
Chapter 10
The Analysis of Spatial Association
by Use of Distance Statistics

Arthur Getis and J. Keith Ord

This Chapter was originally published in:
Getis, A., Ord, K.(1992) The Analysis of Spatial Association by Use of Distance
Statistics. Geographical Analysis 24:189-206. Reprinted with permission of Black-
well Publishing, Oxford

Abstract Introduced in this paper is a family of statistics, G, that can be used as
a measure of spatial association in a number of circumstances. The basic statis-
tic is derived, its properties are identified, and its advantages explained. Several of
the G statistics make it possible to evaluate the spatial association of a variable
within a specified distance of a single point. A comparison is made between a gen-
eral G statistic and Moran’s I for similar hypothetical and empirical conditions. The
empirical work includes studies of sudden infant death syndrome by county in North
Carolina and dwelling unit prices in metropolitan San Diego by zip-code districts.
Results indicate that G statistics should be used in conjunction with I in order to
identify characteristics of patterns not revealed by the I statistic alone and, specifi-
cally, the Gi and G∗

i statistics enable us to detect local “pockets” of dependence that
may not show up when using global statistics.

10.1 Introduction

The importance of examining spatial series for spatial correlation and autocorrela-
tion is undeniable. Both Anselin and Griffith (1988) and Arbia (1989) have shown
that failure to take necessary steps to account for or avoid spatial autocorrelation
can lead to serious errors in model interpretation. In spatial modeling, researchers
must not only account for dependence structure and spatial heteroskedasticity, they
must also assess the effects of spatial scale. In the last twenty years a number of
instruments for testing for and measuring spatial autocorrelation have appeared.
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To geographers, the best-known statistics arc Moran’s I and, to a lesser extent,
Geary’s c (Cliff and Ord, 1973). To geologists and remote sensing analysts, the
semi-variance is most popular (Davis, 1986). To spatial econometricians, estimating
spatial autocorrelation coefficients of regression equations is the usual approach
(Anselin, 1988).

A common feature of these procedures is that they are applied globally, that
is, to the complete region under study. However, it is often desirable to examine
pattern at a more local scale, particularly if the process is spatially nonstationary.
Foster and Gorr (1986) provide an adaptive filtering method for smoothing parame-
ter estimates, and Cressie and Head (1989) present a modeling procedure. The ideas
presented in this paper are complementary to these approaches in that we also focus
upon local effects, but from the viewpoint of testing rather than smoothing.

This paper introduces a family of measures of spatial association called G statis-
tics. These statistics have a number of attributes that make them attractive for
measuring association in a spatially distributed variable. When used in conjunc-
tion with a statistic such as Moran’s I , they deepen the knowledge of the processes
that give rise to spatial association, in that they enable us to detect local “pockets”
of dependence that may not show up when using global statistics. In this paper,
we first derive the statistics Gi(d) and G(d), then outline their attributes. Next, the
G(d) statistic is compared with Moran’s I . Finally, there is a discussion of empirical
examples. The examples are taken from two different geographic scales of analysis
and two different sets of data. They include sudden infant death syndrome (SIDS)
by county in North Carolina, and house prices by zip-code district in the San Diego
metropolitan area.

10.2 The Gi(d) Statistic

This statistic measures the degree of association that results from the concentration
of weighted points (or area represented by a weighted point) and all other weighted
points included within a radius of distance d from the original weighted point. We
are given an area subdivided into n regions, i = 1, 2, . . . , n, where each region is
identified with a point whose Cartesian coordinates are known. Each i has associated
with it a value x (a weight) taken from a variable X . The variable has a natural origin
and is positive. The Gi(d) statistic developed below allows for tests of hypotheses
about the spatial concentration of the sum of x values associated with the j points
within d of the ith point.

The statistic is

Gi(d) =

∑n
j=1 wij(d)xj
∑n

j=1 xj
, j not equal to i, (10.1)

where {wij} is a symmetric one/zero spatial weight matrix with ones for all links
defined as being within distance d of a given i; all other links are zero including
the link of point i to itself. The numerator is the sum of all xj within d of i but not
including xi. The denominator is the sum of all xj not including xi.
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Adopting standard arguments (cf. Cliff and Ord, 1973, pp. 32–33), we may fix
the value xi for the ith point and consider the set of (n − 1)! random permuta-
tions of the remaining x values at the j points. Under the null hypothesis of spatial
independence, these permutations are equally likely. That is, let Xj be the random
variable describing the value assigned to point j, then

P (Xj = xr) =
1

(n − 1)
, r 	= i,

and E(Xj) =
∑

r �=i xr/(n − 1). Thus

E(Gi) =
∑

j �=i wij(d)E(Xj)/
∑

j �=i EXj

= Wi/(n − 1),
(10.2)

where Wi =
∑

j wij(d).
Similarly,

E(G2
i ) =

1
(
∑

j xj)2
[∑

j

w2
ij(d)E(X2

j ) +
∑∑

j �=k

wij(d)wik(d)E(XjXk)
]
.

