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Preface

The security issues set by the global digitization of our society have had, and
will continue to have, a crucial impact at all levels of our social organization,
including, just to mention a few, privacy, economics, environmental policies,
national sovereignty, medical environments.

The importance of the collaborations in the various fields of computer sci-
ence to solve these problems linked with other sciences and techniques is clearly
recognized. Moreover, the collaborative work to bridge the formal theory and
practical applications becomes increasingly important and useful.

In this context, and since France and Japan have strong academic and indus-
trial backgrounds in the theory and practice of the scientific challenges set by
this digitized world, in 2005 we started a formal French–Japanese collaboration
and workshop series on computer security.

The three first editions of these French–Japanese Computer Security work-
shops in Tokyo, September 5–7, 2005 and December 4–5, 2006 and in Nancy,
March 13–14, 2008 were very fruitful and were accompanied by several impor-
tant research exchanges between France and Japan.

Because of this success, we launched a call for papers dedicated to computer
security from it’s foundation to practice, with the goal of gathering together
final versions of the rich set of papers and ideas presented at the workshops, yet
opening the call to everyone interested in contributing in this context. This vol-
ume presents the selection of papers arising from this call and this international
collaboration.

The contents cover various aspects of security, from cryptography to proto-
cols, from biometry to static analysis, giving new results and entry points for
readers interested in this domain. It also present foundational as well as prac-
tical results, spanning formal methods to concrete security attack in fingerprint
recognition.

We would like to thank the CNRS and JST for stimulating and funding
this international collaboration, the authors for their nice contributions, Keio
University and INRIA for their contributions in hosting the workshops and the
referees for their careful readings and comments.

We hope that this volume will be followed by new fruitful collaborations be-
tween the French and Japanese communities, particularly in computer security.

February 2009 Véronique Cortier
Claude Kirchner
Mitsuhiro Okada
Hideki Sakurada
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Verification of Security Protocols with a
Bounded Number of Sessions Based on

Resolution for Rigid Variables

Reynald Affeldt and Hubert Comon-Lundh

Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST)

{reynald.affeldt,h.comon-lundh}@aist.go.jp

http://www.rcis.aist.go.jp

Abstract. First-order logic resolution is a standard way to automate
the verification of security protocols. However, it sometimes fails to pro-
duce security proofs for secure protocols because of the detection of false
attacks. For the verification of a bounded number of sessions, false at-
tacks can be avoided by introducing rigid variables. Unfortunately, this
yields complicated resolution procedures. We show here that there is a
simple translation of the security problem for a bounded number of ses-
sions into first-order logic, that does not introduce false attacks. This
is shown by translating clauses involving rigid variables into classical
first-order clauses, while preserving satisfiability. We illustrate this ap-
proach by giving a complete and terminating strategy for a first-order
logic fragment resulting from the above translation, that yields a decision
procedure for a bounded number of sessions.

1 Introduction

It is convenient and simple to model the security of cryptographic protocols
within first-order logic. It is indeed possible then to use general purpose theorem
provers such as SPASS (see first experiments for security protocols in [16]). There
are also successful verification tools such as ProVerif [4], which are based on first-
order logic. However, such a formalization requires some approximations. First,
global properties such as freshness require a heavy encoding to be faithfully
represented in first-order logic (see e.g., [9]), which is not amenable to further
automation.

Second, pieces of messages that can be replaced with any message (since they
cannot be analyzed by the recipient) are abstracted by variables. Such variables
are naturally universally quantified in first-order logic. However, if an attacker
can indeed replace these messages with an arbitrary forged message (hence a
universal quantification), he should be allowed to do it only once for every vari-
able: the attacker can choose the substitution, but has to commit on this value.
On the other hand, in a first-order logic formulation, since ∀x.φ(x) is equivalent
to (∀x.φ(x)) ∧ (∀y.φ(y)), the attacker may use two distinct substitutions for the

V. Cortier et al. (Eds.): Formal to Practical Security, LNCS 5458, pp. 1–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 R. Affeldt and H. Comon-Lundh

same variable. Hence, in general, the attacker model in first-order logic corre-
sponds to a stronger attacker than the real one. We will give concrete examples
in Sect. 3.

It follows that a first-order logic formulation may yield false attacks. This has
been well-known for a long time and it is the reason why several more accurate
formalisms have been designed, for instance using MSR or linear logic [6].

Instead of proving security for an arbitrary number of sessions, much work
focuses on finding an attack for a bounded number of sessions (e.g., [14]). In
this setting, there is no need for approximation: the insecurity problem can be
translated into deducibility constraints, after guessing an interleaving of actions.
Translating this approach in first-order logic is not straightforward, for the same
reason as above: we must express that a variable, though universally quantified,
can be instantiated only once.

A simple way to fix the problems and remove the false attacks due to universal
quantification is to use rigid variables: while universally quantified variables can
be instantiated as many times as we wish, rigid variables get only one instance [2].
This is exactly what we need. We need however one set of rigid variables for each
session. Hence this is only relevant to bounded number of sessions. This is exactly
what is done in [12]: the authors introduce rigid clauses to model the protocol
rules when the number of sessions is fixed. Then they design a proof calculus for
such clauses and show a termination result.

To the best of our knowledge, there is no formulation of the security prob-
lem for a bounded number of sessions within first-order logic, that avoids false
attacks. This is what we do in the present paper. Actually, we show that there
is a simple translation of rigid variables into first-order logic that preserves the
satisfiability of formulas. It follows that we can capture rigid-validity, hence se-
curity for a bounded number of sessions, within first-order logic. This result has
many interesting applications. First, on the practical side, it makes it possible
to use first-order theorem provers for finding attacks in a bounded number of
sessions, without generating false attacks. This can be useful, when trying to
reconstruct attacks from candidate attacks found by a theorem prover: this is
an alternative to [1]. It makes it also possible to search, with the same tool, for
attacks and proofs. This approach is also appealing when compared with the
alternative constraint solving techniques, because we do not need to guess an
interleaving of actions.

Using this simple translation of rigid variables in first-order logic, we may
considerably simplify the proof rules for rigid clauses of [12]. We can also extend
the calculus, allowing for clauses mixing rigid and non-rigid variables as well as
equalities (however only flexible variables are allowed in equalities).

Finally, we can translate back and forth results from first-order logic to first-
order logic with rigid variables. For instance, from the decision results on security
protocols for a bounded number of sessions, we can derive decision results (in
co-NP) for fragments of first-order logic. We illustrate this by giving a resolution
strategy, which we prove to be complete and terminating for a certain class of
clauses; as a corollary, we derive the decidability of the probem of security for
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a bounded number of sessions in the classical Dolev-Yao model. As we antic-
ipated, the simplicity of the corresponding decision procedure makes software
implementation an easier task: it took us only little time to implement it to
confirm our results by experiments.

We recall the basics about models of security protocols in first-order logic in
Sect. 3, using examples. In Sect. 4, we show the simple translation from rigid
clauses to first-order clauses. In Sect. 5, we sketch some possible applications,
including a new class of clauses for which resolution is a decision procedure.

2 Notations

We use the notations of [5], some of which are recalled below. X = {x, y, z, v, . . .}
is a set of variables symbols. F is a set of function symbols, each with a given
arity. T (F ,X ) = {s, t, u, . . .} is the set of terms built on F and X . Var (t) is the
set of variables occurring in t. t is ground when Var (t) = ∅. t|p is the subterm of t
at position p. t denotes the vector t1, t2, . . . Set-theoretic notations (∩,∪,�,⊆)
are also used for vectors.

A substitution σ is a mapping from variables to terms, which is the identity,
except on a finite set called its domain, noted Dom (σ). A substitution map-
ping x1, x2, . . . to t1, t2, . . . is written {x1 	→ t1; x2 	→ t2; · · · }. Substitutions are
homomorphically extended to T (F ,X ) and used in postfix notation. The vari-
able range of the substitution σ is defined as VRange (σ) =

⋃
x∈Dom(σ) Var (xσ)

and its set of variables as Var (σ) = Dom (σ) ∪ VRange (σ). Mgu(t =? u) is
a most general unifier of terms t, u (or most general solution of the equation
t =? u). We assume w.l.o.g. that Var

(
Mgu(t =? u)

)
⊆ Var (t) ∪ Var (u) and

that VRange
(
Mgu(t =? u)

)
∩ Dom

(
Mgu(t =? u)

)
= ∅, i.e., we deal with idem-

potent unifiers.
P = {P, Q, I, . . .} is a set of predicate symbols, each with a given arity. A pred-

icate P of arity n applied to terms t1, . . . , tn is an atom; atoms are written
A, B, . . . A literal L is an atom A or its negation ¬A. Clauses (ranged over
by C, . . .) are finite sets of literals and are noted

∨
i Li. All variables in a clause

are implicitly universally quantified (sometimes we make the quantifiers explicit).
A Horn clause is a clause that contains at most one positive literal; it is noted
A1, . . . , An → A, or A1, . . . , An→ when there is no positive literal.

A F -algebra A is a set DA with for each f ∈ F of arity n, a function
fA : Dn

A → DA. [[t]]σ,A is the interpretation of a term t w.r.t. an assignment
σ : Dom (Var (t)) → DA. An F ,P-structure S is a F -algebra A together with
an interpretation [[P ]]S ⊆ Dn

A of each n-ary predicate symbol. Given an F ,P-
structure S and an assignment σ of the free variables of φ into the interpretation
domain of S, S, σ |= φ is the usual first-order satisfaction relation.

Binary resolution is an inference rule on clauses: C ∨ A C′ ∨ ¬A′

Cσ ∨ C′σ
, where

σ = Mgu(A =? A′). We succinctly note · � ·, · for resolution steps. For any set
of clauses S, we write C �∗ S when C is derivable from clauses in S and we let
S∗ be {C | C �∗ S}.
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3 Models of Security Protocols in First-Order Logic

We give the main ideas about models of security protocols in first-order logic
(see e.g., [4] for further details) and examples to illustrate false attacks.

3.1 A Standard Attacker Model

Typically, the set of function symbols contain {·}· and [·]·, for respectively public-
key and symmetric key encryption, the pairing function 〈·, ·〉 and the function
symbol pk, that builds a public key out of a private one. We will sometimes omit
the pairing symbol or consider it as variadic to ease reading.

I is a predicate symbol that captures the intruder’s knowledge. The attacker
capabilities are typically described by the following set of Horn clauses:

(I0) I (x) , I (y) → I (〈x, y〉) (I1) I (〈x, y〉) → I (x)
(I2) I (x) , I (y) → I ([x]y) (I3) I ([x]y) , I (y) → I (x)
(I4) → I (pk(x)) (I5) I (x) , I (pk(y)) → I

(
{x}pk(y)

)
(I6) I

(
{x}pk(y)

)
, I (y) → I (x)

3.2 An Example of False Attack

Let us consider a protocol from [8]. We first write it using the (sometimes am-
biguous) Alice-and-Bob notation:

A → B : {pkA, N}pkB

B → A : {N, K}pkA

A → B : [S]K
B → A : N

In the first phase, two agents A and B use their public keys pkA and pkB to
exchange a new, symmetric key K (together with a nonce N). Later, A uses the
key K to send a secret S to B. Eventually (and this is the peculiarity of this
protocol), B reveals the nonce N . The security property states that any secret S
generated by an honest agent A for an honest agent B is never disclosed.

Using first-order logic (as in ProVerif), the protocol is modeled as an oracle,
that can be used by the intruder to get more information: for each rule, if the
intruder can construct a message matching the expected pattern, then it gets
the corresponding reply message:

(Δ1) I (pk(x)) , I (pk(y)) → I
(
{pk(x), N(x, y)}pk(y)

)
(Δ2) I

(
{x, y}pk(z)

)
→ I ({y, K(x, y, z)}x)

(Δ3) I
(
{N(x, y), z}pk(x)

)
→ I ([S(x, y, z)]z)

(Δ4) I
(
[v]K(x,y,z)

)
→ I (y)

For instance, the clause (Δ2) represents the first action of agent B: upon recep-
tion from A of {x, y}pk(z) (expected to be {pk(skA), N(skA, skB)}pk(skB )) the
reply of B is the message {y, K(x, y, z)}x.
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The initial intruder knowledge is modeled by (positive) atoms. For instance,
if C is a corrupted agent, then there is a clause I (skC). The security property
can be modeled as ¬I (S(skA, skB, z)). If the protocol is insecure, then the set
of clauses is unsatisfiable: there is a derivation of I (S(skA, skB, t)) for some t.

In the above clauses, the freshness of N , K, and S is approximated using a
function symbol, which depends on the terms seen at this stage. This may be a
cause of false attacks as, for instance, every session between A and B will use
the same representation of N . For a bounded number of sessions, this problem
does not occur as different symbols can be used for nonces occurring in different
sessions.

There are however other sources of false attacks. In the above example,
the protocol is (supposedly) secure, while there is a simple derivation of the
empty clause: from a honest session of the protocol (i.e., using clauses (Δ1)
to (Δ4) once), we derive I (N(x, y)). Now, for any z such that I (z) we derive
I
(
{N(x, y), z}pk(x)

)
using the intruder capabilities. Next, using clause (Δ3) we

get I([S(x, y, z)]z) and, from this clause and I (z), we derive I (S(x, y, z)).
The problem here is that the nonce is first kept secret but eventually revealed.

A first-order model leads to a false attack by wrongly inferring that the intruder
could have the nonce at an early stage: when the nonce N is revealed, the
rule (Δ3) is replayed and the intruder gets back [S]K′ for a key K ′ of his choice,
which he can decrypt. This would not occur in a more accurate model, where
the agents would have moved forward their internal state, preventing the replay
of rule (Δ3). This kind of problem occurs even for a single session, as shown by
our example.

3.3 Trying to Refine the Model: There Are Still False Attacks

The false attack above comes from the ability (in the model) to play again a
rule of the protocol after completing it. One may think that this can be fixed
by adding some state information at each step of the protocol. While this is
quite difficult for an unbounded number of sessions, there is an easy (though
expensive) encoding for a bounded number of sessions.

First, we get rid of the freshness encoding by modeling nonces with distinct
constants. Then, we guess an interleaving of actions (this is expensive and this
is something that we can avoid) and use a different predicate symbol at each
step: instead of a single I, we use I0, . . . , In to represent the intruder knowledge
after n steps. The protocol clauses increase the index of this predicate:

Ik (t) → Ik+1 (u) for k = 0, . . . , n − 1

We also add clauses Ik(x) → Ik+1(x) for k = 0, . . . , n − 1, that express the
increasingness of the intruder knowledge. Finally, clauses reflecting intruder ca-
pabilities are replicated n times with the indices 0, . . . , n. As for the security
property, it is stated as ¬In (S) where S is the supposed secret.

With such an encoding, the above false attack can be prevented. However,
this is not sufficient in general. Here is an (cook-up) example showing again a
false attack in this new setting.
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Example 1. Relying on the long-term shared secret KAB, A wants to establish
a short-term secret with B. B generates two nonces N1, N2 and sends them
separately. A acknowledges both nonces by sending back one of them. The short-
term secret is N1 ⊕ N2.

A → B : [A, N0]KAB

B → A : [B, N0, N1]KAB , [B, N0, N2]KAB

A → B : N1

In a single-session model, there is no attack: the intruder can get either N1 or N2,
but not both. However, in a clausal formulation we get the two clauses:

I1 ([A, x]KAB ) → I2 ([B, x, N1]KAB , [B, x, N2]KAB )
I2 ([B, N0, x]KAB , [B, N0, y]KAB ) → I3 (x)

From I2 ([B, x, N1]KAB , [B, x, N2]KAB ), by swapping pair projections, we infer
I2 ([B, x, N2]KAB , [B, x, N1]KAB ). Then using two instances of the second clause,
we get immediately I3 (N1) and I3 (N2), hence the secret. This is a false attack:
the last rule should not be played twice.

4 Rigid Clauses vs. Classical Clauses

The best way to prevent the last false attack is to use rigid variables and rigid
clauses. We introduce these notions first, before showing how to get rid of them.

4.1 Rigid Clauses

Variables are either rigid (written in upper-case) or flexible (written in lower-
case). Both types of variables are universally quantified, but rigid variables can
only yet one instance. Before a formal definition, let us give some examples.

Example 2. Consider the following set of clauses (taken from [12]):

{I (a) , I (b) , ¬I (X) ∨ I (f(X)) , ¬I (f(a)) ∨ ¬I (f(b))}

If X was an ordinary first-order variable, this set of clauses would be unsatisfi-
able: from the three first clauses we can infer both I (f(a)) and I (f(b)). We need
however two instances of the third clause, which is forbidden for rigid variables.
We can choose the instance X = a or the instance X = b, but not both.

The above set of clauses is satisfiable in our intended interpretation of rigid
variables since the two following sets of ground clauses are satisfiable:

{I (a) , I (b) ,¬I (a) ∨ I (f(a)) ,¬I (f(a)) ∨ ¬I (f(b))} and

{I (a) , I (b) ,¬I (b) ∨ I (f(b)) ,¬I (f(a)) ∨ ¬I (f(b))}

The next example shows that resolution procedures cannot be easily extended
to clauses containing rigid variables.
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Example 3. Consider the following set of clauses:

{I (X) , ¬I (f(x)) ∨ I0, ¬I (g(x))}
It is unsatisfiable: the first and the third clauses resolve to the empty clause.

However, assume that we start by resolving the two first clauses. This yields
the new set of clauses {I (f(Y )) , I0, ¬I (f(x))∨I0, ¬I (g(x))} where Y is a new
rigid variable resulting from the unification X =? f(x). We can still choose Y,
but we committed to an assignment of X to a term headed with f . Now the set
of clauses is satisfiable. For a complete resolution procedure, we would have to
restart from the beginning, with another choice of clauses to resolve.

This example shows that, unlike classical first-order clauses, resolution does not
yield a logically equivalent set of clauses. Therefore, resolution theorem proving
has to be reconsidered; this is the reason for complications in [12].

Let us now formalize the model theory of clauses with rigid variables.

Definition 1. Let C be a set of clauses whose variables are split into X (rigid
variables) and y (flexible variables).

C is satisfiable if there is an F-algebra A such that, for any A-assignment σ
of X, there is a structure S whose underlying algebra is A such that S, σ |= ∀y.C.

In other words, models of formulas with rigid variables are collections of struc-
tures, one for each assignment of the rigid variables.

Example 4. In Example 2, for any of the two assignments of X , there is a model:
for the assignment {X 	→ a}, {I (a) , I (b) , I (f(a)) ,¬I (f(b))}, and for the as-
signment {X 	→ b}, {I (a) , I (b) , I (f(b)) ,¬I (f(a))}.

Example 5. The one session case of Example 1 can be translated into the fol-
lowing rigid clauses (keeping the intruder rules with flexible variables)

→ I ([A, N0]KAB )
I ([A, X ]KAB) → I (〈[B, X, N1]KAB , [B, X, N2]KAB 〉)

I (〈[B, N0, Y ]KAB , [B, N0, Z]KAB 〉) → I (Y )

which, together with ¬I(〈N1, N2〉) is satisfiable. In contrast, if the above vari-
ables are considered as flexible, it is unsatisfiable (yielding a false attack).

Example 6. There are also some traps. For instance, ∀x.φ(x)∧ψ(x) |=|∀x, y.φ(x)∧
ψ(y) while ∀X.φ(X) ∧ ψ(X) �|= ∀X, Y.φ(X) ∧ ψ(Y ). Indeed, consider φ(X) =
ψ(X) = P (X)∧(¬P (a)∨¬P (b)). ∀X.φ(X)∧ψ(X) is satisfiable: consider the al-
gebra with two constants a and b. For the assignment {X 	→ a} (resp. {X 	→ b}),
the structure S such that P (a) holds (resp. P (b) holds) satisfies φ(a)∧ψ(a) (resp.
φ(b) ∧ψ(b)). On the other hand, ∀X, Y.φ(X)∧ ψ(Y ) is not satisfiable, since, for
the assignment {X 	→ a; Y 	→ b}, there is no structure that satisfies φ(a)∧ψ(b).

So, as we illustrated, rigid variables model exactly the intruder ability to use a
protocol rule: (s)he may replace the variables by any value of his (her) choice, but
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(s)he has to commit to this value.This is the reason for studying rigid clauses
and their satisfiability in [12]. However, as shown in the above examples, the
resolution procedure involves a lot of complications and cannot be implemented
easily. We now show how to circumvent these problems.

4.2 Translation of Rigid Clauses into First-Order Clauses

As can be seen from the definition of satisfiability, the interpretation of predicates
depends on the assignment of rigid variables. Then, a simple Skolemization ar-
gument suffices to eliminate this dependence and brings back first-order clauses:

Theorem 1. There is an algorithm that, given a finite set of clauses C computes
a finite set of clauses C′, which does not contain any rigid variable, and such that
C is satisfiable iff C′ is satisfiable.

Proof. C′ is constructed from C as follows. Let X1, . . . , Xn be the rigid variables
of C. For each P ∈ P of arity m, let P ′ be a predicate symbol of arity n + m. If
¬P1(s1) ∨ · · · ∨ ¬Pn1(sn1) ∨ Q1(t1) ∨ · · · ∨ Qn2(tn2) is a clause C ∈ C, let

¬P ′
1(x1, . . . , xn, s′1) ∨ · · · ∨ ¬P ′

n1
(x1, . . . , xn, s′n1

)∨
Q′

1(x1, . . . , xn, t′1) ∨ · · · ∨ Q′
n2

(x1, . . . , xn, t′n2
)

be a clause C′ ∈ C′ where x1, . . . , xn are distinct variables, which do not occur
free in the clause C and s′1, . . . , s

′
n1

, t′1, . . . , t
′
n2

are the terms obtained from their
unprimed version by replacing each Xi with the corresponding xi.

If the set of clauses C is satisfiable, then there is an F -algebra A such that, for
any A-assignment σ of X1, . . . , Xn there is a structure Sσ such that, for every
clause C ∈ C, we have Sσ, σ |= ∀y.C. Consider then the structure S′ (whose
underlying algebra is A) such that

(a1, . . . , an, b1, . . . , bm) ∈ [[P ′]]S
′
iff (b1, . . . , bm) ∈ [[P ]]S{X1 �→a1;...;Xn �→an} .

For any clause C ∈ C, we claim that S′ |= ∀x, y.C′. For any assignment σ′ of
the variables x1, . . . , xn and for any assignment θ of the other variables y of the
clause, we let σ be the assignment of the rigid variables defined by σ(Xi) = σ′(xi)
for every i. By hypothesis, Sσ, σ, θ |= C. It follows that, for some literal L ∈ C,
Sσ, σ, θ |= L. Assume for instance that L is a positive literal (the other case
is similar): L = P (u1, . . . , um) and ([[u1]]

σ,θ,A, . . . , [[um]]σ,θ,A) ∈ [[P ]]Sσ . This is
equivalent, by definition, to

(a1, . . . , an, [[u1]]
σ,θ,A

, . . . , [[um]]σ,θ,A) ∈ [[P ′]]S
′

which, again by construction, yields S′, σ′, θ |= C′.
Conversely, if C′ is satisfiable, then let S′ be a structure which satisfies all

clauses of C′. Consider an arbitrary assignment σ of rigid variables occurring
in C. Let Sσ be the structure defined by

[[P ]]Sσ =
{
(b1, . . . , bm) | (X1σ, . . . , Xnσ, b1, . . . , bm) ∈ [[P ′]]S

′}
.

As before, Sσ, σ |= ∀y.C iff S′ |= ∀x, y.C′. ��
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This extends to clauses with equality, provided that every equality clause does
not contain any rigid variable.

5 Examples of Possible Applications

5.1 Automatic Proofs for a Bounded Number of Sessions

Thanks to the effective procedure given in the proof of Theorem 1, we can use
resolution for mechanizing proofs in a bounded number of sessions. It works as
well for clauses mixing rigid and flexible variables and also if we have (flexible)
equations (though, in the latter case, there is no guarantee for termination).

Example 7. Let us come back to Example 5. We translate now the rigid clauses
into first-order clauses:

→ I (x, y, z, [A, N0]KAB )
I (x, y, z, [A, x]KAB ) → I (x, y, z, 〈[B, x, N1]KAB , [B, x, N2]KAB 〉)

I (x, y, z, 〈[B, N0, y]KAB , [B, N0, z]KAB 〉) → I (x, y, z, y)
I (x, y, z, 〈N1, N2〉) →

Using an appropriate strategy (see next section), resolution terminates in a few
steps, yielding in particular the literals I (N0, N1, N2, N1) and I (N0, N2, N1, N2)
(which, without the three first components, were used to mount a false attack).
On the other side, the goal is decomposed into ¬I (x, y, z, N1) ∨ ¬I (x, y, z, N2)
and leads, using the two inferred literals, to clauses ¬I (N0, N2, N1, N1) and
¬I (N0, N1, N2, N2). But the empty clause cannot be derived: there is no one-
session attack.

5.2 Decidable Fragments of First-Order Logic

If we translate back in terms of strategies the constraint solving techniques used
for the decidability and complexity proofs for a bounded number of sessions [10],
we get a decision result for formulas in the following clausal form. In this theorem,
the part of I’s arguments that model ordering of protocol rules is put in subscript
position to ease reading.

Theorem 2. Assume that all clauses are of one of the following forms:

1. I z (x, y1) , . . . , I z (x, yn) → I z (x, f(y1, . . . , yn)) with x, y, z pairwise dis-
joint and distinct, and f ∈ F

2. I z[i←k] (x, y) → I z[i←k+1] (x, y) with {y}, x, z pairwize disjoint
3. I z[i←k] (x, s) → I z[i←k+1] (x, t) with Var (t) ⊆ Var (s) ⊆ x and x ∩ z = ∅
4. I z (x, t) with Var (t) = ∅ and x ∩ z = ∅
5. ¬ I z (x, s) with Var (s) ⊆ x and x ∩ z = ∅

where z[i←k] represents the variable-vector z whose ith element is replaced by k.
Then the satisfiability modulo the axioms of encryption/decryption (resp. satisfi-
ability modulo exclusive-or [7,11], resp. satisfiability modulo Abelian groups [15])
is co-NP-complete.
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This shows a new decidable fragment of first-order logic. It is related to both the
extended Skolem class and the E+ class [13], but it is not subsumed by any of
the two classes. This shows that it should be possible to design strategies in such
a way that resolution becomes a decision procedure for the above class. This is
exactly what we do in the next section for the Dolev-Yao intruder.

5.3 A Decision Procedure For the Security Problem

We provide a decision procedure for a class of clauses, which model security
protocols with a Dolev-Yao intruder. It consists of a resolution strategy that we
prove complete and terminating.

For the sake of simplicity, we explain our decision procedure without tak-
ing ordering of protocol rules into account. The latter can be added without
compromising decidability as explained at the end of this section.

Here is the class in question. Note that clauses (I0)–(I6) of Sect. 3.1 are
intruder clauses.

Definition 2 (Cm). For any m ∈ N, let Cm be the set of clauses C such that,
for some vector of variables x of length m, C has one of the following forms:

1. I(x, y1), . . . , I(x, yn) → I(x, f(y1, . . . , yn)) with x ∩ {y1, . . . , yn} = ∅
(the set Cm

C of composition clauses)
2. I(x, f(u1, . . . , un)), I(x, y1), . . . , I(x, yk) → I(x, y) with

{y, y1, . . . , yk} ⊆ Var (u1, . . . , un) ⊆ {u1, . . . , un} and x ∩ {u1, . . . , un} = ∅
(the set Cm

D of decomposition clauses)
3. I(x, s) → I(x, t) with Var (t)∪Var (s) ⊆ x (the set Cm

P of protocol clauses)
4. → I(x, t) with t ground (the set Cm

O of initialization clauses)
5. I(x, t) → with t ground (the set Cm

G of goal clauses)

The set of intruder clauses is Cm
I = Cm

C ∪ Cm
D .

Remarks:

– We assume in the following that our set of clauses always contains at least
one element of Cm

O and at least one element of Cm
G . Otherwise the set of

clauses is trivially satisfiable.
– The condition that t is ground in 4 and 5 can be weaken to Var (t) ⊆ x.

Indeed, if t is not ground in some clause →I(x, t), we can meet condition 4
by replacing it with the clauses → I(x, a) and I(x, a)→ I(x, t), where a is a
fresh constant, provided Var (t) ⊆ x. Similarly, clauses I(x, t)→ such that
Var (t) ⊆ x can be replaced with the clauses I(x, b)→ and I(x, t)→I(x, b).

– Note that the protocol clauses do not require that Var (t) ⊆ Var (s). Nei-
ther do we assume that variables or the terms ui are distinct in the above
definition. In these respects, the conditions are more general than those of
Theorem 2: we may cover some cases that do not correspond to protocols.

Our strategy is based on binary resolution with free selection. To define this
selection function, we consider a well-founded ordering �, compatible with sub-
stitution, containing the subterm ordering and such that there are only finitely
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many terms smaller than a given term. An example of such an ordering is
the subterm ordering itself. � is extended to atoms as follows: A(t1, . . . , tn) �
A′(t′1, . . . , t′m) when A = A′, m = n and t1 � t′1, . . . , tn � t′n.

Definition 3. Let Sel be the selection function such that for any Horn clause
C = A1, . . . , An → B whose set of maximal atoms is MAX, then

1. if MAX is a singleton then Sel(C) is the only literal in MAX,
2. otherwise, if there is a maximal atom Ai = I(s, t) where t is not a variable,

then return such an Ai,
3. otherwise, if B = I(s, t) is maximal and t is not a variable, then return B,
4. otherwise, return any literal.

Definition 4. We consider the following rule of binary resolution with free se-
lection for Horn clauses:

C ∨ A C′ ∨ ¬A′

Cσ ∨ C′σ

where σ = Mgu(A =? A′), Sel(C ∨ A) = A, and Sel(C′ ∨ ¬A′) = ¬A′.

Remark 1. Let C be any clause derivable from Cm using the resolution rule of
Definition 4. Then for any two atoms A, A′ ∈ C, there exist s, t, t′ such that
A = I (s, t) and A′ = I (s, t′).

Definition 5. A clause I(s, x1), . . . , I(s, xn) → I(s, x) where x1, . . . , xn, x are
distinct variables is contradictory.

Contradictory clauses yield unsatisfiability as soon as the sets of clauses in Cm
O

and Cm
G are both non empty, which we assumed.

Definition 6. A clause A1, . . . , An → B is redundant if Ai = B for some i.

Our strategy consists in applying the rule of Definition 4 to clauses that are not
contradictory and deleting redundant clauses. Completeness is a consequence of
known results (see e.g., Sect. 7.2 of [3]):

Theorem 3. Our resolution strategy is refutationally complete for Cm.

The delicate problem is termination. One can easily see that an inappropriate
strategy could cause non-termination. For example, standard binary resolution
for the following two clauses of Cm

I (x, y1) , I (x, y2) → I (x, 〈y1, y2〉) and I (x, x) → I (x, a)

yields the infinite set of clauses:

I (〈y1, y2〉, y1) , I (〈y1, y2〉, y2) → I (〈y1, y2〉, a) ,
I (〈〈y1, y3〉, y2〉, y1),I (〈〈y1, y3〉, y2〉, y3),I (〈〈y1, y3〉, y2〉, y2)→I (〈〈y1, y3〉, y2〉, a) ,
· · ·

This example explains why our selection function avoids resolution when the last
argument of I is a variable (cases 2 and 3 of Definition 3).
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Proving termination amounts to find some measure, for which resolvent
clauses are smaller than their premises. We define such an ordering on clauses,
comparing first the number N of variables occurring in the first arguments of I
(corresponding to rigid variables) and next the size of their atoms with respect
to the ordering �.

As a first step, we prove an invariant showing, in particular, that N does not
increase by resolution. More formally, any atom in any clause derivable from any
subset of Cm is of the form I(s, t) with Var (s) ⊆ s. This is the invariant 2 in
the following lemma:

Lemma 1. Let C ⊆ Cm. For any clause C derivable from C by our resolution
strategy, the following invariant holds:

1. (a) There is a vector of terms s such that every atom of C is of the form
I(s, t) with Var (t) ⊆ Var (s), or

(b) C is an intruder clause (and in particular every atom of C is of the form
I(x, t) with Var (t) ∩Var (x) = ∅).

2. Every atom of C is of the form I(s, t) with Var (s) ⊆ s.

Proof. (Sketch) The proof goes by induction on the length of the derivation
of C, and by case analysis on the possible premises of the resolution rule. In
most cases, invariants are easily shown to be preserved, except in a few cases
where the proof of invariant 2 requires the following lemma:

Lemma 2. Let s, s′ such that |s| = |s′|, Var (s) ⊆ s, and Var
(
s′
)
⊆ s′. If

σ = Mgu(s =? s′), then Var (sσ) ⊆ sσ and Var
(
s′σ
)
⊆ s′σ.

The detailed proofs of these lemmas are given in Appendix A.

We are half-way of proving termination. Using Lemma 1, we show roughly that,
for any resolution step C � C1, C2, either (1) the number of variables that encode
rigid variables in C is stricly smaller than the number of such variables in C1
or C2, or (2) the number of such variables is unchanged and the atoms of the
resolvent are smaller (w.r.t. �) than those of the premises (Lemma 6 of Appendix
B). Then we can show:

Lemma 3. Any derivation sequence using our resolution strategy and starting
with a finite subset of Cm is finite.

Proof. (Sketch) Let C be a finite subset of Cm, and let R(C) be the vector s, as
defined in Lemma 1 (by Remark 1, this vector is independent of the chosen atom
in C). We show by induction that, for any n ≤ m, there are only finitely many
clauses C derivable from the clauses in C such that φ(C) = |Var (R(C)) | = m−n.

If C � C1, C2 and φ(C) = m−n, then either φ(C1), φ(C2) > m−n, which can
only occur finitely many times by induction hypothesis. Or else φ(C1) = φ(C)
and φ(C2) ≥ φ(C1), in which case R(C) = R(C1) (up to renaming). Hence the
set of vectors R(C1) such that φ(C1) = m − n is finite, up to renaming. Next,
once R(C1) is fixed, there are only finitely many possible atoms in C1, since new
clauses C′ such that R(C1) = R(C′) can only be obtained when unification is a
renaming. The detailed proof is given in Appendix B.

Corollary 1. Our resolution strategy is a decision procedure for the class Cm.
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Including an Ordering on Stages. Faithfully representing the protocol instances
requires to record state information, as explained in Sect. 3.2. For this purpose,
we add another component to the predicate I, to record at which stage of each
session messages are known.

If there are n sessions, we represent the stages by a vector of n local states.
Several data structures can be used for this; we do not commit to any of them and
simply write f(q1, . . . , qn) when each session i has reached the stage qi. To restrict
protocol clauses to the appropriate stages, instead of a clause I(x, s) → I(x, t),
we consider a clause

I(f(z1, . . . , zi−1, qj , zi+1, . . . , zn), x, s)→I(f(z1, . . . , zi−1, qj+1, zi+1, . . . , zn), x, t)

for the jth rule of session i. We also need clauses I(z, x, y), z′>z → I(z′, x, y) to
express the increasingness of the intruder knowledge; how “>” is implemented
is not relevant here.

Our resolution procedure can be extended to such clauses: we simply ignore
the first component of I in the resolution strategy. Since there are only finitely
many possible instances of the first component of I, our termination result can
be applied and we get a complete and terminating procedure.

5.4 Enhancing First-Order Provers for Security Protocols

Another possible use of Theorem 1 is to combine in a single first-order theorem
prover the advantages of the approximations and of the bounded number of
sessions: using the same engine and specification it is possible to look first for
attacks/security in an exact way for a given number of sessions and then use
an approximation for more sessions. Alternatively, in case a candidate attack is
found, we can check the falsity of the attack using additional clauses.

6 Conclusion

We showed a simple encoding of rigid variables by translation to first-order
logic. This encoding can be applied to the verification of security protocols for
a bounded number of sessions, without introducing false attacks.

It opens some perspectives in automated deduction: decidability results in the
verification of security protocols correspond to non-trivial decidable fragments
of first-order logic. We illustrated this, showing a resolution-based decision pro-
cedure for the verification of security protocols in a standard Dolev-Yao model.

Our first-order formalisation and the decision procedure thereof are easy to
implement (we have a prototype implementation, but we could also rely on any
first-order theorem prover). It is also flexible, compared to other techniques such
as constraint solving: we can easily change the intruder theory, consider other
security properties, etc. the procedure would still work, without generating false
attacks. Of course, there will be no guarantee of termination until the selection
strategy is tuned according to the new theory. In this respect, it remains to
design more selection strategies, for other intruder theories, including for instance
algebraic properties of security primitives.
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A Proof of Lemma 1

By induction on the length of the derivation.
Base case. The intruder clauses verify invariant 1b by definition and invariant 2

because Var (x) = x ⊆ x. The protocol clauses verify invariant 1a because
Var (t) ⊆ Var (x) by definition. They verify invariant 2 because Var (x) = x ⊆ x.
The initialization clauses trivially verify invariant 1a, because Var (t) = ∅, and
invariant 2 because Var (x) = x ⊆ x. The goal clauses trivially verify invariant
1a, because Var (t) = ∅, and invariant 2, because Var (x) = x ⊆ x.

Inductive case. There are several cases.

1. Resolution between two clauses I(s, t1), . . . , I(s, tn) → I(s, t) (n ≥ 1) and
I(s′, t′1), . . . , I(s′, t′k) → I(s′, t′) (k ≥ 1), verifying invariants 1a and 2, with
σ = Mgu(I(s, t) =? I(s′, t′j)).
The resolvent verifies invariant 1a, i.e.,

Var (tiσ) ⊆ Var (sσ) , Var (t′iσ) ⊆ Var
(
s′σ
)

(i �= j), and
Var (t′σ) ⊆ Var

(
s′σ
)
.

Let us prove the inclusion Var (tiσ) ⊆ Var (sσ) (other inclusions are
similar). Consider some x ∈ Var (tiσ). If x /∈ Var (σ), then x ∈ Var (ti).
By the induction hypothesis, x ∈ Var (s). Thus x ∈ Var (sσ). If x ∈
VRange (σ), then there is some x′ ∈ Dom (σ) ∩ Var (ti) such that x ∈
Var (x′σ). By the induction hypothesis, x′ ∈ Var (s). Thus x ∈ Var (sσ).
(Since we assume that mgus are idempotent, we do not need to check
the case where x ∈ Dom (σ).)

The resolvent verifies invariant 2, i.e., Var (sσ) ⊆ sσ.
We apply Lemma 2 to s� t, s′� t′j , and σ. This leads to Var ((s � t)σ) ⊆
(s � t)σ, i.e., Var (sσ ∪ tσ) ⊆ sσ � tσ. We can show that Var (tσ) ⊆
Var (sσ) (proof similar to the one for preservation of invariant 1a just
above).
If tσ is a variable, then t is a variable and, by invariant 2, t ∈ s. Then
tσ ∈ sσ. Therefore Var (sσ) ⊆ sσ � tσ implies Var (sσ) ⊆ sσ.
If t is a functional term, then Var (sσ) ⊆ sσ � tσ implies Var (sσ) ⊆ sσ.

2. Resolution between a clause I(s, t1), . . . , I(s, tk) → I(s, t) (k ≥ 1) verify-
ing invariants 1a and 2 and a composition clause I(x, y1), . . . , I(x, yn) →
I(x, f(y1, . . . , yn)) (n ≥ 1), with σ = Mgu(I(x, f(y1, . . . , yn)) =? I(s, tj)).
The resolvent verifies invariant 1a, i.e.,

Var (yiσ) ⊆ Var (xσ) , Var (tiσ) ⊆ Var (sσ) (i �= j), and
Var (tσ) ⊆ Var (sσ) .

Let us prove Var (yiσ) ⊆ Var (xσ) (the proofs of other inclusions are sim-
ilar to the corresponding proof in case 1). Consider some x ∈ Var (yiσ).
tj is a functional term. Indeed, if tj were a variable, then by definition of
our selection function, all ti’s and t would be variables. Then the clause
would be either redundant or contradictory, two cases that are discarded.
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By hypothesis, yiσ = tj |iσ. Since Var (tj) ⊆ Var (s), then Var (tj |i) ⊆
Var (s), and Var (tj |iσ) ⊆ Var (sσ). Thus, x ∈ Var (sσ). We can con-
clude because xσ = sσ.

The resolvent verifies invariant 2, i.e., Var (xσ) ⊆ xσ.
t′j is not a variable (this has already been shown in the preservation of
invariant 1a just above). It is therefore a functional term of the form
t′j = f(t′j |1, . . . , t′j|n) such that Var

(
t′j |i
)
⊆ Var (s) for all i. We apply

Lemma 2 to x� y1 � · · · � yn, s� t′j |1 � · · · � t′j |n, and σ. This shows that
Var

(
(s � t′j |1 � · · · � t′j |n)σ

)
⊆ (s � t′j |1 � · · · � t′j |n)σ.

We can show that Var
(
t′j |iσ

)
⊆ Var (sσ) for all i (proof similar to the

proofs of preservation of invariant 1a in case 1). We also know that no
t′j |i is a variable that does not appear in s. Thus, Var (sσ) ⊆ sσ, which
implies Var (xσ) ⊆ xσ since xσ = sσ.

3. Resolution between a clause I(s, t1), . . . , I(s, tl) → I(s, t) (l ≥ 1) verifying
invariants 1a and 2, and a decomposition clause I(x, f(u1, . . . , un)), I(x, y1),
. . . , I(x, yk) → I(x, y) (n, k ≥ 1) with σ = Mgu(I(s, t) =?

I(x, f(u1, . . . , un))). Let us note u = f(u1, . . . , un).
The resolvent verifies invariant 1a, i.e.,

Var (tpσ) ⊆ Var (sσ) for all p, Var (yjσ) ⊆ Var (xσ) for all j,
Var (y) ⊆ Var (xσ) .

We have xσ = sσ and uσ = tσ. By induction hypothesis Var (tp) ⊆
Var (s), hence Var (tpσ) ⊆ Var (sσ). By definition of decomposition
clauses Cm

D , Var (yjσ) ⊆ Var (uσ). Using again the induction hypoth-
esis, Var (tσ) ⊆ Var (sσ). Thus, Var (yjσ) ⊆ Var (uσ) = Var (tσ) ⊆
Var (sσ) = Var (xσ).

The resolvent verifies invariant 2, i.e., Var (sσ) ⊆ sσ. As before, since
the premises of a resolution step are neither redundant nor contradictory,
t is a functional term of the form f(t1, . . . , tn). We apply Lemma 2 to
s� t1 � · · · � tn, x� u1 � · · · � un, and σ. (This is possible, thanks to the
hypotheses on the decomposition clauses Cm

D .) This shows that

Var ((s � t1 � · · · � tn)σ) ⊆ (s � t1 � · · · � tn)σ.

We can show that Var (tiσ) ⊆ Var (sσ) for all i. We also know that if ti
is a variable then it appears in s. Thus, Var (sσ) ⊆ sσ.

4. Resolution between two intruder clauses: a composition clause

I(x, y1), . . . , I(x, yn) → I(x, f(y1, . . . , yn))

and a decomposition clause

I(x′, f ′(u1, . . . , un′)), I(x′, y′
1), . . . , I(x′, y′

k) → I(x′, y′)

By definition of our selection function,

σ = Mgu(f(y1, . . . , yn) =? f ′(u1, . . . , un′)).
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The resolvent is a redundant clause. Indeed, xσ = x′σ (σ is a renaming on
x, x′) and, for every i, yiσ = uiσ. By definition of decomposition clauses Cm

D ,
y′ ∈ {u1, . . . , un}. Thus, y′σ = yiσ for some i.

5. Other cases. Resolution between an initialization clause and a clause verify-
ing invariants 1a and 2 is similar to case 1 (take n = 0). Resolution between
a goal clause and a clause verifying invariants 1a and 2, is covered by case 1
(take k = 1 and no right-hand side for the second clause). Resolution between
an initialization clause and a goal clause is similar to case 1 (take n = 0,
k = 1, and no right-hand side for the second clause). Resolution between a
composition clause and a goal clause is covered by case 2 (take k = 1 and
no right-hand side for the first clause). Resolution between a decomposition
clause and an initialization clause is similar to case 3 (take l = 0).

Lemma 4. Let t, t′ be terms such that σ unifies t and t′. For all x /∈ Var (σ),
x ∈ Var (t) iff x ∈ Var (t′).

Proof. tσ = t′σ. Since x /∈ Var (σ), x ∈ Var (t) iff x ∈ Var (tσ) iff x ∈ Var (t′σ)
iff x ∈ Var (t′).

Lemma 5. Let t, t′ be terms such that σ = Mgu(t =? t′). For all x ∈ Dom (σ),
if x ∈ Var (t) then Var (xσ) ⊆ Var (t′).

Proof. tσ = t′σ. By induction on the structure of t′.
Base case. Suppose that t′ is some variable z′. We do a case analysis on t.

If t is a variable, then it is the variable x, in which case σ = {x 	→ z′} and
we indeed have Var (xσ) = {z′} ⊆ Var (t′) = {z′}. If t = f(t1, . . . , tp), then
x ∈ VRange (σ), which contradicts the hypotheses.

Inductive case. Suppose that t′ = f ′(t′1, . . . , t
′
n). Then we also have t =

f ′(t1, . . . , tn) such that for some i, x ∈ Var (ti). σ|Var(ti)∪Var(t′i) = Mgu(ti =? t′i).

By the inductive hypothesis, Var
(
xσ|Var (ti)∪Var(t′i)

)
⊆ Var (t′i), from which we

derive Var (xσ) ⊆ Var (t′).

A.1 Proof of Lemma 2

By induction on |Var (s) | + |Var
(
s′
)
|.

Base case. There is no variable. All si’s and s′i’s are ground terms. Thus σ is
empty and the inclusions are trivially verified.

Inductive case. We have |Var (s) | + |Var
(
s′
)
| > 0. If σ is a renaming, then

the goal is trivially verified. Let us assume that σ is not a renaming; for the
sake of simplicity, we assume that σ is idempotent. Then there is at least one
variable x ∈ Var (s) (or Var

(
s′
)
, but this is symmetric) such that the equation

set contains an equation si =? s′i such that, for some p, si|p = x and s′i|p is
defined and different from x.

Suppose for the sake of simplicity that si = x. (Otherwise, decompose the equa-
tion si =? s′i and transform the equation set so as to obtain such an equation.)
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We can reorder the equation set as follows:

s =? s′ ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x =? s′0
s1 =? s′1

...
sm =? s′m

We do a case analysis on s′0.
Suppose that s′0 is some variable x′. We replace x with x′ in all si’s and

s′i’s and obtain a new equation set s1 =? s′1. The inclusions Var (s1) ⊆ s1 and
Var

(
s′1
)

⊆ s′1 hold and there is one variable less. By construction, this new
equation set has a mgu σ1 and, by inductive hypothesis, we have Var (s1σ1) ⊆
s1σ1 and Var

(
s′1σ1

)
⊆ s′1σ1. Using σ1, we build the mgu σ for the original

equation set as follows:

– If x′ ∈ Dom (σ1), then σ = σ1 � {x 	→ x′σ1}.
– If x′ ∈ VRange (σ1) or x′ /∈ Var (σ1), then σ = σ1 � {x 	→ x′}.

In each case, we have Var (sσ) = Var (s1σ1) ⊆ s1σ1 = sσ and similarly for s′.
Suppose that s′0 is a functional term f(t1, . . . , tp). We replace x with s′0 in all

si’s and s′i’s and obtain a new equation set s1 =? s′1. Var (s1) ⊆ s1 does not
necessarily hold because the previous replacement may introduce new variables
x′

j ∈ Var (s′0) in s. However, since Var
(
s′
)
⊆ s′, for any such x′

j , there is an
equation s′ij

=? x′
j . We replace each x′

j with s′ij
in s1 and obtain a new equation

set s2 =? s′1. In this new system, the desired inclusions hold and there is one
variable less. By construction, this new equation set has an mgu σ1 and, by
the inductive hypothesis, we have Var (s2σ1) ⊆ s2σ1 and Var

(
s′1σ1

)
⊆ s′1σ1.

Using σ1, we build the mgu σ = σ1 � {x 	→ s′0σ1} for the original equation set.

B Proof of Lemma 3

We define two functions R and φ as follows. For any clause C ∈ C∗, any atom
in C can be written I(s, t); then R(I(s, t)) = s and φ(I(s, t)) = |V ar(s)|. By
Remark 1, we can overload the notations and extend R and φ to clauses.

Our goal is to show that C∗ is finite. We will show more generally that for any
n such that 0 ≤ n ≤ m, there are only finitely many clauses C ∈ C∗ such that
φ(C) = m − n, i.e., for all n ≤ m, {C ∈ C∗ | φ(C) = m − n} is finite. The proof
goes by induction on n.

Base case: We prove that there are finitely many clauses C ∈ C∗ such that
φ(C) = m. This follows from Lemma 7 below.

Inductive case: By the inductive hypothesis, S0 = {C ∈ C∗ | φ(C) > m − n}
is finite. Our goal is to show that {C ∈ C∗ | φ(C) = m − n} is finite. We show
that this set is included in another finite set, that we now define.

Let S1 = {C ∈ C | φ(C) = m−n}∪{C | C � C1, C2 ∈ S0 and φ(C) = m−n}.
By construction, S1 is finite. Let F = {R(C) | C ∈ S1}. Since S1 is finite, F is



Verification of Security Protocols with a Bounded Number of Sessions 19

also finite. Let S2 = {Cσ | C ∈ S0 and R(Cσ) ∈ F for some substitution σ}.
S2 is also finite because S0 is finite and there is only a finite number of ways to
build the substitutions. We show that {C ∈ C∗ | φ(C) = m − n} is included in

{C | C �∗ S1 ∪ S2 ∪ Cm
I and R(C)ρ ∈ F for some renaming ρ}.

By Lemma 7, this set is indeed finite. The inclusion proof goes by induction on
the length of the derivation of C.

Base case: C ∈ C and φ(C) = m − n, thus C ∈ S1 and R(C) ∈ F .
Inductive case: let C ∈ C∗ be such that the derivation length is strictly positive

and φ(C) = m−n. To fix notation, assume w.l.o.g. that C � C1, C2 and φ(C1) ≤
φ(C2). According to Lemma 6, there are four cases:

1. φ(C) < φ(C1). Since φ(C) = m−n, then φ(C1) > m−n and φ(C2) > m−n.
Thus C1, C2 ∈ S0, which implies C ∈ S1 and R(C) ∈ F .

2. φ(C) = φ(C1), there is a renaming ρ on Var (C1) such that R(C) = R(C1)ρ
and C2 is an intruder clause. Since φ(C1) = m − n, by the inductive hy-
pothesis, C1 �∗ S1 ∪ S2 ∪ Cm

I and R(C1)ρ′ ∈ F for some renaming ρ′. Thus,
C �∗ S1 ∪ S2 ∪ Cm

I and R(C)θ ∈ F for some renaming θ.
3. φ(C) = φ(C1) < φ(C2), there is a mgu ρ for the resolution step C � C1, C2

that is a renaming on Var (C1) such that R(C) = R(C1)ρ = R(C2)ρ, and C2
is not an intruder clause. By the inductive hypothesis, C1 �∗ S1 ∪ S2 ∪ Cm

I

and there is a renaming ρ′ such that R(C1)ρ′ ∈ F .

φ(C2) > m − n, hence C2 ∈ S0. Moreover, there is a renaming θ such that
R(C2)θ ∈ F , thus C′

2 = C2θ ∈ S2. Then C � C1, C
′
2, because θ is a renaming.

Thus C �∗ S1 ∪ S2 ∪ Cm
I and R(C)θ ∈ F

4. φ(C) = φ(C1) = φ(C2). There are renamings ρ1, ρ2 such that R(C) =
R(C1)ρ1 = R(C2)ρ2. We apply the inductive hypothesis to both C1 and
C2. We deduce that C �∗ S1 ∪ S2 ∪ Cm

I and that there is a renaming ρ′

such that R(C1)ρ′ ∈ F and a renaming ρ′′ such that R(C2)ρ′′ ∈ F . There is
therefore a renaming θ such that R(C)θ ∈ F .

Lemma 6. Consider C1, C2 ∈ C∗ such that φ(C1) ≤ φ(C2). For any C � C1, C2
one of the following holds:

1. φ(C) < φ(C1)
2. φ(C) = φ(C1), there is a renaming ρ on Var (C1) such that R(C) = R(C1)ρ,

C1 is not an intruder clause, C2 is an intruder clause, and for any atom A
occurring in C there is an atom A1 occurring in C1 such that A � A1ρ.

3. φ(C) = φ(C1) < φ(C2), there is a mgu ρ for the resolution step that is a
renaming on Var (C1) such that R(C) = R(C1)ρ = R(C2)ρ, and neither C1
nor C2 are intruder clauses.

4. φ(C) = φ(C1) = φ(C2), there is a renaming ρ1 on Var (R(C1)) and a re-
naming ρ2 on Var (C2) such that R(C) = R(C1)ρ1 = R(C2)ρ2, and every
atom occurring in C is a renaming of an atom occurring in C1 or C2.
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Proof. Let σ be a mgu for the resolution step C � C1, C2. We have R(C) =
R(C1)σ = R(C2)σ. By definition of Cm and invariant 2 of Lemma 1, we also
have Var (R(C1)) ⊆ R(C1) and Var (R(C1)σ) ⊆ R(C1)σ. Thus:

φ(C)= |Var (R(C1)σ) |= |R(C1)σ ∩X| and φ(C1)= |Var (R(C1)) |= |R(C1) ∩X|

In general |R(C1)σ ∩ X| ≤ |R(C1) ∩ X|, and the equality is achieved iff σ is a
renaming on Var (R(C1)). Suppose that we do not have equality, then we have
φ(C) < φ(C1) and we fall in case 1. Henceforth, suppose that we have the equal-
ity φ(C) = φ(C1). Since φ(C) = φ(C1), then σ is a renaming on Var (R(C1)).
Observe that C1 and C2 cannot be both intruder clauses simultaneously because
of our resolution strategy. We do a case analysis on C1, C2.

Suppose that neither C1 nor C2 are intruder clauses. Then we can show that
σ is not only a renaming on Var (R(C1)) but also a renaming on Var (C1). By
hypothesis, φ(C) ≤ φ(C2). If φ(C) < φ(C2), then we fall in case 3. If φ(C) =
φ(C2), then we can show as above that σ is also a renaming on Var (C2) and we
fall in case 4.

Suppose that C1 is not an intruder clause and that C2 is an intruder clause.
We show that we fall in case 2. First, observe that σ is a renaming on Var (C1).
Assume that the resolution step unifies the atom A2 of C2 and some atom A1
of C1. A2 is the only maximal literal in C2 because it is an intruder clause. Every
atom A of C is either a renaming of an atom of C1 or an atom A′

2σ for some
A′

2 ≺ A2 in C2; then A′
2σ ≺ A2σ = A1σ.

Suppose that C1 is an intruder clause but C2 is not an intruder clause. Then
we have φ(C1) ≥ φ(C2) because φ is maximal for intruder clauses. Thus φ(C1) =
φ(C2) = φ(C). We can show that σ is a renaming on Var (C2). We fall in case 4.

Suppose that C1 is not an intruder clause and that C2 is an intruder clause.
Then σ is a renaming on Var (C1). By hypothesis, φ(C1) ≤ φ(C2). If φ(C1) <
φ(C2), we fall in case 3. If φ(C1) = φ(C2), then we can show that σ is also a
renaming on Var (C2) and we fall in case 4.

Lemma 7. Let n ∈ N and S ⊆ C∗ be a finite set of clauses such that, for every
C ∈ S, φ(C) = n. Let S∗ be the set of clauses C that are derivable using our
resolution strategy from clauses in S ∪ Cm

I and such that φ(C) = n. Then S∗ is
finite.

Proof. Lemma 6 shows that clauses in S∗ are derivable from S using some reso-
lution strategy which further restricts the resolvent C to be such that φ(C) = n.

Furthermore, again by Lemma 6 and by induction on the derivation length,
any atom A occurring in a clause of S∗ is such that there is some atom A′

occurring in some clause of S and some renaming ρ such that A � A′ρ (only
cases 2 and 4 of Lemma 6 can occur).

By hypothesis on our ordering and by finiteness of S, it follows that there are
only finitely many atoms in S∗, and therefore only finitely many clauses, up to
renaming.
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Abstract. It is usually very difficult in Computer Science to make an informa-
tion “disappear” after a certain time, once it has been published or mirrored by
servers world wide. This, however, is the goal of the IBM ephemerizer’s protocol
by Radia Perlman. We present in this paper the general structure of the CL-Atse
protocol analysis tool from the AVISPA’s tool-suite, and symbolic analysis of
the ephemerizer’s protocol and its extensions using CL-Atse. This protocol al-
lows transmitting a data which retrieval is guarantied to be impossible after a
certain time. We show that this protocol is secure for this property plus the se-
crecy of the data, but is trivially non secure for its integrity. We model a standard
integrity check as a first extension to this protocol, which is natural and close
to common usage, and we present a second extension for integrity that is much
less obvious and deeply integrated in the structure of the ephemerizer’s protocol.
Then, we show that while the first extension guaranty the basic integrity prop-
erty under certain conditions, the second one is much stronger and allows faster
computations.

1 Introduction

It is a known difficult problem to ensure that a data is completely destroyed, say after
a given amount on time: whatever it is transmitted by email, placed on a web server,
etc.., a data is expected to be copied or archived in a way that we cannot truly con-
trol. To solve this problem, and to guaranty expiration times on certain messages, Radia
Perlman proposed the so called ephemerizer’s protocol [20], a solution where a unique,
not completely trusted server manage the keys used to encrypt those messages. Since
these keys are only known by the ephemerizer, deleting one when its expiration time
is reached makes the data “disappear”. It is the responsibility of the ephemerizer to
provide keys for the protocol and delete them at the appropriate time. Moreover, Perl-
man’s protocol has the extra advantage to use a so called triple encryption, that guaranty
the secrecy of the data even when the ephemerizer is dishonest. However, it is kind of
obvious that this protocol does not guaranty the integrity of the data.

