulate a τn-tiling. If the code of the tile set τn can be written
on the input word, then Player II writes this code and forces the simulation of
τn. Otherwise, we know that self-simulates infinitely many times, which means
that there exists, for any -tiling and for any s, an integer m > s such that
self-simulates with squares of size m. Any of these self-simulations represents a
-tiling which simulates other tile sets depending on the infinite input on which

it is computing. Therefore, it is enough for Player II to look for the smallest self-
simulation where it is possible to write the code of τn+1. Such a self-simulation
always exists. By transitivity of the simulation, this guarantees that the final
tiling will simulate τn+1.

By induction, Player II builds a tiling which simulates at least one tiling for
any tile set in Ω. Therefore this tile set is in A, and A is residual in T with the
Cantor topology.

We now show that B is meager in T , in the Besicovitch topology. The first
move of Player I consists in playing a -tiling P1 and an integer n1 to define the
open ball BB(P1, 1/n1). P1 simulates at least one tile set of one tile. Without
loss of generality, we can suppose that this tile set is the first of our enumeration
of tile sets that tile the plane (it can be reordered if necessary). Player II wants

An Almost Totally Universal Tile Set 279

to be sure that after he has played, the code of τ1 cannot be removed. This code
appears regularly in the tilings which means that there exists an m such that all
bits of τ1 appear in all squares of size m in P1. If Player II chooses an integer m1
bigger than m2 then he is sure that no bits of τ1 can be changed by Player I since
any tiling that has at least one bit of the code τ1 changed is at least at distance
1/m2 of P1 (by synchronization, changing one bit corresponds to changing one
bit in any square of size m).

We now suppose that Player II has already chosen a tiling Pi that simulates
all the tile sets in {τ1, τ2, . . . , τi−1} and has chosen an integer big enough to
force Player I to play a tiling which simulates also {τ1, τ2, . . . , τi−1}. Player I
chooses a tiling Pi and an integer ni. We show that Player I can choose a tiling
Qi ∈ BB(Pi, 1/ni) that simulates all of {τ1, τ2, . . . , τi−1} ∪ {τi}.

We first make some remarks. If a -tiling P simulates a tile set τ , it means that
there exists a level of squares j in P where the simulation of the tiles of τ is made.
Of course, not all the tiles of P are concerned by this simulation. We can bound
the proportion of tiles that are concerned by this simulation. Indeed, only the tiles
which are in squares of level j, and the tiles which are in communication zones be-
tween these squares are influenced by this simulation. Therefore the bound is close
to 3/4. The exact proportion is not important, since we just need the proportion
of tiles concerned by a simulation to be strictly less than 1.

Let S be a -tiling. self-simulates, therefore S simulates a -tiling, say S1.
By the previous remark, at most 3/4 of the tiles of S are used to simulate S1.
Since S1 is also a -tiling, then S1 simulates a -tiling, say S2. 3/4 of the tiles of
S1 are used to simulate S2, and by transitivity, (3/4)2 of the tiles of S are used
to simulate S2. By induction, we obtain a sequence {S, S1, S2, . . .} of -tilings
such that (3/4)n of the tiles of S are used to simulate Sn.

Because of this remark, Player I can modify Pi such that it simulates a new
-tiling St by changing a proportion of tiles in Pi smaller than 1/ni. This tiling

St has the particularity of having the code of the ith tile set of Ω in its input
and thus, simulates τi. Player II plays this tilings Qi which is at distance less
than 1/ni of Pi and which simulates τi. Any index of the different tile sets of
{τ1, τ2, . . . , τn+1} appears, or is simulated, regularly in the tiling P2n+2: there
exists an integer m such that any bit of these indexes appears in all squares of size
m. As before, if Player II chooses an integer greater than m2, he guarantees that
none of these tiles can be changed, and therefore, the only possibility for Player
I is to choose a -tiling that simulates any tile set of the set {τ1, τ2, . . . , τn+1}.

By induction, the tiling obtained at the end of the game is a tiling that
simulates all tile sets of Ω. Therefore this tile set is in A, and A is residual in T
within the Besicovitch topology. ��

Acknowledgements

We warmly thank Guillaume Theyssier who, in the first place, convinced one of
the co-authors of the possible existence of the previously described tile set. We
are also indebted to Bruno Durand for his pertinent remarks on previous work
that undoubtedly encouraged us in pursuing in this direction.

280 G. Lafitte and M. Weiss

References

[AD96] Allauzen, C., Durand, B.: Appendix A: Tiling problems. The classical de-
cision problem, 407–420 (1996)

[BDJ08] Ballier, A., Durand, B., Jeandel, E.: Structural aspects of tilings. In: Pro-
ceeding of the Symposium on Theoretical Aspects of Computer Science, pp.
61–72 (2008)

[Ber66] Berger, R.: The undecidability of the domino problem. Mem. Amer. Math
Soc. 66, 1–72 (1966)

[DLS01] Durand, B., Levin, L.A., Shen, A.: Complex tilings. In: STOC, pp. 732–739
(2001)

[DLS04] Durand, B., Levin, L.A., Shen, A.: Local rules and global order. Mathemat-
ical Intelligencer 27(1), 64–68 (2004)

[DRS08] Durand, B., Romashchenko, A.E., Shen, A.: Fixed point and aperiodic
tilings. In: Developments in Language Theory, pp. 276–288 (2008)

[Han74] Hanf, W.P.: Nonrecursive tilings of the plane. I. J. Symb. Log 39(2), 283–285
(1974)

[LW07] Lafitte, G., Weiss, M.: Universal tilings. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 367–380. Springer, Heidelberg (2007)

[LW08a] Lafitte, G., Weiss, M.: Simulations between tilings. In: Beckmann, A., Dim-
itracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms, 4th Con-
ference on Computability in Europe, CiE 2008, Athens, Greece, June 2008,
University of Athens (2008)

[LW08b] Lafitte, G., Weiss, M.: Computability of tilings. In: International Feder-
ation for Information Processing, Fifth IFIP International Conference on
Theoretical Computer Science, vol. 273, pp. 187–201 (2008)

[LW08c] Lafitte, G., Weiss, M.: A topological study of tilings. In: Agrawal, M., Du,
D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 375–387.
Springer, Heidelberg (2008)

[Mye74] Myers, D.: Nonrecursive tilings of the plane. II. J. Symb. Log 39(2), 286–294
(1974)

[Oxt57] Oxtoby, J.C.: Tilings: recursivity and regularity. Contribution to the theory
of games III(39), 159–163 (1957)

[Rob71] Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane.
Inv. Math. 12, 117–209 (1971)

[Wan61] Wang, H.: Proving theorems by pattern recognition II. Bell Systems Jour-
nal 40, 1–41 (1961)

Linear Kernel for Planar
Connected Dominating Set

Daniel Lokshtanov1, Matthias Mnich2, and Saket Saurabh1

1 Universitetet i Bergen, Institutt for Informatikk,
Postboks 7803, 5020 Bergen, Norway

{daniello,saket.saurabh}@ii.uib.no
2 Technische Universiteit Eindhoven, Faculteit Wiskunde en Informatica,

Postbus 513, 5600 MB Eindhoven, The Netherlands
m.mnich@tue.nl

Abstract. We provide polynomial time data reduction rules for Con-

nected Dominating Set in planar graphs and analyze these to obtain
a linear kernel for the planar Connected Dominating Set problem.
To obtain the desired kernel we introduce a method that we call reduce
or refine. Our kernelization algorithm analyzes the input graph and ei-
ther finds an appropriate reduction rule that can be applied, or zooms in
on a region of the graph which is more amenable to reduction. We find
this method of independent interest and believe that it will be useful to
obtain linear kernels for other problems on planar graphs.

1 Introduction

Preprocessing of data is one of the oldest and widely used methods in practical
algorithms. Parameterized Complexity provides a natural way to measure the
quality of preprocessing. In parameterized complexity a problem Π consists of
a pair (I, k) where I is the input and k is a parameter (which typically is the
solution size). A problem Π is said to have a kernelization algorithm if there
exists a preprocessing algorithm, which given a parameterized instance (I, k)
of Π , runs in time polynomial in |I| and k and outputs a simpler instance
(I ′, k′) of Π , such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-
instance and the size of (I ′, k′) is bounded by a function of k alone. The reduced
instance I ′ is called the kernel for the problem. The problem Π is said to have
a polynomial (linear) kernel if the reduced instance is bounded by a polynomial
(linear) function of k.

Kernelization has been extensively studied, resulting in polynomial kernels
for a variety of problems. Notable examples include a 2k kernel for Vertex

Cover [6], a 355k kernel for Dominating Set in planar graphs [1] which later
was improved to a 67k kernel [5], and a O(k2) kernel for Feedback Ver-

tex Set [15] parameterized by the solution size. A significant amount of re-
search has gone into providing linear kernels for NP-hard problems on planar
graphs. A foundation for linear kernelization in planar graphs was built by Alber
et al. [1] who gave a 335k-sized kernel for planar Dominating Set. The main

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 281–290, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

282 D. Lokshtanov, M. Mnich, and S. Saurabh

ingredient in the analysis of the reduced instance was the notion of region de-
composition for the input planar graph where the number of regions depended
linearly on the size of the parameter. These ideas were later abstracted by Guo
and Niedermeier [12] who gave a framework to obtain linear kernels for planar
graph problems possessing a certain “locality property”. This framework has
been successfully applied to yield linear kernels for the Connected Vertex

Cover, Minimum Edge Dominating Set, Maximum Triangle Packing,
Efficient Edge Dominating Set, Induced Matching and Full-Degree

Spanning Tree problems [12,13,14]. However, the framework proposed by Guo
and Niedermeier [12] in its current form is not able to handle problems like
Feedback Vertex Set and Odd Cycle Transversal because these do not
admit the “locality property” required by the framework. Recently, Bodlaen-
der and Penninkx [3] and Bodlaender et al. [4] have obtained linear kernels for
Feedback Vertex Set and Cycle Packing on planar graphs respectively.

The list of problems for which linear kernels are known for planar graphs ex-
cludes problems which demand the solution to be connected. The mere exception
is the the Connected Vertex Cover problem for which the reduction rules
for planar Vertex Cover apply [12]. In this article we try to fill this void by
studying the Connected Dominating Set problem for planar graphs from
the viewpoint of linear kernelization. The problem is defined as follows.

Connected Dominating Set: Given a graph G = (V,E) and a posi-
tive integer k, the objective is to find a subset D ⊆ V of size at most k
such that G[D] is connected and for every vertex v ∈ V either v ∈ D or
one of its neighbors is in D.

Connected Dominating Set is a well-studied NP-hard problem that finds
applications in various network design problems. It remains NP-hard when re-
stricted to the class of planar graphs [9], and has a O(log n)-approximation
algorithm [10]. The parameterized version of the problem is known to be W[2]-
complete for general graphs and admits a sub-exponential time parameterized
algorithm for planar graphs [7]. In general graphs the problem has also been
studied in the realm of moderately exponential time algorithms leading to an
algorithm with running time O(1.9407n) [8]. Here we provide polynomial time
data reduction rules for Connected Dominating Set in planar graphs which
lead to a linear kernel for the problem. In particular, we prove the following
theorem.

Theorem 1. The Connected Dominating Set problem parameterized by so-
lution size k has a linear kernel on planar graphs.

This answers a question asked by Guo [11] during the visit of the third author
to Jena in 2007. Our results are based on the reduce-or-refine technique, that we
introduce here. Until now the notion of region decomposition was used only in the
analysis of the kernel size, and not explicitly applied in the reduction rules. We
utilize the fact that a region decomposition can be obtained in polynomial time
given a solution set S. In particular, we compute S using the known polynomial
time approximation scheme for Connected Domination Set and compute

Linear Kernel for Planar Connected Dominating Set 283

the decomposition from S using algorithms described by Alber et al. [1] and
Guo and Niedermeier [12]. The main technical part of our proofs is devoted to
showing that if a region contains more vertices than a fixed constant, we can in
polynomial time find a vertex in this region whose removal will not affect the
size of an optimal solution. The idea is to check whether the region contains
more than a fixed constant number of copies of a particular structure. If so then
we can reduce the graph by removing a vertex in such a structure. If there are
few or no copies of the structure in this region then we can zoom in on, or refine,
to a smaller region that still contains many vertices but completely excludes the
structure. The process is then repeated for a different “bad” structure until the
region we have zoomed in on looks so simple that it is easy to identify a vertex
to remove.

Since the number of regions in our computed region decomposition is O(k), if
the graph has too many vertices then we can identify a region in which a useless
vertex can be found. Thus we obtain the desired linear upper bound on the size
of the kernel.

2 Preliminaries

In this section we collect necessary definitions and results required to obtain
a linear kernel for the problem. We also give a few basic reduction rules for
Connected Dominating Set.

Let G = (V,E) be a connected planar graph, without loops or multiple edges.
For each vertex v ∈ V , define the open neighborhood of v as N(v) = {u ∈
V | {u, v} ∈ E} and the closed neighborhood of v as N [v] = N(v)∪{v}. A vertex
v is universal for G if N [v] = V . A path in G between distinct vertices v, w is
called [v, w]-path. Let G[U] denote the induced graph on U , for any vertex set
U ⊆ V . For a graph G = (V,E) a subset D ⊆ V is called a dominating set if
for every vertex v ∈ V either v ∈ D or N(v) ∩ D �= ∅. For a graph G, the size
of a minimum dominating set is denoted by γ(G) and the size of a minimum
connected dominating set is denoted by γc(G). A graph that can be drawn in
the plane without edge crossing is called planar graph. A plane graph is a planar
graph with a fixed embedding in the plane. Throughout the paper, we assume
that we are working with an arbitrary but fixed embedding of G in the plane.

With respect to connected dominating sets, the following reductions rules will
frequently help to simplify the input graph. If G has a universal vertex v then
{v} is a minimum connected dominating set for G. Henceforth we assume that
G has no universal vertex.

Lemma 1. Let G be a graph and let v be a vertex of G contained in some
minimum connected dominating set S of G. Let Gv be the graph obtained from
G by removing the edges of G[N(v)]. Then γc(G) = γc(Gv).

Whenever possible, we remove “twin vertices” from the graph.

Lemma 2. Let G = (V,E) be a graph and let u, u′ be distinct vertices such
that N [u] = N [u′]. Then γc(G) = γc(G − u′).

284 D. Lokshtanov, M. Mnich, and S. Saurabh

This reduction rule is only used to reduce the graph in practice; we do not use
it in the analysis of the kernel size. Now we evoke the notions of a region and a
region decomposition that were first introduced by Alber et al. [1].

Definition 1. Let G be a plane graph and let v, w be distinct vertices of G. A
region R(v, w) between v and w is a closed subset of the plane such that

– the boundary of R(v, w) is formed by two simple [v, w]-paths each of length
at most three, and

– all vertices strictly inside region R(v, w) belong to N(v) ∪ N(w), and are
called inner vertices of R(v, w).

If R(v, w), R′(v, w) are regions between v and w then R(v, w)∪R′(v, w) denotes
the region that is defined by the union of the closed subsets of the plane defined
by R′(v, w) and R′′(v, w). We use V (R(v, w)) to denote the set of inner vertices
of the region R(v, w).

Definition 2. Let G = (V,E) be a plane graph and let S ⊆ V . An S-region
decomposition of G is a set R of regions R(v, w) between distinct vertices v, w ∈
S such that

– each region R(v, w) contains no vertex from S \ {v, w}, and
– any two distinct regions can only intersect in their boundaries.

For an S-region decomposition R, let V (R) = ∪R(v,w)∈RV (R(v, w)). An S-
region decomposition R of G is maximal if there is no region R(v, w) such that
R ∪ {R(v, w)} is an S-region decomposition of G satisfying V (R) � V (R ∪
{R(v, w)}).

We now state two known results about maximal region decompositions. The
results say that given a plane graph G and a dominating set S, one can obtain
an S-region decomposition of G with O(γc(G)) regions that together cover all
but O(γc(G)) vertices of G.

Proposition 1 (Guo and Niedermeier [12]). Let G be a plane graph and
let S be a dominating set of G. There exists a maximal S-region decomposition
of G containing at most 3γ(G) regions.

Proposition 1 has a constructive proof by a polynomial-time algorithm.

Proposition 2 (Alber et al. [1]). Let G be a plane graph and let S be a
dominating set of G. If R is a maximal S-region decomposition of G then at
most 170γ(G) vertices of G do not belong to R.

Since any connected dominating set of a graph is also a dominating set, Propo-
sitions 1 and 2 together imply that a planar graph G has a maximal S-region
decomposition for a connected dominating set S with O(γc(G)) regions covering
all but O(γc(G)) vertices of G.

Linear Kernel for Planar Connected Dominating Set 285

3 A Reduce-or-Refine Scheme

In this section, we provide a polynomial time algorithm to bound the number
of vertices per region by some constant C. As long as there exists a region with
more than C vertices, this region will either be “refined” into multiple regions
or some vertices will be removed from it. We show that in polynomial time the
algorithm produces an instance where the number of vertices in each region is
bounded by a constant and the total number of regions is O(k).

Lemma 3. Let G = (V,E) be a plane graph and let R(v, w) be a region between
v, w ∈ V . There exists a minimum connected dominating set S of G such that S
contains at most two inner vertices from R(v, w).

Let NR(v, w) denote the common neighborhood of v and w in the region R(v, w),
that is,

NR(v, w) = {u ∈ R(v, w) | u ∈ N(v) ∩ N(w)}.
Case 1: NR(v, w) contains at least 106 vertices.
Let x1, . . . , x be a labeling of the vertices in NR(v, w) such that for
all i = 1, . . . , � − 1, there is a region ri(v, w) between v and w with clockwise
ordering (v, xi, w, xi+1) of boundary vertices. We define a coloring c on the set
{r1(v, w), . . . , r−1(v, w)}. We color the region ri(v, w) black, white, black-and-
white, or transparent according to the scheme outlined below. Refer to Figure 1
for an example.

– black, if ri(v, w) contains some inner vertices adjacent to v and no inner
vertices adjacent to w,

– white, if ri(v, w) contains some inner vertices adjacent to w and no inner
vertices adjacent to v,

– black-and-white, if ri(v, w) contains some inner vertices adjacent to v and
some inner vertices adjacent to w,

– transparent, if ri(v, w) contains no inner vertices.

The black (white) weight of c is the number of regions that are colored black or
black-and-white (white or black-and-white).

v w

x1

x2

x3

x4

x5

Fig. 1. Regions ri = ri(v, w) for i = 1, 2, 3, 4. The coloring c colors r1 black-and-white,
r2 black, r3 white and r4 transparent.

286 D. Lokshtanov, M. Mnich, and S. Saurabh

Observation 1. Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V . If the coloring c has black weight at least 7 then any minimum
connected dominating set of G containing at most two inner vertices of R(v, w)
contains v. Similarly, if the coloring c has white weight at least 7 then any
minimum connected dominating set of G containing at most two inner vertices
of R(v, w) contains w.

Case 1.1: The coloring c has black weight at least 8 and white weight
at least 8.
Let S be a minimum connected dominating set. Note that S must contain v
and w, by Observation 1. Now apply Lemma 1 to turn the induced subgraphs
G[N(v)] and G[N(w)] into independent sets.

Lemma 4. (reduce) Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V . Suppose that coloring c has black weight at least 8 and white
weight at least 8. Let y be an inner vertex of a black or black-and-white region
such that y is a neighbor of v but not a neighbor of w. Then γc(G) = γc(G− y).

An analogous reduction rule applies for inner vertices y inside some white or
black-and-white region.

Case 1.2: The coloring c has black weight at least 8 and white weight
at most 7.
In this case, there exists a region r(v, w) that is colored black.

Lemma 5. (reduce) Let G be a plane graph and let R(v, w) be a region between
v, w ∈ V . Suppose that coloring c has black weight at least 8 and white weight at
most 7. Let y be an inner vertex of a black region such that y is a neighbor of v
but not a neighbor of w. Then γc(G) = γc(G − y).

The case of coloring c having large white weight and small black weight is similar.

Case 1.3: The coloring c has black weight at most 7 and white weight
at most 7.

Lemma 6. (refine) Let G = (V,E) be a plane graph and let R(v, w) be a re-
gion between v, w ∈ V such that |NR(v, w)| ≥ 106. Suppose that coloring c has
black weight at most 7 and white weight at most 7. Then there exists a region
R′(v, w) such that |NR′(v, w)| ≥ 8 and containing only transparent regions from
{r1(v, w), . . . , r−1(v, w)}.

Case 1.4: The coloring c colors all regions transparent.

Observation 2. Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V such that |NR(v, w)| ≥ 7. If the coloring c has black weight equal
to zero and white weight equal to zero then any minimum connected dominating
set of G containing at most two inner vertices of R(v, w) contains at least one
of v and w.

Linear Kernel for Planar Connected Dominating Set 287

Lemma 7. (reduce) Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V such that |NR(v, w)| ≥ 8. Suppose that the coloring c has black
weight equal to zero and white weight equal to zero. Let y be an inner vertex of
R(v, w). Then γc(G) = γc(G − y).

We summarize Case 1.

Lemma 8. (reduce) There is an algorithm that, given a plane graph G = (V,E)
and a region R(v, w) between vertices v, w ∈ V such that |N(v, w)| ≥ 106, in
polynomial time computes a subgraph G′ of G with fewer vertices than G such
that γc(G′) = γc(G).

Proof. The algorithm proceeds as follows. First, it constructs the coloring c of
the regions r1(v, w), . . . , r−1(v, w).

If c has black weight at least 8 and white weight at least 8 then let y be an
inner vertex of a black or black-and-white region that is a neighbor of v but not
a neighbor of w. Now by Lemma 4, G′ = G − y is a subgraph of G with the
desired properties.

If c has black weight at least 8 and white weight at most 7 then let y be
an inner vertex of a black region and let G′ = G − y. By Lemma 5 it holds
γc(G′) = γc(G). Proceed similarly if c has black weight at most 7 and white
weight at least 8, in which case we let G′ = G − y′ for some inner vertex y′ of a
white region.

If c has black weight at most 7 and white weight at most 7 then by Lemma 6
there exists a region R′(v, w) entirely contained in R(v, w) such that any inner
vertex of R′(v, w) is a common neighbor of v and w. Thus by Lemma 7, letting
y be an inner vertex of R′(v, w) makes G′ = G − y a subgraph of G with the
desired properties. ��
Case 2: NR(v, w) contains at most 105 vertices.

Lemma 9. (refine) Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V such that |NR(v, w)| ≤ 105. Let m be the number of vertices in
R(v, w) other than v and w. Then there is a region R′(v, w) entirely contained
in R(v, w) that contains at least m/104+2 vertices and such that NR′(v, w) = ∅.
Case 3: NR(v, w) contains no inner vertices of R(v, w).
Let P = {P1, . . . , Pm} be a maximum-size set of internally vertex-disjoint in-
duced [v, w]-paths of length three entirely contained in R(v, w), such that for
all i = 1, . . . ,m−1 the vertices of Pi∪Pi+1 form the boundary of a region si(v, w)
not containing vertices from Pj for any j �∈ {i, i + 1}. For each i = 1, . . . ,m,
let vi be the internal vertex of Pi that is adjacent to v, and let wi be the internal
vertex of Pi that is adjacent to w.

Case 3.1: There are at least 12 internally vertex-disjoint [v, w]-paths of
length three.

Observation 3. Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V . If |P| ≥ 12 then every minimum connected dominating set of
G containing at most two inner vertices of R(v, w) contains both v and w.

288 D. Lokshtanov, M. Mnich, and S. Saurabh

Lemma 10. (reduce) Let G = (V,E) be a plane graph and let R(v, w) be a
region between v, w ∈ V . If |P| ≥ 12 then γc(G) = γc(G − v3).

Case 3.2: There are at most 11 internally vertex-disjoint [v, w]-paths
of length three.

Lemma 11. (refine) Let G = (V,E) be a plane graph and let R(v, w) be a region
between v, w ∈ V such that NR(v, w) contains no inner vertices of R(v, w). Let
m be the number of vertices in R(v, w) other than v and w. If |P| ≤ 11 then there
is a region R′(v, w) entirely contained in R(v, w) that contains at least m/10+2
vertices such that every [v, w]-path in R(v, w) contains at least one border vertex
of R(v, w) except v and w.

Case 3.3: There are no internally vertex-disjoint [v, w]-paths of length
three.

Lemma 12. (reduce) Let G = (V,E) be a plane graph and R(v, w) be a region
between v, w ∈ V with at least 1274 vertices such that every [v, w]-path in R(v, w)
contains at least one border vertex of R(v, w) other than v and w. There is a
polynomial time algorithm that given G and R(v, w) computes a subgraph G′ of
G with |V (G′)| < |V (G)| and γc(G′) = γc(G).

We summarize the case analysis.

Lemma 13. There is a polynomial time algorithm that, given a plane graph G
and a region R(v, w) between vertices v, w ∈ V with at least 1322672 vertices,
computes a subgraph G′ of G such that G′ has fewer vertices than G and γc(G′) =
γc(G).

Proof. If |NR(v, w)| ≥ 106 then Lemma 8 applied to G and R(v, w) yields the
desired subgraph G′. Otherwise, by Lemma 9 there exists a region R′(v, w) with
at least 12720 vertices entirely contained in R(v, w) and such that no common
neighbours of v and w are inner vertices of R′(v, w). If R′(v, w) contains at
least 12 internally vertex-disjoint induced [v, w]-paths of length three then by
Lemma 10 then G′ = G − v3 is the desired subgraph of G. If R′(v, w) contains
at most 11 internally vertex-disjoint induced [v, w]-paths of length three then by
Lemma 11 there is a region R′′(v, w) such that R′′(v, w) contains at least 1274
vertices and there is no [v, w]-path such that all its internal vertices are inner
vertices of R′′(v, w). In this case Lemma 12 implies that a subgraph G′ of G with
V (G′) < V (G) and γc(G′) = γc(G) can be computed in polynomial time. ��

We are now in position to give a proof of our main result.

Proof of Theorem 1: We prove that the planar Connected Dominating Set

problem with parameter k admits a kernel of size 3968187k. We give an algorithm
that given an integer k and a plane graph G = (V,E) with at least 3968187k
vertices, in polynomial time either concludes that γc(G) > k or computes a sub-
graph G′ of G such that G′ has fewer vertices than G and γc(G′) = γc(G). The

Linear Kernel for Planar Connected Dominating Set 289

algorithm proceeds as follows. First, let ε = 1/3968186 and compute a (1 + ε)-
approximation S1 of a minimum connected dominating set for G using the PTAS
of Demaine and Hajiaghayi [7]. If S1 has strictly more than (1+ε)k vertices then
answer γc(G) > k and stop.

Otherwise, compute a maximal S1-region decomposition R of G via the algo-
rithm by Guo and Niedermeier [12]. By Proposition 1, there are at most 3(1+ε)k
regions in R, and by Proposition 2 at most 170(1+ ε)k vertices do not belong to
any region in R. By the pigeonhole principle, there exists a region R(v, w) ∈ R
between vertices v, w ∈ V that contains at least 1322672 vertices. Hence by
Lemma 13, a subgraph G′ of G with fewer vertices than G and γc(G′) = γc(G)
can be computed in polynomial time. ��

4 Conclusion and Further Work

In this paper we showed that Connected Dominating Set in planar graphs
admits a linear kernel. This is the first linear kernel for a “connectivity” problem
on planar graphs that does not follow directly from the framework of Guo and
Niedermeier [12].

Our algorithm is impractical for two reasons. The first is the huge constant
in the kernel size, and the second is the choice of ε = 1/3968186 in the PTAS
for Dominating Set that yields an unmanageable running time. We think that
both these problems can be remedied; choosing ε = 1 yields a 2-approximation
for Dominating Set in planar graphs that runs quite quickly, at the cost of a
factor 2 in the kernel size. Also, the constant in our kernelization can be improved
significantly. In this paper we focused only on showing the existence of a linear
kernel and in many places we deliberately picked a proof that yielded a higher
constant but was more readable and understandable. It would be interesting to
see how far the kernel size can be reduced; we believe a constant below 1000 to
be achievable. A possible way to attack this problem would be to eliminate the
“refine” steps and re-analyzing the cases, taking into account the noise that the
“refine” steps removed.

The linear kernel for the Dominating Set problem has been extended from
planar graphs to graphs excluding a complete bipartite graph K3,h as a minor [2].
A natural question to ask is whether the same can be done for the minimum
connected dominating set problem. Finally, it would be interesting to see whether
the reduce or refine technique could be applied to achieve this, or to give kernels
for other problems.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004) (electronic)

2. Alon, N., Gutner, S.: Kernels for the dominating set problem on graphs with an
excluded minor. Technical report, ECCC Report TR08-066 (2008)

3. Bodlaender, H.L., Penninkx, E.: A linear kernel for planar feedback vertex set. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171.
Springer, Heidelberg (2008)

290 D. Lokshtanov, M. Mnich, and S. Saurabh

4. Bodlaender, H.L., Penninkx, E., Tan, R.B.: A linear kernel for the k-disjoint cycle
problem on planar graphs. LNCS, vol. 5369, pp. 306–317. Springer, Berlin (2008)

5. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–
1106 (2007)

6. Chen, J., Kanj, I.A., Jia, W.: Vertex Cover: Further observations and further im-
provements. Journal of Algorithms 41(2), 280–301 (2001)

7. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proceedings of the Sixteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 590–601. ACM, New York (2005) (electronic)

8. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster
than 2n. Algorithmica 52(2), 153–166 (2008)

9. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of
NP-completeness, A Series of Books in the Mathematical Sciences. W. H. Freeman
and Co., San Francisco (1979)

10. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4), 374–387 (1998)

11. Guo, J.: Private communication (2007)
12. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar

graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

13. Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter tractability results for
full-degree spanning tree and its dual. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 203–214. Springer, Heidelberg (2006)

14. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching
problem in planar graphs. In: Preparata, F.P., Fang, Q. (eds.) FAW 2007. LNCS,
vol. 4613, pp. 325–336. Springer, Heidelberg (2007)

15. Thomassé, S.: Bidimensionality: new connections between FPT algorithms and
PTASs. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 115–119. ACM, New York (2009) (electronic)

A Simple Greedy Algorithm for the
k-Disjoint Flow Problem�

Maren Martens

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
martens@zib.de

Abstract. In classical network flow theory the choice of paths, on which
flow is sent, is only restricted by arc capacities. This, however, is not
realistic in most applications. Many problems restrict, e.g., the number
of paths being used to route a commodity. One idea to increase reliability
of routings, e.g., in telecommunication, is to copy a demand and send the
copies along disjoint paths. Such problems theoretically result in the k-
disjoint flow problem (k-DFP). This problem is a variant of the classical
multicommodity flow problem with the additional requirement that the
number of paths to route a commodity is bounded by a given parameter.
Moreover, all paths used by the same commodity have to be arc disjoint.

We present a simple greedy algorithm for the optimization version
of the k-DFP where the objective is to maximize the sum of routed
demands. This algorithm generalizes a greedy algorithm by Kolman and
Scheideler (2002) that approximates the corresponding unsplittable flow
problem, in which every commodity may be routed along a single path
only. We achieve an approximation factor of O(kmax

√
m/kmin), where

m is the number of arcs and kmax (kmin) is the maximum (minimum)
bound on the number of paths allowed to route any of the commodities.
We argue that this performance guarantee is best possible for instances
where kmax/kmin is constant, unless P = NP .

1 Introduction

Problem Definition and Notation. During the past couple of years path con-
strained network flows gained increasing interest. Starting from the classical
maximum s-t-flow problem introduced by Ford and Fulkerson [7] in 1956, re-
search went on towards multicommodity flows (see, e.g., [2]). In the multicom-
modity flow problem (MCFP) we have a directed graph (or digraph) D = (V,A)
with arc capacities u : A → R+ and commodities T ⊆ V × V . We number the
commodities from 1 to K. The ith commodity is denoted as (si, ti) and has a
nonnegative demand di ∈ R+. For every commodity, the whole demand has to be
routed through the network obeying the arc capacities. More formally, for every
i = 1, . . . ,K, we have to find a set Pi of si-ti-paths together with a flow function
f : Pi → R+ such that

∑
P∈Pi

f(P) = di and
∑

i

∑
P∈Pi:a∈P f(P) ≤ u(a), for

every a ∈ A. We call a path P with positive flow value f(P) a flow path. As
� Research partially supported by the Federal Ministry of Education and Research

(BMBF), Germany, as part of the project “EUREKA 100GET Technologies”.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 291–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

292 M. Martens

in general it is not possible to route all demands simultaneously while obeying
all arc capacities, several optimization versions of the MCFP have been intro-
duced. Among the most popular ones is the maximization of the sum of routed
demands. In other words, we have to choose a subset of commodities T ′ ⊆ T
of maximum total demand such that there exist flow paths along which we can
satisfy all demands in T ′ while obeying the arc capacities. This optimization
version is also considered in this paper.

However, for many applications it is not realistic to have no restrictions on
the choice of flow paths other than the ones induced by the arc capacities. In
container routing problems, e.g., the number and sizes of containers bound the
number of paths that may be used for a routing and the amount of flow that may
be sent along a single path. In telecommunications, demands are usually routed
along a single path rather than being split up arbitrarily. To gain reliabilty for
connections, it is common to copy a demand several times and then send all
copies along disjoint paths. This results in the k-disjoint flow problem (k-DFP):
Given a digraph D = (V,A) with arc capacities u : A → R+, commodities
T ⊆ V × V , and demands di, we now also have a parameter ki ∈ N, for every
commodity i. The task is to find a feasible multicommodity flow as above where,
for every i, the number of si-ti-flow paths is exactly ki, i.e., |Pi| = ki, all paths in
Pi are arc disjoint, and every path P ∈ Pi carries the same amount of flow, i.e.,
f(P) = di/ki. Here, we consider the related optimization problem to maximize
the sum of routed demands as it is introduced above. A feasible solution to this
optimization problem is called a k-disjoint flow.

We use m to denote the number of arcs in a digraph and n to denote the num-
ber of its nodes. Further, we use kmin :=mini=1,...,K ki and kmax :=maxi=1,...,K ki

respectively as the minimum and maximum upper bound on the permitted num-
ber of flow paths.

Related Results from the Literature. To the best of our knowledge, the first and
only who considered the k-DFP as introduced above were Bagchi, Chaudhary,
Scheideler, and Kolman [4]. In contrast to the present paper, however, they
do not admit different bounds on the number of flow paths for different com-
modities. In their considerations Bagchi et al. use the “flow number” F , which
provides information on the level of interconnectedness of a network. In [13] it is
proven that F = O(Δα−1 logn) with Δ being the maximum node degree and α
being the expansion of the network, i.e., the value of the minimum quotient cut.
Bagchi et al. show that the greedy algorithm that they develop for the k-DFP
yields an approximation factor of O(k3F log(kF)) for the optimization version
to maximize the sum of satisfied demands. However, this holds only for instances
with unit arc capacities and maximum demand at most k. Also in [4], Bagchi et
al. consider problems that are closely related to the k-DFP. Those are the in-
tegral splittable flow problem (ISF) and the k-splittable flow problem (k-SFP).
The latter is basically the same as the k-DFP. However, in the k-SFP the (at
most) k flow paths for the same commodity do not have to be disjoint. Nor it is
required that exactly k paths are used to route a demand or that all flow paths
of one commodity carry the same amount. For the maximization version of the

A Simple Greedy Algorithm for the k-Disjoint Flow Problem 293

k-SFP, Bagchi et al. develop a greedy algorithm with performance guarantee
O(k2F), again under the assumption that they have unit arc capacities and the
maximum demand is at most k. In the ISF integral demands may be satisfied
by an arbitrary number of flow paths carrying an integral amount of flow. Also
for this problem Bagchi et al. introduce a greedy algorithm and obtain an ap-
proximation factor of O(F), for instances with uniform arc capacities in which
the maximum demand is at most the capacity of the arcs. The ISF has already
earlier been studied by Guruswami et al. [8] who obtain an approximation factor
of O(

√
mΔ log2 m). They also prove that there is no approximation factor better

than O(
√
m), unless P = NP .

Baier, Köhler, and Skutella [6] generalize the k-SFP by allowing different
bounds on the number of flow paths for different commodities. However, they
do not examine the optimization version that is considered in this paper. For
the objective to minimize the maximum overload of an arc while satisfying all
demands, they show how to obtain the same asymptotic approximation factors
for the k-SFP as for the unsplittable flow problem (UFP). The UFP is the special
case of the k-SFP where only a single path may be used to route a demand. This
problem was introduced by Kleinberg [11] in 1996. The best known and possible
approximation factor for the maximization problem of the UFP is O(

√
m), see,

e.g., [13] for a simple greedy algorithm that does not require any restrictions
on the size of the arc capacities. Variants of the k-SFP with restrictions on the
flow paths, e.g., length or flow bounds, are considered in [16,17]. Surveys on
unsplittable and k-splittable flows can be found in [5,12,15], the second of which
also gives a good survey on the arc disjoint paths problem.

Also closely related to the k-DFP are k-flows, first considered by Kishimoto
and Takeuchi [9,10]. A k-flow is defined as a nonnegative linear combination
of elementary k-flows where an elementary k-flow is a tuple consisting of k arc
disjoint paths, each path carrying exactly one unit of flow. Algorithms for the
maximum k-flow problem are developed in [1,3]. Note that an elementary k-flow
is the same as a special k-disjoint flow with ki = di.

Contribution of this Paper. To the best of our knowledge, we present the first
approximation algorithm for the maximization version of the k-DFP that is
independent from the flow number and does not require restrictions on the arc
capacities or demands. This algorithm is a simple combinatorial greedy algorithm
that generalizes the bounded greedy algorithm for the UFP that was introduced
by Kolman and Scheideler [13]. We show that our algorithm always approximates
the optimum within a factor O(kmax

√
m/kmin) and argue that this factor is best

possible for instances where kmax/kmin is constant, unless P = NP .
Our results can easily be generalized to the case where we require node dis-

jointness for all paths routing the same commodity. We explain this generaliza-
tion after introducing the basic algorithm for k-DFP.

2 A Simple Greedy Algorithm

In Section 2.1 we introduce a simple greedy algorithm for the optimization
version of the k-DFP to maximize the sum of routed demands. This greedy

294 M. Martens

algorithm is based on, but generalizes an algorithm by Kolman and Schei-
deler [13] for the UFP. The biggest new challenge for the k-DFP is to find
ki disjoint flow paths (instead of a single path), for every commodity i, that
obey the arc capacities and also use only few arcs up to their total capacity. In
the analysis following the algorithm in Section 2.2 we also use ideas from [13].
However, we carefully have to deal with the new generalization of the algorithm.

2.1 The Algorithm

Our algorithm basically reduces k-DFP to the minimum cost flow problem
(MCFP). In the MCFP, we have a digraph D = (V,A) with arc capacities
u : A → R+, arc costs c : A → R+, and supplies/demands dv ∈ R, for v ∈ V ,
such that

∑
v dv = 0. (We call dv a supply if it is positive and a demand if it is

negative.) The task is to find a feasible minimum cost flow (MCF) that satisfies
all supplies/demands, i.e., a flow f : A → R+ such that f(a) ≤ u(a), for all
a ∈ A,

∑
a=(v,w)∈A f(a)−∑

a=(w,v)∈A f(a) = dv, for all v ∈ V , and
∑

a c(a)f(a)
is minimal. We call a MCF integral if f(a) ∈ N, for all a ∈ A. An (integral)
MCF can be computed in polynomial time; for runtimes and details on various
algorithms, see, e.g., [18]. Moreover, it can be decomposed into flows on paths
between supply and demand nodes and flows on cycles, see also [18]. Since the
cycles do not contribute to the net inflow at nodes, we can delete them and
obtain a decomposition into flows on paths.

Algorithm 1 specifies an O(kmax
√
m/kmin)-approximation algorithm for k-

DFP. It computes two different solutions P and P ′ and, at the end, chooses
the better of those two. We decide for exactly one commodity i at a time if we
route its demand in one or both of the solutions or if we reject it and do not
route any flow for it at all. For every decision, we use special capacity and cost
functions that depend on the arc capacities u of the considered k-DFP and on
the k-disjoint flow already routed. Assume that we already decided to route flow
along paths in a set P . Then, for every a ∈ A, we set the capacity uP(a) = 1, if∑

P∈P:a∈P f(P) + di/ki ≤ u(a), and uP(a) = 0 otherwise. This means that uP
is 1 on exactly those arcs where di/ki can be routed without violating the arc
capacitiy. We set the cost cP(a) = 1, if

∑
P∈P:a∈P f(P) + di/ki > u(a)/2, and

cP(a) = 0 otherwise.
The arc capacities in Algorithm 1 ensure that, for every commodity i, the

computed integral flows use exactly ki arc disjoint paths. For every commodity
i that is routed in the path set P computed by Algorithm 1, it is furthermore
true that f uses at most

√
m arcs in their upper halves, i.e., the total flow after

routing i is larger than half the arc capacity on at most
√
m arcs.

Note that f ′ is constructed in the same way as f , except that f ′ is unre-
stricted in the set of arcs that are used in their upper halves. The following
example shows that it is important to also compute f ′ and return the bigger of
both flows: Assume we have a single commodity in a network consisting of two
nodes s and t and two parallel arcs from s to t with capacities 1 each. We consider
the demand d = 2 and k = 2. Then in P ′ we route 1 unit of flow along either of the

A Simple Greedy Algorithm for the k-Disjoint Flow Problem 295

Algorithm 1. O(kmax
√
m/kmin)-approximation for the k-DFP

Input: An instance of k-DFP.
Output: A k-disjoint flow that routes at least 1/O(kmax

√
m/kmin) of the

maximum sum of simultaneously routable demands.

Sort the commodities such that d1/k1 ≥ d2/k2 ≥ . . . ≥ dK/kK .
for i = 1 to K do

Compute an integral MCF f that routes ki units from si to ti in D with arc
capacities uP and cost function cP as above, for P :=

⋃i−1
j=1 Pj .

if cost(f) ≤ √
m then

Decompose f into flows on si-ti-paths.
Use this set of flow paths, say Pi, to route di units of flow from si to ti

in the network with original arc capacities.
end
else /* The case where no flow f exists or cost(f) >

√
m. */

Reject commodity i and do not route any flow from si to ti.
end
Compute an integral flow f ′ that routes ki units from si to ti in D with arc
capacities uP′ as above, for P ′ :=

⋃i−1
j=1 P ′

j . (Set f ′ = 0, if no such flow
exists.)
Decompose f ′ into flows on si-ti-paths.
Use this set of flow paths, say P ′

i , to route di (or 0, if f ′ = 0) units of flow
from si to ti in the network with original arc capacities.

end

Return the one of P :=
⋃K

i=1 Pi and P ′ :=
⋃K

i=1 P ′
i that routes more flow.

parallel arcs. P , however, is empty as, when routing 1 unit of flow along both
arcs, 2 (>

√
m =

√
2) arcs are used in their upper halves.

Theorem 1. Algorithm 1 runs in O(K(TMCF + mn)) time, where TMCF is the
time needed to find an integral minimum cost flow.

Proof. Sorting the commodities uses O(K logK) time. The decomposition of
flows can be done in O(mn) time, see, e.g., [14]. The integral flow f ′ can be
computed using an algorithm for the basic maximum s-t-flow problem, see, e.g.,
[18]. In particular, it can be done quicker than computing an integral minimum
cost flow.

With the following well-known graph transformation (see, e.g., [18]) we can easily
generalize our results for the (arc) disjoint flow problem to the node disjoint flow
problem where we require node disjointness instead of arc disjointness for all
paths routing the same commodity: Substitute each node v by two new nodes v1
and v2 together with an arc (v1, v2). Then let all arcs entering v in the original
digraph enter v1 in the new digraph. Similarly, let all arcs leaving v in the
original digraph leave v2 in the new digraph. Capacities of newly introduced
arcs (v1, v2) are infinite. Then arc disjointness in the new digraph is equivalent
to node disjointness in the original digraph. Note that all our asymptotic results
still hold for the node disjoint flow problem as the number of arcs in the new

296 M. Martens

digraph is O(m + n) = O(m), for m and n being the number of arcs and nodes
in the original digraph.

2.2 Performance Guarantee

In this section we prove that Algorithm 1 always terminates with a k-disjoint flow
that routes at least 1/O(kmax

√
m/kmin) of the maximum sum of simultaneously

routable demands.

Theorem 2. Algorithm 1 yields an O(kmax
√
m/kmin)-approximation algorithm

for k-DFP.

Proof. Consider an instance of k-DFP. Let O be the set of commodities routed in
an optimal solution OPT for the considered maximization problem and let O′ ⊆
O be those commodities that are rejected in Algorithm 1, i.e., those commodities
that are not routed by any of P or P ′. Let A be the set of commodities that are
routed in the final solution returned by Algorithm 1. To simplify the notation,
we also use P to denote the set of commodities that are routed on paths in P .

For any set C of commodities, we define ‖C‖ :=
∑

i∈C di. It holds that

‖O \ O′‖ ≤
∑
P∈P

f(P) +
∑

P∈P′
f(P) ≤ 2‖A‖ ,

because every commodity in O \ O′ is routed on paths in P or in P ′.
Consider a commodity j ∈ O′ and let Oj be the set of paths that is used to

route j in OPT. Since, in particular, the paths in Oj are not used to route j
in P one of the following has to be true: (i) There is an arc a used by Oj that
would be overloaded by dj/kj together with the flow already routed in P at the
time of j’s rejection, or (ii) there are

√
m arcs in the paths of Oj that j would

have used in their upper halves in P .
Let us examine reason (i) a bit closer. We show that the total demand

that is rejected for reason (i) is at most 4kmax
√
m‖P‖/kmin, which is at most

4kmax
√
m‖A‖/kmin.

Since in Algorithm 1 the commodities are processed in order of decreasing
di/ki, the flow on a in P at the time of j’s rejection is larger than u(a)/2.
Consider a path P ∈ P participating in this flow and using a in its upper half.
(We say that P uses a in its upper half if, at the time when P is chosen for
P , the flow on P together with the flow already routed along a in P exceeds
u(a)/2.) Let c be the commodity that is routed along P . We call c a culprit for
j on a and define its weight as

wj
c(a) :=

dc · dj

kc · kj · u(a)
. (1)

A commodity c ∈ P is a culprit on at most every arc e that it uses in its upper
half and for at most every commodity i ∈ O′ that is routed along e in OPT. We
know that the number of arcs that c uses in their upper halves is bounded by

A Simple Greedy Algorithm for the k-Disjoint Flow Problem 297

√
m. Therefore, the total weight of c as a culprit for commodities in O′ over all

arcs is

Wc :=
∑

e∈A, i∈O′: c is
culprit for i on e

wi
c(e) ≤

∑
e∈A: c uses e

in its upper half

⎛⎜⎜⎝ ∑
i∈O′: i is routed
along e in OPT

wi
c(e)

⎞⎟⎟⎠
≤

∑
e∈A: c uses e

in its upper half

dc

kc
≤ √

m · dc

kc
, (2)

where in the second inequality we use that the sum of di/ki over all i that are
routed along e in OPT is at most u(e), because OPT is a feasible k-disjoint flow.

Note that the sum of flow values of culprits for j on a is at least u(a)/4. In
case dj/kj > u(a)/4, this is true by the order of commodities. For the case when
dj/kj ≤ u(a)/4, it is true because otherwise we could route j along a without
violating a’s capacity. (Note that if the sum of flow values of culprits for j on a
was less than u(a)/4, then at the time of j’s rejection the total amount of flow
routed along a would be at most u(a)/2 + u(a)/4 = 3u(a)/4.)

Let Q bet the set of culprits for j on a. It follows that the total weight of
culprits for j over all arcs is

W j :=
∑

e∈A, c∈P: c is
culprit for j on e

wj
c(e) ≥

∑
c∈Q

wj
c(a) =

∑
c∈Q

dc · dj

kc · kj · u(a)

≥ u(a)
4

· dj

kj · u(a)
≥ dj

4kmax
. (3)

From (2) we get that the overall total weight of culprits for commodities in O′

is ∑
c∈P

Wc ≤
∑
c∈P

√
m · dc

kmin
=

√
m · ‖P‖

kmin
. (4)

It follows from (3) and (4) that∑
j∈O′:j is rejected

for reason (i)

dj ≤ 4kmax

∑
j∈O′:j is rejected

for reason (i)

W j

≤ 4kmax

∑
j∈O′

W j = 4kmax

∑
c∈P

Wc ≤ 4kmax
√
m

‖P‖
kmin

, (5)

i.e., the total demand that is rejected for reason (i) is at most
4kmax

√
m‖P‖/kmin ≤ 4kmax

√
m‖A‖/kmin.

For the analysis of rejection reason (ii), first note that an arc a that j would
have used in its upper half in P has capacity u(a) < 2dj/kj or carried flow in
P at the time of j’s rejection. By the order of commodities in Algorithm 1, this
flow would use at least a quarter of a’s capacity, as otherwise j would not use

298 M. Martens

a in its upper half. Therefore, we can state the two cases as follows: (a) There
are more than

√
m/2 arcs a in the paths of Oj such that dj/kj > u(a)/2 or (b)

there are
√
m/2 arcs a in the paths of Oj each with flow value at least u(a)/4

in P .
Obviously, in OPT, we have less than 2

√
m commodities such that each of

them uses more than half of the capacity of more than
√
m/2 arcs, as otherwise at

least one arc would be overloaded–a contradiction. Choose a commodity I ∈ P ′

such that dI/kI = maxi∈P′ di/ki. Note that dI/kI is at least as big as the biggest
ratio di/ki routed in OPT. Therefore, the total demand of commodities rejected
for reason (ii-a) is∑

j∈O′:j is rejected
for reason (ii-a)

dj ≤ kmax

∑
j∈O′:j is rejected
for reason (ii-a)

dj

kj
≤ kmax · 2√m · dI

kI

≤ kmax · 2
√
m

kmin
·
∑

P∈P′
f(P) ≤ kmax · 2

√
m

kmin
· ‖A‖ .

For case (ii-b), we denote the M ≥ √
m/2 arcs in Oj , for which P uses at

least a quarter of their capacities, as a1, . . . , aM . Now the analysis is similar with
the one in rejection reason (i): We call a commodity c ∈ P a culprit for j if it is
routed along at least one of a1, . . . , aM . The weight of this culprit for j on arc
al is wj

c(al) as defined in (1).
Every commodity c ∈ P is a culprit on at most every arc e it is routed on

and for at most every commodity i ∈ O′ routed along e in OPT. Using similar
arguments as in (2), for c as a culprit for commodities in O′, we have a total
weight of at most dcm/kc ≤ dcm/kmin, where we use that c is routed along at
most m arcs due to the arc disjointness of its flow paths.

Recall that j has culprits on all arcs a1, . . . , aM . Let Ql be the set of culprits
for j on al, l = 1, . . . ,M . By definition of case (ii-b), the total flow sent through
al along paths in Ql is at least u(al)/4. It follows that j has culprits with total
weight

W j =
M∑
l=1

∑
q∈Ql

dq · dj

kq · kj · u(al)
≥

M∑
l=1

u(al)
4

· dj

kj
· 1
u(al)

≥
√
m

2
· dj

4kmax
.

With arguments similar to those in (5), we can conclude that the total demand
that is rejected for reason (ii-b) is at most 8kmax

√
m‖A‖/kmin.

Therefore, the total sum of rejected demands is at most 14kmax
√
m‖A‖/kmin.

So we conclude

‖O‖ ≤ ‖O′‖ + ‖O \ O′‖ ≤ 14kmax
√
m‖A‖/kmin + 2‖A‖

= (14kmax
√
m/kmin + 2)‖A‖ .

2.3 Hardness of the Approximation

In this section we argue that, unless P = NP , the approximation factor of
O(kmax

√
m/kmin) is best possible for the k-DFP, for instances where kmax/kmin

A Simple Greedy Algorithm for the k-Disjoint Flow Problem 299

is constant. Note that, if kmax/kmin is constant, Algorithm 1 yields an O(
√
m)-

approximation algorithm.
We use a result by Guruswami et al. [8] to prove the following theorem.

Theorem 3. For any ε > 0, it is NP-hard to approximate the k-DFP within
O(m1/2−ε).

Proof. Note that with di = ki = 1, for all commodities i, and arc capacities
equal to 1, we obtain the arc disjoint paths problem as a special case of the
k-DFP. In [8], it is proven that it is NP-hard to approximate the arc disjoint
paths problem within O(m1/2−ε), for any ε > 0.

3 Conclusion

We present the first approximation algorithm for the k-DFP that is independent
from any graph parameters or restrictions on the sizes of demands or on the arc
capacities. Moreover, it is the first algorithm handling different bounds on the
permitted number of flow paths for different commodities. Our algorithm stands
out due to its simplicity. Its performance guarantee of O(kmax

√
m/kmin) is best

possible for instances where kmax/kmin is constant. However, it is an interesting
open question if it is best possible in general. For the unsplittable flow problem,
Kolman and Scheideler [13] obtain an approximation factor of O(

√
m), which is

best possible. Although the k-DFP seems to be harder due to the challenge of
finding a set of flow paths for every commodity such that all paths for the same
commodity are arc disjoint, it is still justified to ask if the approximation factor
of O(

√
m) is also achievable for the k-DFP.

References

1. Aggarwal, G.C., Orlin, J.B.: On multiroute maximum flows in networks. Net-
works 39, 43–52 (2002)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood
Cliffs (1993)

3. Aneja, Y.P., Chandrasekaran, R., Nair, K.P.K.: Parametric analysis of overall min-
cuts and applications in undirected networks. Information Processing Letters 85,
105–109 (2003)

4. Bagchi, A., Chaudary, A., Scheideler, C., Kolman, P.: Algorithms for fault-tolerant
routing in circuit switched networks. In: Fourteenth ACM Symposium on Parallel
Algorithms and Architectures (2002)

5. Baier, G.: Flows with Path Restrictions. PhD thesis, TU Berlin (2003)
6. Baier, G., Köhler, E., Skutella, M.: On the k-splittable flow problem. Algorith-

mica 42, 231–248 (2005)
7. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal

of Mathematics 8, 399–404 (1956)
8. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-

optimal hardness results and approximation algorithms for edge-disjoint paths and
related problems. Journal of Computer and System Sciences 67, 473–496 (2003)

300 M. Martens

9. Kishimoto, W.: A method for obtaining the maximum multiroute flows in a net-
work. Networks 27, 279–291 (1996)

10. Kishimoto, W., Takeuchi, M.: On m-route flows in a network. IEICE Transactions
(1993) (in Japanese)

11. Kleinberg, J.M.: Approximation Algorithms for Disjoint Path Problems. PhD the-
sis, Massachusetts Institute of Technology (May 1996)

12. Kolliopoulos, S.G.: Edge-disjoint paths and unsplittable flow. In: Gonzalez, T.F.
(ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC, Boca Raton (2007)

13. Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In:
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 184–193 (2002)

14. Korte, B., Vygen, J.: Combinatorial Optimization. Theory and Algorithms.
Springer, Berlin (2000)

15. Martens, M.: Path-Constrained Network Flows. PhD thesis, Universität Dortmund
(2007)

16. Martens, M., Skutella, M.: Flows on few paths: Algorithms and lower bounds.
Networks 48(2), 68–76 (2006)

17. Martens, M., Skutella, M.: Length-bounded and dynamic k-splittable flows. In:
Operations Research Proceedings 2005, pp. 297–302 (2006)

18. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Springer,
Berlin (2003)

Minimizing AND-EXOR Expressions for
Multiple-Valued Two-Input Logic Functions

(Extended Abstract)

Takaaki Mizuki1, Hitoshi Tsubata2, and Takao Nishizeki2

1 Cyberscience Center, Tohoku University,
Aramaki-Aza-Aoba 6–3, Aoba-ku, Sendai 980–8578, Japan

tm-paper@rd.isc.tohoku.ac.jp
2 Graduate School of Information Sciences, Tohoku University, Aramaki-Aza-Aoba

6–6–05, Aoba-ku, Sendai, 980–8579, Japan

Abstract. A minimum ESOP (Exclusive-OR Sum-of-Products) form of
a logic function f is an AND-EXOR 2-level expression of f having the
minimum number of product terms. In the paper we deal with multiple-
valued 2-input logic functions f , and give an algorithm to find a minimum
ESOP form of a given function f in polynomial time.

1 Introduction

An ESOP (Exclusive-OR Sum-of-Products) form of a logic function f is an AND-
EXOR 2-level expression of f , i.e., a logical expression that combines products
of literals by Exclusive-ORs. For example,

f(x1, x2, x3) = (x1 ∧ x̄2 ∧ x3) ⊕ (x̄1 ∧ x̄2 ∧ x̄3) ⊕ (x2 ∧ x̄3) (1)

is an ESOP form defining a (2-valued) 3-input logic function f . The logic function
f can be expressed by another ESOP form, say

f(x1, x2, x3) = x1x̄2 ⊕ x̄3. (2)

(Hereafter, as in this expression, we omit the conjunction symbol ∧.) The ESOP
form in Eq. (1) has exactly three product terms, while the ESOP form in Eq. (2)
has only two product terms. Thus, there exists a minimization problem regarding
ESOP forms. This paper deals with such a minimization problem; more specifi-
cally, we give an efficient algorithm to minimize ESOP forms for multiple-valued
2-input logic functions.

1.1 ESOP Forms

First of all, we formally define “multiple-valued input logic functions” and “lit-
erals.” Throughout the paper, for a positive integer m, we define ZZm as follows:

ZZm
def= {0, 1, . . . ,m − 1}.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 301–310, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 T. Mizuki, H. Tsubata, and T. Nishizeki

Let n ≥ 1 be the number of logical variables, and let m1,m2, . . . ,mn ≥ 2 be n
positive integers. Then, a function

f(x1, x2, . . . , xn)

such that
f : ZZm1 × ZZm2 × · · · × ZZmn → {0, 1}

is called a multiple-valued n-input logic function; in particular, when m1 = m2 =
· · · = mn = m, we call it an m-valued n-input logic function. (Needless to say,
when m = 2, it is a 2-valued n-input logic function and hence is a so-called
Boolean function.) Furthermore, for an i-th variable xi, 1 ≤ i ≤ n, and a subset
S ⊆ ZZmi , we define a function xS

i : ZZmi → {0, 1}, called a literal, as follows:

xS
i (xi) =

{
1 if xi ∈ S;
0 otherwise.

We often denote xS
i (xi) simply by xS

i . When S = ZZmi , the literal xS
i is just the

constant 1; also, when S = ∅, the literal xS
i (= x∅

i) is just the constant 0. For
instance, when mi = 2, i.e., ZZmi = {0, 1}, there are exactly four literals x

{0,1}
i ,

x
{0}
i , x{1}

i and x∅
i , which are often denoted by 1, xi, xi and 0, respectively.

A product xS1
1 xS2

2 · · ·xSn
n of literals is called a product term. If a logic function

f(x1, x2, . . . , xn) has a logical expression

F =
⊕

(S1,S2,···,Sn)

xS1
1 xS2

2 · · ·xSn
n (3)

which combines product terms by Exclusive-ORs, then the expression F is called
an ESOP form. If an ESOP form F has a product term containing a literal
x∅

i (= 0), then the resulting ESOP form F ′ obtained by removing such a product
term represents the same logic function as the original ESOP form F . For an
ESOP form F , we denote by τ(F) the number of product terms in F . A minimum
ESOP form of a logic function f is an ESOP form having the minimum number
of product terms among all possible ESOP forms representing f .

1.2 Known Results

For many decades, the problem of minimization or simplification of ESOP forms
has attracted much attention of the researchers in the logic design community.
(A comprehensive survey appears in a book [6].) Although no efficient algorithm
to minimize ESOP forms has been known, many good heuristic algorithms to
simplify ESOP forms have been proposed (e.g. [1,5,7,8,11]). On the other hand,
there also exist efficient exact minimization algorithms which efficiently work
only for a limited (small) number of variables or product terms (e.g. [3,9,10]).

Historically, the binary case of m1 = m2 = · · · = mn = 2, namely ESOP
forms for 2-valued input logic functions have been much investigated, of course;
the most famous ESOP form is probably a Reed-Muller expression. For such a 2-
valued input case, there are many good heuristic (or exact) algorithms to simplify

Minimizing AND-EXOR Expressions 303

(or minimize) ESOP forms (e.g. [1,3,9,11]). In particular, the best known upper
bound on the number τ(F) of product terms in a minimum ESOP form F for any
2-valued n-input logic function is τ(F) ≤ 29 · 2n−7 (provided that n ≥ 7) [2].

On the other hand, there are relatively a small number of papers dealing with
multiple-valued input logic functions, but there are a few works on the case where
integers mi are larger than 2. In particular, the case of m1 = m2 = · · · = mn = 4,
namely ESOP forms for 4-valued input logic functions have been greatly studied,
e.g. [5,7]; it is motivated by improving input decoders in PLA (Programmable
Logic Array) structures. Furthermore, the case where m1 = m2 = · · · = mn−1 =
2 and mn ≥ 3 has been studied in [10].

1.3 Our Results

As mentioned in the previous subsection, no efficient ESOP minimization
algorithm for general logic functions has been known; in particular, for the
multiple-valued input case, every existing efficient minimization algorithm, to
our knowledge, has a limitation in the input sizes mi. In this paper, instead of
restricting the input sizes mi in multiple-valued input logic functions, we fix the
number n of variables to 2. We thus deal with m-valued 2-input logic functions,
and give an algorithm to find a minimum ESOP form of any given function in
polynomial time in m, say time O(m3), where m is any integer larger than 1.

It is known that the minimization of ESOP forms ofm-valued 2-input logic func-
tions, which this paper addresses, can be applied to improving a cryptographic
protocol [4], as follows. The cost (communication complexity) of the cryptographic
protocol developed in [4] to securely compute a function f(a, b) is proportional to
the number τ(F) of product terms in an ESOP form F of f . Thus, if one can find a
minimum ESOP form of f , then one can achieve the most efficient secure compu-
tation by the protocol. Therefore, applying the results in this paper to the protocol
proposed in [4], one can execute the protocol most efficiently.

The remainder of the paper is organized as follows. In Section 2, we present
some preliminaries necessary to explain our algorithm. In Section 3, we introduce
a method to express an ESOP form of an m-valued 2-input logic function in a
matrix form. This matrix-based expression helps us to easily and intuitively un-
derstand the minimization of ESOP forms. In Section 4, we present our efficient
algorithm to find a minimum ESOP form of any given m-valued 2-input logic
function by using elementary row operations for matrices. This paper concludes
in Section 5 with some discussions.

2 Preliminaries

In this section, we define some terms and present some of the known results.

2.1 Multiple-Valued Shannon Expansion

Let f(a, b) be an m-valued 2-input logic function with variables a and b, that is, let

f : ZZm × ZZm → {0, 1}.

304 T. Mizuki, H. Tsubata, and T. Nishizeki

Then, throughout this paper, we call the ESOP form

f(a, b) = a{0}bT1 ⊕ a{1}bT2 ⊕ · · · ⊕ a{m−1}bTm

the multiple-valued Shannon expansion of f . It should be noted that Ti ⊆ ZZm,
i ∈ {1, 2, . . . ,m}, is uniquely determined as follows:

Ti = {b ∈ ZZm | f(i − 1, b) = 1}.

Consider for example a 5-valued 2-input logic function h(a, b), whose truth
table is given in Table 1. The multiple-valued Shannon expansion of h is

h(a, b) = a{0}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{3}b{0,3,4} ⊕ a{4}b{0,1,3}. (4)

Table 1. A truth table for the 5-valued 2-input logic function h(a, b)

b
0 1 2 3 4

0 1 0 0 1 1
1 0 1 0 0 1

a 2 0 1 0 1 0
3 1 0 0 1 1
4 1 1 0 1 0

Let F be the multiple-valued Shannon expansion of an m-valued 2-input logic
function f , then the number τ(F) of the product terms in F satisfies τ(F) = m
(before removing a product term containing a constant literal b∅).

2.2 Transformation Rules for ESOP Forms

One of the most famous currently known algorithms to simplify ESOP forms is
EXMIN2, which was developed by Sasao [5]. The transformation rule for ESOP
forms described in the following Theorem 1 is one of the rules utilized by the
algorithm EXMIN2. Hereafter, the binary operator ⊕ for two sets denotes the
symmetric difference of the two sets, that is,

S ⊕ T = (S ∩ T) ∪ (S ∩ T).

Theorem 1 ([5]). For any four literals aSp , bTp , aSq , bTq of two variables a
and b,

aSpbTp ⊕ aSqbTq = aSp⊕SqbTp ⊕ aSqbTp⊕Tq

holds, where Sp, Tp, Sq, Tq ⊆ ZZm.

Note that, according to Theorem 1, if Tp = Tq, then

aSpbTp ⊕ aSqbTp = aSp⊕SqbTp ⊕ aSqb∅ = aSp⊕SqbTp ,

Minimizing AND-EXOR Expressions 305

and hence the number of product terms decreases by exactly 1. For example,
applying the transformation rule in Theorem 1 to the first and fourth product
terms in the ESOP form in Eq. (4) results in

h(a, b)
= a{0}⊕{3}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{3}b{0,3,4}⊕{0,3,4} ⊕ a{4}b{0,1,3}

= a{0,3}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{4}b{0,1,3}. (5)

In this paper, as seen later in Sections 3 and 4, applying the transformation rule
given in Theorem 1, we propose an efficient algorithm to find a minimum ESOP
form of any given m-valued 2-input logic function.

3 ESOP Matrices

In this section, we propose a method for expressing an ESOP form of an m-
valued 2-input logic function in a Boolean matrix. The method makes it easier
for us to intuitively understand the transformations of ESOP forms.

We begin with an example; consider the following ESOP form of the 5-valued
2-input logic function h (already seen in Eq. (5)):

a{0,3}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{4}b{0,1,3}.

Given such a 5-valued ESOP form having 4 product terms, we construct a
Boolean 4 × 10 matrix as follows:⎛⎜⎜⎝

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

∣∣∣∣∣∣∣∣
1 0 0 1 1
0 1 0 0 1
0 1 0 1 0
1 1 0 1 0

⎞⎟⎟⎠
← a{0,3}b{0,3,4}

← a{1}b{1,4}

← a{2}b{1,3}

← a{4}b{0,1,3}

which represents the ESOP form above; the first row of the Boolean matrix cor-
responds to the first term a{0,3}b{0,3,4} in the ESOP form, i.e., the five elements
in the left half of the first row correspond to the literal a{0,3}, and the five ele-
ments in the right half correspond to the literal b{0,3,4}, and so on. (Notice that
each literal is described by a bit pattern of length 5.)

Generally, let F =
⊕t

i=1 aSibTi be an m-valued ESOP form, then we call the
following t × 2m Boolean matrix H the ESOP matrix of F :

H =

⎛⎜⎜⎜⎝
�11 �12 · · · �1m

�21 �22 · · · �2m

...
... · · · ...

�t1 �t2 · · · �tm

∣∣∣∣∣∣∣∣∣
r11 r12 · · · r1m

r21 r22 · · · r2m

...
... · · · ...

rt1 rt2 · · · rtm

⎞⎟⎟⎟⎠
where

�ij = aSi(j − 1) =
{

1 if j − 1 ∈ Si;
0 if j − 1 �∈ Si

306 T. Mizuki, H. Tsubata, and T. Nishizeki

and

rij = bTi(j − 1) =
{

1 if j − 1 ∈ Ti;
0 if j − 1 �∈ Ti

for every i ∈ {1, 2, . . . , t} and j ∈ {1, 2, . . . ,m}.
Given an ESOP form of t product terms, its corresponding t × 2m ESOP

matrix is uniquely determined. Conversely, given a t × 2m Boolean matrix, the
corresponding ESOP form of t product terms is also uniquely determined.

Hereafter, for a t × 2m ESOP matrix H , partitioning H into the left block
HL and the right block HR, we often write

H =
(
HL HR

)
,

where HL and HR are t×m matrices. For example, let H be the ESOP matrix
of the multiple-valued Shannon expansion

f(a, b) = a{0}bT1 ⊕ a{1}bT2 ⊕ · · · ⊕ a{m−1}bTm

of an m-valued 2-input logic function f , then HL must be an identity matrix
(unit matrix) of size m, i.e., H must be like

H =
(
I HR

)
,

where I denotes the identity matrix (also in the sequel).
Furthermore, for each of the left block HL and the right block HR of a t×2m

ESOP matrix H , using row vectors �i and ri of length m, we often write

H =
(
HL HR

)
=

⎛⎜⎜⎜⎝
�1
�2
...
�t

∣∣∣∣∣∣∣∣∣
r1
r2
...
rt

⎞⎟⎟⎟⎠ .