Since
E(X2

j ) =
∑

r �=i

x2
r/(n − 1)

and
E(XjXk) =

∑∑
r �=s�=i xrxs/(n − 1)(n − 2)

= {(∑r �=i xr)2 −
∑

r �=i x2
r}/(n − 1)(n − 2).

Recalling that the weights are binary

∑∑

j �=k

wijwik = W 2
i − Wi

and so

E(G2
i ) =

1
(
∑

j xj)2

{
Wi

∑
j x2

j

(n − 1)
+

Wi(Wi − 1)
(n − 1)(n − 2)

[(
∑

j

xj)2 −
∑

j

x2
j ]

}

.

Thus

V ar(Gi) = E(G2
i ) − E2(Gi)

=
1

(
∑

j xj)2

[
Wi(n − 1 − Wi)

∑
j x2

j

(n − 1)(n − 2)

]

+
Wi(Wi − 1)

(n − 1)(n − 2)
− W 2

i

(n − 1)2
.



130 A. Getis and J.K. Ord

Table 10.1 Characteristics of Gi statistics
j not equal to i j may equal i

Statistic Gi(d) G∗
i (d)

Expression
∑

j wij (d)xj∑
j xj

∑
j wij (d)xj∑

j xj

Wi =
∑

j wij(d) W ∗
i =

∑
j wij(d)

Definitions Yi1 =
∑

j xj

(n−1)
Y ∗

i1 =
∑

j xj

n

Yi2 =
∑

j x2
j

(n−1)
− Y 2

i1 Y ∗
i2 =

∑
j x2

j

n
− (Y ∗

i1)2

Expectation Wi/(n − 1) W ∗
i /n

Variance Wi(n−1−Wi)Yi2
(n−1)2(n−2)Y 2

i1

W∗
i (n−W∗

i )Yi2∗
n2(n−1)(Y ∗

i1)2

If we set
∑

j xj

(n−1) = Yi1 and
∑

j x2
j

(n−1) − Y 2
i1 = Yi2, then

V ar(Gi) =
Wi(n − 1 − Wi)
(n − 1)2(n − 2)

(
Yi2

Y 2
i1

). (10.3)

As expected, V ar(Gi) = 0 when Wi = 0 (no neighbors within d), or when Wi =
n− 1 (all n− 1 observations are within d), or when Yi2 = 0 (all n− 1 observations
are equal).

Note that Wi, Yi1, and Yi2 depend on i. Since Gi is a weighted sum of the variable
Xj , and the denominator of Gi is invariant under random permutations of {xj , j 	=
i}, it follows, provided Wi/(n − 1) is bounded away from 0 and from 1, that the
permutations distribution of Gi under Ho approaches normality as n → ∞; cf.
Hoeffding (1951) and Cliff and Ord (1973, p. 36). When d, and thus Wi is small,
normality is lost, and when d is large enough to encompass the whole study area,
and thus (n− 1−Wi) is small, normality is also lost. It is important to note that the
conditions must be satisfied separately for each point if its G, is to be assessed via
the normal approximation.

Table 10.1 shows the characteristic equations for Gi(d) and the related statistic,
G∗

i (d), which measures association in cases where the j equal to i term is included
in the statistic. This implies that any concentration of the x values includes the x at
i. Note that the distribution of G∗

i (d) is evaluated under the null hypothesis that all
n! random permutations are equally likely.

10.3 Attributes of Gi Statistics

It is important to note that Gi is scale-invariant (Yi = bXi yields the same scores
as Xi) but not location-invariant (Yi = a + Xi gives different results than Xi). The
statistic is intended for use only for those variables that possess a natural origin. Like
all other such statistics, transformations like Yi = log Xi, will change the results.
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Gi(d) measures the concentration or lack of concentration of the sum of values
associated with variable X in the region under study. Gi(d) is a proportion of the
sum of all xj values that are within d of i. If, for example, high-value xjs are within
d of point i, then Gi(d) is high. Whether the Gi(d) value is statistically significant
depends on the statistics distribution.

Earlier work on a form of the Gi(d) statistic is in Getis (1984), Getis and Franklin
(1987), and Getis (1991). Their work is based on the second-order approach to map
pattern analysis developed by Ripley (1977).