In this paper, we propose an automatic analysis of this protocol w.r.t its security
properties, as well as some extensions validating integrity. Many decision procedures
have been proposed to decide security properties of protocols w.r.t. a bounded number
of sessions [1,9,21,19] in the so called Dolev-Yao model of intruder [17], the dominat-
ing formal security model in this line of research (see [18] for an overview of the early
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history of protocol analysis). In particular, among the different approaches the sym-
bolic ones [19,12,14] have proved to be very effective on standard benchmarks [13] and
discovered new flaws on several protocols. Here, we uses the CL-Atse tool [22] to an-
alyze the Ephemerizer’s protocol and its extensions. The modularity and performance
of this tool appeared to be very useful for analyzing protocols from the AVISPA [2]
project in which CL-Atse is involved since a few years (with OFMC [6], SATMC [3]
and TA4SP [7]), as well as for the RNTL Prouv project. The CL-Atse tool can be freely
used, either by binary download on the CL-Atse web page1, or through on-line exe-
cution on the AVISPA web page2. It allows automatic formal analysis of cryptographic
protocols with the single (necessary) restriction of a bounded number of sessions. These
analysis are done on a symbolic level, i.e. bit-strings are replaced by terms in a language
of messages, and we assume that all cryptographic primitives are perfect. As usual in
such cases, the protocol is run in presence of an active intruder with all capacities of the
Dolev-Yao intruder (i.e. he can intercept or block any message, impersonate agents, or
use any legal cryptographic operation).

Paper overview. First, we present the details of the version of the ephemerizer’s pro-
tocol that is analyzed here (section 2), along with the security properties. This includes
two versions of the integrity. Second, we give a general overview of the CL-Atse tool
used to analyze this protocol (section 3). Then, in section 4 we show that while the
protocol validates the standard security properties, a simple extension for data integrity
fails and should never be used in practice. Instead, two extensions are proposed, one
quite natural and the other one less obvious. We show that while the natural extension
satisfy the basic data integrity property, the second one is much stronger and may even
be faster in practice. We conclude in section 5. Also, note that the protocol models
presented here are publicly available at [4].

2 The Ephemerizer’s Protocol

The term signature allowed by the analysis tool and used to model the Ephemerizer’s
protocol is the following :

T erm=A tom |V ar |T erm.T erm | inv(T erm)
|{T erm}s

T erm | {T erm}a
T erm

|SigT erm(T erm) |HMAC(A tom,T erm)
|T erm⊕T erm |Exp(T erm, Product)

Product=(T erm)±1 | (T erm)±1×Product

Terms can be atoms, variables, concatenations (or pairing), and symmetric or asym-
metric encryption (marked by s or a). Also, inv(k) is the inverse of k for asymmet-
ric encryption. Note that if k is a (random) term, then inv(k) exists but is unknown
to every agent. Sigk(m) represents the message m plus a signature on m with key k.
HMAC(k,m) represents m plus a MAC on message m with key k. In the tool this is

1 http://www.loria.fr/equipes/cassis/softwares/AtSe/
2 http://www.avispa-project.org/web-interface/

http://www.loria.fr/equipes/cassis/softwares/AtSe/
http://www.avispa-project.org/web-interface/
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{{{S}a
KBob}a

Keph}s
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{{S}a
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J

Fig. 1. Ephemerizer Scheme proposed by Radia Perlman (using triple encryption). T , S, and J are
symmetric keys generated during the protocol.

coded as {h,m}a
k with some (optional) header h to differentiate multiple operators: on a

formal point of view, the only difference between signature and asymmetric encryption
is the agents who knows the key k or it’s inverse inv(k). The ⊕ and Exp(..) operators
model the xor and exponentiation operators. A Product represents a product of bit-
strings (modeled by terms) to be used as an exponent for the Exp(..) operator. Thus,
each term in the product is equipped with +1 or −1, in order to model usual proper-
ties such that a+1× a−1× b+1 = b+1. The intruder capabilities in CL-Atse match the
Dolev-Yao model [17], extended for xor and exponentiation as in [10,11].

However, the Ephemerizer’s protocol relies on neither ⊕ nor exponentiation, and
uses only atomic keys in its design. Therefore, we simplify a bit the term signature by
allowing the following shortcuts to present the protocol and its analysis. Note however
that this does not restrict the tool analysis in any way.

Notations: Following the notations of Radia Perlman with small differences, we note
u.v the concatenation of messages u and v; {M}K the encryption of M by K (symmetric
or asymmetric depending on K’s type); {M}inv(KAlice) the signature of M with Alice’s
private key. We also assume the existence of a subset AKeys ⊆ Atom containing the
public keys for asymmetric encryption or signature. Note that for the analysis tool as
well as for the modeling in the tool’s language, a signature is equivalent to an encryption
with a private key, and a MAC is equivalent to an encryption with a public key which
private key is unknown to everybody, including the intruder.

Description: The ephemerizer’s protocol is a communication protocol that allows an
agent, say Alice, to send one message (or more) protected by an expiration time. While
the recipient (Bob) shall be able to retrieve the message(s) before the expiration time,
this must become impossible after the time is reached. To do so, a trusted third party
is required to provide an ephemeral key Keph, i.e. a public encryption key linked with
an expiration time, that is used to encrypt the data sent to Bob. Then, Bob must ask
the ephemerizer for a decryption key that he will get only if the expiration time is
not reached yet. This ensures the expected ephemeral property. Moreover, by using
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multiple encryption with single-use symmetric keys, the protocol also ensures that the
message remains secret for anybody except Alice and Bob, even if the ephemerizer is
dishonest. The protocol is displayed in figure 1, with KBob being Bob’s public key, and
with T , S, J, M being nonces, i.e. atoms freshly generated at run time, and represents
respectively three symmetric keys and the message from Alice. Here, S is the symmetric
key protecting M that Bob must acquire from the ephemerizer. S is sent to Bob, too, but
protected by Bob’s public key so that only he can get it, and protected by the ephemeral
key Keph to ensure that Bob don’t get it if the expiration time is reached. It is then
protected (again!) by Bob’s public key (through T for efficiency) to ensure that only
Bob can query the ephemerizer. This is the so called triple encryption. Bob’s query
to the ephemerizer simply consists in Bob asking him to remove the protection of the
ephemeral key Keph.

The initial state of the protocol matches the expects: all public keys of agents are
known by everybody including the intruder, as well as Keph and KeyID (ID of Keph),
and the HMAC function; private keys are known by their owner only; and other atoms
(T , S, M and J) are generated during the execution.

Security properties: This protocol was designed to guarantee both the ephemeral prop-
erty on M (i.e. bob cannot obtain M after the expiration time), and the confidentiality of
M (only Alice and Bob can obtain M). According to the formal analysis of this protocol
that we performed with CL-Atse (see Section 4), these properties are always satisfied
for at most two sessions, and for all the 3-sessions scenarios that we could run. How-
ever, it appears immediately that this protocol does not guaranty the integrity of M: the
intruder can impersonate Alice to send his own message to Bob. However, integrity of
M is a basic property that many users may need. Therefore, in this paper we add the
two following properties to the previous basic ones:

1. Integrity of the message: it is impossible for an intruder to corrupt, change or re-
place M during the transfer;

2. Integrity of the protocol run: it is impossible for an intruder to corrupt, change or
replace any of the temporary keys of the protocol, i.e.. T , S, J or Keph.

In order to guaranty the property 1 above, a user would certainly simply sign M with
Alice’s private key, assuming that Bob knows her public key already. Along with the
proof of destination guarantied by the confidentiality property of the Ephemerizer’s pro-
tocol, this proof of origin ”seems” to guaranty integrity. This approach is very classical
in the real world, where users or agents usually compose protocols (or cryptographic
methods) with limited security properties to reach stronger ones. We will see in the
analysis in Section 4 how limited this approach can be. But for now, we simply remark
that we cannot rely on the Ephemerizer’s nonces to guaranty the security of this com-
bined protocol w.r.t. multiple sessions: if an agent plays Alice twice, then the intruder
can exchange the messages of the two sessions. Therefore, one need to include either
the official recipient’s name or a sessions ID of Alice in the message transmitted, i.e.
the protocol that we consider initially is the following:

Modified Ephemerizer (root version): In the original Ephemerizer protocol, we re-
place M by {M}inv(KAlice) .IDCheck, i.e Alice’s signature on M joint with some IDCheck
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atom to identify each session. Depending on which variant of the integrity property we
consider, IDCheck will be either Bob (Bob’s name, for weak integrity) or a SiD (a ses-
sion ID, for strong integrity). These two variants are defined as follows.

To define the integrity properties that we consider, we need the differentiate roles and
agents. Now, Alice and Bob used before are in fact only roles, i.e. pieces of protocols or
services run by real agents a or b, e.g. real computers or humans. Agents can run many
roles, or sessions, in parallel. In our opinion, there are two possible variants for the
integrity property that the final user may additionally require for this protocol, namely
the weak and strong integrity :

Integrity Variant n°1 (weak integrity): A data like M or T is corrupted between a and
b playing Alice and Bob when b receives a value for M that has never been sent by a
in any of the (multiple) sessions she plays with b. That is, we allow messages of one
session to reach an other session as long as the agents are the same. To ensure this, we
uses Bob as IDCheck’s value.

Integrity Variant n°2 (strong integrity): Same as above, but a message is also cor-
rupted if it is accepted in an other session (no crossing). To ensure this, adding the
recipient’s name is not enough. Therefore, we uses SID as IDCheck’s value, with SID
a public, unique, number (like a port number) identifying Alice’s session playing with
Bob. We assume that Bob (and the intruder!) knows SID from the start of the protocol.

Both variants will be checked for validity against the protocol (and its two patches) in
Section 4. Note that the encryption with S, as well as the triple encryption over S, should
prevent any modification of SID or Bob’s name. While these modifications may look
obvious at first, and may even be performed in practice since it is only a modification
of M, we will see that it is still possible for the intruder to combine multiple sessions in
order to corrupt the message M.

3 Overview of CL-Atse

The protocol analysis methods of CL-Atse have their roots in the generic knowledge
deduction rules from CASRUL [12] and AVISPA. However, a lot of optimizations and
major extensions have been integrated in the tool, like prepossessing of the protocol
specifications of extensions to manage the algebraic properties of operators like xor or
exponentiation. In practice, the main characteristics of CL-Atse are:

– A general protocol language: CL-Atse can analyze any protocol specified as a set
of IF rewriting rules (no restriction, see [2] or the documentation on AVISPA’s web
page for IF details). The figure 2 shows the standard process of protocol analysis
using the AVISPA tools, from a specification in HLPSL (role-based, same idea as
strands) to any of the four tools available at the moment.

– Flexibility and modularity: CL-Atse structure allows easy integration of new deduc-
tion rules and operator properties. In particular, CL-Atse integrates an optimized
version of the well-known Baader & Schulz unification algorithm [5], with mod-
ules for xor, exponentiation, and associative pairing. To our knowledge, CL-Atse
is the only protocol analysis tool that includes complete unification algorithms for
xor and exponentiation, with no limitation on terms or intruder operations.
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On−the−fly
Model−Checker Attack Searcher

Translator

Fig. 2. Structure of AVISPA’s analysis tool

– Efficiency: CL-Atse takes advantage of many optimizations, like simplification and
rewriting of the input specification, or optimizations of the analysis method.

– Expressive language for security goals: CL-Atse can analyze any user-defined state-
based property specified in AVISPA IF format.

Since protocol security is undecidable for unbounded number of sessions, the analysis
is restricted to a fixed but arbitrary large number of sessions (or loops, specified by the
user). Other tools provide different features. The closest to CL-Atse are:

The OFMC tool [6], also part of AVISPA, solves the same problem as CL-Atse except
that loops and sessions are iterated indefinitely. However, OFMC proposes a differ-
ent method to manage algebraic properties of operators: instead of hard-coding these
properties in the tool, a language of operator properties is provided to the user. Equal-
ity modulo theories is solved through modular rewriting instead of direct unification
with state-of-the-art algorithms for CL-Atse. However, since this language covers all
theories, termination is only obtained by specifying bounds on message depths and
number of intruder operations used to create new terms. Hence, completeness cannot
be ensured. CL-Atse does not provide such flexibility on properties, but it also does not
have any limitation for the theories it can handle (xor, exponentiation, etc...). Moreover,
thanks to modularity in the unification algorithm and in knowledge deduction rules,
it is quite easy to include new algebraic (or cryptographic) properties directly in the
tool.

The Corin-Etalle [14] constraint-based system, which improves upon one developed
by Millen & Schmatikov, relies on an expressive syntax based on strands and some
efficient semantics to analyze and validate security protocols. Here, strands are extended
to allow any agent to perform explicit checks (i.e. equality test over terms). This makes
a quite expressive syntax for modeling protocols, that is however subsumed by IF rules.
Moreover, to our knowledge no implementation for xor and exponential is provided.
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The SCYTHER tool [15], recently developed by Cas Cremers, is dedicated to un-
bounded protocol analysis. However, unlike other tools for unbounded protocols which
restrictions, heuristics or approximations also apply to the case of a bounded number of
sessions, this one do not suffer from this limitation. This would be a nice alternative for
analyzing the Ephemerizer’s protocol, especially for an unbounded number of sessions,
assuming that the user-defined predicates and properties used here are not problematic
for analyzing an unbounded number of sessions (but they should not be).

These other tools could have very well been used for analysis in this paper with
equivalent results. Choosing CL-Atse had the advantage to allow cheating only one
protocol model understandable by all tools in the AVISPA’s project. Also, various algo-
rithms are implemented in CL-Atse to simplify and optimize the input protocol specifi-
cation, and also to guide the protocol analysis. However, these methods require working
on a protocol specification with some special features. Listing these would be quite
technical, but the most important ones are that all protocol steps and roles must be local
to only one participant, and that CL-Atse must eliminate all honest agent’s knowledge
by converting them into a small set of equality and inequality constraints over terms
with global variables. This allows CL-Atse to compute closures of the participant’s or
intruder knowledge, unforgeable terms, sets or facts, and to optimize each role instance
accordingly (prepossessing). This prepossessing has two main axes :

Protocol simplifications: They reduce the overall size of the protocol, and specifically
the number of steps, by merging some protocol steps together, or tagging others with
execution directives (e.g. tag a protocol step to be run as soon or as late as possible).
This is a generic process in CL-Atse’s algorithm, thus not limited to the Ephemerizer’s
protocol in this paper. Also, these tags are not heuristics, in the sense that opposite
choices are never tried. Thus, CL-Atse tag a protocol step only when it was able to prove
statically that if an attack exists, then there exists one validating the tag. In practice, this
occurs quite often.

Optimizations: Protocol optimizations aim at rewriting automatically some parts of the
protocol in order to accelerate the search for attacks. The acceleration can be signifi-
cant, and the protocol structure can be changed deeply but equivalently. The idea is to
track all possible origins of cipher-texts that the intruder must send but cannot create
himself (i.e. necessarily obtained from an agent). By building an exhaustive list of ori-
gins for such terms, CL-Atse can reduce the future work of the analysis algorithm by
unifying these terms with each of their possible origins and generate minimal choice
points accordingly. Analysis acceleration comes from a reduction of redundancy in the
steps execution. Moreover, this strategy also fixes the time when steps holding such
cipher terms must be run in an attack, thus reducing interleaving.

Once all prepossessing are done, the analysis algorithm implemented in CL-Atse
symbolically executes the protocol in any possible step ordering. While the maximum
number of symbolic executions build by the tool remains finite (exp. bounded in the
size of the protocol specification), each one represents an infinite number of protocol
traces and intruder actions. Note that no bound is assumed on the intruder (neither
the number of actions nor the size of terms it outputs). Also, this analysis relies on
a (generic) unification algorithm modulo the properties of the operators, like xor or
exponentiation, that provide all term-specific computations.
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4 Symbolic Analysis with CL-Atse

We modeled the Ephemerizer’s protocol and all its variants in the HLPSL language,
input of the AVISPA’s protocol analysis platform in which CL-Atse is a back-end. Even
if not particularly complex and quite readable, the technical design of the modeling in
this language would be too long to describe in this paper. However, all modeling in
HLPSL used in this paper are publicly available and can be found at [4]. We refer to the
AVISPA’s user manual (google avispa-project) for deeper concerns about HLPSL.

Formal Modeling of the integrity properties: The integrity is modeled as usual in
HLPSL using the witness and request or wrequest predicates defined initially for au-
thentication, and the property shortcuts provided in HLPSL. E.g. for weak integrity:

– the witness(Alice,Bob,m,M1) predicated is released when Alice send M1 to
Bob;

– the wrequest(Bob,Alice,m,M2) predicate is released when Bob receives M2;
– and the protocol must guaranty that for each wrequest there exists a matching

witness.

Formal Modeling of the ephemeral property: The Ephemeral property however can-
not rely on any predicate or property already defined in HLPSL or in the tool. Therefore,
user-defined predicates and security properties must be written in the modeling specif-
ically for this protocol. Hopefully, the analysis tool is able to check a wide range of
user-defined properties, written in an property language in HLPSL based on LTL for-
mula. Thus, we defined the following predicates:

– message decr bob(A, B, E, KeyID, KEph) is activated by Bob when he be-
come able to decrypt {M}S associated to key KE ph. This is equivalent to Bob
knowing M.

– message not decr bob(A, B, E, KeyID, KEph) is activated by Bob when he
is denied receiving S by the Ephemerizer. This is not truly equivalent to Bob know-
ing M since he could have performed an other request to the Ephemerizer before
the expiration time.

– no expiry eph(A,B,E,KeyID,KEph) is activated by the Ephemerizer as long as
the key Keph did not expire.

– expiry eph(A,B,E,KeyID,KEph) is activated by the Ephemerizer when the key
Keph expire. Note that the instant when the key expire is not deterministic, i.e. the
protocol must be secured independently of the key life-time.

Using these predicates, the modeling of the Ephemerizer’s security property in HLPSL
is quite simple, using the LTL notation :

[] ( [-] expiry eph(A,B,E,KeyID,KEph)
=> message not decr bob(A,B,E,KeyID,KEph) )

[] ( message decr bob(A,B,E,KeyID,KEph)
=> no expiry eph(A,B,E,KeyID,KEph) )

This can be read as: ”At any moment, if somewhere in the past the key KE ph expired,
then Bob must be denied retrieving the decryption key associated to KE ph”; ”At any
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moment if Bob is allowed retrieving the decryption key associated to KE ph, then KE ph
must not have expired”.

An integrity attack on M: During the analysis of this protocol with CL-Atse, many
attacks were found on the integrity of any of the internal data of this protocol (M, T , S,
Keph). The most complex ones showed integrity flaws of either S or T . However, since
the central data in this protocol is M only, we choose to present here a simple integrity
attack on M w.r.t. the simple protocol extension presented above, for the strong integrity.
The same attack also works for weak integrity. The scenario is the following, with a, b,
e three agents and i the intruder:

Agent "a" (honest)
plays role Alice

Agent "e" (honest)
plays role Ephem.

Agent "b" (honest)
plays role Bob

Agent "a" (honest)
plays role Alice

Agent "e" (honest)
plays role Ephem.

Agent i (dishonest)
plays role Bob

2nd Session1st Session

We write Xn the object X in session n. First, the session 1 is run normally, thus adding
{M1}inv(KAlice) to the intruder’s knowledge. Then, the intruder can simply impersonate
a in session 2 using {M1}inv(KAlice) instead of {M2}inv(KAlice): the Alice’s signature is
the only thing that the intruder cannot create himself. However, b cannot differentiate
M1 from M2, so M1 is accepted and the integrity is lost.

Patch n°1, signing M and Sid: The previous attack occurs for the single reason that the
official receiver of M1 could reuse the signature for Alice on it in an other session of the
protocol. To prevent that, we can naturally include SID, or Bob’s name, in the signature:
{M,SID}inv(KAlice) instead of {M}inv(KAlice) .SID. While it may not be obvious at first
that we also need to protect SID or Bob’s name with the signature, this modification
guaranty the integrity of M in the ephemerizer’s protocol. However, here we also want
to guaranty the integrity of the local keys, i.e. S, T , J and Keph. Hopelessly, the sig-
nature on M is unable to prevent the intruder from modifying or replacing any of these
local variables: there exists many attacks on the integrity of these keys, including very
complex ones. These can be seen in the model and analysis files [4] associated to this
work, which include Alice-Bob description of each attack in the tool’s output.

Patch n°2, signing S and Sid: The problem of guarantying the integrity of all M, S, T ,
J and Keph here is that we just cannot sign everything. For example, the analysis shows
that our goal would be reached if we could sign M, T and J (the key generated by Bob),
and that omitting to sign at even one of these objects allows the intruder to perform
an attack. But, in practice it would not be affordable to add more than one signature.
Moreover, signing only the HMAC could look like a good idea, since it contains data
that depends on S, T , and Keph. But still, some attacks remain which can be seen in
the tool’s output in [4]. In fact, it appeared during the analysis process of this protocol
that the only way to guaranty the integrity of all local keys (plus M) is to sign S directly
(along with Sid): this is actually the central key of all the transmission, and signing
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it prevents any modification on M (since S encrypts M), on T (since nobody except
Bob can retrieve {{S}KBob}Keph which is encrypted with T ), and on Keph (since T ’s
integrity is guarantied). Therefore, the modification w.r.t the original protocol is the
following :

{{S}KBob .Sid}inv(KAlice) replaces {S}KBob everywhere

It is remarkable that the signature must be placed inside the triple encryption: if placed

outside, that is if Alice sends
{{
{{S}KBob}Keph

}
T
.Sid

}
inv(KAlice)

to reduce encryption

time, then an attack still exists on the integrity of M. Similarly, there also exists an
attack if Alice signs {{S}KBob}Keph only.

On the point of view of the encryption time, this is very interesting: we can keep en-
crypting only the “small” message S with KBob (slow, asymmetric encryption), while
we must encrypt {S}KBob and the signature with only KE ph, T and J (fast, symmet-
ric encryption). Moreover, this may even be faster than signing M, since {S}KBob is
probably much smaller and faster to sign than M.

Successful analysis: For all analyzed scenario, no attacks were found on the ephemer-
izer’s protocol with the signature on {S}KBob described above, for all the properties
described in this paper (including secrecy of M and integrity of M,S, T , Keph and J),
and for any of the weak or strong integrity properties (with Bob’s name or Sid respec-
tively). Alternatively, signing S directly gives the same result. Also, signing M with
the correction of patch n°1 still guaranty the integrity of M (alone). For all variants
of this protocol, we analyzed as many execution scenarios as we could, including all
relevant scenarios where honest agents plays at most two roles (that is, scenarios that
are not trivially secure), plus some scenarios with three or four roles per honest agent.
This is actually the limit of the analysis tool for this protocol: with more sessions, no
answer comes in a reasonable time (less than an hour). While it may be interesting to
use parallel computing to raise this limit, we think that the analyzed scenarios are the
most relevant ones for this protocol. While only CL-Atse were used during the mod-
eling process and the generation of all scenario variants to be analyzed, other tools
from the AVISPA project can be run to confirm the final results: OFMC [6] and SAT-
MC [3], giving similar result. Note that OFMC may require small adjustments for the
user-defined predicates of the Ephemerizer’s property. However, SAT-MC don’t, and its
speed greatly increased recently as shown in [16], thus allowing it to go a bit farther
in increasing the number of sessions. We would however not expect new attacks from
that.

5 Conclusion

In this paper, we presented an analysis of the ephemerizer’s protocol by Radia Perlman
with CL-Atse and the AVISPA’s tool-suite. The analysis has three main results: first, it
confirmed that the original protocol is secure against the ephemeral property and the
secrecy of M (even if the ephemerizer is dishonest); second, to reach the integrity of M
(the transmitted data), it showed that we cannot count on the encryption by S to prevent
modifications of M: at least the patch n°1 is required; and third, it showed that while
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signing M is a partial solution for a non-modifiable implementation of the ephemerizer’s
protocol, it is in fact much better, and more secure, to sign S or {S}KBob instead (patch
n°2): it is faster for large M, and it guaranty that no run of this protocol can deviate from
the specification (meaning integrity of the protocol execution). For future work, it would
be interesting to have a security proof for the second extension of this protocol for an
unbounded number of sessions, either manually created, or automatically generated by
a tool in a restricted model of protocol: best candidates are TA4SP [7], part of AVISPA,
and ProVerif [8] for over-approximation methods; and SCYTHER [15] for complete
characterization method. Also, a comparition of the state-of-the-art analysis tools can
be found in.
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nowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA Team. The
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Abstract. This paper is concerned about relating formal and computational mod-
els of cryptography in case of active adversaries when formal security analysis is
done with first order logic As opposed to earlier treatments, we introduce a new,
fully probabilistic method to assign computational semantics to the syntax. The
idea is to make use of the usual mathematical treatment of stochastic processes,
hence be able to treat arbitrary probability distributions, non-negligible probabil-
ity of collision, causal dependence or independence, and so on. We present this
via considering a simple example of such a formal model, the Basic Protocol
Logic by K. Hasebe and M. Okada [20], but we think the technique is suitable for
a wide range of formal methods for protocol correctness proofs. We first review
our framework of proof-system, BPL, for proving correctness of authentication
protocols, and provide computational semantics. Then we give a full proof of the
soundness theorem. We also comment on the differences of our method and that
of Computational PCL.

Keywords: cryptographic protocols, formal methods, first order logic, computa-
tional semantics.

1 Introduction

In the past few years, linking the formal and computational models of cryptography has
become of central interest. Several different methods have emerged for both active and
passive adversaries. In this paper we consider the relationship of the two models when
formal security analysis is done with first order logic. Protocol correctness is analyzed
by defining a syntax with adding some additional axioms (expressing security properties
etc.) to the usual axioms and inference rules of first order logic and then proving some
security property directly, instead of eliminating the possibility of successful (formal)
adversaries. A logical proof then ensures that the property will be true in any formal
model (semantics) of the syntax. The link to the computational world then is done by
assigning a computational semantics (instead of formal) to the syntax, proving that the
axioms and inference rules hold there, and hence a property correct in the syntax must
be true in the computational model. However, as it turns out, it is not unambiguous how
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to define the computational semantics, and when a property should be deemed “true”
computationally.

Recently, Datta et al. in [13] gave a computational semantics to the syntax of their
Protocol Composition Logic of [16,12] (cf. also [1] for a protocol composition logic
project overview). In their treatment, every action by the honest participants is recorded
on each (non-deterministic) execution trace, and bit strings emerging later are checked
whether they were recorded earlier and to what action they corresponded (the only
actions of the adversary that are recorded are send and receive). This way, they first
define whether a formula is true on a particular trace (more exactly this is only true for
a formula not containing their predicate Indist), and they say the formula is true in the
model if it is true on an overwhelming number of traces. This method however, since
it focuses on coincidences on individual traces, discards a large amount of information
carried by the probabilistic structure of the protocol execution, and defines satisfaction
and validity of formulas ignoring that information. As the comparisons are done on
each trace separately it is not possible to track independence, correlations. But there
are more serious problems too, as we will discuss later - such as, some of the syntactic
axioms are defined through the semantics. We do not claim that it is impossible to fix
these issues in their framework, but we suggest a different viewpoint in which these
issues can be easily eliminated.

Our approach puts more emphasis on probabilities. Instead of defining what is true
on each trace, we say - roughly speaking - that a property is true in the model if a
“cross-section” of traces provides the right probabilities for computational realizations
of the property in question. An underlying stochastic structure ensures that can detect if
something depends on the past or does not. It is not coincidences on traces that we look
for, but indistinguishable probability distributions.

We introduce our method on a rather simple syntax, namely, a somewhat modified
version of Basic Protocol Logic (or BPL, for short) by K. Hasebe and M. Okada [20]
and leave extensions to more complex situations such as the Protocol Composition
Logic to future work. The reason for this is partly to avoid distraction by an elabo-
rate formal model from the main ideas, but also that a complete axiomatization of the
syntax used by Datta et al. for their computational PCL has not yet been published any-
where, important details of the formalization is not yet publicly available. We would
like to emphasize though that our point is not to give a computational semantics to BPL
but to provide a technique that works well in much more general situations as well.

BPL is a logical inference system to prove correctness of a protocol. Originally, it
included signatures as well, but for simplicity, we leave that out from this analysis.
BPL was defined to give a simple formulation of a core part of the protocol logics
(PCL) of [16,12,11] for proving some aimed properties in the sense of [25,22] within
the framework of first order logic; all notions and assumptions are strictly formulated
by the first order logical language explicitly. Contrary to PCL, in BPL there are no
explicit encrypt, decrypt, match actions, only nonce generation, send and receive. The
version which we utilized as a simple sample of formal rule-based model in this paper
does not accomodate some correctness proofs such as secrecy-properties although one
could extend BPL to support them. Besides the usual axioms and derivation rules of
first order logic, further axioms set the behavior of equality and subterm relations of
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terms created via pairing and encryption, two nonce-veryfication axioms incorporating
the notion that only the person with the correct decryption key can read what is inside
an encryption, and an axiom about the order of events in traces. Although this system
is very simple, given a protocol (as we will indicate in the case of agreement in NSL),
the nonce-veryfication axioms forcing certain messages to be included in others, and
then the term axioms restricting what a certain pair of terms in a subterm relation can
possibly be, the required property can be verified.

We first give the axiomatic system in first-order predicate logic for proving the agree-
ment properties. A message is represented by a first-order term that uses encryption and
pairing symbols, an atomic formula is a sequence of primitive actions (as send, receive
and generate) of principals on terms. We set some properties about nonces and crypto-
graphic assumptions as non-logical axioms, and give a specific form of formulas, called
query form, which has enough expressive power to specify our intended authentication
properties.

Although BPL is sound with respect to formal semantics as shown in [20] with the
traditional (Tarskian) model-theoretic formal semantics based on the free term algebra
domain, in order to ensure soundness for computational semantics, some modifications
of the original syntax of BPL were necessary:

1. Instead of denoting encryptions as {m}A, which was used in the original version
of the purely symbolic model-based BPL inference system, we indicate the random
seed of the encryption as {m}r

A (as Datta et al. do). As it turned out, a consistent com-
putational interpretation is much harder, if not impossible without the random seed in
the syntax.

2. The original subterm and equiterm axioms were not all computationally sound so
we just take a certain subset, the elements of which we know that they are computation-
ally sound. We are not taking all the sound term axioms, as it is not known how to give
a complete characterization of them.1

The original BPL also proved completeness for formal semantics with the original
set of axioms, however, we do not consider completeness in this paper. It is an open
question whether anything about completeness can be said in the computational case.

We then define the computational semantics. This involves giving a stochastic struc-
ture that results when the protocol is executed. Principals output bit strings (as opposed
to terms) with certain probability distributions. The bit strings are then recorded in a
trace as being generated, sent or received by some principal. This provides a probabil-
ity distribution of traces. We show how to answer whether a bit string corresponding to
a term was sent around with high probability or not. For example a formal term {M}r

A

was sent around in the computational model if a cross-section of all traces provides the

1 The uses of subterm and equiterm relations, such as s � t and s = t, are essential for correct-
ness proofs of protocols in general, including BPL and PCL. Any symbolic term model, hence,
should reflect the symbolic term structures, and such a term model maybe called a ”standard”
model with respect to subterm and equiterm relations. BPL’s symbolic semantics takes such
standard term model which also satisfy certain properties for nonce-verifications, which are
listed as non-logical axioms in our BPL syntax. Our result 2 above shows that only the truth
of a certain useful subset of the subterm theory axioms is preserved under computational in-
terpretation. As we will show, the nonce-verification axioms turn out to be sound.
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correct probability distribution that corresponds to sending {M}r
A. Or, a nonce N was

generated, if another cross- section provides the right probabilities, and that distribution
must be independent of everything that happened earlier. This way we define when a
certain formula in the syntax is true in the computational semantics. We then analyze
whether the axioms of the syntax are true in the semantics, and if they are, then we
conclude that a formula that can be proved in the syntax is also true in the semantics.

Related Work. Formal methods emerged from the seminal work of Dolev and Yao
[15], whereas computational cryptography grew out of the work of Goldwasser and
Micali [17]. The first to link the two methods were Abadi and Rogaway in [3] ”sound-
ness” for passive adversaries in case of so-called type-0 security. A number of other
papers for passive adversaries followed, proving ”completness” [23,5], generalizing for
weaker, more realistic encryptions schemes [5], considering purely probabilistic en-
cryptions [19,5], including limited models for active adversaries [21], addressing the
issue of forbidding key-cycles [4], considering algebraic operations and static equiv-
alence [8,2]. Other approaches including active adversaries are considered by Backes
et al. and Canetti in their reactive simulatability [6] and universal composability [10]
frameworks, respectively. Non trace properties were investigated elsewhere too, how-
ever, not in the context of first order logic. A brief account of this present work was
given in [7].

Organization of this paper. In Section 2, we outline the syntax of Basic Protocol Logic.
In Section 3, we give a computational semantics to Basic Protocol Logic, and discuss
soundness. Finally, in Section 4, we conclude and present directions for future work.

2 Basic Protocol Logic

In this section, we present the syntax of Basic Protocol Logic modified to be suitable
for computational interpretation. For the original BPL, please consult [20].

2.1 Language

Sorts and terms. Our language is order-sorted, with sorts coin , name, nonce and
message such that terms of sorts name and nonce are terms of sort message. Let
Cname be a finite set of constants of sort name (which represent principal names),
and Cnonce a finite set of constants of sort nonce. Let Ccoin be a finite set of con-
stants of sort coin. The sort coin represent the random input of encryptions. We
require countably infinite variables for each sort. We will use A, B, . . . , A1, A2, . . .
(Q, Q′, . . . , Q1, Q2, . . ., resp.) to denote constants (variables, resp.) of sort name,
N, N ′, . . . , N1, N2, . . . (n, n′, . . . , n1, n2, . . ., resp.) denote constants (variables, resp.)
of sort nonce, r, r′, . . . , r1, r2, . . . (s, s′, . . . , s1, s2, . . ., resp.) denote constants of sort
coin (variables of sort coin, resp.). The symbols m, m′, . . . , m1, m2, . . . are used to
denote variables of sort message and M, M ′, . . . , M1, M2, . . . to denote constants
of sort message (that is, either name or nonce). Let P, P ′, . . . , P1, P2, . . . denote
any term of sort name, let ρ, ρ′, . . . , ρ1, ρ2, . . . denote anything of sort coin, and let
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ν, ν′, . . . denote any term of sort nonce. Compound terms of sort message are built
from constants and variables, and are defined by the grammar:

t ::= M | m | 〈t, t〉 | {t}ρ
P .

Where again, M ∈ Cname ∪ Cnonce, m is any variable of sort message, P is any con-
stant or variable of sort name, and ρ is any constant or variable of sort coin. For ex-
ample, 〈〈A1, {〈n, A2〉}r

Q〉, m〉 is a term. We will use the shorter {n, A2}r
Q instead of

{〈n, A2〉}r
Q. We will use the meta-symbols t, t′, . . . , t1, t2, ... to denote terms.

Formulas. We introduce a number of predicate symbols: P generates ν,
P receives t, P sends t, t = t′, t 	 t′, t 	P t′, t 	¬P t′ and |t1 	 t2 	 t3|
which represent “P generates a fresh value ν as a nonce”, “P receives a message of the
form t”, “P sends a message of the form t”, “t is identical with t′”, “t is a subterm of t′”,
“t is a subterm of t′ such that t can be received from t′ decrypting only with the private
key of P ”, “t is a subterm of t′ such that t can be received from t′ without decrypting
with the private key of P ”, “t1 	 t2 	 t3 and the only way t1 occurs in t3 is within
t2”, respectively. The first three are called action predicates, and the meta expression
acts is used to denote one of the action predicates: generates, receives and sends.
We also introduce the trace predicate P1 acts1 t1; P2 acts2 t2; · · · ; Pk actsk tk. A
trace predicate is used to represent a sequence of the principals’ actions such as “P
sends a message m, and after that, Q receives a message m′”. Atomic formulas are
either of the form P1 acts1 t1; P2 acts2 t2; · · · ; Pk actsk tk, or t = t′, or t 	 t′, or
t 	P t′, or t 	¬P t′ or |t1 	 t2 	 t3|. The first one we also call trace formula. We
also use α1; · · · ; αk (or α in short) to denote P1 acts1 t1; · · · ; Pk actsk tk (where k
indicates the length of α). When every Pi is identical with P for 1 ≤ i ≤ k, then
αP denotes such a trace formula. For α (≡ α1; · · · ; αm) and β (≡ β1; · · · ; βn), we
say β includes α (denoted by α ⊆ β), if there is a one-to-one, increasing function
j : {1, ..., m} → {1, ..., n} such that αi ≡ βj(i). Formulas are defined by

ϕ ::= α
∣∣∣t1 = t2

∣∣∣t1 	 t2

∣∣∣t1 	P t2

∣∣∣t1 	¬P t2

∣∣∣|t1 	 t2 	 t3|
∣∣∣¬ϕ

∣∣∣ϕ∧ϕ
∣∣∣ϕ∨ϕ

∣∣∣ϕ → ϕ
∣∣∣∀mϕ

∣∣∣∃mϕ

where m is any variable. Those variables in a formula that are bound by the binding
operators ∃ and ∀ will be referred to as bound variables, those that are not will be
referred to as free variables. We use the meta expression ϕ[m] to indicate the list of all
free variables m occurring in ϕ. We will also use ϕ[M , m] to specify some constants
M that occur in ϕ where m again is all free variables in ϕ.

Finally, order-preserving merge of trace formulas α (≡ α1; · · · ; αl) and β (≡
β1; · · · ; βm) is a trace formula δ (≡ δ1; · · · ; δn) if there are one-to-one increasing func-
tions jα : {1, ..., l} → {1, ..., n}, jβ : {1, ..., m} → {1, ..., n} such that αi ≡ δjα(i),
βi ≡ δjβ(i), and the union of the ranges of jα and jβ cover {1, ..., n}. δ is called a strict
order-preserving merge if, furthermore, the ranges of jα and jβ are disjoint.

Roles. Roles of principals are described by trace formulas of the form αA ≡ A acts1 t1;
· · · ; A actsk tk. Honest principals (those who generate keys, encryptions, nonces hon-
estly, and don’t share information with the adversary) are denoted by constants. Nonces
and coins that these participants generate are also denoted by constants. Protocols are a
set of roles together with a list of values that the principals have to agree on.
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Example 1. (Roles of the Needham-Schroeder-Lowe protocol)

We consider the Needham-Schroeder-Lowe public key protocol [24], whose informal
description is as follows.

1. A → B: {n1, A}r1
B

2. B → A: {n1, n2, B}r1
B

3. A → B: {n2}r2
B

Initiator’s and responder’s roles of the Needham-Schroeder public key protocol (de-
noted by InitNS and RespNS, respectively) are described as the following formulas.

InitANSL[Q2, N1, n2, r1, s2, r3] ≡
A generates N1; A sends {N1, A}r1

Q2
; A receives {N1, n2, Q2}s2

A ; A sends {n2}r3
Q2

RespB
NSL[Q1, n1, N2, s1, r2, s3] ≡

B receives {n1, Q1}s1
B ; B generates N2; B sends {n1, N2, B}r2

Q1
; B receives {N2}s3

B

They further have to agree that Q1 = A, Q2 = B, n1 = N1, n2 = N2.

Remark 1. Notice that, for example, in the responder’s role, we wrote
B receives {n1, Q1}s1

B instead of B receives {m, Q1}s1
B , although n1 may come

from the adversary. This is, because we will assume in the semantics, that because of
tagging, it is recognizable whether a string is a nonce or not. But, the distribution of
n1, if coming from the adversary, may not follow the correct distribution of nonces.

2.2 The Axioms of Basic Protocol Logic

We extend the usual first-order predicate logic with equality by adding the following
axioms (I), (II) and (III).

Remark 2. For the axioms below to be more understandable, we make a few remarks
about the semantics that we will define later. For each η, names will be interpreted as
some constant bit string names of the participating principals, such that the principals
corresponding to constants will generate nonces, keys and encrypt honestly. Other pos-
sible principles may be malicious, creating encryptions and nonces dishonestly. Nonces
will have to have a certain fixed length, the interpretation of nonce constants will have
to have the correct distribution and be independent of what happened earlier. The in-
terpretation of coins will have to have the correct form for the random feed into the
encryption, and further, constants of sort coin will have to have the correct distribu-
tion, and when used for encryption, such a constant coin will have to have a distribution
that is independent of the distribution of encrypted plaintext as well as independent of
everything that happened earlier. The public keys of constants will also have to have
the correct distributions and be generated at the very beginning. The interpretation of
encryptions and pairing are defined the intuitive way.

(I) Term axioms. Consider the set C̄ of all variables and constants of each of sort name,
sort nonce and sort coin. Let Ā be the free algebra constructed from C̄ via 〈·, ·〉 and
{·}·· (with the appropriate sorts in the indexes of the encryption terms) not including
constants and variables of sort coin. The elements of Ā are of sort message. Let 	Ā



Computational Semantics for First-Order Logical Analysis 39

denote the natural subterm relation in Ā. Let t 	Ā
P t′ mean that t 	Ā t′ such that t can

be received from t′ by decrypting encryptions by the key of P only. Let t 	Ā
¬P t′ mean

that t 	Ā t′ such that t can be received from t′ by decrypting encryptions that are not
done with the key of P .

Let |t1 	Ā t2 	Ā t3| mean that t1 	Ā t2 	Ā t3 and the only way t1 occurs in t3

is within t2. That is: |t1 	Ā t2 	Ā t3| := t1 	Ā t2 	Ā t3 ∧ ∀t(t1 	Ā t 	Ā t3 →
t2 	Ā t ∨ (t 	Ā t2 ∧ ∀t4(t2 	Ā t4 → 〈t, t4〉 �	Ā t3 ∧ 〈t4, t〉 �	Ā t3))).

We postulate the following term axioms. Here, and also later by using 	(¬)P we
mean two sentences, one with and one without ¬. Let m be all variables occurring in
the corresponding terms. We require these for all A, B ∈ Cname:

(a) If t = t′ is true in Ā, then ∀m(t = t′) is axiom. If t �Ā t′ is true in Ā, then ∀m(t � t′) is
axiom. If t �Ā

P t′ is true in Ā, then ∀m(t �Ā
P t′) is axiom. If ∀mQ(Q �= P1 ∧ ... ∧ Q �=

Pk → t �Ā
¬Q t′) is true in Ā for all (possibly equal) constant or variable substitutions to m

and Q, then it is an axiom.
(b) ∀m(t1 = t2 → t2 = t1), ∀m(t1 = t2∧t2 = t3 → t1 = t3), ∀m(t1� t2∧t2� t3 → t1� t3),
(c) ∀mP (t1 �(¬)P t2 → t1 � t2), ∀mP (t1 = t2 → t1 �(¬)P t2), ∀mP (t1 �(¬)P t2 ∧

t2�(¬)P t3 → t1�(¬)P t3)
(d) ∀mQss′({t1}s

Q ={t2}s′
Q → t1 = t2),

(e) ∀m(〈t1, t2〉= 〈t3, t4〉 → t1 = t3 ∧ t2 = t4)
(f) ∀mQs({t}s

Q �= 〈t1, t2〉), ∀mQsn({t}s
Q �= n), ∀mQQ′s({t}s

Q �= Q′)
(g) ∀mn(〈t1, t2〉 �= n), ∀mQ(〈t1, t2〉 �= Q)
(h) ∀m(t � 〈t1, t2〉 → t � t1 ∨ t � t2 ∨ t = 〈t1, t2〉), ∀mQs(t1 � {t2}s

Q → t1 =
{t2}s

Q ∨ ∃mQ′s′({t2}s
Q = {m}s′

Q′ ∧ t1 � m))
(i) ∀mP (t �P 〈t1, t2〉 → t �P t1 ∨ t �P t2 ∨ t = 〈t1, t2〉), ∀mQsP (t1 �P {t2}s

Q →
t1 = {t2}s

Q ∨ ∃ms′({t2}s
Q = {m}s′

P ∧ t1 �P m)), ∀msP (t1 �P {t2}s
P → t1 =

{t2}s
P ∨ t1 �P t2))

(j) ∀mP (t �¬P 〈t1, t2〉 → t �¬P t1 ∨ t �¬P t2 ∨ t= 〈t1, t2〉), ∀mQsP (t1 �¬P {t2}s
Q →

t1 = {t2}s
Q ∨ ∃mQ′s′(Q′ �= P ∧ {t2}s

Q = {m}s′
Q′ ∧ t1 � m))

(k) ∀mn(m�n → m=n), ∀mQ(m�Q → m=Q)
(l) ∀m|t1 � t2 � t3| is an axiom if |t1 �Ā t2 �Ā t3|[M/m] holds for all M vector of con-

stans of appropriate sort.

(II) Rules for trace formulas. We postulate that β → α for α ⊆ β and γ1∨· · ·∨γn ↔
α ∧ β, where γi’s are the list of order-preserving merges of α and β. These axioms
express the intuition that if a trace “happens”, then a subtrace of it also happens, and
two traces happen if and only if one of their possible merges happen.

(III) Axioms for relationship between properties. We introduce the following set of
formulas as non-logical axioms. These axioms represent some properties about nonces
and cryptographic assumptions.

(1) Ordering:
∀Q1Q2nm(n � m → ¬(Q2 sends/receives/generatesm; Q1 generates n)).

(2) Nonce verification 1: For each A, B constants of sort name, r constant of sort
coin, we postulate
∀Qn1m5m6(A generates n1; Q receives m5 ∧ n1 �¬B m5

∧ ∀m7(A sends m7 ∧ n1 � m7 → |n1 � {m6}r
B � m7|)
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→ ∃m2m3m4(A sends m2; B receives m3; B sends m4; Q receives m5

n1 � m2 ∧ {m6}r
B �B m3 ∧ n1 � m4))

(3) Nonce verification 2: For each A, B C of sort name (where A and C may coincide),
r1, r2 constants of sort coin, we postulate we postulate
∀n1m5m6m8(A generates n1; C receives m5 ∧ n1 �¬B m5

∧ ∀m7(A sends m7 ∧ n1 � m7 → |n1 � {m6}r1
B � m7|)

∧ ∀m4(B sends m4 ∧ n1 � m4 → |n1 � {m8}r2
C � m4|)

∧ ∀m10(¬(C sends m10 ∧ n1 � m10) ∨ A = C)
→ {m8}r2

C �C m5

There are other possible axiomatizations, but the authors of [20] found this particularly
useful (more exactly a somewhat less general version). The meaning of the Ordering
axiom is clear. Nonce verfication 1 and 2 are based on the idea of the authentication-
tests [18]. Nonce verification 1 means that if A generated a nonce n1 that Q received
in m5, and A only sent n1 encrypted with the public key of B always in a given form
{m6}r

B, and Q received this nonce in some other form, then the encrypted nonce had
to go through B, and before that, it had to be actually sent out by A. The reason that we
require A and B to be names and not arbitrary variables is that we do not want to require
any principals in an arbitrary run to encrypt securely. Nonce verification 2 means that
with the premises of Nonce verification 1, and if B sends n1 only inside {m8}r2

C , and
C never sends n1 unless C = A, then C had to receive {m8}r2

C so that it is accessible
to him.

2.3 Query Form and Correctness Properties

We introduce a general form of formulas, called query form, to represent our aimed cor-
rectness properties. In order to make the discussion simpler, we consider only the case
of two party authentication protocols, however our query form can be easily extended
so as to represent the correctness properties with respect to other types of protocols
which include more than two principals.

Definition 1 (Query form). Query form is a formula of the following form:
∃mHonest(αA) ∧ βB ∧Only(βB) → γ

We present the precise definition of Only(αB) and of Honest(αA) in the Ap-
pendix. Only(αB) means that B performs only the actions of αB , and nothing
else, whereas Honest(αA) represents “A performs only a run of an initial seg-
ment of αA which ends with a sending action or the last action of αA”. For exam-
ple, from responder’s (namely, B’s) view, the non-injective agreement of the proto-
col Π = {αA[B/Q2, N1, n2, r1, s2], βB[A/Q1, n1, N2, s1, r2]} can be described
as the following formula: ∃n1n2s1s2Honest(αA)[Q2, N1, n2, r1, s2] ∧ (βB ∧
Only(βB)[A/Q1, n1, N2, s1, r2]) → αA[B/Q2, N1, N2/n2, r1, r2/s2] ∧ n1 =
N1

Example 2. (Agreement property in the responder’s view of the NSL protocol)
The initiator’s honesty of the NSL protocol is

Honest(InitANSL)[Q1, N1, n2, r1, s2, r3] ≡
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⎛
⎝
⎛
⎝ ∀n3¬(A generates n3)

∧∀m4¬(A sends m4)
∧∀m5¬(A receives m5)

⎞
⎠ ∨

⎛
⎜⎜⎝

A generates N1; A sends {N1, A}r1
Q1

∧∀n3(A generates n3 → n3 = N1)
∧∀m4(A sends m4 → m4 = {N1, A}r1

Q1
)

∧∀m5¬(A receives m5)

⎞
⎟⎟⎠

∨

0
BB@

A generates N1; A sends {N1, A}r1
Q1

; A receives {N1, n2, Q1}s2
A ; A sends {n2}r3

Q1

∧∀n3(A generates n3 → n3 = N1)
∧∀m4(A sends m4 → m4 = {N1, A}r1

Q1
∨ m4 = {n2}r2

Q1
)

∧∀m5(A receives m5 → m5 = {N1, n2, Q1}s2
A )

1
CCA

1
CCA

We refer to Remark 1 for an explanation why nonce variables are used for even those
nonces that are sent by the adversary.

The main steps of proving agreement from the responder’s view are the following:

∃n1s1s3RespB
NSL ∧Only(RespB

NSL)[A/Q1, n1, N2, s1, r2, s3]

implies by the 1st nonce verification axiom that

∃m3m4(B sends {n1, N2, B}r2
A ; A receives m3; A sends m4; B receives {N2}s3

B ∧
∧{n1, N2, B}r2

A 	A m3 ∧N2 	 m4)).

Then from this together with ∃Q1n2s2Honest(InitANSL)[Q1, N1, n2, r1, s2, r3] it fol-
lows that

{n1, N2, B}r2
A 	A {N1, n2, Q1}s2

A .

From this, using the term axioms (f), (i) and (k), we get that {N1, n2, Q1}s2
A =

{n1, N2, B}r2
A , and then from (d) and (e) that n1 = N1, n2 = N2, Q1 = B. Then with

a similar argument {N1, A}r1
B = {n1, A}s1

B and {n2}r3
B = {N2}s3

B are also proven,
from which finally the completed initiator’s role, InitANSL[B, N1, N2, r1, r2, r3] fol-
lows. That is, the initiator also finished the protocol and the values agree.

3 Computational Semantics

3.1 Computational Asymmetric Encryption Schemes

The fundamental objects of the computational world are strings, strings = {0, 1}∗,
and families of probability distributions over strings. These families are indexed by a
security parameter η ∈ param := {1}∗ ≡ N (which can be roughly understood as
key-length).

Definition 2 (Negligible Function). A function f : N → R is said to be negligible, if
for any c > 0, there is an nc ∈ N such that |f(η)| ≤ η−c whenever η ≥ nc.

Pairing is an injective pairing function [·, ·] : strings × strings → strings. We assume
that changing a bit string in any of the argument to another bit string of the same length
does not influence the length of the output of the pairing. An encryption scheme is
a triple of algorithms (K, E ,D) with key generation K, encryption E and decryption
D. Let plaintexts, ciphertexts, publickey and secretkey be nonempty subsets of strings.
The set coins is some probability field of (possibly infinite) bit-strings that stands for
coin-tossing, i.e. feeds randomness into the Turing-machines realizing the algorithms.
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Definition 3 (Encryption Scheme). A computational asymmetric encryption scheme
is a triple of algorithms E = (K, E ,D) where:

– K : param × coins → publickey× secretkey is a key-generation algorithm with
param = {1}∗,

– E : publickey× plaintexts× coins → ciphertexts∪{⊥} is an encryption algorithm,
and

– D : secretkey× strings → plaintexts∪{⊥} is such that for all (e, d) ∈ publickey×
secretkey and c ∈ coins

D(d, E(e, m, c))=m for all m∈ plaintextsand (e, d) output of the key generation.

All these algorithms are computable in polynomial time with respect to the length of
their input.

In this paper, we assume that the encryption scheme satisfies adaptive chosen ciphertext
security (CCA-2) defined the following way:

Definition 4 (Adaptive Chosen Ciphertext Security). A computational public-key en-
cryption scheme E = (K, E ,D) provides indistinguishability under the adaptive chosen-
ciphertext attack if for all PPT adversaries A and for all sufficiently large security
parameter η:

|Pr[ (e, d) ←− K(1η); b ←− {0, 1} ;
m0, m1 ←− AD1(·)(1η, e);
c ←− E(e, mb);
g ←− AD2(·)(1η, e, c) :
b = g ]− 1

2 | ≤ neg (η)

The oracle D1(x) returns D(d, x), and D2(x) returns D(d, x) if x �= c and returns
⊥ otherwise. The adversary is assumed to keep state between the two invocations. It
is required that m0 and m1 be of the same length. The probability includes all in-
stances of randomness: key generation, the choices of the adversary, the choice of b, the
encryption.

In the above definition, what the brackets of the probability contains, is a commonly
used shorthand for the following game: First a public key-private key pair is generated
on input 1η, as well as a random bit b with probabilities 1/2 – 1/2. Then, the adversary
is given the public key, and a decryption oracle, which it can invoke as many times as
wished, and at the end it comes up with a pair of bit strings m0, m1 of the same length,
which it hands to an encryption oracle. Out of these two messages, the oracle encrypts
the one determined by the initial choice of random bit b, and hands the ciphertext back
to the adversary. The adversary can further invoke the decryption oracle (which decrypts
everything except for the ciphertext computed by the encryption oracle). At the end, the
adversary has to make a good guess for b. This guess is g, and the adversary wins if the
probability of making a good guess significantly differs from 1/2.

It was shown in [9] that the above definition is equivalent with another that seems
stricter at first, namely, when an n-tuple of encryption and decryption oracles are given,
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each with separate encryption and decryption keys, but using the same bit b to choose
from the submitted plaintexts. The adversary is allowed to invoke the oracles in any
order but it cannot submit a message that was received from an encryption oracle to the
corresponding decryption oracle.

3.2 Filtrations and Stopping Times

In the following, we discuss the mathematical objects that we use to represent a compu-
tational execution of a protocol. Our plan is to define a computational semantics, show
that the syntactic axioms hold if the encryption scheme is CCA-2 secure, and, as a re-
sult, if the query-form (or anything else) is provable in the syntax, it must be true in any
computational model.

First, since probabilities and complexity are involved, we need a probability space for
each value of the security parameter. Since time plays an important role in the execution,
what we need is the probability space for a stochastic process. For the presentation here,
we limit ourselves to finite probability spaces as explaining the notion of measurability
and stochastic processes is much simpler this way, but for anyone familiar with these
notions in infinite spaces it is near to trivial to generalize the method to allowing infinite
steps (but polynomial expected runtime). So, here we assume that for each security
parameter, there is a maximum number of execution steps nη. The following notions
that we introduce are standard in probability theory.

We will denote the finite probability space for an execution of a protocol with secu-
rity parameter η by Ωη , subsets of which are called events. Let Fη denote the set of all
subsets of Ωη (including the empty set). A subset containing only one element is called
an elementary event. The set Ωη is meant to include all randomness of an execution of
the protocol. A probability measure pη assigns a probability to each subset such that it
is additive with respect to disjoint unions of sets (so it is enough to assign a probability
to each element of Ωη , then the probability of any subset can be computed). When it is
clear which probability space we are talking about, we will just use the notation Pr.

In order to describe what randomness was carried out until step i ∈ {0, 1, ..., nη}, we
assign a subsetFη

i ⊆ Fη to each i, such that Fη
i is closed under union and intersection,

and includes ∅ and Ωη, and Fη
i ⊆ Fη

i+1. We also assume that Fη
nη = Fη, that is, Ω

does not include information irrelevant to the protocol execution. The set {Fη
i }nη

i=1 is
called filtration. Since everything is finite, Fη

i is atomistic, that is, each element of it
can be obtained as a union of disjoint, minimal (with respect to inclusion) nonempty
elements. The minimal nonempty elements are called atoms. We introduce the notation

Pr = {(Ωη, {Fη
i }nη

i=0, p
η)}η∈param.

We included Fη
0 to allow some initial randomness such as key generation. A discrete

random variable on Ωη is a function on Ωη taking some discrete value. Since Fη
i

contains the events determined until step i, a random variable gη depends only on the
randomness until i exactly if gη is constant on the atoms of Fη

i ; this is the same as
saying that for any possible value c, the set [gη = c] := {ω | gη(ω) = c} is an element
of Fη

i . In this case, we say that gη is measurable with respect to Fη
i . We will, however

need a somewhat more complex dependence-notion. We will need to consider random
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variables that are determined by the randomness until step i1 on certain random paths,
but until step i2 on other paths, and possibly something else on further paths. For this,
we have to first consider a function Jη : Ωη → {0, 1, ..., nη} that tells us which time
step to consider on each ω. This function should only depend on the past, so for each
i ∈ {0, 1, ..., nη}, we require that the set [Jη = i] ∈ Fη

i . Such a function is called
stopping time. The events that have occurred until the stopping time Jη are contained
in

Fη
J := {S | S ⊆ Ωη , and for all i = 0, 1, ..., nη, S ∩ [Jη = i] ∈ Fη

i }.

Then, a random variable fη depends only on the events until the stopping time Jη iff
for each c in its range, [fη = c] ∈ Fη

J . Furthermore, a random variable hη on Ωη is
said to be independent of what happened until Jη iff for any S ∈ Fη

J and a c possible
value of hη, Pr([hη = c] ∩ S) = Pr([hη = c]) Pr(S). Finally, it is easy to see that for
each random variable fη, there is a stopping time Jη

f such that fη is measurable with
respect to Fη

Jf
, and Jη

f is minimal in the sense that fη is not measurable with respect to
any other Fη

J if there is an ω such that Jη(ω) < Jη
f (ω).