As will be seen in Section 4, our algorithm uses the following two transforma-
tion rules (named R1 and R2) for ESOP forms:

(R1) aSpbTp ⊕ aSqbTq = aSp⊕SqbTp ⊕ aSqbTp⊕Tq (Theorem 1);
(R2) aSpbTp ⊕ aSqbTq = aSqbTq ⊕ aSpbTp (commutativity of Exclusive-OR).

Considering the two rules above applied to ESOP matrices, we naturally get
the following two definitions.

Definition 1. Given an ESOP matrix of t rows, applying rule R1 to the p-th
and q-th rows means the following row operation:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1
...
�p

...
�q

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1
...

rp

...
rq

...
rt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R1(p,q)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1
...

�p ⊕ �q

...
�q

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1
...

rp

...
rp ⊕ rq

...
rt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the operator ⊕ represents bitwise Exclusive-OR of two row vectors.

Minimizing AND-EXOR Expressions 307

Definition 2. Given an ESOP matrix of t rows, applying rule R2 to the p-th
and q-th rows means the following row operation:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1
...
�p

...
�q

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1
...

rp

...
rq

...
rt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R2(p,q)
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1
...
�q

...
�p

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1
...

rq

...
rp

...
rt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Based on these two definitions, the following lemma immediately holds.

Lemma 1. Let F be an arbitrary ESOP form, and let H be the ESOP matrix
of F . Assume that applying rule R1 (R2) to the p-th and q-th product terms in
F results in an ESOP form F ′, and that applying rule R1 (R2) to the p-th and
q-th rows of H results in a matrix H ′. Then, H ′ is the ESOP matrix of F ′.

Note that rules R1 and R2 for an ESOP matrix H can be regarded just as the
elementary row operations (on a Boolean matrix) for each of the left block HL

and the right block HR of H .

4 Our Algorithm

We are now ready to present our algorithm.
Given a truth table of an m-valued 2-input logic function f as an input, the

following algorithm outputs a minimum ESOP form of f .

[Our algorithm]

1. Find the multiple-valued Shannon expansion
⊕m

i=1 a{i−1}bTi of f from the
truth table of f , and let (

I HR
)

be its m× 2m ESOP matrix. (Recall that the left block of the ESOP matrix
of a multiple-valued Shannon expansion is always an identity matrix I.)

2. Apply a series of rules R1 and R2 to the ESOP matrix so that the right
block HR is transformed into a Boolean matrix in row echelon form. (Us-
ing a known algorithm, e.g. Gaussian elimination algorithm, one can obtain
such a row echelon form within an O(m2) number of transformations. Each
transformation can be done in O(m) bit operations.) Note that, since these
transformations are elementary row operations for each of the left and right
blocks, the rank of the right block never changes, and hence its rank remains
rank(HR) (after the series of rules R1 and R2), where rank(M) denotes the
rank of a matrix M .

308 T. Mizuki, H. Tsubata, and T. Nishizeki

3. Note that the current ESOP matrix in row echelon form has an all-zero
submatrix O in the lower part of its right block as follows:(∗ ∗

∗ O

)}
rank(HR)

.

Construct the ESOP form corresponding to this ESOP matrix, and remove
all the m−rank(HR) terms containing constant 0. The resulting ESOP form
is the output of our algorithm.

We now demonstrate the execution of our algorithm with the 5-valued 2-
input logic function h which was given in Table 1. In step 1 of our algorithm,
the multiple-valued Shannon expansion of h is given in Eq. (4), and hence we
have a 5 × 10 Boolean matrix⎛⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣
1 0 0 1 1
0 1 0 0 1
0 1 0 1 0
1 0 0 1 1
1 1 0 1 0

⎞⎟⎟⎟⎟⎠
as its ESOP matrix. In step 2, applying a series of four transformations R1(1,4),
R1(1,5), R1(2,3) and R1(2,5) to the matrix, we make the right block of the ESOP
matrix be a Boolean matrix in row echelon form⎛⎜⎜⎜⎜⎝

1 0 0 1 1
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣
1 0 0 1 1
0 1 0 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

In step 3, from the ESOP matrix above, our algorithm outputs the following
ESOP form:

a{0,3,4}b{0,3,4} ⊕ a{1,2,4}b{1,4} ⊕ a{2}b{3,4},

which is a minimum ESOP form of h as will be guaranteed in Theorem 2.
Since applying rules R1 and R2 in step 2 of our algorithm can be regarded

exactly as elementary row operations for each of the left and right blocks as
mentioned above, the rank of the right block never changes, and hence its rank
remains rank(HR). Therefore, the following Lemma 2 holds.
Lemma 2. Let f be an m-valued 2-input logic function, and let(

I HR
)

be the ESOP matrix of its multiple-valued Shannon expansion. Then, our algo-
rithm outputs an ESOP form F such that τ(F) = rank(HR).

Using Lemma 2, one can verify the correctness of our algorithm and obtains the
following Theorem 2.

Theorem 2. For every m-valued 2-input logic function f , our algorithm outputs
a minimum ESOP form.

Proof. Omitted due to the page limitation. ��

Minimizing AND-EXOR Expressions 309

5 Conclusions

In this paper, we first introduced a method for expressing an ESOP form as
a matrix, and then, utilizing the method, we proposed an algorithm to find a
minimum ESOP form of any given m-valued 2-input logic function in O(m3) bit
operations.

Lemma 2 and Theorem 2 also imply that, given an m-valued 2-input logic
function f , the minimum number of product terms among all the ESOP forms
of f is equal to rank(HR), where (

I HR
)

is the ESOP matrix of the multiple-valued Shannon expansion of f . Furthermore,
even if a logic function f is given in an ESOP form F which is not necessarily
that of the multiple-valued Shannon expansion of f , one can efficiently find a
minimum ESOP form of f having min{rank(HL), rank(HR)} product terms by
extending the results in Section 4, where(

HL HR
)

is the ESOP matrix of F .
We have so far considered the minimization of ESOP forms of m-valued 2-

input logic functions, namely only for the case of m1 = m2 = m. However,
even for the case of m1 �= m2, i.e., for multiple-valued 2-input logic functions
f : ZZm1 × ZZm2 → {0, 1} with m1 �= m2, one can easily construct an efficient
minimization algorithm by redefining ESOP matrices as t× (m1 +m2) matrices.

Acknowledgments

We thank Dr. Xiao Zhou and Dr. Takehiro Ito for their valuable discussions and
suggestions. This work was supported by KAKENHI (19700002).

References

1. Fleisher, H., Tavel, M., Yeager, J.: A computer algorithm for minimizing Reed-
Muller canonical forms. IEEE Transactions on Computers 36(2), 247–250 (1987)

2. Gaidukov, A.: Algorithm to derive minimum ESOP for 6-variable function. In:
Proceedings of the Fifth International Workshop on Boolean Problems, Freiberg
(2002)

3. Hirayama, T., Nishitani, Y., Sato, T.: A faster algorithm of minimizing AND-
EXOR expressions. IEICE Trans. Fundamentals E85-A(12), 2708–2714 (2002)

4. Mizuki, T., Otagiri, T., Sone, H.: An application of ESOP expressions to secure
computations. Journal of Circuits, Systems, and Computers 16(2), 191–198 (2007)

5. Sasao, T.: EXMIN2: a simplification algorithm for exclusive-or sum-of-products
expressions for multiple-valued-input two-valued-output functions. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 12(5), 621–632
(1993)

310 T. Mizuki, H. Tsubata, and T. Nishizeki

6. Sasao, T.: Switching Theory for Logic Synthesis. Kluwer Academic Publishers,
Boston (1999)

7. Sasao, T., Besslich, P.: On the complexity of mod-2 sum PLA’s. IEEE Transactions
on Computers 39(2), 262–266 (1990)

8. Song, N., Perkowski, M.A.: Minimization of exclusive sum-of-products expressions
for multiple-valued input, incompletely specified functions. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 15(4), 385–395 (1996)

9. Stergiou, S., Papakonstantinou, G.: Exact minimization of ESOP expressions with
less than eight product terms. Journal of Circuits, Systems and Computers 13(1),
1–15 (2004)

10. Stergiou, S., Voudouris, D., Papakonstantinou, G.: Multiple-value exclusive-or sum-
of-products minimization algorithms. IEICE Trans. Fundamentals E87-A(5), 1226–
1234 (2004)

11. Ye, Y., Roy, K.: An XOR-based decomposition diagram and its application in
synthesis of AND/XOR networks. IEICE Trans. Fundamentals E80-A(10), 1742–
1748 (1997)

Exact and Experimental Algorithms for a
Huffman-Based Error Detecting Code�

Paulo Eustáquio Duarte Pinto1, Fábio Protti2,��,
and Jayme Luiz Szwarcfiter3,��

1 Instituto de Matemática e Estatistica
Universidade Estadual do Rio de Janeiro

Rio de Janeiro, RJ, Brasil
pauloedp@ime.uerj.br

2 Instituto de Matemática
Universidade Federal do Rio de Janeiro

Caixa Postal 68.530, CEP 21941-590, Rio de Janeiro, RJ, Brasil
fabiop@dcc.ufrj.br

3 Instituto de Matemática, Núcleo de Computação Eletrônica and COPPE-Sistemas
Universidade Federal do Rio de Janeiro

Caixa Postal 68511, CEP 21945-970, Rio de Janeiro, RJ, Brasil
jayme@nce.ufrj.br

Abstract. Even codes are Huffman based codes in which every encoding
contains an even number of 1’s, thus having the ability of detecting the
occurrence of an odd number of 1-bit errors in the message. The motiva-
tion for defining such codes comes from a problem posed by Hamming in
1980. Even codes have been studied for the case in which symbols have
uniform probabilities. In this work, we consider the general situation of
arbitrary probabilities. An exact algorithm for constructing an optimal
even code is described with complexity O(n3), where n is the number
of symbols. Further, two heuristics for constructing nearly optimal even
codes are presented, both requiring O(n log n) time. The cost of the even
code constructed by the second heuristics is at most 16,7% higher than
the cost of a Huffman code, for the same probabilities. However, com-
putational experiments suggest that, for practical purposes, this value
seems to be better: about 5% or less, for n large enough. This corre-
sponds to the amount of redundancy to be added to the message in
order to keep the ability of error detection. Concerning undetected er-
rors, we obtain bounds on the probability of producing k consecutive
erroneous symbols, suggesting that such a probability is small for large
messages.

Keywords: Data compression, error detection, even codes, Huffman
codes, Hamming codes.

� This work is partially supported by CNPq and FAPERJ.
�� Partially supported by Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico - CNPq and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro
- FAPERJ, Brazilian research agencies.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 311–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

312 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

1 Introduction

Huffman codes [1] appear as one of the most traditional methods of coding. An
important aspect of these codes is the possibility of handling encodings of vari-
able sizes. A great number of extensions and variations of the classical Huffman
codes have been described through the time. For instance, Faller [2], Gallager
[3], Knuth [4], and Milidiú, Laber and Pessoa [5] addressed adaptative methods
for the construction of Huffman trees. Huffman trees with minimum height were
described by Schwartz [6]. The construction of Huffman type trees with length
constraints was considered by Turpin and Moffat [7], Larmore and Hirschberg
[8], and Milidiú and Laber [9,10]. On the other hand, Hamming formulated al-
gorithms for the construction of error detecting codes [11]. Further, he posed the
problem of describing an algorithm that would combine advantages of Huffman
codes with the noise protection of Hamming codes. The idea is to define a prefix
code in which the encodings contain redundancies that allow the detection of
certain kinds of errors. This is equivalent to forbid some encodings which signal
an error when received. Such a code is a Hamming-Huffman code, and its rep-
resenting binary tree is a Hamming-Huffman tree. In a Huffman tree, all leaves
correspond to encodings. In a Hamming-Huffman tree, there are encoding leaves
and error leaves. Hitting an error leaf in the decoding process points out the
existence of an error. The problem posed by Hamming is to devise a method
for detecting the occurrence of an error of one bit, as illustrated in the follow-
ing example from [11], p.76. Table 1 shows the symbols and their corresponding
encodings. Figure 1 depicts the corresponding Hamming-Huffman tree. Error
leaves are represented by black nodes. An error of one bit in any encoding would
lead to an error leaf in the decoding process.

Table 1. Example of a Hamming-Huffman Code

Symbol Encoding
a 000
b 0110
c 1010
d 1100
e 1111

Motivated by the above problem, we have proposed [12] a special prefix code,
called even code, in which each encoding contains an even number of 1’s. This
code has the ability of detecting any odd error (an error formed by an odd number
of corrupted bits in a message), and also the majority of even errors (defined
analogously), as we shall see in Section 5. Moreover, an even code is much more
powerful for detecting errors than a code created by simply appending one parity
bit at the end of the encoded message.

In [12], the study was restricted to symbols having uniform probabilities.
The present work considers the general situation of arbitrary probabilities. An

Exact and Experimental Algorithms 313

e

a

dcb

Fig. 1. A Hamming-Huffman tree

extended abstract containing part of the results appears in [13]. First, we describe
an exact algorithm for constructing an optimal even code, for a given set of
symbols, each one with a given probability. The algorithm employs dynamic
programming and its complexity is O(n3), where n is the number of symbols.
Next, we propose two heuristics for approximating an optimal code, based on
Huffman’s algorithm. The time required for computing an even code, for both
heuristics, is O(n logn). We show that the cost of an even code constructed by
the second heuristics is at most 16,7% higher than the cost of a Huffman code for
the same probabilities. That is, less than 16,7% higher than the corresponding
optimal even code. However, for practical purposes, this value seems to be much
better. In fact, several computational experiments obtained values less than 5%,
except for small values of n. This corresponds to the amount of redundancy to
be added to the message in order to keep the ability of error detection.

The structure of the paper is as follows. In Section 2 we describe the exact
algorithm for constructing an optimal even code. The heuristics are formulated
in Section 3. In Section 4 we present bounds for the cost difference between even
trees and corresponding Huffman trees. A probabilistic model to evaluate the
error detection capability of an even tree is developed in Section 5. In Section
6 we present experimental results on the costs of even trees and their error
detection capabilities.

The following definitions are necessary.
Let S = {s1, . . . , sn} be a set of elements called symbols. Each si ∈ S is

associated with a probability fi. We assume fi ≤ fi+1, for 1 ≤ i < n.
An encoding ei for a symbol si ∈ S is a finite sequence of 0’s and 1’s, associated

to si. Each 0 and 1 is a bit of ei. The parity of ei is the parity of the number of 1’s
contained in ei. A subsequence of ei starting from its first bit is a prefix of ei. The
set of encodings for all symbols of S is a code C for S . A code in which every
encoding does not coincide with a prefix of any other encoding is a prefix code.

A message M is a sequence of symbols. The encoded message associated with
M is the corresponding sequence of symbol encodings. The parity of an encoded
message is the number of 1’s it contains.

A binary tree is a rooted tree T in which every node z other than the root is
labelled left or right in such a way that any two siblings have different labels.
Say that T is trivial when it consists of a single node. A binary forest is a set
of binary trees. A path of T is a sequence of nodes z1, . . . , zt such that zi is the
parent of zi+1, for 1 ≤ i < t. The value t − 1 is the size of the path, whereas

314 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

all zi’s are descendants of z1. If z1 is the root then z1, . . . , zt is a root path and,
in addition, if zt is a leaf, then z1, . . . , zt is a root-leaf path of T . The depth of
a node is the size of the root path to it. For a node z of T , T (z) denotes the
subtree of T rooted at z, that is, the binary tree containing all descendants of z
in T (including z itself). The left subtree of z is the subtree T (z′), where z′ is the
left child of z. Similarly, define the right subtree of z. The left and right subtrees
of the root of T are denoted by TL and TR, respectively. A strictly binary tree
is one in which every node is a leaf or has two children. A full binary tree is a
strictly binary tree in which all root-leaf paths have the same size. A complete
binary tree is a binary tree where the null subtrees are located at the last two
levels. In a binary tree T , the edges of T leading to left children are labelled 0,
whereas those leading to right children are labelled 1. The parity of a node z is
the parity of the number of 1’s among the edges forming the root path to z. A
node is even or odd, according to its parity.

A (binary tree) representation of a code C is a binary tree T such that there
exists a one-to-one correspondence between encodings ei ∈ C and root-leaf paths
pi of T in such a way that ei is precisely the sequence of labels, 0 or 1, of the
edges forming pi. A code admits a binary tree representation if and only if it is a
prefix code. Let di be the depth of the leaf of T associated to symbol si. Define
the cost of T as the sum c(T) =

∑n
i=1 fidi. Hence, the cost of a trivial tree is 0.

An optimal code (tree) is one with minimum cost. A full representation tree of
C is a binary tree T ∗ obtained from the representation tree T of C , by adding a
new leaf as the second child of every node having exactly one child. The original
leaves of T are the encoding leaves, whereas the newly introduced leaves are the
error leaves. Clearly, in the case of Huffman trees, there are no error leaves.

An even (odd) code is a prefix code in which all encodings are even (odd).
Similarly, an even (odd) tree is a tree representation of an even (odd) code. The
trees T2, T3, T4, T11 in Figure 2 are examples of even trees for 2, 3, 4, and 11
symbols, respectively (from left to right). The tree T11 is an optimal even tree
for symbols with uniform probabilities.

It is easy to see that even codes can detect the occurrence of odd errors, as
follows. Since all the encodings are even, the encoded message is also even. By
changing the values of an odd number of bits, the encoded message becomes odd.
This implies that, in the full tree representation of the code, either an error leaf
will be hit during the decoding process, or the process terminates at some odd
node of the tree. It should be noted that odd codes do not have this property.

Fig. 2. Examples of even trees: T2, T3, T4, T11

Exact and Experimental Algorithms 315

For example, if we have a code C = {1, 01} and a message 01, if the value of
the first bit changes to 1 the message would be erroneously decoded without
pointing out an error.

2 Exact Algorithm

In this section, we describe an exact algorithm for constructing an optimal even
tree for symbols with arbitrary probabilities. That is, our aim is to find an even
code C for S having minimum cost. In fact, we propose a solution for a slightly
more general problem.

For m ≤ n, denote Sm = {s1, . . . , sm}. A parity forest F for Sm is a set of q
even trees and q odd trees, for some q ∈ {1, . . . ,m}, such that the even parity
leaves of even trees and odd parity leaves of odd trees correspond to the symbols
of Sm. Define the cost of F as the sum of the costs of its trees. Say that F is
(m, q)-optimal when its cost is the minimum among all forests for Sm having
q even trees and q odd trees. Denote by c(m, q) the cost of an (m, q)-optimal
forest. Define the function

Ai =
{∑i

j=1 fj , if i > 0
0, otherwise

By using this notation, the solution of our problem is a tree having as subtrees
the ones of an (n, 1)-optimal forest. Its cost is c(n, 1) + An.

The following theorem describes the computation of c(m, q).

Theorem 1. Let q,m be integers such that 1 ≤ q ≤ m ≤ n. Then:

(1) If m = q then c(m, q) = 0.
(2) If m > q, then c(m, q) = min0≤i≤q

{c(m − i, 2q − i) + Am−i}.
Theorem 1 leads to a dynamic programming algorithm for determining c(m, q), for
all 1 ≤ q ≤ m ≤ n, as follows. Start by evaluating the function Ai for 1 ≤ i ≤ n.
The parameter m varies increasingly, 1 ≤ m ≤ n. The first cost to be computed
is c(m,m), which is 0 by (1). For each such m, vary q decreasingly, 1 ≤ q < m,
and for each such pair m, q, compute c(m, q) by applying (2). The computation
finishes when c(n, 1) is calculated, since our target is to obtain c(n, 1)+An. There
are O(n2) subproblems. The evaluation of each one is performed in constant time,
when using (1), or in O(n) time, when the evaluation is by (2). Consequently, the
time complexity is O(n3). The space requirements are O(n2).

3 Heuristics

In this section we describe two heuristics to obtain even codes. Heuristics 1 is very
simple and is based on a slight modification of the classical Huffman algorithm [1].
Heuristics 2 adds possible improvements to the previous one. As we shall see, those
improvements allow to yield even codes very close to optimal ones.

316 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

3.1 Heuristics 1

Given n symbols with probabilities f1, f2, . . . , fn, Heuristics 1 consists of two
steps:

Step 1. Run Huffman’s algorithm in order to obtain a Huffman tree TH for the
n symbols.

Step 2. Convert TH into an even tree TU1 in the following way: for each odd
leaf z corresponding to a symbol si, create two children zL and zR such that:

- the left child zL is an error leaf;
- the right child zR is the new encoding leaf corresponding to si. (We call zR an
augmented leaf.)

Observe that the overall running time of Heuristics 1 is O(n log n), since it is
dominated by Step 1. Step 2 can be easily done in O(n) time.

3.2 Heuristics 2

Now we present three possible ways to improve the heuristics previously de-
scribed. As we shall see, these improvements do not increase the running time
in practice, and produce a qualitative increase of performance with respect to
the cost of the generated code.

Improvement I. During Step 1 (execution of Huffman’s algorithm), add the
following test:

Among the candidate pairs of the partial trees to be merged at the beginning of
a new iteration, break ties by giving preference to a pair of trees T1 and T2 such
that T1 is trivial and T2 is not.

In other words, the idea is to avoid merging trivial trees as much as possible.
The reason why this strategy is employed is explained below.

In TH , there exist two sibling leaves for each merge operation of trivial trees
occurring along the algorithm. Of course, one of the siblings is an odd leaf. When
we force a trivial tree to be merged with a non-trivial one, we minimize the
number of pairs of sibling leaves in TH , and thus the number of those “assuredly
odd” leaves. In many cases, this strategy decreases the additional cost needed
to produce the even tree in Step 2.

Let us denote by TH1 the Huffman tree obtained by Improvement I. It is
worth remarking that this improvement does not affect the essence of Huffman’s
algorithm, since TH1 is a plausible Huffman tree.

Moreover, it is possible to implement Improvement I in constant time by
keeping two heaps H ′ and H ′′ during the execution of Huffman’s algorithm,
where the nodes of H ′ contain trivial trees and the nodes of H ′′ the remaining
ones. At the beginning of the algorithm, H ′ contains n nodes and H ′′ is empty.
When starting a new iteration, simply check whether the roots of H ′ and H ′′ form
a candidate pair of partial trees to be merged; if so, the merging is performed.

Exact and Experimental Algorithms 317

Improvement II. Modify TH1 by repeatedly applying the following operation
in increasing depth order:

If there exist two nodes z′, z′′ at the same depth of TH1 such that z′ is an odd
leaf and z′′ is an even internal node, exchange the positions of z′ and z′′.

Observe each single application of the aboveoperationdecreases the number of odd
leaves in TH1 by one unit. Each time we find k odd leaves and � even internal nodes
at some depth i, we perform min{k, �} operations and proceed to depth i + 1.

It is clear that the number of such operations is bounded by the number of
leaves of TH1 . Since a single operation can be done by modifying a constant
number of pointers, the overall complexity of Improvement II is O(n).

Denote by TH2 the Huffman tree obtained by Improvement II. Again, the
essence of Huffman’s algorithm is not affected, since TH2 is still a plausible
Huffman tree.

Improvement III. Apply Step 2 on TH2 . Let T be the even tree obtained.
Then redistribute the symbols among the leaves of T as follows:

Whenever there exist two leaves zi, zj (of even parities) in T with depths di ≤ dj,
representing symbols si, sj with probabilities fi ≤ fj, respectively, then exchange
the symbols assigned to zi and zj.

Observe that each single re-assignment performed above reduces the cost of the
resulting even tree by (dj − di)(fj − fi).

The entire process can be implemented in the following way: after apply-
ing Step 2, order the leaves z1, z2, . . . zn of T according to its respective depths
d1, d2, . . . dn using bucket sort. Then reassign the leaves to symbols, such that
leaf zi with depth di is assigned to symbol sn−i+1 with probability fn−i+1.
(Recall that f1 ≤ f2 ≤ . . . fn.) By performing this procedure we restore distor-
tions possibly introduced by Improvement II. The time required for this opera-
tion is therefore O(n). Consequently, the overall time bound for Heuristics 2 is
O(n log n), using O(n) space.

Other possible improvements were considered and then discarded, as they
did not bring experimental relevant advantages. One of those marginal improve-
ments is to exchange an error leaf with a subtree whose root is deeper than that
error leaf.

4 Bounds

In this section, we present an analytical upper bound for the cost of the even tree
generated by Heuristics 2 with respect to the cost of the corresponding Huffman
tree.

The terminology employed in this section is the following: given n symbols with
probabilities f1, f2, . . . , fn, TH is the Huffman tree for these symbols; TE is the cor-
responding optimal even tree; TU1 is the even tree obtained by applying Heuristics
1; and TU2 is the even tree obtained by applying Heuristics 2. Observe that

c(TH) ≤ c(TE) ≤ c(TU2) ≤ c(TU1).

318 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

Lemma 1. c(TU2) ≤ c(TH) +
∑n

i=1 fi

2 .

Lemma 1 states that the maximum cost difference between an even tree obtained
by Heuristics 2 and the corresponding Huffman tree is 0.5. Next theorem gives
another bound that can be tighter for low entropy distributions, if the cost of
the Huffman tree is lower than 3.

Theorem 2. c(TU2) ≤ 7
6c(TH), if n > 4.

The bound given by Theorem 2 cannot be improved. We show this fact by
exhibiting an infinite family F of Huffman trees where, given any ε > 0, we can
always find a tree TH ∈ F such that, for the corresponding tree TU2 obtained
from Heuristics 2, we have 7

6c(TH) − c(TU2) ≤ ε.
This family is illustrated in Figure 3. Each tree of the family is characterized

by two parameters n and q, n ≥ 4 and 2
5 ≥ q > 0. Each tree has n leaves and

depth n− 2. Three leaves (ln−2, ln−1 and ln) have depth 2 and probability 1−q
3 .

The remaining n − 3 leaves l1, . . . , ln−3 are arranged in the tree as follows: one
leaf (l1) has depth n − 2 and probability q

2n−4 ; n − 4 leaves (li, 2 ≤ i ≤ n − 3)
have depths n − i and probabilities q

2n−i−2 , respectively. In this family of trees,
there are only two odd parity leaves: l1 and ln−1.

ln-2 lnln-1

ln-4

l1 l2

ln-3

Fig. 3. Special family of Huffman trees

Theorem 3. Let TH be a tree belonging to F . Then TH is a Huffman tree.

Theorem 4. Given ε > 0, there exists TH ∈ F such that the corresponding even
tree TU2 obtained from TH by applying Heuristics 2 satisfies 7

6c(TH)−c(TU2) ≤ ε.

We found an exact upper bound for the cost difference between a Huffman tree
and an even tree obtained by Heuristics 2. Clearly this is also an upper bound
(possibly not exact) for the cost difference between an optimal even tree and the
corresponding Huffman tree. Nevertheless, it remains open the determination of
a tight upper bound for this difference. Experimental results suggest that it is
quite lower than the bound given above.

Exact and Experimental Algorithms 319

5 Probabilistic Model for Error Detection

In this section we develop a probabilistic model to assess the error detection
capability of an even tree. In the next section we present some experimental
results to validate the model.

Let us suppose that one or more errors occurred in a coded message, that is,
one or more bits are corrupted. After the first error, we can have a sequence of
erroneously decoded symbols. The following model evaluates the probability of
occurrence of a sequence of k erroneous decodings, and the overall probability
to point out the error.

Let si be the first symbol in a coded message where the error was introduced
and T the corresponding even tree used to encode the message. First we shall
calculate the probability Pp(T, k) of the next k symbols (including si) being
erroneously decoded. Pp(T, k) is the probability of error propagation through
the next k − 1 symbols.

In this model, after the introduction of the first error, the remaining bit string
to be decoded is assumed to be a random string. In terms of the decoding tree,
this means that each deviation in the tree has the same probability, which is 1/2.
Consider that the first corrupted bit corresponds to the root of the tree. Then,
the probability of leaf lj being hit is Pl(j) = 2−dj , where dj is the depth of lj .
We define two parameters for T : Ptc(T) and Pte(T). Ptc(T) is the probability of
any encoding leaf to be reached starting from the root, and its value is Ptc(T) =∑n

j=1 2−dj . Pte(T) is the corresponding probability, considering error leaves, and

is given by Pte(T) =
∑Ne(n)

j=1 2−dj , where Ne(n) is the number of error leaves
of T .

Clearly, Pt(T) + Pte(T) = 1.
The error propagation probability through k symbols is then Pp(T, k) =

Ptc(T)k = (1 − Pte(T))k, decreasing exponentially with k. Note that assum-
ing the first error to occur exactly at the root only reduces this probability, since
error leaves are placed at the two last levels of the tree. Thus, we will neglect
the fact that the error can also occur at any node other than the root.

Now let us consider how to evaluate the error detection capability of T . Let b
be the average number of symbols in a message. The error detection probability
of T for messages with b symbols, Pm(T, b), is the complement of the probability
that the errors propagate until the end of the message.

If errors in the message are independent and one error occurs with probability
q, then the probability that the i-th bit of the message is the first corrupted bit
is given by

b−i+1∑
k=1

qk

(
b − i
k − 1

)
(

b
k

) ,

which can be approximated to q/b if q is small. That is, this probability is uniform
along the b symbols in the message, and its value is 1/b. Then Pm(T, b) can be
estimated as:

320 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

Pm(T, b) = 1−
b∑

k=1

Pp(T, k)/b = 1− (1−Pte(T)− (1−Pte(T))b+1)/(b.P te(T)).

We can refine this model, by considering the total number of errors introduced
in the message and not only the first error. Once T detects any odd number of
corrupted bits, and considering that half of error situations are related to an
odd number of corrupted bits, we divide the probability of error propagation by
2. We can yet consider that, when decoding the last symbol, the process will
not necessarily finish at a leaf. It might be the case that the last node hit is an
internal one. If the process ends at an internal node, then the error is pointed
out by the decoding process. As the number of internal nodes is not less than the
number of encoding leaves, we will again divide the error propagation probability
by 2.

This refinement leads to a new estimation:

Pm(T, b) = 1 −
b∑

k=1

(1 − Pte(T))k−1/4b = 1 − (1 − (1 − Pte(T))b)/(4b.P te(T)).

The above expression shows that, in order to estimate the error detection
capability of an even tree T , the main parameter to consider is Pte(T), re-
lated to error leaves. We now explore bounds for this parameter in the next two
theorems.

Theorem 5. If T is an optimal even tree for n symbols with uniform probabil-
ities then 1/16 ≤ Pte(T) ≤ 1/4.

Theorem 6. If T is an optimal even tree for n symbols with arbitrary probabil-
ities then 2−n ≤ Pte(T) ≤ 1/4.

The bounds of Theorems 5 and 6 are given for optimal even trees. If we consider
even trees obtained by Heuristics 2, the only difference we have is the lower
bound for uniform probabilities. Heuristics 2 always uses trees isomorphic to T2
and T3 in Figure 2. If T is an even tree obtained by Heuristics 2 with minimum
Pte(T), then T must be composed only by trees isomorphic to T3. This situation
occurs for n = 3.2k, k ≥ 0. Hence, T has 2k error leaves, all having depth equal
to k + 3, as it is presented in [12]. Thus, in this case,

Pte(T) = 2k.2−(k+3) = 2k−k−3 = 1/8.

6 Experimental Results

6.1 Costs of Even Tress

The experimental results of this subsection are summarized in Tables 2 to 4.
The tables present the costs of the trees obtained by the algorithms described in
Sections 2 and 3, for several values of n, obtained via a Pascal program running
on a Pentium IV computer with 1.8 GHz and 256Mb RAM.

Exact and Experimental Algorithms 321

Table 2. Comparisons with uniform probabilities

n c(TH) c(TE) c(TU1) c(TU2)
B−A

A
C−A

A
D−A

A
n c(TH) c(TE) c(TU1) c(TU2)

B−A
A

C−A
A

D−A
A

(A) (B) (C) (D) % % % (A) (B) (C) (D) % % %

64 6.00 6.50 6.50 6.50 8.3 8.3 8.3 576 9.22 9.67 9.72 9.67 4.8 5.4 4.8
128 7.00 7.50 7.50 7.50 7.1 7.1 7.1 640 9.40 9.80 9.90 9.80 4.3 5.3 4.3
192 7.67 8.00 8.17 8.00 4.4 6.5 4.4 704 9.55 9.91 10.05 9.91 3.8 5.2 3.8
256 8.00 8.50 8.50 8.50 6.3 6.3 6.3 768 9.67 10.00 10.17 10.00 3.5 5.2 3.5
320 8.40 8.80 8.90 8.80 4.8 6.0 4.8 832 9.77 10.15 10.27 10.15 3.9 5.1 3.9
384 8.67 9.00 9.17 9.00 3.9 5.8 3.9 896 9.86 10.29 10.36 10.29 4.4 5.1 4.4
448 8.86 9.29 9.36 9.29 4.8 5.7 4.8 960 9.93 10.40 10.43 10.40 4.7 5.0 4.7
512 9.00 9.50 9.50 9.50 5.6 5.6 5.6 1024 10.00 10.50 10.50 10.50 5.0 5.0 5.0

Table 3. Comparisons with arbitrary probabilities

n c(TH) c(TE) c(TU1) c(TU2)
B−A

A
C−A

A
D−A

A
n c(TH) c(TE) c(TU1) c(TU2)

B−A
A

C−A
A

D−A
A

(A) (B) (C) (D) % % % (A) (B) (C) (D) % % %

64 5.82 5.97 6.38 6.03 2.7 9.7 3.7 576 8.92 9.03 9.39 9.09 1.2 5.3 2.0
128 6.76 6.88 7.28 6.92 1.9 7.8 2.4 640 9.10 9.22 9.60 9.31 1.4 5.6 2.3
192 7.33 7.52 7.84 7.59 2.7 7.0 3.6 704 9.20 9.33 9.69 9.41 1.4 5.4 2.4
256 7.75 7.87 8.25 7.90 1.6 6.5 2.0 768 9.33 9.53 9.83 9.58 2.1 5.3 2.7
320 8.08 8.20 8.57 8.30 1.5 6.1 2.7 832 9.44 9.63 9.93 9.67 2.0 5.2 2.4
384 8.34 8.54 8.85 8.60 2.5 6.1 3.1 896 9.57 9.73 10.08 9.77 1.7 5.3 2.1
448 8.52 8.68 9.04 8.73 1.9 6.0 2.4 960 9.64 9.78 10.14 9.82 1.5 5.2 1.9
512 8.72 8.84 9.22 8.87 1.3 5.8 1.7 1024 9.75 9.87 10.24 9.89 1.3 5.1 1.5

Table 4. Comparisons with arbitrary probabilities

n c(TH) c(TU1) c(TU2)
B−A

A
C−A

A
n c(TH) c(TU1) c(TU2)

B−A
A

C−A
A

(A) (B) (C) % % (A) (B) (C) % %

1000 9.71 10.22 9.87 5.2 1.6 45000 15.21 15.71 15.45 3.3 1.6
2000 10.72 11.21 10.87 4.6 1.5 50000 15.36 15.86 15.61 3.3 1.7
3000 11.31 11.81 11.57 4.5 2.3 55000 15.49 15.99 15.71 3.2 1.4
4000 11.72 12.22 11.87 4.3 1.3 60000 15.62 16.12 15.80 3.2 1.2
5000 12.05 12.55 12.26 4.1 1.8 65000 15.74 16.24 15.89 3.2 1.0
10000 13.04 13.55 13.25 3.9 1.6 70000 15.85 16.35 16.01 3.2 1.0
15000 13.61 14.11 13.80 3.7 1.4 75000 15.95 16.45 16.14 3.1 1.2
20000 14.05 14.55 14.25 3.6 1.5 80000 16.04 16.54 16.25 3.1 1.3
25000 14.36 14.86 14.61 3.5 1.8 85000 16.13 16.63 16.35 3.1 1.4
30000 14.62 15.12 14.81 3.4 1.3 90000 16.21 16.71 16.45 3.1 1.5
35000 14.85 15.35 15.01 3.4 1.1 95000 16.29 16.79 16.54 3.1 1.5
40000 15.05 15.55 15.25 3.3 1.4 100000 16.36 16.86 16.61 3.1 1.6

In Tables 2 and 3 we compare c(TH), c(TE), c(TU1) and c(TU2), for 64 ≤ n ≤
1024. Table 2 refers to uniform probabilities, and Table 3 to arbitrary proba-
bilities, obtained from the a standard routine for generating random numbers

322 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

in the range 1 to 10000. (We found no significant variations by modifying this
range.) All the probabilities were further normalized so that the total sum is 1.
In Table 4 we compare the two heuristics with Huffman’s algorithm for n in the
range 1000 to 100000.

The main result observed in Table 2 is that, for uniform probabilities, Heuris-
tics 2 equals the Exact Algorithm, while Heuristics 1 does not. The main expla-
nation for this fact is that, when the Huffman tree is a complete binary tree,
improvements of Heuristics 2 apply very well. It can also be observed the small
difference between Huffman’s algorithm and the other methods, and the decrease
of the relative costs when n increases. It can still be confirmed a theoretical re-
sult stated in [12]: the cost difference between the optimal even tree and the
Huffman tree lays in the interval [1/3, 1/2], being maximum (equal to 1/2) when
the number of symbols is n = 2k for some integer k, and minimum (equal to
1/3) when n = 3.2k.

Next, we examine the results presented in Table 3, for arbitrary probabilities.
First, compare data from Tables 2 and 3. We can see that all data in columns
2 to 5 in Table 3 are smaller than the corresponding ones in Table 2. This is
an expected behavior, since the cost has the tendency to decrease as long as
probabilities get unbalanced. The relative difference between c(TE) and c(TH)
decreases considerably as n increases. The same occurred for Heuristics 2, sug-
gesting that it is also well applied for this situation, although it does not equal the
optimal solution. However, for Heuristics 1, the behavior is quite different. Both
the absolute value of the difference to c(TH) and the relative value increased.
Thus, Heuristics 2 outperforms Heuristics 1 in this situation.

Table 4 illustrates the costs obtained for large values of n and arbitrary prob-
abilities. The costs compared are c(TH), c(TU1) and c(TU2). The main results
obtained from Table 3 are confirmed, that is, Heuristics 2 is far better than
Heuristics 1. Moreover, the relative differences of costs from the two heuristics
to Huffman’s algorithm again decrease. Those differences become negligible for
large values of n.

Finally, from the three tables, we can observe a gap between the upper theo-
retical bound presented in Section 4 and the experimental results, since all the
relative differences between the costs of the even trees obtained by Heuristics
2 and the Huffman trees were at most 5%, for n large enough. It seems to be
interesting to search for tighter bounds for this situation.

6.2 Error Detection

Here we consider experimental results on error detection. Table 5 illustrates
theoretical and experimental values for Pm(T, b), which is the probability of
error detection of an even tree, considering the model of section 5.

In the first column we present a range of values for b, the number of symbols
in a message, varying from 10 to 5000. In the second column, the theoretical
values for Pm(T, b) are shown, according to the model presented in Section 5,
using Pte(T) = 0.1248, which is nearly the average value for this parameter. The
third column contains experimental values for Pm(T, b), the probability of error

Exact and Experimental Algorithms 323

Table 5. Probability of error detection

b Pm(T, b)
Theoretical Experimental

(1 − (1 − 0.8752b)/(0.4992 ∗ b))
10 0.852500 0.903540
25 0.922732 0.987620
50 0.959987 0.990953
100 0.979968 0.994894
250 0.991987 0.998482
500 0.995994 0.999150
1000 0.997997 0.999595
2500 0.999199 0.999831
5000 0.999599 0.999922

detection, obtained via a simulation with an even tree T having Pte(T) = 0.1248.
The simulation involved the generation of about 20,000,000 random errors con-
sisting of one to twenty corrupted bits.

We can observe the fast growth of the error detection probability, as the
length of the message increases. The error detection probability is fairly large
for b ≥ 100. It can also be verified that experimental values of error detection
probabilities are greater that the predicted ones by the model, specially for
lower values of b. This indicates that the error detection probability model can
be enhanced. But the differences between theory and practice are quite low for
b > 100.

We conclude by remarking that there clearly exists a trade-off between the
cost of an even tree and its error detection capability. Within certain limits, as
the value of one of those variables is improved, the quality of the other one gets
poorer. It would be interesting to extend this work by examining codes with a
better error detection capability, even sacrificing cost.

Acknowledgment. The authors would like to thank Artur Alves Pessoa for
the insightful suggestions, which improved the exact dynamic programming
algorithm of Section 2.

References

1. Huffman, D.A.: A Method for the Construction of Minimum Redundancy Codes.
In: Proceedings of the IRE, vol. 40, pp. 1098–1101 (1951)

2. Faller, N.: An adaptative Method for Data Compression. In: Record of the 7th
Asilomar Conference on Circuits, Systems and Computers, Naval Postgraduate
School, Monterrey, Ca, pp. 593–597 (1973)

3. Gallager, R.G.: Variations on a Theme by Huffman. IEEE Transactions on Infor-
mation Theory 24, 668–674 (1978)

4. Knuth, D.E.: Dynamic Huffman Coding. Journal of Algorithms 6, 163–180 (1985)

324 P.E.D. Pinto, F. Protti, and J.L. Szwarcfiter

5. Milidiú, R.L., Laber, E.S., Pessoa, A.A.: Improved Analysis of the FGK Algorithm.
Journal of Algorithms 28, 195–211 (1999)

6. Schwartz, E.S.: An Optimum Encoding with Minimal Longest Code and Total
Number of Digits. Information and Control 7, 37–44 (1964)

7. Turpin, A., Moffat, A.: Practical length-limited coding for large alphabeths. Com-
puter J. 38(5), 339–347 (1995)

8. Larmore, L.L., Hirshberg, D.S.: A fast algorithm for optimal length-limited Huff-
man codes. J. ACM 37(3), 464–473 (1990)

9. Milidiú, R.L., Laber, E.S.: The Warm-up Algorithm: A Lagrangean Construction of
Length Restricted Huffman Codes. SIAM Journal on Computing 30(5), 1405–1426
(2000)

10. Milidiú, R.L., Laber, E.S.: Improved Bounds on the Ineficiency of Length Restricted
Codes. Algorithmica 31(4), 513–529 (2001)

11. Hamming, R.W.: Coding And Information Theory. Prentice Hall, Englewood Cliffs
(1980)

12. Pinto, P.E.D., Protti, F., Szwarcfiter, J.L.: Parity codes. RAIRO - Inf. Theor.
Appl. 39, 263–278 (2005)

13. Pinto, P.E.D., Protti, F., Szwarcfiter, J.L.: A Huffman-based Error detecting Code.
In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 446–457.
Springer, Heidelberg (2004)

Terminal Coalgebras for Measure-Polynomial
Functors

Christoph Schubert

Chair for Software Technology
Technische Universität Dortmund

christoph.schubert@tu-dortmund.de

Abstract. We use the Kolmogorov Consistency Theorem from Measure
Theory to construct terminal coalgebras for a large class of functors on
the category of measurable spaces. In particular, we construct termi-
nal stochastic relations and terminal labelled Markov processes. We use
this constructions to provide extended expressivity results for canonical
interpretations of modal and temporal logics in these structures.

1 Introduction

Since the beginning of the study of coalgebra, the construction of terminal (or
final) coalgebras was in particular focus. The pronounced interest in terminal
coalgebras comes from the fact that in a certain sense they incorporate all pos-
sible behavior a given class of coalgebras is able to exhibit.

In fact, there is a canonical construction for terminal coalgebras for well-
behaved functors using the so-called terminal sequence of the functor; see [14,1].
This construction has the advantage that it gives quite a concrete description of
the terminal coalgebra.

It seems that the subprobability functor S on the category of measurable
spaces is not well-behaved in the above sense. This has lead to several involved
constructions [11,12,13,8] for terminal coalgebras for this functor and its variants.

By doing an analysis of the terminal sequence construction we are able to show
that S, although it does not preserve limits of arbitrary sequences, preserves its
terminal sequence, hence a terminal coalgebra for S exists. Moreover, this result
holds for so-called measure-polynomial endofunctors on the category of measur-
able spaces. These measure polynomial functors are a convenient replacement
for the Kripke-polynomial functors on the category of sets and functions: these
are constructed from the identity, constant functors, and the (finite) powerset
functor by closing under composition, finite products and sums. In the same man-
ner, the measure-polynomial functors are constructed from the identity, constant
functor for Standard Borel spaces, the subprobability functor, and closed under
composition, countable products and sums.

We have to restrict ourselves to Standard Borel spaces since they permit using
the Kolmogorov Consistency Theorem, the main technical tool for our observa-
tions. Using this classical result, we are able to construct terminal stochastic

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 325–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

326 C. Schubert

relations [4] (when morphisms of stochastic relations are based on arbitrary,
not necessarily surjective, measurable functions), labelled Markov processes [11],
and models for CSL, a stochastic variant of CTL, as used in probabilistic model
checking [3].

We then proceed to apply the existence of terminal coalgebras based on Stan-
dard Borel spaces to obtain stronger expressivity results for coalgebraic modal
logic.

2 Preliminaries

For undefined categorical terminology we refer to [2].

Measurable Spaces. Recall that a measurable space X consists of a set |X |
and a σ-algebra BX on X , that is: a family of subsets of |X | which is closed
under complementation, countable intersections, and countable unions. For each
family A of subsets of a set M there is a smallest σ-algebra on M containing A,
which we denote by σ(A). A measurable function X → Y is given by a function
f : |X | → |Y | such that f−1[B] ∈ BX for all B ∈ B(Y). In case BY = σ(A),
measurability of f is guaranteed by f−1[A] ∈ BX for all A ∈ A. The category of
measurable spaces with measurable functions as morphisms is denoted by Meas.
Observe that we do not notationally distinguish between a Meas-morphisms and
its underlying function. Often we will just write X in place of |X |.

Special Morphisms. Given a family (Yi)I of measurable spaces and family
(fi : A → |Yi|)I of functions with common domain, we define the initial σ-
algebra with respect this data to be A = σ(

⋃
I f−1

i [B(Yi)]). It has the following
property: a function g : |X | → A is measurable with respect to BX and A
if and only if all fi · g : X → Yi are measurable. In case I = {∗}, we have
A = f−1

∗ [B(Y∗)].
Dually, we define the final σ-algebra for (|Xi| gi→ B)I by {E ⊆ B | ∀i ∈ I :

g−1
i [E] ∈ B(Xi) }. It has the property that measurability of h : B → |Y | is

guaranteed by the measurability of all h · gi.
Thus, Meas is complete and cocomplete: limits are constructed as follows:

construct the limit (L, (li)) of the underlying diagram in Set and equip L with
the initial σ-algebra with respect to the projections li, thus, with the σ-algebra
generated by

⋃
l−1
i [BXi]. Colimits are formed dually using final σ-algebras.

Recall that a monomorphism m in a category C is called strong provided
that whenever we have m · f = g · e with e an epimorphism, then there exists a
(uniquely determined) d such that

A
e ��

f

��

B

g

��

d

���
�

�
�

C m
�� D

Terminal Coalgebras for Measure-Polynomial Functors 327

commutes. This is called the diagonalization property. The epimorphisms in
Meas are precisely the surjective measurable functions and the strong monomor-
phisms are precisely the injective, initial functions. Observe that we may factor
every Meas-morphism f as f = m ·e with e surjective and m a strong monomor-
phism. We say that Meas has (Epi, StrongMono)-factorizations.

Lemma 1. The class of strong monomorphisms in Meas is closed under limits
and coproducts.

Proof. Closure under limits holds in any complete category. Closure under co-
products follows from the characterization as initial monomorphisms. ��

Standard Borel Spaces. A measurable space is called a Standard Borel space
provided its measurable sets arise as the Borel sets induced by a complete,
separable metric. The full subcategory of Meas spanned by the Standard Borel
spaces is denoted by SB. The following two results are essential:

Fact 1. SB is closed under countable coproducts and countable limits in Meas.

Proof. It is well-known that countable coproducts and products of Standard
Borel spaces are Standard Borel; see [7, 12.B]. If Y is Standard Borel, then
ΔY = { (y, y) | y ∈ Y } is measurable in Y ×Y . Hence, for any pair f, g : X → Y
of measurable functions, the set E = { x ∈ X | f(x) = g(x) } = 〈f, g〉−1[ΔY],
with 〈f, g〉 : X → Y × Y the induced function, is measurable in X , hence it is a
Standard Borel space when equipped with the initial σ-algebra with respect to
the embedding E → X ; see [7, 13.4]. ��
Fact 2 ([5]). Every surjective SB-morphism is final. In particular, every bijec-
tive SB-morphism is an isomorphism, that is: its inverse is measurable. ��

Subprobability Measures. A subprobability measure on a measurable space X
is a σ-additive function BX → [0, 1]. The set of all subprobability measures on X
becomes a measurable space SX when equipped with the initial σ-algebra with
respect to (evA)A∈BX with evA : SX → [0, 1], μ �→ μ(A). This subprobability
construction gives rise to a functor S : Meas → Meas by setting

Sf(μ)(B) = μ(f−1[B])

for f : X → Y in Meas, μ ∈ SX , B ∈ BY . Using the so-called Prohorov metric
it can be shown that SX is Standard Borel provided X is Standard Borel; see,
for instance, [4, Proposition 1.78].

Lemma 2 ([12]). Let A ⊆ BX be a closed under finite intersections with
σ(A) = BX. Then a function f : T → SX is measurable provided each evA · f
for A ∈ A is measurable. ��
Lemma 3. If f : X → Y is initial in Meas, then Sf is initial and injective.
In particular, S preserves strong monomorphisms.

328 C. Schubert

Proof. Assume that Sf(μ) = Sf(ν) holds and take any A ∈ B(X). By initiality
of f , there exists B ∈ B(Y) with A = f−1[B]. Thus, μ(A) = μ(f−1[B]) =
Sf(μ)(B) = Sf(ν)(B) = ν(f−1[B]) = ν(A).

Observe that { evA : SX → [0, 1]| | A ∈ B(X) } = { evB · Sf : SX → [0, 1] |
B ∈ B(Y) } holds. Indeed, evB ·Sf = evf−1[B] so the claim follows from initiality
of f . Hence with (evA) also (evB · Sf) is an initial source, and so Sf is initial;
see, e.g., [2, 10.45]. ��
Fact 3 ([4, Proposition 1.101]). If f : X → Y is a surjective SB-morphism,
then also Sf : SX → SY is surjective. ��
The proof of this fact is non-trivial and involves quite a bit of structure theory
of Standard Borel spaces. Our main result hinges on the following result, known
as the Kolmogorov Consistency Theorem:

Theorem 1. Let

A0 A1
f0�� A2 . . . An

f1�� An+1 . . .
fn��

be a sequence of Standard Borel spaces and surjective measurable functions. If,
for each i ∈ ω, μi is a subprobability measure on Ai such that Sfi(μi+1) = μi

holds, then there is a unique subprobability measure μ on the limit L of the above
sequence such that μi = Spi(μ), with pi the projection. ��
For a proof see, e.g., [6]. In Theorem 1 the restriction to Standard Borel spaces
as well as to surjective functions is necessary: for counterexamples, see [13]. Let
us write C for the class of ωop-chains of surjective SB-morphisms. A C-limit is
a limit of a diagram in C.

Corollary 1. The subprobability functor S preserves C-limits.

Proof. The Kolmogorov Consistency Theorem allows us to construct a bijection
between the limit of the S-image of a chain (Ai) in C and the S-image of the limit
of the chain. Making essential use of Lemma 2, one shows in a straightforward
but slightly involved calculation that this bijection is measurable. Hence it is a
Meas-isomorphism by Fact 2. ��
Arbitrary limits of ωop-chains in Meas are not preserved by S; see [13] for a
discussion. As it turns out, S preserves limits of just the right type of ωop-chains
for our purposes.

3 Coalgebras

Fix a category C and a functor T : C → C. A T -coalgebra A = (A, d) is given by
a C-object A and a C-morphism d : A → TA, called the dynamics. A morphism
of coalgebras (A, d) → (A′, d′) is given by a C-morphism f : A → A′ such that

Terminal Coalgebras for Measure-Polynomial Functors 329

A

d

��

f �� A′

d′

��
TA

Tf
�� TA′

commutes. This leads to the category CoalgT of T -coalgebras and morphisms.

Examples 1. We focus on C = Meas.

1. CoalgS is the category of stochastic relations. Observe that, in contrast to
[4], we do not require morphisms of stochastic relations to be surjective.

2. From T : X �→ (SX)Act with Act a countable set we obtain the category of
labelled Markov processes [11] as CoalgT .

3. From T : X �→ S((R+×X)ω) we obtain coalgebras which serve as a semantics
for CSL [3]; see [4].

Lemma 4. If C has (Epi, StrongMono)-factorizations and T preserves strong
monomorphisms, then Coalg T has (Epi, StrongMono)-factorizations.

Proof. Take f : (A, d) → (A′, d′) and factor f in C as f = m · e with m a strong
monomorphism and e surjective. Since also Tm is a strong monomorphism, we
obtain h as below:

A
e ��

d
��

B

m
��

h

���
�

�
�

�
�

TA

Te
��

A′

d′
��

TB
Tm

�� TA′

It remains to show that e : (A, d) → (B, h) is an epimorphism in Coalg T
and that m : (B, h) → (A′, d′) is a strong monomorphisms in Coalg T . This is
straightforward, see [1, 4.6 and 4.11]. ��
Making use of Lemma 3, we see that we may factor every morphism f of stochas-
tic relations as a surjection followed by an initial injection.

Terminal Coalgebras via Terminal Sequences. A terminal object in a
category C is an object 1 such that for any object C there exists a unique
morphism !C : C → 1. Fix a category C with terminal object 1 and a functor
T : C → C. The terminal sequence of T is the following ωop-sequence:

1 T 1
!�� T 21

T !�� T 31
T 2!�� T 41 . . .

T 3!��

where ! : T 1 → 1 is the unique morphism. We recall [1, 3.18 and 3.12]:

Proposition 1. If the terminal sequence of T has a limit in C which is preserved
by T , then CoalgT has a terminal object. ��

330 C. Schubert

Proposition 2. Let C be a category with binary products, C a C-object and
T : C → C a functor. The following statements are equivalent for a morphism
d : A → C × TA with components d1 : A → C and d2 : A → TA:

1. (A, d2) is a cofree T -coalgebra over C with couniversal arrow d1.
2. (A, d) is a terminal C × T (−)-coalgebra. �

4 Terminal Coalgebras for Measurable Spaces

Let us write F for the class of endofunctors T on Meas which

– preserve surjective SB-morphisms is the sense that whenever f : A → B is
surjective with A, B in SB, then also TA, TB are in SB and Tf is surjective;

– preserve C-limits.

In particular, every T ∈ F preserves C, and thus restricts to the subcategory
SB. For every T ∈ F , we write TSB for its restriction SB → SB.

Proposition 3. F is closed under composition, countable coproducts, and
countable limits.

Fact 2 allows us to reduce the statement of the proposition to well-known closure
properties of ωop-sequence limit preserving endofunctors on Set; see, e.g., [14].

Proof. Clearly, F is closed under composition. To show closure under countable
coproducts, it suffices to show that the class of ωop-sequence preserving functors
on SB is closed under countable coproducts. Limits of ωop-sequences commute
with coproducts in Set, hence the underlying function of the unique connecting
morphism is bijective, thus the result holds for Standard Borel spaces by Fact 2.

To show that F is closed under countable limits, it suffices to recall that limits
commute with limits in every category. ��
Definition 1. The class of measure-polynomial functors is the smallest class
of endofunctors on Meas which contains the identity, the subprobability-functor
S, the constant functor CA for each A ∈ SB, and is closed under composition,
countable coproducts, and countable products.

Examples of measure polynomial functors include the functors A + (−) and
A × (−) for each Standard Borel space A, as well as the functors presented in
Examples 1. We remark that our notion of measure polynomial functor differs
from the one in [8]; see Sect. 6 for a discussion.

Lemma 5. Every measure-polynomial functor on Meas preserves strong mono-
morphisms.

Proof. Obviously, every constant functor preserves strong monomorphisms, and
the subprobability functor preserves them by Lemma 3. The claim follows from
Lemma 1. ��

Terminal Coalgebras for Measure-Polynomial Functors 331

Theorem 2. Every measure-polynomial endofunctor on Meas is in F .

Proof. We first show that every measure-polynomial functor preserves surjective
SB-morphisms. Preservation of SB is obvious by Fact 1 and the fact that SX is
Standard Borel provided X is. Preservation of surjectivity is obvious by Fact 3
and the fact that the class of surjectivity-preserving functors on Meas is closed
under countable limits and colimits.

Clearly, F contains the identity and, by Corollary 1, the subprobability functor
S as well as A × (−) and A + (−) for each Standard Borel space A. Clearly,
the latter functors preserve C. To show that they also preserve limits of ωop-
sequences, it suffices to show that this holds for the corresponding functors on
Set and invoke Fact 2. Finally, the closure properties outlined in Proposition 3
show that every measure polynomial functor lies in F . ��
Theorem 3. Every functor in F has a terminal coalgebra whose carrier space
is Standard Borel.

Proof. Let T ∈ F . We need to distinguish two cases. First, suppose that T 1 �= ∅,
that is, ! : T 1 → 1 is surjective. Hence, the terminal sequence of T is in C, thus
its limit is preserved by T , and hence a terminal coalgebra exists by Proposition
1. In case T 1 = ∅ holds, we have TX = ∅ of all X ∈ Meas. Indeed, indeed,
! : X → 1 gives rise to T ! : TX → T 1 = ∅, and TX = ∅ follows. Thus, (∅, 1∅) is
the unique T -coalgebra, thus necessarily terminal. ��
We call the constant endofunctor on Meas with value ∅ trivial, and every other
endofunctor non-trivial.

Corollary 2. Let T in F be non-trivial. For each Standard Borel space A there
exists a cofree T -coalgebra over A. In particular, the obvious forgetful functor
CoalgTSB → SB has a right adjoint. ��
Corollary 3. Every measure-polynomial endofunctor on Meas has a terminal
coalgebra. For every non-trivial such endofunctor T there exists a cofree coalgebra
over each Standard Borel space. In particular, the forgetful functor CoalgTSB →
SB has a right adjoint. ��

5 Applications to Modal Logic

We will now use properties of the final coalgebras to extend some results on
expressivity of modal logics. Fix a countable set Act (of “actions”) and define a
logic L to consist of the following formulas

ϕ ::= � | ϕ ∧ ϕ | 〈a〉qϕ
with a ∈ Act and q ∈ Q ∩ [0, 1]. Let T : Meas → Meas be the functor given
by X �→ (SX)Act. Thus, T -coalgebras are precisely labelled Markov transition
systems. We can interpret L in any T -coalgebra X = (X, d) as follows:

���X = X �ϕ1 ∧ ϕ2�X = �ϕ1�X ∩ �ϕ2�X

�〈a〉qϕ�X = { x | d(x)(a)(�ϕ�X) ≥ q }

332 C. Schubert

Let us call states x and y of coalgebras X and Y, resp., logically equivalent if they
satisfy exactly the same formulas, and behaviorally equivalent if there exists a
coalgebra W and morphism X f→ W g← Y with f(x) = g(y). In [9] the following
result was established:

Fact 4. Let X and Y be T -coalgebras with X , Y Standard Borel. States x and
y of X and Y, resp., are logically equivalent if and only if they are behaviorally
equivalent. ��
In fact, in [9] the above result was established for a large class of functors T on
SB. We will now alleviate the restriction to Standard Borel spaces and show
that the conceptual equality

logical equivalence = behavioral equivalence

holds not only for labelled Markov transition systems based on Standard Borel
spaces but for all labelled Markov transition systems. Note the following fact:

Lemma 6. Let f : X → Y be a CoalgT -morphism. Then �ϕ�X = f−1�ϕ�Y

holds for all ϕ ∈ L. �

The logical equivalence relation on a final coalgebra is degenerate:

Lemma 7. Let F be a terminal T -coalgebra. If states x and y of F are logically
equivalent, then they are equal.

Proof. Recall that F is based on a Standard Borel space. By Fact 4 there exists W
in CoalgT and f, g : F → W with f(x) = g(y). Hence, we have !W·f(x) =!W·g(y)
for the unique !W : W → F. By terminality, we have !W · f = 1F =!W · g, hence
x = y. ��

Theorem 4. States x and y of T -coalgebras X and Y, resp., are logically equiv-
alent if, and only if, they are behaviorally equivalent.

Proof. Suppose x and y to be logically equivalent. !X(x) and !Y(y) are logically
equivalent by Lemma 6 and hence equal by Lemma 7. The other implication is
just Lemma 6. ��

Obviously, the proof of Theorem 4 makes no use of special properties of the logic
L nor the functor T besides the validity of Fact 4, Lemma 6, and the existence
of a terminal T -coalgebra based on a Standard Borel space. Hence, the extended
expressivity Theorem 4 is valid for any functor T on Meas which lies in F and
whose restriction TSB satisfies the assumptions from [9].

Corollary 4. States x and x′ of some T -coalgebra X are logically equivalent if,
and only if, !X(x) =!X(x′) holds. Hence, the kernel relation of !X and the logical
equivalence relation coincide. ��

Terminal Coalgebras for Measure-Polynomial Functors 333

Global Properties. We call coalgebras X and Y (globally) logically equivalent
provided we may find, for each state x in of X, a state y of Y which satisfies
exactly the same formulas, and vice versa. We call X and Y (globally) behaviorally

equivalent if there exists a coalgebra W and surjective morphisms X f→ W g← Y.

Theorem 5. The following statements are equivalent for coalgebras X and Y
based on arbitrary measurable spaces:
1. X and Y are logically equivalent;
2. the images of !X and !Y coincide;
3. X and Y are behaviorally equivalent.

Proof. Assume X and Y to be logically equivalent. If l =!X(x), then we may find
y in Y which satisfies exactly the same formulas. Hence, l = !X(x) = !Y(y). The
other inclusion is shown analogously. Now assume that the images of !X and !Y
coincide. We obtain the following factorizations:

X
e ��

!X �������������� Im !X = Im !Y
i

��

Y
e′

��

!Y��������������

F

with i the initial inclusion and e, e′ surjective by Lemma 4.
The implication (3) ⇒ (1) is obvious. ��

6 Related Work

In [11], a terminal coalgebra for labelled Markov transition systems is constructed
using domain-theoretic techniques. The connectionbetweenStandardBorel spaces
andso-calledω-coherentdomains is intriguing. It isnotclearatthemomentwhether
this construction canbeadapted todealwithgeneralmeasure-polynomial functors.

Moss and Viglizzo constructed in [8] terminal coalgebras for endofunctors on
Meas of the following kind:

T ::= Id | ΔT | CX | T1 + T2 | T1 × T2

where Id is the identity functor on Meas, Δ is the subfunctor of S given by
the subprobabilities μ on X with μ(X) = 1, and CX is the constant functor for
an arbitrary measurable space X . We denote the class of functors defined above
by R. They are called measure polynomial in [8]. While R contains constant
functor CX for arbitrary measurable spaces X , it is not closed under countable
products nor countable coproducts. In particular, labelled Markov processes for
a countable set of actions do not arise from any functor in R.

The construction in [8] uses so-called satisfied theories and is more involved
than the classical construction based on terminal sequences. One might argue
that the limit of the terminal sequence, which can be constructed as a subset of
a countable product, is a quite simple object amenable to direct computation.
This seems not to be the case for the space of satisfied theories.

The following strong result follows from [8] by using Proposition 2:
Proposition 4. CoalgT → Meas has a right adjoint for every T in R. ��

334 C. Schubert

7 Conclusion

We have constructed terminal coalgebras for measure-polynomial functors on the
category of measurable spaces. These functors form the smallest class of functors
which contains the identity, the subprobability functor, constant functors for
Standard Borel spaces, and is closed under countable coproducts and products.
We have used this construction to extend expressivity results for modal logics
previously obtained for Standard Borel spaces to general measurable spaces.

Acknowledgements. The author wants to thank Ernst-Erich Doberkat for
numerous technical discussions and the anonymous referees for a number of
suggestions which helped to improve this article.

References

1. Adamék, J.: Introduction to coalgebra. Theory and Applications of Cate-
gories 14(8), 157–199 (2005)

2. Adamek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley
Interscience, Hoboken (1991),
http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

4. Doberkat, E.-E.: Stochastic Relations. Foundations for Markov Transition Systems.
Chapman & Hall/CRC Press, Boca Raton (2007)

5. Doberkat, E.-E., Schubert, C.: Coalgebraic logic for stochastic right coalgebras.
Ann. Pure Appl. Logic (2009), doi:10.1016/j.apal.2008/06/018

6. Doob, J.L.: Measure theory. Graduate Texts in Mathematics, vol. 143. Springer,
New York (1994)

7. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics.
Springer, Heidelberg (1994)

8. Moss, L., Viglizzo, I.: Final coalgebras for functors on measurable spaces. Informa-
tion and Computation 204, 610–636 (2006)

9. Schubert, C.: Coalgebraic logic over analytic spaces. Technical Report 170, Chair
for Software Technology, Technische Universität Dortmund (January 2008)

10. Schubert, C.: Final coalgebras for measure-polynomial functors. Technical Report
175, Chair for Software Technology, Technische Universität Dortmund (December
2008)

11. van Breugel, F., Mislove, M., Ouaknine, J., Worrell, J.: Domain theory, testing
and simulation for labelled Markov processes. Theoretical Computer Science 333,
171–197 (2005)

12. Viglizzo, I.D.: Coalgebras on measurable spaces. PhD thesis, Indiana University
(2005)

13. Viglizzo, I.D.: Final sequences and final coalgebras for measurable spaces. In:
Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005.
LNCS, vol. 3629, pp. 395–407. Springer, Heidelberg (2005)

14. Worrell, J.: Terminal coalgebras for accessible endofunctors. Electronic Notes in
Theoretical Computer Science 19, 39–54 (1999)

http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf

High Minimal Pairs in the Enumeration Degrees

Andrea Sorbi1, Guohua Wu2,�, and Yue Yang3,��

1 University of Siena, 53100 Siena, Italy
sorbi@unisi.it

http://www.dsmi.unisi.it/~sorbi/
2 Nanyang Technological University, Singapore

guohua@ntu.edu.sg

http://www3.ntu.edu.sg/home/guohua/
3 National University of Singapore, Singapore

matyangy@nus.edu.sg

http://ww1.math.math.nus.edu.sg/~matyangy/

Abstract. The natural embedding of the Turing degrees into the enu-
meration degrees preserves the jump operation, and maps isomorphically
the computably enumerable Turing degrees onto the Π0

1 enumeration de-
grees. The embedding does not preserve minimal pairs, though, unless
one of the two sides is low. In particular it is known that there exist high
minimal pairs of c.e. Turing degrees that do not embed to minimal pairs
of e-degrees. We show however that high minimal pairs of Π0

1 e-degrees
do exist.

1 Introduction

In the structure of the computably enumerable Turing degrees, the existence of
minimal pairs of c.e. Turing degrees was established independently by Lachlan [2]
and Yates [6] in 1966. In the same 1966 paper [2], Lachlan also showed that the
c.e. sets whose degrees form the minimal pair can be maximal, which implies the
existence of high minimal pairs of c.e. Turing degrees. Using the tree method, one
can easily combine the high strategy with the minimal pair strategy to produce
directly a high minimal pair. Individually, the highness strategy and the minimal
pair strategy are Π2-strategies, and they can be implemented by infinite injury
arguments. Combining these two kinds of strategies does not require much extra
effort, and it still results in an infinite injury argument. One would expect the
same phenomenon in the enumeration degrees (for short: e-degrees). But it is
not so. Although constructing a minimal pair of Σ0

2 e-degrees requires only a
Sacks’ type of finite injury argument and constructing a high e-degree requires
infinite injury, the combination of these two kinds of strategies requires extra

� Wu is partially supported by NTU grant RG58/06, M52110023.
�� Yang is partially supported by NUS grant R 146-000-114-112; part of this research

was carried out by Yang, while he was an INDAM-GNSAGA Visiting Professor at
Siena.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 335–344, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.dsmi.unisi.it/~sorbi/
http://www3.ntu.edu.sg/home/guohua/
http://ww1.math.math.nus.edu.sg/~matyangy/

336 A. Sorbi, G. Wu, and Y. Yang

effort as demonstrated in this paper — we need a 0′′′-argument to figure out
how the minimal pair requirements are satisfied.

A natural starting point is to explore the embedding ι from the Turing degrees
into the enumeration degrees; after all, ι also preserves the jump, so high Tur-
ing degrees are mapped to high e-degrees. Unfortunately, ι does not necessarily
preserve the infimum. In fact, McEvoy in his thesis [3] (see also McEvoy and
Cooper [4]) produced a high minimal pair of c.e. Turing degrees which, under
the embedding ι, does not form a minimal pair in the e-degrees. This dashed the
hope of directly translating results concerning high minimal pairs in the Turing
degrees to e-degrees by ι.

