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Preface

This volume contains the papers presented at the 8th International Symposium
on Experimental Algorithms (SEA 2009). The symposium was held at the Tech-
nische Universität Dortmund, Germany, during June 4–6, 2009.

The main theme of the SEA series is the role of experimentation and of
algorithm engineering techniques in the design and evaluation of algorithms
and data structures. Contributions are supported by experimental evaluation,
methodological issues in the design and interpretation of experiments, the use
of (meta-)heuristics, or application-driven case studies that deepen the under-
standing of a problem’s complexity. For each symposium, papers are solicited
from all areas of algorithmic engineering research.

Previous meetings, under the name of “Workshop on Experimental Algo-
rithms” (WEA), were held in Riga (Latvia, 2001), Ascona (Switzerland, 2003),
Angra dos Reis (Brazil, 2004), Santorini (Greece, 2005), Menorca Island (Spain,
2006), Rome (Italy, 2007), and Provincetown (USA, 2008).

The Program Committee of SEA 2009 received 64 submissions. Each submis-
sion was reviewed by at least three Program Committee members and evaluated
on its quality, originality, and relevance to the symposium. Overall, the Program
Committee wrote 249 reviews with the help of almost 100 trusted external refer-
ees. The Committee selected 23 papers, leading to an acceptance rate of 35.9%.
The decision process was made electronically using the EasyChair conference
management system.

In addition to the accepted contributions, this volume also contains abstracts
of the invited talks given by Heinz Bast (Intel), Michael A. Bender (Stony Brook
University and Tokutek, Inc.), and Marc Schoenauer (INRIA Saclay – Île-de-
France).

We would like to thank all the authors who responded to the call for papers,
the invited speakers, the members of the Program Committee, the external ref-
erees, and—last but not least—the members of the Organizing Committee.

June 2009 Jan Vahrenhold
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Parallelism in Current and Future Processors –
Challenges and Support for Designing

Optimal Algorithms
(Invited Talk)

Heinz Bast

Intel GmbH, Dornacher Strasse 1, 85622 Feldkirchen/München, Germany

Abstract. Both explicit usable and implicit transparent parallelism is
nothing really new in processor technology but has been restricted to
high-end computer systems accessible to only a few developers. In recent
years, however, parallelism on all levels has found its way into even the
cheapest desktop and notebook system and thus every algorithm being
developed today should reflect this change to optimally exploit theses
additional resources.

This session will outline the parallelism offered by current Intel proces-
sors and some new parallel enhancements of future architectures includ-
ing the many-core approach implemented by Larrabee and the coming
improvements for data-parallel (SIMD, SSE) execution. Some of these
enhancements will introduce new challenges to the algorithm designer
and developer. This includes the massive number of available hardware-
threads, the increased size of vector operations, and non-uniform memory
access. Intel actively looks for new parallel programming models to tackle
these challenges including CT, Software Transactional Memory and Con-
current Collections for C++. While these models might make it into future
program development environments, there are multiple developer tools
for parallel program development as mature products available today
– including compilers, libraries, thread checker/debugger, performance
analysis tools using hardware performance counters etc. The talk will
outline how some of these tools as offered by Intel and how they can facil-
itate the complete development cycle for parallel program development.

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



From Streaming B-Trees to Tokutek:
How a Theoretician Learned to be

VP of Engineering
(Invited Talk)

Michael A. Bender

Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794-4400, USA

TokutekTM Inc., 146 West 29th St., New York, NY 10001, USA

Abstract. I present the cache-oblivious streaming B-tree, a high per-
formance alternative to the traditional B-tree. Modern databases and file
systems are based on B-trees. As a result, they can exhibit performance
cliffs and unpredictable run times. Replacing B-trees with cache-oblivious
streaming B-trees can remove some of these performance deficiencies.

I explain some of the technical issues that we needed to address to turn
the streaming B-tree prototype into an industrial-strength product. Then
I explain how legacy and established practice influenced our engineering
decisions.

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Experimental Comparisons of Derivative Free
Optimization Algorithms

(Invited Talk)

A. Auger1,2, N. Hansen1,2, J.M. Perez Zerpa1, R. Ros1, and M. Schoenauer1,2

1 TAO Projetct-Team, INRIA Saclay – Île-de-France
LRI, Bat 490 Univ. Paris-Sud 91405 Orsay Cedex France

2 Microsoft Research-INRIA Joint Centre
28 rue Jean Rostand, 91893 Orsay Cedex, France

Abstract. In this paper, the performances of the quasi-Newton BFGS algorithm,
the NEWUOA derivative free optimizer, the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES), the Differential Evolution (DE) algorithm and Particle
Swarm Optimizers (PSO) are compared experimentally on benchmark functions
reflecting important challenges encountered in real-world optimization problems.
Dependence of the performances in the conditioning of the problem and rota-
tional invariance of the algorithms are in particular investigated.

1 Introduction

Continuous Optimization Problems (COPs) aim at finding the global optimum (or op-
tima) of a real-valued function (aka objective function) defined over a (subset of) a real
vector space. COPs commonly appear in everyday’s life of many scientists, engineers
and researchers from various disciplines, from physics to mechanical, electrical and
chemical engineering to biology. Problems such as model calibration, process control,
design of parameterized parts are routinely modeled as COPs. Furthermore, in many
cases, very little is known about the objective function. In the worst case, it is only
possible to retrieve objective function values for given inputs, and in particular the user
has no information about derivatives, or even about some weaker characteristics of the
objective function (e.g. monotonicity, roughness, . . . ). This is the case, for instance,
when the objective function is the output of huge computer programs ensuing from sev-
eral years of development, or when experimental processes need to be run in order to
compute objective function values. Such problems amount to what is called Black-Box
Optimization (BBO).

Because BBO is a frequent situation, many optimization methods (aka search al-
gorithms) have been proposed to tackle BBO problems, that can be grossly classified
in two classes: (i) deterministic methods include classical derivative-based algorithms,
in which the derivative is numerically computed by finite differences, and more recent
Derivative Free Optimization (DFO) algorithms [1], like pattern search [2] and trust
region methods [3]; (ii) stochastic methods rely on random variables sampling to better
explore the search space, and include recently introduced bio-inspired algorithms (see
Section 3).

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, pp. 3–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 A. Auger et al.

However, the practitioner facing a BBO problem has to choose among those meth-
ods, and there exists no theoretical solid ground where he can stand to perform this
choice, first because he does not know much about his objective function, but also be-
cause all theoretical results either make simplifying hypotheses that are not valid for
real-world problems, or give results that do not yield any practical outcome. Moreover,
most of BBO methods require some parameter tuning, and here again very little help is
available for the practitioner, who is left with a blind and time-consuming test-and-trial
approach.

In such context, this paper proposes an experimental perspective on BBO algorithms
comparisons. Rigorous procedures to compare the results of different BBO algorithms
have been proposed [4], taking into account the stochastic nature of many of them,
and giving fair chances to each one of them. However, a critical issue in such experi-
ments is that of the benchmark suite. And because no set of real-world problems can
be guaranteed to cover all possible cases of difficult COPs, the approach that has been
chosen here is to build artificial test functions with some precise characteristics that are
known to be possible sources of difficulty for optimization (e.g. ill-conditioning, non-
separability, non-convexity, ruggedness, . . . ). Such experimental results could then be
cautiously generalized, leaving only a few good-performing algorithms in each specific
context.

Of course, in real-life BBO situations, it is assumed that nothing is known about
the objective function. However, the user sometimes has some partial information (e.g.
because his problem is known to be similar to other better-known problems) that might
lead him to decide for a BBO method that is (experimentally) known to perform well,
’in vitro’, in his precise situation. But on the other hand, assuming absolutely nothing
is known in advance about the objective function, running the champion algorithms as
identified in perfectly controlled environment might give him some information about
his function (e.g. if numerical gradient-based algorithms perform 100 times better than
all other methods, his problem is probably very similar to a quadratic problem). This
paper is a first step in aiming such ’in vitro’ results.

Next, in Section 2, some characteristics of the objective function are surveyed that
are known to make the corresponding BBO problem hard. Section 3 introduces the
algorithms that will be compared here. Section 4 then introduces the test bench that
illustrates the different difficulties highlighted in Section 2, as well as the experimental
conditions of the comparisons. The results are presented and discussed in Section 5,
and the paper ends with some conclusions in Section 6.

2 What Makes a Search Problem Difficult?

In this section, we discuss problem characteristics that are especially challenging for
search algorithms.

2.1 Ill-Conditioning

The conditioning of a problem can be defined as the range (over a level set) of the
maximum improvement of objective function value in a ball of small radius centered
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on a given level set. In the case of convex quadratic functions ( f (x) = 1
2 xT Hx where

H is a symmetric definite matrix), the conditioning can be exactly defined as the con-
dition number of the Hessian matrix H, i.e., the ratio between the largest and smallest
eigenvalue. Since level sets associated to a convex quadratic function are ellipsoids, the
condition number corresponds to the squared ratio between the largest and shortest axis
lengths of the ellipsoid.

Problems are typically considered as ill-conditioned if the conditioning is larger than
105. In practice we have seen problems with conditioning as large as 1010. In this paper
we will quantitatively assess the performance dependency on the conditioning of the
objective function.

2.2 Non-separability

An objective function f (x1, . . . ,xn) is separable if the optimal value for any variable xi

can be obtained by optimizing f (x̃1, . . . , x̃i−1,xi, x̃i+1, . . . , x̃n) for any fixed choice of the
variables x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃n. Consequently optimizing an n-dimensional separable
objective function reduces to optimizing n one-dimensional functions.

Functions that are additively decomposable, i.e., that can be written as f (x) =
∑n

i=1 fi(xi) are separable. One way to render a separable test function non-separable
is to rotate first the vector x, which can be achieved by multiplying x by an orthogonal
matrix B: if x �→ f (x) is separable, the function x �→ f (Bx) might be non-separable for
all non-identity orthogonal matrices B. In this paper we will investigate separable and
non-separable problems.

2.3 Non-convexity

Some BBO methods implicitly assume or exploit convexity of the objective function.
Composing a convex function f ∈ R to the left with a monotonous transformation g :
R→ R can result in a non-convex function, for instance the one-dimensional convex
function f (x) = x2 composed with the monotonous function g(.) = |.|1/4 becomes the
non-convex function

√
|.|. In this paper we will assess performance dependency on

convexity.

3 Algorithms Tested

This section introduces the different algorithms that will be compared in this paper.
They have been chosen because they are considered to be the champions in their cat-
egory, both in the deterministic optimization world (BFGS and NEWUOA) and in the
stochastic bio-inspired world (CMA-ES, DE and PSO). They will also be a priori dis-
cussed here with respect to the difficulties of continuous optimization problems high-
lighted in previous Section 2.

3.1 The Algorithms

BFGS. is a well-known quasi-Newton (i.e. gradient-based) method: from the current
point, it computes a ’descent direction’ using an approximation of the inverse of the
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Hessian matrix of the objective function applied to its gradient, and performs a line-
search (1D optimization) along this direction. It then updates the approximate inverse
Hessian. BFGS method is a local method: it has a proven convergence to a stationary
point. . . provided the starting point is close enough from the solution, and the objective
function is regular. The Matlab R© version of BFGS (Matlab function fminunc) will be
used here, because it is blindly used by many scientists facing optimization problems.
Default parameters were used except for stopping criteria: the algorithms stops if the
function value improvement in one iteration is less than 10−25.

In BBO context, the gradients have to be computed numerically (an option in Matlab
BFGS), which might be a source of possible numerical problems.

NEWUOA. (NEW Unconstrained Optimization Algorithm) has been proposed by
Powell [3]: it is a DFO algorithm using the trust region paradigm. The trust region
is a ball, centered on the current best point. NEWUOA computes a quadratic interpo-
lation of the objective function within the current trust region, based on known val-
ues of the objective, and then performs a truncated conjugate gradient minimization
of the interpolated model in the trust region. It then updates either the current best
point or the radius of the trust region, based on the a posteriori interpolation error, and
some thresholds on the trust region size. Here, the implementation by Matthieu Guibert
posted at http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.
html has been used.

An important parameter of NEWUOA is the quadratic model to use for the interpo-
lation, or, equivalently, the number of points that are necessary to compute the inter-
polation. As recommended by Powell [3], 2n + 1 points have been used here (n is the
dimension of the search space). Other critical parameters are the initial and final radii
of the trust region: the initial radius governs the granularity of the objective function
that the algorithm will ’see’ and the final radius tunes the amount of local search that
will performed. Here the initial and final values 100 and 10−15 were used, after some
preliminary experiments.

CMA-ES. is an Evolution Strategy (ES) [5,6] algorithm: from a set of ’parents’ (poten-
tial solutions), ’offspring’ are created by sampling Gaussian distributions, and the best
of the offspring (according to the objective function values) become the next parents.
The art of Evolution Strategies lies in the way the parameters of the Gaussian distri-
butions are updated: the Covariance Matrix Adaptation [7] uses the path that has been
followed by evolution so far to (i) adapt the step-size, a scaling parameter that tunes the
granularity of the search, comparing the actual path length to that of a random walk;
and (ii) modify the covariance matrix of the multivariate Gaussian distribution by mod-
ifying its eigenvectors in order to increase the likelihood of recent beneficial moves. A
single Gaussian distribution is maintained, its mean being a linear combination of the
parents. Besides the population size, CMA-ES is parameter-free. The population size
has been set to its default value 4 + �3log(n)�, but it needs to be increased in order to
tackle highly rugged search landscapes. The initial step-size has been set to a third of the
parameters’ range. The version used in this paper (Scilab 0.92) implements weighted
recombination and rank-µ update [8] (version 0.99 is available at http://www.lri.
fr/˜hansen/cmaes_inmatlab.html)

http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
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PSO. (Particle Swarm Optimization) [9] is a bio-inspired algorithm that recently raised
a lot of interest, thanks to several published good results, and the simplicity of its
implementation. The biological paradigm is that of a swarm of particles that ’fly’ over
the objective landscape, exchanging information about the best locations (i.e. potential
solutions) they have seen. More precisely, each particle updates its velocity, stochasti-
cally twisting it toward the direction of the best positions so far visited by (i) itself and
(ii) the whole swarm; it then updates its position according to its velocity and computes
the new value of the objective function.

A Scilab transcription of the Standard PSO 2006, that is still available on the main
page of PSO Central http://www.particleswarm.info/, was used here, with de-
fault settings.

Differential Evolution. (DE [10]) borrows from Evolutionary Algorithms (EAs) a
population of potential solutions that evolves subject to objective-function based selec-
tion. However, the main operator used to generate new solutions, that somehow replaces
mutation, is specific to DE (and the source for its name): the difference between two
points in the population is added to a third one. Uniform crossover is used with some
probability. The implementation posted by the original authors at http://www.icsi.
berkeley.edu/˜storn/code.html was used here. However, the authors themselves
confess, in their guidance to DE parameter tuning, that the results might be very de-
pendent on the parameters. They propose in the code 6 possible settings, and extensive
experiments (3× 288 trials) on a moderately ill-conditioned problem lead us to con-
sider the “DE/local-to-best/1/bin” strategy, where a single difference vector, computed
between a random point and the best point in the population, is used to generate the
new points. In those preliminary experiments, the use of crossover seemed to have little
beneficial impact on the results, so no crossover was used, thus making DE rotation-
ally invariant (see below). Those preliminary experiments also resulted in values of the
other parameters of DE: the population size was set to the recommended value of 10n,
a weighting factor to F = 0.8.

3.2 Invariances

Some a priori comparisons can be made about those algorithms, related to the notion
of invariance. Indeed, invariances add to the robustness of an algorithm: functions be-
longing to the same equivalence class with respect to some invariance property will look
exactly the same for an algorithm that is invariant under the transformation defining this
equivalence class.

Two sets of invariance properties are distinguished, whether they regard transforma-
tions of the objective function value or transformations of the search space. First, all
comparison-based algorithms are invariant under monotonous transformations of the
objective function, as comparisons are unaltered if the objective function f is replaced
with some g◦ f for some monotonous function g. All bio-inspired algorithms used in this
paper are comparison-based, while the BFGS and NEWUAO are not (see Section 2.3).

Regarding transformations of the search space, all algorithms are trivially invariant
under translation of the coordinate system. But let us consider some orthogonal rota-
tions: BFGS is coordinate-dependent due to the computation of numerical gradients.

http://www.particleswarm.info/
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html


8 A. Auger et al.

NEWUOA is invariant under rotation when considering the complete quadratic model,
i.e. built with 1

2(n + 1)(n + 2) points. This variant is however often more costly com-
pared to the 2n + 1 one – but the latter is not invariant under rotation. The rotational
invariance of CMA-ES is built-in, while that of DE depends whether or not crossover
is used – as crossover relies on the coordinate system. This was one reason for omitting
crossover here. Finally, PSO is (usually) not invariant under rotations, as all computa-
tions are done coordinate by coordinate [11, 12].

4 Test Functions and Experimental Setup

4.1 Test Functions

The benchmark functions tested are given in Table 1. The functions are tested in their
original axis-parallel version (i.e. B is the identity and y = x), and in rotated versions,
where y = Bx. The orthogonal matrix B is chosen such that each column is uniformly
distributed on the unit hypersphere surface [7], fixed for each run.

Table 1. Test functions with coordinate-wise initialization intervals and target function value,
where y := Bx implements an angle-preserving, linear transformation, i.e. B is orthogonal

Function α Initialization ftarget

felli(x) = ∑n
i=1 α

i−1
n−1 y2

i [1,1010] [−20,80]n 10−9

fRosen(x) = ∑n−1
i=1

(
α(y2

i −yi+1)2 +(yi−1)2
)

[1,108] [−20,80]n 10−9

f 1/4
elli (x) =

(
∑n

i=1 α
i−1
n−1 y2

i

)1/4
[1,1010] [−20,80]n 10−9

The ellipsoid function felli is a convex-quadratic function where the parameter α is
the condition number of the Hessian matrix that is varied between 1 and 1010 in our ex-
periments. If α = 1 the ellipsoid is the isotropic separable sphere function. The function

f 1/4
elli has the same contour lines (level sets) as felli, however it is neither quadratic nor

convex. For α �= 1, the functions felli and f 1/4
elli are separable if and only if B = I.

The Rosenbrock function fRosen is non-separable, has its global minimum at x =
[1,1, . . . ,1] and, for large enough α and n, has one local minimum close to x = [−1,1, . . . ,
1], see also [13]. The contour lines of the Rosenbrock function show a bent ridge that
guides to the global optimum (the Rosenbrock is sometimes called banana function)
and the parameter α controls the width of the ridge. In the classical Rosenbrock func-
tion α equals 100. For smaller α the ridge becomes wider and the function becomes
less difficult to solve. We vary α between one and 108.

4.2 Experimental Setup

For each algorithm tested we conduct 21 independent trials of up to 107 function eval-
uations. If, for BFGS, no success was encountered, the number of trials was extended
to 1001.
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We quantify the performance of the algorithms using the success performance SP1
used in [14], analyzed in [15], and also denoted as Q-measure in [16]. The SP1 equals
the average number of function evaluations for successful runs divided by the ratio of
successful experiments, where an experiment is successful if the ftarget is reached before
107 function evaluations are exceeded. The SP1 is an estimator of the expected num-
ber of function evaluations to reach ftarget if the algorithm is restarted until a success
(supposing infinite time horizon) and assuming that the expected number of function
evaluations for unsuccessful runs equals the expected number of evaluations for suc-
cessful runs.

5 Results

Results are shown for dimension 20. Results for 10 and 40D reveal similar tendencies
and are displayed in Appendix A.

Ellipsoid functions: dependencies. Figure 1 shows SP1 (search costs, expected run-
ning time in number of function evaluations) versus condition number on all ellipsoidal
functions. A remarkable dependency on the condition number can be observed in most
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Fig. 1. All ellipsoidal functions in 20D. Shown is SP1 (the expected running time or number of
function evaluations to reach the target function value) versus condition number.
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cases. The two exceptions are PSO on the separable functions and DE. In the other
cases the performance declines by at least a factor of ten for very ill-conditioned prob-
lems as for CMA-ES. The overall strongest performance decline is shown by PSO on
the rotated functions. NEWUOA shows in general a comparatively strong decline, while
BFGS is only infeasible for high condition numbers in the rotated case, reporting some
numerical problems. The decline of CMA-ES is moderate.

For CMA-ES and DE the results are (virtually) independent of the given ellipsoidal
functions, where CMA-ES is consistently between five and forty times faster than DE.
For PSO the results are identical on Ellipsoid and Ellipsoid1/4, while the performance
decline under rotation (left versus right figures) is very pronounced. PSO performs well
only on separable or very well-conditioned functions. A similar strong decline under
rotation can be observed for NEWUOA on the Ellipsoid function for moderate condi-
tion numbers. BFGS, on the other hand, shows a strong rotational dependency on both
functions only for large condition numbers≥ 106.

Switching from Ellipsoid (above) to Ellipsoid1/4 (below) only effects BFGS and
NEWUOA. BFGS becomes roughly five to ten times slower. A similar effect can be
seen for NEWUOA on the rotated function. On the separable Ellipsoid function the
effect is more pronounced, because NEWUOA performs exceptionally well on the sep-
arable Ellipsoid function.

Ellipsoid functions: comparison. On the separable Ellipsoid function up to a condition
number of 106 NEWUOA clearly outperforms all other algorithms. Also BFGS per-
forms still better than PSO and CMA-ES while DE performs worst. On the separable
Ellipsoid1/4 function BFGS, CMA-ES and PSO perform similar. NEWUOA is faster
for low condition numbers and slower for large ones. For condition number larger than
106, NEWUOA becomes even worse than DE.

On the rotated functions, the performance of PSO declines fast with increasing con-
dition number. For numbers larger than 103, PSO is remarkably outperformed by all
other algorithms. On the rotated Ellipsoid function for moderate condition numbers
BFGS and NEWUOA perform best and outperform CMA-ES by a factor of five, some-
what more for low condition numbers, and less for larger condition numbers, while PSO
and DE are much worse. For large condition numbers CMA-ES becomes superior and
DE is within a factor of ten of the best performance.

On the rotated Ellipsoid1/4 BFGS and CMA-ES perform similar up to condition of
106. NEWUOA performs somewhat better for lower condition numbers up to 104. For
larger condition numbers BFGS and NEWUOA decline and CMA-ES performs best.

Rosenbrock function. On the Rosenbrock function NEWUOA is the best algorithm
(Figure 2). NEWUOA outperforms CMA-ES roughly by a factor of five, vanishing for
very large values for the conditioning parameter α. For small α, BFGS is in-between,
and for α > 104 BFGS fails. DE is again roughly ten times slower than CMA-ES.
Only PSO shows a strong dependency on the rotation of the function and it reveals the
strongest performance decline with increasing α, while it never competes with the best
three algorithms.
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Fig. 2. Rosenbrock function. Shown is SP1 (the expected running time or number of function
evaluations to reach the target function value) versus conditioning parameter α.

Scaling behaviors. The scaling of the performance with search space dimension is
similar for all functions (see Appendix A for the data). CMA-ES, NEWUOA and PSO
show the best scaling behavior. They slow down by a factor between five and ten in 40D
compared to 10D. For BFGS the factor is slightly above ten, while for DE the factor is
thirty or larger, presumably because the default population size increase linearly with
the dimension.

6 Summary

In this paper we have conducted a comparison of BFGS, NEWUOA, and three stochas-
tic bio-inspired optimization methods in a black-box optimization scenario. The empir-
ical study was conducted on smooth functions with varying condition number. Aside
from gradients being not provided, we consider these functions as the favorite play-
grounds of BFGS and NEWUOA. We find that NEWUOA performs exceptional on
separable quadratic functions, it performs in all cases very well with moderate con-
dition numbers, but shows a comparatively steep performance decline with increasing
ill-conditioning. BFGS performs well overall, but shows a strong decline on very ill-
conditioned non-separable functions. For DE, the parameters are difficult to tune and yet
it performs overall poorly with the single best parameter setting on our small function
set. With the chosen parameters, DE shows the strongest robustness to ill-conditioning
though. PSO performs similar to CMA-ES on the separable problems, with an even
weaker dependency on the conditioning. On non-separable problems PSO exhibits a
strong performance decline with increasing conditioning and performs very poorly even
on moderately ill-conditioned functions. Finally, CMA-ES generally outperforms DE
and PSO, while up to a moderate function conditioning BFGS and NEWUOA are sig-
nificantly faster in most cases. Due to their invariance properties, the performance re-
sults of CMA-ES and DE are the most stable ones and most likely to generalize to other
functions.
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Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
282–291. Springer, Heidelberg (2004)

15. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary
algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation (2005)

16. Feoktistov, V.: Differential Evolution: In Search of Solutions. In: Optimization and Its Ap-
plications. Springer, New York (2006)



Experimental Comparisons of Derivative Free Optimization Algorithms 13

A All Results

Separable Ellipsoid Function

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

Rotated Ellipsoid Function

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

0
10

2
10

4
10

6
10

8
10

10
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

Fig. 3. Ellipsoid function. Shown is SP1 (the expected running time or number of function eval-
uations to reach the target function value) versus condition number.
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Fig. 4. Ellipsoid1/4 function. Shown is SP1 (the expected running time or number of function
evaluations to reach the target function value) versus condition number.
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Fig. 5. Rosenbrock function. Shown is SP1 (the expected running time or number of function
evaluations to reach the target function value) versus conditioning parameter α.
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Abstract. Flash memory-based solid-state disks are fast becoming the
dominant form of end-user storage devices, partly even replacing the
traditional hard-disks. Existing two-level memory hierarchy models fail
to realize the full potential of flash-based storage devices. We propose
two new computation models, the general flash model and the unit-cost
model, for memory hierarchies involving these devices. Our models are
simple enough for meaningful algorithm design and analysis. In particu-
lar, we show that a broad range of existing external-memory algorithms
and data structures based on the merging paradigm can be adapted
efficiently into the unit-cost model. Our experiments show that the theo-
retical analysis of algorithms on our models corresponds to the empirical
behavior of algorithms when using solid-state disks as external memory.

1 Introduction

In many practical applications, one needs to compute on data that exceeds the
capacity of the main memory of the available computing-device. This happens
in a variety of settings, ranging from small devices, such as PDAs, to high-
performance servers and large clusters. In such cases, the cost of data transfers
between disk and the main memory often proves to be a critical bottleneck in
practice, since a single disk transfer may be as time-costly as millions of CPU
operations. To capture the effect that memory transfers have on the running
time of algorithms, several computational models have been proposed over the
past decades. One of the most successful of these models is the I/O-model.

I/O-model. The I/O-model, as defined in [1], is a two-level memory model. It
consists of a CPU, a fast internal memory of size M and a slow external-memory
of infinite size. The CPU can access only data stored in the internal memory, and
data transfers between the two memories are performed in chunks of B consec-
utive data items. The I/O-complexity of an algorithm is given by the number of
memory transfers, or I/Os, performed. Many problems have been studied in this
model and efficient algorithms have been proposed. For comprehensive overviews
we refer the interested reader to [2,3].
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Flash memories. In the recent years, a new trend has emerged in the storage de-
vice technology – that of solid-state disks based on flash memory. Flash memories
are non-volatile, reprogrammable memories. Flash memory devices are lighter,
more shock resistant and consume less power. Moreover, since random accesses
are faster on solid-state disks compared to traditional mechanical hard-disks,
flash memory is fast becoming the dominant form of end-user storage in mobile
computing. Many recent notebook and netbook models have already replaced
traditional mechanical hard-disks by flash memory disks. Market research com-
pany In-Stat predicted in July 2006 that 50% of all mobile computers would use
flash (instead of hard-disks) by 2013.

Flash memory devices typically consist of an array of memory cells that are
grouped into pages of consecutive cells, where a fixed amount of consecutive
pages form a block. Reading a bit is performed by reading the whole page con-
taining the given bit. When writing, we distinguish between changing bits from 1
to 0 and from 0 to 1. To change a bit from 0 to 1, the device first “erases” the
entire block containing the given bit, i. e. all the bits in the block are set to 1.
However, changing a bit from 1 to 0 is done by writing only the page containing
it, and each page can be programmed only a small number of times before it must
be erased again. Reading and writing pages is relatively fast, whereas erasing a
block is significantly slower. Each block can sustain only a limited number of
erasures. To prevent blocks from wearing prematurely, flash devices usually have
a built-in micro-controller that dynamically maps the logical block addresses to
physical addresses to even out the erase operations sustained by the blocks.

Related work. Recently, there has been an increased interest in using flash mem-
ories to improve the performance of computer systems. This includes the experi-
mental use of flash memories in database systems [4,5,6], using flash memories as
caches in hard-disks (e. g. Seagate’s Momentus 5400 PSD hybrid drives), Win-
dows Vista’s ReadyBoost, i. e. using USB flash memories as a cache, or integrat-
ing flash memories into motherboards or I/O-buses, e. g. Intel’s Turbo Memory
technology [7].

Most previous algorithmic work on flash memories deals with wear leveling,
i. e. block-mapping and flash-targeted file systems (see [8] for a comprehensive
survey). There exists very little work on algorithms designed to exploit the char-
acteristics of flash memories. Wu et al. [9,10] proposed flash-aware implementa-
tions of B-trees and R-trees without file system support by explicitly handling
block-mapping. More recently, efficient dictionaries on flash disks have been engi-
neered [11]. Other works include the use of flash memories for model checking [12]
or route planning on mobile devices [13,14].

Our contributions. Owing to the lack of good computation models to help ex-
ploiting the particular characteristics of flash devices, there is no firm theoretical
foundation for comparing algorithms. In this paper, we propose two computa-
tional models for flash devices that exploit their constructive characteristics –
the general flash model and the unit-cost flash model. These models can be used
as a basis for a theoretical comparison between different algorithms on flash
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memory devices. While the general flash model is very generic and is especially
suitable for studying lower bounds, the unit-cost flash model is appealing for the
design and analysis of algorithms. In particular, we show that a large number of
external-memory algorithms can be easily adapted to give efficient algorithms in
the unit-cost flash model. Interestingly, we observe that external-memory algo-
rithms based on the merging paradigm are easy to adapt in the unit-cost flash
model, while this is not true for algorithms based on the distribution paradigm.
We conduct experiments on several algorithms exhibiting various I/O-access pat-
terns, i.e. random and sequential reads, as well as random and sequential writes.
Our experiments confirm that the analysis of algorithms on our models (par-
ticularly, the unit-cost flash model) predicts the observed running-times much
better than the I/O model. Our experiments also show that the adaptations of
these algorithms improve their running-times on solid-state disks.

2 Models for Flash Memory

In this section we propose and discuss models for flash memories. We first discuss
the practical behavior of flash memories. We then propose two models of com-
putation, a general flash model and a unit-cost flash model. They are both based
on the I/O-model, but use a different block size for reading than for writing.

Flashmemory behavior. Due to constructive characteristics, inpracticeflashmem-
ories have a significantly different behavior compared to hard disks [15,16,17]. In
Figure 1 we give empirical results showing the dependence of throughput on
the block size when performing random reads and writes, as well as sequential
reads and writes. We used two different disks: a 64 GB Hama SSD drive and a
Seagate Barracuda 7200 rpm 500 GB hard-drive. The main difference concerns
the relative performance of random reads and random writes. For hard-disks
random reads and random writes provide similar throughput, whereas for the
SSD drive random reads provide significantly more throughput than random
writes, especially for small block sizes. Furthermore, the throughput of random
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Fig. 1. Performance summary of solid-state disks (left) vs. hard disks (right). The
x-axis shows the block size (in bytes), in logarithmic scale.
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accesses converges to the throughput of the corresponding sequential accesses
at different block sizes, implying different block sizes for reading and writing.
Also, the throughput provided by sequential reads is nearly the same as the
throughput provided by sequential writes for most flash devices [15].

The key characteristic of the flash devices that we model is the different
block sizes for reading and writing. For the general flash model we also consider
different throughput for reading and writing. To keep our computation models
simple enough for algorithm design, we abstract away the other flash-memory
characteristics, such as effects of misalignment, limited endurance etc.

General flash model. The general model for flash memory devices is similar to
the I/O model, with the exception that read and write block sizes are different
and that they incur different costs. The general flash model assumes a two-level
memory hierarchy, with a fast internal memory of size M and a slow external
flash memory of infinite size. The input and output data reside on the exter-
nal flash memory, and computation can only be done on data residing in the
internal memory. Read and write I/Os from and to the flash memory occur in
blocks of consecutive data of sizes Br and Bw respectively. The complexity of
algorithms is x + c · y, where x and y are the number of read and write I/Os
respectively, and c is a penalty factor for writing. Similarly to the I/O-model, the
parameters M , Br, Bw, and c are known to the algorithms. Typically, we assume
Br ≤ Bw < M � N and c ≥ 1. We note that the I/O-model is a particular case
of this general model, when Br = Bw = B and c = 1.

Unit-cost flash model. The fact that in the general flash model c may take arbi-
trary values implies arbitrary relative costs between read and write I/Os. This
complicates the reuse of existing external-memory algorithms and algorithmic
techniques. In [15] it was shown that for most flash devices the throughput pro-
vided by reads and writes is nearly the same, assuming proper block sizes, i.e.
Br and Bw are set so that the maximum throughput is achieved on random
I/Os. This means that, in spite of different read and write block sizes, the access
time per element is nearly the same. The unit-cost flash model is the general
flash model augmented with the assumption of an equal access time per element
for reading and writing. This simplifies the model considerably, since it becomes
significantly easier to adapt external-memory results. For the sake of clarity,
the cost of an algorithm performing x read I/Os and y write I/Os is given by
xBr +yBw, where Br and Bw denote the read and write block sizes respectively.
Essentially, the cost of an algorithm in this model is given by the total amount
of items transferred between the flash-disk and the internal memory.

For both models, we note that “items transfered” refers to all the Br (Bw)
elements moved during a read (write) I/O and not just the useful elements trans-
fered. Also, our models can be adapted to obtain hardware-oblivious models.

Relating unit-cost models to external-memory models. We turn to exploring the
relation between the unit-cost models and the external-memory models.
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Lemma 1. Any algorithm designed in the unit-cost flash model which transfers
f(N, M, Br, Bw) items can be simulated by an external-memory algorithm with
B = Br which performs f(N, M, Br, Bw)/Br I/Os.

Consider some algorithm A in the unit-cost flash model, which transfers
f(N, M, Br, Bw) items. Denote by fr(N, M, Br, Bw) the total cost for read I/Os
and let fw(N, M, Br, Bw) be the total cost for write I/Os. The algorithm is ex-
ecuted as an external-memory algorithm with a block size B = Br as follows.
Read operations are done in blocks of size Br and therefore the reads incur
fr(N, M, Br, Bw)/Br I/Os, whereas writes are done in blocks of size Bw which
implies that each write incurs Bw/Br I/Os. We obtain that all the writes take
(fw(N, M, Br, Bw)/Bw) · (Bw/Br) = fw(N, M, Br, Bw)/Br I/Os.

The simulation in Lemma 1 provides an efficient mechanism for obtaining
lower bounds in the unit-cost flash model, as stated in Lemma 2.

Lemma 2. A problem that requires Ω(L(N, M, B)) I/Os in the I/O-model re-
quires Ω(Br · L(N, M, Br)) items transferred in the unit-cost flash model.

3 Algorithms for the Unit-Cost Flash model

Typical external-memory algorithms manipulate buffers using various opera-
tions, such as merging and distributing. Given that in the unit-cost flash model
the block sizes for reads and writes are different, algorithms can mergeO(M/Br)-
ways and distribute O(M/Bw)-ways. Since M/Br > M/Bw, merging is preferred
to distributing because more buffers can be manipulated simultaneously. A sur-
prisingly large body of merging-based external-memory algorithms (and data
structures) can be easily adapted to get efficient and sometimes even optimal
algorithms (and data structures) in the unit-cost flash model, sometimes by sim-
ply setting the block size B to Br. In this section we show a few typical examples
of how simple changes lead to efficient algorithms in the unit-cost flash model.

3.1 Sorting

Sorting N records in the I/O-model requires Ω(N/B logM/B N/B) I/Os [1].
Using Lemma 2, we obtain that sorting N elements needs Ω(N logM/Br

N/Br)
items to be transfered in the unit-cost flash model.

To sort in the unit-cost flash model, we use multi-way mergesort, which is
optimal in the I/O-model, and we show that it achieves optimality also in the
unit-cost flash model. The algorithm splits the input into Θ(M/B) subsequences,
recursively sorts them, and in the end merges the (sorted) subsequences. The
I/O-complexity is Θ(N/B logM/B N/B) I/Os. For the unit-cost flash model, dif-
ferent costs are achieved depending on the number of subsequences the input is
split into. Splitting the input in Θ(M/Bw) subsequences yields an algorithm that
transfers O(N logM/Bw

N/Bw) items, whereas splitting Θ(M/Br)-ways yields
the optimal Θ(N logM/Br

N/Br) cost.

Lemma 3. Sorting N elements can be done by transferring Θ(N logM/Br
N/Br)

items in the unit-cost flash model.
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3.2 Data Structures

In this section we give brief descriptions of efficient implementations for search
trees and priority queues in the unit-cost flash model.

Search trees. For searching, we show how to adapt the B-trees used in the
I/O-model to obtain an efficient implementation in the unit-cost flash model.
We employ a two-level structure. The primary data structure is a B-tree with
a fan-out of Θ(Bw); each node of the primary structure is stored also as a
B-tree, but with nodes having a fan-out of Θ(Br). Searches and updates transfer
O(Br logBr

N) items.

Priority queues. Several optimal external-memory priority queues have been
proposed [18,19,20,21]. Each of them takes amortized O(1/B logM/B N/B) I/Os
per operation. However, only the cache-oblivious priority queue in [20] trans-
lates directly into an optimal priority queue in unit-cost flash model, taking
amortized O(logM/Br

N/Br) items transfered per operation. This is because it
only merges buffers, whereas the other priority queues also employ distribution
and achieve only amortized O(logM/Bw

N/Bw) transfered items. We note that
priority queues are the core of time forward processing, a technique widely em-
ployed to achieve efficient external memory graph algorithms.

3.3 BFS

For BFS on undirected graphs G(V, E) in the unit-cost flash model, we focus
on the randomized external-memory algorithm by Mehlhorn and Meyer [22].
For ease of exposition, we restrict ourselves to sparse graphs, i.e. |E| = O(|V |).
The algorithm starts with a preprocessing phase, in which the input graph is
rearranged on disk. This is done by building |V |/µ disjoint clusters of small
diameter (O(µ · log |V |) with high probability (whp.)) that are laid contiguously
on disk. In the BFS phase, the algorithm exploits the fact that in an undirected
graph, the edges from a node in BFS level t lead to nodes in BFS levels t−1, t or
t+1 only. Thus, in order to compute the nodes in BFS level t+1, the algorithm
collects all neighbors of nodes in level t, removes duplicates and removes the
nodes visited in levels t−1 and t. For collecting the neighbors of nodes efficiently,
the algorithm spends one random read I/O (and possibly, some further sequential
read accesses depending on the cluster size) for loading a whole cluster as soon
as a first node of it is visited and then keeps the cluster data in some efficiently
accessible data structure (hot pool) until all nodes in the cluster are visited. The
preprocessing and BFS phases together requireO(scan(|V |)·µ·log |V |+sort(|V |))
I/Os (reading and writing) whp. plus another O(|V |/µ) read-I/Os. In the I/O-
model, choosing µ = Θ

(√
B/ log |V |

)
implies a total cost ofO(|V |·

√
log |V |/B+

sort(|V |)) I/Os whp. In the unit-cost flash model this means a total cost of
O( |V | · µ · log |V | + |V | · logM/Br

|V |
Br

+ |V | · Br/µ ), which is minimized by

choosing µ = Θ
(√

Br

log |V |
)
.
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Lemma 4. Computing undirected BFS on sparse graphs (|E| = O(|V |)) in the
unit-cost flash model requires O(|V | ·

√
Br · log |V |+ |V | · logM/Br

(|V |/Br)) item
transfers.

4 Experimental Results

The main goal of our experimental study is to verify the suitability of the pro-
posed unit-cost flash model for predicting the running-time of algorithms using
SSD as an external-memory. We want to check how well the behavior of the al-
gorithms on SSDs correspond to their theoretical analysis on the unit-cost flash
model. In particular, we look at the improvements from the adaptation process
as predicted theoretically on the unit-cost flash model and ascertain if these gains
are actually observed in practice. We consider three algorithms which present
various I/O-patterns and have very different complexities in the I/O model.
First, we consider sorting, which takes sort(N) = O(N/B logM/B N/B) I/Os
and performs mainly sequential I/Os. We then move to BFS, which requires
O(|V | ·

√
log |V |/B + sort(|V |)) I/Os whp. for sparse graphs and causes both

sequential and random reads, but no random writes. Finally, the classical DFS
implementation performs O(|V |) I/Os on sparse graphs and does a large num-
ber of random reads and writes. We observe the performance of these algorithms
when using a SSD as external-memory.

Experimental setup. For algorithms and data structures designed in the I/O-
model we use implementations already existent in the STXXL library [23]
wherever possible. We show results where the size of blocks in which data is
transferred between the internal memory and the flash device is set to both the
read and write block sizes of the device. According to our flash models, algo-
rithms read blocks of size Br and write blocks of size Bw. To comply with this
requirement, we implement a translation layer similar to Easy Computing Com-
pany’s MFT (Managed Flash Technology) [24]. The translation layer prevents
random writes of blocks of size Br by buffering Br-sized blocks into blocks of
size Bw that provide optimal throughput when written to the disk. When using
the translation layer, an algorithm reads and writes pages of size Br. Oblivious
to the algorithm, the translation layer logically groups Bw/Br pages into a block
of size Bw, which is written to the flash disk. To do so, O(1) Bw-sized buffers are
reserved in the memory, so that when one such buffer gets full it is immediately
written to the flash disk. To keep track of the data used, this layer maintains a
mapping of the logical addresses of the pages viewed by the algorithm to their
actual address on the flash disk. Since this mapping occupies little space and
is used only to manage temporary data, the translation layer is stored in main
memory throughout the execution of the algorithm. Additionally, the translation
layer is responsible for keeping track of the free pages and blocks.

Due to its simplicity and generality, we view the translation layer as a generic
easy-to-implement adaptation of I/O algorithms to algorithms in the unit-cost
flash model. However, we note that there exist cases where the translation layer
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Table 1. The read volume (RDV), write volume (WRV), and the running time (RT)
for sorting N random integers (taking the specified volume) when using the translation
layer (TL), setting the block size to Br and to Bw respectively. RDV and WRV are
measured in GB, and RT is measured in seconds.

input TL Br Bw

log2 N volume RDV WRV RT RDV WRV RT RDV WRV RT
[GB] [GB] [GB] [s] [GB] [GB] [s] [GB] [GB] [s]

25 0.12 0.20 0.25 9.10 0.25 0.25 9.35 0.25 0.25 9.13
26 0.25 0.49 0.50 16.73 0.50 0.50 16.72 0.50 0.50 17.10
27 0.50 0.99 1.00 32.25 1.00 1.00 31.29 1.00 1.00 33.58
28 1.00 1.99 2.00 62.35 2.00 2.00 60.96 3.00 3.00 93.46
29 2.00 3.99 4.00 120.82 4.00 4.00 118.84 6.00 6.00 192.98
30 4.00 8.00 8.00 240.24 8.00 8.00 238.74 12.00 12.00 387.16
31 8.00 16.00 16.00 478.46 16.00 16.00 475.11 32.00 32.00 1002.95
32 16.00 32.00 32.00 946.88 32.00 32.00 950.04 64.00 64.00 2029.41

can not be employed, e.g. extremely large inputs when the translation layer may
no longer fit into the main memory.

Our experiments were conducted on a standard Linux machine, with an Intel
Core 2 Quad 2.4 GHz CPU, 8 GB RAM out of which algorithms are restricted to
use only 512 MB, and a 64 GB HAMA flash disk. The smallest block sizes where
the disk reaches optimal performance for random reads and random writes are
128 KB and 16 MB respectively, see e. g. Figure 1, and consequently we set Br

and Bw to these values. The code was compiled using GCC version 4.3.

Sorting. For sorting we consider the STXXL implementation, which is based
on (cache-aware) multi-way mergesort. The results in Table 1 show that when
the block size is set to Bw, the running time is larger than when the block size
equals Br, and the volume of data read and written by the algorithm is larger
as well. This behavior is easily explained theoretically by the larger number
of recursion levels in the former case, noticeable by the relative ratio between
the read/write volumes and the input volume. Also, when using the translation
layer we obtain very similar results to when setting the block size to Br. This
behavior is also in line with the theoretical analysis in unit-cost flash model,
since the algorithm essentially writes data sequentially, and in this case writing
blocks of size Br yields the same throughput as when writing blocks of size Bw

(when using the translation layer). Such a behavior would be inexplicable in the
I/O-model, which assumes reads and writes in equally sized blocks for reading
and writing. We note that, due to the limited size of the flash disk, we could not
sort larger sequences.

BFS. We perform experiments on square grid graphs as they have proven to be
a difficult graph class [25] for the external-memory BFS algorithm. As shown in
Table 2, using the translation layer yields only a small benefit compared to the
read block size. This is explained by the fact that the algorithm performs no
random writes, while random and sequential reads are not affected by the layer.

For preprocessing, using a smaller block size, and consequently a smaller µ,
results in smaller running time, since the computed clusters tend to contain fewer
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Table 2. Read/write volumes (in GB) and running times (in seconds) for external-
memory BFS with randomized preprocessing on square grid graphs, separated into
preprocessing phase (pp) and BFS phase, using block sizes Br, Bw and the translation
layer (TL)

log2 |V | TL Br Bw

pp bfs Σ pp bfs Σ pp bfs Σ

READ VOLUME [GB]
20 0.194 0.000 0.194 0.670 1.924 2.594 0.406 0.094 0.500
22 2.423 5.968 8.391 2.709 8.080 10.789 1.500 0.188 1.688
24 26.943 60.406 87.350 27.187 61.660 88.848 91.922 457.750 549.672
26 108.953 316.341 425.294 109.726 320.881 430.607 364.578 2621.047 2985.625

WRITE VOLUME [GB]
20 0.594 0.000 0.594 0.560 0.009 0.569 0.250 0.172 0.422
22 2.281 0.094 2.375 2.271 0.104 2.375 1.016 0.234 1.250
24 9.344 1.656 11.000 9.251 1.654 10.905 22.734 0.812 23.547
26 36.750 5.531 42.281 36.783 5.531 42.313 89.938 1.203 91.141

RUNNING TIME [s]
20 21.5 744.5 766.0 31.5 768.4 799.9 40.5 381.4 421.9
22 95.0 1668.4 1763.4 100.0 1697.0 1797.0 76.2 1126.0 1202.2
24 609.8 4581.2 5191.0 632.9 4570.4 5203.3 1738.2 9184.6 10922.8
26 2426.8 15755.4 18182.2 2524.2 15778.9 18303.1 6824.8 43329.1 50153.9

nodes and have a smaller diameter. Comparing the preprocessing times for Br

and Bw on the square grid graph in Table 2 confirms this, as preprocessing using
Bw takes up to three times as long as when Br is used.

For the BFS phase, choosing a larger block size reduces the number of random
I/Os needed to load clusters, but at the same time potentially increases the size
of the hot pool because clusters with bigger diameter tend to stay longer in
the pool. This affects the performance adversely if the hot pool no longer fits
in internal memory as can be seen in Table 2 for |V | ≥ 224. At that point the
algorithm using Bw is outperformed by the one using Br.

DFS. For DFS, we use a straightforward non-recursive implementation of the
text-book RAM algorithm. The algorithm explores the graph by visiting for each
node the first not yet visited neighbor, and to do so we use two data structures:
a vector to mark the nodes visited and a stack to store the nodes for which
not all the neighbors have been visited. The key particularity of this algorithm
is that it performs extensive random reads to access many adjacency lists, as
well as extensive random writes to mark the nodes. For a graph G = (V, E) the
unit-cost of the algorithm is given by O(|E| ·Br + |V | ·Bw), since there are |E|
read accesses to the adjacency lists and |V | write accesses to mark the vertices
visited. The costs for accessing the stack are much smaller since both reads and
writes can be buffered. We note that when transferring data in chunks of size
Br the cost of the algorithm remains O(|E| ·Br + |V | ·Bw), but when the block
size is set to Bw the cost increases to O(|E| · Bw + |V | ·Bw).

We conduct experiments which show the running time of DFS when transfer-
ring chunks of Br and Bw consecutive data between the memory and the flash
disk, as well as on using the translation layer. Due to extensive running times,
we restrict to square grid graphs. We noted that for all input sizes using the



On Computational Models for Flash Memory Devices 25

translation layer yields better running times than when doing I/Os in blocks of
size Br, which is due to writing many blocks of size Br at random locations.
When the graph fits into the main memory the algorithm is extremely fast.
For |V | ≤ 220, the running times were below two seconds. However, when the
graph no longer fits into the main memory, the running times and the I/O-traffic
increase significantly.

For |V | = 222, the running times were of 4 180, 4 318, and 610 000 seconds
for the translation layer, Br, and Bw block sizes respectively. The huge running
time for the Bw block size is explained by the huge volume of read data, of about
46 TB, compared to 336 GB read when using Br-sized blocks and 311 GB when
using the translation layer. The volume ratio between Bw and Br approximately
matches Bw

Br
= 128. However, the volume of data written was significantly low

(less that 300 MB in each experiment). This is due to vector marking the visited
nodes completely residing in memory.

Therefore we used another approach and stored the visited information with
each node, effectively scattering the bits over a larger range of external memory.
Internal memory was further restricted to cache at most half of an external
memory data structure. Comparable experiments with block size Bw are not
possible in these settings because the internal memory cannot store a required
minimal amount of blocks. For |V | = 221 the DFS using the translation layer
took 6 064 seconds reading 250 GB and writing 146 GB of data. Using block
size Br instead, the running time increased to 11 352 seconds and read volume
of 421 GB, while write volume was 145 GB. The translation layer could serve a
fraction of the read requests directly from its write buffers explaining the increase
in read volume. While the written volume and write throughput rate were nearly
unchanged (145 GB, 77-80 MB/s), the read throughput dropped from 69 MB/s
to 46 MB/s. The subobptimal block size used for writing obviously triggers
reorganization operations in the flash device that block subsequent operations
(reads in our case). This accounts for the major part of the additional running
time showing a clear benefit for the translation layer bundling these small random
write requests.

5 Conclusions and Future Research

We proposed two models that capture the particularities of the flash memory
storage devices, the general flash model and the unit-cost flash model. We show
that existing external-memory algorithms and data structures, based on the
merging paradigm, can be easily translated into efficient algorithms in the unit-
cost flash model. Relevant examples include sorting, search trees, priority queues,
and undirected BFS. We conduct experiments that the unit-cost flash model
predicts correctly the running times of several algorithms that present various
I/O-patterns.

For the general flash model, an interesting future direction concerns obtaining
lower bounds for fundamental problems, such as sorting or graph traversals, even
for extreme cases when we set the penalty factor c to a very large value that
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allows the algorithm to write only the output. Future investigations in this model
include engineering fast algorithms for basic problems, such as sorting.

For the unit-cost flash model, possible topics for future research include iden-
tifying problems for which the best external memory upper bounds cannot be
matched in the unit-cost flash model.

Promising directions also include introducing relevant computational models
that capture other characteristics of the flash devices and yet allow meaningful
algorithm design.
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Abstract. We study a variant of Naor’s [23] online packet buffering
model: We are given a (non-preemptive) fifo buffer (e.g., in a network
switch or a router) and packets that request transmission arrive over
time. Any packet has an intrinsic value R and we have to decide whether
to accept or reject it. In each time-step, the first packet in the buffer (if
any) is transmitted and our benefit of it is equal to its intrinsic value mi-
nus the time it spent in the buffer. The objective is to maximize the total
benefit. From a worst-case perspective, Fiat et al. [14] gave a threshold
algorithm with a competitive ratio equal to the golden ratio φ ≈ 1.618.
Due to the insensitivity of the algorithms towards the input, it was con-
jectured that this competitive ratio is too pessimistic for packet sequences
occurring in practice.

In this paper, we treat this conjecture from an analytical and experi-
mental point of view. In the analytical part, we assume Poisson arrivals
and compute a threshold for this algorithm depending on the arrival rate
λ and the value R of the packets. This also yields bounds on the (ex-
pected) competitive ratio of the algorithm. We discover the phenomenon
that the ratio converges to one if R grows or λ moves away from one.
Thus (for fixed R) we have that the largest competitive ratios occur for
λ = 1. In that case, the bound is essentially R/(R−√

R) and gives values
smaller than φ for R ≥ 8.

In a second, experimental, part of our study, we compared the compet-
itive ratios achieved by the two threshold algorithms on actual network
traffic with our theoretical prediction (which assumes Poisson arrivals).
It turns out that the prediction and the measured ratios for our threshold
are consistent, where the prediction even tends to be pessimistic. Fur-
thermore, the measured ratios with our threshold where substantially
smaller than φ and even almost everywhere below the ratios achieved
with the threshold of [14].

1 Introduction

In the problem of online packet buffering for network switches, streams of data
packets merge at some connection point (e.g., a router or a switch), and request
forward transmission through an outgoing link. Due to limited link capacity,
before transmission, these packets are stored in a buffer at the connection point.
Thus, in general, packets are delayed or even lost in case of an overflowing
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buffer. In the past, several approaches for modeling such a scenario theoretically
have been proposed, e.g. the multiqueue unit-value model [5,3,2], the two-value
model [1,21,4,17], and the bounded delay model [10,19,12]. Another one is Naor’s
model [23] for packet buffering.

Naor’s Model in Competitive Analysis. The system under consideration is
a single fifo (First-In First-Out) queue of unbounded capacity and a stream of
packets that request transmission arrives over time. An incoming packet is either
admitted to the queue or discarded, where preemption is not allowed, i.e., all
enqueued packets are eventually transmitted in the order of their arrivals. Time
is discretized into slots of unit length and transmission times are deterministic:
when the queue is not empty at the end of any time slot, exactly one packet is
transmitted.

Each packet arrives with an intrinsic value. Here, we consider only the simpler
case of homogeneous packets, i.e., all packets are assigned the same value R > 1.
Packets are latency-sensitive, i.e., a packet loses one unit of its initial value for
every unit-time delay. Since one transmission occurs in each time slot, the delay
of a packet is equal to the number of packets that are in the queue when it is
admitted to the queue. The benefit of transmitting a packet is equal to its value
minus its value loss. The total benefit of the sequence is the sum of individual
benefits of the transmitted packets and the objective is to maximize the total
benefit.

The model is attractive for several reasons. First, it uses a non-preemptive
fifo queue, which is easier to maintain than queues of arbitrary regime. Second,
it does not need explicit deadlines. Instead, a packet with large value is attractive
for early transmission and can survive for a long time in the network, thus
increasing the likeliness of reaching its destination.

A threshold algorithm alg for this model determines whether to accept or
reject an incoming packet based on the current size of the buffer, denoted by
B, and a selected integer threshold n ≥ 1. A packet is accepted only if B < n.
The ultimate goal of any threshold policy analysis is to find a value for n that
maximizes the total benefit of the sequence. Intuitively, n must not exceed the
packet value R, otherwise packets will be transmitted without any benefit.

The problem of packet buffering is online by nature. A sequence of incoming
packets arrives over time and decisions upon these arrivals are made without
knowing future arrivals. In competitive analysis, inputs are generated by a ma-
licious adversary and the performance of an online algorithm alg is measured
by comparing its benefit to the benefit of an offline optimal algorithm opt, i.e.,
one that knows the entire input sequence beforehand. Specifically, an (online)
algorithm alg is called c-competitive if for any input sequence the inequality
opt/alg ≤ c holds, where alg and opt denote the respective total benefits.

Recently, Fiat et al. [14] gave a competitive analysis of threshold algorithms
in this model. In case of homogeneous packets, i.e., the value of each incom-
ing packet is equal, they proved a lower bound equal to the golden ratio φ ≈
1.618 for any deterministic or randomized algorithm, and they gave an optimal
threshold algorithm that matches this lower bound. For heterogeneous packets,
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i.e., arbitrary values, they give a simple threshold algorithm with a competitive
ratio equal to 5.25, and show a lower bound of 3 for any deterministic algorithm
and a lower bound of 4.1 for deterministic and memoryless algorithms.

Our Contribution. Due to the insensitivity of the algorithms towards the
input, it was conjectured [22] that these competitive ratios are too pessimistic
for packet sequences actually occurring. In this paper, we aim at bridging the gap
between theory and practice with a stochastic analysis. There, input sequences
are generated by a probability distribution D and we measure the average-case
performance of the online algorithm by comparing its expected benefit to the
expected offline optimal benefit, where the expectations are taken with respect to
the distribution D. We are interested in the long-term behaviour of the system,
i.e., in the limit of t, where t is the number of time slots considered. Analogously,
an algorithm is c-competitive on average if limt→∞ E [opt] /E [alg] ≤ c.

Our results fall into two categories: analytical and experimental. In the (first)
analytical part of the paper we assume that the packets arrive according to a
Poisson process at a certain (known) rate λ > 0 and have all the same intrinsic
real value R > 1.

(1) We give closed-form expressions for bounds on the expected competitive
ratio of the threshold algorithm of Fiat et al. [14]. We have to distinguish
the cases λ = 1 and λ �= 1. For the case λ = 1 and R ≥ 3 we obtain the
bound

c ≤ R

R−
√

R− 3
4 −

1
2

.

Thus the ratio decreases as R increases. In particular, the bound improves
upon the one of Fiat et al. [14] for R ≥ 8. For 1 < R ≤ 3 the bound is
c ≤ 2R/(R− 1). The same phenomenon is true for the case λ �= 1. (We also
have a closed form for λ �= 1, but due to space limitations, we have to defer
the treatment to the full version of the paper.)

(2) For any fixed value of R, our bound on the competitive ratio achieves the
maximum for λ = 1, i.e., when the arrival rate of the packets equals their
send rate. There is an intuitive reason for this: First suppose that λ is very
small, then both, the online algorithm and the offline optimum, will accept
(essentially) every incoming packet, since these are rare. On the other ex-
treme, if λ is large, both algorithms will reject all but one incoming packet.
This is because there will be an incoming packet in the next slot (with some
large probability). In the remaining case λ = 1 both effects can occur: phases
with relatively few, and phases with a lot of arrivals. Thus, the threshold of
the online algorithm has to be chosen so that it stores several packets in the
buffer when many of them arrive for compensating fewer arrivals later on. It
turns out that the right amount is roughly

√
R. This also explains the above

bound since the optimal benefit can be up to R per packet and the average
benefit of the online algorithm is about R−

√
R per packet.

In the experimental part of this study, we found that the theoretical predictions
(assuming Poisson arrivals) are consistent with the competitive ratios measured
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with real network traffic. (We used the same data sets as Albers and Jacobs [2]
for their experimental study for the multiqueue unit-value model.) We defined
three classes of experiments. In the first class, we evaluate the competitive ratio
experimentally for several values of R and variable λ. Also experimentally, the
largest competitive ratios are attained for values of λ between one and two. In
the second class, we fixed λ and varied R. As predicted, the competitive ratio
decreases as R grows. In the third class, we relate the observed competitive ratio
with the threshold. It turns out that our choice is close to the optimal choice. So,
in total, it seems that the assumption of Poisson arrivals is suitable for obtaining
predictions coming close to practical experience in this model.

Discussion and Conclusion. In this paper we treated the homogeneous case
of the problem, only. It would be interesting to extend the analysis and the
experiments to the inhomogeneous version also.

Packet arrivals are often assumed to be Poisson in probabilistic models of
networks. This assumption has recently lost some of its attractiveness after dis-
covering the self-similar characteristics of the network traffic [18,24]. That is,
packets arrive in bursts rather than in smooth Poisson-like flows as it is com-
monly assumed. For this reason, in a seminal work, Kesselman et al. [17] avoided
stochastic analysis for the problem of packet buffering, and since then, the com-
petitive analysis has been a measure of choice when approaching this problem.
However, we have returned to stochastic analysis (with Poisson arrivals): In
a recent experimental study for the multiqueue unit-value model, Albers and
Jacobs [2] showed that experimentally observed competitive ratios are much
smaller than their counterparts in theory. Also, strategies with smaller theoreti-
cal ratios do not necessarily perform better in practice. In the light of this result,
we gave an average-case competitive analysis and experimental study for Naor’s
model.

Our assumption of Poisson arrivals is debatable and its removal is also subject
to future work. However, the discovery of the self-similarity of network traffic
does not completely rule out Poisson modeling, see [20,25]: It was observed, e.g.,
in [20], that traffic burstiness occurs over long timescales, but arrivals tend to
be Poisson over short timescales (within bursts). To make the present arrival
model more realistic, i.e., so that the bursty arrival-characteristic of the network
traffic is captured, one may consider the so-called Interrupted Poisson Process
(IPP) [15]. In such a model, two periods of time are defined with randomly
varying and exponentially distributed lengths. Poisson arrivals occur only during
one period known as the active or busy period. The second period, known as the
inactive period, witnesses no arrivals.

2 Stochastic Analysis

In this section, we derive the average benefits of alg and opt per time slot. It
turns out that alg is equivalent to a M/D/1/K queue (see below). The main
part of the work is to find a “good” threshold n0 (which depends on λ and R).
Further, opt can be estimated directly.



32 K. Al-Bawani and A. Souza

Table 1. n0 and c for selected values of λ and R

λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.0 λ = 2.0 λ = 3.0 λ = 5.0
R n0 c n0 c n0 c n0 c n0 c n0 c n0 c

2 1 2.099 1 2.2 1 2.999 1 4.0 1 2.999 1 2.666 1 2.399
5 4 1.249 4 1.25 3 1.3 2 2.05 1 1.874 1 1.666 1 1.5
10 9 1.111 9 1.111 5 1.13 3 1.548 2 1.326 1 1.481 1 1.333
20 19 1.052 18 1.052 10 1.061 4 1.323 2 1.21 2 1.165 2 1.137
30 28 1.034 27 1.034 15 1.04 5 1.245 3 1.126 2 1.129 2 1.1
50 47 1.02 45 1.02 25 1.023 7 1.176 3 1.088 3 1.071 2 1.073
80 76 1.012 72 1.012 40 1.014 9 1.133 4 1.056 3 1.05 2 1.057
100 95 1.01 90 1.01 50 1.011 10 1.116 4 1.047 3 1.043 3 1.035
110 104 1.009 99 1.009 55 1.01 10 1.11 4 1.044 3 1.04 3 1.032
115 109 1.008 103 1.008 58 1.01 11 1.107 4 1.042 3 1.039 3 1.031

For sake of exposition and space limitations, we restrict our attention to the
case λ = 1 in the analysis below. The case λ �= 1 is similar but with more
technical complication and thus deferred to the full version of the paper. But
notice that we do have closed-form approximations for both cases. An evaluation
of the respective competitive ratios on average is given in Table 1.

Theorem 1. For the arrival rate λ = 1 we have

lim
t→∞

E [opt]
E [alg]

≤
{ 2R

R−1 for 1 < R < 3,
R

R−
√

R− 3
4− 1

2

for R ≥ 3,

where our threshold n0 for alg is given through

n0 =

{
1 for 1 < R < 3,√

R− 3
4 + 1

2 for R ≥ 3.

Average Benefit of opt. Here we are interested in the average benefit of opt

per time slot:

Lemma 1. For λ ≥ 1, the average benefit of opt per time slot is at most R.

Obviously, the average benefit of opt in each time slot can never be more than
R since this is the maximum benefit per packet. However, it turns out that this
simple upper bound is sufficient for the case λ ≥ 1. Why? On average, opt will
accept one packet per time slot, which is then transmitted without delay. We
have to be more careful for the case λ < 1, as treated in the full version.

Average Benefit of alg. Although alg has a buffer with unbounded capacity, the
threshold n acts as a regulator on its size. In each time slot, alg accepts packets
as long its buffer size has yet not reached n. Thus, our model coincides with the
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well-known M/D/1/K queue model in queueing theory. In that queue, we have
a single server, that can store up to K packets, i.e., a queue with bounded length,
and each packet takes deterministic service time T . (We have K = n and we will
substitute accordingly.) The arrivals of the packets are Poisson with rate λ. The
service utilization factor ρ in this model is defined as ρ = λT . In our case we
have T = 1 and K = n. Our M/D/1/n queue is ergodic, i.e., a unique stationary
distribution (also called steady state) p = (p1, . . . , pn) exists and is guaranteed
to be assumed for any λ and independent of the initial distribution [23]. From
now on we argue about this queue in its stationary distribution.

Lemma 2. For λ = 1, if the threshold of alg is n, in the steady state, the
average benefit per time slot of alg is: R/2− 1/2 for n = 1 and R− (R + n2 −
1)/(2n− 1) for n > 1.

Let A denote the expected number of accepted packets and L the expected
number of transmitted packets in a time slot when the queue is in the station-
ary distribution. In the steady state A and L are equal. Notice that (in the
steady state) exactly one packet is sent in each time slot with probability 1−p0,
where p0 is the probability that the queue is empty. The average number of
transmitted packets in a time slot is thus L = 1− p0 and hence also A = 1− p0
holds.

Let q be the average queue size in the steady state. Thus, the average delay
experienced by enqueued packets in time slot is equal to q. Since the value loss
of a packet is equal to its delay, the average benefit of alg in a time slot i (in
the steady state) is

RA− q = R(1− p0)− q (1)

Exact solutions for p0 and q are derived by Brun and Garcia [8]:

p0 =
1

1 + ρbn−1
, (2)

q = n−
∑n−1

k=0 bk

1 + ρbn−1
, (3)

where n is the queue capacity, and bk is defined by

b0 = 1, and bk =
k∑

i=0

(−1)i

i!
(k − i)ie(k−i)ρρi, ∀k ≥ 1.

We will approximate p0 and q by approximating the bk for ρ = 1 in (2) and (3).
To this end, we use an alternative form of bk given also in [8]. It holds that

bk =
k∑

i=0

ai, (4)

where a0 = 1, a1 = eρ−1, and ai = eρai−1−eρ
∑i−1

j=1 αjai−j−αi−1a0, for i ≥ 2,
with αj = ρje−ρ/j!.
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Proposition 1. For ρ = 1, a0 = 1, a1 = 1.72, a2 = 1.95, and ai → 2 as i→∞.

The proof is omitted due to space limitations but is derived by expanding the
series of the ai. This yields

bk ≈
{

1, k = 0,

2k, k > 0.
(5)

Lemma 2 is implied from plugging the following approximations for (2) and (3)
in (1). These approximations are strong enough for our purposes.

p0 ≈
{

1
2 , n = 1,

1
2n−1 , n > 1,

and q ≈
{

1
2 , n = 1,
n2−1
2n−1 , n > 1.

(6)

Threshold Optimization. Equation (1) gives the average benefit of alg implicitly
as a function of its threshold n, R, and λ. The next step is to find an optimal
value n0 of n that maximizes alg for fixed R and λ. We do so by differentiation.

The average benefit of alg is a unimodal function of n in the interval [1, R].
Thus we seek the roots of the first derivative. Lemma 2 tells us that, for λ = 1,
we either want to choose n = 1, which yields average benefit of R/2− 1/2 or to
set n > 1 such that R− (R + n2 − 1)/(2n− 1) is maximized. Thus we have the
first candidate n

(1)
0 = 1. The two other candidates

n
(2)
0 =

1 +
√

1 + 4(R− 1)
2

and n
(3)
0 =

1−
√

1 + 4(R− 1)
2

are the roots of the first derivative of R − (R + n2 − 1)/(2n− 1). The solution
n

(3)
0 is excluded because it is non-positive for any R ≥ 1. Furthermore, one can

easily verify that we want to choose n0 = n
(1)
0 for 1 ≤ R < 3 and n0 = n

(2)
0 for

R ≥ 3. This implies the statement on n0 of Theorem 1. See also Table 1.

Competitive Ratio. In the case of λ = 1, if we use the threshold n0 (see above)
for alg, by Lemma 2, we have that the average benefit per time slot is R/2−1/2
for 1 ≤ R < 3 and R −

√
R− 3/4− 1/2 for R ≥ 3. As argued in Lemma 1, the

benefit of opt per time slot is bounded by R. These bounds imply Theorem 1.

3 Experiments

The main results of the experiments with our threshold strategy on real-life
traffic are twofold. First, we observe that it outperforms the R/φ2-threshold
algorithm given in [14] experimentally. Second, we find that the theoretical
average-case bounds (with Poisson assumptions) are consistent with the com-
petitive ratios measured on real-life data.
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3.1 Settings

We carry out our experiments on the same data sets as Albers and Jacobs
[2] taken from the Internet Traffic Archive [16], see Table 2. The four DEC-
PKT-n traces cover one-hour wide-area TCP traffic between Digital Equipment
Corporation (DEC) and the outside world. The two LBL-PKT-n and the LBL-
TCP-3 data sets capture wide-area TCP traffic between the Lawrence Berkeley
Laboratory (LBL) and the rest of the world.

Table 2. TCP traces used in the experiments

Name Date � Packets First Time Last Time Place
DEC-PKT-1 08.03.1995 22.00-23.00 2,153,462 0.416754 3600.360144 DEC
DEC-PKT-2 09.03.1995 02.00-03.00 2,661,931 0.658800 3600.460672 DEC
DEC-PKT-3 09.03.1995 10.00-11.00 2,873,589 0.341603 3600.136640 DEC
DEC-PKT-4 08.03.1995 14.00-15.00 3,862,336 0.406992 3600.193249 DEC
LBL-PKT-4 21.01.1994 14:00-15:00 862,946 0.002268 3599.995458 LBL
LBL-PKT-5 28.01.1994 14:00-15:00 677,846 0.013738 3599.998492 LBL
LBL-TCP-3 20.01.1994 14:00-16:00 1,789,995 0.008185 7199.999857 LBL

Parameters. Each experiment is defined by a set of parameters: (1) trace data
set D; (2) threshold value n; (3) arrival rate λ; and (4) packet’s value R. Similarly
to [2], we define the average arrival rate of a trace data set D by λD = (number
of packets in D)/(length of time horizon of D). Here, λD is defined over the
time unit of the data set. To allow different values of λ during the experiments,
we simply alter the time unit as required. Thus, the length of a time slot in
an experiment is given by λ/λD. On each trace data set D, we carry out three
classes of experiments.

Class 1: Variable λ. In the first class, we fix the packet value R and vary the
arrival rate λ. At each λ, we run two online algorithms on D, our n0-threshold
algorithm (denoted by alg0) and the R/φ2-threshold algorithm of [14] (denoted
by algφ in experiments). We then compare the competitive ratios of these algo-
rithms and the theoretical competitive ratio that we derived in section 2 (denoted
by algavg in experiments). We add algavg for comparing the average-case anal-
ysis with the observed competitive ratios.

Class 2: Variable R. The second class of experiments is similar to the first one
except that we fix λ and vary R. We also depict alg0, algavg, and algφ.

Class 3: Variable n. In the third class, we fix both λ and R and run �R� m-
threshold algorithms on D, where 1 ≤ m ≤ �R�. This is the set of all threshold
algorithms for the packet value R. In this experiment, one can compare the
competitive ratios between the optimal threshold on the given data set D, our
threshold n0 and the worst-case optimal threshold R/φ2.
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3.2 Results

All our results are available online [13]. Generally speaking, all seven data sets
give rather similar results. The observed competitive ratio of alg0 is below algφ

almost everywhere. We further observe that, especially for values of R ≥ 20,
the predicted competitive ratio algavg and the observed alg0 are consistent.
For small values of R, our analysis is not accurate enough to give meaningful
predictions.

Class 1: Variable λ. Figure 1 exhibits the results of two experiments with R =
50 on the data sets DEC-PKT-1 and LBL-TCP-3. However, we have found
consistent results for the other traces and values of R between two and more
than 100 as well. Especially the data set LBL-TCP-3 is interesting because it
was used by Paxson and Floyd [24], where they found that packet arrivals of
several wide-area protocols such as FTP and TELNET are not well modeled by
Poisson processes.

First, the algorithm alg0 yields relatively small competitive ratios exper-
imentally (1.08 at the highest). Second, alg0 behaves roughly as predicted in
the average-case analysis. It achieves the highest competitive ratios for λ between
one and two and this ratio decreases as λ tends towards 0 or ∞. As discussed
in Section 2, this behaviour of alg0 is due to the response of its threshold value
on changes in the packet arrival rate. When arrival is intensive, the threshold is
decreased until it becomes 1, and when arrival is light, the threshold is increased
until it reaches R. The algorithm reflected by algφ does not adapt and hence
yields increasing competitive ratios as λ increases. Furthermore, our theoretical
bounds algavg are close to those measured experimentally, but having the peak
in the region around λ = 1.

Class 2: Variable R. In Figure 2 we have depicted the results for λ = 1 and
λ = 3 and variable R. The competitive ratio of alg0 and the prediction algavg

decrease and converge to each other as R increases. (As mentioned already, our
analysis lacks accuracy for small values of R – hence the large values of algavg

in that region.)
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Fig. 3. Class 3: Dependence of the competitive ratio on the threshold for λ = 1 and
R = 50 on the traces DEC-PKT-1 and LBL-TCP-3

By contrast, the competitive ratio of algφ tends to increase as R increases;
and the faster, the larger λ. For example, at λ = 1, it increases relatively slowly,
while at λ = 3 it increases faster. The threshold of this algorithm is independent
of λ but proportional to R. Thus, algφ accepts more packets as R increases. This
is a virtue when the intensity of arrival is low because the algorithm would save
these packets for future periods with no arrivals. However, this rigid strategy
fails at high arrival intensity since, in this case, the optimal behavior is to accept
few packets so that these packets are sent with almost full benefit.

Class 3: Variable n. The following notation is used in Figure 3: A is the optimal
threshold on the given trace data set, B = n0 and C = R/φ2. We try all possible
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thresholds on the given trace data set and take A as the one that scores the
minimum competitive ratio. B has been calculated from our analysis summarized
in Table 1.

We depict the competitive ratios again for DEC-PKT-1 and LBL-TCP-3 with
λ = 1 and R = 50. For DEC-PKT-1 we have A = 8 and B = 7. For LBL-TCP-3
we even have that A = B = 7 and hence A is missing in the diagram. In both
cases alg0 yields a competitive ratio around 1.05, while algφ yields 1.15.

Due to space limitations we could not include the results for other values of
λ. However, our observations are that, as λ decreases, the value of C converges
to A (and hence the competitive ratio of algφ to that of an optimal threshold
algorithm). In contrast, the value for B is somewhat larger than C. If λ increases,
C diverts from A, while B is slightly below A.
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Abstract. We present an algorithm that certifies the feasibility of a
linear program while using rational arithmetic as little as possible. Our
approach relies on computing a feasible solution of the linear program
that is as far as possible from satisfying an inequality at equality. To
realize such an approach, we have to detect the set of inequalities that
can only be satisfied at equality.

Compared to previous approaches for this problem our algorithm has
a much higher rate of success.

1 Introduction

As solvers for linear programs (LPs) became more and more efficient in recent
years, LPs are solved in various areas of applications. In particular, they are
used in software and hardware verification [1,2,3], where the safety of a system
is certified by solving LPs. Often, a problem is not handled by solving a single
LP, but a search tree is computed, where in each node of it an LP is solved and
the (in)feasibility of the LP, or bounds computed on the value of the LP are
used to guide or stop the search (compare, e.g., branch-and-cut algorithms).

State-of-the-art LP solvers rely on floating point arithmetic and hence can
have wrong results. Our goal is to certify the (in)feasibility of an LP or compute
safe bounds on its value efficiently. Notice that we are considering LPs which
are solved during parsing a search tree and hence they are not numerically too
complicated, and we want to find a certified answer with a bound close to the
correct answer in most of the cases almost without overhead. Only in the few
remaining examples a slow exact solver has to be used (or the algorithm has to
deal without a certified solution in some other way).

In the following we always assume that we are considering a minimization
problem. Previous work in this area goes into two different directions:

Dhiflaoui et al. [4] propose to take the basis computed by the LP solver and
certify its feasibility and/or optimality with rational arithmetic. This approach
has later been implemented more efficiently by Koch [5] and Applegate et al. [6].
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It has two major drawbacks. First, if the basis is infeasible, nothing can be said
on the feasibility of the LP and one has to switch to an exact solver. Second, it
takes much more time to solve the basis system with rational arithmetic than
solving the LP (for large and complicated LPs). On the positive side, it computes
very accurate bounds, e.g., if the floating-point solver happens to find the correct
basis (as it is the case for most problems) it finds and certifies the optimal
solution.

Another approach is to compute bounds purely with floating point arithmetic.
This approach was introduced by Neumeier and Shcherbina [7] to compute lower
bounds for LPs where all variables are lower and upper bounded and later im-
proved by Keil and Jansson [8]. Still for most of the LPs from Netlib [9] no bound
could be computed (for only 40% of them an upper bound could be computed).

We want to extend the floating point approach to be able to handle LPs with
unbounded variables that are numerically not too complicated, thereby using
rational arithmetic whenever necessary without solving large systems of linear
equations.

With our approach we are able to compute bounds for 90% of the Netlib
instances and the overhead in running time is negligible (see Section 5).

2 Certifying Feasibility of an LP

In this section, we describe our approach to certify the feasibility of an LP. More
precisely, we describe an algorithm that either states that the given LP is feasible
or it answers that it cannot certify feasibility. In the second case one should try
to certify infeasibility with a similar approach (see Section 3). If this fails too,
the (in)feasibility of the LP cannot be certified with our approach and one has
to use an exact solver.

2.1 The General Idea

Let us first fix some notation. We are considering a linear system of the form
{x ∈ IRn | A′x ≤ b′, A′′x = b′′}. Let A =

(
A′

A′′
)

and b =
(

b′

b′′
)
. For a subset of the

(in)equalities B let AB be the rows of A corresponding to the (in)equalities in
B and bB the corresponding rows of b.

We use ≈,�, �≈ to denote equations that are evaluated with floating point
arithmetic, i.e., we make our decisions depending on the outcome of some ex-
pression evaluated with floating point arithmetic and typical ε-comparisons but
we have no guarantee that the computed values are correct.

Assume we want to certify the feasibility of the linear system {A′x ≤ b′, A′′x =
b′′}. We use a state-of-the-art LP solver to compute a feasible solution. Typically,
we get basis B, i.e., a subset of the (in)equalities of A′ containing all equations
such that x∗ = A−1

B bB has a unique solution that satisfies all inequalities. As we
use floating-point arithmetic, we get x≈ with x≈ ≈ A−1

B bB. Then we use a solver
for systems of linear equations that gives safe error bounds (see Section 2.2)
to obtain a vector of intervals x[] = (x�, xu) ∈ (IR × IR)n with A−1

B bB ∈ x[].
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If all vectors in x[] satisfy all remaining inequalities, we are done. This can
be checked easily using interval arithmetic. As the vector of intervals contains
typically rather small intervals, we can certify the feasibility, if the true vector
x∗ satisfies the inequalities strictly. Unfortunately, many LPs are degenerated,
i.e., some further inequalities are satisfied with equality.

Therefore, we use the LP solver to find an optimal basis B for the LP

max δ
s.t. A′x + �δ ≤ b′

A′′x = b′′

i.e., we try to find a feasible point of the linear system that is as far from tight
at the inequalities as possible.

This modified approach typically works if δ � 0, but clearly fails, if the optimal
value of the LP is 0. Notice that the dual of the LP is

min pT b′ + qT b′′

s.t. pT A′ + qT A′′ = 0
pT
� = 1
p ≥ 0

and hence we get a dual solution of the linear program above that gives us a
vector (p≈, q≈) with p≈T A′ + q≈T A′′ ≈ 0, p≈T b′ + q≈T b′′ ≈ 0, p≈ �≈ 0. If there
were no floating point error, we would know that all inequalities with non-zero
multiplier have to be satisfied with equality in any solution of the LP. This can
be seen as follows: assume (p∗, q∗) is a dual feasible solution and x∗ is a feasible
solution that satisfies at least one inequality strictly, i.e., aT

i x∗ < bi for some i
with p∗i �= 0. Then we have 0 =

∑
i p∗i Aix

∗+
∑

j q∗j Ajx
∗ <

∑
i p∗i bi+

∑
j q∗j bj = 0,

a contradiction.
We simply assume the correctness and transform the inequalities with non-

zero dual value p≈ to equalities and iterate. Notice that a wrong result of the
floating point computations can lead to transforming too many inequalities to
equalities, i.e., we reduce the feasible region of the LP. Hence these fixings can
lead to an infeasible LP although the original LP is feasible, but not the other
way around.

Notice that at least one of the new equalities is redundant and we want to
remove it. In order to make this removal safe (i.e., that we do not make an
infeasible linear system feasible), we have to check that these equalities are indeed
redundant with rational arithmetic. The same holds for redundant equalities that
appear in the initial LP formulation.

As typically (p≈, q≈) contains only a very small number of non-zero entries
(see Section 5), the rational arithmetic is not too costly in this step.

Furthermore, if the LP solver returns a basis that contains an equality, this
could be caused by a linear dependency among the linear equations (either in
the original linear program or due to the transformation) and we have to certify
whether this is the case before we remove these equalities (see Section 2.3 for
details). For the Netlib instances this is the case for 24 of the 94 LPs.
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2.2 Computing Safe Intervals for the Solution of a System of Linear
Equations

In this section we discuss how we compute safe intervals for the solution of a
system of linear equations for the case when we are given a non-singular square
matrix AB. In the next section we discuss the case when our system contains
redundant equalities.