Example 3. Let coins be tossed three times, one after the other. Then Ω =
{(a, b, c) | a, b, c = 0, 1}. Let (1, ·, ·) := {(1, b, c) | b, c = 0, 1}. (0, ·, ·), etc. are
defined analogously. At step i = 1, the outcome of the first coin-tossing becomes
known. So, F1 = {∅, (0, ·, ·), (1, ·, ·), Ω}. At step i = 2, the outcome of the second
coin becomes known too, therefore F2, besides ∅ and Ω, contains (0, 0, ·), (0, 1, ·),
(1, 0, ·) and (1, 1, ·) as atoms, and all possible unions of these. F3 is all subsets. A
function g that is measurable with respect to F1, is constant on (0, ·, ·) and on (1, ·, ·),
that is, g only depends on the outcome of the first coin tossing, but not the rest. Sim-
ilarly, an f measurable on F2, is constant on (0, 0, ·), on (0, 1, ·), on (1, 0, ·) and on
(1, 1, ·). A stopping time is for example the J that equals the position of the first 1,
or 3 if there is never 1: J( (a1, a2, a3) ) = i if ai = 1 and ak = 0 for k < i, and
J( (a1, a2, a3) ) = 3 if ak = 0 for all k = 1, 2, 3. The atoms of FJ are (1, ·, ·), (0, 1, ·),
{(0, 0, 1)} and {(0, 0, 0)}.

We will also have to assume that the stopping times are such that they are polynomially
decidable, that is, in the execution of a PPT algorithm, the computation of value of a
stopping time on an execution trace should not destroy the polynomial bound. This is
not really a restriction as in case of security properties, stopping times are just decided
simply by the position of the protocol execution, carrying out some decryptions, and
matching values.

3.3 Stochastic Model for the Computational Execution of BPL

For each value of the security parameter, an execution of the protocol involves some
principals. Each principal has a distinct name, a bit-string not longer than the up-
per bound nη. Each principal generates an encryption-key, decryption-key pair at the
initialization. Hence, if Pr = {(Ωη, {Fη

i }nη

i=0, p
η)}η∈param is the stochastic space

of the execution of the protocol, let Pη be a set of (polynomially bounded num-
ber of) elements of the form (Aη, (eη

A, dη
A)) where Aη ∈ {0, 1}nη

, and (eη
A, dη

A) is
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a pair of probability distributions on Ωη measurable with respect to Fη
0 such that

Pr[ω : (eη
A(ω), dη

A(ω)) �∈ Range(K(η, ·))] is a negligible function of η. We assume
that if A = B, then (eη

A, dη
A) = (eη

B, dη
B). The set {Pη}η∈param describes all the prin-

cipals, corrupted and uncorrupted, that take part in the execution at a given security
parameter, along with their public and secret keys. Let P = {Pη}η∈param.

For nonces, we choose the following definition. Since CCA-2 security is length-
revealing, we have to assume that nonces are always of some fixed length mη for
each security parameter η. We assume mη is at most polynomial in η, and 1/2mη

is
negligible. Let N be a set of elements of the form {Nη}η∈param where Nη : Ωη →
{0, 1}mη ∪{⊥} (taking the value⊥means Nη has no bit-string value on that particular
execution). This set describes the nonces that were generated during the execution of
the protocol. The nonces generated by honest participants must have some fixed distri-
bution (uniform for example) over set of bit strings with the given length and also have
to be independent of what happened earlier when they are being generated, but we will
require this later in the definition of interpretation of constants and at the definition of
the satisfaction of the formula A generates N .

Let R be a set of elements of the form R = {Rη}η∈param where Rη : Ωη →
coins ∪ {⊥}.

Messages: Let the set of messages be M elements of the form M = {Mη}η∈param,
where Mη : Ωη → {0, 1}nη∪{⊥}. For any two messages, M1, M2, we will denote that
M1 ≈ M2 iff pη[ω : M1(ω) �= M2(ω)] is a negligible function of η. This way, ≈ is an
equivalence notion on the set of messages. Let DM := M/≈, let DN := N/≈ ⊂ DM ,
and let

DP := {A ∈M : (Aη, (eη
A, dη

A)) ∈ Pη for some (eη
A, dη

A)}/≈ ⊂ DM

We have to define what we mean by a computational pairing and encryption. For any
X, X1, X2 ∈ DM , we write that X =C 〈X1, X2〉, if for some (hence for all) M1 =
{Mη

1 }η∈param ∈ X1 and M2 = {Mη
2 }η∈param ∈ X2, the ensemble of random variables

{ω �→ [Mη
1 (ω), Mη

2 (ω)]}η∈param is an element of X . Further, if A ∈ P , and R ∈ R,
then we will write that X =C {X1}R

A if for any (hence for all) M1 = {Mη
1 }η∈param ∈

X1, the ensemble of random variables {ω �→ E(eη
A(ω), Mη

1 (ω), R(ω))}η∈param is an
element of X . If the value of any of the input distributions is ⊥ then we take the output
to be ⊥ as well. This way, we can consider an element of the free term algebra T (DM)
over DM as an element of DM . Let 	T (DM ) denote the subterm relation on T (DM ).
This generates a subterm relation 	C on DM by defining X1 	C X2 to hold iff there
is an element X ∈ T (DM ) such that X1 	T (DM ) X and X2 =C X . Let for P ∈ DP ,

let the notions analogous to 	P (	¬P respectively) be denoted by 	T (DM )
P and 	C

P

(	T (DM)
¬P and 	C

¬P respectively).
For any set of subsets Dη ∈ Fη , D = {Dη}η∈η with non-negligible pη(Dη), we say

that for P ∈ DP , X1, X2 ∈ DM , X1 = X2 on D if there are M1 = {Mη
1 }η∈param ∈

X1 and M2 = {Mη
2 }η∈param ∈ X2 with Mη

1 (ω) = Mη
2 (ω) for all ω ∈ Dη. We say

that X1 	C X2 (or, X1 	C
(¬)P X2) on D iff there is an element X ∈ T (DM ) such that

X1 	T (DM ) X (or, X1 	T (DM )
(¬)P X) and X2 =C X on D.
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Execution trace: The execution trace is defined as Tr = {Trη}η∈param where Trη :
ω �→ Trη(ω) with either

Trη(ω) = P η
1 (ω) actsη

1(ω) sη
1(ω); ...; P η

nη(ω)(ω) actsη
nη(ω)(ω) sη

nη(ω)(ω)

where for each η security parameter, ω ∈ Ωη , nη(ω) is a natural number less than nη,
P η

i (ω) ∈ DP , actsη
i (ω) is one of generates, sends, receives and sη

i (ω) ∈ {0, 1}∗;
or Trη(ω) = ⊥ with nη(ω) = 0 meaning that no generate, send or receive action
happened. For each η, ω, and i ∈ {1, ..., nη}, let

Trη
i (ω) =

{
P η

i (ω) actsη
i (ω) sη

i (ω) if i ∈ {1, ..., nη(ω)}
⊥ otherwise

We also require that for each i there is a stopping time Ji with Jj(ω) < Jj+1(ω) for all
ω and j such that Trη

i is measurable with respect to Fη
Ji

for all i. Moreover, we require
that any of Tr is PPT computable from the earlier ones.

3.4 Computational Semantics

We now explain how to give computational semantics to the syntax, and what it means
that a formula of the syntax is true in the semantics. For a given security parameter, an
execution is played by a number of participants.

Assumptions. In a particular execution, we assume that the principals corresponding
to names in the syntax (that is, they correspond to elements in Cname) are regular (non-
corrupted). We assume that these participants generate their keys and encrypt correctly
(that is, the keys are properly distributed, and also r is properly randomized) with a
CCA-2 encryption scheme, and never use their private keys in any computation except
for decryption. For other participants (possibly corrupted), we do not assume this. (En-
crypting correctly is essential to able to prove the nonce verification axioms.) We further
assume that pairing of any two messages differs from any nonce and from any principal
name on sets of non-negligible probability (this can be achieved by tagging; in any case,
we will call this tagging condition), and that honestly generated nonces have some fixed
distribution over a set of bit strings with fixed length such that their collision probability
is negligible in η. The network is completely controlled by an adversary. The sent and
received bit strings are recorded in a trace in the order they happen. Freshly generated
bit-strings produced by the regular participants are also recorded. The combined algo-
rithms of the participants and the adversary are assumed to be probabilistic polynomial
time. We also assume that at one time only one action happens.

Such a situation, with the definitions of the previous section, produces a computa-
tional trace structure associated with the execution of the form

M = (Π, E, [·, ·],N0,Pr,P , Tr, ΦC , D),

where D = {Dη}η∈η, Dη ∈ Fη a sequence of subsets where we focus our attention
with pη(Dη) non-negligible; N0 = {N η

0 }η is the distribution of correctly generated
nonces; ΦC is a one-to-one function on Cname∪Cnonce∪Ccoin such that (i) ΦC(A) ∈ DP

for any A ∈ Cname such that (eη
ΦC(A), d

η
ΦC(A)) is measurable with respect to F0 and has
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the correct key distribution, and for different constants are independent of each other;
(ii) ΦC(N) ∈ DN for any N ∈ Cnonce and for different constants the interpretations are
not equal on D, and we further require that over {0, 1}mη

, ΦC(N)η has the distribution
(up to negligible probability) fixed for nonces (i.e. N η

0 , e.g. uniform), and ΦC(N)η

is independent of Fη
JΦC(N)−1 for all η on the condition that [ΦC(N)η �= ⊥]. (More

precisely, there is an N ′ ∈ ΦC(N) such that N ′η is independent of Fη
JN′−1 on the

condition that [N ′η �= ⊥]. For Jη
f see the paragraph before Example 3); (iii) ΦC(r) ∈

R for any r ∈ Ccoin, and for different constants the interpretations are not equal on
D, and we further require that over coins, Φ(r)η has the distribution fixed for coins
(e.g. uniform), and ΦC(r)η is independent of Fη

JΦC(r)−1 for all η on the condition that

[ΦC(r)η �= ⊥].
An extension of ΦC to evaluation of free variables is a function Φ that is the same on

constants as ΦC , and for variables Q, n, m, s of sort name, nonce, message, and coin
respectively, Φ(Q) ∈ DP , Φ(n) ∈ DN , Φ(m) ∈ DM , and Φ(s) ∈ R hold. Let Φ̄ be
defined to be the same as Φ on constants and variables, and let’s extend the definition
of Φ̄ to any term such that it takes values in T (DM ) by the rules (i) Φ̄(〈t1, t2〉) =
〈Φ̄(t1), Φ̄(t2)〉 ; (ii) Φ̄({t}r

P ) = {Φ̄(t)}Φ(r)
Φ(P ). Finally, for any t term, let Φ(t) ∈ DM be

defined by Φ(t) =C Φ̄(t).
We say that an ensemble of random variables M = {Mη}η∈param such that Mη is

defined on Dη is a realization of the term t through Φ on D, which we denote M ≪Φ,D

t, if there is an M1 ∈ Φ(t) with Mη
1 (ω) = Mη(ω) �= ⊥ for all ω ∈ Dη; and if also

t = {t′}r
P , r being a constant, then we further require that there is an M ′ ∈ Φ(t′) such

that M ′ ≪Φ,D t′ and Φ(M ′) is measurable with respect to Fη
Jr−1.

In the following, we give the interpretation of BPL. Note, that the interpretation
of conjunction, disjunction, negation and conclusion are defined in the most standard
manner. We first define when a formula ϕ is satisfied by Φ (remember, D = {Dη}η∈η

with Dη ∈ Fη from M):

– For any terms t1, t2, ϕ ≡ t1 = t2 is satisfied by Φ, iff Φ(t1) = Φ(t2) on D,
ϕ ≡ t1 	 t2 is satisfied by Φ iff Φ(t1) 	C Φ(t2) on D, ϕ ≡ t1 	(¬)P t2 is
satisfied by Φ on D iff Φ(t1) 	C

(¬)Φ(P ) Φ(t2) on D.

– For any terms t1, t2, t3, |t1 	 t2 	 t3| is satisfied by Φ, iff there are X1, X2, X3 ∈
T (DM ) such that Φ(t1) =C X1, Φ(t2) =C X2 and Φ(t3) =C X3 on D, such that
the bottom of the parsing tree of Xi agrees with the parsing tree of ti, and the inter-
pretation of constants and variables in ti is given on D by the sub-trees rooted in the
corresponding positions in Xi, and further that also |X1 	T (DM ) X2 	T (DM ) X3|
holds where this is defined the same way on T (DM ) as we defined it on Ā, that is,
X1 occurs in X3 only within X2.

– For any term u and acts = sends/receives, ϕ ≡ P acts u is satisfied by Φ
iff there is a polynomially decidable stopping time Jη such that apart from sets
of negligible probability, Trη

Jη(ω)(ω) is of the form Aη acts Mη(ω) for ω ∈ Dη

where M := {Mη}η∈param ≪Φ,D u and A := {Aη}η∈param ≪Φ,D P . We also
require that the interpretation of every constant and variable in u be measurable
with respect to Fη

J . We will denote this as TrJ ≪Φ,D P acts u.
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– If acts = generates then the u above is a nonce ν, and so M :=
{Mη}η∈param ≪Φ,D u means there is an N ∈ Φ(ν) such that Mη|Dη ≈ Nη|Dη

in this case, and we further require that over {0, 1}mη

, Nη has the distribution fixed
for nonces (i.e. N η

0 ), and Nη is independent of Fη
J−1 for all η on the condition that

[N �= ⊥].
– ϕ ≡ β1, ..., βn sequence of actions is satisfied by Φ if each of βk (k = 1, ..., n)

is satisfied by Φ, and if Jk is the stopping time belonging to βk, then we require
that Jk < Jl on D whenever k < l (that is, for each η ∈ param and ω ∈ Dη,
Jη

k (ω) < Jη
l (ω).

– For any formulas ϕ, ϕ1, ϕ2, ¬ϕ is satisfied by Φ iff ϕ is not satisfied by Φ; ϕ1 ∨ϕ2
is satisfied by Φ iff ϕ1 is satisfied by Φ or ϕ2 is satisfied by Φ; ϕ1 ∧ ϕ2 is satisfied
by Φ iff ϕ1 is satisfied by Φ and ϕ2 is also satisfied by Φ. ϕ1 → ϕ2 is satisfied by
Φ iff ¬ϕ1 ∨ ϕ2 is satisfied by Φ.

– If ϕ is a formula, m a variable, then ∀mϕ (or ∃mϕ, resp.) is satisfied by Φ iff ϕ is
satisfied by each (or some, resp.) Φ′ extension of ΦC when Φ′ only differs from Φ
on m.

A formula ϕ is true in the structure M, iff ϕ is satisfied by every Φ extension of ΦC .
If in a structure, the Basic Protocol Logic axioms are true (in which case the struc-

ture is called model), then by standard arguments of first order logic, it follows that
everything provable in the syntax is true in the model. In particular, if the query form is
provable in the syntax, then it must be true in any model. We now turn our attention to
whether the axioms are satisfied by a structure.

Truth of the Term axioms

(a) These axioms are true since if terms are equal in the free algebra Ā, then their
interpretations are also equal, no matter how Φ is extended to variables. Further, if
t 	 t′ holds in the free algebra, then the way we receive t′ from t by pairing and
encryptions carries over to the computational world, no matter how Φ is evaluated
on variables. Same is true for 	P . As for 	¬Q, it is made sure that in the free
algebra t can be received from t′ without encrypting with the key of the substitution
for Q as long as it is not equal the P ’s. Since the explicit inclusion in the free algebra
carries over to the interpretation, the formula must be satisfied.

(b) These axioms hold as computational equality is also symmetric, reflexive and tran-
sitive. Further, subterm relation is also transitive for the interpretations.

(c) Almost the same as (b). Equality implies computation subterm relation by definition
of computational subterm. Subterm reachable using only decryption with respect
to the private key of a specific principal (or other than a specific principal) is also
clearly a general subterm.

(d) If the interpretations of {t1}s
Q and {t2}s′

Q are computationally equal up to negligible
probability, then the interpretations of t1 and t2 must also be equal up to negligible
probability as the decryptions of both sides with the decryption key of Q give the
interpretations of the encrypted terms: Φ(t1) = D(dΦ(Q), Φ({t1}s

Q)) and Φ(t2) =
D(dΦ(Q), Φ({t2}s′

Q)) and the right-hand sides are equal up to negligible probability.
(e) Soundness of this axiom follows as we supposed that computational pairing is one-

to-one.
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(f) These follow from the tagging condition as tagging ensures that encryption is never
confused with pairs, nonces, names.

(g) Follows from tagging.
(h) Soundness of the first formula follows as if t 	 〈t1, t2〉 is satisfied, then either the

interpretations of the two sides are equal (up to negligible probability) and hence
t = 〈t1, t2〉 is satisfied, or (by definition of satisfaction of t 	 〈t1, t2〉) the inter-
pretation of 〈t1, t2〉 can be received from the interpretation of t via encryptions and
pairing, of which the last has to be pairing because the tags have to match; then by
soundness of (e), it follows that the paired items must in fact be interpretations of
t1 and t2, which implies that either of the interpretations of t1 or of t2 was received
from the interpretation of t via pairing and encryptions, which means that either
t 	 t1 or t 	 t2 is satisfied, and that proofs the soundness of this formula. As for
the second formula, if t1 	 {t2}s

Q is satisfied, then either the interpretations of the
two sides are equal, or the interpretation of {t2}s

Q can be received from the inter-
pretation of t1 via encryptions and pairing, of which the last has to be encryption
because the tags have to match, and so soundness follows.

(i) Proof for the first and second formulas are the same as in (h), For the third, if the
premise holds, then the interpretation of {t2}s

P can be received from the interpreta-
tion of t1 with pairing with others and encrypting only with the encryption key of
P . Therefore there is some t and s′ such that t1 	P t ∧ {t}s′

P = {t2}s
P is satisfied.

But then from (d) it follows that t = t2 and so t1 	P t2.
(j) Similar to (h) and (i).
(k) Also follows from tagging.
(l) This follows trivially from the interpretation and that we assumed that the interpre-

tations of constants are distinguishable. So if |t1 	Ā t2 	Ā t3|[M/m] holds for
all M vector of constans of appropriate sort, then with X1 = Φ̄(t1), X2 = Φ̄(t2)
and X3 = Φ̄(t3), the relation |X1 	T (DM) X2 	T (DM ) X3| must also hold as the
parsing tree of Φ̄(ti) is the same as that of ti, and further, for differing constants
in ti the interpretations are assumed to differ, and although the interpretations of
differing variables may coincide, the relation in T (DM) must hold as we assumed

that |t1 	Ā t2 	Ā t3|[M/m] holds for all M vector of constans of appropriate
sort (hence also replacement by identical constants).

Truth of the Ordering axiom. Suppose that there is an extension Φ and a domain
D such that the formula Q2 sends m; Q1 generates n is satisfied on D with non-
negligible probability as well as the formula n 	 m. Then, there are stopping times Jη

1 ,
Jη

2 such that TrJ1 ≪Φ,D Q sends m, and TrJ2 ≪Φ,D Q generates n, and J1 < J2.
Then, TrJ1 ≪Φ,D Q sends m implies that there is M ≪Φ,D m such that Mη is
measurable with respect to Fη

J1
and since n 	 m is satisfied, some N ∈ Φ(n) can be

obtained as a series of decryptions and breaking up pairs from M . Since there is no new
randomness used there, Nη only depends on the randomness until J1, so Nη is mea-
surable with respect to Fη

J1
. But, TrJ2 ≪Φ,D Q generates n implies that Φ(n) has an

element N ′η measurable with respect to Fη
J2

and independent of Fη
J2−1 on [N ′η �= ⊥],

and hence independent ofFη
J1

and of Nη on [N ′η �= ⊥]. So, N and N ′ only differ up to
negligible probability, but Nη and N ′η are independent for all η, which is possible only
if Pr[N ′η �= ⊥] is negligible. That means D has negligible probability, a contradiction.
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Truth of the Nonce verification axioms. In order to show that the axioms are satisfied,
we use the assumption that regular participants (the ones represented by constants) en-
crypt with a CCA-2 secure encryption scheme. For the first nonce-verification axiom,
suppose there is a Φ and non-negligible D such that the premise of the axioms are sat-
isfied by Φ on D, but the conclusion is not. Then, if the conclusion is not satisfied, that
means that either A never sends the nonce out (which clearly cannot happen with non-
negligible probability as later Q receives it and the probability of collision of nonces
is negligible), or {m6}r

B does not go through B between A sending it and Q receiving
it with non-negligible probability. The premise however says that n1 shows up in m5
later in another form, and it can be recovered from there up to negligible probability via
a series of de-coupling and decryption such that the key of B does not have to be used.
We have to show that a PPT algorithm can be constructed that breaks CCA-2 security.

First observe, that the satisfaction of ∀m7(A sends m7 ∧ n1 	 m7 →
|n1 	 {m6}r

B 	 m7|) means that B indeed sent n1 out only in the form of {m6}r
B . The

reason is that if, according to the satisfaction of this formula, there are X1, X2, X3 ∈
T (DM ) such that Φ(n1) =C X1, Φ({m6}r

B) =C X2 and Φ(m7) =C X3 on D so that
X1 occurs in X3, but only within X2, then there cannot be any way to create X3 at the
point when A sends it first out other than from Φ({m6}r

B), because otherwise without
the decryption of Φ({m6}r

B) we could access n1 contradicting the CCA-2 security of
Φ({m6}r

B). Why is this encryption CCA-2? Because at the first time when n1 is sent
out, r had to be created by A, and hence never revealed to anyone. The fact that we
assume in the interpretation of {m6}r

B that r has to be independent of what happened
earlier and that m6 has to be part of the earlier history, ensures that this term is not
confused by any other encryption that was sent out by A.

The algorithm that breaks CCA-2 security is simply the protocol execution itself with
the following modifications:

1. The encryption-key decryption-key pair of B is generated by the challenger in the
CCA-2 game. The encryption key is accessible to the algorithm, that is, the protocol
execution uses it every time encryption with the public key of B is necessary.

2. Since the algorithm cannot use the decryption-key of B known only to the chal-
lenger, the decryption oracle (that the algorithm may access according to the defi-
nition of CCA-2 security) does all decryptions that occur in the protocol execution
using the private key dB , except for the decryption of the interpretation of {m6}r

B .
3. The algorithm generates two samples of n1 when (indicated by the stopping time

from the satisfaction of the formula; notice, that we need to know in polynomial
time where it is) the protocol execution samples n1.

4. From this on, run the protocol parallel with the two values of n1. Hence, when
(again, given by the corresponding stopping time) the protocol execution is to pro-
duce m6, compute two samples of the realization of m6 using the two samples of
n1 and using the same samples for the other parts of m6.

5. Submit to the encryption oracle of the CCA-2 game the pair of samples of m6, and
use the cipher that it outputs in both of the parallel processes whenever {m6}r

B

occurs again (that is, if the protocol execution is defined to use it).
6. If one of the parallel processes happens to crash as that process is running with the

wrong encryption, then output the value of b that corresponds the other process.
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7. If the sample for {m6}r
B goes through B in either of the parallel processes, ter-

minate, and output a random guess of b. If not, continue until the Q receives the
sample for m5 (that is, until the value of the stopping time indicating the point of
reception of m5).

8. Recover the sample for n1 via de-coupling and decryption. Since m5 contains m1
not encrypted by the key of B, it can be recovered. The bit string hence obtained is
the one (out of the two generated for n1) that was in the plaintext encrypted by the
oracle, so the bit value b of the game can be determined.

9. If any one of 3., 4., or 6. does not happen on an execution trace then proceed to the
end and output a random guess of b.

10. If the premise of the axiom is satisfied, then, of course n1 had to be sent out by A
in some message m2 before Q received it, otherwise whoever Q received it from
could only guess n1, but guessing it correctly has only negligible probability as we
assumed.

11. If the premise of the axiom is satisfied but rest of the conclusion is not satisfied, that
is, {m6}r

B does not go through B, but n1 turns up unencrypted by the key of B,
then, since this algorithm determines the value of b in all these cases, the algorithm
has probability non-negligibly different from 1/2 of winning the CCA-2 game to
break {m6}r

B as D is non-negligible.

In order to show the validity of the second nonce-verification axiom, we have to
use the modified version of CCA-2 (equivalent to the original) when there are two
encryption - decryption pairs of oracles, each corresponding to independently generated
encryption key - decryption key pairs. The algorithm then is the following:

1. The encryption-key decryption-key pairs of B and C are generated by the chal-
lenger in the CCA-2 game. The encryption keys are accessible to the algorithm.

2. The decryption oracles (that the algorithm may access according to the modified
definition of CCA-2 security) do all decryptions with the private keys dB and dC .

3. The algorithm generates two samples of n1 when the protocol execution samples
n1.

4. From this on, run the protocol parallel with the two values of n1. Hence, when the
protocol execution is to produce {m6}r1

B , compute two samples of the realization
of m6 using the two samples of n1 and using the same samples for the other parts
of m6.

5. Submit to the first encryption oracle of the CCA-2 game the pairs of samples of
m6, and use the cipher that it outputs in both of the parallel processes whenever
{m6}r1

B occurs again (that is, if the protocol execution is defined to use it).
6. Skip the step when B decrypts {m6}r1

B .
7. When {m8}r2

C is constructed, compute two samples of m8 just as in the case of m6.
Stop if the samples have different length, otherwise submit the results to the second
encryption oracle.

8. If one of the parallel processes happens to crash as that process is running with the
wrong encryption, then output the value of b that corresponds the other process.

9. Continue until C receives the sample for m5.
10. Recover the sample for n1 via de-coupling and decryption. The bit string hence

obtained is the one that was in the plaintext encrypted by the oracles, so the bit
value b of the game can be determined.
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11. If any one of 2., 3., 6., or 7. does not happen on an execution trace then proceed to
the end and output a random guess of b. This is again PPT algorithm given that the
protocol execution was PPT, so it breaks CCA-2 security.

Soundness. Since the axioms are true in the structure M, by a standard argument of
first order logic, the following theorem is true:

Theorem 1. With our assumptions on the execution of the protocol, if the associated
computational trace structure is M = (Π, E, [·, ·],N0,Pr,P , Tr, ΦC , D), then, if a for-
mula (the query form in particular) is provable in the syntax with first-order predicate
logic and axioms (I), (II), (III), then it is true in M.

Proof. We have showed that the term axioms and non-logical axioms of BPL are true
in the model. It is routine to check that all the logical axioms and logical inference rules
of first order logic are also true in the model, because we followed the usual first-order
logical operations of composed formulas in the interpretation. Hence the theorem holds.

3.5 Our Semantics and Computational PCL

We would like to point out some aspects where problems arise in case of the treatment
of Datta et al. and how they are related to our treatment. We emphasize that we do not
claim that these issues are impossible to be fixed in their framework, we only indicate
what our answers are to them.

1. Their treatment is non-deterministic, that is, they rely on counting equiprobable
traces. Unequal probabilities may be dealt with by counting a trace more then once (al-
though a priori it is not quite clear whether this will lead to problems), but their method
certainly only applies to executions when the number of possible computational traces
for a given security parameter is finite. Since some formulations of probabilistic poly-
nomial time processes are not limited to finitely many traces (only the expected termi-
nation time must be polynomial), it is better not to exclude infinite number of traces.
Our method works for infinite number of traces and arbitrary probability distributions.
Removing the bound nη from the length of executions is not a difficult step (change the
finite sequence of the filtration to an infinite one, and the definition of measurability to
the standard one for infinite spaces) in our framework, only the presentation of the defi-
nition of measurability is more involved in this case, that is why we chose to stick to the
bound. It is perhaps worthwhile to note that although manipulations with expected poly-
nomial time algorithms may lead out of their realm, the proof of the nonce-verification
axioms only involve minor modifications (no compositions of two expected PT algo-
rithms) of the expected polynomial-time protocol execution that should not lead out of
the realm.

2. As Datta et al. derive the validity of a formula in the model from validity
of the formula on individual traces, they have to make sure that there are not too
many accidental coincidences. This results in a weaker set of syntactic axioms then
what would otherwise be possible in our method. For example, they postulate that
¬Send(X̂, t)[b]X¬Send(X̂, t) is an axiom whenever for all σ evaluation of variables
by bit-strings, σ(b) �= σ(Send(X̂, t)). Let us now not be bothered by the problem that
they define a syntactic axiom using the semantics. Here, X̂ is a principle, t is a term,
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[b]X is an action b carried out by principal X̂ in thread X assuming also that nothing
else is carried out. In other words, it is an axiom that if X̂ did not send t before action
b, then it did not send it even after action b as long as no σ evaluates b and Send(X̂, t)
the same way. However, if there is even one coincidence in their evaluations, that pre-
vents the axiom. We think this is an unnecessary restriction. As long as the probability
distributions are different (up to negligibility) for any computational interpretation of b
and Send(X̂, t), we can include ¬Send(X̂, t)[b]X¬Send(X̂, t) in our axioms. We did
not introduce modal formulas here in the syntax, and it is our work in progress to ex-
tend our approach to PCL. As we keep track of the actual probability distributions and
correlations, it should be no problem to define the semantics of modal formulas so that
these axioms hold as long as the interpretations (distributions, not bit-strings) of b and
Send(X̂, t) are different up to negligible probability.

3. A further problem, that even makes the soundness proofs of Datta et al. question-
able is the following: They define a formula (e.g. Send(X̂, t)) to be true in the model if
it holds on all traces except for some with negligible probability. They ignore the fact
that the position of Send(X̂, t) on the traces may vary badly from trace to trace, for
example, may depend on the future of the trace. A simple example of such a situation
is when on two traces, which coincide up to step t0, say, Send(X̂, t) is chosen on one
trace for t1 < t0, but on the other trace it is chosen somewhere else. Since the two traces
coincide at step t1, if this time is picked on one trace, it must be picked on the other
trace too. Maybe it is possible to prove that if there is a bad choice of the positions then
there is a good choice as well, but we see no indication of such concerns in the papers
of Datta et al. As we suggest to use the standard tool of filtration, according to which
random variables have to be measurable, dependence on the future is taken care of by
measurability.

4. Finally, ignoring probability distributions and correlations give rise to pathologies
like this one, putting further doubts at the correctness of their soundness proofs:
Suppose that the encryption scheme is such that for any n1, n2 bit-strings generated
randomly as nonces, any public key bit-string k2 and any random seed r2 for the
encryption, there is another public key bit-string k1 and a random seed r1 such
that {n1}r1

k1
= {n2}r2

k2
. This does not contradict CCA-2 security. Suppose principal

A generates randomly nonce n1, and then principal B receives {n2}r2
k2

from the
adversary. In such a case, it will be true according to the semantics of Datta et al., that
∃N∃R∃K.New(A, N) ∧ Receive(B, {N}R

K). This is however pathologic, and is a
consequence of ignoring the fact that k1, if created by the adversary, cannot correlate
with n1, which was not yet sent around. Furthermore, this seems to contradict their
axiom (which though does not appear in their computational PCL papers) saying that
FirstSend(X, t, t′)∧ a(Y, t′′) → Send(X, t′) < a(Y, t′′) where X �= Y and t subterm
of t′′ (meaning in our case that the first send action of A sending N had to occur before
B could do anything with N ) in Section 4.7 of[14]. This problem persists even if such
a coincidence cannot be efficiently computed. In our method, we required that the
distribution of keys are measurable with respect to Fη

0 , and generated nonces are inde-
pendent of the past, so this anomaly cannot happen as N and K must have independent
interpretations. The reader may be worried that we don’t require that the generated
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R has to be dependent of N as R is generated by the adversary or a corrupted partic-
ipant. It is true that we could introduce another filtration that indicates the knowledge
of the adversary up to a certain time, which may be needed in a more complex syn-
tax (for example if we allow corrupted participants to generate their keys sometime in
the middle), however, in BPL this is not necessary as this does not result in undesired
coincidences and the proofs work even without this tool.

4 Conclusions

We have given a computational semantics to Basic Protocol Logic that uses stochastic
structures, and showed a soundness theorem. In order to show that the axioms of BPL
were true in the semantics, we had to modify BPL as the original axioms were not all
computationally sound. We showed our method on BPL as it is simple enough for a
first, concise presentation. As the idea of making use of the notions from the theory of
stochastic processes in the definition of satisfaction of formulas does not require the
special properties of BPL, we believe that it should not be difficult to adopt this method
to a wide range of formal models such as PCL or strand space models.
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A Definition of Only and Honest

Our aimed correctness properties are described in a special form of formulas, called
query form. Let αA[Q, N , n, r, s] be a role A acts1 t1; A acts2 t2; · · · ; A actsk tk
where each actsi (1 ≤ i ≤ k) is one of sends, receives and generates, ti is a
term built from nonces in N = {N1, ..., Ng} and n = {n1, ..., nh} from coins in
r = {r1, ..., ri} and s = {s1, ..., sj} and from names A and Q = {Q1, ..., Ql}. Let
αA

≤i denote an initial segment of αA ending with A acts i ti (for 1 ≤ i ≤ k), i.e.,
αA

≤i ≡ A acts1 t1; · · ·A actsi ti. Let αA
≤0 ≡ A = A.

http://dx.doi.org/10.1016/j.entcs.2005.06.038
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The query form includes a formalization of principal’s honesty Honest(αA), which
is defined as follows, the intuitive meaning being that A follows the role αA and does
nothing else, but it may not complete it:

Honest(αA)
def≡
∨

i∈{0}∪{j | actsj= sends }∪{k} αA
≤i ∧ Only(αA

≤i)

Only(αA) denotes the following formula, whose intuitive meaning is “A performs only
αA”.
Only(αA) ≡ ∀n(A generates n → n ∈ Generates(αA)) ∧ ∀m1(A sends m1 → m1 ∈ Sends(αA))

∧∀m2(A receives m2 → m2 ∈ Receives(αA))

Here, Sends(αA) denotes the set {tj | A sends tj ⊆ αA}, and (Receives(αA),
Generates(αA) are defined similarly. Set theoretical notation as m ∈ Sends(αA)
(as well as m ∈ Receives(αA) and m ∈ Generates(αA)) is an abbreviation of a
disjunctive form: for example, if Sends(αA) = {t′1, . . . , t′j}, then m ∈ Sends(αA)
denotes the formula (m = t′1) ∨ (m = t′2) ∨ · · · ∨ (m = t′j). (As a special case, if
Sends(αA) is empty then m ∈ Sends(αA) denotes A �= A, that is, impossible.)

Intuitively, each disjunct αA
≤i ∧ Only(αA

≤i) in Honest(αA) represents a historical
record of P ’s actions at each step of his run: the sequence of actions αA

≤i represents
A’s performance until this step, and Only(αA

≤i) represents that A performs only αA
≤i.

Only(αA
≤0) means that nothing was performed.
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Abstract. Fingerprint Recognition currently widespreads in numerous
identity verification applications such as electronic ID cards, travel doc-
uments, access control and time attendance. Security issues with the
condition of use of the authentication device is a major concern in such
applications. Recent publication in this field shows the lack of aliveness
detection mechanism in fingerprint sensors technology, especially by us-
ing Gelatin-made fake fingers. Different material may be used to mold
and reproduce exact copy of a fingerprint with its detailed shape and
extended characteristics (e.g. minutiae points location). In this paper we
will present a state-of-the-art of fake finger materials and disclose the
power of a, let’s say, brand new material in this field: Glycerin

Keywords: Biometrics, Fingerprint Recognition, Fake Fingers, Identity
Verification, Fingerprint Sensors, Aliveness Detection.

1 Introduction

In the recent past years, biometric technologies have often been cited as the
panacea of security: “biometrics would user-conveniently replace passwords and
personal tokens and would moreover strengthen the security of the user authenti-
cation”. Fortunately this is not the message coming from the research community
but commercial start-ups, or more established companies, surfing the wave of the
“biometrics hype”.

To prove our identity, we can use three ways [8]:

1. Something we have (e.g. a Smart Card)
2. Something we know (e.g. a PIN code, a Password)
3. Something we are (Biometrics, e.g. Fingerprint, Face, Iris)

In everyday life, we usually give our trust to a combination of something-we-
have and something-we-know (e.g. banking cards, SIM card in mobile phones)

V. Cortier et al. (Eds.): Formal to Practical Security, LNCS 5458, pp. 57–69, 2009.
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but a password can be communicated or guessed and a personal device can be
lost or borrowed. It is widely believed that passwords are old-fashioned, carrying
a card is a pain and fingerprints are more secure and user convenient.

1.1 Biometrics

The biometric authentication [9] has the advantage of checking the
user’s personal characteristics. These characteristics can be physical ones such
as fingerprints, face, iris or behavioral ones such as voice, handwritten signature,
keyboard tapping.

This brings to a possible split in the usually called something-we-are:

1. Something we are (physical Biometrics)
2. Something we know how to do (behavioral Biometrics)

Behavioral characteristics are much less stable than physical characteristics be-
cause of their poor resistance to user’s stress or health troubles. The authen-
tication process is a comparison between a pre-registered reference image, or
template1, (built during an enrolment step) and a newly captured candidate im-
age, or template. Depending on the correlation between these two samples, the
algorithm will determine if the applicant is accepted or rejected. This statistical
process leads to a False Acceptance Rate (FAR, i.e. the probability to accept a
non-authorized user) and a False Rejection Rate (FRR, i.e. the probability to
reject an authorized user).

Let’s say that a low FAR represents security and low FRR represents user
convenience: a system with a very low FAR, hence a high FRR, remains perfectly
secure since the authorized user himself can’t use it!

1.2 Security Issues

The use of Biometrics without any personal device to store the reference template
leads to privacy concerns: the centralized database which stores all biometric
information from every user could be hacked. The use of a personal security
token, usually a smart card, here allows building up a distributed database where
every user is the carrier of his own biometric reference, hence downsizing the
previous privacy concern. Depending on the application, the smart card could
handle differently the biometric data.

The combination of Biometrics and smart card is an old topic [6] but the
idea of using Biometrics to replace the PIN code for security reasons is too often
cited. Biometrics capabilities are always overestimated. First of all, any biometric
data is not a secret : a face can be seen on any picture or video recording even
without the owner’s authorization, fingerprints are left everywhere, voice can be
recorded. Let’s say Biometrics are public data, hence a biometric data can be
captured and replayed [16,15].

For a study of security threats when using biometrics and smart cards please
refer to [3], however we will remind here the notion of context-of-use.
1 Representative data extracted from the raw image.
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Different attacks and countermeasures are possible depending on the context
of use of Biometrics and smart card. We define here three contexts of use:

1. Attended Terminal : the applicant is in front of the authority2

2. Trusted Third-Party: under video surveillance3

3. Uncontrolled Area: user at home with the smart card and biometric device4

For instance, only the last context of use would permit a manipulation of the
biometric reader to bypass the captured image and replay a matching candidate;
idem for using a large man-in-the-middle device.
Only the first context of use will prevent from the discrete usage of a fingerprint
copy or bad-looking smart card copy; idem for using a discrete man-in-the-middle
device. Classical attack paths are:

1. Man-in-the-middle (capture and replay)
2. Finger substitution (gummy fingers)
3. Smart card substitution (forged cards, yes-cards)
4. Fingerprint and smart card readers manipulation (probing)

Most of these attacks, finger substitution apart, can be stopped by using cryp-
tographic tools (e.g. mutual authentication, session key). The countermeasures
against finger substitution are aliveness detection systems built in the biometric
reader itself (e.g. pulse detection, skin conductivity).

A miscellaneous of threats and countermeasures can be found in the following
tables:

Context of use Threats
Attended terminal False cards, YesCards
Trusted third-party same as above + false finger
Uncontrolled Area same as above + Reader manipulation

Context of use Countermeasures
Attended terminal Secure printing, signed data
Trusted third-party signed data, aliveness detection
Uncontrolled Area signed data, aliveness detection, tamper resistance

Of course we will focus here on the fake fingerprint threat. For instance, let’s
take the example of the brand new biometric ePassport, where fingerprint recog-
nition will be mandatory in Europe on 2009, July 1st. With the classical custom
control, where we are in front of a governmental officer, a very discreet attack
using a thin layer of gelatin on your fingertip representing a faked fingerprint is
2 e.g. face to face with a policeman.
3 e.g. ATM, banks, shops.
4 e.g. e-voting, e-commerce.
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possible if the officer is not very attentive. More and more a fast-track path to
cross the custom will be deployed, this is an unattended automated booth where
the user presents is passport to a machine and puts his finger on a fingerprint
sensor, here for sure we may use any of the fake fingerprint techniques to fool
the recognition.

2 Overview of Fingerprint Sensors

2.1 Introduction

A complete overview of fingerprint sensors technologies can be found in [13].
Different captures of the same fingerprint image (or biometric trait in general)
will never give exactly the same image. This is mainly due to the different tech-
nologies available to automatically capture a fingerprint. One family of sensor
will give black ridges over a light grey background, while another technology
will give light grey ridges over a white background. About twenty years ago, au-
tomatic devices to “cleanly” capture fingerprints were developed to replace the
ink&paper technique. Most of today’s sensors have a resolution about 500dpi.
The different technologies available are based on optical properties of the skin
surface, electrical properties of the skin (silicon-based sensors, e.g. capacitive),
thermal properties of ridges in friction with a pyroelectric material, pressure of
the ridges on a piezoelectric material, ultrasonic fingerprint relief measurement.
This list being non-exhaustive. However, the current predominant technologies
on the market are optical ones and silicon-based ones (both capacitive and ther-
mal), thus we will give further details about these latter techniques.

2.2 Optical Technologies

Most of the optical sensors on the market are based on infrared reflection on the
fingerprint. The user just put his finger on a glass substrate and the reflection of
infrared going to the imaging component is modified, giving dark image points
for the ridges and light image points for the valleys. Another marginal optical
technology is based on infrared transmission through the finger, the infrared
source being placed above the finger, on the nail side, and the imaging component
be positioned under the finger, on the fingerprint side. A more recent technique
is based on multispectral illumination of the finger, being known to be resistant
to fake fingers by analysing skin reflection properties on a wide range of colour
wavelength [20].

2.3 Silicon-Based Technologies

Capacitive measurement of the fingerprint is the most used technique in embed-
ded electronics. The main reason for this is its small scale and the ability to
produce such sensors with regular semiconductor process in the industry. The
skin and the surface of the sensor are used to build a capacitor, both being one
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of the electrode plates of the capacitor. The sensor itself is a matrix of very
small capacitor plates, each being a pixel of the captured image. Charge and
discharge cycles of each capacitors with microcurrent are analysed to measure if
the skin is directly in contact with the sensor or not, hence providing a map of
the fingerprint.

The second widely used silicon-based technique is the thermal one. Actually,
this technology is using a combination of silicon and pyroelectric material (i.e.
material generating an electric signal proportional to the heat), however being
still suitable with classical semiconductors manufacturing techniques. This tech-
nology is only available in the swipe form-factor (see right next section), for
technical reasons due to the property of pyroelectric material, uniform heating
of the material very quickly when placing the finger, no time left to measure
differences between ridges and valleys. Hence, the technique is to swipe the fin-
ger across a small slice of silicon, friction of the ridges will heat the pyroelectric
material while valleys will have no effect on the pyroelectric material.

Other silicon-based, but very young, techniques (or polymer-based) are using
MEMS technology (MicroElectroMechanicalSystems).

2.4 Form-Factors

A silicon-based fingerprint sensor may comes in two different form-factors: the
touch (or full matrix, or 2D) sensor or the swipe (roughly speaking, 1D) sensor.
The touch sensor is very easy to use, but suffers from several drawbacks: its
silicon area size makes it expensive, its surface may leak a complete latent print
(trace left by a fingerprint, may be used for an attack), with heavy usage its
surface became dirty, hence difficulties to capture an image, and its size makes
it difficult to integrate in small embedded electronic devices.

On the other hand, a swipe sensor may be considered as less user-convenient,
the user need to learn how to correctly swipe his finger across the sensor to
obtain a good image, however the correct gesture comes in a minute of training.
This form-factor has several advantages: cost-saving (more sensors on one silicon
wafer), no latent print issue, no cleanness issue (due to the applied friction), and
very easy to integrate in small electronic devices such as laptops, PDAs, mobile
phones, USB dongles, etc...

This technique is using a fast capture of a lot of slice images during the
swiping, and then a dedicated algorithm is here to reconstruct the correct image
from the tens of slices. This appeared a little bit crazy when invented by the
Atmel company (formerly Thomson-CSF semiconductors) in the mid-nineties
[14] but, as of today, every silicon-based sensor manufacturer came with this
form-factor in their product range.

3 Fake Fingers

3.1 Introduction

Recently, in March 2008, the Chaos Computer Club, an activist group in IT,
published the fingerprint of the German Interior Minister [19]. The print was
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included in more than 4,000 copies of the March 2008 issue of the magazine,
which was published by the CCC. The image was printed two ways: one using
traditional ink on paper, and the other on a film of flexible rubber that contains
partially dried glue. The latter medium can be covertly affixed to a person’s
finger and used to leave an individual’s prints on doors, telephones or biometric
readers.

3.2 Known Techniques

In [23], a description of attack paths are presented either with finger owner
cooperation (molding techniques, 3D) or without his cooperation (use latent
fingerprint and Printed Circuit Board technique to create the mold, 2D). This
paper shows examples of fake fingers built either with silicone or stamp-type
rubber. Fake fingers could also be build with gelatin [16], play-doh like material
(polymer clay) [22], wood glue [4] or latex [2]. We build fake fingers with all
these materials and had pretty good results with different sensor technologies,
however, apart from gelatin, we add few troubles to obtain easily reproducible
attacks with silicon-based sensors, such as capacitive one. In this case, we usually
need to find out some tricks such as blowing on the sensor, or using water spray,
before capturing to enhance the humidity coupling between the fake finger and
the sensor. Please note these known tricks are also useful to enhance the quality
of the image with optical fingerprint sensors.

3.3 Fingerprint

A fingerprint is a set of skin lines, locally parallel, named ridges and empty
space between two consecutive ridges named valleys. The global shape of this
pattern is the first level of information we may examine to classify fingerprints,
see Figure 1. By convention, the fingerprint image is displayed as the trace the
inked finger would leave on a paper. Of course this first level information is
useless to proceed with fingerprint verification.

The second level of information is the so-called minutiae. These are specific
points of the fingerprint where a ridge is ending or bifurcating. Tens of such points
may be extracted from a fingerprint, and are enough to proceed with reliable
fingerprint verification, this is the way criminal sciences is conducting fingerprint

Fig. 1. Fingerprint Characteristics - 1st level: Classes
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Fig. 2. Fingerprint Characteristics - 2nd level: Minutiae, Core and Deltas

verification for more than one hundred years. Other, but not sufficient, second
level information are core and deltas location, see Figure 2. The pattern of ridges
and valleys, with its minutiae, core and deltas are unique to each individual
(different even for identical twins) and this pattern is known to be stable during
the lifetime. Usually a correct matching between only eight to twelve minutiae
is enough to conclude with a positive fingerprint recognition.

The third level information is pores location along the ridges, see Figure 3.
The use of pores location is young, and coming with the improvement of new
generation fingerprint sensors, able to capture such details. As of today, finger-
print recognition algorithms using this technique are far to be mature enough to
raplace minutiae-based ones, but promising [10].

Fig. 3. Fingerprint Characteristics - 3rd level: Pores

Regarding fake fingers techniques described above, we are able to reproduce
first and second level information. Copying third level of information on a fake
finger is still a challenge, hence often cited as a potential fake finger countermea-
sure, see section right below.
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3.4 Aliveness Detection

A complete study can be found in [21]. Aliveness detection can be performed
either at the acquisition stage (hardware counter-measures), or at the processing
stage (software counter-measures). Regarding hardware counter-measures possi-
bly built in sensors, we can cite temperature of the skin, optical properties of
the skin, pulse oximetry, blood pressure, blood presence, electric resistance of
the skin and relative dielectric permittivity. Regarding software counter mea-
sures we can cite skin deformation during finger placement [1,11], perspiration
detection [18], pores location. However, even if working properly, an aliveness
detection system always results in a more complex acquisition stage (e.g. long
process, false alarms with real fingers), hence the fingerprint recognition system
is prone to higher False Rejection Rate, not applicable in convenience-oriented
systems and dedicated to security-oriented systems.

3.5 Gelatin-Based Fake Fingers

A complete study of gelatin-made fingers, so-called gummy fingers, can be found
in [15,16]. Gelatin have the advantage to be extracted from animals’ tissues
and thus have chemical properties close to human skin and different materials
produced by human body (e.g. sweet, grease), in opposition to latex, silicone
or other material. This is the reason why this material is particularly efficient
with silicon-based fake fingers. However, it suffers from a critical drawback: a
gelatin-made fake finger is very limited in time, it must be used within the hour
of production, after this delay gelatin becomes totally dry and twisted like shown
in Figure 4.

Fig. 4. Gelatin - dry thin layer, unusable after about one hour

3.6 Glycerin-Based Fake Fingers

We essentially identified glycerin for these characteristics: rot-proof and softness
over its lifetime period, the two main drawbacks of gelatin-made fake fingers. For
the experiment, we are using baby’s suppositories, originally addressing baby’s
constipation. Actually this material is made of about 86% glycerin and 14%
gelatin and is very easy to use: use a lighter or a microwave oven to heat the
suppository directly in the cast to liquefied it, then refrigerate for few minutes
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Fig. 5. Glycerin - left: thin layer - center: thick layer - right: 3D models

Fig. 6. Cast - left: wax - center: silicone - right: 3D silicone

to solidify the fake finger, see Figure 5. Here we were using wax, silicone, FIMO
paste (polymer clay becoming hard after soft heating in oven) or any classical
molding material to build a negative of the finger (the cast), see Figure 6.

A fine softness analysis of glycerin fake fingers, by Young’s modulus calcula-
tion, is still to do. However the distorsion of the material under pressure seems to
be very close to the behaviour of a real fingertip, hence possibly bypass aliveness
detection by skin deformation analysis techniques.

4 Experiments

4.1 Introduction

During our experiments we had access to a large panel of fingerprint sensors, one
having an aliveness detection system. The range of sensors covers optical, ca-
pacitive (both touch and swipe sensors) and thermal swipe sensors. The original
fingerprint is shown in Figure 7. We used two fingerprint recognition softwares
available for download on the web at [7,17], these programs are able to com-
pare fingerprints from image files or directly from a wide range of supported
fingerprint sensors.

4.2 Optical Fingerprint Sensors

An example of image acquired on optical sensor from glycerin-based fake finger
is shown in Figure 8. This matched with the original fingerprint enrolled with
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Fig. 7. Original Fingerprint to be copied

both algorithms used. Glycerin surface may be coloured with any colour using a
felt-tip pen before melting it in the cast, after melting we obtain an homogeneous
coloured fake fingerprint. This is useful to build an opaque fake fingerprint to
avoid the superposition of both fake fingerprint pattern and real fingerprint
pattern when using a thin layer copy applied on a real fingertip. This also could
be useful to obtain a skin-based colour for the fake fingerprint. For instance,
a dark-coloured fake finger in glycerin ease to bypass the aliveness detection
system embedded in one of our sensors, this system being apparently based on
red or infra-red reflexion, absorption and transmission by the finger.

Fig. 8. Optical sensor - left: raw image - right: binarized image

4.3 Capacitive Fingerprint Sensors

An example of image acquired on capacitive sensor from glycerin-based fake fin-
ger is shown in Figure 9. This matched with the original fingerprint enrolled with
both algorithms used. Using glycerin-made fake finger have the same efficiency
than gelatin, no real need to use additive tricks to capture an image, however
humidifying the finger and/or the sensor ease the process. Tests done with glyc-
erin fake fingers aging more than three months still show perfect results. The
main issue is to use the fake finger with the swipe capacitive sensor since swiping
is not easy with this glycerin support, however using conductive silver lacquer
on ridges to dry and strengthen the support allows to succeed sometimes but
it’s definitely not obvious.
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Fig. 9. Capacitive sensor - left: raw image - right: binarized image

4.4 Thermal Swipe Sensor

An example of image acquired on thermal swipe sensor from glycerin-based fake
finger is shown in Figure 10. This matched with the original fingerprint enrolled
with both algorithms used. The gelatin-made fake finger remains a little bit
greasy and tends to stick to the sensor. To improve friction capability we used
varnish to stabilized the fake finger and/or pour lightly some water spray on the
sensor itself. As for the capacitive swipe sensor in the previous paragraph, we
had few successes out of tens of trials. It is definitely not obvious to work with
glycerin-based fake fingers in conjunction with swipe sensors. For information,
Atmel stopped the production of such thermal sensors in 2008, this technology
seems to be no longer competitive.

Fig. 10. Thermal swipe sensor - left: raw image - right: binarized image

5 Future Work

For sure, experiments at this stage are very light. We intend to conduct a com-
plete evaluation with a wide range of fingerprints to copy and a wide range of
current fingerprint sensors on the market to be able to statistically measure the
probability of success of an attack using this glycerin technique. The ultimate
target being the ability to build up easily reproducible tests with a lot of long-life
fingerprint copies on the shelf to address certification needs for fingerprint sys-
tems, as the ones conducted for smart cards’ security evaluation. We also need
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to improve, and have a better understanding, our recipes: the second one, using
one suppository, five drops of water and microwave cooking in the cast - 10s at
750W - shows better results with capacitive sensors: perfect capture of a clean
image, even without humidifying the support.

6 Conclusion

We demonstrated a fake finger technique which combines rot-proof property with
perfect softness during its lifetime, in opposition to gelatin. Moreover this ma-
terial can be reused many times by heating it in different casts, in opposition to
wood glue, silicone, latex, etc... This material has proved good characteristics to
capture an image on major fingerprint sensor technologies (e.g. optical, capaci-
tive, thermal) and bypass the aliveness detection system implemented in one of
the optical sensors we used for the experiments.
We intend to only evaluate fingerprint sensing technologies without pointing out
any specific manufacturer, hence a lack of details the reader would like to have
about our range of sensors. For research purposes, the list of fingerprint readers
we used will be made available upon request, with satisfying arguments.
Imagine a long journey on a plain, with its dry air conditioning, sometimes finger-
prints are hard to capture when arriving at the custom checkpoint (not enough
contrast due to skin dryness), hence this could be useful to carry a glycerin copy
of our own fingerprint, the one enrolled in the ePassport, to ease the capturing
process... and would be useful in case of constipation during your trip!
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Abstract. There are several automatic tools available for the symbolic
analysis of security protocols. The models underlying these tools differ in
many aspects. Some of the differences have already been formally related
to each other in the literature, such as difference in protocol execution
models or definitions of security properties. However, there is an impor-
tant difference between analysis tools that has not been investigated in
depth before: the explored state space. Some tools explore all possible
behaviors, whereas others explore strict subsets, often by using so-called
scenarios.

We identify several types of state space explored by protocol analy-
sis tools, and relate them to each other. We find previously unreported
differences between the various approaches. Using combinatorial results,
we determine the requirements for emulating one type of state space by
combinations of another type.

We apply our study of state space relations in a performance compar-
ison of several well-known automatic tools for security protocol analysis.
We model a set of protocols and their properties as homogeneously as
possible for each tool. We analyze the performance of the tools over com-
parable state spaces. This work enables us to effectively compare these
automatic tools, i. e., using the same protocol description and explor-
ing the same state space. We also propose some explanations for our
experimental results, leading to a better understanding of the tools.

1 Introduction

Cryptographic protocols form an essential ingredient of current network commu-
nications. These protocols use cryptographic primitives to ensure secure com-
munications over insecure networks. The networks are insecure in two ways:
attackers may analyze or influence network traffic, and communication partners
might be either dishonest or compromised by attackers. Despite the relatively
small size of the protocols it is very difficult to design them correctly, and their
analysis is complex. The canonical example is the famous Needham-Schroeder
protocol [40], that was proven secure by using a formalism called BAN logic.
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Seventeen years later G. Lowe [33], found a flaw by using an automatic tool
Casper/FDR. The flaw was not detected in the original proof because of differ-
ent assumptions on the intruder model. However, the fact that this new attack
had escaped the attention of the experts was an indication of the underesti-
mation of the complexity of protocol analysis. This example has shown that
automatic analysis is critical for assessing the security of such cryptographic
protocols, because humans can not reasonably verify their correctness.

A few years later it was proven that the security problem is undecidable [1,28]
even for restricted cases (see e. g. [20] for a survey). This undecidability is one
of the major challenges for automatic analysis. For instance, in the tool used by
Lowe, undecidability is addressed by restricting the type of protocol behaviors
that were explored. The protocol that Lowe investigated has two roles. These
roles may be performed any number of times, by an unbounded number of agents.
Lowe used his tool to check a very specific setup, known as a scenario. Instead
of exploring all possible protocol behaviors, the protocol model given to the tool
considers a very small finite subset, in which there are only a few instances of
each role. Furthermore, the initiator role is always performed by a different agent
than the responder role. The attack that Lowe found exactly fits this scenario.
However, if there would have been an attack that requires the intruder to exploit
a large number of instances of the responder role, Lowe would not have found this
particular attack with the tool. Addressing this problem, he provided a manual
proof for the repaired version of the protocol, which states that if there exists
any attack on that protocol, then there exists an attack within the scenario.
Ideally, we would not need such manual proofs, and explore the full state space
of the protocol automatically, or at least a significant portion of it.

Over the last two decades many automatic tools based on formal analysis
techniques have been presented for the analysis of cryptographic protocols [2,8,
11,12,19,22,35,37,39,43,44]. These tools address undecidability in different ways:
either by restricting the protocol behaviors similar to the approach used by Lowe,
or by using abstraction methods. However the restrictions put on the protocol
behavior are rarely discussed or compared to the related work. Moreover, the
tools provide very different mechanisms to restrict the protocol behaviors, and
the relations between these mechanisms has not been investigated before.

This work started out as an investigation into the performance of protocol
analysis tools. In contrast to the large number of tools, there are hardly any
comparison studies between the different tools. In each tool paper the authors
propose some tests about their tools’ efficiency, by describing the performance
of the tool for a set of protocols. These tests implicitly use behavior restrictions,
which are often not specified and sometimes are designed specifically to include
known attacks on the tested protocols. Choosing different restrictions has a very
clear impact on the accuracy as well as the performance of the analysis process.
In particular, imposing stronger restrictions on the protocol behavior implies
that fewer behaviors need to be explored, which means that for most tools the
time needed for the analysis will be exponentially lower.
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Contributions: In this paper we address two distinct, but very closely related
problems. First, we discuss types of behavior restriction models used by protocol
analysis tools, which we will also refer to as the explored state space. We show
how these different state spaces are related to finding, or missing, attacks on
protocols, and show how to match up certain state space types. Using math-
ematical results, we compute the number of concrete scenarios that needs to
be considered in order to analyze all the possible behaviors involving up to n
protocol role instances, or threads. Second, we use the knowledge gained about
state spaces to perform a tool performance case study. We try to match up the
exact restrictions used in each tool, and compare their performance on similar
state spaces. We use our unfolding of symbolic scenarios to generate the input
files for each tool in the test. This leads to new insights in the performance of
the tools for secrecy and authentication properties.