In his investigation, McEvoy isolated a notion on Σ0
2 sets A and B called

“meshing”; and he proved that if A and B mesh then they will not form a
minimal pair in the e-degrees. Sacrificing some accuracy, the idea of meshing
can be crudely rephrased as follows: some Σ0

2-approximations of A and B can
synchronize their changes so that for some e-operators Θ and Ψ ,

∃x [∃s∀t > s(x ∈ ΘA[t] ∨ x ∈ ΨB[t]) ∧ x �∈ ΘA ∪ ΨB
]
.

As argued by McEvoy in [3], one could use this x to “diagonalize against” some
minimal pair strategy in the e-degrees. Hence to build a minimal pair in the Σ0

2
e-degrees, we must break this meshing. In other words, we have to prevent a
certain x from leaving ΘA and ΨB in a Π0

2 -way, yet at any moment the same x
appears to be in either ΘA or ΨB.

The easiest way to do this is to make one of them, say A, low, thus no elements
are able to leave ΘA in a Π0

2 -way. One can build an e-minimal pair with A low
and B high without too much trouble. McEvoy and Cooper even pointed out in
[4] that for any set A with low degree, there is a set B such that the e-degrees
of A and B form a minimal pair.

For our purpose, to make both A and B high, we need new strategies, where
breaking meshing becomes the main issue of the construction.

2 Building a High Minimal Pair

We state and prove the theorem.

Theorem 1. There are Π0
1 -sets A and B, both of high enumeration degrees,

such that for all pairs of enumeration operators Θ and Ψ , if ΘA = ΨB then ΘA

is c.e. .

2.1 Requirements and Strategies

We begin with describing each strategy in isolation. In the next subsection, we
revise the strategies to overcome their conflicts.

Fix a computable enumeration of all pairs of e-operators Θ and Ψ . The min-
imal pair requirements are:

– MΘ,Ψ : If ΘA = ΨB then there is a c.e. set W such that ΘA = W .

High Minimal Pairs in the Enumeration Degrees 337

The strategy μ for a minimal pair requirement M , say M = MΘ,Ψ , is very
similar to the one in the Turing degrees. We build a c.e. set W at μ. When we
see an element v ∈ ΘA ∩ ΨB we enumerate v into W and guarantee that for
any future stage t, v is staying in either ΘA[t] or ΨB[t]. Whenever we extract
some elements out of A to cause v out of ΘA, we will hold the B-side to keep
v in ΨB. If v never returns to ΘA, then we have an easy disagreement at v
between ΘA and ΨB . This is a Σ2-outcome which is quite similar to the one in
the Turing degrees. The net effect is to have a finite restraint on B forever. The
more interesting possibility is that v returns to ΘA, and we see W ⊆ ΘA ∩ ΨB

again. This cycle can repeat forever, in which case we have a Π0
2 -outcome ∞.

A similar argument applies if we extract some elements out of B to cause v out
of ΨB .

We say that s is a μ-expansionary stage if, roughly, W [s] ⊆ ΘA ∩ ΨB[s].
Assume that μ is able to achieve that for all elements x and for all stages s, if x
in W [s] then x ∈ ΘA[s]∨x ∈ ΨB[s]. Under this assumption, if the μ-strategy sees
only finitely many μ-expansionary stages, then M is satisfied, since ΘA �= ΨB. If
the μ-strategy sees infinitely many μ-expansionary stages, we can conclude that
W appears to be correct at infinitely many stages. However, we have no idea
if W = ΘA or not, as in the discussion of meshing. We will come back to the
satisfaction of M in the next subsection.

To satisfy the highness requirements, we use the highness strategy, due to [1],
as implemented in [5]. Recall, [5], that a sufficient condition for a set A to be
of high enumeration degree, is that for some Σ0

2 -approximation As of A, the
function CA(x) is total and eventually dominates all total computable functions
ϕe(x), where

CA(x) = μs > x[As � x ⊆ A].

Thus we aim at building Π0
1 -approximations to A and B, satisfying the

requirements

– PA
e : If ϕe(x) is a total computable function then CA(x) eventually dominates

ϕe(x).
– PB

e : If ϕe(x) is a total computable function then CB(x) eventually dominates
ϕe(x).

Let α be a strategy working for PA
e . In isolation, α has a fixed infinite decidable

set Eα = {x0 < x1 < . . . } for its use. We assume that the predicate “x ∈ Eσ” is
decidable, and Eσ ∩ Eτ = ∅ for all σ �= τ . We start with Eα ⊆ A. The strategy
waits for a stage s at which ϕe(y) ↓ [s] for all y such that y < x1. Here we assume
the convention that if ϕe(y) ↓= z[s] then y, z, e < s. If no such s exists then ϕe

is not total. Suppose we see such an s, then α extracts x0 out of A forever at
the first stage t ≥ s when we visit α again. Thus for all y with x0 ≤ y < x1,
CA(y) ≥ t > s > ϕe(y). Then we work on x1 in the same way, and so on. Thus
if α has a Π0

2 -outcome, i.e., ϕe is total, then α would extract the decidable set
Eα out of A, and for any y ≥ x0, CA(y) > ϕe(y).

The strategy β to make B high is symmetric.

338 A. Sorbi, G. Wu, and Y. Yang

2.2 Coordinations of Strategies

We now put things together, discuss possible conflicts and modify our strategies
to overcome the conflicts.

From simple to complex, we discuss the following cases. Let us ignore the
Σ2-outcomes as their impact on the construction is finite.

Case 1. A high strategy α having higher priority than a minimal pair strategy
μ. For example, α is making A high, and αˆ∞ ⊂ μ. In this case, μ knows
the decidable set Eα that α is going to extract. μ will only use μ-believable
computations (i.e. computations that do not use any element in Eα) when it
decides which elements to enumerate in W . In conclusion, the difficulty is solved
in the same way as in the c.e. Turing degrees.

Case 2. A minimal pair strategy having higher priority than a high strategy.
For example, μˆ∞ ⊆ α, where α is making A high: μ is enumerating its c.e. set
W = ΘA ∩ ΨB and α is extracting the decidable set Eα.

In this case, the extraction of Eα by α could interfere with μ by making some
v out of ΘA in a Π0

2 -way. One possible scenario would be: μ has enumerated v
into W ; then α extracts x0 out of Eα to cause v out of ΘA. Now we modify the
high strategy by adding a restraint on B and let α have outcome v (on top of its
own Π2-outcome ∞). If v never comes back into ΘA then μ has a Σ2-outcome,
and thus we win easily. Suppose v comes back via another axiom, say 〈v,D〉 ∈ Θ
and D ⊆ A. There are two possibilities. One is D ∩ Eα = ∅, in other words D
has nothing to do with α: we delay the discussion to Case 3, when we deal with
the interference of D with another A-high strategy α′. The other possibility is
D ∩ Eα �= ∅, say x1 ∈ D ∩ Eα. When α extracts x1, v is out of ΘA again. This
cycle can continue forever. However the modified strategy works: so long as we
keep the B-restraint (which is of a fixed amount, one axiom is sufficient to keep
a number in ΨB), every time we visit α, v is out of ΘA. Consequently, we see a
disagreement at α for μ: v is in ΨB in a Σ2-way and out of ΘA in a Π2-way. We
have satisfied both α and μ. Notice that this disagreement v cannot be detected
at μ, thus μ’s Σ2-outcome v is different from α’s outcome v for μ, where the
latter one is a Σ3 outcome of μ, detected at α.

The outcomes of the modified high strategy (on top of its own Π2-outcome
∞) are ∞ < 0 < 1 < . . . < v < . . . , ordered as described. After α extracts a
certain x out of Eα, α examines if there is any v out of ΘA

μ for some μˆ∞ ⊂ α:
if yes, then α lets the outcome be the least v; if no, it lets the outcome be ∞.
Later, whenever we visit α, if Θμ offers a new axiom to put v back into ΘA

μ

without using numbers in Eα, i.e., the current least disagreement disappears,
then we have outcome ∞.

Case 3. A minimal pair strategy having higher priority than more than one high
strategy of the same type. For example, μˆ∞ ⊆ α1ˆ∞μ ⊆ α2, where μ is enu-
merating its c.e. set W = ΘA ∩ΨB, α1 and α2 are two A-high strategies, and for
i = 1, 2, αi extracts the decidable set Eαi respectively. Here the (abused) nota-
tion ∞μ indicates that α1 not only has the Π2-outcome ∞ for itself (highness),

High Minimal Pairs in the Enumeration Degrees 339

it also has ∞μ for μ, i.e., α1 will see more and more v ∈ W having an axiom
〈v,D〉 ∈ Θ such that D ∩ Eα1 = ∅.

We analyze what happens with α2 considered, which acts as the α in Case 2.
When α2 extracts elements from Eα2 to satisfy its own high requirement, it
could extract the same v out of ΘA again. If this v never returns via an axiom
〈v, C〉 ∈ Θ for some C∩Eα2 = ∅, we have Σ3-outcome v for μ at α2 (v could be a
Σ2-outcome v for μ, which means that no more axiom in Θ can enumerate v into
ΘA in the remainder of the construction. In this case, μ will notice this, and will
have a Σ2-outcome at μ). Suppose v returns via 〈v, C〉 such that C ∩ Eα2 = ∅.
We have two new concerns.

The first concern is that C ∩Eα1 �= ∅. In fact, we could have two sequences of
disjoint finite sets Di and Ci such that 〈v,Di〉 ∈ Θ and 〈v, Ci〉 ∈ Θ, Di∩Eα1 = ∅,
Ci ∩Eα2 = ∅, Di ∩Eα2 �= ∅, and Ci ∩Eα1 �= ∅. Thus v could escape from ΘA in
a Π0

2 -way due to the combination of α1 and α2.
This worry can be repelled as follows. Notice that this worry materializes only

when α1ˆ∞μ ⊆ α2. Thus α2 “knows” the set Eα1 which α1 wants to extract.
Thus when α2 sees v returning to ΘA via an axiom 〈v, C〉 with C ∩ Eα1 �= ∅,
it should not “believe” this computation, hence α2 would still have outcome v
and keep its restraint on the B-side to keep v in ΨB . The strategy α2 only drops
this B-restraint and has outcome ∞μ when it sees an axiom 〈v,G〉 such that
G∩(Eα1 ∪Eα2) = ∅. This is another place where we use believable computations.
Thus a computation 〈v,G〉 ∈ Θ is α2-believable if 〈v,G〉 ∈ Θ is μ-believable and
for all α such that μˆ∞ ⊂ αˆ∞μ ⊂ α2, G ∩ Eα = ∅.

The second new concern is that C ∩ Eα �= ∅ and α goes further and further
down the tree, where 〈v, C〉 is the axiom putting v back into ΘA. To be more
precise, imagine the following scenario. The same v ∈ W was extracted out of
ΘA finitely many times by α1 before we see the axiom 〈v,D〉 ∈ Θ showing up;
after this, v has nothing to do with α1. Then α2 may do the same, i.e., extract
v out of ΘA finitely often, after which α1 and α2 have nothing to do with v. We
have to prevent the same phenomenon from repeating infinitely often, in other
words, we do not want a sequence of αi such that each individual αi extracts v
out of ΘA finitely many times, but the accumulative effect makes v out of ΘA

in a Π2-way. Thus we modify the high strategy α again by adding a threshold
k = kα; and require that α only extracts numbers from Eα without causing
v < k out of ΘA. A better way to implement this is to truncate the set Eα so
that the minimum element x0 in Eα is sufficiently large (the exact amount of
how sufficiently large will be explained in more detail later). Since k would be
fixed, the effect on α is equivalent to an extra finite restraint.

Case 4. More than one minimal pair strategy having higher priority than a high
strategy. For example, μ1ˆ∞ ⊆ μ2ˆ∞ ⊆ α.

In this case, the extraction at α could make v1 out of ΘA
μ1

and at the same
time make v2 out of ΘA

μ2
. Thus we may use a subtree of height two to explicitly

indicate the impact. The outcome of α can be visualized as having two levels; the
first level is ∞ < 0 < 1 < . . . indicating the outcomes for μ1; for each outcome
o ∈ ω ∪ {∞}, we further have the second level ∞ < 0 < 1 < . . . indicating

340 A. Sorbi, G. Wu, and Y. Yang

the outcomes for μ2. It has to be said that the particular order of levels is not
essential, as α will not injure μ2 for the sake of satisfaction of μ1. In theory, one
could have a binary tree, but spelling the outcomes out would make the later
description of the construction easier.

Naturally, if there are n minimal pair strategies above α, then the Π2-outcome
of α would be something like an ω-branching tree of height n. To implement
the idea and to keep the structure of the priority tree simple, let us crush the
subtree and use 〈∞, σ〉 to denote the outcome of a high strategy α or β. The first
component ∞ indicates the original outcome of the high strategy; and the second
component σ is a string of length n over the alphabet {∞ < 0 < 1 < 2 < . . . }
where < is the left-to-right order. We extend the left-to-right order to strings in
a natural way: σ1 < σ2 if and only if σ1(j) < σ2(j) where j is least position at
which they disagree.

Finally the discussion relative to PB-strategies β and their interactions with
minimal pair strategies is the same.

2.3 Construction

First let us describe the priority tree. We have three types of strategies: μ for M -
requirements, α for PA-requirements, and β for PB-requirements. The outcomes
of μ are ∞ < 0 < 1 < . . . , whereas the outcomes of α and β are:

〈∞, σ0〉 < 〈∞, σ1〉 < · · · < 0 < 1 < . . .

where each σi is a string of length n as described at the end of the previous
subsection.

We now define the priority tree together with an ordered list L of active
minimal pair strategies by simultaneous induction. Suppose that we have defined
everything for all nodes ⊂ τ .

Case 1. |τ | = 3e for some e ∈ ω. Then we assign the minimal pair strategy
μΘ,Ψ to τ , where Θ and Ψ form the e-th pair of e-operators under our fixed
computable enumeration of all pairs of e-operators. Append μ to the list Lτˆ∞
of τˆ∞; and keep the list unchanged at τˆv for all v ∈ ω.

Case 2. |τ | = 3e + 1 for some e ∈ ω. Then we assign the A-high strategy α
working for PA

e to τ . The outcome of α will be of the form 〈∞, σ〉 or i ∈ ω,
where σ is of the same length as the list Lτ . Modify the list at extensions of
τ as follows. No change for τˆs. At τˆ〈∞, σ〉, delete the j-th item from Lτ if
σ(j) �= ∞.

Case 3. |τ | = 3e + 2 for some e ∈ ω. Just replace A by B in Case 2.

We next describe the environments and parameters associated with each node
on the priority tree, in addition to the list Lτ inherited from the definition of
the tree.

For a minimal pair strategy μ, the environment has one c.e. set Wμ. When μ
is initialized, Wμ is discarded and is replaced by the empty set.

High Minimal Pairs in the Enumeration Degrees 341

For each A-high strategy α, the environment has a threshold kα and an infinite
decidable set Eα. When α is initialized, the parameter kα is discarded; and
although, in some sense, we do not change Eα, the change of threshold has the
effect of effectively pushing the minimal element in Eα to a larger number.

The environment and parameters for a B-high strategy β are defined similarly.
We are now ready to describe the construction. At stage s = 0 we start up

with A = B = ω, and initialize all strategies.
At stage s > 0, we define an accessible string δs by recursion, and we describe

its action if it acts. A stage t is called σ-true if σ ⊆ δt.
δs(0) is the root of the priority tree.
Suppose that we have defined δs(i) for some i < s. We define δs(i + 1) as

follows.

Case 1. δs(i) is a minimal pair strategy μ, relatively to the pair of e-operators
Θ and Ψ , and building the c.e. set W .

First we define the meaning of a computation being μ-believable. Let TA be the
set of all high strategies α such that αˆ〈∞, σ〉 ⊆ μ. A computation 〈v,D〉 ∈ Θ
is μ-believable if D ∩ (⋃

α∈T A Eα

)
= ∅. Similarly we can define a μ-believable

computation for ΨB.
Suppose that v was the outcome at μ when we last visited μ, after last initial-

ization, at stage, say, s−; if μ has not been visited yet after last initialization, or
no outcome was defined at s−, then let v = ∞.

(1.1) Suppose v �= ∞, and, say, v is A-related (i.e., at s− we had v ∈ ΨB \ ΘA;
the notion of B related is defined accordingly). If currently v ∈ ΘA (i.e.,
due to a new axiom), then let ∞ be the outcome at μ, and drop the existing
B-restraint. If v is B-related then the action is symmetric, interchanging
A with B;

(1.2) Suppose v = ∞. Take the least w ∈ W such that w ∈ ΘA ∪ ΨB, but
ΘA(w) �= ΨB(w). Let w be the outcome and set up an A-restraint or a
B-restraint, according to whether w ∈ ΘA or w ∈ ΨB. (To set up an A-
restraint amounts as usual to request that extractions performed by lower
priority strategies do not interfere with keeping w ∈ ΘA; similarly for a
B-restraint.) If there is no such w then let ∞ be the outcome.

If the stage is μ-expansionary, i.e. the outcome is ∞, then we enumerate into W
the least element in ΘA ∩ ΨB \ W .

Case 2. δs(i) is an A-high strategy α.
If the threshold k = kα is not defined, then define it big. Let x∗ be the least

number in Eα ∩ A such that x∗ is bigger than the amount of restraint that has
been set up to keep all necessary v < k into ΘA

μ , for all relevant μ as explained
later. Reset Eα = Eα ∩ {x : x ≥ x∗}.

If the threshold k is defined, then keep the same Eα. Suppose that Eα =
{x0 < x1 < . . . }.

If s is the first α-true stage after last initialization of α then we simply let αˆ0
be accessible. Otherwise, suppose that j is the largest number such that there has

342 A. Sorbi, G. Wu, and Y. Yang

been an αˆj-true stage after last initialization. We say that s is α-expansionary
if for all y such that y < xj+1, ϕe(y) ↓ [s].

(2.1) If s is α-expansionary, then let 〈∞, σ〉 be accessible where σ is determined
as follows. Suppose that 〈∞, τ〉 was the outcome when we visited α for the
last time: if α has never been visited after it was initialized last time, or
the outcome was not of this type, then let τ = 〈∞,∞, . . . ,∞〉. For j = 1
to the length of σ, let μj be the j-th element in the active list Lα. We
say that a computation 〈v,D〉 ∈ Θμj is α-believable if D ∩ Eα′ = ∅ for all
A-high strategies α′ such that α′ = α or μjˆ∞ ⊆ α′ˆ〈∞, σ′〉 ⊆ α where
σ′(j) = ∞.
– If τ(j) = ∞ and v is the least number in Wμj \ΘA

μj
(due to the absence

of α-believable computations), then let σ(j) = v. (A restraint is imposed
by this bit of σ on B to keep v in ΨB

μj
.) If no such v exists, let σ(j) = ∞

(No restraint for this bit of σ).
– If τ(j) = v for some v, and there is 〈v,D〉 ∈ Θμj which is α-believable,

then let σ(j) = ∞ and drop the restraint imposed by this bit of σ.
Otherwise, let σ(j) = v and keep the restraint imposed earlier on B to
keep v in ΨB

μj
.

(2.2) Otherwise, s is not α expansionary. If the previous α-true stage was not
α-expansionary then let αˆj be accessible; otherwise let αˆ(j + 1) be ac-
cessible.

The total restraint at the end of αˆ〈∞, σ〉 is the union of all restraints imposed
at each bit of σ.

Case 3. δs(i) is a B-high strategy β.
Symmetric.
When i = s we stop defining the accessible string and initialize all nodes to

the right of δs.
Choose the least x,

x ∈
⋃

{(Eα ∩ A) ∪ (Eβ ∩ B) : s is α-expansionary or β-expansionary},

extract x out of A or B, respectively.
This finishes the construction.

2.4 Verification

First of all it is clear that A and B are both Π0
1 sets, since we never enumerate

back elements after extraction.

Lemma 1. The true path exists.

Proof. We must show that there exists an infinite path f through the tree of
strategies such that for every n, σn = f � n is the leftmost string of length
n which is accessible infinitely many times. This is done by routine induction.
Assuming that σn exists, and the relative parameters reach a limit, one shows

High Minimal Pairs in the Enumeration Degrees 343

that claim is true of n+1 as well. If σn is an M -strategy, then there is a leftmost
outcome, since every time we abandon an outcome v we give outcome ∞. If σn is
a high strategy then the proof is a bit subtler. If σn is assigned, say, requirement
PA

e and Eσn = {x0 < x1 < . . .} is the final value of the parameter, then the
outcome is j where j is the least number such that for some y with y < xj+1
we have ϕe(y) ↑. Otherwise the outcome is of the form 〈∞, σ〉. In this case, the
claim follows from the fact that if we have a correct guess of the first i many
active minimal pair strategies, then the i + 1-th active minimal pair strategy
will have outcome ∞ after seeing that more and more numbers are in ΘA via
believable computations.

Let f denote the true path.

Lemma 2. Every high requirement is satisfied.

Proof. We limit ourselves to an A-high strategy α on the true path. The case of
B-high requirements is dealt with similarly.

Let s0 be the stage after which α is never initialized. Thus the set Eα =
{x0 < x1 < . . .} is fixed after s0. If αˆj ⊂ f , then ϕe is partial at some point
y < xj+1. Thus PA

e is satisfied. If αˆ〈∞, σ〉 ⊂ f for some σ, then eventually α
is able to extract every element xi ∈ Eα above the threshold, out of A. To see
this, suppose by induction that at some αˆ〈∞, σ〉-true stage all xj ∈ Eα, with
j < i, have been already extracted from A, but xi is still in A; at each future
αˆ〈∞, σ〉-true stage, if not already extracted, xi is a candidate for extraction,
unless there is a smaller element that qualifies for extraction too; but eventually
xi becomes the smallest one. Note that when α has a Σ3-outcome, it imposes a
restraint on B, not on A. As argued in the description of a single requirement,
we have that CA(x) > ϕe(x) for all x larger than the minimal element in Eα.

Lemma 3. Every minimal pair requirement MΘ,Ψ is satisfied.

Proof. Let μ be the strategy on true path which is working on MΘ,Ψ .
Suppose μˆv ⊂ f . Let s0 be the least stage at which μˆv is accessible, and

after which μˆv is never initialized. Then the restraint imposed by μ in (1.1) of
the construction is permanent. All nodes α and β to the right or extending μˆv
obey this restraint; strategies α and β ⊆ μ will either not act or will not affect
μ, as μ used believable computations. This makes ΘA(v) �= ΨB(v).

Suppose μˆ∞ ⊂ f . Here is the case where we need to know the whole true
path in order to know how MΘ,Ψ is satisfied.

Case 1. There is an A-high strategy α on the true path, such that αˆ〈∞, σ〉 is on
true path, and μ is the j-th item μj in the list Lα and σ(j) = v for some v ∈ ω.
Let s1 be the stage after which αˆ〈∞, σ〉 in never initialized. Then after stage
s1 the restraint imposed on B at αˆ〈∞, σ〉 is permanent. So v ∈ ΨB. On the A-
side, by (2.1) in the construction, we will not see any α-believable computation
〈v, C〉 ∈ ΘA. Thus C ∩ Eα′ �= ∅ for some A-high strategies α′ such that either
α = α′ or μjˆ∞ ⊆ α′ˆ〈∞, σ′〉 ⊆ α where σ′(j) = ∞. Hence v �∈ ΘA since we
extract all such Eα′ out of A.

344 A. Sorbi, G. Wu, and Y. Yang

Case 2. The case of a B-high strategy β on the true path is symmetric.

Case 3. For every high strategy α on true path, if αˆ〈∞, σ〉 is on true path, and
for some j, μ is the j-th item μj in the list of Lα, then σ(j) = ∞.

Assume that ΘA = ΨB. We claim that W ⊆ ΘA. For the sake of a contra-
diction, pick the least v ∈ W \ ΘA. By the device of the threshold, only finitely
many nodes may extract v out of ΘA. Since μˆ∞ is on the true path, one of
these nodes must extract v infinitely often, and this node has to be on the true
path, say the least such one is α. Then αˆ〈∞, σ〉 would be on true path for some
σ having σ(j) = v. Contradiction.

Similarly we can show that W ⊆ ΨB. Thus W = ΘA ∩ ΨB. Clearly, by the
construction, each element in ΨB ∩ ΘA is enumerated into W sooner or later,
and hence W ⊇ ΘA ∩ ΨB. Therefore, W = ΘA ∩ ΨB = ΨB = ΘA.

Finally, notice that we successfully avoid meshing as we never allow any v ∈ W
escape both ΘA and ΨB in a Π2-fashion.

References

1. Cooper, S.B., Copestake, C.S.: Properly Σ2 enumeration degrees. Z. Math. Logik
Grundlag. Math. 34, 491–522 (1988)

2. Lachlan, A.H.: Lower bounds for pairs of recursively enumerable degrees. Proc.
London Math. Soc. 16, 537–569 (1966)

3. McEvoy, K.: The Structure of the Enumeration Degrees. PhD thesis, School of
Mathematics, University of Leeds (1984)

4. McEvoy, K., Cooper, S.B.: On minimal pairs of enumeration degrees. J. Symbolic
Logic 50, 983–1001 (1985)

5. Shore, R., Sorbi, A.: Jumps of Σ0
2 high e-degrees and properly Σ0

2 e-degrees. In:
Arslanov, M., Lempp, S. (eds.) Recursion Theory and Complexity. De Gruyter Series
in Logic and Its Applications, pp. 157–172. W. De Gruyter, Berlin (1999)

6. Yates, C.E.M.: A minimal pair of recursively enumerable degrees. J. Symbolic
Logic 31, 159–168 (1966)

Searching a Circular Corridor with Two
Flashlights

Bo Jiang1 and Xuehou Tan1,2,�

1 School of Inform. Sci. and Tech., Dalian Martime University, China
2 Tokai University, 317 Nishino, Numazu 410-0395, Japan

tan@wing.ncc.u-tokai.ac.jp

Abstract. We consider the problem of searching for a mobile intruder in
a circular corridor (a polygon with one polygonal hole) by two searchers,
who hold a flashlight. Both searchers move on the outer boundary, di-
recting their flashlights at the inner boundary. The objective is to de-
cide whether there exists a search schedule for the searchers to detect
the intruder, no matter how fast he moves. We give a characterization
of the class of circular corridors, which are searchable with two flash-
lights. Based on our characterization, an O(n log n) time algorithm is
then presented to determine the searchability of a circular corridor with
two flashlights, where n denotes the total number of vertices of the outer
and inner boundaries. Moreover, a search schedule can be output in time
linear in its size, if it exists. Our result gives the first efficient solution
to the polygon search problem for two searchers.

1 Introduction

Motivated by the relation to the well-known Art Gallery problem, much attention
has recently been devoted to the problem of searching for a mobile intruder in
a polygonal region P by a mobile searcher [6, 7, 9, 10, 11]. Both the searcher
and the intruder are modeled by points that can continuously move in P , and
the intruder is assumed to be able to move arbitrarily faster than the searcher.
The intruder is said to be detected if he is ever within the vision of the searcher.
The polygon is said to be searchable if there exists a schedule for the searcher to
detect the intruder.

The visibility of a searcher can be defined by the flashlights he holds. The so-
called 1-searcher has a flashlight and can see only along the ray of the flashlight
emanating from his position. The direction of the flashlight can be changed
continuously with bounded angular rotation speed. The 1-searcher has to move
on the polygon boundary continuously, but the endpoint of the ray emanating
from the 1-searcher may not be continuous [6, 10]. If the endpoint of the ray
emanating from the 1-searcher is also required to move on the polygon boundary
continuously, it introduces a slightly different type of 1-searchers, which is usually
termed two guards [3, 4].

� Corresponding author.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 345–359, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

346 B. Jiang and X. Tan

A large number of papers on the polygon search problem has been published
in the computational geometry and robotics literature, since the polygon search
problem was first introduced in 1992 [9]. It is mainly because this problem cap-
tures the key issues in various robotics applications. Efficient algorithms that
compute search strategies can be embedded in various types of robotics systems
that detect intruders using lasers or cameras. Mobile robots can also be used in
a high-risk military action that requires to systematically search a building or
an area in enemy territory.

Most researches focus on the problem of searching a simple polygon (without
holes) by a single mobile searcher [6, 7, 9, 10, 11]. For example, a characteriza-
tion of the class of the polygons, which are searchable by a boundary searcher
(who always moves on the polygon boundary), and a linear time algorithm for
determining the searchability of simple polygons have been given in [11]. For
searching a simple polygon by two 1-searchers, an O(n4) time algorithm was
reported in [8]. Because of its high complexity, developing an efficient solution
for two 1-searchers is left as an interesting open problem. Only very preliminary
results on the problem of searching a polygonal region with holes by multiple
searchers were known [2].

In this paper, we study the problem of searching a circular corridor (i.e.,
a polygon with one hole) by two 1-searchers [5]. Both 1-searchers move on the
outer boundary ∂P , directing their flashlights at the inner boundary ∂H . If there
exists a search schedule for the 1-searchers to detect the intruder, we say that
the circular corridor is searchable with two flashlights, or simply searchable. Since
two searchers have to cooperatively search the circular corridor, the problem is
much difficult and challenging. A systematical study on the cooperative motions
of two searchers may open the door to more efficient solutions to the polygon
search problem for multiple searchers.

The main contributions of this paper are the followings. First, we give a
characterization of the class of circular corridors searchable with two flashlights,
in terms of weak visibility and deadlocks (which are not searchable with only one
flashlight [4]). It is obtained by a through study on the structures of the deadlocks
which restrict the motions of two flashlights. Based on our characterization, an
O(n log n) time algorithm is then presented to determine the searchability of
a circular corridor with two flashlights, where n denotes the total number of
vertices of the outer and inner boundaries. Moreover, a search schedule can be
output in time linear in its size, if it exists. Our result gives the first efficient
solution to the polygon search problem for two searchers.

2 Preliminaries

A circular corridor, denoted by CC, is defined as a polygon with one polygonal
hole. The outer boundary of CC is denoted by ∂P , and the inner boundary
is denoted by ∂H . For ease of presentation, we denote by P [x, y] (H [x, y]) the
clockwise closed chain of ∂P (∂H) from x to y, and P (x, y) (H(x, y)) the open
chain of ∂P (∂H) from x to y. For two points p ∈ ∂P , h ∈ ∂H , we say that

Searching a Circular Corridor with Two Flashlights 347

they are mutually visible if every interior point of the line segment ph lies in
the interior of CC, except for two endpoints p and h. For two chains P [x, y]
and H [x′, y′], we say that P [x, y] is weakly visible from H [x′, y′] if every point of
P [x, y] is visible from some point of H [x′, y′].

For a vertex v of CC, we denote by Pred(v) (resp. Succ(v)) the vertex of CC
immediately preceding (resp. succeeding) v on the boundary ∂P or ∂H clockwise.
A vertex of CC is reflex if its interior angle is strictly larger than 180◦; otherwise,
it is convex. An important definition for reflex vertices is that of ray shots: the
backward ray shot from a reflex vertex r of ∂P (∂H), denoted by B(r), is the
first point of ∂H (∂P), if it exists, hit by a “bullet” shot at r in the direction
from Succ(r) to r, and the forward ray shot F(r) is the first point of CC hit by
the bullet shot at r in the direction from Pred(r) to r. The vertex r is called
the origin of the shots B(r) and F (r).

A pair of vertices p ∈ ∂P , h ∈ ∂H is said to form a backward deadlock if both the
three points p, Succ(p),B(h) ∈ ∂P and the three point h, Succ(h),B(p) ∈ ∂H are
in clockwise order (Fig. 1(a)), or a forward deadlock if both the three points F (h) ∈
∂P , Pred(p), p and the three points F (p) ∈ ∂H , Pred(h), h are in clockwise order
(Fig. 1(b)). Two vertices p and h are called the defining vertices of the deadlock.
Also, the edges pSucc(p) and hSucc(h) in Fig. 1(a) (resp. pPred(p) and hPred(h)
in Fig. 1(b)) are called the defining edges of the deadlock.

P H

P H

(b) forward deadlocks(a) backward deadlocks

P H

(c) forbidden configurations for counter walks

P H

Fig. 1. Illustration of ray shots and deadlocks

2.1 Problem Definition

Let si(t) ∈ ∂P and fi(t) ∈ ∂H denote the position of the 1-searcher i (i = 1, 2)
and the endpoint of his flashlight at a time t > 0, respectively. A point x ∈ CC
is said to be detected or illuminated at time t if x is on the line segment s1(t)f1(t)
or s2(t)f2(t). Any region that might contain the intruder at a time is said to be
contaminated; otherwise, it is clear. The given CC is said to be searchable with
two flashlights if there exists a search schedule that finally clears CC (i.e., the
intruder is eventually on the ray emanating from either 1-searcher, no matter
how fast he moves).

A search schedule of two 1-searchers consists of the following basic actions
[6, 10]: The searcher si(t) (i = 1, 2) and the endpoint fi(t) of his flashlight move
along segments of single edges such that (i) no intersections occur among all line
segments si(t)fi(t) during the movement or (ii) any two of segments si(t)fi(t)

348 B. Jiang and X. Tan

intersect each other, and (iii) fi(t) jumps from a reflex vertex x to the other point
y or from the point y to the vertex x. Note that except for the movement of fi

performed by instructions (iii), all other movements of si and fi are continuous
on ∂P and ∂H , respectively.

In the rest of this paper, we denote by Sa (resp. Sb) the 1-searcher whose flash-
light moves in clockwise (resp. counterclockwise) direction. Fig. 2 illustrates an
example for clearing a circular corridor, where the shaded region denotes the clear
portion of CC and the dotted arrows give the directions in which the flashlights
move. The starting positions of two flashlights are shown in Fig. 2(a). Note that
the ray of the flashlight emanating from the 1-searcher sa separates the defining
edges of several deadlocks on ∂P from those on ∂H . The 1-searcher sb first uses
his flashlight to clear these defining edges on ∂P . See Fig. 2(b). Next, sb aims his
flashlight at the vertex r of ∂H (Fig. 2(c)), and sa moves his flashlight clockwise
over r (Fig. 2(d)). Two searchers can then move clockwise and counterclockwise,
respectively (Fig. 2(e)). Finally, they work together to clear CC (Fig. 2(f)).

P H

P H P H

P H P H

P H

Fig. 2. Snapshots of a search schedule

As shown in Fig. 2, two 1-searchers may cooperatively clear a group of dead-
locks in the beginning or ending of a searche schedule. Specifically, while a
1-searcher uses the ray of the flashlight to separate the defining edges of the
deadlocks on ∂P from those on ∂H , the other moves to clear the defining edges
on ∂P and some part of ∂H as well. We will use the ”start phase” and the ”end
phase” to represent two different time periods, in which the 1-searchers coop-
eratively clear a group of deadlocks (if it exists). To be exact, two 1-searchers
start at the same position and then move to clear a group of deadlocks in the
start phase. Analogously, after they move to clear a group of deadlocks, two
1-searchers finish the search at the same position in the end phase.

2.2 Related Work

We briefly review the solution to the two-guard problem [3, 4], which will be used
in our proof and the search algorithm as well. A corridor is a simple polygon

Searching a Circular Corridor with Two Flashlights 349

Q with a point u on the boundary called the ’entrance’ and the other v on the
boundary called the ’exit’. We denote it by (Q, u, v). Also, denote by L (resp.
R) the clockwise (resp. counterclockwise) chain Q from u to v. The deadlocks
between L and R can be defined with a slight modification that the three points
of a deadlock on R are in counterclockwise order [4]. The two-guard problem for
(Q, u, v) asks whether there is a walk from u to v such that two guards move
along L and R, one clockwise and the other counterclockwise. Note that the
instructions (i) and (ii) are allowed for two guards [4].

Lemma 1. (See [3, 4].) A corridor (Q, u, v) is walkable by two guards if and
only if L and R are mutually weakly visible and no deadlocks occur between L
and R. It takes Θ(n) time to test the two-guard walkability of a corridor, and
O(n log n + m) time to output an optimal walk schedule, where m (≤ n2) is the
number of the instructions reported.

A counter walk is a walk in which one guard moves clockwise on L from u to
v and the other moves clockwise on R from v to u, in such a way that they
are always mutually visible. (Clearly, u and v are mutually visible.) In order for
(Q, u, v) to have a counter walk, some configurations of non-crossing ray shots
from different chains are prohibited (see Fig. 12(i)) of [4]). For either example
shown in Fig. 1(c), the counter walk from p1h1 to p2h2 is not allowed, because
of the forbidden configuration of non-crossing ray shots from p and h.

Lemma 2. (See [3, 4]) A corridor (Q, u, v) is counter-walkable by two guards if
and only if L and R are mutually weakly visible and the configurations of non-
crossing ray shots shown in Fig. 12(i)) of [4] do not exist. It takes Θ(n) time
to test the counter-walkability of a corridor, and O(n log n + m) time to output
an optimal walk schedule, where m (≤ n2) is the number of the instructions
reported.

It is clear that the above results also hold for the 1-searcher. Note that u or v
can be defined as an edge of Q. In this case, only the parts of L and R walked
by the guards are considered [4].

3 Necessary Conditions

In this section, we present necessary conditions for circular corridors to be search-
able with two flashlights. The first condition simply comes from weak visibility
between ∂P and ∂H .

Lemma 3. If ∂P and ∂H are not mutually weakly visible, then CC is not search-
able.

Proof. Simple and omitted. �

From now on, assume that ∂P and ∂H are mutually weakly visible. Assume also
that all points on ∂P (resp. ∂H) are ordered with respect to a point p0 ∈ ∂P

350 B. Jiang and X. Tan

P H

P

H
P H

P H

P

H

P H

P

H

Fig. 3. Forbidden configurations

(resp. h0 ∈ ∂H). So the inequality a < b implies that a is encountered before b
by a clockwise walker on the boundary, starting at p0 or h0. Usually, we assume
that p0 and h0 are contained in the clear region. See Fig. 3. (The exact position
of p0 or h0 is not important, as it is used only to give the order of boundary
points.)

Let us now study the structures of deadlocks, which cannot be cleared in the
end (or start) phase. The simplest forbidden configuration consists of a deadlock
and a reflex vertex. Three vertices p, h and h′ are said to form a strong backward
(resp. forward) deadlock if p and h form a backward (resp. forward) deadlock,
and F (h′) < p and h < h′ (resp. p < B(h′) and h′ < h) hold. See Figs. 3(a) and
3(b). The vertices p, h and h′ (resp. their corresponding edges) are called the
defining vertices (resp. defining edges) of the strong deadlock.

Lemma 4. A strong deadlock cannot be cleared in the end phase.

Proof. Denote by p, h and h′ the three vertices of a strong backward (resp.
forward) deadlock in the contaminated region. See Fig. 3(a) (resp. Fig. 3(b)).
The lemma simply follows from a claim that the edge hSucc(h) (resp. hPred(h))
cannot be cleared in the end phase. Since our claim is rather simple, its rigorous
proof is omitted in this extended abstract. �

There are more other configurations of deadlocks, which cannot be cleared in
the end phase, either. Informally, whether a group of deadlocks can be cleared
in the end phase depends on whether the defining edges of the deadlocks on ∂P
can be separated from those on ∂H by the ray of a flashlight, and whether the
whole chain ∂H can be cleared by two 1-searchers cooperatively. To be more
precise, we introduce below the concept of ”non-separated” deadlocks.

Denote by 〈p1, h1〉 and 〈p2, h2〉, p1 < p2 and h1 < h2, two pairs of the defining
vertices of deadlocks. Let p(h1) denote the first point succeeding p2 (with respect
to the starting point p0), which is visible from h1, if it exists. Probably, the

Searching a Circular Corridor with Two Flashlights 351

point p(h1) is undefined (see Fig. 3(e)). Similarly, let p(h2) denote the last point
preceding p1, which is visible from h2, if it exists. Moreover, let v (resp. u) be the
vertex of H(h1, h2) (resp. H(h1, h2)) such that F (v) ∈ ∂P (resp. B(u) ∈ ∂P)
is the smallest (resp. largest) among those forward (resp. backward) shots, if it
exists.

Assume that no strong deadlocks occur among p1, h1 p2 and h2. The dead-
locks formed by 〈p1, h1〉 and 〈p2, h2〉 are said to be non-separated if one of the
followings is true.

(i) The deadlock formed by 〈p1, h1〉 is the backward one and the deadlock
formed by 〈p2, h2〉 is the forward one (Fig. 3(c)). Note that p1 < F (h2)
and B(h1) < p2 hold; otherwise, a strong deadlock occurs. For simplicity, we
call them a pair of BF -deadlocks.

(ii) The deadlocks formed by 〈p1, h1〉 and 〈p2, h2〉 are respectively the for-
ward and backward ones, and the chain H [h1, h2] is not weakly visible from
P [p2, p1] or there are no internal line segments ph such that ph separates the
defining edges of them on ∂P from those on ∂H (Fig. 3(d)). We call them a
pair of FB-deadlocks.

(iii) For two backward deadlocks, the point p(h1) is undefined (Fig. 3(e)), p1 <
F (v) < p2 (Fig. 3(f)) or the condition for the counter-walk from F (v)v
to p(h1)h1 is not satisfied when p2 < F (v) < p(h1) (Fig. 3(g)). Note that
p1 < F (v) holds; otherwise, the vertices p1, h1 and v form a strong backward
deadlock. We call them a pair of BB-deadlocks.

(iv) For two forward deadlocks, the point p(h2) is undefined, p1 < B(u) < p2
holds, or the condition for the counter-walk from B(u)u to p(h2)h2 is not
satisfied when p(h2) < B(u) < p1. Also, B(u) < p2, h1 < u holds. We call
them a pair of FF -deadlocks.

The definition of non-separated deadlocks is relatively complicated. This is
because there are so many different configurations of deadlocks in CC. Note
that the vertices p1, h1 p2 and h2 giving a pair of non-separated deadlocks are
not unique. The concepts of non-separated deadlocks and strong deadlocks are
important, as they not only help give a characterization of searchable circular
corridors but also make it possible to develop an efficient solution to this difficult
and challenging problem. Note also that if there are no internal segments ph such
that ph separates the defining edges of two backward (resp. forward) deadlocks
in CC, then a pair of BB-deadlocks (resp. FF -deadlocks) occurs.

Lemma 5. If two deadlocks are non-separated, they cannot be cleared in the end
phase.

Proof. Suppose first that there is a pair of BF -deadlocks in the contaminated
region. See Fig. 3(c) for an example. In this case, neither Sa nor Sb can further
move to any point of P (p1, p2); otherwise, CC becomes contaminated, except
for two line segments illuminated by the flashlights. For the same reason, neither
endpoint of the flashlights can be moved to any point of H(h1, h2). Hence, the
pair of BF -deadlocks cannot be cleared in the end phase.

352 B. Jiang and X. Tan

Assume now that a pair of FB-deadlocks occurs in the contaminated rgion. If
there are no internal segments ph such that ph separates the defining edges of the
deadlocks in CC, neither flashlight can be used to separate the defining edges of
the deadlocks, and thus, the pair of FB-deadlocks cannot be cleared in the end
phase. See Fig. 3(d). Otherwise, H [h1, h2] is not weakly visible from P [p2, p1].
So the chain H [h1, h2] cannot be cleared in the end phase. This is because Sa

(resp. Sb) cannot move over p1 clockwise (resp. p2 counterclockwise), before all
defining edges of uncleared deadlocks on ∂H are cleared. Hence, the pair of
FB-deadlocks cannot be cleared.

Finally, consider the situation in which a pair of BB-deadlocks occurs in
the contaminated region. (The situation where a pair of FF -deadlocks can be
dealt with analogously.) If p(h1) is undefined, then no point succeeding p2 is
visible from h1 and thus the movement of Sb is blocked by the deadlock formed
by p2 and h2. See Fig. 3(e) for an example. Hence, Sb cannot clear the whole
edge h1Succ(h1) using his flashlight. On the other hand, since p1 and h1 form
a backward deadlock, Sa cannot move the endpoint of his flashlight over the
vertex h1 clockwise. Therefore, the chain H [h1, h2] cannot be cleared in the
end phase, and the pair of BB-deadlocks can never be cleared. For the case
p1 < F (v) < p2, the discussion is the same as above, because Pred(v) cannot be
cleared by the flashlight of Sa or Sb. See Fig. 3(f). Consider the situation in which
p2 < F (v) < p(h1) holds. To clear the verex Pred(v), the ray of the flashlight of
Sb has to move to vF (v) at least once. Since F (v) < p(h1) holds, the vertex h1
is contaminated at that time. See Fig. 3(g). Because of the deadlock formed by
p1 and h1, it is impossible for Sa to clear the chain H [h1, v]. In order for Sb to
clear H [h1, v], the counter-walk from F (v)v to p(h1)h1 is then required. Hence,
if the required counter-walk is not allowed, the pair of BB-deadlocks cannot be
cleared. See Fig. 3(g). This completes the proof. �

By symmetry, a strong deadlock or a pair of non-separated deadlocks cannot be
cleared in the start phase, either. The following result shows that all polygons
in Fig. 3 are not searchable with two flashlights. Note first that any two of the
deadlocks shown in Figs. 3(c) to 3(g) are non-separated. With respect to a strong
backward (resp. forward) deadlock formed by p, h and h′, a deadlock is simple
if its defining vertex on ∂H is contained in H [h′, h) (resp. H(h, h′]). That is, h
cannot be the defining vertex of the simple deadlock. But, a defining vertex of
the simple deadlock may be identical to the vertex p or h′. See Figs. 3(a) and
3(b) for some examples.

Lemma 6. Suppose that ∂P and ∂H of the given circular corridor are mutually
weakly visible. Then, CC is not searchable with two flashlights if there are a
strong deadlock and a simple deadlock, or there are three deadlocks such that
any two of them are non-separated.

Proof. Suppose first that CC contains, say, a strong backward deadlock and a
simple deadlock. In order to clear CC, a 1-searcher has to initially use the ray
of his flashlight to separate the defining edge of the strong deadlock on ∂P from
two other defining edges on ∂H . From the proof of Lemma 4, we can assume

Searching a Circular Corridor with Two Flashlights 353

that H(h, h′) is contained in the contaminated region and two flashlights cross
over the chain H(h, h′), at a time t > 0. See Figs. 4(a) and 4(b). Consider only
the situation in which a defining vertex of the simple deadlock is identical to
the vertex h′, as all other situations can be dealt with analogously. Then, two
1-searchers may move to meet, say, at a point p′ < p (Fig. 4(a)) or p′ > p
(Fig. 4(b)), depending on the initial position of the flashlight used to separate
the defining edges of the strong deadlock (and the simple deadlock as well). To
clear the chain H [h, h′], either 1-searcher has further to move over p, to the
other side of p. But, it is impposible, because either the deadlock formed by
〈p, h〉 (Fig. 4(a)) or the simple deadlock (Fig. 4(b)) is encountered. Hence, the
chain H [h, h′] cannot be cleared, and CC is not searchable.

P HP H

P H

Fig. 4. Illustrating the proof of Lemma 6

Assume now that there are three deadlocks such that any two of them are non-
separated. If one of these three deadlocks is cleared in the start phase, a pair of
non-separated deadlocks has to be cleared in the end phase, and thus CC is not
searchable. See Figs. 3(c) to 3(g) for some examples. A 1-searcher may initially
use the ray of his flashlight to separate all defining edges of three deadlocks.
See Fig. 4(c). But, the position of this flashlight with respect to these deadlocks
cannot be changed after the start phase. The other 1-searcher may walk along
∂P to clear all points of ∂P . When two searchers meet on ∂P again, at least two
defining edges of these deadlocks on ∂H are still contaminated (Fig. 4(c)). Since
any two of the considered deadlocks are non-separated, two 1-searchers cannot
use their flashlights to clear all defining edges on ∂H , while keeping the whole
chain ∂P to be clear. Hence, CC is not searchable with two flashlights. �

4 Sufficiency

In this section, we show that the absence of the configurations described in
Lemma 6 ensures that CC is searchable with two flashlights.

Lemma 7. Suppose that ∂P and ∂H of the given circular corridor are mutually
weakly visible. Then, CC is searchable with two flashlights if there are neither
three deadlocks such that any two of them are non-separated, nor a strong dead-
lock and a simple deadlock in CC.

Proof. Assume first that CC does not contain any strong deadlock. Since there
are no three deadlocks such that any two of them are non-separated, we can find

354 B. Jiang and X. Tan

the disjoint line segments ph and p′h′ in CC such that two elements of any pair
of non-separated deadlocks are not contained in P [p, p′]∪H [h, h′] nor in P [p′, p]∪
H [h′, h]. See Fig. 5. (Probably, the defining edges of a considered deadlock belong
to P [p, p′] ∪ H [h, h′], but their ray shots are contained in P [p′, p] ∪ H [h′, h].)
Next, we show that the deadlocks appeared in between P [p, p′] and H [h, h′]
(resp. P [p′, p] and H [h′, h]) can be cleared in the end (resp. start) phase. Again,
we only discuss how to clear the deadlocks in the end phase, assuming that all
points of P [p′, p] ∪H [h′, h] have been cleared. Note also that a 1-searcher (resp.
the ray of his flashlight) can move on P [p′, p] (resp. H [h′, h]) in the end phase.

Assume that p1 and p2 (resp. h1 and h2) are the defining vertices of some
deadlocks such that all defining vertices of uncleared deadlocks on ∂P (resp.
∂H) belong to P [p1, p2] (resp. H [h1, h2]). We discuss only the situation in which
p1 and h1 differ from p2 and h2, respectively. (Other situations are simpler and
can be dealt with analogously.) Assume first that 〈p1, h1〉 and 〈p2, h2〉 form two
backward deadlocks. If there is no vertex v in H(h1, h2) such that the shot
F (v) ∈ ∂P is defined, Sb can simply use his flashlight to clear H [h1, h

′] and
then aim his flashlight at h1, which separates all defining edges of uncleared
deadlocks on ∂H from those on ∂P . Next, the searcher Sa can move to clear the
rest of the contaminated region. Hence, CC is searchable with two flashlights.
Suppose below that v is the vertex of H(h1, h2) such that the shot F (v) ∈ ∂P is
the smallest among these forward shots. If p2 < F (v) < p(h1) holds, the chain
of ∂H from v to the current endpoint of the ray emanating from Sb is weakly
visible from P [F (v), p′]. Also, the chain of ∂P from F (v) to the current position
of Sb is weakly visible from H [v, h′]; otherwise, there is a vertex r in P [F (v), p′]
such that F (r) < v holds on ∂H and thus r and v form a forward deadlock,
which is the case to be handled later. Since p2 < F (v), no defining vertices of
uncleared deadlocks on ∂P are contained in P [F (v), p′], and thus Sb can move
his flashlight to F (v)v using a walk [4]. Since the counter-walk from F (v)v to
p(h1)h1 is allowed, the flashlight of Sb can further be moved to p(h1)h1. See
Fig. 5(a). At that moment, all defining edges of uncleared deadlocks on ∂H are
separated from those by the flashlight of Sb. As described above, CC can then
be cleared. The remaining case is p(h1) < F (v). If there are no reflex vertices r
in P [p(h1), F (v)] such that F (r) < h1 holds, the flashlight of Sb can simply be
moved to p(h1)h1, which separates all defining edges of uncleared deadlocks on
∂P from those on ∂H , and thus CC is searchable. Otherwise, let r be the largest
vertex of P [p(h1), F (v)] such that F (r) < h1 holds. See Fig. 5(b). As discussed
above, the flashlight of Sb can be moved to rF (r) using a walk. Again, CC can
be cleared. The situation where 〈p1, h1〉 and 〈p2, h2〉 form the forward deadlocks
can be dealt with analogously.

Consider the situation in which p1 and p2 contribute to the different types
of deadlocks. Assume first that p1 (resp. p2) contributes to a backward (resp.
forward) deadlock, but neither 〈p1, h1〉 nor 〈p2, h2〉 forms a deadlock. (The sym-
metric case can be handled analogously.) Since all defining vertices of uncleared
deadlocks are contained in P [p1, p2]∪H [h1, h2], there is a vertex w in H(h1, h2]
such that p1 and w form the backward deadlock. See Fig. 5(c). If B(w) < p2

Searching a Circular Corridor with Two Flashlights 355

P H P

H P H

P
H

Fig. 5. Illustrating the proof of Lemma 7

holds, then P [p2, p
′] is weakly visible from H [w, h′]. Also, H [w, h′] is weakly

visible from P [p2, p
′]; otherwise, there is a vertex v in H [w, h′] (to be exact, in

H [w, h2)) such that F (v) < p2; in this case, p2 and v form a forward deadlock,
and two deadlocks of 〈p1, w〉 and 〈p2, v〉 form a pair of BF -deadlocks, a contra-
diction. As discussed above, the flashlight of Sb can then be moved to p2w using
a walk. Next, Sa moves to aim his flashlight at w, and then, Sb can further move
his flashlight, e.g., to p2F (p2) in Fig. 5(c), so as to separate the defining edges of
uncleared deadlocks. Hence, CC can be cleared with two flashlights. In the case
that B(w) > p2, as discussed above, the flashlight of Sb can first be moved to
B(w)w using a walk. Next, Sa moves to aim his flashlight at w, and Sb can then
use his flashlight to separate the defining edges of uncleared deadlocks. Again,
CC can be cleared with two flashlights.

The remaining case is that 〈p1, h1〉 forms a forward deadlock and 〈p2, h2〉 forms
a backward deadlock, with p1 < p2 and h1 < h2. (Recall that no pair of BF -
deadlocks occurs in CC.) For ease of presentation, assume that P [F (h1), B(h2)]
is also contained in P [p, p′]. Let v′ denote the smallest vertex of H [h1, h

′] such
that F (v′) < p2. If the vertex v′ does not exist, then we let v′ = h1. Also, let
u′ denote the largest vertex of H [h, h2] such that p1 < B(u′), and if u′ does not
exist, let u′ = h2. See Fig. 5(d) for an example. If both u′ and v′ exist, then
v′ < u′ holds; otherwise, H [h1, h2] is not weakly visible from P [p2, p1] and thus
the deadlocks formed by 〈p1, h1〉 and 〈p2, h2〉 form a pair of FB-deadlocks, a
contradiction. Then, H [h1, u

′] and H [v′, h2] are weakly visible from P [p, p1) and
P (p2, p

′], respectively. By considering v′ (resp. u′) as h1 (resp. h2), we can also
define the point p(v′) (resp. p(u′)) on ∂P . The flashlight of Sb (resp. Sa) can
then be moved to aim at v′ (resp. u′), when p(v′) (resp. p(u′)) is well defined.
See Fig. 5(d). Since no pair of FB-deadlocks occurs in CC, at least one of Sa

and Sb can further use the ray of his flashlight to separate the defining edges of
these deadlocks (Fig. 5(d)). The other 1-searcher (e.g., Sa in Fig. 5(d)) can then
move to clear the rest of the contaminated region. Hence, CC can be cleared.

Finally, let us show how to clear, say, a strong backward deadlock in CC.
Denote by p, h and h′ the defining vertices of the strong backward deadlock. By
fixing p, we can assume that the point B(h) (resp. F (h′)) is the largest (resp.
smallest) among the backward (resp. forward) shots from all possible defining
vertices h (resp. h′). Suppose that Sa is initially located at B(h) and aims his

356 B. Jiang and X. Tan

P H P H P H P H

Fig. 6. Illustration for clearing the strong deadlock

flashlight at h, so as to separate pSucc(p) from hSucc(h) (Fig. 6(a)). The searcher
Sb can then walk along ∂P in counterclockwise direction, starting at the same
position of Sa, till F (h′) is reached for the second time (Fig. 6(b)). Assume that
Sb has aimed his flashlight at h′. Since F (h′) is the smallest forward shot from
all the defining vertices h′, Sb can move to the vertex p so as to clear a part
of H [h, h′], as large as possible (Fig. 6(c)). Finally, since Sa is located at the
largest shot B(h), he can use (or rotate) his flashlight to clear CC (Fig. 6(d));
otherwise, ∂H is not weakly visible from ∂P , a contradiction. This completes
the proof. �

By now, we obtain the main result of this paper.

Theorem 1. Suppose that ∂P and ∂H of the given circular corridor are mu-
tually weakly visible. Then CC is searchable with two flashlights if and only if
there are neither three deadlocks such that any two of them are non-separated,
nor a strong deadlock and a simple deadlock in CC.

5 Algorithms

The following observation immediately follows fromthedefinitionofnon-separated
deadlocks.

Observation 1. Suppose that 〈p2, h2〉 and 〈p3, h3〉 form a pair of non-separated
deadlocks, with p2 < p3 and h2 < h3. If 〈p1, h1〉 forms the deadlock of the same
type as 〈p2, h2〉, with p1 < p2 and h1 < h2, then 〈p1, h1〉 and 〈p3, h3〉 form a pair
of non-separated deadlocks, too.

Assume that 〈p1, h1〉 and 〈p2, h2〉 form a pair of BB-deadlocks, with p1 < p2 and
h1 < h2. If there are no vertices p ∈ P (p1, p2), h ∈ H(h1, h2) such that 〈p1, h1〉
and 〈p, h〉 form a pair of BB-deadlocks, the deadlocks formed by 〈p1, h1〉 and
〈p2, h2〉 are said to be BB-adjacent. Analogously, we can define the FF -adjacent,
BF -adjacent and FB-adjacent deadlocks.

We have by now empolyed the symbol ”<” to indicate the order of boundary
points, with respect to a starting point p0 or h0, say, in the clear region. It works
well because p0 or h0 is not changed in our discussion made in the end (or start)
phase. However, the following algorithm for determining the searchability of a

Searching a Circular Corridor with Two Flashlights 357

circular corridor requires to traverse ∂P and ∂H several times. More causion
is thus needed. For example, a backward deadlock and a forward deadlock may
form a pair of BF -deadlocks or a pair of FB-deadlocks, depending on where the
starting points are set. To avoid confusions, we do not employ the symbol ”<”
in the description of our decision algorithm.

Theorem 2. The searchability of a circular corridor with two flashlights can be
determined in O(n log n) time, where n denotes the total number of vertices of
the outer and inner boundaries.

Proof. Let L denote an internal line segment in CC, which can simply be found in
linear time.We then compute in O(n log n) time all ray shots from reflex vertices
of ∂P and ∂H . This can be done by inserting L into CC as two isometric edges
and performing the ray shooting queries in the resulting simple polygon [1]. A
simple exception is that some ray shots may cross with L in CC, but it can
easily be handled. After all ray shots are obtained, the weak visibility between
the outer boundary ∂P and the inner boundary ∂H can be verified in linear
time [4].

Assume below that ∂P and ∂H are mutually weakly visible. Given two points
on ∂P and ∂H respectively, we can find the first deadlock, say, in clockwise
direction, if it exists [3]. The time required is linear in the total number of the
vertices and ray shots, which are traversed.

Let us now consider how to determine whether a strong deadlock and a simple
deadlock exist in CC. First, we find the first backward deadlock, starting at two
endpoints of L. Let p and h denote its two defining vertices. Then, continue to
traverse on ∂P and ∂H , starting at B(h) and Succ(h), till the next backward
deadlock is found. During the traversal, we also determine, for each reflex vertex
v encountered on ∂H , whether v, p and h form a strong backward deadlock. It
can be done in constant time, as all ray shots and vertices on ∂P have been
ordered. If yes, we are done. Otherwise, we obtain a new backward deadlock
adjacent to that of 〈p, h〉, and then, perform the same operation for it again.
This procedure stops as soon as a strong deadlock is reported, or either of p
and h is met again. In this way, a strong backward deadlock can eventually be
reported, if it exists. In the case that a strong deadlock is found, we further
determine whether a simple deadlock exists. Whether a strong forward deadlock
and a simple deadlock exist can be determined analogously. Since it suffices to
traverse on ∂H and ∂P a constant time, the time required is O(n).

Consider how to determine whether there are three deadlocks such that any
two of them are non-separated, provided that CC does not contain any strong
deadlock. (If a strong deadlock occurs, we can then determine whether CC is
searchable with two flashlights.) First, we determine whether there are three
backward (resp. forward) deadlocks such that any two of them form a pair of
BB-deadlocks (resp. FF -deadlocks). If yes, CC is not searchable and we are
done. Otherwise, as described above, we find a pair of BF -deadlocks such that
its two elements are BF -adjacent. Suppose that the two deadlocks giving the pair
of BF -deadlocks are found (otherwise, there are no three deadlocks consisting of
both backward and forward ones such that any two of them are non-separated,

358 B. Jiang and X. Tan

and CC is thus searchable). Next, we further determine whether two found
deadlocks also form a pair of FB-deadlocks. If no, all deadlocks can then be
cleared in the start phase, and thus CC is searchable. Otherwise, we determine
whether there exists the other deadlock sucht that it together with either found
deadlock forms a pair of BB-deadlocks with two BB-adjacent elements or a pair
of FF -deadlocks with two FF -adjacent elements. In the case that the pair of
BB-deadlocks or FF -deadlocks is found, we further determine whether the third
combination among three found deadlocks also gives a pair of FB-deadlocks. It
follows from Observation 1 that CC is searchable if and only if either answer
is no.

The procedure described above can be performed in O(n) time. First, whether
two deadlocks, say, given by 〈p1, h1〉 and 〈p2, h2〉, form a pair of FB-deadlocks
can be determined in O(n) time. This is because whether H [h1, h2] is weakly
visible from P [p2, p1] can be determined in linear time, and whether there are
internal segments ph such that ph separates the defining edges of two deadlocks
can also be determined, after the regions visible from h1 and h2 are computed.
Note that the operation of determining a pair of FB-deadlocks is performed at
most twice in the above procedure. The remaining task is to show that a pair
of BB-deadlocks (a pair of FF -deadlocks, or a pair of BF -deadlocks) with two
adjacent elements can be computed in linear time. Also, they are performed
only a constant time. Similar to the work of computing a strong deadlock, we
can make a traversal on ∂P and ∂H to find the required pair of non-separated
deadlocks. Due to space limit, we omit the detail.

In conclusion, whether there are three deadlocks such that any two of them
are non-separated can be tested in O(n) time, after all ray shots in CC are
computed. The proof is complete. �

Theorem 3. A search schedule can be reported in time linear in its size, which
is O(n2) in the worst case, if it exists

Proof. Omitted in this extended abstract. �

Acknowledgement

The authors would like to thank Prof. Tsunehiko Kameda of Simon Fraser Uni-
versity for valuable comments on a preliminary version of the paper.

References

[1] Chazelle, B., Guibas, L.: Visibility and intersection problem in plane geometry.
Discrete Comput. Geom. 4, 551–581 (1989)

[2] Guibas, L.J., Latombe, J.C., Lavalle, S.M., Lin, D., Motwani, R.: Visibility-based
pursuit-evasion in a polygonal environment. Int. J. Comput. Geom. & Appl. 9,
471–493 (1999)

[3] Heffernan, P.J.: An optimal algorithm for the two-guard problem. IJCGA 6, 15–44
(1996)

Searching a Circular Corridor with Two Flashlights 359

[4] Icking, C., Klein, R.: The two guards problem. IJCGA 2, 257–285 (1992)
[5] Kameda, T., Zhang, J.Z., Yamashita, M.: Searching a circular corridor by two

boundary 1-searchers. In: Proc. KyotoCGGT 2007 (2007)
[6] LaValle, S.M., Simov, B., Slutzki, G.: An algorithm for searching a polygonal

region with a flashlight. IJCGA 12, 87–113 (2002)
[7] Lee, J.H., Park, S.M., Chwa, K.Y.: Searching a polygonal room with one door by

a 1-searcher. IJCGA 10, 201–220 (2000)
[8] Simov, B.H., LaVallel, S.M., Slutzki, G.: A complete pursuit-evasion algorithm

for two pursuers using beam dectection. In: Proc. IEEE Int’l. Conf. Robotics
Automation, pp. 618–623 (2002)

[9] Suzuki, I., Yamashita, M.: Searching for mobile intruders in a polygonal region.
SIAM J. Comp. 21, 863–888 (1992)

[10] Tan, X.: A unified and efficient solution to the room search problem. Comput.
Geom. Theory Appl. 40, 45–60 (2008)

[11] Tan, X.: Searching a polygonal region by a boundary searcher. J. Comput. Sci.
Tech. (to appear)

On the Complexity of the Multiple
Stack TSP, kSTSP

Sophie Toulouse and Roberto Wolfler Calvo

LIPN (UMR CNRS 7030) - Institut Galilée, Université Paris 13
99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France

sophie.toulouse@lipn.univ-paris13.fr, wolfler@lipn.univ-paris13.fr

Abstract. Given a universal constant k, the multiple Stack Travelling
Salesman Problem (kSTSP in short) consists in finding a pickup tour T 1

and a delivery tour T 2 of n items on two distinct graphs. The pickup
tour successively stores the items at the top of k containers, whereas
the delivery tour successively picks the items at the current top of the
containers: thus, the couple of tours are subject to LIFO (“Last In First
Out”) constraints. This paper aims at finely characterizing the complex-
ity of kSTSP in regards to the complexity of TSP. First, we exhibit
tractable sub-problems: on the one hand, given two tours T 1 and T 2, de-
ciding whether T 1 and T 2 are compatible can be done within polynomial
time; on the other hand, given an ordering of the n items into the k con-
tainers, the optimal tours can also be computed within polynomial time.
Note that, to the best of our knowledge, the only family of combinatorial
precedence constraints for which constrained TSP has been proven to be
in P is the one of PQ-trees, [2]. Finally, in a more prospective way and
having in mind the design of approximation algorithms, we study the
relationship between optimal value of different TSP problems and the
optimal value of kSTSP.

1 Introduction

1.1 The Problem Specification

Assume that a postal operator has to pick up n items in some city 1, and then
to deliver the same items in some city 2. Such a situation can be modelized by
means of two TSP instances I1 = (G1, d1) and I2 = (G2, d2), where the two
graphs G1 = (V 1, E1) and G2 = (V 2, E2) have the same order n + 1 (vertex
0 represents the depot, whereas vertices [n] represent the location where the
items have to be picked up or delivered), and the distance functions d1 : E1 →
N, d2 : E2 → N associate integer values to the edges of G1, G2. The two TSP
instances I1, I2 thus represent the search of an optimal pickup tour in city 1,
and the search of an optimal delivery tour in city 2, respectively. If no constraint
occurs between the two tours, then the problem is equivalent to the resolution
of two independent TSP. In kSTSP, one assumes that the tours are subject to
LIFO contraints, namely: the pickup tour stacks the items into k containers,
so that the delivery tour must deliver at first the items that have been stored

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 360–369, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Complexity of the Multiple Stack TSP, kSTSP 361

at last by the pickup tour. Hence, a solution of kSTSP consists of a couple
of tours (T 1, T 2), together with a stacking order P on the k containers that is
compatible with both the pickup and the delivery tours. Here, a stacking order is
defined as a set {P 1, . . . , P k} of k q-uples P = (v

1, . . . , v

q�) that partitions [n],

where vertices v
1 and v

q� respectively represent the bottom and the top of the
�th stack. A feasible solution (T 1, T 2,P) is optimal if it is of optimal distance,
where the distance is given by the sum d1(T 1) + d2(T 2) of the distances of the
two tours. For sake of simplicity, we will always consider that G1 and G1 are
the complete directed graph Kn+1 on V = {0} ∪ [n]. In the case of symetric
distance functions, one just has to consider dα(u, v) = dα(v, u) for u, v ∈ V
and α ∈ {1, 2}; moreover, one could recognize unexisting arcs by associating
to each couple of vertices u, v ∈ V such that (u, v) /∈ Eα, e.g., the distance
dα(u, v) = dα

max + 1, where dα
max = max{dα(e) | e ∈ Eα}.

1.2 Previous Work, Problematic and Outline

By contrast to other TSP problems, only a few literature exists on this problem
(see, for example, [3,8] for some heuristic approaches), and none (to the best of
our knowledge) about its complexity. Anyway, the problem we address naturally
is NP − hard, from TSP.

Nevertheless, one could wonder about what combinatorial structure of kSTSP
impacts more on its complexity: the stacks (and the LIFO constraints they in-
duce on the tours), or the permutations themselves? The answer is not clear
and this paper shows why. First of all we prove that, given two tours T 1 and
T 2, deciding whether T 1 and T 2 are compatible or not is tractable, since the
decision reduces to k-coloring in comparability graphs. Moreover, given an or-
dering of the n items into the k stacks, the optimal tours can also be computed
within polynomial time, by means of dynamic programming. Another interest-
ing question concerns the relative complexity of kSTSP in regards to TSP: how
much its trickier combinatorial structure makes kSTSP harder to solve (exactly
as well as approximatively) than TSP? Although we do not provide formal an-
swers to this latter question, we give some intuition that kSTSP is globally
harder than general TSP to optimize: it is obvious that efficient algorithms for
kSTSP can be derived in order to solve TSP; by contrast, we establish that
tours of good quality for TSP may lead to arbitrary low quality solutions for
STSP.