In typical circumstances, the null hypothesis is that the set of x values within d
of location i is a random sample drawn without replacement from the set of all x
values. The estimated Gi(d) is computed from (10.1) using the observed xj values.
Assuming that Gi(d) is approximately normally distributed, when

Zi = {Gi(d) − E[Gi(d)]}/
√

V arGi(d) (10.4)

is positively or negatively greater than some specified level of significance, then we
say that positive or negative spatial association obtains. A large positive Zi implies
that large values of xj (values above the mean xj) are within d of point i. A large
negative Zi means that small values of xj are within d of point i.

A special feature of this statistic is that the pattern of data points is neutralized
when the expectation is that all x values are the same. This is illustrated for the case
when data point densities are high in the vicinity of point i, and d is just large enough
to contain the area of the clustered points. Theoretical Gi(d) values are high because
Wi is high. However, only if the observed x, values in the vicinity of point i differ
systematically from the mean is there the opportunity to identify significant spatial
concentration of the sum of xjs. That is, as data points become more clustered in
the vicinity of point i, the expectation of Gi(d) rises, neutralizing the effect of the
dense cluster of j values.

In addition to its above meaning, the value of d can be interpreted as a distance
that incorporates specified cells in a lattice. It is to be expected that neighboring Gi

will be correlated if d includes neighbors. To examine this issue, consider a regular
lattice. When n is large, the denominator of each Gi is almost constant so it follows
that corr (Gi, Gj) proportion of neighbors that i and j have in common.

Example 1. Consider the rook’s case. Cell i has no common neighbors with its
four immediate neighbors, but two with its immediate diagonal neighbors. The
numbers of common neighbors are as illustrated below:

0 1 0
0 2 0 2 0
1 0 i 0 1
0 2 0 2 0

0 1 0
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All the other cells have no common neighbors with i. Thus, the G-indices for the
four diagonal neighbors have correlations of about 0.5 with Gi, four others have
correlations of about 0.25 and the rest are virtually uncorrelated.

For more highly connected lattices (such as the queen’s case) the array of nonzero
correlations stretches further, but the maximum correlation between any pair of
G-indices remains about 0.5.

Example 2.
m m m m m m m m m m

m A A A m m B B B m

m A A A m m B B B m

m A A A m m B B B m

m m m m m m m m m m

Set A + B = 2m, therefore x̄ = m; n = 50;
A ≥ 0;
B ≥ 0;
put A = m(l + c), B = m(l − c), 0 ≤ c ≤ 1

Using this example, the Gi and G∗
i statistics are compared in the following table.

Gi and Gi
∗ values (queen’s case; non-edge cells)

Cell Gi Z(Gi) G∗
i Z(G∗

i )

A, surrounded by As 8+8c
49−c

5.30# 9+9c
50

5.47

A, adjacent to ms 8+3c
49−c

2.06# 9+4c
50

2.43

Central m, adjacent to As 8+3c
49

1.89# 9+3c
50

1.82

Other m, adjacent to As 8+2c
49

1.26# 9+3c
50

1.21

Values for Bs are the same, with negative signs attached
∗These values are lower bounds as c → 1; they vary only slightly with c

We note that Gi, and G∗
i are similar in this case; if the central A was replaced by

a B, Z(Gi) would be unchanged, whereas Z(G∗
i ) drops to 4.25. Thus, Gi and G∗

i

typically convey much the same information.

Example 3. Consider a large regular lattice for which we seek the distribution
under Ho for Gi∗ with Wi neighbors. Let p = proportion of As = proportion of Bs

and 1 − 2p = proportion of ms.
Let (k1, k2, k3) denote the number of As, Bs, and ms, respectively so that

k1 + k2 + k3 = n. For large lattices, in this case, the joint distribution is approxi-
mately tri(multi-)nomial with index W and parameters (p, p, 1 − 2p). Since G∗

i =
[Wi + (k1 − k2)c]/n clearly E(G∗

i ) = Wi/n as expected and V (G∗
i ) = 2pWi/n,

reflecting the large sample approximation. The distribution is symmetric and the
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standardized fourth moment is

3 +
1 − 6p

2pWi
.

This is close to 3 provided pWi is not too small.
Since we are using Gi, and G∗

i primarily in a diagnostic mode, we suggest that
W ≥ 8 at least (that is, the queen’s case), although further work is clearly necessary
to establish cut-off values for the statistics.