In a state-of-the-art LP solver, a highly tuned (in efficiency and numerical
stability) algorithm for computing the LU decomposition is implemented. As
the LP solver SoPlex allows us access to its LU decomposition, we want to use
it in our computations.

We do so by the following approach given in [10], where different estimates for
||L−1|| of an approximate LU decomposition are used to obtain rigorous error
bounds. We use the fact that ||L−1|| ≤ ||M(L)−1||,

M(L)ij =
{
|Lij | for i = j
−|Lij| for i �= j

and that ||M(L)−1|| can be computed easily. For further details, we refer to the
original paper.

2.3 Overdetermined Linear Systems

In order to use the method outlined in Section 2.2, we have to detect and remove
all redundant equalities, i.e., a subset of equalities that are linearly dependent
on the remaining equalities such that the remaining equalities are linearly inde-
pendent.

Before removing an equality from our system, we have to make sure that it is
indeed redundant. For this check, floating point arithmetic is not sufficient, since
a wrong answer would make us remove an equality that is not redundant, and
hence possibly enlarge the feasible region. Therefore we have to test redundancy
with rational arithmetic.

To show that Ax = b contains a redundant equality one typically transforms
(A b) into row echelon form. This can be a quite expensive operation, especially
when performed with rational arithmetic (since it is as expensive as solving a
system of linear equations, i.e., as certifying the feasibility of a basis with rational
arithmetic). Therefore we have to use as few equations as possible for which we
compute the row echelon form.

Consider an LP of the form

max δ
s.t. A′x + �δ ≤ b

A′′x = b′′

and assume that its objective function value is zero. Solving this LP, we get a
dual solution (p∗, q∗) with objective function value 0. The (in)equalities with non-
zero dual value are transformed into equalities and the resulting set of equalities
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contains at least one redundant equality (compare to Section 2.1). Furthermore
this set is expected to be very small and hence we can afford to compute the
row echelon form with rational arithmetic.

Now assume that the objective function value of the above LP is different
from zero, hence we are in the last iteration of our algorithm. If the LP solver
does not indicate that an equality is redundant (by having the equality in the
basis), we are fine. Otherwise, we have to transform the set of all equations into
row echelon form. If there are many equalities in the last LP, this can take a
while (see Section 5). We remove all equalities that are proved to be redundant
and use the method outlined in Section 2.2 to prove that the solution of the
remaining basis satisfies all basic inequalities. Notice that we have to recompute
the LU decomposition.

To improve the running time we can use a heuristic to select a subset of the
equations so that this subset has as many redundant equalities as the set of all
equalities. If the method outlined in Section 2.2 still certifies a vector of intervals
such that the solution of the remaining equations lies within this interval, we
know that we detected all redundant equalities.

Taking all equalities that are marked basic by the LP solver seems to be a
good choice (see Section 5) because it often succeeds and the running time for
computing the row echelon form is very small for this set.

2.4 Decreasing the Number of Iterations

The first experiments with our approach have shown that δ remains zero for
many iterations (see Section 5), resulting in a long running time of our approach.
Yet we realized that in many iterations, a single inequality implies all bounds of
the occurring variables. In this case, we simplify the LP, i.e., we set all occurring
variables to the respective bounds and remove the inequality.

More exactly, let 	i ≤ xi ≤ ui be the bound on xi (with 	i, ui �= ±∞). Then
a constraint a1x1 + a2x2 + · · ·+ anxn ∼ b can be simplified:

– when ∼ is ≤, if min(a1	1, a1u1) + · · ·+ min(an	n, anun) = b; we have

min(ai	i, aiui) =

{
	i, if ai > 0
ui, if ai < 0

– when ∼ is ≥, if max(a1	1, a1u1) + · · ·+ max(an	n, anun) = b; we have

max(ai	i, aiui) =

{
ui, if ai > 0
	i, if ai < 0

– when ∼ is =, if either of ≤ or ≥ can be simplified as above.

These verifications are first performed using floating-point arithmetic; in case
the answer is positive, a double-check using rational arithmetic takes place, and
only if it also ends up positive, the constraint is deemed as simplifiable.

For any constraint that could be simplified after the verifications were carried
as before, the variables contained are set to their respective bound used in the
simplification check. The constraint is thus redundant and finally removed.



Fast and Accurate Bounds on Linear Programs 45

3 Certifying Infeasibility and Computing Bounds

A linear system {Ax ≤ b} is infeasible if and only if the system {yT A ≤ 0, y ≥
0, yT b = −1} is feasible (by Farkas’ Lemma). Hence, we can use the approach
described above to certify infeasibility of an LP.

To prove an upper bound for the LP we do the following: At the end of our
algorithm for certifying the feasibility, we have transformed some inequalities to
equalities. Let

max δ
s.t. A′x + �δ ≤ b′

A′′x = b′′

be the final LP and x[] be the certified interval for the solution. We solve the LP

min cT x
s.t. A′x ≤ b′

A′′x = b′′

and compute a certified solution x̄[]. We consider the segments from x̄[] to x[],
i.e., (1−λ)x̄[] +λx[] for 0 ≤ λ ≤ 1, and compute the smallest λ∗ so that for each
possible resulting point x∗ ∈ (1− λ∗)x̄[] + λ∗x[] on one of the segments satisfies
A′x′ ≤ b. Finally we compute the largest objective function value of a point in
(1− λ∗)x̄[] + λ∗x[].

We have not implemented these algorithms so far and hence cannot report on
experimental results.

4 Implementation

We implemented our algorithm in C++ using SoPlex version 1.4.0 [11,12]. For
compilation we used g++ 4.1.2 with the optimization flag -O3 turned on. We
used GMP 4.2.1 [13] as multi-precision library, and boost 1.33.1 [14] for the
interval arithmetic and for basic linear algebra.

Our application proceeds in two phases: a preprocessing step and an iterated
routine, for which we provide more details in the following subsections.

4.1 Preprocessing Phase

The LP problem is first transformed into a δ-modified problem:

1. The objective function is changed to max δ.
2. A new bound, 0 ≤ δ ≤ 1, is introduced.
3. The inequality constraints are transformed as follows: C ≤ rhs becomes
C + δ ≤ rhs , and C ≥ rhs becomes C − δ ≥ rhs .

4. Bounds referring to a variable that only appeared in the old objective func-
tion are removed, to prevent the solver from raising errors related to variables
not declared previously.
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5. The remaining bounds are transformed to so-called “monomial constraints”,
i.e., xi ≤ bk becomes xi + δ ≤ bk, and xi ≥ bk becomes xi − δ ≥ bk; the
bound for δ and the fixed bounds are not affected.

6. For any variable xi that does not appear in bounds, a new bound xi− δ ≥ 0
is introduced.

4.2 Iteration Phase

We proceed then in successive iterations. The program stops either when a prob-
lem could not be solved to optimality, or when we obtain a non-zero solution for
δ, or when the preset maximum number of iterations is reached.

An iteration of the program consists of the following steps:
File input. The problem is read from file (for the first iteration, the δ-modified

version of the original problem is used). The coefficients and bounds in the file are
processed and stored both as regular doubles and as GMP mpq class rationals.

Transforming constraints to bounds. Monomial constraints as defined above
are transformed to bounds. A constraint of form axi ± δ ∼ bk or axi ∼ bk (with
a �= 0) is replaced with the bound xi ∼ bk

a ; depending on the sign of a, the
inequality sense could be reversed.

Problem simplification. We check whether the problem can be simplified by
setting the variables to their respective bounds as described in Section 2.4.

Transforming bounds to constraints. Bounds are again transformed to mono-
mial constraints as in Section 4.1.

Solving with SoPlex. We make use of the SoPlex API to load the problem
transformed through the previous operations and solve it.

Tightening constraints. If the objective value (i.e., δ) is zero, the constraints
corresponding to dual variables with non-zero value are made tight and δ is
removed from them; one such constraint is removed, since it is redundant (see
Section 2.3).

File output. The problem is written to a file on disk, ready to be used for the
next iteration.

Note that reading and writing the file to disk has only historical reasons and
will be changed soon.

5 Experiments

The experiments were conducted on a computer with a dual-core AMD Opteron
2220 SE processor at 2.8 GHz and 16 GB of RAM, running Debian Etch with
Linux kernel version 2.6.24. As input we used the 94 problems from the Netlib
LP collection [9].

In Table 1 we summarize our main results. For each of the Netlib instances
(for which we give the name and some statistics on its size), we report on the
number of iterations of our approach, on the running time to solve the LPs
and the running time to compute the reduced row echelon form of all equations
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and of the equations that are marked basic in the last LP solved with SoPlex.
Furthermore we report whether the heuristic finds all redundant equalities.

In the same table, we report on the number of iterations our approach needs
without the simplification of the LPs and whether the algorithm of Keil and
Jansson [8] is able to prove the feasibility of the LP.

By computing the row echelon form of all equalities we can prove the feasibility
of all but 3 LPs. If we compute the row echelon form of the equalities that are
marked basic in the last LP, we can prove the feasibility of all but 9 LPs. In
this case, the time spent using rational arithmetic is very small compared to the
running time to solve the LPs in all but 3 LPs. Our simplification yields a big
reduction in the number of calls to the LP solver.

Table 1. Experimental results on the Netlib problems

It — iterations in our approach
It0 — iterations without simplification of LP
Last objv — value of objective function (i.e. δ) in the last iteration
tsolve — total time to solve LPs in all iterations (in seconds)
tr1 — time to compute reduced row echelon form of SoPlex basic equalities
tr2 — time to compute reduced row echelon form of all equalities
Red — does heuristic find all redundant equalities?
KJ — is feasibility proven by Keil and Jansson in [8]? (miss = problem missing)

Name Rows Cols It It0 Last objv tsolve tr1 tr2 Red KJ

25FV47 822 1571 1 1 –2.0000e–01 1.51 0.01 269.35 yes no
80BAU3B 2263 9799 4 2 –2.7881e–04 24.89 — — — yes
ADLITTLE 57 97 1 2 –1.8717e–01 0.01 — — — yes
AFIRO 28 32 1 1 –1.0000e+00 0.01 — — — yes
AGG 489 163 1 71 –4.1273e–02 0.01 — — — no
AGG2 517 302 1 3 –1.0000e+00 0.01 — — — no
AGG3 517 302 1 3 –1.0000e+00 0.01 — — — no
BANDM 306 472 1 22 –2.3164e–02 0.05 — — — no
BEACONFD 174 262 1 79 –7.5000e–02 0.01 — — — no
BLEND 75 83 1 1 –7.3015e–02 0.01 — — — yes
BNL1 644 1175 1 81 –8.5027e–04 0.50 0.01 49.29 yes no
BNL2 2325 3489 1 112 –4.1131e–03 2.81 — — — no
BOEING1 351 384 2 2 –3.3333e–01 0.15 — — — miss
BOEING2 167 143 5 2 –1.3938e–02 0.03 — — — miss
BORE3D 234 315 2 140 –3.1051e–02 0.02 0.01 8.52 no no
BRANDY 221 249 1 44 –1.9080e–02 0.03 0.01 5.94 yes no
CAPRI 272 353 1 1 –1.6844e–01 0.03 — — — yes
CYCLE 1904 2857 1 333 –4.4062e–03 2.93 0.01 3126.66 yes no
CZPROB 930 3523 1 348 –4.4515e–04 1.86 — — — no
D2Q06C 2172 5167 3 2 –1.6667e–02 8.19 — — — no
D6CUBE 416 6184 1 1 –1.7064e–02 20.13 0.01 635.58 yes no
DEGEN2 445 534 12 7 infeasible 0.01 — — — no
DEGEN3 1504 1818 8 8 infeasible 19.41 — — — miss
DFL001 6072 12230 6 13 –4.3478e–02 777.57 — — — miss
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Table 1. (continued)

Name Rows Cols It It0 Last objv tsolve tr1 tr2 Red KJ

E226 224 282 1 31 –2.9723e–03 0.04 — — — yes
ETAMACRO 401 688 1 48 –5.6667e–03 0.07 — — — no
FFFFF800 525 854 1 20 –1.6501e–02 0.23 — — — no
FINNIS 498 614 1 29 –1.2500e–05 0.03 — — — yes
FIT1D 25 1026 1 1 –3.6269e–02 0.89 — — — yes
FIT1P 628 1677 1 1 –1.0000e+00 0.22 — — — yes
FIT2D 26 10500 1 1 –1.0000e+00 6.74 — — — yes
FIT2P 3001 13525 1 26 –1.0000e+00 1.71 — — — yes
FORPLAN 162 421 2 –1.4952e–01 0.06 — — — miss
GANGES 1310 1681 1 101 –1.0000e+00 0.15 — — — no
GFRD-PNC 617 1092 1 27 –2.2331e–01 0.19 0.01 176.18 yes yes
GREENBEA 2393 5405 1 2 –2.8563e–02 12.69 — — — no
GREENBEB 2393 5405 1 1180 –2.8563e–02 13.18 0.01 27746.72 yes no
GROW15 301 645 1 1 –1.0000e+00 0.06 — — — yes
GROW22 441 946 1 1 –1.0000e+00 0.13 — — — yes
GROW7 141 301 1 1 –1.0000e+00 0.02 — — — yes
ISRAEL 175 142 1 1 –1.0000e+00 0.01 — — — yes
KB2 44 41 1 1 –1.0000e+00 0.01 — — — yes
LOTFI 154 308 1 1 –1.0000e+00 0.02 — — — yes
MAROS 847 1443 5 525 –6.3361e–02 2.68 0.15 267.63 yes no
MAROS-R7 3137 9408 1 –1.0000e+00 8.90 — — — yes
MODSZK1 688 1620 1 –1.0000e+00 0.20 0.01 419.23 no no
NESM 663 2923 1 1 –1.8000e–02 1.20 — — — miss
PEROLD 626 1376 1 40 –5.0000e–06 0.98 — — — no
PILOT 1442 3652 1 79 –3.4335e–03 21.03 — — — miss
PILOT4 411 1000 1 7 –1.0800e–01 0.70 — — — no
PILOT87 2031 4883 1 –5.0000e–03 26.80 — — — no
PILOT.JA 941 1988 1 82 –2.5000e–06 1.52 — — — no
PILOTNOV 976 2172 2 58 –2.5000e–06 3.52 — — — no
PILOT.WE 723 2789 1 32 –2.5000e–06 1.76 — — — no
RECIPE 92 180 1 18 –1.0000e+00 0.01 — — — no
SC105 106 103 1 2 –1.0000e+00 0.01 — — — yes
SC205 206 203 1 3 –1.0000e+00 0.01 — — — yes
SC50A 51 48 1 2 –1.0000e+00 0.01 — — — yes
SC50B 51 48 1 3 –1.0000e+00 0.01 — — — yes
SCAGR25 472 500 1 1 –1.0000e+00 0.06 — — — yes
SCAGR7 130 140 1 1 –1.0000e+00 0.01 — — — yes
SCFXM1 331 457 1 15 –5.1809e–02 0.04 — — — no
SCFXM2 661 914 1 29 –5.1809e–02 0.15 — — — no
SCFXM3 991 1371 1 43 –5.1809e–02 0.29 — — — no
SCORPION 389 358 7 67 –1.3904e–04 0.14 0.09 14.78 no no
SCRS8 491 1169 1 42 –1.2346e–02 0.15 — — — no
SCSD1 78 760 1 1 –1.0000e+00 0.04 — — — yes
SCSD6 148 1350 1 1 –1.0000e+00 0.13 0.01 25.13 yes yes
SCSD8 398 2750 1 1 –1.0000e+00 0.34 — — — no
SCTAP1 301 480 1 1 –3.3333e–01 0.01 — — — no
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Table 1. (continued)

Name Rows Cols It It0 Last objv tsolve tr1 tr2 Red KJ

SCTAP2 1091 1880 1 1 –3.3333e–01 0.15 — — — yes
SCTAP3 1481 2480 1 1 –3.3333e–01 0.22 — — — yes
SEBA 516 1028 1 133 –1.9000e–01 0.13 — — — miss
SHARE1B 118 225 1 1 –1.0000e+00 0.02 — — — yes
SHARE2B 97 79 1 1 –1.2239e–01 0.01 — — — yes
SHELL 537 1775 1 1 –1.0000e+00 0.12 0.22 575.62 no no
SHIP04L 403 2118 1 202 –4.1177e–03 0.32 0.01 292.17 yes no
SHIP04S 403 1458 1 90 –5.9474e–03 0.17 0.01 116.05 yes no
SHIP08L 779 4283 3 1126 –2.6206e–03 1.84 0.01 4789.71 yes no
SHIP08S 779 2387 3 552 –8.4205e–03 0.53 0.01 1193.42 yes no
SHIP12L 1152 5427 1 1067 –1.4757e–03 1.34 0.01 8761.91 yes no
SHIP12S 1152 2763 1 361 –1.5544e–03 0.23 0.01 1750.12 yes no
SIERRA 1228 2036 1 1 –1.6667e–01 0.39 0.63 288.24 no no
STAIR 357 467 1 1 –9.9600e–02 0.15 — — — yes
STANDATA 360 1075 1 55 –2.0000e–01 0.27 — — — no
STANDGUB 362 1184 1 –2.0000e–01 0.28 — — — no
STANDMPS 468 1075 1 55 –1.9928e–02 0.39 — — — no
STOCFOR1 118 111 1 1 –1.6719e–02 0.01 — — — yes
STOCFOR2 2158 2031 1 1 –9.2721e–03 0.44 — — — yes
TRUSS 1001 8806 1 1 –1.0000e+00 7.20 0.01 4693.82 yes yes
TUFF 334 587 1 30 –2.3999e–04 0.13 0.01 32.48 yes no
VTP.BASE 199 203 1 172 –1.0000e+00 0.01 — — — no
WOOD1P 245 2594 1 793 –3.4126e–06 2.83 — — — no
WOODW 1099 8405 1 ? –6.2228e–06 13.18 — — — no

6 Conclusion

We presented an algorithm that certifies the feasibility of a linear program
while using rational arithmetic as little as possible. For most of the LPs in
Netlib, our algorithm certifies the feasibility by solving with floating-point arith-
metic only a few LPs of the same size as the given LPs; the time spent in
the rational arithmetic is typically very small compared to the solving time of
the LPs.

Our algorithm can be extended to compute safe bounds on the objective func-
tion value of an LP; we want to implement this approach and conduct experi-
ments. Furthermore, we want to integrate our algorithm in the branch-and-cut
framework SCIP [15] and the DPLL framework iSAT [16].

For LPs that are numerically more complicated, it could be beneficial to im-
prove our approach to find a safe vector of intervals for the solution of a system
of linear equations. There are several methods proposed in the literature and
we have to check which one gives the best compromise between accuracy and
running time.
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Abstract. A dynamic shortest-path algorithm is called a batch algo-
rithm if it is able to handle graph changes that consist of multiple edge
updates at a time. In this paper we focus on fully-dynamic batch algo-
rithms for single-source shortest paths in directed graphs with positive
edge weights. We give an extensive experimental study of the existing al-
gorithms for the single-edge and the batch case, including a broad set of
test instances. We further present tuned variants of the already existing
SWSF-FP-algorithm being up to 15 times faster than SWSF-FP. A sur-
prising outcome of the paper is the astonishing level of data dependency
of the algorithms. More detailed descriptions and further experimental
results of this work can be found in [1].

1 Introduction

The single-source shortest-path problem is a fundamental graph problem with
many real-world applications, such as routing in road networks, routing/data
harvesting in sensor networks and internet routing using link state protocols
(for example OSPF and IS-IS). In these applications shortest-path trees are
stored and have to be updated whenever the underlying graph undergoes changes
[2,3,4,5].

Algorithms that update the trees without a full recomputation from scratch
are called dynamic single-source shortest-path algorithms. Such algorithms slightly
differ in the type of their output. Some store only the distances from the source,
while others additionally store a shortest-path tree or the shortest-path subgraph.
Some of the algorithms known in the literature are only able to cope with the
update of one edge at a time, while others can perform batch updates, i.e. update
the shortest-path information after multiple edges have simultaneously changed
their weight.

We consider edge insertions and deletions as special cases of weight changes:
Deletions correspond to weight increments to infinity, while insertions are weight
decrements from infinity. An algorithm is called fully dynamic if both weight
increases and decreases are supported, and semi-dynamic if only weight decreases
or only increases are supported.
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In this paper we focus on fully-dynamic batch updates for directed graphs
with positive edge weights. In order to compare the different approaches, the
only requirement that we make regarding the tested algorithms is that they
update the distance vector. We furthermore demand that the algorithms be able
to cope with edge insertions and deletions. For our experimental study, we apply
integer edge weights.

Related work. Ramalingam and Reps [6] introduce the batch algorithm SWSF-

FP, Narvaez et al. [2] propose the Narváez-framework containing six single-edge
update algorithms and a modification to the framework leading to the according
batch algorithms. Pure single-edge update algorithms are RR [7] (due to
Ramalingam and Reps) and FMN [8] (by Frigioni et al). Buriol et al [9] present
a heuristic technique to speed up RR-like approaches. The technique is similar
to techniques used in the Narváez-framework but does not support edge inser-
tions or deletions. Furthermore, in [9] the RR algorithm is adapted to maintain a
special (shortest-path) tree proposed in [10].

There is no algorithm known in the literature for which the worst case is
asymptotically better than recomputing the new solution from scratch. In the
original works the algorithms described in Section 3 are theoretically analyzed
with respect to different measures. These measures mostly depend on the size of
the subgraph for which the shortest-path subgraph changes.

There is some work on the variant of the problem where edge weights may
also be negative. In [7] the algorithm RR is adapted to cope with the existence
of negative cycles, in [11] the same is done for the algorithm FMN. In [12]
Demetrescu gives some algorithms for that problem. These algorithms use the
reweighting technique, which incorporates a complete Dijkstra run on the graph
(with changed edge weights). Hence, this approach is impractical for the problem
with non-negative edges.

A well-studied related problem is the fully dynamic all-pairs shortest-path
problem, in which the distances between all pairs of nodes have to be maintained
while the graph undergoes changes. See [13] for a survey on the problem.

There is only few experimental work on this topic, all concentrating on single-
edge updates. In [14] the algorithms FMN, RR and a full recomputation from
scratch are compared on two instance classes: Erdös-Rényi graphs, where up-
dates are chosen uniformly at random and a graph representing the internet
on the AS-level, where updates simulate the failure and recovery of the links.
In [2] the algorithms of the Narváez-framework are evaluated on graphs orig-
inating from a generator. This generator randomly places nodes on a grid and
connects them by edges with probability that exponentially decreases with the
distance of the nodes. The generator does not seem to be available any more.
In [15] the algorithms SWSF-FP, RR, FMN, Narváez and full recomputation
from scratch using Dijkstra, Bellman Ford, D’Esopo Pape are evaluated
with single-edge updates on Erdös-Rényi-like graphs. In [4] one algorithm of the
Narváez-framework is evaluated on random single-edge updates on a graph
representing the road-network of Western Europe. In [9], the algorithm RR as
well as seven variants thereof are evaluated on a real world AT&T IP network,
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synthetic internet-related graphs and a large set of other synthetic instances,
namely those of [16] with non-negative edge lengths.

Overview. This paper is organized as follows. Section 2 states basic definitions
and formally introduces the problem. Section 3 reviews the existing algorithms.
Section 4 presents our tuned variants of the SWSF-FP-algorithm, while an
extensive experimental study of these algorithms on synthetic and real-world
data is given in Section 5. The paper ends with a conclusion in Section 6.

2 Problem Statement

Let G = (V, E) be a directed graph with n nodes and m edges and a non-negative
length function len : V × V → �+ ∪ {∞}. Let s ∈ V be an arbitrary but fixed
source. With d(v) we denote the length of a shortest s-v-path in G for any v ∈ V .

A batch update is a set of edge modifications on G which can be edge inser-
tions, edge deletions, edge weight increases and edge weight decreases (that keep
the length function non-negative). We want to maintain a distance vector D[]
containing d(v) for each node v in a dynamic environment where G is undergo-
ing batch updates. After each batch update, D[] (and possible required auxiliary
data needed by the recomputation algorithm) has to be updated accordingly.

Throughout the text, we will cope with the recomputation of D[] and the
auxiliary data when one concrete batch update is given (because of the re-
computation of the auxiliary data the algorithms are able to handle following
updates). We write lenold for length function and dold for distance before the
update. Accordingly we write len for length function and d for distance after
the update. For notational convenience, we consider inserted or deleted edges
to be existing in the original and the updated graph and set the edge length to
infinity, if necessary.

Some of the following algorithms are designed to handle only one edge modifi-
cation at a time. Obviously, repeated application of these algorithms also solves
the batch case. We call such algorithms iterative algorithms while the others
are called batch algorithms. Iterative algorithms can be split into two parts: the
incremental part handles edge insertions and weight decreases while the decre-
mental part handles edge deletions and weight increases. This terminology can
be unintuitive on a first glance but originates from the point of view that the
graph increases when edges are inserted.

3 Overview of Algorithms

In this section, we give an overview on the algorithms evaluated in our ex-
perimental study. Each algorithm includes a main phase in which a min-based
priority queue Q is used to recompute the distances in a Dijkstra-like fashion
but on a smaller subgraph.

RR. Ramalingam and Reps [7] describe the iterative algorithm RR that handles
only edge insertions and deletions. It can be directly transferred to an algorithm
that works with weight increases and decreases. We will use this variant.
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FMN. The FMN-algorithm of Frigioni et al. [8] is an iterative algorithm similar
to the algorithm RR that uses more complex auxiliary data to obtain better the-
oretical worst case bounds. The approach relies on the existence of a k-bounded
accounting function on G, which is a mapping K : E → V such that for each
edge (u, v) the node K(u, v) is either u or v and such that for each node n,
no more than k edges are n-valued. We use the constructive 2-approximation
algorithm described in [11] for finding a k-bounded accounting function on G.

Narváez. Narvaez et al. [2] propose a batch algorithm incorporating two degrees
of freedom. One degree of freedom is the choice of Q which does not necessarily
need to be a priority queue but only has to maintain the operations INSERT and
EXTRACT. Narvaez et al propose a FIFO queue (Bellman-Ford like approach),
a heap (implemented as binary heap or linked list) and a D’Esopo-Pape like
approach. The other degree of freedom consists of two different variants for
the main phase of the algorithm which we will describe below. We will refer
to the diffent variants as NAR{1st, 2nd}{HEAP, BF, PAP}. The main idea
of the Narváez-framework is to early-propagate distance changes through the
tentative shortest-path tree.

4 Tuning SWSF-FP

In this section we will review the algorithm SWSF-FP which is due to Rama-
lingam and Reps [6] and give some tuned variants of it.

The input of the algorithms is the outdated distance vector D[], the graph G,
the original length function lenold, the batch update U = (u1, . . . uk) and some
auxiliary data which will be described for each algorithm separately. The output
is the updated distance vector D[] and the updated auxiliary data.

Notation. Given the outdated distance vector D[], we say we relax an edge
(u, v) when we check if D[v] > D[u] + len(u, v). We say we relax and update an
edge (u, v) when we set D[v] := min{D[v], D[u] + len(u, v)}. An edge (u, v) is
said to be consistent if D[v] = len(u, v) + D[u] and underconsistent if D[v] >
len(u, v) + D[u]. The consistent value con(v) of a node v is

con(v) :=
{

min(u,v)∈E {D[u] + len(u, v)} , v �= s
0 , v = s

A node is said to be consistent if D[v] = con(v) and to be over-consistent if
D[v] > con(v). As convention, we use min ∅ :=∞.

SWSF-FP. For each node v, a label d[v] is given. Initially, d[] equals D[] (in
order to save time for the copy process we implemented d[] as auxiliary data).
We say we adjust an inconsistent node v when we set d[v] := con(v) and insert
v with priority min(D[v], d[v]) in Q. In case v is already in Q we only update its
priority. We adjust a consistent node v when we remove it from Q. If v is not in
Q we do nothing.

Initially, we adjust each node which is target of an edge in U . Main Phase.
While Q is not empty, we perform as follows: We extract and delete the minimum
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node w from Q. If d[w] < D[w] we set D[w] := d[w] and adjust each outgoing
neighbor of w. If d[w] > D[w] we set D[w] := ∞ and adjust w and each of its
outgoing neighbors.

Tuned SWSF. This algorithms basically works like the SWSF-FP-algorithm,
but with less computational effort. When performing SWSF-FP we have to
relax all incoming edges of a node n in order to compute con(n). Tuned SWSF

relaxes fewer of such incoming edges: When we adjust an outgoing neighbor v of
a node w with d[w] < D[w], we compute con(v) by min{d[w] + len(v, w), d[v]}.
The same strategy works in the initialization phase when we compute con(n)
for a node n that is the target node of an edge with decreased edge weight.
When we adjust an outgoing neighbor v of a node w with d[w] > D[w], we set
Dold := D[w] and D[w] :=∞. We can skip v when Dold + len(w, v) �= d[v]. The
same strategy holds in the initialization phase for target nodes of edges with
increased weight.

Tuned SWSF RR. This variant enhances the algorithm Tuned SWSF with a
technique adapted from the RR-algorithm. For each node v, a label indegree(v) is
given indicating the number of edges (u, v) with D[u]+ len(u, v) = d[v]. Further,
for each edge (u, v) a boolean label DAG(u, v) is given indicating if D[u] +
len(u, v) = d[v]. The labels indegree and DAG are directly updated whenever
len, D[] or d[] change. The algorithm performs like Tuned SWSF with the
following difference: After a node v with d[v] > D[v] is extracted from Q only
those edges (v, w) have to processed for which indegree[w] = 0.

Tuned SWSF NAR. This variant enhances the algorithm Tuned SWSF

with a technique adapted from the Narváez-algorithm. For each node v that
is not the source, a label P (v) is given pointing at another node, such that
D[P (v)] + len(P (v), v) = d(v). At the beginning a shortest-path tree T on the
original graph is given implicitely by this label. The main phase of the algorithm
works like the main phase of Tuned SWSF. The initialization phase works
as follows: First, we update the edge weights. We denote by A the set of all
nodes that lie behind a target node of an updated edge. Then, we update the
distances D[] of nodes in T according to the new edge weights (but to the original
shortest-path tree T ). This can be implemented such that for each node v ∈ A,
the distance D[w] is updated at most once. Then, we set d[v] = con(v) for each
node v which either is contained in A or has a neighbor in A. Finally we insert
each node with d[v] �= D[v] with priority min{d[v], D[v]} in Q.

5 Experiments

In this section, we present an experimental evaluation of the algorithms described
above. Our implementation is written in C++ (using the STL at some points).
Our tests were executed on one core of an AMD Opteron 2218, running SUSE
Linux 10.3. The machine is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB
of L2 cache. The program was compiled with GCC 4.2, using optimization
level 3.
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For each experiment, 1000 update instances were generated. To properly mea-
sure the speed-ups, a full Dijkstra run is performed directly after each update
and the speed-up compared to that run (i.e. the time needed by Dijkstra’s al-
gorithm divided by the time needed by the update algorithm) is computed.
Finally we compute the mean value of these speed-ups. Thus, measurement dis-
turbances due to background processes etc are avoided as much as possible. For
Tables 1-4 we showed in bold letters all algorithms whose performance was at
least 85% of the best observed performance.

In our experiments we evaluated all previously described algorithms. We did
not include the heuristic of Buriol et al [9] because it does not support edge
insertions or deletions. Further, we did not include the D’Esopo-Pape variants
of the Narváez-framework because pretests had revealed some instances with
extremely bad performance with this approach. To gain further insights in the
performance of the batch-algorithms (Narváez and Tuned SWSF), we exe-
cuted these two times: one time with processing the edges in batch, as stated
originally and one time with iteratively processing the edges one after another.
We refer to these approaches as itNar and Ittuned SWSF. Note that we refer
to the Narváez-framework as a batch algorithm while it actually does not per-
form updates completely in a batch: its initialization phase handles edge updates
iteratively but the following main phase handles all updates in a batch.

5.1 Graph Instances

UNIT DISK. Given n and m, a unit disk graph is generated by randomly
assigning each of the n nodes to a point in the unit square of the Euclidean
plain. Two nodes are connected by an edge in case their Euclidean distance is
below a given radius. This radius is adjusted such that the resulting graph has
approximately m edges. As edge weights we use the Euclidean distance to the
power of 0 (hop length), 1 (Euclidean distance) and 2 (energy). All tested graphs
consist of 15 000 nodes.

RAILWAY. The graph RAIL represents the condensed railway network of
Europe, based on timetable information, provided by the company HaCon [17]
for scientific use. Nodes represent stations while edges represent direct connec-
tions between the stations. The edge weight corresponds to the average travel
time between two stations. The graph has 29 578 nodes and 159 914 edges.

AS-GRAPH. The graph AS-HOP represents the internet as of 2008/3/26 on
the AS-level, i.e. each node corresponds to an autonomous system and edges
represent connections between autonomous systems. This graph is taken from
the Routeviews project page [18]. It has 27 909 nodes and 114 474 edges. The edge
weight is 1 for each edge. The same graph with edge weights chosen uniformly
at random from the interval [1, 1000] is called AS-RAN.

CAIDA. This dataset represents the internet on the router level, i.e. nodes are
routers and edges represent connections between routers. The network is taken
from the CAIDA webpage [19] and has 190 914 nodes and 1 215 220 edges. The
edge weight is 1 for each edge.
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ROAD. We evaluate three road networks provided by the PTV AG [20]. DEU
represents Germany with 4 378 447 nodes and 10 968 884 edges, NLD the
Netherlands with 946 632 nodes and 2 358 226 edges and LUX represents Lux-
embourg with 30 647 nodes and 75 576 edges. The edge weights are the corre-
sponding travel times with speed profile ‘slow car’.

GRID. These are fully synthetic graphs based on two-dimensional square grids.
The nodes of the graph correspond to the crossings in the grid. There is an edge
between two nodes if these are neighbors on the grid. Edge weights are randomly
chosen integer values between 1 and 1000. GRID 100 is a 100x100 grid graph
while GRID 300 is a 300x300 grid graph.

5.2 Assessing the Performance of the Algorithms

Let U = {u1, . . . , uk} be a set of updated edges. By ∆(G, U) we denote the
number of vertices in V for which the distance from the source changes due
to the update. The expected speed-up of an update is the number of vertices in
the graph divided by ∆(G, U). This value is roughly the speed-up we expect
from a good update algorithm. Of course, speed-ups can even be higher for
special instances. It experimentally turned out that when the topology of the
original shortest-path tree does not change, the propagation of the updated
edge’s weights through the tree can gain a large speed-up.

When we want to measure the difficulty of an update for an iterative algo-
rithm we consider U = (u1, . . . , uk) to be ordered. We perform the updates ui

iteratively in the given ordering (always additional to the former updates) ob-
taining a sequence of graphs G = G0, G1, . . . , Gk. We write δ(G, (u1, . . . , uk)) :=∑k−1

i=0 ∆(Gi, {ui+1}). We have the following hypothesis: the smaller the difference
between ∆(G, U) and δ(G, U) is, the less do the contained single-edge updates
interfere and it is reasonable to use an iterative algorithm for the update. If the
difference is great, an iterative algorithm would change the distance of many
nodes multiple times. Hence, it is more appropriate to use a batch algorithm.
The experimental evaluation will support our hypothesis.

5.3 Space-Saving Implementation of RR

The algorithm RR needs to maintain the shortest-path subgraph. This subgraph
is implicitly given by each edge (u, v) with d[u] + len(u, v) = d(v). We imple-
mented the algorithm doubly. One time with explicitely storing the subgraph
(RR DAG) and one time with reconstructing it when needed (RR). It turned
out that there are only small differences between both implementations, with
no variant being clearly superior. We therefore only report the results for the
space-saving implementation RR.

5.4 Single-Edge Update Experiments

We start our experimental study by single edge updates. Because of space restric-
tions and a different focus of our paper we do not carry out a separate analysis
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Table 1. Speed-ups of experiments with single-edge updates

LUX NLD DEU RAIL CAIDA AS-HOP AS-RAN GR100 GR300 UNIT H UNIT E

FMN 42 1504 29087 151 22702 1624 2182 25 142 327 36
SWSF-FP 112 3759 65404 366 12429 416 691 59 351 1613 31
tun SWSF-FP 152 5140 84873 562 16406 893 3442 105 598 2436 186
tun SWSF-NAR 147 3354 70245 215 9306 614 695 94 523 748 129
tun SWSF-RR 118 3798 66068 412 26093 2148 3766 74 430 2096 102
RR 155 4666 74857 510 34586 2599 4057 103 568 2519 137
Nar-1st BF 284 5335 100944 357 6578 417 305 138 784 1176 20

∆(G, U) 130.42 140.52 70.72 30.68 0.21 0.41 0.74 59 113 0.01 93
expected speed-up 236 6762 62549 986 inf inf inf 169 804 inf 163

for the decremental and the incremental case. An update consists of choosing
an edge uniformly at random and multiplying its weight by a random value in
(0, 2). The results can be seen in Table 1.

We observe that the algorithms of the Narváez-framework have only tiny
differences in performance with Nar-1st BF being slightly (but not significantly)
faster most times. There is no such uniform behavior for the SWSF-FP-like al-
gorithms. Tuned SWSF is always faster (between 1.3 and 6 times) than SWSF-

FP. The algorithm Tuned SWSF RR is always at least as fast as SWSF-FP

and up to 5.5 times faster. The algorithm Tuned SWSF NAR seems to be very
volatile being between half as fast and 4 times faster than SWSF-FP.

Comparing the different classes of algorithms, we find the algorithms to per-
form quite differently, but within the same order of magnitude. The algorithm
FMN is most times much slower than the other ones. This is due to the overhead
caused by maintaining and reading the priority queues used by this algorithm.
The technique used in this algorithm can pay off in case nodes with high degree
exists (for which many edge-relaxations can be saved). This is not the case for the
test instances used. Exceptions are the INTERNET instances CAIDA, AS-HOP
and AS-RAN. Here, the gap to the other algorithms is much smaller, (which
meets the theoretical considerations). Hence, it is to be expected that there are
dense graph classes for which FMN is the superior algorithm. On the ROAD
and GRID instances, the Narváez-framework is superior. This is because the
structure of the shortest-path tree stored by the algorithm hardly changes on
these experiments. Therefore, the early-propagation of the weight change works
well. On the INTERNET instances, RR is the fastest algorithm. Looking at the
small value of ∆(G, U), we can see that updates hardly have any impact on these
instances, which favors the RR-algorithm with its small computational overhead
and the early detection of edge weight increases that do not change distances on
the graph.

The achieved speed-ups vary greatly between the instances. This is mainly
due to the different structure of the underlying graphs, which results in greatly
differing expected speed-ups. It is interesting to see that in nearly all cases the
best actual speed-ups are close to the expected speed-ups or even higher. This,
in combination with the small absolute runtimes in the range of microseconds,
makes us expect that there is not much space for further improvement for the
single-edge update case.
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5.5 Experiments on Batch Updates

Multiple Randomly Chosen Edges. In this experiment we chose 25 edges
uniformly at random. For each edge, we chose uniformly at random a value from
the interval (0, 2) and multiplied the weight of the edge with that value. For each
graph there is hardly any difference between ∆(G, U) and δ(G, U). Therefore,
the single-edge updates did only interfere marginally with each other. Hence,
not much news is to be expected by this setting regarding the comparison of the
algorithms. This has been confirmed by the experiments.

However, we ran the batch-algorithms (Narváez and Tuned SWSF) twice.
One time with processing the edges in batch as stated in the description and one
time with iteratively processing the edges one after another. Nearly no runtime
differences were observed between the iterative and the batch variants, which
indicates a low overhead with batch updates.

Node Failure and Recovery. This update class uses the two parameters
degmin and degmax. First, a node v with degree between degmin and degmax

is chosen uniformly at random. The update consists of two steps. In the first
step, v fails, i.e. the weights of all edges adjacent to v are set to infinity. In the
second step, v recovers, i.e. the weights of all edges adjacent to v are reset to
their original values. The results can be found in Tables 2 and 3.

We now take a look at the INTERNET instances. The most remarkable result
is the bad performance of the Narvaez-framework, which clearly is the inferior

Table 2. Speed-ups of experiments with node failure and recovery updates on
INTERNET-instances

AS-HOP AS-RAN CAIDA
degree 1-10 10-100 100-500 1-10 10-100 100-500 1-10 10-100 100-500

FMN 784 173 23 1368 129 3 7824 2284 185
ittun SWSF-FP 912 228 26 1320 235 11 12874 4212 382
SWSF-FP 273 68 8 389 28 1 9651 2203 128
tun SWSF-FP 967 250 24 1417 252 15 14042 4693 405
tun SWSF-NAR 407 92 9 410 50 4 9785 2187 122
tun SWSF-RR 1272 528 130 2475 433 21 12395 6839 969

RR 1438 576 142 2623 490 17 13915 7075 1163

Nar-1st Heap 53 21 9 86 59 16 4315 761 75
itNar-1st Heap 52 18 6 71 30 8 4060 573 63

δ(G, U) 1.26 12.16 82.54 1.47 45.01 1365.85 1.97 7.4 90.99
∆(G, U) 1.07 8.59 71.28 1.1 34.6 712.3 1.45 5.7 85.73
expected speedup 27909 3489 393 27909 821 86 190914 38183 2246

Table 3. Speed-ups of experiments with node failure and recovery updates on UNIT
DISK-instances

metric hop euclidean energy
average degree 7 10 15 7 10 15 7 10 15

FMN 30 40 55 27 21 24 12 14 20
ittun SWSF-FP 238 398 485 116 95 98 56 66 91
SWSF-FP 128 214 236 60 32 36 28 24 22
tun SWSF-FP 260 462 561 158 115 141 75 86 110
tun SWSF-NAR 106 116 147 101 77 97 57 61 67
tun SWSF-RR 223 395 527 105 75 89 49 54 67
RR 289 504 628 111 91 106 55 63 84
Nar-1st Heap 70 87 131 84 62 111 52 62 74
itNar-1st Heap 55 71 100 64 50 66 36 46 52

δ(G, U) 19 8 6 86 107 99 194 174 132
∆(G, U) 18 7 5 54 79 55 128 119 98
expected speedup 833 2500 3750 283 190 273 117 126 153
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algorithm for that testset. One main reason for that is, that on this testset the
edge-weight propagation in the initialization phase creates useless extra effort
which gets overwritten later on. The gap between δ(G, U) and ∆(G, U) is small
to mid-size, favoring RR with its small overhead, but big enough such that
Tuned SWSF RR is nearly as fast. This difference also manifests in the small
difference between Ittuned SWSF and Tuned SWSF.

The situation is similar, but a bit clearer, for UNIT DISK graphs. When apply-
ing hop distance, δ(G, U) and ∆(G, U) are still quite near to each other, Tuned

SWSF and RR are the best-performing algorithms (with RR being slightly bet-
ter). When applying Euclidean or energy edge weights updates, the difference
between δ(G, U) and ∆(G, U) is much bigger, and Tuned SWSF clearly is the
superior algorithm. We also observe the advantage of Tuned SWSF against
SWSF-FP being between 2 and 15 times faster.

Traffic Jams. This update class models real-world traffic jams. It derives from
the observation that traffic jams often occur along shortest paths. The number k
of updated edges is given as a parameter. Initially, a node v is chosen uniformly
at random. Then a shortest path SP ending at v and containing exactly k edges
is chosen uniformly at random. The update consists of two steps: in the first step,
the weights of edges in SP are multiplied by 10. In the second step, the edge
weights are reset to their original values. The results can be found in Table 4.

Table 4. Speed-ups of experiments with traffic jam updates

GRID LUX NLD DEU
edges 10 20 30 5 10 20 10 20 30 10 20 30

FMN 3 2 1 4 2 1 11 5 2 185 30 7
ittun SWSF-FP 15 9 5 15 7 2 39 17 6 755 100 23
SWSF-FP 13 10 6 15 9 5 75 32 12 873 173 40
tun SWSF-FP 23 16 9 20 12 6 107 44 17 1210 235 55
tun SWSF-NAR 22 16 9 22 13 7 107 41 17 1402 342 79
tun SWSF-RR 16 12 7 15 9 5 72 31 12 957 181 42
RR 17 10 5 20 9 3 43 18 6 924 149 36
Nar-1st Heap 16 9 5 20 10 4 37 15 5 1120 196 35
itNar-1st Heap 19 12 6 24 12 4 57 24 8 1231 219 54

δ(G, U) 4367 7909 15552 1178 3052 8616 12910 32088 93725 7885 39260 142191
∆(G, U) 2591 3564 6412 821 1366 2567 4134 10899 26153 3884 13701 51252
expected speed-up 35 25 14 37 22 12 229 87 36 1127 320 85

We observe that this update class consists of strongly interfering single-edge
updates: there is a big difference between δ(G, U) and ∆(G, U). Tuned SWSF

and Tuned SWSF NAR are the best-performing algorithms for this testset.
This is because pure batch algorithms avoid processing nodes many times. With
an increasing number of edges, the interference between the updated edges in-
creases and the advantage of these two algorithms grows.

For a small number of edges in the jam, the Narváez-framework is compa-
rable to Tuned SWSF. The framework slows down with a growing number of
updated edges. This is because the initialization phase processes many nodes one
time for each updated edge. It is astonishing to see that the Narváez-framework
is not able to take advantage of the batch-character of the update. This can be
seen through a comparison with itNarvaez. The iterative variant is even faster
than the batch one, which could be a hint at space for improvement. Again,
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FMN is much slower than the other algorithms, as its overhead does not pay of
on these instances.

6 Conclusion

In this work we focused on the single-source shortest-path problem with non-
negative weights. We gave the first experimental study evaluating the performance
for single-edge updates that contains all current algorithms and incorporates a
broad set of instance classes. It turned out that the algorithms perform quite differ-
ently, but within the same order of magnitude. Furthermore, the achieved speed-
ups varied greatly between different instances. This can be explained by measuring
the impact of the updates on the graphs.

Moreover, we presented the first experimental study at all for the case of multi-
ple edge changes at a time. One experiment was to choose a set of edges uniformly
at random. It turned out that this way the single-edge updates did almost not in-
terfere. Therefore, the results deviated not much from the single-edge case. We
also used two more realistic types of batch updates. One is the simulation of node
failure and recovery,which affects all incident edges. The single-edgeupdates inter-
fered for that class, but not very strongly. For internet instances, the best perform-
ing algorithms were RR and Tuned SWSF RR with RR being slightly faster.
For UNIT DISK graphs, Tuned SWSF was the best algorithm with RR being
slightly faster for hop distance. The other update class modelled traffic jams. The
single-edge updates interfered greatly, Tuned SWSF and Tuned SWSF NAR

were the superior algorithms there.
Furthermore, we presented tuned variants for the SWSF-FP-algorithm and

evaluated their performance. For the tuned variants we observed speed-ups com-
pared to SWSF-FP of up to 15. Finally, we gave a simple methodology (based
only on Dijkstra’s algorithm) to decide if one should try a single-edge or a batch-
update algorithm for a given instance class. We compared the ‘impact’ of the up-
date when processed in batch with the ‘impact’ when processed iteratively. For
updates with a big gap between both values, the algorithms Tuned SWSF or
Tuned SWSF RR usually performed best. With a small gap, there was usually
a better-performing iterative algorithm.

Concluding, we gave a first experimental overview on the different approaches
for the problem, which can be used as a base for further research. The most im-
portant information that can be extracted from our experiments is the astonishing
level of data dependency within the problem. It turned out that a proper assess-
ment of an algorithm’s running time is not possible without full knowledge of the
application it is used in. Further, a great amount of experiments is required to get
the big picture of an algorithm’s efficiency.
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Abstract. We introduce a new type of bounding-volume hierarchy, the
c-oriented rotated-box tree, or c-rb-tree for short. A c-rb-tree uses boxes
as bounding volumes, whose orientations come from a fixed set of pre-
defined box orientations. We theoretically and experimentally compare
our new c-rb-tree to two existing bounding-volumes hierarchies, namely
c-dop-trees and box-trees.

1 Introduction

The range-searching problem—preprocess a set S of objects into a data struc-
ture such that the objects from S intersecting a query range can be reported
efficiently—is one of the most fundamental problems in computational geome-
try. The problem comes in many variants, depending on the type of objects to
be stored (points, segments, etc.), the type of query ranges (boxes, discs, sim-
plices), the dimension of the underlying space, and so on. For many of these
variants, dedicated data structures exist with theoretical performance guaran-
tees that match (or almost match) the theoretical lower bounds—see one of the
surveys [1,3] for an overview. In many applications, however, one would prefer a
more versatile data structure: a data structure that can store different types of
objects and can answer range queries with different types of ranges. Indeed, such
multi-functional geometric structures are used in most practical applications.

Space-partitioning structures form one category of multi-functional data struc-
tures. These structures are based on a (usually hierarchical) subdivision of the
space into cells, where with each cell the objects intersecting it are stored. A
query can then be answered by finding the cells intersecting the query range Q
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Fig. 1. Example of a bounding-volume hierarchy (here: a box-tree) in the plane

and testing the objects stored with these cells for intersection with Q. Examples
of space-partitioning structures are quadtrees and bsp trees. A disadvantage of
these structures is that objects may intersect multiple cells and, hence, may have
to be stored multiple times. As a result, the storage can be super-linear. An al-
ternative is to use a bounding-volume hierarchy, or bvh for short. bvhs are the
topic of our paper.

Bounding-volume hierarchies. A bvh for a set S of n objects in Rd is a tree
T with n leaves, each storing (a pointer to) a distinct object in S. Moreover,
each node ν of T stores a bounding volume bv(ν) for the set S(ν) of objects
stored in the leaves of Tν , the subtree rooted at ν. Fig. 1 shows an example of
a bvh, where the bounding volumes are axis-aligned boxes. A bvh has n leaves
by definition and so it uses O(n) storage, assuming the bounding volumes are
constant-complexity shapes.

Querying a bvh T with a range Q is done by traversing T in a top-down
manner, as follows. When a node ν is visited, one tests if bv(ν) ∩ Q = ∅. If
so, the subtree Tν need not be explored further, otherwise the children of ν are
visited. When a leaf is reached, the object stored with it is tested for intersection
(and possibly reported). The efficiency of the query procedure depends on the
number of visited nodes, and on the cost of the intersection test that has to be
done at each visited node. There are two factors influencing this. One factor is
how the objects are distributed over the tree. In Fig. 1, for example, exchanging
o3 and o8 in the tree would result in much larger bounding volumes which may
cause more nodes to be visited. The second factor is the type of bounding volume
being used. This is what we will focus on.

Many different types of bounding volumes have been proposed—see the the-
sis of Haverkort [8] for an overview—the most popular of which is the bounding
box: the smallest axis-aligned box containing the objects. A bvh using bound-
ing boxes is called a box-tree. Bounding boxes allow for very efficient intersection
tests, especially when the query range Q is also an axis-aligned box, as is often
the case.1 An additional advantage is that bounding boxes need very little stor-
age. On the other hand, bounding boxes do not always fit the data well, which
can have a negative impact on the number of visited nodes. Agarwal et al. [2]

1 When Q is not a box, one usually replaces Q with its bounding box to profit from
the fast box–box intersections. Testing the original range Q is then only done at the
leaf level—see also Section 2.
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have obtained theoretical performance guarantees for orthogonal range search-
ing. More precisely, they showed how to construct, for any given set S of n input
boxes in R2, a box-tree that can answer orthogonal range queries in O(

√
n + k)

time, where k is the number of reported boxes; the result generalizes to Rd,
where the bound becomes O(n1−1/d + k). For other types of ranges, it is not
possible to obtain sublinear worst-case bounds using box-trees.

How tightly fitting a bounding box is, may depend on the choice of the co-
ordinate system. Hence, bounding boxes that are oriented in such a way that
they fit the data best—this orientation can be different at each node—have been
investigated as well. The resulting bvhs are called obb-trees [7]. Unfortunately,
intersection tests with arbitrarily oriented boxes are significantly more expen-
sive than with axis-aligned boxes. As a result, obb-trees do not seem the best
solution for range-searching applications. (When using bvhs to perform collision
checking between two complex polyhedral objects, obb-trees have been reported
to perform well in certain cases where the objects are very close to each other.)

Another option is to use a so-called c-discretely-oriented polytope (c-dop)
as bounding volume [5,6,9,10]: a convex polytope in R

d whose facets are or-
thogonal to c predefined directions, for some parameter c � d. (Thus an axis-
aligned bounding box in Rd is a 2-dop.) The resulting bvh is sometimes called a
c-dop-tree. The larger c, the more tightly fitting the bounding c-dops will be,
but the more costly the intersection test. Moreover, the larger c, the more stor-
age a c-dop needs. Because a c-dop-tree may use facets in more orientations
than a box-tree, one can obtain performance guarantees for wider class of query
ranges. Indeed, De Berg et al.[5] showed how to construct, for any given input
set of n c-dops, a c-dop-tree that can answer range queries with c-dop ranges
in O(n1−1/c + k) time. When the input objects are disjoint c-dops in the plane,
the query time reduces to O(n1/2+ε + k). This bound is almost as good as the
bound for box-trees, while it holds for more general query ranges.

Our contribution. We introduce a new type of bvh, the c-rotated box-tree, or
c-rb-tree for short. In a c-rb-tree in Rd, the bounding volumes are boxes that
have one of c/d predefined orientations, where c is a multiple of d. (This implies
that the total number of orientations for the facets is c.) Which orientation is used
at a node depends on its level. In a 4-rb-tree in R2, for instance, the bounding
boxes of nodes at even levels are axis-parallel, while the bounding boxes at odd
levels are oriented at a 45◦ angle. A c-rb-tree uses the same amount of storage
per node as a box-tree, independent of the value of c. Thus it uses less storage
than a c-dop-tree (for c > d). Moreover, the intersection tests are still simple
box–box intersection tests, if one precomputes the bounding box of the query
range Q in each of the c/d orientations. Compared to box-trees, c-rb-trees are
less sensitive to the choice of the coordinate system.

In Section 2 we investigate the theoretical properties of c-rb-trees: we show
that with c-rb-trees, it is possible to obtain the same asymptotic bounds on
range queries with c-dop ranges as with c-dop-trees. Thus, a collection of n
c-dops can be stored in a c-rb-tree such that c-dop queries can be answered
in O(n1−1/c + k) time, and when the input consists of disjoint c-dops in the
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plane then the query time reduces to O(n1/2+ε + k). So from a theoretical point
of view, c-rb-trees have an advantage over box-trees in the sense that one can
obtain performance guarantees for a wider class of queries.

We also experimentally investigate our new c-rb-tree in the plane, and com-
pare it to box-trees and c-dop-trees. We start in Section 3 by discussing the test
setup. In Section 4 we then describe the experiments and analyze the results.

2 The c-Oriented Rotated-Box Tree

The structure. Let L = {	1, . . . , 	c} be a fixed collection of c non-parallel lines
through the origin, where c is a (positive) multiple of d. For 0 � j < c/d,
let Lj = {	jd+1, . . . , 	(j+1)d}. We define a j-oriented box, or j-box for short, to
be a polytope with 2d facets, such that for any line in Lj there are two facets
orthogonal to it. Note that a j-box is simply an axis-aligned box in the coordinate
system defined by Lj . A c-rb-tree is now defined as a bvh T such that the
bounding volume bv(ν) of a node ν in T is a j-box, where j = level(ν)mod(c/d).
Thus the bounding boxes of nodes at the same level in the tree all have the same
orientation, and as we descend down the tree we repeatedly cycle through the
c/d different box orientations. Like in a c-dop-tree one would usually choose
the orientations of the lines in L as evenly spread as possible. Moreover, one
may want to choose the lines in each Lj to be pairwise orthogonal, but this is
not necessary.

Answering queries. A range query with a range Q in a c-rb-tree T recursively
traverses T , starting at the root. When a node ν is visited, the algorithm tests if
bv(ν)∩Q = ∅. If this is the case then the search is terminated. Otherwise, when
ν is an internal node then its two children are visited recursively, and when ν is
a leaf then the object stored at ν is tested for intersection with Q. We call this
procedure the standard query.

An alternative is to not use the query range Q itself for the intersection tests
with the bounding volumes, but to use a bounding volume for Q as well. In a
c-rb-tree this means one has to compute c/d different bounding boxes for Q,
namely a bounding j-box Bj(Q) for j = 0, . . . , (c/d)− 1. Then the intersection
test at a node ν storing a j-box is the test bv(ν)∩Bj(Q) = ∅. This is, of course,
just a normal box–box intersection test in the coordinate system defined by Lj .
The range Q itself is only used at the leaf level, when an input object is tested
for intersection. We call this procedure the intersection-efficient query.

Note that intersection-efficient queries can also be (and in fact, usually are)
used in box-trees and c-dop-trees; then the intersection tests with the bounding
volumes of visited nodes are done with the bounding box resp. bounding c-dop

of Q. Intersection-efficient queries have faster intersection tests than standard
queries, but they may result in more nodes being visited.

A theoretical comparison of c-rb-trees with box-trees and c-dop-trees. Let S be
a set of n objects, and let T be a bvh for S. We define the base tree of the bvh

to be the tree T without its bounding volumes. Thus the base tree is a tree with
n leaves, each storing a distinct object from S.
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It is not difficult to see that the asymptotic query time for a c-rb-tree is at
least as good as for the box-tree that uses the same base tree. This is formalized
in the following theorem; its proof is similar to the proof of Theorem 2 below.
We omit the proof for lack of space.

Theorem 1. Let Tbox be a box-tree on a set S of objects in Rd. There is a c-
rb-tree Trb for S such that, for any query range Q, the number of visited nodes
in Trb is less than 2c/d times the number of visited nodes in Tbox.

With a box-tree, one can only guarantee sublinear query times for range search-
ing with axis-aligned boxes. With a c-dop-tree, on the other hand, one can obtain
sublinear query times for range searching with c-dops. The next theorem shows
that this is also possible for c-rb-trees.

Recall that a c-dop is a polytope with at most 2c facets, each orthogonal to
one of c predefined directions, and a c-dop-tree is a bvh whose bounding volumes
are c-dops. We will compare c-dop-trees to c-rb-trees when the orientations of
their bounding volumes are defined by the same set L of lines. The following
result holds for intersection-efficient queries as well as for standard queries.

Theorem 2. Let Tdop be a c-dop-tree on a set S of objects in Rd. There is
a c-rb-tree Trb for S such that, for any query range Q that is a c-dop, the
number of visited nodes in Trb is less than 2c/d times the number of visited nodes
in Tdop.

Proof. Let Trb be the c-rb-tree with the same base tree as Tdop. Define Tdop(Q)
to be the subtree of Tdop consisting of the nodes that are visited when querying
with Q. The subtree Tdop(Q) is rooted at the root of Tdop, and its leaves are
either leaves of Tdop or internal nodes of Tdop where the search gets terminated.

Consider a node ν of the latter category, and let bvdop(ν) be its bounding
volume in Tdop. Since the search in Tdop is terminated at ν, we have bvdop(ν) ∩
Q = ∅. Because both bvdop(ν) and Q are c-dops, this means there is a line
parallel to a line 	 ∈ L separating bvdop(ν) from Q. Let j be such that 	 ∈ Lj .
Then the search in Trb will be terminated as soon as a descendent µ of ν is
reached whose bounding volume is a j-box (possibly µ = ν). Thus the search
in Trb does not visit any descendent of ν that is more than c/d− 1 levels away
from ν. Hence, the number of nodes that are visited in Trb below ν is at most
2c/d − 2. Let m be the number of nodes in Tdop(Q). Then �m/2� of those nodes
are leaves of Tdop(Q). The number of visited nodes in Trb can thus be bounded
by m + �m/2�(2c/d − 2), which is less than m · 2c/d, since m � 1. ��

Remark. It may seem that Theorem 1 is implied by Theorem 2. This is, however,
not the case since Theorem 1 works for any type of query range, while Theorem 2
is only stated for queries with c-dops.

3 Experimental Setup

In our experiments we will compare the performance of c-rb-trees, box-trees,
and c-dop-trees for sets of objects in the plane (d = 2). Below we discuss our
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experimental setup in more detail; the next section then discusses the actual
experiments.

Construction of the base trees. In all our experiments we take the directions of
the lines in L evenly distributed, and we take the lines in the sets Lj orthogonal
to each other. Thus L = L0 ∪ · · · ∪ L(c/2)−1, where Lj consists of lines whose
counterclockwise angles with the positive x-axis are j · (π/c) and π/2 + j · (π/c),
respectively. The value of c will be a parameter in our experiments.

Our general strategy is to first construct a base tree, and then generate our
bvhs from that. This way we can compare the effect of the choice of bound-
ing volume, while keeping the base tree the same. On the other hand, different
bounding volumes may work best for different base trees, so we try several strate-
gies to construct the base trees.

When the input consists of point data, the base tree is obtained in one the
following two ways [5].

Our first base-tree construction uses so-called c-kd-trees, as explained next.
In a kd-tree [4] the point set is recursively subdivided in equal-sized subsets,
where the partition line alternates between being horizontal and being vertical.
In other words, at even levels one uses the horizontal line whose y-coordinate is
the median y-coordinate of the current point set, while at odd levels one uses
the vertical line whose x-coordinate has the median x-coordinate. A c-kd-tree
works in the same way; the only difference is that the orientations of the splitting
lines cycle through the orientations of each of the c lines in L, rather than only
through the horizontal and vertical direction. More precisely, we use the lines in
the order 	1, 	c/2, 	2, 	(c/2)+1, . . ., so that the orientation of consecutive splitting
lines is not too similar.

Our second base-tree construction uses the so-called c-grid bsp. Here the plane
is subdivided as follows. Fix a parameter s � 2. Then for each line 	i ∈ L, one
constructs s slabs parallel to 	i such that each slab contains n/s points. The
overlay of these c collections of slabs gives a subdivision with Θ(s2c2) cells. One
then constructs a balanced bsp tree whose leaf regions correspond exactly to
these cells. Finally, the algorithm is applied recursively within each cell. This
construction is used to obtain the O(n

1
2+ε + k) bound for c-dop queries in a set

of disjoint c-dops—see [5] for details. Since we also support the construction of
c-kd-trees as base trees, the c-grid bsp should clearly differ from the c-kd-tree.
Thus s should not be too small. On the other hand, a large value of s is likely
not to be very efficient. In our experiments, we use s = 16. Moreover, we do
not cycle through the different orientations in the same way as in the c-kd-tree
construction, but instead use the same orientation at four consecutive levels.2

When the input consists of line segments we proceed as follows. We pick a
representative point on each of the segments, and apply one of the construc-

2 There are many variations one could try here. However, the c-kd-tree approach has
proven to be superior to the c-grid approach in the experiments by Streppel [13]. Even
though his experiments are in a different setting—he considers external-memory
data structures—we expect the same to be true in our case. Hence, we have not
investigated this issue in depth in our experiments.
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tions above to generate a bsp on the representative points. The only differ-
ence is that whenever a splitting line 	 is chosen in the recursive partitioning
process, all segments intersecting 	 are dealt with separately; this separate re-
cursive call uses a similar partitioning strategy, except that the direction of
	 is no longer used. Thus, a node will have three children: one for the seg-
ments to the left of 	, one for the segments to the right of 	, and one for
the segments intersecting 	. (If desired, this could be converted to a binary
tree.) See [5] for details and a proof that this procedure yields good worst-case
query times.

Input Data. As input data we consider points and line segments. In each exper-
iment we generate 500.000 random input objects. The point data is generated
inside the unit square according to one of the following three distributions.

Uniform distribution: We generate the points uniformly at random.
Clustered distribution: We take 50 points as cluster centers—these 50 points
themselves are generated uniformly at random in the unit square—and for each
cluster center we generate a cluster of 10,000 points as follows. We continue
generating random points within the unit square, but keep only those that are
within a fixed distance of the cluster center.
Line distribution: The points are generated on the line y = ax, where a is a
parameter in our experiments. More precisely, the points are generated uniformly
at random on the part of the line inside the unit square.

The line segment data is generated similarly. First we generate one endpoint
of the line segment as described above and then determine the other endpoint
by generating a random vector of fixed maximum length, making sure the seg-
ment lies within the unit square. We also perform a test on a real-world input
set, namely the TIGER/Line data set3 and, in particular, the road network of
Kansas, which consists of 1,135,150 segments.

Queries. We use three different shapes for the query ranges in our test se-
ries: line segments, triangles, and boxes. The first two represent arbitrary one-
and two-dimensional queries, while the box is a very common query type. The
efficiency of a search data structure may vary with the size of the query. There-
fore we consider two query sizes for each of the query shapes—a small and
a large one. The sizes are fixed such that given n uniformly distributed in-
put objects, a small query would return about log n answers and a large query
about

√
n.

The results will be averaged over 100 randomly generated queries of the shape
under consideration. We let the distribution of the location of the query follow
a distribution that is similar to the distribution of the input data. For example,
when querying an input that follows the line distribution, we also take the query
range close to that line. This avoids the situation that the averages are dominated
by queries in completely empty regions.

3 Available from: http://www.census.gov/geo/www/tiger/
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4 Experiments

The experiments are conducted on a machine with a 2.4 GHz AMD Opteron
250 processor and 4 GB RAM. The code is compiled with g++ 3.2 and compiler
option -O3. For each scenario, the values listed are the average values of 100
random queries. We enforce identical input data and query ranges for directly
compared runs by manipulation of the random-generator seed.

Intersection-Efficient Queries. First, we are interested in the effectiveness of
intersection-efficient queries in comparison to standard queries. Our conjecture
is that intersection-efficient queries are faster than standard queries in most
scenarios. The size of the queries is an influential parameter in this experiment,
since the overhead introduced by approximating a query range by a bounding
volume grows with the query range. Therefore we test our conjecture in a scenario
that favors the standard query, namely large queries on clustered input data. For
this experiment, we fix c = 4. We investigate the two different base trees, namely
c-kd-tree and c-grid bsps. The results of the test series are listed in Table 1. From
Table 1 we can draw several conclusions.

• Similar to the experiments of Streppel [13] on external-memory c-dop-trees,
the c-kd-tree is superior to the c-grid bsp. We therefore restrict ourselves to
c-kd-trees as base trees in the upcoming experiments.
• For segment queries in point data, standard queries are better than intersection-
efficient queries. This is not strange, as the extra “query volume” generated by the
bounding volume of the range is largest (in the relative sense) for such queries—
see the big difference in the number of visited nodes.

Table 1. Comparison of standard queries (top values in each cell) and intersection-
efficient queries (bottom values in each cell) by means of the query time in milliseconds
(left values in each cell) and the number of visited nodes (right values in each cell). As
input we use points and line segments randomly generated according to the clustered
distribution. The top half lists runs performed with base tree generated from c-kd-trees.
In the lower half they are generated from c-grid bsps.

points line segments
query box-tree c-dop-tree c-rb-tree box-tree c-dop-tree c-rb-tree
line 0.22 170 0.67 143 0.20 138 4.71 4458 8.94 3428 4.08 3509

segment 1.52 2621 0.84 1163 0.81 1229 5.11 6025 3.77 3952 3.98 4241
1.65 2770 1.94 2764 2.40 2771 5.29 5835 5.38 5411 6.65 5580

box 1.65 2770 1.94 2764 1.89 2842 5.27 5835 5.39 5411 5.68 5686
2.72 3286 7.53 3262 2.98 3256 9.63 7610 17.89 6855 9.29 6858� 3.99 6581 3.44 4808 3.33 4890 10.28 9782 8.79 7696 9.05 7992

line 0.50 554 1.60 550 0.53 561 5.04 4914 9.92 4023 4.60 4190
segmet 1.72 2918 1.03 1538 1.05 1636 5.34 6462 4.03 4557 4.39 4910

1.90 3099 2.11 3099 2.81 3107 5.81 6497 5.76 6162 7.32 6410
box 1.90 3099 2.11 3099 2.24 3195 5.73 6497 5.80 6162 6.27 6518

3.08 3772 8.33 3767 3.48 3781 10.03 8235 19.16 7595 10.05 7693� 4.35 6886 3.66 5280 3.84 5423 10.79 10380 9.26 8437 9.84 8820
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• For c-dop-trees, our conjecture holds: intersection-efficient queries are faster
than standard queries, except for segment queries in point data and even there
the difference is relatively small. This is to be expected, since c-dops are already
tightly fitting and not much larger than the original range. Note that this effect
will be even stronger for larger values of c.
• For box-trees, the conjecture does not hold: standard queries are faster than
intersection efficient queries in most settings.
• As expected, the results for c-rb-trees are in between those for box-trees and
c-dop-trees, and not very conclusive. For segment data, the difference between
standard and intersection-efficient queries is small. For point data, the differ-
ences are bigger, with intersection-efficient queries winning for box queries and
standard queries winning for segment and triangle queries.

Based on the outcome of our experiment, we continue to use both standard
and intersection-efficient queries for box-trees and c-rb-trees in the upcoming
tests, while for c-dop-trees we confine ourselves to intersection-efficient queries.

Number of orientations. Next we are interested in the impact of the value of c,
the number of orientations. We conjecture that for c-dop-trees, one should choose
a relatively small value of c (say c = 4 or c = 6) since larger values increase the
time needed for the basic intersection test, while not providing much more tightly
fitting bounding volumes. For the c-rb-tree, it probably does not matter so much
which value of c is used: increasing c does not give more tightly fitting volumes,
nor does it change the basic intersection test.

To test our conjecture, we conduct a test series that compares the performance
of c-dop-trees and c-rb-trees with c = 4, 6, 8, 10, 12. Table 2 lists the average
query time and the number of visited nodes of those runs that we performed on
line segment data, where the left values in each cell give the query time, and the
right values give the number of visited nodes. We first discuss the outcome for
uniform and clustered data.

• In the c-dop-tree, increasing the value of c generally leads to fewer visited
nodes, as expected. (Note that this is not the case by definition since the set of
directions for c = 10, for instance, is not a subset of the set of directions for c = 8.
Indeed, there are a few cases where the number of visited nodes increases slightly
when increasing c.) This does not make up for the more expensive intersection
tests, however: The best query time is always achieved for c = 4 or c = 6.
• Interestingly, the number of visited nodes in the c-rb-tree often goes up when
c is increased, also leading to higher query times. The explanation lies probably
in the underlying base tree. We use the same value of c for the construction of
the c-kd-tree as for the orientations of the bounding volumes. Thus a larger value
of c leads to more splitting directions in the c-kd-tree. As a result, the splitting
directions at different levels are less “consistent”. (Imagine for example a set of
points inside an axis-parallel rectangle; splitting them with an axis-parallel line
seems to lead to better clustering then splitting with a diagonal line.) Thus the
base tree may not be as good for higher values of c. On the other hand, using
a different value of c for the c-kd-tree than for the bounding volumes does not
seem a good idea either, since then the orientations for the splitting and for the
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Table 2. Comparison of the efficiency of c-dop-trees and c-rb-trees. Each cell features
average query times in milliseconds (left) and number of visited nodes (right).

uniform distribution clustered distribution line distribution
query c

c-dop-tree c-rb-tree c-dop-tree c-rb-tree c-dop-tree c-rb-tree
4 0.94 917 1.08 1026 3.77 3952 3.97 4241 9.85 10713 9.33 10472

large 6 0.98 853 1.14 1041 3.60 3462 3.84 3988 7.40 7336 7.30 8027
line 8 0.98 806 1.19 1071 3.70 3329 3.97 4083 8.37 7956 7.97 8610

segments 10 1.04 794 1.21 1086 3.90 3214 4.02 4119 7.76 6666 7.42 7941
12 1.07 780 1.29 1163 3.99 3147 4.20 4297 8.68 7135 8.00 8572
4 0.21 190 0.23 227 1.13 1176 1.33 1331 3.68 4002 3.61 4019

small 6 0.22 175 0.24 233 1.06 977 1.33 1245 2.11 2046 2.29 2317
line 8 0.22 167 0.26 249 1.03 881 1.39 1266 2.66 2452 2.71 2781

segment 10 0.24 164 0.26 253 1.09 850 1.40 1303 2.08 1683 2.25 2200
12 0.25 165 0.30 285 1.13 831 1.52 1429 2.65 2108 2.78 2804
4 1.20 1141 1.36 1256 5.39 5411 5.63 5686 17.26 17683 17.25 18024

small 6 1.30 1136 1.47 1327 5.80 5340 5.79 5816 18.55 18028 17.76 18632
8 1.36 1133 1.56 1373 6.10 5323 5.89 5954 19.56 17806 18.00 18655

box 10 1.50 1139 1.62 1431 6.45 5332 6.29 6105 21.48 18147 18.76 19206
12 1.54 1139 1.64 1440 6.83 5319 6.27 6172 22.28 18059 18.92 19292
4 0.32 277 0.43 319 1.99 1994 2.20 2173 5.91 6012 6.03 6246

large 6 0.33 265 0.49 331 2.00 1818 2.26 2126 5.43 5166 5.42 5504
8 0.34 255 0.52 347 2.06 1731 2.33 2157 5.66 5110 5.64 5615

box 10 0.37 254 0.51 353 2.20 1706 2.41 2219 6.16 5079 5.83 5735
12 0.38 254 0.54 380 2.28 1681 2.54 2327 6.34 5045 5.89 5837
4 2.93 2497 3.12 2683 8.79 7696 9.10 7992 23.91 21398 23.96 21597

large 6 2.95 2328 3.14 2655 8.69 7075 9.00 7643 23.29 19604 22.69 20428
8 2.97 2221 3.22 2680 8.99 6977 9.15 7770 23.82 19042 22.63 20104

� 10 3.12 2183 3.24 2706 9.48 6872 9.23 7859 25.22 18846 23.08 20414
12 3.22 2164 3.39 2829 9.70 6754 9.46 8006 25.88 18540 23.25 20468
4 0.44 360 0.57 409 2.97 2580 3.21 2768 7.24 6518 7.33 6643

small 6 0.45 338 0.62 416 2.92 2333 3.17 2658 6.14 5105 6.25 5501
8 0.47 328 0.65 435 2.95 2246 3.25 2709 6.55 5184 6.53 5675

� 10 0.50 327 0.65 443 3.11 2200 3.30 2749 6.52 4775 6.44 5532
12 0.52 326 0.69 473 3.20 2176 3.47 2896 7.01 4937 6.73 5835

bounding volumes are not consistent. The conclusion is that c = 4 and c = 6
seem the best choices for a c-rb-tree.

The line distribution shows a strange behavior. In particular, the bad perfor-
mance for c = 4 seems unexpected, since then one of the orientations in L is
parallel to the line on which the data are generated. This behavior has already
been discussed by Streppel [13]. His tests with external-memory data structures
use c = 2, 3, 4, 5, 6. In case of his line distribution scenario, which also uses the
line y = x, the tests show a clear peak in the number of visited nodes for c = 4.
He argues that using the orientation of the line also for constructing the base
tree results in many long and skinny bounding volumes, especially in a c-grid
bsp tree. Probably the same effect plays a role here. We also performed tests
with the lines y = 0.5x and y = 0.2x, which showed no distinguishable effect.
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Table 3. Comparison of the query times (in milliseconds) of box trees, c-DOP trees,
and c-rb-trees. The latter two are parametrized according to the previous experiment.

points line segments
distribution query box-tree c-dop c-rb-tree box-tree c-dop c-rb-tree

std int-eff tree std int-eff std int-eff tree std int-eff
0.15 0.42 0.24 0.13 0.24 1.14 1.35 0.95 1.08 1.08

line segs 0.05 0.04 0.03 0.03 0.02 0.37 0.31 0.21 0.28 0.23
uniform 0.35 0.35 0.40 0.52 0.42 1.20 1.20 1.20 1.58 1.36

distribution box 0.06 0.06 0.05 0.08 0.05 0.40 0.40 0.32 0.51 0.43
0.91 1.48 1.12 0.96 1.11 3.09 3.94 2.91 3.05 3.12� 0.09 0.10 0.07 0.12 0.09 0.66 0.59 0.45 0.64 0.57
0.23 1.55 0.63 0.22 0.60 4.71 5.03 3.65 4.09 3.85

line segs 0.04 0.04 0.04 0.04 0.03 2.10 1.75 1.06 1.59 1.33
clustered 1.64 1.64 1.94 2.40 1.90 5.29 5.29 5.45 6.52 5.68

distribution box 0.17 0.17 0.20 0.28 0.22 2.56 2.56 2.04 2.60 2.23
2.80 4.07 3.25 3.01 2.94 9.71 10.38 8.71 9.31 8.97� 0.40 0.58 0.45 0.45 0.43 4.26 3.96 2.92 3.59 3.17
0.04 2.65 0.97 0.04 0.83 9.31 9.83 7.38 7.76 7.37

line segs 0.03 0.08 0.05 0.04 0.04 3.93 3.20 2.08 2.72 2.26
line 7.42 7.42 8.62 10.76 8.39 15.87 15.87 17.32 20.44 17.26

distribution box 1.22 1.22 1.55 0.82 1.36 5.23 5.23 5.47 6.16 5.49
7.18 10.60 9.62 7.80 8.48 24.30 26.51 23.40 23.48 22.81� 0.88 1.36 1.18 0.98 1.06 8.15 7.32 6.15 7.07 6.28

0.14 0.32 0.18 0.12 0.19
tiger/ line segs 0.04 0.04 0.03 0.05 0.03

line data 1.20 1.20 1.32 0.96 1.38
of Kansas box 0.10 0.10 0.10 0.17 0.13

0.81 1.09 0.81 0.76 0.82� 0.08 0.09 0.06 0.11 0.09

Efficiency of different BVHs. In our final test series, we compare the efficiency
of the different BVHs, with c fixed according to the best results of the previous
experiment. Table 3 shows the results. We can draw the following conclusions.

• For segment queries, box-trees perform worse than c-dop-trees and c-rb-trees;
for segment queries in point data, the c-rb-tree is generally best, while for the
segment data the c-dop-tree is the winner.
• For box queries and triangle queries in point data, the box-tree performs best.
The only clear exception are small box queries on points on a line, where standard
queries on c-rb-trees are clearly the fastest.
• For segment data, box-trees perform best for large box queries, as expected. For
other queries on segment data c-dop-trees are usually best. Thus, c-dop-trees
provide a good alternative to box-trees if the increase in storage it not an issue.
• In contrast to our expectations, the results for the Tiger/Line set of Kansas
are not consistent with those of the uniform distribution. Here, the c-rb-tree is
best for large queries, and the c-dop-tree is the winner for small queries.
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• Because c-dop-trees use more storage than box-trees and c-rb-trees (for c = 4
the extra storage is a factor 1.57, for c = 6 even 2.14), one may want to choose
only between box-trees and c-rb-trees. Here we see that, as one would expect,
box-trees are the structure of choice for box queries. For other types of queries,
however, the c-rb-tree usually beats the box-tree. Thus when most queries are
segment or triangle queries, the c-rb-tree might be the structure of choice.

5 Conclusion

We presented a new bounding-volume hierarchy in Rd, the c-rb-tree, and proved
that it has the same worst-case asymptotic query bounds as the c-dop-tree.
Moreover, a c-rb-tree uses the same amount of memory as a box-tree, which
is less than a c-dop-tree (for c > d). Then we conducted several experiments
in which we compared the performance of range queries on c-rb-trees, c-dop-
trees and box-trees. The experiments suggest that a c-dop-tree could be the
structure of choice when the extra memory is not an issue, especially when may
queries are not box queries. This interesting conclusion is different than the
conclusion by Streppel [13], who compared c-dop-trees to box-trees when used
as an external-memory structure, and found that box-trees are generally better.
The reason for this is probably that in an external-memory setting, a node must
store a bounding volume for each of its many children. Since a c-dop uses more
storage than a box, this implies that a node can store less bounding c-dops than
bounding boxes. As a result, the degree of the nodes is smaller, and less objects
fit into the leaves, resulting in more nodes being accessed. If one does not want
to spend the extra memory for a c-dop-tree, and most queries are segment or
triangle queries, then the c-rb-tree is a good alternative to the c-dop-tree. This
suggest that an c-rb-tree may also be useful in an external-memory setting; it
would be interesting to perform experiments to test this.
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Abstract. psort was the fastest sorting software in 2008 according to
the Pennysort benchmark, sorting 181GB of data for 0.01$ of computer
time. This paper details its internals, and the careful fitting of its ar-
chitecture to the structure of modern PCs-class platforms, allowing it to
outperform state-of-the-art sorting software such as GNUsort or STXXL.

1 Introduction

This paper details the internals of psort, the fastest sorting software of 2008 ac-
cording to the Pennysort benchmark [3]. This introduction provides a brief his-
tory of Pennysort and related sorting benchmarks (Subsection 1.1), and a simple
taxonomy of the “mainstream” sorting techniques for large datasets that helps
put our work into perspective (Subsection 1.2), followed a high-level overview of
psort and of the organization of the rest of this paper (Subsection 1.3).

1.1 Datamation, Pennysort, and Other Sorting Benchmarks

Datamation [4] defined the first [15] public sorting benchmark - sort a million
100 byte records, initially in random order, according to the first 10 bytes from
disk to disk.

In 1985 the time required to complete the Datamation benchmark was almost
1 hour; but within 10 years it had dropped to a few seconds, and it appeared
that it would soon become obsolete.