The paper is organized as follows: we first expose in section 2 some notations
and properties that will be useful for the next sections; section 3 exhibits two
tractable sub-problems (one of decision when the tours are given, 3.2, one of
optimization when the stacks are given, 3.3); section 4 compares the behaviour
of solution values in STSP instances and some related TSP instances, bringing
to the fore that good resolution of TSP may not lead to good resolution of STSP;
finally, section 5 concludes with some perspectives.

362 S. Toulouse and R.W. Calvo

2 Preliminaries

Three strict orders <1, <2, <3 on [n] are associated, respectively, to the pickup
tour T 1 = (0, u1

1, . . . u
1
n, 0), to the delivery tour T 2 = (0, u2

1, . . . u
2
n, 0) and to a

stacking order P = {P 1, . . . , P k}. The two orders <1, <2 are complete whereas
<3 is partial. It means that ∀a �= b ∈ [n] we can write:

<1: a <1 b ⇔ T 1 picks up a before b
<2: a <2 b ⇔ T 2 delivers b before a

<3: a <3 b ⇔ ∃� ∈ [1, k] / a, b ∈ P , a is stacked before b in P

¬(a <3 b) ∧ ¬(a <3 b) ⇔ a, b are stacked into two distinct stacks

Lemma 1. A solution (T 1, T 2,P) is feasible iff the three orders <1, <2, <3 it
induces on [n] satisfy the following conditions:

∀a �= b ∈ [n], a <1 b ⇒ ¬(a >3 b) (1)
∀a �= b ∈ [n], a <2 b ⇒ ¬(a >3 b) (2)

Proof. The necessary condition is obvious. For the sufficient condition, let con-
sider a pickup tour T 1 and a stacking order P (the argument is rather similar
for the delivery tour). For any i ∈ [n], T 1 has to pick up the item u1

i , that is
of index j in some stack P ; this is possible iff the previous item that T 1 has
picked up in P is the item u

j−1, or there is no such index and j = 1, what is
always true if T 1 and P verify condition (1). ��

3 Complexity Classes and Properties

3.1 Global Complexity

The problem obviously is NP − hard, for arbitrary instances (G1, d1;G2, d2) of
kSTSP (where by “arbitrary”, we mean that we do not make any asumption,
neither on the graph completeness, nor on the symetry of the distance functions).
When the distance functions d1 and d2 are the same, up to the arc direction (that
is, d1(a, b) = d2(b, a) for all a, b ∈ {0} ∪ [n]), it is equivalent to the regular TSP
(consider on the one hand that T 1 = (0, u1, . . . , un, 0) is an optimal pickup tour
iff T 2 = (0, un, . . . , u1, 0) is an optimal delivery tour, on the other hand that
every stacking order that is feasible for T 1 also is feasible for T 2). Second, for
a given triple (T 1, T 2,P) where T 1, T 2 are two tours on {0} ∪ [n] and P is a
stacking order of [n] using k stacks, checking whether (T 1, T 2,P) is feasible or
not can be done within linear time (quite immediate from Lemma 1).

3.2 Deciding Feasibility for a Couple of Tours

Let us denote by G	= = (V 	=, E 	=) the graph induced by the set of pairs {a, b}
such that the two orders <1 and <2 are discordant:

E 	= = { {a, b} | a �= b ∈ [n], a <1 b ∧ a >2 b }, V 	= =
⋃

{a,b}∈E �=
{a, b}

On the Complexity of the Multiple Stack TSP, kSTSP 363

Lemma 2. Given two tours T 1, T 2, a compatible stacking order P exists iff
χ(G	=) ≤ k, where χ(G	=) denotes the chromatic number on G	=.

Proof. For the necessary condition, consider a feasible solution (T 1, T 2,P) and
two items a �= b such that {a, b} ∈ E 	=, iff a <1 ∧a >2 b, or a >1 b ∧ a <2 b. In
both cases, we know from Lemma 1 that ¬(a >3 b)∧¬(a >3 b); thus, the k stacks
in P correspond to k independent sets in G	=. For the sufficient condition, we
build from a k-coloring on V 	= a stacking order P that fulfills, together with T 1

and T 2, conditions (1) and (2) of Lemma 1. We first fill each stack P with the
items of the �th color set {v

1, . . . , v

q�}, by considering on P the order induced

by the relation <1,2 defined as: <1,2=<1 ∧ <2 (the two orders do coincide
on each color �). It remains to insert into the stacks the items from [n]\V 	=.
The orders <1 and <2 also coincide on ([n]\V 	=) × [n]; we can therefore write
[n]\V 	= = (v1, . . . , vr) with v1 <1,2 . . . <1,2 vr. For index i from 1 to r, we insert
vi in position j(vi) + 1 in P 1 iff j(vi) is the current maximum index j such that
v1

j <1,2 vi, if such an index exists; otherwise, j(vi) = 0 (in any case, indices in
P 1 are updated after each insertion). We finally obtain a partition of [n] within
a set of k stacks such that in every stack, the elements are ordered with respect
to <1,2, what fulfills conditions (1) and (2). ��
Graph coloring problems (in general, but also k-coloring for a universal constant
k ≥ 3) are known to be NP − c (see, e.g., [4]); nevertheless, it turns out that
G	= belongs to the class of perfect graphs, for which determining χ(G) is in P, [6].
Hence, the considered decision problem is tractable, for any k (and this even if k is
not any longer considered as a universal constant, but as being part of the input).

Theorem 1. The STSP sub-problem that consists, given a couple (T 1, T 2), in
deciding whether there exists or not a compatible stacking order, is in P.

Proof. E 	= represents the pairs {a, b} of [n] such that (a <1 b∧ a >2 b) or (a >1

b ∧ a <2 b), where we recall that <1 and <2 both totally order [n]. Therefore,
G	= is a comparability graph. Indeed, consider the set of arcs F 	= = {(a, b) ∈
[n] × [n] | a <1 b ∧ a >2 b}: (i) for all a �= b ∈ V 	=, (a, b) ∈ F 	= ∨ (b, a) ∈ F 	=

iff {a, b} ∈ E 	=; (ii) for all a �= b ∈ V 	=, (a, b) ∈ F 	= ⇒ (a, b) /∈ F 	=; (iii) for all
distinct a, b, c ∈ V 	=, (a, b) ∈ F 	= and (b, c) ∈ F 	= iff a <1 b <1 c ∧ a >2 b >2 c
and thus, (a, c) ∈ F 	=. Then, F 	= defines a transitive orientation of the edge set
E 	=, and G	= is a comparability graph. By the way, note that a comparability
graph G = (V,E) may represent the conflict graph of some couple or orders
(<1, <2) iff its complementary graph G = (V,E) also is a comparability graph
(representing <1 ∧ <2).

Algorithm 1 is a polynomial time procedure that, given a couple of tours
(T 1, T 2), responses NO if this couple is unfeasible, returns a compatible stacking
order P otherwise. ��

3.3 Optimizing the Tours When the Stacks Are Given

In this section, we prove that it is a tractable problem to compute the optimal
tours, when the stacks are fixed.

364 S. Toulouse and R.W. Calvo

Algorithm 1. STACKING FROM T 1 AND T 2

Input. T 1 a pickup tour, T 2 a delevery tour, k the number of stacks.
Output. A compatible stacking order P iff (T 1, T 2) is feasible.

for 	 = 1 to k do P � ←− ∅;
build G�= = (V �=, E �=) from T 1, T 2;

// Coloring stage

for each v ∈ [n]\V �= do C(v) ←− 1;

compute a minimum coloring
(
C : V �= → [χ(G�=)], v �→ C(v)

)
on G�=;

if χ(G�=) > k then return NO;

// Stacking stage (done according to <1)

for i = 1 to n do { 	 ←− C(u1
i); stack u1

i into P � };
return P = {P 1, . . . , P k};

Theorem 2. For a given stacking order P, one can find an optimal pickup tour
and an optimal delivery tour within polynomial time (but exponential in k).

Proof. We only present the argument for the pickup tour (the proof being rather
similar for the delivery tour). Let P = P 1, . . . , P k where P = (v

1, . . . , v

q�) for

any � be a stacking order. A pickup tour that is compatible with P starts by
picking up the items which must be placed at the bottom of each stack, until
all the stacks have been completely read. Hence, we will consider the space of
states S = ×k

=1[0, q
], where a state e = (e1, . . . , ek) ∈ S represents the set of

items on each stack that have already been picked up. Therefore, e = h means
that items v

1, . . . , v

h have been collected, and that the current bottom (that

is, its (h + 1)th element v
h+1) is the next item in P that has to be picked

up. Let denote with W (e) = ∪k
=1{v

1, . . . , v

e�} the set of collected items once

the state e has been reached. Althought there are (in general) an exponential
number of paths to reach a given state e, there are only (at most) k possible
preceding states, depending on which stack has been considered at last. Hence,
we associate to each state e its list of possible predecessors p(e, 1), . . . , p(e, k),
where p(e, �) = (e1, . . . , e−1, e − 1, e+1, . . . , ek), for e and � such that e ≥ 1.

In order to build an optimal tour, we associate to each state e a collection
of k labels that correspond to its cost. For any e �= (0, . . . , 0) ∈ S, and for any
� ∈ [k], the label E(e, �) gives the minimum cost for picking up all the items of
W (e) starting from 0, compatible with P , and that end with P . According to
this definition, E(e, �) may only depend on E(p(e, �), �′), for �′ ∈ [k]: the current
sub-tour T 1 may reach e after having picked up v

e� iff v
e� has not been picked up

yet. Then, for any e �= (0, . . . , 0), (q1, . . . , qk) ∈ ×k
=1[0, q

] and for any � ∈ [k],
we have the following reccurrence relation:

E(e, �) =

{
+∞ if e = 0
mink

′=1{E(p(e, �), �′) + d1(v′
p(e,)�′ , v

e�) | p(e, �)′ ≥ 1} if e ≥ 1

On the Complexity of the Multiple Stack TSP, kSTSP 365

Note that item v′

p(e,)�′ differs from v′

e�′ (that is, p(e, �)′ differs from e′) iff
�′ = �. The initial conditions are given by the k states f(�) = (0, . . . , 0, 1, 0, . . . , 0)
that correspond to the �th canonical vectors:

E(f(�), �′) =
{

+∞ if �′ �= �, d1(0, v
1) if �′ = �

}
Finally, the expression of the labels on the final state F = (q1, . . . , qk) is the

following (for � such that F ≥ 1):

E(F, �) =
k

min
′=1

{E(p(F, �), �′) + d1(v′
p(F,)�′ , v

q�) + d1(v

q� , 0) | p(F, �)′ ≥ 1}

Algorithm 2. optimal PICKUP TOUR(P)
Input. I = (d1, d2) an instance of kSTSP, P a stacking order on I .
Output. An optimal pickup tour T 1 that is compatible with P .

// Initialization stage

for e ∈ S , 	 ∈ [k] s.t. e� = 0 do E(e,) ←− +∞;

for 	 ∈ [k] do E(f(),) ←− d1(0, v�
1);

// Dynamic procedure

for p = 2 to n − 1 do
for e ∈ S s.t. |e| = p do

for 	 = 1 to k s.t. e� ≥ 1 do

E(e,) ←− mink
�′=1{ E(p(e,), 	′) + d1(v�′

p(e,�)�′ , v
�
e�) | p(e,)�′ ≥ 1 };

// Termination

for 	 = 1 to k s.t. F � ≥ 1 do

E(F,) ←−
k

min
�′=1

{ E(p(F,), 	′)+d1(v�′
p(F,�)�′ , v

�
F �)+d1(v�

F � , 0) | p(F,)�′ ≥ 1 };

return T 1 the tour associated with the label arg min{E(F, q�) | 	 = 1, . . . , k};

The optimal value is the minimal cost among E(F, 1), . . . , E(F, k), since any
feasible pickup tour must end with the top of some stack. Furthermore, the
recurrence relation indicates that the labels of a state e (including F) such that
|e| = p (where | · | denotes the Hamming norm) only depend on a subset of
the states e′ such that |e|′ = p − 1. Based on these observations, Algorithm 2
computes an optimal pickup tour within polynomial time. The number of states
to consider is upper bounded by (n+1)k−1 (the worst configuration occurs when
the items are fairly distributed in the k stacks). The computation of the k labels
of a given state requires at worst k2 comparisons and the global complexity is
O((n + 1)k). Note that the computation of an optimal delivery tour is perfectly
symetric, considering the reverse order on each stack. ��

4 Evaluating Optimal kSTSP vs. Optimal TSP

In this section, we discuss relationships between solution values of the two TSP
tours and the optimal value of the kSTSP. For a given instance I = (d1, d2) of the

366 S. Toulouse and R.W. Calvo

kSTSP, we define the two instances I1 = (Kn+1, d
1) and I2 = (Kn+1, d

2) of the
TSP. The optimal values (resp., the worst solution values) on I1, I2 (for the TSP)
and I (for the kSTSP) are respectively denoted by optTSP (I1), optTSP (I2) and
optkSTSP (I) (resp., by worTSP (I1), worTSP (I2) and workSTSP (I)). For any I,
these extremal values obviously verify relations (3) and (4). Any feasible couple
(T 1, T 2) for the kSTSP is feasible for the couple of TSP instances (I1, I2). For
any tour T 1 on I1 (resp., T 2 on I2), there exists a compatible tour T 2 (resp.,
T 1). Note that for this latter fact (and thus, for relation 5), we must assume
that the underlying graphs are complete.

optTSP (I1) + optTSP (I2) ≤ optkSTSP (I) (3)
workSTSP (I) ≤ worTSP (I1) + worTSP (I2) (4)

optkSTSP (I) ≤
{

optTSP (I1) + worTSP (I2)
worTSP (I1) + optTSP (I2)

}
≤ workTSP (I) (5)

In particular we discuss the results obtained by two simple heuristics denoted
here after TWS and TWD and based on the idea of solving to optimality a single
TSP. TWS builds a solution of the kSTSP, by solving to optimality the delivery
tour, while the pickup tour is fixed (or the reverse). TWD determines a solution
for the kSTSP, by solving to optimality a single stack TSP on a graph whose
distance function is obtained by summing up the original distance functions.
We prove that both TWS and TWD give an unbouded error, when particular
instances families are considered. Let’s introduce some more notations. Given the
TSP solutions T ′1, T ′2 for I1, I2, we denote by opt2STSP |T ′1 (resp. opt2STSP |T ′2)
the best solution value for the kSTSP on I, among the solutions (T 1, T 2,P)
where T 1 = T ′1 (resp., T 2 = T ′2). The optimal TSP tours on I1, I2 are denoted
by T 1,∗, T 2,∗, respectively. Moreover, for a given α ∈]0, 1[, we denote by Iα the
TSP instance on Kn+1 with distance function dα = 2

(
αd1 + (1 − α)(d2)−1

)
,

where (d2)−1 is defined as (d2)−1(a, b) = d2(a, b) for any couple (a, b) of items.
The optimal tour on Iα will be denoted by T ∗

α.

Lemma 3. We consider arbitrary distance functions d1, d2 (symetric or not).

1. For a ∈ {1, 2}, the optimal value opt2STSP |T∗,a(I) verifies:

infI∈I2STSP opt2STSP |T a,∗(I)/opt2STSP (I) = +∞

2. For α = 1/2, the quantities d1(T ∗
α) + d2(T ∗

α) and opt2STSP (I) verify:

inf
I∈I2ST SP

(
d1(T ∗

α) + d2(T ∗
α)
)
/opt2STSP (I) = +∞

Proof. 3-1, the asymetric case. Consider the instance family (In)n≥3, In =
(d1

n, d
2
n), defined as (indexes are taken modulo n + 1):

d1
n(u, v) =

{
1 if v = u + 1
1 + ε otherwise d2

n(u, v) =
{

1 if v = u + 1
n otherwise

On the Complexity of the Multiple Stack TSP, kSTSP 367

The optimal values for TSP on I1
n and I2

n both are n + 1, reached by the
tours T 1,∗

n = T 2,∗
n = (0, 1, 2, . . . , n, 0). If we fix T ′1

n = T 1,∗
n , then any stacking

order Pn = {P 1
n , P

2
n} that is compatible with T ′1

n will order the items in such a
way that contradicts the order induced by the optimal delivery tour. In order to
evaluate the best possible compatible T 2

n , we consider three cases:

– Case (0, 1) ∈ T 2
n : 1 >2 u ∀u �= 1 ∈ [n], 1 <1 u ∀u �= 1 and thus, item 1 is non

comparable to any other item under <3; hence, P a
n = (1), P 3−a

n = (2, . . . , n)
(for a ∈ {1, 2}), T 2

n = (0, 1, n, n − 1, . . . , 3, 2, 0) and d2
n(T 2

n) = 1 + n2.
– Case (n, 0) ∈ T 2

n : by means of a similar argument, we obtain P a
n = (n), P 3−a

n

= (1, . . . , n − 1), T 2
n = (0, n − 1, n − 2, . . . , 2, 1, n, 0) and d2

n(T 2
n) = 1 + n2.

– Case (0, 1), (n, 0) /∈ T 2
n : consider any item u ∈ [n]\{1, n}, and assume (u −

1, u), (u, u+ 1) ∈ T 2
n ; we then deduce from u− 1 >2 u >2 u+ 1 and u− 1 <1

u <1 u+ 1 that items u− 1, u and u+ 1 are pairwise non comparable under
<3, what is not possible for k = 2. Hence, T 2

n uses at least one arc (resp.,
exactly 2 arcs) of distance n per item v ∈ [n] (resp., for the depot 0) and
thus, d2

n(T 2
n) ≥ 1/2(n(n + 1) + 2n) = n(n + 3)/2.

Moreover, the following solution is optimal for In, of value 2(n + 1) + (�(n +
1)/2� + 1)ε; it consists in stacking items of odd and even values by decreasing
order into separated containers, which enables to use the delivery tour T 2

n = T 2,∗
n ,

while putting into T 1
n a maximum number of arcs of kind (u, u + 1) (figure 1

illustrates instance In for even value of n):

P 1
n = (n, n − 2, . . . , n − 2i, . . . , n − 2�(n − 1)/2�)

P 2
n = (n − 1, n − 3, . . . , n − (2i + 1), . . . , n − (2�(n − 2)/2� + 1))

Tn = {(0, n − 1)} ∪ {(n − (2i + 1), n − 2i, n − (2i + 3)) | i = 0, . . . , �(n − 4)/2�}
T 1

n = T ∪ {(2, 0)} if n even, T ∪ {(3, 1), (1, 0)} if n odd
T 2

n = (0, 1, . . . , n, 0)

We thus get the expected result (note by the way that, since optTSP (I1
n) +

worTSP (I2
n) = (n + 1)2, the ratio opt2STSP |T ′1

n
(In)/(optTSP (I1

n) + worTSP (I2
n))

is asymptotically 1/2):

opt2STSP |T ′1
n

(In) ≥ (n + 1) + n(n + 3)/2
opt2STSP (In) ≤ (n + 1)(2 + ε)

}
⇒ opt2STSP |T ′1

n
(In)

opt2STSP (In)
−→

n→+∞
+∞

3-1, the symetric case. Consider (Jn)n≥6, Jn = (d1
n, d

2
n), defined as (see figure 2

for an illustration):

d1
n(u, v) =

{
1 if v = u ± 1
1 + ε otherwise d2

n(u, v) =
{

1 if v + u ∈ {n, n + 1}
n otherwise

The tours T 1,∗
n =(0, 1, 2, . . . , n, 0) and T 2,∗

n =(0, n, 1, n−1, 2, n−2, 3 . . . , n/2�, 0)
are optimal on J1

n, J
2
n, of value n + 1 and 2n, respectively. Similary to the asy-

metric case, we show that, for items u = 2, . . . , n−1 such that 2u /∈ {n−1, n, n+
1, n + 2}, any tour T 2

n thas is compatible with T ′1
n = T 1,∗

n cannot use the whole
(undirected) sequence1:
1 The proof is not provided here, please contact the authors for further information.

368 S. Toulouse and R.W. Calvo

0

1 2 n/2

n n − 1 n/2 + 1

d1
n, d2

n: arcs of distance 1

P 1
n: n − 1 n − 3 3 1

P 2
n: n n − 2 4 2

0

0

0

0

The optimal tours:
T 1

n in plain lines, T 2
n in dashed lines

Fig. 1. Instance In for n even

0

1 2 n/2

n n − 1 n/2 + 1

d1
n (plain lines), d2

n (dashed lines):
edges of distance 1

P 1: 1 2
n/2 − 1 n/2

P 2: n
n − 1 n/2 + 2 n/2 + 1

0

0

0

0

The optimal tours:
T 1

n in plain lines, T 2
n in dashed lines

Fig. 2. Instance Jn for n even

{u + 1, n − u, u, n + 1 − u, u − 1}
Hence, opt2STSP |T ′1

n
(Jn) ≥ (n+1)+((n−4)(3+n)+5∗4)/4 ≥ n2/4, whereas

the following solution is of value 3n + 2ε − 1 (case n even):

P 1
n = (1, 2, 3, . . . , n/2), P 2

n = (n, n − 1, n − 2, . . . , n/2 + 1)
T 1

n = (0, 1, 2, . . . , n/2;n, n − 1, . . . , n/2 + 2, n/2 + 1; 0)
T 2

n = (0, n, 1, n − 1, 2, . . . , n/2 − 1, n/2 + 1, n/2; 0)

3-2. Consider the following symetric instance family (Hn)n≥3:

condition d1
n(u, v) d2

n(u, v) d1
n(u, v) + d2

n(u, v)
if v = u ± 1 1 n n + 1
else if v = u ± 2 1 n + 1 n + 2
else if u + v ∈ {n + 1, n + 3} n + 1 1 n + 2
else n + 1 n + 1 2n + 2

The tour T ∗
n,1/2 = (0, 1, 2, . . . , n, 0) that is optimal for the aggregate distance

function is of value (n + 1)2, whereas there exists a couple (T 1,∗
n , T 2,∗

n) of com-
patible optimal tours with d1

n(T 1,∗
n) = n + 1 and d2

n(T 2,∗
n) = (n − 3) + 5(n + 1)

(for n even) or d2
n(T 2,∗

n) = (n − 4) + 6(n + 1) (for n odd); hence, the following
solution of 2STSP is optimal, of value in {7n + 2, 8n + 2} (case n even):

P 1
n = (1, 3, 5, . . . , n − 3, n − 1), P 2

n = (n, n − 2, n − 4, . . . , 4, 2)
T 1

n = (0; 1, 3, . . . , n − 3, n − 1;n, n − 2, . . . , 4, 2, 0)
T 2

n = (0; 1, n, 3, n − 2, 5, . . . , 6, n − 3, 4, n − 1, 2; 0)

On the Complexity of the Multiple Stack TSP, kSTSP 369

Note that there exist simplier instance families verifying that dn,1/2(T ∗
n,1/2) is

arbitrarly large vs. opt2STSP ; however, for more relevancy, we built (Hn)(n) in
such a way that T ∗

n,1/2 and the couple (T 1,∗
n , T 2,∗

n) are not compatible. ��

5 Conclusion

This paper address the time complexity of kSTSP, whose highly combinatorial
structure suggests the search of approximation algorithms (may be the most
likely for the differential ratio, [7]). The good complexity of its sub-problems
makes relevant the design of exact methods based on constraints decomposition
of kSTSP. Finally, it would be interesting to better characterize the shape of
precedence constraints for which TSP/sequencing under precedence contraints
are tractable. Indeed, we deduce from Theorem 2 that TSP under “stack prece-
dence constraints” is in P. Equivalently, the single machine scheduling with
sequence-dependent time or cost setup under the same shape of constraints, that
we denote by (1/k-stack,p,STsd/Cmax) ≡ (1/k-stack,p,STsd/TST) and (1/k-
stack,p,SCsd/TSC), are tactable (for the notations used in order to represent
the α/β/γ-classification, [5] of scheduling problems, we refer to [1]). Here, by
“stack precedence constraints”, we mean that the constraints define a partial
order on [n] within at most k ordered subsets, where k is a universal constant.

References

1. Allahverdi, A., Gupta, J.N.D., Aldowaisan, T.: A review of scheduling research
involving setup considerations. Omega 27(2), 219–239 (1999)

2. Burkard, R.E., Deineko, V.G., Woeginger, G.J.: The Travelling Salesman and the
PQ-Tree. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO
1996. LNCS, vol. 1084, pp. 490–504. Springer, Heidelberg (1996)

3. Felipe, A., Ortuño, M., Tirado, G.: Neighborhood structures to solve the double
TSP with multiple stacks using local search. In: Proc. of FLINS 2008 (2008)

4. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of
NP-completeness. Freeman, CA (1979)

5. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann. of
Discrete Math. 5, 287–326 (1979)

6. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

7. Monnot, J.: Differential approximation results for the Traveling Salesman and re-
lated problems. Information Processing Letters 82(5), 229–235 (2002)

8. Petersen, H.L., Madsen, O.B.G.: The double travelling salesman problem with mul-
tiple stacks - Formulation and heuristic solution approaches. EJOR (2008) (in press)

Linear Programming Based Approximation
Algorithms for Feedback Set Problems in

Bipartite Tournaments

Anke van Zuylen

Institute for Theoretical Computer Science, Tsinghua University, Beijing, China

Abstract. We consider the feedback vertex set and feedback arc set
problems in bipartite tournaments. We improve on recent results by giv-
ing a 2-approximation algorithm for the feedback vertex set problem.
We show that this result is the best we can attain when using a cer-
tain linear program as the lower bound on the optimal value. For the
feedback arc set problem in bipartite tournaments, we show that a re-
cent 4-approximation algorithm proposed by Gupta [5,6] is incorrect. We
give an alternative 4-approximation algorithm based on an algorithm for
feedback arc set in (regular) tournaments in [10,11].

1 Introduction

We consider the feedback vertex set problem and the feedback arc set problem
on bipartite tournaments. The feedback vertex set problem on a directed graph
G = (V,A) asks for a set of vertices V ′ of minimum size such that the subgraph
of G induced by V \V ′ is acyclic. The feedback arc set problem on G asks for
a set of arcs A′ of minimum size such that (V,A\A′) is acyclic. A bipartite
tournament is an orientation of a complete bipartite graph.

The feedback vertex set problem and the feedback arc set problem are equiva-
lent on general directed graphs: given a directed graph G = (V,A) we can create
a graph G′ which has a vertex for every arc in A, and an arc from vertex (u, v)
to vertex (v, w). A directed cycle in G corresponds to a directed cycle in G′ and
vice versa; hence a feedback vertex set in G′ corresponds to a feedback arc set in
G, and a feedback arc set in G′ corresponds to a feedback vertex set in G. The
feedback arc/vertex set problem in general graphs is APX-hard [7], and can be
approximated to within log |V | log log |V | [3,9]. On bipartite tournaments, the
problems are no longer equivalent, since if G is a bipartite tournament, then
the graph G′, as defined above, is bipartite but not necessarily a bipartite tour-
nament and vice versa. However, both problems were shown to be NP-hard on
bipartite tournaments as well [4,2].

Cai, Deng and Zang [2] study a certain linear programming relaxation of the
feedback vertex set problem in bipartite tournaments. They characterize cer-
tain small “forbidden subgraphs”, and show that for an instance which does
not contain such a subgraph, the linear program is totally dual integral: both
the linear program and its dual have integer optimal solutions. Their work also

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 370–379, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

LP Based Approximation Algorithms for Feedback Set Problems 371

implies a 3.5-approximation algorithm for the feedback vertex set problem in
bipartite tournaments. Prashant [8] recently improved this result by giving a
3-approximation algorithm for feedback vertex set in bipartite tournaments. He
uses the optimal solution to a linear programming relaxation of the feedback
vertex set problem, and shows that one can iteratively round variables that are
≥ 1

3 , until one obtains a feasible integer solution of cost at most 3 times the cost
of the linear program. Gupta [5,6] claims a (randomized) 4-approximation algo-
rithm for feedback arc set in bipartite tournaments, by adapting the approach of
Ailon, Charikar and Newman [1]. She shows that one can obtain a deterministic
algorithm with the same guarantee, by using the optimal solution to a linear
programming relaxation and the ideas in [10].

In this paper, we start by giving an alternative method for rounding the linear
program for feedback vertex set in bipartite tournaments used by Prashant [8]
which also gives an integer solution that costs at most 3 times the optimal
value of the respective linear program. Our algorithm simply rounds up the
variables that are at least 1

2 plus all variables that are strictly greater than 0
and that correspond to vertices “on the left” in the bipartite tournament. Our
algorithm and its analysis immediately suggest two improvements. First, we
could also round up the variables that are strictly greater than 0 that correspond
to vertices “on the right”. We show that taking the better of these two rounded
solutions yields a 5

2 -approximation algorithm. Our second improvement uses
iterated rounding, where we solve the linear program, round up the variables
that are greater than 1

2 , formulate a new linear program, and repeat. At some
point, all variables are either 1 or less than 1

2 . Once this condition is reached, we
show how to round the remaining solution and bound the cost against the dual
solution to get a 2-approximation algorithm. We show that this result is tight
for the linear program under consideration: we demonstrate an example with
integrality gap 2, hence one cannot obtain a better approximation algorithm by
using the lower bound given by the linear program.

Next, we consider the feedback arc set problem in bipartite tournaments. We
point out a problem in the analysis of the algorithm used by Gupta [5,6] and
show that it does not give a constant factor approximation algorithm. However,
we give another algorithm that does indeed obtain the result claimed by Gupta.

2 Feedback Vertex Set in Bipartite Tournaments

We are given a bipartite tournament G = (V,A), and want to find a set of
vertices V ′ ⊆ V such that the subgraph of G induced by V \V ′ is acyclic, and
|V ′| is minimal. We consider here a more general problem, in which for each
i ∈ V , we are given a weight wi ≥ 0, and the goal is to find a feedback vertex
set V ′ of minimum weight

∑
i∈V ′ wi.

We use the following well known lemma [2,8].

Lemma 1. A bipartite tournament is acyclic if and only if it contains no cycle
of length 4.

372 A. van Zuylen

Given a bipartite tournament G = (V,A), let C be the set of cycles of length 4, i.e.
C ∈ C is given by {i1, (i1, i2), i2, (i2, i3), i3, (i3, i4), i4, (i4, i1)} with i1, . . . , i4 ∈
V and (i1, i2), (i2, i3), (i3, i4), (i4, i1) ∈ A. By Lemma 1, we have the following
integer program for the feedback vertex set problem in a bipartite tournament:

min
∑
i∈V

wixi

(FVS − BT) s.t.
∑

i∈C∩V

xi ≥ 1, ∀C ∈ C

xi ∈ {0, 1}, ∀i ∈ V.

By solving the linear programming (LP) relaxation of this integer program,
and rounding the values that are at least 1

4 , we can construct a solution with
objective value of at most 4 times the optimal value. Prashant showed that in
fact one can always find an optimal solution to the LP relaxation where some
variable is at least 1

3 . Hence repeatedly rounding up these variables gives a 3-
approximation algorithm.

We will begin by demonstrating another 3-approximation algorithm, where
we bound the value of the solution against the dual of the LP relaxation, rather
than the primal. Based on the ideas of this algorithm, we then show how to
obtain an improved approximation algorithm.

The dual of the LP relaxation of (FVS-BT) is given by

max
∑
C∈C

yC

s.t.
∑

C∈C:i∈C

yC ≤ wi, ∀i ∈ V

yC ≥ 0, ∀C ∈ C.

Let {xi}i∈V be an optimal solution to the linear relaxation. Let L,R be the
partition of the vertices, so that all arcs in the bipartite tournament have one
endpoint in L and one endpoint in R.

Lemma 2. There exists a 3-approximation algorithm for feedback vertex set in
bipartite tournaments.

Proof. We create an integer solution x̂i as follows: If xi ≥ 1
2 , or if xi > 0 and i ∈ L

then x̂i = 1, else x̂i = 0. Note that {x̂i}i∈V is a feasible integer solution, since
every cycle C has either some i ∈ C such that xi ≥ 1

2 , or |{i ∈ C : xi > 0}| ≥ 3,
in which case {i ∈ C : xi > 0} ∩ L �= ∅.

Let {yC}C∈C be an optimal solution to the dual. We will need the following
claim in our analyis:

Claim. Let {xi}i∈V , {yC}C∈C be optimal primal and dual solutions, and let x̂i

be given as above. Then for every C ∈ C either |{i ∈ C : x̂i = 1}| ≤ 3 or yC = 0.

LP Based Approximation Algorithms for Feedback Set Problems 373

Consider any C ∈ C. If |{i ∈ C : x̂i = 1}| > 3, then every vertex in C has
x̂i = 1. This means that xi > 0 for i ∈ C ∩ L, and xi ≥ 1

2 for i ∈ C ∩ R.
But then

∑
i∈C xi > 1 and by complementary slackness we know that

yC = 0.

Note that if x̂i = 1, then xi > 0, and by complementary slackness, we know that∑
C∈C:i∈C yC = wi. Therefore we get that∑

i∈V :x̂i=1

wi =
∑

i∈V :x̂i=1

∑
C:i∈C

yC

=
∑
C∈C

yC |{i ∈ C : x̂i = 1}|

≤ 3
∑
C∈C

yC

= 3
∑
i∈V

wixi.

where the inequality follows from the claim. �

The algorithm and analysis in the proof of Lemma 2 suggest two ways of getting
improved approximation guarantees. First of all, note that for i such that 0 < xi <
1
2 , the integer solution we created arbitrarily chose to set x̂i = 1, if i ∈ L; we could
also have chosen to set x̂i = 1, if i ∈ R. Indeed, taking the better of these two
solutions gives an improved approximation factor of 2.5, as we prove in Lemma 3.
Secondly, instead of rounding up all variables on one side of the partition, we could
only round up the variables that are at least 1

2 , and then resolve the linear program.
In Lemma 4 we show that this gives a 2-approximation algorithm. Although we
thus immediately improve the result from Lemma 3, we include Lemma 3 because
it does not require us to solve linear programs repeatedly.

Lemma 3. There exists a 2.5-approximation algorithm for feedback vertex set
in bipartite tournaments.

Proof. We define two solutions x̂
(L)
i and x̂

(R)
i , where for Z ∈ {L,R}, we define

x̂Z
i to be 1 if xi ≥ 1

2 , or if xi > 0 and i ∈ Z. By the arguments in the proof of
Lemma 2, both {x̂(L)

i }i∈V and {x̂(R)
i }i∈V are feasible integer solutions.

Claim. Let {xi}i∈V , {yC}C∈C be optimal primal and dual solutions, and let x̂
(Z)
i

for Z = L,R be defined as above. Then for every C ∈ C

|{i ∈ C : x̂(L)
i = 1}| + |{i ∈ C : x̂(R)

i = 1}| ≤ 5 or yC = 0.

Consider any C ∈ C. If yC > 0, then |{i ∈ C : xi ≥ 1
2}| ≤ 2. We consider

three cases:

(i) If |{i ∈ C : xi ≥ 1
2}| = 0, then |{i ∈ C : x̂

(L)
i = 1}| ≤ 2 and

|{i ∈ C : x̂(R)
i = 1}| ≤ 2.

374 A. van Zuylen

(ii) If |{i ∈ C : xi ≥ 1
2}| = 1, suppose without loss of generality that

there exists i ∈ C∩L such that xi ≥ 1
2 . Then |{i ∈ C : x̂(L)

i = 1}| ≤ 2
and |{i ∈ C : x̂(R)

i = 1}| ≤ 3.
(iii) If |{i ∈ C : xi ≥ 1

2}| = 2, then by the fact that yC > 0 and
complementary slackness, we know that

∑
i∈C xi = 1 and hence

|{i ∈ C : xi > 0}| = 2, so |{i ∈ C : x
(L)
i = 1}| = 2 and |{i ∈ C :

x̂
(R)
i = 1}| = 2.

$
As before, if x̂

(Z)
i = 1, then xi > 0, and by complementary slackness, we know

that
∑

C∈C:i∈C yC = wi. So now we get that∑
i∈V :x̂(L)

i =1

wi +
∑

i∈V :x̂(R)
i =1

wi =
∑

i∈V :x̂(L)
i =1

∑
C:i∈C

yC +
∑

i∈V :x̂(R)
i =1

∑
C:i∈C

yC

=
∑
C∈C

yC

(|{i ∈ C : x̂(L)
i =1}|+|{i ∈ C : x̂(R)

i = 1}|)
≤5

∑
C∈C

yC

=5
∑
i∈V

wixi,

where the inequality follows from the claim. �

Lemma 4. There exists a 2-approximation algorithm for feedback vertex set in
bipartite tournaments.

Proof. Our algorithm solves the linear program (FVS − BT), rounds up the
variables that are ≥ 1

2 , remove the corresponding vertices from the graph and
then resolves the linear program. If no variables ≥ 1

2 exist, we use the algorithm
in the proof of Lemma 2 to complete the solution to a feasible integer solution.

Let Vk be the vertex set at the beginning of the k-th iteration of the algorithm,
i.e. V1 = V , and Vk ⊂ Vk−1 for k ≥ 2. Let G(Vk) be the induced bipartite
tournament on Vk, let OPT (Vk) be the optimal value of the LP on G(Vk), and
let ALG(Vk) be the weight of the algorithm’s solution restricted to Vk. Let � be
the total number of iterations of the algorithm.

We prove by backward induction on the algorithm that the variables rounded
to 1 in iterations k, . . . , � give a feasible feedback vertex set on G(Vk) of weight
at most 2OPT (Vk). Since OPT (V1) is a lower bound on the value of the optimal
feedback vertex set, this implies the lemma.

At the start of the last iteration, let C(V) be the 4-cycles in G(V). Let
{x()

i }i∈V�
be an optimal primal, and {y()

C }C∈C(V�) be an optimal dual for the LP
on this instance. Since x

()
i < 1

2 for each i ∈ V, every C ∈ C(V) contains at least
3 vertices with strictly positive value x

()
i . Hence if we round up the variables for

i ∈ L with x
()
i > 0, we hit every cycle in C(V) at least once, and at most twice.

LP Based Approximation Algorithms for Feedback Set Problems 375

It follows that the solution we create is feasible on G(V), and following the proof
of Lemma 2, its weight is at most 2

∑
C∈C(V�) yC = 2

∑
i∈V�

wix
()
i = 2OPT (V).

Now consider the beginning of iteration k < �. We solve the LP on G(Vk), and
let {x(k)

i }i∈Vk
be the optimal primal solution. The algorithm returns a feasible

solution on G(Vk): every 4-cycle either has a vertex i such that x
(k)
i ≥ 1

2 , or it
is a 4-cycle also in G(Vk+1), and by induction we know that our solution hits
every 4-cycle in G(Vk+1).

By induction, ALG(Vk+1) ≤ 2OPT (Vk+1). Note that

ALG(Vk) =
∑

i∈Vk:x(k)
i ≥ 1

2

wi + ALG(Vk+1)

≤ 2
∑

i∈Vi:x
(k)
i ≥ 1

2

wix
(k)
i + 2OPT (Vk+1)

= 2
∑

i∈Vi:x
(k)
i ≥ 1

2

wix
(k)
i + 2

∑
i∈Vk+1

wix
(k+1)
i .

We note that {x(k)
i }i∈Vk+1 (the optimal LP solution on G(Vk) restricted to Vk+1)

is a feasible solution to the LP on G(Vk+1). Therefore 2
∑

i∈Vk+1
wix

(k+1)
i ≤

2
∑

i∈Vk+1
wix

(k)
i , and since every vertex is either in Vk+1, or has x

(k)
i ≥ 1

2 , we

get that ALG(Vk) ≤ 2
∑

i∈Vk
wix

(k)
i = 2OPT (Vk). �

We conclude this section by showing that the result in Lemma 4 is the best one
can hope for if using the optimal value of the LP relaxation of (FVS − BT) as a
lower bound. The integrality gap of an integer linear program is the worst case
ratio between the optimal value of the integer program and the optimal value
of its LP relaxation, and hence a lower bound on the integrality gap implies a
lower bound on the approximation ratio of an algorithm that bounds the cost of
the algorithm’s solution against the optimal value of the LP relaxation.

Lemma 5. The integrality gap of (FVS − BT) is 2.

Proof. By Lemma 4 the integrality gap is at most 2. We construct an example
in which the integrality gap approaches 2. In particular, we will show that there
exists an instance on 2n vertices for which the minimum feedback vertex set has
size at least n − 1. It remains to note that setting xi = 1

4 for all i ∈ V always
gives a feasible solution to (FVS − BT).

Let G2n be a bipartite tournament with the following properties. We have
vertices L = {�1, . . . , �n} and R = {r1, . . . , rn} and all arcs have one endpoint
in L and one endpoint in R. In addition, we require that the arc between �i and
ri is directed from �i to ri. We show by induction that there exists such a graph
G2n with minimum feedback vertex set of size at least n − 1 for all n ≥ 2.

For n = 2, G4 is just a cycle of length 4. Given a graph G2n, we construct
G2(n+1) by adding a vertex �n+1 to L and a vertex rn+1 to R, and we add the
arc (�n+1, rn+1), plus arcs (ri, �n+1) and (rn+1, �i) for every i ≤ n. Note that

376 A. van Zuylen

the new arc (�n+1, rn+1) is in a directed 4-cycle with every pair (�i, ri). Hence a
feedback vertex set in G2(n+1) either removes one of the new vertices �n+1, rn+1,
plus a minimum feedback vertex set in G2n (thus removing at least n vertices)
or it must remove one of �i, ri for every i ≤ n. Hence the size of the feedback
vertex set on G2(n+1) is at least n. �

3 Feedback Arc Set in Bipartite Tournaments

We now consider the feedback arc set problem in bipartite tournaments. Gupta
[5,6] recently gave an algorithm for this problem, and claimed it was a 4-
approximation algorithm. We believe however that there is an error in the analy-
sis. The algorithm is similar to that proposed by Ailon et al. [1] for the feedback
arc set problem in tournaments and it recursively constructs an ordering of the
vertices. The feedback arc set then consists of the backward arcs, i.e. the arcs
going from right to left in the final ordering. To order the vertices, the proposed
algorithm chooses an arc (i, j) as “pivot”, and orders a vertex u to the left of the
arc if either (u, i) ∈ A or (u, j) ∈ A, and to the right of (i, j) otherwise. It then
recurses on the two instances induced by the vertices on the left and on the right
respectively. The key to their analysis, which we believe to be incorrect, is the
claim that “an arc (u, v) ∈ A becomes a backward arc if and only if ∃(i, j) ∈ A
such that (i, j, u, v) forms a directed 4-cycle in G and (i, j) was chosen as the
pivot when all 4 were part of the same recursive call”. Note, however, that an
arc (u, v) may also become backward if (i, u) ∈ A and (v, j) ∈ A, and (i, j) is
chosen as the pivot when i, j, u, v were in the same recursive call. In that case,
i, j, u, v are not in a directed 4-cycle, since we have (i, u), (u, v), (v, j), (i, j) ∈ A.

As an example, in the following instance, the optimal feedback arc set has
size 1, and the expected number of backward arcs created by Gupta’s algorithm
is O(n2). We have vertices L = {�1, . . . , �n} and R = {r1, . . . , rn}. We think of
the vertices as being ordered as �1, r1, �2, r2, . . . , �n, rn. All arcs have one end-
point in R and one endpoint in L and go from left to right except for the arc
(rn, �1). The number of backward arcs created in the first iteration of Guptas
algorithm is O(n2) with constant probability: choosing an arc at random is the
same as choosing a left vertex and a right vertex independently at random.
Hence the probability that we choose (�i, rj) with 1 < i ≤ 1

4n and 3
4n ≤ j < n

is n/4−1
n

n/4−1
n ≈ 1

16 . By pivoting on this arc, the arcs (rk, �k′) for i ≤ k ≤ k′ ≤ j
become backward, and since i ≤ 1

4n, j ≥ 3
4n, there are O(n2) such arcs.

We propose a more direct extension of the algorithm of Ailon et al. [1], or more
precisely, we directly apply its derandomization by Van Zuylen et al. [11] (see
also [10]) to the case of the feedback arc set problem in bipartite tournament.
This allows us to obtain a 4-approximation algorithm.

We will use the following linear program. Let x(i,j) = 1 denote that i is ordered
before j. For an arc (i, j) ∈ A, let w(i,j) = 1. If (i, j) �∈ A, we let w(i,j) = 0.
Note that if i and j are not both in L or R, then w(i,j) + w(j,i) = 1, otherwise
w(i,j) = w(j,i) = 0.

LP Based Approximation Algorithms for Feedback Set Problems 377

min
∑
i<j

(w(j,i)x(i,j) + w(i,j)x(j,i))

(FAS) s.t. x(i,j) + x(j,k) + x(k,i) ≥ 1, ∀ distinct i, j, k

x(i,j) + x(j,i) = 1, ∀ distinct i, j

x(i,j) ≥ 0, ∀ distinct i, j.

The algorithm proposed in [11,10] for the feedback arc set problem in tourna-
ments (rather than bipartite tournaments) starts by solving the linear program
(FAS). Based on the optimal solution, they form a tournament T = (V,AT),
which has (i, j) ∈ AT if x(i,j) ≥ 1

2 (where ties are broken arbitrarily if x(i,j) =
x(j,i) = 1

2).
The algorithm recursively constructs an ordering of the vertices, by choosing

a pivot vertex k, ordering vertex i to the left of k if (i, k) ∈ AT , and to the right
of k if (k, i) ∈ AT . It then recurses on the instances induced by the vertices on
the left and right.

We can directly apply this algorithm to the feedback arc set problem in bi-
partite tournaments. Note that there are two types of backward arcs (from the
original bipartite tournament) in the ordering constructed: arcs (i, j) ∈ A for
which (j, i) ∈ AT (i.e. x(j,i) ≥ 1

2) and one of i, j is chosen as pivot when i, j are
in the same recursive call, and arcs (i, j) ∈ A for which there exists k such that
(j, k) ∈ AT , (k, i) ∈ AT and k is chosen as pivot when i, j, k are in the same
recursive call.

Clearly, we can bound the cost of the first type of backward arcs against
twice the contribution of (i, j) to the linear program’s objective value. In order
to bound the cost of the second type of backward arcs, [11,10] chooses a pivot
carefully. Let Tk(V) denote the pairs (i, j) such that (j, k) ∈ AT and (k, i) ∈ AT .
In a recursive call with vertex set V , the pivot k is the vertex that minimizes∑

(i,j)∈Tk(V) w(i,j)∑
(i,j)∈Tk(V)(w(j,i)x(i,j) + w(i,j)x(j,i))

.

It follows from the Theorem 2.1 in Van Zuylen and Williamson [11] that if the
following condition holds for every (i, j), (j, k), (k, i) ∈ AT , then it is always
possible to choose a pivot k such that the above ratio is at most 4.

w(i,j) + w(j,k) + w(k,i) ≤ 4
(
w(j,i)x(i,j) + w(i,j)x(j,i)+

+ w(k,j)x(j,k) + w(j,k)x(k,j) + w(i,k)x(k,i) + w(k,i)x(i,k)

)
. (1)

Hence we can bound the cost of the second type of backward arcs against 4
times their contribution to the linear program’s objective value. It thus follows
the algorithm is a 4-approximation algorithm.

Lemma 6. There exists a 4-approximation algorithm for feedback arc set in
bipartite tournaments.

378 A. van Zuylen

Proof. We need to show that (1) holds. Note that for any triple such that
(i, j), (j, k), (k, i) ∈ AT , it must either be the case that all three vertices were on
the same side of the bipartite tournament G, or exactly two were on one side,
and the other vertex was on the other side. In the first case, the left hand side of
(1) is 0 and there is nothing to prove. In the second case, suppose without loss
of generality that w(i,j) = w(j,i) = 0.

We need to show that

w(j,k) + w(k,i) ≤ 4
(
w(k,j)x(j,k) + w(j,k)x(k,j) + w(i,k)x(k,i) + w(k,i)x(i,k)

)
.

We rewrite the right hand side as 4
(
(1 − w(j,k))x(j,k) + w(j,k)(1 − x(j,k)) +

(1 − w(k,i))x(k,i) + w(k,i)(1 − x(k,i))
)

= 4
(
w(j,k) + w(k,i) − x(j,k)(2w(j,k) − 1) −

x(k,i)(2w(k,i) − 1)
)
.

Note that x(j,k) ≥ 1
2 , x(k,i) ≥ 1

2 and x(i,j) ≥ 1
2 by the fact that (j, k), (k, i), (i, j)

∈ AT . Hence the right hand side is non-increasing in w(k,i) and w(j,k), and since
the left hand side is increasing in w(k,i) and w(j,k), it is enough to consider the case
when w(k,i) = w(j,k) = 1. It thus remains to show that 4(2 − x(j,k) − x(k,i)) ≥ 2.

By the second set of constraints of (FAS), 4(2−x(j,k)−x(k,i)) = 4(x(k,j)+x(i,k),
and by the first set of constraints, x(i,k) + x(k,j) ≥ 1 − x(j,i) = x(i,j) ≥ 1

2 , which
directly gives the desired inequality. �

We leave open the question of whether there exists a combinatorial algorithm
that achieves the same guarantee. The idea of Gupta’s algorithm to pivot on an
arc of the graph, rather than a vertex as in Ailon et al. [1] is interesting, and
it may be possible to modify the algorithm so that it does achieve a constant
approximation guarantee.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. In: STOC 2005: Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, pp. 684–693 (2005)

2. Cai, M.-C., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets.
Math. Oper. Res. 27, 361–371 (2002)

3. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

4. Guo, J., Hüffner, F., Moser, H.: Feedback arc set in bipartite tournaments is NP-
complete. Inf. Process. Lett. 102(2-3), 62–65 (2007)

5. Gupta, S.: Feedback arc set problem in bipartite tournaments. In: Cai, J.-Y.,
Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 354–361. Springer,
Heidelberg (2007)

6. Gupta, S.: Feedback arc set problem in bipartite tournaments. Inf. Process.
Lett. 105(4), 150–154 (2008)

7. Kann, V.: On the approximability of NP-complete optimization problems, Ph.D.
thesis, Department of Numerical Analysis and Computing Science, Royal Institute
of Technology, Stockholm (1992)

LP Based Approximation Algorithms for Feedback Set Problems 379

8. Sasatte, P.: Improved approximation algorithm for the feedback set problem in a
bipartite tournament. Operations Research Letters 36(5), 602–604 (2008)

9. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–
288 (1995)

10. van Zuylen, A., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting al-
gorithms for constrained ranking and clustering problems. In: SODA 2007: Pro-
ceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
405–414 (2007)

11. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained
ranking and clustering problems. Math. Oper. Res. (to appear),
http://www.itcs.tsinghua.edu.cn/~anke/MOR.pdf

http://www.itcs.tsinghua.edu.cn/~anke/MOR.pdf

An Online Algorithm for Applying
Reinforcement Learning to Handle Ambiguity in

Spoken Dialogues

Fangju Wang and Kyle Swegles

University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract. Spoken dialogue systems (SDSs) have been widely used in
human-computer communications, including database querying, online
trouble shooting advising, etc. A major challenge in building an SDS is
to handle ambiguity in natural languages. User queries, questions, de-
scriptions in a natural language may be ambiguous. To be effective in
practical applications, an SDS must be able to disambiguate input from
its user(s). In our research, we develop an online algorithm for apply-
ing reinforcement learning to handle ambiguity in SDSs. We introduce
a new user dialogue policy into the framework of reinforcement learning
to model user dialogue behavior. Also, differing from the current rein-
forcement learning algorithms in speech and language processing that are
characterized by offline training, our algorithm conducts both offline and
online detection of user dialogue behavior. In this paper, we present the
online algorithm for reinforcement learning, emphasizing the detection
of user dialogue behavior. We also describe the initial implementation
and experiments.

1 Introduction

A spoken dialogue system (SDS) converses with the user for answering questions,
providing advice or help in a given domain, or for other purposes. Application ex-
amples include database querying, online trouble-shooting advising, educational
tutoring, and so on. In a dialogue, an SDS speaks to the user, and listens to
and understands the user’s speech. A major component in an SDS is a dialogue
manager. It applies a dialogue strategy to control dialogue flows.

The dialogue strategy is used to make human-computer conversations correct
and meaningful in serving the purpose of the SDS. When an SDS needs to speak
to the user, its dialogue strategy guides the selection of words. To make right
selections, a dialogue strategy must first interpret user’s voice input correctly.

User voice input in a natural language may be ambiguous. Ambiguity may be
caused by noises, homonyms, different word tags, multiple parsing options, and
so on. Because of ambiguity, a user question or description may be interpreted by
an SDS in different ways. If the dialogue strategy takes a wrong interpretation, it
may select the wrong words to say, which would make the dialogue meaningless.
Therefore, an SDS must be able to disambiguate user input. When ambiguity

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 380–389, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Online Algorithm for Applying Reinforcement Learning 381

occurs in a dialogue, the SDS can generate the most plausible interpretation and
use it as the basis to continue the dialogue.

Machine learning algorithms are effective tools for disambiguation. Of the
algorithms, reinforcement learning (RL) has been chosen by more and more re-
searchers and practitioners for developing disambiguation techniques in recent
years. A reinforcement learning algorithm works in an interactive way. A learn-
ing agent may obtain the required knowledge or information through its positive
and negative experience when interacting with the user. When used for disam-
biguation, the agent learns how to determine the meaning of ambiguous user
speech after it repeatedly converses with the user.

Currently, in the fields of speech and language processing, including building
SDSs, reinforcement learning is mainly used in offline manners. In some of the
applications of reinforcement learning, training data in human dialogue corpora
are used to teach learning agents the knowledge for voice and language process-
ing. In other applications, learning agents interact with simulated users. Few
systems employ online algorithms that allow agents to interact with real users.

Offline applications of reinforcement learning are effective in obtaining voice
and language processing knowledge, including disambiguation knowledge, about
general users. However, a system using an offline learning algorithms alone has
difficulties to obtain the knowledge about the user or users that the system
actually converses with. Different people or different groups of people may have
something special in speaking and using a language, for example, spacial accents,
dialects, grammar usage, and so on. To individual SDSs, the knowledge about
their specific users is as important as the knowledge about general users. Lack
of the knowledge about specific users may significantly weaken SDSs’ abilities to
handle ambiguity, and thus, reduce their dialogue abilities. It is very difficult, if
not impossible, for SDS developers to follow every product to acquire knowledge
about dialogue behavior of its specific user(s). An automated online learning
technique is needed.

In this paper, we present a novel online algorithm for applying reinforcement
learning for disambiguation. In the algorithm, the learning agent interacts with
the real users. It detects users’ dialogue behavior of speaking and using a lan-
guage, while optimizing the SDS’s dialogue policy. A major improvement to the
reinforcement learning algorithm is the introduction of a user dialogue policy
that can be used to model the user’s dialogue behavior. When ambiguity occurs
in a user’s voice input, knowledge about this user’s dialogue behavior may be
very helpful to determine the meaning that the user really wants to express.

2 Related Work

In this section, we review the major research activities for applying reinforcement
learning algorithms in building spoken dialogue systems. The algorithms can be
categorized into learning mainly with simulated users, and learning mainly with a
human dialogue corpus. Since most of the work is in the first category, we review
algorithms for learning with simulated users only. A representative algorithm for
learning with a human dialogue corpus can be found in [5].

382 F. Wang and K. Swegles

In the work by Scheffler and Young [8], reinforcement learning was used to
learn optimal dialogue strategies for a frame-based cinema telephone system. A
detailed probabilistic user simulator that modeled behavior and ASR errors was
trained on a human dialogue corpus. An MDP model was constructed and the
Watkins Q(λ) algorithm with eligibility traces, which incorporated Monte Carlo
learning, was used to develop optimal policies. The learned dialogue strategy
was shown to be significantly more successful than the baseline.

Levin and co-workers developed a stochastic approach to user simulation in
building an airline database query system (ATIS) [4]. Greeting probabilities were
learned from a human dialogue corpus by estimating the probability of a user
response given system actions. A Monte Carlo Q-Learning algorithm with ex-
ploration starts was applied with a simple task completion reward function. The
stochastic simulated user was used to produce up to 2500 dialogue sessions to
allow RL to find an optimal policy.

Melichell and Cenek developed an n-gram technique to model users thereby
extending the human dialogue corpus [1]. The model was trained using existing
annotated COMMUNICATOR data describing dialogues for flight booking. The
problem was framed as an MDP and up to 50,000 dialogues were used by the
RL algorithm. A reward function helped maximize the chances of choosing the
subject that matches the users intentions. The RL algorithm was unique in that it
not only considered state information, but also the user and systems last actions.
Two Dialogue Strategies were simulated - a UDM strategy that considered the
last user move and a USDM strategy that considered both the users and systems
last moves. The UDM and USDM strategies were able to cope with invalid user
input as they took into account the users last dialogue action.

In contrast to the small sized dialogue corpus used in [5], the work reviewed
above [8,4,1] all used user simulation to extend the dialogue corpus by a sub-
stantial amount. As a result, the RL algorithms used were able to find optimal
policies that showed strong improvement. However, the accuracy of the simu-
lated user techniques was not demonstrated. Extending a dialogue corpus by
2500 dialogues sessions as in [4] could modify the overall behavior of the dia-
logue corpus. This modified behavior could lead to a policy that is not suited
for the behavior of the users that the dialogue corpus was created from.

3 The Online Algorithm

In this section, we present the online reinforcement learning algorithm for detect-
ing user dialogue behavior. We introduce a new policy, the user dialogue policy,
into reinforcement learning to model user dialogue behavior. A major differ-
ence from the existing algorithms is that our algorithm allows an SDS to learn
through interactions with real users and to use the knowledge for disambiguation
and for dialogue flow control. In the existing algorithms, user simulation is used
to extend dialogue corpora. In our algorithm, interactions with real users are
used to further extend user simulation, to achieve higher accuracy.

An Online Algorithm for Applying Reinforcement Learning 383

3.1 A Reinforcement Learning Algorithm

Before presenting the extended online algorithm, we briefly introduce the general
reinforcement learning (RL) technique. Details about reinforcement learning can
be found in many excellent books on this subject, for example [9].

Assume an agent is used in a problem-solving task, and a reinforcement learn-
ing algorithm helps the agent learn knowledge for solving the problems.

The major components in a reinforcement algorithm include a set of states
that the agent may perceive (S), a set of possible actions that the agent may
take (A), a set of rewards that the agent may receive (R) after it takes actions,
and a policy π. The policy is used to guide the agent to select the actions to take
based on the agent’s states. The objective of RL is to develop (and modify) the
optimal policy through the interactions between the agent and its environment.

In state s, when a sequence of actions have been taken, there is a return R
defined as

R =
n∑

i=0

γiri (1)

where ri ∈ R is the reward when the ith action has been performed, and γ is
some future reward discounting factor (0 ≤ γ ≤ 1). The discounting factor is
used to put heavier weights on the rewards in the near future.

When a policy has been developed, each state s ∈ S is associated with value
functions V (s) and Q(s, a). V (s) is an expected return:

V (s) = E[R|s, π] (2)

and Q(s, a) can be defined in terms of V :

Q(s, a) = E[R|s, π, a] =
∑
s′

V (s′)P (s′|s, a) (3)

where s′ is the state the agent perceives after it takes action a in s, and P (s′|s, a)
is the probability that the agent perceives s′ after taking action a in s.

Reinforcement learning is conducted when the agent repeatedly interacts with
the environment, that is, taking actions, perceiving new states, and receives
rewards. The learning process optimizes π by optimizing the V (s) or Q(s, a)
that are related with π. Once the V (s) and Q(s, a) have been developed, they
can be used to guide the agent to select actions to take. In a state, the agent
can select the action that maximizes V or Q.

In our research, we added another policy πh into reinforcement learning. πh is
the human user’s dialogue “policy” that the learning agent detects through its
interactions with the user. It can be used to model the user’s dialogue behavior,
that is, what information the user may most likely express in different situations.
The information may be the meaning of user questions, statements, descriptions,
and so on. The user dialogue policy is related with two value functions: V πh(s)
and Qπh(s, a).

384 F. Wang and K. Swegles

3.2 Reinforcement Learning in Spoken Dialogues

We apply reinforcement learning in spoken dialogues. The development of an
SDS dialogue strategy and detection of user dialogue behavior can be formulated
as a reinforcement learning problem, in which the learning agent repeatedly
interacts with the environment (including the user and the related aspects of the
world) to achieve the goals. The agent learns from its experience in interacting
with the user. In this paper, we discuss the detection of user dialogue behavior
only. The development of an optimal SDS dialogue strategy is described in [10].

We model an SDS as a tuple

(S,U,D,H, πm, πh,R) (4)

where S is a directed graph of the states that the learning agent may perceive
and transitions from states to states, U is a database of both system and user
utterances, D is a database that contains dialogue history, H is a database
recording other historical information that may be required for the dialogue
manager to control dialogue flows, πm is the SDS (machine) dialogue policy, πh

is the human user dialogue policy, and R is a set of rewards.
State graph S is defined as

S = (N,E) (5)

where N is a set of nodes and E is a set of edges. Each node represents a state
and each edge a transition from a state to another. An e ∈ E from s to s′ is
related with a u ∈ U and an r ∈ R,

s
u,r−→ s′ (6)

denoting utterance u causes a state transition from s to s′ and the reward is r.
Each u ∈ U is an utterance represented as a semantic graph. When the SDS

receives a user utterance, it conducts voice recognition (VR), syntactic analysis,
and semantic analysis. The output of the semantic analysis is a semantic graph,
which is the internal representation of the utterance. The system utterances that
the SDS may say are also stored in U as semantic graphs. When the SDS has
decided to say an utterance, it converts the corresponding semantic graph into a
sentence and then invoke a text-to-speech (TTS) system to say it to the user. (In
this paper, we do not address the issues of VR, syntactic and semantic analysis,
and TTS. We focus on the learning aspects.)

The D database contains the dialogue sessions that have occurred

D = {d1, d2, d3, ...} (7)

where di is a dialogue session that is a sequence of user and system utterances:

di = (uh
i,1, u

m
i,1, u

h
i,2, u

m
i,2, ...) (8)

where uh
i,j is the jth (human) user utterance in the ith dialogue session, and

um
i,j is the jth system (machine) utterance in the ith dialogue session. A u in a

An Online Algorithm for Applying Reinforcement Learning 385

dialogue session references a u ∈ U . For not losing generality, we assume that
the system and user speak in turn.

Reinforcement learning is based on the assumption of Markov Decision Pro-
cess (MDP). This implies that all the information required for decision making
must be available in the current state, i.e.

P (st+1|st, st−1, ..., s0, ut, ut−1, ..., u0) = P (st+1|st, ut) (9)

To make (9) true, we create a mapping

{U,D,H} �−→ S. (10)

In a later subsection, we describe how a state is associated with the information
stored in U , D, and H .

The detection of user dialogue behavior by reinforcement learning consists of
two steps: learning in training and learning in interaction. In the first step, the
agent learns from training data to create an initial user dialogue policy, which
models the dialogue behavior of general users. In the second step, the agent
learns from the user(s) it interacts with to refine the initial policy. The refined
policy models the dialogue behavior of the user or users who use the SDS.

3.3 Detecting User Dialogue Policy in Training

Training is conducted by applying reinforcement learning to a simulated user,
with S, U , D, H being empty.

The simulated user is represented as a set of dialogue sessions. A training di-
alogue session is a sequence of system and user utterances, with each utterance
assigned a reward r ∈ R. At the end of a training session, there is a value vh mea-
suring the performance of the user, and a value vm measuring the performance
of the SDS. Formally, a training dialogue session is represented as

ti = (uh
i,1, r

h
1 , u

m
i,1, r

m
1 , uh

i,2, r
h
2 , u

m
i,2, r

m
2 , ..., vh

i , v
m
i) (11)

where rh
j is the reward given to the jth user utterance, and rm

j is the reward
given to the jth system utterance.

In the training process, reinforcement learning is used to create the user dialog
policy πh that is optimal with respect to the simulated user (training data). As
mentioned before, a user dialogue policy is characterized by functions V πh and
Qπh . Thus a major task in training is to create V πh and Qπh from training data.
Here we discuss the creation of V πh only. Qπh can be calculated from V πh .

The value function V πh of strategy πh in state s can be expressed as

V πh(s) (12)
= Eπh

{rτ+1 + γV πh(sτ+1)|sτ = s}
=

∑
u

πh(s, u)
∑
s′

Pu
ss′ [Ru

ss′ + γV πh(s′)]

386 F. Wang and K. Swegles

where τ indicates the current point of time, πh(s, u) is the probability for the user
to take utterance u in state s when πh is applied, Eπh

is expectation conditional
on policy πh, and

Pu
ss′ = P{sτ+1 = s′|sτ = s, uτ = u} (13)

is the probability that taking utterance u in state s leads to state s′,

Ru
ss′ = Eπh

{rτ+1|sτ = s, uτ = u, sτ+1 = s′} (14)

is the expected immediate rewards when πh is used to taking u in s to go to s′.
The training algorithm is informally described as follows. When training dia-

logue session ti is presented, graph Gi

si0
uh

i,1,rh
1−→ sm

i1
um

i,1,rm
1−→ sh

i1
uh

i,2,rh
2−→ sm

i2
um

i,2,rm
2−→ sh

i2
uh

i,3,rh
s−→ ... (15)

is created, where si0 is the starting state for the ith training session, sm
ij is the

jth state in which the SDS says an utterance, and sh
ij is the jth state in which

the user says an utterance.
State s is associated with g(s) that is the state semantic graph of s. A state

semantic graph is derived from the utterance semantic graphs of the utterances
on the path from s0 to s. For example, in (15),

g(sm
i2) ≺ (g(uh

i,1), g(u
m
i,1), g(u

h
i,2)) (16)

where ≺ denotes a derivation operation, and g(u) is the utterance semantic
graph of u. A semantic graph represents knowledge about a state in a dialogue,
for example, what the SDS has told the user, and what the user is asking.
Since the semantic graph of a state is derived from the semantic graphs of all
the utterances that lead to the state, the state semantic graph contains the all
information for decision making. In this way, the states can be used in MDP.

After the semantic graph of a training session is created, each s ∈ G is com-
pared with the s’s in S. The comparison is performed by approximate matching
of their semantic graphs. If an s ∈ G does not match any s ∈ S, it is added to S,
and its in and out transitions are added to S too. If an s ∈ G matches an s ∈ S,
its in and out transitions are added to the s ∈ S.

In S, each state has zero and more in-edges and zero or more out-edges. As
mentioned before, each edge denotes a state transition and is associated with a
u and an r. For each s ∈ S we can calculate πh(s, u) using information about
the out-edges and their u’s. Using equations (13) and (14) we can calculate Pu

ss′

and Ru
ss′ . Then using (12) we can calculate V πh for all s ∈ S. The calculation

of Ru
ss′ and V πh follows the backup rule.

3.4 Refining User Dialogue Policy in Interaction

Learning in interactions is performed online, when the SDS has been actually
used by its user(s). The goal of this step is to customize the user dialogue policy
so that it fits best the particular user or users of the system.

An Online Algorithm for Applying Reinforcement Learning 387

Most human-computer dialogues are episodic. We can organize dialogues as
sessions like

(uh
i,1, u

m
i,1, u

h
i,2, u

m
i,2, ...). (17)

For each dialogue session, a heuristic method is used to evaluate user and SDS
performance. The utterances and dialogues are stored in databases U and D,
and are used to improve πm and πh, which are the dialogue policies of the SDS
and user. (We discuss πh only in this paper.)

Periodically, the actual dialogue sessions are used to improve the dialogue
policy πh. The policy developed for a general user may not fit best the particular
user who uses the system. The special dialogue behaviors of the user may require
that the policy should be modified (improved) for best fitting the user. The
modification occurs when the utterance that maximizes V πh or Qπh differs from
the actual utterance.

Let πh be the current user dialogue policy, and πh(s) be the utterance that
maximizes V πh(s). If there is an actual user utterance u in state s (u �= πh(s))
that contributes better user performance than πh(s), we may expect that there
exists policy π′

h such that π′
h(s) = u. If ∀s ∈ S,

Qπh(s, π′
h(s)) ≥ V πh(s), (18)

then based on the policy improvement theorem, π′
h must be as good as, or better

than, πh. That is, ∀s ∈ S
V π′

h(s) ≥ V πh(s). (19)

Policy π′
h can be obtained by improving πh through the policy iteration pro-

cess, which consists of repeated policy evaluation and policy improvement until
the new policy becomes stable. The following is the iteration process. All the
values are calculated using the actual u when u �= πh(s).