10.4 A General G Statistic

Following from these arguments, a general statistic, G(d) can be developed. The
statistic is general in the sense that it is based on all pairs of values (xi, xj) such
that i and j are within distance d of each other. No particular location i is fixed in
this case. The statistic is

Gi(d) =

∑n
i=1

∑n
j=1 wij(d)xixj

∑n
i=1

∑n
j=1 xixj

, j not equal to i. (10.5)

The G-statistic is a member of the class of linear permutation statistics, first intro-
duced by Pitman (1937). Such statistics were first considered in a spatial context by
Mantel (1967) and Cliff and Ord (1973), and developed as a general cross-product
statistic by Hubert (1977, 1979) and Hubert et al. (1981).

For (10.5),

W =
∑

i=1

∑

j=1

wij(d), j not equal to i

so that
E[G(d)] = W/[n(n − 1)]. (10.6)

The variance of G follows from Cliff and Ord (1973, pp. 70–71):

E(G2) =
1

(m2
1 − m2)2n(4)

[B0m
2
2 + B1m4 + B2m

2
1m2 + B3m1m3 + B4m

4
1],

where mj =
∑

j=1 xi
j , j = 1, 2, 3, 4 and n(r) = n(n − 1)(n − 2) · · · (n − r + 1).

The coefficients, B, are

B0 = (n2 − 3n + 3)S1 − nS2 + 3W 2,

B1 = − [(n2 − n)S1 − 2nS2 + 6W 2],

B2 = − [2nS1 − (n + 3)S2 + 6W 2],

B3 = 4(n − 1)S1 − 2(n + 1)S2 + 8W 2, and

B4 = S1 − S2 + W 2,
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where S1 = 1/2
∑

i

∑
j (wij + wji)2, j not equal to i and S2 = 1/2

∑
i (wi. +

w.i)2; wi. =
∑

j wij , j not equal to i; thus

V ar(G) = E(G2) − {W/[n(n − 1)]}2 (10.7)

10.5 The G(d) Statistic and Moran’s I Compared

The G(d) statistic measures overall concentration or lack of concentration of all
pairs of (xi, xj) such that i and j are within d of each other. Following (10.5), one
finds G(d) by taking the sum of the multiples of each xi with all xjs within d of all
i as a proportion of the sum of all xixj . Moran’s I , on the other hand, is often used
to measure the correlation of each xi with all xjs within d of i and, therefore, is
based on the degree of covariance within d of all xi. Consider K1, K2 as constants
invariant under random permutations. Then using summation shorthand we have

G(d) = K1

∑∑
wijxixj

and
I(d) = K2

∑∑
wij(xi − x̄)(xj − x̄)

= (K2/K1)G(d) − K2x̄
∑

(wi. + w.i)xi + K2x̄
2W,

where wi. =
∑

j wij and w.i =
∑

j wji.
Since both G(d) and I(d) can measure the association among the same set of

weighted points or areas represented by points, they may be compared. They will
differ when the weighted sums

∑
wi.xi and

∑
w.ixi differ from Wx̄, that is, when

the patterns of weights are unequal. The basic hypothesis is of a random pattern in
each case. We may compare the performance of the two measures by using their
equivalent Z values of the approximate normal distribution.

Example 4.
Let us use the lattice of Example 2. As before,
Set A + B = 2m, therefore x̄ = m; n = 50;
A ≥ 0;
B ≥ 0;
put A = m(1 + c), B = m(1 − c), 0 ≤ c ≤ 1.
In addition, put

a = A − m;
B − 2m − A = m − a;
B − m = a;
m ≥ a;
j not equal to i.
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For the rook’s case, W =
∑∑

wij = 170.

I =
n
∑∑

wij(xi − x̄)(xj − x̄)
W

∑
(xi − x̄)2

=
50 · 24a2 · 2
170 · 18a2

= 0.784

for all choices of a, m.

V ar(I) = 0.010897
Z(I) = 7.7088 whenever A > B.

G =
∑ ∑

wijxixj∑ ∑
xixj

= 24A2+24B2+24Am+24Bm+74m2

2500m2−9A2−9B2−32m2

= 170+48c2

2450−18c2

When c = 0, A = B = m, and G is a minimum.

Gmin = 170/2450 = 0.0694.

V ar(Gmin) = 0.0000 from (10.7).

When c = I, A = 2m, B = 0, and G is a maximum.

Gmax = 218/2432 = 0.0896.

V ar(Gmax) = 0.000011855.

Z(Gmax) = 5.87 for any m.

G depends on the relative absolute magnitudes of the sample values. Note that I is
positive for any A and B, while G values approach a maximum when the ratio of A
to B or B to A becomes large.