Therefore, in 1995, [22] proposed two new sorting benchmarks, MinuteSort
and PennySort. MinuteSort, aimed at supercomputer-class platforms, requires
sorting as many records as possible within 1 minute. Pennysort, aimed at PC-
class platforms, requires sorting as many records as possible with 0.01$ of com-
puting time, assuming that the price of a machine is amortized over 3 years
(thus, on a x dollar machine, one is allowed 0.01

x · 3 years of computing time).
In both cases record format coincides with that of the datamation benchmark.
Also, in both cases a distinction is made between “Daytona” software, designed
for general purpose sorting, and “Indy” software, specifically optimized for the
benchmark. Over the years a number of slight refinements have been added to
the rules, and new benchmarks such as TeraSort and JouleSort have been intro-
duced. All details can be found at [3].

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, pp. 76–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.2 A Simple Taxonomy of Sorting

Hundreds of articles and even entire books (e.g. [18]) have been written on
sorting. This subsection provides a simple taxonomy of sorting techniques for
large data-sets to help put psort into perspective compared to existing software.

Virtually all efficient sorting software today is either distribution-based, merge-
based, or a hybrid of the two. Distribution-based sorting distributes the data into
two or more bins, in such a way that for each pair of bins all keys of one precede
all keys of the other; then it recursively sorts each bin. Merge-based sorting
splits the input into two or more runs, sorts each run, and then merges the
sorted runs. Distribution and merge-based sorting can obviously be combined.
For example, one might use the former to “locally” sort separate runs, that are
in turn “globally” merged - the approach of Alphasort [22].

Distribution-based sorting has two major advantages over merge-based sort-
ing. First, it can be easily performed completely in parallel, and thus is virtually
the only approach used today - at least at the “global” level - for sorting on
large PC-clusters (e.g. [13,10,21]). Second, it can be very efficient in terms of
number of key lookups - this makes it a favorite of all past record holders of the
Pennysort benchmark (e.g [14,25,19,23,5]) at least for some phases of the sort.

Merge-based sorting is instead intrinsically “comparison based” and thus re-
quires at least n lg(n) key lookups to sort n keys ([18]) though this disadvantage
is more apparent than real, as we shall see. On the other hand, merge-based sort-
ing always results in well-balanced sub-problems of predictable size; this makes it
more “robust” and easier to fine tune to a memory hierarchy. This predictability
could in theory be achieved by a careful selection of the thresholds between bins
in distribution-based sorting, but only at a high cost (see e.g. [18]).

1.3 Our Results

psort is a fast stable external sorting software (available as source, binary and/or
library) that can sort collections of records of arbitrary size according to an ar-
bitrary infix. psort sorted 181GBs of data for 0.01$ of computer time in 2008,
making it the fastest sorting software in 2008 according to the Pennysort bench-
mark. The careful fitting of its architecture to the structure of modern PC-class
platforms (made easier by its pure merge-based nature) allows it to outperform
state-of-the-art sorting software such as GNU sort [2], qsort [1], C + + STL sort
or STXXL[12], even for record and key sizes and distributions quite different
from those of the Pennysort benchmark.

In order to understand psort optimizations, one has to understand the com-
plex architecture of modern PCs to a greater level of detail than that offered by
most theoretical models today. Section 2 provides this information.

Section 3 describes psort itself and its tuning to a modern PC.
Section 4 describes our experimental results, comparing psort with other state

of the art sorting software - both under the Pennysort rules (including the se-
lection of the “best” PC to run it) and under a number of different scenarios.

Finally, Section 5 summarizes our results and discusses their significance be-
fore concluding with the bibliography.
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2 The Anatomy of a PC

Current hardware is extremely complex. While a number of abstract models from
the past decades attempt to capture the main aspects of modern architectures -
hierarchical memory [6], block transfer[7,9], pipelining[11], parallelism[26] etc. -
they are generally insufficient to abandon the ivory tower of big O notation and
squeeze out of a machine at least 50% of its the peak performance ([8]). It is
impossible to review all the details of the performance of a modern PC, but this
section provides a comprehensive overview of those (often disregarded) factors
that can be crucial to data-intensive software such as sorting - starting from
disks and filesystem (Subsection 2.1), then moving to motherboard and memory
(Subsection 2.2), and finally to the processor chip (Subsection 2.3).

2.1 Disks and Filesystem

Modern disks provide the abstraction of a (logical) linear array of data blocks,
with access to a sequence of contiguous blocks requiring a fixed seek time inde-
pendent of the amount of data (typically of the order of 10ms), plus a transfer
time that is directly proportional to it (typically 10− 100ms/MB). Obviously,
to approach peak performance, transfer time should dominate seek time (con-
tiguous data transfers indicatively of 1MB or more). Transfer time is lower for
data logically closer to the beginning of the array, corresponding physically to
the area of the disk closer to the outer rim; this should be regarded as the “high
performance” portion of the drive (see figure 2).

Multiple disks (usually up to 4 − 8) can be used in parallel (RAID 0) as a
single disk with the same seek time but proportionally larger transfer speed, by
splitting data into “stripes” divided, in a round robin fashion, between different
disks. This can be done in hardware or by the filesystem/OS - we found the
latter approach effective and of minimal CPU cost.

Most software today does not access the disk directly, but through a filesystem.
Filesystems offer a lot of functionality over raw disk access, but at a price in
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terms of performance (in fact, many applications with high performance disk
access, such as DBMSs, bypass the filesystem altogether); however, most sorting
benchmarks (including Pennysort) enforce the use of a filesystem for disk access.
To minimize the CPU and memory system overhead, it is then crucial to access
data through asynchronous, direct I/O from the device directly into user-space.

2.2 Motherboard and Main Memory

Disks (or rather their on-board caches) communicate with the motherboard
through an interface generally designed to have higher throughput (e.g. 300MB/s
for SATA2) than the drives themselves, to ensure interface longevity. Mother-
boards typically support 4 to 6 (rarely 8) of these interfaces, all connected to a
chip known as the south bridge. The south bridge aggregates the traffic of disks
and other devices (e.g. keyboard, network card) and usually directs it to another
chip, the north bridge, that controls traffic to/from/between the main memory,
the processor chip and graphics hardware (in some architectures at least part of
the north bridge is incorporated in the processor).

Modern south and north bridges can manage transfers of large data aggregates
directly between memory and disk with only minimal CPU involvement (“Direct
Memory Access”). Bandwidth between bridges is typically lower than the sum
of the disk interface bandwidths supported by the motherboard, but is rarely
a bottleneck for all but the fastest and largest same-generation disk RAIDs
(typical values are 350−800MB/s). The bandwidth between the other hardware
connected to the north bridge is higher still, typically several GB/s.

There are a few more issues to consider in terms of processor/memory com-
munication. First, over a hundred processor cycles can typically pass between a
request for a datum in main memory and its availability on the processor chip.
Second, data is transferred to the processor chip only in multiples relatively large
cache lines (typically 128 to 512 bytes); and if 2 bytes of a datum belong to 2 dif-
ferent cache lines, both lines are accessed. Third, virtual memory addresses have
to be translated to physical addresses; while the most recent translations are
cached in the processor chip, very sparse memory accesses will force additional
accesses to the translation tables [24]. This problem can be minimized using
large memory pages, and thus smaller translation tables for the same space.

2.3 The Processor Chip

The basic components of the processor chip are its CPU(s) and its cache(s). Most
modern processors have 2 levels of cache, the first smaller (up to a few hundred
KB vs. one or more MB), but faster to access (typically a few cycles vs. 10−30).
Each memory block can only be placed in a small number of cache locations, the
associativity of the cache (typically 4 − 16 for L1 caches, 8 − 32 for L2 caches).
According to [17] associativity above 8 provides few benefits, but we have found
this to be true only if data layout is very carefully planned [20]. All decisions on
which data to keep in the cache are made by the processor, typically replacing
data used furthest in the past with data more recently accessed. This can result
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in undesired behaviours: for example large streams of read-once data can “pol-
lute” the cache, evicting data used repeatedly but somewhat infrequently. The
programmer can sometimes attempt to influence cache replacement by issuing
extra memory requests to “nail” or prefetch data into the cache.

In general modern processors employ sophisticated circuitry to reorganize in-
structions, “guess” yet unavailable data, and backtrack from incorrect guesses.
This makes it extremely difficult to understand whether, and how, a code
snippet can be redesigned to improve efficiency: “optimizations” that increase
performance on one system often decrease it on others. Fine tuning through ex-
perimentation on the target architecture can net substantial performance gains.

3 The Anatomy of psort

psort is a fast, stable sorting software designed for large data sets on PC-class
platforms. psort is a simple, merge-based sorter that first sorts individual data
runs approximately the size of main memory, and then merges them into a
single sorted output. In fact, psort ’s high-level simplicity is probably the source
of its performance, allowing careful, low-level tuning to the complex structure of
today’s PCs. Subsection 3.1 provides a “global overview” of psort. Subsections
3.2 and 3.3 provide the details of the first and second phase of the sort.

3.1 A Theorist’s View of psort

psort is a merge-based sorter tuned to the memory hierarchy. For each pair of
consecutive hierarchy layers (e.g. main memory and disk) the structure of psort
depends on the size S0 of the smaller and on the size S1 of the larger.

In a nutshell psort implements a p-pass merge between the two layers as
follows. Choose a block size B such that (S0

B )p ≈ S1
B . To implement the 1st pass,

split the data in the larger layer into ≈ S1
S0

data runs of size ≈ S0 and sort each
run in the smaller layer. Data are sorted in the smallest layer, the L1 cache,
using a simple mergesort. To implement the 2nd pass, split the sorted runs into
sets of w = S0

B runs each, and merge each set into a sorted run of size wS0 using
a w-way selection tree merger [18], where each way is assigned a buffer of size
B. The entire tree then always resides in cache, so that, during the pass, each
item is brought into, and evicted from, the cache only once - and each transfer
is amortized over a block of size B. Similarly, to implement the ith pass, merge
sets of w runs from the (i− 1)th pass into sorted runs of size wi−1S0.

The minimum block size that still allows an efficient transfer places an upper
bound on the number of ways of a merge, and thus a lower bound on the number
of passes. It is chosen to minimize (p− 1)(tB + tpeak) where tB is the amortized
read time per bit using blocks of size B, and tpeak is the amortized write time
per bit at the peak transfer rate using blocks of size comparable to S0 (since
during a merge phase, the w input buffers must be small, but there is only
one write buffer, that can be large). Note that the first term of the product is
(p − 1): in the first pass, one can essentially perform both reads and writes of



psort, Yet Another Fast Stable Sorting Software 81

a size comparable to S0. In practice, on modern computing platforms, p almost
always equals 2 or (more rarely) 3 at all layers of the memory hierarchy, with
the possible exception of the lowest two (memory and disk), where data sets
small enough to fit in memory can be sorted with a single read/write pass of the
disk(s). This is not the case for the Pennysort benchmark, where data is usually
one to two orders of magnitude larger than memory - making p = 2 and thus
entailing 2 “large writes” passes, 1 “large reads” pass (the first), and 1 “small
reads” pass (the second). In this case, B is chosen to match the size of a few
disk tracks (i.e. a few MBs - to minimize the overhead of seek time) times the
number of disks in the RAID.

Two things are worth noting. First, the first pass may always be performed
in place, with at most a “slack” of a single run; this is generally impossible for
other passes. Second, as noted e.g. in [12], utilizing RAID at the disk layer is
asymptotically suboptimal (as the number of disks grows to infinity) compared to
(randomized) strategies that control disks independently. However, such strate-
gies have the potential of actually being asymptotically slower than pure RAID
on pathological inputs. Perhaps more importantly, their “sweet spot” requires
larger disk arrays and sorts than those encountered in practice when dealing
with today’s PC-class platforms, where they can actually end up being slower
even on “average” inputs due to their small (in fact asymptotically negligible)
fluctuations in disk utilization (see Subsection 4.3) and their reduced ability to
exploit the faster zones of the disk (see Subsection 4.2).

3.2 The First Phase

The first phase of psort essentially involves reading a data run approximately
the size of the main memory from disk, sorting it in memory, and writing it back
to disk. The devil is in the details.

For I/O efficiency, psort makes use of direct asynchronous I/O that transfers
data between the disks and a set of userspace buffers (dimensioned so as to achieve
near peak transfer rate without consuming too much memory): this requires mini-
mal CPU involvement (even with software RAID, less than 4% of CPU time) and
bypasses the space and time costs of moving data through kernelspace buffers.
With two buffers one can guarantee that the disks never fall idle: while the CPU
operates (reading or writing data) on one, disks exchange data with the other,
thus completely overlapping I/O with computation.

As soon as a read buffer is filled psort must transfer data to its main mem-
ory space. Since this requires moving the data through the processor’s cache, it
piggybacks some computation onto the transfer, acting on data “microruns” of
size roughly equivalent to the L2 cache. More precisely, if keys are sufficiently
small compared to the records’ remaining payload, it separates keys and pay-
loads, attaching to each key a pointer to the corresponding payload. psort at
this stage also offers the possibility of restructuring keys (e.g. from big to small
endian) to make later comparisons more efficient. psort then sorts those keys
(and eventually reshuffles the payloads) and finally writes the whole “microrun”
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to a new memory area. This involves, for each datum, at most one write and one
read in memory that would be performed anyway to empty the read buffers.

The sorting algorithm used in L1 cache for the microruns is a simple merge-
sort, with some tweaks. First, a single pass on the data (the same that possibly
detaches keys and records) sorts sets of 4 consecutive elements using a simple
selection sort. Second, careful placement of data ensures that only 5/4 of the
total space s occupied by the records (or by the detached keys) is used, rather
than the “common” factor 2 of mergesort: this is achieved by first sorting half of
a microrun in space s

2 + 1
2 ·

s
2 (see [18]), then the other half (for a total space of

s
2 + s

2 + 1
2 ·

s
2 = 5s

4 ), and finally piggybacking the merge of the two halves over the
transfer out of the read buffer. Third, psort offers the opportunity to minimize
program branches. As a first option, it can use bitwise — rather than logical —
ANDs and ORs when comparing multi-word keys. As a second option, it can use
the result of a comparison (and its inverse) as an offset to a pointer to the new
positions of the keys, saving a branch at the cost of a few extra operations. The
data sorted in L1 are then merged in L2.

Sorted microruns are then merged in a second pass (and possibly a third,
depending on the ratio between the size of the memory and of the L2 cache, and
the associativity of the latter). Two important potential hurdles at this stage
are associativity misses (in early experiments these reduced performance by as
much as 20%) and “stream pollution” of the cache (see Section 2). psort employs
a careful data layout to minimize the former, and offers against the latter the
option of a periodic cache refresh through dummy reads.

The output of the final pass is directly written to the I/O buffers, potentially
recombining keys and payloads, and possibly (if there is no second phase) in-
verting the initial restructuring of the keys. Again, double buffering allows full
overlap between I/O and computation.

3.3 The Second Phase

The second phase (which only takes place if the dataset does not fit in main
memory) is much simpler: w sorted runs at a time are streamed from disk and
merged (with the same code that merges microruns in the first phase), and the
output is streamed back to disk. Recalling Subsection 3.1, it is reasonable to use
a single merge pass if the number of data runs (i.e. the ratio between data and
memory size) does not exceed the ratio between the size of the memory and that
of one “efficient” read from disk.

Data is read with direct asynchronous I/O into (userspace) dynamically sized
buffers, one per run. When the amount of data in a buffer falls below a threshold
the buffer is “refilled” from the appropriate run. In theory, if data were consumed
uniformly from all w runs, one could divide the total available buffer space B
in such a way that a newly refilled buffer held ≈ w

w2+w 2B ≈ 2B/w bytes of
data, the previously refilled one w−1

w2+w2B, and so on. This would allow reads
of about twice the size achievable with static buffers of size B/n. This can be
highly ineffective, however, if data are not consumed uniformly, and in particular
if they are consumed more rapidly from recently refilled buffers. For this reason,
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psort allows the user to specify buffer geometry, choosing a tradeoff between
safety and optimization.

4 psort vs. the Competition

This section compares psort to its competitors, in terms of the Pennysort bench-
mark (Subsections 4.1 and 4.2) and also in a wider variety of sorting scenarios
(Subsection 4.3).

4.1 Choosing and Configuring the Hardware

To test psort we looked for a hardware platform delivering maximum perfor-
mance at the minimum cost, to maximize our results under the Pennysort bench-
mark, but also to understand the bottlenecks in today’s PC architectures for
data-intensive tasks.

Our choice for a motherboard was an ASRock ALive NF6P-VSTA with an
Nvidia nForce 430 Southbridge, an inexpensive but high performance “Linux
friendly” motherboard supporting 4 SATA2 channels, for a maximum aggre-
gated traffic of 500MB/s. We paired it with 4 Western Digital WD1600AAJS
drives, which can individually deliver a whopping 100MB/s peak read/write
rate. We configured them with GNU/Linux (Gentoo) “vanilla” software RAID.
As a filesystem, we tested SGI’s XFS, IBM’s JFS, ReiserFS and ext2fs. The
best performers where XFS and JFS, with JFS slightly better overall but XFS
outperforming it very slightly for the read and write sizes of interest to us (see
figures 3 and 4). In both cases CPU usage to saturate the disk transfer rate was
negligible - less than 2%. Thus, we finally settled for XFS. The best performance
was achieved with a stripe size of 128KB. Note that this is a very “disk heavy”
PC, with about half the total cost being taken by the 4 disks (see figure 8).

RAM choice must take into account three parameters: size, speed and price.
A RAM that is twice as large more than doubles the size of runs in the first
pass. This, in turn, allows reads that are over 4 times longer during the second
pass. It turned out that the best compromise was 2GB. RAM speed is another
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important parameter. PC4200 RAM has a theoretical “peak” transfer rate of
4.2GB/s - an order of magnitude faster than the southern bridge. In practice,
we found that accessing RAM can have a large number of “hidden” costs - e.g.
due TLB lookups and to the fact that it is accessed in whole “cache lines”. Even
just two or three read+write passes can consume the majority of the available
RAM bandwidth, and it is extremely difficult to coax the compiler to overlap
RAM to cache transfers with processor operations. In practice, it turned out
that even using 2 banks of OCZ 800MHz PC6400 RAM with CAS 4 latency
almost half the “CPU” time during the first pass was spent accessing RAM.

The choice of the actual processor strongly depends on that of the other
components - probably more than on the “number crunching” power of the
CPU itself. We chose a cheap, single core Athlon 1620LE running at 2.4GHz,
with 128KB of L1 cache and 1MB of L2 cache. The total cost of the hardware
at NewEgg.com on May 19th 2008 was 357.78$. Under the Pennysort formula,
adding the mandatory 35$ “assembly fee”, this allowed us a total time budget
of slightly more than 2408.6766 seconds.

4.2 Pennysort Results

We tested psort on the hardware described in Section 4.1. We compiled it with:
-march=k8 -O3 -funroll-loops -funsafe-loop-optimizations
-B /usr/share/libhugetlbfs/ -Wl,--hugetlbfs-link=B.
We positioned the input file into an appropriately sized partition on the outer
rim of the disks, overwrote it with the output of the first pass, and had the
second pass create the output file in a second partition. This guaranteed 3 of the
4 passes took place on the fastest partition of the disk, and only 1 on a slower
partition. Note that, had we been using independent disks for the intermediate
files (RAID would still have been necessary for the initial input and final output,
since the rules of the Pennysort benchmark enforce a single file for each), at most
2 passes could have taken place on the faster partition.

The first pass was slightly limited by the CPU, or, more correctly, by the
combination of CPU and RAM. More expensive CPUs did not yield sufficient
increases in performance to justify their use. The second pass was entirely lim-
ited by the disks. psort (using 216 record cache merge and a 28-way merger-tree,
50MB read/write buffers, overwriting the initial file with the intermediate file)
sorted 108 · 224 = 1, 811, 939, 328 records taking less than 2405 seconds. We
then manually “retooled” psort into an “Indy” version adapted solely for the
Pennysort benchmark (eliminating unnecessary “general purpose sorting” code,
manually unrolling loops etc.). This yielded a small, but observable gain in per-
formance. psort Indy managed to sort 113 · 224 = 1, 895, 825, 408 records in less
than 2407 seconds.

4.3 Other Scenarios

In order to evaluate psort outside the Pennysort context, we compared it to
some state-of-the-art sorting libraries under different scenarios. We had psort
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compete against the high performance (non-stable) external sorting STXXL li-
brary [12] on sorting 128, 32 and 8 byte records according to the first 8 bytes
for a variety of input sizes, from 10MB to 100GB (we only managed to run
STXXL with power-of-2 key size, which seems in line with [12]). psort speed was
always 20% higher or more for 128 byte records, and either higher (for small
sort sizes) or essentially identical for 32 byte and 8 byte records (see figure 7).
It should be noted that STXXL has a large number of tuning parameters, that
we tweaked trying to achieve optimal performance. We found the most crucial
one to be block size - in our scenario 32MB (vs. the default value of 2MB) of-
fered the best performance. Interestingly, and contrary to what one might expect
from [12], using independent disks never increased performance significantly, and
sometimes even slightly decreased it, due to the slight fluctuations it introduces
in disk usage. Apparently the theoretical advantage of using independent disks
translates into a practical advantage only for significantly larger sorts.

We also had psort compete in main memory against both qsort [1], GNU
sort [2] and the C++ STL sort (which do not support external memory sorting),
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on sorting 128, 32 and 8 byte records according to the first 8 bytes, as well as
100 byte records according to the first 10 bytes (the datamation record format),
again for a variety of input sizes (see figures 5 and 6). psort speed was always
higher, from 20% to 300%.

5 Conclusions

This section briefly summarizes our results, discusses their significance, and looks
at future directions both in terms of efficient sorting and other data-intensive
software (Subsection 5.2) and of the Pennysort benchmark (Subsection 5.1).

5.1 10 Years of Pennysort

It is interesting to compare our results with the prediction of 10 years ago by
Gray et al. [16] that price-performance would double yearly for the next 10 years,
yielding 1.50TB for 1 penny by 2008. Instead, price-performance has “only”
increased by an average factor of about 1.6/year (see figure 1). This almost
exactly matches Moore’s Law - but looking at the 1998 winners it is easy to see
that improvement is not due solely to better hardware. We sorted more than 120
times the data of Gray et al. [16] using 3 times the time budget, a set of disks
with about 15 times the peak (total) bandwidth, and a 2.4GHz Athlon 1620LE
vs. a 266MHz Pentium II - the latter having a lesser comparative gap to the
memory. Software engineering advances are then responsible for at least a factor
2− 3 of improvement (note that psort ’s basic algorithms are decades old).

After 10 years Pennysort is still an excellent benchmark for the lower levels
of the memory hierarchy - less so for the processor. As reflected by our budget
(see figure 8) our machine had superb disks, an excellent motherboard, good
memory, and one of the cheapest processors of the market. While the Pennysort
“spirit” has remained the same over the years, the rules keep changing slightly
every year. We believe this reduces the value of Pennysort as a benchmark for
the evolution of PCs and sorting software. On the other hand, we advocate one
change: stipulating that the prices used to compute the time budget be taken
from a list made public a few months before the submission deadline. This would
avoid last minute shopping (and coding) frenzies and/or heavy impact on the
relative results of different entries caused by fluctuations of hardware prices.

5.2 Some (Ugly?) Lessons from psort

Unlike all previous winners of the Pennysort benchmark, psort is completely
merge-based, rather than a distribution-based hybrid. This might be one rea-
son of its success. Merge-based software tends to require more key lookups at
the highest levels of the memory hierarchy - but these levels are no longer the
bottleneck. On the other hand, merge-based sorting software is somewhat more
predictable - and thus it can be fitted more carefully to the lower levels of the
memory hierarchy, avoiding performance losses where they count.
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psort exploits many simple tricks that can be expected to boost the perfor-
mance of any data-intensive software. Perhaps the ultimate lesson of psort is that
a lot of ugly work is necessary to transform any simple, elegant algorithm into a
software that preserves at least 50% of the performance potential of today’s PCs.
This explains why sorting, despite its relative simplicity, its long history, and its
great practical importance, can still see non-trivial improvements through simple
algorithm engineering (rather than algorithmic breakthroughs).
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Abstract. The configuration of network resources greatly impacts the commu-
nication overhead for data intensive tasks and constitutes a critical problem in the
design and maintenance of networks. To address the issue of resource placement,
we analyze and implement a semidefinite programming-based heuristic for solv-
ing a known NP-complete graph optimization problem called MAXIMUM SIZE

BOUNDED CAPACITY CUT. Experimental results for our heuristic demonstrate
promising performance on both synthetic and real world data. Next our heuris-
tic is used as a sub-routine to solve another known NP-complete problem called
MIN-MAX MULTIWAY CUT whose traits we adapt to yield a resource placement
scheme that exploits correlations between network resources. Our experimental
results show that the resulting placement scheme achieves a significant savings in
communication overhead.

1 Introduction

While a measure of cost in a network is often dependent upon the given scenario, cost
is generally coupled with the volume of communication between network entities. In
turn, the communication between network entities is dependent upon the allocation
of resources in the network. There are several scenarios characterized by frequent ac-
cess to limited and multiple resources such as complex queries in distributed databases,
which often require the aggregation of several objects, or the use of keyword indices
by search engines in order to efficiently resolve user queries, or peer-to-peer (P2P) file
sharing, where latency and bandwidth usage are highly dependent upon where files are
stored.

In such environments, the location of resources has an impact on the efficiency of
the system. For example, if resources A and B are often requested together, but stored
at different locations, the communication overhead incurred by queries for these re-
sources can be significantly greater than if A and B are colocated. In this work, we
consider the communication costs between network entities and model the task of re-
source placement using a known graph optimization problem. Under this model, the
goal is to distribute resources to locations in a network such that the maximum cost
between any given pair of partitions is minimized; this aspect lends an important notion
of “fairness” to our resource placement scheme.

We also demonstrate that correlation is crucial for motivating a notion of cost in
our placement scheme. Correlation values are calculated using data from prior network
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transactions. Therefore, it is assumed that knowledge of communication trends is avail-
able either as traffic engineering matrices, snapshots of past communications, or design
considerations. For instance, Internet Service Providers routinely trace traffic in P2P
networks and this information can be used to improve network performance [12]. Nat-
urally, this approach raises the question of whether such correlations are stable enough
over a sufficient period of time to warrant the additional computational costs of a
correlation-aware placement scheme. Indeed, it has been demonstrated that resource
correlations do remain stable over at least month-long periods [22].

From a practical perspective, the resource placement scheme we propose can be
managed by an authority in a distributed setting, such as an ISP; there exist proposals
for cooperation between ISPs and P2P networks [5,20]. Alternatively, in a centralized
scenario, such a scheme would be useful within single-administrative domains, such as
allocation in data-centers. We treat the details of such a setup as outside the scope of
this paper, and instead focus on the analysis of our scheme.

1.1 Our Contributions

We propose a resource placement scheme that exploits correlation information be-
tween network resources; we call this a correlation-aware resource placement scheme.
In formulating our scheme, two known NP-complete problems are dealt with: MAX-
IMUM SIZE BOUNDED CAPACITY CUT (MAXSBCC) and MIN-MAX MULTIWAY

CUT (MMMC). We mathematically analyze and implement a heuristic for MAXS-
BCC based on the technique of semidefinite programming (SDP). Our heuristic is then
employed as a subroutine for solving MMMC. To the best of our knowledge, our work
provides the first empirical evaluation of these two problems.

We then identify two challenges to employing MMMC as a model of resource place-
ment. First, naively employing a cost metric can lead to insensible solutions. Second,
privacy issues are absent from the model. We address both challenges by showing how
correlation adequately motivates important cost metrics, and we mathematically extend
the model to account for privacy constraints. Finally, an experimental evaluation of our
correlation-aware resource placement scheme is conducted with real-world data.

1.2 Related Work

Our work differs from a number of previous treatments on data placement where cost
metrics are not motivated by correlation and, moreover, cost is measured as an aggre-
gate [14] or average [6] across the entire network. The most relevant related work is [22]
where the authors address the use of correlation in placing data items in a network.
However, again, their work aims to minimize an aggregate notion of cost in contrast to
the substantially different min-max approach used here.

Our correlation-aware resource placement scheme is based on the MIN-MAX

MULTIWAY CUT problem which was introduced by Tardos and Svitkina [18]. The MIN-
MAX MULTIWAY CUT problem is NP-complete and the best known approximation al-
gorithm relies on obtaining an efficient solution to a sub-problem called the MAXIMUM

SIZE BOUNDED CAPACITY CUT problem. In [18], the authors cite an algorithm devel-
oped in [9] to achieve a polylogarithmic approximation. However, the algorithm of [9]
is extremely intricate and, several years after the theoretical result, no implementation
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exists.1 Moreover, due to the large number of constraints, this algorithm is likely to be
extremely computationally intensive, even for very small problem instances.

In contrast, our work incorporates an efficient heuristic based on the technique of
semidefinite programming (SDP). SDP has figured prominently in the development of
heuristics for problems in the areas of phylogenic reconstruction [16], machine learn-
ing [21], sensor network layout [8], bioinformatics [13] and graph partitioning [10]; these
results demonstrate that heuristics can benefit greatly from this optimization technique.

2 Our Heuristic and Analysis

To solve the MIN-MAX MULTIWAY CUT problem, we solve a subproblem known as
the MAXIMUM-SIZE BOUNDED-CAPACITY CUT (MAXSBCC) problem introduced
in [18]. The input to MAXSBCC is an undirected graph G = (V, E) with weights on
the vertices w(v), capacities on the edges c(e), source and sink vertices vs, vt ∈ V , and
an integer B. Given a partition of V into S and T , denote by δ(S) the total weight of
the cut edges and denote by w(S) the total weight of the vertices in S. The MAXSBCC
problem is to find an s-t cut (S, T ) such that δ(S) ≤ B, and w(S) =

∑
v∈S w(v) is

maximized. In [18], the authors focus on a (α, β)-bicriteria approximation algorithm
for MAXSBCC. That is, given an instance of MAXSBCC with an optimal solution
(S�, T�), returns in polynomial time a solution (S′, T ′) such that δ(S′) ≤ αB and
w(S′) ≥ βw(S�) where α ≥ 1 and 0 < β ≤ 1. Therefore, solutions may exceed the
budget and this also turns out to be true for our heuristic.

Consider the quadratic program specified by Equations (1)-(4). Variable xi corre-
sponds to vi ∈ V , wi is the weight of vertex vi, and wij is the edge weight of (vi, vj)
which is zero if no such edge exists.

max
n∑

i=1

1 + xsxi

2
wi (1)

s.t.
∑
i<j

xixj wij ≥M (2)

xsxt = −1 (3)

xi ∈ {−1, 1} (4)

max
n∑

i=1

1 + ysi

2
wi (5)

s.t. Y = (yij) � 0 (6)∑
i<j

yij wij ≥M (7)

yii = 1 (8)

yst = −1 (9)

Equation (1) counts the cumulative weight of the vertices in S. Let τ denote the
cumulative weight of the edges internal to the set T and let σ denote the cumulative
weight of the edges internal to the set S. Equation (2) counts σ + τ − δ(S). Equation
(3) states that the source and sink nodes must be in separate partitions. Equation (4)
guarantees that each vertex belongs to one and only one partition. Treating each vertex
variable xi as a vector vi, and letting yij = vi · vj, the SDP specified by Equations
(5)-(9) is obtained where ’�’ denotes that Y is positive semidefinite. We now analyze
the semidefinite program to motivate its suitability for MAXSBCC. Due to space con-
straints, proofs of the following results are omitted and can be found in the full version
of this paper [7]. Let W ∗ ≥ M denote the value of Equation (7) given by solving the

1 To the best of our knowledge, no such implementation exists. Furthermore, via email corre-
spondence, Professor R. Krauthgamer (one of the authors of [9]) stated he was unaware of
any such implementation.
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semidefinite program and let W ≤ W ∗ denote its value after applying the standard
technique of hyperplane rounding.

Lemma 1. Hyperplane rounding of the SDP provides a W such that E[W ]≥0.945W ∗.

Let S∗ denote the value of Equation (5) given by the solution to the semidefinite pro-
gram and let S denote the value of this quantity after hyperplane rounding. We establish
the following critical result:

Lemma 2. Let ε be a small positive constant. With probability at least 1 − 1
n , hy-

perplane rounding need only be applied �2 lnn/ε� times before a rounded solution to
the SDP is obtained such that W ≥ (1.823 − λ)W ∗ and w(S) ≥ β′w(S∗) where
1 ≥ λ ≥ 0.823.

Finally, we address the quality of our solution:

Theorem 1. With probability at least 1 − 1
n , for λ ∈ [0.823, 1], the above algorithm

achieves a cut (S, T ) such that:

δ(S) ≤ λ +
(

1− λ

2

)
w(E)

B

w(S) ≥ (1.823− λ) · w(S∗)

As λ approaches 1, the quality of our approximation increases correspondingly. There-
fore, the quality of our solution depends heavily on λ which, in turn, depends on the
value M that we set in our program. This relationship suggests a heuristic approach
whereby we attempt to improve our solution quality by modifying M . Throughout, we
refer to the above algorithm by ALG(M) to reflect that the performance depends on M .

2.1 Our Full Heuristic: MaxSBCC Solver

We seek a solution to MAXSBCC by performing multiple iterations of ALG(M) and
modifying the value of M in our semidefinite program formulation at each iteration.
Denote the output of ALG by the tuple (v, S, T, Bactual) where:

– v: is a boolean variable with value true if the solution returned is an s-t cut;
false otherwise.

– S: is the set of nodes on the source side of the cut.
– T : is the set of nodes on the sink side of the cut.
– Bactual: is the bound resulting from our setting of M .

Due to space constraints, we outline our heuristic which we call MAXSBCC SOLVER;
the pseudocode is given in the full paper. The input into MAXSBCC SOLVER is the
graph G = (V, E), the desired input bound B0 and the number of iterations r of
ALG(M). The core idea is to modify M at each iteration of ALG until we achieve a
B value close, or equal, to our original desired bound B0. M is modified by essentially
performing a binary search through the possible values of the input bound B.

MAXSBCC SOLVER begins by storing our original input bound B = B0 and M =
W (E) − 2B. Once executed, the solution is checked for validity by inspecting the
boolean v variable. If MAXSBCC SOLVER failed to find an s-t cut, the next iteration
proceeds with the input bound B doubled. Once a valid solution is returned, Bactual is



A Heuristic for Fair Correlation-Aware Resource Placement 93

examined; if it is larger than our desired B0, B decreases by �B/2j�where j denotes the
number of iterations where a valid solution has been achieved. Conversely, if Bactual is
smaller or equal to B0, B increases by �B/2j�. Note that such changes in the value of
B are equivalent to modifying M , since M = W (E)− 2B in our SDP.

At the end of r iterations of this process, S is returned. If a valid solution was found,
the solution that gave a bound closest to B0 (ie. the iteration where |B0 − Bactual|
was smallest) is returned. Otherwise, if no valid solution was found, S will be empty;
however, if there exists a cut of size B0 or less, then our algorithm will return a valid
cut with high probability and with the attributes demonstrated by our analysis above.

2.2 MaxSBCC Solver: Experimental Results

Our experiments are performed on systems with up to 1300 nodes; there are two rea-
sons for this system size. First, although this situation is improving, solving semidefinite
programs is still computationally expensive. The area of semidefinite programming is
relatively new and available software for solving such programs is consequently lim-
ited. Many solvers scale as O(n3) where n is the dimension of the semidefinite matrix.
However, despite its current computational costs, semidefinite programming is a stan-
dard technique for solving many challenging problems. Moreover, a number of recent
results address the issue of scalability such as parallelized implementations [17] as well
as devising problem formulations that can be computed more efficiently [15]. We be-
lieve such techniques can allow our algorithm to scale to much larger system sizes but
are outside the scope of this paper.2 The second reason is that, for our experiments
with MAXSBCC, we wish to compare against the optimum solution. This allows a par-
ticularly unforgiving comparison in judging the performance of our algorithm. We for-
mulate an integer linear program (ILP) for each of the experimental problem instances.
Using the ILP solver CPLEX [1], an optimal solution can be achieved for the purposes
of comparison. For our experiments we use the SDP solver ‘SemiDefinite Programming
Algorithm in Matlab [2].

Our first data set consists of three unweighted (Table 1) and three weighted
(Table 2) Barabási-Albert scale free graphs created using the BRITE topology gen-
erator [3]. Each graph is connected3, consists of 300 vertices and, for the weighted
case, edge capacities are exponentially distributed in the range {1, ..., 1024} while
node weights are chosen uniformly at random in the range {1, 1024}. Our second
data set consists of three unweighted (Table 3) and three weighted (Table 4) connected
Waxman graphs [19] of 300 nodes, with the same capacity and node weight distribu-
tions. Finally, we use a real-world data set collected in [11] consisting of a trace of
peer-to-peer (P2P) traffic and containing information on data objects both advertised
and queried over the course of two months; we restrict our use of this data to mp3 files.
Correlation values are derived for each object by examining how often file x and file y
were colocated at a peer. Edges with correlation values less than 0.25, using a p-value of
0.1, are discarded yielding a connected component of 358 nodes which we used. Each
correlation value is multiplied by a factor of 100 and rounded to the nearest integer
in order to provide integer input values for the SDP program. We then select a node of

2 In terms of our later application to resource placement, previous results of [22] have shown
that only a small fraction of the total system need be optimized to achieve substantial savings.

3 If the graph is disconnected, our algorithm can be used on each component individually. For
simplicity, we used only connected graphs in our experiments.
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Tables 1 & 2. Results of the MAXSBCC heuristic on unweighted and weighted Barabási-Albert
graphs, respectively

Trial B S δ S� δ� S/S�, δ/δ�

1

2 1 2 1 2 1.000, 1.000
10 5 10 9 10 0.556, 1.000
18 9 18 20 18 0.450, 1.000
26 15 27 29 24 0.517, 1.125
34 16 30 38 34 0.421, 0.882
42 25 43 49 42 0.510, 1.024
46 299 46 299 46 1.000, 1.000

2

2 1 2 1 2 1.000, 1.000
7 4 8 5 7 0.800, 1.143

12 6 12 10 12 0.600, 1.000
17 10 22 15 17 0.667, 1.294
22 12 23 21 22 0.571, 1.045
27 299 31 27 27 11.074, 1.148
31 299 31 299 31 1.000, 1.000

3

2 1 2 1 2 1.000, 1.000
9 4 8 7 9 0.571, 0.889

16 9 19 15 16 0.600, 1.188
23 12 23 23 23 0.522, 1.000
30 15 31 30 27 0.500, 1.148
37 17 38 38 37 0.447, 1.027
41 299 41 299 41 1.000, 1.000

Trial B S δ S� δ� S/S�, δ/δ�

1

6 973 6 973 6 1.000, 1.000
1096 13409 1360 20362 1096 0.659, 1.241
2186 20951 2590 31666 2186 0.662, 1.185
3276 34038 3943 41133 3271 0.828, 1.205
4366 151828 4367 152244 4362 0.997, 1.001
5456 156249 5460 156243 5423 1.000, 1.007
5460 156249 5460 156249 5460 1.000, 1.000

2

14 369 14 369 14 1.000, 1.000
751 10592 959 13222 743 0.801, 1.291

1488 13000 1496 23478 1487 0.554, 1.006
2225 22865 2332 31874 2223 0.717, 1.049
2962 151079 2976 151003 2940 1.001, 1.012
3699 155300 3702 155284 3656 1.000, 1.013
3702 155300 3702 155300 3702 1.000, 1.000

3

3 917 3 917 3 1.000, 1.000
770 14476 1073 14958 770 0.968, 1.393

1537 17647 1572 24342 1532 0.725, 1.026
2304 22645 2317 33561 2304 0.675, 1.006
3071 147415 3065 147992 3064 0.996, 1.000
3838 151589 3838 151589 3838 1.000, 1.000

Tables 3 & 4. Results of the MAXSBCC heuristic on unweighted and weighted Waxman graphs,
respectively

Trial B S δ S� δ� S/S�, δ/δ�

1

2 1 2 1 2 1.000, 1.000
5 2 6 3 5 0.667, 1.200
8 3 11 7 8 0.428, 1.375

11 5 12 10 11 0.500, 1.091
14 5 12 14 14 0.357, 0.857
17 299 17 299 17 1.000, 1.000

2

2 1 2 1 2 1.000, 1.000
4 3 5 2 4 1.500, 1.250
6 5 8 5 6 1.000, 1.333
8 5 8 7 8 0.714, 1.000

10 7 11 9 10 0.778, 1.100
12 7 11 11 12 0.636, 0.917
14 299 16 13 14 23.000, 1.143
16 299 16 299 16 1.000, 1.000

3

2 1 2 1 2 1.000, 1.000
5 4 6 3 5 1.333, 1.200
8 5 12 6 7 0.833, 1.714

11 5 12 10 11 0.500, 1.091
14 9 16 12 14 0.750, 1.143
17 299 17 299 17 1.000, 1.000

Trial B S δ S� δ� S/S�, δ/δ�

1

13 916 13 916 13 1.000, 1.000
344 6047 289 9049 342 0.668, 0.845
675 8987 642 15041 675 0.598, 0.951

1006 149667 1125 149377 991 1.002, 1.135
1337 150765 1366 150501 1256 1.001, 1.088
1668 151290 1668 151290 1668 1.000, 1.000

2

11 78 11 78 11 1.000, 1.000
343 5844 459 6705 336 0.872, 1.366
675 157520 606 156514 606 1.006, 1.000

1007 157520 1051 157146 987 1.002, 1.065
1339 158254 1672 157520 1051 1.005, 1.591
1672 158254 1672 158254 1672 1.000, 1.000

3

15 631 15 631 15 1.000, 1.000
387 8372 367 9895 385 0.846, 0.953
759 12554 734 15957 756 0.787, 0.971

1131 159297 1173 157260 1106 1.013, 1.061
1503 160081 1474 160115 1471 0.999, 1.002
1876 161490 1876 161490 1876 1.000, 1.000
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Table 5. Results of the MAXSBCC heuris-
tic on real world data

B S δ S� δ� S/S�, δ/δ�

25 159975 25 159975 25 1.000, 1.000
115 160957 127 163526 113 0.984, 1.124
205 166445 228 165908 202 1.003, 1.129
295 167438 278 167108 278 1.002, 1.000
385 167825 354 168476 381 0.996, 0.929
476 176567 476 176567 476 1.000, 1.000

Table 6. Results of testing RANDOM, GREEDY,
MMMC SOLVER on MMMC test cases

Trial c N τ RANDOM GREEDY MMMC
SOLVER

1 0.30 111 4
1290 831 34
1475 888 66
1222 875 39

2 0.28 379 5
2708 2273 163
2495 2190 300
2480 1962 136

3 0.26 813 6
3756 2990 152
3567 3179 238
3514 3114 219

4 0.24 1256 7
5246 4145 288
5208 4060 256
5297 4556 538

minimum degree, dmin, to be the source and a node of maximum degree, dmax, to be
the sink. Budget values are selected as even increments in the range [dmin, dmax]. We
set r = 5 in MAXSBCC SOLVER which we found yielded good solutions.

Tables 1-5 provide the results of MAXSBCC SOLVER in the S and δ columns, while
the optimum solution is given in the S∗ and δ∗ columns. For both the weighted and
unweighted synthetic data sets, the worst source side approximation is 0.421 and the
worst cut approximation is 1.393 and, generally, the approximations are even signifi-
cantly better than these worst cases. Moreover, for our experiment using the real-world
data, we observe in Table 5 that our heuristic yields very high quality solutions. We also
note that MAXSBCC SOLVER performs relatively quickly, completing within no more
than 4 hours on a machine utilizing a single 1.3 GHz Intel Itanium2 CPU running SuSE
Linux. In comparison, the trials with CPLEX frequently required up to 48 hours on the
same system. Overall, the performance of MAXSBCC SOLVER is promising and, with
our heuristic in hand, we now move onto MMMC and resource placement.

3 Towards Resource Placement: Min-Max Multiway Cut

As a basic abstract model of resource placement, we use the MIN-MAX MULTIWAY

CUT (MMMC) problem as defined in [18]. Given an undirected graph G = (V,E) with
weighted edges and a subset of the vertices T = {t1, ..., tk} which are called terminals,
a multiway cut is a partition of V into disjoint sets S1, ..., Sk, such that Si contains
ti for i = 1, ..., k. The goal in MMMC is to partition V such that the maximum cut
between any two partitions is minimized. If cut size is related to the cost of commu-
nication between two partitions, then MMMC seeks to fairly distribute this cost over
all partitions. Therefore, we deal with a setting where local communication is relatively
cheap, while communication between individual machines or domains is costly.

The ‘fairness’ aspect of MMMC distinguishes this work from a number of other re-
source placement models. In contrast, by minimizing the aggregate or average notion of
cost, it is possible for some network participants to suffer a disproportionate amount of
traffic. Here, we are not concerned with the number of resources allocated to a network
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entity, but with the cost of inter-partition traffic incurred by holding such items. With
abundant availability of disk-space, we treat bandwidth and latency as principal aspects
in our model.

3.1 Experimental Results

In [18], the authors show how a (α, β)-approximation algorithm for MAXSBCC can be
used to achieve an (α logβ n)-approximation for MIN-MAX MULTIWAY CUT. Here, we
employ their result using our heuristic for MAXSBCC; we call this algorithm MMMC
SOLVER. Due to space constraints, we refer the reader [18] for further details.

Using the data set from [11], the most widely held 2000 mp3 files are extracted.
Pair-wise correlations are computed between all data objects and we discard edges with
a correlation value below a cutoff point c which differs per trial. Edge capacities were
then multiplied by a factor of 100 and rounded to the nearest integer. For each trial,
τ terminal nodes are chosen uniformly at random from the total number of nodes N
and the input bound was chosen to be an arbitrary value of 1000. MMMC SOLVER is
then run on the graph problem. Since no ILP formulation for MMMC is known, we
compare against two other algorithms in order to evaluate the quality of our solution.
The first is a simple random placement of nodes to partitions which models the behavior
we would expect from employing a secure hash function; we denote this algorithm by
RANDOM. The second is a greedy algorithm, denoted by GREEDY, that begins with a
random assignment to partitions and then attempts to reduce the size of the maximum
cut by greedily reassigning vertices. In particular, each non-terminal node involved in a
maximum cut is tested in all other partitions. If such a relocation reduces the maximum
cut, the new assignment is immediately kept; otherwise, the node remains at its original
location. A solution is returned when no further reduction can be obtained.

Table 6 provides the results of our experiments. The longest running experiment
consisted of 1256 nodes with 7 terminals and the running time of MMMC SOLVER

was under 8 hours. Over all four trials, MMMC SOLVER demonstrates superior per-
formance in the size of the maximum cut. The discrepancy between RANDOM and
MMMC SOLVER is significant although expected. More strikingly, the difference be-
tween GREEDY and MMMC SOLVER is substantial suggesting that the greedy ap-
proach becomes trapped in local optima which MMMC SOLVER is able to avoid. In
particular, the maximum cut between any two partitions yielded by MMMC SOLVER

is never more than 14% of that yielded by GREEDY.

4 Correlation-Aware Resource Placement: Extending MMMC

Initially, the MIN-MAX MULTIWAY CUT problem appears to model almost any re-
source placement problem. However, this is not the case for two reasons:

1. Cost Dependencies: consider modelling a P2P network as discussed in the original
work [18] where the terminals are peers and the remaining non-terminal vertices
are data items. A data item belonging to Si is stored at peer ti and edge capacities
reflect expected communication patterns. The goal is to allocate data items among
the peers so as to minimize the expected communication cost. However, costs will
likely depend on where items are placed in the network. Here, MMMC requires
input for the edges and yet this input will be defined by the very solution we seek.
Consequently, cost metrics need to be carefully motivated.
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2. Privacy: there are often constraints on where resources can be placed in the net-
work and, by itself, the MIN-MAX MULTIWAY CUT problem does not address this
issue. This may be due to privacy issues where sensitive data can only be allocated
to secure locations. Conversely, a server may refuse to maintain a particular re-
source given legal concerns or quality of service constraints. Resources may even
be physically restricted to certain locations.

We now show how to solve these two problems and arrive at our correlation-aware
resource placement scheme.

4.1 Cost Metrics Motivated by Correlation

In this section, we demonstrate how the use of correlation in our model avoids the
problem of cost dependencies and motivates two important cost metrics. Overall, the
main benefit of correlation information is that it is independent of location. Throughout,
assume we are provided with positive correlation values between nodes in the network.4

Latency as a Cost Metric. Consider resources d1 and d2, which are strongly corre-
lated. They may be colocated in order to reduce the communication overhead involved
in obtaining them both. For instance, in response to a query involving d1, both resources
d1 and d2 may be fetched in anticipation of a follow-up request for d2; alternatively, less
inter-machine communication may be required if both resources are located on one, or
even a small number of machines, if substantial inter-machine communication is re-
quired for a query. Therefore, under scenarios where the size of resources is relatively
small, the correlation values on our input graph to the MIN-MAX MULTIWAY CUT give
rise to latency as a plausible cost metric.

This problem domain is suited to a number of applications. For instance, text search
engines typically utilize inverted indices in order to be efficient. Primarily, an inverted
index stores information matching a keyword to documents that contain it. A query
with K terms often requires that the inverted indices of all K terms be accessed. For
distributed search systems, these indices are placed on many different machines. Con-
sequently, the communication overhead between machines storing the indices required
for resolving the same query presents a critical factor in supporting fast search [22].

Bandwidth as a Cost Metric. For sizable data items, bandwidth becomes the domi-
nating cost, not latency. Consider two large files d1 and d2 that are highly correlated in
the sense that if a user obtains one, he is likely to obtain the other. As a simple example,
d1 and d2 might be two jpeg files by a user’s favorite artist. In this case, it does not mat-
ter whether d1 and d2 are colocated since our cost metric is dominated by bandwidth
consumption which does not necessarily bear any relationship to the correlation value
on the edge (d1, d2) in our input graph.

The situation, however, is quite different for queries involving the collection of more
than one data source. For instance, a user may wish to compute a function over the
aggregation of d1 and d2. There are a number of settings where such complex queries
are useful for allowing richer search capabilities. A range query might require a join
operation on d1 and d2. Here, it makes sense to have d1 and d2 colocated; the query
can be resolved without downloading of at least one of d1 or d2. Such complex queries
motivate a meaningful relationship between correlation and bandwidth consumption.

4 Our approach can incorporate negative correlations; however, for simplicity we restrict our
attention to positive correlation in the context of our work.
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4.2 Adding Privacy Constraints

We enforce privacy constraints by embedding them into the MAXSBCC sub-problem.
The following primal semidefinite form for our SDP of Section 2 can be obtained from
Equations (5)-(9) by standard methods:

max C ·X s.t. (1/2)A •X = W

Eii •X = 1, for 1 ≤ i ≤ n

(1/2)Est •X = −1
X � 0

where P •Q denotes the standard
∑

i

∑
j PijQij . B′ is such that entry b′11 = 1 and all

other entries in the first row and first column have value 1/2; the rest of the entries are
0. Then C = (1/2)I + (1/2)B′, Xij = vivj, and A is the capacity matrix for G. Eij

is an n× n matrix with a 1 in the ijth and jith entries and zeros everywhere else.
Using the primal form, privacy constraints are added in the following fashion. As-

suming feasibility, if we wish to constrain the location of a particular resource b to a
terminal v, we include (1/2)Ev,b •X = 1; alternatively, (1/2)Ev,b •X = −1 ensures
that b will not be stored at v. We can also force resources a and b to be colocated or
separted by setting (1/2)Ea,b • X = 1 or (1/2)Ea,b • X = −1, respectively. The
mathematical analysis of Section 2 changes little and the results remain unchanged.

4.3 Experimental Results

Our experimental work is in the context of Section 4.1. Assume a homogenous multi-
administrative network where users in the network are issuing text queries and the cost
of resolving a query within the domain of the particular issuer of the query is inex-
pensive, while communication between administrative domains is costly. We consider
the problem of placing inverted indices such that (1) the communication overhead be-
tween domains during query resolutions is reduced and (2) no domain is involved in an
excessive number of transactions involving multiple domains.

We utilized the query data5 of [11] which totals 5462 queries, each consisting of sev-
eral terms, by users in the network. Using the SMART ‘stopword’ list [4], queries were
pruned to remove trivial terms.6 From this data set, the K most prevalent terms were
extracted and correlation values between each pair were calculated. The most prevalent
terms are not necessarily correlated with one another; therefore, we extracted the largest
group of terms that did share positive correlations. Represented as a connected compo-
nent where nodes are terms and edges are weighted by correlation values, this graph was
used as our input. 10 randomly chosen terminals were chosen to correspond to domains.
There were 12 trials in total, consisting of 53, 144, 238, 336, 423, 523, 630, 734, 847,
956, 1064 and 1157 nodes, respectively. In each trial, all 5462 pruned queries were exe-
cuted. For each term in a particular query that matched a top key word in our trial, data
was collected; otherwise, the term was ignored.

Distinct Domains Accessed per Query. If terms within a single query require access-
ing multiple domains, then the number of unique domains accessed provides a measure

5 All query data was used, not just queries related to mp3 files.
6 Pruning did not remove queries, but trivial terms were removed from a large number of queries.
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Tables 7. Number of unique
domain accesses per query
aggregated over all queries

Trial GREEDY MMMC
SOLVER

1 1218 1111
2 2247 1996
3 2942 2409
4 3439 2333
5 3808 2493
6 4191 2693
7 4561 2909
8 4886 3024
9 5285 3159

10 5555 3291
11 5858 3471
12 5997 3485

Table 8. Total percentage of
queries that can be resolved
within a single domain

Trial GREEDY MMMC
SOLVER

1 83.0% 87.7%
2 73.6% 81.4%
3 68.3% 83.9.%
4 64.8% 96.8%
5 62.4% 94.7%
6 59.4% 97.6%
7 58.3% 96.8%
8 56.8% 97.8%
9 55.2% 98.8%

10 54.4% 98.8%
11 53.6% 97.8%
12 53.1% 99.4%

Table 9. Of the remaining queries that
require accessing two or more do-
mains to resolve, the percentage at-
tributed to the domain involved in the
most number of such transactions

Trial GREEDY MMMC
SOLVER

1 7.0% 10.0%
2 9.7% 12.1%
3 11.5% 13.7%
4 11.7% 3.2%
5 14.5% 5.3%
6 13.7% 2.4%
7 14.6% 3.2%
8 14.7% 2.2%
9 16.1% 1.3%

10 15.7% 1.2%
11 15.9% 2.1%
12 16.2% 5.8%

of communication overhead per query. Table 7 illustrates the sum of such access data
over all queries. In comparison with the placement scheme given by GREEDY, MMMC
SOLVER achieves substantially fewer unique domain accesses over the course of exe-
cuting all 5462 queries. In particular, for Trial 4 and above, MMMC SOLVER incurs
only 68% down to 58% of the unique domain accesses performed by GREEDY.

Queries Involving Multiple Domains. The number of queries requiring communica-
tion between multiple domains concerns both the amount of communication overhead
and also the aspect of fairness. Table 8 depicts data for both MMMC SOLVER and
GREEDY on the number of queries that were resolved through a single domain only
and the number of queries that required two or more domain accesses. For MMMC
SOLVER, at least 81% of all queries could be resolved at a single domain. Moreover,
for Trial 4 and above, this value grew to be 95% or more. In contrast, a significantly
smaller percentage of queries were resolved at a single domain using GREEDY. In terms
of fairness, with MMMC SOLVER, no domain participated in transactions with other
machines for more than 19% of the queries. This value can be dissected further by
examining how much of this 19% is attributed to each domain. Table 9 gives this infor-
mation; no domain is ever forced to participate in more than 14% of these transactions
involving more than one domain. Moreover, this value decreases substantially as the
number of key words is increased, dropping below 6% after Trial 4.

5 Conclusion

In this work, we proposed a novel correlation-aware resource placement scheme. A
heuristic was developed for solving the MAXSBCC problem. This heuristic is used as
a critical sub-routine for solving MMMC which, after extensions to address cost met-
rics and privacy constraints, yields our correlation-aware resource placement scheme.
The results of our experiments were encouraging and demonstrated that our scheme can
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yield substantial savings in communication overhead. Interesting future work includes
analyzing the performance benefits of using negative correlation information and par-
allelized implementations of our algorithms.

Acknowledgements. We gratefully thank Jared Saia for his helpful discussions.
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Abstract. What does it mean for two geometric graphs to be similar?
We propose a distance for geometric graphs that we show to be a metric,
and that can be computed by solving an integer linear program. We also
present experiments using a heuristic distance function.

1 Introduction

Computational geometry has studied the matching and analysis of geometric
shapes from a theoretical perspective and developed efficient algorithms mea-
suring the similarity of geometric objects. Two objects are similar if they do
not differ much geometrically. A survey by Alt and Guibas [1] describes the sig-
nificant body of results obtained by researchers in computational geometry in
this area.

This paradigm fits a number of practical shape matching problems quite well,
such as the recognition of symmetries in molecules, or the self-alignment of a
satellite based on star patterns. Other pattern recognition problems, however,
seem to require a different definition of “matching.” For instance, recognizing
logos, Egyptian hieroglyphics, Chinese characters, or electronic components in
a circuit diagram are typical examples where this is the case. The same “pat-
tern” can appear in a variety of shapes that differ geometrically. What remains
invariant, however, is the “combinatorial” structure of the pattern.

We propose to consider such patterns as geometric graphs, that is, planar
graphs embedded into the plane with straight edges. Two geometric graphs can
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be considered similar if both the underlying graph and the geometry of the planar
embedding are “similar.” The distance measures considered in computational
geometry, such as the Hausdorff distance, Fréchet distance, or the symmetric
difference, do not seem to apply to geometric graphs.

Pattern recognition systems that combine a combinatorial component with a
geometric component are already used in practice—in fact, syntactic or struc-
tural pattern recognition is based on exactly this idea: A syntactic recognizer
decomposes the pattern into geometric primitives and makes conclusions based
on the appearance and relative position of these primitives [2,7]. While attrac-
tive from a theoretical point of view, syntactic recognizers have not been able
to compete with numerical or AI techniques for character recognition [6]. In
general, the pattern recognition community may be said to consider graph rep-
resentations as expressive, but too time-consuming, as subgraph isomorphism in
general is known to be intractable.

An established measure of similarity between (labeled) graphs is the edit dis-
tance. The idea of an edit distance is very intuitive: To measure the difference
between two objects, measure how much one object has to be changed to be
transformed into the other object. To define an edit distance, one therefore de-
fines a set of allowed operations, each associated with a cost. An edit sequence
from object A to object B is a finite sequence of allowed operations that trans-
forms A into B. The distance between A and B is the minimal cost of an edit
sequence from A to B.

The edit distance originally stems from string matching where the allowed
operations are insertion, deletion and substitution of characters. The edit dis-
tance of strings can be computed efficiently, and the string edit distance is used
widely, for instance in computational biology.

Justice and Hero [5] defined an edit distance for vertex-labeled graphs that
additionally allows relabeling of vertices, and give an integer linear programming
formulation of the edit distance. The edit operations are insertion and deletion
of vertices, insertion and deletion of edges, and a change of a vertex label.

It is natural to try to define an edit distance for geometric graphs as well.
Simply considering a geometric graph as a graph whose vertices are labeled
with their coordinates is not sufficient, as the cost of inserting and deleting
an edge should also be dependent on the length of the edge. This leads to the
following operations: Insertions and deletions of vertices, translations of vertices,
and insertions and deletions of edges. However, it is difficult to give bounds on
the length of an edit sequence: vertices can move several times to make insertions
and deletions cheaper. We give some examples in the following section.

This leads us to define another graph distance function in Section 3. It is not
an edit distance, and so we need to prove explicitly that it is a metric. We also
give an integer linear programming formulation that allows us to compute our
distance for small graphs with an ILP solver. Unfortunately, we do not know how
to compute or even approximate our graph distance for larger graphs. In fact, we
give two reductions from NP-hard problems, but both result in non-“practical”
instances of the problem.
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We therefore turn our attention to a heuristic. We define the landmark distance
of two geometric graphs, and present pattern retrieval experiments on a database
of 25056 graphs created from glyphs of Chinese characters. The idea of the
landmark distance is to represent a geometric graph on n vertices as a set of
n points in R6. The landmark distance between two geometric graphs is then
the Earth Mover’s distance between the point sets representing the graphs.

2 Why Not an Edit Distance?

A graph edit distance for geometric graphs needs to support at least the following
primitive operations: insertion and deletion of vertices and edges, and translation
of vertices.

Throughout this paper, we assume that geometric graphs are given with ab-
solute coordinates in the plane. In other words, a translated, rotated, or scaled
copy of a graph drawing is not necessarily similar to the original graph drawing.
If a similarity measure that is invariant under some motions is needed, this can
always be achieved by minimizing over all motions of interest.

Let us first assume that insertions and deletions of edges have cost identical
to the length of the edge, and the cost of a vertex translation is the distance
by which the vertex was translated. This leads to very artificial edit sequences,
where vertices “hop around” several times. For instance, in the example shown in
Figure 1, the cheapest edit sequence transforming the graph (a) into graph (b)
(where both graphs are meant to be at the same location in the plane) is to
translate x first close to a, to insert edge xa, then to translate x close to b,
to insert edge xb and so on. The costs are roughly d(x, a) + d(a, g) + d(x, g),
which is much less than the sum of the lengths of the edges. In addition there
is actually no optimal edit sequence—to reach the optimum, one would have to
insert a vertex on top of an existing vertex—so the graph distance would have
to be defined as the infimum over all edit sequences.

To fix this problem, we can change the cost of a vertex translation to account
for the change in length of all the incident edges. Unfortunately, there is then no
bound on the length of an optimal edit sequence, and we again have to define
the graph distance as the infimum over all edit sequences. For instance, in the
simple example of Figure 1 (c), where we want to measure the distance between
the graph consisting of the single edge uu′ and the graph consisting of the single

x

a b c d e f g

(a) (b) (c)

u u′

v v′

Fig. 1. Bad examples for edit distances
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edge vv′, an optimal edit sequence would be to move both vertices alternatingly
by an infinitesimal amount so as to minimize the change in edge length incurred.

3 Geometric Graph Distance

Our distance is inspired by the graph edit distance in that it is based on the
primitive operations above. However, we do not allow arbitrary sequences of the
operations. Instead the edit operations must be performed in this order:

1. Edge deletions
2. Vertex deletions
3. Vertex translations
4. Vertex insertions
5. Edge insertions

Only isolated vertices can be inserted or deleted, and this operation is free.
Insertion or deletion of an edge e of length |e| has cost Ce|e|. Translating a
vertex has cost Cv times the distance of the translation plus, for each incident
edge, Ce times the change in the length of the edge.

Note that we measure the change in edge length between the two graphs, and
not for individual operations!

The ordering of the five types of operations is really the only ordering suitable
for this definition: It has to be symmetric and so vertex translations have to
appear in the middle; since only isolated vertices can be deleted, edges have to
be deleted before vertices; and allowing deletions after insertions is never useful.

A different way of looking at the distance is the following: Let A = (VA, EA)
and B = (VB, EB) be the two graphs. We chose a subset V ∗ ⊆ VA and an
injection σ : V ∗ → VB, and associate with them the following cost:

(i) we pay Ce|uv| for any edge (u, v) ∈ EA such that not both u, v ∈ V ∗ or
σuσv �∈ EB ;

(ii) we pay Ce|uv| for any edge (u, v) ∈ EB such that not both u, v ∈ σV ∗ or
σ−1uσ−1v �∈ EA;

(iii) we pay Ce

∣∣|uv| − |σuσv|
∣∣ for each edge (u, v) ∈ EA with both u, v ∈ V ∗

and σuσv ∈ EB;
(iv) we pay Cv|uσu| for each u ∈ V ∗.

The geometric graph distance ggd(A, B) is the minimum of this cost over all
choices of V ∗ and σ.

The reader may wonder if it is necessary to include the change of edge length,
that is, the term (iii). Indeed, without this term, the distance would not satisfy
the triangle inequality. An example of this is shown in Figure 2, where the
distance between the graphs in (a) and (d) would be larger than the sum of the
distances between the graphs in (a) and (b), (b) and (c), and (c) and (d).

We can now show:

Theorem 1. The geometric graph distance defined above is a metric on the set
of geometric graphs without isolated vertices for positive Cv and Ce.
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(a)

(d)(c)

(b)

Fig. 2. The triangle inequality does not hold without accounting for the change in edge
length

Proof. Let A, B and C be geometric graphs without isolated vertices. It follows
from the definition that ggd(A, B) ≥ 0 and that ggd(A, B) = ggd(B, A). We
clearly have ggd(A, A) = 0. Assume now that ggd(A, B) = 0. Then we must
have V ∗ = VA and σV ∗ = VB , and for each u ∈ VA we must have u = σu, and
so A = B.

It remains to show the triangle inequality. Let V ∗
1 ⊂ VA and σ1 : V ∗

1 → VB

be as in the definition of ggd(A, B), and let V ∗
2 ⊂ VB and σ2 : V ∗

2 → VC be as
in the definition of ggd(B, C).

Let V ∗ := σ−1
1 (σ1V

∗
1 ∩V ∗

2 ), and let σ : V ∗ → VC be defined as σu = σ2σ1u. We
evaluate the cost of V ∗ and σ. The cost of terms (iii) and (iv) is bounded by the
sum of the corresponding terms in ggd(A, B) and ggd(B, C). Edges (u, v) ∈ EA

such that not both of u, v ∈ V ∗
1 are accounted for in ggd(A, B), and edges

(u, v) ∈ EC such that not both of u, v ∈ σ2V
∗
2 are accounted for in ggd(B, C).

For an edge (u, v) ∈ EA with u ∈ V ∗
1 \V ∗ and v ∈ V ∗

1 , we have that σ1u �∈ V ∗
2 .

It follows that (σ1u, σ1v) ∈ EB falls into case (i) for ggd(B, C), and so the cost
of deleting this edge is bounded by the change in edge length in ggd(A, B) and
the deletion cost in ggd(B, C).

A symmetric argument holds for edges (u, v) ∈ EC with u ∈ σ2V
∗
2 \ σV ∗ and

v ∈ σ2V
∗
2 . ��

The geometric graph distance can be formulated as an ILP as follows: For
each pair of vertices u ∈ VA and v ∈ VB , we introduce a binary variable Vuv. We
will have Vuv = 1 if u ∈ V ∗ and σu = v, and 0 otherwise. Similarly, for each pair
of edges e ∈ EA and e′ ∈ EB, we introduce a binary variable Eee′ . This variable
will be 1 if and only if both endpoints u, v of e are in V ∗, and σu, σv are the
endpoints of e′.

The constraints are as follows: For each u ∈ VA, we have∑
v∈VB

Vuv ≤ 1,

and for each v ∈ VB we have ∑
u∈VA

Vuv ≤ 1
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Together, these constraints ensure that σ is an injective function. Furthermore,
for each variable Eee′ we introduce the following constraint, where e = (u, v)
and e′ = (u′, v′):

Eee′ ≤ 1
2
· (Vuu′ + Vvv′ + Vuv′ + Vvu′ )

These are all the constraints. Then ggd(A, B) is the minimum of the function:

Cv

∑
u,v

|uv| · Vuv + Ce

∑
e∈EA

|e| + Ce

∑
e′∈EB

|e′|

−Ce

∑
e,e′

(
|e|+ |e′| −

∣∣|e| − |e′|∣∣) · Eee′ .

The first term is the cost of translating vertices (the remaining vertices are
deleted and inserted, which is free). The second and third terms are the total
cost of deleting all edges of A, and inserting all edges of B. The only way to
avoid deleting and inserting an edge is by moving it from A to B. In that case,
Eee′ = 1, and the cost is the difference in edge length, which is modeled by the
fourth term, that is, we subtract |e| and |e′| and add

∣∣|e| − |e′|∣∣ instead.
We were able to compute distances between some small graphs with less than

ten vertices using the ILP solver of the Gnu linear programming toolkit (GLPK).
Unfortunately, we do not know how to compute the distance for larger graphs,
and indeed this is a hard problem.

Theorem 2. The problem of computing the geometric graph distance as defined
above is NP-hard.

We give two proofs. However, the first proof assumes that graphs can be non-
planar, the second proof assumes that we can choose Cv � Ce. Thus, both
results are for non-“practical” instances of the problem.

Proof (assuming graphs can be non-planar). We reduce 3dMatching to the
problem. Remember that the input for 3dMatching consists of three disjoint
copies X, Y, Z of {1, . . . , n}, and a set T of m triples from X × Y × Z. The
problem is to determine whether there is a subset S of T of exactly n triples
that cover X, Y, Z completely.

We can reduce 3dMatching to graph matching as follows: Pick four points
t0, x0, y0, z0 in the plane as the corners of a unit square. Pick n points x1, x2, . . . , xn

very close to x0, and do the same for y1, . . . , yn and z1, . . . , zn. Finally, pick m
points t1, . . . , tm very close to t0.

The graph G0 consists of 4n vertices and edges, forming the n disjoint
loops tixiyiziti.

The graph G1 consists of 3n+m vertices as follows: Let triple i in T be (j, k, l).
Then G1 includes the loop tixjykzlti. Let M ≤ 4m be the number of edges of G1.

Clearly we have to insert M − 4n edges to go from G0 to G1. If there is a
subset S of n triples covering X, Y, Z, then we can map the loops of G0 to the
loops corresponding to the triples in S, and the total edit cost is very close to
M −4n. On the other hand, if there is no such subset, then at least one edge has
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to be deleted from G0, and the total cost is at least close to M − 4n+ 1. And so
3dMatching can be decided by computing the geometric graph distance for a
highly non-planar graph. ��

Proof (assuming Ce and Cv are part of the input and Cv � Ce is allowed).
Consider the decision version of our problem, that is, given two geometric graphs
G0 and G1 and three positive real constants Cv, Ce and K, is the geometric graph
edit distance between G0 and G1 less than K?

The reduction is done by using the well-known Hamiltonian path problem
restricted to grid graphs, which is known to be NP-complete [4]. An instance of
the Hamiltonian path problem is a grid graph G with n vertices and m edges.

The reduction is as follows. Set Ce = 1, Cv = 1/(n · diam(G0 ∪ G1)) and
K = m−n+ 2. Let G0 be a grid path on n vertices, where each edge has length
1, and let G1 be the grid graph defined by G on n vertices. We claim that G1
contains a Hamiltonian path if and only if the geometric graph edit distance
between G0 and G1 is at most K.

Consider an optimal transformation of G0. We will argue that the optimal
solution will always translate a maximum number of edges in G0, and that all
the n− 1 edges in G0 can only be used if there is a Hamiltonian path in G1.

Since G1 is a grid graph all edges have length 1, thus, translating an edge in
G0 does not change its length. Due to the choice of Cv and Ce this implies that
moving an existing edge is always cheaper than inserting a new edge.

Consider the cost of an optimal solution. Since G0 only contains n− 1 edges
and G1 contains m edges one has to insert at least m− n + 1 new edges, with a
total cost of at least m − n + 1. The cost of translating the vertices of G0 does
not exceed 1 in total. The n− 1 edges of G0 can only be reused if G1 contains a
Hamiltonian path. Otherwise, for each deleted and inserted edge the additional
cost is 2. Thus, if all the edges in G0 can be used then the total cost is at most
K = m− n + 2 and there exists a Hamiltonian path in G, otherwise not. ��

4 Landmark Distance

Since we do not know how to compute our geometric graph distance efficiently,
we turned to a heuristic distance measure, the landmark distance. The idea of
the landmark distance is to designate a few vertices of the graph as its landmarks
and to represent the vertices of the geometric graph by their distances to the
landmarks.

Formally, let G = (V, E) be a geometric graph, and let KG be the complete
graph on the vertex set V . An edge (u, v) of KG is given a weight as follows: if
(u, v) ∈ E, then its weight is |uv|, otherwise its weight is p · |uv|, where p > 1
is a fixed penalty value. The distance dG(u, w) between a vertex u ∈ V and a
landmark w ∈ V is then defined as the length of the shortest path between u
and v in KG. After testing different values for the penalty p we chose p = 1.6
for our experiments.

Let L = w1, . . . , wk be k vertices of G called landmarks (in our experiments
k = 4). For a vertex v ∈ V with coordinates (x, y), we define the L-vector Lv of v
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as the (k+2)-dimensional vector containing the distances of v to the k landmarks
as well as the coordinates of v:

Lv = (dG(v, w1), . . . , dG(v, wk), x, y).

The landmark representation R(G) of the graph G is now simply the set of
L-vectors of all vertices: R(G) := {Lv | v ∈ V }.

We define the landmark distance dL(G0, G1) between two geometric graphs
G0 and G1 (both with given landmarks) as the normalized earth mover’s distance
between the point sets R(G0) and R(G1).

The normalized Earth Mover’s Distance (nEMD) is a distance measure de-
fined on weighted point sets [8]. Let P and Q be two weighted point sets with∑

p∈P w(p) =
∑

q∈Q w(q) = 1, where w(u) ≥ 0 is the weight of a point u.
Intuitively, a point p ∈ P can be seen as a pile of earth of size w(p), while a

point q ∈ Q can be seen as a hole in the ground of size w(q). The Earth Mover’s
Distance is then defined as the cheapest way to move the earth into the holes,
where piles can be split and the cost of transporting s units of earth from a pile
to a hole is equal to s times the distance between the pile and the hole.

Formally, nEMD can be defined by the following linear program. Let fpq

denote the flow of earth from p ∈ P to q ∈ Q. Then

nEMD(P, Q) = min
∑
p∈P

∑
q∈Q

d(p, q)fpq,

where d(p, q) is the distance between p and q in some underlying metric, subject
to the constraints:

∀p ∈ P ∀q ∈ Q fpq ≥ 0
∀p ∈ P

∑
q∈Q fpq = w(p)

∀q ∈ Q
∑

p∈P fpq = w(q)

In our definition of the landmark distance, we give all points of R(G) equal
weight, and we use the 	1-metric1 in Rk+2 as the underlying distance for the nEMD.

The landmark distance is “nearly” a metric:

Theorem 3. The landmark distance on graphs with given landmarks has the
following properties:
(i) dL(G0, G0) = 0 and dL(G0, G1) ≥ 0,
(ii) dL(G0, G1) = dL(G1, G0),
(iii) dL(G0, G2) ≤ dL(G0, G1) + dL(G1, G2).

Proof. All the properties in the theorem follow directly from the fact that the
normalized EMD is a metric [8]. ��

However, it is easy to see that dL(G0, G1) = 0 does not imply G0 = G1.
1 Whether the �1- or �2-metric is used makes little difference in the experiments. The

advantage of the �1-metric is that it does not need floating point arithmetic.
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5 Experimental Results

We performed pattern retrieval experiments on a database of graphs generated
from Chinese character glyphs using the landmark distance. The motivation here
was not to build a Chinese character recognition system—a lot of research has
been done in this area, and it is not our intention to compete with these finely
tuned results of years of research. We turned to Chinese characters because we
found them to be a source of a large number of geometric graphs with known
semantics.

We selected six different fonts, including two Korean, two Japanese, and two
Chinese fonts. We picked a set of 4176 Chinese characters (or, more precisely,
Unicode code points) that exist in all six fonts, and generated graphs for each
of these 6 × 4176 = 25056 glyphs as follows: We draw the glyph and compute
its medial axis. We prune away small features, and then simplify each chain
of degree-two vertices using the Imai-Iri algorithm [3]. Figure 3 shows three
examples of glyphs and the corresponding graphs. For the distance computations,
all graphs were then linearly scaled to fill a unit square (not shown in the figure).

As explained, our database consists of 4176 sets of six graphs that represent
the same abstract Chinese character. In principle, the graphs representing the
same character should be similar, and we have assumed this as the ground truth
of our database. In reality, there can be considerable variation between graphs
generated from glyphs with the same semantics, due to a different glyph style,
or actual variations in character shape.

The experiment. We selected one of the six fonts (the Korean dotum font) as
our reference font, and built a database of 4176 model graphs from this font.

We then considered each of the remaining 20880 graphs as a pattern, and
computed its distance to each model, using the EMD implementation by Rubner
et al. [8]. The models were then sorted in order of distance from the pattern.
Ideally, the nearest model should be a graph for the same Chinese character, so

Fig. 3. Three glyphs and generated graphs for the Chinese character U+6f11 “slowly
flowing water”
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we determined the index of the occurrence of the same Chinese character in the
ranked list of models.

As a control experiment, we first tried this experiment using the Hausdorff
distance of the graph vertices. The results are given in the first line of Table 1:
For 31.8% of the 20880 patterns the best (most similar) model belonged to the
same Chinese character, for 50.9% of the patterns, one of the first (most similar)
ten models belongs to the same character.

Table 1. A summary of our experimental studies of Chinese character retrieval

Index in ranked model list
Graph distance 1 2 3 4 5 6–10 11–20 21–200

Hausdorff-distance # patterns 6647 1272 705 496 387 1115 1257 4283
of vertices accum % 31.8 37.9 41.3 43.7 45.5 50.9 56.9 77.4

EMD # patterns 16844 1646 519 258 184 286 193 200
of vertices accum % 80.7 88.6 91.0 92.3 93.2 94.5 95.4 96.4
Landmark # patterns 17814 1298 454 260 152 317 195 221

distance accum % 85.3 91.5 93.7 95.0 95.7 97.2 98.1 99.2

It is clear that the Hausdorff-distance does not capture the problem well
enough (even though we ignore edge information here, we do not believe that
using the edge information would actually help).

The Earth Mover’s distance, however, does much better, even when we ignore
all information about the edges of the graph. The second line of our table shows
this experiment, where we ranked the models by nEMD of the graph vertices
only (that is, a graph drawing is interpreted as a set of points in the plane). The
results are surprisingly good considering that the edge information of the graphs
is not used at all: for 94.5% of the patterns, the correct Chinese character is
found in the top ten.

Landmark selection. We fixed four landmarks in each model graph, by choosing
the four vertices that are extreme in the four diagonal directions, that is, the
vertices extreme in the directions (1, 1), (1,−1), (−1,−1), and (−1, 1).

Ideally, we would apply the same approach to the pattern graph, but very
often this does not find the “right” vertex, as for example in Figure 4. In such a
case, the distance between the graphs is far larger than it should be—selecting
the right landmarks in each graph is critical to the success of the landmark
distance.

We actually try all plausible choices of landmarks for a given pattern, and then
use the landmarks that result in the smallest distance to a given model (so we
could select different landmarks for different models). We consider a vertex to be
a plausible landmark if it is the corner of a quadrant that contains no vertices.

Speeding up the computation. It turns out that computing the EMD is a rather
expensive operation, and computing 4176 × 20880 EMD distances in every
experiment is very time-consuming. For instance, for U+6f01, whose graph has
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Fig. 4. Extremal vertices are not robust

33 vertices, computing the EMD for each model in the entire model database
takes 31 seconds.

We therefore used a heuristic to speed up the computation: Instead of the
EMD, we compute a simplified landmark distance d′L(G0, G1) which is defined
as follows: For each point u in R(G0), find the nearest point nn(u) ∈ R(G1).
Then

d′L(G0, G1) :=
∑

u∈R(G0)

||u− nn(u)||1.

Note that this “distance” is not symmetric—we compute it with G0 being the
pattern, G1 being one of the models. It is also by itself not a very good distance
measure, and ranks the models much more poorly than the EMD.

So what we do instead is to first rank all models using the simplified landmark
distance. We then look at the top 200 models (that is, the 200 models with
the smallest simplified landmark distance), and recompute the distance from
the pattern to these 200 models using the landmark distance (that is, using the
EMD computation).

The heuristic greatly speeds up the computation: Comparing the character
U+610f mentioned above against the entire model database now takes only
1.8 seconds, a speed-up of around 17. This speed-up comes at nearly no cost—the
quality of the recognition is nearly identical to using the full EMD computation.

The result. The result of the our landmark distance experiment is given in the
last line of Table 1. For 85.3% of the patterns our approach finds the correct
Chinese character in the top position, and in 97.2% of the cases it is in the top
ten. This is a small but real improvement over the EMD for this dataset.

6 Conclusions and Open Problems

We believe that we have only scratched the surface of this problem. We gave
some evidence that our geometric graph distance is hard to compute, but we
lack a formal proof that it is NP-hard for planar graphs with realistic values of
Ce and Cv.
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(a) (b) (c)

Fig. 5. Our distance does not handle bending edges well

Is there a PTAS for our distance, or at least a constant-factor approximation?
If we do not want insertions and deletions of vertices to be free, can we incor-

porate that into our distance?
Finally, a major problem of our metric is that it does not allow us to cheaply

“bend” an edge, that is, to insert a degree-two vertex into an edge and then to
move that vertex slightly. The three graphs shown in Figure 5 are all quite simi-
lar, but our distance is large between (a) and (b) and small between (b) and (c).
Can we define a metric that allows this operation while still being computable
at least through integer linear programming?2

As for our experiments, perhaps the graphs in our database are “too easy” in
the sense that even ignoring the edge information, the EMD does pretty well.
It would be interesting to try harder graph sets, or to consider arbitrary rigid
motions.
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Abstract. We present a contraction-based algorithm for computing the
strongly connected components of large graphs. While the worst-case
complexity of the algorithm can be terrible (essentially the cost of run-
ning a DFS-based internal-memory algorithm on the entire graph), our
experiments confirm that the algorithm performs remarkably well in
practice. The strongest competitor is the algorithm by Sibeyn et al. [17],
which is based on a semi-external DFS algorithm developed in the same
paper. Our algorithm substantially outperforms the algorithm of [17] on
most of the graphs used in our experiments and never performs worse. It
thus demonstrates that graph contraction, which is the most important
technique for solving connectivity problems on undirected graphs I/O-
efficiently, can be used to solve such problems also on directed graphs,
at least as a heuristic.