1. Initialization
Initialize V based on πh

2. Policy Evaluation
Repeat

Δ ← 0
For each s ∈ S

v ← V (s)
V (s) ← ∑

s′ Pπh(s)
ss′ [Rπh(s)

ss′ + γV (s′)]
Δ ← max(Δ, |v − V (s)|)

until Δ < θ

3. Policy Improvement
policy stable ← true
For each s ∈ S

b ← πh(s)
πh(s) ← arg maxa

∑
s′ Pπh(s)

ss′ [Rπh(s)
ss′ + γV (s′)]

388 F. Wang and K. Swegles

If b �= πh(s) then policy stable ← false
If policy stable, then stop; else go to 2

The V calculated in the above algorithm is the V function for the refined user
dialogue policy. The refined user dialogue policy models the dialogue behavior of
the user who interacts with the SDS. In state s, V πh can be used to determine
what information the user of the SDS most likely expresses. When ambiguity
occurs in s, the knowledge about user dialogue behavior can be used along with
other information to best understand user input.

4 Implementation and Experiments

At the time of this writing, we are performing the first stage implementation and
experiments. The reinforcement learning algorithm described above has been
implemented in a dialogue system that is for tutoring highschool geometry. In
this stage, the voice recognition (VR) and text to speech (TTS) components are
not included. Only text dialogues are tested. We perform two tests: when the
online learning is disabled and activated.

The training data set consists of about 30 dialogue sessions in English, which
are created to simulate the user and the system. Each session is regarding a
geometric diagram, and contains several pairs of questions and answers. A session
starts with a question from the system. If the user correctly answers the question,
the system asks another question, otherwise, the system may ask the question
again, give a hint, or tell the correct answer.

After the training, the first test is conducted with the online learning ability
disabled. A user, who is not the author of the training sessions, tests the tutoring
system. In this test, the dialogue manager can properly control a dialogue flow
when the user answers a question in exactly the same way as the simulated user,
or the answer can be converted into the semantic graph that is the same as the
graph of a training answer. However, the system may get confused when the user
answers a question in a different way, even though the answer is correct in terms
of geometric knowledge. The problem is worse when an answer is ambiguous,
for example “draw an auxiliary line perpendicular to the diagonal, which passes
thought point D”.

In the second test, the online learning ability is activated. The system asks
additional questions when it is uncertain about the answer. For example, it may
ask “Did you say ...?”, or “Is this what you said?”. Such questions help the
system learn the dialogue behavior of the user who actually uses the system.
As explained before, the actual dialogues are used to improve the user dialogue
policy that is learned in the offline training.

The initial results are encouraging. We have observed remarkable improve-
ment of the system’s disambiguation ability. As the system becomes more and
more experienced with the user, it understands better and better the user’s an-
swers. The system can correctly interpret many ambiguous expressions after it
deals with them several times. More experiments have been planned with a much

An Online Algorithm for Applying Reinforcement Learning 389

larger training data set with better designed dialogues. More test cases will be
designed to examine and improve the algorithm’s learning ability.

5 Concluding Remarks

In this research, we extend the traditional reinforcement learning algorithm to
include a user dialogue policy. When using the extended reinforcement learning
algorithm in an SDS to generate the optimal system dialogue strategy (policy),
we can meanwhile create the user dialogue policy, which models the dialogue
behavior of the user who actually converses with the system. The knowledge
about dialogue behavior of the user can be very useful in handling ambiguity in
user input. System dialogue performance can be dramatically improved when an
SDS has better abilities to disambiguate and understand user input.

References

1. Frampton, M., Lemon, O.: Learning more effective dialogue strategies using lim-
ited dialogue move features. In: Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics, pp. 185–192. Association for Computational Linguis-
tics, Sydney (2006)

2. Griol, D., Hurtado, L.F., Segarra, E., Sanchis, E.: A statistical approach to spoken
dialog systems design and evaluation. Speech Communication 50, 666–682 (2008)

3. Jokinen, K., Kerminen, A., Kaipainen, M., Jauhiainen, T., Wilcock, G., Turunen,
M., Hakulinen, J., Kuusisto, J., Lagus, K.: Adaptive dialogue systems - interaction
with interact. In: Proceedings of the 3rd SIGdial workshop on Discourse and dia-
logue, vol. 2, pp. 64–73. Association for Computational Linguistics, Philadelphia
(2002)

4. Levin, E., Pieraccini, R., Eckert, W.: A stochastic model of human-machine in-
teraction for learning dialog strategies. IEEE Transactions on Speech and Audio
Processing 8, 11–23 (2000)

5. Litman, D.J., Kearns, M.S., Singh, S., Walker, M.A.: Automatic optimization
of dialogue management. In: Proceedings of the 18th conference on Computa-
tional linguistics, vol. 1, pp. 502–508. Association for Computational Linguistics,
Saarbrücken (2000)

6. Melichar, M., Cenek, P.: From vocal to multimodal dialogue management. In: Pro-
ceedings of the 8th international conference on Multimodal interfaces, pp. 59–67.
ACM, Banff (2006)

7. Mitchell, T.M.: Machine learning. WCB McGraw-Hill, New York (1997)
8. Scheffler, K., Young, S.: Automatic learning of dialogue strategy using dialogue

simulation and reinforcement learning. In: Proceedings of the second international
conference on Human Language Technology Research, pp. 12–19. Morgan Kauf-
mann Publishers Inc., San Diego (2002)

9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2005)

10. Swegles, K., Wang, F.: A hybrid reinforcement learning algorithm for optimizing
dialogue strategies in spoken dialogue systems. In: The 26th International Confer-
ence on Machine Learning (ICML 2009), Montreal, Canada (submitted, 2009)

A Fixed-Parameter Enumeration Algorithm for
the Weighted FVS Problem�

Jianxin Wang and Guohong Jiang

School of Information Science and Engineering
Central South University, Changsha, 410083, China

jxwang@mail.csu.edu.cn

Abstract. In this paper, we present a fixed-parameter enumeration
algorithm for the feedback vertex set problem by using the branch-and-
search method. The algorithm transforms the feedback vertex set prob-
lem to the feedback edge set problem with specific conditions. Then it
enumerates the z minimum-weight feedback edge sets by enumerating
the z maximum-weight forests. As a result, we show the problem of enu-
merating the z minimum-weight feedback vertex sets of size k is solvable
in time O(5kkn2 + (5k + 3kz)n2 log n).

1 Introduction

A feedback vertex set (FVS) F in a graph G is a set of vertices in G whose
removal makes the graph acyclic. The problem to find a minimum FVS in a
graph is a classic NP-complete problem. There are numerous applications of
the FVS problem in areas such as circuit testing, deadlock resolution, analyzing
manufacturing processes, computational biology and so on.

For the parameterized FVS problem in undirected graphs, Downey, Fellows [6]
and Bodlaender [2] gave the first group of algorithms to find a FVS of size at most
k in f(k)nO(1) time. Since then many dramatic improvements were obtained
[7,10,9,11,8,5,3]. The best previous parameterized algorithm for unweighted FVS
problem, due to Chen et al [3], has a running time of O(5kkn2) using the iterative
compression and the branch-and-search methods. Chen et al [3] also gave an
algorithm with runtime O(5kkn2) to generate a minimum-weight FVS of size
at most k in a weighted graph. Becker [1] developed randomized parameterized
algorithms of running time O(4kkn2) for the FVS problem in unweighted graphs
and O(6kkn2) for the FVS problem in weighted graphs respectively.

The fixed-parameter enumeration has lately attracted some interest [4]. A
NP optimization problem is fixed-parameter enumerable if there is an algorithm
that, for a given problem instance (x, k) and an integer z, generates the z best
(in terms of the solution weight) solutions of size k to x in time f(k)nO(1)zO(1).

� This work is supported by the National Grand Fundamental Research 973 Program
of China (No.2008CB317107), the National Natural Science Foundation of China
(No.60773111).

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 390–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Fixed-Parameter Enumeration Algorithm for the Weighted FVS Problem 391

The fixed-parameter enumeration method has been effectively used to solve some
problems, for example k-vertex cover, k-path and k-planar dominating set [4].

In this paper, the fixed-parameter enumeration algorithm for FVS problem
is discussed, which is defined as follows: given an undirected weighted graph
G = (V,E) on n vertices with vertex weight, and integers k and z, generate the
z minimum-weight FVS of size k in G.

We show the problem of enumerating the z minimum-weight FVS of size k is
solvable in time O(5kkn2 + (5k + 3kz)n2 logn). Firstly we get a FVS F of size
at most k with the algorithm of [3]. Then we enumerate all the subsets of F,
and use each subset F1 of F to construct a partition structure of the graph. A
group of small structures is obtained with the branch-and-search method on a
partition, so that the FVS problem for the small structures can be transformed
to the feedback edge set (shortly as FES, which is a set of edges in G, whose
removal results the graph acyclic). At last we enumerate the z minimum-weight
FES by enumerating the z maximum-weight forests.

2 Definitions and Preliminaries

Let G = (V,E) be an undirected weighted graph on n vertices, where each vertex
u ∈ V is associated with a positive real number (the vertex weight). For W ⊆ V ,
G[W] denotes the graph induced by W. Let c[W] be the number of connected
components in G[W]. For a vertex w ∈ V , G \ w denotes the graph induced by
V \ w. The size of the set W is the number of elements in W and the weight of
the set W is the sum of all the element weights in W . Let k-FVS (k-FES) denote
the FVS (FES) of size k, and k-forest denote the forest containing k edges.

Definition 1. [3] A triple (V0, V1, V2) is an independent-forest partition (shortly,
IF-partition) of a graph G if (V0, V1, V2) is a partition of V such that: (1) V0 ∪V1 ∪
V2 = V , and V0, V1 and V2 are pairwise disjoint; (2) G[V1] and G[V2] are forests;
(3) V0 is an independent set; (4) Every vertex v in V0 is of degree 2 in G, with both
neighbors in V2.

The FVS contained within V0 ∪ V1 is called a FVS F on an IF-partition I =
(V0, V1, V2), shortly as FVS(I).

Definition 2. A Compress-graph H for an IF-partition (V0, V1, V2) of G is a
new graph H = (VH , EH), where each vertex u in VH corresponds to a connected
component in the graph G[V2], and each edge (u, v) in EH corresponds to a vertex
w in the set V0 such that the two neighbors of w are in the connected components
in G[V2] that correspond to the two vertices u and v, respectively, in H.

Assume a vertex v has degree 2 in G and vertices u1 and u2 are the neighbors of
v. Bypassing v means deleting v from G and adding an edge between u1 and u2
in G. Intuitively, the Compress-graph H for an IF-partition (V0, V1, V2) of G is
obtained from the graph G[V0 ∪ V2] by shrinking each connected component in
G[V2] into a single vertex and bypassing each degree-2 vertex in V0. The weight
of an edge in H is equal to the weight of the corresponding vertex in V0.

392 J. Wang and G. Jiang

Let two deficiencies τ(k, V0, V1, V2) = k−(|V0|−c[V2]+1) and ϕ(k, V0, V1, V2) =
k − (|V0| − c[V2] + c[V0 ∪ V2]). Assume T is a spanning tree or spanning forest
in Compress-graph H for an IF-partition I = (V0, V1, V2). The set of edges in
H which are not in T is the minimum-size FES in H and the set of vertices
corresponding to the edges in the FES is also the minimum-size FVS(I) in G[V0∪
G2]. There are |V0| edges and c[V2] vertices in H, and the number of the connected
components in H is equal to that in G[V0 ∪ V2]. So there are c[V2] − c[V0 ∪ V2]
edges in T , and |V0| − c[V2] + c[V0 ∪ V2] edges in the minimum-size FES in H.
Therefore at least |V0|− c[V2]+ c[V0 ∪V2] vertices of a k -FVS(I) in G come from
V0. Obviously, both τ(k, V0, V1, V2) and ϕ(k, V0, V1, V2) of the IF-partition I are
upper bounds on the number of vertices in a k -FVS(I) that are in the set V1,
but ϕ(k, V0, V1, V2) is more exact than τ(k, V0, V1, V2).

Lemma 1. [3] The FVS problem on n vertex graph is solvable in time O(5kkn2).

3 The Fixed-Parameter Enumeration Algorithm for FVS
Problem

The fixed-parameter enumeration algorithm for FVS problem is designed as
follows. Firstly a k -FVS of a graph is found to generate a set of IF-partitions.
Secondly the Tuple-construct algorithm and Local-enumeration algorithm are
used to find the z minimum-weight k -FVS(I) for each IF-partition I. At last the
z minimum ones among those having been found are saved.

3.1 The Tuple-Construct Algorithm

Fig.1 is the Tuple-construct algorithm which returns a collection R of 7-tuples for
an IF-partition I = (V0, V1, V2) of a graph G. A tuple r = (G, V0, V1, V2, F, A, S)
in R must satisfies V2 = ∅, or V1 = ∅ and ϕ(k, V0, V1, V2) > 0, or ϕ(k, V0, V1, V2) =
0 and G[V1 ∪ V2] is a forest. The triple (V0, V1, V2) in r is an IF-partition of the
graph G. F is a subset of a k -FVS(I) in the primary graph. A is a set of degree-0
and degree-1 vertices in V1 produced in the process of algorithm. S is a set of
vertex sets such as Sv (the vertices in Sv are bypassed by the Tuple-construct
algorithm and they can form a path in the primary graph). In order to talk
about the “lowest” leaf in a tree in G[V1], a root is fixed for each tree in G[V1].

If the condition in Step 2 is satisfied, the recursive call is stopped and a set
R containing the tuple is returned. If the condition in Step 3 is satisfied, any
k -FVS(I) can’t be found and a empty set R is returned.

In Step 4, if some vertices in V1 have degree less than 2 in G, they can be
deleted safely from graph G and saved in A. In Step 5, if a vertex w in V1 has
degree of 2 in G with both neighbors in V2, w is removed from V1 to V0 and the
triple (V0 ∪ w, V1 \ {w}, V2) is also a valid IF-partition of the graph G.

In Step 6, if a vertex w has at least 2 neighbors in V2 and has degree at least
3 in G, there are two cases. If there are at least 2 neighbors of w in the same
tree in G[V2], at least a circle exists in the graph G[V2 ∪ {w}]. The only way
to break the circles in G[V2 ∪ {w}] is to include the vertex w in the objective

A Fixed-Parameter Enumeration Algorithm for the Weighted FVS Problem 393

Tuple-construct(G, V0, V1, V2, k, F, A, S)
Input: a graph G = (V, E), an IF-partition (V0, V1, V2), and an integer k
Output: a set R, which contains 7-tuples (G, V0, V1, V2, F, A,S)
1. R = ∅;
2. if (V2 = ∅) or (V1 = ∅ and ϕ(k−|F |, V0, V1, V2) > 0) or (ϕ(k−|F |, V0, V1, V2)

= 0 and G[V1 ∪ V2] is a forest), then add the tuple (G, V0, V1, V2, F, A,S)
to R and return R;

3. if (k < 0) or (k = 0 and 	(G) = 1) or (ϕ(k, V0, V1, V2) = 0 and G[V1 ∪ V2]
is not a forest) or (ϕ(k, V0, V1, V2) < 0), return R;

4. else if a vertex w in V1 has degree less than 2 in G then
return Tuple-construct(G \ w, V0, V1 \ {w}, V2, k, F, A ∪ {w}, S);

5. else if a vertex w in V1 has 2 neighbors in V2 and has degree 2 in G then
return Tuple-construct(G, V0 ∪ {w}, V1 \ {w}, V2, k, F, A, S);

6. else if a vertex w in V1 has at least 2 neighbors in V2 then
6.1 if two neighbors of w belong to the same tree in G[V2] then

return Tuple-construct(G \ w, V0, V1 \ {w}, V2, k − 1, F ∪ {w}, A, S);
6.2 else

R1 = Tuple-construct(G \ w, V0, V1 \ {w}, V2, k − 1, F ∪ {w}, A, S);
R2 = Tuple-construct(G, V0, V1 \ {w}, V2 ∪ {w}, k, F, A,S);
return R1

⋃
R2;

7. else pick a lowest leaf w1 in any tree T in G[V1], let w be the parent of w1

in T, and let w1, . . . , wt be the children of w in T ;
7.1 if (w has a neighbor in V2) or (w has more than one child in T) then

R1 = Tuple-construct(G \ w, V0, V1 \ {w}, V2, k − 1, F ∪ {w}, A, S);
R2 = Tuple-construct(G, V0 ∪ {w1, . . . , wt}, V1 \ {w, w1, . . . , wt}, V2∪
{w}, k, F, A, S);
return R1

⋃
R2;

7.2 else Vertex w1 in the set V1 is colored with red and Sw1 = Sw1 ∪ {w}.
Let Gb be the result graph after bypassing vertex w, return
Tuple-construct(Gb, V0, V1 \ {w}, V2, k, F, A, (S ∪ Sw1);

Fig. 1. The Tuple-construct Algorithm

FVS(I). If the neighbors of w are all in different trees in G[V2], there are two
branches. To include w in the k -FVS(I), the vertex w is removed from V1 to
F and (k − 1)-FVS(I) are recursively found in G \ w. To exclude w from the
k -FVS(I), w is removed from V1 to V2.

In step 7, each vertex in V1 has degree at least 2 in G and at most one
neighbor in V2. A “lowest” leaf w1 is fixed in a tree in G[V1]. Then the vertex
w1 has degree exactly 2 in G. Let w be the parent of w1, and w1, · · ·, wt be the
children of w in T. Then all the children of w are leaves in T, and each of them
has a unique neighbor in V2. In Step 7.1, if w has a neighbor in V2 or w has
more than one child, the Tuple-construct algorithm branches on w. Specially, to
exclude the vertex w from the objective FVS(I), w is removed from V1 to V2.
Since all these degree-2 vertices w1,· · ·, wt have their both neighbors in the set
V2 ∪ {w}, they can be moved to V0 safely. In Step 7.2, if w doesn’t have any

394 J. Wang and G. Jiang

neighbor in V2 and w has only one child, w has degree exactly 2 in G. Therefore,
w1 and w are two adjacent degree-2 vertices in G. In this case, a circle in G
contains the vertex w1 only if it contains w. The vertex w is bypassed and w is
added into the vertex set Sw1 containing w1 is searched in S. If there is no such
a set Sw1 in S, a set Sw1 = {w1, w} is added into S. The vertex w1 in the set
V1 is colored with red to distinguish w1 from other vertices and its color doesn’t
change when it is moved into other sets. Moreover, no red vertex will be moved
into V2 and F according to the Step 4 and Step 5.

Lemma 2. Let R be the collection returned by the Tuple-construct algorithm for
a given IF-partition I of G. Then every k-FVS(I) in G is consistent with exactly
one tuple r = (G, V0, V1, V2, F, A, S) in R (A FVS F ′ in G is consistent with a
tuple r if F ′ contains all the vertices in F but no vertices in V2).

The number of tuples and the runtime of the Tuple-construct algorithm can be
computed by counting the number of leaves in the search tree corresponding to
the execution of the algorithm.

Lemma 3. The algorithm Tuple-construct(G, V0, V1, V2, k, F,A, S) returns a tu-
ple set R with at most O(2τ(k,V0,V1,V2)) tuples, and runs in time O(2τ(k,V0,V1,V2)n2).

Proof. Let T (k, V0, V1, V2) be the number of leaves in the search tree for the
Tuple-construct algorithm. Now we prove by induction that T (k, V0, V1, V2) ≤
max(1, 2τ(k,V0,V1,V2)).

Because τ(k, V0, V1, V2) ≥ ϕ(k, V0, V1, V2), ϕ(k, V0, V1, V2) < 0 if τ(k, V0, V1,
V2) < 0. Then T (k, V0, V1, V2) = 1 ≤ max(1, 2τ(k,V0,V1,V2)) by step 3.

If step 6.2 is executed, we have T (k, V0, V1, V2) ≤ T (k − 1, V0, V1 \ w, V2) +
T (k, V0, V1\w, V2∪{w}). Because w has at least two neighbors and they are in dif-
ferent trees in G[V2], adding w to V2 merges at least two connected components in
G[V2] and reduces the number of connected components by at least 1. So we can
get c[V2∪{w}] ≤ c[V2]−1. Then τ1 = τ(k−1, V0, V1\w, V2) ≤ τ(k, V0, V1, V2)−1,
and τ2 = τ(k, V0, V1 \w, V2 ∪ {w}) ≤ τ(k, V0, V1, V2) − 1. With the inductive hy-
pothesis, T (k − 1, V0, V1 \ w, V2) ≤ 2τ1, and T (k, V0, V1 \ w, V2 ∪ {w}) ≤ 2τ2 .
Therefore, we get T (k, V0, V1, V2) ≤ 2τ(k,V0,V1,V2).

As analyzed above, we can also get T (k, V0, V1, V2) ≤ 2τ(k,V0,V1,V2) if step 7.1 is
executed. Steps 4, 5, 6.1, 7.2 in the algorithm are non-branching recursive. It can
be verified that the instance deficiency τ is never increased for all non-branching
recursive in the algorithm.

In conclusion, there are at most 2τ(k,V0,V1,V2) tuples in R. We observe that
the total number of executions of all steps of the algorithm is O(n) along each
root-leaf path in the search tree, because each step either stops immediately, or
reduces the size of the set V1 by at least 1. All steps can runs in time O(n).
Therefore, the Tuple-construct algorithm runs in time O(2τ(k,V0,V1,V2)n2). ��

3.2 The Local-Enumeration Algorithm

Let G′ be the primary graph. A tuple r = (G, V0, V1, V2, F, A, S) is generated by
the Tuple-construct algorithm, k1 = k − |F |. A k1-FVS based on tuple r in the

A Fixed-Parameter Enumeration Algorithm for the Weighted FVS Problem 395

graph G′[V − F] is called as a k1-FVS(r) in G′[V − F]. The union set of F and
a k1-FVS(r) in G′[V −F] is a k -FVS in the graph G′ based on r. The main task
of the Local-enumeration algorithm is to enumerate k1-FVS(r) in G′[V − F].
Firstly it transforms the k1-FVS(r) problem in G′[V − F] to k1-FES problem.
Secondly it enumerates the z k1-FES by enumerating the z maximum-weight
forests. Then the z minimum-weight k -FVS in G′ based on r can be found.

Transform k1-FVS Problem to k1-FES Problem. A new graph on a tuple
r, named RCompress-graph Hr must be constructed for transforming the k1-
FVS(r) problem to k1-FES problem. There are 4 steps to construct Hr.

Step 1: Assume r = (G, V0, V1, V2, F, A, S) is a tuple in R and k1 = k − |F |.
If V2 = ∅, all the vertices in V1 are moved to A and V1 is assigned with ∅. If
ϕ(k1, V0, V1, V2) = 0, all the vertices in V1 are moved to V2, both V1 and A are
assigned with ∅.
Step 2: Construct the Compress-graph H for IF-partition (V0, V1, V2) contained
in the tuple r.

Step 3: For each red-color vertex w (which is colored with red by the step 7.2
of the Tuple-construct algorithm) in V0, find the element Sw containing w in S.
If the edge (u, v) corresponds with w in H then delete the edge (u, v) from H
and add |S|−1 new vertices u1, u2, . . . , u|S|−1 and |S| edges (u, u1), (u1, u2), . . . ,
(u|S|−1, v) into H , where the weights of the new |S| edges are orderly equal to
the weights of vertices w,w1, . . . , w|S|−1 in S.

Step 4: For each red-color vertex w in A, find the element Sw containing w
in S. All the vertices of Sw are added into A. Then if A = {w1, w2, . . . , w|A|},
2|A| new vertices u1, v1, . . . , u|A|, v|A|, and |A| edges (u1, v1), . . . , (u|A|, v|A|) are
added into H , where the weights of the new |A| edges are orderly equal to the
weights of vertices w1, . . . , w|A| in A.

Let VS be the set of vertices contained in the elements of S and V ′
S be the

union of the sets in S containing red-color vertices in A. If there are d red-
color vertices in A, then there are |Er| = |A ∪ V0 ∪ VS | ≤ n edges and |Vr| =
c[V2] + (|VS − V ′

S | − (|S| − d)) + 2|A∪ V ′
S | ≤ 2n in Hr, where n is the number of

vertices in G′.

Lemma 4. Given a graph G′, an integer k, and a tuple r = (G, V0, V1, V2, F, A, S).
Let k1 = k − |F |. The problem of enumerating the z minimum-weight k1-FVS(r)
in the graph G′[V −F] is equivalent to that of enumerating the z minimum-weight
k1-FES in RCompress-graph Hr.

Proof. Let V ′
S be the union of the sets in S which contains red-color vertices in

A. There are at most ϕ(k, V0, V1, V2) vertices of a k1-FVS(r) in V1. If V2 = ∅,
then V0 = ∅ and G = G[V1]. In this case, there is no circle in G, so the vertices
of V1 can be moved into A. If ϕ(k1, V0, V1, V2) = 0 in the tuple r, all vertices of
k1-FVS(r) in G′[V − F] must come from V0. In this case, the vertices of V1 can
be moved into V2 and V1 = ∅.

396 J. Wang and G. Jiang

Let G0 be the graph by deleting the edges associated with the vertices in
A∪ V ′

S from G′[V −F]. G0 can also be formed by adding the vertices in A∪ V ′
S

as degree-0 vertices into graph G[V0 ∪ V2 ∪ (VS − V ′
S)]. The vertices in A don’t

join in any circle in G′. It is obvious that a vertex set F ′ containing no vertex
in V2 is a FVS of graph G0 only if F ′ is a FVS(r) in the graph G′[V − F].

By the construction ofHr, every vertex in V0∪V1∪A∪VS correspondswith exact
one edge in Hr. For every red-color vertex w in V0, let Sw be the set containing
w. According to the Tuple-construct algorithm, every vertex in Sw has a degree
of 2 in graph G[V0 ∪ V2 ∪ (VS − V ′

S)]. Thus all the vertices in Sw have degree of
2 in G0. Moreover, the path P formed by vertices in Sw in graph G0 corresponds
with a pathPH inHr. Therefore, there is a one-to-one correspondence between the
connected components in graph G0 and Hr. Thus the problem of finding all the
k1-FVS containing no vertex in V2 in the graph G0 is equivalent to that of finding
all k1-FES in Hr.

In conclusion, the problem of enumerating the z minimum-weight k1-FVS(r)
in the graph G′[V − F] is equivalent to that of enumerating the z minimum-
weight k1-FES in Hr. ��

Enumerate the z Maximum-Weight Forests. Enumerating the z minimum-
weight k1-FES of Hr can be solved by enumerating the z maximum-weight (|Er |−
k1)-forests in the graph Hr. For each (|Er| − k1)-forest T, the set Fe of the edges
which are not in T is the k1-FES in Hr.

Suppose X = {(i1, j1), ..., (ir, jr)} and Y = {(m1, p1), ..., (mh, ph)}. If a forest
T with size t contains all of the edges in X but doesn’t contain any edge in Y, the
forest T is denoted as a t -forest based on pair (X,Y). The maximum-weight t -
forest based on (X,Y) is indicated as T (X,Y). The idea of finding T (X,Y) is the
same with that of Kruskal’s algorithm for finding the minimum-weight spanning
tree in a graph, which repeats the following step until the set T contains t edges:
add to T the maximum-weight edge which doesn’t form a circle with edges in T .

Lemma 5. Given a graph Hr(Vr, Er), an integer t and a pair (X,Y), where X
and Y are disjoint subsets of Er. It takes O(|Er | log |Vr|) time to generate the
maximum-weight t-forest T (X,Y).

Suppose T (X,Y)−X = {e1, . . . , eh}. A set of new pairs is generated by T (X,Y)
as follows. For all integers i, 1 ≤ i ≤ h, Xi = X∪{e1, . . . , ei−1} and Yi = Y ∪{ei},
which form a new pair (Xi, Yi). Then there will be h new pairs with the following
forms: (X1, Y1) = (X,Y ∪{e1}), (X2, Y2) = (X ∪{e1}, Y ∪{e2}), . . . , (Xh, Yh) =
(X ∪ {e1, . . . , eh−1}, Y ∪ {eh}). All the sets of the t -forests based on each pair
are mutually disjoint. All void pairs on which any forest can’t be found are
deleted. Then the set of t -forests based on (X,Y) is the union of T (X,Y) and
the t -forests based on all these new pairs.

It is clear that the set of t -forests based on (∅, ∅) contains all the t -forests
in graph Hr. Let L = {(∅, ∅)}. The following steps are repeated for z times
to enumerate the z maximum-weight t -forests: (1) find the maximum-weight
t -forest based on every pair in L; (2)suppose T (Xj, Yj) is the maximum forest

A Fixed-Parameter Enumeration Algorithm for the Weighted FVS Problem 397

among those have been found in (1), then generate a group of new pairs by
T (Xj, Yj), add the valid ones into L and delete (Xj , Yj) from L.

Lemma 6. Given a graph Hr(Vr, Er), integers t and z. It takes O(zt|Er| log |Vr|)
time to generate the z maximum-weight t-forests in Hr.

Proof. The Enumerate-Forest algorithm creates at most t new pairs every loop of
(2) and generates the i maximum-weight t -forests after the i-th loop. It executes
the loop z times to generate the z maximum-weight t -forests, so there are at
most zt pairs at the z -th loop. With Lemma 5, generating the z maximum-weight
t -forests takes time O(zt|Er | log |Vr |). ��

The Practical Local-Enumeration Algorithm. As showed in Fig. 2, the
RCompress-graph Hr = (Vr, Er) on the tuple r is constructed firstly. Secondly
the the z maximum-weight (|Er| − k1)-forests in Hr are enumerated by the
Enumerate-Forest algorithm, where k1 = k − |F |. For each forest T, the set FT

of edges in Hr, which doesn’t contain any edge in T, is the k1-FES in Hr. Then
all vertices which correspond to the edges in FT in V0 ∪ A ∪ VS are added into
F ′. Thus the union set of each F ′ and F is a k -FVS of G′ based on the tuple r.
According to Lemma 6, it’s easy to verified the following lemma.

Local-enumeration (G′, r, k, z)
Input: a graph G′, an integer k, and a tuple r = (G, V0, V1, V2, F, A, S)
Output: z smallest k-FVS of G′ based on the tuple r
1. k1 = k − |F |, U = ∅;
2. construct the RCompress-graph Hr = (Vr, Er) on the tuple r ;
3. find the z maximum-weight (|Er| − k1)-forest in Hr and put them into UT ;
4. for each forest T in UT do
5. FT is the set of edges in Hr but not in T, and F ′ is the set of vertices

corresponding to the edges in FT in V0 ∪ A ∪ VS, then add F ∪ F ′ into U ;
6. return U ;

Fig. 2. The Local-enumeration Algorithm

Lemma 7. Given a graph G′, an integer k and a tuple r in R generated by
the Tuple-construct algorithm, the Local-enumeration algorithm enumerates the
z minimum-weight k-FVS of G′ based on the tuple r in time O(zn2 logn).

3.3 The Complexity of the Fixed-Parameter Enumeration
Algorithm for FVS Problem

The main process of the enumeration algorithm for FVS problem is to find the
z minimum-weight k -FVS(I) for each IF-partition I. The following theorem is
obtained by analyzing the former two algorithms.

398 J. Wang and G. Jiang

Theorem 1. Given a IF-partition I = (V0, V1, V2), the z minimum-weight k-
FVS(I) can be generated in time O (

(2τ(k,V0,V1,V2) + 1.414τ(k,V0,V1,V2)z)n2 logn
)
.

Proof. Firstly, the Tuple-construct algorithm on I is executed and R is the
returned tuple set. Let N be the total number of tuples in R. Secondly, the
z1 minimum-weight k -FVS based on each tuple in R are constructed. U1 is
the z minimum-weight k -FVS among all these Nz1 k -FVS. This takes time
O(Nz1n

2 logn). For a tuple r whose z1 minimum consistent k -FVS are not all
in U1, only those k -FVS consistent with r and that are already in U1 can be
possibly among the z minimum k -FVS of the graph G. Thus, the tuples whose z1
minimum consistent k -FVS(r) are not all in U1 can be discarded. With Lemma 2,
a k -FVS is consistent with exact one tuple in R, so there are at most N1 = z/z1
tuples in R for which the z1 minimum consistent k -FVS are all in U1. Now in
time O(N1zn

2 logn), the Local-enumeration algorithm is applied to each of these
N1 tuples and the z minimum-weight k -FVS based on each tuple are generated.
The returned k -FVS in this step are put into U2. Now the z minimum-weight
k -FVS in U1 ∪U2 are the z minimum-weight k -FVS(I) in the graph G. In sum-
mary, the z minimum-weight k -FVS(I) in the graph G can be generated in time
O((Nz1 + N1z)n2 logn).

If z >
√
N , let z1 = z/

√
N . Then N1 is bounded by

√
N and the above process

runs in time O(
√
Nzkn2 logn). If z ≤ √

N , let z1 = 1. ThenN1 = z, and the above
process runs in time O (

(N + z2)n2 logn
)
=O

(
(N +

√
Nz)n2 logn

)
. There are at

most 2τ(k,V0,V1,V2) in R, so N ≤ 2τ(k,V0,V1,V2), and
√
N ≤ 1.414τ(k,V0,V1,V2). More-

over, the Tuple-construct algorithm runs in time O(2τ(k−j,V0,V1,V2)n2). In conclu-
sion, the z minimum-weight k -FVS(I) in the graph G can be generated in time
O (

(2τ(k,V0,V1,V2) + 1.414τ(k,V0,V1,V2)z)n2 logn
)
. ��

Using theorem 1, we obtain the main result of this paper.

Theorem 2. Given a weighted graph G = (V,E), the problem for Enumeration
of FVS is solvable in time O(5kkn2 + (5k + 3kz)n2 logn).

Proof. For a given FVS F ′ of size k in the graph G = (V,E), each FVS F of
size k for G is a union of a subset F1 of j vertices in F ′ and a subset F2 of k− j
vertices in V \F ′ for all integers j, 0 ≤ j ≤ k. All subsets F1 of j vertices in F ′ are
enumerated, so G[V \F ′] and G[F ′\F1] are forests and subgraphs of G0 = G−F1.
Then the z minimum-weight (k− j)-FVS of G0 are constructed. Note that there
is a special IF-partition I = (V0, V1, V2) of G0, where V0 = ∅, V1 = V \ F ′, and
V2 = F ′ \ F1. With Theorem 1, the z minimum-weight (k − j)-FVS(I) in G0
can be constructed in time O (

(2τ(k−j,V0,V1,V2) + 1.414τ(k−j,V0,V1,V2)z)n2 logn
)

=
O (

(4k−j + 2k−jz)n2 logn
)
, where we have used the fact that and the fact τ(k−

j, V0, V1, V2) is bounded by 2(k−j). Now for all integers j, 0 ≤ j ≤ k, the running
time of this process is

k∑
j=0

((
k

j

)
· O (

(4k−j + 2k−jz)n2 logn
))

= O (
(5k + 3kz)n2 logn

)
.

A Fixed-Parameter Enumeration Algorithm for the Weighted FVS Problem 399

According to Lemma 1, a FVS F ′ of size k in the graph G = (V,E) can be
found in time O(5kkn2). Therefore, for a weighted graph G, the z minimum-
weight k -FVS can be generated in time O (

5kkn2 + (5k + 3kZ)n2 logn
)
. ��

4 Discussion

There are two main subroutines for the fixed-parameter enumeration for FVS,
the Tuple-construct algorithm and the Local-enumeration algorithm. The for-
mer uses the branch-and-search method to generate a set of tuples. The latter
enumerates the z minimum-weight k -FVS based on a tuple. Specially, when
the Local-enumeration algorithm transforms the k1-FVS problem to the k1-FES
problem, it considers the vertices in A at the same time. If k is equal to the
minimum size of FVS in the graph G′ or if the z minimal FVS with minimum
weight of size at most k is needed, the vertices in A can be discarded. Then the
size of Hr will be smaller. The process of enumerating the z maximum forests
can also be changed to enumerating the z maximum spanning-forests by [12].

References

1. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset
problem. J. Artif. Intell. Res. (JAIR) 12, 219–234 (2000)

2. Bodlaender, H.L.: On disjoint cycles. In: Proceedings of the 17th International
Workshop, pp. 230–238. Springer, London (1992)

3. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

4. Chen, J., Kanj, I., Meng, J., Xia, G., Zhang, F.: On the effective enumerability of
NP problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 215–226. Springer, Heidelberg (2006)

5. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2o(k)n3)
FPT algorithm for the undirected feedback vertex set problem. Theory Comput.
Syst. 41(3), 479–492 (2007)

6. Downey, R., Fellows, M.: Fixed parameter tractability and completeness. In: Com-
plexity Theory: Current Research, pp. 191–225. Cambridge University, Cambridge
(1992)

7. Downey, R., Fellows, M.: Parameterized complexity. Springer, New York (1999)
8. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based

fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Com-
put. Syst. Sci. 72(8), 1386–1396 (2006)

9. Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback ver-
tex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 235–247. Springer, Heidelberg (2004)

10. Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algo-
rithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC
2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)

11. Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable al-
gorithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3),
403–415 (2006)

12. Sörensen, K., Janssens, G.: An algorithm to generate all spanning trees of a graph
in order of increasing cost. Pesquisa Operacional 25(2), 219–229 (2005)

On the Tractability of Maximal Strip Recovery

Lusheng Wang1 and Binhai Zhu2

1 Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong

lwang@cs.cityu.edu.hk
2 Department of Computer Science, Montana State University,

Bozeman, MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. Given two genomic maps G and H represented by a sequence
of n gene markers, a strip (syntenic block) is a sequence of distinct
markers of length at least two which appear as subsequences in the in-
put maps, either directly or in reversed and negated form. The problem
Maximal Strip Recovery (MSR) is to find two subsequences G′ and H ′

of G and H , respectively, such that the total length of disjoint strips in
G′ and H ′ is maximized (or, conversely, the number of markers hence
deleted, is minimized). Previously, besides some heuristic solutions, a
factor-4 polynomial-time approximation is known for the MSR prob-
lem; moreover, several close variants of MSR, MSR-d (with d > 2 input
maps), MSR-DU (with marker duplications) and MSR-WT (with mark-
ers weighted) are all shown to be NP-complete. Before this work, the
complexity of the original MSR problem was left open. In this paper, we
solve the open problem by showing that MSR is NP-complete, using a
polynomial time reduction from One-in-Three 3SAT. We also solve the
MSR problem and its variants exactly with FPT algorithms, i.e., showing
that MSR is fixed-parameter tractable. Let k be the minimum number
of markers deleted in various versions of MSR, the running time of our
algorithms are O(22.73kn + n2) for MSR, O(22.73kdn + dn2) for MSR-d,
and O(25.46kn + n2) for MSR-DU.

1 Introduction

A well-known problem in comparative genomics is to decompose two given
genomes into syntenic blocks—segments of chromosomes which are deemed to
be homologous in the two input genomes. Many methods have been proposed,
but they are very vulnerable to ambiguities and errors. Recently, a heuristic
method was first proposed to eliminate noise and ambiguities in genomic maps,
through handling a problem called Maximal Strip Recovery (MSR) (see below
for the formal definition) [5,14]. In [3], a factor-4 polynomial-time approxima-
tion algorithm was proposed for the problem, and several close variants of the
problem were shown to be intractable. It was left as an open problem whether
the problem can be solved in polynomial time or is NP-complete.

In this paper, we show that MSR is in fact NP-complete, via a polynomial
time reduction from One-in-Three 3SAT (which was shown to be NP-complete

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 400–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Tractability of Maximal Strip Recovery 401

in [12,8]). On the other hand, we show that MSR, together with its close variants
MSR-d and MSR-DU, is fixed-parameter tractable. More specifically, let k be
the minimum number of markers deleted in various versions of MSR, the running
time of our algorithms are O(22.73kn+n2) for MSR, O(22.73kdn+dn2) for MSR-d,
and O(25.46kn + n2) for MSR-DU respectively.

A genomic map is represented by a sequence of gene markers, and a gene
marker can appear in several different genomic maps, in either positive or nega-
tive form. A strip (syntenic block) is a sequence of distinct markers that appears
as subsequences in two or more maps, either directly or in reversed and negated
form. Given two genomic maps G and H , the problem Maximal Strip Recovery
(MSR) [5,14] is to find two subsequences G′ and H ′ of G and H , respectively,
such that the total length of disjoint strips in G′ and H ′ is maximized. Intuitively,
those gene markers not included in G′ and H ′ are noise and ambiguities.

We give a precise formulation of the generalized problem MSR-d: Given d
signed permutations (genomic maps) Gi of 〈1, . . . , n〉, 1 ≤ i ≤ d, find q sequences
(strips) Sj of length at least two, and find d signed permutations πi of 〈1, . . . , q〉,
such that each sequence G′

i = Sπi(1) . . . Sπi(q) (here S−j denotes the reversed
and negated sequence of Sj) is a subsequence of Gi, and the total length of the
strips Sj is maximized. Note that the problem Maximal Strip Recovery (MSR)
[5,14] corresponds to the problem MSR-2 in our new formulation. We refer to
Fig. 1 for an example. In this example, each integer represents a marker.

G1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉
G2 = 〈−9,−4,−7,−6, 8, 1, 3, 2,−12,−11,−10,−5〉
S1 = 〈1, 2〉
S2 = 〈6, 7, 9〉
S3 = 〈10, 11, 12〉
π1 = 〈1, 2, 3〉
π2 = 〈−2, 1,−3〉
G′

1 = 〈1, 2, 6, 7, 9, 10, 11, 12〉
G′

2 = 〈−9,−7,−6, 1, 2,−12,−11,−10〉

Fig. 1. An example for the problem MSR

A heuristic based on Maximum Clique (and its complement Maximum Inde-
pendent Set) was previously given for the problem MSR (MSR-2) [5,14], which
does not guarantee finding the optimal solution. It was shown that this heuristic
[5,14] can be modified to achieve a factor-4 approximation for MSR-2 and, in
general, a factor-2d approximation for MSR-d. This was done by converting the
problem to computing the maximal independent set in t-interval graphs, which
admit a factor-2t approximation [1].

In biological data, duplicate markers are possible in some genomic maps, as
the so-called paralogy set. We denote by MSR-DU the problem MSR with the
following variation DU:

402 L. Wang and B. Zhu

DU — Duplicate markers are allowed in the genomic maps and in different
strips.

It should be noted that while duplicate markers are allowed in the genomic
maps and in different strips in the variation MSR-DU, they cannot appear in
any individual strip since each strip must be composed of a sequence of distinct
markers.

Sometimes, when building genomic maps, a priori information about the gene
markers can be derived from comparative analysis. For example, certain genes
that are responsible for important genetic functions in several closely related
species can often be identified. It is reasonable to give the corresponding gene
markers larger weights. Denote by MSR-WT the problem MSR with the follow-
ing additional weight constraint WT:

WT — The total weight of markers in the strips is between two positive integers
w1 and w2.

This paper is organized as follows. In Section 2, we show NP-completeness for
MSR. In Section 3, we present fixed-parameter algorithms for MSR and some of
its variants. In Section 4, we conclude the paper with a few open questions.

2 MSR Is NP-Complete

We prove MSR to be NP-complete in this section. It is clear that MSR is in
NP. We show that MSR is NP-hard by a reduction from the NP-hard problem
One-in-Three 3SAT [12].

Theorem 1. MSR is NP-complete.

Proof. We reduce from the NP-complete problem On-in-Three 3SAT to MSR.
Let φ = f1 ∧ f2 ∧ . . . ∧ fm be an One-in-Three 3SAT instance, i.e., a boolean
formula of m clauses in conjunctive normal form, with n variables v1, v2, . . . , vn,
where each clause fk is the disjunction of exactly three distinct literals, like
(v2 ∨v5 ∨ v̄7). The truth assignment satisfies another constraint that exactly one
literal in each clause is set to true. In the above clause, v2 = false, v5 = true,
and v7 = true is a valid one-in-three truth assignment. We assume that both
m,n > 2.

Our construction uses 11m + 4n + 30n2m + 15nm2 distinct markers:

– 9m clause markers — f1
i,j,k, f

2
i,j,k, and f3

i,j,k, if vi appears as the j-th literal
in fk; f̄1

i,j,k, f̄
2
i,j,k, and f̄3

i,j,k, if v̄i appears as the j-th literal in fk, for 1 ≤
i ≤ n, 1 ≤ j ≤ 3, 1 ≤ k ≤ m,

– 2m clause markers ai and ȧi for 1 ≤ i ≤ m,
– 2n variable markers xi and ẋi for 1 ≤ i ≤ n,
– 2n variable markers yi and ẏi for 1 ≤ i ≤ n,
– m peg strings (of 15nm markers each) Zk for 1 ≤ k ≤ m, with

Zk = zk,1zk,2 . . . zk,15nm.

On the Tractability of Maximal Strip Recovery 403

– n peg strings (of 15nm markers each) Ui for 1 ≤ i ≤ n, with
Ui = ui,1ui,2 . . . ui,15nm.

– n peg strings (of 15nm markers each) Wi for 1 ≤ i ≤ n, with
Wi = wi,1wi,2 . . . wi,15nm.

Throughout this proof, all of the peg strings are used to enforce the truth
assignment and, as will be shown a bit later, no peg string is ever deleted to
obtain the optimal solution for any converted MSR instance.

For the ease of description, we simply say that Ai,j,k = f1
i,j,kf

2
i,j,kf

3
i,j,k

(f̄1
i,j,kf̄

2
i,j,kf̄

3
i,j,k) are the associates of vi (v̄i) in fk and they always appear to-

gether in one of the input map G and in the final optimal solution (— but not
in the other input map H , as will be explained a bit later). For each variable
vi, 1 ≤ i ≤ n, let Fi and F̄i, respectively, be the two sequences of clause associates
in which the two literals vi and v̄i appear:

Fi = f1
i,j1,k1

f2
i,j1,k1

f3
i,j1,k1

f1
i,j2,k2

f2
i,j2,k2

f3
i,j3,k3

. . . f1
i,jp,kp

f2
i,jp,kp

f3
i,jp,kp

,

F̄i = f̄1
i,j′1,k′

1
f̄2

i,j′1,k′
1
f̄3

i,j′1,k′
1
f̄1

i,j′2,k′
2
f̄2

i,j′2,k′
2
f̄3

i,j′2,k′
2
. . . f̄1

i,j′q ,,k′
q
, f̄2

i,j′q
, f̄3

i,j′p,k′
q
,

let
Xi = −ẋiFi−xi yiF̄iẏi.

Given three sequences of length p, B1 = b11b12 . . . b1p, B2 = b21b22 . . . b2p, and
B3 = b31b32 . . . b3p, let (B1 ⊗B2 ⊗B3) be the sequence obtained by listing letters
in B1, B2, B3 alternately; i.e., B1 ⊗ B2 ⊗ B3 = b11b21b31b12b22b32 . . . b1pb2pb3p.
For each clause fk, 1 ≤ k ≤ m, let

Yk = ak(Ak1,1,k ⊗ Ak2,2,k ⊗ Ak3,3,k)ȧk,

where Akj ,j,k = a1
kj ,j,ka

2
kj ,j,ka

3
kj ,j,k, with akj ,j,k = fkj,j,k if vkj is the j-th literal

in fk or akj ,j,k = f̄kj ,j,k, if v̄kj is the j-th literal in fk, for 1 ≤ j ≤ 3 and for
some 1 ≤ kj ≤ n. More precisely,

Yk = aka
1
k1,1,ka

1
k2,2,ka

1
k3,3,ka

2
k1,1,ka

2
k2,2,ka

2
k3,3,ka

3
k1,1,ka

3
k2,2,ka

3
k3,3,kȧk.

Construct two genomic maps

G = W1 . . .Wn X1U1 . . .XnUn Z1 . . . Zm amȧm . . . a2ȧ2a1ȧ1,

H = x1y1ẋ1ẏ1W1 . . . xnynẋnẏnWn Y1Z1 . . . YmZm U1 . . . Un.

Note that G and H each contains the 11m+4n+30n2m+15nm2 distinct markers
exactly once. We show that the one-in-three 3SAT formula φ is satisfiable if and
only if G has a subsequence G′ and H has a subsequence H ′ such that the total
length of the strips in G′ and H ′ is exactly 3m + 2n + 30n2m + 15nm2.

We first prove the “only if” direction. Let τ be a truth assignment that satisfies
φ. For each i, let

X ′
i =

{
F ′

i yiẏi if τ(vi) = true,
−ẋi−xi F̄ ′

i if τ(vi) = false

404 L. Wang and B. Zhu

where F ′
i and F̄ ′

i are subsequences of Fi and F̄i respectively, which are related
to the truth assignment. In short, F ′

i is obtained from Fi by deleting the clause
associates of vi in fk if τ(vi) = false. Similarly, F̄ ′

i is obtained from F̄i by deleting
the clause associates of v̄i in fk if τ(vi) = true. We obtain Y ′

k from Yk by first
deleting ak and ȧk. Then, keep the associates of the (only) literal which sets fk

to be true. In other words, if fk is satisfied, then |Y ′
k| = 3. (If fk is not satisfied,

then |Y ′
k| = 2; i.e., we will have to keep Y ′

k = akȧk — that causes a much smaller
solution for the MSR instance.)

Formally, as a literal can only appear in a clause exactly once

Y ′
k =

{
f1

kj ,j,kf
2
kj,j,kf

3
kj ,j,k, if vkj is the j-th literal in fk and τ(vkj) = true,

f̄1
kj ,j,kf̄

2
kj,j,kf̄

3
kj ,j,k, if v̄kj is the j-th literal in fk and τ(vkj) = false

Then we have

G′′ = W1 . . .Wn X ′
1U1X

′
2U2 . . . X ′

nUn Z1 . . . Zm,

and
H ′′ = x1y1ẋ1ẏ1W1 . . . xnynẋnẏnWn Y ′

1Z1 . . . Y ′
mZm U1 . . . Un.

G′ and H ′ are obtained from G′′ and H ′′ as follows. G′ and H ′ each contains
exactly one of each of the variable strips xiẋi and yiẏi (with yiẏi corresponding
to true, and xiẋi to false), and all of the peg strings (strips) Ui,Wi, and Zk.
F ′

i and F̄ ′
i are obtained by deleting the associates of all literals which do not

make fk true and hence have been deleted from Yk (i.e., not appearing in Y ′
k).

The satisfying truth assignment also guarantees that each Y ′
k contains exactly

three associates corresponding to the true literal in clause fk. Hence, the total
length of the strips in G′ and H ′ is exactly (9m)/3+(4n)/2+30n2m+15nm2 =
3m + 2n + 30n2m + 15nm2.

For example, an one-in-three 3SAT formula of the following four clauses (over
four variables)

f1 = (v̄1 ∨ v2 ∨ v̄3) f2 = (v1 ∨ v2 ∨ v̄4) f3 = (v2 ∨ v3 ∨ v4) f4 = (v̄1 ∨ v̄2 ∨ v̄4)

corresponds to the two genomic sequences

G = W1W2W3W4

−ẋ1f
1
1,1,2f

2
1,1,2f

3
1,1,2−x1 y1f̄

1
1,1,1f̄

2
1,1,1f̄

3
1,1,1f̄

1
1,1,4f̄

2
1,1,4f̄

3
1,1,4ẏ1U1

−ẋ2f
1
2,2,1f

2
2,2,1f

3
2,2,1f

1
2,2,2f

2
2,2,2f

3
2,2,2f

1
2,1,3f

2
2,1,3f

3
2,1,3−x2

y2f̄
1
2,2,4f̄

2
2,2,4f̄

3
2,2,4ẏ2U2

−ẋ3f
1
3,2,3f

2
3,2,3f

3
3,2,3−x3 y3f̄

1
3,3,1f̄

2
3,3,1f̄

3
3,3,1ẏ3U3

−ẋ4f
1
4,3,3f

2
4,3,3f

3
4,3,3−x4 y4f̄

1
4,3,2f̄

2
4,3,2f̄

3
4,3,2f̄

1
4,3,4f̄

2
4,3,4f̄

3
4,3,4ẏ4U4

Z1Z2Z3Z4a4ȧ4a3ȧ3a2ȧ2a1ȧ1

On the Tractability of Maximal Strip Recovery 405

H = x1y1ẋ1ẏ1W1 x2y2ẋ2ẏ2W2 x3y3ẋ3ẏ3W3 x4y4ẋ4ẏ4W4

a1 f̄1
1,1,1f

1
2,2,1f̄

1
3,3,1f̄

2
1,1,1f

2
2,2,1f̄

2
3,3,1f̄

3
1,1,1f

3
2,2,1f̄

3
3,3,1 ȧ1Z1

a2 f1
1,1,2f

1
2,2,2f̄

1
4,3,2f

2
1,1,2f

2
2,2,2f̄

2
4,3,2f

3
2,2,2f

3
1,1,2f̄

3
4,3,2 ȧ2Z2

a3 f1
2,1,3f

1
3,2,3f

1
4,3,3f

2
2,1,3f

2
3,2,3f

2
4,3,3f

3
2,1,3f

3
3,2,3f

3
4,3,3 ȧ3Z3

a4 f̄1
1,1,4f̄

1
2,2,4f̄

1
4,3,4f̄

2
1,1,4f̄

2
2,2,4f̄

2
4,3,4f̄

3
1,1,4f̄

3
2,2,4f̄

3
4,3,4 ȧ4Z4

U1U2U3U4.

The truth assignment

τ(v1) = true τ(v2) = false τ(v3) = false τ(v4) = true

corresponds to

G′ = W1W2W3W4 f1
1,1,2f

2
1,1,2f

3
1,1,2y1ẏ1U1 −ẋ2−x2f̄

1
2,2,4f̄

2
2,2,4f̄

3
2,2,4U2

−ẋ3−x3f̄
1
3,3,1f̄

2
3,3,1f̄

3
3,3,1U3 f1

4,3,3f
2
4,3,3f

3
4,3,3y4ẏ4U4 Z1Z2Z3Z4.

and

H ′ = y1ẏ1W1 x2ẋ2W2 x3ẋ3W3 y4ẏ4W4 f̄1
3,3,1f̄

2
3,3,1f̄

3
3,3,1Z1 f1

1,1,2f
2
1,1,2f

3
1,1,2Z2

f1
4,3,3f

2
4,3,3f

3
4,3,3Z3 f̄1

2,2,4f̄
2
2,2,4f̄

3
2,2,4Z4 U1U2U3U4,

We do not list Ui,Wi and Zk as they are just long sequences of distinct markers.
We next prove the “if” direction. Let G′, H ′ be a subsequence of G,H re-

spectively such that the total length of the strips in G′ and H ′ is exactly
3m+2n+30n2m+15nm2. It is clear that all the peg strings (strips) Ui,Wi and
Zk must be in the optimal solution for the corresponding MSR instance. The
reason is that if we break any strip in Ui,Wi or Zk, say we want to use strip
ẏ1y2 by deleting W1 and U1, even if we somehow put all the 11m + 4n non-peg
markers in the optimal solution, the optimal solution size hence obtained would
be less than 30n2m+15nm2 < 3m+2n+30n2m+15nm2. In fact, breaking any
one of Ui, Vi or Zk, which is of length 15nm, will decrease the optimal solution
size to below 30n2m + 15nm2. This is because 11m+ 4n < 15m+ 15n < 15mn,
when m,n > 2.

The alternating pattern of the clause markers in Yk and Fi, F̄i ensures that
there is at most one common strip of length at most three between any Yk and
Fi, F̄i. If no strip of length three in Yk is selected, then akȧk will be a strip of
length two. Hence the length of the clause strips in the optimal solution will
be less than 3m. So, in the optimal solution for this MSR instance, if we have
3m of clause strips then we must have exactly one strip of length three from
each Yk and the three markers must belong to some clause associates to match
the corresponding ones in some Fi, F̄i. Similarly, the alternating pattern of the
variable markers and the corresponding peg markers in G and H ensures that
in the optimal solution there are n variable strips of length two in G′ and H ′,
that is, either xiẋi or yiẏi for 1 ≤ i ≤ n.

406 L. Wang and B. Zhu

Therefore, in the optimal solution for this MSR instance, we have a valid
truth assignment for φ: if clause markers in Fi are in the solution, we set vi as
true; if clause markers in F̄i are in the solution, we set vi as false. Obviously,
this assignment will satisfy each clause exactly once. Therefore, the one-in-three
3SAT formula φ is satisfied by this truth assignment.

The reduction time is clearly O((m + n)3) time. This completes the proof of
Theorem 1. ��
It should be noted that −ẋi · · ·−xi in Fi and F̄i could be changed to xi · · · ẋi and
the proof still works. So MSR is in fact NP-complete even when all the markers
are of positive signs.

3 FPT Algorithms for MSR and Its Variants

In this section, we consider solving MSR with an FPT algorithm. Basically, an
FPT algorithm for an optimization problem Π with optimal solution value k
is an algorithm which solves the problem in O(f(k)nc) time, where f is any
function only on k, n is the input size and c is some fixed constant not related
to k. More details on FPT algorithms can be found in [7]. We first prove the
following lemma.

Lemma 1. Before any marker is deleted, if xy or −y − x appears in both G1
and G2 (or, if xy appears in G1 and −y−x appears in G2, and vice versa), then
there is an optimal solution for MSR which has xy or −y − x as a strip.

Proof. Wlog, we only consider the case when xy appears in G1 and −y−x appears
in G2. The cases when xy (−y − x) appears in both G1 and G2 are similar. Let
the length-4 substring in G1 containing xy be p1(x)xys1(y), and let the length-4
substring in G2 containing xy be p2(y) − y − xs2(x). We assume that p1(x) �=
−s2(x) and s1(y) �= −p2(y), as otherwise the lemma is obviously true.

If x is deleted to obtain any optimal solution, then p1(x)y in G1 is a break-
point. The reason is that p2(y)−y and −ys2(x) in G2 cannot be equal to p1(x)y
or its signed reversal — the former is due to the positive sign on y in p1(x)y, and
the latter is due to s1(y) �= −p2(y). Similarly, ys1(y) in G1 is a breakpoint (as
p2(y) − y and −ys2(x) in G2 cannot be equal to p1(x)y or its signed reversal).
Therefore, when x is deleted the strip xy is destroyed, which is a contradiction.
If y is deleted, the same argument follows.

If both x, y are deleted to obtain any optimal solution, we consider three cases.

1. If a maximal substring S1 of G1 ending at p1(x) and a maximal substring
S′

1 of G1 starting at s1(y) are strips of length at least two, then we can put
x, y back, and delete p1(x), s1(y) to obtain a solution of larger size.

2. If one of S1, S
′
1 (say, S1, which must be equal to p1(x)) has length one, then

we can delete S1, put x, y back to obtain a solution of larger size.
3. If both of S1, S

′
1 have length one, then we can delete p1(x), s1(y), put x, y

back to obtain a solution which is of the same size as the current optimal
solution.

Hence, the lemma is proven. ��

On the Tractability of Maximal Strip Recovery 407

We note that the above lemma also holds when a strip is of length greater
than two.

The above lemma gives us a kernelization procedure.

1. Identify a set of strips from the two sequences, without deleting any gene
marker.

2. For each strip identified, change it to a letter in Σ1, with Σ1 ∩ Σ = ∅. Let
the resulting sequences be G′

1, G
′
2.

Let Σ be the alphabet for the input maps G1 and G2. Let Σ1 be the set of
new letters used in the kernelization process, with Σ1 ∩ Σ = ∅. We have the
following lemmas.

Lemma 2. There is an optimal MSR solution of size k for G1 and G2 if and
only if the solution can be obtained by deleting k markers in Σ from G′

1 and G′
2

respectively.

Proof. In the kernelization process, without deleting any gene marker, we change
each (existing) strip into a letter in Σ1 − Σ. Following Lemma 1, these letters
in Σ1 − Σ will never be deleted to obtain an optimal solution for MSR. ��
Lemma 3. In G′

1 (resp. G′
2), there are at most 3k letters (markers) in Σ.

Proof. Following Lemma 2, the optimal solution for MSR is obtained by deleting
markers (letters) only in Σ from G′

1 (resp. G′
2). For each letter x deleted, there

are at most two other letters in Σ, preceding and succeeding x. Therefore, we
have at most 3k letters in Σ in G′

1 (resp. G′
2). ��

Theorem 2. There is an FPT algorithm for MSR which runs in O(22.73kn+n2)
time.

Proof. Following Lemma 2 and Lemma 3, we can choose k letters in Σ from
G′

1, G
′
2. The number of choices, is hence bounded by(

3k
k

)
≈ 22.73k,

using Stirling’s formula. For each choice, we can check whether it is valid, i.e.,
whether all remaining markers are in some strip in G′

1 and G′
2. This can be done

in linear time if we spend O(n2) time in advance, i.e., building a correspondence
between all of the identical markers in G1, G2. So the overall running time of
the algorithm is O(22.73kn + n2) time. ��
It is obvious that the algorithm also works for MSR-d. For MSR-DU, the algo-

rithm is similar. But we need to make
(

3k
k

)
choices of letters in Σ from each

of G′
1 and G′

2. So the running time will be O(25.46kn + n2) time.

Corollary 1. MSR-d can be solved in O(22.73kdn+dn2) time and MSR-DU can
be solved in O(25.46kn + n2) time.

408 L. Wang and B. Zhu

For MSR-WT, if the weights for markers are arbitrary then obviously Lemma 1
does not hold anymore and the above algorithm will not work. But if the weights
are set so that Lemma 1 still holds, e.g., the weights must be one or two, then
we will still be able to obtain a similar result.

4 Concluding Remarks

We note that (the minimization version of) the MSR problem can be thought of
as the complement of the problem MWIS in 2-interval graphs is also known
as the problem 2-Interval Pattern [13], which has been extensively studied
[1,2,4,6,9,10,11,13] because of its application to RNA secondary structure pre-
diction. This probably explains why there is an FPT algorithm for MSR.

It would be interesting to know whether our FPT algorithms can be further
improved. The running times we have obtained for MSR and its variants are not
efficient enough to make them truely useful in practice. To make such an FPT
algorithm practical for MSR datasets, which usually has k between 50 to 150, it
must be more efficient.

Acknowledgment

Lusheng Wang is fully supported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region, China [Project No. CityU
120905]. We also thank referees for several useful suggestions and comments.

References

1. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.:
Scheduling split intervals. SIAM Journal on Computing 36, 1–15 (2006)

2. Blin, G., Fertin, G., Vialette, S.: Extracting constrained 2-interval subsets in 2-
interval sets. Theoretical Computer Science 385, 241–263 (2007)

3. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from com-
parative maps. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS,
vol. 5165, pp. 319–327. Springer, Heidelberg (2008)

4. Chen, E., Yang, L., Yuan, H.: Improved algorithms for largest cardinality 2-interval
pattern problem. Journal of Combinatorial Optimization 13, 263–275 (2007)

5. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny
blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI
2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

6. Crochemore, M., Hermelin, D., Landau, G.M., Rawitz, D., Vialette, S.: Approxi-
mating the 2-interval pattern problem. Theoretical Computer Science (to appear);
preliminary version appeared in Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 426–437. Springer, Heidelberg (2005)

7. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York (1979)

On the Tractability of Maximal Strip Recovery 409

9. Jiang, M.: A 2-approximation for the preceding-and-crossing structured 2-interval
pattern problem. Journal of Combinatorial Optimization 13, 217–221 (2007)

10. Jiang, M.: Improved approximation algorithms for predicting RNA secondary
structures with arbitrary pseudoknots. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007.
LNCS, vol. 4508, pp. 399–410. Springer, Heidelberg (2007)

11. Jiang, M.: A PTAS for the weighted 2-interval pattern problem over the preceding-
and-crossing model. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA 2007.
LNCS, vol. 4616, pp. 378–387. Springer, Heidelberg (2007)

12. Schaefer, T.: The complexity of satisfiability problem. In: Proceedings of the 10th
ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

13. Vialette, S.: On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science 312, 223–249 (2004)

14. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from compara-
tive maps in rearrangement analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 4, 515–522 (2007)

Greedy Local Search and Vertex Cover in Sparse
Random Graphs
(Extended Abstract)

Carsten Witt�

DTU Informatics,
Technical University of Denmark,

2800 Kgs. Lyngby, Denmark

Abstract. Recently, various randomized search heuristics have been
studied for the solution of the minimum vertex cover problem, in par-
ticular for sparse random instances according to the G(n, c/n) model,
where c > 0 is a constant. Methods from statistical physics suggest that
the problem is easy if c < e. This work starts with a rigorous explanation
for this claim based on the refined analysis of the Karp-Sipser algorithm
by Aronson et al. Subsequently, theoretical supplements are given to ex-
perimental studies of search heuristics on random graphs. For c < 1, a
greedy and randomized local-search heuristic finds an optimal cover in
polynomial time with a probability arbitrarily close to 1. This behavior
relies on the absence of a giant component. As an additional insight into
the randomized search, it is shown that the heuristic fails badly also on
graphs consisting of a single tree component of maximum degree 3.

1 Introduction

Randomized search heuristics (RSHs) such as Evolutionary Algorithms (EAs)
[10, 19], Simulated Annealing [18], Ant Colony Optimization [14] etc. are general
optimization techniques that prevail in applications where problem-specific al-
gorithms are not available. In the last years, substantial progress has been made
in the rigorous runtime analysis of RSHs for problems from combinatorial opti-
mization [7, 8, 10, 14, 15, 18, 19]. In these works, the key question is how long
the heuristics take in expectation to find a solution of a prespecified quality.

Recently, the behavior of RSHs for the minimum vertex cover (VC) problem
has received increasing attention [7, 8, 15]. These studies were concerned with
specific instances to the problem. A mostly empirical work [16] studies an average
case where the graph is drawn randomly according to the G(n, p) model [3] with
p = c/n for constant c. In particular, that paper highlights the well-known phase
transition in this model. If c < 1 then all connected components of the graph are
of size O(log n) with high probablity 1−o(1) (abbreviated as w. h. p. hereinafter),
� The author was supported by the Deutsche Forschungsgemeinschaft (DFG) as a part

of the Collaborative Research Center “Computational Intelligence” (SFB 531). The
work was mainly done while the author was at TU Dortmund University, Germany.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 410–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Greedy Local Search and VC in Sparse Random Graphs 411

and the problem is easy to solve by complete enumeration. Actually, by references
to methods from statistical physics [11], it is claimed in [16] that VC is easy in
random graphs if c < e. However, no rigorous argument is given.

One aim of this work is to supply theoretical justifications to the experimental
analyses of RSHs for VC in sparse random graphs. We start with a rigorous proof
in Section 2 that VC in sparse random graphs can be solved in polynomial time
w. h. p. for c < e. Despite being a simple consequence of the refined analysis of
the Karp-Sisper algorithm presented by Aronson, Frieze and Pittel [1], this result
does not seem to have been stated explicitly so far yet (at least in the community
of theoretical computer science). Afterwards, we study the behavior of a simple
RSH in our random graph model. A hybrid algorithm called Greedy-LS that
combines ingredients of evolutionary algorithms and randomized local search
with a greedy component is defined in Section 3. It is proved to find optimal
VCs in the domain c < 1 with probability at least 1 − ε, ε > 0 an arbitrary
small constant. This result relies on the absence of the giant component but still
comes unexpected since the local search is far from complete enumeration. In
order to fathom the limits of the approach, it is shown that Greedy-LS fails even
on trees of small degree when the tree forms a giant component. We finish with
some conclusions. Most proofs in this extended abstract are only sketched.

2 A Modified Karp-Sipser Algorithm for Vertex Cover

In [16], various heuristics including EAs, SA, and branch and bound are studied
for the VC problem in sparse random graphs drawn according to the G(n, c/n)
model. While evaluating their experiments, the authors of [16] claim that the
problem is “typically” polynomial-time solvable for c < e. This is explained
by a reference to methods from statistical physics [2, 11]. The underlying idea
described by Bauer and Golinelli [2] is to study the application of a procedure
called leaf-removal to the input graph: as long as the graph has at least one
leaf (a vertex of degree 1), choose such a leaf uniformly and delete the leaf and
its neighbor (along with incident edges) from the graph. The graph that finally
remains is called the “core” in [2] (a notion different from the well-known (k-)core
of a graph). The non-rigorous analysis using stastistical mechanics reveals that
the “core” is of size O(log n) provided that c < e. Hence, it is proposed in [2]
to solve the VC problem by applying leaf-removal, putting cover marks on the
leaves’ neighbors, and finally solving the VC problem on the “core” using branch
and bound as a brute-force approach.