Related work: To the best of our knowledge, the difference between state
spaces in security protocol analysis has not been investigated before. However,
some work exists on comparing the performance of different security protocol
analysis tools. In [36] C. Meadows compares the approach used by NRL [37] and
the one used by G. Lowe in FDR [42] on the Needham-Schroeder example [40].
She examines the difference and concludes that the two tools are complementary
even though NRL was considerably slower. In [3], a large set of protocols is
verified using the AVISS tool and timing results are given. In [47], a similar test
is performed using the successor of AVISS, called the Avispa tool suite [2]. As
the AVISS/Avispa tools consist of respectively three and four back end tools,
these tests effectively work as a comparison between the back end tools. No
conclusions about the relative results are drawn in these articles. A qualitative
comparison between Avispa and Hermes [12] is presented in [30] and provides
general advice for users of these tools. The comparison is not based on testing but
on conceptual differences between the modeling approaches. In [15], a number
of protocol analysis tools are compared with respect to their ability to find a
particular set of attacks.

Outline: In Section 2 we describe and relate some of the different state spaces
considered in symbolic protocol analysis. In Section 3 we determine the number
of concrete scenarios needed to cover the same state space as a given symbolic
scenario. In Section 4 we present our performance comparison experiments. We
describe the choice of tools and test setup. We then discuss the results of the
analysis before we move to the conclusions and future work in the last section.

2 State Spaces in Security Protocol Analysis

In the symbolic analysis of security protocol, one models both the agents that ex-
ecute a security protocol, as well as the possible behavior of the active intruder.
Combined these yield a system which should model (at some level of abstraction)
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pk(Resp)
Init

pk(Resp)−1

Resp

Fresh N

{|N |}pk(Resp)

N

Fig. 1. An example protocol EX

pk(b)
Init(a, b)

Fresh N

{|N |}pk(b)

N

Fig. 2. An example protocol instance
for the initiator role of EX

all possible behaviors of the agents in the presence of an active intruder. Veri-
fying security properties of a protocol amounts to checking whether all possible
behaviors of the resulting system satisfy the desired security property.

In such a model, agents may initiate a protocol or respond to incoming mes-
sages. Consider the example protocol EX shown in Figure 1. There are two roles
Init (initiator) and Resp (responder). An agent a can initiate a session of the
protocol at some point by starting to execute the initiator role. He chooses who
he wants to communicate with, for example b. Next he generates a fresh random
number N , and sends N encrypted with the public key pk(b) of the agent b. After
that he waits until he receives from the network the number N back. The agent
b accepts incoming messages encrypted with its public key pk(b). Once such a
message is received from an agent (for example, from a), b starts an instance of
the responder role. Following the model of the responder role, b will accept and
decrypt the message, and send back the resulting number N to a.

In general, any number of agents may be running the protocol in parallel, and
agents can also start multiple sessions with any other agent at the same time as
responding to incoming messages.

2.1 Process Model

We first give a high-level description of the protocol analysis problem in terms of
processes. It is not our intent to go into full detail but only to provide the required
knowledge for understanding the state space restrictions in the remainder of this
paper. For further details we refer the reader to e. g. [21].

We recall some process calculus basics. A process P defines a possibly infinite
number of possible behaviors, where each possible behaviour is represented as a
sequences of events. A possible sequence of events is referred to as a trace of the
system. All possible behaviors of a process P are denoted by its set of traces,
denoted by tr(P ). We write X ‖ Y to denote the process consisting of the parallel
composition of the process X and Y . We write !X to denote the replication of
the process X , i.e. !X = X ‖ (!X). We write + to denote the choice operator,
which is generalized to

∑
for choosing over a parameter range.
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A security protocol is defined as a finite set of communicating processes,
referred to as “roles”. More precisely, we define a protocol as a mapping from
role names to processes. In practical applications, these roles have names such as
client/server/. . ., or initiator/responder. A role usually consists of a sequence of
send and receive events, and implicit or explicit generation of messages or fresh
values such as nonces or session keys. In this paper we will not go into details of
the allowed actions in a role.

Roles are executed by agents. Upon execution, any identifiers referring to
role names in the protocol are instantiated with concrete agent names. For a
protocol Q with |dom(Q)| = n roles, where dom(Q) = {r1, . . . , rn}, we denote
by Q(x)(a1, . . . , an) the process that is the instantiation of the role x, where
r1 is substituted by a1, etc.. This notation is effectively used as a shorthand
for the more commonly used substitution notation Q(x)[a1, . . . , an/r1, . . . , rn].
For example, in Figure 2 we show the process EX(Init)(a, b). We allow some
parameters to be unspecified, notation , which we interpret to be the unspecified
choice between any of the possible agents from the set Agent. We will return
later to exact the specification of the agent set, but remark here that a finite set
will suffice for our purposes. In particular, we define for any protocol Q that

Q(x)(a1, . . . , , . . . , an) =
∑

i∈Agent

Q(x)(a1, . . . , i, . . . , an).

Hence for the example protocol Q, Q(Resp)( , ) denotes a single execution of
the responder role, with any choice for the agent names.

An agent can perform any role any number of times in parallel. Thus, for any
protocol Q, the behavior of the agents is defined by the process∥∥∥

x∈dom(Q)
!Q(x)( , . . . , ).

The messages are transmitted over a network that is considered to be insecure.
It is insecure in the sense that an adversary or intruder can eavesdrop on any
message, or insert his own messages. Furthermore, we assume an intruder may
also have corrupted certain agents, for example because he has learnt their pri-
vate keys, allowing him to impersonate the corrupted agents. Because agents
may not know who has been corrupted, the non-corrupted agents may still start
protocol sessions with corrupted agents.

This situation is commonly modeled by a single “intruder” who is represented
by the process Intruder. The Intruder process can take messages from the
network, manipulate them, insert messages into the network, or generate fresh
values. Furthermore, the intruder has corrupted the agent e, thereby learning its
long-term secrets, including the long-term private keys of e.

Definition 1 (Sys). Given a protocol Q, the system describing the behavior of
the agents in the context of the intruder is defined as

Sys(Q) = Intruder ‖
∥∥∥

x∈dom(Q)
!Q(x)( , . . . , ).
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If there exists an attack on (a trace property of) a protocol Q, it is represented
in the set of traces of the system Sys(Q). Conversely, if no trace in tr(Sys(Q))
exhibits an attack, there is no attack on the protocol Q.

2.2 Restricting the State Space

Because of undecidability or efficiency concerns, protocol analysis tools usually
apply some restrictions on the system and do not explore all elements from the
set tr(Sys(Q)). More precisely, the system verified is not the full system Sys
described earlier, but rather a system which exhibits a subset of the behaviors
of the full model. Such a subset can be defined by using a Scenario.

A Scenario is a multi-set of processes. S denotes the set of all possible scenarios
and let Sc denote the set of concrete scenarios in which no unspecified agents
( ) occur. We write {{a, a, b}} to denote the multi-set containing the element a
twice, and b once.

Definition 2 (Scen). Let S be a scenario. Then,

Scen(S) = Intruder ‖
∥∥∥

p∈S
p .

In this paper we require that the processes in a scenario S do not contain the
replication operator. Observe that where Sys(Q) always contains an unbounded
number of replications, Scen(S) contains only the intruder processes and the
processes specified in S.

A generalization of the Scen system is the repeated scenario system.

Definition 3 (RepScen). RepScen(S) is defined for any scenario S as

RepScen(S) = Intruder ‖
∥∥∥

p∈S
!p .

In contrast, a MaxRuns(Q, m) system is defined by a protocol Q and a maximum
count m. (The name derives from the term “run” referring to a role instance.)
Where the system Sys(Q) contains any number of replications of each role, the
MaxRuns system contains only a finite number of replications of each role.

Definition 4 (MaxRuns). Let Q be a protocol, and let m be an non-negative
integer. Then,

MaxRuns(Q, m) = Intruder ‖
∥∥∥m

i=1
(
∑

x∈dom(Q)

Q(x)( , . . . , )) .

2.3 Relations between State Space Restrictions

Each restriction from the previous section effectively restricts the state space of
the process model. We focus on trace-based security properties such as secrecy
and authentication. Hence, when talking about correctness of a protocol, we refer
to the full set of possible behavior histories (traces) of the system, denoted by
tr(Sys(Q)). As we will see in Section 4, most tools do not explore this set.
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Let Q be a protocol. For the set of all possible scenarios S, we have:

∀m ∈ N : tr(MaxRuns(Q, m)) ⊂ tr(Sys(Q)) (1)
∀s ∈ S : tr(Scen(s)) ⊂ tr(Sys(Q)) (2)

∀s ∈ S : tr(RepScen(s)) ⊆ tr(Sys(Q)) (3)
∃s ∈ S : tr(RepScen(s)) = tr(Sys(Q)) (4)

Proof. The relations (1), (2) and (3) above are immediate consequences of the
definitions, as the left hand sides imply restrictions on the full set tr(Sys(Q)).
For relation (4) we have that if the scenario s includes all possible process de-
scriptions, the repetition of the processes in s effectively amounts to the full set
of behaviors without any restrictions.

We write |s| to denote the number of elements of the scenario s. Relating the
scenario-based approaches to the bounding of runs, we find:

∀s ∈ S : tr(Scen(s)) ⊆ tr(MaxRuns(Q, |s|)) (5)

Observe that if the scenario contains |s| runs, the resulting traces will never
contain more, and thus this included in MaxRuns(Q, |s|).

The next formula expresses that there exist no concrete scenarios that corre-
spond exactly to a MaxRuns trace set.

∀n ∈ N+ : ∀s ∈ Sc : tr(Scen(s)) �= tr(MaxRuns(Q, n)) (6)

Proof. For any n > 0, tr(MaxRuns(Q, n)) contains a trace with n role pro-
cesses. In particular, it will also contain a trace containing n instances of the
first role, and also a trace containing n instances of the second role. To match
tr(MaxRuns(Q, n)) to tr(Scen(s)), s must also contain exactly n role processes.
Because we are considering only concrete scenarios, we need to define in s the
first case (n times the first role). However, by this definition of s we have excluded
the second type of traces with only the second role.

Assuming a finite number of agents,

∀n ∈ N, ∃k : ∃s1, . . . , sk ∈ Sc :
k⋃

i=1

tr(Scen(si)) = tr(MaxRuns(Q, n)) (7)

The last formula expresses that for a finite set of agents, we can enumerate all
possible scenario descriptions of n role processes, and turn them into scenario
sets. The result of this formula is that we can match up the trace sets of MaxRuns
and Scen by unfolding. This opens up a way to make the state spaces uniform.

3 Generation of Uniform State Spaces

Starting from a state space described using MaxRuns(Q, n) for an integer n, we
generate a set of concrete scenarios that exactly covers the same state space, by
using Formula (7). Further parameters involved in the generation of this set of
scenarios are the number of roles of the protocol and the number of agents.
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3.1 Required Number of Agents

In protocol analysis it is common to use two honest agents and a single untrusted
(compromised) agent. The underlying intuitions are that the security properties
under consideration are invariant under renaming of the (honest) agents, and
that a single intruder is as strong as multiple colluding intruders. In general,
attacks might require more agents, depending on the protocol under investigation
and the exact property one wants to verify. A number of results related to this
can be found with proofs in [17]. We recall the results of this paper as we will
use them in the context of this paper.

– Only a single dishonest (compromised) agent e, needs to be considered for
the analysis of the class of properties under consideration here.

– For the analysis of secrecy, only a single honest agent a is sufficient.
– For the analysis of authentication for protocols with two roles, we only need

two honest agents a and b.

For example, for a single honest agent a and a single compromised agent e, for
a protocol with roles {r1, r2}, tr(MaxRuns(Q, 1)) is equal to( ⋃

k∈{a,e}
tr(Scen({{r1(a, k)}}))

)
∪
( ⋃

k∈{a,e}
tr(Scen({{r2(k, a)}}))

)
,

which yields a set of four scenarios.

3.2 Computing the Number of Concrete Scenarios

For a given integer n, we can derive the size of a set M of concrete scenarios,
such that

⋃
s∈M tr(s) = tr(MaxRuns(Q, n)). This size of M corresponds to the

value of k in Formula (7) under the assumption of a finite number of agents and
trace equivalence under renaming.

For a single agent (involved in the verification of secrecy), the generation of
a set of concrete scenarios is a trivial application of the binomial coefficient.
For two agents or more the situation is not so simple, because the generation of
the set is complicated by the fact that scenarios are considered equivalent up to
renaming of the honest agents.

Example 1 (Renaming equivalence). Let P be a protocol with a single role r1.
Consider the state space MaxRuns(Q, 2) for two honest agents a, b. Consider the
following scenario set:{

{{r1(a), r1(a)}} , {{r1(a), r1(b)}} , {{r1(b), r1(b)}}
}

Because the names of the honest agents are interchangeable, the last scenario is
equivalent up to renaming to the first one. In order to verify security properties,
we would need only to consider the first two scenarios.

We generalize this approach by considering |R| roles in the protocol description.
We assume that we have two agents a and b and one intruder. Let n be the
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parameter of MaxRuns(Q, n) for which we want to generate the equivalent set
of scenarios. In order to choose a run description X(a1, . . . , a|R|), we have |R|
choices for the role X , two choices for a1 a or b and 3 possible values: a, b or
the attacker for each a2, . . . , a|R|, and we find there are 2 ∗ |R| ∗ 3(|R|−1) different
possible run descriptions. Now we have to choose a multi-set of n run descriptions
among this set of all possible runs descriptions. We use the following formula:(

2 ∗ |R| ∗ 3(|R|−1) + n− 1
n

)

However, this does not take into account that scenarios are equal up to the re-
naming of the (honest) agents. For example, we observe that {{r1(a, b), r2(b, a)}}
is equivalent to {{r1(b, a), r2(a, b)}} under the renaming {a → b, b → a}.

We now use group theory results to compute the number of scenarios needed.
We first consider the case with two agents and use Burnside’s lemma [13] then
for the other cases we need to consider Polya’s Theorem which is a generalization
of Burnside’s Lemma. In the rest of this section, we detail the case for two agents
using Burnside and Polya then we present the case of three agents with Polya
to give a flavor of the general case by this method.

3.3 Theoretical Result for Two Agents

We recall that
(
n
k

)
= n!

k!(n−k)! and Burnside’s lemma [13].

Lemma 1 (Burnside’s lemma). Let G be a finite group that acts on a set X.
For each g in G let Xg denote the set of elements in X that are fixed by g. Then
the number of orbits, denoted |X/G|, is:

|X/G| = 1
|G|

∑
g∈G

|Xg|

where |X | denotes the cardinality of the set X.

Thus the number of orbits (a natural number or infinity) is equal to the average
number of points fixed by an element of G (which consequently is also a natural
number or infinity). A simple proof of this lemma was proposed by Bogard [9].

We have to consider all the renamings and compute the number of scenarios
that are stable by this operation. Because we have only two agents, we have only
two possible renamings:

1. σId = {a → a, b → b} (the trivial renaming)
2. σ1 = {a → b, b → a}

Observe first that |G| = 2 because we have two renamings. In the first case, all
elements are fixed so we have

(2∗|R|3(|R|−1)+n−1
n

)
possibilities. In the second case,

the fixed elements are multi-sets of the size n where the terms are associated by
two and of their arguments are of the form a, x1, . . . , x|R|−1 or b, x1, . . . , x|R|−1.
It corresponds to choosing a multi-set of n

2 elements in a set where the first
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parameter is fixed, i. e., in a set of cardinality |R| ∗ 3(|R|−1). Notice that if n is
odd the second set is empty because in this case there is no way to get a fixed
element using the second renaming.

Lemma 1 leads to the following formula, where εn is 0 if n is odd and 1
otherwise. k(n, |R|) is the number of scenarios k for Formula (7).

k(n, |R|) =

(2∗|R|∗3(|R|−1)+n−1
n

)
+ εn

(|R|∗3(|R|−1)+ n
2 −1

n
2

)
2

(8)

For instance for a protocol with |R| = 2 roles, the set of traces of the process
MaxRuns(Q, 2) is equal to the union of the trace sets defined by k(2, 2) = 42 dif-
ferent scenarios.1 Note that if we would not have taken the renaming equivalence
into account, we would instead generate

(2∗2∗32−1+2−1
2

)
= 78 scenarios.

3.4 Generalization Using Polya’s Theorem

We first explain the theory needed for the application of Polya’s Theorem in our
context. We then sketch the case of two agents (we obtain of course the same
result as when using Burnside’s Lemma), after which we present the case of three
agents to provide intuition for the general case of |A| agents.

Theory. We note PP(R, A) the set R × A × (A ∪ {e})|R|−1, where e is the
compromised agent. For a given n, let MPP (R, A, n) be the multi-sets of size n of
elements of PP(R, A). We wish to compute the number k(n, |R|), the number of
orbits of MPP (R, A, n) under the action of renaming the agents. We managed to
solve this question directly in the case of two agents with the help of Burnside’s
theorem, but for a general A there is no direct way to know how many fixed
points a given renaming has on MPP (R, A, n). Hence we use Polya’s theorem,
which leads to a more complicated but automatic way of computing k(n, |R|).

For σ a permutation of a set, we denote by ci(σ) the number of cycles of
length i (the length of a cycle is the minimal number of applications of the cycle
to get the identity back).

Suppose we have sets D (of finite cardinality |D| = d) and E, with G a group
of permutations acting on D. Let ED be the set of functions from D to E. We
say that f, g ∈ ED are equivalent if there exists σ ∈ G such that f(σ(d)) = g(d)
for all d ∈ D, and we note F a set of representatives of the equivalence classes.
Now let w be a function from E to a certain commutative ring k, and let the
weight of f ∈ ED be W (f) :=

∏
d∈D w(f(d)). One notes easily that if f and g

are equivalent, then W (f) = W (g). We define W (F) =
∑

f∈F W (f), and the

cycle indicator polynomial PG(x1, . . . , xd) = 1
|G|
∑

σ x
c1(g)
1 x

c2(g)
2 . . . x

cd(g)
t .

Then we can state Polya’s theorem [18, p.252]:

W (F) = PG

⎛
⎝∑

y∈E

w(y),
∑
y∈E

w(y)2, . . . ,
∑
y∈E

w(y)d

⎞
⎠ (9)

1 This scenario can be inspected by running ’Scenario.py’ in the test archive [24].
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Let us now consider the application in our context. If σ is a renaming (i.e.
a permutation of A), we define φ(σ) as the permutation that is induced on
PP(R, A), which is φ(σ)(ri(a1, . . . , a|R|)) := ri(σ(a1), . . . , σ(a|R|)). In our case,
D is the set PP(R, A), on which the group of permutations G = {φ(σ)} acts,
and E is the set N of nonnegative integers. Then, a multiset m ∈ MPP (R, A, n)
is equivalent to a function f ∈ ED with

∑
d f(d) = n: the integer f(d) is the

number of occurrences of d in the multiset. Note that two multisets are equivalent
up to renaming precisely when the corresponding functions f, g are equivalent
in the sense of Polya’s theorem.

Let k be the ring of power series in the variable q, and define w : E → k
by w(i) = qi; if f ∈ ED is a multiset of size n, we get W (f) =

∏
d w(f(d)) =

q
∑

d f(d) = qn. From this we deduce easily that W (F) =
∑

n k(n, |R|)qn. We
notice also that

∑
y∈E w(y)i =

∑
j∈N qij = 1

1−qi . Then Polya’s theorem (9), in
our context, says that if we perform the substitutions xi := 1

1−qi in PG for all
variables xi, and expand the result in terms of powers of q, the coefficient of qn

is exactly k(n, |R|). Let us explicit the cycle indicator polynomial here:

P =
1
|A|!

∑
σ

x
c1(φ(σ))
1 x

c2(φ(σ))
2 . . . x

ct(φ(σ))
t , (10)

We finally need to a way to compute the integers ci(φ(σ)), which is what the
following formulas achieve

ci(φ(σ)) =
1
i

∑
d|i

μ(
i

d
)c1(φ(σd)) for i > 1 (11)

c1(φ(σd)) = |R| · (
∑
i|d

ici(σ)) · (
∑
i|d

ici(σ) + 1)|R|−1 (12)

The first one can be found for instance in [32, p.95] (it is an instance of the
Möbius inversion formula), the second one is an easy counting of the fixed points
of φ(σd). We recall that the Möbius function μ(n) is defined for all positive
integers n as follows: μ(n) = (−1)k if n is the product of k distinct primes, and
μ(n) = 0 otherwise.

We are now able to express concretely the polynomial P for any number of
agents. We remind the reader of the following results for computing with power
series: (

+∞∑
n=0

anqn

)
·
(

+∞∑
n=0

bnqn

)
=

+∞∑
n=0

(
n∑

i=0

aibn−i

)
qn

( 1
1− q

)i =
∞∑

j=0

(
i + j − 1

j

)
qi

We will explicit the result for the case of 2 agents, and sketch the case for 3
agents to get an explicit formula.
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Two agents. Consider now the case of 2 agents a and b, so that we have only
two renamings: σId = {a → a, b → b} and σ1 = {a → b, b → a}.

We first compute the polynomial P of Equation (10): using the formulas for
the ck(φ(σ)), we have c1(φ(σId)) = |R| ·2 ·3|R|−1, c2(φ(σId)) = 0, c1(φ(σ1)) = 0,
and c2(φ(σ1)) = |R| · 3|R|−1. Hence, if we substitute x1 := 1

1−q1 and x2 := 1
1−q2 ,

we obtain:

P = 1
2 (x2·|R|·3|R|−1

1 + x
|R|·3|R|−1

2 )
= 1

2 (
∑∞

i=0

(2·|R|·3|R|−1+i−1
i

)
qi +

∑∞
i=0

(|R|·3|R|−1+i−1
i

)
q2j)

Now k(n, |R|) is given by the coefficient of qn in this expression, so we have to
distinguish the cases n even and n odd, and we find indeed the same result as
with Burnside’s Lemma.

Three agents. For three agents a, b and c, we have |PP(R, A)| = 3 · |R| ·4|R|−1.
There are 3! = 6 renamings, and for each of them we have to compute the
corresponding term in P . For instance, if we take σ1 = {a → b, b → a, c → c},
we have c1(φ(σ1)) = |R| · 2|R|−1, c2(φ(σ1)) = (|R| · 3 · 4|R|−1− |R| · 2|R|−1)/2 and
c3(φ(σ1)) = 0, which gives the corresponding term in P . Proceeding in the same
way for all other renamings, we get

P =
1
6
(x3|R|·4|R|−1

1 + 3x
|R|·2|R|−1

1 x
(3|R|·4|R|−1−|R|·2|R|−1)/2
2 + 2x

|R|·4(|R|−1)

3 )

We now substitute xi = 1
1−qi for i = 1, 2, 3, and then take the coefficient

of qn to obtain the value of k(n, |R|); this is easily done by the rules for com-
puting with power series given above, and the result is the following: let αn :=(3|R|·4|R|−1+n−1

n

)
, βn :=

∑[ n
2 ]

l=0

((3|R|·4|R|−1−|R|·2|R|−1)/2+l−1
l

)
·
(|R|·2|R|−1+n−2l−1

n−2l

)
,

where [n
2 ] denotes the integer part of n/2), and γ3i =

(|R|·4|R|−1+i−1
i

)
, while

γn = 0 if 3 does not divide n. Then we get the following result for three agents

k(n, |R|) =
1
6
(αn + 3βn + 2γn)

The formula for k(n, |R|) can be constructed similarly for any number of agents.

3.5 Practical Implications

In general, tools can explore radically different state spaces. With protocol anal-
ysis, we are looking for two possible results: finding attacks on a protocol or
having some assurance of the correctness of the protocol. If an attack on a pro-
tocol is found, any unexplored parts of the state space are often considered of
little interest. However, if one is trying to establish a level of assurance for the
correctness of a protocol, the explored state space becomes of prime importance.
As established in the previous section, even for two honest agents, the simplest
protocols already need 42 concrete scenarios to explore exactly all attacks in-
volving two runs.
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In many cases, protocol models increase the coverage of small attacks (i. e.
involving few runs) by including a scenario with a high number of runs. This
process is error prone: as an example we mention that in the Avispa modeling [5]
of the TLS protocol [41] a large scenario is used in the example files, which covers
many small attacks, but not scenarios in which an agent can communicate with
itself. As a result, the protocol is deemed correct by the Avispa tools, whereas
other tools find an attack. This is a direct result of the fact that the used scenario
does not cover all attacks for even a small number of runs. One can discuss the
feasibility of such an attack, and argue that an agent would not start a session
with herself, but the fact remains that the protocol specification does not exclude
this behavior, and therefore certainly means that the protocol does not meet the
security properties for its specification.

When one uses a tool for the analysis of a protocol one should be aware of
the impact the state space choices have on the result of the analysis, in order to
avoid getting a false sense of security from a tool.

4 Experiments

In this section we use the state space analysis of Section 2 to perform a com-
parison between several tools on a set of well-known cryptographic protocols
considering the same state space. In our experiments we automatically generate
the necessary concrete scenarios according to the results obtained in Section 3.
We first discuss some of the choices made for these experiments, after which we
give the results of the tests.

4.1 Settings

Tool selection and method of comparison. We compared tools that are
freely available for download and for which a Linux command-line version exists.
Consequently, we had to exclude some tools, e. g., we do not consider Athena [44]
or NRL [37] as these tools are not available, and we do not consider Hermes [12]
because its current version only has a web interface, making it unsuitable for
performance comparisons. The tools we compare are the following:

Avispa (Version: 1.1 for Automated Validation of Iternet Security Protocols
and Applications consists of the following four tools that take the same input
language called HLPSL [2]:

· CL-Atse: (Version: 2.2-5) Constraint-Logic-based Attack Searcher applies
constraint solving with simplification heuristics and redundancy elimination
techniques [46].

· OFMC: (Version of 2006/02/13) The On-the-Fly Model-Checker employs
symbolic techniques to perform protocol falsification as well as bounded
analysis, by exploring the state space in a demand-driven way. OFMCimple-
ments a number of optimizations, including constraint reduction, which can
be viewed as a form of partial order reduction [6].
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· Sat-MC: (Version: 2.1, 3 April 2006) The SAT-based Model-Checker builds
a propositional formula encoding all the possible traces (of bounded length)
on the protocol and uses a SAT solver [4] (notice that you can modify some
parameters and in particular the choice of the SAT solver in the configuration
file of Sat-MC, we use the default configuration in our experiments).

· TA4SP: (Version of Avispa 1.1) Tree Automata based on Automatic Approx-
imations for the Analysis of Security Protocols approximates the intruder
knowledge by using regular tree languages and rewriting to produce under-
and overapproximations [10].

The first three Avispa tools (CL-Atse, OFMC and Sat-MC) take a concrete
scenario (as required by the HLPSL language) and consider all traces of Scen(s).
The last Avispa back-end, TA4SP, also takes a HLPSL scenario, but verifies
the state space that considers any number of repetitions of the runs defined in
the scenario, yielding RepScen(s). TA4SP is based on overapproximations and
hence might find false attacks. As no trace is ever reconstructed by TA4SP,
the user has no indication of whether the output “attack” corresponds to a
false or true attack. Furthermore, there is a “level” parameter that influences
whether just to use the overapproximation (level = 0), or underapproximations
of the overapproximation (level > 0). In the Avispa default setting only level 0 is
explored by default, which in our test cases would have resulted in never finding
any attacks, finding in 57% of all cases “inconclusive”, and in the remaining 43%
“correct”. For our tests, we start at level 0 and increase the level parameter until
it yields a result that is not “inconclusive”, or until we hit the time bound. This
usage pattern is suggested both by the authors in [10] as well as by the output
given by the back-end when used from the Avispa tool.

ProVerif: (Version: 1.13pl8) analyzes an unbounded number of runs by using
over-approximation and represents protocols by Horn clauses. ProVerif [8] ac-
cepts two kind of input files: Horn clauses and a subset of the Pi-calculus. For
uniformity with the other tools we choose to model protocols in the Pi-calculus,
which is closer than HLPSL (Avispa input language) than Horn clauses. ProVerif
takes a description of a set of processes, where each defined processes can be
started any number of times. The tool uses an abstraction of fresh nonce genera-
tion, enabling it performs unbounded verification for a class of protocols. Given
a protocol description, one of four things can happen. First, the tool can report
that the property is false, and will yield an attack trace. Second, the property can
be proven correct. Third, the tool reports that the property cannot be proved,
for example when a false attack is found. Fourth, the tool might not terminate.
It is possible to describe protocols in such a way that RepScen(s) is correctly
modeled, resulting in the exploration of Sys(Q).

Scyther: (Version: 1.0-beta6) verifies bounded and unbounded number of runs,
using a symbolic backwards search based on patterns [22,23]. Scyther does not
require the input of scenarios. It explores Sys(Q) or MaxRuns(Q, n): in the first
case, even for small n, it can often draw conclusions for Sys(Q). In the second
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Table 1. State spaces explored by the tools

Tools State spaces Constraints
Avispa (CL-Atse, OFMC, Sat-MC) Scen(s) s ∈ Sc

Avispa (TA4SP) RepScen(s) s ∈ Sc

Casper/FDR Scen(s) s ∈ Sc

ProVerif Scen(s) s ∈ S
Scyther MaxRuns(Q, n), Sys(Q) n ∈ N

case, termination is not guaranteed. By default Scyther explores MaxRuns(Q, 5),
is guaranteed to terminate, and one of the following three situations can occur.
First, the tool can establish that the property holds for MaxRuns(Q, 5) (but not
necessarily for Sys(Q)). Second, the property is false, yielding a counterexample.
Third, the property can be proven correct for Sys(Q).

Casper/FDR: (Version: Casper 1.11 alpha-release, FDR 2.83) [35,43] This tool
uses consists of the Casper tool, which translates protocol descriptions into the
process algebra CSP [29], and the CSP model checker FDR [42]. [27] provides a
time based analysis of using the tool for analyzing a large collection of existing
protocols. Lowe used Casper/FDR to find the man-in-the-middle attack on the
Needham-Schroeder protocol [33].
A summary of the tools and their respective state spaces is given in Table 1.2 In
order to compare the tools fairly, we match up the state spaces. As a candidate
for a common state space, any unbounded set (Sys(Q), RepScen) is not suitable.
Furthermore, as Scen can be used to simulate MaxRuns, but not the other way
around, we choose MaxRuns as the common denominator of the selected tools.
We automatically generate for each number of runs n the corresponding input
files to perform a fair time comparison over MaxRuns(Q, n). Note that the time
measurements for the tools only include their actual running times, and does
not include the time needed for the generation of the input files.

Security properties. We consider the analysis of secrecy as well as authenti-
cation. Secrecy can be modeled in each of the tools considered. Authentication
cannot be modeled by TA4SP. The tools provide support for various security
properties, ranging from several forms of agreement [34] to synchronization [25],
or equivalence-based properties (ProVerif).

Protocol test set. We consider a number of well-known protocols found in
the literature [16, 14, 31, 5]. We select a set that can be modeled in all tools,
which excludes protocols that use e.g. algebraic properties. We have restricted
ourselves to the following four protocols: the famous Needham-Schroeder [40]
using public keys, and the corrected version by Lowe [33], EKE [7] which uses
symmetric and asymmetric encryption, and finally TLS [41] as an example of a
larger protocol.
2 Note that the constraint for the Avispa tools is partly driven by its input language

HLPSL. For example, OFMC is able to analyze s ∈ S by modeling protocols in the
IF language, which we do not consider here.
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Final setup details. With respect to the analysis of multiple properties, we
remark that some tools can test multiple properties at once, some cannot, and
some stop the analysis at the first property for which an attack is found. We
choose to analyze one security property at a time.

Guided by our results of the previous section, we automatically construct
input files for the right scenarios for each protocol and for each tool. This in-
volves the generation of all concrete scenarios to match the state space of a
given number of runs. To this end we generate all scenarios (ignoring renaming
equivalence) in the first phase, and filter out scenarios that are equivalent under
renaming in the second phase. The number of generated scenarios is identical to
the theoretical number computed in the previous section.

Our tests can be reproduced: all used scripts and models are downloadable
from [24], and we have only used freely downloadable tools and well-known
protocols. The tests have been performed using an Intel Core Duo processor, 2.0
GHz, with 1GB of ram using the Linux operating system.

4.2 Results

We use each tool to verify security properties of the selected protocols. In the first
set of results we present the total analysis time, which corresponds to the total
time needed for verifying all the properties of each protocol, for each tool. When
a tool reaches the time limit, no conclusion can be drawn about the analysis
time and hence no points (and connecting lines) are displayed for such cases.
For a better visualization of the exponential behavior of some of the tools, we
use a logarithmic scale.

We start our discussion of the results by presenting and analyzing the tests for
secrecy for all tools. Afterwards we continue with the results for authentication
for all tools which can deal with this property. Finally, we show a table which
summarizes the unbounded verification performance for the tools which are able
to deal with an unbounded number of runs, and the attack discovery performance
for all tools.

Secrecy time results. In Figure 3, we show the analysis time for the secrecy
properties of the Needham-Schroeder-Lowe protocol (NSL3) as a function of the
number of runs n of the state space explored, that is, MaxRuns(NSL3, n).

We observe that (as expected from the underlying models) ProVerif and
TA4SP follow a constant time. Surprisingly Scyther has the same curve as
ProVerif (close to the x-axis). Sat-MC, OFMC and CL-Atse follow an exponen-
tial curve, where in this case CL-Atse is faster than OFMC. One other interesting
point is that the curves of OFMC and Casper/FDR cross the Sat-MC curve: in
other words, for larger numbers of runs, Sat-MC is more efficient. This result is
confirmed by the results for the EKE protocol, which we show below. One final
point to mention is that Scyther and ProVerif both show time performances of
less than one second for all the security properties considered for this protocol.
We also remark that Casper/FDR has an exponential curve and is slower than
OFMC and CL-Atse, but faster than Sat-MC for a small number of runs.
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Fig. 4. Time efficiency comparison for EKE [7], secrecy

In Figure 4, we present the efficiency results for the EKE protocol [7]. This
protocol shows again that the bounded analysis tools (Sat-MC,OFMC,CL-Atse)
follow an exponential curve, as well as the hybrid Scyther, which has for this
particular protocol also an exponential curve, albeit with much lower times than
the other bounded tools. We also observe that Sat-MC has a slower exponential
curve than OFMC and CL-Atse. ProVerif is still constant (here fluctuations
are due to millisecond noise during testing). We also notice that TA4SP has a
constant analysis time but with an high time computation even for one process.
This is due to the modeling of the protocol and to the fact that TA4SP has to
construct in all cases of this protocol a complex tree automaton to perform its
analysis. For this protocol, Casper/FDR already exceeds the time limit for the
smallest state space.



Comparing State Spaces in Automatic Security Protocol Analysis 87

 0.1

 1

 10

 100

 1000

timeout

 1  2  3  4  5  6

TLS : secrecy of ck and sk for A,B

tim
e 

(s
)

number of runs

CL-Atse
OFMC

ProVerif
Sat-MC
Scyther
TA4SP

Fig. 5. Time efficiency comparison for TLS [41], secrecy

 0.1

 1

 10

 100

 1000

timeout

 1  2  3  4  5  6

Needham-Schroeder : authentication of A,B

tim
e 

(s
)

number of runs

Casper/FDR
CL-Atse

OFMC
ProVerif
Sat-MC
Scyther

Fig. 6. Time efficiency comparison for Needham-Schroeder [40], authentication

The last protocol analyzed with respect to secrecy is presented in Figure 5.
TLS [41] is a relatively complex protocol, and certainly the most complex proto-
col in this small test set. Hence, we expected the tools to spend some effort and
time to get to a result. Our hypothesis was confirmed, as e.g. Sat-MC reaches
the time limit for a fairly small state space. In this example, as in the previous
one (EKE), we can also see the difference between OFMC and CL-Atse, where
in this example CL-Atse is faster that OFMC. This protocol also confirms the
results of Scyther which remains competitive with ProVerif and TA4SP. These
three tools have all very fast time results and the variations on the curves are
very small (less than 0.1 second).

Authentication time results. In this section we present the results for the
tools which can deal with authentication properties of the selected protocols.
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In Figure 6, we analyze the performance of for authentication properties of
the Needham-Schroeder protocol. ProVerif and Scyther are faster than the other
tools used (results close zero second). Casper/FDR, CL-Atse and OFMC are very
close and follow an exponential curve, with a minor advantage for Casper/FDR
for a small number of runs.

In Figure 7, we see that the tools stop after having found an attack, which
explains the flat shape for CL-Atse. In case of OFMC, there is still an exponential
curve although an attack is found. We conjecture that this is caused by the
specifics of the partial order reduction scheme, which effectively work like a
heuristic: sometimes a non-optimal choice is made, causing the tool to explore
a larger part of state space before the attack is found. The same explanation is
valid for the smooth increasing of the Sat-MC curve towards the time limit. In
this case Scyther is the fastest tool. ProVerif has constant time and is slower
than all others for a small number of runs for this property of EKE.
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In Figure 8, we observe that Scyther is the most efficient with times of less
than one second. For TLS we have that Sat-MC reaches the time limit for the
two authentication claims when analyzed for one run, but quickly finds a flaw
for state spaces with least two runs. For OFMC and CL-Atse we again observe
very similar time results.

5 Results and Discussion

We summarize the efficiency of finding attacks on the secrecy properties of the
Needham-Schroeder protocol in Table 2. Next, we present a verification compar-
ison for the tools capable of unbounded verification in Table 3. Finally we draw
conclusions from our performance analysis.

Comparison of attack finding efficiency. We first introduce the notation
used in the Table 2: “no att” means the tool finds no attack, 0.12(2!) means that
the tool finds an attack in 0.12 seconds with two processes, and 0.13(1?) means
that the tool finds an attack in 0.13 seconds with two processes, but it might
represent a false attack.

First we notice that ProVerif finds an attack on role A for the nonce Nb. If
we use Scyther with the specific option (–untyped), the existence of the attack
is confirmed. As we use the tools with their default setting, it is expected that
some tools do not find this flaw. Unfortunately we have no way of knowing what
the attack found by TA4SP looks like. This is an interesting result, because
according to the specification of this tool it used a typed model as dictated by
the HLPSL input specification, so the type flaw attack should not occur, and
we would expect TA4SP not to find an attack. However, as we have no way to
extract the TA4SP “attack” we assume it is a false attack in this case.

Second we can see that with our modeling, and using the results from [17]
which state that considering one honest agent is sufficient for the analysis of
secrecy, ProVerif can quickly find attacks. All the other tools need two runs to
find the man-in-the middle attack, as expected.

Finally we find again our conclusion regarding efficiency that Scyther and
ProVerif are the fastest, then TA4SP (but the status of the attacks remains
unconfirmed), then CL-Atse and OFMC are second with a very small advantage
to CL-Atse (which has been confirmed in the previous analysis with more runs),
then Casper/FDR and finally Sat-MC.

Comparison of unbounded verification performance. In this part we
analyze the performance of tools which are able to prove the correctness of a
protocol. This includes Scyther, ProVerif and TA4SP, where we have considered
only the secrecy properties. We perform this analysis on the four selected pro-
tocols, and detail the results in Table 3. With respect to the used notation, we
mention that 0.12(3!) denotes the fact that the tool proves the correctness of
the protocol with 3 runs in 0.12 seconds, attack? means that the tool claims to
find an attack (but which we could not check), − means that there is no answer
for our testing, inconclusive is only for TA4SP, indicating that the tool does
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Table 2. Finding an attack on Needham-Schroeder for secrecy

Secrecy CL-Atse Casper/FDR OFMC ProVerif Sat-MC Scyther TA4SP
A na no att no att no att no att no att no att no att
A nb no att no att no att 0.00 (1!) no att no att 1.44 (1?)
B na 0.18 (2!) 0.65 (2!) 0.25 (2!) 0.00 (1!) 2.36 (2!) 0.00 (2!) 0.47 (1?)
B nb 0.25 (2!) 0.47 (2!) 0.24 (2!) 0.00 (1!) 2.34 (2!) 0.00 (2!) 0.47 (1?)

not state anything about the property. For TLS, TA4SP was not able to provide
any answers. For EKE, Scyther could not establish unbounded verification, and
provided bounded analysis for MaxRuns(Q, 7).

Time performance analysis conclusions. This time performance analysis
shows that overall, the fastest tool is ProVerif, then Scyther, TA4SP, CL-Atse,
OFMC, Casper/FDR and finally Sat-MC.

ProVerif. ProVerif shows the fastest performance. The abstraction of nonces
allows the tool to obtain an efficient verification result quickly for an unbounded
number of runs. The results for EKE in Figure 4 indicate that ProVerif does
not support equational theories very well. In this case the resolution generates
much more Horn clauses than in the case without equational theory. To confirm
the efficiency of ProVerif, we performed a comparison with Scyther for the fngn

family of protocols from [38]. Members of this family are generated by an integer
parameter, corresponding to the number of instances required for an attack on
the protocol. As a result, the complexity of verifying the protocol is related to
this parameter. For this protocol, the time results for ProVerif increase, but are
lower than the ones for Scyther.

Scyther. Scyther outperforms the other bounded tools and can often achieve the
same performance as tools based on abstraction methods. For some protocols, no
full verification can be performed, and the tool exhibits exponential verification
time with respect to the number of runs.

OFMC/CL-Atse. The behaviors of OFMC and CL-Atse are mostly similar for
the tested protocols. We observe that the curves produced by these two tools
are exponential, which confirms the theoretical results for their underlying algo-
rithms. Finally we observe that for the tested protocols, CL-Atse is somewhat
faster than OFMC for higher numbers of runs.

Casper/FDR. Casper/FDR exhibits, for all examples that we tried, exponential
behavior. In general, the analysis is slower than CL-Atse and OFMC.

Sat-MC. Sat-MC also has an exponential behavior and is slower than CL-Atse
and OFMC for lower numbers of runs. In particular, Sat-MC has proven to be
especially slow for the more complex protocol TLS. In contrast, for the smaller
protocols we found that Sat-MC starts slower, but its time curve is less steep
than that of CL-Atse OFMC and Casper/FDR, causing the curves to cross for
particular setups. Consequently, for some protocols and a high number of runs



Comparing State Spaces in Automatic Security Protocol Analysis 91

Table 3. Performance of unbounded verification

Secrecy ProVerif Scyther TA4SP

EKE
A k 0.07 (1) - 11.16 (1)
B k 0.12 (1) - 11.20 (1)

Needham-Schroeder

A na 0.00 (1) 0.00 (3) 1.92 (1)
A nb attack! 0.00 (3) attack?
B na attack! attack! attack?
B nb attack! attack! attack?

Needham-Schroeder-
Lowe

A na 0.00 (1) 0.00 (3) 1.70 (1)
A nb 0.00 (1) 0.00 (3) 1.85 (1)
B na 0.00 (1) 0.00 (4) attack?
B nb 0.00 (1) 0.00 (3) 1.71 (1)

TLS

A ck 0.02 (1) 0.07 (2) inconclusive
A sk 0.01 (1) 0.06 (2) inconclusive
B ck 0.02 (1) 0.04 (2) inconclusive
B sk 0.02 (1) 0.06 (2) inconclusive

Sat-MC can be more efficient than CL-Atse and OFMC, which can be observed
in the graphs for the EKE protocol. Our results are confirmed by the findings
in [26,45], where the analysis of the PKCS#11 API could only be performed by
Sat-MC, and not by the other Avispa tools (personal communication).

General observations. During these tests we ran into many peculiarities of the
selected tools. We highlight some of the issues we encountered. In general, the
modeling phase has proven to be time-consuming and error-prone, even though
we already knew the abstract protocols well. Modeling the protocols in ProVerif
took us significantly more time than for the other tools. Furthermore, in the de-
scription files provided with the tool, there are several models of the Needham-
Schroeder protocol, none of which considers all the possible interactions between
the different principals, but only examples which model some particular scenar-
ios. For our tests we contacted the author of ProVerif, who provided alternative
models for our protocols in order to consider all traces (Note that all used input
files are generated by the scripts that are downloadable from [24]).

Avispa has a common input language called HLPSL for the four back-end
tools. This has the benefit of allowing the user to use different tools based on a
single protocol modeling. However, in HLPSL, the link between agents and their
keys is usually hard-coded in the scenarios, making the protocol descriptions
unsuitable for unbounded verification, as one cannot in general predict how
these links should be for further role instances (outside of the given scenario).

Even in this limited test, we found two instances where TA4SP indicates that
a property of a protocol is false, where we expected the property to hold, which
may be due to the type of underapproximation used.

Of course, each of the tools has its particular strengths in other features than
just performance on simple protocols. However, the focus of this research is clearly
on the efficiency only. Furthermore, our tests involve only one particular efficiency
measure, and there are certainly other efficiency measures (e.g. mapping all state
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spaces to symbolic scenarios, and many others) that we expect would lead to
slightly different results. However, given that no research has ever been performed
before on this topic, we see our tests as a base case for others to work from.

6 Conclusion

We analyze state space models in automatic security protocol analysis. Our
analysis shows the relations between the various models, revealing that protocol
analysis tools by default explore very different state spaces. This can lead to a
false sense of security, because if a tool states that no attack is found, only the
explored state space is considered, and other attacks might have been missed.

We match up the state spaces to ensure different tools explore similar state
spaces, taking in to account that traces are considered equal up to renaming of
honest agents. This leads to a result relating the number of concrete scenarios
needed to cover all traces of a protocol involving a particular number of runs,
by applying mathematical results like Burnside’s Lemma or Polya’s theorem.

We compare the performance several automatic protocol analysis tools. We
model four well-known protocols for each tool, and verify the protocols using
the tools on similar state spaces to obtain a fair performance comparison. The
resulting scripts and data analysis programs are available from [24].

The performance results show that overall, ProVerif is the fastest tool for this
set of protocols. Scyther comes in as a very close second, and has the advantage
of not using approximations. CL-Atse and OFMC (with concrete sessions) are
close to each other, and are the most efficient of the Avispa tools, followed by
Sat-MC. Casper/FDR has an exponential behavior and is slower than OFMC
and CL-Atse but faster than Sat-MC for a small number of runs. For a higher
number of runs of simple protocols, it seems that Sat-MC can become more
efficient than the two other tools. In some cases TA4SP can complement the
other Avispa tools, but in general it is significantly slower than the other tools
that can handle unbounded verification (Scyther and ProVerif), and has the
added drawback of not being able to show attack traces.
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AVISPA tool for the automated validation of internet security protocols and appli-
cations. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
281–285. Springer, Heidelberg (2005)



Comparing State Spaces in Automatic Security Protocol Analysis 93

3. Armando, A., Basin, D.A., Bouallagui, M., Chevalier, Y., Compagna, L.,
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Abstract. We define a general model for consecutive delegations of sign-
ing rights with the following properties: The delegatee actually signing
and all intermediate delegators remain anonymous. As for group signa-
tures, in case of misuse, a special authority can open signatures to reveal
all delegators’ and the signer’s identity. The scheme satisfies a strong
notion of non-frameability generalizing the one for dynamic group sig-
natures. We give formal definitions of security and show them to be
satisfiable by constructing an instantiation proven secure under general
assumptions in the standard model. Our primitive is a proper generaliza-
tion of both group signatures and proxy signatures and can be regarded
as non-frameable dynamic hierarchical group signatures.

1 Introduction

The concept of delegating signing rights for digital signatures is a well studied
subject in cryptography. The most basic concept is that of proxy signatures, in-
troduced by Mambo et al. [MUO96] and group signatures, introduced by Chaum
and van Heyst [CvH91]. In the first, a delegator transfers the right to sign on his
behalf to a proxy signer in a delegation protocol. Now the latter can produce proxy
signatures that are verifiable under the delegator’s public key. Security of such a
scheme amounts to unforgeability of proxy signatures, in that an adversary can
neither create a signature without having been delegated, nor impersonate an
honest proxy signer.

On the other hand, in a group signature scheme, an authority called the issuer
enrolls group members, who can then sign on behalf of the group, which has one
single group signature verification key. Enrollment can be viewed as delegating
the signing rights of the group—represented by the issuer—to its members. A
crucial requirement is anonymity, meaning that from a signature one cannot tell
which one of the group members actually signed. In contrast to ring signatures
[RST01], to preclude misuse, there is another authority holding an opening key
by which anonymity of the signer can be revoked. Generally, one distinguishes
static and dynamic groups, depending on whether the system and the group
are set up once and for all or whether members can join dynamically. For the
dynamic case, a strong security notion called non-frameability is conceivable:
� A short version of this work appeared as [FP08].
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nobody—not even the issuer nor the opener—is able to produce a signature that
opens to a member who did not sign. The two standard security requirements are
traceability (every valid signature can be traced to its signer), which together
with non-frameability implies unforgeability, and anonymity, that is, no one
except the opener can distinguish signatures of different users.

It is of central interest in cryptography to provide formal definitions of primi-
tives and rigorously define the notions of security they should achieve. Only then
can one prove instantiations of the primitive to be secure. Security of group sig-
natures was first formalized by Bellare et al. [BMW03] and then extended to
dynamic groups in [BSZ05]. The model of proxy signatures and their security
were formalized by Boldyreva et al. [BPW03].1

1.1 Our Results

The contribution of this paper is to unify the two above-mentioned seemingly
rather different concepts, by establishing a general model which encompasses
both proxy and group signatures, and which is of independent interest itself. We
give security notions which imply the formal ones for both primitives. Moreover,
we consider consecutive delegations where all intermediate delegators remain
anonymous. As for dynamic group signatures, we define an opening authority
separated from the issuer and which in addition might even be different for each
user. (For proxy signatures, a plausible setting would be to enable the users
to open signatures on their behalf.) We call our primitive anonymous proxy
signatures, a term that already appeared in the literature (see e.g. [SK02]),
however without providing a rigorous definition nor security proofs. As it is
natural for proxy signatures, we consider a dynamic setting, which allows us
to define an extension of non-frameability that additionally protects against
wrongful accusation of delegation.

The most trivial instantiation of proxy signatures is “delegation-by-certifi-
cate”: The delegator signs a document called the warrant containing the public
key of the proxy and passes it to the latter. A proxy signature then consists of a
regular signature by the proxy on the message and the signed warrant. Together
they can by verified using the delegator’s verification key only. Although hardly
adaptable to the anonymous case—after all, the warrant contains the proxy’s
public key—, a virtue of the scheme is the fact that the delegator can restrict
the delegated rights to specific tasks by specifying them in the warrant. Since our
model supports re-delegation, a user might wish to re-delegate only a reduced
subset of tasks she has been delegated for. We represent tasks by natural numbers
and allow delegations for arbitrary sets of them, whereas re-delegation can be
done for any subsets.

The primary practical motivation for the new primitive is GRID Computing,
where Alice, after authenticating herself, starts a process. Once disconnected, the

1 Their scheme has later been attacked by [TL04]. Note, however, that our definition
of non-frameability prevents this attack, since an adversary querying PSig(·, warr, ·)
and then creating a signature for task′ is considered successful (cf. Sect. 3.3).
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process may remain active, launch sub-processes and need access to additional
resources that require further authentication. Alice thus delegates her rights to
the process. On the one hand, not trusting the environment, she will not want
to delegate all her rights, which can be realized by delegation-by-certificate. On
the other hand, there is no need for the resources to know that it was not
actually Alice who was authenticated, which is practically solely achieved by full
delegation, i.e., giving the private key to the delegatee. While the first solution
exposes the proxy’s identity, the second approach does not allow for restriction
of delegated rights nor provide any means to trace malicious signers. Anonymous
proxy signatures incorporate both requirements at one blow.

Another feature of our primitive is that due to possible consecutiveness of del-
egations it can be regarded as non-frameable, dynamic hierarchical group signa-
tures, a concept introduced by Trolin and Wikström [TW05] for the static setting.

After defining the new primitive and a corresponding security model, in order
to show satisfiability of the definitions, we give an instantiation and prove it
secure under the (standard) assumption that families of trapdoor permutations
exist. The problem of devising a more efficient construction is left for future work.
We emphasize furthermore that delegation in our scheme is non-interactive (the
delegator simply sends a warrant she computed w.r.t. the delegatee’s public key)
and does not require a secure channel.

2 Algorithm Specification

We describe an anonymous proxy signature scheme by giving the algorithms it
consists of. First of all, running algorithm Setup with the security parameter λ
creates the public parameters of the scheme, as well as the issuing key ik given
to the issuer in order to register users and the opener’s certification key ock
given to potential openers. When a user registers, she and her opening authority
run the interactive protocol Reg with the issuer. In the end, all parties hold the
user’s public key pk, the user is the only one to know the corresponding signing
key sk, and the opener possesses ok, the key to open signatures on the user’s
behalf.

Once a user U1 is registered and holds her secret key sk1, she can delegate
her signing rights for a set of tasks TList to user U2 holding pk2: U1 runs
Del(sk1, TList, pk2) to produce a warrant warr1→2 that will enable U2 to proxy
sign on behalf of U1. Now if U2 wants to re-delegate the received signing rights
for a possibly reduced set of tasks TList′ ⊆ TList to user U3 holding pk3, she
runs Del(sk2, warr1→2, TList′, pk3), that is, with her warrant as additional argu-
ment, to produce warr1→2→3. Every user in possession of a warrant valid for a
task task can produce proxy signatures σ for messages M corresponding to task
via PSig(sk, warr, task, M).2 Anyone can then verify σ under the public key pk1
of the first delegator (sometimes called “original signer” in the literature) by
running PVer(pk1, task, M, σ).
2 Note that it depends on the concrete application to check whether M lies within the

scope of task.
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�RegIssuer (ik) Opener (ock)

User

pk, okpk

pk, sk
...

. . . . . .

λ → Setup → pp, ik, ock

skx, [warr→x, ] TList, pky → Del → warr[→]x→y

sky, warrx→...→y , task, M → PSig → σ

pkx, task, M, σ → PVer → b ∈ {0, 1}
okx, σ, task, M and registry-data → Open → a list of users or ⊥ (failure)

Fig. 1. Inputs and outputs of the algorithms

Finally, using the opening key ok1 corresponding to pk1, a signature σ can be
opened via Open(ok1, task, M, σ), which returns the list of users that have re-
delegated as well as the proxy signer.3 Note that for simplicity, we identify users
with their public keys, so Open returns a list of public keys. Figure 1 gives an
overview of the algorithms constituting an anonymous proxy signature scheme.

Consider a warrant established by executions of Del with correctly registered
keys. Then for any task and message we require that the signature produced on
it pass verification.

Remark (Differences to the Model for Proxy Signatures). The specifi-
cation deviates from the one in [BPW03] in the following points: First, dealing
with anonymous proxy signatures, in our model there is no general proxy iden-
tification algorithm; instead, only authorized openers holding a special key may
revoke anonymity.

Second, in contrast to the above specifications, the proxy-designation protocol
in [BPW03] is a pair of interactive algorithms and the proxy signing algorithm
takes a single input, the proxy signing key skp. However, by simply defining the
proxy part of the proxy-designation protocol as

skp := (sk, warr) ,

any scheme satisfying our specifications is easily adapted to theirs.

3 We include task and M in the parameters of Open so the opener can verify the
signature before opening it.
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3 Security Definitions

3.1 Anonymity

Anonymity ensures that signatures do not leak information on the identities
of the intermediate delegators and the proxy signer, even in the presence of
a corrupt issuer. However, the number of delegators involved may not remain
hidden, as an openable signature must contain information about the delegators,
whose number is not a priori bounded.

A quite “holistic” approach to define anonymity is the following experiment
in the spirit of CCA2-indistinguishability: The adversary A, who controls the
issuer and all users, is provided with an oracle to communicate with an honest
opening authority. A may also query opening keys and the opening of signatures.
Eventually, he outputs a public key, a message, a task and two secret-key/warrant
pairs under one of which he is given a signature. Now A must decide which pair
has been used to sign. Note that our definition implies all conceivable anonymity
notions, such as proxy-signer anonymity, last-delegator anonymity, etc.

Expanon-b
PS,A (λ)

(pp, ik, ock) ← Setup(1λ)
(st, pk, (sk0, warr0), (sk1, warr1), task, M)

← A1(pp, ik : USndToO, ISndToO, OK, Open)
if pk /∈ OReg, return 0
for c = 0 . . 1

σc ← PSig(skc, warrc, task, M)
if PVer(pk, task, M, σc) = 0, return 0
(pkc

2, . . . , pkc
kc

) ← Open(OK(pk), task, M, σc)
if opening succeeded and k0 �= k1, return 0
d ← A2(st, σb : Open)
if A1 did not query OK(pk) and A2 did not query Open(pk, task, M, σb), return d,
else return 0

Fig. 2. Experiment for Anonymity

Figure 2 depicts the experiment, which might look more complex than ex-
pected, as there are several checks necessary to prevent the adversary from triv-
ially winning the game by either

1. returning a public key he did not register with the opener,
2. returning an invalid warrant, that is, signatures created with it fail verifica-

tion, or
3. having different lengths of delegation chains.4

4 The experiment checks 2. and 3. by producing a signature with each of the returned
warrants and opening both to check if the number of delegators match. Note, that
traceability (cf. Sect. 3.2) guarantees that valid signatures can be opened.
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The experiment simulates an honest opener as specified by Reg with whom
the adversary communicates via the USndToO and ISndToO oracles, depending
on whether he impersonates a user or the issuer. It also keeps a list OReg of the
opening keys it created and the corresponding public keys. Oracle OK, called
with a public key, returns the related opening key from OReg and when Open is
called on (pk′, task′, M ′, σ′), the experiment looks up the corresponding opening
key ok′ and returns Open(ok′, M ′, task′, σ′) if pk′ has been registered and ⊥
otherwise.

Definition 1 (Anonymity). A proxy signature scheme PS is anonymous if
for any probabilistic polynomial-time (p.p.t.) adversary A = (A1, A2), we have

∣∣Pr
[
Expanon-1

PS,A (λ) = 1
]
− Pr

[
Expanon-0

PS,A (λ) = 1
]∣∣ = negl(λ).