1 Introduction

Driven by the availability of massive amounts of data in a wide range of appli-
cation areas, tremendous efforts have been made over the last two decades to
develop algorithms that can process data sets beyond the size of a computer’s
main memory efficiently. Traditional algorithms perform poorly on such inputs,
as most of these algorithms exhibit little or no access locality and cause a disk
access for almost every computation step, which results in a slow-down by a
factor of about 106 compared to processing the data in memory. I/O-efficient
algorithms, on the other hand, are designed to access data sequentially or in
large blocks, in order to reduce the number of disk accesses to the point where
massive data sets can be processed efficiently.

In the algorithms community, much work has focused on developing provably
I/O-efficient algorithms for a wide range of fundamental problems, particularly
for geometric and graph problems. See [4, 19] for surveys. For graph problems,
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much progress has been made on undirected graphs and special graph classes. In
contrast, no provably efficient algorithms are known for general directed graphs.
This lack of theoretical results motivates the study of heuristic techniques for
processing directed graphs I/O-efficiently. The most successful effort so far is
the depth-first search (DFS) algorithm by Sibeyn et al. [17], which is a semi-
external algorithm; that is, it can process the edges of the graph I/O-efficiently
if the vertices fit in memory. Since DFS is a central building block used in
many classical graph algorithms, the algorithm of [17] provides a general tool
for solving problems on directed graphs efficiently if the vertices fit in memory.
If, on the other hand, the size of the vertex set exceeds the memory size, the
performance of the algorithm deteriorates to that of an internal-memory DFS
algorithm. Sibeyn et al. demonstrated the effectiveness of their approach in the
semi-external case by using it to compute the strongly connected components
of a variety of directed graphs. A directed graph is strongly connected if, for
every vertex pair (x, y), there exists a directed path from x to y. The strongly
connected components (SCC’s) of a graph are its maximal strongly connected
subgraphs (SCSG’s).

While Sibeyn et al. used strong connectivity merely as an example to demon-
strate the efficiency of their DFS procedure, we propose a heuristic specifically
for computing SCC’s in this paper. The aim is (a) to achieve a better perfor-
mance than [17] on graphs whose vertex sets fit in memory and (b) to process
graphs whose vertex sets do not fit in memory, which, our experiments confirm,
the algorithm of [17] cannot do in a reasonable amount of time. Our algorithm
achieves both goals on a variety of input graphs, outperforming the semi-external
algorithm by a factor of 2–4 on most of the test graphs whose vertices fit in
memory, and being able to efficiently process graphs well beyond the reach of
the semi-external algorithm.

Our algorithm is based on graph contraction: it identifies and contracts
strongly connected subgraphs until the graph fits in memory, and then com-
putes the SCC’s in internal memory. Thus, given its good performance, our
algorithm demonstrates that, at least as a heuristic, graph contraction is useful
for solving connectivity problems on directed graphs. This is interesting because
this technique is the most important tool for solving connectivity problems on
undirected graphs I/O-efficiently, both in theory and in practice.

The remainder of this paper is organized as follows. Section 2 reviews pre-
vious work on implementing I/O-efficient graph algorithms; Section 3 describes
the algorithm; Section 4 discusses implementation details; Section 5 discusses
experimental results; and Section 6 offers concluding remarks.

2 Previous Work

While much theoretical work has focused on developing I/O-efficient graph al-
gorithms, much less is known about their practical efficiency. The main reason
is their algorithmic complexity. Most of these algorithms build on a number
of widely used primitives—list ranking, Euler tour construction, etc.—in addi-
tion to internal-memory algorithms that are used to process the parts of the
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graph loaded into memory. No good implementations of these primitives are
publicly available, which makes implementing any I/O-efficient graph algorithm
a formidable task, as it requires the implementation not only of the actual algo-
rithm but also of a number of more elementary, yet non-trivial, building blocks.

In spite of these challenges, a number of experimental results have been ob-
tained for undirected graphs. Dementiev et al. [10] provided a carefully engi-
neered implementation of a minimum spanning tree (MST) algorithm based on
ideas from [18]. Their algorithm is theoretically inferior to the MST algorithms
of [1, 5,8] but performs extremely well in practice. Ajwani et al. [2, 3] provided
implementations of the undirected breadth-first search algorithm by Mehlhorn
and Meyer [14] and obtained excellent results on a wide range of graph classes.
The semi-external DFS algorithm by Sibeyn et al. [17] seems to be the only work
that focused specifically on solving fundamental problems on directed graphs.

Other related work includes a large body of work on preprocessing large
graphs, particularly road networks, for fast shortest path queries. The most
recent results in this area include [6, 12, 13, 15].

3 A Contraction-Based Strong Connectivity Algorithm

This section describes a simple contraction-based SCC algorithm referred to as
EM-SCC throughout this paper. Section 4 discusses its implementation.

The algorithm consists of two phases: a preprocessing phase and a contrac-
tion phase. The contraction phase looks for SCSG’s in the input graph G and
contracts each into a single vertex, thereby reducing the size of G without al-
tering its connectivity. This process continues until the graph fits in memory, at
which point the algorithm loads it into memory and computes its SCC’s using
an internal-memory algorithm. In this sense, EM-SCC resembles the connectiv-
ity algorithm for undirected graphs by Chiang et al. [8]. In the undirected case,
however, the graph is guaranteed to fit in memory after a logarithmic number
of contraction steps, while, in the directed case, the algorithm succeeds only if
each round finds sufficiently many and large SCSG’s to contract.

The contraction phase searches for SCSG’s by loading memory-sized sub-
graphs of G into memory and computing their SCC’s. The preprocessing phase
tries to group the vertices and edges of G so that the chance of finding non-trivial
SCC’s in these subgraphs is maximized.

Next we discuss these two phases in detail. Throughout this discussion, we
assume the input graph is connected. It is not hard, however, to extend the
algorithm to disconnected graphs with little or no impact on its performance.

3.1 Preprocessing Phase

The preprocessing phase of EM-SCC is conceptually simple. It arranges the
vertices of G in a list V0 in the order of their first occurrences along an Euler
tour of a spanning tree T of G. It stores the edges in a list E0, which is the
concatenation of “one-sided” adjacency lists of the vertices in V0 arranged in the
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same order as the corresponding vertices in V0. The adjacency lists are one-sided
in the sense that an edge xy is stored in the adjacency list Ex of x if x > y, and
in Ey otherwise; vertices are compared by their positions in V0.

The contraction phase discussed in Section 3.2 below sweeps the two lists V0
and E0 in tandem and processes maximal groups of consecutive vertices in V0
that induce memory-sized subgraphs of G. Intuitively, the ordering of the vertices
in V0 produced by the preprocessing phase should ensure that the processed
subgraphs are connected or have few connected components (in the undirected
sense). Assuming sufficiently random edge directions and sufficiently many non-
tree edges, this should lead to non-trivial SCC’s in the processed subgraphs.

To compute lists V0 and E0, the algorithm has to compute the tree T , its
Euler tour, and a ranking of the Euler tour. To compute the spanning tree, we
use the MST algorithm by Dementiev et al. [10] (setting all edge weights to 1).
Sorting and scanning the edge set of T suffices to compute an Euler tour of T .
To rank this tour, we use the list ranking algorithm by Sibeyn [18].

Give the ranked tour, the algorithm finds the first occurrence of every vertex
of G in the tour by sorting and scanning the node list of the tour, numbers the
vertices of G in the order of these occurrences, and places them into V0 in order.
The edge list E0 is constructed by sorting and scanning the edges of G three
times: twice to label each edge with the numbers of its endpoints, and once more
to arrange the edges in the order described above.

Before trying the simple preprocessing strategy discussed here, we experi-
mented with a more sophisticated hierarchical clustering approach, which clus-
tered vertices based on their degrees. The contraction phase then considered
(contracted versions of) clusters of increasing size and decreasing density in its
search for SCSG’s. The intuition was that, assuming the edge directions are suf-
ficiently random, dense graphs are more likely to contain large SCSG’s, so that
this degree clustering approach should lead to a rapid reduction of the graph
size early on in the contraction phase. The cost of computing this clustering,
however, was prohibitive, and the speed-up of the contraction phase compared
to the simple preprocessing described here was insignificant.

3.2 Contraction Phase

The contraction phase of EM-SCC proceeds in rounds. Each round produces a
more compressed version of G from the previous version by identifying SCSG’s
and contracting them. Let G = G0, G1, . . . , Gr be the sequence of graphs this
produces; that is, round i produces graph Gi from graph Gi−1. The algorithm
represents each graph Gi using two lists Vi and Ei whose structure is identical
to that of V0 and E0 described in the previous section.

The ith round partitions Vi−1 into subsets V ′
1 , V ′

2 , . . . , V ′
k of consecutive ver-

tices such that the graphs G′
j = Gi−1[V ′

j ] they induce fit in memory. The algo-
rithm loads these graphs into memory, one at a time, and identifies and contracts
their SCC’s. In more detail, the ith round scans Vi−1 and Ei−1 in tandem, col-
lecting the vertices and edges in the current graph G′

j in memory. Let x be the
first vertex in Vi−1 that belongs to G′

j , and let nj and mj respectively be the
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numbers of vertices and edges currently in G′
j . To decide whether to include the

next vertex y in Vi−1 in G′
j , the algorithm scans Ey and counts the edges whose

lower endpoints belong to G′
j , that is, are no less than x; let my be their number.

If nj + 1 vertices and mj + my edges fit in memory, the algorithm includes y
in G′

j and partitions the edges in Ey into two groups: those with lower endpoints
no less than x and those with lower endpoints less than x. It loads the former
into memory (thereby adding them to G′

j) and appends the latter to an initially
empty edge list E′′

i to be processed at the end of this round. Then the algorithm
proceeds to the next vertex in Vi−1.

If adding my edges to G′
j would make it exceed the memory size, the algorithm

declares vertex y to be the first vertex of G′
j+1 and appends its entire adjacency

list to E′′
i . Then it computes the SCC’s of G′

j in memory, contracts them, and
eliminates parallel edges that result from these contractions. At the end, the
vertices in G′

j are labelled with ID’s of their SCC’s, that is, with the ID’s of
their corresponding super-vertices in Gi. The algorithm writes this mapping
information back to Vi−1 and appends the sorted list of super-vertices to Vi.
The edges of the contracted version of G′

j are appended to an initially empty
edge list E′

i. This finishes the processing of G′
j , and the algorithm starts to

construct G′
j+1 with y as its first vertex.

The ith round ends after the last vertex in Vi−1 has been consumed. At this
point, the algorithm discards the edge list Ei−1, but not Vi−1, as the information
stored in Vi−1 is necessary to compute the final component labelling of the ver-
tices of G. If the algorithm numbers the vertices of Gi in increasing order as it
produces them, Vi already contains the sorted vertex list of Gi. To produce Ei,
the endpoints of all edges in E′′

i have to be replaced with their corresponding
super-vertices in Gi. Since the edges in E′′

i are already sorted by their upper
endpoints in Gi−1, a single scan of Vi−1 and E′′

i suffices to replace those end-
points. To replace the lower endpoints, the algorithm sorts the edges in E′′

i by
these endpoints and scans Vi−1 and E′′

i again. Finally, it concatenates the result-
ing list with E′

i, and sorts the concatenation primarily by upper endpoints (in
Vi) and secondarily by lower endpoints. A single scan now suffices to eliminate
duplicates from this list, which produces the edge list Ei of Gi.

3.3 Postprocessing

Let Gr be graph produced by the last round of the contraction phase; that is,
Gr fits in memory. Then the algorithm loads Gr into memory and labels every
vertex in Vr with the SCC containing it. What remains to be done is to copy
these labels back to the vertices in G. This is done by iteratively copying these
labels from Vi to Vi−1, for i = r, r − 1, . . . , 1.

To copy the labels from Vi to Vi−1, the algorithm sorts the vertices in Vi−1
by their corresponding super-vertices in Vi. Now every vertex in Vi−1 can be
labelled with the label of its corresponding vertex in Vi using a single scan of
the two sorted lists. Finally, the algorithm returns the vertices in Vi−1 to their
original order, in preparation for the next iteration.
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4 Implementation Details

We implemented algorithm EM-SCC in C++ using the STXXL library [9], which
provides I/O-efficient counterparts of the C++ STL containers and algorithms.
In particular, we used STXXL vectors to store the vertex and edge lists of
graphs, the STXXL sorting procedure to perform all sorting steps in the algo-
rithm, and the STXXL priority queue implementation in the list ranking step of
the preprocessing phase. The rest of this section discusses the most important
implementation choices made in the different parts of the algorithm.

Graph representation. As already discussed, each graph Gi is represented by
a vertex list Vi and an edge list Ei. In our implementation, every vertex in Vi

was represented using two integers, one being its own ID, the other one the ID
of the corresponding super-vertex in Gi+1.

Edges were represented as pairs of vertex ID’s, that is, using two integers.
The only exception was the addition of an extra integer to represent the edge
weight up to and including the MST computation. This could have been avoided
by modifying the MST implementation to compute an arbitrary spanning tree
of an unweighted graph. We did not do this, as the MST computation did not
account for a major part of the running time of our algorithm.

MST algorithm. We used the MST algorithm of [10] to compute the spanning
tree T in the preprocessing phase. The implementation was available from [16].
That algorithm is a sweeping algorithm, which iteratively removes vertices by
contracting the lightest edge incident to each processed vertex. This strategy can
be implemented using an external priority queue or using an I/O-efficient bucket
structure. The default implementation uses a bucket structure, as it results in
slightly better performance; we had no reason to change this.

Euler tour. To compute the Euler tour of T , we used the standard strategy.
We created two copies xy and yx of each spanning tree edge xy and sorted
the resulting edge list by their first vertices. Then we scanned the sorted edge
list and, for each pair of consecutive edges, xy1 and xy2, incident to the same
vertex x, we made edge xy2 the successor of edge y1x in the Euler tour. This
was easily implemented by storing the edges in an STXXL vector and using the
STXXL sorting algorithm to implement the sorting step.

List ranking. The list ranking algorithm of [18] is a sweeping algorithm similar
to the MST algorithm of [10]. The down-sweep removes vertices one by one
from the list until only one vertex remains. For each removed vertex v, its two
incident edges are replaced with a weighted edge between v’s neighbours; the
weight equals the length of the sublist between these two neighbours. The up-
sweep re-inserts the removed vertices in the opposite order and computes the
rank of each vertex v from the rank of one of the two vertices that became
adjacent as a result of the removal of v in the down-sweep.

As discussed in [18], this algorithm can be implemented using a bucket struc-
ture, similar to the one used in the MST algorithm, to pass information between
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vertices in the two sweeps. An alternative implementation uses a priority queue
and two stacks. Since our focus was not on engineering an optimal list ranking
algorithm, we opted for the easier implementation using a priority queue.

Internal-memory SCC algorithm. We used the one-pass SCC algorithm
described in [11] to compute the SCC’s of graphs loaded into memory. The
implementation of this algorithm requires two stacks to keep track of partially
identified SCC’s. In order to maximize the amount of memory available for
processing each graph G′

j , we implemented them using STXXL stacks. This
limited the memory footprint of the stacks to 4 pages.

Internal-memory graph representation. To maximize the size of the sub-
graphs that can be processed in internal memory in each round of EM-SCC,
we used a fairly compact graph representation in internal memory, consisting
of two arrays: an edge array and a vertex array. The edge array contained the
concatenation of adjacency lists of the vertices. Since the SCC algorithm only
needed access to the out-edges of each vertex, only those edges were stored in the
adjacency lists. When accessing an adjacency list, it was known to which vertex
this adjacency list belonged. Hence, the tail vertex of every edge did not have
to be stored explicitly. This allowed us to represent every edge using a single
integer storing the head vertex of the edge.

We represented every vertex using a two-integer record in the vertex array.
The first integer represented the SCC containing this vertex (once identified), the
other the index of the first edge in its adjacency list in the edge array. Vertex ID’s
did not have to be stored explicitly, as a consecutive numbering of the vertices
allowed us to use the position of a vertex in the vertex array as its ID.

Since this representation stores edges in a different order than on disk, it
was necessary to sort the edges by their tails to construct the internal-memory
representation of a graph G′

j from its external one. This required the use of an
initial edge representation using both its endpoints during the construction of the
internal-memory graph representation. Once the edges were arranged in the right
order, we dropped their tail endpoints, thus halving the memory requirements of
the representation. Since the ability of our algorithm to identify SCC’s improves
with the size of the subgraphs it can process in memory, we decided to process
subgraphs that occupied all of the available main memory (minus some buffer
blocks for caching used by the STXXL vectors) using the compact representation.
As a result, the initial sorting step required to construct this representation used
the STXXL external sorting algorithm to sort up to 2M data, where M denotes
the memory size.

5 Experimental Results

This section discusses our experimental results, comparing the performance of
EM-SCC with that of the semi-external SCC algorithm by Sibeyn et al. (called
SE-SCC here). First we describe our test environment and the data sets used in
our experiments. Then we discuss the results of our experiments.
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5.1 Environment and Settings

All experiments were run on a PC with a 3GHz Pentium-4 processor, 1GB
of RAM, and one 500GB 7200RPM IDE disk using the XFS file system. The
operating system was Fedora Core 6 Linux with a vanilla 2.6.20 Linux kernel.
The code was compiled using g++ 4.1.2 and optimization level –O3. All of our
timing results refer to wall clock times in minutes.

Since STXXL allows the specification of the block size for data transfers be-
tween disk and memory, we experimented with different block sizes between
256KB and 8MB. A block size of 2MB resulted in the best performance, since
EM-SCC accesses data in a mostly sequential fashion. This block size was used
throughout our experiments. Two additional parameters control the amount of
memory allocated to the LRU pager used by STXXL vectors to cache accessed
blocks. The first parameter is the page size as a multiple of the block size. Data
is swapped one page at a time. The other parameter is the number of pages to
be cached. We set both parameters to 2, as the mostly sequential data accesses
of EM-SCC did not benefit substantially from a bigger cache, but this would
have left less memory for the graphs to be processed in memory.1

5.2 Data Sets

We tested both algorithms on synthetic graphs and real web graphs. The synthetic
graphs were generated using the same data generator used by Sibeyn et al. [17].
The web graphs were produced by real web crawls of the .uk domain, the .it
domain, and from data produced by a more global crawl using the Stanford
WebBase crawler. They were obtained from http://webgraph.dsi.unimi.it/,
and their characteristics are shown as part of Table 1. Next we give an overview
of the types of synthetic graphs used in our experiments.

Random: These graphs were generated according to the Gn,m model; that is,
m edges were generated, choosing each edge endpoint uniformly at random
from a set of n vertices.

Cycle: The vertices were evenly spaced on a ring, and every vertex had out-
edges to its d = m/n nearest neighbours.

Geometric 1D: The vertices were evenly spaced on a ring of length n. Edges
were generated by choosing their tails uniformly at random. If u was chosen
as the tail of an edge, vertex v was chosen to be the head of this edge with
probability proportional to αd, where α < 1 and d is the distance between
u and v. In our experiments, we chose α = 0.9.

1 Using a single disk, a block size of 2MB and a page size of two blocks is equivalent
to using a block size of 4MB and a page size of one block. We chose the former
option because we also tested our algorithms using two disks, in which case the
blocks of each page can be assigned to different disks. Using two disks, our algorithm
experienced a speed-up of about 30%. Since the semi-external algorithm wasn’t able
to take advantage of multiple disks, we do not discuss the timings using two disks
in detail here.
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Geometric 2D: The vertices were placed on a
√

n×√n grid wrapped around
at the edges to form a torus. Edges were generated as for geometric 1D
graphs, but d was chosen to be the Manhattan distance between u and v in
the grid. Here we chose α = 0.8.

Out-star: Given a star degree s, this graph was generated in �m/s� rounds.
In each round, a tail vertex and s head vertices were chosen uniformly at
random. Then edges were added from the tail to the chosen head vertices.
We chose s = 1000 in our experiments.

In-out-star: This construction was similar to the out-star construction, but
half of the rounds directed the generated edges towards the centre of the
star. Again, we chose s = 1000.

Simple web: This construction started with a small complete subgraph and
added new vertices by connecting them to the current graph. Afterwards, a
small fraction (5% in our case) of random edges were added.

5.3 EM-SCC vs. SE-SCC

Table 1 shows the running times of EM-SCC and SE-SCC on different synthetic
inputs and on the three web graphs. For the synthetic graphs with 225 vertices,
EM-SCC outperformed SE-SCC by a factor between 2 and 4. The only exception
were random graphs and geometric 2D graphs, where SE-SCC took only slightly
longer than EM-SCC. For the two smaller web graphs, EM-SCC outperformed
SE-SCC by a factor between 3 and 4. As can be observed, the performance of SE-
SCC depends strongly on the structure of the input graph, whereas (surprisingly)
the performance of EM-SCC is much more immune to these variations. Sibeyn
et al. characterized geometric 1D graphs as being among the hardest inputs
for their algorithm, and geometric 2D and random graphs as being among the
easiest inputs. This is in line with our observations. On the other hand, cycle
graphs were mentioned as easy inputs in [17], while this was the synthetic input
that took SE-SCC the longest to process in our experiments.

The remaining inputs had at least 226 vertices and were beyond the reach of
SE-SCC on our hardware, as the vertex set no longer fit in memory. (See [7]
for a discussion of the graph representation used by SE-SCC and approximate
vertex numbers it can process without using virtual memory.) We ran SE-SCC
on the smallest of these graphs (with 226 vertices and 229 edges), using virtual
memory, and terminated each of these test runs after 12h without SE-SCC having
produced any result. Since the performance of SE-SCC on the semi-external
instances of random and geometric 2D graphs was comparable to that of EM-
SCC, we expected that SE-SCC would have the least difficulties to process larger
instances of these graph classes, and we let the experiments on these inputs run
for 24h. Again, SE-SCC did not finish within this amount of time.

In contrast, EM-SCC was able to process most of the test graphs in under
two hours, while none took more than 2 1/2 hours. The exceptions were the out-
star graphs and the sparsest of the in-out-star and simple web graphs. The next
section discusses possible reasons why EM-SCC could not process these inputs,
which sheds some light on its limitations.
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Table 1. Experimental results on synthetic data and real web graphs. Dashes indicate
inputs that could not be processed by the algorithm. For geometric 1D and 2D graphs,
mr denotes the number of edges requested to be generated. Since the data generator
filters duplicate edges for these two graph types, the actual number of edges, m, is less
than mr. The ratio m/n in the table reflects this. Notes: (1) experiment terminated
after 12h; (2) experiment terminated after 24h; (3) no further compression after a small
number of initial contraction rounds, but graph still beyond memory size.

Cycle Geometric 1D
n m m/n EM SE SCC’s n mr m/n EM SE SCC’s

225 229 16 58 208 1 225 229 13.2 51 161 11
226 229 8 71 —1 1 226 229 7.2 65 —1 45084
227 229 4 94 — 1 227 229 3.8 90 — 5.2m
226 230 16 120 — 1 226 230 13.2 103 — 17

Geometric 2D In-out-star
n mr m/n EM SE SCC’s n m m/n EM SE SCC’s

225 229 15.6 58 62 7175 225 229 16 63 141 22490
226 229 7.9 70 —2 45060 226 229 8 79 —1 2.6m
227 229 4.0 91 — 5.2m 227 229 4 — — —
226 230 15.6 117 — 18 226 230 16 134 — 44800

Out-star Simple web
n m m/n EM SE SCC’s n m m/n EM SE SCC’s

225 229 16 65 109 33m 225 229 16 63 113 1.6m
226 229 8 —3 —1 — 226 229 8 86 —1 10.6m
227 229 4 —3 — — 227 229 4 —3 — —
226 230 16 —3 — — 226 230 16 133 — 3.2m

Random Real web graphs
n m m/n EM SE SCC’s n m m/n EM SE SCC’s

225 229 16 61 63 12 18.5m 298.1m 16.1 29 104 3.8m
226 229 8 77 —2 45173 41.3m 1,150.7m 27.9 116 517 6.7m
227 229 4 109 — 5.2m 118.1m 1,019.9m 8.6 124 —1 38.5m
226 230 16 133 — 17
227 230 8 159 — 90279
228 230 4 345 — 10.4m

5.4 The Effect of Graph Structure

The ability of EM-SCC to process certain graphs is limited by the available
amount of main memory. The input graph needs to have few enough SCC’s to
fit in memory, and the SCC’s have to be composed of short enough cycles for
EM-SCC to find them as part of the memory-sized subgraphs it processes. The
inability of EM-SCC to process all but one of the out-star graphs nor the sparsest
of the in-out-star and simple web graphs reflects these limitations.
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Since EM-SCC was not able to process these graphs, we can of course only
extrapolate from the properties of the graphs in these classes the algorithm
was able to process. The smallest simple web graph had about 1.6m SCC’s,
and the smallest out-star graph had about 33m SCC’s. Compared to at most a
few thousand SCC’s in the smallest cycle, geometric 1D and 2D, and random
graphs, these graphs have significantly more SCC’s. For the bigger and sparser
inputs, we suspect that the number of SCC’s exploded, preventing EM-SCC
from compressing the graph down to memory size.

The smallest in-out-star graph had about 22,000 SCC’s, which is more than
for cycle, geometric 1D and 2D, and random graphs, but significantly less than
for out-star and simple web graphs. Therefore, there are two possible explana-
tions for the inability of EM-SCC to process the sparsest in-out-star graph:
either the lower density of the graph again resulted in an explosion of the
number of SCC’s, or the SCC’s consisted of very long cycles, which EM-SCC
was not able to find using the amount of main memory available on our test
machine.

Another interesting observation we made in our experiments was the lack of a
smooth transition between graphs EM-SCC could process efficiently and graphs
it could not process at all. More precisely, all the graphs it was able to process
required one or two contraction rounds, followed by a final round computing
the SCC’s in internal memory. On the other hand, for all inputs the algorithm
was not able to process, it took only a few contraction rounds to reach a stage
where no further contraction took place. For the out-star and in-out-star graphs,
contraction stopped after at most 4 rounds. It is possible that the algorithm had
found all SCC’s at that point, but there simply were too many. For the simple
web graph of density 4, it took 18 contraction rounds to reduce the graph by
only 33%, and subsequent rounds achieved no further contraction. We suspect
that more main memory would have helped in this case to identify and contract
SCC’s consisting of long cycles.

6 Conclusions

We have presented a contraction-based heuristic algorithm, EM-SCC, for com-
puting the strongly connected components of large graphs. Our algorithm demon-
strates that graph contraction is a useful tool for computing SCC’s of large graphs,
as it was able to process a wide range of input graphs faster than the currently best
algorithm by Sibeyn et al., and it was able to process graphs whose vertex sets did
not fit in memory.

The main limitation of EM-SCC is that it relies on the graph to have relatively
few SCC’s, consisting of relatively short cycles. This limitation seems impossible
to overcome using graph contraction alone.

An interesting strategy that might speed up EM-SCC on inputs it can pro-
cess is the use of pipelining to pass data between successive contraction rounds
without writing this data to disk.
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Abstract. Up to now, research on speed-up techniques for DIJKSTRA’s algo-
rithm focused on single-criteria scenarios. The goal was to find the quickest route
within a transportation network. However, the quickest route is often not the best
one. A user might be willing to accept slightly longer travel times if the cost of
the journey is less. A common approach to cope with such a situation is to find
Pareto-optimal (concerning other metrics than travel times) routes. Such routes
have the property that each route is better than any other route with respect to at
least one metric under consideration, e.g., travel costs or number of train changes.
In this work, we study multi-criteria search in road networks. On the one hand,
we focus on the problem of limiting the number of Pareto paths. On the other
hand, we present a multi-criteria variant of our recent SHARC algorithm.

1 Introduction

The computation of quickest paths in graphs is used in many real-world applications
like route planning in road networks, timetable information for railways, or scheduling
for airplanes. In general, DIJKSTRA’s algorithm [1] finds a quickest path between a
given source s and target t. Unfortunately, the algorithm is far too slow to be used
on huge datasets. Thus, several speed-up techniques have been developed (see [2] for
an overview) that can retrieve the quickest path in a road network within less than a
millisecond.

However, the quickest route in transportation networks is often not the “best” one.
For example, users traveling by car may be willing to accept (slightly) longer travel
times if the costs of the journey (toll, fuel consumption) is lower. A possible approach
to such better routes is to run a multi-criteria query which incorporates other metrics
besides travel times for finding a set of attractive routes from which a user can choose.
Unfortunately, all methods developed during the last years only work in single-criteria
scenarios. We here present an augmented version of our recently developed SHARC
(SHortcuts + ARC-flags) algorithm working in such a multi-criteria scenario.

1.1 Related Work

A lot of speed-up techniques for single-criteria scenarios have been developed during
the last years. Due to space limitations, we direct the interested reader to [2], which
gives a recent overview over single-criteria routing techniques.
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Basics. The straightforward approach to find all Pareto optimal paths is the gener-
alization [3,4] of DIJKSTRA’s algorithm: Each node v ∈ V gets a number of multi-
dimensional labels assigned, representing all Pareto paths to v. For the bicriteria case,
[3] was the first presenting such a generalization, while [5] describes multi-criteria al-
gorithms in detail. By this generalization, DIJKSTRA loses the label-setting property,
i.e., now a node may be visited more than once. It turns out that a crucial problem for
multi-criteria routing is the number of labels assigned to the nodes. The more labels are
created, the more nodes are reinserted in the priority queue yielding considerably slow-
downs compared to the single-criteria setup. In the worst case, the number of labels can
be exponential in |V | yielding impractical running times [3]. Hence, [3,6] present an
FPAS for the bicriteria shortest path problem.

Speed-up Techniques. Most of the work on speed-up techniques for multi-criteria sce-
narios was done on networks deriving from timetable information. In such networks, [7]
observed that the number of labels is often limited such that the brute force approach for
finding all Pareto paths is often feasible. Experimental studies finding all Pareto paths
in timetable graphs can be found in [8,9,10]. However, to the best of our knowledge, all
previous work only uses basic speed-up techniques for accelerating the multi-criteria
query. In most cases a special version of A∗ is adapted to this scenario. Unfortunately,
the resulting speed-ups only reach up to a factor of 5 which is much less than for the
(single-criteria) speed-up techniques developed during the last years.

1.2 Our Contribution

In this work, we present the first efficient speed-up technique for multi-criteria routing,
namely an augmented version of SHARC [11]. Similar to the time-dependent version
of SHARC [12], the key observation is that the basic concept of SHARC stays un-
touched. By augmenting the main subroutines of SHARC to multi-criteria variants and
by changing the intuition when setting Arc-Flags [13,14], we end up in a very efficient
multi-criteria speed-up technique.

We start our work on multi-criteria routing with basic definitions in Section 2. We
also shortly report how SHARC works in a single-criteria scenario. In Section 3, we
show how the main ingredients of SHARC—DIJKSTRA’s algorithm, contraction, and
arc-flags—can be augmented such that correctness can be guaranteed in a multi-criteria
scenario. It turns out that adaption of contraction is straight-forward, while for arc-flags,
we have to alter the intuition of a true arc-flag slightly. In Section 4 we assemble our
augmented ingredients to present a multi-criteria variant of SHARC. The key observa-
tion is that the basic concept of SHARC stays untouched, we only need to additionally
augment the last ingredient, i.e., arc-flags refinement. This routine can be generalized
by substituting local single-criteria DIJKSTRA-searches by multi-criteria ones.

The experimental evaluation in Section 5 confirms the excellent speed-up achieved
by our multi-criteria variant of SHARC: The speed-up over the generalized DIJKSTRA’s
algorithm is the same as in a single-criteria scenario. However, it turns out that in road
networks, multi-criteria searches yield too many possible routes to the target. Hence,
we introduce several reasonable constraints how to prune unattractive paths both during
preprocessing and queries. Here, the key observation is that we define a main metric
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(we use travel times) and only allow other paths if they do not yield too long of a delay.
Moreover, we also introduce a constraint called pricing. Paths with longer travel times
are only accepted if they yield significant improvements in other metrics. With these
additional constraints we are able to compute reasonable Pareto paths in continental-
sized road networks. In addition, we run experiments with similar metrics where we do
not need the just mentioned constraints and also present results on synthetic data sets.
We conclude our work with a summary and possible future work in Section 6.

2 Preliminaries

The main difference between single- and multi-criteria routing is that the labels assigned
to edges contain more than one weight. In this work, we restrict ourselves to vectors in
�

k
+. Let L = (w1, . . . ,wk) and L′ = (w′1, . . . ,w

′
k) be two labels. We use the following

notation and operations in �k
+: L dominates another label L′ if wi < w′i holds for one

1 ≤ i ≤ k and wi ≤ w′i holds for each 1 ≤ j ≤ k. The sum of L and L′ is defined by
L⊕L′ = (w1 + w′1, . . . ,wk + w′k). We call L = min1≤i≤k wi the minimum component of
L, the maximum component L is defined analogously.

We also restrict ourselves to directed graphs G = (V,E) with a length function len :
E→�k

+, assigning a k-dimensional label to each edge. Note that we allow multi-edges.
The reverse graph

←−
G = (V,E) is the graph obtained from G by substituting each (u,v)∈

E by (v,u).
The 2-core of an undirected graph is the maximal node induced subgraph of mini-

mum node degree 2. The 2-core of a directed graph is the 2-core of the corresponding
simple, unweighted, undirected graph. All nodes not being part of the 2-core are called
1-shell nodes. Note that connected components within the 1-shell are trees. Since each
tree is attached to the 2-core, we call these trees attached trees.

A partition of V is a family C = {C0,C1, . . . ,Ck} of sets Ci ⊆V such that each node
v ∈ V is contained in exactly one set Ci. An element of a partition is called a cell. A
multilevel partition of V is a family of partitions {C 0,C 1, . . . ,C L−1} such that for each
l < L−1 and each Cl

i ∈C l a cell Cl+1
j ∈C l+1 exists with Cl

i ⊆Cl+1
j . In that case the cell

Cl+1
j is called the supercell of Cl

i . The supercell of a level-L−1 cell is V . Note that the
number of levels is denoted by L. We denote � j(u) the level- j cell u is assigned to. The
boundary nodes BC of a cell C are all nodes u ∈C for which at least one node v ∈V \C
exists such that (v,u) ∈ E or (u,v) ∈ E .

In a multi-criteria scenario, the length d(s,t) of an s–t path P = (e1, . . . ,er) is given
by len(e1)⊕ . . .⊕ len(er). In contrast to a single-criteria scenario, many paths exist
between two nodes that do not dominate each other. In this work, we are interested
in the Pareto-set D(s,t) = {d1(s,t) . . .dx(s, t)} consisting of all non-dominated path-
lengths di(s, t) between s and t. We call |D(s,t)| the size of a Pareto-set. Note that by
storing a predecessor for each di, we can compute all Pareto-paths as well.

SHARC-Routing. The original arc-flag approach [13,14] first computes a partition C
of the graph and then attaches a bitvector to each edge e. A bitvector contains, for each
cell Ci ∈ C , a flag AFCi(e) which is true if a shortest path to a node in Ci starts with e.
A modified DIJKSTRA then only considers those edges for which the flag of the target
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node’s cell is true. This idea was extended to a 2-level setup in [15]. Preprocessing of
static SHARC [11] is divided into three sections. During the initialization phase, we ex-
tract the 2-core of the graph and perform a multi-level partition of G. Then, an iterative
process starts. At each step i we first contract the graph by bypassing unimportant nodes
and set the arc-flags automatically for each removed edge. In the contracted graph we
compute the arc-flags of level i by growing a partial centralized shortest-path tree from
each cell Ci

j . In the finalization phase, we assemble the output-graph, refine arc-flags of
edges removed during contraction and finally reattach the 1-shell nodes removed at the
beginning.

The query of static SHARC is a multi-level Arc-Flags DIJKSTRA adapted from the
two-level Arc-Flags DIJKSTRA presented in [15]. The query is a modified DIJKSTRA

that operates on the output graph. The modifications are as follows: When settling a
node n, we compute the lowest level i on which n and the target node t are in the same
supercell. When relaxing the edges outgoing from n, we consider only those edges
having a set arc-flag on level i for the corresponding cell of t.

3 Augmenting Ingredients

From our augmentation of SHARC to a time-dependent scenario [12], we learned that
it is sufficient to augment its ingredients, i.e., local DIJKSTRA-searches, arc-flags com-
putation, and contraction. In this section we show how to augment all these ingredients
such that correctness is guaranteed even in a multi-criteria scenario.

3.1 Dijkstra

Computing a Pareto set D(s,t) can be done by a straightforward generalization of
DIJKSTRA’s algorithm, as presented in [3,4]. For managing the different distance-
vectors at each node v, we maintain a list of labels list(v). The list at the source
node s is initialized with a label d(s,s) = (0, . . . ,0), any other list is empty. We insert
d(s,s) to a priority queue. Then, in each iteration step, we extract the label with the
smallest minimum component. Then for all outgoing edges (u,v) a temporary label
d(s,v) = d(s,u)⊕ len(u,v) is created. If d(s,v) is not dominated by any of the labels
in list(v), we add d(s,v) to list(v), add d(s,v) to the priority queue, and remove all
labels from list(v) that are dominated by d(s,v). We may stop the query as soon as
list(t) �= /0 and all labels in the priority queue are dominated by all labels in list(t).

Pareto Path Graphs. In the following, we construct Pareto path graphs (PPG) by com-
puting D(s,u) for a given source s and all nodes u∈V , with our generalized DIJKSTRA

algorithm. We call an edge (u,v) a PPG-edge if L ∈ list(u) and L′ ∈ list(v) exist
such that L⊕ len(u,v) = L′. In other words, (u,v) is a PPG-edge iff it is part of at least
one Pareto-optimal path from s to v. Note that by this notion one edge of two parallel
ones can be a PPG-edge while the other one is not.

3.2 Arc-Flags

In a single-criteria scenario, an arc-flag AFC(e) denotes whether e has to be considered
for a shortest-path query targeting a node within C. In other words, the flag is set if e is
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important for (at least one target node) in C. In [12], we adapted Arc-Flags to a time-
dependent scenario by setting a flag to true as soon as it is important for at least one
departure time. The adaption to a multi-criteria scenario is very similar: we set an arc-
flag AFC(e) to true, if e is important for at least one Pareto path targeting a node in C.

Unlike in the time-dependent scenario—where we needed approximations—we can
settle for the straightforward approach for augmenting Arc-Flags. We build a Pareto
path graph in

←−
G for all boundary nodes b ∈ BC of all cells C at level i. We stop the

growth as soon as all labels in the priority queue are dominated by all labels L(v,b)
assigned to the nodes v in the supercell of C. Then we set AFC(u,v) = true if (u,v) is a
PPG-edge for at least one PPG grown from all boundary nodes b ∈ BC. Moreover, we
set all own-cell flags to true.

Multi-Level Arc-Flags. SHARC is based on multi-level Arc-Flags. Hence, we need to
augment the concept of multi-level Arc-Flags to a multi-criteria scenario. The augmen-
tation is similar to the one to time-dependent networks. We describe a two-level setup
which can be extended to a multi-level scenario easily.

Preprocessing is done as follows. Arc-flags on the upper level are computed as de-
scribed above. For the lower flags, we grow a PPG in

←−
G for all boundary nodes b on

the lower level. We may stop the growth as soon as all labels attached to the nodes in
the supercell of C dominate all labels in the priority queue. Then, we set an arc-flag to
true if the edge is a PPG edge of at least one Pareto path graph.

3.3 Contraction

Our augmented Pareto contraction routine is very similar to a static one: we first re-
duce the number of nodes by removing unimportant ones and—in order to preserve
Pareto paths between non-removed nodes—add new edges, called shortcuts, to the
graph. Then, we apply an edge-reduction step that removes unneeded shortcuts.

Node-Reduction. We iteratively bypass nodes until no node is bypassable any more.
To bypass a node x we first remove x, its incoming edges I and its outgoing edges O
from the graph. Then, for each combination of ei ∈ I and eo ∈ O, we introduce a new
edge with label len(ei)⊕ len(eo). Note that we explicitly allow multi-edges. Also note
that contraction gets more expensive in a multi-criteria scenario due to multi-edges. As
for static node reduction, we use a heap to determine the next bypassable node. Let
#shortcut be the number of new edges that would be inserted into the graph if x was
bypassed and let ζ (x) =#shortcut/(|I|+ |O|) be the expansion of node x. Furthermore,
let h(x) be the hop number of the hop-maximal shortcut. Then we set the key of a node x
within the heap to h(x)+ 10 ·ζ (x), smaller keys have higher priority. To keep the costs
of shortcuts limited we do not bypass a node if its removal results in a hop number
greater than h or an expansion greater than c. We say that the nodes that have been
bypassed belong to the component, while the remaining nodes are called core-nodes.

Edge-Reduction. We identify unneeded shortcuts by growing a Pareto path graph from
each node u of the core. We stop the growth as soon as all neighbors v of u have their
final Pareto-set assigned. Then we may remove all edges from u to v whose label is
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dominated by at least one of the labels list(v). In order to limit the running time of
this procedure, we restrict the number of priority-queue removals to 1 000.

4 Multi-criteria SHARC

With the augmented ingredients at hand, we are ready to augment SHARC. Remark-
ably, the augmentation is now very similar to time-dependent SHARC [12]. During
perprocessing, we apply the augmented routines from Section 3 instead of their single-
criteria counterparts, while the query is a modified multi-criteria DIJKSTRA pruning
unimportant edges.

Preprocessing runs in several phase, explained in the following. During the initializa-
tion phase, we extract the 2-core of the graph and perform a multi-level partition of G
according to an input parameter P. We can safely extract the 2-core since we can di-
rectly assign correct arc-flags to attached trees that are fully contained in a cell: Each
edge targeting the 2-core gets all flags assigned true while those directing away from the
2-core only get their own-cell flag set true. By removing 1-shell nodes before comput-
ing the partition we ensure that an attached tree is fully contained in a cell by assigning
all its nodes to the cell of its 2-core root. After the last step of our preprocessing we
simply reattach the nodes and edges of the 1-shell to the output graph.

After the initialization, our iterative process starts. Each iteration step is divided into
two parts: contraction and arc-flag computation. First, we apply a contraction step ac-
cording to Section 3. In order to perserve correctness of multi-criteria SHARC, we have
to use cell-aware contraction, i.e., a node u is never marked as bypassable if any of its
neighboring nodes is not in the same cell as u. We have to set arc-flags for all edges of our
output-graph, including those we remove during contraction. As for static SHARC, we
can set arc-flags for all removed edges automatically. We set the arc-flags of the current
and all higher levels depending on the tail u of the deleted edge. If u is a core node, we
only set the own-cell flag to true (and others to false) because this edge can only be rele-
vant for a query targeting a node in this cell. If u belongs to the component, all arc-flags
are set to true as a query has to leave the component in order to reach a node outside this
cell. Setting arc-flags of those edges not removed from the graph is more time-consuming
since we apply the preprocessing of multi-level Arc-Flags from Section 3.

The final phase of our preprocessing-routine assembles the output graph. It contains
the original graph, shortcuts added during preprocessing and arc-flags for all edges of
the output graph. However, some edges may have no arc-flag set to true. As these edges
are never relaxed by our query algorithm, we directly remove such edges from the
output graph. Moreover, we improve on those flags set to true during the contraction
process. by Refinement of Arc-Flags. This is achieved by propagating flags of edges
outgoing from high-level nodes to those outgoing from low-level nodes. In a time-
independent scenario [11], we grow shortest path trees to find the so called exit nodes
of each node, while in a time-dependent scenario [12], we use profile graphs to deter-
mine these nodes. In our multi-criteria scenario, we now grow Pareto path graphs from
each node. The propergation itself stays untouched, the only difference is that a node
might have more than one predecessor, which all have to be examined when identify-
ing the corresponding outgoing edge. Unfortunately, growing Pareto path graphs can
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get expensive. Hence, we limit the growth to n log(n)/|Vl|, where Vl denotes the nodes
in level l, priority-queue removals. In order to preserve correctness, we then may only
propagate the flags from the exit nodes to u if the stopping criterion is fulfilled before
this number of removals.

Query. Augmenting the SHARC-query is straightforward. For computing a Pareto-set
D(s,t), we use a modified multi-criteria DIJKSTRA (Section 3) that operates on the
output graph. The modifications are then the same as for the single-criteria variant of
SHARC: When settling a node n, we compute the lowest level i on which n and the tar-
get node t are in the same supercell. Moreover, we consider only those edges outgoing
from n having a set arc-flag on level i for the corresponding cell of t. In other words, we
prune edges that are not important for the current query. The stopping criterion is the
same as for a multi-criteria DIJKSTRA.

5 Experiments

In this section, we present our experimental evaluation. Our implementation is written
in C++ using solely the STL at some points. As priority queue we use a binary heap.
Our tests were executed on one core of an AMD Opteron 2218 running SUSE Linux
10.3. The machine is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2
cache. The program was compiled with GCC 4.2, using optimization level 3.

Inputs. We use four real world road networks for our experimental evaluation. The
first one is the largest strongly connected component of the road network of Western
Europe, provided by PTV AG for scientific use. It has approximately 18 million nodes
and 42.6 million edges. However, it turns out this input is too big for finding all Pareto
routes. Hence, we also use three smaller networks, namely the road network of Lux-
emburg consisting of 30661 nodes and 71619 edges, a road network of Karlsruhe and
surrounding (77740 nodes, 196327 edges), and the road network of the Netherlands
(892392 nodes, 2159589 edges). Note that we use the latter network for testing the
impact of our rules of label reduction. As metrics we use travel times for fast cars/slow
trucks, costs (toll + fuel consumption), travel distances, and unit lengths. Note that the
last metric depicts the number of street segments of a route. Hence, it somehow reflects
the number of turns of a journey.

Default Setting. For Europe, we use a 6-level partition obtained by SCOTCH [16]
with 4 cells per supercell on levels 0 to 3, 8 cells per supercell on level 4, and 104
cells on level 5. A 3-level partition is applied when using Luxemburg and Karlsruhe
as input, with 4 cells per supercell on levels 0 and 1, and 56 cells on level 2. For the
Netherlands, we apply a 4-level partition, with 4 cells per supercell on levels 0 and 1,
8 cells on level 2, and 112 cells on level 3. We use c = 2.5 as maximal expansions
during node-reduction and for the all levels. The hop-bound of our contraction is set
to h = 10. To keep preprocessing times limited, we use an economical variant, i.e., we
compute arc-flags only for the topmost level and do not refine arc-flags for the lowest
two levels. For static single-criteria SHARC, this reduces preprocessing times by a
factor of 3, but query performance increases only be a factor of 2. In the following,
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we report preprocessing times and the overhead of the preprocessed data in terms of
additional bytes per node. Moreover, we provide the average number of settled nodes,
i.e., the number of nodes taken from the priority queue, and the average query time.
For random s-t queries, the nodes s and t are picked uniformly at random. All figures
in this paper are based on 1 000 random s-t queries and refer to the scenario that only
distance labels of the Pareto paths have to be determined, without outputting a complete
description of the paths. However, our efficient implementation for unpacking shortcuts
due to [17] needs about 4 additional bytes per node of preprocessed data. Then it takes
less than 0.5 ms to unpack a shortest path. Since we allow multi-edges we could apply
this unpacking routine to our multi-criteria variant of SHARC.

Full Pareto-Setting. Table 1 depicts the performance of multi-criteria SHARC on our
Luxemburg instance in a full Pareto bicriteria setting. For comparison, we also report
the performance of single-criteria SHARC on all five metrics.

We observe a good performance of multi-criteria SHARC in general. Preprecessing
times are less than 15 minutes which is sufficient for most applications. Interestingly, the
speed-up over DIJKSTRA’s algorithm with respect to query times even increases when
switching to multi-criteria SHARC. However, comparing single- and multi-criteria, we
observe that query performance highly depends on the size of the Pareto set at the target
node. For similar metrics (fast car and slow truck), bicriteria queries are only 3 times
slower than a single-criteria queries. This stems from the fact that the average size of
the Pareto-set is only 2. If more labels are created, like for fast car + costs, multi-criteria
queries are up to 673 times slower. Even worse, this slow-down increases even further
when we apply our Karlsruhe network. Here, the queries are up to 3 366 times slower.

Table 1. Performance of single- and multi-criteria SHARC applying different metrics for our
Luxemburg and Karlsruhe inputs. Column prepro shows the computation time of the preprocess-
ing in hours and minutes and the eventual additional bytes per node needed for the preprocessed
data. For queries, we report the number of labels created at the target node, the number of nodes
removed from the priority queue, execution times in milliseconds, and speed-up over DIJKSTRA’s
algorithm.

Luxemburg Karlsruhe
PREPRO QUERY PREPRO QUERY

time space target #del. time spd time space target #del. time spd
metrics [h:m] [B/n] labels mins [ms] up [h:m] [B/n] labels mins [ms] up
fast car (fc) < 0:01 12.4 1.0 138 0.03 114 < 0:01 12.4 1.0 206 0.04 188
slow truck (st) < 0:01 12.6 1.0 142 0.03 111 < 0:01 12.7 1.0 212 0.04 178
costs < 0:01 12.0 1.0 151 0.03 96 < 0:01 15.4 1.0 244 0.05 129
distances < 0:01 14.7 1.0 158 0.03 87 < 0:01 15.7 1.0 261 0.06 119
unit < 0:01 13.7 1.0 149 0.03 96 < 0:01 14.1 1.0 238 0.05 147
fc + st 0:01 14.7 2.0 285 0.09 100 0:01 15.3 1.9 797 0.26 108
fc + costs 0:04 24.1 29.6 4 149 6.49 263 1:30 26.6 52.7 15 912 80.88 184
fc + dist. 0:14 22.3 49.9 8 348 20.21 78 3:58 23.6 99.4 31 279 202.15 153
fc + unit 0:06 23.7 25.7 4 923 5.13 112 0:17 26.6 27.0 11 319 16.04 200
costs + dist. 0:02 20.4 29.6 3 947 4.87 119 1:11 21.9 67.2 19 775 67.75 160
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Summarizing, the number of labels created, and thus, the loss in query performance
over single-criteria queries, is too high for using a full Pareto-setting for a big input like
Western Europe. Hence, we show in the following how to reduce the number of labels
such that “unimportant” Pareto-routes are pruned as early as possible.

Reduction of Labels. As observed in Tab. 1, the number of labels assigned to a
node increases with growing graph size. In order to efficiently compute Pareto-paths
for our European road network, we need to reduce the number of labels both during
preprocessing and queries. We achieve this by tightening the definition of dominance.
Therefore, we define the travel time metric to be the dominating metric W . Then, our
tightened definition of dominance is as follows: Besides the constraints from Section 2,
we say a label L = (W,w1, . . . ,wk−1) dominates another label L′ = (W ′,w′1, . . . ,w

′
k−1)

if W · (1+ ε) < W ′ holds. In other words, we only allow Pareto-paths which are up to ε
times longer (with respect to the dominating metric). Note that by this notion, this has
to hold for all sub-paths as well.

Table 2 reports the performance of bicriteria SHARC using the tightened definition
of dominance (with varying ε) during preprocessing and queries. As input, we use three
networks: Karlsruhe, the Netherlands, and Europe. We here focus on the probably most
important combination of metrics, namely fast car travel time and costs). We observe
that our additional constraint works: Preprocessing times decrease and query perfor-
mance gets much better. However, as expected, very small ε values yield a small subset
of the Pareto-set and high ε values yield high preprocessing times. For small and mid-
size inputs, i.e., less than 1 million nodes, setting ε to 0.5 yields a reasonable amount
of Pareto paths combined with good preprocessing times and good query performance.
Unfortunately, for our European input, only ε ≤ 0.02 yields practical preprocessing and
query times.

Table 2. Performance of bi-criteria SHARC with varying ε using travel times and costs as metrics.
The inputs are Karlsruhe, the Netherlands, and Europe.

Karlsruhe The Netherlands Europe
PREP QUERY PREP QUERY PREP QUERY

time target #del. time time target #del. time time target #del. time
ε [h:m] labels mins [ms] [h:m] labels mins [ms] [h:m] labels mins [ms]

0.000 < 0:01 1.0 265 0.09 0:01 1.0 452 0.21 0:53 1.0 3 299 2.6
0.001 < 0:01 1.1 271 0.09 0:01 1.1 461 0.21 1:00 1.1 3 644 4.1
0.002 < 0:01 1.1 302 0.10 0:01 1.2 489 0.22 1:03 1.2 4 340 7.1
0.005 < 0:01 1.3 307 0.11 0:01 1.4 517 0.24 1:18 1.4 5 012 11.3
0.010 < 0:01 1.5 322 0.11 0:01 1.7 590 0.27 1:58 2.4 9 861 19.2
0.020 < 0:01 1.9 387 0.13 0:01 2.2 672 0.32 4:10 5.0 24 540 48.1
0.050 < 0:01 2.5 495 0.18 0:02 3.3 1 009 0.51 14:12 23.4 137 092 412.7
0.100 < 0:01 4.2 804 0.33 0:04 4.8 1 405 0.82 >24:00 – – –
0.200 0:01 6.4 1,989 1.86 0:09 7.2 2 225 1.67
0.500 0:02 14.0 3 193 3.61 0:39 12.8 4 227 4.85
1.000 0:13 24.0 9 072 14.86 3:44 20.0 12 481 26.85

∞ 1:30 52.7 15 912 80.88 >24:00 – – –
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Table 3. Performance of bi-criteria SHARC
with varying γ using travel times and costs
as metrics. ε is fixed to 0.5. The input is
Europe.

PREPRO QUERY

time space target #del. time
γ [h:m] [B/n] labels mins [ms]

1.100 0:58 19.1 1.2 2 538 1.8
1.050 1:07 19.6 1.3 3 089 2.2
1.010 1:40 20.4 1.7 4 268 3.2
1.005 2:04 20.6 1.9 5 766 4.1
1.001 3:30 20.8 2.7 7 785 6.1
1.000 7:12 21.3 5.3 19 234 35.4
0.999 15:43 22.5 15.2 87 144 297.2
0.995 >24:00 – – – –

Further Reduction. As observable in Tab. 2,
our approach for reducing the number of la-
bels is only practical for very small ε if we
use Europe as input. As we are interested in
paths with bigger ε values as well, we add an-
other constraint, called pricing, in order to de-
fine dominance. Besides the constraints from
Section 2 and from above, we say a label
L = (W,w1, . . . ,wk−1) dominates another la-
bel L′ = (W ′,w′1, . . . ,w

′
k−1) if ∑i w′i/∑i wi >

W/W ′ · γ holds for some constant γ . In other
words, we only accept labels with longer
travel times if this results in a decrease
in the other metrics under consideration.
With this further tightened definition of label
dominance, we are finally ready to run multi-
criteria queries on our European instance. Table 3 shows the performance of multi-
criteria SHARC with varying γ in a bicriteria scenario (travel times + costs) for Europe.
Note that we fix ε = 0.5. It turns out that our additional constraints work. With γ = 1.0,
we create 5.3 labels in 35.42 ms on average at the target node, being sufficient for
practical applications. Preprocessing times are still within reasonable times, i.e., less
than 8 hours. If we want to generate more labels, we could set γ = 0.999. However,
query times drop to almost 300 ms and preprocessing increases drastically. Summariz-
ing, bicriteria queries for travel times and travel costs are possible if we use γ = 1.0
and ε = 1.5.

Table 4. Performance of multi-criteria SHARC applying different travel time metrics. The inputs
are the Netherlands and Europe.

The Netherlands Europe
PREPRO QUERY PREPRO QUERY

time space target #del. time speed time space target #del. time speed
metrics [h:m] [B/n] labels mins [ms] up [h:m] [B/n] labels mins [ms] up
fast car(fc) 0:01 13.7 1.0 364 0.11 1 490 0:25 13.7 1.0 1,457 0.69 7 536
slow car(sc) 0:01 13.8 1.0 359 0.10 1 472 0:24 13.8 1.0 1,367 0.67 7 761
fast truck(ft) 0:01 13.9 1.0 365 0.10 1 332 0:23 13.9 1.0 1,486 0.71 7 324
slow truck(st) 0:01 13.9 1.0 363 0.10 1 306 0:25 13.9 1.0 1,423 0.68 7 647
fc+st 0:05 16.2 2.2 850 0.33 2 532 2:24 18.3 3.8 6 819 4.35 12 009
fc+ft 0:05 16.2 2.0 768 0.29 2 371 1:30 18.3 3.2 5 466 3.91 11 349
fc+sc 0:05 15.5 1.2 520 0.19 1 896 1:08 17.1 2.0 4 265 2.26 10 234
sc+st 0:05 16.2 1.9 742 0.29 2 009 1:53 18.1 3.3 5 301 4.02 10 874
sc+ft 0:05 16.2 1.7 679 0.26 1 850 1:49 16.2 3.2 5 412 3.65 10 663
ft+st 0:05 15.7 1.3 551 0.21 1 692 1:28 17.4 3.0 5 157 3.73 12 818
fc+sc+st 0:06 19.0 2.3 867 0.37 2 580 2:41 20.3 4.5 6 513 5.70 12 741
fc+sc+ft 0:06 18.9 2.0 764 0.32 2 385 2:47 21.5 3.9 5 989 4.87 12 144
sc+ft+st 0:06 19.0 1.9 740 0.30 2 134 2:59 22.0 4.2 6 348 5.12 13 412
fc+sc+ft+st 0:07 21.8 2.5 942 0.43 2 362 4:41 24.5 6.2 12 766 7.85 15 281
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Similar Metrics. Our last experiment for road networks deals with the following sce-
nario. We are interested in the quickest route for different types of vehicles. Hence, we
perform multi-criteria queries on metrics all based on travel times. More precisely, we
use typical average speeds of fast cars, slow cars, fast trucks, and slow trucks. Due to
the very limited size of the resulting Pareto-sets, we afford not to use our tightened defi-
nition of dominance for this experiment. Tab. 4 shows the performance of multi-criteria
SHARC in such a single-, bi- and tri-, and quadro-criteria scenario.

We observe that a full Pareto-setting is feasible if metrics are similar to each other,
mainly because the number labels is very limited. Interestingly, the speed-up of multi-
criteria SHARC over multi-criteria DIJKSTRA is even higher than in a single-criteria
scenario. The slow-down in preprocessing times and query performance is quite high
but still, especially the latter is fast enough for practical applications. Quadro-criteria
queries need less than 8 ms for our European road networks, being sufficient for most
applications. A generalized DIJKSTRA needs about 120 seconds on average for find-
ing a Pareto-set in this quadro-criteria scenario. This speed-up of more than 15000 is
achieved by a preprocessing taking less than 5 hours.

6 Conclusion

In this work, we presented the first efficient speed-up technique for computing
multi-criteria paths in large-scale networks. By augmenting single-criteria routines to
multi-criteria versions, we were able to present a multi-criteria variant of SHARC. Sev-
eral experiments confirm that speed-ups over a multi-criteria DIJKSTRA are at least the
same as in a single-criteria scenario, in many cases the speed-up with respect to query
times is even higher. However, if metrics differ strongly, the number of possible Pareto-
routes increases drastically making preprocessing and query times impractical for large
instances. By tightening the definition of dominance, we are able to prune unimportant
Pareto-routes both during preprocessing and queries. As a result, SHARC provides a
feasible subset of Pareto-routes in continental sized road network.

Regarding future work, one can think of other ways for pruning the Pareto-set. Maybe
other constraints yield better subsets of the Pareto-set computable in reasonable time as
well. An open challenging problem is the adaption of multi-criteria SHARC to a fully
realistic timetable information system like the ones presented in [9,10]. Another inter-
esting question is how good alternative routes can be found in a single-criteria scenario.
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Abstract. List update algorithms have been widely used as subroutines
in compression schemas, most notably as part of Burrows-Wheeler com-
pression. The Burrows-Wheeler transform (BWT), which is the basis of
many state-of-the-art general purpose compressors applies a compres-
sion algorithm to a permuted version of the original text. List update
algorithms are a common choice for this second stage of BWT-based
compression. In this paper we perform an experimental comparison of
various list update algorithms both as stand alone compression mecha-
nisms and as a second stage of the BWT-based compression. Our exper-
iments show MTF outperforms other list update algorithms in practice
after BWT. This is consistent with the intuition that BWT increases lo-
cality of reference and the predicted result from the locality of reference
model of Angelopoulos et al. [1]. Lastly, we observe that due to an often
neglected difference in the cost models, good list update algorithms may
be far from optimal for BWT compression and construct an explicit ex-
ample of this phenomena. This is a fact that had yet to be supported
theoretically in the literature.

1 Introduction

It has long been observed that list update algorithms can be used in compression.
In 1986, Bentley et al. [2] proposed a compression scheme that uses move-to-front
as a subroutine. They proved that their compression scheme, based on move-
to-front (MTF) is guaranteed to be within twice the compression ratio of the
best static Huffman code. Experimentally their algorithm performs even better
achieving compression ratios equal or better than Huffman’s. In principle MTF
can be replaced with any other online list update algorithm, which may or may
not improve the compression rate. Albers and Mitzenmacher [3] studied the use of
timestamp and showed theoretical and experimental evidence for its efficiency in
data compression. Several online list update algorithms were compared according
to their efficiency in compression by Bachrach et al. [4]. Surprisingly, their results
show that some algorithms with bad competitive ratios outperform those that
are optimal according to competitive analysis in terms of compression ratio.

A second application of list update is to Burrows and Wheeler compression.
The Burrows-Wheeler transform (BWT) rearranges a string of symbols to one
of its permutations and in doing so brings the issue of higher order entropy into
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play. Then MTF is used to encode this transform in a way similar to the scheme
proposed by Bentley et al. [2]. The resulting scheme is shown to be very effective
in theory and practice and many improvements and several variants have been
proposed [5,6,7,8,9,10,11,12]. The well known compression program bzip2 [13] is
based on the BWT.

Our study was motivated by recent theoretical results on the impact of lo-
cality of reference assumptions for online algorithms [1]. Compression via list
update hinges on an implicit assumption that the text (raw or after the BWT
transform) exhibits locality of reference which can then be used advantageously
by list update algorithms. In this paper we systematically study different sensible
choices for the list update algorithm as well as for the basic compressor.

Our Results. We perform an experimental comparison of the latest list update
algorithms for compression, both in stand alone form and as part of BWT based
compression. We show that in most cases MTF is the best choice. Additionally
we observe that list update algorithms optimize for a similar but different ob-
jective than a compressor and give an example of an algorithm which is a good
choice for list update but not for compression, a fact that had yet to be reported in
the literature.

2 Preliminaries

The List Update Problem. Consider an unsorted list of l items stored using a
linked list. The input is a series of n requests to be served in an online manner.
To serve a request to an item x, the algorithm should linearly search the list until
it finds x at position i, for some i between 1 and l. The cost of such an access is
i units. Immediately after accessing x, x can be moved to any position closer to
the front of the list at no extra cost. An efficient algorithm should re-arrange the
items after each access so as to minimize the overall cost of serving a sequence.

Standard List Update Algorithms. Three standard deterministic online algo-
rithms are move-to-front (MTF), transpose (TR), and frequency-count (FC).
MTF moves the requested item to the front of the list whereas TR exchanges
the requested item with the item that immediately precedes it. FC maintains a
frequency count for each item, updates this count after each access, and updates
the list so that it always contains items in non-increasing order of frequency
count. Sleator and Tarjan showed that MTF is 2-competitive, while TR and FC
do not have constant competitive ratios [14]. Since then, several other deter-
ministic and randomized online algorithms have been studied using competitive
analysis. We only consider deterministic algorithms because randomized list up-
date algorithms cannot be used in the compression scheme in a straightforward
way. Albers introduced the algorithm timestamp (TS) and showed that it is
2-competitive [15]. After accessing an item a, TS inserts a in front of the first item
b that appears before a in the list and was requested at most once since the last
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request for a. If there is no such item b, or if this is the first access to a, TS does
not reorder the list.

Schulz [16] introduced an infinite (uncountable) family of list update algo-
rithms called sort-by-rank (SBR). All algorithms in this family achieve the op-
timal competitive ratio 2 and they mediate between MTF and TS. Consider a
sequence σ = σ1σ2 · · ·σm of length m. For an item a and a time 1 ≤ t ≤ m, de-
note by w1(a, t) and w2(a, t) the time of the last and the second last access to a
in σ1σ2 · · ·σt, respectively. If a has not been accessed so far, set w1(a, t) = 0
and if a has been accessed at most once, set w2(a, t) = 0. Then we define
s1(a, t) = t − w1(a, t) and s2(a, t) = t − w2(a, t). Note that after each access,
MTF and TS reorganize their lists so that the items are in increasing order of
their s1 and s2, respectively1. For a parameter 0 ≤ α ≤ 1, SBR(α) reorganizes
its list after the tth access so that items are sorted by their α-rank function de-
fined as rα(a, t) = (1−α)×s1(a, t)+α×s2(a, t).2 More formally, upon a request
for an item a in time t, SBR(α) inserts a just after the last item b in front of
a with rα(b, t) < rα(a, t). Furthermore, if there is no such item b or this is the
first access to a, SBR(α) inserts a at the front of the list. Therefore SBR(0) is
equivalent to MTF and SBR(1) is equivalent to TS except for the handling of
the first accesses, i.e., they were equivalent if TS moves an item that has been
accessed only once so far to the front of the list.

Compression Schemas. Bentley et al. [2] proposed using list update algorithms as
subroutines in compression. The idea is simple enough: both the encoder and the
decoder maintain a list L of all symbols in the file and agree on some online list
update algorithm A as well as an initial arrangement for L. The encoder encodes
every symbol by its current position in L and then rearranges L according to A.
It uses some variable length prefix-free binary code to transmit these integers
(positions). Since the decoder knows the initial arrangement of L and the list
update algorithm, it can maintain the same list as the encoder and recover all
the symbols. Several variable length prefix-free binary codes can be used in this
scheme, e.g., Elias encoding, δ-encoding, and ω-encoding. We refer the reader
to [4] for a full description.

Burrows-Wheeler Transform. Burrows and Wheeler [5] introduced the idea of a
preprocessing phase based on the BWT which is combined with a compression
scheme on the transformed text. Informally, the BWT rearranges a string of
symbols to one of its permutations in a reversible way so that the resulting string
is “more compressible” or has more “locality of reference”. The permutation is
such that high order entropy is in line with locality of reference. Recall that a
string has high locality of reference if when a symbol occurs in some position
of the string, it is more likely to occur in a nearby position. For a detailed
explanation of the BWT we refer the reader to [5,6].

1 For TS, strictly speaking, this applies only to items that have been accessed at list
twice.

2 Schulz [16] denoted this by rt(a, α).
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3 Competitiveness of List Update Algorithms for
Compression

A list update algorithm A incurs cost i to access the ith item of the list. How-
ever, when we use A as a subroutine for compression we need Θ(log i) bits
to represent that the symbol is at the ith position of the list. Other papers
that have studied the use of list update algorithms in compression are silent
on this issue and apparently simply assumed that competitive list update al-
gorithms are also competitive for compression. We show via an example that
this is not necessarily the case, i.e. there exist algorithms which are competitive
under one model but not the other. Consider the move-fraction (MF) family of
deterministic list update algorithms as introduced by Sleator and Tarjan [14].
Upon a request to an item in the ith position, MF(k) moves that item �i/k�-1
positions towards the front. MF(k) is known to be 2k-competitive [14], there-
fore algorithm MF(2) is 4-competitive for list update. We show that under the
Θ(log i) cost model, MF(2) does not have constant competitive ratio. Let
the cost of compressing for an item in the ith position be c�log i�+ b for some
constants c and b. For simplicity assume that we have l = 2p symbols for some
integer p. Suppose that symbols are initially ordered as a1a2 · · · al in the list.
Now consider the sequence σ1 = ap

l . On the ith request to al, MF(2) incurs cost
at least c�log 2p

2i−1 �+ b = c(p− i + 1) + b and moves al to a position of index at
least 2p

2i . Therefore the cost of MF(2) on σ1 is at least
∑p

i=1 (c(p− i + 1) + b) =
cp(p+1)

2 +bp = Θ(log2 l). On the other hand, MTF moves al to the front of the list
and incurs cost c�log l�+ b+(p− 1)b = (b+ c) log l on σ1. Thus the cost of OPT
on this sequence is at most (b + c) log l = Θ(log l). We can request the item that
is now in the lth position of MF(2)’s list p times. Therefore the competitive ratio
of MF(2) is at least c×log l(log l+1)/2+b log l

(b+c) log l = c(log l+1)
2(b+c) + b

b+c = Θ(log l), which is
not a constant. The same holds for MF(k) for k ≥ 3. This fact had been observed
empirically by Bachrach et al. [4], who reported on the poor performance of this
family for data compression purposes. It remains an open question to determine
the competitive ratios of the various list update algorithms under the c�log i�+b
cost of access model.

4 Experimental Results

We consider two experimental setups. The first one consists of a straightforward
compression scheme similar to that of Bentley et al. [2] or Albers et al. [3].
While in practice these compression techniques are unlikely to be of use, the
study of their behaviour allows us to understand their differences and advantages.
The second setup consists of the realistic setting of BWT based compression. To
be more precise, given a text we compute its BWT and then compare the role
of various list update algorithms for compressing the transformed string.
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4.1 Experimental Settings

We computed the compression ratios achieved by different list update algorithms
on files in the Calgary Corpus [17] and the Canterbury Corpus [18]. These
are standard benchmarks for data compression. Due to space constraints, we
only present the results for the Calgary Corpus; the results for the Canterbury
Corpus are similar. We considered the list update algorithms described in Sec-
tion 2 as well as MTF′; this algorithm, on the ith access to an item a, moves a
to the front of the list if i is even and does not change a’s position if i is odd. We
considered two implementations for frequency-count depending on the order of
items with the same frequency count. In FC, an item that is less recently used
precedes an item that is more recently used and has equal frequency count. FC′

adopts the reverse of this ordering. We performed comprehensive experiments
on the compression ratios achieved by SBR(α) for different values of 0 ≤ α ≤ 1.
These experiments showed that as α goes from 0 to 1, the behaviour of SBR(α)
goes from MTF to TS. Thus we only report the results for SBR(0.5). Due to
space constraints these experimental results are not included in this paper. If not
explicitly mentioned otherwise, we use the standard prefix integer encoding of
Elias [19] that encodes an integer i using 1+2�log i� bits. Observe that nonethe-
less we propose and evaluate other alternative ways for encoding integers.

4.2 Comparing List Update Algorithms

We compare the effect of different list update algorithms on text files of the
Calgary Corpus before and after BWT. Table 1 shows their performance as stand
alone compression algorithms while Table 2 shows their performance as a second
stage of BWT compression. From Table 1 we can see that TR and FC usually
outperform MTF and TS. This is in contrast with competitive analysis in which
MTF and TS are superior to TS and FC. MTF has the worst performance on all
the files and TR is the best algorithm in most cases. MTF′ and FC′ always have
performance close to their variants, i.e., MTF and FC, respectively. Note that
the results for MTF and TS were also reported by Albers and Mitzenmacher [3],
who observed that TS outperforms MTF. SBR(0.5) always mediated between the
performance of MTF and TS. Thus our experimental results are not consistent
with theory. This has been observed by other researches as well [4].

However, for the BWT of the files, the situation is different. Table 2 shows
that in this case MTF has the best performance for most of the files. In general,
MTF and TS (and thus MTF′ and SBR(0.5)) have comparable performance
and always outperform FC and TR. The compression ratio they achieve after
the BWT is much better than without the BWT, as one would expect given
that the BWT increases the amount of locality in the string. The superiority of
MTF to other algorithms is consistent with the recent result of Angelopoulos
et al. proving that MTF outperforms all other online list update algorithm on
sequences with high locality of reference [1]. Hence, this provides evidence that
the locality of reference model proposed accurately reflects reality. We emphasize
that our focus here is comparing the effect of different list update algorithms
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Table 1. Compression of the Calgary Corpus without BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 95.69 89.55 89.08 81.42 81.64 94.16 81.42

book1 768771 83.82 76.64 75.67 81.34 69.62 81.27 81.34
book2 610856 84.35 78.36 77.55 75.74 72.44 82.35 75.74
news 377109 88.50 82.68 82.20 88.10 77.87 87.08 87.99

paper1 53161 86.79 80.96 80.35 79.48 74.87 85.19 79.45
paper2 82199 84.47 78.34 77.43 79.27 71.02 82.26 80.45
progc 39611 88.74 84.02 83.62 81.59 77.67 88.16 81.54
progl 71646 77.01 73.62 73.25 82.61 69.02 76.50 82.40
progp 49379 81.09 76.15 75.45 82.41 71.64 80.00 81.68
trans 93695 87.58 84.96 84.59 91.21 83.02 87.36 91.18

Table 2. Compression of the Calgary Corpus after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 30.49 31.66 32.32 93.42 39.81 31.99 93.33
book1 768771 35.74 34.42 34.71 76.63 36.31 36.04 76.50
book2 610856 31.14 31.03 31.48 80.44 35.31 31.96 80.11
news 377109 36.21 37.75 38.67 85.27 44.90 38.26 85.53

paper1 53161 34.70 36.62 37.70 83.42 47.73 36.87 83.34
paper2 82199 34.86 35.35 36.04 79.00 41.28 36.17 76.46
progc 39611 35.04 37.32 38.54 79.03 51.09 37.54 78.91
progl 71646 26.31 28.52 29.43 81.23 36.18 28.33 79.77
progp 49379 26.00 29.08 30.22 89.11 41.13 28.57 86.08
trans 93695 24.12 27.64 28.71 96.08 41.52 26.76 90.22

and therefore we have not applied any post-optimizations to the compression
scheme, in the presumption that these optimizations are orthogonal and hence
would generally benefit all schemes equally.

We also observe that FC and FC′ perform badly compared to other algorithms.
One explanation for this is the fact that FC considers the global rather than local
environment. For example if an item is frequently accessed near the beginning
and then it is not accessed at all, FC will maintain it close to the front of the list.

4.3 Alternative Techniques for Encoding of Integers

We consider other possibilities for the last step of list update based compression
schemes, i.e., the prefix-free binary code for integers. As there is considerable
locality of reference in the BWTs of text files intuitively a competitive list update
algorithm leads to a sequence with many small integers. These algorithms assign
smaller codes to small integers.

RL(1)+Elias. This algorithm combines Elias encoding with run length encoding
for the value 1, i.e. when the encoded integer is 1, the following Elias-encoded



An Application of Self-organizing Data Structures to Compression 143

integer shows the number of consecutive 1’s starting from that 1. Otherwise, is
the next integer encoded in Elias encoding.

RL(1)+1-2. This algorithm encodes 1 with a single bit 0, and encodes all other
numbers with their binary representations prepended by 1. We need �log2 l� bits
for this binary representation. For most of the cases, this gives a code of length 8
for each integer greater than 1, as 64 ≤ l < 128. Also it uses run length on “1”s.

RL(1)+2-2-3: This algorithm encodes 1 and 2 with “00” and “01”, respectively,
and encodes all other numbers with their binary representations prepended by 1.
It also uses run length on “1”s.

RL(1)+1-5-6-17: This algorithm encodes 1 by “0”, 2 to 9 by “10000”, “10001”,
. . . , “10111”, 10 to 17 by “110000”, “110001”, . . . , “110111”, and integers greater
than 17 by their binary representation prepended by “111”. Note that there are
l− 17 such numbers, and so we can use a fixed code of length �log2 (l − 17)� for
their binary representations. It also uses run length on “1”s, i.e., when it encodes
a “1” the following integer, encoded using the same scheme, denotes the number
of consecutive ones started from that “1”.

Table 3. Compression of the Calgary Corpus using RL(1)+Elias after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 27.87 28.92 29.55 93.42 37.06 29.28 93.42
book1 768771 35.78 34.50 34.77 76.78 36.46 36.02 78.68
book2 610856 29.72 29.56 30.00 80.52 33.98 30.48 80.53
news 377109 35.51 36.82 37.71 85.33 43.96 37.37 85.50

paper1 53161 34.60 36.32 37.38 83.36 47.56 36.64 84.96
paper2 82199 34.59 35.01 35.66 79.00 41.02 35.80 78.96
progc 39611 34.83 36.89 38.07 79.15 50.83 37.15 82.32
progl 71646 24.15 26.17 27.07 81.25 33.96 26.07 84.32
progp 49379 23.87 26.68 27.80 89.14 38.92 26.29 91.77
trans 93695 20.92 24.26 25.31 95.58 38.32 23.46 102.71

Table 4. Compression of the Calgary Corpus using RL(1)+1-2 after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 36.36 37.77 38.18 87.44 43.09 37.44 87.44
book1 768771 59.33 57.89 57.92 98.47 59.05 59.25 96.34
book2 610856 47.94 47.89 48.10 97.96 50.78 48.47 97.96
news 377109 51.60 53.52 54.16 97.87 58.28 53.09 97.87

paper1 53161 52.15 54.29 54.93 88.66 62.02 53.56 88.66
paper2 82199 54.25 54.92 55.35 99.97 59.67 55.24 99.97
progc 39611 50.31 53.00 53.93 85.96 61.76 52.06 99.40
progl 71646 36.93 40.08 41.04 99.76 47.21 38.94 99.76
progp 49379 36.20 39.70 40.80 99.72 48.68 37.97 99.72
trans 93695 30.01 34.98 35.70 90.49 45.81 31.78 99.99
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Tables 4-7 show the performance of these algorithms on text files of the
Calgary Corpus after BWT. According to these results, RL(1)+Elias leads to the
best compression among these algorithms, then RL(1)+5-6-17, then RL(1)+2-2-
3, and finally RL(1)+1-2. Comparing Table 3 to Table 2 shows that using RL(1)
improves the compression factor for most list update algorithms. This can be
explained by the fact that BWTs of text files have many repetitions. Each such
repetition leads to a 1 in the sequence of integers. Therefore we will have many
1’s and RL(1) should be effective. Also according to Tables 4-7, replacing Elias
with other proposed integer encodings does not give better compression ratios.

Modified Huffman. Inspired by the fact that there are many blocks of “1”s in the
integer sequence we treat them as symbols of our alphabet. Thus our alphabet is
{1, 2, · · · , l, 11, 111, · · · , 1n}, where 1n means n consecutive “1”s. Then Huffman
encode the elements of this alphabet. The results are shown in Table 7. Note
that we should also encode the Huffman tree. This cost becomes negligible for
large files, especially if one considers implicit representations of the portions of
the Huffman code corresponding to 1k. Indeed the Huffman tree has an impact

Table 5. Compression of the Calgary Corpus using Algorithm RL(1)+2-2-3 after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 31.74 32.83 33.32 86.54 38.76 32.78 86.54
book1 768771 48.54 47.29 47.51 93.96 48.94 48.67 94.98
book2 610856 39.16 39.05 39.47 97.93 42.77 39.75 97.93
news 377109 44.63 45.94 46.66 97.89 51.72 45.98 97.89

paper1 53161 44.31 46.15 47.03 88.68 55.53 45.97 88.68
paper2 82199 45.67 46.42 47.02 88.92 52.06 46.78 88.92
progc 39611 42.64 44.85 45.73 83.80 55.28 44.27 86.35
progl 71646 31.09 33.16 33.94 86.96 41.10 32.55 86.96
progp 49379 29.87 32.87 33.80 97.04 43.30 31.53 99.70
trans 93695 26.40 29.71 30.64 88.14 41.64 27.90 92.06

Table 6. Compression of the Calgary Corpus using 1-5-6-17+RL(1) after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 29.54 30.61 31.10 82.72 37.22 30.53 82.25
book1 768771 40.43 39.41 39.50 74.74 40.77 40.41 73.34
book2 610856 33.50 33.49 33.76 77.62 36.98 33.98 77.64
news 377109 38.36 39.68 40.44 82.37 45.62 39.69 82.68

paper1 53161 37.80 39.51 40.33 76.96 48.98 39.20 78.38
paper2 82199 38.10 38.54 39.04 77.75 43.43 38.92 77.72
progc 39611 37.90 39.92 40.94 75.69 51.50 39.53 84.28
progl 71646 26.93 29.02 29.89 80.58 35.73 28.37 83.62
progp 49379 26.73 29.40 30.52 85.70 40.28 28.29 86.80
trans 93695 22.53 26.10 27.01 90.77 38.38 24.03 96.63
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Table 7. Compression of the Calgary Corpus using Modified Huffman after BWT

File Size (bytes) MTF SBR(0.5) TS FC TR MTF′ FC′

bib 111261 26.25 27.01 27.53 65.70 33.29 27.34 65.70
book1 768771 32.54 31.66 31.89 56.91 33.49 32.71 56.86
book2 610856 27.70 27.61 27.99 59.93 31.58 28.30 59.94
news 377109 33.44 34.25 34.91 64.55 39.64 34.75 64.63

paper1 53161 32.96 34.17 35.06 59.46 42.78 34.51 59.48
paper2 82199 32.39 32.75 33.30 58.72 37.65 33.33 58.67
progc 39611 33.21 34.76 35.64 62.38 44.96 34.99 64.78
progl 71646 23.43 24.82 25.53 60.39 31.22 24.91 61.83
progp 49379 23.22 25.40 26.26 62.51 34.74 25.24 62.56
trans 93695 20.42 22.99 23.84 65.59 33.45 22.51 71.19

of in the order of 0.3% uniformly across the different variants for these rather
modest file sizes.