Roughly speaking, Bauer and Golinelli [2] identify a second phase transition
in the G(n, c/n) model besides the well-known emergence of a giant component
at c = 1: namely, the emergence of a giant “core” at c = e. They also relate
the latter to the so-called e-phenonemon first observed by Karp and Sipser [12]
w. r. t. the maximum matching problem and studied in more detail by Aronson
et al. [1]: i. e., the leaf-removal approach can also be applied to find a large
matching in the graph. As long as c < e, the “core” remaining after leaf-removal
is of asymptotically neglegible size w. h. p., hence the set of edges chosen by leaf
removal yields a (1 − o(1))-approximation of a maximum matching.

412 C. Witt

The reference to the Karp-Sipser algorithm is more or less a side remark in [2].
From the viewpoint of theoretical computer science, we are aiming at making
the interplay of the Karp-Sipser algorithm, the “core”, maximum matchings
and minimum VC more explicit. In particular, we are interested in a rigorous
statement regarding the “typical” O(log n) size claimed in [2] for the “core”
graph. Fortunately, such a statement is already contained in the analysis in [1].
This results in the forthcoming Theorem 2 that VC in sparse random graphs can
be solved to optimality w. h. p. if c < e. The algorithm used is a modification
of the Karp-Sipser algorithm for the VC problem, called KS-VC and described
in Algorithm 1. The notion G \ N for a set of vertices N denotes the subgraph
of G induced by V (G)\N . By V (G) and E(G) we denote the set of vertices and
edges of G, respectively.

Algorithm 1 (KS-VC)
1. C := ∅.
2. While E(G) �= ∅

If G has at least one leaf then
choose a leaf w ∈ V (G) uniformly,
let {v, w} ∈ E(G) be the unique edge incident on w,
C := C ∪ {v}, G := G \ {v, w} (double-vertex removal)

else
choose v ∈ V (G) uniformly,
C := C ∪ {v}, G := G \ {v} (single-vertex removal).

3. Output C as Vertex Cover.

We describe the underlying ideas of the algorithm. If the graph has at least one
leaf, the vertex adjacent to the leaf gets a cover mark, and these two vertices,
along with their incident edges, are removed. The idea not to choose leaves
for the cover is sometimes called domination and is present in many different
approximation algorithms and search heuristics for VC (or, from a different
viewpoint, independent set), see, e. g., [17] and [5]. Otherwise, a vertex is picked
uniformly for the cover and only this single vertex and its incident edges are
removed. In the first case, the graph is reduced in same manner as with the
original Karp-Sipser algorithm for maximum matching. At the first instance
where there are no leaves left, our approach starts to behave differently. By
definition, KS-VC outputs a valid vertex cover.

Let Phase 1 end at the first point of time when G has no more leaves (note
that new leaves can still be created afterwards), in other words G corresponds
to the “core” as defined in [2]. We summarize a main result from [1]:

Theorem 1 ([1]). Let c < e. Then at the end of Phase 1 of KS-VC, G is w. h. p.
a collection of vertex disjoint cycles.

We are ready to present the rigorous supplement to the study by Bauer and
Golinelli [2]. Despite being a simple consequence from the previous theorem,
the following result does not seem to have been stated explicitly so far (at least
in the TCS community). A connection between Karp-Sipser and minimum VC

Greedy Local Search and VC in Sparse Random Graphs 413

is drawn in [9], however, only the possibility of a (1 + o(1))-approximation is
noticed in the interesting domain c < e.

Theorem 2. Let c < e. Then KS-VC finds an optimal vertex cover w. h. p.

Proof. We analyze the first phase and the rest of the run separately. Let G∗

be the graph remaining after the end of the first phase. Each optimal VC for
the graph G \ G∗ can be converted into the result produced by KS-VC on this
subgraph by iteratively moving the cover marks from leaves to their neighbors.
All edges incident on vertices from G \G∗ are covered in the first phase. Hence,
it remains to prove that KS-VC produces an optimal cover on G∗.

By Theorem 1, G∗ is a collection of vertex-disjoint cycles w. h. p. Let us assume
this to happen. KS-VC covers a cycle of length k by a single execution of a single-
vertex removal, followed by (k − 2)/2� executions of a double-vertex removal,
altogether using k/2� cover marks. Since the cycles are disjoint, an optimal
cover for G∗ is produced, in total yielding an optimal cover for G. ��

3 Greedy Local Search

Many analyses of RSHs, most notably EAs, on problems from combinatorial
optimization reveal that the heuristics mimick components of problem-specific
algorithms with a certain probability [10, 13, 19]. Often this results in expected
polynomial runtimes to find optimal or at least good approximate solutions to
the problem. Compared to problem-specific algorithms, a loss of polynomial
factors in the runtime seems to be a fair price to pay for the wide applicability
of the heuristic. Of course, if the problem at hand is well understood and tailored
algorithms are available, one would probably prefer the tailored algorithm. Still,
it is interesting how RSHs compete with problem-specific algorithms on well-
studied problems from combinatorial optimization since such analyses improve
our understanding of the working principles of heuristics on realistic problems.
Therefore, a main contribution of this paper are the methods for the analysis of
the heuristics, not the heuristics themselves or the graph instances studied.

Most of the above-mentioned runtime analyses consider the worst case from
a class of problems rather than average-case models. As seen before, the KS-VC
algorithm is itself a heuristic, which performs extraordinarily well in the average-
case model of sparse random graphs if c < e. We now turn our view to more
classical search heuristics such as EAs, which were already analyzed on certain
VC instances [7, 8, 15]. The well-known (1+1) EA (e. g., [10]) maintains search
points from {0, 1}|V |, i. e., each bit decides whether a vertex is included in the
cover or not. The “fitness” of a search point is just the size of the current cover, or
a penalty value greater than |V | if no valid VC is encoded. The (1+1) EA creates
a new tentative solution by flipping each bit of the current cover independently
with probability 1/|V |. If the new solution has at most the same fitness value as
the current one, the new solution is accepted as the current solution, otherwise it
is rejected. This procedure is repeated until some stopping criterion is satisfied.

414 C. Witt

We see that the (1+1) EA has the ability to change many bits in a step but
is more likely to perform local steps changing only few bits. If at most two bits
are allowed to flip, we arrive at a randomized local search (RLS) algorithm as
investigated in [10]. Often RLS is much easier to analyze but is still competitive
with the (1+1) EA since the search is driven by the local changes. Let us consider
the local steps of the (1+1) EA flipping only a single or two bits, i. e., vertices.
Since the (1+1) EA only goes from valid to valid covers and never increases
cover size, the steps of size 1 are only accepted if they remove a cover mark from
a vertex. Steps of size 2 may remove two cover marks or swap a cover mark on
a vertex with a previously unmarked vertex. If the two vertices involved in such
a swap are not connected by an edge, we already obtain a cover of smaller size
by only removing the cover mark from the first vertex. Only if the swap goes
along an edge, the removal of a single cover mark might be precluded. Hence,
the search by means of 1-bit and 2-bit flips seems to be driven by steps removing
single cover marks or swapping cover marks along edges. Most of the other steps
will be wasted since they would lead to invalid covers.

Inspired by the preceding considerations, we define a search heuristic which
can be seen as a hybridization of RLS and a greedy algorithm. Often RSHs
are enhanced by problem-specific components, and the runtime analysis of such
hybrid approaches is another branch in the theory of RSHs which has gained
increasing interest [8]. The hybrid algorithm studied here is called Greedy Local
Search (Greedy-LS) and defined as Algorithm 2. It starts from the full cover. If
there is a vertex with all neighbors covered, this vertex is removed from the cover
immediately, which is the greedy aspect. Otherwise, an edge is chosen uniformly.
If swapping its endpoints in and out the cover leads to a still valid cover, the
swap is accepted. The swaps can be considered as the local changes of the cover.

Algorithm 2 (Greedy-LS)
1. C := V (G).
2. Repeat forever

If there is a vertex with all neighbors in C then
choose such a vertex, say v, uniformly, and set C := C \ {v}
(vertex removal operation)

else
choose {v, w} ∈ E(G) uniformly; assume w. l. o. g. that v ∈ C,
if w /∈ C and (C \ {v}) ∪ {w} is a cover then set C := (C \ {v}) ∪ {w}
(edge swap operation).

In our description, Greedy-LS does not terminate. We are interested in the ran-
dom first point of time that the algorithm finds an optimum. Like for many local
search algorithms, this time is not necessarily finite. Consider a bipartite graph
with unequally sized subsets in the bipartition. If Greedy-LS happens to remove
all vertices of the smaller subset from the cover, there will be no possible swap
operations. Still, VC on bipartite graphs is polynomial-time solvable [4].

For the following analyses, it is crucial that Greedy-LS never includes a vertex
and all its neighbors in the cover when an edge swap is executed. If the conditions
for the cover marks to be swapped are satisfied, we call an edge selectable.

Greedy Local Search and VC in Sparse Random Graphs 415

3.1 Sparse Random Graphs and the Case c < 1

In this subsection, we investigate the performance of the Greedy-LS heuristic
in the G(n, c/n) model. As mentioned above, the idea is to relate the random
choices of the heuristic to a problem-specific algorithm, in this case KS-VC. It
will turn out that Greedy-LS is able to reproduce an important subset of the
decisions made by KS-VC with polynomial probability, implying that Greedy-LS
finds minimum VCs in the domain c < 1 with good probability in polynomial
time. This result is not obvious since our heuristic only allows local steps and is
unable to explore connected components by complete enumeration.

We are ready to state the announced positive result regarding Greedy-LS.

Theorem 3. Let c < 1. For every constant ε > 0, Greedy-LS finds an optimal
vertex cover in polynomial time with probability at least 1 − ε − o(1).

Sketch of proof: We use standard results on random graphs [3, p. 105] and a
small technical lemma. As a result, we assume G to have unicyclic connected
components (CCs) of maximal size O(log n) with O(log n) edges in each CC
and length O(1) for the longest cycles. This assumption is valid with probability
at least 1 − ε/2 − o(1). Actually, all central proof ideas go back to the case of
cycle-free graphs (i. e., trees) and can be extended to the case of small cycles of
length O(1). In the following, we only consider trees.

We consider the CCs of G separately and study the probability that Greedy-
LS to a sufficient extent “simulates” the behavior of KS-VC on this CC. Let
a component C∗ be fixed. Since it is assumed as a tree, KS-VC only executes
double-vertex removals, i. e., it chooses edges incident on leaves. We have the
freedom to determine the random order according to which KS-VC selects these
edges. Therefore, let a root vertex r∗ ∈ V (C∗) for the connected component be
fixed arbitrarily and let us assume that KS-VC always chooses a leaf of maximal
distance to r∗. Denote by e1 = {v1, w1}, . . . , ek = {vk, wk} the edges from C∗

chosen in this order by KS-VC, i. e., v1, . . . , vk are covered. Again due to the
tree structure, v1, . . . , vk is in fact a valid and optimal vertex cover w. r. t. C∗.
Let N(vi) denote the set of neighbors of vi and note that wi ∈ N(vi). Since
v1, . . . , vk is a cover, we have V (C∗) =

⋃k
i=1({vi} ∪ N(vi)).

While analyzing Greedy-LS, we concentrate on the edges e1, . . . , ek and their
neighbors. Let ei, 1 ≤ i ≤ k, be called consistent w. r. t. a current solution of
Greedy-LS if only its v-vertex is chosen, inconsistent if only its w-vertex is chosen
and undecided otherwise. The case of both vertices unchosen cannot happen as
Greedy-LS always maintains valid covers. Moreover, it is crucial that Greedy-LS
never increases the number of cover marks in a CC. The idea is to show that
with a polynomial probability of n−O(1), Greedy-LS is able to make the k edges
consistent and, in a manner sketched below, also their neighbors, or to arrive at
an equally good cover iteratively by a sequence of swap and removal operations.
Using standard waiting time arguments and Markov’s inequality, the polynomial
probability is finally translated into a polynomial runtime that holds, altogether,
with probability at least 1 − ε − o(1).

416 C. Witt

Keeping in mind the tree structure, the core of the proof distinguishes two
cases. Each edge ei = {vi, wi}, 1 ≤ i ≤ k, is either adjacent to a leaf in the orig-
inal graph G, or adjacent to a leaf only after at least one double-vertex removal
of KS-VC. In the first case, the edge can always be made consistent by either
removing the w-vertex from the cover (if the edge was undecided) or a swap
operation (if the edge was inconsistent). Let pi be the parent of vi and note that
all neighbors y ∈ N(vi) except pi must be leaves since wi is a leaf of maximal
depth. After making ei consistent, all covered vertices in N(vi) \ {pi} (and pos-
sibly further ones) will undergo removal operations by Greedy-LS. Restricted to
the induced subgraph on N∗(i) := {vi}∪N(vi) \ {pi}, we have already obtained
the same cover as KS-VC, which is, in fact, an optimal cover for this subgraph;
we say that N∗(i) has been made consistent. Moreover, unless vi is involved in
a swap operation, the number of cover marks in the subtree rooted at vi never
increases. This is a simple consequence of the tree structure.

vi2

vi1 = vi

wi1 = wi

wi2

vi′

wi′

vi3

wi3

Fig. 1. Example: edge ei′ = {vi′ , wi′}, the subtree of vi′ and the edges eij = {vij , wij}
with all these edges in correct state. The vij have distance 1 or 2 from vi′ .

Now we sketch the case that ei becomes incident on a leaf only after some steps
of KS-VC. Consider the deepest ancestor of vi lying on one of the edges e1, . . . , ek.
Let i′ denote the index of this edge and observe that i′ > i. If vi′ has s children,
we investigate for each child the subtree rooted at the child and, in this subtree,
all edges from e1, . . . , ek having a v-vertex of smallest depth. In particular, ei

is such an edge. Let ei1 = ei, ei2 , . . . , eis be all these edges (see Figure 1 for an
example). Due to the choice of these edges, each vij , 1 ≤ j ≤ s, has distance
either 1 or 2 from vi′ . The first case is a child of vi′ being also in the cover
produced by KS-VC, the second case corresponds to an uncovered child. KS-VC
processes the eij -edges before ei′ . Hence, let us suppose that N∗(i1), . . . , N∗(is)
are consistent in the current cover of Greedy-LS; different neighborhoods N∗(�),
� < i′ and � /∈ {i1, . . . , is}, need not be consistent at this moment (any more). In
order to make N∗(i′) consistent, it can be necessary for Greedy-LS to (1) apply
a swap operation to ei′ and (2) apply removal operations to children of vi′ .
Both operations remove cover marks from some children of vi′ and are only
guaranteed to lead to a valid cover if all edges incident on these children are
covered. However, this holds by construction and assumption since we consider
all edges from e1, . . . , ek with the v-vertex at distance 1 or 2 from vi′ and assume

Greedy Local Search and VC in Sparse Random Graphs 417

consistency for the N(ij). Hence, if Greedy-LS makes N∗(i′) consistent before
any of the edges incident on vi1 ∪ · · · ∪ vis are touched by Greedy-LS again, we
obtain a cover of optimal size in terms of the subgraph rooted at vi′ . A not too
involved combinatorial argument relying on the limited neighborhood and the
assumed graph structure identifies a sufficient event of probability n−O(1). �

3.2 Trees with Large Connected Components

The previous results relied on the fact that connected components are of logarith-
mic size w. h. p. In this section, we study the behavior of Greedy-LS on a sparse
graph of maximum degree 3 having a single connected component and show
a superpolynomial lower bound on its runtime. Previous results showing that
randomized search heuristics fail to efficiently find minimum VCs were available
only for dense graphs or graphs with large maximum degree [7, 8, 15].

Our example called FoolingTree is defined on n = 2k+2 − 3 vertices. The
graph is the subdivision obtained from a complete, rooted binary tree by replac-
ing each edge with a path of length two (a figure had to be omitted due to space
limitations). Hence, there are 2�i/2� vertices at depth 0 ≤ i ≤ 2k. Any VC must
include vertices from at least every second level. Moreover, the unique optimal
VC for FoolingTree chooses all vertices of odd depth.

There are many VCs being by one vertex away from optimality, e. g., the VC
choosing all vertices of even depth. In our analyses, we concentrate mainly on the
so-called deep-end edges between levels 2i− 1 and 2i, 1 ≤ i ≤ k, i. e., the deeper
edges from the paths of length two; all other edges are called high end. Each
deep-end edge has a unique upper neighbor in a high-end edge, which neighbor
is itself either the root or endpoint of another deep-end edge. Since all vertices
except the root are endpoint of exactly one deep-end edge, the configuration of
the deep-end edges together with the root is sufficient to specify any vertex cover.
We call a configuration of a deep-end edge correct if only its odd-level vertex
is chosen, wrong if only its even-level vertex is chosen and complete otherwise
(the empty case cannot occur in valid vertex covers). The optimal vertex cover
sets all deep-end edges correctly. In the following, we conceptually restrict the
tree to the deep-end edges. From this perspective, we denote the set of deep-end
edges below a deep-end edge e along with e itself as the subtree rooted at e and
denote the upmost deep-end edges in the subtree as the two children of e.

We justify why FoolingTree is fooling Greedy-LS. Let us consider a con-
figuration of Greedy-LS where at least one deep-end edge is wrong. To correct
the edge by an edge-swap operation of Greedy-LS, the configuration of the two
children of the deep-end edge is crucial. Only if the two children are not wrong,
the edge is selectable and the swap results in a valid VC; otherwise an edge
in between the deep-end edge and its children would be uncovered. Let us as-
sume for a moment that the two children are correct. Then there are two choices
among the deep-end edge and its children that decrease the number of correct
edges but only a single choice increasing this number. Hence, given that a wrong
deep-end edge can be corrected, there seems to be a tendency towards more
wrong edges.

418 C. Witt

We make these ideas a bit more precise. We give each deep-end edge a depth,
defined by the number of deep-end edges from the root to the edge itself. Fix a
valid VC and a deep-end edge e. In the subtree T (e) of deep-end edges rooted
at e, we define the following potential function denoted by P (e): consider the
set of edges in T (e) that are (1) wrong, (2) selectable, and (3) have only wrong
ancestors in T (e). If this set is empty then P (e) := 0. Otherwise, P (e) is the
maximum depth (w. r. t. e) of these edges, increased by 1. The first aim is to
show that P (e) has a strong tendency to increase in the run of Greedy-LS on
the FoolingTree instance. Later, this result will be “amplified” in order to
show that Greedy-LS needs expected superpolynomial time to optimize Fool-

ingTree. In the following, we call a step of Greedy-LS relevant for a subtree if
it chooses a selectable edge from this tree for an edge-swap operation.

Lemma 1. Let e be a deep-end edge and consider its current P (e)-value. If
P (e) > 0 then, with probability at least 1/2, the P (e)-value increases to its
maximum d(e) before it reaches 0; the conditional expected number of relevant
steps for this is at most 12d(e). From a current value P (e) = d(e), the probability
to reach P (e) = 0 before falling back to P (e) = d(e) is at most 2−Ω(d(e)).

In the forthcoming theorem, we let the potential increase simultaneously for
the complete tree and several of its subtrees. Since Lemma 1 assumes a positive
initial potential, we set up some sufficient conditions to increase a zero potential.

Lemma 2. Let e be a deep-end edge with P (e) = 0. If its upper neighbor is
covered, then there is a single edge-swap operation leading to P (e) > 0.

A a consequence of the preceding two lemmas, we obtain a third lemma not
displayed here. Informally, as long as a deep-end edge can be turned wrong, the
probability of observing it in correct state decreases exponentially with the depth
of the subtree below the edge. The depth is Ω(log n), which implies polynomial
time for the correction with probability Ω(1). With high probability, there are
linearly many such situations concurrently, resulting in the following theorem.

Theorem 4. The expected optimization time of Greedy-LS on FoolingTree

is superpolynomial.

4 Conclusions

We have studied the behavior of randomized search heuristics for minimum ver-
tex cover in sparse random graphs according to the G(n, c/n) model and sup-
plemented previous experimental analyses. At first, we have rigorously proven
that the problem can the solved to optimality for c < e using a modification of
the Karp-Sipser algorithm called KS-VC. Afterwards, a hybrid heuristic called
Greedy-LS was investigated. For c < 1 it reproduces the decisions of KS-VC with
a good probability in polynomial time. However, it fails badly already on graphs
consisting of a single tree component of maximum degree 3. Our analyses pro-
vide insight into the behavior of greedy randomized search and present methods
for its analysis. At the same time, they illustrate principles of hybridizations of
problem-specific greedy algorithms and randomized search heuristics.

Greedy Local Search and VC in Sparse Random Graphs 419

References

1. Aronson, J., Frieze, A., Pittel, B.G.: Maximum matchings in sparse random graphs:
Karp-Sipser revisited. Random Structures and Algorithms 12(2), 111–177 (1998)

2. Bauer, M., Golinelli, O.: Core percolation in random graphs: a critical phenomena
analysis. The European Physical Journal B 24(3), 339–352 (2001)

3. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

5. Evans, I.K.: Evolutionary algorithms for vertex cover. In: Porto, V.W., Waagen,
D. (eds.) EP 1998. LNCS, vol. 1447, pp. 377–386. Springer, Heidelberg (1998)

6. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn.,
vol. 1. Wiley, Chichester (1968)

7. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
In: Proc. of GECCO 2007, pp. 797–804. AMC Press (2007)

8. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple
hybrid evolutionary algorithms for the vertex cover problem. Evolutionary Com-
putation 17(1), 3–20 (2009)

9. Gamarnik, D., Nowicki, T., Swirscsz, G.: Maximum weight independent sets and
matchings in sparse random graphs. Exact results using the local weak convergence
method. Random Structures and Algorithms 28(1), 76–106 (2005)

10. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching prob-
lem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426.
Springer, Heidelberg (2003)

11. Hartmann, A., Weigt, M.: Statistical mechanics perspective on the phase transi-
tion in vertex covering of finite-connectivity random graphs. Theoretical Computer
Science (265), 199–225 (2001)

12. Karp, R.M., Sipser, M.: Maximum matchings in sparse random graphs. In: Proc.
of FOCS 1981, pp. 364–375. IEEE Press, Los Alamitos (1981)

13. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theoretical Computer Science 378(1), 32–40
(2007)

14. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer,
Heidelberg (2006); Extended version to appear in Algorithmica

15. Oliveto, P.S., He, J., Yao, X.: Evolutionary algorithms and the vertex cover prob-
lem. In: Proc. of CEC 2007, pp. 1870–1877. IEEE Press, Los Alamitos (2007)

16. Pelikan, M., Kalapala, R., Hartmann, A.K.: Hybrid evolutionary algorithms on
minimum vertex cover for random graphs. In: Proc. of GECCO 2007, pp. 547–554.
ACM Press, New York (2007)

17. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM Jour-
nal on Computing 6(3), 537–546 (1977)

18. Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 589–601. Springer, Heidelberg (2005)

19. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005)

Embedding the Diamond Lattice in the c.e.
tt-Degrees with Superhigh Atoms

Douglas Cenzer1, Johanna N.Y. Franklin2, Jiang Liu3, and Guohua Wu3

1 Department of Mathematics
University of Florida

310 Little Hall, Gainesville, FL 32611-8105, USA
2 Department of Mathematics

National University of Singapore
2, Science Drive 2, Singapore 117543, Singapore

3 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore 637371, Singapore

Abstract. The notion of superhigh computably enumerable (c.e.) de-
grees was first introduced by Mohrherr in [7], where she proved the exis-
tence of incomplete superhigh c.e. degrees, and high, but not superhigh,
c.e. degrees. Recent research shows that the notion of superhighness is
closely related to algorithmic randomness and effective measure theory.
Jockusch and Mohrherr proved in [4] that the diamond lattice can be
embedded into the c.e. tt-degrees preserving 0 and 1 and that the two
atoms can be low. In this paper, we prove that the two atoms in such
embeddings can also be superhigh.

1 Introduction

Lachlan proved in 1966 in [5] the classical Non-Diamond Theorem: no diamond
can be embedded in the c.e. Turing degrees preserving both 0 and 1. However,
Cooper showed that such a diamond can be embedded into the Δ0

2 degrees if
we do not require that the atoms be c.e. [1]. Later, Epstein showed that both
atoms can be made low and that both atoms can be made high [3], and Downey
proved in [2] that both atoms can be d.c.e. degrees, giving an extremely sharp
result in terms of the Ershov hierarchy.

Alternately, we can consider the possibility of constructing a diamond preserv-
ing 0 and 1 if we consider a stronger reducibility. Since the proof of Lachlan’s
Non-Diamond Theorem holds in the c.e. wtt-degrees as well, no such diamond
exists in the c.e. wtt-degrees. However, Jockusch and Mohrherr showed in [4]
that the diamond lattice can be embedded into the c.e. tt-degrees preserving 0
and 1 and, furthermore, that the two atoms can be low. In this paper, we present
a proof that such a diamond can be embedded into the c.e. tt-degrees in such a
way that both atoms are superhigh.

The notion of superhigh c.e. degrees was first introduced by Mohrherr in [7],
where a computably enumerable set A is defined to be superhigh if A′ ≡tt ∅′′.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 420–429, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Embedding the Diamond Lattice in the c.e. tt-Degrees 421

In the same paper, Mohrherr proved the existence of incomplete superhigh c.e.
degrees and also the existence of high, but not superhigh, c.e. degrees. More re-
cently, Ng has shown in [8] that there is a minimal pair of superhigh c.e. degrees.
Recent research in computability theory shows that the notion of superhighness
is closely related to algorithmic randomness and effective measure theory. For
instance, Simpson showed that uniformly almost everywhere dominating degrees
are all superhigh [9] (the uniformly almost everywhere dominating degrees are
all high follows from the characterization of highness via domination due to Mar-
tin), and Kjös-Hanssen, Miller and Solomon showed that the uniformly almost
everywhere dominating degrees are exactly the degrees containing a set A such
that ∅′ is K-trivial relative to A.

Our theorem is stated as follows.

Theorem 1. There are superhigh computably enumerable sets A and B such
that 0, degtt(A), degtt(B), and 0′

tt form a diamond in the computably enumerable
tt-degrees.

Our construction differs from Jockusch and Mohrherr’s in several important
ways. Jockusch and Mohrherr’s construction involves only a finite injury argu-
ment, while ours involves an infinite injury argument, which is necessary to make
A and B superhigh. Due to this, our sets A and B will not have some of the
nice properties that Jockusch and Mohrherr’s do. For instance, they were able to
build their atoms A and B with A∪B = K, guaranteeing that K ≡tt A∪B in a
very obvious way. In our construction, the superhighness strategies will force us
to enumerate elements into A and B from time to time to maintain our computa-
tions that witness A′ ≥tt TOT and B′ ≥tt TOT , where TOT = {e : ϕe is total}
is a Π2-complete set. To ensure that K ≤tt A ⊕ B, we dedicate the numbers of
the form 〈x, 0〉 to meeting this requirement. This allows us to replace Jockusch
and Mohrherr’s conclusion that x ∈ K if and only if x ∈ A ∪ B by the slightly
more complicated conclusion that x ∈ K if and only if 〈x, 0〉 ∈ A ∪ B. Again,
for the consistency between the superhighness strategies and the minimal pair
strategies, we need to be extremely careful when we switch from one outcome
to another one.

Our notations and terminologies are standard and generally follow Soare [10].
Let ϕe and ΦA

e be the e-th partial computable function and the e-th A-partial
computable function, respectively. In particular, if ϕe(x) ↓, then [e](x) denotes
the truth table with index ϕe(x) in some effective enumeration of all truth tables,
denoted as τϕe(x), and |[e](x)| denotes the length of this truth table. For any set
A, [e]A(x) is 0 or 1 depending on whether or not A satisfies the truth table
condition with index ϕe(x) (denoted by A |= [e](x) if [e](x) = 1, otherwise,
A �|= [e](x)). Given two sets A and B, we say that A ≤tt B iff there is an e with
ϕe total such that for all x, [e]B(x) = A(x). When we choose a fresh number as
a γ-use or a δ-use at stage s, this number is the least number bigger than the
corresponding restraint that is not of the form 〈x, 0〉.

422 D. Cenzer et al.

2 Requirements and Basic Strategies

To prove Theorem 1, we will construct two c.e. sets A and B such that both of
them are superhigh, K is truth-table reducible to A⊕B, and the tt-degrees of A
and B form a minimal pair in the tt-degrees. A and B will satisfy the following
requirements:

P : K ≤tt A ⊕ B;
SA: TOT ≤tt A′;
SB : TOT ≤tt B′;
Ni,j : [i]A = [j]B = f total ⇒ f is computable;

Recall that TOT = {e : ϕe is total} is a Π0
2 -complete set. Therefore, if SA and

SB are satisfied, then A and B will both be superhigh.

2.1 The P-Strategy

To satisfy the requirement P , we simply code K into A ⊕ B. We will fix a
computable enumeration of K such that at each odd stage s, exactly one number,
ks, enters K. At each odd stage s, we will enumerate 〈ks, 0〉 into A, B, or both.
We will decide which of these sets to enumerate 〈ks, 0〉 into based on the actions
of the minimal pair strategies Ni,j . If k �∈ K, then numbers of the form 〈k, 0〉 will
never be enumerated into A and B. It is obvious that we will have the equality
K = {k : 〈k, 0〉 ∈ A ∪ B}, and hence K ≤tt A ⊕ B.

The P-requirement is global, so we do not need to place it on the construction
tree.

2.2 An SA
e -Strategy

To make A superhigh, instead of giving a truth-table reduction from TOT to A′

explicitly, we will construct a binary functional ΓA(e, x) such that for all e ∈ ω,

TOT(e) = lim
x→∞

ΓA(e, x)

with |{x : ΓA(e, x) �= ΓA(e, x + 1)}| bounded by a computable function h,
which will ensure that TOT ≤tt A′. (In the case of B, we will construct a binary
functional ΔB(e, y) with use δ(e, y) satisfying a similar requirement.) The crucial
point is to find this computable bounding function h.

As usual, SA is divided into infinitely many substrategies SA
e , e ∈ ω, each

of which is responsible for the definition of ΓA(e, x) for x ∈ ω, and has two
outcomes, ∞ (a Π0

2 -outcome) and f (a Σ0
2-outcome), where ∞ denotes the

guess that ϕe is total and f denotes the guess that ϕe is not total. The main
idea is that all the SA

e strategies (they will be arranged on a single level on the
construction tree) work for the definition of ΓA(e, x), x ∈ ω, jointly, and the one
on the true path defines ΓA(e, x) for almost all x such that limx→∞ ΓA(e, x)
exists and equals to TOT (e).

Embedding the Diamond Lattice in the c.e. tt-Degrees 423

Let β be an SA
e -strategy on the priority tree. As usual, we have the following

standard definition of length agreement function:

l(β, s) = max{ x < s : s is a β-stage and ϕe(y)[s] ↓ for all y < x};
m(β, s) = max{ l(β, t) : t < s is a β-stage}.

Say that s is a β-expansionary stage if s = 0 or l(β, s) > m(β, s).
Let s be a β-stage. If s is a β-expansionary stage, then we believe that ϕe is

total, and for those ΓA(e, x) either defined by lower priority strategies, or defined
by β itself, but with value 0, we undefine them by enumerating the corresponding
γ(e, x) into A and then define ΓA(e, y) to be 1 for the least y such that ΓA(e, y)
is undefined. If s is not an β-expansionary stage, then we believe that ϕe is not
total, and again, we undefine those ΓA(e, x) defined by lower priority strategies
by enumerating the corresponding γ(e, x) into A and then define ΓA(e, y) to be
0 for the least y with ΓA(e, y) not defined. Thus, if there are infinitely many
β-expansionary stages (so ϕe is total, e ∈ TOT, and ∞ is the true outcome of
β), then ΓA(e, x) is defined as 1 for almost all x ∈ ω. On the other hand, if there
are only finitely many β-expansionary stages (so ϕe is not total, e �∈ TOT, and
f is the true outcome of β), then ΓA(e, x) is defined as 0 for almost all x ∈ ω.

Thus, for a fixed SA
e -strategy β on the construction tree, β will attempt to

redefine ΓA(e, x) for almost all x. The only γ-uses which it will not be allowed
to enumerate into A are (a) some γ-uses are prevented from being enumerated
into A by higher priority strategies (when a disagreement is produced), or (b)
ΓA(e, x) is defined by another SA

e -strategy with higher priority. In particular, if
β is the SA

e -strategy on the true path, then there are only finitely many strategies
with higher priority that can be visited during the whole construction, and hence
β can succeed in defining ΓA(e, x) for almost all x.

Suppose that SA
e is assigned to nodes on level n. We will see that |{x :

ΓA(e, x) �= ΓA(e, x + 1)}| ≤ 23n+1. To see this, note that (a) above can happen
at most 23n

times, as there are at most 3n many strategies with length less than
n, and each time when one of them produces (not preserves) a disagreement, a
restraint is set, preventing α from rectifying ΓA(e, x) for some x. Note that after
an N -strategy α (see below) produces a disagreement, say at stage s, whenever
α requires us to preserve this disagreement, all the strategies with lower priority
will be initialized, and at the same time, all of the γ-uses and δ-uses defined after
stage s will be enumerated into A and B respectively (one by one, as pointed
out above, for the sake of the N -strategies with priority higher than α). It is
crucial for us to ensure that TOT is truth-table reducible to A′ and B′, as we
will discuss below.

Here, when β is initialized by a strategy with higher priority with length ≥ n,
an SA

e -strategy β′ on the left of β is visited, and β′ takes the responsibility of
rectifying ΓA(e, x) for some x, which can lead to an equality between ΓA(e, x)
and ΓA(e, x + 1). Thus, (b) can happen at most 3n many times. In total, the
number of those x such that β cannot rectify ΓA(e, x) is at most 23n+1, which
ensures that Tot ≤tt A′, where the corresponding bounding function h is given
by h(e) = 233e+1.

424 D. Cenzer et al.

We remark here that as a bounding function, h is not tight, but it is enough
to show that TOT is truth-table reducible to A′, as we want.

2.3 An Ni,j-Strategy

Recall that if [i] is a tt-reduction, then for any oracle X ⊆ ω and any input x,
[i]X(x) converges. The computation [i]X(x) can be injured at most finitely many
times due to the enumeration of numbers less than or equal to |τϕi(x)| into X in
our construction.

For the requirement Ni,j , we apply the diagonalization argument introduced
by Jockusch and Mohrherr in [4]. That is, once we see a disagreement between
[i]A and [j]B, we will preserve it forever to make [i]A �= [j]B . On the other hand,
if [i]A and [j]B are equal and total, then we will ensure that they are computable.

Given values for As and Bs at stage s, we will define As+1 and Bs+1 at stage
s+ 1 by possibly enumerating into them. Furthermore, if we know that [i]A and
[j]B differ at k at stage s, we will have to preserve this disagreement at stage
s + 1. This is achieved by the following. Let n be a number we want to put into
As+1 ∪ Bs+1. There are two cases.

(1) Our number n is of the form 〈x, 0〉 for some x. Then n is enumerated into
A, B, or both for the sake of the requirement P . There are three subcases.

Subcase 1: If [i]As(k) = [i]As∪{n}(k), then n will be enumerated into A but
not into B. The disagreement is preserved as well.

Subcase 2: If Subcase 1 does not apply but [j]Bs(k) = [j]Bs∪{n}(k), then n
is enumerated into B but not into A. As in Case 1, the disagreement is
preserved.

Subcase 3: If [i]As(k) �= [i]As∪{n}(k) and [j]Bs(k) �= [j]Bs∪{n}(k), then n is
enumerated into both A and B. In this case, the disagreement is again pre-
served, as both values are changed.

Note that once one subcase above applies, then we initialize all the strategies
with lower priority to avoid conflict among the N -strategies — obviously, such
initializations can happen at most finitely often. We need to be careful here when
more N -strategies are considered. It can happen that if we decide to enumerate
into A, B, or both, we also need to take care of those N -strategies with higher
priority, say Ni′,j′ , as we need to avoid the following situation: according to the
Ni,j-strategy, at stage s1, a number n1 is enumerated into A, and at stage s2,
a number n2 is enumerated into B (corresponding to Subcases 1 and 2, respec-
tively), and such enumerations change [i′]A(m) and [j′]B(m), though separately,
and at the next Ni′,j′ -expansionary stage, we may have [i′]A(m) = [j′]B(m),
which is different from its original value — Ni′,j′ is injured.

With this in mind, when we see that an Ni,j-strategy wants to enumerate a
number into A (or B, or both), instead of enumerating it immediately, we first
check whether such an enumeration into A can lead to a disagreement between
[i′]A and [j′]B. If not, then we just work as described above (in Subcase 3, we
now enumerate n into B and check whether this enumeration into B can lead

Embedding the Diamond Lattice in the c.e. tt-Degrees 425

to a disagreement for Ni′,j′ — here n is enumerated into A and B separately).
Otherwise, we start to preserve this disagreement to satisfy Ni′,j′ — the Ni,j

considered above is initialized, and again, even if Subcase 3 applies, we do not
enumerate n into B.

The N -strategies are arranged linearly according to priority, and each time
P decides to act it checks for the highest priority N -strategy for which the
enumeration of 〈k, 0〉 into A or B will change an N -computation. We then act
for N as in subcases 1-3 above. This clearly injures an N ′-strategy of lower
priority and it will need to be initialized, but it is easy to see that each N ′ is
injured in this way by the global P only finitely often.

(2) Our number n is a number chosen by an SA
e -strategy or an SB

e -strategy.
Without loss of generality, suppose that n is selected by an SA

e -strategy and
we want to put it into A. As in the standard construction of high sets, we
only consider believable computations; for instance, [i]A(m). Therefore, when
we see [i]A and [j]B, if this SA

e -strategy has higher priority than Ni,j , then the
enumeration of n into A does not affect the computation [i]A(m). We will have
more discussion on this soon.

An Ni,j-strategy has three outcomes: ∞, f and d, where ∞ denotes that there
are infinitely many expansionary stages, f denotes that there are only finitely
many expansionary stages, but no disagreement is produced, and d denotes that
a disagreement between [i]A and [j]B is produced and preserved successfully.

2.4 More on Interactions among Strategies

We have seen some interactions between the P-strategy and the N -strategies.
Now we describe the interactions between the N -strategies, the S-strategies, and
the P-strategy.

Assume that α is an Ni,j -strategy, β is an SA
e -strategy, and ζ is an SB

e′ -strategy
with β�∞ ⊆ ζ�∞ ⊆ α. The following may happen: at a stage s, a disagreement
between [i]A and [j]B appears at α, so α wants to preserve this disagreement by
initializing all strategies with lower priority. However, this disagreement can be
destroyed by β and ζ, as they may enumerate small γ-uses and δ-uses into A and
B separately. To avoid this, we only use α-believable computations, a standard
technique in the construction of high degrees.

Definition 1. Let α be an Ni,j-strategy, and β be an SA
e -strategy with β�∞⊆α.

(1) A computation [i]As(m) is α-believable at β at stage s if for each x with
γ(e, x)[s] defined by β and less than the length of the truth-table of [i](m),
ΓAs(e, x)[s] is equal to 1.

(2) A computation [i]As(m) is α-believable at stage s if it is α-believable at β at
stage s for any SA

e -strategy β, e ∈ ω, with β�∞ ⊆ α.

Similarly, we can define an α-believable computation [j]Bs(m).

We are ready to define an α-expansionary stage for an Ni,j-strategy α.

426 D. Cenzer et al.

Definition 2. Let α be an Ni,j-strategy. The length of agreement between [i]A

and [j]B is defined as follows:

l(α, s) = max{x < s : for all y < x, [i]A(y)[s] = [j]B(y)[s]
via α-believable computations}.

m(α, s) = max{l(α, t) : t < s is an α-stage}.

Say that a stage s is α-expansionary if s = 0 or l(α, s) > m(α, s).

At an α-expansionary stage, before α is allowed to access outcome ∞, it has to
clear every γ, δ-use in FA

α ∪ FB
α , where FA

α , FB
α are the collections of γ, δ-uses

defined by S-strategies with priority lower than α after the last α-expansionary
stage. We enumerate these uses one at a time into A or B respectively, until a
disagreement is produced at some N ′-strategy β ⊂ α. We then stop and do not
access the nodes extending α�∞ at this current stage. This is alright because
a strong priority β has made permanent (subject to β’s ability to protect this
disagreement) progress on its basic strategy. We will refer to this enumeration
process as an “outcome-shifting enumeration process” for simplicity. So a tt-
minimal pair strategy does does enumerate numbers into sets, which is completely
difference from the minimal pair argument used in the c.e. Turing degrees.

Now we consider the situation when β, an SA
e -strategy, changes its outcome

from f to ∞ at a β-expansionary stage. Again, when β sees such an change of
outcome, it also perform the outcome-shifting enumeration process by enumer-
ating numbers into A and B as needed. That is, let s′ be the last β-expansionary
stage. Unlike the construction of high degrees, to make A and B superhigh, we
need to enumerate all the γ-uses and δ-uses defined by strategies below outcome
f , including those uses defined by β under the outcome f , between stages s′ and
s into A and B respectively. Again, these numbers cannot be enumerated into A
and B simultaneously, as discussed above in the section on the N -strategies, for
the sake of N -strategies with priority higher than β. Let FA

β and FB
β be the col-

lections of these γ-uses and δ-uses respectively. We put the numbers in FA
β ∪FB

β

into A or B correspondingly, one by one, from the smallest to the largest, and
whenever one number is enumerated, we reconsider the N -strategies with higher
priority to see whether a disagreement appears. Once such a disagreement ap-
pears at an N -strategy, say α, we stop the enumeration as we need to satisfy α
via this disagreement. In this case, β is injured. Note that β can be injured in
this way only by those N -strategies α such that α ⊂ β.

2.5 Construction

First, we define the priority tree T and assign requirements to the nodes on T as
follows. Suppose σ ∈ T . If |σ| = 3e, then σ is assigned to the Ni,j-strategy such
that e = 〈i, j〉. It has three possible outcomes: ∞, f , and d, with ∞ <L f <L d.
If |σ| = 3e + 1, then σ is assigned to the SA

e -strategy. If |σ| = 3e + 2, then σ is
assigned to the SB

e -strategy. In the latter two cases, σ has two possible outcomes:
∞ and f , with ∞ <L f .

Embedding the Diamond Lattice in the c.e. tt-Degrees 427

P is a global requirement, and we do not put it on the tree.
We assume that K is enumerated at odd stages. That is, we fix an enumeration

{k2s+1}s∈ω of K such that at each odd stage 2s+1, exactly one number, k2s+1,
is enumerated into K.

In the construction, we say that an Ni,j-strategy α sees a disagreement at k
at a stage s if k ≤ s, [i]As and [j]Bs agree on all arguments ≤ k, and one of the
following cases applies:

(i) s is odd (ks enters K and we need to put 〈ks, 0〉 into A ∪ B). In this case,
either
(1) [i]As(k) �= [i]As∪{〈ks,0〉}(k),
(2) [j]Bs(k) �= [j]Bs∪{〈ks,0〉}(k), or
(3) there is an N -strategy α′ ⊃ α that attempts to preserve a disagreement,

and the enumeration of 〈ks, 0〉 into A or B or both (depending on α′)
and an one-by-one enumeration of elements of FA

α′ ∪ FB
α′ into A and

B (in increasing order, as described in the S-strategies) leads to either
[i]A(k) �= [i]As(k) or [j]B(k) �= [j]Bs(k). Here, FA

α′ and FB
α′ are the finite

collections of γ-uses and δ-uses defined below outcome α′�d after the
last stage α′ that produces or preserves its disagreement.

If (1) is true, then we enumerate 〈ks, 0〉 into A. If (1) is not true but (2)
is, then we enumerate 〈ks, 0〉 into B. Otherwise, (3) is true, and we enu-
merate 〈ks, 0〉 into A or B or both, according to α′. We also enumerate the
corresponding numbers in FA

α′ ∪ FB
α′ into A and B respectively.

As a consequence, a disagreement between [i]A(k) and [j]B(k) is pro-
duced, and α will preserve this disagreement forever unless it is initialized
later.

(ii) s is even (s is a β-expansionary stage for some S-strategy β).
Let β be such a strategy, and let s′ be the last β-expansionary stage. At
stage s, to change its outcome from f to ∞, we need to enumerate all of
the elements in FA

β and FB
β into A and B respectively one by one. Here, FA

β

and FB
β are the finite collections of γ-uses and δ-uses defined below outcome

β�f , including those defined by β under the outcome f , after stage s′. Again,
we enumerate these numbers into A and B in increasing order until we find
that either [i]A(k) �= [i]As(k) or [j]B(k) �= [j]Bs(k) is true; that is, until a
disagreement between [i]A(k) and [j]B(k) is produced. From now on, α will
preserve this disagreement forever unless it is initialized later.

We recall that an Ni,j-strategy α preserves a disagreement at k at an odd
stage s if this disagreement was produced before and has been preserved so far
(so [i]As(k) �= [j]Bs(k)) and 〈ks, 0〉 is less than one of the lengths of the truth-
tables [i](k) and [j](k). Enumerating 〈ks, 0〉 into A∪B causes one of the following
to happen:

1. If [i]As(k) = [i]As∪{〈ks,0〉}(k), then 〈ks, 0〉 is enumerated into A but not into
B. Both values are preserved, and the disagreement is preserved as well.

2. If [j]Bs(k) = [j]Bs∪{〈ks,0〉}(k), then 〈ks, 0〉 is enumerated into B but not into
A. As in Case 1, the disagreement is preserved.

428 D. Cenzer et al.

3. If [i]As(k) �= [i]As∪{〈ks,0〉}(k) and [i]Bs(k) �= [i]Bs∪{〈ks,0〉}(k), then 〈ks, 0〉
is enumerated into both A and B. In this case, the disagreement is again
preserved, as both values are changed.

Note that whenever α produces or preserves a disagreement in this manner, all
the strategies below the outcome α�d are initialized. Such initializations can
happen at most finitely often.

Construction

Stage 0: Initialize all the nodes on T and set A0 = B0 = ∅. Let ΓA(e, x)[0] and
ΔB(e, x)[0] be undefined for each e and x.

Stage s > 0:

Case 1: s is odd. We will put 〈ks, 0〉 into A ∪ B at this stage.

First check whether there is an N -strategy that can produce a disagreement or
needs to preserve a disagreement. Let α be the least such N -strategy. Enumerate
〈ks, 0〉 into A or B or both accordingly. Initialize all the strategies with lower
priority.

Case 2: s is even. We define the approximation to the true path σs of length
≤ s. Suppose that σsu has been defined for u ≤ t and let ξ be σst. We will
define σs(t). We have the following two subcases.

Subcase 1: ξ is an Ni,j-strategy for some i and j. If ξ has produced a dis-
agreement before and ξ has not been initialized since then, we let σs(t) = d.
Otherwise, we check whether s is a ξ-expansionary stage. If not, then let
σs(t) = f . If it is, then we start the outcome-shifting enumeration process
to enumerate those γ-uses from FA

ξ and δ-uses from FB
ξ defined below the

outcome ξ�f from the last ξ-expansionary stage into A and B respectively,
one by one and in increasing order. At the same time, each time we enumer-
ate such a number, we check whether there is an N -strategy α ⊂ ξ that can
produce a disagreement. If there is, then we stop the enumeration of FA

ξ and
FB

ξ into A and B and let δs = α. Declare that α produces a disagreement
at stage s, let σs = α, and go to the ‘defining’ phase. If not, then after all
numbers in FA ∪FB have been enumerated, we let σs(t) = ∞ and go to the
next substage.

Subcase 2: ξ is an SA
e -strategy or an SB

e -strategy for some e. If s is not a ξ-
expansionary stage, let σs(t) = f and go to the next substage. Otherwise,
we start the outcome-shifting enumeration process as described in Subcase
1. Here FA

ξ and FB
ξ should also contain those γ-uses or δ-uses defined by ξ

under the outcome f .

Defining Phase of stage s: For those SA
e -strategies β with β�∞ ⊆ σs, find the

least y such that ΓA(e, y) is currently not defined, define it as 1 and let the use
γ(e, y) be a fresh number, and for those SA

e -strategies β with β�f ⊆ σs, find

Embedding the Diamond Lattice in the c.e. tt-Degrees 429

the least y such that ΓA(e, y) is currently not defined, define it as 0, and let the
use γ(e, y) be a fresh number. For those SB

e -strategies β, we define ΔB(e, y) in
the same way. Initialize all the strategies with lower priority than σs and go to
the next stage.

Note that the enumeration of those γ-uses and δ-uses at substages into A
and B ensures that those ΓA(e, x) and ΔB(e, y) defined by those strategies with
priority lower than σs are undefined.

This completes the construction.
Let TP = lim infs σ2s be the true path of the construction. We can first prove

that TP is infinite and then verify that the construction given above satisfies all
the requirements. Also it is obvious from the construction that

x ∈ K ⇐⇒ 〈x, 0〉 ∈ A ∪ B,

and hence K ≤tt A ⊕ B.
This completes the proof of Theorem 1.

Acknowledgement

Cenzer is partially supported by NSF grants DMS-0554841 and DMS-652372,
U.S.A. Wu is partially supported by a research grant RG58/06 from Nanyang
Technological University, Singapore.

References

1. Cooper, S.B.: Degrees of unsolvability complementary between recursively enumer-
able degrees. I. Ann. Math. Logic 4, 31–73 (1972)

2. Downey, R.: D.r.e. degrees and the nondiamond theorem. Bull. London Math.
Soc. 21, 43–50 (1989)

3. Epstein, R.L.: Minimal degrees of unsolvability and the full approximation con-
struction. Mem. Amer. Math. Soc. 162(3) (1975)

4. Jockusch Jr., C.G., Mohrherr, J.: Embedding the diamond lattice in the recursively
enumerable truth-table degrees. Proc. Amer. Math. Soc. 94, 123–128 (1985)

5. Lachlan, A.H.: Lower bounds for pairs of recursively enumerable degrees. Proc.
London Math. Soc. 16, 537–569 (1966)

6. Martin, D.: Classes of recursively enumerable sets and degrees of unsolvability. Z.
Math. Logik Grundlag. Math. 12, 295–310 (1966)

7. Mohrherr, J.: A refinement of lown and highn for the r.e. degrees. Z. Math. Logik
Grundlag. Math. 32, 5–12 (1986)

8. Ng, K.M.: On Very High Degrees. Jour. Symb. Logic 73, 309–342 (2008)
9. Simpson, S.G.: Almost everywhere domination and superhighness. Math. Log.

Q. 53, 462–482 (2007)
10. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Heidelberg (1987)

Feasibility of Motion Planning on Directed
Graphs

Zhilin Wu1 and Stéphane Grumbach2

1 CASIA-LIAMA
zlwu@liama.ia.ac.cn

2 INRIA-LIAMA
stephane.grumbach@inria.fr

Abstract. Because of irreversibility of movements, motion planning on
directed graphs is much more intricate than that on graphs. Recently we
showed that the feasibility of motion planning on acyclic and strongly
connected directed graphs can be decided in time O(nm) (n, m are re-
spectively the number of vertices and arcs of the directed graph), but
left the feasibility of motion planning on (general) directed graphs open.
In this paper, we complete the solution by showing that the feasibility
of motion planning on directed graphs can be decided in time O(n2m).

1 Introduction

Motion planning is a fundamental problem of robotics. It has been extensively
studied [LaV06], and has numerous practical applications beyond robotics, such
as in manufacturing, animation, games [MPG] as well as in computational bi-
ology [SA01, FK99]. The study of motion planning on graphs was proposed by
Papadimitriou et al. [PRST94] to strip away the geometric considerations of the
general motion planning problem and concentrate on the combinatorial aspects.

Motion planning on graphs is defined as follows. Suppose a graph G = (V,E)
is given. There is one robot at a source vertex s and some of the other vertices
contain a movable obstacle. The objective is to move the robot from s to a
destination vertex t with the smallest number of moves, where a move consists
in moving an object (robot or obstacle) from one vertex to an adjacent vertex
that contains a hole (if a vertex does not contain an object, then it is said to
contain a hole; if an object is moved from v to w, we can also say that a hole is
moved from w to v).

If there are too many obstacles, it may be impossible to move the robot from
the source to the destination. So before considering the optimization problem,
the decision problem whether a given instance of the problem of motion planning
on graphs is feasible or not, should be considered first.

Motion planning on graphs is an abstraction of the practical problems, such
as track transportation systems [Per88] and packet transfer in communication
buffers of networks.

In practice, for the above two examples, tracks or links might be asymmetric.
For instance, there may be unidirectional links in networks, especially in wireless

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 430–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Feasibility of Motion Planning on Directed Graphs 431

networks, due to the heterogeneity of receiver and transmitter hardware [MD02,
JJ06]. This motivates the study of motion planning on directed versus undirected
graphs.

Directed graphs (abbreviated as digraphs from now on) differ from undirected
graphs mainly in that movements in digraphs are irreversible. In [WG08], we pro-
posed two algorithms to decide the feasibility of motion planning on acyclic and
strongly-connected digraphs in time O(nm) (n,m are respectively the number
of vertices and arcs).

For digraphs which are neither acyclic nor strongly connected, the motion
planning problem may become much more tricky. For instance, the motion plan-
ning problem given in Fig. 1.(a) is feasible. Let Cs denote the strongly connected
component of s, then if initially the hole in v7 is moved into Cs through v2 (see
Fig. 1.(b)), the problem will become infeasible, which the reader can easily verify.

Fig. 1. Motion planning on digraphs

In this paper, we give a complete solution to the feasibility of motion planning
on digraphs and show that it can be decided in time O(n2m). We distinguish
between the cases whether Cs, the strongly connected component containing
s, is trivial or not, and whether s and t belong to the same strongly connected
component or not. If Cs is trivial, then the feasibility can be solved by combining
the two algorithms for feasibility of motion planning on acyclic and strongly
connected digraphs in [WG08]. Otherwise, a greedy strategy to move the outside
holes into Cs can be designed to solve the feasibility problem.

Without loss of generality, we assume in this paper that in the motion planning
problem, the source vertex s and the target vertex t of the robot are different,
and there is at least one path from s to t.

The paper is organized as follows: In Section 2, some preliminaries are given.
The structure of digraphs is discussed in Section 3. Then in Section 4, feasibility
of motion planing on digraphs is solved case by case.

2 Preliminaries

The notations of this paper follow those in [Wes00, BJG00].
The underlying graph of a digraph D = (V,E), denoted G(D), is the graph

obtained from D by ignoring the directions of the arcs.
Let G = (V,E) be a graph. The biconnected-component graph of G, denoted

by Gbc(G), is a bipartite graph (Vbc,Wbc, Ebc) defined by

432 Z. Wu and S. Grumbach

– Vbc contains the biconnected components of G;
– Wbc contains all v ∈ V such that v is shared by at least two distinct bicon-

nected components of G;
– Ebc is defined as follows: let B ∈ Vbc and w ∈ Wbc, then {B,w} ∈ Ebc iff

w ∈ V (B).

In [WG08], strongly biconnected digraphs were introduced to decide the feasi-
bility of motion planning on strongly connected digraphs.

Definition 1. Let D be a digraph. D is said to be strongly biconnected if D
is strongly connected and G(D) is biconnected. The strongly biconnected compo-
nents of D are the maximal strongly biconnected sub-digraphs of D.

With regard to the feasibility of the motion planning problem, strongly bicon-
nected digraphs have the following nice property.

Theorem 1 ([WG08]). The motion planning problem on a strongly bicon-
nected digraph D is feasible iff there is at least one hole in D.

Strongly connected digraphs admit the following decomposition.

Theorem 2 ([WG08]). Let D = (V,E) be a nontrivial strongly connected di-
graph. Then the strongly biconnected components of D are those D[V (B)], the
sub-digraph of D induced by V (B), where B is a biconnected component of G(D).

Let D = (V,E) be a strongly connected digraph, define the strongly-biconnected-
component graph of D, denoted Gsbc(D) = (Vsbc,Wsbc, Esbc), as the biconnected-
component graph of G(D). Let v ∈ V , v is called a branching vertex if v ∈ Wsbc

and the degree of v is greater than 2 in Gsbc(D). A chain of Gsbc(D) is a path
B0v1B1 · · ·Bk−1vkBk (k ≥ 1) in Gsbc(D) such that |V (Bi)| = 2 for all 1 ≤ i ≤
k − 1, and vi is not a branching vertex for all 1 < i < k.

The length of a chain is the number of vertices in Wsbc on the chain.
Since the biconnected-component graph of a graph is a tree [Wes00], it follows

that Gsbc(D) is a tree as well.

Theorem 3 ([WG08]). Feasibility of motion planning on acyclic and strongly
connected digraphs can be decided in time O(nm), where n,m are respectively
the number of vertices and arcs of the digraph.

3 Structure of Digraphs

Let D = (V,E) be a digraph. Then the vertex sets of strongly connected com-
ponents of D form a partition of V .

Definition 2. Let D = (V,E) be a digraph. The strongly-connected-component
digraph of D, Dscc(D) = (Vscc, Escc), is defined as follows:

– Vscc = Vtr ∪ Vnt ∪ Vpt, where
• Vtr contains all v ∈ V such that v is a trivial strongly connected compo-

nent of D;
• Vnt contains all nontrivial strongly connected components of D;

Feasibility of Motion Planning on Directed Graphs 433

• Vpt contains all v ∈ V such that v belongs to some nontrivial strongly
connected component of D (say C) and there is some w �∈ V (C) such
that (v, w) ∈ E or (w, v) ∈ E. Those v’s are called the ports of C.

– Escc is defined by the following two rules:
• If C ∈ Vnt, v ∈ Vpt, and v ∈ V (C), then (C, v) ∈ Escc and (v, C) ∈ Escc;
• If v, w ∈ Vtr∪Vpt, (v, w) ∈ E, and v, w do not belong to the same strongly

connected component, then (v, w) ∈ Escc.

4 Motion Planning on Digraphs

Throughout this section, let D = (V,E) be a digraph, and Dscc(D) = (Vscc, Escc)
(Vscc = Vtr ∪ Vnt ∪ Vpt) be the strongly-connected-component digraph of D.

Theorem 4. Feasibility of motion planning on D can be decided in time O(n2m)
where n,m are resp. the number of vertices and arcs of D.

In the following, we design an algorithm to prove the theorem. We illustrate
the main idea of the algorithm, but leave the correctness proof and the detailed
complexity analysis to the full paper. We first introduce some notations.

Let Cs and Ct be the strongly connected components which s and t belong
to respectively.

For each v ∈ V , let h(v) denote the number of holes that are reachable from
v, namely, to which there is a path from v in D.

Let Vcr denote the set of vertices v ∈ Vtr ∪Vpt such that t is reachable from v,
and v is reachable from s in D. The vertices in Vcr are called the critical vertices
of the motion planning problem on D.

We consider motion planning on digraphs case by case:

Case I: Cs is trivial;
Case II: Cs is nontrivial and Cs = Ct;
Case III: Cs is nontrivial and Cs �= Ct.

Note that since we assume that s �= t, if Cs is trivial, then Cs �= Ct.

4.1 Case I: Cs Is Trivial

We introduce some additional notations.
Let C be a nontrivial strongly connected component of D, In(C) (resp.

Out(C)) are used to denote the set of ports of C, i.e. vertices v ∈ Vpt ∩ V (C),
such that there is some w ∈ (Vtr ∪ Vpt) \V (C) satisfying that (w, v) ∈ E (resp.
(v, w) ∈ E). Vertices in In(C) (resp. Out(C)) are called inward ports (resp.
outward ports) of C. Note that In(C) ∩ Out(C) may be nonempty.

Let V in
cr denote the set of vertices v ∈ Vcr such that either v ∈ Vtr and v �= s,

or v ∈ In(C) for some nontrivial strongly connected component C. And let
V out

cr denote the set of vertices v ∈ Vcr such that either v ∈ Vtr and v �= t,
or v ∈ Out(C) for some nontrivial strongly connected component C such that
C �= Ct.

434 Z. Wu and S. Grumbach

For v ∈ V in
cr , define hin(v) as follows:

Let w ∈ Vcr such that (w, v) ∈ Escc, imagine that the robot is in w. If
the robot can be moved from w to t under the restriction that the first
move of the robot is from w to v, then hin(v) is the minimal number
of (distinct) holes used during the movement of the robot from w to t;
otherwise, hin(v) := ∞.

For v ∈ V out
cr , define hout(v) as follows:

Imagine that the robot is in v. If the robot can be moved from v to t
under the restriction that the first move of the robot is from v to some
w ∈ Vcr such that (v, w) ∈ Escc, then hout(v) is the minimal number
of holes used during the movement of the robot from v to t; otherwise,
hout(v) := ∞.

The algorithm for deciding the feasibility of motion planning on digraphs in
Case I goes as follows: Starting from the vertices in Vcr ∩ V (Ct), compute
hin(v) and hout(v) for all v ∈ Vcr inductively in a backward way. When these
computations are finished, the algorithm reports “yes” (the motion planning
problem is feasible) iff hout(s) < ∞.

Initial step: For vertices in Vcr ∩ V (Ct),

– If Ct is trivial, then t ∈ V in
cr and t �∈ V out

cr : if h(t) ≥ 1, then hin(t) := 1,
otherwise hin(t) := ∞;

– If Ct is nontrivial, then In(Ct) ⊆ V in
cr and Out(Ct)∩V out

cr = ∅: for v ∈ In(Ct),
if h(v) ≥ MinNum(Ct, v, t) + 1, then hin(v) := MinNum(Ct, v, t) + 1,
otherwise, hin(v) := ∞.

Remark 1. MinNum(D, v, w) is used in [WG08] to compute the minimal num-
ber of holes used to move the robot from v to w in a strongly connected digraph
D over all instances of the motion planning on D such that v, w are respec-
tively the source and the destination. MinNum(D, v, w) works as follows: If
v = w, then return 0; Otherwise if v, w belong to the same strongly bicon-
nected component of D, then return 1 (according to Theorem 1); Otherwise,
let P = B0v1B1...Br−1vrBr (r ≥ 1) be the path in Gsbc(D) such that v ∈ B0,
w ∈ Br, v �= v1 and w �= vr, and l be the maximal length of the chains of Gsbc(D)
such that they are contained in P . Return l + 1. ��

Induction step: For v ∈ Vcr ∩ Vtr , if for each w ∈ Vcr such that (v, w) ∈ Escc,
the computation of hin(w) has been finished, then

– hout(v) := min{hin(w)|w ∈ Vcr, (v, w) ∈ Escc};
– if v �= s: if h(v) ≥ hout(v)+1, then hin(v) := hout(v)+1, otherwise hin(v) :=

∞.

For each nontrivial strongly connected component C such that C �= Ct and
In(C) ∪Out(C) ⊆ Vcr, if for each v ∈ Vcr ∩Out(C) and each w ∈ Vcr such that
(v, w) ∈ Escc, the computation of hin(w) has been finished, then

Feasibility of Motion Planning on Directed Graphs 435

– for each v ∈ Vcr ∩ Out(C), hout(v) := min{hin(w)|w ∈ Vcr, (v, w) ∈ Escc};
– for each v ∈ Vcr ∩In(C), if h(v) ≥ min{MinNum(C, v, v′)+hout(v′)+1|v′ ∈

Out(C)}, then hin(v) := min{MinNum(C, v, v′)+hout(v′)+1|v′ ∈ Out(C)},
otherwise hin(v) := ∞.

Example 1 (Case I: Cs is trivial). The digraph D is given in Fig.2.(a), Cs is
trivial, and the strongly-connected-component digraph of D is given in
Fig.2.(b). The critical vertices, Vcr, are those within the dashed cycle in Fig.2.(b),
V in

cr = {v1, v4, t, v8, v9} and V out
cr = {s, v2, v3, v4, v7, v11}. The h(v)’s are given in

Fig.2.(a) and pairs (hin(v), hout(v)) for v ∈ Vcr are given in Fig.2.(b). Because
hout(s) = 4, the motion planning problem is feasible. Four holes can be moved
to v8, v9, v11 and t before moving the robot, then the robot can be moved from
s to v8, and moved to v9 by rotating around the cycle v8v9v10, then to v11, and
finally to t. ��

Fig. 2. Case I: Cs is trivial

4.2 Case II: Cs Is Nontrivial and Cs = Ct

Let inside (outside) holes denote the holes in some v ∈ V (Cs) (v �∈ V (Cs)).
We first use the algorithm for feasibility of motion planning on strongly con-

nected digraphs in [WG08] to decide whether the inside holes are sufficient to
move the robot from s to t. If it is, then report “yes”; otherwise, the motion
planning problem may still be feasible since the outside holes can be moved into
Cs and used to move the robot from s to t.

For each outside hole, there may be multiple ports of Cs through which the
hole can be moved into Cs, we should choose carefully those ports, otherwise, the
feasibility may be destroyed, which has been illustrated in Fig.1. We introduce
a greedy strategy to move the outside holes into Cs to avoid this.

Before presenting the greedy strategy, we recall a definition about the relative
positions of the vertices in [WG08].

436 Z. Wu and S. Grumbach

Definition 3. Let D = (V,E) be a strongly connected digraph, Gsbc(D) =
(Vsbc,Wsbc, Esbc) be the strongly-biconnected-component graph of D, u, v, w ∈ V
and v �= w. Then u is said to be on the w-side of v, if u �= v and one of the
following two conditions holds:

1. v ∈ Wsbc (v is shared by at least two strongly biconnected components of D),
and u,w are in the same connected component of G(D − v).

2. v �∈ Wsbc, and either u,w are in the same connected component of G(D −
V (B)), or u ∈ V (B), where B is the unique strongly biconnected component
of D to which v belongs.

Otherwise, u is said to be not on the w-side of v. And u is said to be on the
non-w-side of v if u is not on the w-side of v and u �= v.

In Cs, when we say that an inside hole is on the w-side of the robot, or on the
non-w-side of the robot, and so on, we are talking about the positions of the
inside hole and the robot.

An outside hole of Cs is said to be on the w-side (resp. non-w-side) of v if
it can be moved into Cs through some port of Cs which is on the w-side (resp.
non-w-side) of v. Note that an outside hole can be both on the w-side of v and
on the non-w-side of v, since it can be moved into Cs both through some port on
the w-side of v and through some other port on the non-w-side of v. An outside
hole is said to be not on the w-side of v if it cannot be moved into Cs through
some port on the w-side of v.

Let hw−side(v), hnot−w−side(v), hnon−w−side(v) denote respectively the num-
ber of (inside or outside) holes on the w-side of v, not on the w-side of v, and
on the non-w-side of v.

Now we introduce the greedy strategy. The intuition of the strategy is that
when it is necessary to move the robot away from t, first use the inside holes
not on the t-side of the robot, then use the outside holes not on the t-side of
the robot and farthest from t (the distance between an outside hole and t is the
minimal distance between a port, through which the hole can be moved into Cs,
and t).

If s, t do not belong to the same strongly biconnected component of Cs, then
let P := B0v1B1 · · · vpBp(p ≥ 1) be a path in Gsbc(Cs) = (Vsbc,Wsbc, Esbc) such
that s ∈ V (B0), s �= v1, t ∈ V (Bp), t �= vp; otherwise, let P := B0 and p := 0,
where B0 is the strongly biconnected component such that s, t ∈ V (B0).

We distinguish the following five cases,

1. s �∈ Wsbc;
2. s ∈ Wsbc and ht−side(s) ≥ MinNum(Cs, s, t);
3. s ∈ Wsbc, ht−side(s) < MinNum(Cs, s, t) and |V (B0)| ≥ 3;
4. s ∈ Wsbc, ht−side(s) < MinNum(Cs, s, t), |V (B0)| = 2 and s is a branching

vertex;
5. s ∈ Wsbc, ht−side(s) < MinNum(Cs, s, t), |V (B0)| = 2 and s is not a branch-

ing vertex.

Feasibility of Motion Planning on Directed Graphs 437

In the following, we illustrate the greedy strategy by considering the 5th case.
The discussions of the other cases are similar and they are omitted due to space
limitation.

Since s ∈ Wsbc and s is not a branching vertex, there is a unique strongly
biconnected component B such that B �= B0 and s ∈ V (B).

If t ∈ V (B0), let i0 := 0, otherwise, let
i0 := min ({p} ∪ {i : |V (Bi)| ≥ 3, or vi is a branching vertex}).
We further distinguish the following four subcases,

Subcase 5.1. ht−side(s) ≥ i0 + 1;
Subcase 5.2. ht−side(s) ≤ i0 and |V (B)| ≥ 3;
Subcase 5.3. ht−side(s) ≤ i0, |V (B)| = 2 and B is a leaf of Gsbc(Cs);
Subcase 5.4. ht−side(s) ≤ i0, |V (B)| = 2 and B is not a leaf of Gsbc(Cs).

Due to space limitation, we consider only Subcase 5.4. in the following.