Remark (Hiding the Number of Delegations). A feature of our scheme is
that users are able to delegate themselves. It is because of this fact—useful per
se to create temporary keys for oneself to use in hostile environments—that one
could define the following variant of the scheme:

Suppose there is a maximum number of possible delegations and that be-
fore signing, the proxy extends the actual delegation chain in her warrant to
this maximum by consecutive self-delegations. The scheme would then satisfy
a stronger notion of anonymity where even the number of delegations remains
hidden. What is more, defining standard (non-proxy) signatures as self-delegated
proxy signatures, even proxy and standard signatures become indistinguishable.

Since we also aim at constructing a generalization of group signatures in accor-
dance with [BSZ05], we split the definition of what is called security in [BPW03]
into two parts: traceability and non-frameability. We thereby achieve stronger
security guarantees against malicious issuers.

3.2 Traceability

Consider a coalition of corrupt users and openers (the latter however follow-
ing the protocol) trying to forge signatures. Then traceability guarantees that
whenever a signature passes verification, it can be opened.5

In the game for traceability we let the adversary A register corrupt users and
see the communication between issuer and opener. To win the game, A must
output a signature and a public key under which it is valid such that opening of
the signature fails.

Figure 3 shows the experiment for traceability, where the oracles SndToI and
SndToO simulate issuer and opener respectively, according to the protocol Reg.

5 The issuer is assumed to behave honestly as he can easily create unopenable signa-
tures by registering dummy users and sign in their name. The openers are partially
corrupt, otherwise they could simply refuse to open or not correctly register the
opening keys.
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Exptrace
PS,A(λ)

(pp, ik, ock) ← Setup(1λ)
(pk, task, M, σ) ← A(pp : SndToI, SndToO)
if PVer(pk, task, M, σ) = 1 and Open(OK(pk), task, M, σ) = ⊥

return 1, else return 0

Fig. 3. Experiment for Traceability

In addition, they return a transcript of the communication between them. The
experiment maintains a list of generated opening keys, so OK returns the opening
key associated to the public key it is called with, or ⊥ in case the key is not
registered—in which case Open returns ⊥, too.

Definition 2 (Traceability). A proxy signature scheme PS is traceable if
for any p.p.t. adversary A, we have

Pr
[
Exptrace

PS,A(λ) = 1
]

= negl(λ) .

3.3 Non-frameability

Non-frameability ensures that no user is wrongfully accused of delegating or
signing. In order to give a strong definition of non-frameability by according
the adversary as much liberty as possible in his oracle queries, we require an
additional functionality of the scheme: function OpenW applied to a warrant
returns the list of delegators involved in creating it.

In the non-frameability game, the adversary can impersonate the issuer and
the opener as well as corrupt users. He is given all keys created in the setup,
and oracles to register honest users and query delegations and proxy signatures
from them. To win the game, the adversary must output a task, a message and
a valid signature on it, such that the opening reveals either

1. a second delegator or proxy signer who was never delegated by an honest
original delegator for the task,

2. an honest delegator who was not queried the respective delegation for the
task, or

3. an honest proxy signer who did not sign the message for the task and the
respective delegation chain.

We emphasize that impersonating U1, U ′
1 and U3, querying re-delegation from

honest user U2 to U3 with a warrant from U1 for U2 and then producing a
signature that opens to (U ′

1, U2, U3) is considered a successful attack. Note fur-
thermore that it is the adversary that chooses the opening key to be used. See
Fig. 4 for the experiment for non-frameability.
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Expn-frame
PS,A (λ)

(pp, ik, ock) ← Setup(1λ)
(ok, pk1, task, M, σ) ← A(pp, ik, ock : ISndToU, OSndToU, SK, Del, PSig)
if PVer(pk1, task, M, σ) = 0 or Open(ok, task, M, σ) = ⊥, return 0
(pk2, . . . , pkk) = Open(ok, task, M, σ)
if pk1 ∈ HU and no queries Del(pk1, TList, pk2) with TList � task made

return 1 (Case 1)
if for some i ≥ 2, pki ∈ HU and no queries Del(pki, warr, TList, pki+1) with

TList � task and OpenW(warr) = (pk1, . . . , pki) made, return 1 (Case 2)
if pkk ∈ HU and no queries PSig(pkk, warr, task, M) made

with OpenW(warr) = (pk1, . . . , pkk) made, return 1 (Case 3)
return 0

Fig. 4. Experiment for Non-Frameability

Oracles for non-frameability: ISndToU (OSndToU) enables the adver-
sary impersonating a corrupt issuer (opener) to communicate with an honest
user. When first called without arguments, the oracle simulates a new user
starting the registration procedure and makes a new entry in HU , the list of
honest users. Oracles Del and PSig are called with a user’s public key, which
the experiment replaces by the user’s secret key from HU before executing the
respective function; e.g., calling Del with parameters (pk1, TList, pk2) returns
Del(sk1, TList, pk2). Oracle SK takes a public key pk as argument and returns
the corresponding private key after deleting pk from HU .

Definition 3 (Non-frameability). A proxy signature scheme PS is non-
frameable if for any p.p.t. adversary A we have

Pr
[
Expn-frame

PS,A (λ) = 1
]

= negl(λ) .

Remark. In the experiment Expn-frame
PS,A , the opening algorithm is run by the

experiment, which by definition behaves honestly. To guard against corrupt open-
ers, it suffices to add a (possibly interactive) zero-knowledge proof of correctness
of opening.

4 An Instantiation of the Scheme

4.1 Building Blocks

To construct the generic scheme PS, we will use the following standard crypto-
graphic primitives (for a formal overview cf. [FP08, Appendix A]) whose exis-
tence is implied by assuming trapdoor permutations [Rom90, DDN00, Sah99].
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– DS = (Kσ, Sig, Ver), a digital signature scheme secure against existential
forgeries under chosen-message attack [GMR88].

– PKE = (Kε, Enc, Dec), a public-key encryption scheme with indistinguish-
able encryptions under adaptive chosen-ciphertext attack (CCA2) [RS92].

– Π = (P, V, Sim), a non-interactive zero-knowledge (NIZK) proof system for
an NP-language to be defined in the following that is simulation sound
[BDMP91, Sah99].

4.2 Algorithms

The algorithm Setup establishes the public parameters and outputs the issuer’s
and the opener’s certification key. The public parameters consist of the security
parameter, a common random string for non-interactive zero-knowledge proofs
and the two signature verification keys corresponding to the issuer’s and the
opener’s key:

Setup

1λ → (pkα, skα) ← Kσ(1λ); (pkω, skω) ← Kσ(1λ); crs ← {0, 1}p(λ)

pp, ik, ock ← pp := (λ, pkα, pkω, crs); ik := skα; ock := skω

The registration protocol is depicted in Fig. 5. When a user joins the system,
she creates a pair of verification/signing keys (pkσ, skσ) and signs pkσ (e.g. via
an external PKI) in order to commit to it. She then sends pkσ and the signature
sig to the issuer. The latter, after checking sig, signs pkσ with his certificate
issuing key skα and writes the user data to IReg , the registration table.

In addition, the issuer sends pkσ to the authority responsible for opening
the user’s signatures. The opener creates an encryption/decryption key pair
(pkε, skε) and a certificate on pkε and pkσ, which together with pkε he sends to
the issuer, who forwards it to the user.6

Remark (Attaining Non-Frameability). It is by having the users create
their own signing keys skσ that a corrupt authority is prevented from framing
them. The user is however required to commit to her verification key via sig, so
that she cannot later repudiate signatures signed with the corresponding signing
key. Now to frame a user by creating a public key and attributing it to her,
the issuer would have to forge sig. Note that it is impossible to achieve non-
frameability without assuming some sort of PKI prior to the scheme.

Algorithm Del enables user x to pass her signing rights to user y (if called
with no optional argument warrold), or to re-delegate the rights represented by

6 In practice, our protocol would allow for the opener to communicate directly with
the user without the detour via the issuer—for example in the case where each user
is his own opener. We define the protocol this way to simplify exposition of the
security proofs.
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Reg

• (pkσ, skσ) ← Kσ(1λ)
• produce sig,

pkσ, siga signature on pkσ

cert, pkε, certω

sk := (pk, skσ)
pk := (pkσ, pkε, cert, certω, pp)
• verify cert and certω

User x Issuer (skα)

Opener (skω)

certω

pkε,
pkσ

• (pkε, skε) ← Kε(1λ)
• certω ← Sig(skω, (pkσ, pkε))
• write (pkσ, pkε, skε) to OReg

• if sig invalid for pkσ,

• cert ← Sig(skα, pkσ)
• write (pkσ, sig) to IReg

return ⊥

public: pp = (λ, pkα, pkω, crs)

Fig. 5. Registration protocol

warrold for the tasks in TList. A warrant is an array where warr [i] corresponds
to the ith delegation and warr [i][task] basically contains a signature by the ith

delegator on the next delegator’s public key and task.
More specifically, consider user x being the kth delegator. If k > 1, she first

copies all entries for the tasks to re-delegate from warrold to the new warrant
warr. She then writes her public key to warr[k][0], which will later be used by
the delegatee, and finally produces a signature on the task, the public keys of
the delegators, her and the delegatee’s public key and writes it to warr[k][task].

Del

skx, [warrold, ] parse skx � (pkx, skσ); k := |warrold| + 1 // k = 1 if no warrold

TList, pky → for all 1 ≤ i < k

warr[i][0] := warrold[i][0]
for all task ∈ TList, warr[i][task] := warrold[i][task]

warr[k][0] := pkx

for all 1 ≤ i ≤ k, parse warr[i][0] � (pkσi, pkεi, certi, certωi, pp)
for all task ∈ TList

warr ← warr[k][task] ← Sig
(
skσ, (task, pkσ1, . . . , pkσk, pkσy)

)
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For every k, we define a relation Rk specifying an NP-language LRk
. Basically,

a theorem (pkα, pkω, pkσ1, pkε1, certω1, task, M, C) is in LRk
if and only if

(1) pkε1 is correctly certified w.r.t. pkω,
(2) there exist verification keys pkσ2, . . . , pkσk that are correctly certified w.r.t.

pkα,
(3) there exist warrant entries warri for 1 ≤ i < k, s.t. pkσi verifies the delegation

chain pk1 → · · · → pki+1 for task,
(4) there exists a signature s on the delegation chain and M valid under pkσk,
(5) C is an encryption using some randomness ρ of all the verification keys,

certificates, warrants and the signature s.

We define formally:

Rk

[
(pkα, pkω, pkσ1, pkε1, certω1, task, M, C),

(pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s, ρ)
]

:⇔ Ver
(
pkω, (pkσ1, pkε1), certω1

)
= 1 ∧ (1)∧

2≤i≤k Ver
(
pkα, pkσi, certi

)
= 1 ∧ (2)∧

1≤i≤k−1 Ver
(
pkσi, (task, pkσ1, . . . , pkσi+1), warri

)
= 1 ∧ (3)

Ver
(
pkσk, (task, pkσ1, . . . , pkσk, M), s

)
= 1 ∧ (4)

Enc
(
pkε1, (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s), ρ

)
= C (5)

Note that for every k, the above relation Rk defines an NP-language LRk
, since

given a witness, membership of a candidate theorem is efficiently verifiable and
the length of a witness is polynomial in the length of the theorem. Let Πk :=
(Pk, Vk, Simk) be a simulation-sound NIZK proof system for LRk

.
Now to produce a proxy signature, it suffices to sign the delegation chain and

the message, encrypt it together with all the signatures for the respective task
from the warrant and prove that everything was done correctly, that is, prove
that Rk is satisfied:

PSig

sk,warr, k := |warr| + 1, parse sk � (pkk, skσ)
task, M → parse pkk �

(
pkσk, pkεk, certk, certωk, (λ, pkα, pkω, crs)

)
for 1 ≤ i < k, parse warr[i][0] � (pkσi, pkεi, certi, certωi, pp)

set warri := warr[i][task]
s ← Sig

(
skσ, (task, pkσ1, . . . , pkσk, M)

)
; ρ ← {0, 1}pε(λ,k)

W := (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s)
C ← Enc(pkε1, W ; ρ)
π ← Pk

(
1λ, (pkα, pkω,pkσ1, pkε1, warrω1, task, M, C), W ‖ρ, crs

)
σ ← σ := (C,π)

Verifying a proxy signature then amounts to verifying the proof it contains:
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PVer

pkx, task, parse pkx �
(
pkσx, pkεx, certx, certωx, (λ, pkα, pkω, crs)

)
M, σ → σ � (C, π)

b ← b := Vk

(
1λ, (pkα, pkω, pkσx, pkεx, certωx, task, M, C), π, crs

)

To open a signature check its validity and decrypt the contained ciphertext:

Open

okx, task, parse okx � (pkx, skεx); σ � (C, π)
M, σ → parse pkx �

(
pkσx, pkεx, certx, certωx, (λ, pkα, pkω, crs)

)
if Vk

(
1λ, (pkα, pkω,pkσx, pkεx, certωx, task, M, C), π, crs

)
= 0

return ⊥
(pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s)

:= Dec(skεx, C)
(pk2, . . , pkk) ← if for some i, pki is not in IReg , return ⊥

4.3 Security Results

From the definition of the algorithms, it should be apparent that running PSig
with a warrant correctly produced by registered users returns a signature which
is accepted by PVer and correctly opened by Open. Moreover, the defined scheme
satisfies all security notions from Sect. 3.

Lemma 4. The proxy signature scheme PS is anonymous (Definition 1).

Proof. The natural way to prove anonymity is by reduction to indistinguishabil-
ity of the underlying encryption scheme: if the adversary can distinguish between
two signatures (C1, π1) and (C2, π2), it must be by distinguishing C1 from C2,
as the proofs πi are zero-knowledge. (Simulating the proofs does not alter the
experiments in any computationally distinguishable manner and could be per-
formed by the adversary itself.) The only case that needs special treatment in
the reduction is when the PS adversary, after being challenged on σ = (C, π),
queries (C, π′)—which is perfectly legitimate, but poses a problem to the PKE-
adversary, which cannot forward C to its decryption oracle.

Without loss of generality, we assume that the adversary is honest in that it
does not query OK(pk) or Open

(
pk, task, M, (C, π)

)
. (Note that any adversary

A can be transformed into an honest one having the same success probability
by simulating A and outputting d ← {0, 1} if A makes an illegal query.)

Figure 6 shows the experiment for anonymity after plugging in the algorithm
definitions and some simplifications. Relation R∗

k is defined as Rk restricted to
the first 4 clauses, i.e., there is no check of encryption (which does not alter the
experiment, since encryption is performed correctly by the experiment anyway).
Note also that due to the communication between the parties defined in Reg, the
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Expanon-b
PS,A (λ)

1 crs ← {0, 1}p(λ)

2 (pkα, skα) ← Kσ(1λ); (pkω, skω) ← Kσ(1λ); pp := (λ, pkα, pkω, crs)

3

(
st, pk, (warr0, sk0), (warr1, sk1), task, M

)
← A1(pp, skα : ISndToO, OK, Open)

4 if pk /∈ OReg, return 0, else parse pk � (pkσ∗, pkε∗, cert∗, certω∗, pp)

5 if |warr0| �= |warr1|, return 0, else k := |warr| + 1

6 for c = 0 . . 1

7 parse skc �
(
(pkσc

k, pkεc
k, certc

k, certωc
k, pp), skσc

)
8 for i = 1 . . k − 1: pkc

i := warrc[i][0] � (pkσc
i , pkεc

i , cert
c
i , certω

c
i , pp)

9 sc ← Sig(skσc, (task, pkσc
1, . . . , pkσc

k, M)

10 mc := (pkσc
2, . . . , pkσc

k, certc
2, . . . , cert

c
k,

warrc[1][task], . . . , warrc[k − 1][task], s)

11 if R∗
k(pkα, pkω, pkσ∗, pkε∗, certω∗, task, M), mc) = 0, return 0

12 ρ ← {0, 1}pε(λ,k); C ← Enc(pkε∗, mb ; ρ)

13 π ← Pk

(
1λ, (pkα, pkω, pkσ∗, pkε∗, certω∗, task, M, C), mb ‖ρ, crs

)
14 return d ← A2

(
st, (C, π) : Open

)

Oracle OOK((pkσ∗, ··))
if (pkσ∗, ·, ·, skε) ∈ OReg

for some skε

return skε

Oracle OISndToO(pkσ)

(pkε, skε) ← Kε(1λ)
certω ← Sig

(
skω, (pkσ, pkε)

)
save (pkσ, pkε, certω, skε) in OReg

return (pkε, certω)

Fig. 6. Experiment for anonymity

USndToO oracle is obsolete, and due to honesty of A, we can omit the checks for
illegal oracle queries at the end of the experiment.

We define a first variant of the original experiment by substituting the zero-
knowledge proof π by a simulated one. Claim 1 then states that the variant is
computationally indistinguishable from the original one.7

Expanon-b
PS,A (λ)(1)

1 (crs, stS) ← Sim1(1λ)
...

13 π ← Sim2

(
stS , (pkα, pkω,pkσ∗, pkε∗, cert∗, task, M, C)

)
...

Claim 1.
∣∣Pr[Expanon-b

PS,A (λ) = 1]−Pr[Expanon-b
PS,A (λ)(1) = 1]

∣∣ ≤ Advzk
Π,D(λ),

where D is an algorithm that in the first stage, on input crs, runs Expanon-b
PS,A (λ)

7 For ease of presentation, we only give the lines of the experiment that changed.
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from line 2 to 12 and outputs (pkα, pkω, pkσ∗, pkε∗, cert∗, task, M, C), mb ‖ ρ).
After receiving π in the second stage, D continues simulating line 14.8

Proof. The claim follows from equivalence of the following random variables:

Expzk
Π,D(λ) = Expanon-b

PS,A (λ) and Expzk-S
Π,D(λ) = Expanon-b

PS,A (λ)(1) . ��

Next, we define a second variant that can then be perfectly simulated by an
adversary B against PKE :

Expanon-b
PS,A (λ)(2)

...

14 d ← A2

(
st, (C, π) : Open

)
15 if A made a valid query Open

(
pk, task, M, (C, π′)

)
, return 0, else return d

Claim 2.
∣∣Pr[Expanon-b

PS,A (λ)(1) = 1]− Pr[Expanon-b
PS,A (λ)(2) = 1]

∣∣ = negl(λ) .

(See below for the proof.) Due to the above claims, in order to proof Lemma 4,
it suffices to relate Pr[Expanon-b(2)

PS,A = 1] to Pr[Expind-cca b
PKE,B = 1]. Let n be the

maximal number of ISndToO queries performed by A. We construct an adver-
sary against the encryption scheme that, on guessing the right user, perfectly
simulates Expanon-b

PS,A (λ)(2):

Adversary B1(pk : Dec)

1 j∗ ← {1, . . . , n}; j := 0; (crs, stS) ← Sim1(1λ)
...

12 return (m0, m1, status)

Adversary B2(status, C : Dec)

π ← Sim2(stS , (pkα, pkω,pkσ∗, pkε∗, certω∗, task, M, C)
d ← A2

(
st, (C,π) : Open

)
if A made a valid query Open

(
pk, task, M, (C,π′)

)
, return 0, else return d

Oracle OISndToO(pkσ) by B1

j := j + 1
if j = j∗ then pkε := pk; else (pkε, skε) ← Kε(1λ)
certω ← Sig

(
skω, (pkσ, pkε)

)
; write (pkσ, pkε, certω) to OReg

return (pkε, certω)

When A calls its Open oracle for a public key containing pk and a valid signature

8 We use Advzk
••(·) as shortcut for |Pr[Expzk

••(·) = 1] − Pr[Expzk-S
•• (·) = 1]|

and similarly for indistinguishability. For all other experiments, Adv•
••(·) denotes

Pr[Exp•
••(·) = 1].
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(C′, π′), B does the following: If C′ �= C, B uses its own Dec oracle to decrypt
C′; if the signature contains the challenge C then B returns 0 anyway.

Consider the experiment when A returns pk containing pk (which happens
with probability at least 1

n(λ) ). First, note that m0 and m1 are of equal length,
for R∗ guarantees that the warrants are formed correctly. Moreover, B no illegal
queries C. We have thus

Pr[Expind-cca-b
PKE,B (λ) = 1] ≥ 1

n(λ) Pr[Expanon-b
PS,A (λ)(2) = 1] . (6)

On the other hand, by indistinguishability of PKE , we have:∣∣Pr[Expind-cca-1
PKE,B (λ) = 1]− Pr[Expind-cca-0

PKE,B (λ) = 1]
∣∣ = negl(λ) ,

which, because of (6) and Claims 1 and 2 yields:∣∣Pr[Expanon-1
PS,A (λ) = 1]− Pr[Expanon-0

PS,A (λ) = 1]
∣∣ = negl(λ) .

We conclude by proving the second claim.

Proof (of Claim 2). We show that after receiving (C, π), A is very unlikely to
make a valid open query (C, π′), i.e., create a different proof π′ for the statement

(pkα, pkω, pkσ∗, pkε∗, certω∗, M, task, C) =: X .

If X was not in LR, then due to simulation soundness of Πk, such a query hap-
pens only with negligible probability. However, indistinguishability of ciphertexts
implies that the same holds for X ∈ LR, otherwise based on Expanon-b(1)

PS,A we
could build a distinguisher Bb for PKE as follows:

Adversary Bb
1(pk : Dec)

...

12 return (0|mb|, mb, status)

Adversary Bb
2(status, C : Dec)

π ← Sim2

(
stS, (pkα, pkω, pkσ∗, pkε∗, certω∗, M, task, C)

)
d ← A2(st, (C, π) : Open)
if at some point A queries (C,π′) with π′ �= π and
Vk(1λ,

(
pkα, pkω, pkσ∗, pkε∗, certω∗, M, task, C), π′, R

)
= 1 then return 1

else return 0

and a simulation-soundness adversary Sb,c that runs Expind-c
PKE,Bb , except for

having crs and π as input from its experiment instead of creating them it-
self. Now when when A first makes a valid query (C, π′), it outputs

(
X :=

(pkα, pkω, pkσ∗, pkε∗, certω∗, M, task, C), π′), and fails otherwise. We have

∣∣Pr[Expanon-b
PS,A (λ)(1) = 1]− Pr[Expanon-b

PS,A (λ)(2) = 1]
∣∣ ≤ Pr[Eb] ,
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Exptrace
PS,A(λ)

1 (pkα, skα) ← Kσ(1λ); (pkω, skω) ← Kσ(1λ)

2 crs ← {0, 1}p(λ); pp := (λ,pkα, pkω, crs)

3 (pk, task, M, σ) ← A(pp : SndToI)

4 parse pk � (pkσ∗, pkε∗, cert∗, certω∗, pp); σ � (C,π)

5 if Vk(1λ, (pkα, pkω, pkσ∗, pkε∗, certω∗, task, M, C), π, crs) = 0, return 0

6 if no entry pk in OReg , return 1 // opening fails
otherwise look up the corresponding skε∗.

7 (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s) := Dec(skε∗, C)

8 if for some i, pkσi not in IReg , return 1

9 return 0

OSndToI(pkσ, sig)

1 if verification of sig on pkσ fails then return ⊥
2 cert ← Sig(skα, pkσ); write (pkσ, sig) to IReg

3 (pkε, skε) ← Kε(1λ); certω ← Sig(skω, (pkσ, pkε))

4 write (pkσ, pkε, skε) to OReg

5 return (cert, pkε, certω)

Fig. 7. Experiment for traceability

where Eb denotes the event that in Expanon-b
PS,A , A makes a valid query (C, π′). It

remains to bound the probability of event Eb. On the one hand, we have (note
that pkε∗ �= pk implies X /∈ LR, and thus Sb,1 succeeds in this case):

Pr[Expind-1
PKE,Bb(λ) = 1] = Pr[Expind-1

PKE,Bb(λ) = 1 ∧ pkε∗ = pk] +

Pr[Expind-1
PKE,Bb(λ) = 1 ∧ pkε∗ �= pk]

= 1
n(λ) Pr[Eb] +

(
1− 1

n(λ)

)
Pr[Expss

Π,Sb,1(λ) = 1] .

On the other hand, we have Pr[Expind-0
PKE,Bb(λ) = 1] = Pr[Expss

Π,Sb,0(λ) = 1] ,
since (X, 0|m

b|) /∈ R. Combining the above, we get

Advind
PKE,Bb(λ) =

∣∣ 1
n(λ) Pr[Eb] −

(
(1 − 1

n(λ) )Advss
Π,Sb,1(λ) + Advss

Π,Sb,0(λ)
) ∣∣

and thus the following, which proves the claim:

Pr[Eb] ≤ n(λ)
(
Advind

PKE,Bb(λ) + Advss
Π,Sb,1(λ) + Advss

Π,Sb,0(λ)
)

. ��

Lemma 5. The proxy signature scheme PS is traceable (Definition 2).

Proof. First, note that the requirement to have pkε certified by the opener pre-
vents the adversary from trivially winning the game as follows: return a public
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key containing a different pkε′ and use it to encrypt when signing to get a valid
signature that is not openable with the opener’s key.

Figure 7 shows Exptrace
PS,A including the SndToI oracle rewritten with the code

of the respective algorithms. Note that due to our implementation of Reg, the
SndToO oracle is obsolete and that the communication between issuer and opener
(i.e., pkσ, pkε, certω) is known to the adversary.

We construct two adversaries Bω, Bα against existential unforgeability of
DS that simulate Exptrace

PS,A, while using their input pk as either the opener’s
certifying key (Bω) or the issuer’s signing key (Bα). When answering A’s SndToI
queries, Bω and Bα use their oracle for the respective signature.

Adversary Bω(pk : Sig)

1 (pkα, skα) ← Kσ(1λ); pkω := pk
...

6 if no entry pk in OReg

return ((pkσ∗, pkε∗), certω∗)

7 return ⊥

Adversary Bα(pk : Sig)

1 pkα := pk; (pkω, skω) ← Kσ(1λ)
...

8 if for some i, pkσi not in IReg

return (pkσi, certi)

9 return ⊥

Let E1, E2 and S denote the following events:

E1 . . . Exptrace
PS,A(λ) returns 1 in line 6

E2 . . . Exptrace
PS,A(λ) returns 1 in line 8

S . . . (pkα, pkω, pkσ∗, pkε∗, certω∗, task, M, C) ∈ LR

We have Advtrace
PS,A(λ) = Pr[E1 ∧ S] + Pr[E2 ∧ S] + Pr[(E1 ∨ E2) ∧ S̄]. Showing

that the three summands are negligible completes thus the proof.

E1 ∧ S: S means (pkα, pkω, pkσ∗, pkε∗, certω∗, task, M, C) ∈ LR, and thus

Ver
(
pkω, (pkσ∗, pkε∗), certω∗) = 1 .

On the other hand, E1 implies that (pkσ∗, pkε∗) is not in OReg , thus Bω

never asked a signature on it and therefore returns a valid forgery. We have
thus

Pr[E1 ∧ S] ≤ Pr[Expeuf-cma
DS,Bω

(λ) = 1] .

E2 ∧ S: Now, S implies that for all 2 ≤ j ≤ k : Ver(pkα, pkσj , certj) = 1, but
pkσi being not in IReg means Bα returns a valid forgery, and consequently

Pr[E2 ∧ S] ≤ Pr[Expeuf-cma
DS,Bα

(λ) = 1] .

(E1 ∨E2) ∧ S̄: (E1 ∨E2) implies

Vk(1λ, (pkα, pkω, pkσ∗, pkε∗, certω∗, task, M, C), π, crs) = 1 ,

which, together with S̄ contradicts soundness of Πk: based on Exptrace
PS,A, we

could construct an adversary Bs against soundness of Πk which after receiv-
ing crs (rather than choosing it itself), runs along the lines of the experiment
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Expn-frame
PS,A (λ)

1 (pkα, skα) ← Kσ(1λ); (pkω, skω) ← Kσ(1λ); crs ← {0, 1}p(λ)

2 pp := (λ, pkα, pkω, crs)

3 (ok, pk1, task, M, σ) ← A(pp, skα, skω : ISndToU, SK, Del, PSig)

4 parse ok � ((pkσ1, pkε1, cert1, certω1, pp), skε1); σ � (C, π)

5 if Vk

(
1λ, (pkα, pkω,pkσ1, pkε1, certω1, task, M, C), π, crs

)
= 0 then return 0

6 (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s) := Dec(skε1, C)

7 if pk1 ∈ HU and no queries ODel(pk1, {··, task, ··}, pk2) then return 1

8 if ∃ i : pki ∈ HU and no queries ODel(pki, warr, {··, task, ··}, pki+1)
with warr[j][0][1] = pkσj for 1 ≤ j ≤ i then return 1

9 if pkk ∈ HU and no queries OPSig(pkk, warr, task, M)
with warr[j][0][1] = pkσj for 1 ≤ j ≤ k then return 1

10 return 0

OISndToU(∅)
1 (pkσ, skσ) ← Kσ(1λ)

2 HU := HU ∪ {(pkσ, skσ)}
3 return pkσ

OSK((pkσ, ··))
1 if ∃ skσ : (pkσ, skσ) ∈ HU ,

2 delete the entry and return skσ

3 otherwise, return ⊥

Fig. 8. Instantiated experiment for non-frameability

until line 4 and then outputs
(
(pkα, pkω, pkσ∗, pkε∗, certω∗, task, M, C), π

)
.

We have thus
Pr[(E1 ∨ E2) ∧ S̄] ≤ Advss

Π,Bs
. ��

Lemma 6. The proxy signature scheme PS is non-frameable (Definition 3).

Proof. Figure 8 shows experiment Expn-frame
PS,A rewritten with the code of the

respective algorithms. Note that we can dispense with the OSndToU-oracle, be-
cause in our scheme the user communicates exclusively with the issuer.

We construct an adversary B against the signature scheme DS having input
a verification key pk and access to a signing oracle OSig. B simulates Expn-frame

PS
for A, except that for one random user registered by A via ISndToU, B sets pkσ
to its input pk, hoping that A will frame this very user. If B guesses correctly
and A wins the game, a forgery under pk can be extracted from the untraceable
proxy signature returned by A. Let n(λ) be the maximal number of ISndToU
queries performed by A.

Adversary B and its handling of A’s ISndToU and SK oracle queries are de-
tailed in Fig. 9. To answer oracle calls Del and PSig with argument pk∗ = (pk, ··),
B replaces the line with Sig(skσ, (task, pkσ1, . . .)) in the respective algorithms by
a query to its own signing oracle. For all other public keys, B holds the secret
keys and can thus answer all queries.
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Adversary B(pk : Sig(sk, ·))
0 j∗ ← {1, . . . , n}; j := 0

...

7 if pkσ1 = pk and no queries ODel((pkσ1, ··), {··, task, ··}, (pkσ2, ··))
then return

(
(task, pkσ1, pkσ2), warr1

)
8 if ∃ i : pkσi = pk and no queries ODel((pkσi, ··), warr, {··, task, ··}, (pkσi+1, ··))

with warr[j][0][1] = pkσj for 1 ≤ j ≤ i

then return
(
(task, pkσ1, . . . , pkσi+1), warri

)
9 if pkσk = pk and no queries OPSig((pkσk, ··), warr, task, M) with

warr[j][0][1] = pkσj for 1 ≤ j ≤ k, then return
(
(task, pkσ1, . . . , pkσk, M), s

)
10 return 0

OISndToU(∅) by B

1 j := j + 1; if j = j∗, return pk

2 (pkσ, skσ) ← Kσ(1λ)

3 HU := HU ∪ {(pkσ, skσ)}
4 return pkσ

OSK((pkσ, ··)) by B

1 if pkσ = pk then abort

2 else if ∃ skσ : (pkσ, skσ) ∈ HU

3 delete entry, return skσ

4 return ⊥

Fig. 9. Adversary B against DS

Let S denote the event
[
(pkα, pkω, pkσ1, pkε1, certω1, task, M, C) ∈ LR

]
and

E1, E2, E3 denote the union of S and the event that Expn-frame returns 1 in
line 7, 8, 9, respectively. Then the following holds:

Advn-frame
PS,A (λ) ≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[Expn-frame

PS,A (λ) = 1 ∧ S̄]

We now show that the four summands are negligible:

1. Consider the event E∗
1 := [E1 ∧ pkσ1 = pk]. Then, since S is satisfied,

we have Ver
(
pk, (task, pkσ1, pkσ2), warr1

)
= 1. So, B returns a valid mes-

sage/signature pair.
The forgery is valid, since B did not query its oracle for (task, pkσ1, pkσ2),
as this only happens when A queries ODel((pkσ1, ··), {··, task, ··}, (pkσ2, ··)),
which by E1 is not the case. Moreover, B simulates perfectly, for E1 implies
OSK((pk, ··) was not queried. All in all, we have

Adveuf-cma
DS,B ≥ Pr[E∗

1 ] = Pr[pk∗ = pk1] · Pr[E1] = 1
n(λ) Pr[E1] .

2. Consider the event [E2 ∧ pkσi = pk]. Then S implies

Ver(pk,
(
(task, pkσ1, . . . , pkσi+1), warri

)
= 1 .

So, B returns a valid signature on a message it did not query its signing
oracle: only if A queries ODel((pkσi, ··), warr, {··, task, ··}, (pkσi+1, ··)) with
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warr[j][0][1] = pkσj for 1 ≤ j ≤ i + 1, B queries (task, pkσ1, . . . , pkσi+1).
Moreover, B simulates perfectly, as there was no query OSK((pk, ··). As for
1., we have 1

n(λ) Pr[E2] ≤ Adveuf-cma
DS,B .

3. Consider the event [E3 ∧ pkσk = pk ]. There were no OSK((pk, ··) queries and
by S, B outputs a valid pair. B did not query (task, pkσ1, . . . , pkσk, M) (as
A made no query OPSig((pkσk, ··), warr, task, M) with warr[j][0][1] = pkσj

for 1 ≤ j ≤ k). Again, we have 1
n(λ) Pr[E3] ≤ Adveuf-cma

DS,B .

4. The first clause of the event Pr[Expn-frame
PS,A (λ) = 1 ∧ S̄ ] implies

Vk(1λ, (pkα, pkω, pkσ1, pkε1, certω1, task, M, C), π, crs) = 1 ,

which together with S̄ contradicts soundness of Πk and happens thus only
with negligible probability (as in the proof of Lemma 5). ��

Theorem 7. Assuming trapdoor permutations, there exists an anonymous
traceable non-frameable proxy signature scheme.

Proof. Follows from Lemmata 4, 5 and 6. ��

We have defined a new primitive unifying the concepts of group and proxy sig-
natures and given strong security definitions for it. Moreover, Theorem 7 shows
that these definitions are in fact satisfiable in the standard model, albeit by a in-
efficient scheme. We are nonetheless confident that more practical instantiations
of our model will be proposed, as it was the case for group signatures; see e.g.
[BW07] for an efficient instantiation of a variation of the model by [BMW03],
or [Gro07] for an instantiation of [BSZ05]. We believe in particular that the
novel methodology to construct NIZK proofs introduced by [GS08] will lead to
practically usable implementations.
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Abstract. In this paper, as a fundamental cryptographic protocol with
information-theoretic security, we propose an unconditionally secure
blind authentication code (BA-code for short) which is an unconditionally
secure authentication code with anonymity of messages. As we will see,
the BA-code is a simple model of an authentication code with the func-
tion similar to that of the unconditionally secure blind signature (USBS
for short). The relationship between BA-codes and USBS is similar to the
one between traditional authentication codes and unconditionally secure
signature schemes as well as the one between group authentication codes
and group signature schemes. In addition, we provide two kinds of con-
structions of BA-codes: direct constructions based on polynomials over
finite fields, and a generic construction by using unconditionally secure
encryption and A2-codes. Furthermore, as application we show a link
between BA-codes and commitment in unconditional security setting:
starting from BA-codes, unconditionally secure commitment schemes can
be constructed in a black-box way.

1 Introduction

1.1 Background

The security of most of present cryptographic techniques is based on the assump-
tion of difficulty of computationally hard problems such as the integer factoring
problem or the discrete logarithm problem in finite fields or elliptic curves. How-
ever, taking into account recent rapid development of algorithms and computer
technologies, such a scheme based on the assumption of difficulty of computa-
tionally hard problems might not maintain sufficient long-term security. In fact,
it is known that quantum computers can easily solve the factoring and discrete
logarithm problems [28]. From these aspects, it is necessary and interesting to
consider cryptographic techniques whose security does not depend on any com-
putationally hard problems.

In cryptographic applications, there is a need for achieving anonymity (e.g.
anonymity of users or anonymity of messages) besides integrity of data transmit-
ted in a public channel. The group signature scheme introduced by Chaum and

V. Cortier et al. (Eds.): Formal to Practical Security, LNCS 5458, pp. 116–137, 2009.
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Van Heyst [9] can achieve both users’ privacy (anonymity of users) and integrity
of messages. Specifically, the group signature scheme allows a group member to
sign a message anonymously on behalf of the group. On the other hand, the
blind signature scheme introduced by Chaum [7] achieves privacy of messages
(anonymity of messages) besides integrity of data. More specifically, the blind
signature scheme allows a user to obtain a valid signature for a message from a
signer such that the message is kept secret for the signer. This blindness prop-
erty plays a central role in applications such as electronic voting and electronic
cash schemes where anonymity is of great concern [8]. Group signature and blind
signature schemes have mainly been studied from a viewpoint of computational
security so far. However, in some applications, it may be required to guarantee
security in a stronger fashion such as in terms of long-term security. In such a
case, computationally secure group signature and blind signature schemes can-
not provide a solution, since the underlying security of the schemes essentially
relies on computationally hard problems. Therefore, it is interesting to establish
cryptographic protocols which have anonymity besides integrity of data in the
unconditional security setting.

1.2 Related Works

As mentioned earlier, blind signature schemes have mainly been studied from a
viewpoint of computational security so far. Also, the group authentication code,
which is an unconditionally secure authentication code with anonymity whose
function is similar to that of the group signature, was proposed. Furthermore,
recently, an unconditionally secure blind signature scheme was proposed. In this
section, we briefly survey these works.

Blind Signature Schemes with Computational Security. Blind signature
schemes are first introduced and studied by Chaum [7]. After that, blind signature
schemes have been intensively studied and developed in [1–3, 6, 12, 18, 21–24]. In
[22], Pointcheval and Stern proposed the first provably secure blind signature
schemes in the random oracle model. In [12], Juels et al. showed provably secure
blind signature schemes assuming the one-way trapdoor permutation family, and
they also gave a formal definition of blind signatures and formalized two kinds of
security notions called unforgeability and blindness building on previous works [7,
22, 24]. The notion of blindness was originally considered by Chaum [7], and the
notion of unforgeability was first defined by Pointeval and Stern [22], and it was
called “one-more” forgery. Based on these works, the formal security definition
of blind signatures were defined in [12]. The schemes proposed in [12] are the first
provably secure blind schemes in the standard model based on general results
about multi-party computation, and thus it is inefficient in contrast with efficient
schemes in the random oracle model. After that, Camenisch et al. proposed
efficient blind signature schemes, provably secure in the standard model [6].
Recently, Okamoto [18] proposed more efficient blind signatures in the standard
model by using some bilinear mappings. Also, in [2, 3] Bellare et al. proved
Chaum’s blind signature scheme to be secure against the one-more forgery in
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the random oracle model based on a new hardness assumption of RSA called
known-target inversion problem.

On the other hand, Pinkas [19] first mentioned the idea of blind MAC schemes,
which are the symmetric analog of blind signature schemes in computational
security, in the context of constructing fair secure two-party computation. Re-
cently, Namprempre et al. [16] studied blind MAC schemes in a formal way, and
have shown blind MAC schemes do not exist since unforgeability and blindness
cannot be simultaneously satisfied in the symmetric key setting. The main rea-
son lies in the point that in blind MAC schemes the same secret key is used both
to generate a tag and to check the validity of the tag: the user cannot verify the
validity of the tag if he/she does not know the key with which a tag is generated
by a signer; on the other hand, in the case that the user holds the same key as
a signer, it is possible for the user to forge a tag; and hence, in the blind MAC
it is impossible to guarantee both unforgeability and blindness.

Related Schemes with Information-Theoretic Security. The model of
Group Authentication codes (GA-codes for short) was proposed by Hanaoka
et al. [10]. The GA-code is an unconditionally secure authentication code with
anonymity whose function is similar to that of the computationally secure group
signature: In GA-codes, there are multiple senders, a receiver, and a group au-
thority; In order to send a message to the receiver, each signer can generate an
authenticated message by using his/her secret key; the receiver can verify its
validity by using his/her secret key, however he/she cannot specify the sender of
the message by himself/herself; If the receiver wants to reveal the identity of the
sender, he/she can obtain it by cooperating with the group authority. It should
be noted that there is a gap between GA-codes and group signature schemes. In
fact, in the former the validity of an authentication message cannot be correctly
checked by an entity except for the designated receiver, while in the latter any
verifier can check the validity of a signed message, which potentially emerges
as the difference between authentication and signatures. This also implies that
the latter allows transfer of signed messages without compromising the security,
while the former does not in general.

Recently, Hara et al. [11] studied unconditionally secure blind signature
schemes (USBS for short). Specifically, they considered the model and security
definitions of USBS, and provided a construction of USBS that was provably
secure in their security definition.

1.3 Our Contribution

The GA-code in [10] is a simple model of an unconditionally secure authentica-
tion code with users’ anonymity whose function is similar to that of the group
signature scheme. On the other hand, the model of USBS in [11] is not so simple,
since it requires to meet complicated security notions. Therefore, the goal of this
paper is to study unconditionally secure authentication codes with anonymity
of messages such that (i) its model is simple; and (ii) its function is similar to
that of the blind signature scheme.
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In this paper, we newly propose a model of unconditionally secure blind au-
thentication codes (BA-codes for short), which are unconditionally secure au-
thentication codes with anonymity of messages. We note that the same argument
of the impossibility of computationally secure blind MAC in [16] also applies to
the symmetric-key setting even in the unconditional security scenario. Thus, we
study BA-codes in the asymmetric key setting in the sense that entities’ secret
keys are different. As we will see, the BA-code is a simple model of uncondi-
tionally secure authentication codes with the function similar to that of USBS.
However, in BA-code, only the designated entity can verify the validity of an
authenticated message, while any entity in USBS can verify the validity of a sig-
nature. On this point, the relationship between BA-codes and USBS is similar to
the one between unconditionally secure authentication codes and uncondition-
ally secure signature schemes [27] as well as the one between GA-codes and group
signatures. From this viewpoint, we can say that it is a right way to consider
the BA-code as a simple model. In addition, we provide two direct constructions
of BA-codes based on polynomials over finite fields, and a generic construction
(i.e., black box construction) of BA-codes starting from unconditionally secure
encryption and A2-codes. Furthermore, we show a link between BA-codes and
commitment in unconditional security setting: starting from BA-codes, uncon-
ditionally secure commitment schemes can be constructed in a black-box way.

The rest of this paper is organized as follows. In Section 2, we briefly sur-
vey unconditionally secure encryption and A2-codes. In Section 3, we propose a
model of BA-codes and formalize their security notions. In Section 4, we provide
two kinds of constructions of BA-codes: direct and generic constructions. In Sec-
tion 5, we propose a generic construction of unconditionally secure commitment
schemes from BA-codes. Finally, we give concluding remarks of the paper.

2 Preliminaries

We briefly survey unconditionally secure encryption and A2-codes, since we will
use these primitives to construct our protocols.

2.1 Unconditionally Secure Encryption

We consider a scenario where there are two entities, a sender and a receiver. An
encryption scheme Π consists of a three-tuple of algorithms (Gen, Enc, Dec)
with three spaces, K, M and C, where K is a finite set of possible keys, M is a
finite set of possible plaintexts, and C is a finite set of possible ciphertexts. Gen is
a randomized algorithm, called a key generation algorithm, which takes a security
parameter 1k on input and outputs a key e ∈ K. Enc is a deterministic algorithm,
called an encryption algorithm, which takes a plaintext m ∈ M and a key e ∈ K
on input and outputs a ciphertext c ∈ C, and we write c = Enc(m, e) for it. Dec is
a deterministic algorithm, called a decryption algorithm, which takes a ciphertext
c ∈ C and a key e ∈ K on input and outputs a plaintext m ∈ M or an invalid
symbol⊥, where ⊥ implies the ciphertext c is invalid, and we write m = Dec(c, e)
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or ⊥ = Dec(c, e) for it. We also assume that Dec(Enc(m, k), k) = m. In this
paper, we consider an encryption scheme in the one-time model, namely, we
assume that the sender transmits a ciphertext to the receiver only once via an
insecure channel. Next, we formally define the security of encryption schemes:
An encryption scheme Π is said to be ε-secure if PΠ ≤ ε, where PΠ is defined
as follows.

PΠ := max
c∈C

∑
m∈M

|Pr(m|c)− Pr(m)| ,

where the probability is over random choices of the key generation algorithm;
the summation is taken over all possible plaintexts m ∈ M ; and the maximum is
taken over all possible ciphertexts c ∈ C. It is easy to see that the above notion,
ε-secrecy, is a relaxed notion of perfect secrecy introduced by Shannon [26]. In
fact, we note that 0-secrecy means perfect secrecy.

2.2 Authentication Codes with Arbitration (A2-Codes)

As an extension of traditional authentication codes, authentication codes with
arbitration or A2-codes have been studied and developed by various researchers
[13–15, 17, 29, 30]. These codes involve a trusted third party called an arbiter.
The arbiter can help resolve a dispute when a receiver forges a sender’s message
or the sender claims that a message is forged by the receiver. We review A2-codes
more precisely in the following.

We consider a scenario where there are four entities, a sender (or a transmit-
ter), a receiver, an arbiter and an opponent. An authentication code with arbi-
tration (A2-code for short)1 Λ is specified by a four-tuple of algorithms (Gen,
Auth, RVer, AVer) with five spaces, Kt, Kr, Ka, M and Σ, where Kt, Kr and
Ka are finite sets of possible keys for the sender, the receiver and the arbiter,
respectively, M is a finite set of possible messages (or source states2), and Σ is
a finite set of possible authenticators. Gen is a randomized algorithm called key
generation algorithm, which takes a security parameter 1k on input and outputs
matching keys et ∈ Kt, er ∈ Kr and ea ∈ Ka, where et, er and ea are secret keys
for the sender, the receiver and the arbiter, respectively. Auth is a (deterministic)
algorithm for generating an authenticator of a message, and it is used when the
sender wants to transmit the message to the receiver via an insecure channel.
Auth takes a message m ∈ M and a key et ∈ Kt on input and outputs an au-
thenticator σ ∈ A, and we write σ = Auth(m, et) for it. Then, (m, σ) is called
an authenticated message, and it is sent from the sender to the receiver via the
insecure channel. On receiving (m, σ), the receiver can check the validity of it by
using the (deterministic) algorithm RVer. RVer takes an authenticated message
(m, σ) ∈ M × Σ and a key er ∈ Kr on input and outputs true or false, where

1 More precisely, we consider Cartesian A2-codes without splitting in this paper.
2 In the model of authentication codes, the term source state is traditionally used.

However, in this paper we use the term message to be consistent with the term in
the model of BA-codes.
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true is output if and only if (m, σ) is valid, and we write true = RVer(m, σ, er)
or false = RVer(m, σ, er) for it. In A2-codes, we do not need to assume that
the sender and the receiver are always trustworthy. Actually, if there occurs a
dispute between the sender and the receiver, the arbiter can resolve it by us-
ing the (deterministic) algorithm AVer. AVer takes an authenticated message
(m, σ) ∈ M × Σ and a key ea ∈ Ka on input and outputs true or false, where
true is output if and only if (m, σ) is valid, and we write true = AVer(m, σ, ea) or
false = AVer(m, σ, ea) for it. If there is a dispute between the sender and the re-
ceiver about whether or not (m, σ) is legally generated by the sender, the arbiter
judges the validity of (m, σ) following the resolution-rule as follows: The arbiter
judges that (m, σ) is valid if and only if AVer(m, σ, ea) = true.In the above, we as-
sume that RVer(m,Auth(m, et), er) = true and AVer(m,Auth(m, et), ea) = true
for all possible m ∈ M , et ∈ Kt, er ∈ Kr and ea ∈ Ka. In A2-codes, the arbiter
is assumed to be fully trusted, namely, the arbiter does follow the protocol and
does not do any attacks against the sender and the receiver. The security of
A2-codes is formally defined as follows.

Definition 1. Let Λ be an A2-code. Then, Λ is said to be ε-secure if
max{PΛ,I , PΛ,S , PΛ,RI , PΛ,RS , PΛ,D} ≤ ε, where PΛ,I , PΛ,S , PΛ,RI , PΛ,RS , PΛ,D

are defined as follows.

1. Impersonation. In this attack, the opponent tries to create a fraudulent au-
thenticated message that has not been legally generated by the sender but will
be accepted by the receiver. The success probability of this attack is defined
by

PΛ,I := max
(m,σ)

Pr(Receiver accepts (m, σ)),

where the probability is over random choices of Gen, and the maximum is
taken over all possible authenticated messages (m, σ) ∈ M ×Σ.

2. Substitution. In this attack, after observing a valid authenticated message
transmitted by the sender, the opponent tries to create a fraudulent authen-
ticated message that has not been legally generated by the sender but will be
accepted by the receiver. The success probability of this attack is defined by

PΛ,S := max
(m,σ)

max
(m′,σ′) �=(m,σ)

Pr(Receiver accepts (m′, σ′)|(m, σ)),

where the probability is over random choices of Gen, and the maximum is
taken over all possible authenticated messages (m, σ), (m′, σ′) ∈ M ×Σ with
(m′, σ′) �= (m, σ).

3. Receiver’s impersonation. In this attack, a dishonest receiver tries to
create a fraudulent authenticated message that has not been legally generated
by the sender but will be accepted by the arbiter. The success probability of
this attack is defined by

PΛ,RI := max
er

max
(m,σ)

Pr(Arbiter accepts (m, σ)|er),



122 Y. Hara et al.

where the probability is over random choices of Gen, and the maximum is
taken over: all possible receiver’s keys er ∈ Kr; and all possible authenticated
messages (m, σ) ∈ M ×Σ.

4. Receiver’s substitution. In this attack, after observing a valid authenti-
cated message transmitted by the sender, a dishonest receiver tries to create
a fraudulent authenticated message that has not been legally generated by
the sender but will be accepted by the arbiter. The success probability of this
attack is defined by

PΛ,RS := max
er

max
(m,σ)

max
(m′,σ′) �=(m,σ)

Pr(Arbiter accepts (m′, σ′)|er, (m, σ)),

where the probability is over random choices of Gen, and the maximum is
taken over: all possible receiver’s keys er ∈ Kr; and all possible authenticated
messages (m, σ), (m′, σ′) ∈ M ×Σ with (m′, σ′) �= (m, σ).

5. Sender’s denial attacks. In this attack, after sending an authenticated
message to the receiver, a dishonest sender tries to deny having sent it. In
other words, the dishonest sender tries to create an authenticated message
which will be accepted by the receiver, but not accepted by the arbiter. The
success probability of this attack is defined by

PΛ,D := max
et

max
(m,σ)

Pr(Receiver accepts (m, σ) ∧ Arbiter rejects (m, σ)|et),

where the probability is over random choices of Gen, and the maximum is
taken over: all possible sender’s keys et ∈ Kt; and all possible invalid au-
thenticated messages (m, σ) ∈ M ×Σ.

3 The Model and Security Definitions

In this section, we show a model of an unconditionally secure blind authentica-
tion code (BA-code for short) which is an unconditionally secure authentication
code with anonymity of messages whose function is similar to that of blind sig-
natures. We can consider BA-code as a weaker model of USBS on the point
that BA-code does not provide transferability which USBS has. That is, USBS
allows the user who received a signature to transfer it to another user, while in
BA-codes, only the designated entity can verify the validity of an authenticated
message. This difference between the BA-codes and the USBS is similar to that
of unconditionally secure authentication codes and signature schemes. In the
following, we define a model and security notions of BA-codes.

We assume that there is a trusted party called a trusted initializer and denoted
by TI. In BA-codes, there are four entities, a signer S, a user U , a verifier V
and TI, and we assume that the verifier V is honest in the model. TI generates
secret keys on behalf of S, U and V . After distributing these secret keys via
a secure channel, TI deletes them from his/her memory. Then, the protocol is
executed as follows. Once being given a secret key from TI, a user generates a
blinded message for a message not to reveal the message to the signer by using
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his/her key. Then, the user sends the blinded message to the signer. On receiving
a blinded message from the user, the signer generates an authenticator for the
blinded message by his/her key, and sends it back to the user. On receiving an
authenticator for a blinded message from the signer, the user can then create
an authenticator for the original message by using his/her key from the received
authenticator created by the signer, and a pair of the message and authenticator
is regarded as an authenticated message. Next, the user verifies the validity of
the authenticated message by using his/her key. If the authenticated message is
verified as valid, the user sends it to the verifier. On receiving an authenticated
message from the user, the verifier verifies the validity of it by using his/her key.
For simplicity, we consider a one-time model of BA-codes, in which the signer is
allowed to generate and transmit an authenticated message only once, and each
of the user and the verifier is allowed to verify an authenticated message only
once3. A formal definition is given as follows.

Definition 2 (BA-codes). A blind authentication code (BA-code for short) Π
involves four entities, TI, S, U and V , and consists of a six-tuple of algorithms
(Gen, Blind, Sign, Unblind, UVer, VVer) with seven spaces, M , M∗, Σ, Σ∗,
Es, Eu and Ev. In addition, Π is executed with six phases as follows.

– Notation :
- TI is a trusted initializer.
- S is a signer, U is a user, and V is a verifier.
- M is a finite set of possible messages.
- M∗ is a finite set of possible blinded messages.
- Σ is a finite set of possible authenticators for messages.
- Σ∗ is a finite set of possible authenticators for blinded messages.
- Es is a finite set of possible signer’s secret keys.
- Eu is a finite set of possible user’s secret keys.
- Ev is a finite set of possible verifier’s secret keys.
- Gen is a key generation algorithm which on input a security parameter,

outputs a signer’s secret key, users’ secret key and verifier’s secret key.
- Blind : M × Eu → M∗ is a (deterministic) blinding algorithm.
- Sign : M∗ × Es → Σ∗ is a (deterministic) signing algorithm.
- Unblind : Σ∗ × Eu → Σ is a (deterministic) unblinding algorithm.
- UVer : M × Σ × Eu → {true, false} is a (deterministic) verification

algorithm by the user.
- VVer : M × Σ × Ev → {true, false} is a (deterministic) verification

algorithm by the verifier.
3 We can consider a more general setting: the number up to which the signer is allowed

to generate authenticated messages is more than one; and the number up to which
each of the user and verifier is allowed to verify the validity of authenticated messages
is more than one. We can also consider a model which includes multiple users and
verifiers (for example, see [11]). However, the one-time model of BA-codes is simplest
among these models in terms of the number of entities and the numbers of generating
and verifying authenticated messages. Therefore, we focus on the model since our
purpose is to study a simple model as mentioned in Section 1.3.
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1. Key Generation and Distribution by TI. TI generates secret keys es ∈
Es, eu ∈ Eu and ev ∈ Ev for the signer S, the user U and the verifier V ,
respectively, by using Gen. After distributing these secret keys via a secure
channel, TI deletes them from his/her memory. S, U and V keep their secret
keys secret, respectively.

2. Blinding. For a message m ∈ M , the user U generates a blinded message
m∗ = Blind(m, eu) ∈ M∗ by using his/her key eu not to reveal the message
m to the signer S. Then, U sends m∗ to S.

3. Authenticator Generation. On receiving m∗ from U , the signer S gen-
erates an authenticator σ∗ = Sign(m∗, es) ∈ Σ∗ for the blinded message m∗

by using his/her key es. Then, S sends σ∗ to U .
4. Unblinding. On receiving an authenticator σ∗ of m∗ from S, the user U can

create an authenticator σ = Unblind(σ∗, eu) ∈ Σ for the original message m
by using his/her key eu. Then, the pair (m, σ) is regarded as an authenticated
message.

5. Authenticated Message Verification by User. On generating (m, σ)
from (m∗, σ∗), the user U verifies the validity of σ for m by using his/her
secret key eu. More precisely, if UVer(m, σ, eu) = true then U accepts (m, σ)
as valid, and rejects it otherwise. If (m, σ) is verified as valid, the pair (m, σ)
is regarded as a legal authenticated message and U transmits (m, σ) to the
verifier V .

6. Authenticated Message Verification by Verifier. On receiving (m, σ)
from U , the verifier V verifies the validity of (m, σ) by using his/her secret
key ev. More precisely, if VVer(m, σ, ev) = true then V accepts (m, σ) as
valid, and rejects it otherwise.

In the above definition, we require that, for all possible eu ∈ Eu, es ∈ Es,
ev ∈ Ev, and m ∈ M , UVer(m,Unblind(Sign(Blind(m, eu), es), eu), eu) = true
and VVer(m,Unblind(Sign(Blind(m, eu), es), eu), ev) = true.

We next provide security notions and their formalization of BA-codes in the
one-time model. We do not consider any attack by the verifier since he/she is
assumed to be honest in the model. Also, we assume that the adversary, who
may be a dishonest signer or a dishonest user, does not collude with any other
entity. A formal definition is given as follows.

Definition 3 (Security of BA-codes). Let Π be a BA-code. Then, Π is said
to be one-time ε-secure if max{PΠ,F , PΠ,D, PΠ,B} ≤ ε, where PΠ,F , PΠ,D, PΠ,B

are defined as follows.

1. Unconditional unforgeability. The notion of unconditional unforgeability
means that it is difficult for a dishonest user U to perform impersonation
and substitution by creating a fraudulent authenticated message. In imper-
sonation, U tries to create a fraudulent authenticated message that has not
been legally generated by the signer S but will be accepted by a verifier V . In
addition, in substitution, to do so U is allowed to observe a valid authenti-
cated message transmitted by S. Success probabilities of impersonation and
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substitution denoted by PFI and PFS , respectively, are defined as follows.
1-1) Success probability of impersonation: we define PΠ,FI as

PΠ,FI := max
eu

max
(m,σ)

Pr(V accepts (m, σ)|eu),

where the probability is over random choices of Gen, and the maximum is
taken over: all possible user’s keys eu ∈ Eu; and all possible authenticated
messages (m, σ) ∈ M ×Σ.