According to these results, this schema outperforms all other algorithms in
our study. Figure 1 reports the mean, median and variance of the comparison of
other compression algorithms to the modified Huffman algorithm.

4.4 Splay Trees

List update algorithms belong to the area of self-organizing data structures.
Another well known self-organizing data structure is the splay tree [20]. The
splay tree is a binary search tree which applies a splay operation after each
access to an item. This operation reorganizes the tree such that the most recently
accessed item is moved to the root of the tree. Splay trees are believed to have
good performance on sequences with high locality of reference. The working

1.8

1.6

1.4

1−2 2−2−31−5−6−17Elias

1.2

Fig. 1. Relative compression ratio versus modified Huffman. For each file, Modified
Huffman equals 1.
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Table 8. Compression of the Calgary Corpus using splay trees after BWT

File Size (bytes) Elias RL(1)+Elias Modified Huffman
bib 111261 37.76 35.14 31.43

book1 768771 44.91 44.94 40.40
book2 610856 38.53 37.12 33.75
news 377109 46.05 45.35 40.49

paper1 53161 43.63 43.53 38.94
paper2 82199 43.71 43.44 38.97
progc 39611 44.14 43.95 39.06
progl 71646 32.14 29.98 27.43
progp 49379 31.34 29.21 26.63
trans 93695 28.92 25.71 23.32

set theorem of [20] shows that splay trees have the working set property. The
working property is based on the idea that an operation on a recently accessed
item should take less time. Informally, a structure has the working set property
if it performs well on sequences with high locality of reference. As stated before
there is usually high locality of reference in texts (especially after applying BWT)
and thus splay trees are good candidates for text compression. Jones [21] and
Grinberg et al. [22] have already studies the application of splay trees to data
compression, but they did not consider the BWT.

We studied the effect of using splay trees instead of list update algorithms
in our compression schemas. We constructed a splay tree on the characters of
the text file. Each character corresponds to a node of the tree and has a binary
code that corresponds to the path from the root to its node, i.e., starting from
the root, append 0 for each left traversal and 1 for each right traversal. Note
that as we proceed with the compression process, the tree changes dynamically
and thus the codes for characters are changing as well. Since characters can
be in internal nodes, the corresponding codes are not prefix-free. To obtain a
prefix-free code, we first add a single 1 to the beginning of each code. Then we
consider the number that corresponds to this binary representation and encode
these integers using Elias encoding. Note that the code for the root character
would be 1.

We can also apply alternative techniques for encoding integers proposed in
Subsection 4.3. We tested the RL(1)+Elias and the modified Huffman tech-
niques. The compression percentages obtained by applying these schemas to the
text files of the Calgary Corpus after BWT are shown in Table 8. According to
these results, the modified Huffman algorithm is again the best technique for en-
coding integers. Furthermore, the splay trees lead to less compression compared
to the good list update algorithms.

5 Conclusions

We have considered a variety of list update algorithms in the context of data
compression with and without the Burrows-Wheeler transform. We observed
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that list update algorithms optimize for a similar but different objective than a
compressor and give an example of an algorithm which is a good choice for list
update but not for compression. Our experiments showed that competitive list
update algorithms are not effective as compressors without BWT, while they
perform well after BWT. We also considered several schemas for encoding a
sequence of integers that is obtained after applying the list update algorithms.
Furthermore, we experimentally tested the efficacy of splay trees in data com-
pression and observed that they are not as effective as list update algorithms.
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Abstract. Every train schedule entails a certain risk of delay. When
adding a new train to an existing timetable, planners have to take the
expected risk of delay of the trains into account. Typically, this can be a
very laborious task involving detailed simulations. We propose to predict
the risk of a planned train using a series of linear regression models on
the basis of extensive real world delay data of trains. We show how
to integrate these models into a combinatorial shortest path model to
compute a set of Pareto optimal train schedules with respect to risk
and travel time. We discuss the consequences of different model choices
and notions of risk with respect to the algorithmic complexity of the
resulting combinatorial problems. Finally, we demonstrate the quality of
our models on real world data of Swiss Federal Railways.

1 Introduction

The demand for passenger train transportation has been increasing steadily in
Switzerland since the introduction of Rail 2000 [12]. As a consequence, Swiss
Federal Railways (SBB) has to operate more trains. It seems difficult if not
impossible to expand track resources at the same rate as demand increases.
Therefore, railway traffic is becoming denser, making both resource scheduling
and delay management more difficult and of major importance.

In this paper, we address the recurring problem of adding a train path, i.e.,
a schedule for a single train in terms of track allocation in space and time, to
a given dense timetable on a corridor, i.e., an important subnetwork in form of
a path between two major stations. In particular, we are interested in finding
robust train paths in the sense that the additional train has a low risk of de-
lay upon arrival at its final station. For related work, although without explicit
coverage of robustness, see, e.g., [3,4,7]. A general notion of robustness is pro-
posed in [10]. Currently, planners use a mixture of domain knowledge and past
experience to come up with potential solutions which then undergo detailed
simulations to select the most appropriate solution. We present a model that
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supports railway planners by computing a set of recommended train paths for a
given train request.

A novelty of our approach is that we use extensive historic delay data to
compute such recommendations. The underlying data have been recorded by
SBB during operations. We combine risk predictions with a combinatorial model
that can answer the planners’ queries very quickly. As there is a trade-off between
risk and travel time of a train path, not only a single solution is computed, but
a set of Pareto optimal solutions with respect to travel time and expected delay.
Thus, as an advantage over simulating just a few scenarios, the planners get
a range of different, efficient solutions. Another advantage is that most of the
necessary data are available from the database. The data implicitly contain a
wealth of information, e.g., dependencies between trains, resource bottlenecks,
or dispatching decisions. We will show how to profit from these information.

The paper is structured as follows. In Section 2 we present the problem more
formally. Our solution approach consists of two main steps. In the first step, as
described in Section 3, we extract predictors from the historic delay data in order
to compute a series of linear regression models for risk prediction. In the second
step, a set of Pareto optimal train paths is computed for a given request. We give
the algorithmic details and complexity results of the second step in Section 4.
In Section 5 we present experiments that show the quality of our approach.

2 Problem Description

A typical requests that planners have to deal with is, e.g., “add one train in the
morning rush hour between Bern and Zurich”. The planner’s task is to add a
train path that satisfies the client’s request, is feasible with respect to operational
safety constraints, and has a low risk of delay, to a timetable that has been in
operation over a period of time.

More formally, a request for an additional train Θ specifies the type τ(Θ)
(e.g. local, regional, long distance), the corridor 〈S1, S2, . . . , S�〉, and the dates
on which the train should run (e.g. weekdays, weekends). Further, the request
comprises earliest and latest departure times [d, d] and arrival times [a, a] at the
first station S1 and the last station S�, respectively, as well as intermediate stops,
if any, at stations along the corridor.

A train path π is characterized by arrival and departure times tai and tdi ,
respectively, at stations Si, i ∈ {1, . . . , 	}, where the train stops, and by pass-
through times tpi at stations where it does not, e.g., π =

(
td1, t

p
2, t

p
3, t

a
4 , t

d
4, t

p
5, t

a
6
)
.

3 Regression Models

In this section, we first describe how to compute a series of linear regression
models from historic delay data. These models allow us to “predict” delays of
historic train paths during the period in which the timetable has been opera-
tional. Thus, the predicted delays are not in the future but in the past! The
purpose of our prediction is not to be able to predict delays of current trains,
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but to be able to evaluate how an additional train would have been delayed if it
had run on a specific planned train path on a day in the timetable period.

Second, we define the risk of a train path as an aggregated value of the
delay predictions for all days of the recorded period. This definition allows to
associate a risk with every feasible train path. An appropriate choice of the
prediction model will allow us to search efficiently for optimal train paths by
a special shortest path computation in a time expanded graph. For the statis-
tical terminology used in this section, see any textbook on linear models, for
example [9].

3.1 Predictors and Linear Regression Models

The first step towards prediction of delays and thus the final goal of a conclusive
risk measure is to identify relevant predictors that can be extracted from the
recorded delay data. In cooperation with planners from SBB we identified the
following potential “causes” for the delay of a train Θ on train path π upon
planned arrival at station Si at time tai on day d of the recorded period:

previous delay propagation of delay δi−1(Θ, d, π) of train Θ at the previous
station Si−1 on day d

type of train τ(Θ), a set of indicator variables for each possible train type
train density number of actual train arrivals or departures at Si in an interval

around the planned arrival time tai , denoted by windowq(tai , d), q ∈ (I ×
J) for a set of time intervals (windows) I and a set of cases J of trains
arriving/departing in the same/opposite direction as train Θ

timetable measures time ∆prev
j (tai , d) to the j-th previous/next planned train

having the same direction as train Θ; slack time slack(Θ, tdi−1, t
a
i ) with re-

spect to the minimum driving time of train Θ between Si−1 and Si

delays of neighboring trains delays of the trains that are scheduled directly
before/after the planned arrival time tai , e.g., δprev

4 (tai , d) is the delay of the
fourth train before tai on day d according to plan

properties of the tracks track-loss(tai , d), the average net change in delay of
trains between Si and S� during one hour around tai on day d

Our goal is to use the most relevant of the above predictors in the linear regres-
sion models. We emphasize that we are not mainly interested in the exact type
of dependence of predictors and dependent variable but rather in a model that
predicts well and that blends well with our combinatorial search for a low risk
path. To get meaningful models with well-balanced bias and variance we select a
subset of good predictors that lead to models with adequate Akaike information
criterion (AIC) [2]. The AIC is an established tool for model selection that tends
to avoid overfitting problems. To find these models we used the greedy stepAIC
algorithm of Venables and Ripley [13] implemented in R [11]. We stopped this al-
gorithm after 20 steps when usually no significant further improvement in terms
of AIC was made. We note that due to the large amount of available data, over-
fitting is not very likely to occur in our case even if we include the full set of
predictors.
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M1,2 M2,3
δ̂2(Θ, d) δ̂3(Θ, d)

. . .

Fig. 1. Sequence of between-station models where the delay predicted by the previous
model is a predictor for the next

Given the stations {S1, . . . , S�} along the corridor, we set up a linear regression
model Mi−1,i for each pair of consecutive stations (Si−1, Si), i ∈ {2, . . . , 	}, to
predict the delay δi(Θ, d, π) upon arrival at station Si. We call these models
the between-stations models. We also set up an in-station model Mi,i for each
intermediate station Si in which the train is requested to stop, by analogous
definitions of predictors, but omit their description for brevity. Model Mi−1,i

uses the set of predictors sketched above, in particular the previous delay as
predicted by model Mi−2,i−1 (or Mi−1,i−1). This means that the prediction
of the last model is used as predictor for the next model in the sequence, as
illustrated in Figure 1.

The models Mi−1,i are basically of the form

δi(Θ, d, π) = α +
∑

k

βkpredictork + εi,Θ,d

= model(Θ, tai , tdi−1, d, δi−1) + εi,Θ,d (1)

where predictork denotes the predictors described above, and under the usual
assumptions for linear regression models [8].

Note the dependency of the fitted value for δ̂i(Θ, d, π) on Θ, tai , tdi−1, d, and
δi−1(Θ, d, π) as indicated by the term model(. . .).

3.2 Series of Regression Models

In order to compute a risk measure for a planned train path π =
(
td1, . . . , t

a
�

)
we

use the sequence of regression models (M1,2, . . . ,M�−1,�) to predict the delay
on each day d of the recorded period of time:

δ̂i(Θ, d, π) =

{
model(Θ, tai , tdi−1, d, δ̂i−1) ∀i > 1
δ0(Θ, d, π)

(2)

where δ0(Θ, d, π) is an estimation of the start delay of the train (for example the
average delay of trains in that hour of the day). As a risk measure we propose
an aggregated value of these values:

Definition 1 (risk). For a given train Θ and a train path π on a corridor
〈S1, S2, . . . , S�〉 we define its risk with respect to a recorded period D and a given
prediction model as risk(π) = 1

|D|
∑

d∈D δ̂�(Θ, d, π), where the δ̂�(Θ, d, π) values
are obtained via regression models as in (2).
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There are different types of possible regression models. In particular, if we re-
strict the model above to a subset of the predictors, we can limit its depen-
dency on the data. A very basic model depends only on δ̂i−1, tai , Θ and d.
Such a model could look as follows, using dummy-variable regression for the
categorical predictor τ(Θ):

basic: δ̂i(Θ, d, π) = model(tai , Θ, d, δ̂i−1)

= α + β1δ̂i−1(Θ, d, π) + β2τ(Θ) +
∑

q

β3,qwindowq(tai , d)

+
∑

j

(
β4,j∆

prev
j (tai , d) + β5,jδ

prev
j (tai , d)

)
+

∑
j′

(
β6,j′∆

next
j′ (tai , d) + β7,j′δ

next
j′ (tai , d)

)
= β1δ̂i−1 + b(tai , Θ, d) (3)

Here b() is a value that depends only on the indicated terms. More advanced
models depend also on tdi−1, use power transformed predictors, or involve in-
teraction terms not containing δ̂i−1. Interaction terms are basically products
of predictors, see [9] for more details. Such models can for example take into
consideration the interaction between track loss and slack. This could model
the potential situation that trains with high slack between two stations are not
affected by high track losses of other trains, whereas trains with low slack are.

advanced: δ̂i(Θ, d, π) = model(Θ, tai , tdi−1, d, δ̂i−1)

= basic + β8track-loss + β9slack(Θ, tdi−1, t
a
i )

+β10track-loss : slack(Θ, tdi−1, t
a
i ) + . . .

= β1δ̂i−1 + b(tai , tdi−1, Θ, d) (4)

If one wants to model that different types of train can catch up differently on
delays one would also have to include interaction terms involving δ̂i−1. Another
example would be the idea that track loss and previous delay interact, i.e., in
situations with high track loss a high previous delay will lead to a high delay at
the current station, whereas with low track loss it will have a much lower effect.

all interactions: δ̂i(Θ, d, π) = advanced + . . . + δ̂i−1 : τ(Θ)

= a(tai , tdi−1, Θ, d)δ̂i−1 + b(tai , tdi−1, Θ, d) (5)

For constant (tai , tdi−1, Θ, d), the models above all boil down to a simple linear
function in δ̂i−1. One can easily think of further refinements leading to “arbi-
trary” functions in δ̂i−1, see [8]. Such models would possibly allow for a better
quality of prediction, but already models of type “all interactions” can make the
combinatorial model discussed in the next section NP-hard.
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4 Shortest Path Algorithm

The search for train paths with low risk, as defined in the last section, leads to
a shortest path problem on an appropriately defined time expanded graph. In
the following, we describe how this graph is constructed, discuss the algorithmic
complexity of possible shortest path models, and describe the algorithm used in
our experiments. All proofs are given in the corresponding technical report [8].

4.1 Time Expanded Graph Model

We want to construct a graph such that every path in the graph corresponds to
a feasible planned train path w.r.t. the most important operational and safety
constraints. For our purposes, these are minimum/maximum driving times, the
number of available parallel (bidirectional) tracks between stations, and headway
times, i.e., the security requirement that a train can follow another one on the
same track only after a certain time span.

Given a train request r, a layered time expanded graph Gr = (V1 # V2 # . . .#
V�, E) is constructed as follows. Each node ut

i ∈ Vi represents a station Si at
a certain point in time t. The number of nodes in each Vi depends on r and
on the chosen granularity, e.g., 10 nodes per minute. Every edge (ut

i, u
t′
i+1) ∈ E

represents a driving activity between two stations or a dwelling activity within
a station. For simplicity, we denote ut

i simply by ui and the edge (ut
i, u

t′
i+1) by

ei,i+1. Thus, every u1-u�-path in Gr with u1 ∈ V1, u� ∈ V�, corresponds to a
train path π.

To model realistic driving times, we distinguish between three types of nodes
representing the state of the train, namely arrival (arr), departure (dep), and
pass-through (pass) nodes. Based on these types, we extract minimum and max-
imum driving times along the corridor from the historic delay data and include
only those edges in Gr that respect them.

Track capacities and headway constraints are modeled by omitting edges of
Gr which would cause a train path to be infeasible w.r.t. the current timetable.
Hence, for every potential edge we need to decide if it would be possible to
schedule an additional train on the track segment and at the time specified by
that edge. For our purposes, the time during which a track is blocked by a train
can be modeled by a trapezoid, as shown in Figure 2(a). The problem of deciding
whether an edge e of Gr is feasible reduces to the chromatic number problem
in trapezoid graphs, which can be solved in time O(n log n), see [5,6]. Assuming
that the existing timetable is feasible w.r.t. headway constraints, it even suffices
to compute the size of the maximum clique containing the vertex corresponding
to the trapezoid of e, see Figure 2(b) and (c).

4.2 Model Choice and Algorithmic Complexity

In this section we discuss the complexity of several shortest path problems arising
from different regression models. To compute Pareto optimal paths in Gr, we
need to assign costs to paths, reflecting their risk according to Definition 1. First,
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Fig. 2. (a) Trapezoidal representation of a schedule between two consecutive stations
Si and Si+1. Each trapezoid represents the resource utilization (headway constraints)
of a single train in time (vertical axis) and space (horizontal axis). Here, two tracks
suffice, as trains 1, 2, and 3 can be scheduled on one track and trains 4 and 5 on the
other without conflict. (b) Requests for additional trains a and b. (c) Corresponding
trapezoid graph for (b). Trains 1 to 5 and a could still be scheduled on two parallel
tracks, since the size of its maximum clique in the trapezoid graph is two, whereas to
add train b, three parallel tracks would be necessary.

we consider the cost of a path for a single day d ∈ D only. In this case, we let
the risk equal the predicted delay δ̂�(Θ, d, π). The structure of Equations 3, 4,
and 5 leads to a cost structure, in which on each edge (ut

i, u
t′
i+1) the accumulated

delay δ̂i(Θ, d, π) at ut
i is multiplied with a constant a(e) and then a constant b(e)

is added to this value to yield δ̂i+1(Θ, d, π). Hence, to define the cost structure
for the minimum risk computation for a single day, one can annotate the edges
with these pairs (a, b). More formally, mirroring Equation 2, the cost of a path
π = {u1, u2, . . . , u�} in Gr can be recursively defined as follows:

cost(u1, u2, . . . , ui) =

{
a(ui−1, ui)cost(u1, u2, . . . , ui−1) + b(ui−1, ui) for i > 1
δ0(Θ, d, π) for i = 1

(6)
which yields

cost(π) = δ0(Θ, d, π)a(e1,2)a(e2,3) · · ·a(e�−1,�) + b(e1,2)a(e2,3) · · · a(e�−1,�)
+ . . . + b(e�−2,�−1)a(e�−1,�) + b(e�−1,�) (7)

The risk computation for the whole period D can be carried out by doing
the above computation for each day d ∈ D resulting in |D| delay predictions,
which can be read as a vector (δ̂�(Θ, 1, π), . . . , δ̂�(Θ, |D|, π))T . According to Def-
inition 1, the risk is the average over the entries of this vector. It follows that
the full shortest path problem is a problem over vectors of dimension |D|, which
we formalize in the following definition.

Definition 2. Given a layered time-expanded graph Gr = (V1 #V2 # . . .#V�, E)
with edges e = (ui, ui+1) labeled by (a(e), b(e)). The one day minimum risk
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problem asks for a path from layer 1 to layer 	 of minimum cost at layer 	,
where the cost of a path π is computed according to Equation 7 recursively along
the path. In the minimum risk problem edges are annotated with pairs of |D|-
dimensional vectors (a(e), b(e)) instead of scalars. For a given path π its cost is
computed as the average over the costs ci, 1 ≤ i ≤ |D| for the components, where
the cost of a component is again computed according to (7) for each component
separately.

Theorem 1. As long as the prediction functions model() are monotonically in-
creasing in δ̂i−1 the one day minimum risk problem can be solved in polynomial
time by a label setting algorithm.

This theorem characterizes in a sense “well-behaved” models. If the models pre-
dictions are not monotonically increasing in δ̂i−1 a model might predict that a
train arrives earlier at station i for larger delays at station i− 1. Note that Gr

is acyclic.
For an efficient algorithm for the minimum risk problem we need more than

just the efficient computation of the one day problem.

Theorem 2. If all components of the cost vectors a(ei,i+1) are equal to a single
value ai,i+1 for each layer 1 ≤ i < 	− 1 of Gr, i.e., a(ei,i+1) = ai,i+11, then the
minimum risk problem can be solved by a label setting algorithm in polynomial
time.

Fortunately, this condition is met by the “basic” models, by the “advanced”
models and even by models that include interactions of δ̂i−1 and predictors
that do not depend on d like τ(Θ) or slack(Θ, tdi−1, t

a
i ). The above theorem is

complemented with an NP-hardness proof for models with varying a.

Theorem 3. The general minimum risk problem (without the condition of The-
orem 2 on the a vectors) is NP-hard.

This concerns models of type “all interactions” that include for example inter-
action terms of δ̂i−1 and some window variables or any other predictor that
depends on d.

As far as the aggregation function in the risk computation is concerned, SBB
planners prefer to work with the more robust median. Therefore, one could also
define

r̃isk(π) = median{δ̂�(Θ, d, π) | d ∈ D} (8)

as the median of the delay predictions for the last station. This choice, however,
leads to an NP-hard shortest path problem, as the following theorem shows.

Theorem 4. For the median as an aggregation function in the risk computation
the classical shortest path problem with respect to this cost measure r̃isk(π) is
NP-hard already for additive vector valued edge costs and therefore also for all
variants discussed here.

As every u1-u�-path is only a suggestion for the planner, who may have to take
further feasibility requirements into account, we would like to provide a set of k
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“best” solutions. Calculating the k-shortest paths, however, would lead to a set
of solutions that are very similar to each other. Instead, we propose to compute a
Pareto frontier with respect to the trade-off between risk and travel time, which
is a natural choice in this context.

Lemma 1. The size of the Pareto frontier is proportional to the difference of
the minimal and maximal travel time of u1-u�-paths in Gr.

Note that although the size of the Pareto frontier is pseudo-polynomial in the
size of the input, the range of possible travel times of u1-u�-paths is limited in
practice.

4.3 Algorithm

We sketch the algorithm to find a set of Pareto optimal u1-u�-paths in Gr. Since
Gr is acyclic, it suffices to consider each edge once in the order given by any
topological sorting of the nodes and to apply a reaching algorithm [1]. Note that
a topological sorting of the nodes is readily available by the order of the stations
along the corridor, as each node is associated with one station.

First, Gr is created as defined above. For performance reasons, all nodes and
edges that are not on a u1-u�-path can be removed in a preprocessing step.
Associated with every node ui is a Pareto frontier F (ui) of paths from S1 to Si

with associated labels, i.e., the accumulated risk up to Si. For each edge (ui, uj),
the algorithm checks – by evaluating the paths in F (ui) with model Mi,j –
whether labels in F (ui) can be extended to uj , such that they dominate labels
in F (uj). Whenever this is the case, a new label is inserted into F (uj).

Once all edges have been considered, the algorithm constructs the final Pareto
frontier F from the labels of all F (u�) at the last station S�, eliminating all
dominated labels. Thus, F contains only Pareto optimal u1-u�-paths.

Note that even though the estimators provided by the linear regression models
are unbiased, this unbiasedness is lost in the search for minimum risk paths. We
explain this effect in [8] and also justify, why it is negligible in our case.

5 Experiments

To demonstrate the quality of the models, we created between-station models for
the Zofingen-Lucerne corridor in Switzerland, as listed in Table 1. The residual
error SE is less than 30 seconds for the majority of the models, and not more
than 50 seconds for any model. Apart from some outliers, which one would ex-
pect, the residuals are very moderate. Against the background of complicated
dependencies between trains in real world operations, the results are very en-
couraging.

To get a better impression on how the residuals are typically distributed, see
Figure 3. The between-stations model for Wauwil-Sursee in Figure 3(a) has a
very good fit, which also mirrors the fact that it does not seem to be a “critical”
station. On the other hand the in-station model for Olten in Figure 3(b) has a
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Table 1. Quality of between-stations models on the Zofingen-Lucerne corridor. The
residual standard error is denoted by SE , the degrees of freedom by DoF, the i-th
quartile by iQ. Residuals and SE are given in seconds.

residuals Multiple Adjusted
from to SE DoF min 1Q 2Q 3Q max r2 r2

ZF BRIT 9.2 11903 -27.8 -5.1 -1.2 3.7 126.0 0.9931 0.9931
BRIT DAG 12.6 11903 -61.5 -4.8 -1.3 3.5 295.9 0.9874 0.9874
DAG NEB 8.2 11902 -57.5 -3.5 -0.8 2.3 219.2 0.9948 0.9948
NEB WAU 6.2 11902 -33.8 -3.4 -0.5 2.7 177.2 0.9971 0.9971
WAU SS 18.3 11898 -105.1 -8.5 -2.3 5.4 370.5 0.9778 0.9778
SS SEM 27.8 14273 -108.0 -14.6 -2.3 11.4 708.9 0.9403 0.9402
SEM RBG 21.1 14274 -141.3 -7.9 -2.2 3.5 1032.0 0.9686 0.9685
RBG HUEB 25.2 14274 -102.1 -11.4 -0.8 8.3 382.9 0.9582 0.9581
HUEB EBR 16.3 19964 -58.5 -7.7 -1.7 4.6 663.7 0.9820 0.9820
EBR GTS 49.0 19966 -223.1 -27.4 -5.9 18.9 587.5 0.8342 0.8340
GTS LZ 41.2 37761 -202.4 -22.5 -7.3 14.0 760.5 0.8769 0.8768

(a) Model for Wauwil-Sursee (b) Model for Olten

Fig. 3. Residual plots depicting real delay (x-axis) vs. predicted delay (y-axis)

less good fit, which might come from the more complicated structure of delays in
Olten. In both plots outlying points are rather below than above the diagonal,
which is exactly what one would expect from a delay prediction model: some
delays are simply unpredictable.

The two residual plots also help to see to what extent the standard assump-
tions of linear regression modeling are satisfied. From both plots one can see
that the linearity assumption E(εi,Θ,d) = 0 seems to hold. On the other hand,
the constant variance assumption does not seem to hold, the residuals look het-
eroscedastic. As this does not influence the unbiasedness and consistency of the
used least squares estimators but rather the efficiency, this does not invalidate



Scheduling Additional Trains on Dense Corridors 159

Fig. 4. Pareto optimal train paths for a (hypothetical) request on the Zofingen-Lucerne
corridor during the evening hours, not showing the existing timetable

our approach: Given the very large amount of data that the models are estimated
from, statistical efficiency is not our primary concern.

To demonstrate the possible quality of predicting a whole train path, we
performed a cross validation on an extra train that drove on only 9 days,
which were removed from the data before the models were learned, see [8] for
details.

Continuing our example of the Zofingen-Lucerne corridor, we briefly present
a resulting Pareto optimal set of train paths for a hypothetical user requests
in Figure 4. The request was to add a fast train from Zofingen to Lucerne with
earliest departure time 17:00, and latest arrival time 20:00, no intermediate stops,
maximum driving time of 150% (w.r.t. the minimum driving time). Interestingly
enough, there is no path in the set departing before 18:50, and hence, all such
paths are dominated by the depicted solutions. Although the time windows and
maximum driving time chosen for this example are very large, the solutions give
a clear indication of where the train should be added.
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Broadword Computing and Fibonacci Code
Speed Up Compressed Suffix Arrays

Simon Gog

Insitute of Theoretical Computer Science
Ulm University

Abstract. The suffix array of a string s of length n over the alphabet
Σ is the permutation that gives us the lexicographic order of all suf-
fixes of s. This popular index can be used to solve many problems in
sequence analysis. In practice, one limitation of this data structure is its
size of n log n bits, while the size of the text is n log |Σ| bits. For this rea-
son compressed suffix arrays (CSAs) were introduced. The size of these
CSAs is asymptotically less than or equal to the text size if the text is
compressible, while maintaining O(logε n) access time to the elements
(0 < ε ≤ 1). The goal of a good CSA implementation is to provide fast
access time to the elements while using minimal space for the CSA. Both
access time and space depend on the choice of a self-delimiting code for
compression. We show that the Fibonacci code is superior to the Elias
δ code for strings that are low compressible. Our second contribution
are two new broadword methods that support the decoding of Fibonacci
encoded numbers on 64 bit architectures. Furthermore, our experiments
show that the use of known broadword methods speed up the decoding of
Elias δ code for strings that are high compressible, like XML. Finally, we
provide a new efficient C++ library for succinct data structures which
includes a generic CSA for further experiments.

1 Introduction

Text indexes like the suffix array [10] or the enhanced suffix array [1] are powerful
tools to efficiently answer a large range of different queries. However, the size of
these data structures is a real problem. While the text itself occupies n bytes
(over the ASCII alphabet) the suffix array takes n logn bits, which is equivalent
to 4n bytes for text lengths less than four gigabyte. Besides the drawback of the
large space consumption to store the index, the case in which the whole index
does not fit in main memory is most severe, because query times slow down due
to the disk access. For this reasons, much theoretical work has been done at the
beginning of this decade, resulting in several compressed indexes (see [4,5,9,14]).
Compressed means that the size of the index depends on the entropy of the
indexed text while preserving the efficient (constant or logarithmic time) access
to the elements. Furthermore, most of the indexes are self-indexes meaning that
the text can be reconstructed from the index. Navarro and Mäkinen [12] provide
a good overview over the whole topic.

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, pp. 161–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we present and apply broadword computations to speed up
the access time to the self-index of Sadakane[14]: The compressed suffix array
(CSA). Here, the term broadword computation means parallel programming in a
register/word of size greater than or equal to 64 bit. This is also known as SIMD1

Within A Register (SWAR). The development and use of the new broadword
computation methods was inspired by a recent work of Vigna [15] in which
SWAR was successfully applied to accelerate rank and select data structures in
practice.

In addition to the theoretical results to CSAs, there are efforts to provide
efficient implementations. For example, the Pizza&Chilli2 site of Ferragina and
Navarro [3] offers a C interface, existing solutions, and a set of test cases. This
gives us the opportunity to compare our solution to the original implementation
of Sadakane.

2 Preliminaries

2.1 Notations and Definitions

A string t = t[0, n − 1] = t0t1 . . . tn−1 is a sequence of n characters over an
ordered alphabet Σ (of size σ). We denote the empty string by ε. Each string of
length n has n suffixes si = t[i, n− 1] (0 ≤ i < n). We define the lexicographic
order “<” on strings as follows: ε is smaller than all other strings. Now t < t′ if
t0 < t′0 or t0 = t′0 and s1 < s′1.

A suffix array SA of a text t is the lexicographically sorted array of all
the suffixes of t. The uncompressed version occupies O(n log n) bits of space.
Sadakane [14] presented a CSA that occupies O(nH0(T ) + n log log σ) bits of
space while providing O(logε n) random access time to the entries for 0 < ε ≤ 1.
Compression is achieved by using the Ψ -function to store the information about
the suffix array. Ψ is defined as follows:

Ψ(i) = SA−1[(SA[i] + 1) mod n]

where SA−1 is the inverse suffix array. That is, Ψ [i] equals the position of sSA[i]+1
(the suffix following suffix sSA[i] in the text). The key observation for compression
is that Ψ consists of at most σ piecewise increasing sequences [14].

In theory, the access time on CSA depends on two data structures that
solve the following queries in constant time. Given a bit vector b, the functions
rank(b, i) tells us the number of ones in the prefix b[0, i− 1] of b and select(b, j)
tells us the position where the jth one bit occurs in b. There exist constant time
solutions for both query types (see [6,11,13]). These solutions require only o(n)
bits extra space on top of the n bits of the bit vector. We call the corresponding
data structures rank support and select support. Finally, we will define some
notations concerning a 64 bit word w. The least significant bit of w is indexed
with 0. A bit pair bpi consists of two consecutive bits w[i]w[i + 1]. We call it
even (odd) if i is even (odd).
1 Single Instruction, Multiple Data.
2 http://pizzachili.di.unipi.it/

http://pizzachili.di.unipi.it/
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2.2 Self-delimiting Codes

Definition 1. Let x be a positive integer. A code c(x) ∈ {0, 1}∗ is a self-delimiting
code if the following conditions hold:

(a) c(x) is not prefix of c(y) for any integer y > 0 and y �= x;
(b) |c(x)| ≤ α log x + g(x), where g(x) = o(log x), and α is a constant;

Examples of random access self-delimiting codes are Elias γ-code and δ-code
[2](δ-code for short) that are defined as follow (see [16] for more examples):

cγ(x) = 0 · · · 0︸ ︷︷ ︸
|b(x)|−1

1b̃(x) and cδ(x) = 0 · · · 0︸ ︷︷ ︸
|b̃(b(x))|

1b̃(|b(x)|)b̃(x)

where b(x) is the binary representation of x and b̃(x) is b(x) minus the most
significant bit of b(x). Thus, the size to encode an integer x in Elias δ-code is
about log x+2 log log x. Sadakane used this code in his implementation. We will
now present two additional random access self-delimiting codes for which we will
present efficient calculation of decoding information in section 3.

The Fibonacci code cΦ (Φ-code for short) is derived from the Fibonacci se-
quence defined (for this purpose) as F0 = 1, F1 = 2 and for i ≥ 2 as Fi =
Fi−1 + Fi−2. Zeckendorf’s theorem [17] states that we can represent every pos-
itive integer x with the Fibonacci code cΦ(x) = {0, 1}k1 which meets following
conditions: (a) Fk > x and cΦ(x)[k − 1] = 1, (b) x =

∑k−1
i=0 cΦ(x)[i] · Fi, and (c)

cΦ(x)[i − 1] · cΦ(x)[i] = 0 for 0 < i < k. Note that this code is a prefix code,
since only the last bit pair bpk−1 equals ’11’. The length of cΦ(x) follows from
condition (a) and Fk ≈ Φk+2/

√
5, where Φ = (1 +

√
5)/2 is the golden ratio.

We need about 1 + logΦ x ≈ 1 + 1.44 logx bits. This is equal to or less than the
length of cδ for values between 2 and F18 = 6765. See Fig. 1 for some examples.
The ternary code c∆ (∆-code for short) is based on the ternary system. The
integer x is considered as a number in the ternary system that consists of the
three symbols {00, 01, 10}. The terminating bit pair is ’11’ and the code length
of c∆(x) is therefore 2 + log3 4 log x ≈ 2 + 1.26 logx bits. This is asymptotically
even better than the other codes but in our applications the values are so small
that this code will consume too much space.

x cΦ(x) c∆(x) cδ(x) x cΦ(x) c∆(x) cδ(x)
1 11 10 11 1 6 10011 00 01 11 01 1 10
2 011 01 11 01 0 0 7 01011 10 01 11 01 1 11
3 0011 00 10 11 01 0 1 8 000011 01 01 11 001 00 000
4 1011 10 10 11 01 1 00 9 100011 00 00 10 11 001 00 001
5 00011 01 10 11 01 1 01 10 010011 00 00 01 11 001 00 010

Fig. 1. Example of different self-delimiting codes with encoded values
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2.3 Sadakane’s Compressed Suffix Array Revisited

The most important data structure for the practical implementation of the CSA
is the compressed form of the Ψ -function supporting constant time random ac-
cess to its elements. As this data structure can be used in general for integer
arrays, we will refer to it as enc vector throughout the paper. Sadakane [14]
proposed the following construction of the enc vector (see also Fig. 2). We first
create an array dΨ which contains the differences of two consecutive Ψ values.
These differences are then encoded with a self delimiting code and written in
a bit vector z. Not all differences are encoded, as we want to provide constant
time access. We sample Ψ [i] if dΨ [i] is not positive or if the encoded bits between
two samples is greater than a parameter s ∈ O(log n). The bit vector is sample
indicates sampled Ψ values, the array sample stores the sample values, and
sample pointer stores pointers to the next compressed value in z. In addition
to that, is sample is augmented by rank support and select support. Con-
stant time random access to an encoded value Ψ [i] is now easy to realize: Test
whether the ith value is sampled. If so, return sample[rank(i)]. Otherwise, we
retrieve the greatest index j < i which is sampled by j = select(rank(i)). The
result is the sum of sample[rank(i)] plus the sum of i−j decoded values starting
at position sample pointer[rank(i)] in z. As there are at most O(log n) bits to
decode for calculating the (prefix) sum of the i−j values, one could use a lookup
table of size 2O(log n) to perform this task. In practice, not one lookup table is
used since a good compression rate of the enc vector forces us to use large con-
stants inside the O(log n) term. Hence, the lookup table would not fit into main
memory and the table access would be really slow. Therefore Sadakane proposed
to use a constant number of small lookup tables of size o(n) and decode with
O(1) accesses to this small tables. Furthermore, the use of the is sample array
with the rank/select data structures is not competitive in the access time/space
tradeoff to a simpler solution: Every sΨ -th value of Ψ is sampled and the few
(≤ σ) negative values of dΨ are considered modulo n. We call this simplified
data structure enc vector prac.

So, the size of enc vector prac mainly depends on the choice of the self-
delimiting code and the access speed depends on the decoding speed for this code.

4 6 9 10 3 0 5 1 2 7 8

4 2 3 1 -7 -3 5 -4 1 5 1

0 7

0 0 0 1 1 0 1 0 0 01

7 14

4 3 0 1

Ψ

dΨ
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01100111100011110001111

e
n
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v
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Fig. 2. Example for the enc vector data structure. Φ-code is used to represent the
dΨ -values 2, 3, 1, 5, 1, 5, 1 of the not sampled ψ-values.
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3 Guiding Information to Decode Self-delimiting Codes

Let us now introduce our SWAR methods to calculate guiding information to
decode prefix sums of self-delimiting codes. Guiding information means infor-
mation that either reduces the size for lookup tables supporting the decoding or
the time spent on the decoding. We developed two new methods supporting the
Φ-code and show how to use known methods to support ∆- and δ-code. In the
following we will consider these four SWAR methods:

– b1Cnt(x) Count the number of ones in x (a.k.a. sideway addition).
– i1BP(x,i) Compute the position of the ith one in x.
– b11Cnt(x) Count the number of Φ-encoded numbers in x.
– i11BP(x,i) Get the end position of the ith Φ-encoded number in x.

Knuth presented a solution for b1Cnt in [7] (see algorithm 1). After each of the
first three steps, xi will contain 64/2i sums of 2i consecutive bits. In the last step
the 8 sums of the 8 bytes are multiplied with the constant 0x0101010101010101.
The result is an integer y containing the prefix sum of the j least significant
bytes of x3 in the jth least significant byte. This means the most significant
byte of y equals b1Cnt and the prefix sums could be used to calculate i1BP (see
[15] for details). Both methods b1Cnt and i1BP take O(log log d) steps, where d
is the length of the word in bits.

Algorithm 1. b1Cnt(x): Counting the number of ones in x

1 x1 = x−( ( x�1)&0x5555555555555555 )
2 x2 = (x1&0x3333333333333333 )+((x1�2)&0x3333333333333333 )
3 x3 = (x2+(x2 �4))&0x0F0F0F0F0F0F0F0F ;
4 return (x3∗0x0101010101010101 )�56

Counting Fibonacci encoded numbers. The following procedure counts the num-
ber of Φ-encoded numbers in a word x, which is equivalent to counting the
number of non overlapping ’11’ bit pairs in x. We say that a ’11’ bit pair starts
at position i in x if one of the following conditions holds: (1) i = 0, (2) there is
a zero at position i− 1, or (3) a ’11’ pair starts at position i− 2. Consequently,
a ’11’ ends at position i if it starts at position i− 1.

In the first step of our algorithm we generate three words ex11, ex01, and
ex10 (see Fig. 3). Each of these words extracts information of even bit pairs
bpj(x) in x. Bit pair bpj(ex11) in ex11 is set to ’01’ if bpj(x) equals ’11’ and
is set to ’00’ otherwise. Note that the number of ones in ex11 is a lower bound
on the encoded numbers as each 1 in ex11 indicates that a ’11’ bit pair starts
or ends at this position. The remaining task is to add the number of ’11’ pairs
that end at odd positions and are not already captured by ex11 (e.g. see the
bit pair ending at position 8 in Fig. 3). We use ex01 (which contains either ’01’
if bpj(x) equals ’01’ or ’00’ otherwise) and ex10 (which contains either ’10’ if
bpj(x) equals ’10’ or ’00’ otherwise) to calculate this number. The missing ’11’
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Algorithm 2. b11Cnt(x): Counting the number of Φ-encoded numbers
in x

1 ex11 = (x&(x�1))&0x5555555555555555 ;
2 ex01 = (x⊕( x�1))&x&0x5555555555555555 ;
3 ex10 = (x⊕( x
1))&x&0xAAAAAAAAAAAAAAAA;
4 x1 = ( ( ( ex11 | ( ex11
1))+( ex10
1))& ex01 ) ;
5 x2 = ex11 | x1 ;
6 x3 = (x2&0x3333333333333333 )+((x2 �2)&0x3333333333333333 ) ;
7 x4 = (x3+(x3 �4))&0x0F0F0F0F0F0F0F0F ;
8 return (0 x0101010101010101 ∗x4 )�56 ;

pairs have the following structure: A bit pair bpj(x) equals ’10’, followed by
k ≥ 0 bit pairs each equals ’11’, and finally a bit pair bpj+k+1(x) set to ’01’.
If k equals zero it is easy to get all missing occurrences: y = ex01&(ex10 � 1)
will have a one at each end of a missing ’11’ bit pair. If k > 0 we use addition
to propagate the one of bpj(ex10) over the k occurences of ’11’s in x. See line
4 in algorithm 2 for details. Finally, we use sideway addition (line 6-8) to count
the ones in the union of ex11 and y. As we only use a constant number of
operations on top of the sideway addition, b11Cnt also takes O(log log d) steps.

Locating Fibonacci encoded numbers. The next problem is to locate the end
of the ith Φ-encoded number in a word x. As we have already a procedure to
calculate i1BP, we will reduce our problem to this case. So, we will show how to
calculate a word w having ones at those positions where Fibonacci numbers end
in x. Once again we first compute ex11, ex10, and ex01. Now consider ex11 (see
Fig. 3 for an example). ex11 corresponds to w in the following case: (a) bpj(x)
equals ’11’ and there is a consecutive odd number of ones to the right of bpj(x),
like bp1(x) and bp3(x) in Figure 3. However, if (b) bpj(x) equals ’11’ and there is
an even number of consecutive ones to the right of bpj(x), ex11 does not match
with w, as in this case ex11 marks one position to the right of the actual end
of the Φ-encoded number. In addition, (c) if bpj(x) equals ’01’ and is preceded

012345678910111213141516171819

1 0 1 0 1 0 0 1 0 0 000 0 0 0 0 0 0 0

0 0 0 0 0 0 000 0 0 0 0 000 1010

1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 00
bp0bp5 bp1bp2bp3bp4bp6bp7bp8bp9

1

0 1 0 0 0 1 0 1 0 00 0 0 0 0 0 00 00

0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 01 1

0 0 0 0 0 0 000 0 000 1010 111

ex10

x1

x

ex11

ex01

w

Fig. 3. Example for intermediate results in b11Cnt (x2) and i11BP (w)
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Algorithm 3. i11BP(x): Get the end position of the ith Φ-encoded number
in x

1 ex11 = (x&(x�1))&0x5555555555555555 ;
2 ex01 = (x⊕( x�1))&x&0x5555555555555555 ;
3 ex10 = (x⊕( x
1))&x&0xAAAAAAAAAAAAAAAA;
4 m = ( ( ex11 | ( ex11
1))+( ex10
1) ) & ( ex01 | ex11 ) ;
5 w = ex11 + m;
6 return i1BP(w, i ) ;

by an odd number of consecutive ones, bpj(w) has to be ’01’, while bpj(ex11)
equals ’00’.

We calculate the correction word m with the following properties to handle
the cases where ex11 does not correspond to w (cases (b) and (c), see line 4
in algorithm 3). A bit pair bpj(m) is set to ’01’ if either bpj(x) equals ’11’ and
is preceded by an even number of consecutive ones or bpj(x) equals ’01’ and is
preceded by an odd number of consecutive ones. Otherwise, bpj(m) equals ’00’.
Now, adding m to ex11 results in the desired word w. Note again that we only add
a constant number of operations to the known SWAR operation b1BP. So b11BP
takes again O(log log d) steps. We also extended both methods to take a carry
bit of another word. We refer to our implementation documentation for details.

Guiding information. While b11Cnt and i11BP support Φ-code, b1Cnt and i1BP
support the ∆-code as the end markers of the ∆-code are always even bit pairs.
The virtue of these procedures is that one gains information about large areas
(up to 128 bits in recent CPUs) of the encoded data instead of only small pieces
(about 16 bits in practice) with lookup tables. Suppose we work with lookup
tables that can decode 	 bits to calculate the prefix sum of up to k Φ-encoded
numbers. This would take us k · 2� words for k lookup tables of size 2�. One
additional call of i11BP(x, k) and masking of the relevant bits reduces the space
for lookup tables to 2�. Similarly, one can decide with one call of b11Cnt whether
one can apply the lookup table or has to decode the region without the lookup
table since there are more than k numbers encoded in 	 bits.

We also use the known SWAR method r1BP(rightmost position where a bit is set
to one) [7] to speed up the decoding of δ-code used in CSAs for high compressible
strings. For thoseCSAs, the bit vectorz of enc vector prac consists ofmany ones.
So we could decode runs of ones by applying r1BP on the inverted bit vector z.

4 Implementation and Experimental Results

Implementation. We have implemented a C++ template library for succinct
data structures (called sdsl3) following the guidelines in [8]. It includes basic
3 The source code as well as the documentation is available under

http://www.uni-ulm.de/in/theo/research/sdsl. The source code is licensed un-
der the GNU Public License.

http://www.uni-ulm.de/in/theo/research/sdsl
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data structures like a bit vector, a vector for integers (of size 	 ≤ 64, i.e. not
necessarily byte-aligned), and different rank and select data structures support-
ing bit vectors. In addition, we provide a class for efficient broadword operations
(see section 3) and several classes for self-delimiting codes (see section 2.2). More
complex classes like the enc vector and enc vector prac are composed of these
basic classes. More precisely, all complex classes can be parametrized with basic
classes, e.g. one can specify the type of the rank data structure and the sample
density of enc vector. We implemented two generic classes for the CSA in the
sdsl. The first one, csa sada theo is a one-to-one implementation of the (hier-
archical) data structure described in [14] with our data structures. The second
one is csa sada prac which follows the advices in [12] to implement the CSA
of Sadakane in practice (i.e. no hierarchical data structure). Both implementa-
tions, as well as most other data structures, are designed to be immutable STL
(Standard Template Library) conform containers.

Experimental setup. We executed our experiments on a Linux-based system using
gcc 4.2.1, using compilation options -O9 -ffast-math for all programs. The ma-
chine was equipped with a Dual-Core 64-bit Opteron processor running at 1000
MHz with 1MB L1 cache. As most of our measured operations only take a few mi-
croseconds, we repeated the operations millions of times and calulated the average
value. The system function getrusage() was used to get the user time.

We used the text collection from the Pizza&Chili site of size 50 and 200 MB
as test cases. The corpus cover a representative set of different application areas,
e.g. bioinformatics and XML-processing. Two additional inputs (random k128
and random k26) are uniformly distributed texts over alphabets of size 26 and
128 (see Table 1 for more information about the corpus). We compared our im-
plementation with the original implementation of Sadakane (optimized C code)
which is also available from the Pizza&Chili site.

Experiments. In the experiments, we consider CSAs as a replacement for uncom-
pressed suffix arrays (i.e. as black boxes). Therefore, we measure the average access

Table 1. Statistics for inputs and resulting CSAs. We used the Partial-Match-based
compressor PPMDi to get an idea of the compressibility of the inputs.

Test case σ Compression Encoded Encoded Access speed
by ppmdi -l 9 ones in z values < 32 in z sada 64δ/sada orig

random k128.50MB 128 0.894 < 0.01 ≈ 0.21 -
random k26.50MB 26 0.698 ≈ 0.03 ≈ 0.70 1.08
proteins.50MB 27 0.421 ≈ 0.36 ≈ 0.82 1.40
pitches.50MB 133 0.305 ≈ 0.37 ≈ 0.83 1.55
dna.50MB 16 0.243 ≈ 0.57 ≈ 0.99 1.65
english.50MB 239 0.242 ≈ 0.68 ≈ 0.94 1.68
sources.50MB 230 0.167 ≈ 0.76 ≈ 0.94 1.90
dblp.xml.50MB 97 0.092 ≈ 0.85 ≈ 0.97 2.25
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time to one suffix array element. The size of a CSA depends on the choice of a self-
delimiting code and on two parameters sΨ and sA. As already mentioned in section
2.3, we sample every sΨ th value in enc vector prac. The CSA itself stores every
sAth value of the uncompressed suffix array in the array sa samples. One element
access in the CSA now requires one access of sa samples plus i mod sA accesses
of enc vector prac. To show different time/space tradeoffs, we parametrized
the CSAs with sψ = 128 and sA = {2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96}. We have
fixed sΨ as further increasing does not affect the compression of the CSAs sub-
stantially and the access time to enc vector prac increases linear with the
parameter.

Results. Figure 4 contains the experimental results for the following three CSAs:

– Sadakane’s original implementation which uses δ-code (sada orig).
– csa sada prac parametrized with δ-code (sada 64δ).
– csa sada prac parametrized with Φ-code (sada 64Φ).

Each diagram shows the time/space for the CSAs for texts of size 50 MB (the
200 MB test cases show the same result). Note that the abscissa corresponds
to the space usage of the CSA in ratio to the text size. An uncompressed suffix
array (for a string of size ≤ 4GB and σ ≤ 256) occupies four times the text size.
The diagrams (a) to (h) are sorted in increasing order of their compressibility.
First, we consider only the graphs of sada 64δ and sada 64Φ relative to each
other. We observe that the graph of sada 64Φ moves from plot (a) to (h) from
left to right. I.e. Φ-code uses less space than δ-code for inputs that are not
good to compress and more space for high-compressible inputs. As mentioned in
section 2.2, Φ-code uses less space for encoding values than δ-code if the values
are between two and 6765. Since over 99.8% of the encoded values in each test
case are less than 6766, sada 64Φ uses less space if there are few ones in z (see
Table 1 for the quantities). Since the decoding speed of both implementations
is approximately equal for the same choice of (sA, sΨ ), it follows that sada 64Φ
results in a better time/space tradeoff for the first three cases.

Second, we compare the graphs of sada orig and sada 64δ. Except for
plot (a), the sizes of the CSAs are approximately equal for the same choice
of (sA, sΨ ). The reason for the difference in (a) is that sada orig stores every
value dΨ [i] in z while we do not store dΨ [i] if Ψ [i] is sampled. Whereas most
additional stored values in cases (b)-(h) are really small (e.g. at least 70% are
less than 32, see Table 1) most values in case (a) are big. For this reason, we only
compare the time/space tradeoff for cases (b)-(h). Table 1 contains the minimal
ratio of access speeds for all parameter pairs (sA, sΨ ) for the two implementa-
tions. The ratio increases from 1.08 for random text to 2.25 for the XML file.
This result was expected, as with every test case the probability of long runs of
ones in z increases and with this the probability that the broadword method in
sada 64δ is used successfully.

Finally, we have measured the effects of adding the broadword methods in
sada 64Φ and get results as we have seen for δ-code. Broadword methods de-
crease the speed (about 10%) in the first cases ((a)-(b)) and increase the speed
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Fig. 4. Comparison of three CSA implementations. The x-axis corresponds to the ratio
of space usage to text size and the y-axis is the average access time. The diagrams (a)
to (h) are sorted in increasing order of text compressibility.
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ratio for the last cases by factor of up to three. The decrease of speed in case (a)
and (b) is due to the fact that the gained information could not be used to di-
rectly decode values and therefore we have only additional calculation overhead.
In the latter cases, we can use the gained information to directly decode runs of
ones or other patterns without using lookup tables. This explains the significant
speed-up.

5 Conclusion

We presented two new broadword methods that can be applied to generate guid-
ing information for the decoding of Fibonacci encoded numbers. We used those
new and known broadword methods in our implementation of Sadakane’s CSA
and showed that the methods accelerate the access time for good compressible
inputs. We also showed that the use of Fibonacci code for CSAs for text of low
compressibility improves the time/space tradeoff. We think broadword methods
for itself are interesting and gain more and more importance as modern CPUs
support them. We have one problem left which also could accelerate decoding Φ-
or ∆-code in practice if we find an efficient broadword method for it: Calculate
the length of the minimal gap between two ones in a 64 bit word. The result
can be used to determine the length of the greatest encoded value in the 64 bit
word. Thus we could decide if there are some values that could not be decoded
with a lookup table of fixed length.
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Abstract. Recently, many speed-up techniques were developed for the
computation of shortest paths in networks with rather static edge laten-
cies. Very little is known about dealing with problems which rely on the
computation of shortest paths in highly dynamic networks. However,
with an increasing amount of traffic, static models of networks rather
sparsely reflect realistic scenarios. In the framework of network conges-
tion games, the edge latencies depend on the number of users traveling
on the edges. We develop speed-up techniques for the selfish step algo-
rithm to efficiently compute (pure) Nash equilibria in network congestion
games. Our approaches

1. periodically compute estimations for lengths of shortest paths during
the advance of the selfish step algorithm with the purpose to use A∗

for many path computations, and
2. completely save many path computations or substitute them by more

efficient tests.
In comparison to an implementation of the selfish-step algorithm using
Dijkstra’s algorithm we improve the total running time by a factor of 4
up to 9 on highway networks and grids.

Keywords: speed-up techniques, selfish step algorithm, Nash equilibria,
game theory, network congestion games, shortest paths.

1 Introduction

For systems, in which there is no central control guiding the users, it is a natural
approach to assume that the users optimize their own objectives. If the systems
are very large-scaled, it is also not devious to assume that they do not coordinate
themselves or even cooperate. If, on the other hand, their actions have influence
on the prices of shared resources, then questions like the following arise:

– How will the system develop from a given state?
– Which resources will suffer a high price for given user demands?
– At what price will the average user reach a predetermined goal?
– How will the system behave if we add or remove some resources?
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A suitable framework for modeling scenarios of non-cooperative users which
share resources are congestion games which were introduced by Rosenthal in [9].
In a congestion game players choose among given subsets of a set of common
resources, i.e. they choose strategies. Hereby, the resources have associated delays
(or prizes), which depend on the number of players selecting a strategy which
contains the particular resource. The aim of the players is to minimize the delay
of the resources contained in their strategies.

For this framework one is interested in so-called (pure) Nash equilibria. Nash
equilibria are states, in which no player has an incentive to unilaterally devi-
ate from her strategy. These states can represent some kind of forecast for the
behavior of the system and knowledge about them may help the users and the
designers of the system to make better decisions. Rosenthal showed in [9] that
every congestion game possesses a pure Nash equilibrium. In his proof he uses a
potential function which provides for every state an upper bound on the number
of consecutive improving strategy changes (so called selfish steps) of the players.
Moreover, the proof shows that the simple algorithm of consecutively perform-
ing selfish steps on an arbitrary initial solution computes a Nash equilibrium for
every congestion game.

Network congestion games are a well-established game theoretic model for
the analysis of traffic scenarios. In network congestion games the strategies of
the players correspond to paths through an underlying network. If one performs
the consecutive selfish steps of the players on the network with the purpose to
compute a Nash equilibrium, then this may lead to a highly dynamic behavior
of the edge latencies, since every selfish step changes the latencies on the old and
on the new path of the player who changes her strategy.

2 Related Work

Fabrikant et al. [5] showed that a Nash Equilibrium can be computed in poly-
nomial time for symmetric network congestion games, i.e. network congestion
games in which all players choose their strategies among the same set of strate-
gies. For asymmetric network congestion games they showed that the problem
of finding a pure Nash equilibrium is complete for the complexity class PLS and
as a byproduct, their reduction shows that there are states which are exponen-
tially many selfish steps away from any Nash equilibrium. An easier proof can
be found in Ackermann et al. [1].

In [8] Panagopoulou et al. studied the case of weighted players in the sym-
metric congestion game with edge latencies equally to the load. For this model
they show experimentally that the selfish step algorithm requires a significantly
lower number of selfish steps if the initial solution that is given to the selfish
step algorithm is constructed in a shortest-path-allocation way compared to a
randomly chosen initial solution.

Since the strategies of the players correspond to paths and the players aim
to minimize their costs, speed-up techniques for shortest path algorithms relate
to this work. In the recent past, many techniques were engineered for the case
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of static edge latencies (for an overview see [11]): Gutman [6] introduces the
reach-based search in which during the search of a shortest path nodes can be
pruned based on lower bounds on shortest path distances which are too far away
from a possible shortest path — they are out of reach. Sanders and Schultes
([12], [13]) introduce highway hierarchies which gradually coarsen the network
by identifying paths which are replaced by shortcut-edges in higher levels of
the hierarchy. Using these precomputed hierarchies they significantly decrease
the computation times for a shortest path query. Basing on highway hierarchies
Bast et al. ([2], [3]) develop a technique called transit node routing. In that they
reduce the computation of a shortest path down to a small number of lookups in
a precomputed table of shortest paths between the origin node and the transit
nodes, between the transit nodes themselves, and finally between the transit
nodes and the destination node.

For the case that at most a “moderate” number of edges change their weights
or their latency function Schultes et al. [14] and Delling et al. [4] developed
speed-up techniques. But, to our knowledge there are no speed-up techniques
known for shortest path computations on highly dynamic networks.

3 Model

A network congestion game is defined as follows:

Definition 1 (Network congestion game)
A network congestion game Γ is a tuple Γ = ([K], G, {ce}, {(si, ti)}), where

– [K] := {1, . . . , K} is a finite set of players,
– G = (V, E) is graph with a finite set V of nodes and a set E ⊆ V × V of

edges.
– {ce} is a set of |E| cost functions. Each cost function is associated with an

edge e ∈ E. For e ∈ E, ce : N �→ R+ and ce is monotonically increasing.
– {(si, ti)} ⊆ V × V is a multiset of K origin-destination pairs. Each player

is associated with an origin-destination pair.

The strategy set Σi of player i ∈ [K] is implicitly defined by her origin-destination
pair (si, ti):

Σi = {p | p is a simple path from si to ti} ⊆ Pow(E).

The set of all origin nodes of the game is denoted by S, the set of all destination
nodes is denoted by T .

A tuple σ = (σ1, . . . , σK) ∈ Σ = �k∈[K]Σk is called a strategy profile. A
strategy profile is a possible outcome of the game, in which each player plays
one of her strategies. For a strategy profile σ = (σ1, σi, . . . , σK), σ−i denotes the
tuple (σ1, . . . , σi−1, σi+1, . . . , σK). Using this notation, we write σ as (σi, σ−i).

The congestion fσ(e) of an edge e ∈ E is the number of players using edge e in
σ in profile σ, i.e. fσ(e) = |{i ∈ [K] | e ∈ σi}|. Player i’s private costs are defined
by PCi(σ) =

∑
e∈σi

ce(fσ(e)). Each player tries to minimize her private costs.
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If the current profile is σ = (σi, σ−i) and there is a strategy σ′
i ∈ Σi such

that PCi(σ′
i, σ−i) < PCi(σ), i has an incentive to switch to strategy σ′

i. A
change of i’s strategy is called a selfish step, since it reduces i’s costs but may
increase the other players’ costs. For player i a strategy σ∗

i such that σ∗
i ∈

argminσi∈Σi
PCi(σ, σ−i) is a best response to σ−i. A profile σ in which each

player plays a best response is called a (pure) Nash equilibrium (in the literature
there are also mixed Nash Equilibria, but in this paper we do solely consider
pure Nash Equilibria).

As mentioned in the introduction, a Nash equilibrium always exists in network
congestion games and can be computed by iteratively performing selfish steps
until no player has an incentive to unilaterally deviate from her strategy.

4 Data Structures and Algorithms

In 4.1 we describe a basic implementation of the Selfish Step Algorithm and point
out where there is potential for improvement. In the remaining subsections we
present our speed-up techniques: In section 4.2 we present several heuristic that
allow us to use the A∗ search algorithm rather than Dijkstra’s algorithm to
compute improving strategy changes for the players. While this approach speeds
up the computation of the paths, we introduce in section 4.3 efficient tests which
replace a huge portion of path computations. Lastly, we show in section 4.4 how
to avoid many path computations and many tests by arranging players in a
hierarchical data structure.

4.1 Basic Selfish Step Algorithm

First of all, an initial feasible solution is computed. An obvious way to do this is
the shortest path allocation: The players are added successively into the game,
using an arbitrarily chosen permutation of the player set (in our implementation
we used a randomly chosen permutation). To insert player i, her shortest path is
computed, which depends on the congestion caused by all players inserted before
i is inserted. For the most part, this allocation corresponds to the allocation
described in [8], but since we consider the unweighted case, there is no need to
sort the players by weights.

After the allocation, the selfish step loop begins: For each player i, a shortest
path is computed using a shortest path algorithm. In our implementation, we
used Dijkstra’s algorithm (unidirectional). If the costs of the computed path p is
strictly lower than the current private costs of i, then i performs a selfish step.
Otherwise, i’s current path is an optimal path. In this case the computation of
the shortest path verifies i’s current strategy as a best response.

Whenever player i performs a selfish step, the congestion on some edges of
the underlying graph changes. This may affect the optimality of the path of any
player j �= i. Therefore, in order to guarantee convergence in a Nash equilibrium,
the algorithm terminates if and only if during a complete iteration through the
entire player set no player with suboptimal path was found. A simple improve-
ment incorporated in our basic implementation of the selfish step algorithm is to
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treat players who are playing the same strategy as a group, which saves shortest
path computations if a path used by multiple players is optimal.

It is obvious that the running time of the basic selfish step algorithm is almost
exclusively dominated by computations of shortest paths. Moreover, we observed
in our tests of the algorithm that most shortest path computations verify the
players’ strategies and only few improvements were found. Based on these obser-
vations, we pursued the following two approaches to improve the performance
of the selfish step algorithm:

1. Improve the performance of computing the players strategies (section 4.2).
2. Reduce the number of path computations (sections 4.3 and 4.4).

4.2 Heuristic Shortest Path Computations

To speed up shortest path computations, we replaced Dijkstra’s Algorithm by
the A∗ search algorithm [7]. The A∗ search algorithm computes a shortest path
between a pair (s, t) ⊆ V ×V . It expects as additional input a heuristic function
h : V → R≥0 which estimates the travel costs from a given node v ∈ V to the
destination node t. The function h is used by the A∗ search algorithm to guide
the search in a particular direction. It can be shown that the A∗ search algorithm
computes shortest paths if h does not overestimate the actual distance from v
to t. A heuristic h satisfying this property is called admissible. We sometimes
use heuristics for the computation of selfish steps that are not admissible, but if
we do so, then we compare the computed path with the current strategy of the
considered player and perform a strategy change only if it is improving.

Since in asymmetric network congestion games we deal with many destination
nodes, we are interested in a binary rather than a unary heuristic function, that
is, we let h map from V × T to R≥0. We present two such heuristics that are
dedicated to the selfish step algorithm.

Online heuristic. The idea behind the online heuristic is to learn estimations of
the travel costs during the execution of the algorithm. We initialize our estimates
by setting hOn(u, v) = 0 for all u, v ∈ V . After computing a shortest path
σi = {e1, ..., et}, ei = (ui, vi), from si to ti for player i, we compute the costs of all
subpaths of σi and update the corresponding values, that is, we set hOn(uj , vk) =∑k

ν=j ceν (fσ(eν)) for all 1 ≤ j ≤ k ≤ t. The costs for this update strategy
are quadratic in the length of the path. During the advance of the selfish step
algorithm, the online heuristic is not necessarily admissible since every selfish
step may influence the length of a shortest path of any other player. Therefore,
it is essential to reoptimize the computed profile with an exact shortest path
algorithm. However, it can easily be shown that the online heuristic is admissible
during the shortest path allocation. This is due to the fact that during this phase
of the algorithm the latencies of all edges are monotonically increasing.

Shortest Path heuristic. The shortest path heuristic in profile σ is defined by
hSP(u, v) = δσ(u, v). Here, δσ(u, v) denotes the cost of a shortest path between
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u ∈ V and v ∈ V in a network with edge latencies of wσ(e) = ce(fσ(e)). Since
wσ(e) is a lower bound for the cost of using edge e for every player i in profile σ,
hSP(u, v) is an admissible heuristic in profile σ. Moreover, if ce(fσ(e) + 1) is not
much larger than ce(fσ(e) for every edge e, the hSP provides good estimations.
Note that the above assumption is realistic in the context of congestion on roads,
since the presence of a single car has only small influence on the total congestion.

A drawback of the shortest path heuristic is its computational costs. Since we
need all values δσ(u, t) for u ∈ V and t ∈ T , we have to solve at least |T | short-
est path problems. In most cases, it is too expensive to recompute the estimations
after each selfish step. Therefore, we allow the computation of the shortest path
heuristic only for few strategy profiles that evolve during the algorithms execu-
tion. In other profiles, we simply reuse the heuristic of a preceding strategy pro-
file. In general, the heuristic hSP computed in a strategy profile σ is also no more
admissible in a profile σ′ evolving from σ by performing a selfish step, but can still
provide good estimations if the latencies on few edges have changed. We recom-
pute the shortest path heuristic after each iteration through the player set and
therefore we can guarantee that a Nash equilibrium is reached if after an entire
iteration through the player set no selfish step was performed.

4.3 Path Filter

A path filter is a function that maps a pair (σi, σ−i) to a boolean value. It is
supposed to return true if it decides that σi is a best response to σ−i, false
otherwise. But we allow a path filter to be heuristic, that is, its decision may
have false positives and false negatives. A path filter is used to reduce the number
of path computations: Only if a filter maps the player i’s path σi to false, we
allow the selfish step algorithm to initiate a computation of an improving path
for player i. Note that a false negative output of a path filter does not affect the
correctness of the selfish step algorithm, since it only allows the invocation of a
(non-heuristic) shortest path computation for a path which is already a shortest
path. In the following paragraphs, we present three different path filters: The
cost filter, the detour filter and the edge filter.

CostFilter. In 4.2 we argued that δσ(u, v) is a lower bound for the costs of an u-v-
path for all players i and took advantage of this fact by using δσ(u, v) as a heuristic
for the A∗ search. But if in profile σ = (σi, σ−i) we have PCi(σ) = δσ(si, ti),
then this proves that σi is a best response for σ−i, and therefore we do not need
to compute a shortest path for player i. This leads to the cost filter : In profile
σ, we solve several shortest path problems to obtain the bounds δσ(s, t) for all
s ∈ S and all t ∈ T . We then build the player set M(σ) = {i ∈ [K] | PCi(σ) >
δσ(si, ti)}, recompute shortest paths only for players in the set M(σ), and ignore
all players in the set [K]\M(σ). After having examined all players of the set M(σ),
we can recompute the bounds δσ(s, t) to start a new iteration through the player
set. If after a recomputation of the bounds no player was found in M(σ) who could
perform a selfish step, then a Nash equilibrium is found.

Though this filter can easily worsen the running time as a stand-alone solution
because of its expensive computational costs, it can be used as a extension to the
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shortest path heuristic since we can reuse the data precomputed for the shortest
path heuristic.

Detour Filter. Especially in the end phase of the selfish step algorithm, most
shortest path computations performed by the selfish step algorithm are verifi-
cations of a player’s best response. The aim of the detour filter is to replace a
portion of these computations by a test which can be performed by looking up
precomputed data. It examines paths which are known to be optimal at a certain
point of time τ during the algorithm’s history and which do not contain any edge
whose latency has increased since τ . The idea behind the detour filter is to prove
that these paths are still optimal. It can be interpreted as an extension of the
cost filter, since we use a player’s private cost to decide whether we recompute
her path. We avoid a recomputation of the path if PCi(σ) ≤ θst, whereby θst

is a lower bound for the costs of traveling from i’s origin node s ∈ V to her
destination node t ∈ V using at least one edge whose latency decreased since
the last computation of i’s path.

To apply the detour filter, we need to do some bookkeeping. We introduce a
counter which counts the selfish steps. With each edge e ∈ E, two timestamps
are associated: The timestamps decrease(e) and increase(e) are updated to the
current selfish step counter value whenever the latency of an edge decreases or
increases respectively.

Using the timestamps, it is easy to compute the sets Dτ := {e ∈ E |
decrease(e) > τ} and Iτ = {e ∈ E | increase(e) < τ}. Furthermore, with each
path a timestamp is associated which is updated whenever the path is verified
as a best response. The application of the detour filter only makes sense if few
latencies have changed, which is typical in the last phase of the selfish step al-
gorithm. If too many selfish steps were performed in one iteration through the
player set, the detour filter does not find better bounds than the cost filter. To
avoid the expensive precomputation of the filter in such situations, we choose a
parameter C which controls if the precomputation is invoked or not. We decided
to do the precomputation of the detour filter if |Dτ | ≤ C, that is, if the latencies
of at most C edges decreased during the last iteration through the player set. In
our implementation, we used C = |E|

4 .
When we apply the filter at a certain point of time τ ′, we precompute lower

and upper bounds for the distance between every pair (x, y) ∈ (S×V )∪ (V ×T )
of nodes in the graph. We denote the lower bounds by δστ′ (u, v) and the upper
bounds by ∆στ′ (u, v), where στ ′

denotes the profile computed by the algorithm
after τ ′ selfish steps. In our implementation, we compute the lower bounds by
solving several shortest path problems, using ce(fσ(e)) as latency functions. As a
byproduct of the computation we get a set of paths. To obtain the upper bounds,
we simply compute the costs of these paths, using ce(fσ(e) + 1) as latencies of
the edges.

For each origin node, we first compute the set

Aτ ′
(s, τ)={v ∈ V | ∃e=(u, v) ∈ Dτ and δστ′ (s, u)+ce(fστ′ (e)+1) ≤ ∆στ′ (s, v)}
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of alternative nodes. For each node v ∈ Aτ ′
(s, τ), we define the detour cost of

using node v as

α(v) = min
e=(u,v)∈Dτ

{δστ′ (s, u) + ce(fστ′ (e) + 1)}.

For any player i with origin node s, the detour costs provide a lower bound for
the costs of traveling from s to u.

With this, we can compute the final bounds of the detour filter by

θst = min
v∈Aτ′(s,τ)

{α(v) + δστ′ (v, t)}.

In our tests, the precomputation time was dominated by the computation of the
lower bounds.

To apply the filter, we have to test each path σi if it contains an edge whose
latency has increased. If σi ∩ Iτ = ∅, we can use the improved bounds θst,
otherwise we use the bounds of the cost filter. It can be shown that the detour
filter only returns true if σi is a best response, but due to space limitations the
proof is omitted. However, if it returns false, then it is unclear whether there is
a path which is better than σi. But in this case the negative output of detour
filter invokes a (non-heuristic) shortest path computation.

Edge Filter. The edge filter is based on the following intuitive idea: If a player
i traveling to node t only uses edges that recently were part of a shortest path of
some player whose destination node is t, it is likely that i’s path is optimal, too.
The edge filter works as follows: For each destination node, we maintain a set
of edges Et. We initialize the filter by setting Et = ∅ for each t ∈ T . When we
investigate a player i with current path σi, we only recompute her shortest path
if σi �⊆ Et. After recomputation of a shortest path to node t, we update Et. If the
optimal path of player i is σ∗

i , we set Et = Et∪σ∗
i . Therefore, we quickly learn a

set of promising edges for each destination node. After a while, a strong filtering
is achieved. After a complete iteration through the player set, we reinitialize the
filter. This is necessary since the edge filter does not react on selfish steps, that is,
there may be an edge e ∈ Et that is no subpath of a shortest path to t of another
player. In contrast to cost and detour filter, the edge filter may classify paths
as optimal which are not best responses (false positives). Therefore, we switch
the filter off if after an entire iteration through the player set the selfish step
algorithm did not perform a selfish step and continue the selfish step algorithm
without the edge filter.

4.4 Hierarchical Data Structure

In the previous subsection we presented techniques which speed up the process
of confirming best responses of given players. In this section we introduce a data
structure that allows us to even save these tests for many players which play
best responses. The technique is based on the following observation.
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Lemma 1. Let σ be a strategy profile in a network congestion game and i, j be
two players playing the strategies σi and σj in σ, with σj being a subpath of σi.
If σi is a best response for player i to σ−i then σj is a best response for player
j to σ−j .

Proof. Since σi is a best response for player i to σ−i, it holds that σi is a
shortest path in the network with latencies wi(e) = ce(fσ−i(e) + 1). But since
σj is a subpath of σi it holds that σj is also a shortest path in the network with
latencies wj(e) = ce(fσ−j (e)+1). Thus, σj is a best response of player j to σ−j .��

The idea behind the data structure is to isolate for every strategy profile σ a set
of strategies L ⊆

⋃
i σi such that no strategy σ′ ∈ L is a subpath of a strategy

σ′′ ∈
⋃

j 
=i σj . Then, the selfish step algorithm only needs to consider players
which play strategies in L, since due to Lemma 1 every player which plays a
strategy that is neither in L nor a best response implicates that there must be
a player which plays a strategy which is in L and is not a best response.

The data structure contains a directed weighted graph H which is built up
from the network and the strategy profile σ in the following way. For every
strategy σ∗ which is played by at least one player in σ there is a node in H . The
weight of the node is the number of players playing strategy σ∗ in σ. For two
strategies σi and σj and their corresponding nodes ui and uj there is an edge
(uj , ui) in H if σj is a subpath of σi and in σ no player k plays a strategy σk

such that σj is a subpath of σk and σk is a subpath of σi. Then, the nodes which
have an outdegree of zero are linked in a list L′. It is easy to see that L′ contains
links to all nodes who represent strategies from L.

The data structure is initially built up after the shortest path allocation,
and if a selfish step is performed then the data structure is updated by adding
respectively removing at most one node and by updating the weights and the
respective edges.

5 Experiments and Results

We evaluated our algorithms in five different traffic scenarios: A model of the
autobahn network of North Rhine-Westphalia (NRW: 552 nodes, 1180 edges),
a randomly generated highway network (Random: 1000, 2194) and three grid
networks of different sizes (Grid 15: 225, 840; Grid 25: 625, 2400; GGrid20:
328, 1022 — in this network we randomly deleted some of the originally 400
nodes). The latency functions of the edges in the first two scenarios are conical
functions [10], in the grid networks we use linear functions with randomly drawn
parameters. There are 200000 players in the maps NRW, Random and Grid 15
and 100000 players in the maps GGrid 20 and Grid 25. While the topology of the
maps Random and especially NRW is very close to real world highway networks,
the grid networks are suitable frameworks for modeling inner city traffic networks
(manhattan structure). For an overview of our results see Table 1.

In the first line of Table 1 we outline the running time of the basic selfish step
algorithm during the selfish step loop without any speed up technique. In the
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Table 1. Average running times of our algorithms in seconds (± standard deviation).
Each combination of map and algorithm was executed 100 times. The algorithms were
tested on a 2.4 GHz Intel Core 2 Duo CPU with 1 GB RAM.

NRW Random Grid 15 GGrid 20 Grid 25
Basic selfish step 75.0 ±8.1 101.6 ±11.2 16.8 ±2.5 16.4 ±2.9 172.7 ±35.6

Online heuristic 35.8 ±3.8 41.4 ±3.4 9.6 ±1.4 9.1 ±1.3 109.9 ±20.7

Shortest path heuristic 25.1 ±2.3 30.3 ±2.4 5.6 ±0.7 5.5 ±0.9 40.3 ±7.8

Hierarchical Selfish Step 20.7 ±1.4 51.5 ±3.9 11.5 ±1.1 14.9 ±1.7 157.3 ±27.3

Cost Filter 42.0 ±3.4 73.6 ±12.0 17.5 ±2.6 17.9 ±3.6 167.9 ±36.6

Detour Filter 37.6 ±2.6 57.1 ±4.5 15.7 ±1.9 14.9 ±2.0 147.9 ±28.0

Edge Filter 36.9 ±2.8 63.5 ±5.1 10.2 ±2.2 9.3 ±3.1 110.5 ±23.7

Shortest Path Heuristic,
Cost Filter & Edge Filter

7.8 ±0.6 13.3 ±1.6 3.5 ±0.8 3.3 ±0.8 30.8 ±8.4

Hierarchical Selfish Step,
Cost Filter & Edge filter

19.9 ±1.3 40.2 ±3.7 8.7 ±1.3 10.4 ±1.6 138.5 ±27.6

following lines we show the running times of the basic selfish step algorithm dur-
ing the selfish step loop combined with the different speed up techniques or some
combinations of them. We first evaluated each speed-up technique separately:
We found out that the online heuristic is especially suited during the shortest
path allocation. During the selfish step loop, it achieved a speed-up of the overall
running time of approximately two. In this phase of the algorithm the shortest
path heuristic performs best. It achieved a speed-up of a factor of up to 4 in
comparison to the implementation which uses Dijkstra’s algorithm (the basic
selfish step).

The hierarchical selfish step algorithm is especially suited for maps with a
large player set, like NRW: In this map, the algorithm reduces the number of
shortest path computations from over 1 million to approximately 200000. This is
why the hierarchical selfish step algorithm is more than three times faster than
the basic algorithm in this scenario. As expected, the results are worse for large
maps with a relatively small player set, like Grid 25. However, even in this map
the hierarchical selfish step algorithm is more than 30 seconds faster than the
basic selfish step.

In our evaluation of the path filters, the best results were achieved with the
edge filter. It achieved a speed-up of a factor of up to 2. In most cases, cost and
detour filter lead to a speed-up as well.

The best results overall were achieved by combining the shortest path heuristic
with the cost filter and the edge filter. A major advantage of this combination
is that we only need one precomputation to initialize all three techniques: At
the beginning of each iteration through the player set, we solve several shortest
path problems to compute the bounds for both shortest path heuristic and cost
filter. As a byproduct of the shortest path computations, we get a predecessor
tree that can be used to initialize the edge filter.
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When we replace the cost filter by the detour filter in the combined solution,
we get slightly worse results. The problem here is that the detour filter is in-
compatible with heuristic solutions. We need to switch off both cost filter and
edge filter when we want the detour filter to work correctly. We also tried to
combine the hierarchical selfish step algorithm with other techniques. If we use
heuristic shortest path computations, the total number of shortest path compu-
tations needed to reach an equilibrium drastically increases and the running time
is worse than the original hierarchical approach. If we combine the hierarchical
solution with edge and cost filter, we achieve small speed-ups in most cases.

6 Conclusion

We analyzed traffic scenarios for networks, in which the latencies of the edges are
not static but depend on the number of users which travel along the edge. For
these dynamically behaving networks we considered the problem of computing
a Nash equilibrium by using the selfish step algorithm and developed several
techniques to speed up the computation. The basic observation which underlies
all the techniques is that many selfish steps do not or do hardly affect the strategy
choice of other players although the edge latencies behave very dynamically.

On the one hand we exploited this observation by developing heuristics which
provide estimations on the lengths of shortest paths. These estimations are used
by the A∗-algorithm to compute improving strategies for the players by a factor
of three up to four times faster than Dijkstra’s algorithm. Although the estima-
tions are not admissible heuristics at any time during the advance of the selfish
step algorithm the periodical update of the estimations still guarantees that the
selfish step algorithm convergences to a Nash equilibrium.

On the other hand we improved the search for players which can perform
selfish steps for a given strategy profile. One approach was to introduce efficient
tests, which check for a given strategy whether it fulfills a specific condition.
Based on the outcome of that test, it is decided whether or not a path computa-
tion is performed. These tests in combination with the use of the A∗-algorithm
reduced the overall running time by a factor of four up to nine compared to a
basic implementation of the selfish step algorithm. Another approach was to de-
velop an intelligent rule for the selection of that player which is considered next
during the advance of the selfish step algorithm. The rule uses a data structure
which classifies the strategies of the players whether they are best responses for
a given strategy profile or potentially not. Only strategies which were classified
as “potentially not a best response” are considered for shortest path computa-
tions. This rule reduced the number of shortest path computations for a traffic
scenario in which many players route through the network by a factor of five.

Naturally there remain open questions. We used an algorithm, namely the
A∗, which is supposed to compute shortest paths to compute a path which is
shorter than a given one. But one might design efficient algorithms which directly
compute a shortcut for a given path, if there is a shortcut. Another crucial point
is to speed up the selection of the users which have an incentive to change their
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strategy. For this purpose one might try to widen up the range of conditions
which characterize the satisfaction of the players.
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Abstract. We consider the b-matching problem in a hypergraph on
n vertices and edge cardinality bounded by �. Oblivious greedy algo-
rithms achieve approximations of (

√
n+1)−1 and (�+1)−1 independently

of b (Krysta 2005). Randomized rounding achieves constant-factor ap-
proximations of 1 − ε for large b, namely b = Ω(ε−2, lnn), (Srivastav
and Stangier 1997). Hardness of approximation results exist for b = 1
(Gonen and Lehmann 2000; Hazan, Safra, and Schwartz 2006). In the
range of 1 < b 
 ln n, no close-to-one, or even constant-factor,
polynomial-time approximations are known. The aim of this paper is to
overcome this algorithmic stagnation by proposing new algorithms along
with the first experimental study of the b-matching problem in hyper-
graphs, and to provide a first theoretical analysis of these algorithms to
some extent. We propose a non-oblivious greedy algorithm and a hybrid
algorithm combining randomized rounding and non-oblivious greedy. Ex-
periments on random and real-world instances suggest that the hybrid
can, in terms of approximation, outperform the known techniques. The
non-oblivious greedy also shows a better approximation in many cases
than the oblivious one and is accessible to theoretic analysis.