Subcase 5.4. Because ht−side(s) ≤ i0, it is necessary to move the robot away
from t to move more holes to the t-side of the robot.

Let v′ ∈ V (B) such that (s, v′) ∈ E, and Q := B′
0v

′
1B

′
1 . . . v′qB

′
q (q ≥ 1) be a

path in Gsbc(Cs) such that

1. B′
0 = B;

2. either |V (B′
q)| ≥ 3, or v′q is a branching vertex, or B′

q is a leaf of Gsbc(Cs);
3. ∀i : 1 ≤ i < q, |V (B′

i)| = 2, and v′i is not a branching vertex.

Now we move the outside holes into Cs as follows:
Let v′0 = s, then from i = 1 to i = q, do the following,

– If there are inside holes not on the t-side of v′i, then move one such hole to v′i,
move the robot from v′i−1 to v′i, and move the outside holes into Cs through
v′i−1 as much as we can;

– If there are no inside holes not on the t-side of v′i, but there are outside holes
not on the t-side of v′i, let k be the largest index such that there is at least
one outside hole not on the t-side of v′k, move one outside hole not on the
t-side of v′k into Cs, then to v′i, move the robot from v′i−1 to v′i, and move
the outside holes into Cs through v′i−1 as much as we can.

Suppose the robot is in v′r (0 ≤ r ≤ q) after the above loop.
If during the above loop, when the robot is in v′i (1 ≤ i ≤ r), and the number

of holes on the t-side of v′i is ≥ i + i0 + 1, then: if h(v′i) ≥ MinNum(Cs, v
′
i, t),

then report “yes”, otherwise report “no”.
Otherwise, there are two situations: r < q or r = q.
In case of r < q: We must have hnot−t−side(v′r+1) = 0. If ht−side(v′r) > 0 and

hnot−t−side(v′r) > 0, then move one hole on the t-side of v′r to v′r−1, move the
robot from v′r to v′r−1, move one outside hole not on the t-side of v′r into Cs

through v′r, then to v′r+1, move the robot from v′r−1 to v′r+1, now all the holes
are on the t-side of v′r+1, report “yes” iff h(v′r+1) ≥ MinNum(Cs, v

′
r+1, t). If

ht−side(v′r) = 0, hnot−t−side(v′r) > 0 and hnon−t−side(v′r) > 0, then one outside
hole not on the t-side of v′r can be moved into Cs and to v′r+1 without moving

438 Z. Wu and S. Grumbach

the robot, move the robot to v′r+1, now all the holes are on the t-side of v′r+1,
report “yes” iff h(v′r+1) ≥ MinNum(Cs, v

′
r+1, t).

In case of r = q: then there are the following three possibilities:

– |V (B′
q)| ≥ 3;

– |V (B′
q)| = 2 and v′q is a branching vertex;

– |V (B′
q)| = 2, v′q is not a branching vertex, and B′

q is a leaf.

The first possibility above is reduced to Subcase 5.2., the second possibil-
ity above is reduced to Case 4., and the third possibility above is reduced to
Subcase 5.3.

In all the other situations of Subcase 5.4., report “no”.

Example 2. The motion planning problem is given in Fig.1.(a). To preserve the
feasibility, we need first move the holes not on the t-side of v2, i.e. the hole in
v1, to v2, then move the robot to v2 and move the outside holes into Cs through
s as much as we can. So we move the two holes at v7 and v8 into Cs through s.
Then all the holes are on the t-side of the robot, the problem is feasible iff the
total number of holes is ≥ MinNum(Cs, v2, t) = 3. Thus the motion planning
problem is feasible.

4.3 Case III: Cs Is Nontrivial and Cs �= Ct

We can decide the feasibility in this case by combining the algorithms for Case I
and Case II, the details are omitted and the algorithm will appear in the full
paper.

5 Conclusions

In this paper, based on the work in [WG08] for motion planning on acyclic and
strongly connected digraphs, we gave a complete solution to the feasibility of
motion planning on digraphs. The most intricate part of this solution is to design
a strategy to move the outside holes into Cs, the strongly connected component
containing s, while not destroying the feasibility of the motion planning problem.

It would be interesting in the future to consider the optimization of motion
planning on digraphs as well as the other variations of motion planning problem
on digraphs, e.g. the reconfiguration problem that was considered on graphs in
[KMS84].

References

[BJG00] Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applica-
tions. Springer Monographs in Mathematics. Springer, Heidelberg (2000)

[FK99] Finn, P.W., Kavmkit, L.E.: Computational approaches to drug design.
Algorithmica 25, 347–371 (1999)

[JJ06] Jetcheva, J.G., Johnson, D.B.: Routing characteristics of ad hoc networks
with unidirectional links. Ad Hoc Networks 4(3), 303–325 (2006)

Feasibility of Motion Planning on Directed Graphs 439

[KMS84] Kornhauser, D., Miller, G., Spirakis, P.: Coordinating pebble motion on
graphs, the diameter of permutation groups, and applications. In: FOCS
1984, pp. 241–250 (1984)

[LaV06] LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cam-
bridge (2006)

[MD02] Marina, M.K., Das, S.R.: Routing performance in the presence of unidi-
rectional links in multihop wireless networks. In: Proc. of ACM MobiHoc,
pp. 12–23 (2002)

[MPG] Motion planning game,
http://www.download-game.com/Motion_Planning_Game.htm

[Per88] Perrott, Y.: Track transportation systems. European patent (1988),
http://www.freepatentsonline.com/EP0284316.html

[PRST94] Papadimitriou, C.H., Raghavan, P., Sudan, M., Tamaki, H.: Motion plan-
ning on a graph. In: FOCS 1994, pp. 511–520 (1994)

[SA01] Song, G., Amato, N.M.: Using motion planning to study protein folding
pathways. In: RECOMB 2001: Proceedings of the Fifth Annual Interna-
tional Conference on Computational Biology, pp. 287–296. ACM, New
York (2001)

[Wes00] West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, En-
glewood Cliffs (2000)

[WG08] Wu, Z., Grumbach, S.: Feasibility of motion planning on acyclic and
strongly connected directed graphs (manuscript, 2008)

http://www.download-game.com/Motion_Planning_Game.htm
http://www.freepatentsonline.com/EP0284316.html

Polynomial-Time Algorithm for Sorting by Generalized
Translocations�

Xiao Yin and Daming Zhu

School of Computer Science and Technology,
Shandong University, Jinan 250101, P.R. China
xyin@mail.sdu.edu.cn, dmzhu@sdu.edu.cn

Abstract. Translocation is a prevalent rearrangement event in the evolution of
multi-chromosomal species which exchanges ends between two chromosomes. A
translocation is reciprocal if none of the exchanged ends is empty; otherwise, non-
reciprocal. Given two signed multi-chromosomal genomes A and B, the problem
of sorting by translocations is to find a shortest sequence of translocations trans-
forming A into B. Several polynomial algorithms have been presented, all of them
only allowing reciprocal translocations. Thus they can only be applied to a pair of
genomes having the same set of chromosome ends. Such a restriction can be re-
moved if non-reciprocal translocations are also allowed. In this paper, for the first
time, we study the problem of sorting by generalized translocations, which allows
both reciprocal translocations and non-reciprocal translocations. We present an
exact formula for computing the generalized translocation distance, which leads
to a polynomial algorithm for this problem.

Keywords: Algorithm, genome rearrangement, translocation.

1 Introduction

Genome rearrangement is a common mode of molecular evolution in biological species
[1, 2, 3, 4]. Although the rearrangement process is very complicated, there are three
basic operations: reversal, translocation and transposition. In this paper, we study the
translocation operations. Translocation is a prevalent rearrangement event in the evolu-
tion of multi-chromosomal species which exchanges ends between two chromosomes.
A translocation is reciprocal if none of the exchanged ends is empty; otherwise, non-
reciprocal.

The problem of sorting by translocations is defined as follows: given two signed
multi-chromosomal genomes A and B, find a shortest sequence of translocations trans-
forming A into B. The length of this sequence is called the translocation distance
between A and B. Hannenhalli designed the first O(n3) algorithm [5] for sorting by
reciprocal translocations (abbreviated as SRT) which only allows reciprocal transloca-
tions. Bergeron et al. [6] pointed out an error in Hannenhalli’s sorting strategy and gave
a new O(n3) algorithm for SRT. The time complexity was improved to O(n3/2

√
log(n))

� Supported by (1) National Nature Science Foundation of China, 60573024. (2) Chinese Na-
tional 973 Plan, previous special, 2005cca04500.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 440–449, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Polynomial-Time Algorithm for Sorting by Generalized Translocations 441

[7, 8, 9]. All of these algorithms assume that the two genomes have the same set of
chromosome ends, which rarely happens in biology.

In this paper, we consider a more general case - when A and B have different chro-
mosome ends. Clearly, in such a case, non-reciprocal translocations are needed. We call
this problem sorting by generalized translocations (abbreviated as SGT). We present
an exact formula for computing the generalized translocation distance, which leads to
a polynomial algorithm for SGT. The basic idea is to transform SGT into SRT by “cap-
ping” A and B, by adding additional markers to the ends of chromosomes in the two
genomes. The main idea is to find an optimal “capping” of B such that the solution to
the resulting SRT instance is minimal.

2 Preliminaries

A genome is a set of chromosomes and a chromosome is a sequence of genes. Each
gene is identified by an integer with a sign of ’+’ or ’-’ which denotes its direction. For
example, {(3, -5), (2, 4, -6), (-1, 7)} is a genome with three chromosomes and seven
genes.

Given a sequence of genes I=x1, x2, . . . , xk, the reverse of I is−I=−xk,−xk−1, . . . ,−x1.
A chromosome is orientation-less. Therefore, a chromosome X is said to be identical to
a chromosome Y if either X=Y or X=−Y. Genomes A and B are said to be identical if
they have the same set of chromosomes.

Let X=(X1, X2) and Y=(Y1, Y2) be two chromosomes, where X1, X2, Y1, Y2 are se-
quences of genes. A translocation cuts X into X1 and X2 and Y into Y1 and Y2 and
exchanges segments between the chromosomes. There are two types of translocations.
A prefix-prefix translocation switches X1 with Y1 resulting in (Y1, X2), (X1, Y2). A prefix-
suffix translocation switches X1 with Y2 resulting in (−Y2, X2), (Y1,−X1). A transloca-
tion is reciprocal if none of X1, X2, Y1 and Y2 are empty. Otherwise, it is non-reciprocal.
There are three kinds of non-reciprocal translocations: fusion, fission and fission-fusion.
They can be regarded as special cases of reciprocal translocations where one or two seg-
ments are empty. A fusion of X and Y connects X and Y into one chromosome (X, Y).
It can be viewed as the translocation between (X, ∅) and (∅, Y), resulting in (X, Y) and
a null chromosome (∅, ∅). A fission of X cuts X into two chromosomes (X1) and (X2).
It can be viewed as the translocation between (X1, X2) and (∅, ∅). A fission-fusion of X
and Y cuts X into X1 and X2, and then pastes one segment to Y, resulting in (X1) and
(Y, X2), or (X1) and (−X2, Y), or (X1, Y) and (X2), or (Y,−X1) and (X2). It can be viewed
as the translocation between (X1, X2) and (Y, ∅) or the translocation between (X1, X2)
and (∅, Y).

For a chromosome X=(x1, x2, . . . , xm), define Tails(X)={x1,−xm}. x1,−xm are tails
of X. For a genome A, define Tails(A)=

⋃
X∈A Tails(X). Genomes A and B are co-tailed

if Tails(A)=Tails(B). Note that SRT is solvable only for co-tailed genomes.

2.1 Cycle Graph

Let A and B be a pair of co-tailed genomes. Let n and N be the number of genes and
chromosomes in A (equivalently B). We will always assume that both A and B consist

442 X. Yin and D. Zhu

of genes {1, 2, . . . , n}. For a chromosome X=(x1, x2, . . . , xm), replace each gene xi by a
pair of ordered vertices (l(xi), r(xi)). If the sign of xi is ’+’, then l(xi)=xt, r(xi)=xh. If
the sign of xi is ’-’, then l(xi)=xh, r(xi)=xt. As a result, each chromosome in A and B
corresponds to an ordered list of vertices as l(x1)r(x1)l(x2)r(x2) . . . l(xm)r(xm). Vertices
u and v are neighbors in A (B) if they are adjacent in the ordered list of a chromosome in
A (B) constructed by afore mentioned method. For a gene x, xt and xh are always neigh-
bors, for simplicity, we exclude them from the definition of “neighbors”. The bicolored
cycle graph of A and B, denoted G(A, B), is defined as follows. The set of vertices is⋃n

i=1{it, ih}. Vertices u and v are connected by a black edge if they are neighbors in A
and are connected by a gray edge if they are neighbors in B.

A gray edge (u, v) in G(A, B) is external if u, v belong to different chromosomes of A;
otherwise is internal. Each vertex in G(A, B) has degree 0 or 2, where vertices of degree
0 (isolated vertices) belong to tails. Therefore, G(A, B) can be uniquely decomposed
into a number of disjoint cycles. A cycle is long if it contains at least two black edges,
otherwise short. If A=B, then all cycles in G(A, B) are short.

2.2 MSP and Even-Isolation

Considering a sequence I = xi, xi+1, . . . , x j−1, x j in a chromosome of A. Let V(I) =⋃
i≤k≤ j{xt

k, x
h
k} , IN(I) = V(I)\{l(xi), r(x j)}. I is a sub-permutation (S P) if there ex-

ists an sequence I′=xi, permutation(xi+1, . . . , x j−1), x j in some chromosome in B and
permutation(xi+1, . . . , x j−1) � (xi+1, . . . , x j−1). A minimal sub-permutation (MSP) is a
SP not containing any other SP. A SP I can be viewed as a subgraph of G(A, B) con-
taining the vertex set IN(I) such that: (1) there is no edge (u, v) such that u ∈ IN(I), v �
IN(I), (2) the subgraph corresponding to I has at least one long cycle.

There exists an even-isolation in G(A, B) if the following two conditions hold: (1) all
the MSP’s are contained in a single SP, (2) there are even number of MSP’s in G(A, B).

2.3 Reciprocal Translocation Distance

Let c(A, B) be the number of cycles and let s(A, B) be the number of MSP’s in G(A, B).
Define f (A, B): f (A, B)=2 if there exists an even-isolation in G(A, B), f (A, B)=1 if
s(A, B) is odd and otherwise f (A, B)=0. Let dr(A, B) denote the reciprocal transloca-
tion distance between A and B.

Theorem 1. [5] dr(A, B) = n − N − c(A, B) + s(A, B) + f (A, B).

3 Capping the Genomes

We now turn to the general case when A and B might have different tails and dif-
ferent number of chromosomes. Let n be the number of genes in A (equivalently B).
We still assume that both A and B consist of the genes {1, . . . , n}. Let M be the num-
ber of chromosomes in A and let N be the number of chromosomes in B. Suppose
A={X1, X2, . . . , XM}, B={Y1, Y2, . . . , YN}, where Xi is the ith chromosome of A and Yi is
the ith chromosome of B. We introduce additional 2n markers called caps: Ck = n + k,
for k = 1, 2, . . . , 2n. Construct a pair of co-tailed genomes Â and B̂ with n chromosomes
by adding 2n caps to A and B as follows: The capping of A is

Polynomial-Time Algorithm for Sorting by Generalized Translocations 443

Â = {X̂1, X̂2, . . . , X̂n}
where X̂i=(C2i−1, Xi,C2i) for 1 ≤ i ≤ M and X̂i=(C2i−1,C2i) for M < i ≤ n. The capping
of B is

B̂ = {Ŷ1, Ŷ2, . . . , Ŷn}
where Ŷi=((−1) j+1C j, Yi, (−1)kCk) for 1 ≤ i ≤ N, Ŷi=((−1) j+1C j, (−1)kCk) for N <
i ≤ n and each cap appears exactly once in B̂. The signs of C j and Ck are assigned
(−1) j+1 and (−1)k is to ensure that Â and B̂ are co-tailed. Let B be the set of all pos-
sible cappings of B. There are n − N “null chromosomes” containing only two caps
in B̂. Thus |B|= (2n)!

2(n−N)(n−N)! . For example, let A={(3, 4), (2, 1)}, B={(1), (2), (3, 4)}, then

the capping of A is {(5,3,4,6),(7,2,1,8),(9,10),(11,12)}, |B|= 8!
2 and one capping of B is

{(5,1,6),(7,2,8),(9,3,4,10),(11,12)}.
For the rest of this paper, the word “generalized translocation” refers to either a

reciprocal translocation or a non-reciprocal translocation. Note that each generalized
translocation in A corresponds to a reciprocal translocation in Â, and each recipro-
cal translocation in Â either corresponds to a generalized translocation in A or only
exchanges caps between two chromosomes in A. Let d(A, B) denote the generalized
translocation distance between A and B.

Theorem 2. Let B̂ ∈ B. Then d(A, B) = min{dr(Â, B̂)|B̂ ∈ B}.
Proof. Suppose ρ1, ρ2, . . . , ρk is a shortest sequence of generalized translocations trans-
forming A into B. Obviously, ρ1, ρ2, . . . , ρk induces a sequence of reciprocal translo-
cations of the same length transforming Â into some B̂ ∈ B. Thus k = d(A, B) ≥
min{dr(Â, B̂)|B̂ ∈ B}.

Let dr(Â, B̂o) = min{dr(Â, B̂)|B̂ ∈ B}. Suppose ρ̂1, ρ̂2, . . . , ρ̂t is a shortest sequence
of reciprocal translocations transforming Â into B̂o. ρ̂1, ρ̂2, . . . , ρ̂t induces a sequence of
generalized translocations transforming A into B which length is no more than t, thus
min{dr(Â, B̂)|B̂ ∈ B} = t ≥ d(A, B). �	
Let B̂o be a capping of B. B̂o is an optimal capping of B if dr(Â, B̂o)=min{dr(Â, B̂)|B̂ ∈
B}. Theorem 2 implies an algorithm for SGT which is exponential of n. The rest of this
paper is going to find an optimal capping of B in polynomial time.

4 Path-Cycle Graph

Choose B̂ ∈ B arbitrarily and construct the cycle graph G(Â, B̂). Define the path-cycle
graph, denoted GP(A, B), that does not depend on the capping of B by deleting from
G(Â, B̂) the gray edges incident on vertices that belong to caps. These vertices adja-
cent to the deleted gray edges which belong to caps are called A-caps. The vertex on
the other end of the deleted gray edge is called a B-tail, unless the gray edge arises
from a null chromosome, in which case both its ends are A-caps. For example, let
A={(2, 1, 3, 5), (6, 8,−7, 4, 10,−9)}, B={(1, 2, 3, 4), (5, 6, 7), (8, 9, 10)}, the cycle graph
G(Â, B̂) is shown in Fig. 1(a) and the path-cycle graph GP(A, B) is shown in Fig.1(b).
GP(A, B) has 2n A-caps and 2N B-tails. Each of the (2n)!

2(n−N)(n−N)! possible cappings of B

corresponds to adding n + N gray edges to GP(A, B), 2N of which join a A-cap and a
B-tail, and the remaining n − N of which join two A-caps.

444 X. Yin and D. Zhu

23t 23h 24t 24h 25t25h 26t26h 27t27h 28t28h 29t29h 30t30h

15t 15h 16t 16h 17t17h 18t18h 19t19h 20t 20h 21t 21h 22t 22h

13t 13h 6t 6h 8t 8h 7h 7t 4t 4h 10t 10h 9h 9t 14t 14h

11t 11h 2t 2h 1t 1h 3t 3h 5t 5h 12t 12h

A-cap B-tail

23t 23h 24t 24h 25t25h 26t26h 27t27h 28t28h 29t29h 30t30h

15t15h 16t16h 17t17h 18t18h 19t19h 20t20h 21t21h 22t 22h

13t 13h 6t 6h 8t 8h 7h 7t 4t 4h 10t 10h 9h 9t 14t 14h

11t 11h 2t 2h 1t 1h 3t 3h 5t 5h 12t 12h

(a) (b)

Fig. 1. Cycle graph and path-cycle graph

From theorem 2, the basic idea is to consecutively add n + N gray edges to GP(A, B)
such that the reciprocal translocation distance of the resulting cycle graph is minimal.
Our analysis uses the distance formula in theorem 1. We need to study in detail the
effect of each gray edge added to GP(A, B) and guarantee the value of c−s− f of the
resulting cycle graph is maximal.

Each vertex in GP(A, B) has degree 1 or 2 (Those isolated vertices are trivial and are
excluded from our discussion), so the graph consists of vertex-disjoint cycles and paths.
A cycle/path is external if it contains at least one external gray edge, otherwise internal.
A cycle/path is long if it contains at least two black edges, otherwise short. If a path
starts and ends with A-caps (B-tails), call it a AA-path(BB-path). If a path starts with a
A-cap and ends with a B-tail, call it a AB-path. Let l(A, B) be the total number of cycles
and paths and let p(A, B) be the number of BB-paths in GP(A, B).

Lemma 1. Let B̂ ∈ B, then c(Â, B̂) ≤ l(A, B) − p(A, B).

Proof. If each path in GP(A, B) can be “closed” by a gray edge (i.e., the two ends of
the path are joined by a gray edge), then c(Â, B̂) = l(A, B). However, a BB-path can not
be closed by a gray edge. It could only be connected with a AA-path or a AB-path by a
gray edge. Thus c(Â, B̂) ≤ l(A, B) − p(A, B). �	

5 Lower and Upper Bounds of d(A, B)

In this section, we present the lower and upper bounds for the generalized transloca-
tion distance. They will provide an intuition for the rather complicated formula for the
generalized translocation distance presented in the next section.

Considering a sequence I=xi, xi+1, . . . , x j−1, x j in a chromosome of Â, call I a real-
sub-permutation (RSP) if the subgraph of GP(A, B) induced by vertex set IN(I) sat-
isfies the following conditions: (1) there is no edge (u, v) such that u∈IN(I), v�IN(I),
(2) the subgraph contains at least one long cycle, (3) the subgraph doesn’t contain any
path. Call I a semi-sub-permutation (SSP) if the subgraph of GP(A, B) induced by IN(I)
satisfies: (1) there is no edge (u, v) such that u∈IN(I), v�IN(I), (2) the subgraph con-
tains at least one long path, (3) the subgraph does not contain a AA- or BB-path. A
real-minimal-sub-permutation (RMSP) is a RSP not containing any other RSP. A semi-
minimal-sub-permutation (SMSP) is a SSP not containing any other SSP or RSP. For

Polynomial-Time Algorithm for Sorting by Generalized Translocations 445

example, in Fig.1(b), the subgraph of GP(A, B) induced by {11h, 2t, 2h, 1t, 1h, 3t} is a
SMSP. The difference between SMSP and RMSP is that SMSP contains AB-path while
RMSP does not contain any path. Note that a SMSP can be turned into a RMSP by clos-
ing all the AB-paths in it. Let g be a gray edge added to GP(A, B). g destroys a SMSP,
say S , if S is not a SMSP in the resulting graph. g merges a pair of SMSP’s, say S 1 and
S 2, if it joins a A-cap of a AB-path in S 1 and a B-tail of a AB-path in S 2. Let sm(A, B)
be the number of SMSP’s and let r(A, B) be the number of RMSP’s in GP(A, B).

Lemma 2. Let B̂ ∈ B, then c(Â, B̂)−s(Â, B̂)≤l(A, B)−p(A, B)−r(A, B)−
 sm(A,B)
2 �.

Proof. Suppose n+N gray edges are consecutively added transforming GP(A, B) into
G(Â, B̂): GP(A, B)=G0→g1G1→g2 . . .→gn+N Gn+N=G(Â, B̂). For a graph Gi, the parame-
ters li, pi, ri, smi are defined in the same way as for the graph GP(A, B). For a parameter
φ, define Δφi = φi − φi−1. Denote Δi=(li−pi−ri−
 smi

2 �)−(li−1−pi−1−ri−1−
 smi−1
2 �).

Note that c(Â, B̂)=ln+N , s(Â, B̂)=rn+N , pn+N=smn+N=0. If Δi≤0 for 1≤i≤n+N, then
c(Â, B̂)−s(Â, B̂)=ln+N−pn+N−rn+N−
 smn+N

2 �≤l0−p0−r0−
 sm0
2 �=l(A, B)−p(A, B)−r(A, B)

−
 sm(A,B)
2 �. We will prove Δi ≤ 0 for 1 ≤ i ≤ n + N. For a fixed i, ignore the in-

dex i, i.e., denote Δ=Δi, φ=φi. Depending on the edge gi the following seven cases are
possible:

Case 1: Edge gi closes a AB-path. If a SMSP in Gi−1 turns into a RMSP in Gi then
Δl=Δp=0, Δr=1, Δsm=−1, so Δ≤0. If the number of SMSP’s is not changed then no
other parameter is affected and Δ=0.

Case 2: Edge gi connects a A-cap with a B-tail in different AB-paths. This edge destroys
at most two SMSP’s and Δl=−1, Δp=Δr=0, Δsm≥−2, so Δ≤0.

Case 3: Edge gi connects a AA-path with a BB-path. This edge can not destroy any
SMSP’s and Δl=Δp=−1, Δr=0, Δsm≥0, Δ≤0.

Case 4: Edge gi connects a B-tail in a AB-path with a A-cap in a AA-path (or a A-cap
in a AB-path with a B-tail in a BB-path, or a A-cap in a AB-path with a A-cap in a
AA-path). This edge destroys at most one SMSP and Δl=−1, Δp=Δr=0, Δsm≥−1, Δ≤0.

Case 5: Edge gi closes a AA-path. This edge can’t produce new RMSP, so no parameter
is affected and Δ=0.

Case 6: Edge gi connects two A-caps in different AB-paths. This edge destroys at most
two SMSP’s and Δl=−1, Δp=1, Δr=0, Δsm≥−2, Δ≤−1.

Case 7: Edge gi connects two A-caps in different AA-paths. Then Δl=−1, Δp=Δr =
Δsm=0, Δ=−1. �	
Let S 1, S 2 be two SMSP’s in the same chromosome of Â, S 1 and S 2 are interdependent
if: (1) S 1, S 2 are contained in a single SSP, (2) there exists no RMSP between S 1 and
S 2. A pair of interdependent SMSP’s are shown in Fig.2(a). Let P1 be an internal AA-
path and P2 be an internal BB-path in the same chromosome of Â, say X. P1 and P2 are
interdependent if: (1) X contains only P1 and P2 and no other paths, (2) X contains no
RMSP and no vertices of external gray edges. A pair of interdependent paths are shown
in Fig.2(b). Note that adding a gray edge merging a pair of interdependent SMSP’s turns

446 X. Yin and D. Zhu

 (a) (b)

S2S1 P1 P2

Fig. 2. (a) S 1 and S 2 are a pair of interdependent SMSP’s, (b) P1 and P2 are a pair of interdepen-
dent paths

them into a larger SMSP, and adding a gray edge connecting a pair of interdependent
paths produces a new SMSP.

For GP(A, B), define the parameter ds(A, B): ds(A, B)=1 if sm(A, B)=2 and two
SMSP’s are interdependent and otherwise, ds(A, B)=0. Taking ds(A, B) into account
will lead to a tighter bound for d(A, B).

Lemma 3. If ds(A, B)=0, then there exist sm(A,B)
2 � gray edges, each destroying two

non-interdependent SMSP’s .

Proof. It suffices to describe a method for finding sm(A,B)
2 � such gray edges. Suppose

ds(A, B)=0 and let v be the number of pairs of interdependent SMSP’s.
If v=1, then there must exist a SMSP, say S , not interdependent with any other

SMSP’s (Otherwise, ds(A, B)=1). Add a gray edge merging S and a SMSP in the pair
of interdependent SMSP’s. If v>1, number the v pairs of interdependent SMSP’s as
1, 2, . . . , v. For 1 ≤ i ≤ v−1, add a gray edge merging a SMSP in the ith pair and a SMSP
in the (i+1)th pair. Then any pair of the remaining SMSP’s are non-interdependent. Ar-
bitrarily choose two SMSP’s and add a gray edge merging them, until the number of
SMSP’s is less than 2 . Each edge added by this method merges two non-interdependent
SMSP’s, the lemma holds. �	
Lemma 4. There exist p(A, B) gray edges, each connecting a BB-path with a AA-path
without producing a new SMSP.

Proof. It suffices to describe a method for finding p(A, B) such gray edges. Let w be the
number of pairs of interdependent paths in GP(A, B).

If w=1, there must exists a chromosome in A containing more than one genes. Thus
n>M, implying that there exists a AA-path, say P, not interdependent with any BB-path.
Add a gray edge connecting P with the BB-path in the pair of interdependent paths. If
w>1, number the w pairs of interdependent paths as 1, 2, . . . ,w. For 1 ≤ i ≤ w−1, add a
gray edge connecting a AA-path in the ith pair and a BB-path in the (i+ 1)th pair. Then
any pair of the remaining paths are non-interdependent. For each BB-path, arbitrarily
choose a AA-path and add a gray edge joining them, until there exists no BB-path. Each
edge added by this method connects a pair of non-interdependent paths, and clearly no
new SMSP is produced, the lemma holds. �	
Lemma 5. max{c(Â, B̂)−s(Â, B̂)|B̂∈B}=l(A, B)−p(A, B)−r(A, B)−
 sm(A,B)

2 �−ds(A, B).

Proof. Similar to the proof of lemma 2, we consider a transformation of GP(A, B) into
G(Â, B̂) defined by n+N gray edges: GP(A, B)=G0→g1G1→g2 . . .→gn+N Gn+N=G(Â, B̂).
The parameters li, pi, ri, smi, dsi and Δi are defined in the same way as in Lemma 2. De-
note Δ(1)

i =(li−pi−ri−
 smi
2 �−dsi)−(li−1−pi−1−ri−1−
 smi−1

2 �−dsi−1). Below we prove that

Δ(1)
i ≤ 0 for 1 ≤ i ≤ n+N. For a fixed i, ignore the index i.

Polynomial-Time Algorithm for Sorting by Generalized Translocations 447

If dsi−1=0, clearly Δds≥0. By lemma 2, Δ≤0, so Δ(1)=Δ−Δds≤0. If dsi−1=1, then
there exist a pair of interdependent SMSP’s, say S 1, S 2, in Gi−1. If Δds=0, clearly
Δ(1)=Δ−Δds≤0. If Δds=−1, then the following five cases are possible:

Case 1: Edge gi closes a AB-path in S 1 (or S 2). S 1 (or S 2) turns into a RMSP in Gi and
Δl=Δp=0, Δr=1, Δsm=−1, so Δ(1)=0.

Case 2: Edge gi merges S 1 and S 2 into a larger SMSP. ThenΔl=−1,Δp=Δr=0,Δsm=−1,
Δ(1)=0.

Case 3: Edge gi connects a AB-path in S 1 (or S 2) with a path not in a SMSP. S 1 (or S 2)
is destroyed and Δl=−1, Δp≥0, Δr=0, Δsm=−1, Δ(1)=0.

Case 4: Edge gi connects two A-caps in AB-paths in S 1 and S 2. S 1 and S 2 are both
destroyed and Δl=−1, Δp=1, Δr=0, Δsm=−2, Δ(1)=0.

Case 5: Edge gi connects a pair of interdependent paths. This edge produces a new
SMSP and smi=3. Therefore, Δl=Δp=−1, Δr=0, Δsm=1, Δ(1)=0.

We now prove that there exists a capping of B, say B̂, such that c(Â, B̂)−s(Â, B̂) =
l(A, B)−p(A, B)−r(A, B)−
 sm(A,B)

2 �−ds(A, B), by constructing a sequence of n+N gray

edges g1, g2, . . . , gn+N such that Δ(1)
i =0 for all 1 ≤ i ≤ n+N.

Assume that the first i− 1 such edges are already added to GP(A, B) and we get Gi−1.
If Gi−1 has at least two SMSP’s (i.e., smi−1>1), consider two sub-cases. If dsi−1=1,

let gi be the edge merging two SMSP’s. Since the two SMSP’s are interdependent, gi

may produce a larger SMSP. Therefore, Δl=−1, Δp=Δr=0, Δsm=Δds=−1, thus Δ(1)=0.
If dsi−1=0, by lemma 3, there exist smi−1

2 � gray edges, each edge destroying two non-
interdependent SMSP’s. Thus Δl=−1, Δp=Δr=0, Δsm=−2, Δds=0 and Δ(1)=0 for each
of them.

If Gi−1 has only one SMSP, let P be a AB-path in it. If P is the only AB-path in
the SMSP, then the gray edge gi closing P satisfies Δl=Δp=0, Δr=1, Δsm=−1, Δds=0,
Δ(1)=0. Otherwise, Δl=Δp=Δr=Δsm=Δds=0 and Δ(1)=0.

If Gi−1 has no SMSP and has at least one BB-path (i.e., pi−1>0), by lemma 4, there
exists pi−1 gray edges, each connecting a BB-path with a AA-path without producing a
new SMSP. Clearly Δl=Δp=Δr=Δsm=Δds=0 and Δ(1)=0 for each of them.

If Gi−1 has neither a BB-path, nor a SMSP, let gi be an edge closing an arbitrary
AB-path or AA-path. Since the closed path does not belong to a SMSP, no parameter is
affected and Δ(1)=0. �	
Theorem 3. Let h = 2n − l(A, B) + p(A, B) + r(A, B) +
 sm(A,B)

2 � + ds(A, B). Then h ≤
d(A, B) ≤ h + 2.

Proof. Since f (Â, B̂) ∈ {0, 1, 2}, 0 ≤ max{c(Â, B̂)−s(Â, B̂)|B̂ ∈ B}−max{c(Â, B̂)−
s(Â, B̂) − f (Â, B̂)|B̂ ∈ B} ≤ 2. By theorem 1, theorem 2 and lemma 5, d(A, B) =
min{dr(Â, B̂)|B̂ ∈ B} = 3n−n−max{c(Â, B̂)−s(Â, B̂)− f (Â, B̂)|B̂ ∈ B} = h+max{c(Â, B̂)−
s(Â, B̂)|B̂ ∈ B} − max{c(Â, B̂) − s(Â, B̂) − f (Â, B̂)|B̂ ∈ B}. Therefore, h ≤ d(A, B)
≤ h + 2. �	

448 X. Yin and D. Zhu

Lemma 5 and theorem 3 lead to an approximation algorithm that sorts A into B using
at most d(A, B)+2 generalized translocations. The algorithm is given as Generalized
Sorting 1(A, B).

Algorithm Generalized Sorting 1(A, B)
1. construct the path-cycle graph G = GP(A, B)
2. while G contains a path
3. if G has more than 2 SMSP’s
4. let sm be the number of SMSP’s, add sm

2 � gray edges, each destroying
two non-interdependent SMSP’s (lemma 3)

5. else if G has 2 SMSP’s
6. add a gray edge merging the two SMSP’s
7. else if G has 1 SMSP
8. add a gray edge closing the AB-path in this SMSP
9. else if there exists a BB-path in G
10. let p be the number of BB-paths, add p gray edges, each connecting a

BB-path with a AA-path without producing new SMSP (lemma 4)
11. else
12. add a gray edge closing arbitrary path
13. let B̂ be a capping of B defined by G
14. solve SRT on Â and B̂
15. sort A into B by using the sorting of Â into B̂

6 The Generalized Translocation Distance

In this section, we present an exact formula for d(A, B), which leads to a polynomial-
time algorithm for SGT.

There exists a real-even-isolation in GP(A, B) if the following conditions hold: (1)
r(A, B) is even, (2) all the RMSP’s are contained in a single RSP.

There exists a semi-even-isolation in GP(A, B) if the following conditions hold: (1)
GP(A, B) contains no real-even-isolation, (2) r(A, B) is even, (3) all the RMSP’s are
contained in a single SSP.

There exists a strong-even-isolation in GP(A, B) if the following conditions hold: (1)
GP(A, B) contains a real-even-isolation, (2) there exist two SMSP’s which are contained
in a single SSP with the real-even-isolation.

There exists a weak-even-isolation in GP(A, B) if the following conditions hold: (1)
r(A, B) is odd, (2) all the RMSP’s are on a single chromosome of Â, say X, (3) there
exists a SMSP in X which is contained in a single SSP together with all the RMSP’s.

Note that, GP(A, B) contains at most one real-, semi-, strong- or weak-even-isolation.
Define o(A, B) ∈ {0, 1}: o(A, B) = 1 if r(A, B) is odd, otherwise o(A, B) = 0. Define

δ(A, B) ∈ {0, 1, 2} as follows. δ(A, B) = 2 iff at least one of the following are satisfied:

(α1) GP(A, B) contains a real-even-isolation and sm(A, B) = 0.
(α2) GP(A, B) contains a strong-even-isolation and sm(A, B) = 2.
If δ(A, B) � 2 then δ(A, B) = 1 iff at least one of the following is satisfied:
(β1) GP(A, B) contains a real-even-isolation.
(β2) GP(A, B) contains a weak-even-isolation and sm(A, B) = 1.

Polynomial-Time Algorithm for Sorting by Generalized Translocations 449

(β3) GP(A, B) contains a semi-even-isolation and sm(A, B) is even.
(β4) GP(A, B) contains a semi-even-isolation, sm(A, B) = 1 and the only one SMSP

is contained in a single SSP with the semi-even-isolation.
(β5) ds(A, B) = 1 and o(A, B) = 0.
If δ(A, B) � 1, 2, then δ(A, B) = 0.

Theorem 4. The generalized translocation distance between A and B is 2n − l(A, B) +
p(A, B) + r(A, B) +
 sm(A,B)+o(A,B)

2 � + δ(A, B).

The proof of theorem 4 is similar to the proofs of lemma 5 and theorem 3. It is by a case
analysis of the change in each of the parameters l, p, r, sm, o and δ, for each gray edge
added to GP(A, B), and hence is quite involved. It leads to a O(n) algorithm for finding
an optimal capping of B. This algorithm can be viewed as an extension of steps 2-12 of
algorithm Generalized Sorting 1(A, B) that includes a constant number of additional
operations considering o and δ.

Theorem 5. SGT can be solved in O(n3/2
√

log(n)) time.

Proof. Finding an optimal capping of B, say B̂o, by adding n+N gray edges to GP(A, B)
can be done in O(n) time. Sorting Â into B̂o by using the algorithm in [9] can be im-
plemented in O(n3/2

√
log(n)) time. Therefore, SGT can be solved in O(n3/2

√
log(n))

time. �	

References

1. Bafna, V., Pevzner, P.: Sorting by reversals: Genome rearrangements in plant organelles and
evolutionary history of x chromosome. Molecular Biology Evolution 12, 239–246 (1995)

2. Hannenhalli, S., Pevzner, P.: Transforming men into mice: Polynomial algorithm for genomic
distance problem. In: Proc. 36th Ann. Symp. Foundations of Computer Science (FOCS 1995),
pp. 581–592 (1995)

3. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sort-
ing signed permutations by reversals. Journal of the ACM 46, 1–27 (1999)

4. Kececioglu, J.D., Ravi, R.: of mice and men: Algorithms for evolutionary distance between
genomes with translocation. In: Proc. 6th Annu. ACM-SIAM Symp. Discrete Algorithms
(SODA 1995), pp. 604–613 (1995)

5. Hannenhalli, S.: Polynomial algorithm for computing translocation distance between
genomes. Discrete Applied Mathematics 71, 137–151 (1996)

6. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. Journal of Computational
Biology 13, 567–578 (2006)

7. Zhu, D.M., Ma, S.H.: Improved polynomial-time algorithm for computing translocation dis-
tance between genomes. The Chinese Journal of Computers 25, 189–196 (2002)

8. Wang, L.S., Zhu, D.M., Liu, X.W., Ma, S.H.: An O(n2) algorithm for signed translocation.
Journal of Computer and System Sciences 70, 284–299 (2005)

9. Ozery-Flato, M., Shamir, R.: An n3/2
√

log(n) algorithm for sorting by reciprocal transloca-
tions. In: Proc. 17th Ann. Symp. Combinatorial Pattern Matching (CPM 2006), pp. 258–269
(2006)

The Two-Guard Polygon Walk Problem
(Extended Abstract)

John Z. Zhang

Department of Mathematics and Computer Science
University of Lethbridge

Lethbridge, AB, Canada T1K 3M4
zhang@cs.uleth.ca

Abstract. Consider a simple polygon. A walk is conducted by two
guards on the polygon boundary. They start at a boundary point and
walk on the boundary. It is required that the two guards maintain their
mutual visibility at all times and eventually meet together again. A poly-
gon may or may not be walkable, depending on where the two guards
start their walk or no matter where they start on the boundary. In this
work, we characterize the class of walkable polygons by two guards by
presenting a set of forbidden patterns.

1 Introduction

Imagine that two guards walk on the boundary of a simple polygon. In order to
protect themselves, each guard is equipped with a vision device such that there
is always a light beam between them, i.e., the two guards maintain their mutual
visibility at all times. Given a polygon, the two-guard polygon walk problem
asks whether it is possible for the two guards to start at a boundary point, walk
on its boundary, and eventually meet together again.

The two-guard walk problem was first proposed in [1] in the context of streets.
Two points on the boundary of a polygon, the entrance and the exit, are prespec-
ified. The two guards start moving in the opposite directions from the entrance
along the boundary, while maintaining their mutual visibility. They may walk
backwards from time to time, as long as each of them does not walk beyond the
entrance and exit. The search completes when they meet at the exit. A street is
said to be walkable if it is possible for the two guards to conduct such a walk.
Heffernan [2] proposed a linear-time algorithm to check whether a street is walk-
able. In [3], Crass et al. studied an ∞-searcher in an open-edge “corridor”, which
uses edges as the entrance and the exit. An ∞-searcher has a vision of 360o.

The two-guard walk problem was also studied in the setting of rooms
[4,5,6,7,8]. A room is a simple polygon with a designated point on its boundary,
called the door, which is like the entrance in a street walk. However, no exit is
prespecified. The two guards start at the door and walk on the room boundary
in the opposite direction as in a street walk and eventually meet somewhere
again [6]. It is required that no inside intruders shall escape the room through
its door. More recent work can be found in [9,10,11].

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 450–459, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Two-Guard Polygon Walk Problem 451

In a more general sense, the above two problems are under the framework
of polygon search problems, formulated by Suzuki and Yamashita [12]. A k-
searcher is equipped with a vision device that emits k light beams. The purpose
of a search is to detect any intruders by eventually illuminating them. Among
those models, there have been results for searching a polygon by a 1-searcher.
For instance, [13,14] introduced a different set of forbidden geometric patterns
than those in [15,16,17] that render a polygon non-searchable. LaValle et al. [18]
proposed an algorithmic approach for deciding searchable polygons.

Following the strain of the two-guard walk problems, we consider in this work
the problem of walking a polygon by two guards. To match its counterpart
in streets and rooms, we call it the two-guard polygon walk problem. Though
seemingly similar to the polygon search problem by a 1-searcher, the two-guard
polygon search problem has its own characteristics. In Sec. 2, we introduce the
notation used throughout the paper and formally define the two-guard polygon
walk problem. The paper is structured as follows. In Sec. 3, we present a char-
acterization of walkable polygons by two guards. In particular, we propose a set
of forbidden geometric patterns. Sec. 4 compares a 1-searcher and two guards in
searching or walking a polygon. Finally in Sec. 5, we summarize our work and
discuss some future tasks.

2 Preliminaries

2.1 Notation

A simple polygon P is defined by a clockwise sequence of distinct vertices num-
bered 1, 2, · · · , n, (n ≥ 3), and n edges, connecting adjacent vertices. The edge
between vertices u and v is denoted by (u, v). The boundary of P , denoted by
∂P , consists of all its vertices and edges. We consider that ∂P is part of the
polygon. That is, a polygon is composed of its boundary and its interior. The
vertices immediately preceding and succeeding vertex v clockwise are denoted
by Pred(v) and Succ(v), respectively. For any two points a, b ∈ ∂P , the open
and closed portions of ∂P from a to b clockwise are denoted by ∂P (a, b) and
∂P [a, b], respectively.

A vertex whose interior angle between its two incident edges in the polygon is
more than 180o is called a reflex vertex. Consider a reflex vertex r. Extend edge
(Succ(r), r) toward the interior of P , and let B(r) ∈ ∂P denote the backward
extension point, where the extension leaves P for the first time. The polygonal
area formed by ∂P [r,B(r)] and chord rB(r) is called the clockwise component
associated with r, and is denoted by Ccw(r). Similarly, the extension of (Pred(r),
r) determines the forward extension point, F (r), and the counterclockwise com-
ponent, Cccw(r), associated with r is bounded by ∂P [F (r), r] and chord rF (r).

2.2 The Polygon Walk Problem

Two points, u and v, inside polygon P are said to be mutually visible if the line
segment uv is completely contained inside P .

452 J.Z. Zhang

Polygon P is walkable by two guards, represented as L and R, respectively, if
there exist a time constant T and two continuous functions, � : [0, T] → ∂P and
r : [0, T] → ∂P , such that

(a) �(0) = r(0) ∈ ∂P and �(T) = r(T) ∈ ∂P ;
(b) For any t ∈ (0, T), �(t) �= r(t), and �(t) and r(t) are mutually visible. ��
Functions �(t) and r(t) represent the positions of L and R on ∂P at t ∈ [0, T],
respectively. If a polygon is walkable, for any t ∈ [0, T], P is partitioned into
two portions by the line segment �(t)r(t) (i.e., the light beam between the two
guards), such that one of them is always cleared of any intruders while the other
is contaminated, i.e., it contains intruders. We call (�(t), r(t)), where t ∈ [0, T],
a walk schedule. Essentially, a walk schedule for the two guards is to enlarge the
cleared portion and shrink the contaminated one, until the area of the latter
becomes zero, i.e., the two guards meet again at some same boundary point.

Initially, �(0) and r(0) are at some same point on ∂P . We call it the walk start
point (WSP for short). Beyond this point, the guards walk on the boundary and,
if possible, eventually meet again at a walk end point (WEP for short) at time
T . Note that for a walk, the WSP may or may not be the same as the WEP.

Not every boundary point can be used as a WSP or a WEP. In addition, if
a WSP is selected, depending on the geometric structures of ∂P , we may only
select a WEP on some specific boundary portion. Also if we select a WSP, it
might be that the two guards cannot finish their walk, though the polygon is
walkable. We will repeatedly resort to these facts in our discussions.

For technical reasons, for reflex vertex u, we use two imaginary points ur and
ul that are sufficiently close to u to represent it. Viewed from u towards the
interior of P , ur is to its right while ul is to its left.

If a polygon is walkable, i.e., there exists a time T , such that Conditions (a)
and (b) are satisfied, we can let the time count down from T to 0 and the two
conditions are still satisfied. The following is immediate.

Proposition 1. If a polygon is walkable by two guards starting at a WSP and
ending at a WEP, the polygon is also walkable by the two guards starting at the
WEP and ending at the WSP. ��
The following fact is also helpful in our discussions.

Proposition 2. In order for two guards to walk a component due to a reflex
vertex, they should be present in it simultaneously at some time instant. ��

2.3 Basic Geometric Patterns

Some basic geometric patterns play a key role in our characterization of walkable
polygons. We discuss them and their properties in this section.

A pair of reflex vertices, {v, u}, forms a geometric pattern called a trap, if
v /∈ Ccw(u) and u /∈ Cccw(v), as shown in Fig. 1.1,2

1 In the following discussions, we only mark in figures the relevant vertices for the
sake of clear presentation.

2 Note that it might be that Ccw(u) ∩ Cccw(v) = 0.

The Two-Guard Polygon Walk Problem 453

u v

B(u)F(v)

Fig. 1. A trap

Lemma 1. A point on ∂P [vl, ur] in a trap in Fig. 1 can be used as neither a
WSP nor a WEP.

Proof. Consider that L and R start their walk at a point on ∂P (vl, ur). Now in
order for them to clear component Ccw(u) and maintain their mutual visibility,
they are required to be in the component simultaneously at some time instant,
due to Prop. 2. Suppose that L is at ur, while R is at vl. At this moment, in
order for R to be inside Ccw(u), it has to walk on the boundary counterclockwise,
until B(u). However, to maintain mutual visibility, this requires that L be in
component Cccw(v) at the same time. This leads to contradictory requirements
on the boundary positions of L and R. Note that it cannot be true that L and
R are at u at the same time, since it violates Condition (b) in the problem
definition of a polygon walk. If a walk ends at a point on ∂P (vl, ur), due to
Prop. 1, the point can also be used as the corresponding WSP, a contradiction
to the above arguments. ��
In Fig. 1, each point on ∂P [vl, ur] is said to be covered by a trap.

u

v

B(u)

(a)

u

v

F(u)

(b)

B(v) F(v)

Fig. 2. (a) A DPcw; (b) A DPccw

Two reflex vertices u and v form a disjoint clockwise component pair (DPcw,
for short), if Ccw(u) ∩ Ccw(v) = 0. Analogously, they form a disjoint counter-
clockwise component pair (DPccw, for short), if Cccw(u) ∩ Cccw(v) = 0. Fig. 2
shows a DPcw and a DPccw, respectively.

Lemma 2. For a walkable polygon containing a DPcw in Fig. 2 (a), for ∂P [ul, vr]
and ∂P [vl, ur], if we select a WSP (WEP, resp.) on one of them, we can only select
a WEP (WSP, resp.) on the other. An analogous property holds for a DPccw in
Fig. 2 (b).

Proof. Suppose that, for a walkable polygon containing a DPcw, we select a
WSP on ∂P [ul, vr]. If the WSP is on ∂P [B(u), vr], in order to clear Ccw(v),
L and R have to be both in it at some time instant. They cannot both walk
clockwise, since around reflex vertex v, they have to be on the two adjacent

454 J.Z. Zhang

edges of v, respectively, (otherwise, they would meet again.) which means that
they lose their mutual visibility. The only possible way to clear Ccw(v) is to let
one guard, such as R, go around reflex vertex u counterclockwise. Then the two
guards attempt to be present in component Ccw(v).

In order to clear Ccw(u), the two guards are to be present in it together. After
Ccw(u) is cleared out, again the two guards cannot both walk counterclockwise,
due to reflex vertex u and the same reasoning as above. So it must be true that
one guard, say L, walks clockwise, while R walks counterclockwise. In order to
clear Cccw(v), the two guards are present together in it at some time instant.
After that, either they can meet within the component or they can walk outside
and meet at some point on ∂P [B(v), ur]. Note that the two guards cannot meet
beyond u clockwise, due to the same reasoning as above. ��

(a) (b)

v

u
w

w

u
v

B(w) F(v)

F(w)B(v)

F(u)B(u)

Fig. 3. (a) A 2DPcw; (b) A 2DPccw

Figs. 3 (a) and (b), respectively, show two DPcws and two DPccws coupled
together. A DPcw couple (2DPcw, for short) consists of three reflex vertices, u,
v, and w such that {u, v} and {u, w} each forms a DPcw, as shown in Fig. 3 (a).
A DPccw couple (2DPccw, for short) is defined analogously and is shown in
Fig. 3 (b).

Lemma 3. For a walkable polygon containing a 2DPcw formed by reflex vertices
u, v, and w, in Fig. 3 (a), any point on ∂P [vl, wr] can be used as neither a WSP
nor a WEP. An analogous property holds for a 2DPccw in Fig. 3 (b). ��
In Figs. 3 (a) and (b), each point on ∂P [vl, wr] is said to be covered by a 2DPcw
or a 2DPccw, respectively.

3 Characterization of Walkable Polygons

We discuss our characterization of walkable polygons. In order to make our
presentation clear we categorize polygons into two groups, those that do not
contain any DPcws and DPccws (Case I) and those that do (Case II).

3.1 Complex Patterns

Patterns ℵ and Reverse-ℵ. Consider two DPcws, one formed by {u, v} and
the other formed by {w, x}, where u ∈ Ccw(x), w ∈ Ccw(u), v ∈ Ccw(w), and
x ∈ Ccw(v), as shown in Fig. 4 (a). We call it pattern ℵ3. Symmetrically, as shown
3 It is pronounced “aleph”.

The Two-Guard Polygon Walk Problem 455

in Fig. 4 (b), pattern reverse-ℵ is composed of two DPccws, one due to {u, v}
and the other due to {w, x}, such that u ∈ Cccw(x), x ∈ Cccw(v), v ∈ Cccw(w),
and w ∈ Cccw(u). Note that v and x can be the same reflex vertices and u and
w can be the same in both patterns.

(a) (b)

B(v)

B(x)

B(u)

B(w)

F(v)

F(u)

F(w)

F(x)
w

vx

uu

v x

w

Fig. 4. (a) Pattern ℵ; (b) Pattern reverse-ℵ

Lemma 4. In a walkable polygon that contains pattern ℵ in Fig. 4 (a), if we
select a WSP (WEP, resp.) on ∂P [ul, wr] (∂P [xl, ur], resp.) for a walk, we can
only select a WEP (WSP, resp.) on ∂P [vl, xr] (∂P [wl, vr], resp.) An analogous
property holds for pattern reverse-ℵ in Fig. 4 (b). ��

Patterns
∑

, Reverse-
∑

and ��. We next consider together a 2DPcw and
a 2DPccw, as shown in Fig. 5. In Fig. 5 (a), {u, v} forms a DPcw and {x, w}
forms a DPccw, while {u, x} forms a trap. We call it pattern

∑
. Similarly in

Fig. 5 (b), {u, v} forms a DPccw and {x, w} forms a DPcw, while {u,x} forms
a trap. We say that they form pattern reverse-

∑
.

x

v

w

u

F(x)

B(u)

F(w)

B(u)

x

v

w

u
B(w)

F(v)

B(x)

F(u)

(a) (b) (c)

u
w v

x

F(x) B(u)

B(v) F(w)

Fig. 5. (a) Pattern
∑

; (b) Pattern reverse-
∑

; (c) Pattern �

Lemma 5. For patten
∑

in Fig. 5 (a), any point on ∂P [vl, wr] can be used as
neither a WSP nor a WEP. Analogously, in patten reverse-

∑
in Fig. 5 (b), any

point on ∂P [wl, vr] can be used as neither a WSP nor a WEP. ��
Fig. 5 (c) shows pattern !"4, where one DPcw, formed by {u, v}, and one DPccw,
formed by {w, x}, are together such that u ∈ Cccw(w), w ∈ Ccw(u), v ∈ Cccw(x),
and x ∈ Ccw(v). Pattern !" has the following property.

Lemma 6. For pattern !" shown in Fig. 5 (c), if we select a WSP (WEP,
resp.) on ∂P [vl, xr] for walk, then we can only select a WEP (WSP, resp.) on
∂P [ul, wr]. ��
4 It is pronounced as “bow tie”.

456 J.Z. Zhang

(b)(a)

vu

r

u v

r

B(r)

F(v) B(u)

F(r)

B(u)F(v)

Fig. 6. (a) Pattern τ ; (b) Pattern reverse-τ

Patterns τ and Reverse-τ . Pattern τ couples a DPcw, formed by {u, r},
and a trap, formed by {u, v}, as shown in Fig. 6 (a). Similarly, pattern reverse-τ
couples a DPccw and a trap together, as shown in Fig. 6 (b).

3.2 Case I

Consider a polygon that does not contain any DPcws and DPccws, i.e., no pat-
terns in Figs. 3, 5, 4, and 6 are present. The only possible ones are those due to
traps in Fig. 1. For example, the polygon in Fig. 7 has three traps, namely by
{9, 3}, {3, 6}, and {6, 9}. Due to them, there are contradictory requirements on
the WSP and WEP of a walk. Thus the polygon is not walkable.

1

2
3

4

5

6

7

89

10

Fig. 7. A polygon that has its entire boundary covered by traps

Theorem 1. Suppose that a polygon does not contain any DPcws and DPccws.
It is walkable by two guards if and only if there is at least boundary point that is
not covered by any traps.

Proof. We omit the proof for the sake of space in this extended abstract. ��

3.3 Case II

In Case II, a polygon contains DPcws and/or DPccws.

Lemma 7. In polygon P containing pattern ℵ in Fig. 4 (a), if one of the por-
tions ∂P [ul, vr], ∂P [wl, xr], ∂P [vl, ur] and ∂P [xl, wr] is covered, P is not walk-
able. An analogous property holds for pattern reverse-ℵ in Fig. 4 (b). ��
We call pattern ℵ and pattern reverse-ℵ that satisfy the conditions in Lemma 7
forbidden pattern ℵ and forbidden pattern reverse-ℵ, respectively.

The Two-Guard Polygon Walk Problem 457

Lemma 8. In polygon P containing pattern
∑

in Fig. 5 (a), if one of ∂P [wl, xr]
and ∂P [ul, vr] is covered, P is not walkable by two guards. For pattern reverse-

∑
in Fig. 5 (b), if one of ∂P [xl, wr] and ∂P [vl, ur] is covered, P is not walkable.
For pattern !" in Fig. 5 (c), if one of ∂P [ul, wr] and ∂P [vl, xr] is covered, P is
not walkable. ��
We call patterns in Fig. 5 that satisfy the conditions in Lemma 8 forbidden
pattern

∑
, forbidden pattern reverse-

∑
, and forbidden pattern !", respectively.

Lemma 9. If polygon P contains pattern τ , it is not walkable by two guards.
An analogous property holds for a polygon containing pattern reverse-τ . ��
Thus pattern τ and pattern reverse-τ are themselves both forbidden patterns.

Theorem 2. Suppose that a polygon contains DPcws and/or DPccws. It is walk-
able by two guards if and only if it does not contain any of the above forbidden
patterns.

Proof. The necessity is due to Lemmas 7, 8, and 9. The sufficiency is similar
to the proof of Theorem 1 by focusing on some portions of the boundary. For
instance, if the polygon contains pattern ℵ, shown in Fig. 4 (a), because it is not
forbidden, there must be a boundary point that is not covered. Suppose that it
is on ∂P [vl, xr]. Then accordingly, there exists a point on the boundary portion
∂P [ul, wr] that is not covered. If a selected WSP is on one of them, we can
only select a WEP on the other. The different situations we need to discuss are
similar to those in Theorem 1 and thus omitted in this extended abstract. ��

4 A Comparison between 1-Searcher and Two Guards

A 1-searcher holds a flashlight that emits a light beam. The vision of the searcher
is restricted to the light beam [12]. The beam head hits the polygon boundary.

If a polygon is walkable by two guards, at any time t ∈ [0, T], we can re-
place one guard by the beam head and the other by the searcher. At time T ,
the searcher and the beam head meet again, finishing searching the polygon.
Therefore, the polygon is also searchable by a 1-searcher.

However, the reverse is not true, as shown by a polygon in Fig. 8 (adapted
from [19]). This is due to the fact that in the 1-searcher search, we can make

(a)

2

3

6

7

8
9

13

14

10

12
11

1

4
5

(b)

2

3

6

7

8
9

13

14

10
12
11

1

4
5

(c)

2

3

6

7

8
9

13

14

10

12
11

1

5
4

(d)

2

3

6

7

8
9

13

14

10
11
12

1

5
4

(e)

2

3

6

7

8
9

13

14

10
11
12 5

4

1

(f)

2

3

6

7

8
9

13

14

10

1

12
11

5
4

Fig. 8. A polygon that is searchable by a 1-searcher but not walkable by two guards

458 J.Z. Zhang

use of recontamination. In the figure, the white area is clear while the shaded is
contaminated.

In the figure, the 1-searcher starts at vertex 6 and points its beam at vertex
6. It walks counterclockwise towards vertex 5 as it rotates its beam to the right
until vertex 8. After that, Figs. 8 (b), (c) and (d) show the following situations.
In Fig. 8 (e), the beam head jumps from reflex vertex 11 to a point close to
vertex 9. The previous cleared area around vertex 10 now becomes contami-
nated. We call this recontamination. It is necessary for the 1-searcher in this
polygon to make use of it. Now the 1-searcher can proceed to finish searching
the polygon.

On the other hand, {4, 11} forms a DPccw (a degenerate pattern reverse-ℵ).
Due to the two traps formed by {11, 1} and {1, 5}, any point on ∂P [11l, 1r] ∪
∂P [1l, 5r] is covered. Therefore, according to Theorem 2, the polygon is not
walkable.

5 Conclusion

Our characterization of walkable polygons by two guards completes the strain of
the two-guard walk problem, i.e., the two-guard street problem, the two-guard
room walk problem, the two-guard general polygon walk problem. Though sim-
ple, our characterization involves non-trivial geometric structures in a polygon.
It would be an interesting problem to see whether the walkability of a polygon
by two guards can be tested in linear time in terms of the number of vertices of
the polygon. Some work has been done for the linear-time searchability testing
of a polygon by a 1-searcher [19]. In addition, the generation of “optimal walk
schedules” to walk a polygon by two guards is also an interesting problem. Our
future attempts will focus on these directions.

References

1. Icking, C., Klein, R.: The two guards problem. Int’l. J. of Computational Geometry
and Applications 2(3), 257–285 (1992)

2. Heffernan, P.: An optimal algorithm for the two-guard problem. Int’l. J. of Com-
putational Geometry and Applications 6, 15–44 (1996)

3. Crass, D., Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a corridor:
the open edge variant of the polygon search problem. Int’l. J. of Computational
Geometry and Applications 5(4), 397–412 (1995)

4. Lee, J., Park, S.M., Chwa, K.Y.: Searching a polygonal room with one door by a
1-searcher. Int’l. J. of Computational Geometry and Applications 10(2), 201–220
(2000)

5. Lee, J.H., Shin, S.Y., Chwa, K.Y.: Visibility-based pursuit-evasions in a polygonal
room with a door. In: Proc. ACM Symp. on Computational Geometry, pp. 281–290
(1999)

6. Park, S.M., Lee, J.H., Chwa, K.Y.: Characterization of rooms searchable by two
guards. In: Proc. Int’l. Symp. on Algorithms and Computation, pp. 515–526 (2000)

The Two-Guard Polygon Walk Problem 459

7. Park, S.M., Lee, J.H., Chwa, K.Y.: Searching a room by two guards. Int’l. J. of
Computational Geometry and Applications 12(4), 339–352 (2002)

8. Tan, X.: Efficient algorithms for searching a polygonal room with a door. In:
Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp.
339–350. Springer, Heidelberg (2001)

9. Bhattacharya, B., Zhang, J.Z., Shi, Q.S., Kameda, T.: An optimal solution to
room search problem. In: Proc. 18th Canadian Conf. on Computational Geometry,
August 2006, pp. 55–58 (2006)

10. Zhang, J.Z., Kameda, T.: Where to build a door. In: Proc. IEEE/RSJ Int’l. Conf.
on Intelligent Robots and Systems, October 2006, pp. 4084–4090 (2006)

11. Zhang, J.Z., Kameda, T.: A linear-time algorithm for finding all door locations that
make a room searchable (extended abstract). In: Agrawal, M., Du, D.-Z., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 502–513. Springer, Heidelberg
(2008)

12. Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region.
SIAM J. on Computing 21(5), 863–888 (1992)

13. Tan, X.: Searching a simple polygon by a k-searcher. In: Proc. of Int’l. Symp. on
Algorithms and Computation 2000, pp. 503–514 (2000)

14. Tan, X.: A Characterization of Polygonal Regions Searchable from the Boundary.
In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS, vol. 3330,
pp. 200–215. Springer, Heidelberg (2005)

15. Park, S.M., Lee, J.H., Chwa, K.Y.: A characterization of the class of polygons
searchable by a 1-searcher. Technical Report CS/TR-2000-160, Korea Advanced
Institute of Science and Technology (December 2000)

16. Kameda, T., Zhang, J.Z., Yamashita, M.: Simple characterization of polygons
searchable by 1-searcher. In: Proc. the 18th Canadian Conf. on Computational
Geometry, August 2006, pp. 113–116 (2006)

17. Zhang, J.Z., Burnett, B.: Yet another simple characterization of searchable poly-
gons by 1-searcher. In: Proc. IEEE Int’l. Conf. on Robotics and Biomimetics, De-
cember 2006, pp. 1244–1249 (2006)

18. LaValle, S.M., Simov, B., Slutzki, G.: An algorithm for searching a polygonal region
with a flashlight. Int’l. J. of Computational Geometry and Applications 12(1-2),
87–113 (2002)

19. Bhattacharya, B., Zhang, J.Z., Kameda, T.: Exploring polygonal area by robot:
Searching testing. In: Proc. Int’l. Conf. on Robotics and Automation (May 2009)
(to appear)

Approximation and Hardness Results
for Label Cut and Related Problems

Peng Zhang1,�, Jin-Yi Cai2,��, Linqing Tang3,� � �, and Wenbo Zhao4

1 School of Computer Science and Technology, Shandong University,
Ji’nan 250101, China
algzhang@sdu.edu.cn

2 Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA
jyc@cs.wisc.edu

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, China

linqing@ios.ac.cn
4 Dept. of Computer Science and Engineering, University of California, San Diego,

La Jolla, CA 92093, USA
w3zhao@ucsd.edu

Abstract. We investigate a natural combinatorial optimization problem
called the Label Cut problem. Given an input graph G with a source s and
a sink t, the edges of G are classified into different categories, represented
by a set of labels. The labels may also have weights. We want to pick a
subset of labels of minimum cardinality (or minimum total weight), such
that the removal of all edges with these labels disconnects s and t. We
give the first non-trivial approximation and hardness results for the Label
Cut problem. Firstly, we present an O(

√
m)-approximation algorithm for

the Label Cut problem, where m is the number of edges in the input
graph. Secondly, we show that it is NP-hard to approximate Label Cut
within 2log1−1/ log logc n n for any constant c < 1/2, where n is the input
length of the problem. Thirdly, our techniques can be applied to other
previously considered optimization problems. In particular we show that
the Minimum Label Path problem has the same approximation hardness
as that of Label Cut, simultaneously improving and unifying two known
hardness results for this problem which were previously the best (but
incomparable due to different complexity assumptions).

1 Introduction

In many graph optimization problems, it is natural to associate edges with labels
(or colors) which partition the set of edges into categories. There are several clas-
sical optimization problems considered under this model, such as the Minimum

� Supported by NSFC 60325206 and China Postdoctoral Science Foundation No.
20080441144.

�� Supported by NSF CCF-0511679.
� � � Supported by NSFC 60325206 and NSFC 60310213.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 460–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Approximation and Hardness Results for Label Cut 461

Label Spanning Tree problem [2] and the Minimum Label s-t Path problem (La-
bel Path, for short) [7]. In this paper we consider the Minimum Label s-t Cut
problem (Label Cut, for short), in which we are asked to pick labels at minimum
total cost to disconnect a source s and a sink t by removing edges from the graph
whose labels are picked. The Label Cut problem is a natural generalization of
the classical Minimum s-t Cut problem, in the sense that every edge in the lat-
ter has a unique label. This problem is also a generalization of the Minimum
Set Cover or Minimum Hitting Set problems. In fact it can be considered as a
version of the Minimum Hitting Set problem where the collection of sets to be
“hit” is implicitly represented (and could be exponentially many).

This problem is sufficiently natural that it can appear in many contexts. We
came across this problem from the work of Jha, Sheyner and Wing [8], and of
Sheyner, Haines, Jha, Lippmann, and Wing [11,10] in computer security, in par-
ticular on intrusion detection and on generation and analysis of Attack Graphs1.
In this application, an attack graph G has nodes representing various states, and
directed edges representing state transitions and are labeled by possible “atomic
attacks”. A pair of special nodes s and t are also given representing the initial
state and the success state (for the intruder). To disable an “atomic attack”
incurs some cost (a unit or a weighted cost). Then the computational task is to
find a subset of “atomic attacks” of minimum cardinality (or of minimum total
weight), such that the removal of all edges labeled by these “atomic attacks”
disconnects s and t. This is precisely the Minimum Label Cut problem.

Formally, an instance of the Minimum Label Cut problem consists of a graph
G = (V,E) (directed or undirected) with one source node s ∈ V and one sink
node t ∈ V , and a label (or color) set L = {1, 2, . . . , q}. Each edge e ∈ E has a
unique label l(e) ∈ L, but different edges may have the same label. Each label
l ∈ L has a nonnegative weight w(l). A subset L′ ⊆ L of labels is called a label
cut if the removal of all edges of labels in L′ disconnects s and t. The problem
asks to find a label cut L′ such that the total weight of L′ is minimized.

1.1 Related Works

In [8] it was observed that Label Cut is NP-hard by reducing Minimum Hitting
Set to it. There is a simple duality between Minimum Hitting Set and Minimum
Set Cover. It is well known that Minimum Set Cover has a greedy polynomial
time (1+ln |U |)-approximation algorithm, where |U | is the size of the underlying
set. The same algorithm can be translated to Hitting Set by duality. In [8] the
authors express the Label Cut problem as an implicit Minimum Hitting Set
problem, and then translate the Set Cover algorithm to get an approximation
algorithm. This implicit Minimum Hitting Set problem is as follows: Let D =
{L′ | L′ is the set of labels appearing on a path from s and t}. This is the set to
hit. A set of labels is a label cut iff it intersects every L′ ∈ D. The approximation
algorithm for Set Cover translates to an approximation algorithm for Label Cut
with approximation guarantee of 1 + ln |D|.
1 We are indebted to Jeannette Wing who gave an overview talk on their interesting

work at Tsinghua University.