1-2) Success probability of substitution: we define PΠ,FS as

PΠ,FS := max
eu

max
(m,σ)

max
(m∗,σ∗)

max
(m′,σ′) �=(m,σ)

Pr(V accepts (m′, σ′)|eu, (m, σ), (m∗, σ∗)),

where the probability is over random choices of Gen, and the maximum is
taken over: all possible user’s keys eu ∈ Eu; all possible authenticated mes-
sages (m, σ), (m′, σ′) ∈ M ×Σ with (m, σ) �= (m′, σ′); and all possible pairs
of blinded messages and authenticators (m∗, σ∗) ∈ M∗ ×Σ∗.
We define PΠ,F as PΠ,F := max{PΠ,FI , PΠ,FS}.

2. Unconditional undeniability. The notion of unconditional undeniability
means that it is difficult for a dishonest signer S to create an illegal authen-
ticated message such that a user U will accept it, but a verifier V rejects it.
The purpose of this attack is to deny having sent the authenticated message.
The probability of succeeding in this attack, denoted by PΠ,D, is defined as

PΠ,D := max
es

max
m∗ max

(m,σ)
Pr(U accepts (m, σ) ∧ V rejects (m, σ)|es, m

∗),

where the probability is over random choices of Gen, and the maximum is
taken over: all possible signer’s keys es ∈ Es; all possible blinded messages
m∗ ∈ M∗; and all possible invalid authenticated messages (m, σ) ∈ M ×Σ.

3. Unconditional blindness. The notion of unconditional blindness means
that it is difficult for a dishonest signer S to obtain information on the
original message from its blinded message. The probability of succeeding in
this attack, denoted by PΠ,B , is defined as

PΠ,B := max
es

max
m∗ {

∑
m∈M

|Pr(m|es, m
∗)− Pr(m)|}

where the probability is over random choices of Gen, the summation is over
all possible messages m ∈ M , and the maximum is taken over: all possible
signer’s keys es ∈ Es; and all possible blinded messages m∗ ∈ M∗.

4 Construction

In this section, we propose two kinds of constructions of BA-codes: direct and
generic constructions. In our constructions, an authenticator of a blinded mes-
sage is equal to that of an original message, hence the algorithm Unblind is
trivial.
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4.1 Direct Construction

We provide a direct construction to obtain one-time secure BA-codes in our
model.

1. Key Generation Algorithm: For a security parameter 1k, the algorithm
Gen outputs matching key for each of S, U and V as follows. It picks k-bit
prime power q, and constructs the finite field Fq with q elements. It picks two
elements vu and vv from Fq uniformly at random for U and V , respectively.
It also chooses a polynomial Cα(z) := z + α by picking α ∈ Fq uniformly at
random. In addition, it chooses uniformly at random a polynomial G(y, z) :=∑2

i=0
∑1

j=0 gijy
izj over Fq. Then, the algorithm Gen outputs keys es :=

G(y, z), eu := (G(vu, z), vu, Cα(z)) and ev := (G(vv , Cα(z)), vv) for S, U
and V , respectively.

We consider the case where M ⊂ Fq .

2. Blinding Algorithm: For a message m ∈ Fq and eu ∈ Eu, the algorithm
Blind computes m∗ = Cα(m)(= m+α) ∈ M∗ and outputs m∗ as the blinded
message for m.

3. Signing Algorithm: For a blinded message m∗ and es ∈ Es, the algo-
rithm Sign computes β(y) := G(y, z)|z=m∗ and outputs σ∗ := β(y) as the
authenticator for m∗.

4. Unblinding Algorithm: For an authenticator σ∗ of a blinded message m∗

and eu ∈ Eu, the algorithm Unblind outputs σ := σ∗.
5. Verification Algorithm by User: For an authenticator σ(= β(y)), a blind

message m∗ and eu ∈ Eu, the algorithm UVer outputs true if β(y)|y=vu =
G(vu, z)|z=m∗ holds, and otherwise outputs false.

6. Verification Algorithm by Verifier: For an authenticator σ(= β(y)), a
message m and ev ∈ Ev, the algorithm VVer outputs true if β(y)|y=vv =
G(vv, Cα(z))|z=m holds, and otherwise outputs false.

In the above construction, it is easily seen that, for all possible eu ∈ Eu, es ∈
Es, ev ∈ Ev and m ∈ M , UVer(m,Unblind(Sign(Blind(m, eu), es), eu), eu) =
true and VVer(m,Unblind(Sign(Blind(m, eu), es), eu), ev) = true hold. The se-
curity of the above construction follows from the following theorem.

Theorem 1. The resulting BA-code by the above construction is one-time 2
q -

secure.

Proof. First, we show PB = 0. To guess m from m∗, a dishonest signer tries
to get user’s secret information Cα(z) = z + α and he/she attempts to guess
α ∈ Fq from his/her information. However, by the construction the signer has
no information about α, hence Pr(m|es, m

∗) = Pr(m), and we have PB = 0.
Second, we show PD ≤ 2

q . Suppose that m∗ is sent from U to S, and let
β(y) := G(y, z)|z=m∗ be a valid authenticator of m∗. For succeeding in creating
an authenticated message (m, σ) such that U accepts it and V rejects it, the
dishonest signer tries to find and send U a polynomial β′(y), as σ∗, that satisfies
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the following conditions: β′(y)|y=vu = G(vu, z)|z=m∗ (i.e., the case that U accepts
β′(y)) and β′(y)|y=vv �= G(vv, Cα(z))|z=m (i.e., the case that V rejects β′(y)).
In order to satisfy the conditions, it is necessary that β′(y) �= β(y), since β(y)
will be accepted by V . We write β(y) and β(y)′ in the form

β(y) = b0 + b1y + b2y
2, β(y)′ = b′0 + b′1y + b′2y

2,

(b0, b1, b2) �= (b′0, b
′
1, b

′
2) (bi, b

′
i ∈ Fq).

Set u := (1, vu, v2
u) and b := (b0 − b′0, b1 − b′1, b2 − b′2), then it is seen that β(y)′

is accepted by U iff

b · u = 0 (b ∈ F 3
q , b �= (0, 0, 0)). (1)

Thus, the best strategy that the dishonest signer will take is at least to find
b ∈ F 3

q which satisfies (1). Since vu is chosen uniformly at random from Fq, we
have

PD ≤ max
b

|{vu ∈ Fq|b · u = 0}|
|Fq|

=
2
q
.

Finally, we show PF ≤ 2
q . We first evaluate PFS . In substitution, the informa-

tion which a dishonest user U can use are vu, G(vu, z), α and G(y, m + α). We
can write G(y, z) in the form

G(y, z) =
(
1 y y2

)
G̃

(
1
z

)
, G̃ =

⎛
⎝g00 g01

g10 g11
g20 g21

⎞
⎠

where gij (i = 0, 1, 2, j = 0, 1) are chosen uniformly at random in Fq. Therefore,
the information U can use are: vu, α, and matrices C, D such that

C =
(
1 vu v2

u

)
G̃, D = G̃

(
1

m + α

)
. (2)

Let v := (1, vv, v
2
v), and let R be the vector space over Fq generated by u =

(1, vu, v2
u), i.e. R = 〈u〉 ⊂ F 3

q . Now, we show the following lemma.

Lemma 1. Let (m′, σ′) be an arbitrary authenticated message with m′ �= m,
where σ′ = γ(y) is a polynomial in y. If v �∈ R, we have

|{G(vv, z)|G̃ satisfies (2) and G(vv, Cα(m′)) = γ(vv)}|
|{G(vv, z)|G̃ satisfies (2)}|

=
1
q
. (3)

Proof. First, we consider the following special case of (2): C = O and D =
O. In this case, let Γ0 be the set of solutions of the equations (2), i.e., Γ0 :=
{G̃|G̃ satisfies (2) in the case of C = O and D = O}. Then, Γ0 is a vector space
over Fq such that dim Γ0 ≥ 1.
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We next consider a general case of (2). Let G̃0 be a solution of (2). Then, it
is seen that the set of solutions of (2) is

Γ := Γ0 + G̃0 = {G̃ + G̃0|G̃ satisfies (2) in the case of C = O and D = O}.

We now define mappings Φv, Φv,m′ and Φ as follows.

Φv : Γ −→ {G(vv, z)|G̃ satisfies (2)}, Φv(G̃) = vG̃,

Φv,m′ : {G(vv, z)|G̃ satisfies (2)} −→ Fq, Φv,m′(vG̃) = vG̃

(
1

m′ + α

)
,

Φ : Γ −→ Fq, Φ = Φv,m′ ◦ Φv.

Then, it is seen that Φv, Φv,m′ and Φ are surjective, and that through them the
uniform distribution on Γ induces uniform distributions on the sets
{G(vv, z)|G̃ satisfies (2)} and Fq. Thus, from the above argument, (3) follows.
Therefore, the proof of this lemma is completed. ��

Now, we return to the proof of Theorem 1. For an arbitrary authenticated
message (m′, σ′) with m′ �= m, where σ′ = γ(y) is a polynomial in y, we have

Pr(V accepts (m′, σ′)|eu, (m, σ), (m∗, σ∗))

=
|{(vv, G(vv, Cα(z)))|G̃ satisfies (2) and G(vv, m′ + α) = γ(vv)}|

|{(vv, G(vv , Cα(z)))|G̃ satisfies (2)}|

=
|{(vv, G(vv, z))|G̃ satisfies (2) and G(vv, m′ + α) = γ(vv)}|

|{(vv, G(vv , z))|G̃ satisfies (2)}|

=

∑
vv
|{G(vv, z)|G̃ satisfies (2) and G(vv, m′ + α) = γ(vv)}|∑

vv
|{G(vv, z)|G̃ satisfies (2)}|

≤
∑

vv s.t. v∈R |{G(vv, z)| G̃ satisfies (2)}|∑
vv
|{G(vv, z)|G̃ satisfies (2)}|

+
1
q
·
∑

vv s.t. v �∈R |{G(vv, z)|G̃ satisfies (2)}|∑
vv
|{G(vv, z)|G̃ satisfies (2)}|

(4)

≤ 1
q

+
(

1− 1
q

)
· 1
q
, (5)

where (4) follows from Lemma 1, and (5) follows from the following:∑
vv
|{G(vv, z)|G̃ satisfies (2)}| ≥ q; and |{G(vv, z)|G̃ satisfies (2)}| = 1 if v ∈ R

(i.e., vv = vu). Thus, we have PFS ≤ 2
q . We can also prove PFI ≤ 2

q in a similar
way. Therefore, we have PF = max{PFI , PFS} ≤ 2

q . ��

The above construction can be modified slightly, resulting in yet another one-
time 1

q -secure BA-code.
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Theorem 2. In the above construction, the following modification produces a
one-time 1

q -secure BAcode: instead of choosing G(y, z) ∈ Fq[y, z] and vu, vv ∈ Fq

uniformly at random, the key generation algorithm Gen chooses Ĝ(y1, y2, z) :=∑2
i=0
∑1

j=0 gijyiz
j ∈ Fq[y1, y2, z], where y0 := 1, and vu1, vu2, vv1, vv2 ∈ Fq

uniformly at random such that vu := (1, vu1, vu2) and vv := (1, vv1, vv2) are
linearly independent over Fq; and then, Gen outputs keys es := Ĝ(y1, y2, z),
eu := (Ĝ(vu1, vu2, z),vu, Cα(z)) and ev := (Ĝ(vv1, vv2, Cα(z)),vv) for S, U and
V , respectively.

Proof. By a similar way of the proof of Theorem 1, we can show PB = 0, PD ≤ 1
q

and PF ≤ 1
q . ��

We call the above first and second constructions Constructions 1 and 2, respec-
tively, and summarize key sizes of the constructions in Table 1. From Table 1,
it is observed that Construction 1 is superior to Construction 2 in terms of key
sizes of eu and ev, however, the latter has advantage over the former in key size
of es.

Table 1. The key sizes [bits] of our direct constructions for ε-secure BA-codes

The length of The length of The length of
signer’s key es user’s key eu verifier’s key ev

Construction 1 6(log ε−1 + 1) 4(log ε−1 + 1) 3(log ε−1 + 1)
Construction 2 6 log ε−1 5 log ε−1 4 log ε−1

4.2 Generic Construction

We propose a generic construction (i.e., a black box construction) of one-time
secure BA-codes by using unconditionally secure encryption and A2-codes.

Let Π be an encryption scheme specified by (GenΠ ,EncΠ ,DecΠ), and let Λ
be an A2-code specified by (GenΛ,AuthΛ,RVerΛ,AVerΛ). Then, a BA-code Π̃
specified by (Gen, Blind, Sign, Unblind, UVer, VVer) can be constructed by
using Π and Λ as follows.

1. Key Generation Algorithm: For a security parameter 1k, the algorithm
Gen calls GenΠ and GenΛ with input 1k. Let e be a secret key output
by GenΠ . Also, let et, er, and ea be keys for a sender, a receiver, and an
arbiter, respectively, output by GenΛ. Then, the algorithm Gen outputs keys
es := et, eu := (e, er) and ev := (e, ea) for U , S and V , respectively.

2. Blinding Algorithm: For a message m and the key eu = (e, er), the al-
gorithm Blind computes m∗ = EncΠ(m, e) and outputs m∗ as a blinded
message for the message m.

3. Signing Algorithm: For a blinded message m∗ and es = et, the algorithm
Sign computes σ∗ = AuthΛ(m∗, et) and outputs σ∗ as an authenticator of m∗.

4. Unblinding Algorithm: For an authenticator σ∗ of a blinded message m∗

and eu ∈ Eu, the algorithm Unblind outputs σ := σ∗.
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5. Verification Algorithm by User: For an authenticated message (m, σ),
and his/her key eu = (e, er), the algorithm UVer outputs false if
RVerΛ(EncΠ(m, e), σ, er) = false holds. If RVerΛ(EncΠ(m, e), σ, er) = true,
then the algorithm UVer outputs true to imply that (m, σ) is a valid authen-
ticated message.

6. Verification Algorithm by Verifier: For an authenticated message (m, σ)
and his/her key ev = (e, ea), the algorithm VVer outputs false if
AVerΛ(EncΠ(m, e), σ, ea) = false holds. If AVerΛ(EncΠ(m, e), σ, ea) = true,
then the algorithm VVer outputs true to imply that (m, σ) is a valid authen-
ticated message.

In the above construction, it is easily seen that, for all possible eu ∈ Eu, es ∈ Es,
ev ∈ Ev and m ∈ M , UVer(m,Unblind(Sign(Blind(m, eu), es), eu), eu) = true
and VVer(m,Unblind(Sign(Blind(m, eu), es), eu), ev) = true hold. The security
of the above generic construction is shown as follows.

Theorem 3. Suppose that the encryption scheme Π is ε1-secure and the A2-
code Λ is ε2-secure. Then, the BA-code Π̃ resulting from the above construction
using Π and Λ is one-time ε-secure, where ε = max{ε1, ε2}.

Proof. First, we evaluate PΠ̃,F . For the probabilities PΠ̃,FI
and PΠ̃,FS

, we have

PΠ̃,FI
= max

eu

max
(m,σ)

Pr(V accepts (m, σ)|eu)

= max
er

max
e

max
(m,σ)

Pr(V accepts (m, σ)|er, e)

≤ max
er

max
(m∗,σ∗)

Pr(V accepts (m∗, σ∗)|er)

≤ PΛ,RI ≤ ε2,

PΠ̃,FS
= max

eu

max
(m1,σ1)

max
(m∗

1 ,σ∗
1 )

max
(m2,σ2) �=(m1,σ2)

Pr(V accepts (m2, σ2)|eu, (m1, σ1), (m∗
1, σ

∗
1))

= max
er

max
e

max
(m1,σ1)

max
(m∗

1 ,σ∗
1 )

max
(m2,σ2) �=(m1,σ1)

Pr(V accepts (m2, σ2)|er, e, (m1, σ1), (m∗
1, σ

∗
1))

≤ max
er

max
(m∗

1 ,σ∗
1 )

max
(m∗

2 ,σ∗
2 ) �=(m∗

1,σ∗
1 )

Pr(V accepts (m∗
2, σ

∗
2)|er, (m∗

1, σ
∗
1))

≤ PΛ,RS ≤ ε2.

Thus, we have PΠ̃,F = max{PΠ̃,FI
, PΠ̃,FS

} ≤ ε2.
Second, we evaluate PΠ̃,D. For the probability PΠ̃,D, we have

PΠ̃,D = max
es

max
m∗ max

(m,σ)
Pr(U accepts (m, σ) ∧ V rejects (m, σ)|es, m

∗)

≤ max
et

max
(m∗,σ∗)

Pr(U accepts (m∗, σ∗) ∧ V rejects (m∗, σ∗)|et)

≤ PΛ,D ≤ ε2.
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Finally, we evaluate PΠ̃,B. For the probability PΠ̃,B, we have

PΠ̃,B = max
es

max
m∗

∑
m∈M

|Pr(m|es, m
∗)− Pr(m)|

= max
et

max
m∗

∑
m∈M

|Pr(m|et, m
∗)− Pr(m)|

= max
m∗

∑
m∈M

|Pr(m|m∗)− Pr(m)|

≤ PΠ ≤ ε1.

From the above arguments, we have max{PΠ̃,F , PΠ̃,D, PΠ̃,B} ≤ max{ε1, ε2}.
��

5 Links between BA-codes and Commitment

5.1 The Model of Unconditionally Secure Commitment

The commitment protocol, one of fundamental primitives in cryptography, was
first introduced by Blum [4]. In this protocol, there are two entities: a sender
(Alice) and a receiver (Bob). The protocol consists of two phases called the
commit phase and the reveal phase. Alice has a secret message m to which she
commits in the commit phase, but Bob learns nothing about m during this
phase. Later, Alice discloses m in the reveal phase. Bob can reject the message
which Alice reveals if it is inconsistent with the information which he received
during the commit phase. Specifically, the commitment protocol should satisfy
the following requirements:

– Correctness: If both players are honest, namely, they follow the protocol as
specified, then at the end of the reveal phase Bob will correctly learn the
message m to which Alice wished to commit.

– Concealing (Hiding): Bob learns nothing about m during the commit phase.
– Binding: After the commit phase, there is only one message m which Bob

will accept in the reveal phase (i.e., after the commit phase Alice cannot
change her mind regarding the message to which she committed before).

We now consider the unconditionally secure commitment in the TI model4.
In the TI model, Rivest first proposed how to construct a commitment protocol
in [25]. In [5], Blundo et al. presented a formal model for unconditionally secure
commitment schemes in the TI model. It should be noted that their model is
that of unconditionally secure non-interactive commitment in the sense that the
number of communication between Alice and Bob in each of the commit phase
and the reveal phase is only one. In addition, in [5, 20], several constructions
of unconditionally secure non-interactive commitment are presented. However,
we are interested in a more general model of unconditionally secure commit-
ment which includes interactive commitment schemes, since our protocol will be
4 In this paper, we only consider the one-time commitment.
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interactive in the sense that the commit phase requires three rounds of com-
munication between Alice and Bob, though the reveal phase requires only one
transmission from Alice to Bob. Thus, we slightly generalize the model in [5] so
that it captures our interactive commitment protocol.

Definition 4 (Commitment). A commitment protocol Π̃ involves three enti-
ties, Ted (a trusted initializer), Alice (a sender) and Bob (a receiver), and con-
sists of three phases, the setup phase, the commit phase and the reveal phase,
as follows.

– Notation :
- M is a finite set of possible messages which Alice may want to commit

to Bob.
- EA is a finite set of possible Alice’s secret keys.
- EB is a finite set of possible Bob’s secret keys.
- SA is a finite set of possible states which Alice obtains at the end of the

commit phase.
- SB is a finite set of possible states which Bob obtains at the end of the

commit phase.
- R is a finite set of possible states which can be sent from Alice to Bob in

the reveal phase.
- 〈A, B〉com : M × EA × EB → SA × SB is an algorithm which computes

possible states obtained by Alice and Bob respectively at the end of the
commit phase.

- frev : M ×EA × SA → R is a deterministic algorithm used in the reveal
phase.

- Test : M × SB × R × EB → {true, false} is a deterministic checking
algorithm used in the reveal phase.

1. Setup phase. Ted randomly generates secret keys eA ∈ EA and eB ∈ EB

for Alice and Bob, respectively. After distributing eA and eB to Alice and
Bob, respectively, via a secure channel, Ted deletes them from his memory.
After that, Ted becomes inactive. Also, Alice and Bob keep their secret keys
secret, respectively.

2. Commit phase. Alice chooses a message m ∈ M which she wants to commit
to. Alice and Bob interact with each other, where Alice’s input is m and
eA, and Bob’s input is eB. At the end of this phase, Alice obtains some
information sA ∈ SA and Bob obtains some information sB ∈ SB, where
(sA, sB) = 〈A, B〉com (m, eA, eB).

3. Reveal phase. On inputting a message m, a secret key eA and infor-
mation sA, Alice computes the value r = frev(m, eA, sA). And she sends
(m, r) to Bob. On receiving (m, r) from Alice, Bob accepts m if and only if
Test(m, sB, r, eB) = true.

We now define security of commitment as follows.
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Definition 5 (Security). Let Π̃ be a commitment protocol. Π̃ is said to be
(ε1, ε2)-secure if AdvΠ̃,B∗ ≤ ε1 and AdvΠ̃,A∗ ≤ ε2, where AdvΠ̃,A∗ and AdvΠ̃,B∗

are defined as follows.

1. Concealing (Hiding). We define

AdvΠ̃,B∗ = max
eB∈EB

max
sB∈SB

∑
m∈M

|Pr(m|eB, sB)− Pr(m)| ,

where the summation is taken over all possible messages m ∈ M , and the
maximum is taken over all possible Bob’s keys eB ∈ EB and information
sB ∈ SB obtained by communicating with (honest) Alice.

2. Binding. For any m ∈ M , sB ∈ SB, r ∈ R, we define

accept(m, sB, r) := {eB | Test(m, sB, r, eB) = true}.

Also, for any m, m′ ∈ M with m �= m′, eA ∈ EA, sA ∈ SA, r ∈ R, and any
sB ∈ SB such that it is possible output of 〈A, B〉com when given m, eA and
sA, we define

cheat(eA, sA; sB; m, m′, r) :=
∑

eB∈accept(m′,sB ,r)

Pr(eB|eA, sA).

Furthermore, we define

AdvΠ̃,A∗ := max
eA∈EA

max
m∈M

max
sA∈SA

max
sB∈SB

max
m′( �=m)∈M

max
r∈R

cheat(eA, sA; sB; m, m′, r),

where the maximum is taken over all possible Alice’s keys eA ∈ EA, all
possible messages m, m′ ∈ M with m′ �= m, all possible information sA ∈
SA obtained by communicating with (honest) Bob, all possible information
sB ∈ SB output by 〈A, B〉com when given m, eA and sA, and all possible
states r ∈ R.

We briefly explain the meaning of formalization in the above definition. In the
notion of concealing, the advantage of dishonest Bob (denoted by the symbol B∗)
is formalized by AdvΠ̃,B∗ , and it means the difference between the following two
probabilities: the probability that B∗ randomly guesses a message which Alice
committed to; and the probability that B∗ guesses it after observing information
eB and sB. If AdvΠ̃,B∗ is extremely small, it implies that dishonest Bob cannot
obtain information on the message to which Alice committed with more signif-
icant probability than random guessing at the end of the commit phase. In the
notion of binding, the advantage of dishonest Alice (denoted by the symbol A∗)
is formalized by AdvΠ̃,A∗ , and it means the success probability that dishonest
Alice cheats Bob into accepting a message m′ which is different from m which
she committed to before. If AdvΠ̃,A∗ is extremely small, it means that it is not
possible to do such a cheating. We note that the above security definition is very
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similar to that in [5], though the formalization of the notion of concealing is
different from that of [5]5. However, we use it in the following, since it is use-
ful to show the security proof of our protocol and it may be intuitively easy to
understand the meaning that Bob obtains nothing about m during the commit
phase.

5.2 Generic Construction of Interactive Commitment from
BA-codes

Let Π be a BA-code specified by five-tuple algorithms (GenΠ , BlindΠ , SignΠ ,
UnblindΠ , UVerΠ , VVerΠ). Then, a commitment protocol Π̃ is constructed as
follows.

– Setup phase. Ted calls GenΠ and generates keys (es, eu, ev). He next
chooses two random strings ev1 and ev2 such that ev = ev1 ⊕ ev2. Then,
let eA := (eu, ev1) and eB := (es, ev2). He sends eA and eB to Alice and
Bob, respectively, in a secure way. After that, he deletes all information on
eA and eB.

– Commit phase. Alice chooses a message m. For the message m and her key
eA, she computes m∗ = BlindΠ(m, eu), and sends it to Bob. On receiving m∗,
Bob computes σ∗ = SignΠ(m∗, es) using his key eB, and sends it to Alice.
Then, Alice obtains an authenticator σ of the original message by using
the algorithm UnblindΠ and her key eu. If (m, σ) is a valid authenticated
message (i.e., UVerΠ(m, σ, eu) = true), this phase is successfully completed.
Otherwise (i.e., UVerΠ(m, σ, eu) = false), Alice aborts the protocol.

– Reveal phase. Alice sends (m, σ, eA) to Bob. On receiving (m, σ, eA), Bob
checks if σ = UnblindΠ(σ∗, eu) holds. If it holds, he computes ev = ev1⊕ ev2
and next checks the validity of (m, σ) by using the key ev. If (m, σ) is valid
(i.e., VVerΠ(m, σ, ev) = true), he accepts it with understanding that m is a
message which Alice committed to. Otherwise, he rejects it.

The security of the above construction is shown as follows.

Theorem 4. Suppose that Π is a BA-code with PΠ,F ≤ εF , PΠ,D ≤ εD and
PΠ,B ≤ εB. Then, the protocol Π̃ obtained by the above construction using Π is
an (εB, εF )-secure interactive commitment protocol.

Proof. We first evaluate AdvΠ̃,B∗ . From the construction, we have

AdvΠ̃,B∗ = max
eB∈EB

max
sB∈SB

∑
m∈M

|Pr(m|eB , sB)− Pr(m)|

= max
es

max
ev2

max
m∗∈M∗

∑
m∈M

|Pr(m|es, ev2, m
∗)− Pr(m)|

= max
es

max
m∗∈M∗

∑
m∈M

|Pr(m|es, m
∗)− Pr(m)|

= PΠ,B ≤ εB.

5 Intuitively, in [5] the formalization of the notion of concealing only means that Bob
cannot rule out any possible values of m before the reveal phase is performed.
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We next evaluate AdvΠ̃,A∗ . For any possible m, m′(�= m), eA, sA, sB and
r = (σ′, e′A

6), we have

cheat(eA, sA; sB; m, m′, r)

=
∑

eB∈accept(m′,sB ,r)

Pr(eB|eA, sA)

≤
∑

(es,ev2)

Pr((es, ev2)|(eu, ev1), (m, σ), (m∗, σ∗)), (6)

≤
∑
ev2

Pr(ev2|(eu, ev1), (m, σ), (m∗, σ∗)), (7)

=
∑
ev

Pr(ev|eu, (m, σ), (m∗, σ∗)), (8)

≤ max
eu

max
(m,σ)

max
(m∗,σ∗)

max
(m′,σ′) �=(m,σ)

Pr(Bob accepts (m′, σ′)|eu, (m, σ), (m∗, σ∗))

= PΠ,FS ≤ PΠ,F

where the summation in (6) is taken over all possible (es, ev2) such that Bob
accepts (m′, σ′) by using (es, ev2); the summation in (7) is taken over all possible
ev2 such that Bob accepts (m′, σ′) by using ev2; the summation in (8) is taken
over all possible ev such that Bob accepts (m′, σ′) by using ev, and (8) follows
from the construction ev = ev1 ⊕ ev2. Thus, we have AdvΠ̃,A∗ ≤ PΠ,F ≤ εF . ��

6 Concluding Remarks

In this paper, we proposed BA-codes which were authentication codes with
anonymity of messages in the unconditional security setting. Actually, the BA-
code is a simple information-theoretic model of an authentication code whose
function is similar to that of blind signature schemes. In addition, we provided
two kinds of constructions of BA-codes: direct constructions based on polyno-
mials over finite fields; and a generic construction starting from unconditionally
secure encryption and A2-codes. Furthermore, we have shown that uncondi-
tionally secure interactive commitment can be constructed from BA-codes in a
black-box way.

Although we only considered the one-time model of BA-codes in this paper, it
would be interesting to extend our results in more general settings. In addition,
though we gave constructions of BA-codes, it is not yet shown what is the optimal
construction in terms of key-sizes of entities (in particular, the key-size of eu).
Therefore, it would be interesting to investigate tight lower bounds of key-sizes
and optimal constructions of BA-codes.

6 e′A may be different from eA.
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Abstract. Identity-based encryption is a very convenient tool to avoid
key management. Recipient-privacy is also a major concern nowadays. To
combine both, anonymous identity-based encryption has been proposed.
This paper extends this notion to stronger adversaries (the authority
itself). We discuss this new notion, together with a new kind of non-
malleability with respect to the identity, for several existing schemes.
Interestingly enough, such a new anonymity property has an independent
application to password-authenticated key exchange. We thus come up
with a new generic framework for password-authenticated key exchange,
and a concrete construction based on pairings.

1 Introduction

Motivation. The idea of using identities instead of public keys in order to
avoid the (costly) use of certificates comes from Shamir [19]. He indeed sug-
gested Identity-based Encryption (IBE), that would allow a user to encrypt a
message using any string, that would specify the recipient, as encryption pa-
rameter, such that this recipient only can decrypt the ciphertext. Identity-based
cryptography thus provides this interesting feature that one does not need au-
thenticated public keys. Key managament is made simpler. Note however that
a drawback is an authority that is required to generate the private keys for the
users, according to their identities. This authority thus has the ability to decrypt
any ciphertext. Privacy cannot be achieved with respect to this authority. Nev-
ertheless, privacy of the plaintext is not the unique goal in cryptography, with
encryption schemes. Privacy of the recipient may also be a requirement. Such
a key-privacy notion has already been defined in the public-key setting in [3].
It has more recently been extended to the identity-based setting in [1], under
the notion of anonymity. However, the security model in this IBE setting still
trusts the authority. Whereas trusting the authority is intrinsic for privacy of the
plaintext, it is not for the privacy of the recipient: a stronger anonymity notion
is possible, with respect to the authority, but is it achievable for practical IBE?

For efficiency reasons, the use of Key Encapsulation Mechanisms KEM have
been shown as a preferable approach [21]. It consists in generating an ephemeral
key and an encrypted version of the latter. The ephemeral key is thereafter used
with a Data Encryption Method DEM to encrypt the message. In such a con-
text, we are interested in the semantic security of the ephemeral key, and the

V. Cortier et al. (Eds.): Formal to Practical Security, LNCS 5458, pp. 138–157, 2009.
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anonymity of the recipient. In the identity-based context, Bentahar et al. [7] de-
fined Identity-based Key Encapsulation Mechanisms IB-KEM. An anonymity
notion with respect to the authority would then be an interesting feature. Inter-
estingly enough, this notion of anonymity with respect to the authority might
have side applications. One of them is PAKE [6], for password-authenticated key
exchange. Such a protocol allows two players to establish a private channel, us-
ing a short secret as a sole authentication means. The latter is thus subject to
exhaustive search, but such a short secret is very convenient for human beings.
Related Work. The idea of identity-based encryption is due to Shamir [19], in
1984. The first goal was to simplify public key management. However, the first
practical solutions appeared in 2001 only [10,15]. Thereafter, many schemes have
been proposed, based on pairing, factoring and lattices. Since such schemes were
dealing with encryption, the main security notion was the semantic security [17].

Even if recipient-anonymity had already been addressed for public-key en-
cryption [3] in 2001, anonymity for IBE has been proposed recently by Abdalla
et al. [1], but as a simple extension of the previous public-key setting definition.
In 2006, Gentry [16] and Boyen and Waters [12] presented the first anonymous
IBE schemes without random oracles.
Our contributions. As already noticed in [1], anonymity might have some
side applications to searchable encryption. In this paper, we deal with anonymity
for IB-KEM, even with respect to the authority, the so-called Key Anonymity
with respect to the Authority and denoted KwrtA-Anonymity: we first provide a
formal security model, and then we discuss this security notion with existing
schemes. We also consider a new non-malleability notion for the identity, that
we call identity-based non-malleability: if one encrypts a message (or a key) for
user U , one has no idea about the value obtained by another user U ′, whatever
the relation between U and U ′ (or the identities) is.

Thereafter, we show that these security notions can also have side applica-
tions to password-authenticated key exchange. Such a KwrtA-anonymous and
identity-based non-malleability IB-KEM scheme can indeed be plugged into a
password-authenticated two-party key exchange protocol, in the same vein as the
IPAKE construction [14] did with trapdoor hard-to-invert group isomorphisms.
Our security result holds in a stronger security model than usual (with an adap-
tive selection of passive and active attacks, as in [18]), but the construction still
assumes the random-oracle model [5], as in [14].

Eventually, we provide an IB-KEM, that is both KwrtA-anonymous and
identity-based non-malleable, in addition to the full-identity semantic security,
against chosen-plaintext adversaries. This thus leads to a new password-authent-
icated two-party key exchange protocol.

2 Anonymous Identity-Based Encryption

Anonymity for public-key encryption schemes has first been introduced by Bel-
lare et al. [3], under the key privacy security notion, and has been extended to
identity-based encryption by Abdalla et al. [1].
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In these papers, anonymity meant that even if the adversary chooses a message
and two identities (or two public keys), and the challenger encrypts the message
with one of the identities (or keys), the adversary cannot guess which one has
actually been involved in the computation. This notion is quite strong for public-
key encryption, but not that strong in the identity-based setting since it does not
capture anonymity with respect to the authority that knows the master secret
key, and even chooses the public parameters PK.

Unfortunately, the previous definitions cannot be trivially extended: the ad-
versary can easily break anonymity if he knows the expected plaintext, and just
hesitates between two identities, since he can decrypt any ciphertext. Anonymity
can only be expected against the server if the plaintexts follow a non-trivial dis-
tribution. Since we will deal with key-encapsulation mechanisms, this non-trivial
distribution is already implicit for the ephemeral keys.

This enhanced security notion will be called Key Anonymity with respect to
the Authority and denoted KwrtA-Anonymity. This section defines precisely this
notion for identity-based key encapsulation mechanisms.

2.1 Identity-Based Encryption and Key Encapsulation Mechanisms

We first review the definitions of identity-based encryption, and more specifically
of identity-based key encapsulation mechanisms [7]. In the following, we assume
that identities are bit strings in a dictionary Dic.

Definition 1 (Identity-Based Encryption). An IBE scheme is specified by
four algorithms:

SetupIBE(1λ). Takes as input a security parameter λ. It outputs the public pa-
rameters PK, as well as a master secret key MK.

ExtractIBE(MK, ID). Takes as input the master secret key MK, and the identity
ID of the user. It outputs the user’s decryption key usk.

EncryptIBE(PK, ID, M). Takes as input the public parameter PK, the identity of
the recipient, and a message M to be encrypted. It outputs a ciphertext.

DecryptIBE(usk, c). Takes as input the user’s decryption key and a ciphertext c.
It outputs the decryption or ⊥, if the ciphertext is not valid.

In [20] Shoup proposed a more efficient framework for public-key encryption,
the so-calledKEM/DEM, for key encapsulation mechanism/data encapsulation
method. More recently, Bentahar et al. [7] extended this concept to the identity-
based setting, and therefore proposed some constructions of IB-KEM semanti-
cally secure. We will use the following formalism:

Definition 2 (Identity-Based Key Encapsulation Mechanism)
An IB-KEM scheme is specified by the following four algorithms:

SetupIBK(1λ). Takes as input a security parameter λ. It outputs the public pa-
rameters PK, as well as a master secret key MK.

ExtractIBK(MK, ID). Takes as input the master secret key MK and an identity ID
of the user. It outputs the user’s decryption key usk.
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EncapsIBK(PK, ID). Takes as input the public parameters PK and the identity of
the recipient. It outputs a pair (K, c), where K is the ephemeral session key
and c is the encapsulation of that key.

DecapsIBK(usk, c). Takes as input the user’s decryption key usk and a ciphertext
c. It outputs the key K encapsulated in c or ⊥, if the ciphertext is not valid.
We also formally define the function DecapsIBK(ID, c), which takes as input
a user identity ID and a ciphertext c. It first extracts the decryption key usk
associated to ID, and then decapsulates c under usk.

We first review the notion of semantic security for IB-KEM, then we deal with
anonymity, and an additional security notion, that we call identity-based non-
malleability.

2.2 Security Notions

We directly describe the security notions for identity-based key encapsulation
mechanisms, but one can easily derive them for identity-based encryption.
Semantic Security. The semantic security formalizes the privacy of the key.
The security game, in the strongest security model (i.e. chosen-ciphertext and
full-identity attacks) is the following one:

Setup : The challenger runs the SetupIBK algorithm on input 1λ to obtain the
public parameters PK, and the master secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues the following queries:
– Extract query on input an ID: The challenger runs the Extract algorithm

on input (MK, ID), and provides the associated decryption key usk.
– Decaps query on input an ID and a ciphertext c: The challenger first

extracts the decryption key for ID, and then decrypts the ciphertext c
with this key. It outputs the resulting ephemeral key, or ⊥.

A outputs a target identity ID∗, on which no Extract-query has been asked.
Challenge: The challenger randomly gets (K0, c

∗) ← EncapsIBK(PK, ID∗) and
(K1, c

′) ← EncapsIBK(PK, ID∗). It flips a bit b and outputs (Kb, c
∗).

Guess stage: The adversary can issue the same queries as in the Find stage,
with the restriction that no Extract-query on input ID∗ and no Decaps-query
on input (ID∗, c∗) can be asked. The adversary finally outputs its guess b′ ∈
{0, 1} for b.

We then define the advantage of A in breaking the Semantic Security of an
IB-KEM scheme with its ability in deciding whether it actually received the
real ephemeral key associated to c∗ or a random one. We denote this security
notion by IND, which can thereafter be combined with various oracle accesses,
in order to define selective/full-identity and chosen plaintext/ciphertext attacks.
More formally, we want the advantage below, to be negligible:

Advind
IBK(A) = 2× Pr

b

⎡
⎢⎢⎣

(PK, MK) ← SetupIBK(1λ); (ID∗, s) ← A1(PK)
(K0, c

∗) ← EncapsIBK(PK, ID∗);
(K1, c

′) ← EncapsIBK(PK, ID∗)
b′ ← A2(Kb, c

∗, s) : b = b′

⎤
⎥⎥⎦− 1.
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In the following, we will need a very weak notion, that we call weak semantic
security, during which attack that adversary has to choose in advance the target
identity ID∗ (selective-ID), and has no oracle access at all: no Decaps queries,
and no Extract queries.
Anonymity. Anonymity against IBE means that for a chosen plaintext, and
given a ciphertext c encrypted under ID0 or ID1 of adversary’s choice, the ad-
versary should not be able to decide which identity has been involved. With an
appropriate DEM encryption scheme, the key encapsulation anonymity version
can be defined as follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public param-
eters PK, and the master secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues Extract and Decaps queries. A
outputs two identities ID0, ID1, on which no Extract-query has been asked
before.

Challenge: The challenger randomly selects b ∈ {0, 1} and gets an encapsu-
lated pair (K∗, c∗) under IDb. It returns (K∗, c∗).

Guess stage: The adversary can issue the same queries as in the Find stage,
subject to the restriction that no Extract-query is allowed to be asked on ID0
or ID1, and no Decaps-query can be asked on input (ID0, c

∗), or (ID1, c
∗). It

finally outputs its guess b′ ∈ {0, 1} for b.

We say that an IB-KEM scheme provides key-anonymity if the advantage of
A in deciding which identity is actually involved in the above experiment is
negligible:

Advanon
IBK (A) = 2× Pr

b

⎡
⎢⎢⎣

(PK, MK) ← SetupIBK(1λ);
(ID0, ID1, s) ← A1(PK)

(K∗, c∗) ← EncapsIBK(PK, IDb);
b′ ← A2(K∗, c∗, s) : b = b′

⎤
⎥⎥⎦− 1.

As already noticed, this anonymity notion does not provide any security with
respect to the authority, since the above security notion assumes that the ad-
versary has no idea about MK.
KwrtA-Anonymity. We therefore enhance the previous security model, in
order to consider the authority as a possible adversary. However, it is clear that
given (K∗, c∗), the authority can check the involved ID. We thus truncate the
input to c∗ only:

Find stage: The adversary generates (valid, see below) public parameters PK.
A outputs PK and two identities ID0, ID1.

Challenge: The challenger randomly selects b ∈ {0, 1}, and generates a cipher-
text for IDb, (K∗, c∗) ← EncapsIBK(PK, IDb). It outputs c∗.

Guess stage: The adversary finally outputs its guess b′ ∈ {0, 1}.
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We say that an IB-KEM scheme provides Key Anonymity with respect to the
Authority (denoted KwrtA-Anonymity) if the advantage of A in deciding which
identity is involved in the experiment above is negligible:

Advkwrta−anon
IBK (A) = 2× Pr

b

⎡
⎣ (PK, ID0, ID1, s) ← A1(1λ) s.t. ValidIBK(PK)

(K∗, c∗) ← EncapsIBK(PK, IDb);
b′ ← A2(c∗, s) : b = b′

⎤
⎦− 1.

We emphasis that in the above experiment, the adversary has to generate valid
public parameters PK. Note that against KwrtA-Anonymity (vs. anonymity), on
the one hand, the new adversary may know the master key MK, but on the
other hand, it must make its decision from c∗ only. Therefore, these two security
notions are not really comparable. Furthermore, since the adversary generates
PK, one has to be able to check the honest generation. In some cases, PK is
a truly random value, without redundancy; in some other cases, appropriate
redundancy should be proven. We thus define an additional algorithm:

ValidIBK(PK). Takes as input the public parameters PK, and checks whether they
satisfy the required properties.

Identity-based Non-Malleability. In the application we will study later, a
new security notion for identity-based encryption will appear. It basically states
that when one sends a ciphertext to a user ID, one has no idea how user ID′

will decrypt it, even for identities chosen by the adversary. This means that
when one computes an encapsulation, it provides an ephemeral session key with
a unique recipient, and not several secret keys with several partners. We define
the identity-based non-malleability game as follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public param-
eters PK, and the master secret key MK. It publishes PK.

Attack: The adversary A adaptively issues Extract and Decaps queries, and
outputs a ciphertext c, and two pairs (K0, ID0), and (K1, ID1).

The adversary wins this game if the two formal equalities hold:

K0 = DecapsIBK(ID0, c) and K1 = DecapsIBK(ID1, c).

We thus define the success of A in breaking the Identity-based Non-Malleability
of an IB-KEM scheme by:

Succid-nm
IBK (A) = Pr

⎡
⎣ (PK, MK) ← SetupIBK(1λ);

(c, (K0, ID0), (K1, ID1)) ← A(PK) :
K0 = DecapsIBK(ID0, c) ∧K1 = DecapsIBK(ID1, c)

⎤
⎦ .

Note that this security notion is for a normal user, and not for the authority
itself. Indeed, it would clearly be incompatible with KwrtA-Anonymity.
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3 Anonymous and Non-malleable IB-KEM
Since the first practical IBE schemes, new features, and new efficient/security
criteria have been defined. An efficient anonymous IBE with a tight security
proof in the standard model is one of the open problems. In this section, we first
review some candidates, and then propose a new scheme that satisfies all the
above requirements: semantic security, various anonymity notions and identity-
based non-malleability.

3.1 Backgrounds on Pairings

Let G1 and G2 be two cyclic groups of large prime order p. We suppose that
these two groups are equipped with a pairing, i.e. a non-degenerated and effi-
ciently computable bilinear map ê : G1 × G2 → GT . In the following, we use
multiplicative notation for G1 and G2: ê(ga

1 , gb
2) = ê(g1, g2)ab, for all a, b ∈ Zp,

and any g1 ∈ G1 and g ∈ G2. For the sake of generality, we consider the asym-
metric case, where G1 �= G2, but most of the schemes below also apply in the
symmetric setting, where G1 = G2.

3.2 Diffie-Hellman Assumptions

The co-CDH-Problem. Let g1 and g2 two generators of G1 and G2 respectively.
We define the co-Diffie-Hellman value co-CDHg1,g2(u), for u = gx

1 ∈ G1, the
element v = gx

2 ∈ G2.
The co-CDHG1,G2 problem can be formalized as follows: given g1, u ∈ G1 and

g2 ∈ G2, output v = co-CDHg1,g2(u). We define the success probability of A in
breaking the co-CDHG1,G2-problem as:

Succco−cdh
G1,G2

(A) = Pr
[
g1

R← G1; g2
R← G2, x

R← Zp; v ← A(g1, g2, g
x
1 ) : v = gx

2

]
.

Note that when G1 = G2 = G, the co-CDHG,G-problem is exactly the usual Com-
putational Diffie-Hellman Problem in G, which can still be difficult. However,
the decisional version is easy, granted the pairing.

We can indeed define the co-DHG1,G2-language of the quadruples (a, b, c, d) ∈
G1 ×G2 ×G1 ×G2, such that d = co-CDHa,b(c).
The Common co-CDH-Problem. Given two elements, it is simple to complete a
co-CDH-quadruple (g1, g2, u, v). However, finding two such quadruples with con-
straints may not be simple. We thus define a new problem, called the Common
co-CDH-Problem, as follows: Given g, h ∈ G, and V ∈ GT , output k0 �= k1 ∈ Zp,
K0, K1 ∈ GT and a common c ∈ G, such that:

(ghk0 , V, c, K0), (ghk1 , V, c, K1) ∈ co-DHG,GT .
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We define the success of A in breaking the Common-co-CDHG,ê-Problem as:

Succcommon-co-cdh
G,ê (A) = Pr

⎡
⎣g, h ∈ G; V ∈ GT ; (c, k0, k1, K0, K1) ← A(g, h, V ) :

k0 �= k1 ∧ (ghk0 , V, c, K0) ∈ co-DHG,GT

∧(ghk1 , V, c, K1) ∈ co-DHG,GT

⎤
⎦

The CBDH-Problem. Diffie-Hellman variants have been proposed in groups
equipped with pairings, and namely in the symmetric case: let g be a generator
of G. We define the Bilinear Diffie-Hellman value of gx, gy, gz, for x, y, z ∈ Zp,
in base g, the element V = ê(g, g)xyz ∈ GT .

The CBDHG,ê problem can be formalized as follows: given g, X = gx, Y =
gy, Z = gz ∈ G, output V = ê(g, g)xyz. We define the success probability of A
in breaking the CBDHG,ê-problem as:

Succcbdh
G,ê (A) = Pr

[
g

R← G; x, y, z
R← Zp; V ← A(g, gx, gy, gz) : v = ê(g, g)xyz

]
.

The DBDH-Problem. The decisional version can then be intractable too: given
g, X = gx, Y = gy, Z = gz ∈ G, and V ∈ GT , decide whether V = ê(g, g)xyz, or
not. We define the advantage of A in breaking the DBDHG,ê-problem as:

Advdbdh
G,ê (A) = Pr

[
g

R← G; x, y, z
R← Zp; V = ê(g, g)xyz : 1 ← A(g, gx, gy, gz, V )

]
− Pr

[
g

R← G; x, y, z
R← Zp; V

R← GT : 1 ← A(g, gx, gy, gz, V )
]
.

The Successive-Power Version. For our scheme to be semantically secure,
we will need a stronger variant of the above DBDH problem, given access to a
sequence of powers, similarly to the Strong Diffie-Hellman problem [9]: More pre-
cisely, given g, gx, gy, gz, and gz/x, gz/x2

, . . . , gz/xq

, as well as V , from some V ∈
GT , where q is a parameter, decide whether V = ê(g, g)xyz, or a random element.
We define the advantage of A in breaking the q-SP-DBDHG,ê-assumption as:

Advq-spdbdh
G,ê (A) = Pr

[
g

R← G; x, y, z
R← Zp; V = ê(g, g)xyz :

1 ← A(g, gx, gy, gz, gz/x, · · · , gz/xq

, V )

]

− Pr

[
g

R← G; x, y, z
R← Zp; V

R← GT :
1 ← A(g, gx, gy, gz, gz/x, · · · , gz/xq

, V )

]
.

It is clear that such a sequence of powers should not provide much information
to the adversary. And thus, for any polynomial-time adversary A, the above
advantage is negligible. We provide the proofs that our two new problems are
intractable for generic adversaries in the Appendix A.

3.3 Previous IBE Schemes

Let us review several IBE, and see which properties they satisfy. For the sake
of simplicity, for all of them, we review the key encapsulation mechanisms. In
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several schemes, we will need a deterministic map F from identities onto the
group G, possibly with parameter PK.

The Boneh-Franklin Scheme [10]. In this scheme, MK = s
R← Zp and

PK = gs. The map F (ID) is independent of PK. This is a function onto G,
modeled as a random oracle in the security analysis. The ciphertext c = gr ∈ G
corresponds to the key K = ê(F (ID), PK)r = BDHg(PK, c, F (ID)) = ê(uskID, c),
where uskID = F (ID)s = co-CDHg,F (ID)(PK) ∈ G.

It is quite similar to the ElGamal encryption, and thus the semantic security
relies on the DBDHG,ê, but against chosen-plaintext attacks only, in the random
oracle model, even with access to the Extract-query, which is similar to the Boneh-
Lynn-Shacham signature [11] (secure against chosen-message attacks under the
CDHG problem).

Since the ciphertext is totally independent of the identity, this scheme is
KwrtA-anonymous, in the information-theoretical sense. Nevertheless, the ba-
sic anonymity is similar to the semantic security, and relies on the DBDHG,ê.
However, since the ciphertext does not involve the identity, it is easy to break
the identity-based non-malleability: knowing r and c = gr, one easily computes
K = BDHg(PK, c, F (ID)) = ê(F (ID), PK)r, for any ID of ones choice.

The Boneh-Boyen Scheme [8]. In this scheme, α
R← Zp, g, g2, h

R← G, and
PK = (g, g1 = gα, g2, h), while MK = gα

2 . The map FPK is defined by FPK(ID) =
gID
1 · h. The ciphertext c = (gs, FPK(ID)s) corresponds to the key

K = ê(g1, g2)s = ê(c1, usk2)/ê(usk1, c2),

if one gets uskID = (gr, MK · FPK(ID)r), for any r
R← Zp.

As above, the semantic security relies on the DBDHG,ê assumption, in the
standard model, but against selective-ID chosen-plaintext attacks, even with
access to the Extract-query (the underlying signature scheme is selective-forgery
secure against chosen-message attacks under the CBDH assumption).

However, because of the redundancy in the ciphertext, which matches with
one identity only, this scheme is not anonymous : one just has to check, for
a candidate ID, and a ciphertext c = (c1, c2), whether (g, FPK(ID), c1, c2) is a
Diffie-Hellman tuple, by ê(c1, FPK(ID)) ?= ê(c2, g). Since this attack did not need
a candidate key K, a fortiori, this scheme is not KwrtA-anonymous.

On the other hand, since the ciphertext focuses to a specific recipient, one
has no idea how another ID′ would decrypt it, because of its randomness r′ in
the decryption key: for wrong user, with usk′ = (gr′

, gα
2 FPK(ID′)r′

), and c =
(gs, FPK(ID′)s′

) (s′ �= s since ID′ is not the intended recipient), K ′ = K ×Hr′
,

for H �= 1, and r′ totally random. Therefore, it is identity-based non-malleable
in the information-theoretical sense.

The Gentry Scheme [16]. In 2006, two schemes have been proposed, with
provable anonymity. Gentry’s scheme is one of them: g, h

R← G and α
R← Zp. The

public parameters are PK = (g, g1 = gα, h) and MK = α. The map FPK is defined
by FPK(ID) = g1 · g−ID = gα−ID. The ciphertext c = (FPK(ID)s, ê(g, g)s) is the
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encapsulation of K = ê(g, h)s, and thus, setting (usk1, usk2)=(r, (hg−r)1/(α−ID)),
for any r

R← Zp, K = ê(c1, usk2) · c2
usk1 .

The scheme is semantically secure and anonymous against chosen plaintext
attacks, even with access to the Extract-query, under the truncated decisional
augmented bilinear Diffie-Hellman exponent assumption (see [16] for details).

However, the scheme is not KwrtA-anonymous, since using bilinear maps com-
bined with the redundancy inside the ciphertext provides a test for any target
identity ID′, since knowing α, A can test whether

c2
α−ID′

= e(g, g)s(α−ID′) ?= e(c1, g) = e(gs(α−ID′), g).

Since the ciphertext is specific to the recipient, A has no idea how an other ID′

decrypts c = (c1 = FPK(ID′)s′
, c2 = e(g, g)s), since

K ′ = ê(c1, usk′2) · c2
usk′1 = K · (ê(g, g)usk′1/ê(g, h))s−s′

,

is a random element in GT . Thus, the scheme is identity-based non-malleable in
the information-theoretical sense.
The Boyen-Waters scheme [13]. Boyen and Waters proposed another prov-
ably anonymous scheme: ω, t1, t2, t3 and t4

R← Zp are set to be the master secret
key and Ω = ê(g, g)t1·t2·ω, g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 are the public pa-
rameters PK, with g a random generator of G and g0, g1

R← G. The map FPK is
defined by FPK(ID) = g0 · ID. To encrypt a key, one chooses a random s ∈ Zp and
sets K = Ωs, its encapsulation has the following form: c = (c0, c1, c2, c3, c4), with
c0 = FPK(ID)s, c1 = vs−s1

1 , c2 = vs1
2 , c3 = vs−s2

3 , and c4 = vs2
4 . To decapsulate

the key, one has to compute

K−1 = Ω−s = ê(g, g)−ωt1t2s

= ê(c0, usk0)× ê(c1, usk1)× ê(c2, usk2)× ê(c3, usk3)× ê(c4, usk4)

with uskID = (usk0, usk1, usk2, usk3, usk4), where:

usk0 = gr1t1t2+r2t3t4

usk1 = g−ωt2FPK(ID)−r1t2 usk2 = g−ωt1FPK(ID)−r1t1

usk3 = FPK(ID)−r2t4 usk4 = FPK(ID)−r2t3

for any r1, r2
R← Zp. This scheme is semantically secure under DBDHG,ê, and

anonymous under the decision linear assumption (we do not give more details
since this scheme is totally different from ours below. The reader is refereed
to [13]). However, it is not KwrtA-anonymous : since knowing the master key
and given a ciphertext c = (c0, c1, c2, c3, c4), one can decide for a target identity
whether c0, c1, c2 or/and c0, c3, c4 is a linear tuple in basis v0, v1, v2 and v0, v3, v4
respectively.

Since the key is completely independent of the identity and c0 is determined
by the identity (among other elements), the same argument than for the two
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previous schemes holds: it is identity-based non-malleable in an information-
theoretically sense.

Note that for all the above schemes, the public parameters consist of inde-
pendent elements in appropriate groups. The validity check ValidIBK(PK) is thus
trivial.

3.4 Our Scheme

None of the previous schemes satisfies both KwrtA-anonymity and identity-
based non-malleability. In this section, we describe our scheme, and show that
it achieves all the security properties: semantic security, anonymity, KwrtA-
anonymity and identity-based non-malleability. For the sake of simplicity, we use
a symmetric pairing:.

SetupIBK. The setup algorithm chooses two random generators g, h ∈ G, and a
random exponent ω ∈ Zp. It keeps this exponent as the master key MK = ω.
The corresponding system parameters are: PK = (g, g1 = gω, h). It defines
the identity-function: F (ID) = g1 · gID = gω+ID.
Note that, as above, the public parameters consist of independent elements
in appropriate groups. The validity check ValidIBK(PK) is thus trivial.

ExtractIBK(MK, ID). To issue a private key for identity ID, the key extraction
authority computes the private key, uskID = h1/(ω+ID).

EncapsIBK(PK, ID). In order to generate an ephemeral key with an identity ID,
the algorithm chooses a random exponent r ∈ Zp, and creates the ciphertext
as: c = F (ID)r, that corresponds to the key K = ê(g, h)r.

DecapsIBK(uskID, c). The decryption algorithm extracts the ephemeral key K
from a ciphertext c by computing: K = ê(uskID, c).

Correctness. Let us check the decryption process:

K = ê(uskID, c) = ê(h1/(ω+ID), gr(ω+ID)) = ê(h, g)r.

Semantic Security. It is worth to precise that we do not require to be able
to simulate any oracle for making use of IB-KEM schemes in the next section.
The weak semantic security will be enough:

Theorem 3. The weak semantic security of our scheme (under selective-ID,
chosen-plaintext and no-identity attacks) relies on the DBDHG,ê-problem, in the
standard model.

Proof. Given u, A = ua, B = ub, C = uc, and V ∈ GT the input to the DBDHG,ê-
Problem, and the target identity ID∗, we set g = A = ua, h = C = uc = gc/a,
g1 = ut ·A−ID∗

= ut−aID∗
, and c = B. This implicitly defines MK = t/a− ID∗, for

a randomly chosen t
R← Zp. Therefore, FPK(ID∗) = g1g

ID∗
= ut ·A−ID∗ ·AID∗

= ut,
and the randomness r of the challenge ciphertext c = FPK(ID∗)r = utr = ub = B
is r = b/t. The corresponding encapsulated key should thus be

K = ê(h, g)r = ê(uc, ua)b/t = ê(u, u)abc/t.
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By letting (V 1/t, c) be the output of the challenger, an adversary able to break
the semantic security (without Extract-queries) helps us to decide whether V is
the Bilinear Diffie-Hellman value or not. ��

In order to show the usual semantic security (under full-ID, but chosen-plaintext
attacks), we have to be able to simulate the Extract-oracle, which thus requires
additional inputs. But first, we modify a little bit the scheme, by using H(ID),
instead of ID in the above description, where H is a random oracle [5] onto Zp.

Theorem 4. The semantic security of our scheme (by using H(ID), instead
of ID) under full-ID and chosen-plaintext (no Decaps queries) relies on the
successive-power version, in the random oracle model.