Keywords: NP-hard problems, approximation algorithms, hypergraph
matching, greedy algorithms, randomized rounding, hybrid algorithms.

1 Introduction and Previous Work

The maximum b-matching problem: definition and complexity. Let
(V, E) be a hypergraph where V is a finite set, and E ⊆ 2V is a multiset.
For convenience, we identify V = [n] := {1, . . . , n} and E = [m]. Elements of
V are called vertices and elements of E (which are subsets of V ) are called hy-
peredges, or just edges. The maximum edge cardinality is 	 := maxe∈E |e|. Let
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w : E −→ [0, 1]∩Q be a weight function on the edges. We call w(e) the weight of
an edge e ∈ E and denote for each set X ⊆ E its weight by w(X) :=

∑
e∈X w(e).

Let b ∈ N≥1. We call a set M ⊆ E a b-matching if no vertex is contained in
more than b edges from M . Maximum b-Matching is the problem of finding a
b-matching with maximum weight. We denote the maximum weight by OPTb. It
is a classical problem in combinatorics and optimization, studied under various
aspects for b = 1 [8,5,2,20,18,14], and for general b [12,17,22,21], and in the gen-
eralized setting of combinatorial auctions [6,10]. It is NP-hard even if restricted
to hypergraphs with 	 ≤ 3. It is a prototype of packing integer programs as it
can be written as:

max{
m∑

j=1

wjxj ; Ax ≤ b, x ∈ {0, 1}m} (PIP)

Here, A ∈ {0, 1}n×m is the vertex-edge incidence matrix of the hypergraph, that
is Aij = 1 if and only if vertex i is contained in edge j; and xj = 1 if and only
if edge j is chosen for the b-matching.

Previous approximation algorithms and results. For 0 < α ≤ 1 we call
an approximation algorithm an α approximation, or we say that it achieves an
approximation of α, if it always delivers a solution with weight at least α OPTb.
Hence, the closer α is to one, the better the approximation guarantee. We will
sometimes use the phrase that a b-matching M is an α approximation, meaning
that w(M) ≥ α OPTb holds.

Hardness upper bounds. For b = 1, two approximation-hardness results ex-
ist. Gonen and Lehmann [6] showed by reduction to the clique problem that
no polynomial-time approximation better than 1/

√
n is possible for hypergraph

1-matching, unlessNP = ZPP. Recently, Hazan, Safra, and Schwartz [7] proved
that there is no polynomial-time Ω( ln �

� ) approximation algorithm for hypergraph
1-matching, unless P = NP . We are not aware of any approximation-hardness
results for b ≥ 2, and indeed, for b = Ω(ln n) there is a constant-factor approxi-
mation [22].

Algorithms. Algorithmic approaches in the existing literature mainly focus on
oblivious greedy algorithms on the one hand and algorithms based on randomized
rounding on the other hand. We briefly summarize both. An oblivious greedy
algorithm starts with an empty set M and makes one pass over all edges in
the order given by a rank function ρ : E −→ R≥0. An edge is added to M
if that does not destroy the b-matching property of M . Otherwise the edge is
not included. The class of functions eligible for the rank function is restricted
to those which do not consider interaction of edges.1 More precisely, we allow
1 The term “oblivious greedy algorithm” is used by Krysta [10]. Gonen and Lehmann [6]

do not use the term “oblivious”, but they explain the same concept [6, Sec. 4]. (In
both [10] and [6], monotonicity is also required: the rank function shall, for fixed
edge e, be increasing in w(e).) However, the main feature of being agnostic to edge
interactions is stated rather implicitly in both works. It becomes quite clear, however,
in the proof of [6, Th. 2]. We will use the term “oblivious” in the sense explained here.
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ρ(e) to depend only on the edge cardinality |e|, the edge weight w(e), and the
matching parameter b. Krysta [10] studied oblivious greedy algorithms for a
generalized problem. Simplified for the case of hypergraph b-matching, two of
his main results are: using rank functions ρ(e) := w(e)/

√
|e| and ρ(e) := w(e)/|e|,

an approximation of (
√

n + 1)−1 and (	 + 1)−1 can be achieved, respectively.
By modifying an argument due to Gonen and Lehmann [6], he showed that no
oblivious greedy algorithm can achieve an approximation better than 1/

√
n.

Algorithms based on randomized rounding first solve the LP relaxation of (PIP)
on page 186, which can be done (theoretically) in polynomial time, and then, in
a randomized manner, round the LP-optimal fractional solution x∗ ∈ [0, 1]m in
order to obtain an integral vector x ∈ {0, 1}m, which defines a set of edges. The
generic randomized rounding procedure with a parameter δ ∈ [0, 1] is:

for j ← 1 to m do

xj ←
{

1 with probability δx∗
j

0 with probability 1− δx∗
j

Srivastav and Stangier [22] showed that for each ε > 0 with the choice of
δ := 1− ε

2 in the randomized rounding, this technique achieves a constant factor
approximation of 1− ε with a probability of at least 0.73, provided that b is large
enough, namely b = Ω(ε−2, ln n), and gave a polynomial-time derandomization.

Using a sophisticated probabilistic analysis based on correlation inequalities,
Srinivasan [21] proposed a derandomized algorithm, based on randomized round-
ing, delivering solutions of weight Ω(α(n, b)OPT∗

b), where OPT∗
b is the optimum

of the LP relaxation, and α(n, b) = (OPT∗
b/n)

1/b. Although this result holds for
all b, it is weak for ‘small’ b, namely b � ln n. That weakness lies in a crucial
dependence on OPT∗

b/n. If OPT∗
b/n is small, e.g., OPT∗

b/n = 1/nc for a constant c > 0,
and we have b� ln n, then α(n, b) = o(1), as n→∞, hence the approximation
may become useless.

It is notable that for almost a decade no significant progress on improved
polynomial-time approximation algorithms based on randomized rounding for
maximum b-matching and the general integer packing was made. In view of
Krysta’s final results on oblivious greedy algorithms and Srinivasan’s efforts to
improve the randomized rounding analysis, we feel that the potential of these al-
gorithms and their analysis is exhausted, at least when considered separately. We
also believe that better approximation results for integer packing and in particu-
lar maximum b-matching cannot be obtained by further refining the probabilistic
analysis for randomized rounding, unless new algorithmic ideas are invoked.

Our contribution. We present a new non-oblivious greedy algorithm and a
hybrid algorithm combining randomized rounding with greedy, with focus on
their experimental behavior, but provide also a theoretical foundation to some
extent. In Sec. 2 we propose a family of non-oblivious greedy algorithms, called
ε-Greedy. Roughly speaking, such an algorithm consists of an oblivious and a
non-oblivious part. A parameter ε controls which of the two parts is emphasized.
In Sec. 4 we describe different types of instances and their generation on which
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we test our algorithms. The instances are random hypergraphs with bounded
	 or bounded VC dimension, hypergraphs based on matrices occurring in the
design of finite impulse-response filters (FIR filters) in electrical engineering,
and real-world instances of the three-dimensional assignment problem occurring
in 3D X-ray reconstruction in prostate cancer radiation.

In Sec. 5 we compare all four algorithms (Oblivious, ε-Greedy, Randomized
Rounding, Hybrid) against each other. In order to evaluate the approximation
achieved, for small instances, the optimum is computed using the CBC branch-
and-cut implementation of the COIN-OR Project [11]. For larger instances, we
can only obtain a lower bound on the approximation, using the LP optimum
OPT∗

b instead. We wish to emphasize that we focus on worst-case performance,
that is we do not take average values, but the minimum over all observed ap-
proximations. Thus the approximation shown in tables is the overall worst-case
for instances under consideration.

The main experimental result (Sec. 5) is that the hybrid algorithm achieves
an approximation of 0.75 to 1.0 for b > 1, and in terms of approximation
outperforms all other algorithms on all instance classes. In many cases, also
ε-Greedy performs noticeably better than the oblivious greedy algorithm and is
on the same level otherwise. In addition to the experimental work, we analyze
ε-Greedy to some extent. We show approximation upper bounds, i.e., negative
results, along with corresponding instances for some ranges of ε (Sec. 3).

Conjecture and future work. The experiments indicate that even for small
b, our algorithms, especially the hybrid one, achieve good approximations, in
many cases substantially better ones than the oblivious algorithm (or randomized
rounding alone). It is a challenging problem to prove these observations, possibly
restricted to a certain instance class, using its structural properties.

2 Algorithms

2.1 ε-Greedy

We fix some notation. For each vertex v ∈ V denote the set of edges incident
in v by Γ (v) := {e ∈ E; v ∈ e}. The degree (or vertex-degree) of v is deg(v) :=
|Γ (v)|. For a set X ⊆ E and a vertex v ∈ V denote the coverage of v by X by
cover(v, X) := |Γ (v) ∩X|. Denote the maximum coverage of an edge e ∈ E by
a set X ⊆ E by maxcover(e, X) := maxv∈e cover(v, X).

Let M be a b-matching in the following. We call e ∈ E \M a candidate if
M ∪ {e} is again a b-matching. An equivalent formulation for being a candidate
is that maxcover(e, M) < b. Let cand(M) be the set of all candidates.

For each X ⊆ E and any e ∈ E define the set of edges blocked by e as

C(e, X) := {f ∈ E \ (X ∪ {e}); maxcover(f, X ∪ {e}) ≥ b > maxcover(f, X)} .

So, for a candidate e we have that C(e, M) is the set of edges that cannot be
added to M ∪ {e} without destroying its b-matching property, but each one of
them – at least alone – can be added to M . From another perspective, if all edges
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Algorithm 1. ε-Greedy
Input: H = (V, E), w : E −→ [0, 1] ∩Q, b ∈ N≥1, ε ∈ [0, 1] ∩Q.
Output: b-matching and number of iterations.

E0 ← E; M0 ← ∅; i← 0;
while |Ei| > 0 do

ei ← argmax{εw(e) + (1 − ε)(|C∗(e, Mi) ∩ Ei|+ 1)−1; e ∈ Ei};
Mi+1 ←Mi ∪ {ei};
Ei+1 ← Ei \ ({ei} ∪C(ei, Mi+1));
i← i + 1;

return Mi and i;

e ∈ E \M are candidates for M , then all edges from E \ (M ∪ {e} ∪ C(e, M))
are candidates for M ∪ {e}.

For each X ⊆ E and e ∈ E define the set of edges affected by e as

C∗(e, X) := {f ∈ E \ (X ∪ {e}); maxcover(f, X ∪ {e}) > maxcover(f, X)} .

For b = 1 and all candidates e, we have C(e, M) = C∗(e, M), but not in the
general case of b > 1. We can now state the ε-Greedy algorithm.

This algorithm picks an edge which maximizes a function consisting of an
oblivious part, namely the weight, and a non-oblivious part, namely the inverse
of the number of affected edges in the remaining hypergraph (plus 1 to avoid
division by zero). The chosen edge is added to the b-matching, and all edges
that as a consequence of this cannot be added to M anymore are removed. So,
the algorithm favors edges with high weight which affect only few other eligible
edges; the parameter ε specifies which of the two criteria counts more. Note that
the algorithm is oblivious for ε = 1, but non-oblivious for ε �= 1.

Computing C(e, Mi) or C∗(e, Mi) takes O(edeg(e) · 	) time. Hence we can
bound the running time of ε-Greedy by O(min{m, bn} ·m ·maxe∈E edeg(e) · 	),
which is bounded by O(m3n).

2.2 Hybrid Algorithm: Randomized Rounding and ε-Greedy

We use the generic scheme shown on page 187 with parameter δ := 1. That is, we
round up with probability x∗

j and round down with probability 1 − x∗
j for each

j ∈ [m]. Let X ⊆ E be the edge set induced by the rounded vector. This might
not be a b-matching. Edges violating the b-matching property are removed in
what we call a repairing step: we assign so-called violation values to the edges
and then remove edges with the highest such values. This will be described in
detail in the full version of our paper.

The repaired solution M , which is a b-matching, is then taken as a starting
solution for a modified version of ε-Greedy. The modification lies only in the
initialization: set E0 ← cand(M) and M0 ← M . That is, we make ε-Greedy
believe that it had computed M so far and then let it continue its work as usual.
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3 Analysis: Negative Results for ε-Greedy

We have positive results for the oblivious version of ε-Greedy [3], i.e., with ε = 1.
They extend the theory of oblivious greedy algorithms. We now give negative
results for the general version. If the non-oblivious part is too strong, i.e., ε is
too close to 0, then ε-Greedy can make poor choices.

Theorem 1. For each b, there exists ε0 such that the following holds: Let 0 <
α ≤ 1. There exist instances of the b-matching problem on which ε-Greedy with
any ε < ε0 can deliver a solution which is no better than an α approximation.

Proof. Let k ≥ 2 and w := α
kb . We take k vertices and for each of them b edges

containing that vertex; we speak of k stacks of singleton edges, each stack having
size b before the start of the algorithm. In addition, we take one edge containing
all vertices. The singleton edges receive weight w and the large edge receives
weight 1. Let ε0 := 1

2b+5 and ε < ε0. We show that if all stacks have size s or
s + 1 for some s ∈ N, then ε-Greedy can pick a singleton from a stack of size
s+1. Inductively, this yields that ε-Greedy can construct a b-matching of weight
kbw = α. Choosing the large edge instead would result in weight 1, hence that
solution constitutes no better than an α approximation.

Now fix s ∈ N. If s = 0, then the large edge is no candidate anymore, and only
singletons will be picked. So suppose s ≥ 1 and for the first case also suppose
that all stacks have size s. Then each singleton affects2 s edges, namely the
other s− 1 singletons from its stack, and the large edge. The large edge affects
ks edges, namely all singletons.

For the second case suppose that all stacks have size s or s+1, and both sizes
occur. Each singleton affects s edges:

– Those on stacks with s + 1 edges affect the other s singletons but not the
large edge, since a vertex under a stack of s + 1 remaining singletons has
smaller coverage than one under a stack of only s remaining singletons.

– Those singletons on stacks with s edges affect the other s− 1 singletons and
the large edge.

So, in particular the algorithm sees no difference among the singletons and hence
may pick any of it, provided it decides to pick a singleton and not the large edge.
The large edge affects at least ks edges. Hence, in any of the two cases, a singleton
from one of the higher stacks can be chosen if

ε + (1 − ε)
1

ks + 1
< εw + (1− ε)

1
s + 1

,

which is equivalent to 1 − w < (1
ε − 1)( 1

s+1 −
1

ks+1 ). Since k ≥ 2 and s ≤ b, the
right-hand side is at least (1

ε − 1)( 1
s+1 −

1
2s+1 ) ≥ (1

ε − 1) 1
2b+4 . By the choice of

ε, this is at least 1. The claim follows, since 1− w < 1. ��

On the other hand, if the oblivious part is too strong, i.e., ε is too close to 1,
ε-Greedy can also make poor choices. This means we have to use multiple ε
values in practice.
2 We always use this term relative to the remaining edges.
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Theorem 2. There is ε0 such that the following holds: For each b, there exist
instances on which ε-Greedy with any ε > ε0 delivers a solution which is no
better than a 2	−1 approximation.

Proof. We give a similar construction as in the previous proof. Let ε0 := 1
2 and

ε > ε0. Let k ≥ 2 and consider k vertices and for each of them a stack of b
singletons of weight w := 1

2 each. Then consider b large edges, each of weight
1 and each containing all vertices. If we take all kb singletons, we have a b-
matching of weight 1

2kb. We show that ε-Greedy may instead pick all the large
edges, delivering a b-matching of weight b, so approximation is 2k−1 = 2	−1.

Let 0 ≤ t < b large edges have already been picked for the b-matching, and
no singleton. Then

– a singleton affects (b − 1) + (b− t) edges;
– a large edge affects (b− t− 1) + kb edges.

In order that a large edge is picked next, it must be satisfied:

εw + (1− ε)
1

(b− 1) + (b− t) + 1
< ε + (1 − ε)

1
(b− t− 1) + kb + 1

,

which is equivalent to w < 1− (1
ε − 1)( 1

2b−t −
1

(k+1)b−t ). Using our knowledge on
w and ε, it suffices when 1

2 < 1− ( 1
2b−t −

1
(k+1)b−t ). This holds, since 0 ≤ t < b

and so for the last term we have 1
2b−t −

1
(k+1)b−t ≤

1
b+1 −

1
(k+1)b < 1

2 . ��

4 Instances

We use four types of hypergraphs in our experiments. The first two are random:

– Random hypergraphs with bounded 	. Such a hypergraph is constructed
as follows: fix the number of vertices n, the number of edges m, and the
maximum edge cardinality 	. Then, independently and uniformly at random,
draw m edges from the set of all edges of cardinality at most 	.

– Random hypergraphs with VC dimension at most 3. Such a hypergraph is
constructed as follows: fix the number of vertices n, and for each vertex gen-
erate a random point in the two-dimensional plane. Denote these points by
V ⊂ R2. Let H be the set of all half-planes. We then construct the set of
edges as E = {H ∩ V ; H ∈ H}. Such hypergraphs (V, E) are known to have
VC dimension at most 3, see, e.g., [13]. Details of the construction will be
given in the full version of our paper.

The edge weights for these two types are obtained by first drawing w ∈ [0, 1]
uniformly at random and then independently for each e ∈ E choosing w(e)← 1
or w(e) ← w with probability 1

2 each. Hence there occur two different edge
weights (or one, if w = 1) in each instance.
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The following two types of hypergraphs stem from applications:

– Hypergraphs based on FIR filter matrices. Matrices of a special structure
with entries from [−1, 1] specify a packing problem in filter design [15]. We
take parts of such matrices and deterministically round the absolute values of
their entries to 0 or 1. The resulting matrix is interpreted as the vertex-edge
incidence matrix of a hypergraph. The resulting b-matching problem in such
hypergraphs is different from the original packing problem. We consider it
nonetheless, in order to have instances of a (partly) non-random structure.
Edge weights are assigned randomly from {1, w} for a fixed random w, as
with the purely random hypergraphs above.

– Hypergraphs modeling 3-dimensional assignment problems (AP3). These are
complete tripartite hypergraphs, i.e., V = V1 × V2 × V3, |V1| = |V2| = |V3|,
and E = {{v1, v2, v3}; vi ∈ Vi, i = 1, 2, 3} with a weight function w̃.
The objective is to find a perfect 1-matching of minimum weight, i.e., a
1-matching of minimum weight such that each vertex is contained in (ex-
actly) one edge from the matching. Such problems arise in 3D X-ray recon-
struction in cancer radiation [19,4]. If we transform the weight function to
w(e) := 1 − w̃(e)

w̃max
, where w̃max = maxe∈E w̃(e), then the problem is equiva-

lent to our (maximum-weight) 1-matching problem. We test our algorithms
on AP3 instances from medicine3 with such a transformed weight function.
Edges with weights below a certain threshold are removed for the sake of
reasonable running times. This has shown to be admissible in practice [19].
We also consider b-matchings for b > 1. These have no direct interpretation
for the AP3, but could be interesting in practice as a pre-selection for a
manual assignment.

5 Experimental Results

We implemented all algorithms in C++. LPs are solved with the CLP solver and
optimal solutions are obtained with the CBC branch-and-cut implementation,
both from the COIN-OR Project [11]. Post-processing of obtained data is done
using the R System [16]. Observed worst-case approximations are given in tables,
in percent and truncated to integral numbers. So, e.g., a value of 100 means that
the optimum is found, and a value of 80 means that a solution of weight at least
0.8 · OPTb is found. Columns are used for different b and different algorithms:

– “O” is based on the best result of the two oblivious greedy algorithms, which
have guaranteed approximation of (

√
n + 1)−1 and (	 + 1)−1, respectively.

– “G” is based on the best result of ε-Greedy for ε = 0, 1
2 , 1.

– “R” is based on the best of 10 trials of randomized rounding and repairing.

– “RG” is based on the best result over the same ε values as above of the hybrid
algorithm. Recall that it combines randomized rounding with ε-Greedy. For

3 The instances were provided by F.-A. Siebert, UKSH, Campus Kiel.
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each ε, we also do 10 trials of randomized rounding here, invoke ε-Greedy
on each outcome and finally take the best of these.

Instances are grouped in rows according to min{√n+1, 	+1}. The first column
“#” shows the number of instances for the row, for each b. (The rough total
count stated in the caption considers b as part of an instance, so it is about
the sum of the first column times four.) The second column shows a := 100 ·
(min{

√
n + 1, 	 + 1})−1 to give a reference to the provable approximation.

We emphasize again that the values are worst-case observations and no aver-
ages. For example, to create an entry in a “G” column, all instances with a fixed
value of min{

√
n+1, 	+1} are taken – that value determines the row – and then

for each such instance the best result of ε-Greedy for ε = 0, 1
2 , 1 is determined

and divided by OPTb or OPT∗
b . This gives one value for each instance. Then the

minimum, i.e., the worst-case, of these is taken.

Note on the number of weights. Recall that, if we use random weights, we use
only two different weights for each instance. Few weights seem to give the biggest
improvement of ε-Greedy over the oblivious algorithms; the hybrid however shows
no such sensitivity to the number of weights. A modification of ε-Greedy is to
not consider the number of affected edges, but their total weight. This generally
shows improvements. In combination with using more ε values – we tested ε =
0, 0.1, 0.2, . . . , 1.0 – it seems to help in case of a larger number of different weights.
A detailed comparison will be given in the full version of our paper.

Now, we give results for two different weights (except the AP3 instances, which
bring their own weights) and the ε-Greedy presented in this paper, which uses the
number of affected edges, and the scheme of three different ε values.

Bounded 	: n = 10, 20, . . . , 50; m = 5, 10, . . . , 90; 	 = 3, 4, 5, 6. The whole data
set comprises more than 5 000 000 instances:

b = 1 b = 2 b = 3 b = 4

# a O G R RG O G R RG O G R RG O G R RG
120 221 14 25 50 44 68 50 69 69 84 58 76 79 90 62 80 85 92
64 162 15 29 50 40 52 47 66 70 84 50 73 80 90 62 75 84 91

184 589 16 25 50 50 67 50 66 70 85 59 78 83 91 62 80 86 92
135 550 18 31 50 40 53 44 66 66 80 56 71 79 86 63 75 85 90
252 456 20 27 50 49 67 51 66 75 88 60 77 85 92 64 82 88 94
205 033 24 37 50 41 50 49 63 73 75 54 68 83 85 58 73 86 88
321 049 25 33 50 50 69 56 74 82 87 65 79 84 90 69 83 91 93

VC dimension at most 3: n = 5, 10, 15 and m up to 211. The whole data set
comprises more than 9 800 000 instances:

b = 1 b = 2 b = 3 b = 4

# a O G R RG O G R RG O G R RG O G R RG
820 951 20 50 75 60 81 54 76 82 88 61 80 88 93 66 82 91 93
821 060 24 50 66 63 69 50 72 80 86 56 78 87 90 66 82 89 96
821 095 30 50 50 50 83 60 68 75 90 69 75 84 91 72 79 88 94
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Based on FIR matrices: n up to 399 and m up to 25. The whole data set
comprises more than 2 500 000 instances. The oblivious algorithms deliver ap-
proximations between 83% and 97%. ε-Greedy and the hybrid algorithm always
find the optimum.

AP3 from medicine: 29 instances with n up to 204 and m up to 17 619:
b = 1 b = 2 b = 3 b = 4

# a O G R RG O G R RG O G R RG O G R RG
29 25 77 92 70 95 79 94 86 96 80 94 90 97 81 95 93 98

Larger instances with bounded 	: n = 1 000; m = 1 000, 2 000, . . . , 9 000;
	 = 3, 4, 5, 6. The LP optimum OPT∗

b is taken for comparison. The whole data
set comprises more than 60 000 instances:

b = 1 b = 2 b = 3 b = 4

# a O G R RG O G R RG O G R RG O G R RG
3 616 14 70 81 61 84 77 86 81 92 80 89 88 94 83 90 92 96
3 719 16 70 81 61 85 77 87 81 92 80 89 87 94 83 90 91 96
3 859 20 70 82 61 84 77 87 80 92 80 89 88 94 82 90 91 96
3 968 25 69 82 59 85 75 87 80 91 79 90 87 94 81 91 91 95

Running times. The per-instance running time is far below 1 second for most
of the small instances. In order to get an idea of the running time for larger
instances, we consider different densities, i.e., we let m be a function of n and
then consider increasing n. We fix b = 2 and use random hypergraphs with
bounded 	 and two different weights. We fix the scheme of running ε-Greedy
with three different values ε = 0, 1

2 , 1. Let first m(n) := n ln lnn. The running
time of ε-Greedy appears to be quadratic in m, it follows (in seconds) the curve
≈ 1.1·10−7·m2 on an AMD Opteron R© at 2.8 G Hz. This hypothesis was obtained
by linear regression based on experiments with n = 1 000, 2 000, . . . , 20 000. The
hybrid needs more time and seems to roughly follow the cubic curve ≈ 2.7·10−10 ·
m3, based on experiments with n = 1 000, 2 000, . . . , 9 000. It took approximately
40 minutes for n = 9 000 vertices. Nearly all of the time is spent solving the LP.

For denser hypergraphs, say m(n) := n lnn, the situation is different. ε-Greedy
needs ≈ 3.2 · 10−7 · m2 seconds, measured for n = 1 000, 1 500, . . . , 5 000. The
hybrid is faster than this in the range up to 5 000 vertices, namely ≈ 1.8 · 10−12 ·
m3, however, for larger n, it shows some very high running times. This is not
fully understood yet and may be related to properties of the LP solver.

Discussion. We have seen the hybrid algorithm outperforming all others in
terms of approximation. Running times are different for different densities, with
ε-Greedy being in favor of sparse hypergraphs.

ε-Greedy also performs well in terms of approximation: it gives substantially
better approximations than oblivious greedy in most cases, and is on the same
level otherwise. In many cases, ε-Greedy is similar to or better than randomized
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rounding alone. For instances based on FIR matrices, ε-Greedy always finds
the optimum, whereas oblivious greedy can have approximations as low as 83%.
Apparently, there is some structure in these instances which oblivious algorithms
are unable to take advantage of, but ε-Greedy can. This is so even for a larger
data set of almost 4 million instances.

6 Future Work

We wish to further speed up and perhaps parallelize the implementation of ε-
Greedy, making it an even more attractive alternative to LP-based algorithms.
We plan to extend the experimental basis by including more instances: e.g., other
types of hypergraphs with bounded VC dimension can be constructed, and new
instances for hypergraph matching arise in computational geometry in the study
of symmetry detection of point sets [1,9]. We also plan to consider larger b, and
especially to explore the territory around b = Θ(ln n).

An ultimate goal is, of course, to prove the better approximation performance
of our algorithms. We currently look at the outcome of experiments as if we expect
a constant-factor approximation, like we have for large b. This needs not to be the
case. Future work will aim at parameterizing the observed approximation ratios.
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Abstract. We present initial results from the first empirical evaluation
of a graph partitioning algorithm inspired by the Arora-Rao-Vazirani
algorithm of [5], which combines spectral and flow methods in a novel
way. We have studied the parameter space of this new algorithm, e.g.,
examining the extent to which different parameter settings interpolate
between a more spectral and a more flow-based approach, and we have
compared results of this algorithm to results from previously known and
optimized algorithms such as Metis.

1 Introduction

Graph partitioning refers to the problem of dividing an input graph into two
large pieces such that the number of edges crossing the partition is minimized.
There are several standard formalizations of this bi-criterion, and in this paper
we focus on minimizing expansion.1 Given an undirected, possibly weighted,
graph G = (V, E), the expansion α(S) of a set of nodes S ⊆ V is defined as:

α(S) =
|E(S, S)|

min{|S|, |S|)}
, (1)

where E(S, S) denotes the set of edges having one end in S and one end in the
complement S, and where | · | denotes cardinality (or weight). The expansion of
the graph G is then defined as:

α(G) = min
S⊆V

α(S). (2)

It is well-known that solving (2) exactly is NP-hard. Graph partitioning is, how-
ever, of interest in many applications. For example, it has been used in divide-
and-conquer algorithms; for load balancing in parallel computing applications;
to segment images and, more generally, to cluster data; and to find clusters and
communities in large social and information networks.

Graph partitioning is also a problem for which a wide range of algorithms
have been developed, and the theoretical and/or empirical strengths and weak-
nesses of these algorithms have been extensively studied. Most algorithms that
1 Expansion is sometimes referred to as the quotient cut objective.
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have been designed to find good cuts, i.e., low-expansion partitions, employ
one or more of the following four algorithmic ideas: spectral methods ; flow-based
methods; local improvement ; and multi-resolution. Historically, spectral methods
and flow-based methods have dominated the theoretical landscape; and vari-
ants of spectral methods, as well as local improvement techniques, often in a
multi-resolution setting, have dominated applications. In particular, note that
the heuristic Metis [12] is often the method of choice in applications since it
finds good-quality cuts in mesh-like graphs very quickly.

Researchers also noticed that spectral and flow-based methods tend to have
complementary strengths—the worst-case examples for spectral algorithms are
easy graphs for flow-based methods, and vice-versa—which has lead to attempts
to combine spectral and flow into a better graph partitioning algorithm. This was
achieved by Arora, Rao, and Vazirani (ARV) [5], who developed the concept of
“expander flows” and who introduced an algorithm that achieves an O(

√
log n)

worst-case approximation to expansion and several related quantities. The orig-
inal version of ARV [5] yields a polynomial-time algorithm, but one that is too
slow to be practical, as it must solve a large semi-definite program.

The ARV breakthrough was followed by the introduction of several related algo-
rithms exploring the running-time versus quality-of-approximation tradeoff
[3,4,13]. In particular, Orecchia, Schulman, Vazirani, and Vishnoi (OSVV) [16]
developed an algorithm that performs only polylogarithmic single commodity
max-flow computations to achieve an O(log n) approximation. The fastest the-
oretical algorithm for these single commodity flow computations has time com-
plexity Õ(n3/2) [10], but push-relabel methods have been shown to be faster in
practice [7], potentially making the OSVV algorithm useful in applications. OSVV
and other methods inspired by [5] have been reviewed in [6], where the authors of
ARV pose the question of how well they will perform empirically, in particular
with respect to Metis.

In this paper, we report initial results from the first empirical evaluation
of an algorithm from this novel family. We have implemented the algorithm of
OSVV [16], and we have compared it with several implementations of traditional
graph partitioning algorithms, including Metis, on a suite of graphs designed
to highlight the strengths and weaknesses of previously existing algorithms. We
demonstrate that the algorithmic ideas underlying the ARV method can be
implemented on medium-sized graphs to find cuts that are competitive with
those returned by existing algorithms; and we demonstrate a manner in which
different parameter settings interpolate between spectral and flow methods.

2 Algorithms

In this section, we describe the algorithms we used in our empirical evaluation.
We compared the algorithm of OSVV [16] with two versions of Metis, two
versions of the spectral method, and one purely flow-based method:

– Metis is a fast heuristic that combines a multi-resolution approach with
local improvement techniques [12].
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– MetisRand is a randomized variation of the basic Metis algorithm that
achieves much better results.

– Spectral is the classical spectral method of [1], which uses a sweep cut to
round the eigenvector solution.

– SpecFlow is a variation of Spectral in which the standard sweep-cut
rounding is replaced by a flow-based rounding which is guaranteed to obtain
a better or equally good cut [2].

– LR is a simplified version [14] of the flow-based algorithm by Leighton and
Rao [15].

– OSVV is our implementation of the the algorithm of OSVV [16], which uses
ideas related to the original ARV algorithm [5]. Our implementation closely
follows the theory, and the approximation guarantees of [16] still apply.

Note that our comparison includes both standard versions of the traditional
algorithms (Metis and Spectral), as well as modified versions (MetisRand

and SpecFlow) which in practice find much better cuts.

2.1 The Improve Algorithm

We start by describing a flow-based “improvement” procedure that will be an
important building block for SpecFlow and OSVV. The Improve algorithm
was originally introduced as a post-processing procedure to improve cuts re-
turned by other methods [2]. This algorithm takes as input a bisection (A, A),
and it looks for a cut which optimizes a combination of low expansion and cor-
relation with the starting bisection. The algorithm outputs a cut (T, T ) and a
perfect matching M between A and A. If the expansion of (T, T ) is α, then M
can be routed2 in G with congestion 1/α. This matching M can then be used
as a certificate that (T, T ) has better expansion than all cuts strictly contained
in (A, A). This algorithm can be implemented by a small number of single com-
modity max-flow computations. We used the C++ implementation of [2], which
is based on the max-flow push-relabel program hi pr v.3.4, described in [8].

2.2 The Metis and MetisRand Algorithms

Metis is a heuristic developed by Karypis and Kumar [12] to find good balanced
partitions in graphs. Although it has no theoretical guarantees, in practice it
runs extremely fast. Metis makes many random choices during its execution,
but the standard version of the code has a fixed random seed which makes
the algorithm deterministic; our Metis results were obtained by running the
unmodified pmetis program (version 4.0.1). MetisRand is a modified version
of the basic program in which the random seed is left as an input to the program
2 A weighted graph H can be routed as a flow in a graph G if every edge e = {u, v} ∈

E(H) in H with weight we can be routed on a path from u to v in G such that
the total congestion on every edge of G, i.e., the total weight of H routed across
that edge in G, is less or equal to 1. In this case, we can use H as a certificate of
expansion, since one can show that α(H) ≤ α(G).
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and the best of 10, 000 runs is returned; in addition to small code changes to
allow different seeds, we changed the matching method from the default “Sorted
Heavy Edge Matching” to “Random Matching.”

2.3 The Spectral and SpecFlow Algorithms

Spectral algorithms compute (exactly or approximately) the second eigenvector
x of the Laplacian3 of the graph, and then approximate the best cut in the
graph by a cut defined by this vector. Recall that this eigenvector assigns to
each vertex v of the graph a value xv, and if we assume that these have been
ordered, this allows one to define n− 1 “sweep cuts” (Si, Si), for 1 ≤ i < n, as:
Si = {v ∈ V : xv < xi}. The eigenvector can be rounded to a cut by picking
the best of these sweep cuts. Our Spectral algorithm computes the smallest
second, third and fourth eigenvectors of the Laplacian, applies the sweep cut
rounding to each of them, and then returns the best cut found.

SpecFlow is a randomized variant of Spectral that was developed by
Andersen and Lang [2] and that differs from Spectral in two respects. First,
rather than using each eigenvector separately, SpecFlow uses a random com-
bination of the lowest three non-zero eigenvectors of the Laplacian of G. This
makes SpecFlow more robust against cuts which may be hidden from a single
eigenvector. Second, SpecFlow replaces the rounding by a sweep cut with a call
to Improve on the bisection (Sn/2, Sn/2). In [2], it is proven that the Improve

rounding procedure is strictly no worse than rounding by a sweep cut, and it is
shown that SpecFlow outperforms Spectral on most graphs.

The computation of the second eigenvector of the Laplacian can be performed
in a number of ways (we computed “exact” eigenvectors with ARPACK), but
most relevant for the subsequent discussion is that it can be performed by con-
sidering exact or approximate random walks on the instance graph G. The idea
underlying this approach is that random walks will mix slowly across cuts con-
taining few edges, and conversely that if a random walk mixes slowly then there
must be some cut which is constraining the spreading of the probability mass.
Moreover, the second eigenvector of the Laplacian defines the slowest mixing
direction, and the second smallest eigenvalue, i.e., the spectral gap λ2, charac-
terizes the mixing time [9]. This highlights the weakness of the spectral method
at finding good cuts: spectral algorithms are sensitive not only to sparse cuts but
also to “large distances” in the graph—a random walk may fail to mix rapidly
either because it takes a long time to overcome a sparse cut or because the
graph has very long paths along which the random walk makes slow progress.
The worst examples for spectral methods are based on this idea [11].

2.4 The LR Algorithm

Flow-based methods provide a very different way to find good cuts in a graph.
They route a certificate graph H in G, and use this routing to provide both
3 The Laplacian of a graph K is L(K) = D(K) − A(K), where D(K) is a diagonal

matrix containing the degree of each vertex and A(K) is the adjacency matrix.
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a lower bound on expansion as well as an approximate cut by showing that if
no better lower bound can be proved then by duality a good cut must exist.
Leighton and Rao [15] chose H to be a scaled version of the complete graph
on n vertices, and they chose a linear programming relaxation of the problem
based on multi-commodity flows. The best implementations of this lead to a
theoretical running time of Õ(n2), but in our empirical evaluation we used the
implementation of [14], which runs faster since it only approximately solves the
flow problem. Graphs on which LR is known to perform poorly include constant-
degree expanders [15] and expanders with planted cuts [2].

2.5 The OSVV Algorithm

OSVV and other related algorithms subsequent to that of ARV [5] have a simple
interpretation based on a modification of flow-based ideas: they strengthen the
flow-based approach of Leighton and Rao [15] by removing the limitation that
the graph to be routed in G be a complete graph by instead allowing it to
be any graph with large spectral gap [6]. Here, we are going to give a dual
interpretation of these algorithms as based on a modification of spectral ideas:
OSVV strengthens the standard spectral approach by using flow-based ideas to
modify the instance graph to make it more amenable to spectral methods. It
does so by using the matching returned by Improve to add edges to the input
graph to fix the oversensitivity of spectral methods to large distances.

Before describing the OSVV algorithm, recall that the heat kernel of a graph
K = (V, E) is defined as: Hη

K = exp (−ηL(K)), where L = L(K) is the Laplacian
of K and where η ≥ 0 is a learning rate. The heat kernel can be used in an
alternative version of the standard spectral method to produce an approximate
eigenvector of the Laplacian as follows: take a vector v picked uniformly at
random from {+1,−1}V and consider x = Hη

Kv = exp (−ηL(K))v. As η varies
between 0 and infinity, the vector x becomes a better and better approximation
to the second eigenvector of the Laplacian. Replacing the exact computation of
the second eigenvector of the Laplacian with an approximation based on the
heat kernel with η �= ∞ has two potential advantages. First, the heat kernel
is more robust against cuts hidden from the second eigenvector. Second, the
computation of Hη

Kv is faster than that of the second eigenvector, especially for
graphs with a small spectral gap.

Our OSVV algorithm takes as input a graph G, as well as parameters η, γ,
and stopping condition σ. It then does the following:

1. Let G′ = γG; and t = 0.
2. Approximate the second eigenvector of the Laplacian of G′ by performing a

heat kernel computation on G′.
3. Using the bisection (Sn/2,t, Sn/2,t) from the sweep cut along this approximate

eigenvector, call Improve with G to get a cut (Tt, Tt) and a matching Mt.
4. Let G′ = G′+Mt; and t++. Until the stopping rule is satisfied, goto Step 2.
5. Return as output the cut (Tt, Tt) of minimum expansion found in Step 3.
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In [16], it is shown that the algorithm takes at most O(log2 n) rounds to achieve
an O(log n) approximation. Our implementation closely follows the theory [16]
and has the following three parameters:

– The learning rate, η, determines how much the spectral computation of the
heat kernel on G′

t is allowed to converge towards the second eigenvector of
G′

t. (For higher values of η, the spectral part of the algorithm is more global,
but it is also the more susceptible to the errors caused by long paths.)

– The initialization coefficient, γ, determines the weight of the instance graph
G in G′. (For higher values of γ, G′ depends relatively more on G, and less
on the feedback matchings output by the Improve algorithm, and thus the
more similar the spectral computation on G′ is to that of G.)

– The stopping condition, σ, is the number of iteration after which, if no
improvement in the best cut found has occurred, the algorithm aborts. (A
higher stopping condition can yield a better solution at the expense of time,
while a lower stopping condition can make the algorithm faster but may
prevent it from achieving its best expansion scores.)

Note that in addition to the instance graph G, OSVV maintains a graph G′,
which starts off equal to a scaled version of G and is progressively modified to be
more suited to spectral methods. At every iteration t, the approximate spectral
computation is performed on the current G′

t and a sweep bisection (Sn/2,t, Sn/2,t)
is obtained from the resulting vector. The Improve algorithm is then applied to
this bisection on the input graph G (since we are interested in cuts on G), and
this will yield a cut (Tt, Tt). Now, either there is a good sweep cut in the original
eigenvector, which would have been found by Improve, or the spectral method
has been fooled by some long paths in G. To fix this problem, OSVV considers
the matching Mt returned by Improve at iteration t. Since the endpoints of
the edges of Mt lie on opposite sides of the bisection (Sn/2,t, Sn/2,t), Mt can be
used to “shortcut” the long paths, and so the algorithm sets G′

t+1 = G′
t + Mt.

Clearly, the matching Mt can be thought as providing iterative feedback to the
spectral method about the quality of the cut found and how to modify G′

t to
explore different cuts and identify better cuts.

Note also that for large values of γ and η, OSVV becomes very spectral in
flavor, as G′ becomes dominated by G and the heat kernel is allowed to converge
closer to the second eigenvector of G. For example, in the first iteration, the
spectral computation performed by OSVV is the multiplication of a random
vector by exp−ηγG. Hence, the higher the product γη, the more the first iteration
of OSVV will look like a second eigenvector computation; and similarly for
subsequent iterations. Conversely, as η and γ decrease, the algorithm performs
a more localized spectral computation and the feedback matchings increase in
weight with respect to G, yielding an algorithm with a stronger flow-based flavor.

3 Graphs Used in Our Empirical Evaluation

In this section, we describe the graphs we used to perform our empirical eval-
uation of the algorithms described in Section 2. Our main testbed consists of
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Table 1. Basic statistics for our main testbed of graphs, including information about
the best quotient cut found during our empirical evaluation. The “cutsize” is the num-
ber of edges cut in the best quotient cut found by any method, and “smallside” is the
number of nodes on the small side of the cut, in which case the balance is smallside /
nodes and the quotient cut score (not displayed) would be cutsize / smallside.

graph gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0

nodes 12600 20000 20000 62032 78136 10000 10000 10000 10000 10000
edges 24974 45000 46000 121544 452591 59372 47778 52024 62561 71332
cutsize 100 5000 7055 791 3827 181 622 1723 3508 5301
smallside 6300 10000 9955 31008 39030 4945 4982 4950 4959 5000
balance 0.5000 0.5000 0.4978 0.4999 0.4995 0.4945 0.4982 0.4950 0.4959 0.5000

10 graphs, summarized in Table 1, ranging in size from 10, 000 up to 78, 000
vertices and chosen from the following five classes. These five classes were cho-
sen to highlight the strengths and weaknesses of existing algorithms; existing
graph-partitioning testbeds are less appropriate for this empirical evaluation
since they tend to be easy for spectral methods, since they consist of mesh-like
graphs like wing and tooth. Note, in addition, that the best cuts found are all
very well-balanced.

3.1 Guattery-Miller Graph

This graph is based on the construction of Guattery and Miller [11] for worst-case
graphs for eigenvector-based methods. It is the outer product of a double-tree
(two complete binary trees connected by an edge between their roots) and a
path graph; and the minimum expansion cut is obtained by separating the two
trees, but the path can be made long enough so that the slow mixing along it
will cause any given number of eigenvectors to cut the path instead. We include
in our testbed the graph gm.100.6, in which the path has length 100 and each
of the two trees is of depth 6. These parameters have been chosen so that the
first 3 eigenvectors will be given by the first three modes of vibration for the
path, i.e., the path folded over itself once, twice, and three times. The “right”
eigenvector appears in the fourth position, where it cannot be used by Spectral

or SpecFlow, which only use the first 3 non-zero eigenvectors.

3.2 Expanders with Planted Bisections

Expanders with planted bisections (expander-like graphs with a distinctly good
bisection planted at a random location) are known to be a worst-case inputs
for LR, while they can be solved by spectral methods and by various local
improvement algorithms (see, e.g., [2]). We generated a family of 8 graphs each
containing 20, 000 nodes, with planted bisections of size k · 1000, for k = 1
through k = 8, by generating two 10, 000-node degree-4 expanders (each is the
union of 4 disjoint random matchings of the nodes) and connecting them by a
random k-matching.
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As the size of the planted cut increases, it becomes harder to detect it.
For example, the graph with planted cut of size 1000 is solved optimally by
MetisRand, LR, SpecFlow and all parameter choices of OSVV, while LR

already fails to find the planted cut of size 2000. MetisRand, SpecFlow and
OSVV find the planted cut up through size 5000 and then all fail to find at size
6000 and larger. Thus, we include in our results plant5k and plant6k, the
graphs with planted cut of size 5000 and 6000, respectively.

3.3 Finite Element Meshes

Well-shaped meshes are classic examples of “nice” low-dimensional graphs for
which many graph partitioning methods have been developed. We include the
finite element mesh wing and tooth from the archive [17].

3.4 Random Geometric Graphs

Random geometric graphs have long been standard benchmark graphs [14], and
LR, SpecFlow and MetisRand have been shown to perform well on them.
We include one random geometric graph rnd-a generated by picking 10, 000
random points in the unit two-dimensional disk, adding edges in increasing order
of length, and stopping when the graph becomes connected. We then reduced
the number of edges by removing all pairs in which one end was not among the
50 nearest neighbors of the other.

3.5 Random Geometric Graphs with Random Edges Added

Given the good results obtained by the algorithms on random geometric graphs,
we make them harder by adding a number of completely random edges, as was
done in [2]. Our claim that these graphs are harder than ordinary random ge-
ometric graphs is based on the empirical observation of higher-variance distri-
butions of scores from randomized partitioning algorithms [2]. We do not know
of a theoretical explanation, but intuitively the extra edges seem to cause the
spectral embeddings to get twisted up, making the right answer much less ob-
vious. Similarly, perhaps by increasing the expansion, the extra random edges
also cause problems for LR.

Each graph ax.Iy was obtained by first running the random geometric graph
generator mentioned above. Then, x · 1000 random edges were added (avoiding
the creation of duplicates); the tag y is just an instance number. In our testbed,
we include a selection of random geometric graph with random edges based on
which one or more of the algorithms performs well: a1.i2, on which LR does
particularly well; a3.i4, on which SpecFlow does well; a6.i3, on which OSVV

performs well; and a9.i0, for which MetisRand gave the best results.

4 Results

In this section, we describe the results of our initial empirical evaluation. Our
computations were run on 4 64-bit AMD Opteron Processors, each running at
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1795MHz, with 32GB of memory and 1024KB cache. We ran the deterministic
Spectral and Metis algorithms only once, and we report the expansion of the
cut found and the time required. For LR and for each of the parameter choices
of OSVV, we ran 10 trials; for SpecFlow, we ran 1000 iterations; and for
MetisRand, we ran 10, 000 trials. For each of these algorithms, we report the
best cut found over these runs and the total time taken. The number of trials for
each algorithm was chosen in order to obtain total run times of the same order
of magnitude in order to help focus the comparison on just the single criterion
of the best cut found; we discuss this issue in more detail below. Finally, the
timing data omit the time needed to load the description of the graph.

We explored a large number of settings of the parameters in preliminary em-
pirical evaluations, and we determined that the interesting region of parameter
space for our graphs is given by the 27 combinations of the following sets of
parameters: η ∈ {1, 10, 100}; γ ∈ {0, 10, 100}; σ ∈ {2, 5, 10}. Many of our con-
clusions may be illustrated by considering only 3 setting of the parameters:
η = 100, γ = 100, σ = 10; η = 10, γ = 10, σ = 10; and η = 1, γ = 0, σ = 10.
(Recall that choices of the parameters for which the product ηγ is larger (resp.
smaller) correspond to a more spectral-like (resp. flow-like) behavior of the al-
gorithm.) Summary statistics for the best cut results and total times for these
3 parameter settings of OSVV, compared with results from each of the other
algorithms, are presented in Table 2 and Table 3.

On plant5k, the more spectral-based choices of parameters find the planted
cut, while it seems that the more flow-based choices encounter problems simi-
lar to (but not as severe as) that of LR and are not able to detect the right
cut. On plant6k, SpecFlow gives the best cut overall (although no algo-
rithm found the planted cut) and the more spectral-like choices of parameters
for OSVV do marginally better than more flow-like choices. Note, though, that
the entire OSVV method seems to be stuck at a quality around 10% worse
than SpecFlow, probably as a result of the constant-degree expander strongly
affecting the performance of the flow part of OSVV. For meshes and ran-
dom geometric graphs, all the methods do comparably. Note, though, that the

Table 2. [Best viewed in color.] Ratio of the best expansion cut score found by multiple
trials of each algorithm to the best expansion cut score found overall. (See the text or
the caption of Table 3 for details on the number of trials for each algorithm, and see
Table 4 for results on varying the number of trials.) First and second place for each
graph are highlighted in red and blue, respectively. Ratios are given to 3 decimal digits.
OSVV parameters are described as OSVV-η.γ.σ.

gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0

OSVV-100.100.10 1.000 1.000 1.098 1.018 1.003 1.024 1.077 1.029 1.009 1.039
OSVV-10.10.10 1.000 1.000 1.102 1.069 1.033 1.001 1.050 1.039 1.000 1.033
OSVV-1.0.10 1.000 1.493 1.119 1.069 1.059 1.003 1.053 1.089 1.414 1.077
MetisRand 1.000 1.000 1.107 1.048 1.019 1.011 1.149 1.068 1.025 1.000
LR 1.000 2.841 2.082 1.069 1.065 1.003 1.000 1.163 1.072 1.075
SpecFlow 1.260 1.000 1.000 1.000 1.000 1.000 1.149 1.000 1.037 1.081
Metis 1.640 1.526 1.130 1.169 1.208 1.322 1.445 1.330 1.190 1.059
Spectral 1.260 1.195 1.207 1.253 1.111 1.517 2.624 1.878 1.414 1.661
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Table 3. [Best viewed in color.] Total run time in seconds for OSVV-η.γ.σ (10 tri-
als), MetisRand (10000 trials), LR (10 trials), SpecFlow (Eigensolver + 1000 flow
roundings), Metis (1 try), and Spectral (Eigensolver + 3 sweep roundings). Num-
bers are rounded to the nearest second, except for Metis and Spectral, where they
are rounded to the second decimal.

gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0

OSVV-100.100.10 793 367 650 8167 31847 1956 956 735 1315 1013
OSVV-10.10.10 363 304 437 2802 9923 881 401 370 485 851
OSVV-1.0.10 426 2075 3030 4201 11681 602 447 441 85 423
MetisRand 105 681 700 1049 2024 110 111 189 284 328
LR 187 660 658 8521 56378 443 509 699 1173 1637
SpecFlow 209 636 581 4887 13254 688 639 641 724 798
Metis 0.01 0.06 0.07 0.09 0.21 0.01 0.01 0.02 0.02 0.03
Spectral 7.05 3.22 3.27 51.48 96.02 8.98 4.40 3.10 2.32 2.46

traditional mesh wing and tooth slightly favors spectral methods—SpecFlow

does slightly better than other methods, and relatedly the best OSVV results
are given by spectral-like and intermediate choices of parameters. As expected,
on gm.100.6, all choices of parameters for OSVV find the optimal cut.

For random geometric graphs with added random edges, intermediate and
flow-like parameter choices for OSVV tend to perform well for a1.i2 (chosen
since LR performed well on it), and the more spectral-like choices perform better
for a3.i4 (chosen since SpecFlow performed well). Interestingly, for a6.i3, pa-
rameters intermediate between spectral and flow decisively beat other parameter
choices and all other algorithms. A similar result is seen with a9.i0, for which
the intermediate parameter choices nearly tie the best cut found by MetisRand

and improve on the expansion found by SpecFlow and LR by around 5%.
With respect to the stopping condition σ, (data not presented indicate that)

computations behaved in expected ways, but we noticed that variations in the
stopping condition seemed to impact more the quality of the score for more flow-
based algorithms. Our intuition for this is that more flow-based algorithms are
less aggressive in their search for sparse cuts and require more time to explore
the cut space to provide their best results, while more spectral runs can achieve
very good scores already in their first runs, especially if the graph is suited to
the spectral method. In generally, of course, the stopping condition could be
adjusted based on the relative importance of cut quality and time in the context
in which the algorithm is used.

With respect to the running time, Table 3 (and data not presented) indicates
that more extreme choices of parameters η and γ seem to require more running
time. This is likely due to two different reasons. On the one hand, for the more
spectral-like parameter settings, a larger fraction of time is spent in computing
the heat kernel vector, which becomes harder as η and γ grow. On the other hand,
for more flow-like parameter settings, the longer time is usually due to a larger
number of iterations within the algorithm, again a result of the more conser-
vative approach of these parameter settings. In general, if some information on
the graph is available in terms of suitability to spectral or flow methods, the
choice of parameters could be adjusted accordingly.
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Table 4. Varying the number of trials for MetisRand and SpecFlow. Presented is
the ratio of the expansion cut score for MetisRand and SpecFlow (as a function of
the number of trials) to the best overall score. For MetisRand 10000 and SpecFlow

1000, the score is the minimum found over all our trials, while for other number of trials,
the score is an estimate of the average best score using the empirical distribution from
our experiment and assuming sampling with replacement.

Trials gm.100.6 plant5k plant6k wing tooth rnd-a a1.i2 a3.i4 a6.i3 a9.i0

MetisRand 10 1.343 1.313 1.121 1.099 1.075 1.137 1.362 1.197 1.106 1.072
MetisRand 100 1.020 1.028 1.116 1.076 1.043 1.058 1.253 1.143 1.071 1.042
MetisRand 1000 1.000 1.000 1.111 1.063 1.028 1.026 1.175 1.102 1.046 1.020
MetisRand 10000 1.000 1.000 1.107 1.048 1.019 1.011 1.149 1.068 1.025 1.000
SpecFlow 1 1.913 1.402 1.100 1.082 1.161 1.278 1.325 1.150 1.108 1.171
SpecFlow 10 1.284 1.066 1.052 1.040 1.045 1.027 1.218 1.059 1.060 1.106
SpecFlow 100 1.260 1.000 1.011 1.006 1.015 1.002 1.167 1.023 1.044 1.089
SpecFlow 1000 1.260 1.000 1.000 1.000 1.000 1.000 1.149 1.000 1.037 1.081

A graph by graph inspection seems to confirm the expected behavior of the
parameters of OSVV as toggling between spectral and flow methods. In addi-
tion, the results suggest that OSVV is quite robust and tends to be within 5%
of the best, which is much more consistent performance than the other meth-
ods. In particular, that the performance of the intermediate choice of parameters
η = 10, γ = 10, σ = 10 appears as a good global setting, performing optimally
or near-optimally for all graphs except plant6k, for which more spectral-based
methods are preferable.

Finally, we should note that Table 4 demonstrates that for MetisRand and
SpecFlow the number of trials (and thus the run time) can be decreased by a
factor of 10, or in some cases 100, while still finding cuts that are only moderately
worse than those found in the larger number of trials. A larger study (currently
in progress) with a finer tuning of parameters, more comprehensively chosen
graphs, and a more sophisticated implementation of OSVV will be necessary to
fully explore these issues and validate our initial observations.

5 Conclusion

We have reported initial results from the first empirical evaluation of an al-
gorithm from the novel family of algorithms inspired by the recent theoretical
work of ARV [5]. It is important to emphasize that, prior to performing this
empirical evaluation, we had no idea whether any algorithm from this family
of algorithms would be at all practical in finding even moderately good cuts on
graphs of any size. Thus, our primary conclusion is that a simple implementation
of the algorithm of OSVV [16] performs competitively with state-of-the-art im-
plementations of existing graph partitioning algorithms at finding good cuts on a
suite of medium-sized graphs chosen to illustrate the strengths and weaknesses of
these existing algorithms. Our secondary conclusion is that, as suggested by the-
ory, different parameter choices in this algorithm can be interpreted as toggling
between a more spectral-like approach and a more flow-like approach. Clearly,
our initial results suggest that these methods might be a viable alternative to the
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classical spectral and flow methods in practical applications in large-scale data
analysis and machine learning, arguing for a more comprehensive evaluation on
a larger suite of larger and more realistic graphs.
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Abstract. We present a cgal-based univariate algebraic kernel, which
provides certified real-root isolation of univariate polynomials with in-
teger coefficients and standard functionalities such as basic arithmetic
operations, greatest common divisor (gcd) and square-free factorization,
as well as comparison and sign evaluations of real algebraic numbers.

We compare our kernel with other comparable kernels, demonstrating
the efficiency of our approach. Our experiments are performed on large
data sets including polynomials of high degree (up to 2 000) and with
very large coefficients (up to 25 000 bits per coefficient).

We also address the problem of computing arrangements of x-monotone
polynomial curves. We apply our kernel to this problem and demonstrate
its efficiency compared to previous solutions available in cgal.

1 Introduction

Implementing geometric algorithms robustly is known to be a difficult task for
two main reasons. First, all degenerate situations have to be handled and second,
algorithms often assume a real-RAM model (a random-access machine where
each register can hold a real number and each arithmetic operation has unit
cost) which is not realistic in practice. In recent years, the paradigm of exact
geometric computing has arisen as a standard for robust implementations [24].
In this paradigm, geometric queries, also called predicates, such as “is a point
inside, outside or on a circle?”, are made exactly using, usually, either (i) exact
arithmetic combined, for efficiency, with interval arithmetic on doubles or (ii)
interval arithmetic on arbitrary-fixed-precision floating-point numbers combined
with separation bounds; on the other hand, geometric constructions, such as the
circle through three points or points of intersection between two curves, may be
approximated.

We address here one recurrent difficulty arising when implementing algorithms
dealing, in particular, with curved objects. Such algorithms usually require eval-
uating, manipulating and solving systems of polynomials equations and compar-
ing their roots. One of the most critical parts of dealing with polynomials or
polynomial systems is the isolation of the real roots and their comparison.

We restrict here our attention to the case of univariate polynomials and ad-
dress this problem in the context of cgal, a C++ Computational Geometry
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Algorithms Library, which is an open source project and became a standard for
the implementation of geometric algorithms [4].

Cgal is designed in a modular fashion following the paradigm of generic
programming. Algorithms are typically parameterized by a traits class which
encapsulates the geometric objects, predicates and constructions used by the
algorithm. Algorithms can thus typically be implemented independently of the
type of input objects. For instance, the core of a line-sweep algorithm for com-
puting arrangements of plane curves [7] can be implemented independently of
whether the curves are lines, line segments, or general curves; on the other hand,
the elementary operations that depend on the type of the objects (such as, com-
paring x-coordinates of points of intersection) are implemented separately in
traits classes. Similarly, the model of computation, such as exact arbitrary-length
integer arithmetic or approximate fixed-precision floating-point arithmetic, are
encapsulated in the concept of kernel. An implementation is thus typically sep-
arated in three or four layers, (i) the geometric algorithm which relies on (ii) a
traits class, which itself relies on (iii) a kernel for elementary (typically geomet-
ric) operations. Cgal provides several predefined Cartesian kernels, for instance
allowing standard Cartesian geometric operations on inputs defined with dou-
bles and providing approximate constructions (i.e., defined with double) but
exact predicates. However, a kernel can also rely on (iv) a number type which
essentially encapsulates the type of number (such as, double, arbitrary-length
integers, intervals) and the associated arithmetic operations. A choice of traits
classes, kernels and number types is useful as it gives freedom to the users and
it makes it easier to compare and improve the various building blocks of an
implementation.

Our Contributions. We present in this paper a cgal-compliant algebraic ker-
nel that provides real-root isolation of univariate integer polynomials and basic
operations, i.e. comparisons and sign evaluations, of real algebraic numbers. This
open-source kernel follows the cgal specifications for algebraic kernels [3]. The
root isolation is based on the interval Descartes algorithm [5] and uses the library
rs [19]. Moreover, our kernel provides various operations for polynomials, such
as gcd, which are crucial for manipulating algebraic numbers.

We compare our kernel with other comparable kernels and demonstrate the
efficiency of our approach. We perform experiments on large data sets including
polynomials of high degree (up to 2 000) and with very large coefficients (up to
25 000 bits per coefficient).

Finally, we apply our kernel to the problem of computing arrangements of
x-monotone polynomial curves and demonstrate its efficiency compared to pre-
vious solutions available in cgal.

Related work. Combining algebra and geometry for manipulating non-linear
objects has been a long-standing challenge. Previous work includes, but it is not
limited to, mapc [14] a library for manipulating points that are defined alge-
braically and handling curves in the plane. More recently, the library exacus
[2], which handles curves and surfaces in computational geometry and supports
various algebraic operations, was developed and partially integrated into cgal.
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The notion of algebraic kernel for cgal was proposed in 2004 [11]; in this work,
the underlying algebraic operations were based on the synaps library [15]. Sev-
eral methods and algebraic kernels have been developed since then.

One kernel was developed by Hemmer and Limbach [13] following the generic
programming paradigm using the C++ template mechanism. This kernel is tem-
plated by the representation of algebraic numbers and by the real root isolation
method, for which two classes have been developed; one is based on the Descartes
method and the other on the Bitstream Descartes method [9]. This approach has
the advantage to allow, in principle, using the best instances for both template
arguments.

Another kernel developed at inria relies on the synaps library [15]. In this
kernel there are several approaches concerning real root isolation, i.e., methods
based on Sturm subdivisions, sleeves approximations, continued fractions, and
a symbolic-numeric combination of the sleeve and continued fractions methods
(see [10]). Moreover, there are specialized methods for polynomials of degree less
or equal than four [21].

Emiris et al. [10] presented some benchmarks of these various approaches in
these two kernels as well as some tests on the kernel we present here. The authors
mention that our kernel based on interval Descartes performs similarly to one
approach (refer to as ncf2) based on continued fractions [20] for coefficients with
(very) large bitsize but ncf2 is more efficient for small bitsize. They conclude
that, first, dedicated algorithms for polynomials of degree less than (or equal
to) four is always the most efficient approach and, second, that ncf2 always
perform the best except for low-degree and high-bitsize polynomials, in which
case the kernel based on the Bitstream Descartes method performs the best. We
moderate here these conclusions.

The rest of the paper is structured as follows. In the next section we describe
our algebraic kernel. In Section 3, we present various experiments on the isolation
of real roots and on the comparison of algebraic numbers. In Section 4, we apply
our kernel to the problem of computing arrangements and compare it to previous
solutions available in cgal. We finally conclude in Section 5.

2 Univariate Algebraic Kernel

We describe here our implementation of our univariate algebraic kernel. The two
main requirements of the cgal specifications, which we describe here, are the
isolation of real roots and their comparison. We also describe our implementation
of two operations, the gcd computation and the refinement of isolating intervals,
that are both needed for comparing algebraic numbers.

Preliminaries. The kernel handles univariate polynomials and algebraic num-
bers. The polynomials have integer coefficients and are represented by arrays
of gmp arbitrary-length integers [12]. We implemented in the kernel the basic
functions for polynomials. An algebraic number that is a root of a polynomial
F is represented by F and an isolating interval, that is an interval contain-
ing this root but no other root of F . We implemented intervals using the mpfi
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library [16], which represents intervals with two mpfr arbitrary-fixed-precision
floating-point numbers [17]; note that mpfr is developed on top of the gmp
library for multi-precision arithmetic [12].
Root isolation. For isolating the real roots of univariate polynomials with integer
coefficients, we developed an interface with the library rs [19]. This library
is written in C and is based on Descartes’ rule for isolating the real roots of
univariate polynomials with integer coefficients.

We briefly detail here the general design of the rs library; see [18] for de-
tails. Rs is based on an algorithm known as interval Descartes [5]; namely, the
coefficients of the polynomials obtained by changes of variable, sending inter-
vals [a, b] onto [0, +∞], are only approximated using interval arithmetic when
this is sufficient for determining their signs. Note that the order in which these
transformations are performed in rs is important for memory consumption. The
intervals and operations on them are handled by the mpfi library.
Algebraic number comparison. As mentioned above, one of the main require-
ments of the cgal algebraic kernel specifications is to compare two algebraic
numbers r1 and r2. If we are lucky, their isolating intervals do not overlap and
the comparison is straightforward. This is, of course, not always the case. If we
knew that they were not equal, we could refine both isolating intervals until they
are disjoint. Hence, the problem reduces to determining whether the algebraic
numbers are equal or not.

To do so, we compute the square-free factorization of the gcd of the polyno-
mials associated to the algebraic numbers. The roots of this gcd are the common
roots of both polynomials. We calculate the intersection, I, of the isolating in-
tervals of r1 and r2. The gcd has a root in this interval if and only if r1 = r2.

To determine whether the gcd has a root in interval I, it suffices to check the
sign of the gcd at the endpoints of I: if they are different or one of them is zero,
the gcd has a root in I and r1 = r2; otherwise, r1 �= r2 and we can refine both
intervals until they are disjoint.
Gcd computations. Computing greatest common divisors between two polyno-
mials is not a difficult task, however, it is not trivial to do so efficiently. A naive
implementation of the Euclidean algorithm works fine for small polynomials but
the intermediate coefficients suffer an exponential grow in size, which is not man-
ageable for medium to large size polynomials. We thus implemented a modular
gcd function. We did not use some existing implementations mainly for efficiency
because converting polynomials from one representation to another is substan-
tially costly as soon as the degree and bitsize are large. Our function calculates
the gcd of polynomials modulo some prime numbers and reconstructs later the
result with the help of the Chinese remainder theorem. (See e.g., [23] for details.)
Refining isolating intervals. As we mentioned before, refining the interval repre-
senting an algebraic number is critical for comparing such numbers. We provide
two approaches for refinement.

Both approaches require that the polynomial associated to the algebraic num-
ber is square free. The first step thus consists of computing the square-free part
of the polynomial (by computing the gcd of the polynomial and its derivative).
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Our first approach is a simple bisection algorithm. It consists in calculating
the sign of the polynomial associated to the algebraic number at the endpoints
and midpoint of the interval. Depending on these signs, we refine the isolating
interval to its left of right half.

Our second approach is a quadratic interval refinement [1]. Roughly speaking,
this method splits the interval in many parts and, based on a linear interpolation,
guesses in which one the root lies. If the guess is correct, the algorithm divides
in the next refinement step the interval in more parts and, if not, in less.

Unfortunately, even with our careful implementation this approach turns out
to be, on average, only just a bit faster than the bisection approach. Our ex-
periments showed that the bottleneck of the refinement is the evaluation of
polynomials.

3 Kernel Benchmarks

In this section, we analyze the running time of the two main functions of our
algebraic kernel, that (i) isolate the roots of a polynomial and (ii) compare
two algebraic numbers that is, compare the roots of two polynomials. We also
compare the performance of our kernel with the one based on the Bistream
Descartes method [9] and developed by Hemmer and Limbach [13] (referred
to as mpii’s kernel)1 and with a kernel based on continued fractions [20] and
developed on top of the synaps library [15] (referred to as synaps’ kernel).

All tests were ran on a single-core 3.2 GHz Intel Pentium 4 with 2 Gb of RAM
and 2048 kb of cache memory, using 64-bit Linux.

(a) (b)

Fig. 1. Running time for isolating all the real roots of degree 12 polynomials with 12
real roots in terms of the maximum bitsize of their coefficients

1 We parameterized mpii’s kernel to use Bitstream Descartes as root isolator,
algebraic_real_bfi_rep as algebraic number representation and core integers and
rationals to represent the coefficients of the polynomials and the isolation bounds of
algebraic numbers, respectively. The choice of core (vs. leda) was induced by the
need of testing the kernels in the same conditions, that is, relying on gmp.
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(a)
d

(b)

Fig. 2. Running time for isolating all the real roots of (a) degree 100 polynomials in
terms of the maximum bitsize of their coefficients and (b) Mignotte polynomials of the
form f = xd − 2(kx − 1)2 in terms of the degree d

Root isolation. We consider two suites of experiments in which we either fix the
degree of the polynomials and vary the bitsize of the coefficients or the converse;
see Figs. 1 and 2. In each experiment, we report the running time for isolating
all the roots per polynomial, averaged over different trials, for our kernel, mpii’s
and synaps’ kernel.

Varying bitsize. We study here polynomials with rather low degree (12) but
with no complex root and polynomials with reasonably large degree (100) with
random coefficients (and thus with few real roots).

The first test sets comes from [13]. See Fig. 1. It consists of polynomials of
degree 12, each one being the product of six degree-two polynomials with two
roots, at least one of them in the interval [0, 1]; every polynomial thus has 12 real
roots. We vary the maximum bitsize of all the coefficients of the input polynomial
from 100 to 50 000 and average each test over 250 trials.

Secondly, we consider random polynomials with constant degree 100 and co-
efficients with varying bitsize. See Fig. 2(a). Note that such random polynomials
have few roots: the expected number of real roots of a polynomial of degree d
with coefficients independently chosen from the standard normal distribution
is 2

π ln(d) + C + 2
πd + O(1/d2) where C ≈ 0.625735 [8]; this gives, for degree

100 an average of about 3.6 roots (note that this bound matches extremely well
experimental observations). We vary the maximum bitsize of all the coefficients
from 2 000 to 25 000 and average each test over 100 trials.

Varying degree. We consider two sets of experiments in which we study random
polynomials and Mignotte polynomials (which have two very close roots).

We first consider polynomials with random coefficients of fixed bitsize for
various values between 32 and 1 000. We then vary the degree of the polynomials
from 100 to 2 000 and average our experiments over 100 trials (see Fig. 3). Note
that the above formula gives an expected number of roots varying from 3.6 to
5.5. We observe that the running time is almost independent of the bitsize in
the considered range.
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(a) (b)

Fig. 3. Running time for isolating all the real roots of random polynomials with coef-
ficients of bitsize (a) 32 and (b) 1000, and depending on the degree

Finally, we test Mignotte polynomials, that is polynomials of the form xd −
2(kx − 1)2. Such polynomials are known to be challenging for Descartes al-
gorithms because two of their roots are very close to each other; the isolating
intervals for these two roots are thus very small. For these tests, we used Mignotte
polynomials with coefficients of bitsize 50, with varying degree d from 5 to 50.
See Fig. 2(b). We averaged the running time over 5 trials for each degree. We
observed essentially no difference between our kernel and MPII’s one; they take
roughly 0.2 and 5.5 seconds for Mignotte polynomials of degree 20 and 50, respec-
tively. However, synaps’ kernel is much more efficient as the continued fractions
algorithm is not so affected by the closeness of the roots.

Discussion. We observe (Fig. 1(a)) that synaps’ kernel is more efficient than
both our and mpii’s kernel in the case of polynomials of small degree (e.g.,
twelve) and small to moderately large coefficients (up to 2 000 bits per coef-
ficient). However, for extremely large coefficients mpii’s kernel is substantially
more efficient (by a factor of up to 3 for coefficients of up to 50 000 bits) than
both our and synaps’ kernels, which perform similarly.

For polynomials of reasonable large degree, both our and synaps’ kernels are
much more efficient that mpii’s kernel; furthermore these two kernels behave
similarly for degrees up to 1 500 and our kernel becomes more efficient for higher
degrees (by a factor 2 for degree 2 000).

We also observe that the running time is highly dependent of the various
settings. For instance, our kernel is up to 5 times slower when using approximate
evaluation for high-degree and high-bitsize polynomials. Also, mpii’s kernel is in
some cases about 10 times slower when changing the arithmetic kernel to leda,
the representation of algebraic numbers and some internal algorithms such as
the refinement function. This explains why our benchmarks on both mpii’s and
synaps’ kernels are substantially better than in Emiris et al. experiments [10].

We also observe that the running time of mpii’s kernel is unstable in our
experiments (Figs. 1 and 2(a)); surprisingly, this instability occurs when the
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(a) (b)

Fig. 4. Running time for comparing two distinct close roots of two almost identi-
cal polynomials of degree 20 with (a) no common roots and (b) a common factor of
degree 10

experiments are performed on a 64-bits architecture, but it is stable on 32-bits
architecture as shown in previous experiments [10].

Comparison of algebraic numbers. We consider three suites of experiments
for comparing algebraic numbers; see Fig. 4. Recall that an algebraic number
ρ is here represented by a polynomial F that vanishes at ρ and an isolating
interval containing ρ but no other root of F . Recall also that the comparison of
two algebraic numbers is done by (i) testing whether the intervals are disjoint;
if so, report the ordering, otherwise (ii) compute the gcd of the two polynomials
and test whether the gcd vanishes in the intersection of the two intervals; if so,
report the equality of the numbers, otherwise (iii) refine the intervals until they
are disjoint.

First, we analyze the cost of trivial comparisons that is, when the two intervals
are disjoint. For that we compare the roots of two random polynomials. We
observe that, as expected, the comparison time is negligible and independent of
both the degree of the polynomials and the bitsize of their coefficients.

Second, we analyze the cost of comparing roots that are very close to each
other but whose associate polynomials have no common root. This case is ex-
pensive because we need to refine the intervals until they do not overlap; this
is, however, not the worst situation because the gcd of the two polynomials is 1
which is tested efficiently with a modular gcd. We perform these experiments as
follows. We generate pairs of polynomials, one with random coefficients and the
other by only adding 1 to one of the coefficients of the first polynomial. Such
polynomials are such that the i-th roots of both polynomials are very close to
each other. We generate such pairs of polynomials with constant degree (equal to
20) and vary the maximum bitsize of the coefficients. As the bitsize increases, the
pairs of roots that are close become even closer and thus the comparison time
increases. The results of these experiments are presented in Fig. 4(a), which
reports the average running time for comparing two close roots. We show in
this figure three curves, one corresponding to our bisection algorithm, and two
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corresponding the two refinement methods implemented in the mpii’s kernel: the
usual bisection and a quadratic refinement algorithm.

Third, we consider the, a priori, most expensive scenario in which we compare
roots that are either equal or very close to each others and such that their
associate polynomials have some roots in common. In this case, we accumulate
the cost of computing a non-trivial gcd of the two polynomials with the cost of
refining intervals when comparing two non-equal roots. In practice, we generate
pairs of degree-20 polynomials each defined as the product of two degree-10
terms; one of these factors is random and common to the two polynomials; the
other factor is random in one of the polynomials and slightly modified in the
other polynomial where, slightly modified means, as above, that we add 1 to one
of the coefficients. We then vary the maximum bitsize of the coefficients.

Discussion. We see in Fig. 4 that the mpii’s quadratic refinement algorithm largely
outperforms the two bisection methods. However, our bisection method is faster
than mpii’s one, by a factor up to 10. We also observed that the running time for
comparing equal roots is negligible compared to the cost of comparing close but
distinct roots. (The running time reported in Fig. 4(b) is actually the total time
for comparing all pairs of roots divided by the number of comparisons of close but
distinct roots.) This explains why our kernel behaves similarly in Figs. 4(a) and
4(b). Overall, it appears that comparing algebraic numbers that are very close is
fairly time consuming and that the most time-consuming part of the comparison
is the evaluation of polynomials performed during the interval refinements.

4 Arrangements

As an example of possible benefit of having efficient algebraic kernels in cgal,
we used our implementation to construct arrangements of polynomial functions.
Wein and Fogel [22] provided a cgal package for calculating arrangements of
general curves which requires as parameter a traits class containing the data
structures to store the curves and various primitive operations, such as compar-
ing the relative positions of points of intersection. We implemented a traits class
which uses the functions of our algebraic kernel and compared its performance
with another traits classes which comes with cgal’s arrangement package and
uses the Core library [6].

In order to generate challenging data sets we proceed as follows. First we
generate n random polynomials. To each of them we add 1 to the constant
coefficient, m times, thus producing a data set of n(m+1) univariate polynomials.
Notice that the arrangement of the graphs of these polynomials is guaranteed
to be degenerate, i.e., there are intersections with the same x-coordinate. The
arrangements generated this way have four parameters: the number n of initial
polynomials, the number m of “shifts” that we perform, the degree d of the
polynomials, and the bitsize τ of their coefficients. We ran experiments varying
the values of the last three of these parameters and setting n = 5.

Fig. 5(a) shows the running time in terms of the bitsize τ for a data set where
d = 20 and m = 4 (giving 25 polynomials). Fig. 5(b) shows the running time
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(a) (b)

Fig. 5. Arrangements of five polynomials, shifted four times each, (a) of degree 20 and
varying bitsize and (b) of bitsize 32 and varying degree

in terms of the degree d for a second data set where τ = 32 and m = 4. We
see from these experiments that running time using Core is considerably higher
than when using our kernel. We also make the following observations.

Fig. 5(a) shows that the running time depends on the bitsize. When we change
the bitsize of the coefficients of the random polynomials, the size of the arrange-
ment does not change; that means that the number of comparisons and root
isolations the kernel must perform is roughly the same in all the arrangements
of the test suite. The isolation time for random polynomials does not depend
much on the bitsize (as shown in Fig. 2(a)), but the comparison time does. It
follows that the running time increases with the bitsize.

Fig. 5(b) shows that the running time depends also on the degree of the in-
put polynomials. As we saw in Section 3, the expected number of real roots of
a random polynomial depends on its degree. The size of the arrangement thus
increases with the degree of the input polynomials: each vertex is the root of the
difference between two input polynomials, therefore there will be more vertices.
Thus, when we increment the degree of the inputs, the number of comparisons
and isolations increases; furthermore, the running time for each of these opera-
tions increases with the degree of the input.

5 Conclusion

We presented a new cgal-compliant algebraic kernel that provides certified
real-root isolation of univariate polynomials with integer coefficients based on
the interval Descartes algorithm. This kernel also provides the comparison of
algebraic numbers and other standard functionalities.

We compared our kernel with other comparable kernels on large data sets
including, for the first time, polynomials of high degree (up to 2 000) and with
extremely large coefficients (up to 25 000 bits per coefficient). We demonstrated
the efficiency of our approach and showed that it performs similarly, in most
cases, with one kernel based on the synaps library; more precisely, our kernel is
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more efficient for polynomials of very large degree (greater than 1 800) and less
efficient for polynomials of very small degree and with small to moderate size
coefficients. Also, our kernel is a lot more efficient that the kernel developed at
mpii for polynomials of large degree (greater than 200); it is however less efficient
for polynomials of small degree and with extremely large coefficients.

Our tests indicate that the kernel developed at mpii appears to be less efficient
than the other two for polynomials of large degree. However it should be stressed
that this kernel is the only one among the three that is templeted by the number
type of the coefficients. Of course this does not imply that efficiency is necessarily
lost by following the generic programming paradigm, but it does imply that, from
the user point of view, some substantial gain of efficiency can sometimes be made
by using a kernel that does not follow this paradigm.

We also compared the performance of the kernels on the comparison of al-
gebraic numbers. We observed in these tests that the bisection algorithm runs
much faster when it is specialized on a number type since it allows for low level
optimizations, confirming thus the assertion in the previous paragraph. On the
other hand, it becomes evident that the bisection method is not the most efficient
algorithm when a large number of refinements is needed, and mpii’s quadratic
refinement is the fastest method by far.

A fairly large choice of algebraic kernels and, in particular, of methods for
isolating the real roots of polynomials, is now available in Cgal. This allows,
in particular, to compare and improve the various methods. It appears that be-
tween the two big classes of methods, based on continued fractions and Descartes
algorithms, neither is clearly much better than the other. However, some sub-
stantial differences appear between the various implementations, but, of course,
it is always very difficult to benchmark implementations. For instance, we ob-
served here that the running times are highly dependent of the various settings
and architectures.

Finally, we also address the problem of computing arrangements of x-monotone
polynomial curves. We apply our kernel to this problem and demonstrate its effi-
ciency compared to previous solutions available in cgal.
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Abstract. In this paper we present a novel approach to the graph iso-
morphism problem. We combine a direct approach, that tries to find
a mapping between the two input graphs using backtracking, with a
(possibly partial) automorphism precomputing that allows to prune the
search tree. We propose an algorithm, conauto, that has a space com-
plexity of O(n2 log n) bits. It runs in time O(n5) with high probabil-
ity if either one of the input graphs is a G(n, p) random graph, for
p ∈ [ω(ln4 n/n ln ln n), 1 − ω(ln4 n/n ln ln n)]. We compare the practical
performance of conauto with other popular algorithms, with an extensive
collection of problem instances. Our algorithm behaves consistently for
directed, undirected, positive, and negative cases. Additionally, when it
is slower than any of the other algorithms, it is only by a small factor.

1 Introduction

The Graph Isomorphism problem (GI) tests whether there is a one-to-one map-
ping between the vertices of two graphs, preserving the arcs. This is of both the-
oretical and practical interest. In practice, it has applications in many fields, like
pattern recognition, computer vision, information retrieval, data mining, VLSI
layout validation, and chemistry. Its main theoretical interest comes from the
fact that, while GI is clearly in NP, it is not known if it is in P or NP-complete.

Previous work. As could be expected, GI has been extensively studied1. On
the theoretical side, there is much work trying to place GI into a complexity
class. There is strong evidence that GI is not NP-complete since, otherwise, the
polynomial time hierarchy would collapse to its second level (Σp

2 = Πp
2 = AM)

[4,16] and because it would be the only NP-complete problem to be polynomial-
time equivalent in its decision and counting versions [10]. Recently, Arvind and
Kurur [1] have shown that GI is in SPP (“Stoic PP”). GI is known to be solvable
in polynomial time for some restricted classes of graphs, like trees or planar
graphs [9]. However there are graph families that are specially hard, like certain
families of strongly regular graphs (SRG) and projective planes. As far as we

� Partially supported by grants MICINN TIN2008-06735-C02-01, CAM
S-0505/TIC/0285, and MEC PR2008-0015.