462 P. Zhang et al.

However, as observed by Jha, Sheyner and Wing [8], |D| is typically exponen-
tially larger than the input size (number of edges in G). Since the removal of all
edges is certainly a feasible solution to Label Cut, the worst-case approximation
ratio 1+ln |D| is useless. There is an additional problem. This concerns the need
to compute in polynomial time the next “greedy” step in the approximation
algorithm for Set Cover. For implicit Minimum Hitting Set, we would need to
find the next label which “hits” the most remaining paths from s to t, and it is
not known how to do this in general. The authors in [8] consider special cases
where this is feasible.

We mention another problem, dual to Label Cut, called the Label Path prob-
lem. Given an edge-labeled graph, the Label Path problem finds an s-t path
with minimum total number of labels on the path. Label Path is NP-hard by
a reduction from 3SAT. Through an approximation preserving reduction from
the Red-Blue Set Cover problem [3], Wirth [12, Theorem 2.16] proved that un-
less NP ⊆ DTIME(npolylog(n)) Label Path can not be approximated within
ratio O(2log1−ε n). Recently, Hassin, Monnot and Segev [7] gave an O(

√
n)-

approximation algorithm for the weighted Label Path problem, and an approxi-
mation hardness result O(logk n) (for any fixed k ≥ 1) for the problem assuming
P �= NP. Notice that the two hardness results for Label Path are incomparable.

1.2 Our Results

In this paper, we give the first non-trivial approximation algorithm as well as prove
hardness results for the Label Cut problem. Firstly, we give a polynomial time
O(

√
m)-approximation algorithm, where m is the number of edges in the input

graph. The idea of the algorithm is that we first make the s-t cut of the graph
small by picking labels at appropriately inexpensive cost, and when the s-t cut of
the graph is sufficiently small (which will definitely be true when the graph is suf-
ficiently sparse) we directly use all the labels in the minimum s-t cut as the label
cut in the resulting graph. The solution to the problem is then the set of labels
picked in the first stage and the labels in the minimum s-t cut computed in the
second stage. Our idea is inspired by the work of [7]. We can extend the algorithm
to deal with related cut problems in edge-classified graphs, such as Label Multi-
cut, Label Multiway Cut, and Label k-Cut (we call them generally the Label γ-Cut
problem), thus obtaining O((mρ)1/2)-approximation for these problems, where ρ
is the known approximation ratio for γ-Cut.

Secondly, we show that unless P = NP, Label Cut can not be approximated
within 2log1−1/ log logc n n for any constant c < 1/2, where n is the input length
of the problem. We prove this by a gap-preserving reduction from the Label
Cover problem, for which Dinur and Safra [6] proved such a hardness result.
Our method of the reduction also gives the same approximation hardness for
the Label Path problem as that of Label Cut, thus simultaneously improving
and unifying two known hardness results [7,12] for this problem which were
previously the best. The approximation hardness proof for Label Path is similar
to that for Label Cut, and will be given in the full version of the paper.

Approximation and Hardness Results for Label Cut 463

The proof of hardness for Label Cut and Label Path relies on two ingredients.
Firstly we show that the approximation hardness 2log1−1/ log logc n n (under com-
plexity assumption P �= NP) is preserved even for a special type of instances
of Label Cover, in which the two parts of an input bipartite graph have the
same number of vertices. Secondly, we show that the mapping relation between
labels in the Label Cover problem can be represented by some sub-structures
in the Label Cut (resp. Label Path) problems, and thus the cut requirement in
Label Cut (resp. the connectivity requirement in Label Path) is equivalent to
the edge-covering requirement in Label Cover.

We have just learned that Coudert et al. [4, Theorem 5.1] have independently
proved a slightly weaker hardness result. Their result is that the Label Path and
Label Cut problems are NP-hard to approximate within a factor of the same ex-
pression as our lower bound, except the input length n in our bound is replaced by
the quantity |L|1/2. When the label set L has essentially the same cardinality as
the input length n (or the number of edges) the bound of Coudert et al. [4] is only
slightly weaker but very close to the same as ours. However this may not be the
case in general since essentially L is a partition of the edge set of the input graph,
and it is especially so in our application with attack graphs, where |L| is typically
much smaller. In such cases, the lower bound in this paper is stronger.

2 An O(
√

m)-Approximation Algorithm for Label Cut

Our plan is to successively remove edge sets from the graph which are relatively
large, yet defined by small label sets. When the s-t cut of the graph becomes
sufficiently small (which is implied when the graph becomes sufficiently sparse)
we can directly remove the minimum s-t cut and its corresponding label set.
To do this we make use of the Budgeted Maximum Coverage problem (BMCP,
for short). We are given a ground set U , a collection S of subsets of U , and
a budget B. Each subset Si ∈ S has a nonnegative weight. The problem is to
find a sub-collection S′ ⊆ S such that the total weight of S′ is at most B and
the number of elements in U covered by S′ is maximized. This problem can be
approximated within a factor of 1 − 1

e [9].
Now we give a detailed outline of our approximation algorithm for Label Cut.

Let m = |E| and w(L′) =
∑

l∈L′ w(l) for any label subset L′ ⊆ L. Suppose
L∗ ⊆ L is an optimal solution to Label Cut. We start with an estimate Δ on
the optimum OPT = w(L∗) such that OPT ≤ Δ < 2 · OPT. We try a sequence
of Δ as guesses (see Theorem 1). Suppose we have a correct Δ. Starting with
H0 = G, we will perform a sequence of edge removal operations. This creates
graphs H0, H1, . . . , Hm′ , where Hi+1 is obtained from Hi by the removal of some
subset of edges. Each step i also produces a subset of labels Li. The final output
is the union of all these Li.

At step i, we are given Hi. Keeping only edges in Hi with label weight > Δ
(and delete others) defines a subgraph H ′

i. Suppose that G is undirected, then
we find connected components of H ′

i. For directed G we find strongly connected
components of H ′

i. Then we merge the nodes from Hi within each (strongly)

464 P. Zhang et al.

connected component defined above to obtain H∗
i . Edges within a component

disappear. Other edges remain; in particular between the merged nodes there
may be multiple edges in H∗

i . All edges retain their labels, and all label weights in
H∗

i are ≤ Δ. If OPT ≤ Δ, then vertices s and t remain distinct in H∗
i ; otherwise

an s-t path using only edges of weight > Δ exists which has no intersection with
the cut of total weight OPT ≤ Δ.

Now we use a Maxflow-Mincut algorithm to find the minimum cut size c∗i =
|mincutH∗

i
(s, t)| of H∗

i . Here each edge in H∗
i counts as one, and multiple edges

count with multiplicity. If c∗i ≤ m1/2, then we find a minimum cut of H∗
i , and

use all labels on this cut. This is our Li, and with this we terminate with m′ = i.
Note that all edges of Hi of labels in Li also form a cut in Hi. Now suppose
c∗i > m1/2. We consider the following instance of BMCP where the ground set
is the set of all edges E(Hi) of the graph Hi, and the collection of subsets S in
BMCP consists of all Sl = {e ∈ E(Hi) | l(e) = l} for l ∈ L, and where the weight
of Sl is w(l). We apply the approximation algorithm in [9] on this instance for
budget Δ to get a sub-collection S′ ⊆ S. Then we use all labels coming from S′

as our Li in this case. This gives the approximation algorithm for Label Cut, as
presented by Algorithm A below. For any subset E′ ⊆ E, let L(E′) denote the
set of all labels in E′.

Algorithm A
1. let i ← 0, H0 ← G. Define H ′

0 and H∗
0 as described above.

2. while |mincutH∗
i
(s, t)| > m1/2 do

a. Construct a BMCP instance I ′ as follows: the ground set U = E(Hi),
the collection S consists of Sl = {e ∈ E(Hi) | l(e) = l} with weight w(l)
for every l ∈ L, and the budget B = Δ.

b. Approximately solve I ′ and let Ei be the set of covered edges.
c. let Li ← L(Ei), Hi+1 ← Hi \ Ei. Define H ′

i+1 and H∗
i+1 as described

above.
d. let i ← i + 1.

3. let Li ← L(mincutH∗
i
(s, t)), return L′ =

⋃
i Li.

Let m′ be the number of iterations of step 2, i.e., m′ equals the value of i
when step 2 terminates.

Lemma 1. For Algorithm A, if OPT ≤ Δ, then m′ < 2m1/2.

Proof. Suppose that an optimal solution to the Label Cut instance I is L∗ ⊆ L
with total weight OPT = w(L∗) ≤ Δ, and that E∗ ⊆ E(G) is the set of edges
corresponding to the label subset L∗. In each iteration of step 2, E∗ ∩E(H∗

i) is
a feasible solution to the BMCP instance I ′, since the total weight of labels in
E∗ ∩ E(H∗

i) is at most w(L∗), which, in turn, is at most Δ.
A crucial observation is that E∗ ∩ E(H∗

i) ⊆ E∗ ∩ E(Hi) is also an s-t cut
in H∗

i . This is because any s-t path in H∗
i can be extended to an s-t path

in Hi by appending only edges of label weight > Δ. The path in Hi must
intersect E∗ ∩ E(Hi), but all edges in E∗ have label weight ≤ Δ, therefore the
s-t path in H∗

i must intersect E∗ ∩ E(H∗
i). So, we know that |E∗ ∩ E(H∗

i)| ≥
|mincutH∗

i
(s, t)| > m1/2.

Approximation and Hardness Results for Label Cut 465

By the work of [9], we know that Ei from 2.b. covers at least (1− 1
e)OPTBMCP

(I ′) edges, where OPTBMCP(I ′) is the optimum of instance I ′. So in each iter-
ation of step 2 at least (1 − 1

e)OPTBMCP(I ′) ≥ (1 − 1
e)|E∗ ∩ E(H∗

i)| > 1
2m

1/2

edges are removed from Hi. Since there are at most m edges in total in graph
H0, it follows that the number of iterations m′ < 2m1/2. ��
Theorem 1. The Label Cut problem can be approximated within a factor of
O(m1/2) in polynomial time, where m is the number of edges in the input graph
of the problem.

Proof. Let wmin denote the minimum (nonzero) label weight. Then we know
wmin ≤ OPT ≤ w(L). We try Algorithm A with Δ = 2k · wmin for every k =
0, . . . , log2

w(L)
wmin

�, where Δ is used as an estimate of OPT. Let k be such that
2k−1 · wmin < OPT ≤ 2k · wmin. Then for the guess Δ = 2k · wmin, we have
OPT ≤ Δ < 2 · OPT.

With this Δ, we know that the number of iterations m′ < 2m1/2 by Lemma 1.
Moreover, when step 2 terminates, |mincutH∗

m′ (s, t)| is at most m1/2, implying
that w(Lm′) ≤ |mincutH∗

m′ (s, t)| · max{w(l) : l ∈ L(E(H∗
m′))} ≤ m1/2Δ. Thus

the total weight of the output L′ is at most m′Δ + w(Lm′) ≤ 2m1/2 · Δ +
m1/2 · Δ = O(m1/2) · OPT. We note that, from the label set Lm′ derived from
mincutH∗

m′ (s, t), all edges of labels from Lm′ in Hm′ do constitute an s-t cut in
Hm′ , and therefore the output L′ is an s-t cut in G.

Finally, for every k, we run Algorithm A. (We never run beyond m′ ≥ 2m1/2,
and verify each time s and t remain distinct in the merging operations; if these
are unsatisfied then we go to the next Δ.) Among all tries with different Δ we
pick the label subset with minimum total weight as our final solution. ��

3 Approximation Hardness for Label Cut

In this section we prove that it is NP-hard to approximate Label Cut within
2log1−o(1) n via a reduction from the Minimum Label Cover problem (Label Cover,
for short). The current best known approximation hardness result for Label
Cover is due to Dinur and Safra [6], which states that the problem is NP-hard
to approximate within 2log1−1/ log logc n n for any constant c < 1/2.

In the Minimum Label Cover problem, we are given a bipartite graph G =
(U, V,E) where E ⊆ U ×V , two sets of possible labels B1 and B2 for vertices in
U and V respectively, and a relation Π ⊆ E×B1×B2 that consists of admissible
pairs of labels for each edge e ∈ E. A labeling is a pair of functions (P1,P2) that
assigns a non-empty set of labels to every vertex in U ∪ V , where P1 : U → 2B1

and P2 : V → 2B2 . It is said to cover an edge e = (u, v) (where u ∈ U and v ∈ V)
if for every label b ∈ P2(v) there is some label a ∈ P1(u) such that (e, a, b) ∈ Π .
The l1-cost of a labeling is the l1 norm of the vector (|P1(u1)|, . . . , |P1(u|U|)|),
that is, the total number

∑
u∈U |P1(u)| of labels assigned to vertices in U by

function P1 counted with multiplicities. A total-cover (a solution) of G is a
labeling that covers all the edges in G. The problem is to find a total-cover with

466 P. Zhang et al.

minimal l1-cost. We always implicitly assume that the only instances we shall
consider for Minimum Label Cover are such that a total-cover exists (see [1],
p.403, line −8).

Dinur and Safra [6] proved the approximation hardness result 2log1−o(1) n for
Label Cover via a reduction from the following version of the PCP Theorem.

Theorem 2 ([5]). Let Ψ = {ψ1, . . . , ψn} be a system of local-tests over variables
X = {x1, . . . , xn′} such that each local-test depends on D = log logc n variables
(for any constant c < 1/2), and each variable ranges over a field F with |F| =
O(2log1−1/O(D) n), where n stands for the number of tests in Ψ and n′ stands for
the number of variables in X. It is NP-hard to distinguish between the following
two cases: Yes – there is an assignment to the variables such that all ψ1, . . . , ψn

are satisfied, and No – no assignment can satisfy more than 2
|F| fraction of the

ψi’s.

Define gc(n) = 2log1−1/ log logc n n. Dinur and Safra proved that

Theorem 3 ([6]). Let Ψ be a local-test system defined in Theorem 2. Then an
instance I = ((U, V,E), B1, B2, Π) of Label Cover can be constructed from Ψ in
polynomial time such that for any constant c < 1/2, (soundness) Ψ is satisfied
=⇒ OPT(I) = |U |, and (completeness) no assignment can satisfy more than 2

|F|
fraction of Ψ =⇒ OPT(I) > g|U |, where g = gc(|I|) and OPT(I) denotes the
optimum of Label Cover on the instance I.

We shall prove the approximation hardness of Label Cut via a gap-preserving
reduction from Label Cover. For succinctness, denote by E(v) ⊆ E all edges that
are incident to v, and by N(v) ⊆ U all endpoints of edges in E(v) that lie in U ,
i.e., N(v) is the neighborhood of vertex v. Without loss of generality we assume
|N(v)| ≥ 1 for all v ∈ V . Similarly every u is in some neighborhood N(v), i.e.,
U =

⋃
v∈V N(v). First we claim a simple lemma about labels in B2.

Lemma 2. For any vertex v ∈ V and label b ∈ B2, if there is a vertex u ∈ N(v)
such that for all a ∈ B1, ((u, v), a, b) �∈ Π, then vertex v can not be assigned with
label b by any solution.

If a label b ∈ B2 satisfies the condition in Lemma 2, we say this label b is excluded
(by the vertex v). A label b is non-excluded (by the vertex v) iff for all u ∈ N(v)
there exists some label a ∈ B1, such that ((u, v), a, b) ∈ Π . Since we only consider
instances where a total-cover exists, we must have for every v, it has a non-empty
set of non-excluded labels. The following Lemma 3 gives a transformation on the
instances of Label Cover, which is useful for the gap-preserving reduction from
Label Cover to Label Cut (its proof is omitted).

Lemma 3. Without loss of generality, we may assume that instances of Label
Cover satisfy |U | = |V |.
Lemma 4. There is a polynomial-time gap-preserving reduction τ from Label
Cover to Label Cut that transforms any instance I = ((U, V,E), B1, B2, Π) of
Label Cover to an instance I ′ = ((V ′, E′), s, t, L) of Label Cut, such that,

Approximation and Hardness Results for Label Cut 467

OPTCOVER(I) = |U | =⇒ OPTCUT(I ′) ≤ |U | + |V |,
OPTCOVER(I) > g|U | =⇒ OPTCUT(I ′) > g|U | + |V |,

where OPTCOVER() (resp. OPTCUT()) returns the optimum of any instance of
Label Cover (resp. Label Cut).

Proof. Given an instance I = ((U, V,E), B1, B2, Π) of Label Cover, the instance
I ′ = (G′, s, t, L) of Label Cut is constructed as follows. For every vertex v and
non-excluded label b, there is a gadget Gv,b, as shown in Figure 1. Gv,b consists
of a series of parallel chains, each of which corresponds to an edge (u, v) ∈ E(v).
For such an edge (u, v), suppose that the set of labels mapped to b ∈ B2 by
Π is {a1, a2, . . . , ap} ⊆ B1, i.e., this is the subset of labels a ∈ B1 such that
((u, v), a, b) ∈ Π . (Since b is a non-excluded label by v, for every neighbor u ∈
N(v), this number p ≥ 1. This p depends on v, b and u. Note also that |N(v)| ≥ 1
as noted earlier.) Then in Gv,b the chain corresponding to edge (u, v) contains p
consecutive diamonds, with the ith diamond (1 ≤ i ≤ p) having label (u, ai) for
its two top edges, and label (v, b) for its two bottom edges (see Figure 1). All
other chains are constructed in the same manner, one chain for each u ∈ N(v).
The dashed lines (not belonging to the graph) at the two ends of Gv,b mean that
the ends of each chain are merged.

),(1au),(1au),(2au),(2au

),(bv),(bv),(bv),(bv),(bv),(bv

),(pau),(pau

),(bv),(bv),(bv

),(1au),(1au),(2au),(2au),(pau),(pau

),(bv),(bv),(bv

Fig. 1. Gadget Gv,b for vertex v ∈ V and label b ∈ B2

Next, a gadget Gv for every vertex v ∈ V is constructed by linking several gad-
gets Gv,b together, where each gadget Gv,b corresponds to a non-excluded label b
by v (see Figure 2.) Note that only Gv,b for non-excluded labels b for the vertex v
appear in Gv. Its number is at least one but ≤ |B2|. (In Figure 2 for notational sim-
plicity we assume that for the given example ofGv, all |B2| labels are non-excluded
labels for v and are denoted as 1, 2, . . . , |B2|.) Finally, graphG′ = (V ′, E′) consists
of a series of parallel gadgets Gv for every vertex v ∈ V . All the heads of gadgets
Gv are merged into one vertex, that is, the source vertex s, meanwhile all the tails
of gadgets Gv are merged into one vertex, that is, the sink vertex t. The label set
L contains all labels of the forms (u, a) and (v, b) used in the construction. Every
label in L has unit weight. Since each diamond of G′ corresponds to a tuple of Π ,
we know that I ′ can be constructed in polynomial time.

468 P. Zhang et al.

1,vG 2,vG ||, 2Bv
G

Fig. 2. Gadget Gv for vertex v ∈ V

Suppose (P∗
1 ,P∗

2) is an optimal solution to the Label Cover instance I whose
l1-cost is |U |. For any v ∈ V , since P∗

2 (v) is non-empty, there exists some b ∈
P∗

2 (v). This b is obviously a non-excluded label, by the definition of a solution
in Label Cover. So (v, b) is a label in L. Now we pick the label (v, b). Next, for
all u ∈ U , pick all labels (u, a) for a ∈ P∗

1 (u). Since the l1-cost of (P∗
1 ,P∗

2) is |U |,
this counts |P∗

1 (u)| for different u ∈ U with multiplicity, it follows that we have
picked a total of |U |+ |V | labels from L. We claim that removing all edges with
the picked labels disconnects s and t in G′. This is equivalent to disconnecting
every Gv. Fix any v ∈ V . We consider the picked label (v, b), and show that the
gadget Gv,b is disconnected. This in turn is equivalent to disconnecting every
chain in Gv,b, one chain for each u ∈ N(v). Consider such a chain defined by a
particular u ∈ N(v). Since all edges labeled (v, b) have been removed, we just
need to prove that at least one diamond has been completely removed. Suppose
there are p diamonds, where the upper path is labeled by (u, a1), . . . , (u, ap), and
these ai are those satisfying ((u, v), ai, b) ∈ Π . (see Figure 1). Since (P∗

1 ,P∗
2) is

a total-cover, for some 1 ≤ i ≤ p, ai ∈ P∗
1 (u). But we did pick labels (u, a), for

all a ∈ P∗
1 (u). It follows that OPTCUT(I ′) ≤ |U | + |V |.

Now we prove the second part of the lemma by its contrapositive. Suppose the
optimum of the Label Cut instance I ′ is ≤ g|U |+ |V |, and an optimal solution is
L∗ ⊆ L. For clarity let us call a label in L of the form (u, a) a u-label, and a label
of the form (v, b) a v-label. Denote by nul (resp. nvl) the number of u-labels (resp.
v-labels) in L∗. Since G′ consists of |V | subgraphs Gv in parallel, the removal
of edges with labels in L∗ must disconnect each Gv. By construction of Gv as
a chain of Gv,b, it must disconnect some Gv,b, and therefore must pick at least
one v-label (v, b) for every v ∈ V . This defines our assignment P2 on V , that
is, P2(v) = {b | (v, b) is a picked v-label in L∗}. Then we know that nvl ≥ |V |.
Next we define P1 on U as follows: P1(u) = {a | (u, a) is a picked u-label in L∗}.
Since nvl ≥ |V |, it follows that nul ≤ g|U |. Since L∗ disconnects Gv,b, for every
u ∈ N(v), L∗ must include at least one u-label (u, a) such that ((u, v), a, b) ∈ Π .
In particular P1(u) is non-empty. Since U =

⋃
v∈V N(v), this is true for all

u ∈ U . This also shows that (P1,P2) is a solution to the Label Cover instance I.
Since nul ≤ g|U |, we know that the l1-cost of (P1,P2) is ≤ g|U |. This completes
the proof of the contrapositive. ��

Theorem 4. For any constant c < 1/2, the Label Cut problem can not be ap-
proximated within 2log1−1/ log logc n n in polynomial time unless P = NP, where n
is the input length of the problem.

Proof. Given any Label Cover instance I, first we apply the transformation
presented in Lemma 3 to get an instance Î = ((U, V,E), B1, B2, Π) of Label
Cover such that |U | = |V |. Denote by m the length of the Label Cover instance

Approximation and Hardness Results for Label Cut 469

I, and by n the length of the Label Cut instance I ′ = (G′, s, t, L) generated by
the reduction τ in Lemma 4 on instance Î. By Lemma 4, the gap between the
two cases in the lemma is at least g/2, where g = gc(m). By Theorems 2 and 3,
it is NP-hard to approximate Label Cover within ratio gc(m) for any constant
c < 1/2. Since essentially the edges (together with their labels) in G′ reflect the
relation Π , we know that n ≤ mk for some positive constant k, i.e., m ≥ n1/k.
So we have that it is NP-hard to approximate Label Cut (instances generated
by the reduction τ of Lemma 4) within ratio gc(m)/2 for any constant c < 1/2.
This implies the approximation hardness gc′(n) of Label Cut for any constant
c′ < 1/2 under the complexity assumption P �= NP (the coefficient 1/2 and
exponential 1/k can be absorbed in the exponent of the hardness gc′(n)). ��

References

1. Arora, S., Lund, C.: Hardness of Approximation. In: Hochbaum, D. (ed.) Approxi-
mation Algorithms for NP-hard Problems, pp. 399–446. PWS Publishing Company
(1997)

2. Broersma, H., Li, X.: Spanning trees with many or few colors in edge-colored
graphs. Discussiones Mathematicae Graph Theory 17(2), 259–269 (1997)

3. Carr, R., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover problem.
In: Proc. of SODA, pp. 345–353 (2000)

4. Coudert, D., Datta, P., Perennes, S., Rivano, H., Voge, M.-E.: Shared risk resource
group: complexity and approximability issues. Parallel Processing Letters 17(2),
169–184 (2007)

5. Dinur, I., Fischer, E., Kindler, G., Raz, R., Safra, S.: PCP characterizations of
NP: towards a polynomially-small error-probability. In: Proc. of STOC, pp. 29–40
(1999)

6. Dinur, I., Safra, S.: On the hardness of approximating Label Cover. Information
Processing Letters 89(5), 247–254 (2004)

7. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. Journal of Combinatorial Optimization 14(4),
437–453 (2007)

8. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop, Nova Scotia,
Canada, June 2002, pp. 49–63 (2002)

9. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Infor-
mation Processing Letters 70(1), 39–45 (1999)

10. Sheyner, O., Wing, J.M.: Tools for Generating and Analyzing Attack Graphs. In:
Proceedings of Workshop on Formal Methods for Components and Objects, pp.
344–371 (2004)

11. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated Genera-
tion and Analysis of Attack Graphs. In: Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2002, pp. 273–284 (2002)

12. Wirth, H.: Multicriteria Approximation of Network Design and Network Upgrade
Problems. PhD thesis, Department of Computer Science, Würzburg University
(2001)

An Observation on Non-Malleable
Witness-Indistinguishability and Non-Malleable

Zero-Knowledge

Zongyang Zhang, Zhenfu Cao�, and Rong Ma

Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, P.R. China

{zongyangzhang,zfcao,marong}@sjtu.edu.cn

Abstract. Ostrovsky et al. [1] gave the first definition of non-malleable
witness-indistinguishable argument systems. A surprising result given
by them showed this notion was incomparable with the notion of non-
malleable zero-knowledge. However, they only discussed their relations in
the interactive setting. In this paper, we make an observation on relation
between the two notions in the non-interactive setting. We show the
two notions are still incomparable: that is, there are non-malleable non-
interactive zero-knowledge proof systems that are not non-malleable non-
interactive witness-indistinguishable, and vice versa.

1 Introduction

The notion of zero-knowledge proof systems was first introduced by Goldwasser
et al. [2]. Roughly speaking, a zero-knowledge proof allows a prover to con-
vince a verifier the validity of a statement without disclosing anything else to
the verifier. A frequently useful relaxation of zero-knowledge, called witness-
indistinguishability, was proposed by Feige et al. [3]. A proof system is said to
be witness-indistinguishable (WI) if a verifier cannot distinguish interactions
with a prover using different witnesses for the some statement.

When a proof system is executed multi-times especially over the internet,
consider a scenario where a man-in-the-middle adversary A is simultaneously
participating in two interactions, which are called the left and the right interac-
tion, controls all the messages in the interactions, and can schedule the messages
at its wishes. In the left interaction, the adversary plays the role of verifier and
interacts with an honest prover P on a statement x. In the right interaction, the
adversary plays the role of prover and interacts with an honest verifier V on an
adaptively chosen statement x̃ which might be related with x. A may modify
the proof received from the left interaction and give an accepting proof for x̃
on the right. Non-malleability was introduced by Dolev et al. [4] to describe
security requirements in the above scenario. Informally speaking, a proof is said
to be non-malleable if, whenever x �= x̃, the left interaction does not “help” the
adversary in convincing the verifier in the right interaction.
� Corresponding author.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 470–479, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Observation on NMWI and NMZK 471

Non-malleable zero-knowledge (NMZK) was first constructed by Dolev et
al. [4]. Constant round protocols were given in [5,6] using non-black-box tech-
niques. Under new hardness assumptions (adaptive one-way functions), a 4-
round NMZK argument system was constructed in [7]. Other results required
either the existence of trusted key-registration functionalities [8], or common
reference strings (CRS) [9,10].

It is well known that when non-malleability is not considered, zero-knowledge
implies witness-indistinguishability [3]. Ostrovsky et al. [1] first combined
witness-indistinguishability and non-malleability and gave the first definition
of non-malleable witness-indistinguishable (NMWI) argument systems. They
showed the existence of a constant-round NMWI argument system for every
NP language in the plain model (i.e., without set-up assumptions) and explored
the relation between the notions of NMWI and NMZK. Moreover, a surprising
result from their work was that these two notions were incomparable. However,
they only showed this result in the interactive setting. In this paper, in order
to deeply clarify the two notions, we further explore relation between the two
notions in the non-interactive setting and show the following result:

Theorem 1. Under standard complexity-theoretic assumptions, there exist proof
systems that are non-malleable non-interactive zero-knowledge (NIZK) but not
non-malleable non-interactive witness-indistinguishable (NIWI), and vice versa.

Section 2 contains basic definitions of non-malleable NIZK and non-malleable
NIWI. In section 3, we will prove Theorem 1.

2 Preliminaries

Consider an NP language L as given by a natural witness relation RL, i.e., where
x ∈ L iff there is a w such that R(x,w) holds. For x ∈ L, any such w is said to
be a witness. Let RL(x) denote the set of witnesses for the membership x ∈ L,
i.e., RL(x) = {y | ∃y s.t. (x, y) ∈ RL}. A function μ(·), where μ : N → [0, 1] is
called negligible if for every positive polynomial p(·) and for all sufficiently large
n, μ(n) < 1

p(n) . In the rest of this paper, we will use k = |x| as the security
parameter.

2.1 Non-Malleable Non-Interactive Zero-knowledge

Intuitively, in a NIZK proof system, non-malleability tries to capture the require-
ment that whatever an adversary can prove after getting polynomially many
NIZK proofs for statements of its choosing from an honest prover in the left
interaction, it could have proven without seeing them, except for the ability to
duplicate proofs. In this work, we use tag-based non-malleable NIZK proof sys-
tems. Owing to the page limit, the formal definition of tag-based non-malleable
NIZK proof systems are presented in the full version.1

1 There are standard ways to transform a non-malleable NIZK proof system into tag-
based non-malleable by simply concatenating the tag to the statement being proved.

472 Z. Zhang, Z. Cao, and R. Ma

2.2 Non-Malleable Non-Interactive Witness-Indistinguishability

A proof system is WI if the verifier cannot tell which of the witnesses is being used
by the prover to carry out the proof, even if the verifier knows both witnesses. A
special kind ofWI proof systems is zaps as proposed byDwork and Naor [11]. Groth
et al. [12] constructed a non-interactive zap for every NP language in the plain
model based on standard cryptographic assumption. For page limited, the formal
definitions of WI proofs and non-interactive zap are presented in the full version.

When considering man-in-the-middle attacks, we define non-malleable NIWI
proof systems. We require the witness “encoded” in the right proof given by
a man-in-the-middle adversary A is independent from the witness used by the
honest prover in the left proof.2 In order to well define the “encoded” witness in a
proof, we focus on commit-and-prove proof systems [9]. We adjust the definition
to the non-interactive setting. A non-interactive commit-and-prove proof system
(K,P, V) for NP language L comprises two phases. On input x, P sends to V a
commitment to witness w in the first phase. In the second phase, P proves to V
that the committed w is a witness for the membership of x in L.

Definition 1 (Non-Malleable Non-Interactive Witness-Indistinguisha-
bility). A non-interactive commit-and-prove proof system Π = (K,P, V) for NP
language L with witness relation RL is a non-malleable NIWI proof system, if
for all common reference string σ ← K(1k), for all probabilistic polynomial-time
(PPT) adversary A, and for all PPT algorithms D, there exists a negligible
function α(·) such that for all x ∈ L, all witnesses w0, w1 ∈ RL(x) and all
z ∈ {0, 1}∗, we have that∣∣∣Pr

[
D
(
x,w0, w1,z,WIMIMA

V (σ, x, w0, z)
)

= 1
]

− Pr
[
D
(
x,w0, w1, z,WIMIMA

V (σ, x, w1, z)
)

= 1
]∣∣∣ < α(k)

where the experiment WIMIMA
V (σ, x, w, z) is defined as follows:

WIMIMA
V (σ, x, w, z)

π ← P (σ, x, w)
(x′, π′) ← A(σ, π, z)
Let w′ be the witness encoded in proof π′.

(i.e., the witness committed to by the first message of A.)
If x = x′ or V (σ, x′, π′) = 0, set w′ = “⊥”.
return w′.

Since we cannot prevent from copying, we rule out the cases that the statement
proved in the right interaction is the same as that in the left interaction. How-
ever, in many situations it might be important to protect against an attacker
that attempts to prove even the same statement. In order to deal with this
problem, we define a tag-based variant of non-malleable non-interactive witness-
indistinguishability.
2 The reason why we define non-malleable NIWI in this way is similar to that of [1].

An Observation on NMWI and NMZK 473

Definition 2 (Tag-Based Non-Malleable Non-Interactive Witness In-
distinguishability). A non-interactive commit-and-prove proof system Π =
{(K,Ptag, Vtag)}tag for NP language L with witness relation RL is a tag-based
non-malleable NIWI proof system with tags of length l(k), if for all common ref-
erence string σ ← K(1k), for all PPT adversary A, and for all PPT algorithms
D, there exists a negligible function α(·) such that for all x ∈ L, for all tags
tag ∈ {0, 1}l, for all witnesses w0, w1 ∈ RL(x) and all z ∈ {0, 1}∗, we have that∣∣∣Pr

[
D
(
x,w0,w1, z,TWIMIMA

V (tag, σ, x, w0, z)
)

= 1
]

− Pr
[
D
(
x,w0, w1, z,TWIMIMA

V (tag, σ, x, w1, z)
)

= 1
]∣∣∣ < α(k)

where the experiment TWIMIMA
V (tag, σ, x, w, z) is defined as follows:

TWIMIMA
V (tag, σ, x, w, z)

π ← Ptag(σ, x, w)
(tag′, x′, π′) ← A(tag, σ, π, z)
Let w′ be the witness encoded in proof π′.

(i.e., the witness committed to by the first message of A.)
If tag′ = tag or Vtag′(σ, x′, π′) = 0, set w′ = “⊥”.
return w′.

3 Separations between Non-Malleable NIWI and
Non-Malleable NIZK

We present our main result in this section. We show the notion of non-malleable
NIWI and the notion of non-malleable NIZK are incomparable. We design pro-
tocols that distinguish between the two notions.

3.1 Non-Malleable NIZK Proof System

Next, we construct a protocol that is a non-malleable NIZK proof but not a
non-malleable NIWI proof. The construction is similar to that of [1]. We will
prove the following theorem.

Theorem 2. Assume that there exist trapdoor permutations and dense public-
key cryptosystems. Then for any non-trivial NP language there exists a non-
malleable NIZK proof system that is not non-malleable NIWI.

Let CS=(Com,Ver) be a non-interactive statistically binding commitment scheme
constructed from one-way permutations [13]. Note the commitment scheme CS
uses 6k bits to commit to one bit. Let L be an NP language and W be its
witness relation. Let L′ be the language consisting of pairs (x, com) for which
there exist (w, dec) such that Ver(w, com, dec) = 1 and (x,w) ∈ W. Suppose
Π = {(K,Ptag,Vtag,S, E)}tag be a family of tag-based non-malleable NIZK

474 Z. Zhang, Z. Cao, and R. Ma

proof for L′. Let SIG = (SGen, SSign, SVer) be a secure strong one-time signature
scheme [14].

Then we construct the family of non-malleable NIZK proof system Γ =
{(K,PTAG, VTAG, S, E)}TAG for language L in Fig. 1. Algorithms S,E will be de-
picted in the proof.

Γ is a commit-and-prove proof system. Protocol Γ consists of two subprotocols,
each of which being a commit-and-prove proof, since in each subprotocol, on
input x, a commitment comi of a witness w for x ∈ L is first generated, then
a non-malleable NIZK protocol proving the committed value is a valid witness
for membership of x in L is executed. However, we divide the whole protocol
in a different way, which consists of a commitment com0 to a witness w for
x ∈ L and a residual protocol Γ ′. Γ ′ is a proof system for proving that com0 is
indeed the commitment of a valid witness. The proof of completeness property
is straightforward. In the following we will prove the protocol is non-malleable,
it also implies knowledge soundness (i.e., proof of knowledge).

Γ is non-malleable NIZK. In order to prove the protocol Γ is non-malleable
NIZK. We have to show it is NIZK and non-malleable.

NIZK: To show that Γ is unbounded NIZK, we construct a simulator S = (S1, S2)
that simulates the output of each PPT adversary A.

S1 runs S1 twice and gets σ = (σ0 ◦ σ1), τ = (τ0 ◦ τ1). Whenever A submits
query (xj , wj ,TAGj = (t0j , t

1
j)), for i = 0, 1, S2 computes commitment comi

j of
0|x|, and invokes SGen(1k) to generate a verification/signing key pair (vki

j , sk
i
j)

for the signature scheme SIG. Then S2 invokes S2 on query (σ0, τ0, vk
0
j ◦ 0, xj ◦

com0
j) and (σ1, τ1, vk

1
j ◦ 1, xj ◦ com1

j). Upon receiving proof tr0
j , tr

1
j in response,

S2 computes si
j = SSign(ski

j , t
i
j ◦ comi

j ◦ tri
j ◦ i) for i = 0, 1, and returns A the

value (com0
j , tr

0
j , vk

0
j , s

0
j ; com1

j , tr
1
j , vk

1
j , s

1
j). Finally output whatever A outputs.

We next show the function
∣∣∣Pr[ExptA(k) = 1] − Pr[ExptSA(k) = 1]

∣∣∣ is negligi-

ble. Recall ExptSA(k) is the simulation experiment. Denote by X = (x1, . . . , xm)
all the inputs query by A and W = (w1, . . . , wm) the witness such that w1 ∈
RL(x1), . . . , wm ∈ RL(xm). Denote by ExptHYB1(X,W, z) the experiment as
ExptSA(k) except that com0

j is a commitment to wj for all i ∈ [m]. The fact
that

∣∣Pr[ExptSA(k) = 1] − Pr[ExptHYB1(X,W, z) = 1]
∣∣ is negligible follows from

the hiding property of the commitment scheme CS. Next define experiment
ExptHYB2(X,W, z) exactly as ExptHYB1(X,W, z) with the exception that com1

j

is a commitment to wj for all j ∈ [m]. That
∣∣Pr[ExptHYB2(X,W, z) = 1] −

Pr[ExptHYB1(X,W, z) = 1]
∣∣ is negligible follows from the hiding property of CS.

Next denote by ExptHYB3(X,W, z) the experiment as ExptHYB2(X,W, z) except
that the proof for (xj , com0

j) is generated using actual witness (wj , dec0
j) for all

j ∈ [m]. The fact that the function
∣∣Pr[ExptHYB2(X,W, z) = 1] − Pr[ExptHYB3

(X,W, z) = 1]
∣∣ is negligible follows from the computational ZK property of Π .

Recall that ExptA(k) is the real experiment of PTAG interacting with A. Note∣∣Pr[ExptHYB3(X,W, z) = 1] − Pr[ExptA(k) = 1]
∣∣ is negligible following from the

An Observation on NMWI and NMZK 475

Tag: TAG = (t0, t1)
Common input: x ∈ {0, 1}k.
Common reference string:

K invokes K twice to generate σ = σ0 ◦ σ1, i.e., σi ← K(1k+k(k+1))3 for i = 0, 1.
Private input to PTAG: w for x ∈ L
Prover algorithm:

1. Parse σ as σ0 ◦ σ1.
2. For i = 0, 1, do the following:

(a) Commit to w, i.e., compute (comi, deci) ← Com(w).
(b) Invoke SGen(1k) and obtain a verification/signing key pair, i.e., compute

(vki, ski) ← SGen(1k).
(c) Using σi as the common reference string and (w, deci) as the witness, run

as honest prover Pvki◦i of protocol Π with tag vki ◦ i and generate a proof
that (x, comi) ∈ L′. Denote this proof by tri.

(d) Compute si ← SSign(ski, ti ◦ comi ◦ tri ◦ i).
3. Send (com0, tr0, vk0, s0; com1, tr1, vk1, s1) to VTAG.

Verifier algorithm: VTAG accepts if and only if the followings hold:

1. Verify the validity of signatures, i.e., SVer(vki, ti ◦ comi ◦ tri ◦ i, si) = 1 for
i = 0, 1.

2. Parse σ as σ0 ◦σ1. For i = 0, 1, run as honest verifier Vvki◦i of protocol Π with
tag vki ◦ i under the common reference string σi, Vvki◦i(σi, (x, comi), tri) = 1.

Fig. 1. The non-malleable NIZK proof

computational ZK property of Π . Finally, we have shown that
∣∣Pr[ExptSA(k) =

1] − Pr[ExptA(k) = 1]
∣∣ is negligible. This proves the ZK property of protocol Γ .

Non-malleability: According to the non-malleability definition (shown in the full
version), we have to design an algorithm E = {E1, E2} for protocol Γ . Recall
E = {E1, E2} is the extractor of protocol Π .

E1 invokes E1 twice and gets (σ0 ◦ σ1, τ
1
0 ◦ τ2

0 , τ
1
1 ◦ τ2

1). Whenever the adver-
sary A asks for proof of some instance xj with tags TAG = (t0j , t

1
j), for i =

0, 1, S2 computes commitment comi of 0|xj|, generates verification/signing keys
(vki

j , sk
i
j) ← SGen(1k), and runs S2 on inputs (xj , comi

j) with auxiliary input τ1
i

under common reference string σi
j and tag tij . Upon receiving tri

j in response, S2

invokes the signing algorithm and computes si
j = SSign(ski

j , t
i
j ◦ comi

j ◦ tri
j ◦ i)

for i = 0, 1 and sends (com0
j , tr

0
j , vk

0
j , s

0
j ; com1

j , tr
1
j , vk

1
j , s

1
j) to A. Finally, if A

outputs
(
TAG′, x′, (com′

0, tr
′
0, vk

′
0, s

′
0; com′

1, tr
′
1, vk

′
1, s

′
1)
)
, E2 invokes E2 twice to

extract the witness w′ for x′.
Recall the experiments TExptSA,R(k) and TExptEA,R(k) in the non-malleability

definition. We have to show
∣∣Pr[TExptSA,R(k)] − Pr[TExptEA,R(k)]

∣∣ is negligible.

3 Note for each NP language, the witness length is polynomial bounded to the length
of its instance. Here, for simplicity, we assume the witness length is equal to the
length of its instance. The length of the commitment com below is k(k + 1).

476 Z. Zhang, Z. Cao, and R. Ma

Note E actually outputs a witness for an accepting right proof whenever A
uses for the right proof tag (t′0, t

′
1) different from the tag (t0, t1) used by S in

the left proof. Indeed, E fails only in the case that the tag used by A for the
subprotocol is equal to one of the tags used by S in the left proof. As the tags
in the subprotocol are concatenated with a bit 0 or 1, the only way E fails in
extracting the witness is the case that A picks the same signature verification
key used by S in the left proof. Since the proof generated by A is accepting, we
succeed in generating a signature of a new message for a public verification key
chosen by S. This contradicts the security of the signature scheme SIG.

Γ is not non-malleable NIWI. We show Γ is not a tag-based non-malleable NIWI
proof system. We design a special PPT adversary A that always produces an
accepting right proof that encodes the same witness as the one encoded in the
left proof. Furthermore, A generates the right proof with a tag different from
the one used in the left proof.

The adversary A runs as honest verifier in the left proof. The common refer-
ence string in both interactions are the same. When receiving from a left proof
messages (com0, tr0, vk0, s0; com1, tr1, vk1, s1) on input x with tag (t0, t1), A
tries to start a right proof on input x and tag (t′0, t

′
1) where t′0 = t0 and t′1 �= t1.

The adversary A who has the witness w as auxiliary input first generates a
pair of signature keys (vk′

1, sk
′
1) ← SGen(1k), commits to w and computes

(com′
1, dec′1) ← Com(w). Then for the first subprotocol of the right proof, A

using (com0, tr0, vk0, s0) as the proof.4 For the second subprotocol, A runs hon-
est prover Pvk′

1◦1’s strategy and uses witness (w, dec′1) to generate the proof tr′1.
In the end, A invokes SSign with signing key sk′

1 to generates a signature s′1
for the message t′1 ◦ com′

1 ◦ tr′1 ◦ 1. The final proof for x is (com0, tr0, vk0, s0;
com′

1, tr
′
1, vk

′
1, s

′
1). It is obvious that, if the left proof is accepting, then the right

proof is also accepting. It is clear that the tags in both proofs are different while
the witness encoded in both proofs are the same.

Note that Γ uses a tag-based non-malleable NIZK proof system Π which is
based on the existence of dense public-key cryptosystem in addition to trapdoor
permutations [10,15]. The commitment scheme CS assumes the existence of one-
way permutations [13]. The signature scheme SIG can be constructed from one-
way functions [14]. Thus, we prove Theorem 2.

3.2 Non-Malleable NIWI Proof System

In this part, we try to find a protocol that is non-malleable NIWI but not non-
malleable NIZK. We prove the following theorem.

Theorem 3. Assume that there exist trapdoor permutations and dense public-
key cryptosystems. Assume the subgroup decision assumption holds. Then for
any non-trivial NP language there exists a non-malleable NIWI proof system
that is not non-malleable NIZK.

Let CS=(Com,Ver) be a non-interactive statistically binding commitment scheme
[13]. Let L be an NP\BPP language and W be its witness relation. Let Σ be
4 The witness w is not necessarily be the same as that encoded in the left proof.

An Observation on NMWI and NMZK 477

Common input: x ∈ {0, 1}k

Common reference string: K invokes K to generate σ, i.e., σ ← K(1k+k(k+1)).
Private input to P : w for x ∈ L.
Prover algorithm:

1. Commit to w, i.e., compute (com, dec) ← Com(w).
2. Follow the honest prover strategy of non-interactive zap Σ on input x and

witness w, generate a proof π.
3. Using σ as the common reference string and (w, dec) as the witness, run as

honest prover P of protocol Π and generate a proof tr for (x, com) ∈ L′.
4. Finally, send (com, π, tr) to V .

Verifier algorithm:
V accepts if and only if the followings hold:

1. Follow the honest verifier strategy of the zap Σ and π is accepting.
2. Run as honest verifier V of protocol Π with respect to the common reference

string σ, V(σ, (x, com), tr
)

= 1.

Fig. 2. The non-malleable NIWI proof

a non-interactive zap for L [12]. Define language L′ = {(x, com)} where there
exist (w, dec) such that Ver(w, com, dec) = 1 and (x,w) ∈ W. Suppose Π =
(K,P ,V ,S, E) be a non-malleable NIZK proof of knowledge for language L′ [10].

Consider the following proof system Γ = (K,P, V) in Fig. 2.5

Γ is a commit-and-prove proof system. Γ is composed of two parts, one of which is
a commitment to w, and the other of which forms a proof system Γ ′ for proving
that the committed value is a witness for the given statement. Completeness
follows directly from the completeness of Σ and Π . Soundness follows from the
proof of knowledge property of Π .

Γ is non-malleable NIWI. We prove by hybrid argument. Let x ∈ L and w1, w2 ∈
W(x). Fix a man-in-the-middle adversary A that violates the non-malleable
witness-indistinguishability property of Γ . We design a sequence of experiments
Expti(σ, x, w0, w1, z) for 0 ≤ i ≤ 5. The output of Expti is the witness encoded
in the accepting right proof given by A.

1. The first experiment Expt0(σ, x, w0, w1, z) is simply the experiment in which
A receives proof from an honest prover with w0 as a witness in the left
interaction.

The output of Expt0(σ, x, w0, w1, z) is identical to that of the experiment
WIMIMA

V (σ, x, w0 , z).
2. The second experiment Expt1(σ, x, w0, w1, z) is simply the experiment in

which A receives proof from simulator S of Π in the left proof.
5 We can also construct a tag-based non-malleable NIWI proof system Γ ′ by letting

Π be a tag-based non-malleable NIZK proof system. Γ ′ is the same as Γ except that
in the third step of the prover’s algorithm, P runs honest prover of Π with the same
tag of Γ ′.

478 Z. Zhang, Z. Cao, and R. Ma

The outputs of experiments Expt0 and Expt1 are computationally indis-
tinguishable since Π is non-malleable and ZK.

3. The third experiment Expt2(σ, x, w0, w1, z) proceeds as in the second, except
that for commitment in the left proof, it computes (com, dec) ← Com(0|w0|).

The outputs of experiments Expt1 and Expt2 are computationally indis-
tinguishable following from the hiding property of the commitment scheme
CS and the strong witness-indistinguishability (implied by ZK) of protocol
Π .

4. The fourth experiment Expt3(σ, x, w0, w1, z) proceeds as in the third, except
that for proof π in the left proof, it runs as the honest prover of Σ with
witness w1 instead of w0 to obtain π .

The outputs of experiments Expt2 and Expt3 are computationally indis-
tinguishable since the non-interactive zap Σ is WI.

5. The fifth experiment Expt4(σ, x, w0, w1, z) proceeds as the fourth, except
that in the left proof com is computed as (com, dec) ← Com(w1).

The outputs of experiments Expt3 and Expt4 are computationally indis-
tinguishable following from the hiding property of CS and strong witness-
indistinguishability of Π .

6. The sixth experiment Expt5(σ, x, w0, w1, z) proceeds as the fifth, except that
in the left proof A interacts with an honest prover who uses w1 as witness.

The outputs of experiments Expt4 and Expt5 are computationally indistin-
guishable following from the non-malleable ZK property of Π . The output
of Expt5 is identical to that of the experiment WIMIMA

V (σ, x, w1, z).

Finally we have proven that the output of WIMIMA
V (σ, x, w0, z) and that of

WIMIMA
V (σ, x, w1, z) are computationally indistinguishable. This reaches a con-

tradiction. So Γ is non-malleable NIWI.

Γ is not non-malleable NIZK. Assume on the contrary Γ is non-malleable NIZK.
Using the ZK property, we can find a simulator S that simulates the view of
A. Note the simulated transcript consists mainly two parts, one of which is the
simulated proof for non-interactive zap Σ and the other being the simulated
proof for protocol Π . From the simulated transcripts computed by S, we extract
the part of transcripts π for the zap Σ. π is accepting for x. Furthermore, by the
definition of zap, Σ is a non-interactive proof system for L in the plain model.
We conclude that Σ is a one-round zero-knowledge proof system for non-trivial
NP language L in the plain model, which is impossible unless BPP = NP [16].

The non-malleable NIZK protocol Π is based on trapdoor permutation and
dense public-key cryptosystem [10]. The non-interactive zap Σ exists when the
subgroup decision assumption holds [12]. The commitment scheme CS assumes
the existence of one-way permutations [13]. Thus, we have proved Theorem 3.

Finally Theorem 2 in addition to Theorem 3 imply Theorem 1.

Acknowledgement. We thank the anonymous reviewers for their suggestions to
improve the paper. This work is supported by National Nature Science Foun-
dation of China No.60673079 and No.60773086, and National 973 Program No.
2007CB31120.

An Observation on NMWI and NMZK 479

References

1. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its
relation to nmzk. Technical Report ECCC report TR06-095 (2006)

2. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186–208 (1989)

3. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426. ACM, New York (1990)

4. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30,
391–437 (2000)

5. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS, pp. 345–355. IEEE Computer Society, Los
Alamitos (2002)

6. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38, 702–752 (2008)

7. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008)

8. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols
with relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE Computer Society,
Los Alamitos (2004)

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503. ACM, New
York (2002)

10. Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001)

11. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293. IEEE
Computer Society, Los Alamitos (2000)

12. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
nizk. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

13. Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University
Press, US (2001)

14. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553. IEEE Computer Society, Los Alamitos
(1999)

15. Santis, A.D., Crescenzo, G.D., Persiano, G.: Necessary and sufficient assumptions
for non-iterative zero-knowledge proofs of knowledge for all np relations. In: Monta-
nari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 451–462.
Springer, Heidelberg (2000)

16. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology 7, 1–32 (1994)

Author Index

Abu-Khzam, Faisal N. 81
Ambos-Spies, Klaus 88
Ando, Ei 98

Bampas, Evangelos 108
Bereg, Sergey 118
Berendsen, Jasper 128

Cai, Jin-Yi 138, 460
Cao, Zhenfu 470
Carbone, Alessandra 6
Cenzer, Douglas 420
Chang, Maw-Shang 150
Chang, Ruei-Yuan 158
Chen, Jianer 168
Chen, Taolue 128
Cooper, S. Barry 18

Das Sarma, Atish 178
Dib, Linda 6
Doberkat, Ernst-Erich 192

Elberfeld, Michael 201

Feng, Qilong 211
Fernau, Henning 59
Fiala, Jǐŕı 221
Franklin, Johanna N.Y. 420
Fu, Bin 231

Göbel, Andreas-Nikolas 108
Golovach, Petr A. 221
Grumbach, Stéphane 430
Guo, Jiong 39

Heggernes, Pinar 241
Hennessy, Matthew 4
Hinkelmann, Markus 251
Hung, Ling-Ju 150

Jakoby, Andreas 251
Jansen, David N. 128
Jiang, Bo 345
Jiang, Guohong 390
Jiang, Minghui 118

Kanj, Iyad A. 49, 168
Kao, Ming-Yang 231
Kaplan, Marc 261
Kloks, Ton 150
Kräling, Thorsten 88
Kratochv́ıl, Jan 221

Lafitte, Grégory 271
Laplante, Sophie 261
Lee, Guanling 158
Lipton, Richard J. 178
Liu, Jiang 420
Liu, Yang 211
Lokshtanov, Daniel 281
Lu, Pinyan 138
Lu, Songjian 211

Ma, Rong 470
Martens, Maren 291
Meister, Daniel 241
Mizuki, Takaaki 301
Mnich, Matthias 281

Nanongkai, Danupon 178
Nishizeki, Takao 301

Ono, Hirotaka 98

Pagourtzis, Aris 108
Papadopoulos, Charis 241
Peng, Sheng-Lung 150, 158
Pinto, Paulo Eustáquio Duarte 311
Protti, Fábio 311

Raible, Daniel 59

Sadakane, Kunihiko 98
Saurabh, Saket 281
Schnoor, Ilka 201
Schubert, Christoph 325
Sorbi, Andrea 29, 335
Swegles, Kyle 380
Szwarcfiter, Jayme Luiz 311

482 Author Index

Tan, Xuehou 345
Tang, Linqing 460
Tantau, Till 201
Tentes, Aris 108
Toulouse, Sophie 360
Tsubata, Hitoshi 301

van Zuylen, Anke 370
Valiant, Leslie G. 1
Vardi, Moshe Y. 3

Wang, Fangju 380
Wang, Jianxin 211, 390
Wang, Lusheng 231, 400
Weiss, Michael 271
Witt, Carsten 410
Wolfler Calvo, Roberto 360

Wu, Guohua 335, 420
Wu, Zhilin 430

Xia, Ge 168
Xia, Mingji 138

Yamashita, Masafumi 98
Yang, Boting 118
Yang, Yue 335
Yin, Xiao 440

Zhang, John Z. 450
Zhang, Peng 460
Zhang, Zongyang 470
Zhao, Wenbo 460
Zhu, Binhai 71, 118, 400
Zhu, Daming 440

	Title Page
	Preface
	Organization
	Table of Contents
	Plenary Talks
	Neural Computations That Support Long Mixed Sequences of Knowledge Acquisition Tasks
	References

	Constraints, Graphs, Algebra, Logic, and Complexity
	Reference

	Distributed Systems and Their Environments
	References

	Invited Special Session: Models of Computation
	Co-evolution and Information Signals in Biological Sequences
	Introduction
	Basic Notions and Motivations
	Approaches Detecting Residue Co-evolution
	Statistical Approaches
	Combinatorial Approaches

	Random Generation of Sequences to Test the Method
	Conclusions
	References

	The Extended Turing Model as Contextual Tool
	Introduction
	The Turing Landscape: From Local to Global
	Foundational Problems in Physics
	Turing Invariance and the Laws of Physics
	References

	Strong Positive Reducibilities
	Motivations and Historical Background
	Strong Enumeration Reducibilities
	The Structure of the s-Degrees
	The Local Structure of the s-Degrees
	Structure of the s-Degrees within the e-Degrees
	The First Order Theory of the Σ^{0}_{2} s-Degrees
	s-Degrees and Immunity Properties
	Conclusions
	References

	Invited Special Session: Algorithms and Complexity
	Fixed-Parameter Algorithms for Graph-Modeled Date Clustering
	Introduction
	Kernelizations
	Forbidden Subgraph Characterization and Search Tree
	Further Techniques
	Conclusion
	References

	On Spanners of Geometric Graphs
	Introduction
	Definitions and Background
	Computing Spanners of Delaunay and Euclidean Graphs
	The Outward Path
	The Inward Path
	The Modified Yao Step

	Computing Lightweight Spanners
	References

	Searching Trees: An Essay
	Introduction
	Historical Notes on Search Trees
	Estimating Running Times
	Measure-and-Conquer
	Correctness of Search Tree Algorithms
	List of Questions and Research Topics
	References

	Approximability and Fixed-Parameter Tractability for the Exemplar Genomic Distance Problems
	Introduction
	Approximability and Fixed-Parameter Tractability for EBD
	Preliminaries
	Hardness Results

	Approximability and Fixed-Parameter Tractability for ENbS
	Approximability and Fixed-Parameter Tractability for MSR
	Concluding Remarks and Open Problems
	References

	Contributed Papers
	A Quadratic Kernel for 3-Set Packing
	Introduction
	Background
	A Reduction Procedure
	The High-Degree Rule
	Using Pair Covers
	Using Crown Decomposition

	Conclusion
	References

	Quantitative Aspects of Speed-Up and Gap Phenomena
	Introduction
	Preliminaries
	A Measure-Theoretic Version of the Speed-Up Theorem
	A Refined Quantitative View of the Speed-Up Theorem
	The Gap Theorem – The Quantitative View
	References

	Computing the Exact Distribution Function of the Stochastic Longest Path Length in a DAG
	Introduction
	Preliminaries
	Repeated Integral Representation of $F_{MAX(x)}$
	Exact Computation of the Repeated Integral
	Approximation of the Repeated Integral
	Conclusion
	References

	On the Connection between Interval Size Functions and Path Counting
	Introduction
	Definitions–Preliminaries
	The $status quo$ between TotP and IF$^{\prec}_{t}$
	TotP as an Interval Size Function Class
	InsideTotP
	References

	On the Red/Blue Spanning Tree Problem
	Introduction
	Lower Bound for cr(R,B)
	Optimal Solutions
	One Maximal Red/Blue Chain on CH(RUB)
	Only Red or Blue Points on CH(RUB)
	Two Red and Two Blue Vertices on CH(RUB)
	More Than One Maximal Red/Blue Chains on CH(RUB)

	Algorithms
	Red/Blue Paths
	Conclusions
	References

	Undecidability of Cost-Bounded Reachability in Priced Probabilistic Timed Automata
	Introduction
	Preliminaries
	Priced Probabilistic Timed Automata

	Undecidability Results
	Proof of Theorem 1
	Increment Subautomata
	Power Subautomata
	Decrement Subautomata
	Ineq Subautomata
	Adaption to Simple PPTA
	Proof of Theorem 2
	Proof of Theorem 3

	References

	A Computational Proof of Complexity of Some Restricted Counting Problems
	Introduction
	A Dichotomy Theorem and Reduction Chain
	Interpolation Method
	Computational Proof
	References

	Block-Graph Width
	Introduction
	\mathfrak{B}-Width Is Fixed-Parameter Tractable
	Partitioned k-Probe Block Graphs
	A Fixed-Parameter Algorithm to Compute \mathfrak{B}-Width
	\mathfrak{B}-Width Is NP-Complete
	A Finite Obstruction Set
	Concluding Remarks
	References

	Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs
	Introduction
	Permutation Graphs
	Conclusion
	References

	On Parameterized Exponential Time Complexity
	Introduction
	Preliminaries
	VC and VC-3
	Planar-DS and Planar-3DS
	{\sc Max}-SAT and {\sc Max-Cut}
	References

	Best-Order Streaming Model
	Introduction
	Models
	Stream Proof Model
	Magic-Partition Communication Complexity
	Related Models

	Detecting Duplicate and Checking Distinctness
	Space Lower Bound of Deterministic Algorithms
	Randomized Algorithm

	Perfect Matching
	Hardness

	Graph Connectivity
	Further Results
	Bipartite k-Regular Graph
	Hamiltonian Cycle
	Non-bipartiteness

	Conclusions
	References

	Behavioral and Logical Equivalence of Stochastic Kripke Models in General Measurable Spaces
	Introduction
	Preliminaries
	Defining the Logic \mathfrak{L} and Developing a Strategy
	The Equivalence Relation Induced by \mathfrak{L}
	Logical vs. Behavioral Equivalence
	Conclusion and Further Work
	References

	Influence of Tree Topology Restrictions on the Complexity of Haplotyping with Missing Data
	Introduction
	Hardness Result
	Fixed Parameter Tractability Result
	A Characterization of Undirected Perfect Phylogeny Haplotyping
	The Fixed-Parameter Algorithm

	Conclusion
	References

	Improved Deterministic Algorithms for Weighted Matching and Packing Problems
	Introduction
	Improved Algorithm for Weighted rD-Matching
	Improved Algorithm for Weighted r-Set Packing
	Conclusions
	References

	Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover
	Introduction
	Complexity of Coloring Problems
	Complexity of the {\sc $L(p,1)$-Labeling} Problems
	Labeling as Coloring of the Distance Power
	Complexity of the {\sc Channel Assignment} Problem
	References

	Discovering Almost Any Hidden Motif from Multiple Sequences in Polynomial Time with Low Sample Complexity and High Success Probability
	Introduction
	The Sequence Model and Some Preliminaries
	An Overview of the Main Algorithm
	Main Theorem and Main Algorithm Discover-Motif
	Phase 1 of Algorithm Discover-Motif — Align-Sequences
	Phase 2 of Algorithm Discover-Motif — Recover-Motif
	Algorithm Discover-Motif

	References

	A Complete Characterisation of the Linear Clique-Width of Path Powers
	Introduction
	Basic Definitions, Notation, and Linear Clique-Width
	Groups in Induced Subgraphs of Path Powers
	Maximal k-Path Powers of Linear Clique-Width k + 1
	The Linear Clique-Width of Path Powers
	Concluding Remark
	References

	Preserving Privacy versus Data Retention
	Introduction
	Preliminaries
	Basic Structure and Types of Messages
	A Threshold Scheme for Critical Data
	A Protocol for Obscuring the History
	Conclusions
	References

	Kolmogorov Complexity and Combinatorial Methods in Communication Complexity
	Introduction
	Preliminaries
	Communication Complexity
	Kolmogorov Complexity

	Lower Bounds
	Main Theorem in the Deterministic Case
	The Randomized Case: A Kolmogorov Alternative to Yao’s Min-Max Principle

	Applications
	The Hidden Matching Problem
	VC Dimension and Shatter Coefficients Lower Bounds

	One Way versus Simultaneous Messages
	References

	An Almost Totally Universal Tile Set
	Introduction
	BasicNotions
	Tilings and Simulations
	The Besicovitch and Cantor Topologies on Tilings
	Games on Tilings

	Synchronization within Robinson’s Construction
	Synchronization between Squares of Same Level
	Synchronization between Levels

	An Almost Totally Universal Tile Set
	Description of the Construction
	The Construction Gives an Almost Totally Universal Tile Set

	References

	Linear Kernel for Planar Connected Dominating Set
	Introduction
	Preliminaries
	A Reduce-or-Refine Scheme
	Conclusion and Further Work
	References

	A Simple Greedy Algorithm for the k-Disjoint Flow Problem
	Introduction
	A Simple Greedy Algorithm
	The Algorithm
	Performance Guarantee
	Hardness of the Approximation

	Conclusion
	References

	Minimizing AND-EXOR Expressions for Multiple-Valued Two-Input Logic Functions
	Introduction
	ESOP Forms
	Known Results
	Our Results

	Preliminaries
	Multiple-Valued Shannon Expansion
	Transformation Rules for ESOP Forms

	ESOPMatrices
	Our Algorithm
	Conclusions
	References

	Exact and Experimental Algorithms for a Huffman-Based Error Detecting Code
	Introduction
	Exact Algorithm
	Heuristics
	Heuristics 1
	Heuristics 2

	Bounds
	Probabilistic Model for Error Detection
	Experimental Results
	Costs of Even Tress
	Error Detection

	References

	Terminal Coalgebras for Measure-Polynomial Functors
	Introduction
	Preliminaries
	Coalgebras
	Terminal Coalgebras for Measurable Spaces
	Applications to Modal Logic
	Related Work
	Conclusion
	References

	High Minimal Pairs in the Enumeration Degrees
	Introduction
	Building a High Minimal Pair
	Requirements and Strategies
	Coordinations of Strategies
	Construction
	Verification

	References

	Searching a Circular Corridor with Two Flashlights
	Introduction
	Preliminaries
	Problem Definition
	Related Work

	Necessary Conditions
	Sufficiency
	Algorithms
	References

	On the Complexity of the Multiple Stack TSP, kSTSP
	Introduction
	The Problem Specification
	Previous Work, Problematic and Outline

	Preliminaries
	Complexity Classes and Properties
	Global Complexity
	Deciding Feasibility for a Couple of Tours
	Optimizing the Tours When the Stacks Are Given

	Evaluating Optimal kSTSP vs. Optimal TSP
	Conclusion
	References

	Linear Programming Based Approximation Algorithms for Feedback Set Problems in Bipartite Tournaments
	Introduction
	Feedback Vertex Set in Bipartite Tournaments
	Feedback Arc Set in Bipartite Tournaments
	References

	An Online Algorithm for Applying Reinforcement Learning to Handle Ambiguity in Spoken Dialogues
	Introduction
	Related Work
	The Online Algorithm
	A Reinforcement Learning Algorithm
	Reinforcement Learning in Spoken Dialogues
	Detecting User Dialogue Policy in Training
	Refining User Dialogue Policy in Interaction

	Implementation and Experiments
	Concluding Remarks
	References

	A Fixed-Parameter Enumeration Algorithm for the Weighted FVS Problem
	Introduction
	Definitions and Preliminaries
	The Fixed-Parameter Enumeration Algorithm for FVS Problem
	The Tuple-Construct Algorithm
	The Local-Enumeration Algorithm
	The Complexity of the Fixed-Parameter Enumeration Algorithm for FVS Problem

	Discussion
	References

	On the Tractability of Maximal Strip Recovery
	Introduction
	MSR Is NP-Complete
	FPT Algorithms for MSR and Its Variants
	Concluding Remarks
	References

	Greedy Local Search and Vertex Cover in Sparse Random Graphs
	Introduction
	A Modified Karp-Sipser Algorithm for Vertex Cover
	Greedy Local Search
	Sparse Random Graphs and the Case c < 1
	Trees with Large Connected Components

	Conclusions
	References

	Embedding the Diamond Lattice in the c.e. tt-Degrees with Superhigh Atoms
	Introduction
	Requirements and Basic Strategies
	The \mayhcal{P}-Strategy
	An ${\mathcal S}^A_{e}$-Strategy
	An ${\mathcal N}_{i, j}$-Strategy
	More on Interactions among Strategies
	Construction

	References

	Feasibility of Motion Planning on Directed Graphs
	Introduction
	Preliminaries
	Structure of Digraphs
	Motion Planning on Digraphs
	Case I: C_{s} Is Trivial
	Case II: C_{s} Is Nontrivial and Cs = Ct
	Case III: C_{s} Is Nontrivial and Cs �= Ct

	Conclusions
	References

	Polynomial-Time Algorithm for Sorting by Generalized Translocations
	Introduction
	Preliminaries
	 Cycle Graph
	MSP and Even-Isolation
	Reciprocal Translocation Distance

	Capping the Genomes
	Path-Cycle Graph
	Lower and Upper Bounds of $d(A, B)$
	The Generalized Translocation Distance
	References

	The Two-Guard Polygon Walk Problem
	Introduction
	Preliminaries
	Notation
	The Polygon Walk Problem
	Basic Geometric Patterns

	Characterization of Walkable Polygons
	Complex Patterns
	Case I
	Case II

	A Comparison between 1-Searcher and Two Guards
	Conclusion
	References

	Approximation and Hardness Results for Label Cut and Related Problems
	Introduction
	Related Works
	Our Results

	An $O(\sqrt{m})$-Approximation Algorithm for Label Cut
	Approximation Hardness for Label Cut
	References

	An Observation on Non-Malleable Witness-Indistinguishability and Non-Malleable Zero-Knowledge
	Introduction
	Preliminaries
	Non-Malleable Non-Interactive Zero-knowledge
	Non-Malleable Non-Interactive Witness-Indistinguishability

	Separations between Non-Malleable NIWI and Non-Malleable NIZK
	Non-Malleable NIZK Proof System
	Non-Malleable NIWI Proof System

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