Proof. Given u, A = ua, B = ub, C = uc, Ci = C1/ai

, for i = 1, . . . , q, and
V ∈ GT the input to the q-SP-DBDHG,ê-problem, we first compute {Vi =
ê(u, u)bc/ai}i=0...q, since V0 = ê(B, C), and Vi = ê(B, Ci), for i = 1, . . . , q. Then,

we set g = A = ua and g1 = ut ·A−x∗
, for randomly chosen t, x∗ R← Zp. This im-

plicitly defines MK = t/a−x∗. We also choose random elements x1, . . . , xq
R← Z∗

p,
and set P (X) =

∏
(tX + xi), a polynomial of degree q, where the number of

random oracle queries is q + 1. We then set h = CP (1/a) = ucP (1/a), which can
be easily computed granted C, C1, . . . , Cq.

First, all the random oracle queries will be answered by an x∗ + xi, or x∗ (for
a unique randomly chosen query): we hope to assign x∗ to H(ID∗), the target
identity, which happens with probability 1/q. Let us assume this situation:

– By definition, as above, FPK(ID∗) = g1g
H(ID∗) = ut ·A−x∗ · Ax∗

= ut;
– For all the other identities, H(IDj) = xj , and then uskj can be computed as

h1/(MK+x∗+xj) = CP (1/a)/(MK+x∗+xj) = CP (1/a)/(t/a+xj) = CPj(1/a),

where Pj is a polynomial of degree q− 1. Then uskj can be easily computed
granted C, C1, . . . , Cq−1. Hence the simulation of the Extract-oracle.

As above, the challenge ciphertext is set c = B = ub = FPK(ID∗)r for r = b/t.
The corresponding encapsulated key should thus be

K = ê(g, h)r = ê(ua, ucP (1/a))b/t = (ê(u, u)abc)P (1/a)/t.

Let us expand P (X) =
∑i=q

i=0 piX
i, and then

K = ê(u, u)abc·p0/t ×
i=q∏
i=1

ê(u, u)bc/ai−1·pi/t =
(
ê(u, u)abc

)p0/t ×
i=q∏
i=1

V
pi/t
i−1 .

If V = ê(u, u)abc, the correct key is V p0/t ×
∏i=q

i=1 V
pi/t
i−1 . In the random case,

the same computation leads to a totally random key (note that p0 =
∏

xi �=
0 mod p). Then, by letting (V p0/t×

∏i=q
i=1 V

pi/t
i−1 , c) be the output of the challenger,

an adversary able to break the semantic security helps us to decide whether V
is the Bilinear Diffie-Hellman value or not. We thus break the q-SP-DBDHG,ê-
problem. ��
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Anonymity. The usual anonymity notion relies on the same assumption as
the semantic security. Since the ciphertext consists of c = F (ID)r, a random
element in G, whatever the identity ID. It is thus clearly KwrtA-anonymous, in
the information-theoretical sense.

Theorem 5. Our scheme is unconditionally KwrtA-anonymous.

Idendity-based Non-Malleability. Let us consider the ciphertext c, and
its decryption with respect to IDi for i ∈ {0, 1}. In the following, ri is formally
defined by c = F (IDi)ri , and Ki = ê(g, h)ri . Thus, the identity-based non-
malleability relies on the intractability of finding c, {IDi, Ki}, with ID0 �= ID1
such that ri = logê(g,h)(Ki) = logF (IDi)(c). This thus leads to a solution of the
Common co-CDH-Problem.

Theorem 6. The identity-based non-malleability of our scheme relies on the
Common co-CDH-Problem in groups G and GT .

4 IBK − PAKE: Our PAKE Protocol

The previous sections focused on identity-based key encapsulation mechanisms,
and new anonymity properties. We now show how a weakly semantically secure
IB-KEM, that is both KwrtA-anonymous and identity-based non-malleable, can
be used to build a password-authenticated key exchange.

4.1 Description of Our Scheme

Our new scheme is generic. It basically consists in generating the session key
using this IB-KEM, under the common password as the identity, see Figure 1.
The other party can easily recover the session key. Security notions for semantic
security and perfect forward secrecy follow from the (weak) semantic security
and anonymity properties of the IB-KEM scheme.

4.2 Security Analysis

Communication Model. We assume to have a fixed set of protocol partici-
pants, and each of them can be either a client or a server. They are all allowed
to participate to several different, possibly concurrent, executions of the key
exchange protocol. We model this by allowing each participant an unlimited
number of instances able to initiate or participate to executions of the protocol.

In the password-based scenario, the two parties share a low-entropy secret pw
which is drawn from a small dictionary Dic. In the following, we assume that
the distribution is uniform. More complex distributions could be considered.

We use the security model introduced by Bellare et al. [4], improved by Ab-
dalla et al. [2] to consider the Real-or-Random security notion instead of the
Find-then-Guess. In this model, the adversaryA has the entire control of the net-
work, which is formalized by allowing A to ask the following query, Send(U, m),
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Client C Server S

pw ∈ Dic pw ∈ Dic

accept ← false accept ← false

Valid(PK)?
S, PK←−−−−−− (PK, MK) ← Setup(λ)

(K, c) ← Encaps(PK, pw)
C, c−−−−−−→ usk ← Extract(MK, pw)

K′ ← Decrypt(usk, c)

AuthS′ = H1(S, C, PK, c, pw, K)
S, AuthS←−−−−−− AuthS = H1(S, C, PK, c, pw, K′)

AuthS
?= AuthS′

If no error/reject
accept ← true

AuthC = H2(S, C, PK, c, pw, K)

sk = H0(S, C, PK, c, pw, K)
C, AuthC−−−−−−→ AuthC′ = H2(S, C, PK, c, pw, K′)

AuthC
?= AuthC′

If no error/reject
accept ← true

sk = H0(S,C, PK, c, pw, K)

Fig. 1. IBK-PAKE: a Password-Authenticated Key-Exchange Protocol

that models A sending the message m to instance U . The adversary A gets back
the response U generates in processing the message m according to the protocol.
A query Send(U, INIT) initializes the key exchange algorithm, by activating the
first player in the protocol.

¿From the original security model, we suppress the Execute-queries. Even if
they were important to model passive attacks vs. active attacks, we consider
a stronger security model where the adversary always uses Send-queries, ei-
ther for simply forwarding a flow generated by a honest user, or for modify-
ing/manufacturing a flow. Thereafter, if the whole transcript of an execution of
the protocol turns out to consist of forwarded flows only, this execution is then
considered as a passive attack: it is similar to an Execute-query in previous mod-
els [4]. If one flow has been modified or manufactured, the session corresponds
to an active attack.

As a consequence, in addition to the usual security model with Execute-
queries, the adversary can adaptively decide, during an execution of the pro-
tocol, whether the session will correspond to a passive attack, or to an active
one, and not from the beginning of the session only (as in [18]). An attack game
will consist of a mix of passive and active attacks, in a concurrent manner.

However, as usual, we will be essentially interested in active attacks: qactiveC

and qactiveS will, respectively, denote the number of active attacks in which the
adversary played against the client and the server, respectively. We want to show
that qactiveC+qactiveS is an upper-bound on the number of passwords the adversary
may have tried.
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Security Notions. Two main security notions have been defined for key ex-
change protocols. The first is the semantic security of the key, which means
that the exchanged key is unknown to anybody other than the players. The sec-
ond one is unilateral or mutual authentication, which means that either one, or
both, of the participants actually know the key. In the following, we focus on
the semantic security, also known as AKE Security.

The semantic security of the session key is modeled by an additional query
Test(U). Since we are working in the Real-or-Random scenario, this Test-query
can be asked as many times as the adversary A wants, but to fresh instances
only. The freshness notion captures the intuitive fact that a session key is not
“obviously” known to the adversary. More formally an instance is said to be
fresh if it has successfully completed execution and

1. Neither it nor its partner was corrupted before the session started
2. or, the attack, on this session, was passive.

Two instances are partners if they run a key exchange protocol together. This is
formally modeled by the notion of session ID: the session ID is a string defined
from the transcript (usually, it consists of the first flows, sent and received), and
two instances are partners if they share the same session IDs.

The Test-query is answered as follows: a (private) coin b has been flipped
once for all at the beginning of the attack game, if b = 1 (Real), then the actual
session key sk is sent back, if b = 0 (Random), or a random value is returned.
Note that for consistency reasons, in the random case, the same random value
is sent to partners.

We denote the AKE advantage as the probability that A correctly guesses the
value of b with its output b′: Advake(A) = 2 Pr[b = b′]− 1.

The adversary will also have access to the Corrupt-query that leaks the pass-
word: it is useful to model the perfect forward secrecy. The latter notion means
that a session key remains secret even after the leakage of the long-term secret.

Security Result. For our protocol, we can state the following security result,
which proof can be found in the full version.

Theorem 7 (AKE Security). Let us consider an Identity-Based Key Encap-
sulation Mechanism IBK = (Setup, Extract, Encaps, Decaps) that is weakly se-
mantically secure (selective-ID, chosen-plaintext attacks and no Extract-queries),
anonymous, KwrtA-anonymous, and identity-based non-malleable, then our pro-
tocol IBK-PAKE, provides semantic security and perfect forward secrecy:

Advake
ibk−pake(A) ≤ 4× qactive

N
+ negl(),

where qactive = qactiveC + qactiveS is the number of active attacks and N is the size
of the dictionary.
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5 Conclusion

In this paper, we have first introduced two new security notions for identity-
based key encapsulation mechanisms: the first one is an enhancement of the
usual anonymity, the second one formalizes a kind on non-malleability, with
respect to the recipient identity.

Then, we proposed the first scheme that is full-ID semantically secure against
chosen-message attacks, and that achieves our new security notions.

We furthermore showed that these new security notions could be useful for
identity-based schemes as a tool: we provided a new framework for password-
authenticated key exchange, with an identity-based key encapsulation mecha-
nism as a core sub-routine.
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A Analysis in the Generic Model

A.1 The Common co-CDH-Problem

Let us first recall the Common co-CDH-Problem: given g, h ∈ G, and V ∈ GT ,
output c ∈ G, k0 �= k1 ∈ Zp, and K0, K1 ∈ GT such that:

ghki = co-CDHKi,c(V ) for i = 0, 1.

We define the success ofA in breaking the Common-co-CDHG,ê-Problem, denoted
by Succcommon-co-cdh

G,ê (A) as:

Pr

[
g, h

R← G; V ∈ GT ; (c, k0, k1, K0, K1) ← A(g, h, V ) :
k0 �= k1 ∧ ghk0 = co-CDHK0,c(V ) ∧ ghk1 = co-CDHK1,c(V )

]
.
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Theorem 8. Let A be an adversary that makes at most q group operation
queries (internal laws in G or GT , or pairing operations). On inputs g, h ∈ G,
and V ∈ GT , the probability that A outputs a solution (k0, k1, K0, K1, c) to the
Common co-CDH-Problem is bounded by

(3q + 4)2 + 3
p

≤ O
(

q2

p

)
.

Proof. Let A be an adversary against the Common co-CDH-Problem. We define
a simulator B that emulates the group oracles: B maintains two lists L1 and
LT of polynomials L1 = {(F1,i, ξ1,i), i = 1, · · · , t1} and LT = {(FT,i, ξT,i), i =
1, · · · , tT } such that at step t, t1 + tT ≤ 3 · t + 4. The entries ξ1,i, ξT,i are set
to be distinct random strings and are used to represent elements in G and GT

respectively. At the beginning of the game, B just sets two polynomials F1,0 = 1
and F1,1 = x1, which refer to a generator g and a random element h = gx1 in
G, respectively. Similarly, B defines two polynomials FT,0 = 1 and FT,1 = X1
associated to elements U = e(g, g) and V = e(g, g)X1 in GT .

For any oracle query, B updates the lists L1 and LT :

– Group Operation in G: when A asks for the addition of two elements
in G, it gives two representations ξi and ξj . Theses two strings are either
associated to the polynomials F1,i, F1,j ((F1,i, ξi) and (F1,j , ξj) are in L1)
or one defines a new variable x1,i and set F1,i = x1,i associated to ξi and
thus adds (F1,i, ξi) to L1 (or for index j). We thus assume that (F1,i, ξi) and
(F1,j , ξj) are in L1.
Then, it computes the sum of the polynomials, F1,k = F1,i + F1,j . If the
resulting polynomial F1,k already appears in the list for some index l ≤ t1,
then it sets ξ1,k ← ξ1,l, else it chooses a new random string in {0, 1}log2 p for
ξ1,k. Note that group operations in G result in multivariate polynomials of
degree at most one in variables x1, · · · , xm, for some integer m ≤ t1.

– Pairing: when A requests a pairing query. It gives two representations ξ1,i

and ξ1,j . As above, by possibly setting the undefined elements, we can assume
that (F1,i, ξi) and (F1,j , ξj) are in L1. Then, B computes the product of the
polynomials, FT,k = F1,i · F1,j . If the resulting polynomial already appears
in the list for some index l ≤ tT , then it sets ξT,k ← ξT,l, else it chooses a
new random string ξT,k in {0, 1}log2 p for FT,k.
Since we know that polynomials in L1 are of degree 1 in the variables x1, . . .,
the polynomials we create with this simulation are of degree 2 in the same
variables.

– Group operation in GT : when A asks for the addition of two elements
in GT , it gives two representations ξi and ξj . As above, by possibly setting
the undefined elements (and new variables Xi or Xj), we can assume that
(FT,i, ξi) and (FT,j , ξj) are in LT . Then, B computes the sum of the poly-
nomials, FT,k = FT,i + FT,j . If the resulting polynomial already appears in
the list for some index l ≤ tT , then it sets ξT,k ← ξT,l, else it chooses a new
random string ξT,k in {0, 1}log2 p for FT,k.
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In the previous simulation, we created polynomials in LT of degree 2 in the
variables x1, . . .. We can thus add these polynomials: they remain polyno-
mials of degree 2 in the variables x1, . . .. We can also add these polynomials
with the initial polynomials FT,1, FT,2, . . . and the new variables Xi: poly-
nomials of degree 1 in the variables X1, . . ..

As a consequence, any polynomial F in LT can be split in two polynomials
A ∈ Zp[x1, · · · , xm] (of degree 2) and B ∈ Zp[X1, · · · , Xn] (of degree 1) such
that F = A + B.

Note that for each group operation query, the oracle adds at most three new
variables in the list. Thus if q is the number of queries we have t1 + tT ≤ 3q + 4.

To evaluate the success of any adversary in distinguishing the above simu-
lation from the real oracles, one has to define the event raised in case of devi-
ation. This happens if the evaluations of two polynomials on the initial vector
(x1, . . . , X1, . . .) refer to the same value: the oracles would output the same rep-
resentation whereas our simulation just compares the polynomials and would
thus output different representations. More precisely, the simulation can be de-
tected if there exists a pair of polynomials (F, F ′) such that for a random choice
of x1, · · · , xn, X1, · · · , Xm in Zp,

F (x1, · · · , xn, X1, · · · , Xm) = F ′(x1, · · · , xn, X1, · · · , Xm) whereas F �= F ′.

Since polynomials are of degree at most 2, this can happen with probability
less than 2/p for each pair of polynomials: after q queries, the probability that
the adversary distinguishes the two executions is bounded by 2 · (3q + 4)2/p.

Unless the adversary A detects the simulation, it terminates by outputting a
tuple (k0, k1, ξ

T
0 , ξT

1 , ξ1
c ), where k0, k1 are in Zp. B retrieves, in the list, the poly-

nomials associated to ξT
0 (representation of K0), ξT

1 (representation of K1) and ξ1
c

(representation of c), if they exist. Otherwise, as before, it adds new variables. Let
thus F0, F1 and P be the polynomials associated to ξT

0 , ξT
1 and ξ1

c respectively:
P ∈ Zp[x1, x2, · · · , xm] of degree one, and Fi ∈ Zp[x1, · · · , xm, X1, · · · , Xn] of
degree two. More precisely, as noted before, we can split Fi = Ai + Bi, with
Ai ∈ Zp[x1, x2, · · · , xm] of degree two, and Bi ∈ Zp[X1, · · · , Xn] of degree one.

If A is successful, this means that for some βi, we have:

cβi = ghki and V βi = Ki

The equalities above implies the following ones:{
βi · P (x1, x2, · · · , xn) = 1 + kix1

X1 · βi = Ai(x1, x2, · · · , xn) + Bi(X1, · · · , Xm)

After substitution, we obtain

(Ai(x1, x2, · · · , xm) + Bi(X1, · · · , Xn)) ·P (x1, x2, · · · , xm)− (1 + kix1) ·X1 = 0.

At this point, either the success probability of the adversary is negligible (the
above polynomial is non-zero), or

Ai(x1, x2, · · · , xm) = 0, Bi(X1, X2, · · · , Xn) = βi ·X1
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where βi is now known to be a constant. Since P is a common polynomial,
one gets

(1 + k1x1) · β0 − (1 + k0x1) · β1 = 0.

Again, either the success probability of the adversary is negligible (the above
polynomial is non-zero), or β0 = β1 and k1β0 = k0β1, which implies that k0 = k1.
However, a successful attack does not allow that, which concludes the proof. ��

B Analysis of the Successive-Power Problem

The Successive-Power problem is the following: given g, gx, gy, gz, and gz/x,
gz/x2

, . . . , gz/xq

, as well as V , from some V ∈ GT , where q is a parameter,
decide whether V = ê(g, g)xyz, or V is a random element of GT .

Theorem 9. Let A be an adversary that makes at most t group operation
queries. On input g, gx, gy, g

z

xi , for i ∈ {0, · · · , q}, the advantage of A in distin-
guishing the distribution of V = ê(g, g)xyz from the random distribution in GT

is bounded by
(3t + q + 7)2

p
≤ O

(
t2 + q2

p

)

Proof. As in previous proof, we construct an algorithm B that interacts with A,
using lists of pairs L1 = {(F1,i, ξ1,i)} and LT = {(FT,i, ξT,i)}, but this time, we
use fractions of polynomials. It starts with F1,1 = 1, F1,2 = X, F1,3 = Y, F1,i =

Z
Xi−4 for i = {4, · · · , q + 4}, and FT,1 = 1, FT,2 = T0, FT,3 = T1. X, Y, Z
are unknown variables. For a random bit b, Tb is also a really new unknown
variable, whereas T1−b = XY Z (but considered as an independent variable too.
The adversary has to guess b.

When A terminates, it outputs its guess b′, and then B chooses a random
assignment x, y, z, tb ∈ Zp, for X, Y, Z, and Tb but sets T1−b = xyz.

In the simulated game, the advantage of the adversary is clearly zero: all the
polynomials built during the simulation are independent to XY Z.

One thus have just to evaluate the probability the adversary can detect that
it is interacting with a simulator: after t queries, the number of polynomials is
upper-bounded by 3t + q + 7, which concludes the proof. ��
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Abstract. Rerandomizing ciphertexts plays an important role in pro-
tecting privacy in security protocols such as mixnets. We investigate the
relationship between formal and computational approaches to the anal-
ysis of the security protocols using a rerandomizable encryption scheme.
We introduce a new method of dealing with composed randomnesses
in an Abadi-Rogaway-style pattern, formalize a rerandomizable RCCA
secure encryption scheme, and prove its computational soundness.

1 Introduction

Formal and computational approaches have developed separately in research
related to the analysis of security protocols. In the formal approach, a crypto-
graphic message is abstracted into a symbol, called a Dolev-Yao term, and an
adversary can only perform several algebraic operations on Dolev-Yao terms [11].
The formal analysis of security protocols is based on the assumption that cryp-
tography is perfectly secure. On the other hand, in the computational approach, a
message is a bit string and an adversary is a probabilistic polynomial-time (PPT)
algorithm. The computational analysis of security protocols deals with the prob-
ability of the adversary performing a successful attack from a complexity-theory
perspective.

These two approaches have advantages and disadvantages. Although the for-
mal approach is simpler and amenable to automation, it is based on the unre-
alistically strong assumption as regards cryptography. While the analysis in the
computational approach employs more realistic models, it is very difficult and
prone to errors.

In recent years, many researches have related these two approaches [2,1,18].
They define a function, called an encoding, that maps a Dolev-Yao term to a
probability distribution over bit strings, and prove the soundness theorem, which
claims that the formal equivalence of Dolev-Yao terms implies the computational
indistinguishability of the encodings of the terms. This theorem guarantees that
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the analysis of security protocols in the formal approach is also valid from the
viewpoint of the computational approach.

Most of the previous studies related to soundness theorems have dealt with
cryptographic primitives with relatively strong computational security, such as
IND-CCA2 public key encryption [18], EUF-CMA digital signature [10], and
oracle hashing [12]. Although there has been a lot of work on the formal analysis
of the security protocols with more complex primitives such as homomorphic
encryption [8], their soundness theorems have not been proved.

As a first step to obtaining soundness results for more complex message alge-
bras, we deal with a rerandomizable encryption scheme, which is an encryption
scheme with a re-encryption operation that replaces the randomness used in a
ciphertext with another without decrypting the ciphertext. Although the ran-
domness used in a probabilistic encryption enables an adversary to observe the
occurrences of the same ciphertext, rerandomizing ciphertexts prevents the adver-
sary from tracing them. For this reason, the re-encryption operation plays an im-
portant role in protecting privacy in some security protocols such as mixnet [13].

We propose a new formalization of a rerandomizable encryption scheme us-
ing Abadi-Rogaway-style formal patterns [2,15], and prove its computational
soundness by using the IND-RCCA security [6] of the rerandomizable encryption
scheme and the randomness-preserving property of the randomness composition.

In the formalization, we introduce a new method of dealing with composed
randomnesses, because the re-encryption operation follows the composition of
the randomnesses used in probabilistic encryptions/re-encryptions. Although
some studies explicitly represent the randomnesses of probabilistic encryptions
in an Abadi-Rogaway-style pattern [12,7,9], they do not deal with the com-
position of randomnesses. We extend Herzog’s formalization [15] to explicitly
represent composed randomnesses by a multiset of randomness symbols in an
Abadi-Rogaway-style pattern. Due to this, patterns are expressive enough to
describe the indistinguishability of a ciphertext from its rerandomization. In
addition, we provide a new definition of a renaming of a multiset of random-
ness symbols that enables us to deal with composed randomnesses. To obtain
the soundness result, we deal only with acyclic terms satisfying the freshness
assumption, which restricts the usage of honest participants’ randomnesses.

In the soundness theorem, we claim that if patterns cannot be distinguished
by the Dolev-Yao adversary, then their computational encodings cannot be dis-
tinguished by any PPT adversary with access to a decryption oracle. Here, the
decryption oracle represents a certain aspect of an active and adaptive adver-
sary. Since the computational indistinguishability introduced in this paper is
an extension of Herzog’s Abadi-Rogaway public-key indistinguishability [15] to
IND-RCCA security, the PPT adversary in our model is not fully active or adap-
tive. For example, the adversary’s nonces and randomnesses are fixed in advance
and not adaptive.

The organization of this paper is as follows. Section 2 defines the formal
model employed to analyze the security protocols using rerandomizable encryp-
tion schemes. Section 3 introduces a computational rerandomizable encryption



160 Y. Kawamoto, H. Sakurada, and M. Hagiya

scheme, and its computational security definitions. Section 4 defines an encod-
ing that maps patterns to distributions over bit strings. Section 5 introduces
Abadi-Rogaway RCCA indistinguishability, and proves the soundness theorem.
The final section summarizes our work and discusses areas for future research.

2 Formal Model

This section introduces the message algebra used to formalize and analyze the
protocols that employs rerandomizable encryption schemes.

2.1 Dolev-Yao Model

Our formal model is an extension of the Dolev-Yao model presented in [15]. A
message is abstracted into a term from an appropriate algebra, called a Dolev-
Yao term [11], and parties are restricted to performing only pairing, encryption,
decryption, and re-encryption operations. There are two kinds of parties: honest
participants and an active and adaptive adversary. The honest participants fol-
low a protocol without deviation, and can run multiple sessions of the protocol
simultaneously.

The communications between parties are under the control of the adver-
sary. In the same way as in [15], we model the adversary as the communica-
tion channel, and assume that the adversary can record, delete, replay, and
reorder messages. Each execution of a protocol is defined as an alternating fi-
nite sequence of the adversary’s messages qi and honest participants’ messages
ri: r0, q1, r1, q2, · · · , rn−1, qn, rn. We assume that the adversary receives the
initial knowledge r0 before executing the protocol, and that each adversary’s
message qi must be derivable from r0, r1, · · · , ri−1, nonces, and randomnesses.
Although the analysis of a security protocol in this model must take account of
all non-deterministic choices of the adversary’s messages, we do not present an
analysis method in the model.

This Dolev-Yao model is explained in detail in [15], and here we concentrate
on providing a formalization of a rerandomizable encryption scheme.

2.2 Terms

We define the following sets of atomic symbols, which are mutually exclusive:
– a set Const of constants, denoting plaintexts of messages for example,
– a set Kpub of public key symbols,
– a set Ksec of secret key symbols,
– a set Nonce of nonce symbols, and
– a set Rand of randomness symbols, denoting the randomnesses used in en-

cryption.

We denote the secret key corresponding to a public key kpub by kpub, and the
public key corresponding to a secret key ksec by ksec. Let Kadv ⊆ Ksec be a finite
set of the secret keys of subverted participants.
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Let Nonceuni be a set of the nonce symbols of honest participants, Nonceadv be
a set of the nonce symbols of the adversary, and Nonce = Nonceuni ∪Nonceadv .

Let Randuni be a set of the randomness symbols denoting uniform random-
nesses used only in honest participants’ probabilistic encryptions, Randadv be a
set of the randomness symbols used in the adversary’s probabilistic encryptions,
and Rand = Randuni ∪Randadv . For a set X , let FMulti(X ) be the set of all the
non-empty finite multisets of X ’s elements. Let X1  X2 be the disjoint union
of two multisets X1 and X2.

Using these atomic symbols, a term is constructed from a pairing 〈 , 〉,
encryption {| |} , and re-encryption (| |) operations as follows:

Term ! m ::= c | kpub | ksec | n | R | 〈m, m〉 | {|m |}R
kpub

| (|m |)R
kpub

,

where c ∈ Const , kpub ∈ Kpub , ksec ∈ Ksec, n ∈ Nonce, and a non-empty finite
multiset R ∈ FMulti(Rand). Here the multiset R denotes the randomness com-
posed of all the randomnesses in R. We assume that the value of the composition
of the randomnesses in R is uniquely determined.

A term of the form 〈m1, m2〉 denotes the pair of two messages m1 and m2. A
term of the form {|m |}R

kpub
denotes the encryption of a message m by a public

key kpub and a composed randomness R. For example, {|m |}R�R′

kpub
denotes the

encryption of a message m by a public key kpub and the randomness composed of
R and R′. A term of the form (|m |)R

kpub
denotes the re-encryption of a ciphertext

m by a public key kpub and a composed randomness R. We sometimes abbreviate
{|m |}{ r }

kpub
and (|m |){ r }

kpub
as {|m |}r

kpub
and (|m |)r

kpub
, respectively. We can derive a

term m from {|m |}R
kpub

by decrypting {|m |}R
kpub

using the corresponding secret
key kpub.

2.3 Patterns

This section defines a pattern pattern(m, T ) for a term m and a set T ⊆ Ksec.
The intuitive meaning of a pattern pattern(m, T ) is the bit string distribution
associated with m from the viewpoint of the formal adversary with access to the
secret keys T .

First, we introduce the type trees of terms [17,15]. We abuse the nota-
tion and use a type symbol as an atomic symbol of the same type. The
type tree type(m) of a term m is defined as follows: type(c) = Const if
c ∈ Const , type(kpub) = Kpub if kpub ∈ Kpub , type(ksec) = Ksec if ksec ∈
Ksec, type(n) = Nonce if n ∈ Nonce, type(R) = FMulti(Rand) if R ∈
FMulti(Rand), type(〈m1, m2 〉) = 〈 type(m1), type(m2) 〉, type({|m |}R

kpub
) =

{| type(m) |}FMulti(Rand)
Kpub

, and type((|m |)R
kpub

) = (| type(m) |)FMulti(Rand)
Kpub

. For ex-

ample, type(〈 c, {|n |}R
kpub

〉) = 〈Const , {|Nonce |}FMulti(Rand)
Kpub

〉 holds.

Next, we define the undecryptable ciphertext symbol �
{| type(m) |}R

kpub for each
ciphertext {|m |}R

kpub
to introduce the pattern representing the distribution of

the ciphertext that the adversary cannot decrypt. Intuitively, �
{| type(m) |}R

kpub
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denotes a random message from which the adversary cannot distinguish the
ciphertext {|m |}R

kpub
when R ∩Randuni �= ∅ holds. The notation �

{| type(m) |}R
kpub

implies that the encryption {|m |}R
kpub

reveals the public key kpub and the length

of the plaintext m. The set R of randomness symbols in �
{| type(m) |}R

kpub is used
to analyze the relations between probability distributions.

Finally, we define the pattern associated with a term.

Definition 1. A set Pattern of patterns is defined by:
Pattern � m ::= c | kpub | ksec | n | R | 〈m, m〉 | {|m |}R

kpub
| (|m |)R

kpub
| �

{| type(m) |}R
kpub ,

where c ∈ Const , kpub ∈ Kpub , ksec ∈ Ksec, n ∈ Nonce, and a non-empty finite
multiset R ∈ FMulti(Rand).

Definition 2. For kpub ∈ Kpub, let Reenckpub
be the minimum set of terms

recursively defined by:
– {|m |}R

kpub
∈ Reenckpub

holds for any m ∈ Term and any R ∈ FMulti(Rand).

– If mre ∈ Reenckpub
holds, then (|mre |)R

kpub
∈ Reenckpub

holds for any R ∈
FMulti(Rand).

Note that each m ∈ Reenckpub
is generated by repeated encryption/re-encryption

operations using the same public key kpub.

Definition 3. For a set T ⊆ Ksec, let T be the set { ksec | ksec ∈ T }. For
m ∈ Term and T ⊆ Ksec, we define the sets F (m, T ) and Gi(m, T ) of all the
secret keys that the formal adversary can learn from m using the secret keys in
T and Gi−1(m, T ), respectively.

– F(m, T ) = T (if m ∈ Const ∪ Kpub ∪ Nonce ∪ FMulti(Rand))
– F(ksec, T ) = { ksec } ∪ T
– F(〈m1, m2〉, T ) = F(m1, T ) ∪ F(m2, T )

– F({|m |}Rkpub
, T ) =

{
F(m, T ) (if kpub ∈ T or R ∈ FMulti(Randadv))
T (otherwise)

– F((|m |)R
kpub
, T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F({|m′ |}R�R′
kpub
, T ) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

and m = {|m′ |}R
′

kpub
holds for m′ ∈ Term

and R′ ∈ FMulti(Rand))
F((|m′ |)R�R′

kpub
, T ) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

and m = (|m′ |)R′
kpub

holds for m′ ∈ Reenckpub

and R′ ∈ FMulti(Rand))
F(m, T ) (otherwise)

– G0(m, T ) = T
– Gi(m, T ) = F (m, Gi−1(m, T ))

We define the function recoverable : Term × P(Ksec) → P(Ksec) that maps a
term m and a set T ⊆ Ksec to the set of all the secret key symbols recoverable
from m by using T .
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– recoverable(m, T ) = G|m|(m, T )

We define the function pat : Term ×P(Ksec) → Pattern that maps a term t and
a set T ⊆ Ksec to t’s pattern with respect to T .

– pat(m, T ) = m (if m ∈ Const ∪ Kpub ∪ Ksec ∪ Nonce ∪ FMulti(Rand))
– pat(〈m1, m2〉, T ) = 〈pat(m1, T ), pat(m2, T )〉

– pat({|m |}Rkpub
, T ) =

⎧⎪⎪⎨⎪⎪⎩
{| pat(m, T ) |}Rkpub

(if kpub ∈ T or R ∈ FMulti(Randadv))

�
{| type(m) |}Rkpub (otherwise)

– pat((|m |)R
kpub
, T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pat({|m′ |}R�R′
kpub
, T ) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

and m = {|m′ |}R
′

kpub
holds for m′ ∈ Term

and R′ ∈ FMulti(Rand))
pat((|m′ |)R�R′

kpub
, T ) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

and m = (|m′ |)R′
kpub

holds for m′ ∈ Reenckpub

and R′ ∈ FMulti(Rand))
(| pat(m, T ) |)R

kpub
(otherwise)

Let pattern : Term × P(Ksec) → Pattern be the function defined by:
pattern(m, T ) = pat(m, recoverable(m, T )).

In the above definition, pattern(m, T ) represents the information that the formal
adversary can obtain from the message m using the decryption keys in T . We
assume that the formal adversary can see any messages encrypted using a non-
uniform randomness. We also assume that he can see the message c in a re-
encryption (| c |)R

kpub
if c is not a valid encryption using kpub. In addition, the

above definition reflects that the re-encryption of a ciphertext {|m |}R′

kpub
by the

same public key kpub and a randomness R produces the ciphertext {|m |}R�R′

kpub

using the randomness composed of R and R′.

2.4 Acyclicity and Freshness Assumption

First, we introduce a subterm relation. Given a term m, the set SubTerm of
all the subterms of m is recursively defined as follows: SubTerm(m) = {m} if
m ∈ Const ∪Kpub ∪Ksec ∪Nonce ∪Rand , SubTerm(m) = {m}∪SubTerm(m1)∪
SubTerm(m2) if m = 〈m1, m2〉, and SubTerm(m) = {m} ∪ SubTerm(m′) if m =
{|m′ |}R

kpub
or m = (|m′ |)R

kpub
. For two term m and m′, we write m′ 	 m if

m′ ∈ SubTerm(m).
Next, we define the acyclicity of terms in a similar way to that in [2,12].

Definition 4. A secret key symbol k encrypts a secret key symbol k′ in a term
m if {|m′ |}R

k 	 m and k′ 	 m′ hold for some R ∈ FMulti(Rand). A term is
acyclic if there is no sequence k1, k2, · · · , kn, kn+1 = k1 of secret key symbols
such that ki encrypts ki+1 in m for each 1 ≤ i ≤ n.
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The acyclicity of terms is necessary for us to obtain the soundness theorem.
Then, we define the independence of a uniform randomness symbol.

Definition 5. A uniform randomness symbol r ∈ Randuni is independent in a
set S of terms if there exist a unique multiset R ∈ FMulti(Rand) such that

– r ∈ R holds,
– R occurs in some m ∈ S, and
– r �∈ R′ holds for every R′ ∈ FMulti(Rand) occurring in some m′ ∈ S with

R′ �= R.

r ∈ Randuni is independent in a term m if it is independent in {m }.

Intuitively, if an independent randomness r ∈ Randuni is used in an
honest participant’s probabilistic encryption/re-encryption, then it is not
used in another encryption/re-encryption. For example, let S be the set
{ {| c1 |}r1

k , {| c1 |}{ r1, r2 }
k , {| c2 |}r3

k , (| {| c2 |}r3
k |)r4

k } for r1, r2, r3, r4 ∈ Randuni .
While r2, r3, and r4 are independent in S, r1 is not independent.

Finally, we introduce the following freshness assumption.

Definition 6. A multiset R ∈ FMulti(Rand) encrypts a term m′ in a term
m if {|m′ |}R

kpub
	 m holds for some public key symbol kpub. A multiset

R ∈ FMulti(Rand) re-encrypts a term m′ in a term m if (|m′ |)R
kpub

	 m holds
for some public key symbol kpub. A term m satisfies the freshness assumption
if it holds that for each R ∈ FMulti(Rand) \ FMulti(Randadv ) occurring in m,
there exist

– a unique term m′ such that every occurrence of R encrypts/re-encrypts m′

in m, and
– a uniform randomness symbol r ∈ R ∩ Randuni independent in m.

Intuitively, the former condition represents the fact that

– no honest participant uses the same composed randomness R to encrypt/
re-encrypt another message, and that

– no honest participant uses the randomnesses in Randuni except when employ-
ing them as the randomnesses in probabilistic encryptions/re-encryptions,
that is, no uniform randomness symbols in Randuni are used as plaintexts
or keys in m.

The latter condition represents the fact that

– every randomness R used in an honest participant’s encryption/re-
encryption is composed of at least one independent and uniform randomness
r which he never uses in another encryption/re-encryption.

For example, for c1, c2 ∈ Const , k ∈ Kpub, r1, r2 ∈ Randuni and
radv ∈ Randadv , the following four terms do not satisfy the freshness as-
sumption: 〈{| c1 |}{ r1 }

k , {| c2 |}{ r1 }
k 〉, {| r1 |}{ r2 }

k , 〈{| c1 |}{ r1 }
k , {| c1 |}{ r1, r2 }

k 〉, and
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〈{| c1 |}{ r1 }
k , {| c1 |}{ r1, radv }

k 〉. If two multisets R, R′ ∈ FMulti(Rand) with R �
R′ occur in a term m, then m does not satisfy the freshness assumption. Note
that the freshness assumption allows honest participants to copy any ciphertexts.

Hereafter, we deal only with acyclic terms that satisfy the freshness assumption.

2.5 Observational Equivalence

This section defines the renaming of patterns and the observational equivalence
of terms.

First, we introduce several notations and the renaming for atomic symbols.

Definition 7. Given T ⊆ Ksec, let AtomT = (Kpub \T )∪(Ksec \T )∪Nonceuni∪
(FMulti(Rand) \ FMulti(Randadv )). Given P ∈ Pattern, let AtomT (P ) be the fol-
lowing set: {P ′ ∈ AtomT | P ′ occurs in P }.

Definition 8. Given P ∈ Pattern and T ⊆ Ksec, a function σ is a renaming
for the atomic symbols in P except for T if it is a type-preserving injection from
AtomT (P ) to AtomT such that σ(k) = k′ if and only if σ(k) = k′ for any
k, k′ ∈ Kpub \ T .

Next, we define the renaming of a pattern.

Definition 9. Given a pattern P ∈ Pattern and a renaming σ for the atomic
symbols in P except for T ⊆ Ksec, we write σ̃ P to represent the pattern obtained
by replacing each occurrence of Q ∈ AtomT (P ) in P with σ(Q).

Finally, we define the observational equivalence of terms.

Definition 10. Two terms m and m′ are observationally equivalent, written as
m ∼= m′, if there exists a renaming σ for the atomic symbols in pattern(m′, Kadv)
except for Kadv such that pattern(m, Kadv) = σ̃ pattern(m′, Kadv).

Example 1. Let k, k1, k2 ∈ Kpub \Kadv and r1, r2 ∈ Randuni .
– {|m |}{ r1 }

k
∼= {|m |}{ r1, r2 }

k
∼= (| {|m |}r1

k |)r2

k
This represents the fact that the re-encryption operation using the same
public key k and a uniform randomness r2 does not change the probabil-
ity distribution. Note that we can prove this by employing a renaming σ
satisfying σ({ r1, r2 }) = { r1 }.

– {|m |}r1
k
∼= {|m |}r2

k but 〈{|m |}r1
k , {|m |}r1

k 〉 �∼= 〈{|m |}r1
k , {|m |}r2

k 〉
This represents the fact that the formal adversary can recognize the repe-
tition of the same ciphertext bit strings. Note that no renaming σ satisfies
both σ({ r1 }) = { r1 } and σ({ r2 }) = { r1 }. In general, our observational
equivalence of patterns can deal with the relations of probability distribu-
tions unlike [2], because of our definition of the renaming.

– {|m |}r1
k
∼= {|m |}{ radv, r1 }

k
∼= (| {|m |}radv

k |)r1

k (radv ∈ Randadv )
This represents the fact that the re-encryption of the adversary’s ciphertext
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{|m |}radv

k using a uniform randomness r1 produces a uniformly random ci-
phertext. Note that there exists a renaming σ satisfying σ({ radv, r1 }) =
{ r1 }.

– 〈{|m |}r1
k , {|m |}r2

k 〉 �∼= 〈{|m |}r1
k , (| {|m |}r1

k |)radv

k 〉 (radv ∈ Randadv )
This represents the fact that the adversary can recognize the re-
encryption using the adversary’s randomness radv because he has performed
the re-encryption. Note that we have pattern(〈{|m |}r1

k , {|m |}r2
k 〉, ∅) =

〈�{| type(m) |}r1
k , �{| type(m) |}r2

k 〉 but pattern(〈{|m |}r1
k , (| {|m |}r1

k |)radv

k 〉, ∅) =
〈�{| type(m) |}r1

k , (|�{| type(m) |}r1
k |)

radv

k 〉.
– 〈{|m |}r1

k1
, {|m |}r2

k1
〉 �∼= 〈{|m |}r1

k1
, {|m |}r2

k2
〉

This represents the fact that the formal rerandomizable encryption schemes
in this paper do not satisfy receiver anonymity [19], i.e., the key-privacy [4]
or which-key concealing [2] of rerandomizable encryption schemes.

3 Computational Model

This section introduces the notion of computational indistinguishability, a com-
putational rerandomizable encryption scheme, and its security definitions.

3.1 Preliminaries

In a computational setting, messages are bit strings and adversaries are proba-
bilistic polynomial-time (PPT) algorithms that input and output bit strings. We
denote the set of all bit strings by String , and the length of a bit string x by |x|.
The computational security of cryptographic schemes is defined in terms of the
notion of a probability ensemble over bit strings, which is a sequence {Dη}η of
probability distributions Dη over bit strings indexed by a security parameter η.

We use the following indistinguishability of probability ensembles as a security
definition in the computational setting. We write d ← Dη to indicate that d is
sampled from a probability distribution Dη, and write Pr[d ← Dη : E] for the
probability of an event E when d is sampled from Dη. We abuse the notation
and write d ← X to indicate that d is sampled from the uniform distribution on
a set X . A function f from integers to real numbers is negligible in a security
parameter η if for every c > 0 there exists an integer ηc such that f(η) ≤ η−c

holds for any η ≥ ηc.

Definition 11. Two probability ensembles {Dη}η and {D′
η}η are computa-

tionally indistinguishable with respect to an oracle O, written Dη ≈O D′
η if for

every PPT adversary A,
Pr[d ← Dη : AO(·)(d, η) = 1]− Pr[d′ ← D′

η : AO(·)(d′, η) = 1]

is negligible in η.

In the above definition, we assume that the PPT adversary A can send a poly-
nomial number of queries to the oracle O.
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3.2 Rerandomizable Encryption Scheme

We consider a rerandomizable encryption scheme where everyone can re-encrypt
a ciphertext using a public key and a randomness. It is left to our future work to
deal with more complex rerandomizable encryption schemes using re-encryption
keys generated from secret keys, such as the proxy re-encryption scheme pro-
posed in [5].

Let Param be a set of security parameters, PubKey be a set of computational
public keys, SecKey be a set of computational secret keys, Plaintext be a set of
computational plaintexts, and Random be a set of random bit strings used in
encryptions and re-encryptions. Let ⊥ be the special bit string representing the
failures of encryptions, decryptions, and re-encryptions. We denote the secret
key corresponding to a public key pk by pk, and the public key corresponding
to a secret key sk by sk.

Definition 12. A computational rerandomizable encryption scheme is a
quintuple (G, E , D, R, CMP) consisting of the following five algorithms:

– a key generation algorithm G : Param × Random → PubKey × SecKey that
outputs, given a security parameter η and a randomness r, a public key and
secret key pair (pk, sk).

– an encryption algorithm E : PubKey × String × Random → Cipher ∪ {⊥}
that outputs, given a public key pk, a bit string x, and a randomness r, the
encryption of x using pk and r, or the failure message ⊥.

– a decryption algorithm D : SecKey×String → Plaintext ∪{⊥} that outputs,
given a secret key sk and a bit string x, the decryption of x using sk, or the
failure message ⊥.

– a re-encryption algorithm R : PubKey × String × Random → Cipher ∪ {⊥}
that outputs, given a public key pk, a bit string x, and a randomness r, the
re-encryption of x using r, or the failure message ⊥.

– a randomness-composition algorithm CMP : FMulti(Random) → Random
that outputs the composition of a given finite multiset of randomnesses.
We assume that the bit string representing the composition of a multiset of
randomnesses is uniquely determined if the multiset is fixed.

We assume that the lengths of the outputs from these algorithms de-
pend only on those of the inputs. These algorithms satisfy the following
properties for any pk ∈ PubKey , sk = pk, any r, r′ ∈ Random, any
R1, R2, R3 ∈ FMulti(Random), and any x ∈ String .

– D(sk, E(pk, x, r)) =
{

x (if x ∈ Plaintext)
⊥ (otherwise)

– R(pk, E(pk, x, r), r′) = E(pk, x, CMP({ r, r′ }))
– CMP(CMP(R1  R2)  R3) = CMP(R1  CMP(R2  R3))

To obtain soundness results for the schemes such that the composition of a mul-
tiset of randomnesses is not uniquely determined, it is sufficient to use sequences
of randomness symbols instead of multisets of randomness symbols.
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3.3 Security Definitions of Rerandomizable Encryption Schemes

We define the IND-RCCA security of the rerandomizable encryption scheme.

Definition 13. Let η be a security parameter and RE = (G, E , D, R, CMP)
be a rerandomizable encryption scheme. For a PPT adversary A, we define the
advantage AdvRCCA

RE, A as follows:

AdvRCCA
RE, A (η) = Pr [ (pk, sk) ← G(η);

(m0, m1) ← AD1(·)(pk);
(m0 �= m1 and |m0| = |m1|)

r ← Random ;
b ← { 0, 1 };
c := E(pk, mb, r);
b′ ← AD2(·)(c) :
b′ = b ]− 1

2 ,

where
D1(x) =D(sk, x) and D2(x) =

{
D(sk, x) (D(sk, x) �= m0, m1)
test (otherwise)

A rerandomizable encryption scheme RE is IND-RCCA secure if the advantage
AdvRCCA

RE, A is negligible in η for every PPT adversary A.

The notion “RCCA”, or Replayable CCA, was proposed by Canetti et al. [6]
as a relaxation of CCA2 security. Although this security is strictly weaker than
CCA2, it is believed to be a necessary and sufficient formalization of “secure
encryption” from the applicational point of view [3]. Groth [14] first proposed
a rerandomizable encryption scheme satisfying a weaker form of RCCA secu-
rity, and another scheme satisfying RCCA security in the generic groups model.
Prabhakaran and Rosulek [19] improved this rerandomizable scheme to achieve
RCCA security in a standard model, and Xue and Feng [21] proposed a more
efficient scheme that also achieves receiver anonymity. There are notions similar
to IND-RCCA: “benign malleability” [20], “loose ciphertext-unforgeability” [16],
and “generalized CCA security” [3].

Finally, we define the notion of randomness-preserving composition, because
IND-RCCA security cannot describe the security property whereby the re-
encryption algorithm R fully rerandomizes input ciphertexts.

Definition 14. Let η be a security parameter and RE = (G, E , D, R, CMP)
be a rerandomizable encryption scheme. The randomness composition algorithm
CMP is randomness-preserving if it holds for every r, r0, r1 ∈ Random that

1. Pr[x0 ← Random : CMP({ x0, r }) = r1] = Pr[x0 ← Random : x0 = r1]
2. Pr[x0 ← Random : x0 = r0 ∧ CMP({ x0, r }) = r1]

= Pr[x0 ← Random : x0 = r0] · Pr[x0 ← Random : CMP({ x0, r }) = r1].

By Lemma 1 of [21], if CMP is randomness-preserving, then RE is perfectly
rerandomizable [19], which is a security notion of the re-encryption operation R.
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4 Encoding

This section introduces an encoding that maps patterns to distributions over
bit strings. The definition of the encoding is standard [2,12], but we take the
composed randomness into account.

First, we define the set of the symbols that should be encoded using random
bit strings.

Definition 15. For a term/pattern m, let RS(m) be the set of atomic symbols:

RS (m) = {m′ ∈ Kpub ∪ Nonce | m′ occurs in m } ∪ { ksec | ksec ∈ Ksec, ksec occurs in m }
∪ { r ∈ R | R ∈ FMulti(Rand), R occurs in m }.

For a set S of terms/patterns, let RS(S) be the set
⋃

m∈S RS(m).

Next, we define the set Coins� of functions each of which encodes the randomness
used to encode key/nonce/random symbols.

Definition 16. For a set X of atomic symbols, let Coins�(X) be the set:
{ t : X → { 0, 1 }� }.
Each function t ∈ Coins�(RS(m)) maps each key/nonce/randomness symbol x
in m to a random bit string used to encode x. For example, for a public key
symbol kpub occurring in m, t(kpub) is the random bit string that is used to
generate the public key bit string denoted by kpub. Hereafter we sometimes omit
the length � from the notation when � is a polynomial in the security parameter
η such that t ∈ Coins�(X) is sufficient to encode all the key/nonce/randomness
symbols in X .

Then, we define the algorithms used in the encoding of terms/patterns. Let
RE = (G, E , D, R, CMP) be a rerandomizable encryption scheme. We use G
to encode public and secret key symbols, E to encode encryptions, R to encode
re-encryptions, and CMP to encode a set of randomness symbols. We also use
the following algorithms.

Definition 17. – A constant encoder C is a deterministic algorithm that out-
puts a fixed bit string corresponding to a given constant c in Const .

– A nonce encoder N is an algorithm that outputs, given a randomness t(n)
for some n ∈ Nonce, a bit string uniformly and randomly selected from
{ 0, 1 }poly(η), where poly(η) is a fixed polynomial in η.

– A type encoder T is an algorithm that outputs a fixed bit string of the same
length as the encoding of the term m for an input type(m), such as an all-zero
string of the same length.

– A nonce distribution Dnonce is an algorithm that outputs, given a random
bit string, a bit string used as the adversary’s nonce.

– A randomness distribution Drand is an algorithm that outputs, given a ran-
dom bit string, a bit string used as the adversary’s randomness for proba-
bilistic encryptions and re-encryptions.

We assume that each of these algorithms outputs bit strings of the same length
for inputs of the same length. Let I = 〈RE , C, N , T , Dnonce, Drand〉.
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Finally, we define the encoding of terms/patterns. We abuse the notations and
use 〈 ·, · 〉 to represent the concatenation of bit strings. Let fst and snd be the
two algorithms that map a concatenation of bit strings to the first and second
component, respectively.

Definition 18. Let e be a function from some set dom(e) of terms/patterns to
bit strings, η be a security parameter, and t ∈ Coins(RS(m) \ dom(e)). The
encoding [[ m ]]e, t

η, I of a term/pattern m is recursively defined as follows:

if m ∈ Dom(e),

then [[ m ]]e, t
η,I = e(m)

else [[ c ]]e, t
η,I = 〈C(c), “Const”〉

[[ kpub ]]e, t
η,I = 〈fst(G(η, t(kpub))), “PubKey”〉

[[ ksec ]]e, t
η,I = 〈snd(G(η, t(ksec))), “SecKey”〉

[[ n ]]e, t
η,I =

{
〈Dnonce(N(η, t(n))), “Nonce”〉 (if n ∈ Nonceadv)
〈N(η, t(n)), “Nonce”〉 (otherwise)

[[ { r } ]]e, t
η,I =

{
〈Drand(t(r)), “Rand”〉 (if r ∈ Randadv)
〈t(r), “Rand”〉 (otherwise)

[[ R ]]e, t
η,I = 〈CMP({ fst([[ { r } ]]e, t

η,I) | r ∈ R }), “Rand”〉

[[ 〈m1, m2〉 ]]e, t
η,I = 〈〈[[ m1 ]]e, t

η,I, [[ m2 ]]e, t
η,I〉, “pair”〉

[[ {|m |}Rk ]]e, t
η,I = 〈E(fst([[ k ]]e, t

η,I), [[ m ]]e, t
η,I, fst([[ R ]]e, t

η,I)), fst([[ k ]]e, t
η,I), “enc”〉

[[ (|m |)R
k ]]e, t
η,I = 〈R(fst([[ k ]]e, t

η,I), fst([[ m ]]e, t
η,I), fst([[ R ]]e, t

η,I)), fst([[ k ]]e, t
η,I), “enc”〉

[[�{| type(m) |}Rk ]]e, t
η,I = 〈E(fst([[ k ]]e, t

η,I), T (type(m)), fst([[ R ]]e, t
η,I)), fst([[ k ]]e, t

η,I), “enc”〉

where c ∈ Const , kpub ∈ Kpub , ksec ∈ Ksec, n ∈ Nonce, and r ∈ Rand ,
R ∈ FMulti(Rand). For any pattern m and any security parameter η,
the encoding [[ m ]]eη,I is the probability distribution { t ← Coins(RS(m) \
dom(e)) : [[ m ]]e, t

η, I }. We omit e when dom(e) = ∅. When Dom(e) =
{ x1, x2, · · · , xn } and yi = e(xi) for each 1 ≤ i ≤ n, we sometimes write
[x1 �→ y1, x2 �→ y2, · · · , xn �→ yn] instead of e. Hereafter we omit I from the
notations, and abbreviate [[ { r } ]]e, t

η,I as [[ r ]]e, t
η .

In the above definition, each encoding is followed by a type tag representing
one of the bit string types “Const”, “PubKey”, “SecKey”, “Nonce”, or “Ran-
dom” and the bit string operation types “pair” and “enc”. The algorithm fst
is used to remove type tags, and we omit fst for readability hereafter. A ci-
phertext bit string contains the public key used to generate the ciphertext. We
introduce the algorithm PK that outputs the public key pk from a given en-
cryption using pk. PK satisfies the equation: PK(〈E([[ k ]]e, t

η , [[ m ]]e, t
η , [[ R ]]e, t

η ),
[[ k ]]e, t

η , “enc”〉) = [[ k ]]e, t
η .

Note that [[ m ]]e, t
η is a unique bit string, because t ∈ Coins(RS(m) \ dom(e))

determines all the randomnesses in m.
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5 Soundness

5.1 Abadi-Rogaway Indistinguishability

First, we define a function undecτ that maps a bit string to a set of undecryptable
bit strings. Intuitively, given an encoding μ of a term M and a set τ of encodings
of a set T ⊆ Ksec, x ∈ undecτ (μ) is an encoding of an undecryptable message in
pattern(M, T ).

Definition 19. Let μ be a bit string, and τ be a set of computational secret
keys. Let undecτ be the algorithm defined in Fig. 1.

algorithm undecτ (μ)
Set B, B′ :={μ };
do

B := B′;
B′ := ∅;
for each b ∈ B

if b = 〈b1, b2, “pair”〉
then B′ := B′ ∪ { b1, b2 };

if b = 〈c, PK(c), “enc”〉 and 〈PK(c), “PubKey”〉 ∈ τ

then B′ := B′ ∪ {D(PK(c), c) };
if b = 〈c, PK(c), “enc”〉 and 〈PK(c), “SecKey”〉 ∈ τ

then B′ := B′ ∪ {D(PK(c), c) };
otherwise

B′ := B′ ∪ { b };
while B′ �= B;
return B′;

Fig. 1. Algorithm undecτ

Roughly speaking, undecτ (μ) is the set of all the challenge ciphertexts, and is
used to specify the ciphertexts that cannot be decrypted by the decryption oracle
in Definition 21.

Next, we define the set forbid η, t(M, T ) of bit strings that is used in the oracle
of Definition 21.

Definition 20. Let M ∈ Term and T ⊆ Ksec. Let forbid η, t(M, T ) be the set:{
〈pk, D(pk, y)〉, 〈pk, Type(D(pk, y))〉

∣∣∣∣ y ∈ undec [[ T ]]tη
([[ M ]]tη),

pk = PK(y)

}
,

where Type is the algorithm defined by Type([[ m ]]tη) = T (type(m)) for every
m ∈ Term .

Finally, we define a computational indistinguishability between the two proba-
bility distributions each encoding a term. This indistinguishability is defined in
the presence of an active and adaptive PPT adversary A, and is almost the same
as that in [15] except for the definition of the oracle OM, M ′, T

η, t .
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Definition 21. Let η be any security parameter, T be any finite set of secret
key symbols, and M and M ′ be any two acyclic terms satisfying the freshness
assumption and M ∼= M ′. A rerandomizable encryption scheme RE provides
Abadi-Rogaway RCCA indistinguishability if for every PPT adversary A,
it holds that

[[ M ]]η ≈OM, M′, T
η, t

[[ M ′ ]]η,

that is, the advantage AdvAR−RCCA
RE , A defined below is negligible in η.

AdvAR−RCCA
RE, A (η) = Pr[t ← Coins(M), d ← [[ M ]]tη : AO

M, M′, T
η, t (·, ·)(d, η) = 1]

−Pr[t ← Coins(M ′), d ← [[ M ′ ]]tη : AO
M, M′, T
η, t (·, ·)(d, η) = 1]

OM,M′,T
η, t (pk, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(pk, x) (if either
(i) pk ∈ [[ K ]]tη for some K ∈ T , or
(ii) (a) pk ∈ [[ K ]]tη for some K ∈ Kpub \ T ,

(b) 〈pk, D(pk, x)〉 �∈ forbidη,t(M, T ),
and
(c) 〈pk, D(pk, x)〉 �∈ forbidη,t(M

′, T ))
⊥ (if pk �∈ [[ K ]]tη for any K ∈ Kpub)
test (otherwise)

In this definition, the adversary A can learn some relations between plaintexts
and their encryptions by having access to the oracle OM, M ′, T

η, t . As opposed to
the access to D1 and D2 in Definition 13, the adversary A needs to send a public
key pk to the oracle OM, M ′, T

η, t to specify the corresponding secret key pk used for
the decryption, because two messages M , M ′, and their patterns can be thought
of as many possible different challenge ciphertexts under many possible different
keys.

The oracle OM, M ′, T
η, t is similar to that in [15] except that the two sets

forbidη, t(M, T ) and forbidη, t(M ′, T ) are used to determine whether or not

OM, M ′, T
η, t returns the decryption of x to the adversary A. The challenge ci-

phertexts that the oracle OM, M ′, T
η, t should not decrypt are those encryptions

that the decryption oracle D2 is not allowed to decrypt in the IND-RCCA
game. They are either undecryptable ciphertexts E(pk, m, r) derivable from
[[ M ]]tη or [[ M ′ ]]tη, or the corresponding encryptions E(pk, Type(m), r). There-
fore, forbidη, t(M, T ) ∪ forbid η, t(M

′, T ) specifies the set of all the challenge

ciphertexts that OM, M ′, T
η, t should not decrypt.

5.2 Soundness of Formal Rerandomizable Encryption

We obtain the following soundness theorem.

Theorem 1. Let RE be an IND-RCCA secure rerandomizable encryption
scheme with a randomness-preserving composition CMP. For any two acyclic
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terms M and M ′ satisfying the freshness assumption, M ∼= M ′ implies
[[ M ]]η ≈O

M, M′, Kadv
η, t

[[ M ′ ]]η.