�� Done in part while on leave at Alcatel-Lucent Bell Laboratories, Murray Hill, NJ.
1 This review of the literature is necessarily incomplete. The reader can see the surveys

of Reed and Corneil [15], Fortin [7], Goldberg [9], and Gati [8]. See also [14].

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, pp. 221–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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know, the best bound for general graphs up to now is due to Babai and Luks [3],
whose canonical labeling (see below) algorithm runs in exp(n1/2+o(1)) time. GI
has also been studied on random graphs G(n, p). For p = 1/2, Babai et al. [2]
proposed a canonical labeling algorithm that labels all graphs in expected linear
time. Recently, Czajka and Padurangan [6] have given a linear time algorithm
that canonically labels a G(n, p) random graph with high probability2, for p ∈
[ω(ln4 n/n ln lnn), 1− ω(ln4 n/n ln lnn)].

GI algorithms use mainly two approaches. The direct approach tries to find an
isomorphism between the two input graphs directly with a classical backtracking
algorithm, possibly using heuristics to prune the search tree. Examples of direct
algorithms are Ullman’s [18] or vf2 [5]. The major drawback of these algorithms
is that they are slow when the graphs being tested have many automorphisms,
since they usually do not detect them. The canonical labeling approach applies
some function C() to each graph, which returns a certificate (canonical labeling)
of the graph, such that C(G) = C(H) if and only if graphs G and H are isomor-
phic. Nauty [11,12] is a canonical labeling algorithm that is currenly considered
the fastest GI algorithm. The main problem of nauty, and any other complete
canonical labeling algorithm, is that it needs to compute the whole automor-
phism group (which is hard). Not surprisingly, Miyazaki [13] has found a family
of graphs with exponential lower time bounds for nauty.

Contributions. We propose an algorithm for GI that combines the best of the
two approaches. Our algorithm, which we call conauto, is a direct algorithm
since it tries to find a mapping between the two input graphs using backtrack-
ing. However, to drastically prune the search tree, it looks for automorphisms
in the graphs, as canonical labeling algorithms do, but without necessarily com-
puting the whole automorphism group. We show that our algorithm has a space
complexity of O(n2 log n) bits when run with n-node graphs. Additionally, us-
ing results of Czajka and Padurangan [6], we show that conauto runs in time
O(n3) w.h.p. if either one of the input graphs is a G(n, p) random graph, for
p ∈ [ω(ln4 n/n ln lnn), 1− ω(ln4 n/n ln lnn)].

We claim that conauto is very practical. To back this claim we compare it
with other algorithms, namely nauty [12] and vf2 [5]. The former is included
because it is considered to be the fastest practical GI algorithm, while the lat-
ter is included as a modern example of a direct algorithm. The comparison is
done by running programs implementing the algorithms on an extensive bench-
mark that we have built [14], with positive and negative isomorphism cases,
and directed and undirected graphs from several families. The benchmark used
combines simple graph families, like random graphs, with other families that are
known to be hard to handle by most GI algorithms, like some SRG families or
the point-line graphs of Desarguesian projective planes. The comparison con-
cludes that, when conauto is not able to handle a family of graphs (it cannot
finish in 10,000 seconds), none of the other two can, while there are families that
are handled easily by conauto and not by the others. Additionally, when it is
slower than any of the other algorithms, it is only by a small factor. In general,
2 W.h.p., probability at least 1 − O(n−c), for some c > 0 and large enough n.
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conauto behaves more consistently in all cases (directed versus undirected, and
positive versus negative). It is worth mentioning that an early version of conauto
was recoded by Johannes Singler and included in the LEDA C++ class library
of algorithms [17]. As noted in [17], both implementations (LEDA’s and ours)
of that early version of conauto have a very uniform behavior, but the LEDA
implementation was found to be slower than ours. The version of conauto we
present in this paper has a more complete search for automorphisms and uses
them more exhaustively than the one included in LEDA.

Paper structure. In Section 2 we give basic definitions and notation. In Section
3 we describe the theoretic concepts on which the algorithm is based, while the
algorithm is presented in Section 4. In Section 5 the asymptotic complexity of the
algorithm is evaluated, and in Section 6 its practical performance is compared
with nauty and vf2.

2 Definitions and Notation

A directed graph G = (V, R) consists of a finite non-empty set V of vertices and
a binary relation R ⊆ V × V . An arc (u, v) ∈ R is considered to be directed
from u to v. R can be represented by an adjacency matrix Adj (G) = A with size
|V | × |V | in the following way.

Auv =

⎧⎪⎪⎨⎪⎪⎩
0 if (u, v) /∈ R ∧ (v, u) /∈ R
1 if (u, v) /∈ R ∧ (v, u) ∈ R
2 if (u, v) ∈ R ∧ (v, u) /∈ R
3 if (u, v) ∈ R ∧ (v, u) ∈ R

Let V1 ⊆ V , the available degree of v in V1 under G, denoted by ADg(v, V1, G),
is the 3-tuple (D3, D2, D1) where Di = |{u ∈ V1 : Avu = i}| for i ∈ {1, 2, 3}.
Extending the notation, we use ADg(V1, V2, G) = d to denote that ∀u, v ∈
V1,ADg(u, V2, G) = ADg(v, V2, G) = d, for V1, V2 ⊆ V . Let ADg(V1, V2, G) =
(D3, D2, D1), then we define Neigh(V1, V2, G) = D3 + D2 + D1 (i.e. the number
of neighbors each vertex of V1 has in V2), and the predicate Lnkd(V1, V2, G) =
(Neigh(V1, V2, G) > 0). We say that (D3, D2, D1) ≺ (E3, E2, E1) when the first
3-tuple precedes the second one in lexicographic order. This notation will be
used to order the available degrees of both vertices and sets.

Definition 1. Let G = (VG, RG) and H = (VH , RH). An isomorphism of G
and H is a one-to-one mapping m : VG −→ VH such that for all u, v ∈ VG

(v, u) ∈ RG ⇐⇒ (m(v), m(u)) ∈ RH .

Graphs G and H are isomorphic, written G ) H , if there is at least one isomor-
phism of them. An automorphism of G is an isomorphism of G and itself.

Like other GI algorithms, conauto relies on vertex classification. This is per-
formed using the available degree of the vertices, and refining the successive par-
titions in an iterative process. A partition of a set S is a sequence S = (S1, ..., Sr)
of disjoint nonempty subsets of S such that S =

⋃r
i=1 Si. The sets Si are called



224 J.L. López-Presa and A. Fernández Anta

the cells of partition S. The empty partition is denoted ∅. If S = (S1, ..., Sr)
and T = (T1, ..., Ts) are partitions of two disjoint sets S and T , the concatena-
tion of S and T , denoted S ◦ T , is the partition (S1, ..., Sr, T1, ..., Ts). Clearly,
∅ ◦ S = S = S ◦ ∅.

Partitions may be refined by two means: vertex and set refinements. A vertex
refinement classifies the vertices in each cell using the adjacency type they have
with a pivot vertex. This way, each cell may be split into up to four subcells. A
set refinement classifies the vertices in each cell using their available degree with
respect to a pivot set (cell). Let V1, V2 ⊆ V , SetPart(V1, V2, G) is the set partition
of V1 by V2, which is a partition (S1, ..., Sr) of V1 such that ∀i, j ∈ {1, ..., r}, i < j
implies ADg(Si, V2, G) � ADg(Sj , V2, G). If V2 = {v} �⊆ V1 we have the vertex
partition of V1 by v, denoted VtxPart(V1, v, G). Let V1 ⊆ V , S = (S1, ..., Sr) be
a partition of V1, and P = Sx for some x ∈ {1, ..., r} be a pivot set, then

1. The vertex refinement of S by the pivot vertex v ∈ P , denoted VtxRef
(S, v, G), is the partition T = T1 ◦ ... ◦ Tr such that ∀i ∈ {1, ..., r}, Ti = ∅ if
¬Lnkd(Si, V1, G), and Ti = VtxPart(Si \ {v}, v, G) otherwise.

2. The set refinement of S by P , denoted SetRef (S, P, G) is the partition T =
T1 ◦ ... ◦ Tr such that ∀i ∈ {1, ..., r}, Ti = ∅ if ¬Lnkd(Si, V1, G), and Ti =
SetPart(Si, P, G) otherwise.

Let G = (VG, RG) and H = (VH , RH) be two graphs. Let S = (S1, ..., Sr) and
T = (T1, ..., Ts) be partitions of V1 ⊆ VG and V2 ⊆ VH respectively, S and
T are compatible under G and H , denoted Comp(S, T , G, H), if r = s, and
∀i ∈ {1, ..., r}, |Si| = |Ti| and ADg(Si, V1, G) = ADg(Ti, V2, H).

A sequence of partitions starts with an initial partition (e.g., the degree par-
tition) and each subsequent partition is obtained by applying some refinement
to the previous one. A set refinement is labeled SET, and a vertex refinement
is labeled VTX (from vertex ) when the pivot set has only one vertex, and
BTK (from backtrack) when it has more than one. More formally, a sequence
of partitions for a graph G = (V, R) is a tuple (S, R, P), where S = (S0, ...,St),
are the partitions, R = (R0, ..., Rt−1) indicate the type of each refinement ap-
plied, and P = (P 0, ..., P t−1) are the pivot sets used. For all i ∈ {0, ..., t}, let
Si = (Si

1, ..., S
i
ri

), V i =
⋃ri

j=1 Si
j. Then the following statements must hold:

1. ∀i ∈ {0, ..., t− 1}, Ri ∈ {VTX, SET, BTK}, and P i ∈ {1, ..., |Si|}.
2. ∀i ∈ {0, ..., t− 1}, Ri = SET⇒ Si+1 = SetRef (Si, Si

P i , G).
3. ∀i ∈ {0, ..., t− 1}, Ri �= SET⇒ Si+1 = VtxRef (Si, v, G) for some v ∈ Si

P i .
4. ∀x ∈ {1, ..., rt}, ¬Lnkd(St

x, V t, G) ∨ |St
x| = 1.

For convenience, for any l ∈ {1, ..., t−1}, we refer to the tuple (Sl, Rl, P l) as level
l. Level t is identified by St, since Rt and P t are not defined. Note that, at each
refinement step, from the definitions of vertex and set refinements, the relative
order of the vertices is preserved, and the vertices with no links are discarded.
It is hence possible to define a (partial) order of the vertices of a graph, induced
by a sequence of partitions, in the following way. Let Q = (S, R, P) be a sequence
of partitions for graph G = (V, R). ∀i ∈ {0, ..., t}, let Si = (Si

1, ..., S
i
ri

), and
V i =

⋃ri

j=1 Si
j . Q induces a (partial) order ≺Q in V as follows.
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1. ∀i ∈ {0, ..., t}, ∀x, y ∈ {1, ..., ri}, x < y ⇒ ∀u ∈ Si
x, ∀v ∈ Si

y, u ≺Q v.
2. ∀i ∈ {0, ..., t−1}, ∀x ∈ {1, ..., ri}, ∀u ∈ (Si

x\V i+1), ∀v ∈ (Si
x∩V i+1), u ≺Q v.

An Order <Q induced by a sequence of partitions Q is any total order that
extends the order ≺Q. The ith vertex with respect to <Q is denoted ωQ(i).

Let G = (VG, RG) and H = (VH , RH) be two graphs. Let QG = (SG, RG, PG),
and QH = (SH , RH , PH) be two sequences of partitions for graphs G and H
respectively. QG and QH are said to be compatible if |SG| = |SH | = t, |RG| =
|RH | = t − 1, |PG| = |PH | = t − 1, and they satisfy all the following. Let RG =
(R0

G, ..., Rt−1
G ), RH = (R0

H , ..., Rt−1
H ), PG = (P 0

G, ..., P t−1
G ), PH = (P 0

H , ..., P t−1
H ),

SG = (S0, ...,St), and SH = (T 0, ..., T t). Then

1. ∀i ∈ {0, ..., t− 1}, Ri
G = Ri

H , and P i
G = P i

H .
2. ∀i ∈ {0, ..., t}, Comp(Si, T i, G, H).
3. Let St = (St

1, ..., S
t
r), T t = (T t

1 , ..., T t
r), then ∀x, y ∈ {1, ..., r}, ADg(St

x, St
y,

G) = ADg(T t
x, T t

y, H).

As will be seen, finding compatible sequences of partitions for two graphs gives
an isomorphism between them, by just mapping the vertices in any of the orders
induced by the sequences.

3 Theoretical Foundations

The algorithm conauto solves GI by trying to find compatible sequences of par-
titions for the input graphs. The following theorem shows that this in fact solves
GI. All the proofs can be found in [14].

Theorem 1. Two graphs G and H are isomorphic if and only if there are two
compatible sequences of partitions QG and QH for graphs G and H respectively.

Basically, conauto first constructs a sequence of partitions for one of the graphs,
and then tries to find a compatible one for the other. Reproducing in the second
sequence a refinement labeled SET or VTX is direct, since there is only one
possible pivot set or vertex. However, a refinement labeled BTK implies several
potential pivot vertices, what may lead to backtracking. The rest of this section
explores how a limited automorphism search in the first graph can avoid some
of this backtracking, transforming BTK into VTX for some refinements.

Two vertices u, v ∈ V of a graph G = (V, R) are equivalent, denoted u ≡ v, if
there is an automorphism π of G such that π(u) = v. A vertex w ∈ V is fixed by
π if π(w) = w. When two vertices are equivalent, they belong to the same orbit.
The set of all the orbits of a graph is called the orbit partition. Our algorithm
performs a partial computation of the orbit partition incrementally, starting
from the singleton partition. Since only a limited search for automorphisms is
done, it is possible to stop before the orbit partition is really found. Then, only
a semiorbit partition is obtained. A semiorbit partition of G is any partition
O = {O1, ..., Ok} of V , such that all vertices in Oi are equivalent, for all i.
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Lemma 1. At any level l of a sequence of partitions QG, all the vertices in a
cell with no remaining links are mutually equivalent.

Using this lemma, some equivalences are detected using only one sequence of
partitions. However, conauto generates two sequences of partitions to detect most
equivalences. From Theorem 1 and the definition of automorphism, it follows that
two compatible sequences of partitions for a graph G define an automorphism of
G. Let l be a backtracking level of a sequence of partitions QG (i.e., Rl = BTK),
let Sl

P l be the pivot cell and p ∈ Sl
P l the pivot vertex used for the vertex

refinement at level l. Consider any p′ ∈ Sl
P l , p �= p′. Let Q′

G be a sequence of
partitions compatible with QG, generated using p′ as pivot instead of p at level
l. Note that QG and Q′

G are equal up to level l. Let <QG be an order induced by
QG on the vertices of V , and let <Q′

G
be an order induced by Q′

G on the same
set of vertices V . Then,

Lemma 2. The mapping π induced by <QG and <Q′
G
, defined as π(ωQG(i)) =

ωQ′
G
(i), ∀i ∈ {1, ..., |V |}, is an automorphism of G.

Let k be such that p = ωQG(k), then π(p) = p′ = ωQ′
G
(k); ∀j ∈ {k, ..., |V |},

ωQG(j) ≡ ωQ′
G
(j); and π fixes vertices ωQG(1), ..., ωQG(k−1). Two vertices u, v ∈

V of a graph G = (V, R) are equivalent at level l, denoted u ≡l v, if there is an
automorphism of G that permutes them, and fixes all the vertices in V \V l (i.e.,
those discarded in previous levels). Note that p and p′ are equivalent at level l.

Lemma 3. If u ≡l v, then u ≡i v, ∀i ∈ {0, ..., l− 1}.

Let u ≡l v, if u ≡l p, then v ≡l p, and if u �≡l p, then v �≡l p. This implies that
when u ≡l v, their semiorbits can be merged at level l. Let us now extend the
sequence of partitions to include a semiorbit partition.

Definition 2. An extended sequence of partitions E for a graph G = (V, R) is
a tuple (Q, O), where Q is a sequence of partitions, denoted as SeqPart(E), and
O is a semiorbit partition of G, denoted as Orbits(E).

We observe now that when all the vertices in a pivot set used at a backtracking
level l (Rl = BTK) are proved to be equivalent, Rl can be set to VTX, eliminat-
ing the backtracking point. This follows from the fact that automorphisms are
preserved under isomorphisms, as stated in the following lemma.

Lemma 4. If the vertices of a pivot set in a sequence of partitions QG for graph
G are equivalent, then in a compatible sequence of partitions QH for graph H,
the vertices in the corresponding pivot set must also be equivalent.

The only information conauto stores about automorphisms is the semiorbit par-
tition. Hence, with an extended sequence of partitions, it knows that two vertices
are equivalent (but it does not know all the vertices that are fixed by an auto-
morphism that permutes them). Nevertheless, for each two vertices u and v that
belong to the same semiorbit in a semiorbit partition, there is at least one au-
tomorphism that fixes all the vertices that belong to singleton semiorbits, and
permutes u and v.
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Algorithm 1. Test whether G and H are isomorphic (conauto)
Iso(G, H) : boolean
1 if degree partitions do not match then return FALSE
2 QG ← GenSeqOfPart(G) ; QH ← GenSeqOfPart(H)
3 EG ← FindAuto(G, QG) ; EH ← FindAuto(H,QH)
4 if BtkAmount(SeqPart(EG)) ≤ BtkAmount(SeqPart(EH))
5 then return Match(0, G, H,SeqPart(EG),Orbits(EH))
6 else return Match(0, H,G,SeqPart(EH),Orbits(EG))

Algorithm 2. Generate a sequence of partitions for a graph G

GenSeqOfPart(G) : sequence of partitions
1 Start with the degree partition
2 while there are non-singleton cells with links do
3 if there is a singleton cell {v} with links then label VTX; Refine by vertex v
4 else label SET; Refine by set exhaustively
5 if no set refinement succeeded then relabel BTK; Refine by vertex
6 label FIN
7 return the computed sequence of partitions

4 Algorithm conauto

In this section we present the algorithm conauto (Algorithm 1) which applies
the previous theoretical discussion. If both graphs have the same vertex de-
grees, first it generates a sequence of partitions for each graph, and then tries to
eliminate potential backtracking points looking for vertex equivalences at these
backtracking points. Then, it chooses the graph with less backtracking levels
(BtkAmount(), i.e., number of levels l with Rl = BTK) in its sequence of par-
titions as the target, and tries to find a compatible sequence of partitions for
the other graph. If one such sequence of partitions is found, it returns TRUE.
Otherwise it returns FALSE.

Algorithm 2, GenSeqOfPart , starts from the degree partition of the vertex
set, and generates a sequence of partitions iteratively as follows.

1. If there are singleton cells in the partition, one of them is chosen as the pivot
set, and a vertex refinement is performed to obtain the next partition in the
sequence (Line 3).

2. Otherwise, the algorithm performs set refinements using different cells in
the partition as pivot sets, until one of them is able to split at least one cell
(maybe itself), or all of them have been tried unsuccessfully (Line 5).

3. If no cell meeting the conditions of Cases 1 and 2 has been found, then some
cell is chosen as the pivot set, and a vertex in that cell is used as the pivot
vertex to generate the new partition performing a vertex refinement (Line 6).

The search for automorphisms is performed by Algorithm 3. First it uses al-
gorithm ProcCellsWithNoLinks to apply Lemma 1. Then traverses the sequence
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Algorithm 3. Look for automorphisms
FindAuto(G, Q) : extended sequence of partitions
1 O ← the singleton partition of V
2 ProcCellsWithNoLinks(O)
3 for each level l labeled BTK, in decreasing order of l do
4 for each non-pivot vertex v in the pivot cell do
5 Generate an alternative sequence of partitions using v
6 if the sequences of partitions are compatible then
7 ProcCompSeqsOfPart(O)
8 if all the vertices in the pivot cell are equivalent then
9 relabel original partition VTX

10 return (Q, O)

Algorithm 4. Find a sequence of partitions compatible with the target
Match(l, G, H,QG, OH) : boolean
1 if partition labeled VTX then
2 success ←− Ref. by vertex are compat. and Match(l + 1, G, H, QG, OH)
3 else if partition labeled SET then
4 success ←− Ref. by set are compat. and Match(l + 1, G, H, QG, OH)
5 else if partition labeled BTK then
6 for each vertex v in the pivot cell, while not success do
7 if v may not be discarded according to OH then
8 success ←− Ref. by vertex are compat. and Match(l + 1, G, H,QG, OH)
9 else (i.e. partition labeled FIN)

10 success ← adjacencies in both partitions match
11 return success

of partitions upwards looking for vertex equivalences among the vertices in the
pivot sets at the levels labeled BTK, applying Lemma 2. This way, Lemma 3 will
be applicable, so the automorphisms already found may be used when processing
previous partitions in the sequence. The generation of an alternative sequence
of partitions is performed in a straightforward way, avoiding bactracking. If this
alternative sequence of partitions is compatible with the original one, then new
vertex equivalences have been found, and they are used to iteratively compute
the semiorbit partitions of the graphs using algorithm ProcCompSeqsOfPart .

When, at a backtracking point, all the vertices in the pivot cell are found
to be equivalent, that level is relabeld from BTK to VTX. Recall that, from
Lemma 4, this equivalence must hold for the other graph, so only one vertex
in the corresponding pivot cell will need to be tested during the search for an
equivalent sequence of partitions.

Algorithm 4 (Match) is a recursive algorithm that receives a level l to process
in the sequence of partitions, the graphs G and H to test, the sequence of
partitions QG for graph G, and the semiorbit partition OH previously obtained
for graph H . It returns TRUE if it is able to find a sequence of partitions for
graph H that is compatible with QG, and FALSE otherwise. Algorithm 4 starts
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with a partition that is compatible with the original (e.g., both start with the
degree partition). Then, if the current level is labeled VTX, it applies a vertex
refinement to the current partition. If the new partition generated is compatible
with the original, it recursively calls itself to process the next partition in the
sequence. Levels labeled SET are processed in a similar way, but applying a set
refinement. If the current level is labeled BTK, it applies Lemma 2 to prune the
search space. More sophisticated automorphism management may help here,
but we have discarded for now that possibility in favor of simplicity. Hence,
vertex equivalence will only be applied when all the previously fixed vertices
belong to singleton semiorbits. At the last level (labeled FIN), Condition 3 from
the definition of compatibility between sequences of partitions is tested.

The algorithm conauto directly applies the theoretical results from the previ-
ous section. Hence, the following theorem.

Theorem 2. Two graphs G and H are isomorphic iff Iso(G, H) returns TRUE.

5 Complexity Analysis

Algorithm conauto requires to store the adjacency matrices and the sequences
of partitions for each of the graphs. The matrices need O(n2) words for graphs
of n vertices. (We assume words of O(log n) bits, since they need to store vertex
identifiers.) Each partition may be represented using O(n) words. It is not hard
to see that a sequence of partitions has at most 2n partitions. Then, a sequence
of partitions requires O(n2) words. Since at most three sequences have to be
stored at any time (those of the graphs and a temporary sequence to find au-
tomorphisms), the sequences of partitions take O(n2) words. This yields a total
amount of space required by conauto of O(n2) words, or O(n2 log n) bits.

Regarding time, a careful analysis of each type of refinement gives that gener-
ating a new partition in a sequence takes at most time O(n2). Then, a sequence
of partitions is built in time O(n3). In order to find automorphisms at most
O(n2) sequences are created. Hence, creating a target sequence of partitions
requires time O(n5). Now, the time to find a sequence of partitions compat-
ible with the target directly depends on the number of backtracking points in
the target sequence. If there are no backtracking points it is just the time to gen-
erate a sequence, O(n3) time. In general, let α be the number of backtracking
points; then the time complexity is O(nmax(α+3,5)).

Finally, let us consider a random graph G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1−
ω(ln4 n/n ln lnn)]. Sort the degrees of the neighbors of a vertex into its degree
vector. Czajka and Pandurangan [6] have shown that, with high probability, no
two vertices have the same degree vector, and that a canonical labeling for the
graph is obtained from the lexicographic ordering of the degree vectors. If no
two vertices have the same degree vector, conauto will generate a sequence of
partitions without backtracking points, first obtaining the degree partition and
then by repeatedly applying set refinements. Then, our algorithm will finish in
time O(n5) with high probability if any of the graphs is a random graph G(n, p).
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6 Performance Evaluation

In this section we compare the performance of an implementation of conauto
with the two other programs of reference: nauty and vf2. The tests have been
carried out in a Pentium III at 1.0 GHz with 256 MB of main memory, under
Linux RedHat 9.0. All the programs have been compiled with the same compiler,
GNU’s gcc, and using the same optimization flags. The execution time considered
is the real time (not CPU time) consumed by the programs, excluding loading
time (the time needed by the programs to load from disk the graphs being
tested). The CPU time limit for each program run was set to 10, 000 seconds. If
a program was unable to finish within this CPU time limit for a pair of graphs
of some size, all its tests for that and bigger sizes were discarded. Some of the
curves obtained have been omitted due to space restrictions. They can be found,
with a detailed description of the benchmark used in the evaluation, at [14].

The first graphs considered are random graphs G(n, 0.1) (only isomorphic
cases). As expected, all algorithms run very fast with these graphs, finishing in
less than a second even for graphs of 1, 000 nodes. However, vf2 is one order of
magnitude worse than the other programs, nauty being the fastest. The second
family of graphs are 2D-meshes. In this case, for undirected graphs all algorithms
behave similarly, finishing in, at most, a few seconds (for 1, 000 nodes). A differ-
ence in behavior is observed for directed graphs. While conauto behaves as with
undirected 2D-meshes, the time of nauty increases and the time of vf2 decreases,
both in about one order of magnitude. The next family of graphs considered are
Paley graphs, a subclass of SRGs. In this case all programs run in reasonable
time (at most tens of seconds). It may be worth to note that vf2 is more than 2
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Fig. 1. Performance of conauto with Miyazaki’s graphs
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Fig. 2. Performance of conauto with Latin square graphs
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Fig. 3. Performance of conauto with unions of strongly regular graphs

orders of magnitude slower than conauto and nauty. For triangular graphs and
lattice graphs, also subclasses of SRGs, we observe a symmetric phenomenon:
all programs run fast (at most a few seconds) and vf2 is about one order of
magnitude faster.

The first family of graphs in which a substantial difference in behavior can be
observed are Miyazaki’s graphs (see Figure 1). These are known to be very hard
graphs for nauty [13] (e.g., with the directed version, it is not able to label graphs
of 40 vertices in 10, 000 s.). As can be seen in the figure, this family of graphs is
only handled fast by conauto, which always finishes in a few seconds. The other
algorithms cannot go beyond 400-node graphs (200 nodes if directed). A second
interesting family are Latin square graphs, which are SRGs. For this family vf2 is
not able to finish beyond graphs of 200 nodes (see Figure 2). Additionally, while
nauty has the same low running time for positive and negative cases, conauto
shows good (similar to nauty) running times for positive cases but about 2 orders
of magnitude more for negative cases. The third interesting family of graphs are
those obtained as unions of SRGs with the same parameters (29, 14, 6, 7) (see the
results in Figure 3). These graphs are already known to make nauty exponential
in time (cf. [13]). For vf2, they are so hard, that it can only finish within time
with graphs of one component. On the other hand, conauto runs reasonably fast
for positive cases, and faster than the others for the negative cases. However, it
can not find an answer for graphs above 600 vertices for non-isomorphic pairs of
graphs. The hardest family we have in our benchmark are point-line graphs of
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Desarguesian projective planes. For this family none of the programs is able to
deal with graphs of more than 200 vertices.
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Abstract. We propose new practical algorithms to find degree-relaxed
variants of cliques called s-plexes. An s-plex denotes a vertex subset in
a graph inducing a subgraph where every vertex has edges to all but
at most s vertices in the s-plex. Cliques are 1-plexes. In analogy to the
special case of finding maximum-cardinality cliques, finding maximum-
cardinality s-plexes is NP-hard. Complementing previous work, we
develop combinatorial, exact algorithms, which are strongly based on
methods from parameterized algorithmics. The experiments with our
freely available implementation indicate the competitiveness of our ap-
proach, for many real-world graphs outperforming the previously used
methods.

1 Introduction

Finding maximum-cardinality cliques in graphs now for a long time is a major
challenge for algorithmic graph theory and corresponding algorithm engineer-
ing efforts (cf. DIMACS challenge [5]). The corresponding Maximum Clique

problem is NP-hard and neither effective approximation nor parameterized ap-
proaches exist that allow for efficient algorithms with provable performance
bounds. Hence, the use of heuristic approaches always has been an important tool
for practical solutions of Maximum Clique. The concept of cliques, however,
has been criticized for its overly restrictive nature asking for complete subgraphs.
A more relaxed concept of a dense subgraph has been introduced by Seidman
and Foster [14] with the notion of s-plexes. A 1-plex is the same as a clique.
For s ≥ 2, an s-plex of a graph G = (V, E) is a vertex set S ⊆ V such that
in the induced subgraph G[S] every vertex has degree at least |S| − s. Unfor-
tunately, finding maximum-cardinality s-plexes turns out to be computationally
basically as hard as clique detection is [2, 8]. Thus, recently the development
of practical (heuristic) algorithms for s-plex detection has received quite some
interest [2, 9, 15]. In this work, we contribute novel tools for the efficient de-
tection of maximum-cardinality s-plexes. Other than previous work [2, 9, 15]
(where [15] deals with s-plex enumeration), our algorithms draw on methods
from parameterized algorithmics [10].
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The Maximum s-Plex problem for an integer s ≥ 1 is defined as follows.

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Is there an s-plex S ⊆ V of size at least k?

Clearly, in our experiments we actually choose to maximize the value of k. Re-
cent work on clique finding has exploited the close connection (indeed, duality)
between Maximum Clique and the Minimum Vertex Cover problem [1, 4].
We follow the same spirit here and make use of the duality between Maximum

s-Plex and the Minimum d-Bounded-Degree Deletion problem (d-BDD
for short). The latter problem is defined as follows.

Input: A graph G = (V, E) and a nonnegative integer k.
Question: Is there a vertex set S ⊆ V of size at most k whose deletion
makes G[V \ S] a graph of maximum degree d?

Clearly, we are interested in minimizing the value k. The point now is that an
n-vertex graph has an s-plex of size k iff its complement graph has a solution
set for d-BDD of size n− k with d := s− 1. We exploit this close connection by
making use of fixed-parameter tractability results for d-BDD [6, 8] and adding
some new ones.

Our contributions. On the theoretical side, we provide an improved depth-
bounded search tree for 1-BDD (the search tree has size O(2.31k) instead of
previously O(3k) [8]) and an algorithm for 1-BDD based on iterative compres-
sion (exponential factor 2k). Note that, by duality, these algorithms can be used
for finding 2-plexes. Moreover, we present several very effective heuristics (still
yielding optimal solution sets) which help to significantly boost the performance
of the underlying fixed-parameter algorithms in applications. We perform a num-
ber of computational studies, comparing with previous work [2, 9] on exact so-
lutions for s-plex finding which mainly rely on integer linear programming and
branch-and-bound. For several real-world graphs, we mostly achieved speedups
by orders of magnitude when compared to the previous work. Concerning some
dense synthetic instances, we are most of the time slightly slower than approaches
based on integer linear programming.

Preliminaries. In this paper, all graphs are simple and undirected. For a
graph G = (V, E) and a vertex set S ⊆ V , we write G[S] to denote the graph
induced by S in G, that is, G[S] := (S, {e ∈ E | e ⊆ S}). For a vertex v ∈ V ,
we write G− v instead of G[V \ {v}] and for a vertex set S ⊆ V we write G− S
instead of G[V \S]. We define N(v) := {u ∈ V | {u, v} ∈ E}, N [v] := N(v)∪{v};
the degree of a vertex v is |N(v)|. If every vertex in G has degree at most d, then
we say that G has maximum degree d. A vertex set S ⊆ V is a d-bdd-set if G−S
has maximum degree d.

A parameterized problem is fixed-parameter tractable if it can be solved in
f(k) · nO(1) time, where f is a computable function depending only on the pa-
rameter k, not on the input size n [10]. We also employ search trees for our
fixed-parameter algorithms. Search tree algorithms work in a recursive manner.
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The number of recursion calls is the number of nodes in the according tree.
This number is governed by linear recurrences with constant coefficients. These
can be solved by standard mathematical methods [10]. If the algorithm solves
a problem instance of size s and calls itself recursively for problem instances of
sizes s − d1, . . . , s − di, then (d1, . . . , di) is called the branching vector of this
recursion. It corresponds to the recurrence Ts = Ts−d1 + · · · + Ts−di for the
asymptotic size Ts of the overall search tree.

Due to the lack of space, some details are deferred to a full version of the
paper.

2 Algorithms

Before coming to some new (mostly fixed-parameter) algorithms, we start with
surveying algorithmic approaches that have been developed so far.

Known Approaches. Balasundaram et al. [2] presented a 0/1 integer linear
program for Maximum s-Plex, generalizing a known formulation for the spe-
cial case Maximum Clique. In addition, they carried out a polyhedral study
of the problem and discussed a branch-and-cut implementation as the basis of
computational tests. In follow-up work, McClosky and Hicks [9] described com-
binatorial algorithms for Maximum s-Plex, both of heuristic (without provable
guarantees on the solution quality) and exact nature. Their heuristic algorithms
are based on certain upper and lower bounds for vertex coloring and their exact
algorithms are based on adapting known algorithms for Maximum Clique.

As mentioned before and already undertaken for the special cases of Maxi-

mum Clique and Minimum Vertex Cover (cf. [1, 4]), an alternative route
to solving Maximum s-Plex is to do a “detour” via d-BDD in the complement
graph. This is our approach, which, thus, can also be seen as work on d-BDD.
Concerning d-BDD, Nishimura et al. [11] presented a depth-bounded search tree
yielding a solving algorithm running in O((d + k)k+3 · k + n · (d + k)) time. Sub-
sequently, an improved simple search tree algorithm running in O((d+ 2)k · (d+
k)2 +n · (d + k)) time was described [8]. Finally, very recently, an intricate com-
binatorial data reduction algorithm has been developed [6]. More specifically, it
was shown that Minimum d-Bounded-Degree Deletion with a solution set
of size k possesses a problem kernel1 containing at most (d3 + 4d2 + 6d + 4) · k
vertices, which is computable in O(n5/2 ·m + n3) time.

Concerning implementations and experimental work, only the investigations
of Balasundaram et al. [2], McClosky and Hicks [9], and Wu and Pei [15] have
been accompanied by computational studies. Hence, it is one of the goals of our
work to study the practical potential of the new approaches that are based on
combinatorial algorithms that avoid polyhedral methods.

1 Intuitively, a problem kernel is an equivalent problem instance whose size can be
upper-bounded by a function independent of the size of the original input instance
but only depending on the parameter k (see [10] for details).
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Our main algorithm uses a bounded search tree and polynomial-time data
reduction rules interleaving with the search tree. In general, the branching strat-
egy of the search tree algorithm chooses a vertex v of degree at least d + 1, and
then branches into the subcases of deleting v and every possibility of deleting
all but d neighbors of v. In this case we say that the strategy “branches on v
and N(v)”. In practice, it is favorable to delete many vertices in each branching
step, that is, v should be a vertex of high degree. Most parts of the subsequent
descriptions of new algorithmic approaches refer to this.

Conditional application of BDD-Rule. By preliminary experiments, we
found out that the direct application of the aforementioned problem kernel of at
most O(d3 ·k) vertices is only effective for very few real-world graphs. Therefore,
we turned our attention to use the corresponding data reduction rule (called
BDD-rule) as an interleaving step in a search tree approach. However, applying
the rule in every search tree node is not practical. We only apply it in a search
tree node if there is a high probability that it will successfully reduce the graph.

Guided branching. The aforementioned problem kernel is based on a (d + 2)-
approximate solution2 X (hence, |X | ≤ (d + 2) · k). With this size bound on X ,
by applying the BDD-rule, the size bound for the reduced graph can be derived.
This means that the interleaving of this kernel with the search tree algorithm
can only be effective if X is small compared to V \X (more precisely, if |V \X | >
(d + 1)2 · |X |). That is why it is beneficial when the branching strategy tends
to branch on vertices in X (thereby deleting more vertices in X) such that after
few branching steps X gets small enough. However, in order to decrease the
size of X more efficiently, it can be useful to branch on v and only a subset
of N(v). To this end, among the vertices of maximum degree, the vertex v to
branch on is chosen such that |N [v] ∩ X | is maximized and the algorithm only
branches on v and N(v) ∩ X . Since |X | is an upper bound on the size of an
optimal solution, this branching strategy can also help in speeding up the search
process (by using this upper bound in the search tree to detect branches that
cannot lead to a minimum solution) even if interleaving with the BDD-rule is
not effective.

Edge-count rule. The edge-count rule tests whether the given d-BDD instance
is a no-instance. The rule counts how many edges can be deleted from the
graph G = (V, E) by at most k vertex deletions based on the vertex degree
distribution of the graph. If the number of such edges is too small, then the
graph cannot be turned into a graph with maximum degree d by at most k
vertex deletions. The number of edges m′ that can be deleted by at most k ver-
tex deletions is computed as follows: sort the vertices of G by non-decreasing
degree and sum up the degrees of the first k vertices in that order. Then, test
whether m−m′ > d·n

2 . If so, then (G, k) is a no-instance. Due to its simplicity,
this rule can be implemented to run very efficiently.

2 This (d + 2)-approximate solution can be computed by greedily finding a maximal
collection of vertex-disjoint copies of stars with (d + 1) leaves.
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Improved search tree for d = 1. For the practically relevant special case
d = 1, we give a more refined branching strategy with an improved search tree
size of O(2.31k). We refrain from conceivable further asymptotic improvements
(which appear likely when using even further refined branching strategies) in
order to keep the algorithm easy to implement and efficient by avoiding the
overhead incurred by more complicated strategies.

We start with considering a vertex v of degree t > 1. Clearly, v either needs
to be deleted or all but one of its neighbors to achieve maximum degree one. Let
N(v) = {u1, . . . , ut}. If not deleting v, branch into the following t + 1 subcases:

1. Delete N(v).
2. For each ui ∈ N(v), 1 ≤ i ≤ t, delete (N(v) \ {ui}) ∪ (N(ui) \ {v}).
The correctness of this branching can be seen as follows. First, clearly in each
subcase v eventually gets maximum degree one. Second, the branching covers
all possibilities how v can be made a maximum-degree-one vertex: one can keep
at most one vertex from N(v), the rest has to be deleted. If ui is the neighbor
that shall not be deleted, then clearly all vertices from N(v) \ {ui} have to be
deleted (otherwise, v would have degree greater than one) and all neighbors of ui

except for v (that is, (N(ui) \ {v}) have to be deleted (otherwise, ui would have
degree greater than one). Finally, the case of deleting all of N(v) also needs to
be considered since, otherwise, one would overlook the situation that all of v’s
neighbors have to be deleted for reasons lying outside the neighborhood of v.
One obtains a branching into t+2 cases with the corresponding branching vector

(1, t, t− 1 + |N(u1) \N [v]|, . . . , t− 1 + |N(ut) \N [v]|).

It is not hard to check3 that the worst-case branching vector occurs for t = 2
and |N(u1) \N [v]| = |N(u2) \N [v]| = 1, meaning (1, 2, 2, 2) with the branching
number 2.31. In analogy to the general result [8], this gives the following.

Theorem 1. Minimum 1-Bounded-Degree Deletion is solvable in
O(2.31k · k2 + kn) time.

Theorem 1 is a pure worst-case result. In the implementation, it is clearly favor-
able to first branch on high-degree vertices (large t-values), making the approach
typically much more efficient than the theoretical bound predicts. Without proof,
we mention in passing that 1-BDD can be also solved in O(2k · k5/2 + n + m)
time using the technique of iterative compression; however, here we focus on the
more practical search tree algorithm as described above.

3 Implementation, Algorithmic Tricks, and Experiments

Implementation. Our implementation is written in the functional program-
ming language Objective Caml4. A reason for this choice was that we could
3 We omit some details here; basically, one can argue that for t = 2 cases where |N(u1)\

N [v]| = 0 are actually easier (often avoiding branching at all) and t > 2 gives
branching vectors with smaller branching numbers.

4 See, http://caml.inria.fr/

http://caml.inria.fr/
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make use of a purely functional graph data structure. This data structure makes
the implementation of a search-tree based algorithm much easier, since we do
not have to care about undoing changes to the data structure that were applied
in other search tree branches. Moreover, it is a stated (and usually achieved)
goal of the Objective Caml developers that Objective Caml code runs at most
twice as slow as code generated by a decent C compiler. This speed difference is
not a major factor for our considerations, since we are interested in the relative
performance of algorithms. Moreover, since we are dealing with exponential-time
algorithms, algorithmic improvements usually lead to time savings that cannot
be bounded by any constant factor, so this effect seems small in comparison.

Our implementation is open source and it is freely available.5 In Figure 1, we
give the pseudocode of the basic search tree algorithm to compute a minimum d-
bdd-set of size at most k for a graph. The data reduction rules in lines 3–7 remove
parts of the graph that can be omitted from further consideration (line 3), high-
degree vertices (lines 4–5), and some neighbors of degree-1 vertices (lines 6-7).
The simple correctness proofs for these rules are omitted here. Note that the rules
not only have to delete vertices from the graph G, but also from the d-bdd-set X
(see “guided branching” in Section 2), in order to preserve the invariant that X
is a d-bdd-set for G. Concerning the BDD-rule (lines 8–10), we changed the
condition from |V \X | > (d+1)2 · |X | (which guarantees success of the BDD-rule
application, see Section 2) to |N(X)| > (d+1) · |X | (which makes the success of
the BDD-rule probable in practice, even if the condition |V \X | > (d+1)2 · |X | is
not met). In lines 12–15 we perform several tests whether the instance resulting
by the application of the data reduction rules is a no-instance. In line 15 we
test whether the instance has already bounded degree d. Then, in line 16 the
algorithm selects a vertex to branch on. The branching is then performed in
lines 18–21. Then, in lines 22–24 the algorithm either returns that the input
instance is a no-instance or returns the best solution that it has found.

Algorithmic Tricks. Concerning the initial (d + 2)-approximate solution X
needed for the guided branching, it turns out that a greedy solution, computed
by simply taking a vertex of highest degree into the solution until the remaining
graph has bounded degree d, very often is smaller than a (d + 2)-approximate
solution, although this method does not provably guarantee an approximation
factor of d + 2. Such a greedy solution is also computed at the beginning of the
computation (before invoking the search tree algorithm), and its size is taken as
the initial value of k. Note that our implementation contains many algorithmic
tweaks that are not covered by the basic description in Figure 1. For instance, the
effect of the guided branching can be improved by recomputing X from time to
time in the course of the branching process. Moreover, it improves performance
significantly if one updates the value of k if a branch has found a solution that
is smaller than the initial k. For d = 1, we implemented the improved branching
described in Section 2 instead of the branching shown in Figure 1.

In the following, we comment about some particularities of our search tree
implementation. One of the most important issues was the computation of the
5 http://theinf1.informatik.uni-jena.de/splex/

http://theinf1.informatik.uni-jena.de/splex/
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Algorithm. bddsolve (G, X, k)
Input: A graph G = (V, E), a d-bdd-set X for G, and an integer k ≥ 0.
Output: A minimum-size d-bdd-set S for G with |S| ≤ k, or “no-instance”.
1 S ← ∅
2 repeat
3 Remove each vertex v from G for which ∀w∈N [v] deg(w) ≤ d.
4 while ∃v ∈ V : deg(v) > d + k � High-degree rule
5 G← G− v; X ← X \ {v}; S ← S ∪ {v}; k := k − 1.
6 while ∃v ∈ V : v has at least d + 1 degree-1 neighbors � Degree-1 rule
7 G← G− v; X ← X \ {v}; S ← S ∪ {v}; k := k − 1.
8 if |N(X)| > (d + 1) · |X | then
9 call BDD-rule to obtain vertex sets A and B 6

10 G← G− (A ∪B); X ← X \A; S ← S ∪A; k ← k − |A|
11 until none of the rules applies.
12 if k < 0 then return “no-instance”
13 l := greedily computed lower bound of the size of a minimum d-bdd-set.
14 if k < l or edge-rule tells “no-instance” then return “no-instance”
15 if maximum degree of G is d then return S
16 Among all max.-deg. vertices, choose a vertex v where |N [v]∩X | is maximum.
17 if |N(v) ∩X | > d then � Branch on v and N(v) ∩X
18 call bddsolve (G− v, X \ {v}, k − 1)
19 for all size (|N(v) ∩X | − d)-subsets C ⊆ N(v) ∩X do
20 call bddsolve (G \ C, X \ C, k − |C|)
21 else branch analogously to lines 18–20 on v and N(v).
22 if all recursive calls of bddsolve returned “no-instance” then
23 return “no-instance”
24 else return S ∪ S′, where S′ is a smallest set returned by the bddsolve calls.

Fig. 1. Pseudocode of the basic algorithm to compute a minimum d-bdd-set.

complement graph, which has to be performed before executing the bddsolve
algorithm (Figure 1). For sparse graphs, the complement graph is dense and,
surprisingly, in practice the amount of time and memory to compute it exceeds
often the time and memory needed for finding a maximum s-plex. Therefore, we
implemented a wrapper that simulates a complement graph, rather than actually
computing it. This wrapper, of course, is theoretically slower than the original
graph data structure, since the data structure calls have to be translated by the
wrapper. However, in practice, this method turns out to be almost always much
more efficient than computing the complement graph directly.

For the graphs we considered, it turned out that applying the data reduction
rules (see lines 3–10 in Figure 1) in every search tree node yields the best re-
sults. In particular, the degree-one rule and the high-degree rule are mostly very

6 The BDD-rule [6] returns two disjoint vertex sets A and B such that there exists a
minimum-cardinality d-bdd-set S with A ⊆ S and S ∩ B = ∅.
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effective. To be able to apply these rules more quickly, it seems to be reason-
able to implement a data structure that provides fast access to vertices with
a particular degree. However, this results in an increase of memory usage, and
since the data structure has to be updated very frequently, many operations
take more time. For instance, the deletion of a vertex, which is one of the most
frequently called routines, needs about twice the time in our experiments. More-
over, we noticed an increased garbage collection overhead. Summarizing, such a
data structure slows down the algorithm; surprisingly, for the degree-one and the
high-degree rule a simple sweep over all vertices gives a faster implementation.

Experiments. All experiments were run on AMD Athlon 64 3700+ machines
with 2.2GHz, 1M L2 cache, and 3GB main memory running under the De-
bian GNU/Linux 4.0 operating system with the Objective Caml 3.09.2 compiler.
The experiments of Balasundaram et al. [2] were performed on Dell Precision
PWS690 machines with a 2.66GHz Xeon Processor, 3 GB main memory, imple-
mented using ILOG CPLEX 10.0. The processor speeds are comparable, so we
compare the running times directly without applying a correction factor. The
experiments of McClosky and Hicks [9] were run on a 2.2GHz Dual-Core AMD
Opteron processor with 3GB main memory. We assume that their implementa-
tion uses one core only and compare the running times directly. Note that for
both papers [2, 9] the corresponding source code is not publicly available.

Balasundaram et al. [2] performed experiments with two groups of graphs.
One group can be characterized as social networks, which are derived from
real-world data. The second group of graphs contains various graphs using the
Sanchis generator [13] and clique instances from the second DIMACS chal-
lenge [5]. Balasundaram et al. [2] used an integer linear programming formu-
lation combined with branch & cut methods. One of their exact algorithms,
called BC(MIS), generates cuts based on a greedily computed independent set.
For the real-world graphs, they use a variant called IPBC, which iterates over
all vertices and searches an s-plex only in the vicinity of each iterated vertex
(using the BC(MIS) approach). In the following, we compare our approach with
the BC(MIS) and IPBC algorithms and also with the exact algorithm “Oster-
Plex” by McClosky and Hicks [9], which is an adapted version of an algorithm
for finding maximum-cardinality cliques by Österg̊ard [12]. The experiments of
McClosky and Hicks [9] cover almost all social networks and the instances from
the DIMACS challenge.

Social Networks. This group contains a set of Erdős collaboration networks [7]
(ERDŐS graphs), collaboration networks in computational geometry [3] (GEOM
graphs), and text-mining networks based on Reuters news [3] (DAYS graphs).
Due to space constraints, we omit the DAYS graphs; our results for ERDŐS and
GEOM graphs also hold for the DAYS graphs in the qualitative sense.

ERDŐS graphs: Each vertex in an Erdős graph represents a scientist, and two
vertices are adjacent if the corresponding scientists have published together. The
graphs, obtained from [7], are named “ERDOS-x-y”, where x represents the last
two digits of the year for which the network was constructed, and y the maximum
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Table 1. Running time and number of search tree nodes for ERDŐS and GEOM
graphs compared with the running times of the IPBC and OsterPlex algorithm. Note
that the OsterPlex experiments [9] were aborted after one hour.

s graph IPBC OsterPlex
search tree algorithm

no guided branching guided branching
seconds [2] seconds [9] seconds nodes seconds nodes

2

ERDOS-97-1 2.9 0 0.9 179 0.3 311
ERDOS-97-2 2123 1253 12.7 187 8.6 502
ERDOS-98-1 2.2 0 1.1 201 0.4 358
ERDOS-98-2 2251 1514 33.1 181 9.8 398
ERDOS-99-1 4.2 0 1.2 212 0.4 357
ERDOS-99-2 2442 1757 44.1 194 11.0 414

3

ERDOS-97-1 7.2 19 25.5 118620 0.7 10295
ERDOS-97-2 32773 ≥ 3600 620 596753 14.6 54695
ERDOS-98-1 17.8 20 11.7 51965 1.0 13637
ERDOS-98-2 45448 ≥ 3600 762 694455 26.3 120605
ERDOS-99-1 15.6 21 12.6 56704 1.7 28753
ERDOS-99-2 40164 ≥ 3600 1425 969064 36.8 132981

2
GEOM-0 12147 397 5.2 0 5.2 0
GEOM-1 946 1118 0.3 20 0.3 20
GEOM-2 487 1145 0.2 17 0.1 32

3
GEOM-0 20948 ≥ 3600 5.2 0 5.2 0
GEOM-1 1027 ≥ 3600 1.0 5065 0.4 887
GEOM-2 489 ≥ 3600 0.2 1225 0.1 3

distance from each vertex to Erdős in the graph. As Balasundaram et al. [2] and
McClosky and Hicks [9], we consider x ∈ {97, 98, 99} and y ∈ {1, 2}.
GEOM graphs: Each vertex represents an author in computational geometry.
For each pair of authors the number of joint publications is available. Given a
threshold t, two authors are adjacent if they have more than t joint publications.
The graphs, obtained from [3], are named “GEOM-t”, where t ∈ {0, 1, 2}.

We compared the IPBC algorithm [2] and the OsterPlex algorithm [9] with our
methods. We discovered experimentally that the guided branching has a strong
effect on the running time for these instances, while the BDD-rule and the edge-
count rule had only minuscule effects. Therefore, we performed experiments with
and without guided branching. The resulting running times for the ERDŐS and
GEOM graphs are given in Table 1. For the ERDŐS graphs, our method without
guided branching outperforms the approach of Balasundaram et al. [2] by one or
two orders of magnitude. With guided branching, the running time is improved
by three orders of magnitude. To our surprise, the BDD-rule (almost) does not
apply at all. The reason is that X (see “guided branching” in Section 2) is rather
big, and we apply the high-degree rule first (see Figure 1), which reduces the
graph so effectively that the condition for applying the BDD-rule is (almost)
never met. When switching off the high-degree rule, almost all reduction is then
performed by the BDD-rule. The OsterPlex algorithm [9] is mostly faster than
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Fig. 2. Left: running times of our approach for 1 ≤ s ≤ 25 on the ERDOS-98-1 and
the GEOM-1 graph. Missing data points are due to exceeded running time limit of 60
minutes. Right: running times of our approach (search tree algorithm) compared with
the running times of the BC(MIS) approach [2].

the IPBC algorithm [2], and for some instances it has running times comparable
to our approach with guided branching, while in general it is about two orders
of magnitude slower than our approach.

For the GEOM graphs, we observe similar speedups of up to three orders of
magnitude (see Table 1). Interestingly, for some instances our approach does not
branch at all; it immediately finds a solution using the data reduction rules. Since
the data reduction rules are very effective and few branchings take place, the
effect of the guided branching is not as pronounced as for the ERDŐS graphs.

Since the preceding experiments indicate that the running time of our ap-
proach does not increase too much with increasing s (recall that s = d + 1),
we performed experiments on two of the real-world graphs for 1 ≤ s ≤ 25.
The results are shown in Figure 2. For most values of s, the instances can be
solved within some seconds, only some take around one hour or more. Interest-
ingly, there is a peak of the running time around s = 19. We conclude that our
approach seems to be able to find maximum s-plexes for a wide range of the
parameter s for these types of graph.

Sanchis and DIMACS Graphs. The Sanchis generator [13] produces graphs with
known maximum clique size with a specified number of vertices n and edges m,
and a construction parameter r. As Balasundaram et al. [2], we fixed the maxi-
mum clique size at �n/5�, and the construction parameter to �0.75(n/c−1)�. The
number of edges is determined by the density d, that is, we compute the number
of edges as m := �dn(n − 1)/2�. We performed experiments for n ∈ {100, 200}
and d ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Balasundaram et al. [2] used Sanchis graphs to study how the efficiency of their
methods depends on the number of graph vertices, the density of the graph, and
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on the value s defining s-plexes. Their methods perform best on sparse graphs,
and become less effective on dense graphs. Likewise, small graphs can be solved
quickly, while larger graphs become more difficult to solve. Balasundaram et al.
[2] performed experiments with the BC(MIS) algorithm for s ∈ {1, 2}. They
observed that the case s = 2 is generally more difficult to solve than s = 1.

We observe the same general behavior as for the BC(MIS) algorithm, that is,
dense Sanchis graphs are harder to solve than sparse ones, and graphs with many
vertices are harder to solve than graphs with few vertices. We can observe that,
especially on sparse instances, our approach is about one order of magnitude
slower than the BC(MIS) algorithm (see Figure 2). However, the available data
seems to indicate that the running time of our approach increases not as quickly
with increasing density as the BC(MIS) algorithm does, but this needs to be
checked more carefully with further experimentation, also including higher values
of s. For Sanchis graphs with more vertices, there are too few instances where
the BC(MIS) algorithm gave exact results within a three-hour running time limit
in order to do a similar comparison, and likewise our approach did mostly not
terminate within that time.

Finally, we briefly report about our findings concerning instances from the
DIMACS challenge. Here, we compare with the BC(MIS) algorithm [2] and the
OsterPlex algorithm [9]. Summarizing, out of the 32 considered instances we
could solve 23 instances for s = 1 and 14 instances for s = 2, while BC(MIS)
could solve 20 instances for s = 1 and 16 instances for s = 2 within a running
time limit of three hours. For the instances that neither BC(MIS) nor our ap-
proach could solve exactly within three hours, we observe that our lower/upper
bounds seem to be worse than the ones computed by BC(MIS). Compared to
the OsterPlex algorithm, we could solve within one hour all but five instances
for s = 2, which OsterPlex can solve within that time. Summarizing, BC(MIS)
and OsterPlex are at least as good as our approach for these instances. In this
respect, it would be interesting to study whether the OsterPlex and the BC(MIS)
algorithms could be efficiently combined with ours.

4 Conclusion and Outlook

In some analogy to previous work on maximum-cardinality clique finding [1, 4],
we demonstrated that an exact combinatorial approach provides competitive
algorithms for finding maximum-cardinality s-plexes. Clearly, due to the NP-
hardness of the problem, there are limitations concerning the range of practical
feasibility. On the one hand, we believe that there is still some room for further
tuning our algorithms and implementations (which in future work also should be
compared with other approaches in an experimental study that is based on the
same platform); on the other hand, we think that at some point more restrictions
such as the one of “isolation” (see [8]) have to be imposed in order to gain
practical algorithms. Our focus was on finding s-plexes of maximum size; studies
concerning efficient approximation algorithms are left open.
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Abstract. Robustness is a property that pervades all aspects of nature.
The ability of a system to adapt to perturbations due to internal and
external agents, aging, wear, or to environmental changes is one of the
driving forces of evolution. At the molecular level, understanding the ro-
bustness of a protein has a great impact on the in-silico design of polypep-
tide chains and drugs. The chance of computationally checking the ability
of a protein to preserve its structure in the native state may lead to the
design of new compounds that can work in a living cell more effectively.
Inspired by the well known robustness analysis framework used in Elec-
tronic Design Automation, we introduce a formal definition of robustness
for proteins and a dimensionless quantity, called yield, to quantify the
robustness of a protein. Then, we introduce a new robustness-centered
protein design algorithm called Design-For-Yield. The aim of the algo-
rithm is to discover new conformations with a specific functionality and
high yield values. We present extensive characterizations of the robust-
ness properties of many peptides, proteins, and drugs. Finally, we apply
the DFY algorithm on the Crambin protein (1CRN) and on the Oxic-
itin drug (DB00107). The obtained results confirm that the algorithm is
able to discover a Crambin-like protein that is 23.61% more robust than
the wild type. Concerning the Oxicitin drug a new protein sequence and
the corresponding protein structure was discovered with an improved
robustness of 3% at the global level.

1 Introduction

The in silico design of complex systems has become an effective, fast and reliable
working flow reducing the time required for the design and manufacturing of new
systems and products. In many engineering fields, for example the Electronic
Design Automation (EDA) field, the in silico design approach is the de-facto
standard for the design of new devices and circuits [1]. In particular, compu-
tational approaches are widely applied in various production phases including
design, simulation, optimization and testing. It is important to have a measure
for estimating how robust the designed device is towards “perturbations” that
may occur during the production or working phases. For example, in EDA, a
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computational methodology, called Monte-Carlo Analysis, is widely used to pro-
vide a statistical measure of circuit robustness. The quantitative measure for the
robustness of a circuit is called the yield of the circuit. In order to minimize the
manufacturing costs, the interest is directed towards the obtainment of circuits
with a specific behaviour, that at the same time maximize the yield [2].

In general, the concept of robustness pervades all aspects of nature. An or-
ganism is said to be robust if it is able to adapt and resist to environmental
changes, to fight against internal and external agents or because its character
persists during the evolutionary process [3]. From this point of view, the notion
of persistence plays a crucial role in the definition of robustness. The persistence
of some particular properties of a system defines how robust the system is. In
particular, robustness can be seen as a measure of property persistence under
perturbations caused by changes in the system composition, system topology, or
the environment in which the system is put [3].

According to Krakauer [4], robustness is viewed differently in stability theory
because it considers multiple perturbations in multiple dimensions, instead of
focusing on a single perturbation [5]. There, the concept of persistence emerges
for various reasons not necessarily related to robust design, including constancy
of the environment, developmental constraints or evolutionary constraints.

In Biology, a system is considered robust to mutations if it continues to func-
tion after genetic changes in its parts. The concept of robustness is pervasive
on different levels of biological organization, from macromolecules to genetic
networks or to whole organisms [6]. In any case, a strict connection between
robustness and evolvability has been shown [7,8,9]. According to Kirschner and
Gerhart [10], if a system can be protected from lethal mutations, then the accu-
mulation of variability may permit it to move to a state within the same neutral
conformation, such that fewer subsequent mutations are needed to produce a
major innovation.

In the last twenty years, computational approaches have been largely applied
in biochemistry. In particular, the prediction of the three dimensional structure
of polypeptides is probably the best-known field [11,12]. Many efforts have been
put in defining effective and efficient folding algorithms [13,14,15] to computa-
tionally design new proteins. Despite the complexity of the problem, many good
approaches are available and the in silico design of new proteins [16] has become
an emerging field in drug design. From an engineering point of view, a plethora of
methods and algorithms for the design of new proteins are available but, to our
knowledge, there is no universally accepted approach to estimate, in silico, the
robustness of wild type and synthetic (computer designed) protein structures.
However, the estimation of protein robustness is a key point in protein design.
Physical mutations may occur at any stage of the synthesis process, and in any
stage of the many bio-chemical processes occurring in a living organism. Since,
in protein science, functionality follows structure, the estimation of the yield of
a protein structure is crucial to measure how well it maintains its functional-
ity under structural mutations. It should now be clear why a method to assess
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the robustness of a protein is extremely useful in the design of low toxic and
cost-effective drugs.

In the present article we draw inspiration from the current state-of-the-art
in EDA, to formally define the concept of energetic yield for proteins. Then we
introduce new statistical methods to estimate the robustness of the structure of
a protein. In particular, we define two new algorithms, the Protein Monte-Carlo
Sampling (PMCS) algorithm and the Design-for-Yield (DFY) algorithm. They
use three different methods to perturb the structure of the protein. The presented
experimental studies are focused on two goals. Firstly, we assess the effectiveness
of the methodology for finding sensitive regions and sensitive residues in proteins.
Then, we also show how the DFY algorithm is able to make a protein more robust
through the systematic mutation of faulty and sensitive residues of the structure.
This enables the design of new proteins with the same specific function but with
a more robust conformation. Finally, the DFY algorithm is applied to drug
molecules. Our experiments show that it is possible to systematically maximize,
in-silico, the robustness of these molecules.

2 Methods

A biological system is robust if it continues to function after perturbation [7].
Hence, the robustness of a system Ω is the study of the persistence of a certain
property φ of Ω under perturbations introduced by internal or external agents. In
our protocol, a perturbation is defined as a function τ = α(Ω, σ). Here α applies
a stochastic noise σ to the system Ω. The result of the perturbation is called the
trial sample, τ , while the α function is called α-perturbation (or α-analysis). We
assume that the noise is defined by a random distribution. In order to simulate
a statistically meaningful perturbation phenomenon, we generate an ensemble
T of perturbed systems. The element τ of the ensemble T is considered robust
to a perturbation (mutation) of the stochastic noise σ for a given property φ, if
the following robustness condition is verified:

ρ(Ω, τ, φ, ε) =
{

1 if | φ(Ω) − φ(τ) |≤ ε
0 otherwise

(1)

Here Ω is the reference system, φ is a property of the system, τ is a trial sam-
ple of the ensemble T , and ε is a robustness threshold. The ρ function does not
make any assumption on the property function φ, hence, the property function
is not necessarily strictly related to features and properties of the given system.
However, the property function φ implicitly assumes that the property under
investigation is quantifiable. The robustness of a system Ω in respect to a prop-
erty φ is the number of robust trials of T over the total number of trials (| T |).
In EDA, this measure is denoted as the yield of the system. Formally, we can
define our yield function Γ as follows:

Γ (Ω, T, φ, ε) =
∑

τ∈T ρ(Ω, τ, φ, ε)
|T | (2)



248 G. Nicosia and G. Stracquadanio

The function Γ (Ω, T, φ, ε) may be used to assess the yield of a general system,
and is not only restricted to proteins and drugs as in this manuscript.

It may be of interest to note that the yield does not decrease as ε values
increase. Choosing a meaningful threshold value is crucial. Although it is good
practice to set a strict threshold value, it is important not to restrict the anal-
ysis to a small set of feasible trials (in this work, feasible protein structures),
to avoid that a large quantity of plausible systems are excluded. In the EDA
domain, the threshold value is typically set by expert designers by taking into
account the manufacturing system, the physical properties of materials and the
adherence to the original design. In the area of robust protein design, the setting
of an ad-hoc ε value is not a trivial task. Setting different threshold values ac-
cording to the protein family is a plausible approach. In this work we performed
extensive computational experiments to detect general and reasonable threshold
values: 1.0 kcal/mol for local analysis (local robustness) and 5.0 kcal/mol for
global analysis (global robustness). It is important to remark that the yield of
a system is strictly related to the perturbation (the type of mutation that is
applied). We use the term α-yield to refer to the yield value of the system Ω
perturbed by the α perturbation, and the term α-analysis to indicate the whole
process assessing the robustness of the ensemble of systems generated by the
perturbation α.

We studied the thermodynamic robustness of proteins using the ECEPP/3
potential energy model, with explicit solvent terms according to the model pro-
posed by Ooi [17]. All the potential energy calculations have been conducted
using the Simple Molecular Mechanics for Proteins (SMMP) [18].

3 Algorithms for Robustness Analysis

We introduce an ad-hoc Monte-Carlo algorithm, called Protein Monte-Carlo
Sampling (PMCS), derived from classical Monte-Carlo Sampling algorithms, to
study the robustness of proteins under various molecular deformations. Following
the classical algorithms, PMCS takes a protein in input and generates n trial
conformations of the protein by randomly perturbing the protein structure in the
native state. The protein structure can be described by using angles. In particular
we use an internal coordinates representation (torsion angles). Each residue type
requires a fixed number of torsion angles to fix the 3D coordinates of all atoms.
To apply the definition of perturbation given in the previous section, we need
to define the random noise. In our experiments, we choose a classical normal
distribution. However, other distributions could also be used. We consider three
different α-analyses: a Global analysis, a Local analysis and a Residue analysis. In
the Global analysis procedure, deformations are applied to the whole structure
of the protein: all the angles of the protein are mutated. With this procedure we
aim at analyzing strong and dramatic mutations, which in practice may occur
due to changes of the cellular environment or to an error regarding the synthesis
process. The Local analysis procedure perturbs an individual’s dihedral angle in
order to find sensitive points in the structure. By identifying the most sensitive
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angle of the structure, this analysis is especially helpful for the design of de-
novo optimization algorithms based on potential energy functions. Finally, the
Residue analysis procedure perturbs all the angles of a residue. This analysis
is especially indicated for identifying key residues in the polypeptide chain. In
particular, the identification of sensitive amino acids allows us to define a new
class of algorithms that focus on yield-optimization.

The Design-for-Yield Algorithm (DFY). In this paragraph we introduce a new al-
gorithm based on the robust protein design principle, called Design-for-Yield. The
aim of the design-for-yield optimization algorithm is to discover new proteins with
a specific function with improved robustness. In particular, we are interested in
finding mutants of wild type proteins with the same functionality but greater ro-
bustness to perturbations. From a mathematical point of view, the algorithm tries
to discover structures with potential energy distribution that is well centered on
the native energy value (the nominal value in EDA terminology), and with the
tightest spread. The basic idea is to find the most sensitive regions of the struc-
ture and replace it with the other amino acids that maximize the yield. Obviously
it is possible to iteratively replace each amino acid of a sequence and calculate its
yield value. However, there are two important constraints on this protein redesign
process. Firstly, each amino acid mutation must be neutral [19]. Since we want to
preserve the functionality of the protein, it is important to consider only mutations
that preserve it. This is mandatory especially in drug-design (e.g., we do not want
to deal with high toxic drugs). Secondly, the mutant protein has to fold correctly.
This constraint can be checked by evaluating its potential energy. Positive values
imply that a protein is not in the native state. Since the functionality of a protein
is structure-dependent, it is important to check that a mutant’s structure does not
differ more than 1Å from the wild type, in terms of RMSDCα. Now we are ready
to describe the DFY algorithm consisting of two main procedures. The first proce-
dure is responsible for the evaluation of the neutrality of the mutant. In our work,
we used the SDM server (http://mordred.bioc.cam.ac.uk/∼sdm/sdm.php)[20].
SDM takes in input a wild type protein, the position to be mutated and the amino
acid to be added. The server outputs a Boolean value stating whether the mutant
is neutral or not.

The second procedure uses the PMCS algorithm to estimate the robustness
of the obtained protein. Since we are working at the residue level, we perform
a residue analysis to understand whether the mutation has made the protein’s
structure more robust. The pseudo-code of the algorithm is shown in figure 1.
The algorithm takes in input a wild type protein C and a robustness threshold
ε to be used for the residue analysis. Firstly, the algorithm performs a residue
analysis on the wild type protein to discover the most sensitive residue. Then the
algorithm mutates the protein by changing the most sensitive amino acid with
the other 19 remaining amino acids, and queries the SDM server to establish if
the mutant is neutral. If it is neutral, then it undergoes a full regularization of
the structure and it will be used for the residue analysis. Otherwise it will be
discarded. From the set of neutral mutants, the mutant with the highest residue
yield value is returned.
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1: procedure DFY(C, ε)
2: trials ← PMCSresidue(C)
3: s ← min(Y ieldresidue(trials, ε)) � returns the position of the most sensitive

residue
4: mutants ← []
5: for a ∈ Aminoacid ∧ a �= as do
6: Ma

c ← C[s] ← a � Mutate the s-th residue with the amino acid a
7: neutral ← SDM(Ma

c ) � Returns true if the mutation is neutral
8: if neutral = true then
9: trialsMa

c
← PMCSresidue(Ma

c )
10: mutants ← [Ma

c , Y ieldresidue(trials)]
11: end if
12: end for
13: return max(mutants) � Return the mutant with the highest residue yield
14: end procedure

Fig. 1. The pseudo-code of the DFY algorithm: the procedure takes in input a confor-
mation C and a robustness threshold ε, and it returns the mutant that maximize the
residue yield

Test set and parameter settings. To validate our methodology, we performed
several experiments on a large set of peptides, proteins and drugs; the bench-
mark contains a paradigmatic peptide (PDB Id. 1PLW), the three basic classes
(α, α + β, β) (PDB IDs: 1CRN, 1IGD, 1BDD, 1GAB,1E0L), a protein with two
of its mutants (PDB IDs: 1AML, 1BJB, 1BJC), the Enzyme (1ST7) and two
Drugs (PDB Ids: 1NPO, 1GCN). We generated 104 trials for the global analysis
perturbation method and (200× Na) trials (Na is the number of torsion angles
of the given protein) for the local and residue analysis methods. For each kind of
analysis, we studied the energetic distributions due to global, local and residue
mutations using energy histograms. Each histogram was computed by sampling
the energy landscape with bins of 1.0 kcal/mol and considering a radius of 1000
bins around the potential energy value of the native structure for the global
yield, and a radius of 50 bins for the local and the residue yields.

4 Results

The experiments reported in Table 1 show some interesting energetic robustness
properties. Firstly, from our global analysis using normally distributed perturba-
tions we note that the protein conformations on each dihedral angle of non-small
proteins, unfold. These kind of mutations may occur, for example, in the syn-
thesis due to a bias in the process. In these cases, a misfolded protein or a
totally different protein from the designed one may be produced. Although this
is evident for small and medium size proteins, this is not necessarily true for
peptides or proteins that are fully exposed to a solvent. For the Met-enkephalin
(PDB code 1PLW) or the Amyloid of the Alzheimer’s disease (PDB code 1AML,
1BJB and 1BJC), the protein robustness is close to the maximum even in global
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Table 1. A description of the proteins taken into account in our yield analysis. For
each protein, we report the PDB code, the number of residues, the number of angles
(Na), the corresponding class, the potential energy value of the native state (E0), and
the yield values for the three robustness analyses.

PDB & Na Class E0(kcal/mol) Analysis Yield PDB & Na Class E0(kcal/mol) Analysis Yield

global 99.80 global 2.86
1PLW(5) - -24.835 local 99.98 1AML(40) α -276.133 local 97.13

24 residue 100.00 224 residue 76.36
global 0.72 global 17.62

1CRN(46) α + β -225.219 local 64.71 1BJB(28) α -235.491 local 98.32
235 residue 14.00 161 residue 85.02

global 0.00 global 75.31
1IGD(61) α + β -584.261 local 80.75 1BJC(28) α -263.719 local 98.10

356 residue 22.54 159 residue 87.38
global 0.00 DB00107 global 95.40

1BDD(60) α -659.484 local 88.29 1NPO(9) Drug -65.783 local 99.76
357 residue 46.14 48 residue 98.06

global 0.00 DB00040 global 73.30
1GAB(53) α -419.262 local 87.34 1GCN(29) Drug -273.502 local 97.57

324 residue 42.76 175 residue 86.57
global 0.00 global 0.00

1E0L(37) β -233.022 local 87.44 1ST7(86) Enzyme -890.776 local 74.78
221 residue 43.93 527 residue 23.56

analysis (see table 1). This could be justified by the fact that small proteins
maintain a well-defined structure due to very small coil regions, which, typically,
do not connect structural motif. Instead for fully exposed proteins, it is seams
clear that the solvent force plays a central role in the definition of the structure.
From the local analysis it clearly appears that, although there are angles that are
responsible for the complete misfolding of a protein, the yield of the structure
achieves high values. From an other point of view, this kind of analysis reveals
that a protein undergoing perturbations on a single dihedral angle has a very
low probability of misfolding. However, from a de-novo point-of-view, a single
angle perturbation is not a viable way to find the native structures of protein.
To this end, mutations of more angles during the folding process seem to be
more reasonable approach. Also the residue analysis led to interesting findings.
In particular it reveals that robustness of a protein varies according to its class.
The α + β class seems to be the most sensitive to residue mutation with an
average yield of ∼ 18.27%; the α and β classes report an average yield of 44.45%
and 43.93% respectively; for the Amyloid A4 (1AML) and its mutants (1BJB
and 1BJC) the average yield is 82.92% with the mutants achieving a higher
yield than the ancestor. The box-error-plot of the residue analysis shows some
sensitive residues for the robustness of the proteins (for the 1CRN protein see
Figure 2 plot (b), (d) and (f)). In particular, there are mutations of a single
amino acid that give greater unstableness than others of many orders of magni-
tude. This amino acid can be classified as the main actor of the protein folding
process. By inspecting the Amyloids sequences, it is interesting to note that the
three proteins are identical for the first 28 residues, while the mutants are dif-
ferent on the last residues. Probably the second α helix of the 1AML, with its
surrounding coil region, makes the protein less robust. For this set of proteins,
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Fig. 2. Robustness analysis of the Crambin and of the most robust synthetic mutants.
the potential energy distribution of 1CRN obtained by the residue robustness analysis
(a); the potential energy variation of 1CRN obtained by the residue robustness analysis
(b); the potential energy distribution of 1CRN-I(16) obtained by the residue robustness
analysis (c); the potential energy variation of 1CRN-I(16) obtained by the residue
robustness analysis (d); the potential energy distribution of 1CRN-Q(17) obtained
by the residue robustness analysis (e); the potential energy variation of 1CRN-Q(17)
obtained by the residue robustness analysis (f).

the most sensitive residues have the same order of magnitude of the sensitive
residues of the other Amyloids sequences. This is in contrast with the results
reported for the α + β class (see Table 1 and Figure 3). The characterization
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Fig. 3. 1BJC, the case of a robust peptide. The potential energy histograms show that
the 1BJC mutant has strict energy spread well centered on the native potential energy
value (E0); the 1AML shows a larger spread and the histogram shows a great variability
of the potential energy of the trials.

of the robustness of proteins seems to confirm that yield analysis is an effective
approach to obtain more robust proteins. In order to validate this assumption,
we apply the DFY algorithm on the less robust protein in terms of residue yield
value, the Crambin (see Table 1). The most sensitive residue of the 1CRN is the
16th residue, a Cysteine (see Figure 2 plot (b)). We systematically change this
amino acid with the remaining 19 amino acids, and, by using the SDM server
[20], we identify three disruptive mutations (for Asparagine, Proline, Threonine)
and sixteen neutral mutations. From the set of the neutral mutants in Table 2,
the mutant with the Isoleucine at the sixteenth position, 1CRN-I(16), reports
a yield of 36.04%. This means it is more robust that the wild type 1CRN of
22.04%. The robustness of the whole structure is obvious by inspecting figure 2.
It is possible to note that the energy histogram of the mutant, 1CRN-I16, is
well centered around the native state E0 and it is smoother than the wild type
Crambin. Moreover, the yield optimization provides a structure with a lower
potential energy variation. In Table 2, we report the yield values of the mu-
tant 1CRN-I(16) (the reference structure with yield 36.04%) with the second
most sensitive residue, the Arginine at the seventeenth position, changed. For
the second time, it has been possible to improve the robustness of the protein
by mutating the second most sensitive residue, the Arginine, with a glutamine.
This mutation achieves a yield of 37.61%. Starting with a yield of 14.00% for
the wild type Crambin, we obtained a yield of 36.04% by mutating the most
sensitive residue, Cysteine (16), with Isoleucine. Then, by mutating the second
most sensitive residue Arginine (17), with the glutamine, a mutant with high
yield, similar structure (RMSDCα = 1.121Å) and same functionality has been
obtained. The designed algorithm, using a sort of learning cascade, was able to
find out a Crambin-like protein that is ∼ 23.61% more robust than the wild
type. The robustness analysis on the two drugs (see Table 1) confirms that both
are robust to all the three types of perturbations. The global yield varies from
73.30% for the 1GCN to 95.40% of the 1NPO, and higher yield values are re-
ported both for local and residue yield. In particular, for the 1NPO, we obtained
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Table 2. Yield analysis of the mutants of the Crambin, the Reference Structure (RS)
in this experiment. For each new synthetic Crambin-like protein (crambin-mutant, or
mutant) we report the mutated amino acid (aa), the type of mutation (Neutral (N),
Disease Associated (D), Unfolded (U)), the potential energy value in the native state
(E0), and the residue robustness value.

1CRN-I(16) 1CRN-Q(17)
AA Mut. E0 (kcal/mol) Yield RMSDCα (Å) AA Mut. E0 (kcal/mol) Yield RMSDCα (Å)

C RS −225.219 14.00 - R RS −388.118 36.04 1.184
A N −365.964 25.58 1.015 A D - - -
D N −399.786 34.99 1.113 C D - - -
E N −369.268 24.52 0.646 D N −322.001 25.96 1.374
F N −388.038 30.34 1.337 E D - - -
G N −364.802 32.17 0.956 F D - - -
H N −394.265 30.42 0.911 G N −350.270 32.14 1.185
I N −388.118 36.04 1.184 H U - - -
K N −394.239 30.46 1.239 I U - - -
L N −391.632 30.18 1.143 K N −343.820 23.37 1.111
M N −388.424 32.11 1.282 L U - - -
N D - - - M D - - -
P D - - - N D - - -
Q N −392.754 30.79 0.606 P D - - -
R N −418.925 35.04 1.006 Q N −350.818 37.61 1.121
S N −361.138 23.84 0.624 S U - - -
T D - - - T D - - -
V N −358.409 26.13 0.611 V N −314.261 23.37 1.370
W N −384.837 32.07 0.840 W N −344.361 30.08 1.150
Y N −397.363 27.49 1.196 Y N −283.419 27.95 1.215

Table 3. Mutation of the most sensitive residue (Glutamine, 4 residue) of 1NPO, the
Reference Structure (RS) in this experiment. For each mutant we report the mutated
amino acid (AA), the type of mutation (Neutral (N), Disease Associated (D)) the
potential energy value in the native state, and the global yield value.

AA Mut. E0 (kcal/mol) Yield RMSDCα (Å) AA Mut. E0 (kcal/mol) Yield RMSDCα (Å)

Q RS −65.783 95.40 -
A N −44.661 96.01 0.039 L N −44.843 98.03 2.305
C N −45.590 97.04 2.102 M N −45.449 97.46 2.126
D N −67.121 96.10 0.146 N N −69.997 95.47 0.145
E N −62.733 97.61 2.124 P N −53.425 97.18 0.477
F N −48.942 96.56 0.143 R N −81.161 96.98 0.145
G D - - - T N −53.020 95.70 0.034
H N −53.560 97.49 2.080 V N −44.980 97.17 2.170
I N −49.900 97.19 2.105 W N −52.621 94.57 0.369
K N −52.106 97.94 2.085 Y N −56.144 97.05 0.148

a local yield of 99.76% and a residue yield of 98.06%. The application of our DFY

algorithm to the 1NPO led to a new mutant through the replacement of the most
sensitive amino acid, a glutamine at the fourth position, with a serine 3. Since
the Oxicitin is a peptide, we do not limit our investigation to the residue analysis
but we take into account also the global one. This choice was made because in
our preliminary study it had turned out that global analysis is more meaningful
for peptides. The mutant has a global yield value of ∼ 3% better than that of
the wild type protein (Table 3). This result proves that the DFY algorithm is
also able to improve robust proteins.
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5 Conclusions

In the present research work, we introduced a computational framework and
a dimensionless quantity, the yield, for studying and improving protein robust-
ness. The extensive studies on a set of proteins and drugs show some well-defined
properties. Proteins are robust to local mutations, but become more sensitive to
residue-level or global mutations. In particular for global mutations, only small
peptides and proteins with strong secondary structure, like α-helix, maintain a
good robustness. The robustness principle was the starting point for the DFY
algorithm. DFY systematically mutates the most sensitive residue of a protein
in order to discover new mutants with the same functionality and an improved
robustness. It is important to remark that the suggested methodology is abso-
lutely general and transparent to the problem domain. The claimed universality
is due to our definitions of system, robustness and yield. We made no assump-
tion on the nature of the system, the properties or the features to be analyzed.
The robustness design principle could be applied to any kind of system defin-
able in mathematical terms, from biological and electronic circuits to algorithms.
The general applicability of this approach opens new frontiers towards in-silico
automatic design of molecular, synthetic and information processing systems.