Proof. By Lemmas 1 and 2 presented below, we have the following equation for
some renaming σ for the atomic symbols in pattern(M ′, Kadv) except for Kadv.

[[ M ]]η ≈O
M,M′ ,Kadv
η, t

[[ pattern(M, Kadv) ]]η = [[ σ̃ pattern(M′, Kadv) ]]η

= [[ pattern(M′, Kadv) ]]η ≈O
M,M′ ,Kadv
η, t

[[ M′ ]]η.

�

Lemma 1. Let M and M ′ be any two acyclic terms satisfying the fresh-
ness assumption, and T be any finite set of secret key symbols. Let RE =
(G, E , D, R, CMP) be an IND-RCCA secure rerandomizable encryption scheme
where CMP is randomness-preserving. Then we have [[ M ]]η ≈

OM, M′, T
η, t

[[ pattern(M, T ) ]]η.

Proof. Suppose that there exists a PPT adversary A with access to OM, M ′, T
η, t

who can distinguish between samples from [[ M ]]η and [[ pattern(M, T ) ]]η. Then
we derive a contradiction by using a hybrid argument similar to [2,15]. Between
the two rows M and pattern(M, T ), we create a new row for each encryption/re-
encryption, so that two consecutive rows differ only in one of the following cases:

(1) a single re-encryption (| (|P |)R′

K |)
R

K being replaced with (|P |)R�R′

K for P ∈
ReencK , R ∈ FMulti(Rand) \ FMulti(Randadv ), and R′ ∈ FMulti(Rand),

(2) a single re-encryption (| {|P |}R′

K |)
R

K being replaced with {|P |}R�R′

K for R ∈
FMulti(Rand) \ FMulti(Randadv ) and R′ ∈ FMulti(Rand),

(3) a single encryption {|P |}R
K being replaced with �{| type(P) |}R

K for R ∈
FMulti(Rand) \ FMulti(Randadv ) and K ∈ Kpub \ T .

Because of the definition of patterns, we obtain a sequence of rows: M =
M0, M1, · · · , Mi, Mi+1, · · · , Mn = pattern(M, T ) where for each 0 ≤ i < n,
Mi and Mi+1 are identical except for one of the above cases. Unlike [2,15], it is
necessary to consider cases (1) and (2) that deal with re-encryption patterns.
Furthermore, in case (3) we take account of the condition with the randomnesses
of probabilistic encryptions.

Example 2. For example, let M be the following sequence of terms,
and T be the following set for c ∈ Const , k1, k2, k3, k4 ∈ Kpub, and
R1, R2, R3, R4, R5, R6 ∈ Randuni .

M = {| c |}R2
k2

, {| {| c |}R2
k2

, {| c |}R6
k3

, k3 |}
R1

k1
, (| (| {| c |}R5

k4
|)

R4

k4
|)

R3

k4
T = { k1 }

Here we have omitted parentheses for readability. We obtain the secret key
symbols:

recoverable(M, T ) = { k1, k3 }.
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We obtain the sequence of rows M = M0, M1, M2, M3, M4, M5 =
pattern(M, T ).

M0 = {| c |}R2
k2

, {| {| c |}R2
k2

, {| c |}R6
k3

, k3 |}
R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)

R3

k4 (3) k2

M1 = �
{|Const |}R2

k2 , {| {| c |}R2
k2

, {| c |}R6
k3

, k3 |}
R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)

R3

k4 (3) k2

M2 = �
{|Const |}R2

k2 , {|�{|Const |}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)

R3

k4 (1) k4

M3 = �
{|Const |}R2

k2 , {|�{|Const |}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, (| {| c |}R5

k4
|)R3�R4

k4 (2) k4

M4 = �
{|Const |}R2

k2 , {|�{|Const |}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, {| c |}R3�R4�R5

k4
(3) k4

M5 = �
{|Const |}R2

k2 , {|�{|Const |}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, �

{|Const |}R3�R4�R5
k4

Since A can distinguish between [[ M0 ]]η and [[ Mn ]]η, there exist two con-
secutive rows Mi and Mi+1 such that A can distinguish between [[ Mi ]]η and
[[ Mi+1 ]]η. Fix Mi and Mi+1. Then the two rows Mi and Mi+1 are the same except
for one of the above three cases (1) - (3). In each case, we derive a contradiction.

(1) Consider the first case: Mi and Mi+1 are the same except that a

re-encryption (| (|P |)R′

K |)
R

K in Mi is replaced with (|P |)R�R′

K in Mi+1 for
P ∈ ReencK . Since P ∈ ReencK holds, we obtain the following equation for
every t ∈ Coins(RS(Mi)):

R([[ K ]]tη , R([[ K ]]tη , [[ P ]]tη , [[ R′ ]]tη), [[ R ]]tη) = R([[ K ]]tη , [[ P ]]tη , CMP([[ R ]]tη � [[ R′ ]]tη)

Therefore, we have [[ Mi ]]η = [[ Mi+1 ]]η, which contradicts the assumption that
A can distinguish [[ Mi ]]η and [[ Mi+1 ]]η.

(2) Consider the second case: Mi and Mi+1 are the same except that a

re-encryption (| {|P |}R′

K |)
R

K in Mi is replaced with {|P |}R�R′

K in Mi+1. We have
the following equation for every t ∈ Coins(RS(Mi)):

R([[ K ]]tη , E([[ K ]]tη , [[ P ]]tη , [[ R′ ]]tη), [[ R ]]tη) = E([[ K ]]tη , [[ P ]]tη , CMP([[ R ]]tη � [[ R′ ]]tη)

Therefore, we obtain [[ Mi ]]η = [[ Mi+1 ]]η, which contradicts the assumption that
A can distinguish [[ Mi ]]η and [[ Mi+1 ]]η.

(3) Consider the third case: Mi and Mi+1 are the same except that an en-
crypted message {|P |}R

K in Mi is replaced with �{| type(P) |}R
K in Mi+1 for

R ∈ FMulti(Rand) \ FMulti(Randadv ) and K ∈ Kpub \ T .
Now we construct an adversary A0 that breaks the IND-RCCA security of

the rerandomizable encryption scheme RE . The definition of A0 is presented in
Figs. 2 and 3.

Let (pk, sk) be a pair consisting of a public key and a secret key generated
using the key generation algorithm G. Because of the freshness assumption in
Definition 6, we can take a randomness symbol r0 ∈ R ∩ Randuni such that
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r0 �∈ R′ holds for every R′ ∈ FMulti(Rand) occurring in Mi with R′ �= R. Note
that r0 does not occur in P . Assume that x0 ← Random . We treat pk and x0
as the encoding of the public key symbol K and the randomness symbol r0,
respectively.

A
D1( · )
0 (pk)

t ← Coins(RS(Mi) \ {K, r0 });
m0 :=[[ P ]][K 	→〈pk, “PubKey′′〉], t

η ;
m1 := T (type(P ));
return (m0, m1);

Fig. 2. The behavior of A0 on input pk

A
D2( · )
0 (c)

s :=[[ Mi ]]e, t
η ;

b′ ← A
̂

O
Mi, Mi+1, T

η, t (pk, · )(s, η);
return b′;

Fig. 3. The behavior of A0 on input c

In Fig. 2, A0 receives the public key pk and generates two bit strings m0 and
m1 of the same length. D1 is the decryption oracle defined in Definition 13.

Then assume that b ← { 0, 1 }, x := CMP({ x0 }  { [[ r′ ]]tη | r′ ∈ R \ { r0 } }),
and c := E(pk, mb, x). Since CMP is randomness-preserving and x0 is selected
independently and uniformly, x is also independent and uniform. Therefore, we
can use x as the randomness of the probabilistic encryption generating the chal-
lenge ciphertext c in the IND-RCCA game.

In Fig. 3, A0 receives the ciphertext c and guesses b by invoking the adver-
sary A as a subroutine. Let e be the function [{|P |}R

K �→ 〈c, pk, “enc”〉, K �→
〈pk, “PubKey”〉], and s be the bit string [[ Mi ]]e, t

η . The adversary A receives s
from A0, and answers which of the two distributions [[ Mi ]]η and [[ Mi+1 ]]η s is
sampled from. Note that we have the equations:{

t ← Coins(RS(Mi) \ {K, r0 }), b := 0,
pk ← fst(G(η)), x0 ← Random

: [[ Mi ]]e, t
η

}
= [[ Mi ]]η{

t ← Coins(RS(Mi) \ {K, r0 }), b := 1,
pk ← fst(G(η)), x0 ← Random

: [[ Mi ]]e, t
η

}
= [[ Mi+1 ]]η

Here, e depends on the bit b, which was used to produce the challenge cipher-
text c := E(pk, mb, x). Since A can distinguish between [[ Mi ]]η and [[ Mi+1 ]]η
with non-negligible probability, A0 can guess the bit b with non-negligible prob-
ability by receiving b′ from A. Hence, A0 breaks the IND-RCCA security. This
contradicts the assumption.

There remains a problem with the oracle OM, M ′, T
η, t . Recall that A uses

the oracle OM, M ′, T
η, t defined in Definition 21. Since the definition of IND-

RCCA security allows A0 to use only the decryption oracles D1 and

D2, we consider an algorithm ̂
OM, M ′, T

η, t that uses only D2 and simu-

lates the oracle OM, M ′, T
η, t . We assume that the adversary A uses the al-

gorithm ̂OM, M ′, T
η, t presented in Fig. 4, instead of the oracle OM, M ′, T

η, t .
Note that A can efficiently decide 〈pk, D2(x)〉 ∈ forbidη, t(M, T ) ∪
forbidη, t(M

′, T ) by computing forbidden1D2( · )([[ M ]]tη, [[ M ′ ]]tη, D2(x), [[ T ]]tη) in



176 Y. Kawamoto, H. Sakurada, and M. Hagiya

algorithm ̂OM,M′ ,T
η, t

D2( · )
(pk, x)

if pk � [[ kpub0 ]]t
η

for any kpub0 ∈ Kpub

then return ⊥;
else if kpub0 = K

then if 〈pk, D2(x)〉 ∈ forbidη,t(M, T )
or 〈pk, D2(x)〉 ∈ forbidη,t(M′, T )

then return test;
else return D2(x);

else (pk′, sk′) :=G(η, t(kpub0));
if kpub0 ∈ T
then returnD(sk′, x);
else if 〈pk′, D(sk′, x)〉 ∈ forbidη,t(M, T )

or 〈pk′, D(sk′, x)〉 ∈ forbidη,t(M′, T )
then return test;
else returnD(sk′, x);

Fig. 4. Algorithm ̂
OM, M′, T

η, t

D2( · )

algorithm forbidden1D2( · )(s1, s2, μ, τ)
Set F := ∅
for each y ∈ undecτ(s1) ∪ undecτ(s2)

F := F ∪ {D2(y) };
if μ ∈ F
then return “yes”;
else return “no”;

Fig. 5. Algorithm forbidden1D2( · )

algorithm forbidden2(s1, s2, μ, τ, sk′)
Set F := ∅
for each y ∈ undecτ(s1) ∪ undecτ(s2)

F := F ∪ {D(sk′, y) };
if μ ∈ F
then return “yes”;
else return “no”;

Fig. 6. Algorithm forbidden2

Fig. 5, and 〈pk′, D(sk′, x)〉 ∈ forbidη, t(M, T ) ∪ forbidη, t(M ′, T ) by computing
forbidden2([[ M ]]tη, [[ M ′ ]]tη, D(sk′, x), [[ T ]]tη, sk′) in Fig. 6. �

Lemma 2. Let RE = (G, E , D, R, CMP) be an IND-RCCA secure rerandom-
izable encryption scheme where CMP is randomness-preserving. Let M be any
acyclic term satisfying the freshness assumption, and T be any set of secret
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key symbols. Let σ be a renaming for the atomic symbols in pattern(M, T ) ex-
cept for T such that σ̃ pattern(M, T ) = pattern(M ′, T ) for some acyclic term
M ′ satisfying the freshness assumption. Then we have [[ σ̃ pattern(M, T ) ]]η =
[[ pattern(M, T ) ]]η.

Proof. Given a term/pattern Q, let X(Q) = {R ∈ FMulti(Rand) \
FMulti(Randadv ) | R occurs in Q }. Let P = pattern(M, T ). Let σ|X(P ) be
the renaming for the atomic symbols in P such that σ|X(P )(R) = σ(R) if
R ∈ X(P ) and σ|X(P )(Q) = Q otherwise. Let σ|AtomT (P )\X(P ) be the renam-
ing for the atomic symbols in P such that σ|AtomT (P )\X(P )(R) = R if R ∈
X(P ) and σ|AtomT (P )\X(P )(Q) = σ(Q) otherwise. Clearly, we have [[ σ̃ P ]]η =
[[ σ̃|AtomT (P )\X(P ) σ̃|X(P ) P ]]η and [[ σ̃|AtomT (P )\X(P ) σ̃|X(P ) P ]]η = [[ σ̃|X(P ) P ]]η.
Hence, it is sufficient to prove [[ σ̃|X(P ) P ]]η = [[ P ]]η.

Let t ∈ Coins(RS({M } ∪ T )). Since M satisfies the freshness assumption,
for each R̃ ∈ X(M), there exists a uniform randomness symbol r̃ ∈ R̃∩Randuni

that is independent in M . Therefore, [[ r̃ ]]tη is a random bit string independently
and uniformly selected from Random. Since CMP is randomness-preserving, for
each R̃ ∈ X(M), the randomness [[ R̃ ]]tη composed of [[ r̃ ]]tη is also independent
and uniform.

Let R1, R2, · · · , Rn be all the distinct finite multisets of randomness symbols
in X(P ). It is immediate from Definition 3 that for every 1 ≤ i ≤ n, there
exist some R̃i1 , R̃i2 , · · · , R̃ik

∈ FMulti(Rand) occurring in M for k ≥ 1 such

that Ri = R̃i1  R̃i2  · · ·  R̃ik
, a term of the form (| · · · (| {|m |}R̃i1

k |)
R̃i2

k
· · · |)

R̃ik

k

occurs in M , and R̃ik
∈ X(P ). Since CMP is randomness-preserving and [[ R̃ik

]]tη
is independent and uniform, [[ R̃i ]]tη = CMP([[ R̃i1  R̃i2  · · ·  R̃ik−1 ]]tη, [[ R̃ik

]]tη)
is also independent and uniform.

On the other hand, since σ|X(P ) is injective, σ|X(P )(R1), σ|X(P )(R2), · · · ,
σ|X(P )(Rn) are all the distinct multisets of randomness symbols in X(σ̃|X(P ) P ).
Then, [[ σ|X(P )(Ri) ]]tη is independent and uniform, because σ̃|X(P ) P is also the
pattern of some term satisfying the freshness assumption.

Since both [[ σ|X(P )(Ri) ]]tη and [[ Ri ]]tη are independent bit strings uniformly
distributed on Random for any 1 ≤ i ≤ n, we obtain [[ σ̃|X(P ) P ]]η = [[ P ]]η. �

5.3 Example: Analysis of Simple Re-encryption Mixnet

We present an example of an analysis of a security protocol in our model.

Example 3. Consider a simple re-encryption mixnet protocol in which there are
two honest senders X1 and X2, an honest mixnet server Y , and a formal adver-
sary A. We assume that they all have a public key kpub ∈ Kpub, and that only
Y has the corresponding secret key kpub.

First, each Xi encrypts a message ci ∈ Const using kpub and a uniformly
selected randomness ri ∈ Randuni . Next, each Xi sends the ciphertext {| ci |}ri

kpub

to the server Y . Then, Y receives the two ciphertexts and re-encrypts them
using the same public key kpub and uniformly selected randomnesses r′1, r′2 ∈
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Randuni . Finally, Y outputs (| {| c1 |}r1
kpub

|)r′
1

kpub

and (| {| c2 |}r2
kpub

|)r′
2

kpub

in a random

order.
The sequence of the honest participants’ messages in this protocol is either

M or M ′.

M = {| c1 |}r1
kpub

, {| c2 |}r2
kpub

, (| {| ci |}ri

kpub
|)r′

i

kpub

, (| {| c3−i |}r3−i

kpub
|)r′

3−i

kpub

M ′ = {| c2 |}r2
kpub

, {| c1 |}r1
kpub

, (| {| cj |}rj

kpub
|)r′

j

kpub

, (| {| c3−j |}r3−j

kpub
|)r′

3−j

kpub

Note that M and M ′ are acyclic and satisfy the freshness assumption. For these
two sequences of terms M and M ′, we obtain the following two patterns.

pattern(M, ∅) = �
{|Const |}r1

kpub , �
{|Const |}r2

kpub , �
{|Const |}{ ri, r′i }

kpub , �
{|Const |}{ r3−i, r′3−i }

kpub

pattern(M ′, ∅) = �
{|Const |}r2

kpub , �
{|Const |}r1

kpub , �
{|Const |}{ rj, r′j }

kpub , �
{|Const |}{ r3−j , r′3−j }

kpub

Since the uniform randomness symbols r1, r2, r′1, and r′2 are independent in M ′,
there exists a renaming σ such that σ({ rj , r′j }) = { ri, r′i }, σ({ r3−j , r′3−j }) =
{ r3−i, r′3−i }, and σ({ ri }) = { r3−i } for i, j = 1, 2. Then we obtain
pattern(M, ∅) = σ̃ pattern(M ′, ∅), that is, M ∼= M ′.

Assume that the rerandomizable encryption scheme used in this protocol sat-
isfies IND-RCCA security and the randomness-preserving property. Let η be a
security parameter, and [[ · ]]η be the encoding that uses the scheme. Since M
and M ′ are acyclic and satisfy the freshness assumption, it follows from Theo-
rem 1 that we obtain [[ M ]]η ≈OM, M′, ∅

η, t
[[ M ′ ]]η. This implies that no active and

adaptive PPT adversary can identify the sender of each plaintext ci. Hence, we
obtain sender anonymity with this simple re-encryption mixnet protocol in the
computational sense.

6 Conclusion

We proposed a new formalization of a rerandomizable encryption scheme by us-
ing Abadi-Rogaway-style formal patterns, and proved its computational sound-
ness by using IND-RCCA security and the randomness-preserving property. In
the formalization, we introduced a new method for dealing with composed ran-
domnesses.

Our method of defining patterns using multisets is not limited to the for-
malization of rerandomizable encryption schemes. We believe it is also useful in
order to provide a computationally sound formalization of other cryptographic
primitives, such as threshold cryptography and blind signature.
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Writing an OS Kernel
in a Strictly and Statically Typed Language

Toshiyuki Maeda and Akinori Yonezawa
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The University of Tokyo

Abstract. OS kernels have been written in weakly typed or non typed
programming languages, for example, C. Therefore, it is extremely hard
to verify even simple memory safety of the kernels. The difficulty could
be resolved by writing OS kernels in strictly typed programming lan-
guages, but existing strictly typed languages are not flexible enough to
implement important OS facilities (e.g., memory management and multi-
thread management facilities). To address the problem, we designed and
implemented TALK, a new strictly and statically typed assembly lan-
guage which is flexible enough to implement OS facilities, and wrote an
OS kernel with TALK. In our approach, the safety of the kernel can be
verified automatically through static type checking at the level of binary
executables without source code.

1 Introduction

Today, the importance of ensuring safety and security of software is commonly
recognized and many programs come to be written in strictly typed languages
(e.g., Java [1] and C# [2]). This is because the program that is written in a
strictly typed language and passes its type check is memory safe and control-
flow safe, that is, it never performs invalid memory accesses or invalid code
execution at runtime.

However, there is one kind of programs that have not been written in strictly
typed languages: Operating systems. For example, existing OSes (e.g., Linux,
FreeBSD, Windows XP and Solaris) are written in C and assembly languages.

Therefore, it is very hard to ensure and/or verify safety of OS kernels. For
example, in the approach of model checking [3], we can verify only a tiny part of
a kernel or the soundness of the verification cannot be ensured because we need
some approximation to avoid the state explosion problem [4]. The approach of
verifying safety of a kernel with proof-assistants (or by hand) [5,6] is also hard
because proving safety with proof-assistants is very complex and difficult for
usual programmers and, if the kernel is modified, we need to prove the safety
again.

One of the reasons why OSes are not written in strictly typed languages in
spite of the problem is that it is believed that OS facilities, such as memory
management (i.e., malloc/free), multi-thread management and device drivers,
cannot be written in strictly typed languages.

V. Cortier et al. (Eds.): Formal to Practical Security, LNCS 5458, pp. 181–197, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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To break the mistaken belief, we designed a strictly and statically typed
language which is powerful enough to implement memory management and
multi-thread management, and actually implemented them in the language. The
language is a variant of Typed Assembly Language (TAL) [7] extended with the
idea of tracking aliases of pointers explicitly [8] and support for variable-length
arrays and integer constraints [9,10].

There are three reasons why we chose TAL for writing OS kernels. First reason
is that we are able to express low-level operations (e.g., register manipulation)
with TAL because it is an ordinary assembly language except for being typed.
The low-level operations are essential for implementing memory management
and multi-thread management facilities. Second reason is that type checking
of TAL can be performed at the level of binary executables by annotating the
executables with the type information of TAL. This means that the memory
safety and control-flow safety of OS kernels can be verified without their source
code. In addition, we can keep the trusted computing base small because only
the TAL type checker is to be trusted. Third reason is that programmers can
use their favorite programming languages if there exist compilers that translate
the languages to TAL [11].

The main contribution of this paper is to comprehensively describe how we
can implement memory management and multi-thread management facilities of
OS kernels in our strictly and statically typed assembly language. The formal
definitions of the language is out of the scope of this paper and can be found in
our previous works [9,10].

The rest of the paper is organized as follows. First, we explain our language,
called TALK, in Sect. 2. Next, we explain how memory management can be
implemented in TALK in Sect. 3. Then, we explain how multi-thread manage-
ment can be implemented in TALK in Sect. 4. Finally, we discuss related work
in Sect. 5 and conclude this paper in Sect. 6.

2 TALK: Typed Assembly Language for Kernel

In this section, we describe TALK, our typed assembly language that supports
explicit alias tracking, variable length arrays and integer constraints. First, we
show the syntax of TALK. Next, we explain the type check of TALK by examples.

In this paper, we briefly explain the essentials of TALK by examples. In ad-
dition, we explain TALK based on an imaginary RISC-like CPU architecture
here, but we have designed and implemented TALK for IA-32 [12], which is
available on our web site [13]. The formal definitions of TALK (its formal syn-
tax, operational semantics, type system and soundness proof of the type sys-
tem) are available in our previous works [9,10]. In this paper, we present typing
rules for instructions in Appendix A. Informally speaking, the type system of
TALK ensures that well-typed programs never violate the memory safety and
the control-flow safety.

The syntax of TALK is shown in Fig. 1. A TALK program consists of instruc-
tions, as ordinary assembly programs. The instructions are grouped into basic
blocks and each basic block is annotated with a label and its type.
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(prog .) p ::= · | b p
(block) b ::= lt l : I
(insts.) I ::= ld [rs + n], rd; I

| st rs, [rd + n]; I
| mov rs, rd; I | movi v, rd; I
| add rs1, rs2, rd; I | sub rs1, rs2, rd; I
| mul rs1, rs2, rd; I | push rs, [rd]; I
| pop [rs], rd; I | beq rs1, rs2, rd; I
| ble rs1, rs2, rd; I | jmp rd

| split i1, i2; I | concat i1, i2; I
(register ) r ::= r1 | . . . | rn
(value) v ::= n | l
(integer) n
(label) l

(label type) lt ::= ∀Δ. |C| [Σ] (Γ )
(small type) σ ::= i | lt
(integer type) i ::= n | α | i1 aop i2
(type var .) δ ::= α, ε, γ
(type vars.) Δ ::= · | δ, Δ
(type) t ::= 〈σ1, . . . , σn〉

| ∃Δ. |C| [Σ] .t
(array type) at ::= t (i) | t (≡ t (1))
(stack type) st ::= · | σ :: st | γ
(heap type) ht ::= at | st
(memory type) Σ ::= · | Σ ⊗ {i �→ ht}

| Σ ⊗ ε
(regs. type) Γ ::= r1 : σ1, . . . , rn : σn

(constructor ) c ::= i | Σ | st
(constraints) C ::= · | i1 cop i2 | ¬C

| C ∧ C| C ∨ C

Fig. 1. Syntax of TALK

1 ∀α1, α2, ε. | · | [{α1 �→ 〈α2〉} ⊗ ε](r1 : α1, r3 : ∀β. | · | [{α1 �→ 〈β1〉} ⊗ ε] (r1 : α1))

2 double:

3 ld [r1], r2

4 add r2, r2, r2

5 st r2, [r1]

6 jmp r3

Fig. 2. Example of TALK (double the integer stored in a memory location)

There are 14 instructions in TALK. ld and st are memory operations that
perform loads and stores on memory, respectively. mov copies a value from one
register to another. movi loads an immediate value to a register. add, sub and mul
are ordinary arithmetic instructions. push and pop manipulate memory stacks.
Strictly speaking, push and pop are not necessary because they can be expressed
by other instructions. However, we include them here for ease of understanding
and convenience. beq, ble and jmp are branch instructions. split and concat
are special instructions for manipulating arrays (more properly, array types).
We explain their details in Sect. 3. split and concat only manipulate type
information and do not have any runtime effect. Therefore, the TALK assem-
bler can eliminate these two instructions when emitting binary executables. The
TALK type checker is still able to type-check the executables by keeping the
information of these instructions as type annotations.

Fig. 2 is an example TALK program. The part from line 2 to 6 is a completely
ordinary assembly program. It takes a pointer to an integer in register r1 and loads
the integer to register r2 (line 3). Next, it doubles the integer (line 4) and stores
the result (line 5). Then, it returns to the caller by jumping to the address stored
in register r3 (line 6). Please note that [r1] is syntactic sugar for [ri + 0].
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Line 1 specifies the label type of the function. The label type indicates the
precondition that must be satisfied when the function is called.

The part surrounded by ‘(’ and ’)’ is the register type. It means that register
r1 must be an integer of type α1 and register r3 must be a pointer to a label.
In TALK, integer types are represented as singleton types, that is, the integer
type contains the information about the integer value. For example, r1 : 1000
indicates that the value of register r1 is 1000. In addition, r1 : α, r2 : α indicates
that the values of register r1 and r2 are unknown, but r1 is equal to r2.

The part surrounded by ‘[’ and ’]’ is the memory type. {α1 �→ 〈α2〉} indicates
that there must be a tuple which contains an integer of type α2 at the address
α1. In Fig. 2, the label type indicates that register r1 must hold a pointer to an
integer because the register type indicates that register r1 has the value α1 and
the memory type indicates that there is an integer (α2) at the address α1. In
TALK, integers and pointers are not distinguished unlike ordinary programming
languages. Therefore, ordinary integer arithmetic operations (add, sub and mul)
can be used for pointer arithmetic.

ε of the memory type in Fig. 2 is a store variable which indicates that there
may be something in the memory other than the address α1. For example, mem-
ory type {α �→ 〈β〉} represents memory which contains only one tuple at the
address α. On the other hand, memory type {α �→ 〈β〉} ⊗ ε represents memory
which contains a tuple at the address α and may contain something else (ε).

The type system of TALK ensures that the addresses contained in a memory
type do not alias. That is, for example, memory type {α �→ 〈0〉} ⊗ {β �→ 〈0〉}
indicates that the address α and β are different. Therefore we know that there
are two tuples in the memory (not one tuple). With this property, the type
system is able to keep track of aliases that refer to the same memory location.
For example, if register r1 and r2 contains pointers that point to the same
address, their types must be equal. This is because, if r1 and r2 have different
types, say α1 and α2, the corresponding memory type must have two distinct
mappings for α1 and α2. That is, the memory type indicates that the address α1
and α2 are different, but it contradicts the assumption that register r1 and r2
point to the same memory location. The basic idea of tracking aliases with type
system is first introduced by Alias Type [8]. The benefit of introducing memory
types and tracking aliases is explained in Sect. 3.

2.1 Type Check

The type check of TALK is performed as follows. First, the type checker assumes
that the preconditions indicated by the label type of the instructions that are
to be type-checked are satisfied. For example, in Fig. 2, the type checker as-
sumes that register r1 is a pointer to an integer and register r3 is a pointer to
instructions (line 1).

Then, the type checker verifies that no instructions perform illegal memory
accesses or illegal code execution. For example, in Fig. 2, the type checker first
checks whether if the ld instruction (line 3) can be executed safely. More specifi-
cally, the type checker considers that it is safe because the type checker assumes
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that register r1 is a pointer to an integer. Then, the type checker changes the
assumption according to the effect of instruction ld before checking the next
instruction. More specifically, the type checker now assumes that register r2 has
the integer type (α2). As for the next instruction add, because it has no effects on
memory or code execution, the type checker considers that the instruction is safe
and checks the following instructions with the updated assumption that register
r2 has the type α2+α2. Then, the type checker checks instruction st (line 5) and
considers that it is safe in the same way as ld. Finally, the last instruction jmp
(line 6) is checked as follows. First, the type checker checks whether register r3 is
a pointer to instructions. Then, it also checks whether the precondition specified
by the label type of the pointer is satisfied by the current assumption of the type
checker. In this case, the type checker considers that the jmp instruction is safe
because the precondition of the label type (register r1 must be a pointer to an
integer) is satisfied.

The type checker verifies all the basic blocks as described above. Thus, if a
TALK program is type-checked successfully, it is ensured that the program never
performs illegal memory accesses or illegal code execution at runtime because the
type checker verifies that, for each basic block, it can be safely executed under
the precondition of its label type and the precondition is satisfied whenever a
control-flow reaches it.

3 Memory Management with TALK

In this section, we explain how to implement memory management (i.e., mal-
loc/free) in TALK. First, the essence of memory management, memory reuse,
is described. Next, we explain how TALK enables safe memory reuse through
explicit alias tracking. Then, we describe the variable-length arrays and inte-
ger constraints support of TALK and why it is necessary. Last, we show simple
memory management programs written in TALK.

3.1 Memory Reuse

From the viewpoint of type theory, memory management is almost the same as
changing types of memory regions. For example, changing a type of a memory
region from a pointer type to an integer type can be viewed as freeing the memory
region that contains a pointer and reusing it for holding an integer. Fig. 3 is an
example C code which performs this memory reuse. The function reuses the
memory region pointed by pointer x (line 3).

However, existing strictly and statically typed programming languages do not
allow programmers to change types of memory regions because memory safety
cannot be ensured. For example, using the function in Fig. 3, we can write a
function as in Fig. 4. The function passes the type check of C, but it is unsafe
because it tries to dereference an integer which is no longer a pointer (line 4).

The essential problem is that the type checker cannot know that variable p
in function pointer to int and argument x of function dangerous func alias,
that is, point to the same memory location.
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1 void pointer_to_int(int** x)

2 {

3 int* p = (int*)x;

4 *p = 1;

5 }

Fig. 3. Example of C code that reuses a
memory region (it changes the type of the
memory region)

1 void dangerous_func(int** x)

2 {

3 pointer_to_int(x);

4 **x;

5 ...

Fig. 4. Example of C code that breaches
memory safety

1 ∀α1, α2, α3, ε. | · |
2 [{α1 �→ 〈α2〉} ⊗ {α2 �→ 〈α3〉} ⊗ ε]
3 (r1 : α1, r3 : ∀β. | · |[{α1 �→ 〈β〉}⊗
4 {α2 �→ 〈α3〉} ⊗ ε](r1 : α1))
5 pointer_to_int:

6 movi 1, r2

7 st r2, [r1]

8 jmp r3

Fig. 5. Example of TALK code that
reuses a memory region (at address α1)

1 ∀α1, α2, α3, ε. | · |[{α1 �→ 〈α2〉}⊗
2 {α2 �→ 〈α3〉} ⊗ ε](r1 : α1)
3 dangerous_func:

4 movi cont, r3

5 jmp pointer_to_int

6 ∀α1, α2, α3, β, ε. | · |[{α1 �→ 〈β〉}⊗
7 {α2 �→ 〈α3〉} ⊗ ε](r1 : α1)
8 cont:

9 ld [r1], r2

10 ld [r2], r3 // Type error!

11 ...

Fig. 6. Example of TALK code that
causes type error

To solve the problem, we designed the type system of TALK so that it can
keep track of aliases explicitly as mentioned in Sect. 2. For example, the pro-
gram in Fig. 3 can be rewritten in TALK as in Fig. 5. The label type of label
pointer to int indicates that register r1 is a pointer to a pointer to an integer.
More specifically, register r1 has type α1, there is a tuple at address α1, the
tuple contains integer α2, and there is another tuple at address α2. In addition,
the label type of register r3 indicates that register r1 is no longer a pointer to a
pointer to an integer after the instructions are executed. This is because register
r3 holds the return address to the caller and its label type states that the tuple
at address α1 does not hold address α2, but an integer β.

In addition, the C code in Fig. 4 can be rewritten as in the TALK code in
Fig. 6. The code first loads the address of label cont into register r3 as the
return address (line 4). Then, it jumps to function pointer to int (line 5).
This jump passes the type check because the precondition specified by the label
type of pointer to inter is satisfied. After returning from the function call,
the code tries to dereference a pointer to a pointer (line 9 and 10). However,
the type checker rejects second dereference (line 10) because the type checker
assumes that register r2 is an integer β after first dereference, but β is not a
valid memory address.
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3.2 Variable-Length Arrays

One of the distinguishing features of TALK is that it supports variable-length
arrays, that is, the arrays whose size cannot be known until runtime, as language
primitives. In this section, we describe the reason why we need variable-length
arrays and explain how TALK treats them.

To see why variable-length arrays are necessary to implement memory man-
agement, let us think of the program that is executed just after an IA-32 [12]
machine boots. Because the information of the available memory is passed to the
program as pairs of an array of bytes and an integer which represent the sizes of
the array by the BIOS or the boot loader, the size of the available memory cannot
be known at compile time, that is, when we perform type checking. Therefore,
the type system must be able to treat variable-length arrays, otherwise we can-
not even know the size of the available memory, rather than implement memory
management.

Thus, the variable-length arrays are treated as primitive data types in TALK.
For example, memory which contains an array of size α2 at address α1 can be
represented by TALK memory type {α1 �→ 〈β〉 (α2)}. In the memory type, all
the elements of the array have the same value β. On the other hand, memory
type {α1 �→ ∃β. 〈β〉 (α3)} represents a memory region which contains an integer
array of size α3. The type ∃β. 〈β〉 is an existential type, that is, represents a
tuple of one element whose value is unknown (β).

3.3 Integer Constraints

Next, we explain how the type system of TALK ensures the safety of accessing
the variable-length arrays. One obvious problem of the variable-length arrays is
that their size cannot be known when type-checking. For example, if a program
accesses third element of a variable-length array of size α, the type checker must
check whether 3 < α or not. In other words, the type checker must perform
array-bound checks at compile time. To solve the problem, the type system
of TALK maintains integer constraints, as well as the memory type and the
register type. For example, the TALK code in Fig. 7 accesses the α3th element
of the array of size α2. In the label type, |α2 > α3| represents integer constraints
of the label (line 1). The integer constraints in the label type indicate that
they must be satisfied when a control-flow reaches the label. Thus, the type
checker assumes that the integer constraints are satisfied when it type-checks the
following instructions. In this example, the type checker considers that address
α1 + α3 is in the array at α1 because it assumes that α2 > α3. Therefore, the
ld instruction (line 6) passes the type check of TALK (Formally speaking, extra
type operations are required but we omit them in this paper for clarity).

In the type system of TALK, the integer constraints are introduced by branch
instructions. For example, the code in Fig. 8 first performs an array-bound check
(line 6), then jumps to the code in Fig. 7 (line 8). When type-checking the ble
instruction, the type checker checks whether the label type of the jump target is
satisfied with the extended assumption with α2 ≤ α3. Then, the type checker
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1 ∀α1, α2, α3, ε. |α2 > α3|
2 [{α1 �→ ∃β. 〈β〉 (α2)} ⊗ ε]
3 (r1 : α1, r2 : α3)
4 access_array:

5 add r1, r2, r3

6 ld [r3], r4

7 ...

Fig. 7. Example of TALK code that ac-
cesses an array (the label type ensures
that the access is safe)

1 ∀α1, α2, α3, ε. | · |
2 [{α1 �→ ∃β. 〈β〉 (α2)} ⊗ ε]
3 (r1 : α1, r2 : α3, r3 : α2)
4 access_array2:

5 movi error, r4

6 ble r3, r2, r4

7 movi access_array, r4

8 jmp r4

9 ...

Fig. 8. Another example of TALK code
that accesses an array (the ble instruction
ensures that the access is safe)

1 ∀α, β, ε. |β ≥ 1| [{α �→ 〈0〉 (β)} ⊗ ε]
2 (r1 : α)
3 alloc_and_use:

4 movi 42, r2

5 st r2, [r1]

6 // How to type check?

7 ...

Fig. 9. Example of TALK code that allo-
cates a tuple from free memory (incom-
plete)

1 ∀α, β, ε. |β ≥ 1| [{α �→ 〈0〉 (β)} ⊗ ε]
2 (r1 : α)
3 alloc_and_use:

4 split α, 1

5 movi 42, r2

6 st r2, [r1]

7 ...

Fig. 10. Example of TALK code that al-
locates a tuple from free memory (com-
plete)

extends its assumption with α2 > α3 (the negation of α2 ≤ α3) and type-checks
the following instructions. Therefore, the jmp instruction passes the type check
because the type checker knows that the precondition of access array is satisfied.

3.4 Split and Concatenation of Arrays

To implement memory management, we need one more feature in the type sys-
tem. For example, let us suppose that free memory (not in use memory) is
represented as an array whose elements are zero. Then, its memory type will be
{α �→ 〈0〉 (β)}. Now, let us think of the code in Fig. 9 that allocates one tuple
from the top of the free memory and overwrites it with 42 (line 5). The access to
the array is obviously safe because the label type indicates that β ≥ 1. However,
there is a problem in type-checking the st instruction: it is difficult to represent
a variable-length array whose elements are zero except for its first element.

To solve the problem, we introduce a notion of split and concatenation of
arrays to the type system of TALK. For example, memory type {α �→ 〈0〉 (β)},
which indicates that there is an array of size β at α, can be split to memory
type {α �→ 〈0〉 (β1)} ⊗ {α2 �→ 〈0〉 (β2)}, which indicates that there is one array
of size β1 at α and the other array of size β2 at α2 (here, β = β1 + β2 and
α2 = α + β1). In addition, the latter memory type can be concatenated back to
the former memory type. In TALK, these split and concatenation are explicitly
performed by the split and concat instructions.
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1 FreeMemList

2 ≡ ∃α1, α2, α3. | · |[{α1 �→ ∃β. 〈β〉 (α2)} ⊗ {α3 �→ FreeMemList}] 〈α1, α2, α3〉

Fig. 11. Type of the free memory (list of variable-length arrays)

Using split, the code in Fig. 9 can be rewritten as the code in Fig. 10. The
split instruction (line 4) splits the free memory into new array of size 1 at α
and the rest of the free memory at α + 1. In this case, the st instruction passes
the type check because the array at α is a fixed-length array and fixed-length
arrays can be viewed as ordinary tuples in the type system of TALK.

3.5 Example of Malloc/Free in TALK

In this section, we present a simple memory management code which is written
in TALK. Although its algorithm is simple, it is sufficient to show the flexibility
and expressiveness of TALK.

Fig. 11 represents the type of the free memory. It is a list of variable-length
arrays. Each element of the list is a tuple which has three elements. The first
element holds a pointer to an array. The size of the array is stored in the second
element of the tuple. The third element is a pointer to the next element of
the list. The memory type inside the existential type indicates that there exists
a memory region which satisfies the memory type. The type system of TALK
ensures that all the memory regions encapsulated in existential types are distinct
each other. For example, memory type {α1 �→ ∃β1.[{β1 �→ γ}] 〈β1〉} ⊗ {α2 �→
∃β2.[{β2 �→ γ}] 〈β2〉} indicates that α1, α2, β1 and β2 are different addresses.
Strictly speaking, the definition of the list in Fig. 11 represents an infinite list
because the definition does not includes any list terminator. Therefore, it might
be unrealistic because the free memory is finite. To define finite lists, TALK
supports variant types, but we do not explain them in this paper for clarity.

Fig. 12 is a simple implementation of malloc. (For clarity, the syntax of in-
structions are slightly extended.) The label type of malloc indicates that it takes
a free memory (FreeMemList at line 2) as an argument and returns an array of
the specified size (α1 at line 3). The type of the allocated array is specified at
line 41. Please note that the return type of the function is abbreviated as ret t .

The function first checks whether the array of first element of the given free
memory list satisfies the requested size (line 6). If so, the function jumps to
malloc success. Otherwise, it tries the next element in the free memory list.
First, it stores the current element of the list and the return address on the
stack (line 7 and 8). Then, it calls itself recursively (line 10 and 11). After
the recursive call (label malloc cont), it concatenates the saved element with
the returned free memory list (line 21 and 22) and returns it as new free memory
list, as well as the array allocated by the recursive call (line 23 and 24). Here,
stack type {α4 �→ ret t :: α2 :: γ} in the memory type (line 17) represents a
stack whose top element has type ret t and next element has type α2 and the
rest is unknown (γ).
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1 ∀α1, α2, α4, γ, ε. | · |[{α4 �→ γ}⊗
2 {α2 �→ FreeMemList} ⊗ ε]
3 (r1 : α1, r2 : α2, r3 : ret t , r4 : α4)
4 malloc:

5 ld [r2 + 1], r5

6 ble r1, r5, malloc_success

7 push r2, [r4]

8 push r3, [r4]

9 ld [r2 + 2], r2

10 movi malloc_cont, r3

11 jmp malloc

12 ∀α1, α2, α4, α
′
1, α

′
2, α

′
3, α, β, γ, ε. | · |

13 [{α2 �→ 〈α′
1, α

′
2, α

′
3〉}⊗

14 {α′
1 �→ ∃β. 〈β〉 (α′

2)}⊗
15 {α �→ ∃β. 〈β〉 (α1)}⊗
16 {β �→ FreeMemList}
17 {α4 �→ ret t :: α2 :: γ} ⊗ ε]
18 (r1 : α, r2 : β, r4 : α4)

19 malloc_cont:

20 pop [r4], r3

21 pop [r4], r5

22 st r2, [r5 + 2]

23 mov r5, r2

24 jmp r3

25 ∀α1, α2, α4, α
′
1, α

′
2, α

′
3, γ, ε. |α1 ≤ α′

2|
26 [{α2 �→ 〈α′

1, α
′
2, α

′
3〉}⊗

27 {α′
1 �→ ∃β. 〈β〉 (α′

2)}⊗
28 {α′

3 �→ FreeMemList}⊗
29 {α4 �→ γ} ⊗ ε]
30 (r1 : α1, r2 : α2, r3 : ret t , r4 : α4)

31 malloc_success:

32 split α′
1, α1

33 ld [r2 + 1], r5

34 sub r1, r5, r6

35 st r6, [r2 + 1]

36 ld [r2], r5

37 add r1, r5, r6

38 st r6, [r2]

39 mov r5, r1

40 jmp r3

41 ret t ≡ ∀α, β. | · |[{α �→ ∃β. 〈β〉 (α1)}⊗
42 {β �→ FreeMemList}⊗
43 {α4 �→ γ} ⊗ ε]
44 (r1 : α, r2 : β, r4 : α4)

Fig. 12. Simple malloc implementation in TALK

The code of malloc success first splits the array of the first element of the
given free memory list into the array of the requested size and the rest (line 32).
The split instruction passes the type check of TALK because the type checker
knows that the length of the array is greater than or equal to the requested size
from the label type of malloc success (line 25). Then, it stores the information
about the unused array and its size in the first element (line 33-38) and returns
the allocated array (line 39 and 40).

Fig. 13 is a simple implementation of free. It is a bit peculiar because the
function takes not only an array to be freed, but also a tuple of three elements
which contains the information about the array (line 2). This is because we made
the algorithm of malloc/free as simple as possible for ease of understanding (More
realistic examples are shown in [9,10]). The code simply concatenates the given
tuple to the given free memory list along with the given array. The label type of

1 ∀α1, α2, α
′
1, α

′
2, α

′
3, ε. | · |

2 [{α1 �→ 〈α′
1, α

′
2, α

′
3〉 ⊗ {α′

1 �→ ∃β. 〈β〉 (α′
2)} ⊗ {α2 �→ FreeMemList} ⊗ ε]

3 (r1 : α1, r2 : α2, r3 : ∀α.| · |[{α �→ FreeMemList} ⊗ ε](r1 : α))
4 free:

5 st r2, [r1 + 2]

6 jmp r3

Fig. 13. Simple free implementation in TALK
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1 ∀α1, α4, γ, ε. | · |[{α1 �→ thd t}⊗
2 {α4 �→ pc t :: γ} ⊗ ε]
3 (r1 : α1, r4 : α4)
4 context_switch:

5 mov r4, r5

6 ld [r1], r4

7 st r5, [r1]

8 pop [r4], r3

9 jmp r3

10 thd t ≡ ∃α, γ.| · |[{α �→ pc t :: γ}] 〈α〉
11 pc t ≡ ∀α, β, γ.| · |[{α �→ thd t}⊗
12 {β �→ γ} ⊗ ε](r1 : α, r4 : β)

Fig. 14. Example code of switching con-
texts (without thread-local storage)

1 ∀α1, α4, γ, εg, εl. | · |[{α1 �→ thd t}⊗
2 {α4 �→ pc t :: γ} ⊗ εg ⊗ εl]
3 (r1 : α1, r4 : α4)
4 context_switch:

5 mov r4, r5

6 ld [r1], r4

7 st r5, [r1]

8 pop [r4], r3

9 jmp r3

10 thd t ≡ ∃α, γ, εl.| · |[{α �→ pc t :: γ}⊗
11 ⊗εl] 〈α〉
12 pc t ≡ ∀α, β, γ.| · |[{α �→ thd t}⊗
13 {β �→ γ} ⊗ εg ⊗ εl]
14 (r1 : α, r4 : β)

Fig. 15. Example code of switching con-
texts (with thread-local storage)

free indicates that the freed array can no longer be used because it is deleted
from the memory type after the function return (line 3).

4 Multi-thread Management with TALK

In this section, we explain how to implement context switches of threads in TALK.
The implementation is shown in Fig. 14. In the implementation, thread contexts
are represented as stacks (or pointers to the stacks). Here, we assume that registers
of the running thread are stored explicitly in its stack before calling the context-
switching function because the function does not care about registers of threads.

thd t in Fig. 14 represents the type of thread contexts (line 10). It is a tuple
which contains only one element which holds a pointer to a stack. As described
in the memory type of thd t, the top element of the stack must be a program
counter, whose type must be pc t (line 11). The rest of the stack is unknown (γ),
but it must satisfy the precondition of the program counter.

First, the function loads the stack pointer of new thread to register r4 (line 6)
and stores the stack pointer of the current thread (line 5 and 7). Then, it pops
the program counter of the new thread to register r3 (line 8) and runs the new
thread by jumping to the program counter (line 9).

However, there is a problem in the code of Fig. 14: it does not support thread-
local storage. This is because the memory type of the new thread (pc t) equals
to that of the current thread except for their stacks (see line 1, 2, 11 and 12).

The code in Fig. 15 is another context-switching function which supports
thread-local storage. The difference from Fig. 14 is that the memory type is
separated into two parts (εg and εl). The memory type εg represents the memory
shared by all threads and the memory type εl represents the thread-local storage
(line 2). thd t ensures the thread-locality of εl because it encapsulates the memory
represented by εl into the existential type (line 11), that is, the thread-local
storage of a thread cannot be accessed directly by other threads.
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With the context-switch function of Fig. 15 and the memory management
functions in Sect. 3, multi-thread management can be easily implemented in
TALK. We can create a new thread by allocating a thread context (a tuple) and
a memory stack with malloc. Sleeping threads can be represented by a list of
the thread contexts and the running thread can yield by choosing one thread
context from the list, storing its registers and program counter in its stack and
calling context switch. Exited threads can be also represented by a list of the
thread contexts and they can be freed anytime by free.

5 Merits of TALK in Comparison with Former Work
5.1 Ensuring Safety of OS Kernels

Traditional approaches of trying to ensure safety of OS kernels utilize protec-
tion mechanisms of CPU hardware. For example, microkernels [14,15,16] try to
minimize trusted computing base by executing OS components in non-privileged
protection domains as much as possible. However, basic memory management
and multi-thread management code are executed in a privileged protection do-
main. In addition, the cost of communication between protection domains is not
negligible (if it is implemented naively). Moreover, the unit of protection domain
is coarse because it equals to the unit of the hardware protection mechanisms.
At worst, a 4 KB protection domain may be required to protect 1 byte data.
Mondrian Memory Protection [17] can manage protection domains at the granu-
larity of machine words, but there exists no CPU that supports Mondrian Mem-
ory Protection so far. The fundamental problem is that hardware approaches
cannot prevent runtime errors. On the other hand, our approach does not incur
any overhead at runtime and runtime errors can be prevented because the type
check of TALK is not performed at runtime and the program that passes the
type check of TALK never cause runtime memory or control-flow errors. In ad-
dition, our approach does not depend on any hardware protection mechanism.
Therefore, our approach can be applied to limited computing environments that
lack the hardware protection mechanisms, such as embedded systems.

Model checking [3] is a method of formally verifying finite models of programs
according to specified formal specifications. One problem of model checking is that
it cannot be applied to large programs because of the state explosion problem.
Therefore, it is hard to verify just simple memory and control-flow safety. To cope
with the state explosion problem, model checkers typically support approximated
verification algorithms at the sacrifice of the soundness. For example, Yang et al.
found bugs in the file systems of the Linux kernel with the approach of model-
checking [4]. However, the soundness of their approach is not guaranteed, that is,
their approach cannot ensure that there are no bugs. On the other hand, in our ap-
proach, the soundness of the type check can be ensured by proving the soundness of
the type system. Although our approach ensures only the simple type safety (i.e.,
memory safety and control-flow safety) for now, our type system can be extended
to ensure more sophisticated safety properties, such as resource usage safety [18].

OS verification [5,6,19,20] is an approach of formally verifying that OS imple-
mentations satisfy the specified formal specifications using proof-assistants. One
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problem of this approach is that usual OS developers are not familiar with proof-
assistants. Therefore, the cost of verification tends to be huge. In our approach,
on the other hand, all the developers have to do is to annotate their assembly
programs with the type information of TALK. Moreover, the annotation can be
automatically generated by compilers from high-level programming languages to
TALK. Another problem is that OS developers must prove the correctness of their
kernel separately from implementing it. That is, if they modifies the kernel im-
plementation, they may need to verify its correctness again with proof-assistants.
In our approach, on the other hand, all they have to do is just to write their ker-
nel. Then, the TALK type checker automatically verifies its memory safety and
control-flow safety. One advantage of the OS verification approach is that OS de-
velopers can verify any property which they want to verify. For example, they
can verify the correctness of a quick-sort implementation. On the other hand, the
current TALK only verifies the memory safety and the control-flow safety.

There are several operating systems that are partly written in strictly typed
programming languages. Lisp OSes are operating systems that are written in
Lisp [21]. SPIN [22] is an extensible operating system that can be extended safely
by inserting extensions that are written in Modula-3 [23]. Singularity [24,25] is an
operating system written in a dialect of C# [2]. However, none of the above di-
rectly implemented memory management and multi-thread management, while
we implemented them in our strictly and statically typed language, TALK. In
addition, in their approaches, external compilers must be trusted because safety
of binary executables cannot be verified while the type check of TALK can be
performed on binary executables. Thus, their trusted computing base is larger
than ours. Additionally, to modify and/or extend the above OSes, programmers
cannot use their favorite languages. On the other hand, in our approach, pro-
grammers may be able to use their favorite languages if there exist compilers
from them to TALK. For example, if there are compilers from strictly typed
C dialects [26,27] to TALK, it helps C programmers to write safe OS kernels.
Moreover, even the standard C can be used if we build a compiler which compiles
C programs to TALK. Although C is not a strictly typed language, it is possible
with the approach of CCured [28] that is a C compiler that adds memory-safety
guarantees to C programs. In fact, we implemented a C compiler which emits
TAL programs [11], though it is still incompatible with TALK.

Secure Virtual Architecture [29] introduces a low-level intermediate language
with a region-based memory management facility and compiles the Linux kernel
to it. There are three differences between our approach and theirs. One difference
is that they did not show any rigid type system for their language. They described
a certain level of formal arguments in their previous works [30], but they did
not treat their region-based memory management. For example, typing rules
for deallocation of memory regions are not shown. Second difference is that
they did not support explicit memory management. Although they claimed that
they support explicit memory management, it heavily depends on their trusted
runtime memory management facility [31,32]. Therefore, memory management
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code cannot be checked with their system. Third difference is that they need to
trust an external translator from their language to executable binaries.

5.2 Memory Management and Type Theory

Linear Type systems [33] ensure that a memory region is accessed only once.
Therefore, the memory region can be reused safely. There exist TALs based on
Linear Type [34,35]. One big problem of Linear Type is that the expressiveness
of linearly-typed languages is largely limited because no aliases are allowed.

Alias Type systems [8] do not prevent pointers from aliasing, but track the
information about aliases for reusing memory regions safely. However, it is im-
possible to implement practical memory management in the original Alias Type
system because it does not support variable-length arrays. As described in Sect. 2
and Sect. 3, our TALK is based on Alias Type and extended to support variable-
length arrays and integer constraints. Thus, practical memory management can
be implemented in TALK.

Hawblitzel et al. [36] extends Alias Type for implementing flexible memory
management. The similarity between our approach and theirs is that both intro-
duce integer constraints to Alias Type. The important difference is that, in their
type system, variable-length arrays are realized as a combination of fixed-length
tuples and recursive types. There are two problems in their approach. One prob-
lem is that elements of an array cannot be accessed in O(1) order because the array
type must be unrolled (O(n) time at worst) in advance. The other problem is that
it requires runtime type checks for managing arrays. To solve these problems, they
extended their type system intricately for detecting useless runtime type-checks as
precisely as possible. For example, they defined ‘split’ of arrays as a function, and
showed the function is not needed at runtime, with their complex typing rules. On
the other hand, there are no such problems in our type system because it directly
supports the variable-length arrays as language primitives.

6 Conclusion and Ongoing Work

TALK is a strictly and statically typed assembly language which can be used
to implement important OS facilities, such as memory management and multi-
thread management facilities. The type check of TALK can be performed on
binary executables annotated with the TALK type information without source
code. In TALK, programmers are able to reuse memory regions because the
type system allows them to change the types of the regions by tracking aliases of
pointers explicitly. In addition, the type system directly supports variable-length
arrays and integer constraints. Thus, practical memory management and multi-
thread management facilities can be implemented in TALK. We implemented the
TALK assembler and the TALK type checker for IA-32 [13]. We also implemented
a prototype OS kernel for the IA-32 architecture in TALK [37]. We are currently
extending TALK with supports for hardware interrupts and SMP [38,39] in order
to make TALK and the prototype OS kernel more realistic.
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A Typing Rules for Instructions

Δ; C � Σ = Σ′ ⊗ {Γ (rs) �→ 〈. . . , σn, . . .〉}
Δ; Γ{rd �→ σn}; C; Σ � I

Δ; Γ ; C; Σ � ld [rs + n], rd; I
(load)

Δ; C � Σ = Σ′ ⊗ {Γ (rd) �→ 〈. . . , σn, . . .〉}
Δ; Γ ; C; Σ′ ⊗ {Γ (rd) �→ 〈. . . , Γ (rs) , . . .〉} � I

Δ; Γ ; C; Σ � st rs, [rd + n]; I
(store)

Δ; Γ{rd �→ Γ (rs)}; C; Σ � I

Δ; Γ ; C; Σ � mov rs, rd; I
(move)

Δ; C � v : σ Δ; Γ{rd �→ σ}; C; Σ � I

Δ; Γ ;C; Σ � movi v, rd; I
(movei)

Δ; Γ{rd �→ Γ (rs2) (+,−, ∗)Γ (rs1)}; C; Σ � I

Δ; Γ ; C; Σ � (add, sub, mul) rs1, rs2, rd; I
(arith)

Δ; C � Σ = Σ′ ⊗ {Γ (rd) �→ st}
Δ; Γ{rd �→ Γ (rd) − 1}; C; Σ′ ⊗ {Γ (rd) − 1 �→ Γ (rs) :: st} � I

Δ; Γ ; C; Σ � push rs, [rd]; I
(push)

Δ; C � Σ = Σ′ ⊗ {Γ (rs) �→ σ :: st}
Δ; Γ{rs �→ Γ (rs) + 1}{rd �→ σ}; C; Σ′ ⊗ {Γ (rs) + 1 �→ st} � I

Δ; Γ ; C; Σ � pop [rs], rd; I
(pop)

Δ; C � Γ (rd) = ∀. |C′| [Σ′] (Γ ′)
C′′ ≡ C ∧ Γ (rs1) (=,≤)Γ (rs2)

Δ; C′′ |= C′ Δ; C′′ � Σ = Σ′ Δ; C′′ � Γ ≤ Γ ′

Δ; Γ ; C ∧ Γ (rs1) ( �=, >)Γ (rs2) ; Σ � I

Δ; Γ ; C; Σ � (beq, ble) rs1, rs2, rd; I
(branch)

Δ; C � Γ (rd) = ∀. |C′| [Σ′] (Γ ′)
Δ; C |= C′ Δ; C � Σ = Σ′ Δ; C � Γ ≤ Γ ′

Δ; Γ ; C; Σ � jmp rd

(jump)

Δ; C � Σ = Σ′ ⊗ {i1 �→ t (j1)} Δ; C |= 0 ≤ i2 ≤ j1
Δ; Γ ; C; Σ′ ⊗ {i1 �→ t (i2)} ⊗ {i1 + sizeof (t) ∗ i2) �→ t (j1 − i2)} � I

Δ; Γ ;C; Σ � split i1, i2; I
(split)

Δ; C � Σ = Σ′ ⊗ {i1 �→ t (i2)} ⊗ {j1 �→ t (j2)}
Δ; C |= j1 = i1 + sizeof (t) ∗ i2 Δ; Γ ;C; Σ′ ⊗ {i1 �→ t (i2 + j2)} � I

Δ; Γ ;C; Σ � concat i1, j1, j2; I
(concat)

Fig. 16. Typing rules (instructions)
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