Supplementary information. Supplementary data are available at: http://
www.dmi.unict.it/∼stracquadanio/protein-robustness.html
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vances in protein structure prediction and de novo protein design: A review. Chem-
ical Engineering Science 61(3), 966–988 (2006)

17. Ooi, T., Oobatake, M., Nemethy, G., Scheraga, H.A.: Accessible surface areas as
a measure of the thermodynamic parameters of hydration of peptides. Proc. Natl.
Acad. Sci. USA 84(10), 3086–3090 (1987)

18. Eisenmenger, F., Hansmann, U.H.E., Hayryan, S., Hu, C.K.: [SMMP] A modern
package for simulation of proteins. Computer Physics Communications 138(2), 192–
212 (2001)

19. Bemporad, F., Gsponer, J., Hopearuoho, H.I., Plakoutsi, G., Stati, G., Stefani, M.,
Taddei, N., Vendruscolo, M., Chiti, F.: Biological function in a non-native partially
folded state of a protein. EMBO J. 27(10), 1525 (2008)

20. Worth, C.L., Bickerton, G.R., Schreyer, A., Forman, J.R., Cheng, T.M., Lee, S.,
Gong, S., Burke, D.F., Blundell, T.L.: A structural bioinformatics approach to the
analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their
relation to disease. J. Bioinform. Comput. Biol. 5(6), 1297–1318 (2007)



Multi-level Algorithms
for Modularity Clustering

Andreas Noack and Randolf Rotta

Brandenburg University of Technology, 03013 Cottbus, Germany
{an,rrotta}@informatik.tu-cottbus.de

Abstract. Modularity is a widely used quality measure for graph clus-
terings. Its exact maximization is prohibitively expensive for large graphs.
Popular heuristics progressively merge clusters starting from singletons
(coarsening), and optionally improve the resulting clustering by moving
vertices between clusters (refinement). This paper experimentally com-
pares existing and new heuristics of this type with respect to their effec-
tiveness (achieved modularity) and runtime. For coarsening, it turns out
that the most widely used criterion for merging clusters (modularity in-
crease) is outperformed by other simple criteria, and that a recent multi-
step algorithm is no improvement over simple single-step coarsening for
these criteria. For refinement, a new multi-level algorithm produces sig-
nificantly better clusterings than conventional single-level algorithms. A
comparison with published benchmark results and algorithm implemen-
tations shows that combinations of coarsening and multi-level refinement
are competitive with the best algorithms in the literature.

1 Introduction

A graph clustering partitions the vertex set of a graph into disjoint subsets called
clusters. Modularity was introduced by Newman and Girvan as formalization of
the common requirement that the connections within graph clusters should be
dense, and the connections between different graph clusters should be sparse [1].
It is by far not the only quality measure for graph clusterings [2,3], but one of
the most widely used measures, and has been successfully applied for detecting
meaningful groups in a wide variety of real-world systems.

The problem of finding a clustering with maximum modularity for a given
graph is NP-hard [4], and even recent exact algorithms scale only to graphs
with a few hundred vertices [4,5,6]. In practice, modularity is almost exclusively
optimized with heuristic algorithms.

Simple yet reasonably effective are coarsening heuristics, which iteratively
merge cluster pairs starting from singleton clusters [7,8]. Various strategies for
selecting the merged cluster pairs were developed [9,10,11], but the proposals
have not been coherently organized or combined, and the published evaluation
results are largely incomparable due to the use of different (and often small)
graph collections. Therefore, Sect. 3 systematically describes major design al-
ternatives for coarsening algorithms, including two new prioritizing criteria for
merges, and Sect. 5 compares them experimentally.

J. Vahrenhold (Ed.): SEA 2009, LNCS 5526, pp. 257–268, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The clusterings produced by coarsening are often improved with refinement al-
gorithms, which iteratively reassign vertices to different clusters [12,11,13]. While
single-level refinement only moves individual vertices, multi-level refinement reas-
signs entire clusters from several levels of the coarsening hierarchy. This proved to
be very effective for minimum cut partitioning problems [14,15], but has not pre-
viously been adapted to modularity clustering. Section 4 introduces single-level
and multi-level refinement heuristics, and Sect. 5 compares them experimentally.

To demonstrate that simple combinations of coarsening and refinement are
among the most effective and efficient heuristics for modularity clustering, Sect. 6
provides a comparison with published benchmark results and implementations
of various algorithms from the literature.

2 Graph Clusterings and Modularity

Graphs and Clusterings. A graph (V, f) consist of a finite set V of vertices
and a function f : V × V → N that assigns an edge weight to each vertex pair.
For simplicity, graphs are assumed to be undirected, i.e., f(u, v) = f(v, u) for
all u, v ∈ V . The degree deg(v) of a vertex v is the total weight

∑
u∈V f(u, v) of

its edges. The degrees and weights are naturally generalized to sets of vertices,
e.g., f(V, V ) =

∑
u∈V,v∈V f(u, v). Note that deg(V ) = f(V, V ), and generally

deg(U) ≥ f(U, U) for all U ⊆ V . A graph clustering C = {C1, . . . , Ck} partitions
the vertex set V into disjoint non-empty subsets Ci.

Modularity. Modularity is a widely used quality measure for graph clusterings.
It was defined by Newman and Girvan [1,16] as

Q(C) :=
∑
C∈C

(
f(C, C)
f(V, V )

− deg(C)2

deg(V )2

)
.

Intuitively, the first term is the actual fraction of intra-cluster edge weight.
The second term specifies the expected fraction of intra-cluster edge weight in a
null model where the end-vertices of 1

2 deg(V ) edges are chosen at random, and
the probability that an end-vertex of an edge attaches to a particular vertex v is
deg(v)
deg(V ) [17]. In this null model, the edge weight f(u, v) between each vertex pair

(u, v) ∈ V 2 is binomially distributed with the expected value deg(u) deg(v)
deg(V ) .

Merging two clusters C and D increases the modularity by

∆QC,D :=
2f(C, D)
f(V, V )

− 2 deg(C)deg(D)
deg(V )2

,

and moving a vertex v from its current cluster C to another cluster D increases
the modularity by

∆Qv→D :=
2f(v, D)− 2f(v, C−v)

f(V, V )
− 2 deg(v)deg(D)− 2 deg(v)deg(C−v)

deg(V )2
.



Multi-level Algorithms for Modularity Clustering 259

3 Coarsening Algorithms

Coarsening algorithms compute clusterings by iteratively merging either one
cluster pair or several disjoint cluster pairs, as detailed in the first paragraphs,
and choose the merged cluster pairs according to certain priority criteria, which
are discussed in the final paragraph. Implementation details and runtime bounds
of the algorithms can be found in the extended version of this paper [18].

Single-Step. Single-Step coarsening starts with single-vertex clusters, and iter-
atively merges the cluster pair with the highest priority, until this merge would
decrease the modularity.

Multi-Step. To prevent extremely unbalanced cluster growth, Schuetz and
Caflisch introduced Multi-Step coarsening, which iteratively merges the l disjoint
cluster pairs with the highest priority (unless the merge decreases the modular-
ity) [11]. Single-Step coarsening corresponds to the special case of l = 1 (at least
conceptually, the implementation differs). To make the parameter l independent
of the graph size, we specify it as percentage of the number of modularity-
increasing cluster pairs, and call it merge fraction.1

Merge Prioritizers. A merge prioritizer assigns to each cluster pair (C, D) a
real number called merge priority, and thereby determines the order in which the
coarsening algorithms merge cluster pairs. Because the coarsening algorithms use
only the order of the priorities, two prioritizers can be considered as equivalent if
one can be transformed into the other by adding a constant or multiplying with
a positive constant.

The Modularity Increase (MI) ∆QC,D resulting from the merge of the clusters
C and D is an obvious and widely used merge prioritizer [7,8,11,13].

The Weight Density (WD) is defined as f(C,D)
deg(C) deg(D) , and is equivalent (in

the above sense) to ∆QC,D

deg(C) deg(D) . Unlike the classic notion of density f(C,D)
|C||D| ,

it normalizes the actual edge weight f(C, D) not with the potential unit edge
weight but with the expected edge weight (up to a constant factor) in the null
model (see Sect. 2). The weight density has not previously been used as merge
prioritizer, which is surprising given that the modularity measure was originally
introduced to formalize the requirement of intra-cluster density and inter-cluster
sparsity [1], and its optimal clusterings indeed fulfill this requirement [20,21].

The Significance (Sig), another new prioritizer, is defined as ∆QC,D√
deg(C) deg(D)

,

and is thus a natural compromise between Modularity Increase and Weight
Density. A further motivation is its relation to the (im)probability of the edge
weight f(C, D) in the null model described in Sect. 2. Under this null model,
both the expected value and the variance (at least for large deg(V )) of the edge

1 Recently, Schuetz and Caflisch provided the empirical formula lopt := α
√

f(V, V ) for
good values of l [19]. It does not outperform our formula for unweighted graphs (see
Sect. 6), and is unsuitable for weighted graphs, because scaling all edge weights with
a positive constant changes lopt but not the optimal clustering.
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weight between C and D are deg(C) deg(D)
deg(V ) , and the Significance is equivalent to

the number of standard deviations that separate the actual edge weight from
the expected edge weight.

Danon et al. (DA) observed that the Modularity Increase ∆QC,D tends to pri-
oritize pairs of clusters with large degrees, and proposed the prioritizer

∆QC,D

min(deg(C),deg(D)) to avoid this bias [9]. It equals Significance if deg(C)= deg(D),
and is another compromise between Modularity Increase and Weight Density.

Wakita and Tsurumi found that coarsening by Modularity Increase tends to
merge clusters of extremely uneven sizes [10]. To suppress unbalanced merges,
they proposed the merge prioritizer min

( size(C)
size(D) ,

size(D)
size(C)

)
∆QC,D, where size(C)

is either the number of vertices in C (prioritizer HN) or the number of other
clusters to which C is connected by an edge of positive weight (prioritizer HE).

4 Refinement Algorithms

Refinement algorithms perform a local search by iteratively moving individual
vertices to different clusters (including newly created clusters) such that the
modularity increases. This section describes three simple variants of greedy re-
finement, and proposes, for the first time in modularity clustering, to apply
refinement on more than one level of the coarsening hierarchy. Excluded from
consideration are algorithms with several tunable parameters or explicit ran-
domness, like simulated annealing [20,22,23] or extremal optimization [24].

Complete Greedy. Complete Greedy refinement repeatedly performs the best
vertex move, until no further modularity-increasing vertex moves are possible.
Here the best vertex move is a move with the largest modularity increase ∆Qv→D

over all vertices v and all target clusters D.

FastGreedy. FastGreedy refinement repeatedly iterates throughall vertices and
moves each vertex to its best cluster, until no improvement is found for any vertex.
It has been previously proposed by Schuetz and Caflisch [11] and Ye et al. [13].

Adapted Kernighan-Lin. Kernighan-Lin refinement extends Complete Gree-
dy refinement with a basic capability to escape local maxima. The algorithm was
originally proposed by Kernighan and Lin for minimum cut partitioning [25], and
was adapted to modularity clustering by Newman [12] (though with a limitation
to two clusters). In its inner loop, the algorithm iteratively performs the best ver-
tex move, with the restriction that each vertex is moved only once, but without
the restriction that each move must increase the modularity. After all vertices
have been moved, the inner loop is restarted from the best found clustering.
Preliminary experiments indicated that it is much more efficient and rarely less
effective to abort the inner loop when the best found clustering has not improved
in the last k := 10 log2 |V | vertex moves [26].
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Multi-Level Refinement. The refinement algorithms in the previous para-
graphs are unlikely to move an entire group of densely interconnected vertices
to another cluster, because this would require a series of sharply modularity-
decreasing vertex moves. However, such a vertex group may well have been
merged into a single cluster at some stage of the coarsening, and thus can be
easily reassigned by moving entire clusters of this coarsening level, instead of
individual vertices. This is the basic idea of multi-level refinement, which has al-
ready proved to be very effective for minimum cut partitioning problems [14,15].

As a prerequisite for Multi-Level refinement, intermediate results of the coars-
ening algorithm are stored as coarsening levels. Starting with the initial single-
ton clusters, a clustering is recorded as coarsening level whenever the number of
clusters has decreased by a certain percentage since the previous level; this per-
centage is provided as a parameter called reduction factor. Each coarsening level
is considered as a graph where each cluster at the respective state of coarsening
is collapsed into a single vertex. The refinement algorithm (e.g., any algorithm
from the previous paragraphs) is applied successively to every coarsening level,
from the coarsest level to the original graph. The conventional Single-Level re-
finement, which executes a refinement algorithm only on the original graph, is
the special case of Multi-Level refinement with a reduction factor of 100%.

Several recent algorithms for modularity clustering are related to Multi-Level
refinement, but differ in crucial respects. Djidjev’s method is not itself a multi-
level algorithm, but a divisive method built on an existing multi-level algorithm
for minimum cut partitioning [27]. Blondel et al. use local search on multiple
levels to coarsen graphs, but do not refine the results of the coarsening [28]. Ye
et al.’s algorithm performs local search on multiple coarsening levels, but only
moves vertices of the original graph instead of coarse vertices (clusters) [13].

5 Experiments

This section experimentally compares the effectiveness (achieved modularity)
and efficiency (runtime) of the heuristics in the previous sections.

Setup. The heuristics were implemented in C++ and compiled with GCC 4.2.3.
The source code is available at www.informatik.tu-cottbus.de/~rrotta/.

To compare the effectiveness of the heuristics, the mean modularity over a
fixed set of graphs is measured; higher means indicate more effective algorithms.
(Thus only the relative values of the means are interpreted, the absolute values
are not intended to be meaningful.) Generated graphs are not used because they
do not necessarily permit generalizations to graphs from real applications. In-
stead the graph set contains 58 real-world graphs from various sources listed in
the extended version [18]. The available graphs were classified by their applica-
tion domain, and graphs of diverse size that fairly represent all major domains
were selected, with a preference for common benchmarks like Zachary’s karate
club network [29]. The graphs range from a few to 75k vertices and 352k edges.

All runtimes were measured on a 3.00GHz Intel Pentium 4 processor with
1GB main memory, and exclude the time required for reading the graph.

www.informatik.tu-cottbus.de/~rrotta/
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Fig. 1. Mean modularity on all graphs (left) and runtime on the graph ‘DIC28 main’
(right) by merge fraction and merge prioritizer

Coarsening Algorithms. Figure 1 compares the merge prioritizers for Single-
Step coarsening (represented by a merge fraction of 0%) and Multi-Step
coarsening with merge fractions of 2%, 5%, 10%, 20%, 50%, and 100%. No
refinement was used. The relative runtimes shown for the graph ‘DIC28 main’
are typical for larger graphs.

Concerning the merge prioritizers, Wakita’s HE and HN are much less effective
than the others, and not more (usually even less) efficient.

Concerning the algorithms, Multi-Step coarsening is generally less effective
and less efficient than the simpler Single-Step coarsening. Only for the Mod-
ularity Increase prioritizer, Multi-Step coarsening with merge fractions of 2%
and 5% is slightly more effective, but still similar to Single-Step coarsening with
Danon and Significance. Apparently the other merge prioritizers do not benefit
from Multi-Step’s tendency to balance cluster sizes because, unlike Modularity
Increase, they have no strong bias towards merging large clusters.

Refinement Algorithms. Figure 2 compares the refinement algorithms for
Single-Level refinement (reduction factor 100%) and Multi-Level refinement with
reduction factors of 5%, 10%, 20%, and 50%. As coarsener the Single-Step al-
gorithm with the Significance prioritizer was chosen, because it proved to be
effective and efficient in the previous paragraph.

Multi-Level refinement with a reduction factor of 50% turns out to be more
effective than Single-Level refinement, and similarly efficient. Reduction factors
below 50% do not considerably improve the modularity, but significantly increase
the runtime for Fast Greedy.

Fast Greedy refinement is about as effective as Complete Greedy, and just
slightly less effective than Kernighan-Lin, but much faster.

Combining Coarsening and Refinement. Concerning Single-Level vs.
Multi-Level refinement, Fig. 3 shows that Multi-Level refinement is consistently
more effective for all merge prioritizers.
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m
ea

n 
m

od
ul

ar
ity

0.
54

0.
56

0.
58

S
S

−
H

E
+

S
L

S
S

−
H

E
+

M
L

S
S

−
H

N
+

S
L

S
S

−
H

N
+

M
L

S
S

−
M

I+
S

L

S
S

−
M

I+
M

L

S
S

−
D

A
+

S
L

S
S

−
D

A
+

M
L

S
S

−
W

D
+

S
L

S
S

−
W

D
+

M
L

S
S

−
S

ig
+

S
L

S
S

−
S

ig
+

M
L

Fast Greedy
no refinement

Fig. 3. Mean modularity by merge prioritizer. Left bars for reduction factor 100%
(Single-Level), right bars 50% (Multi-Level). Both use Single-Step coarsening.

Concerning Single-Step vs. Multi-Step coarsening, Fig. 4 shows that for the
best merge prioritizers, both are similarly effective with Multi-Level refinement,
while Single-Step coarsening is more effective when excluding refinement (as de-
tailed in Fig. 1). Clearly, Multi-Level refinement benefits from the uniform cluster
growth enforced by Multi-Step coarsening. Overall, Single-Step coarsening is still
preferable because of its greater simplicity and efficiency.

Concerning the merge prioritizers, Figs. 3 and 4 show that Modularity Increase
is only competitive without refinement (ignoring efficiency), and Weight Density
is only competitive with Multi-Level refinement. Here Multi-Level refinement

m
ea

n 
m

od
ul

ar
ity

0.
54

0.
56

0.
58

M
S

5−
H

E
+

M
L

S
S

−
H

E
+

M
L

M
S

5−
H

N
+

M
L

S
S

−
H

N
+

M
L

M
S

5−
M

I+
M

L

S
S

−
M

I+
M

L

M
S

5−
D

A
+

M
L

S
S

−
D

A
+

M
L

M
S

5−
W

D
+

M
L

S
S

−
W

D
+

M
L

M
S

5−
S

ig
+

M
L

S
S

−
S

ig
+

M
L

Fast Greedy
no refinement

Fig. 4. Mean modularity by merge prioritizer. Left bars show merge fraction 5% (Multi-
Step), right bars 0% (Single-Step). Both use reduction factor 50%.



264 A. Noack and R. Rotta

benefits from the bias of Weight Density towards uniform cluster growth, and
suffers from the bias of Modularity Increase towards nonuniform cluster growth.
Danon and Significance are effective with and without refinement.

Conclusions. The best-performing algorithm is Single-Step coarsening with
Danon or Significance as merge prioritizer combined with Multi-Level Fast Gree-
dy refinement (or Multi-Level Kernighan-Lin, if efficiency is no concern).

With the best merge prioritizers, Single-Step coarsening outperformed the
more complex Multi-Step coarsening. The Danon and Significance merge priori-
tizers clearly outperformed the much more widely used Modularity Increase (es-
pecially with refinement, and considering efficiency) and Wakita’s prioritizers.
Finally, the newly proposed Multi-Level refinement consistently outperformed
the popular Single-Level refinement.

6 Related Algorithms

An exhaustive review and comparison of the numerous algorithms for modu-
larity clustering is beyond the scope of this paper; the purpose of this section
is to provide evidence that our recommended heuristic – Single-Step coarsen-
ing by Significance with Multi-Level Fast Greedy refinement (SS-Sig+ML) – is
competitive with the best existing methods.

Basic Approaches. Algorithms for modularity clustering can be categorized
into the following four types: Subdivision heuristics try to divide the graph, for
example by iteratively removing edges [1] or by recursively splitting the graph us-
ing eigenvectors [12]. Coarsening (or agglomeration) heuristics iteratively merge
clusters starting from singletons. Cluster pairs can be selected based on ran-
dom walks [30,31], increase of modularity [8,11,13], or other criteria [10,9,32].
Local search heuristics move vertices between clusters, with Kernighan-Lin-style
and greedy search being the most prominent examples. Other approaches in-
clude Tabu Search [33], Extremal Optimization [24], and Simulated Anneal-
ing [20,22,23]. Finally, mathematical programming approaches model modularity
maximization as a linear or quadratic programming problem which can be solved
with existing software packages [5,4,6].

Published Modularity Values. Table 1 compares modularity values from
various publications with the results of our heuristic SS-Sig+ML. Mathematical
programming approaches consistently find better clusterings than SS-Sig+ML,
though by a very small margin; however, they are computationally much more
expensive and do not scale to large graphs [5,6]. Compared to the best algorithms
in the three other classes, the results of SS-Sig+ML are very competitive, and
for large graphs significantly better.

Published Implementations. In order to directly compare our heuristics with
existing algorithms, a range of publicly available implementations was retrieved
from authors’ websites and through the igraph library of Csárdi and Nepusz [44].
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Table 1. Best published modularity values for four algorithm classes, compared to the
modularity values for our heuristic SS-Sig+ML. Where possible, missing values were
substituted with results from published implementations, which are shown in italics.

graph size subdivision coarsening local search math prog SS+ML
karate [29] 34 [12] .419 [13] .4198 [24] .4188 [5] .4197 .41978
dolphins [34] 62 [12] .4893 [30] .5171 [20] .5285 [6] .5285 .52760
polBooks [35] 105 [12] .3992 [19] .5269 [28] .5204 [5] .5272 .52693
afootball [36] 115 [37] .602 [13] .605 [28] .6045 [5] .6046 .60028
jazz [38] 198 [12] .442 [9] .4409 [24] .4452 [5] .445 .44467
celeg metab [24] 453 [12] .435 [11] .450 [24] .4342 [5] .450 .44607
email [39] 1133 [12] .572 [9] .5569 [24] .5738 [5] .579 .57744
Erdos02 [40] 6927 [12] .5969 [31] .6817 [20] .7094 .71626
PGP main [41] 11k [12] .855 [9] .7462 [24] .8459 .88418
cmat03 main [42] 28k [12] .723 [13] .761 [24] .6790 .81432
ND edu [43] 325k [8] .927 [28] .935 .95090
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Fig. 5. Mean modularities from the published implementations and our recommended
heuristic SS-Sig+ML on unweighted graphs

Because some of these implementations cannot process graphs with weighted
edges, only 23 of the 58 graphs in the graph collection could be used in the
experiments. In some of these graphs, negligible differences in edge weights and
small amounts of self-edges were removed.

The included coarsening heuristics are the fast greedy joining of Clauset et
al. [8], the algorithms of Wakita and Tsurumi [10], the recent multi-step greedy
algorithm of Schuetz and Caflisch [11] (with parameter l =0.25

√
f(V, V )/2, as

recommended by Schuetz and Caflisch in [19]), and the algorithm of Pons and
Latapy [30] based on short random walks (here of length 4, the default value).
The examined local search heuristics are simulated annealing of Reichardt and
Bornholdt [20] (here with at most 120 clusters) and the recent hierarchical al-
gorithm of Blondel et al. [28].

The results are shown in Figs. 5 and 6. Compared to our recommended heuris-
tic, Single-Step coarsening by Significance with Multi-Level Fast Greedy refine-
ment (SS-Sig+ML), only Reichardt and Bornholdt’s implementation produces
clusterings of similarly high modularity, but it is much slower, and only Blondel
et al.’s implementation is faster, but it produces worse clusterings.
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A minor problem raised in Sect. 3 is the choice of the parameter l for Multi-
Step coarsening. Schuetz and Caflisch’s implementation with their recommended
choice l = 0.25

√
f(V, V )/2 and our corresponding implementation MS5-MI+SL

with a merge fraction of 5% perform very similarly, with mean modularities of
0.6037 and 0.6069. Thus the difference in the formulas for the parameter l does
not affect the conclusions about Multi-Step coarsening, in particular its inferi-
ority to the simpler and parameter-free Single-Step coarsening by Significance.

7 Summary and Conclusion

Various coarsening and refinement heuristics for modularity clustering can be
organized into a design space with four dimensions: merge fraction (including
Single-Step and Multi-Step coarsening), merge prioritizer, refinement algorithm,
and reduction factor (including Single-Level and Multi-Level refinement). In an
experimental comparison of achieved modularities and required runtimes, some
widely used or rather complex design choices – for example, Multi-Step coarsen-
ing, merge prioritizationby Modularity Increase, or Single-Level refinement – were
outperformed by newly proposed or simpler alternatives – particularly Single-Step
coarsening by Significance with Multi-Level Fast Greedy refinement. In a compari-
son with published implementations and benchmark results, this heuristic required
less runtime than algorithms that achieved similar modularities, and achieved
higher modularities than algorithms with similar or better runtimes.
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Abstract. Well-known measures of presortedness, among others, are
the number of inversions needed to sort the input sequence, or the mini-
mal number of blocks of consecutive elements that remain as such in the
sorted sequence. In this paper we study the problem of possible com-
position of measures. For example, after determining the blocks in an
input sequence, it is meaningful to measure how many inversions of the
blocks are needed to finally sort the sequence. With composite measures
in mind we introduce the idea of applying bulk insertions to improve
adaptive binary-tree (avl) sorting; this is done by combining local in-
sertion sort with bulk-insertion methods. We show that bulk-insertion
sort is optimally adaptive with respect to the number of bulks and with
respect to the number of inversions in the original input. As to compos-
ite measures, we define a new measure that tells how many inversions
are needed when the extracted bulks form the input. Bulk-insertion sort
is shown to be adaptive with respect to this measure. Our experiments
show that applying bulk insertion in avl-tree sorting considerably re-
duces the number of comparisons and time needed to sort nearly sorted
sequences.

1 Introduction

Adaptive sorting, or the sorting of nearly sorted sequences, is the problem of
sorting a sequence of values that is already “almost” in sorted order according
to some intuitive notion of sortedness [1, 2]. One of the main measures of the
presortedness is the number of pairs of elements in the input that are in wrong
order (number of inversions, Inv). The aim is to produce an algorithm that is
more efficient than a non-adaptive sorting algorithm when the input is nearly
sorted. A sorting algorithm is said to be optimally adaptive with respect to a
presortedness measure if it is within a constant factor of the lower bound. For
example, optimality with respect to Inv (Inv-optimality) is implied by the time
bound O(n log(Inv/n)), where n denotes the number of keys in the input.

Many optimally adaptive sorting methods are based on using a search tree
[3,4,5,6,7,8] where inputs are inserted one by one. This paper introduces the idea
of applying bulk insertions [9,10] to improve adaptive binary-tree (avl) sorting;
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this is done by combining local insertion sort with bulk-insertion methods. Once
the location for inserting the next element of the input is decided in the AVL
tree using a finger structure [11,12,13,3,5] a bulk of consecutive elements that fit
in this insertion point is extracted from the input and then inserted using bulk
insertion. We show that bulk-insertion sort is optimally adaptive with respect to
the number of bulks and with respect to the number of inversions in the original
input.

As to a composite measure, let Bulk(X) denote the sequence of the last el-
ements of the bulks in input X . (For a single measure, Bulk is defined as the
number of bulks.) The composite mapping Inv ◦ Bulk now measures the num-
ber of inversions needed to sort the bulks extracted from the input sequence.
Our main result is that bulk-insertion sorting has worst-case time complexity
O(n + k log min{k, 1 + Inv(Bulk(X))}), where X is a sequence of length n and
k denotes the number of bulks. This means that bulk-insertion sorting indeed is
adaptive with respect to Inv ◦ Bulk, but we cannot prove optimality.

In the experimental work our aim was not only to demonstrate that using bulk
insertion in binary-tree adaptive sorting is beneficial, but to show up to which
level of disorder bulk operations perform better than individual insertions. Our
results show that up to about 105 inversions in integer-key inputs of length
about 107 single-insertion sorting was about six times slower than bulk-insertion
sorting, and for larger numbers of inversions, when the average bulk contained
only a few keys, single insertion was slightly faster. For string keys the speed
difference for small amounts of inversions was smaller.

We also compared our avl-tree sorting algorithms with several other adap-
tive and non-adaptive algorithms (see Section 5). Except for Insertion sort, our
bulk-insertion-based algorithm was the best for up to 105 inversions, and up to
104 inversions the next best was 60% slower. Insertion sort with worst case time
bound O(n2) is admittedly fast for small amounts of inversions, but it is intol-
erably slow for larger amounts of inversions. Our bulk-insertion sort is tolerably
fast for all inputs, and is thus a reasonable choice for sorting when most of the
inputs are nearly sorted, but inputs completely in disorder may exist.

2 Bulk-Insertion Sort

A sequence X = 〈x1, . . . , xn〉 is divided into bulks as follows. (For simplicity, we
assume, as usual, that all keys in X are pairwise different.)

(i) The first bulk b1 is the longest ascending or descending prefix of X .
(ii) Let X = Y Z such that Y contains the keys of the first i bulks in sorted order.

The (i+1)th bulk of X is the longest ascending or descending prefix Z ′ of Z
such that all keys in Z ′ are between two consecutive keys in Y or they are
all smaller (resp. larger) than the smallest (resp. largest) key in Y .

Figure 1 gives an example of how bulks are found.
Clearly, any balanced search-tree structure can be used in finding bulks effi-

ciently and as a basis of bulk-insertion sort. We use a variation of the avl-tree
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4, 8, 9, 20, 22, 23︸ ︷︷ ︸, 7, 6, 5︸ ︷︷ ︸, 3, 2, 1︸ ︷︷ ︸, 19, 14, 13, 10︸ ︷︷ ︸, 15, 16, 17, 18︸ ︷︷ ︸, 21,︸︷︷︸ 12, 11︸ ︷︷ ︸
Fig. 1. Example of bulks created in bulk-insertion sort. Bulk-insertion sort uses 7 bulk
insertions to sort this sequence of 23 keys.

bulk-insertion-sort(X[1..n]):
1: k ← 1
2: P ← empty binary saved path
3: T ← empty avl tree
4: while k ≤ n do
5: Search bottom-up in the binary saved path P for the lowest position P [s] with

key(P [s]) < X[k] < key(ip(P [s])) or key(P [s]) > X[k] > key(ip(P [s])).
6: Search for X[k] in T starting from P [s]. Save this path to P [s + 1..d].
7: Find the longest ascending or descending sequence of keys X[k..l], where

key(P [d]) < X[i] < key(ip(P [d])) or key(P [d]) > X[i] > key(ip(P [d])) for all
i ∈ [k..l].

8: Bulk insert X[k..l] in T at the position pointed by P [d].
9: k ← l + 1

10: end while
11: return T

Fig. 2. The bulk-insertion sorting algorithm

bulk-insertion algorithm given in [9]. We only give an overview of the algorithm
here; details can be found in [9]. We use an internal, height-valued avl tree (i.e.,
each node stores the height of the subtree below it, as opposed to the balance
factor present in a more typical avl tree), since the bulk-insertion algorithm is
much simpler to implement using height values.

An outline of our bulk-insertion avl-tree sorting algorithm is given in
Figure 2. The algorithm maintains the current search path, called the binary
saved path P , with each node p storing its indirect parent. By the indirect par-
ent ip(p) of p we mean the lowest node above p, whose key is larger (resp.
smaller) than the key key(p) of p, if the key of the parent of p is smaller (resp.
larger) than key(p). Thus node p covers key X [k], i.e., the place of X [k] is found
in the subtree with root p, if key(p) < X [k] < key(ip(p)) (p is the left child of its
parent) or key(p) > X [k] > key(ip(p)) (p is the right child of its parent).

To reduce the number of comparisons, key X [k] is compared with the indirect
parent first, because if this comparison fails, we can skip the saved path entries
between the direct and indirect parent. None of these entries can cover X [k]
because of the failed comparison with the indirect parent.

We have:

Theorem 1. Using the binary saved path P , the lowest entry in P that covers
key X [k] can be found using at most s comparisons, where s is the number of
entries in the path.

In finding a bulk of m new keys (line 7 of the algorithm of Figure 2) we must
check that the keys are ascending (resp. descending) and that they are smaller
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(resp. larger) than the current maximum (resp. minimum). To ensure that the
next key is ascending (resp. descending) one comparison per key is required, but
the check with the maximum (resp. minimum) can be performed by exponential
and binary search [5]. Here, however, we must take care that ascending (resp.
descending) checking will not be done more than once for any pair of consecutive
keys.

We have:

Theorem 2. Assume that the sequence X = 〈x1, x2, . . . , xn〉, n ≥ 1, is divided
into k bulks of sizes m1, m2, . . . , mk. The number of comparisons required for
finding the bulks (without finger searches) is n + 2

∑k
i=1 log2 mi.

To insert a bulk of m new keys into a given position in an avl tree T , bulk
insertion first forms a new avl tree S (called an update tree) from the new keys,
and places its root in the given position. A balanced update tree is created by
placing the middle (m/2th) key in the root of S and proceeding recursively.
Finally, the tree is rebalanced on the path P from the root of S to the root of
the original tree T . This is done using rotations that first move S upwards in T
with O(log m) steps, until the height of the root S is close to the height of its
neighbors. Some final rotations are needed close to the root of S to bring the
tree in balance.

The following theorem is implied by Theorem 4 of [9].

Theorem 3. Assume that bulk insertions are performed into an initially empty
avl tree. The amortized rebalancing complexity of a bulk insertion with bulk
size m is O(log m).

Theorem 3 states the amortized time bound for rebalancing after bulk insertion;
creating the bulk with m nodes still requires O(m) time. However, in the case
where bulk-insertion sort produces mainly large bulks, the sorting algorithm does
not actually visit most of the nodes in each bulk, so creating all of the nodes is
not necessary.

We use this observation to reduce the running time of bulk-insertion sort
as follows, assuming that keys X [1..n] are to be sorted. Instead of creating an
update tree from keys X [i] to X [i+m−1], we create a single special placeholder
node that contains the values i and m instead of the normal key and child
pointers.1 We place this node, called a lazy node and the bulk pointed by a
lazy bulk, in place of the root of the update tree. Later, whenever a lazy node p
is reached by rebalancing or by searching for the position of a new bulk going
inside the lazy bulk, p is expanded, in constant time, to a normal node (with
key X [i + �m/2�]) with two new lazy nodes as its children (one with keys X [i]
to X [i + �m/2�− 1], and the other with keys X [i + �m/2�+ 1] to X [i + m− 1]).

1 Our implementation uses a special, otherwise unused, address for the left child
pointer to mark such a placeholder node. The right child pointer and key are used
to store m and a pointer to X[i], as well as a flag that notes whether the sequence
is ascending or descending.
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3 Adaptivity and Complexity

By single-insertion (avl-tree) sort we refer to local insertion sort using avl

trees, when single keys instead of bulks are inserted using the binary saved
path strategy. The binary saved path is not a full-fledged finger: it does not use
worst-case O(log d) time to move a distance d in the tree. It is thus not optimal
with respect to logDist or Loc [14, 2], which are two equivalent measures of
sortedness used to characterize local insertion sort using a finger tree. However,
the binary saved path is optimal with respect to a simpler measure, the number
of inversions:

Theorem 4. Single-insertion avl-tree sort implemented using the binary saved
path takes time O(n log(1 + Inv/n)), which is optimal with respect to Inv (the
number of inversions).

Proof. It is known that an approach that keeps the finger always pointing to
the largest key in the tree is Inv -optimal (see [6]). Consider an insertion to a
position x elements away from the largest key l, and assume that the previous
insertion was one at a position p elements away from the largest key. Moving the
binary saved path from p to x costs at most as much as moving a finger from
p to l and from l to x (the time complexity is O(log p + log x)). Therefore, the
binary-saved-path approach implies M -optimality for any measure M for which
the “finger at the largest key” approach is M -optimal. ��

We note that the other avl-tree-based sorting algorithms [4, 6, 7] are also Inv -
optimal but not logDist - or Loc-optimal.

Next consider the bulk-insertion sorting algorithm described in the previous
section. Theorem 4 immediately implies (because bulk-insertion sorting does at
most the same amount of work as single-insertion sorting):

Theorem 5. The bulk-insertion avl-tree sorting algorithm implemented by the
binary saved path has worst-case time complexity O(n log(1 + Inv/n)), where
n is the length of the input X and Inv the number of inversions in X. Thus
bulk-insertion sorting is Inv-optimal.

However, although O(n log(1 + Inv/n)) is the worst-case complexity reached for
n = k where k denotes the number of bulks, it would be more interesting to
analyze the complexity in terms of k.

Consider the adaptivity measure Block [2,15], which is defined as the number
of blocks of consecutive keys in the original input that are present as such in the
sorted sequence. In other words, Block is the number of keys in an input that
receive a new successor in sorted order. For instance, the sequence of Figure 1
consists of the blocks {8, 9}, {22, 23}, {15, 16, 17, 18}, and all other elements as
one-element blocks, for a total of 18 blocks.

Let k = Block(X) for input X of n keys. Carlsson et al. [15] show that a sorting
algorithm is optimal with respect to Block if it has worst-case time complexity
O(n+k log k). (See [1,2,3] for definitions of an adaptivity measure and its lower
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bound. In brief, a measure of presortedness m(X) maps a sequence X to a
non-negative integer such that m(X) < m(Y ) if X is “closer” to being sorted
than Y [2].)

We define a new measure called Bulk as the number of bulks in input X of
n keys. The measure Bulk is a natural generalization of Block , which in turn
generalizes two well-known measures, namely Rem, the number of elements that
have to be removed from a sequence in order to leave a sorted sequence, and
Exc, the minimum number of arbitrary exchanges needed to bring a sequence into
sorted order [3, 15]. Clearly, Bulk(X) ≤ Block(X) for any input X of length n,
since each bulk consists of one or more blocks.

Lemma 1. Let k = Bulk(X) for sequence X of length n. The lower bound for
measure Bulk is

Ω(n + k log k) .

Proof. Carlsson et al. [15] show that if, for some measures M1 and M2, M1(X) ≤
M2(X) for all X , then the lower bound for M2 is also a lower bound for M1.
Thus, as the lower bound for Block is Ω(n+k log k) [15], we conclude the lemma.

��

Lemma 2. Let k = Bulk(X) for sequence X of length n. The time complexity
of bulk-insertion avl-tree sorting is O(n + k log(1 + Inv/n)).

Proof. In the bulk-insertion algorithm the next key to be inserted is searched for
using the binary saved path only once for each bulk. Thus the time consumed
by the finger searches is altogether O(k log(1 + Inv/n)). By Theorems 2 and 3
all other tasks of the algorithm altogether take time O(n). Thus we conclude the
lemma. ��

Theorem 6. Bulk-insertion avl-tree sorting is optimal with respect to the mea-
sure Bulk.

Proof. By Lemma 1 it is enough to show that the worst-case time complexity
of bulk-insertion sorting is O(n + k log k), where k = Bulk(X). By Lemma 2 we
have the bound O(n + k log(1 + Inv/n)).

Since 1 ≤ k ≤ n, it follows that n = ck, where 1 ≤ c ≤ n. Then

k log(1 + Inv/n) ≤ n

c
log(1 + ck)

≤ n

c
log(2ck) =

n

c
log 2c +

n

c
log k

≤ 2n + k log k .

Thus O(n+k log(1+Inv/n)) = O(n+k log k), and we conclude the theorem. ��

4 Composite Measures

Above we have considered single measures of adaptivity such as Inv , Block and
Bulk . However, it would be tempting to compose these measures suitably; that
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is, why couldn’t we first apply the measure Bulk or Block and then the measure
Inv? It would be natural to think that input X is first divided into bulks or
blocks, and then measure how many inversions bulks or blocks require (in terms
of their last elements, for example) before yielding a sorted sequence. Such a
composite measure Inv ◦Block or Inv ◦Bulk would be natural, because applying
only Block , for instance, means that any optimal algorithm needs to sort the
blocks in O(k log k) time, where k is the number of blocks. The time bound
O(k log k) means that there is no adaptivity present in terms of the order of the
blocks.

When defining composite measures Inv ◦ Block and Inv ◦ Bulk we need to
change the mappings Block and Bulk slightly. Instead of mapping an integer
sequence to the number of elements in the sequence, Block (resp. Bulk) now
maps a sequence X of n elements to a sequence

xi1xi2 . . . xik
,

where each xij is the last element of the jth block (resp. bulk) in X . In this
way Inv ◦Block and Inv ◦Bulk are correctly defined as the number of inversions
needed for blocks or bulks in yielding a sorted sequence.

The lower bound for sorting sequences Y containing the last elements of bulks
when measuring by Inv cannot be less than

Ω(n + k log(1 + Inv(Y )/k)) ,

where k denotes the number of bulks (or elements in Y ) – this is because of
the lower bound for Inv -optimality. The measure Inv ◦ Bulk thus has the lower
bound Ω(n + k log(1 + Inv(Bulk(X))/k)).

We can prove the following upper bound for bulk-insertion sorting.

Theorem 7. For sequence X of length n, let k denote the length of Bulk(X)
when defined as a sequence. Then the time complexity of bulk-insertion sort is

O(n + k log(1 + Inv(Bulk(X)))) .

Proof. By Lemma 2 and its proof we conclude that the work with more cost
than O(n) comes from finger searches. Moreover, we see that finger searches are
required only k times. For proving the theorem we estimate the work done by
these searches.

By Theorem 4 and its proof we conclude that it is enough to estimate finger
searches when the finger is kept pointing to the largest key in the underlying
avl tree.

Denote by dj , j = 1, . . . , k, the distance of the first key x of the jth bulk
from the largest key in the current tree (containing all keys of the first j − 1
bulks). Moreover, let bj be the number of keys in Bulk(X) that appear between
the largest key and the place of x in the current tree. Then

k∑
j=1

dj ≤
k∑

j=1

bj · n = Inv(Bulk(X)) · n .
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The execution time of the algorithm is O(n +
∑k

j=1(1 + log(dj + 1))). Fur-

ther, using the reasoning from [3,4,5] and the above estimation for
∑k

j=1 dj , we
conclude:

k∑
j=1

1 + log(dj + 1) = k + log
k∏

j=1

(dj + 1) = n + k log
k∏

j=1

(dj + 1)1/k

≤ n + k log(
k∑

j=1

(dj + 1)/k)

≤ n + k log((1 + Inv(Bulk(X))) · n/k) .

By substituting here ck = n, where 1 ≤ c ≤ n, we obtain:

n + k log((1 + Inv(Bulk(X))) · n/k) = n + k log((1 + Inv(Bulk(X))) · c)
= n + k log(1 + Inv(Bulk(X))) + k log c

≤ 2n + k log(1 + Inv(Bulk(X))) .

Thus O(n+
∑k

j=1(1+ log(dj +1))) = O(n+k log(1+ Inv(Bulk(X)))) as desired.
��

Theorem 7 and Theorem 6 imply:

Theorem 8. The time complexity of bulk-insertion sort is

O(n + k log min{k, 1 + Inv(Bulk(X))}) .

Theorem 8 can be interpreted such that bulk-insertion sort indeed is adaptive
with respect to Inv◦Bulk. But Theorem 8 does not imply optimality with respect
to Inv ◦Bulk, since it does not match the above lower bound of Ω(n + k log(1 +
Inv(Bulk(X))/k)).

5 Experiments

We implemented the bulk-insertion avl-tree sorting algorithm, as well as
avl-tree sorting without bulk insertion but using the binary saved path.2 We
compared the performance to the Inv -optimal algorithms Splaysort [16] and
Splitsort [17]. Splitsort is known to be efficient especially in terms of running time
[18,1] and Splaysort in the number of comparisons [16,18]. We also compared to
standard Quicksort, Insertion sort (see [5], for example), and the qsort function
in the C library, which we found to be Merge sort.3 We used the determinis-
tic Quicksort from [19, Figure 1], changed to always use the middle element as
2 Our implementation was written in C, and ran under gnu/Linux on an amd

Athlon xp at 2167 MHz. Each experiment was repeated 10 times using newly gen-
erated input; we report averages.

3 The source code of the qsort function in the C library we used (the gnu C library
version 2.3.6) reveals that it uses Merge sort, unless there is a problem allocating
memory for the needed additional O(n) space, in which case it falls back to an
in-place Quicksort implementation. We avoided the fallback in our experiments.
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the pivot – in [19], this variation had the smallest number of comparisons when
the number of inversions was small. We also tried the textbook optimizations
of median-of-3 partitioning and fallback to Insertion sort for n ≤ 10, but this
improved the performance only very slightly.

We used the Splaysort implementation from [16]. For our implementation of
Splitsort, we tried the space optimization in [17] which uses only n pointers of
extra space. However, using 2n extra pointers to avoid copying data back and
forth in the various phases of the Splitsort algorithm was much faster, so we
only report running times of the latter.

To obtain comparable running times, we always sorted arrays. That is, when
using the tree-based algorithms (Splaysort, avl single ins. and avl bulk ins.),
we always wrote the sorted result back into the original array.

In order to explore the full extent of inversion adaptivity, from sorted se-
quences to completely random ones, we used three methods to generate input.
First, small numbers of inversions (0 to about n) were produced using the algo-
rithm of [20] applied to Inv . This algorithm exchanges k randomly chosen pairs
of adjacent elements, starting from a sorted sequence, thus generating about
k inversions on average (unless k is too large). Second, the algorithm described
in [18] was used to produce larger numbers of inversions (about n to n2/8).
This algorithm generates about mn/2 inversions on average, by first dividing a
sorted sequence into �n/m� equal-sized blocks and permuting the elements in
each block into random order, and then selecting a random element from each
of m equal-sized blocks and permuting the selected elements into random order.
Finally, for the non-adaptive case we created random sequences where every
permutation is equally likely (which gives about n2/4 inversions on average).

We examined both integer keys (word-sized integers in the range [1..n] with
n = 225) and string keys (n = 1971968)4, most of which contain similar prefixes
so that string comparisons will often need to look for more than the first few
characters to differentiate between the strings. Figure 3(a,b) shows the number
of comparisons performed by the algorithms (divided by n for clarity) using
integer keys. Figure 3(c,d,e,f) gives running times for integer and string keys.

The results show that bulk insertion greatly improved avl-tree based sorting
when the number of inversions was small: with less than 105 inversions, single-
insertion sorting was about 6 times slower in the integer case (up to 2 times
slower in the string case). In this range, the number of comparisons used by
bulk-insertion sort was very close to 1n, while single insertion needed about 2n.
For larger numbers of inversions, single-insertion sorting was slightly faster than
bulk-insertion sort, but the difference was small.

Comparing to the other sorting algorithms, for up to about 105 inversions
(104 in the string case) bulk-insertion sort was the fastest – except for Insertion
sort, which was hopelessly slow when the number of inversions was larger than
about 102n. With more than 106 inversions, Splaysort, Splitsort and Quicksort

4 As string keys we used the list of file names in the Debian gnu/Linux distribution re-
lease 4.0r2, http://ftp.debian.org/dists/Debian4.0r2/Contents-i386.gz with
duplicates removed.

http://ftp.debian.org/dists/Debian4.0r2/Contents-i386.gz
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Fig. 3. Comparisons per element and total time (in seconds) used in sorting.
(a,b,c,d) 4-byte integer keys (n = 225 ≈ 34 · 106), (e,f) string keys (n = 1971968). In
all figures, the x axis gives the number of inversions (Inv). The rightmost data point in
(b,d,f) gives the non-adaptive case of a completely random sequence. The plot legend
is given only in (d) for clarity.
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were (variously) the fastest. With a very large number of inversions, about 106n
or more (105n in the string case), bulk-insertion sort was again faster than
Splaysort – though here the array-based Splitsort, Quicksort and qsort are
much faster.

The differences are smaller in the amount of comparisons. Splaysort and (for
more than about 105n inversions) qsort use the least comparisons. Up to about
105 inversions, bulk-insertion sort uses about as many comparisons as Splaysort
(but is faster in running time, as noted above).

Reasons for the apparent slight adaptivity of Quicksort and qsort (Merge
sort) are discussed in [19].

6 Conclusions

We introduced bulk-insertion avl-tree sorting in order to improve local insertion
sort. A bulk was defined as a sequence of elements of the input that fit between
two consecutive elements of the sequence sorted thus far. We proved the opti-
mality of bulk-insertion sort with respect to the number of inversions, and with
respect to our new measure, the number of bulks. We also proved that bulk-
insertion sort is adaptive with respect to the number of inversions when they
are counted only for the last elements of the bulks. This result was obtained by
introducing the concept of composite measures of adaptivity.

We compared bulk-insertion sort experimentally with various adaptive and
non-adaptive sorting algorithms using inputs of length about 107 generated
to contain different numbers of inversions. Of the algorithms compared, bulk-
insertion sort is the best one when most inputs have few inversions (bulk-
insertion sort was better up to 105 inversions than the others) but some inputs
with very large Inv exist (thus ruling out Insertion sort).

Bulk-insertion sort is good also in many cases with a large number of inver-
sions, one example being the sequence 〈n+1, n+2, . . . , 2n, 1, 2, . . . , n〉 that has a
quadratic number of inversions but only two bulks. Our current experiments ac-
tually give an advantage to other methods than ours because only Inv -adaptivity
is considered. We plan to experiment with input data adaptive to Block and the
new measures Bulk and Inv◦Bulk in the future, thus providing an interesting con-
tribution to instance generation and a way to see how competitive bulk-insertion
sort is on its own turf.

References

1. Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Com-
puting Surveys 24(4), 441–476 (1992)

2. Petersson, O., Moffat, A.: A framework for adaptive sorting. Discrete Applied
Mathematics 59(2), 153–179 (1995)

3. Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE
Transactions on Computers C-34, 318–325 (1985)

4. Mehlhorn, K.: Sorting presorted files. In: Weihrauch, K. (ed.) GI-TCS 1979. LNCS,
vol. 67, pp. 199–212. Springer, Heidelberg (1979)



280 R. Saikkonen and E. Soisalon-Soininen

5. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. Springer,
Heidelberg (1984)

6. Tsakalidis, A.K.: AVL-trees for localized search. Information and Control 67, 173–
194 (1985)

7. Elmasry, A.: Adaptive sorting with AVL trees. In: IFIP 18th World Computer
Congress, TC1 3rd International Conference on Theoretical Computer Science
(IFIP TCS 2004), pp. 307–316. Kluwer, Dordrecht (2004)

8. Elmasry, A., Fredman, M.L.: Adaptive sorting: an information theoretic perspec-
tive. Acta Informatica 45, 33–42 (2008)

9. Soisalon-Soininen, E., Widmayer, P.: Amortized complexity of bulk updates in
AVL-trees. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368,
pp. 439–448. Springer, Heidelberg (2002)

10. Larsen, K.S.: Relaxed red-black trees with group updates. Acta Informatica 38,
565–586 (2002)

11. Blelloch, G.E., Maggs, B.M., Woo, S.L.M.: Space-efficient finger search on degree-
balanced search trees. In: 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2003), pp. 374–383. ACM Press, New York (2003)

12. Cole, R.: On the dynamic finger conjecture for splay trees, part II: The proof.
SIAM Journal on Computing 30(1), 44–85 (2000)

13. Huddleston, S., Mehlhorn, K.: A new data structure for representing sorted lists.
Acta Informatica 17, 157–184 (1982)

14. Katajainen, J., Levcopoulos, C., Petersson, O.: Local insertion sort revisited. In:
Djidjev, H.N. (ed.) Optimal Algorithms. LNCS, vol. 401, pp. 239–253. Springer,
Heidelberg (1989)

15. Carlsson, S., Levcopoulos, C., Petersson, O.: Sublinear merging and natural merge-
sort. Algorithmica 9, 629–648 (1993)

16. Moffat, A., Eddy, G., Petersson, O.: Splaysort: Fast, versatile, practical. Software,
Practice and Experience 126(7), 781–797 (1996)

17. Levcopoulos, C., Petersson, O.: Splitsort – an adaptive sorting algorithm. Informa-
tion Processing Letters 39, 205–211 (1991)

18. Elmasry, A., Hammad, A.: An empirical study for inversions-sensitive sorting al-
gorithms. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 597–601.
Springer, Heidelberg (2005)

19. Brodal, G.S., Fagerberg, R., Moruz, G.: On the adaptiveness of quicksort. In: 7th
Workshop on Algorithm Engineering and Experiments (ALENEX 2005), Society
for Industrial and Applied Mathematics, pp. 130–140 (2005)

20. Estivill-Castro, V.: Generating nearly sorted sequences – the use of measures of
disorder. Electronic Notes in Theoretical Computer Science 91, 56–95 (2004)



Computing Elevation Maxima
by Searching the Gauss Sphere�

Bei Wang1, Herbert Edelsbrunner1,2, and Dmitriy Morozov1

1 Department of Computer Science,
Duke University, Durham, North Carolina, USA

2 Geomagic, Research Triangle Park, North Carolina, USA

Abstract. The elevation function on a smoothly embedded 2-manifold in R
3

reflects the multiscale topography of cavities and protrusions as local maxima.
The function has been useful in identifying coarse docking configurations for
protein pairs. Transporting the concept from the smooth to the piecewise linear
category, this paper describes an algorithm for finding all local maxima. While
its worst-case running time is the same as of the algorithm used in prior work,
its performance in practice is orders of magnitudes superior. We cast light on this
improvement by relating the running time to the total absolute Gaussian curvature
of the 2-manifold.

1 Introduction

This paper introduces a new algorithm for computing all local maxima of the elevation
function defined on a 2-manifold embedded in R3. This function has been introduced
by Agarwal et al. [4] for the purpose of improving the prediction of protein interaction
through docking. The approach identifies protrusions (knobs) and cavities (wells) on
the two surfaces and matches them up. This idea goes back to Connolly [12] who used
a function that maps each point of the protein surface to the fraction of a fixed-radius
sphere centered at the point that lies outside the protein volume. As shown by Cazals
et al. [6], this function resembles the mean curvature at the point in the limit, when
the radius approaches zero. The fixed radius makes a choice of the scale the function
reflects.

The elevation function introduced in [4] serves the same purpose, but in contrast to
Connolly’s function, the elevation is scale independent and marks small as well as large
protrusions of varying shape and direction. Its construction is based on the persistence
structure of the 2-parameter family of height functions, as explained in the next section.
The task at hand is then the computation of all local maxima for two proteins and the use
of the type, size, and location of the marked topographic features to identify promising
positions for interaction. The experimental study in [23] shows that this approach is
effective in finding initial positions that can then be refined by local optimization. The
computationally most expensive step in this study is the determination of the elevation
maxima. Using the algorithm in [4], the running time for a triangulated 2-manifold with
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m edges is proportional to m5 log2 m. Since typical proteins give rise to surfaces with
hundreds of thousands of edges, the quintic dependence on m is a serious drawback
that limits the practical deployment of the method.

In this paper, we give a new algorithm that is faster for triangulated surfaces ap-
proximating smooth surfaces that we typically find in practice. They are characterized
by having dihedral angles at edges that are close to half the full angle (molecular skin
surface [14]). We relate the running time of our algorithm to the total absolute Gaus-
sian curvature of the surface and this way determine that we can expect roughly a
ten-thousand fold improvement over the running time of the old algorithm. We note,
however, that we offer no improvement in the worst-case performance.

Since we incorporate the surface complexity in terms of total absolute Gaussian cur-
vature into the analysis of the algorithm, it is worth mentioning that there is a large lit-
erature on the notion of curvatures for triangulated surfaces. We refer to [2] and [17,22]
for details.

Outline. In Section 2, we introduce the geometric and topological background needed
to understand the elevation function. We do this in two steps, discussing the mathemati-
cally cleaner smooth case in Section 2.1 and the computationally more useful piecewise
linear (PL) case in Section 2.2. In Section 3, we present the algorithm for computing all
elevation maxima, along with some implementation details and the analysis. In Section
4, we present our experimental results, employing our software to compute elevation
maxima for a number of triangulated protein surfaces. We gather statistics on critical
regions, pairwise intersections, and elevation maxima. We use these statistics as evi-
dence that our assumption is a reasonable approximation of the reality for our data and
that the new algorithm runs about four orders of magnitude faster than the old one.

2 Preliminaries

2.1 The Smooth Case

Morse functions. The class of smooth, real-valued functions is a challenging object
that simplifies considerably if we add genericity as a requirement. Letting f : M → R

be a smooth function on a 2-manifold, a point x ∈ M is critical if the derivative at
x equals zero. The value of f at a critical point is a critical value. All other points
are regular points and all other values are regular values of f . A critical point is non-
degenerate if the Hessian, that is, the matrix of second partial derivatives at the point
is invertible. In this case, the matrix has two non-zero eigenvalues, λ1 �= λ2, and the
index of the non-degenerate critical point is the number of negative eigenvalues. A non-
degenerate critical point of index 0 is a minimum, of index 1 is a saddle, and of index 2
is a maximum. Finally, f is a Morse function if all its critical points are non-degenerate
and its values at the critical points are distinct. Given a value a ∈ R, the corresponding
sublevel set consists of all points with value at most a, Ma = f−1(−∞, a]. Sweeping
the manifold in the direction of increasing function value, we get a 1-parameter family
of sublevel sets. The topology of the sublevel set changes precisely when the sweep
passes through a critical point. Let t1 < t2 < ... < tn be the ordered sequence of
critical values and −∞ = s0 < s1 < ... < sn = ∞ a sequence of interleaved values,
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that is, si < ti+1 < si+1, for all i. By assumption of f being Morse, we get from the
sublevel set at si to the one at si+1 by passing exactly one non-degenerate critical point.
The change can be characterized in terms of the dimension of the handle we attach to
go from Msi to Msi+1 . For index 0, we add a 0-handle, that is, an isolated point which
we then thicken to a disk. For index 1, we add a 1-handle, that is an interval attached
to the boundary of the sublevel set at its endpoints which we then thicken to a strip.
Finally, for index 2, we add a 2-handle, that is, a disk attached to the boundary of the
sublevel set along its boundary circle.

Persistent homology. Looking at the homology groups [18] of the sequence of sublevel
sets, we use the concept of persistence to measure the lengths of the intervals along
which homology classes exist [15]. Since sublevel sets between two contiguous critical
values are indistinguishable, we may consider the finite sequence

∅ = M0 ⊆M1 ⊆ . . . ⊆Mn = M,

where we simplify notation by setting Mi = Msi . Fixing a dimension p (p ≥ 0), each
sublevel set has a p-th homology group and the sequence is connected from left to
right by homomorphisms induced by inclusion, which we denote as f i,j

p : Hp(Mi) →
Hp(Mj). We have a birth at Mi if the map f i−1,i

p is not surjective, and we have a death
at Mj if the map f j−1,j

p is not injective. Furthermore, the death at Mj corresponds
to the birth at Mi if there is homology class γ in Hp(Mi) that is not in the image
of f i−1,i

p , its image in Hp(Mj−1) is still not in the image of f i−1,j−1
p , but its image

in Hp(Mj) is in the image of f i−1,j
p . We call f(tj) − f(ti) the persistence of this

birth-death pair. As explained in [8], this method gives a pairing between births and
deaths that has many interesting properties. Each death corresponds to a unique birth
but not every birth corresponds to a death. To remedy this shortcoming, we extend the
sequence of homology groups for extended persistence as described in [9]. Writing
Ma = f−1[a,∞) for the superlevel set of a, we go up with absolute homology groups
of sublevel sets, as before, and we come back down with relative homology groups,

0 = Hp(M0)→ Hp(M1)→ . . .→ Hp(Mn)
→ Hp(M, Mn)→ . . .→ Hp(M, M0) = 0,

where we simplify notation by setting M
i = M

si , M
0 = M and M

n = ∅. Now every
birth corresponds to a death. In fact, we have two events at every critical point, one going
up and one coming down, but duality implies that we just get each pair twice, see [9].
As a consequence of duality, the birth-death pairs we get for the negative function,−f ,
are the same. This turns out to be important in the definition of the elevation function.

For 2-manifolds, there is a more elementary way to introduce extended persistence
using the Reeb graph of the function. Instead of giving details, we refer to [4] and we
mention that this approach leads to a fast algorithm. It consists of constructing the Reeb
graph in a sweep [10] followed by deconstructing it in another sweep using cutting and
linking trees [4,16]. We run this algorithm for a piecewise linear function on a triangu-
lated 2-manifold. Letting m be the number of edges in the triangulation, as before, the
running time computing the extended persistence for a given height function is bounded
by some constant times m log2 m.
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Elevation. To define elevation, we assume the 2-manifold M is smoothly embedded
in R3. For a direction u ∈ S2, we consider the height function hu : M → R defined
by hu(x) = 〈x, u〉. Generically, hu is a Morse function, but for some directions u it is
not, either because a critical point is degenerate or because two or more critical points
map to the same height value. Considering the entire sphere of directions, we get a
2-parameter family of height functions.

For each u ∈ S2, we pair up births with deaths using the extended sequence of
homology groups defined by the sublevel and the superlevel sets of hu. In the Morse
function case, each birth-death pair identifies two critical points, x and y, one giving
birth and the other giving death, and we define the elevation at these two points as their
persistence or, equivalently, the absolute height difference in the direction u, E(x) =
E(y) = |hu(x) − hu(y)|. Each point of M is critical in two directions, u and −u, and
is thus assigned two values, the absolute height difference to the paired critical point in
the two directions. Since h−u = −hu, the paired point is the same so we get a unique
value at every point. This is the elevation function of the 2-manifold, E : M→ R.

To get a feeling for this function, we consider a protrusion (a mountain) of the
2-manifold. To measure the height of the mountain, we measure from the top down,
to the first saddle that separates it from an even higher mountain. We can do this in var-
ious directions, so we do it to maximize the height. This might be in a direction along
which the first saddle is ambiguous. Perhaps there are three such saddles at the same
height value in this direction, similar to the third type in Figure 1 in which we have a
saddle with the same height difference to three minima. In this direction, we have two
violations of genericity required for Morse functions, because there are three critical
points with the same height value. Indeed, local maxima of E tend to arise along non-
generic directions. An exception is the 1-legged maximum defined by only two critical
points (with one leg between them). Besides this case, we have 2-legged maxima de-
fined by three critical points, and 3- and 4-legged maxima defined by four critical points
each; see Figure 1.

Curvature. We will later discover that the running time of our algorithm for finding
all local maxima relates to the total absolute curvature of the surface. We introduce this
concept using the Gauss map, N : M→ S

2, defined by mapping a point x of M to the
outer unit normal, N(x), at x. Assuming M is smoothly embedded in R3, the Gauss
map is continuous and surjective but not necessarily injective. Indeed, the preimage of
u ∈ S2 consists of all critical points of hu with outer normal u, as opposed to −u.
The multiplicity of N at u and −u together is thus the number of critical points of hu.
We will see shortly that the total coverage of S2 is exactly the total absolute Gaussian
curvature of M.

Letting x be a point of M and r > 0 a radius, we define the absolute Gaussian cur-
vature at x by taking the limit of a fraction of areas, g(x) = limr→0

Area(N(Ar))
Area(Ar) , where

Ar is the neighborhood of points at distance at most r from x on M. The total abso-
lute Gaussian curvature is the integral of the local quantity, G(M) =

∫
x∈M

g(x)dx.
It should be clear that G(M) is the area of the total coverage of S2, taking multiplic-
ity into account. For a given direction, the multiplicity is |N−1(u)|. Hence, G(M) =∫

u∈S2 |N−1(u)|du. Writing cavg for the average number of critical points of the height
functions, we thus have the total absolute Gaussian curvature equal to one half times
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Fig. 1. The four generic types of local maxima of the elevation function. From left to right: the
1-, 2-, 3- and 4-legged maximum.

the area of the sphere times that average, G(M) = 2πcavg. This integral geometry
formula for the curvature will come handy in the analysis of our algorithm. For more
information on the integral geometry formulation of curvature see Santaló [21].

2.2 The PL Case

Triangulated surfaces. We do all computations on a piecewise linear approximation
of the smooth 2-manifold. To transport the smooth concepts to the PL category, we
think of the PL surface as being approximated by a smooth surface. Tightening the
approximation, we get a series and take the limit. This is the general intuition we have
in the background guiding the formulation of definitions in the PL case.

A triangulation of a 2-manifold M is a simplicial complex, K , whose underlying
space is homeomorphic, |K| ≈ M. It consists of vertices, edges, and triangles. To put
K into R

3, it suffices to map each vertex to a point; the edges and triangles are the
convex hulls (of the images) of their vertices. This is a geometric realization if the
triangles meet in shared edges and vertices but not in any other point sets. We call the
result a triangulated surface, implicitly assuming that it is geometrically realized in R3.
The star of a vertex is the set of simplices that contain it, and the link consists of all
faces of simplices in the star that do not belong to the star, St vi = {σ ∈ K | vi ∈ σ};
Lk vi = {τ ⊆ σ ∈ St vi | τ �∈ St vi}. A PL function f : |K| → R is determined
by its values at the vertices. Assuming f(vi) �= f(vj) whenever i �= j, we define the
lower link as the subset of simplices in the link where f is smaller than at the vertex,
Lk−vi = {σ ∈ Lk vi | x ∈ σ ⇒ f(x) < f(vi)}. Finally, vi is regular if its lower
link is contractible, and critical, otherwise. Since K triangulates a 2-manifold, every
link is a circle and the only contractible closed subsets are points and closed paths. The
lower link of a regular vertex is thus a single vertex or a path connecting two vertices.
A minimum is characterized by Lk−vi = ∅ and a maximum by Lk−vi = Lk vi. In the
remaining case, the lower link consists of k+1 ≥ 2 paths and we call vi a k-fold saddle,
or a simple saddle if k = 1.

In contrast to the smooth case, it is not possible to turn a k-fold into a simple saddle
by a small perturbation. We therefore treat them directly, without reduction to simple
cases. As an example, consider the Euler-Poincaré Theorem which relates the topology
of the 2-manifold with the critical point structure of its functions. Define the index of a
simple critical point as index (vi), index (vi) = 0 if vi is a minimum, 1 if vi is a simple
saddle, 2 if vi is a maximum. Assuming K is connected, it is characterized by its genus
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and we have 2 − 2 · genus = n − m + l =
∑

i(−1)index (vi), where n, m, l are the
number of vertices, edges, triangles in K and a k-fold saddle is represented by k simple
saddles in the sum.

Critical regions. Another significant complication we encounter in the PL case is that
a vertex is generally critical for an entire region of directions. Letting hu : |K| → R

be the height function defined by hu(x) = 〈x, u〉, the critical region of a vertex is the
closure of the set of directions along which vi is critical,

Ri = cl {u ∈ S
2 | vi is critical point of hu}.

We construct it from the closed polygonal curve defined by the star of vi. Specifically, we
map each triangle in the star to its outer normal direction, a point on S2, and we connect
the directions of two neighboring triangles by the shorter of the two connecting great-
circle arcs. This gives a closed polygonal curve, πi, which may or may not have self-
intersections. To cope with the former, more complicated case, we orient πi and define
the winding number of a directionu ∈ S2 not on the curve as the number of times the curve
goes around the directed line defined by u. Viewed along u, we count a counterclockwise
turn as +1 and a clockwise turn as−1. Taking the sum we get the winding number, which
are denoted as w(u, πi). For detailed study on polyhedron Gauss map, refer to [5]. Ex-
amples are shown in Figure 2. The winding number of u relates to the type of the vertex
in the height function defined by u. Specifically, if vi is regular then the winding number
of u is 0, if vi is a simple critical point then the winding number is (−1)index (vi), and if
vi is a k-fold saddle then the winding number is−k.s

Curvature. Thinking of a vertex as a tiny region in an approximating smooth surface,
we define its Gaussian curvature as the area of its critical region weighted by the wind-
ing number. More useful in this paper is its absolute Gaussian curvature defined as
the area weighted by the absolute winding number, g(vi) =

∫
u∈S2 |w(u, πi)|du. The

total absolute Gaussian curvature is then the sum over all vertices, G(K) =
∑

i g(vi).
Equivalently, it is the area of the sphere times half the average number of critical ver-
tices, taking multiplicities into account, as usual. The average is taken over all height
functions, and we count half the critical vertices because vi is critical for u ∈ S2 as well
as −u ∈ S

2.

3 Computation

In this section, we describe how we compute the elevation maxima for a given trian-
gulated surface in R3. The algorithm is straightforward and the only new insight is in
the analysis, relating the running time with the total absolute Gaussian curvature of the
surface.

Types and filters. Recall that there are four types of elevation maxima for a generic
smooth surface, as illustrated in Figure 1. We have the same four cases for a generic
triangulated surface K in R3. Each maximum is given by a set of two, three, or four
points. We consider the case in which all these points are vertices of K . The cases in
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Fig. 2. Left: for a direction u with winding number +1 the corresponding vertex appears either as
a maximum or a minimum. Right: for winding number −1 we have a simple saddle and for −2
we have a 2-fold or monkey saddle for the height function defined by the corresponding direction.

which some of the points in V lies on edges of K are similar. Let V be a set of vertices.
A necessary requirement for V to define a maximum is that its vertices are critical for
a common direction. More specifically, we need them critical in a particular direction
that is determined by V . This direction, uV = (y−x)/||y−x||, is slightly different for
each type.

1-legged case, V = {x, y}. Here, uV is the direction defined by the two points.
2-legged case, V = {x, y1, y2}. Letting y be the orthogonal projection of x onto the

line passing through y1 and y2, uV is defined if y lies between y1 and y2.
3-legged case, V = {x, y1, y2, y3}. Letting y be the orthogonal projection of x onto

the plane passing through y1, y2, y3, uV is defined if y lies in the triangle they span.
4-legged case, V = {x1, x2, y1, y2}. Letting x and y be the feet of the shortest line seg-

ment connecting the line passing through x1 and x2 with the line passing through
y1 and y2, uV is defined if x lies between x1 and x2 and y lies between y1 and y2.

PROJECTION FILTER. The direction uV defined by the points in V is defined and
belongs to the common intersection of critical regions, uV ∈

⋂
vi∈V Ri.

Note that the non-empty intersection of the critical regions is a necessary but not
a sufficient condition for the set V to pass the Projection Filter. In turn, passing the
Projection Filter is a necessary but not sufficient condition for the direction uV to be an
elevation maximum. For that, the set needs to satisfy another condition. To describe it,
we write x0 for x.

PERSISTENCE FILTER. For each pair xi and yj in V , there is an arbitrarily small
perturbation u of uV such that xi, yj is a birth-death pair for the height function hu.

Algorithm. We compute the elevation maxima in three steps, starting with 2-, 3-, 4-
tuplets V whose points have pairwise overlapping critical regions. The next two steps
narrow down the selection using first the Projection and the Persistence Filter.
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STEP 0. Compute the critical regions of the vertices of K . Letting the critical regions
be the nodes of the intersection graph, R, we draw an arc if the two regions have
a non-empty common intersection. For k = 2, 3, 4, let Qk be the set of k-cliques,
that is, the k-tuplets of nodes connected by all

(
k
2

)
arcs. Let S0 =

⋃
k Qk.

STEP 1. Subject each pair, triplet, and quadruplet in S0 to the Projection Filter and let
S1 ⊆ S0 be the collection that passes the filter.

STEP 2. Subject each pair, triplet, and quadruplet in S1 to the Persistence Filter and let
S2 ⊆ S1 be the collection that passes the filter.

Step 1 and 2 are the same as in [4], so we focus on the implementation of Step 0 in
which we compute the 2-, 3-, 4-tuplets with pairwise intersecting critical regions.

Implementation. We break down Step 0 into three smaller steps, constructing the
critical regions, finding the intersecting pairs, and computing the cliques of size 2, 3,
4 in the intersection graph. Implementation is done with Perl, C and CGAL [1]. All
computations are exact except estimating the area and the bounding box of a critical
region.

STEP 0.1. Recall that each critical region, Ri, is given by a closed polygon with mi

edges on the sphere. Those edges may intersect, and we take time O(m2
i ) to con-

struct the decomposition of the sphere [13], including winding numbers for all sub-
regions. Reflecting Ri centrally through the origin in R3, we get the region −Ri

of inward normals along which vi is critical. Constructing all critical regions takes
time proportional to

∑
i m2

i .
STEP 0.2. Most critical regions are small and simple. This suggests we use a bounding

volume approach to find the intersecting pairs. Specifically, we find an axis-parallel
box Bi in R3 that encloses the region Ri on S2 ⊆ R3. We do this in two steps, first
computing the smallest enclosing sphere of Ri and second the smallest axis-aligned
box that contains the sphere. Assuming that Ri fits inside a hemisphere of S2, the
smallest enclosing sphere of its vertices also encloses Ri. To compensate for round-
off errors, we increase the sphere slightly and compute the box Bi to enclose the
enlarged sphere. Computing the smallest enclosing sphere of Ri takes randomized
time O(mi), see [24]. Given the boxes Bi, we find the overlapping pairs using the
segment-tree streaming algorithm as described in [25]. Writing bi for the number
of boxes that overlap Bi, we have a total of b = 1

2

∑
i bi of overlapping pairs. The

streaming algorithm takes time proportional to n log3
2 n + b to find them. For each

pair of overlapping boxes, we check whether or not the critical region they enclose
have a non-empty intersection. Standard computational geometry methods allow
us to determine whether or not Ri and Rj intersect in time O(mij log mij), where
mij = m2

i + m2
j [13].

STEP 0.3. The result of Steps 0.1 and 0.2 is a graph R. Its n nodes are the critical
regions, and its q arcs are the pairs of critical regions with non-empty overlap.
Writing q = 1

2

∑
i qi, where qi is the degree of the i-th node, we compute the

cliques of size 2, 3, 4 by checking all pairs and triplets of neighbors. Finding the
cliques that include Ri thus takes time O(

(
qi

1

)
+

(
qi

2

)
+

(
qi

3

)
).
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Analysis. The time for Step 0 is dominated by the requirement for Step 0.2, which is
some constant times Tnew =

∑
i

(
qi

1

)
+

(
qi

2

)
+

(
qi

3

)
. The time for Step 1 is some constant

times |S0| ≤ Tnew and that for Step 2 is some constant times T = |S1|n log2 n. This
adds up to some constant times Tnew + T , as compared to Told + T for the algorithm
in [4], where Told =

(
n
2

)
+

(
n
3

)
+

(
n
4

)
. Any improvement thus hinges on two properties,

namely that Told is significantly larger than Tnew as well as T . We now show that the
first property holds under grossly simplifying assumptions, and we provide evidence in
the next section that both properties hold for data we encounter in practice.

CAP ASSUMPTION. The critical regions are spherical caps, all of the same size, and
their centers are uniformly distributed on S2.

Recall that the areas of the critical regions add up to the total absolute Gaussian
curvature,

∑
i Area(Ri) = G(K). This sum is also half the area of the sphere times the

average number of critical points of the height functions, G(K) = 2πcavg. It follows the
area of a single critical region is Area(Ri) = 2πcavg/n, and because the cap is smaller
than the flat disk of the same radius, its radius squared is ρ2 > 2cavg/n. Two caps
overlap if and only if the center of one is contained in the cap of radius 2ρ around the
center of the other. The area of the enlarged cap is less than four times Area(Ri). Hence
the probability for a region Rj to overlap Ri is Prob[Ri∩Rj �= ∅] ≤ 4Area(Ri)/4π =
2cavg/n. Since expectations are additive even if the events are not independent, the
expected number of k-tuplets of neighbors is Exp[

(
qi

k

)
] ≤

(
n−1

k

)
Area(Ri)k/πk ≤

2kck
avg/k!. Adding the expectations for k = 1, 2, 3 and all i gives

Exp[Tnew] ≤ n · (2cavg + 2c2
avg +

4
3
c3
avg).

Recall that cavg = G(K)/2π. It follows the average number of k-tuplets of critical
regions overlapping a given one depends on the shape of the smooth surface and not on
the size of the approximating triangulated surface. Similarly, the time for Step 0 depends
on the shape and otherwise only linearly on the number of vertices in the triangulation.

4 Experiments

Input data. We use two types of triangulated surfaces approximating smooth models
of biomolecular structures all listed in Table 1 Left. The first type is the molecular skin
which uses hyperboloid and concave sphere patches to blend between the spheres that
represent the atoms of a molecule [14]. An algorithm that constructs an approximating
triangulated surface with guaranteed bounds on two- and three-dimensional angles is
described in [7] and software written by Ho-lun Cheng is available at [3]. The second
type is the molecular surfaces generated by Chimera [19]. The MSMS algorithm used
in Chimera [20] constructs a triangulation of the solvent excluded surfaces initially
computed by Connolly [11].

Critical point statistics. For each data set, we estimate the minimum, average, and
maximum number of critical points of the height functions, which we sample at one
thousand directions chosen from S2. The results are shown in Table 1 Middle. Com-
paring the estimated with the actual average, which we get using cavg = G(K)/2π =
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Table 1. Left: the triangulated surfaces used in our computational experiments together with their
numbers of vertices, edges, and triangles. Middle: estimated minimum, average, and maximum
of the number of critical points of the height functions. Right: minimum, average, and maximum
of the number of triangles needed to triangulate the critical regions. Last column: percentage of
non-simple critical regions. Top: molecular skin surfaces. Bottom: molecular Chimera surfaces.

id name n m � cmin cavg cmax
cavg

n
rmin ravg rmax %

0 1BRS-5to6 1,370 4,104 2,736 2 6.41 16 0.0047 2 3.99 8 12
1 1CLU-DBG 3,149 9,441 6,294 2 13.50 44 0.0043 2 4.01 12 15
2 1BRS-A-5to10 4,248 12,738 8,492 6 17.07 34 0.0040 2 4.01 10 17
3 1BRS-A-30to40 6,114 18,336 12,224 10 25.14 46 0.0041 2 4.01 10 16
4 1BRS-A-17to25 7,799 23,391 15,594 12 29.92 64 0.0038 2 4.01 10 20
5 1BRS-A-5to10 836 2,502 1,668 6 16.01 32 0.0192 2 4.08 11 29
6 1BRS-A-30to40 1,372 4,110 2,740 10 27.13 46 0.0198 2 4.13 15 30
7 1BRS-A-17to25 1,595 4,119 3,186 14 31.02 54 0.0194 2 4.09 10 33

∑
i Area(Ri)/2π, we see that the error is small. For example, for data set 4, the esti-

mated cavg is 29.92 while the actual average is 29.94. Since all our skin triangulations
approximate a smooth surface to about the same accuracy, for different surfaces, the av-
erage number of critical points scales linearly with n. Indeed, cavg/n is between 0.003
and 0.005 for all our skin data sets.

As mentioned earlier, each vertex of K is critical for a region of directions, in fact
two antipodal regions. Most of these regions are simple, that is, defined by a polygon
without self-intersections. As shown in the last column in Table 1, the percentage of
non-simple polygons is indeed rather small. Besides checking for self-intersections,
we measure the complexity of a critical region by counting the triangles we need to
triangulate it on the sphere. The minimum, average, and maximum of this number are
given in the right half of Table 1.

Intersection statistics. The following statistics were collected for the finer molecular
skin surfaces only. Recall that we compute the pairs of intersecting critical regions in
two steps, first finding the intersections among the bounding boxes and second among
the critical regions. Table 2 Left gives the statistics for both.

Given a pair of intersecting boxes, we test whether or not the corresponding critical
regions intersect by checking the overlap among the triangles in their triangulations. The
average number of triangle-triangle checks is consistently between 11 and 12, which
justifies the use of this brute-force over a more sophisticated method.

Similar to the number of critical points, we expect that the average number of boxes
intersecting a given box and the average number of critical regions intersecting a given
critical region scale linearly with n. Indeed, bavg/n is between 0.04 and 0.07 and qavg/n
is between 0.02 and 0.03 for all our skin data sets. The latter is about six times the
average number of critical points; compare this with the factor two we got under the
Cap Assumption. The observed relation between these two quantities is only about
three times as loose, which is reasonable considering that real data necessarily violates
the Cap Assumption to some extent (due to irregular shapes and different orientations
of the critical regions). The new algorithm starts with Tnew tuplets. A back-of-the-
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Table 2. Left: the minimum, average, and maximum number of boxes intersecting a given box;
the minimum, average, and maximum number of critical regions intersection a given critical
region. Middle: the number of cliques before and after the Projection Filter and the Persistence
Filter. Right: dominant terms in the running time of the old and the new algorithms.

id bmin bavg bmax
bavg

n
qmin qavg qmax

qavg
n

|S0|/103 |S1| Told/1010 Tnew/106 T/106

0 12 94 207 0.069 9 40 97 0.029 1,608 2,373 15 24 33
1 27 204 626 0.065 11 82 250 0.026 32,119 20,521 410 508 749
2 52 236 556 0.056 20 92 201 0.022 43,572 17,175 1,356 720 882
3 95 243 859 0.040 29 134 330 0.022 198,023 56,797 5,820 3,327 4,368
4 99 423 1,276 0.054 35 160 543 0.021 433,116 94,300 15,411 7,354 9,508

envelope calculation suggests that Tnew is roughly n
(
qavg
3

)
, which is roughly a factor of

ten thousand smaller than
(

n
4

)
, independent of the value of n. We thus might expect the

new algorithm runs about four orders of magnitude faster than the old one.

Running time. Recall that S0 is the set of cliques of size 2, 3, or 4 in the intersection
graph of the critical regions. The subset S1 ⊆ S0 contains all cliques that pass the Pro-
jection Filter, and the subset S2 ⊆ S1 contains all cliques that also pass the Persistence
Filter. The sizes of the first two sets are given in the middle of Table 2.

Most relevant to the running time of the algorithms for computing elevation maxima
is S1. Indeed, both the old and the new algorithm start with sets of 2-, 3-, and 4-tuplets
that contain the cliques in S0 and much more. As shown in Table 2 on the right, the
overestimate by the old algorithm is about ten thousand times that of the new algorithm.
Furthermore, in the new algorithm, the time for Step 0 and Steps 1 and 2 is fairly
balanced. This implies a speed-up of about four orders of magnitude, which is consistent
with back-of-the-envelope calculation mentioned above.

Conclusions. The main result of this paper is a new algorithm for computing all ele-
vation maxima of a triangulated surface in R3. We provide experimental evidence that
for practical data, the new algorithm runs about four orders of magnitude faster than the
old one. The improvement is achieved by making the running time dependent on the
total absolute Gaussian curvature of the surface and to a lesser extent on the number of
vertices in the approximating triangulation.
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