Example 5.
m m m m m m m m m m

m m m m m m m m m m

m m A m m m m B m m

m m m m m m m m m m

m m m m m m m m m m

A, B, x̄, n, W as in Examples 2 and 4.

I = 0, for any possible A, B, or m.

Z(I) = 0.1920 since E(I) = −1/(n− 1), whenever A > B.

Gmin = Gmax = 0.0694, for any possible A, B, or m.

V ar(Gmin) = 0, but V ar(Gmax) = 0.00000059.

Z(Gmax) = 0.0739.
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Neither statistic can differentiate between a random pattern and one with little
spatial variation. Contributions to G(d) are large only when the product xixj is
large, whereas contributions to I(d) are large when (xi − m)(xj − m) is large. It
should be noted that the distribution is nowhere near normal in this case.

Example 6.
m m m m m m m m m m

m A B A m m B A B m

m B A B m m A B A m

m A B A m m B A B m

m m m m m m m m m m

A, B, x̄, n, W as in the above examples.

I = −0.7843
V ar(Z) = 0.010897

Z(I) = −7.3177
When A = 2m and B = 0,

G = 0.0502
V ar(G) = 0.00001189

Z(G) = −5.5760

The juxtaposition of high values next to lows provides the high negative covari-
ance needed for the strong negative spatial autocorrelation Z(I), but it is the
multiplicative effect of high values near lows that has the negative effect on Z(G).

Table 10.2 gives some idea of the values of Z(G) and Z(I) under various cir-
cumstances. The differences result from each statistics structure. As shown in the
examples above, if high values within d of other high values dominate the pattern,
then the summation of the products of neighboring values is high, with resulting
high positive Z(G) values. If low values within d of low values dominate, then the
sum of the product of the xs is low resulting in strong negative Z(G) values. In
the Moran’s case, both when high values are within d of other high values and low-
values are within d of other low values, positive covariance is high, with resulting
high Z(I) values.

10.6 General Discussion

Any test for spatial association should use both types of statistics. Sums of products
and covariances are two different aspects of pattern. Both reflect the dependence
structure in spatial patterns. The I(d) statistic has its peculiar weakness in not being
able to discriminate between patterns that have high values dominant within d or low
values dominant. Both statistics have difficulty discerning a random pattern from
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Table 10.2 Standard normal variates for G(d) and I(d) under varying circumstances for a
specified d value

Situation Z(G) Z(I)

HH ++ ++

HM + +

MM 0 0
Random 0 0
HL − − −
ML − # −
LL − − ++

Key: HH pattern of high values of xs within d of other
high x values
M moderate values
L low values
Random no discernible pattern of xs
++ strong positive association (high positive Z
scores)
+ moderate positive association
0 no association
# this combination tends to be more negative than HL

one in which there is little deviation from the mean. If a study requires that I(d)
or G(d) values be traced over time, there are advantages to using both statistics to
explore the processes thought to be responsible for changes in association among
regions. If data values increase or decrease at the same rate, that is, if they increase
or decrease in proportion to their already existing size, Moran’s I changes while
G(d) remains the same. On the other hand, if all x values increase or decrease by
the same amount, G(d) changes but I(d) remains the same. It must be remembered
that G(d) is based on a variable that is positive and has a natural origin. Thus, for
example, it is inappropriate to use G(d) to study residuals from regression. Also, for
both I(d) and G(d) one must recognize that transformations of the variable X result
in different values for the test statistic. As has been mentioned above, conditions
may arise when d is so small or large that tests based on the normal approximation
are inappropriate.

10.7 Empirical Examples

The following examples of the use of G statistics were selected based on size and
type of spatial units, size of the x values, and subject matter. The first is a prob-
lem concerning the rate of SIDS by county in North Carolina, and the second is a
study of the mean price of housing units sold by zip-code district in the San Diego
metropolitan region. In both cases the data arc explained, hypotheses made clear,
and G(d) and I(d) values calculated for comparable circumstances.
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Fig. 10.1 Sudden infant death rates for counties of North Carolina, 1979–1981

10.7.1 Sudden Infant Death Syndrome by County
in North Carolina

SIDS is the sudden death of an infant 1-year old or less that is unexpected and
inexplicable after a postmortem examination (Cressie and Chan, 1989). The data
presented by Cressie and Chan were collected from a variety of sources cited in the
article. Among other data, the authors give the number of SIDs by county for the
period 1979–1984, the number of births for the same period, and the coordinates
of the counties. We use as our data the number of SIDs as a proportion of births
multiplied by 1,000 (see Fig. 10.1). Since no viral or other causes have been given
for SIDS, one should not expect any spatial association in the data. To some extent,
high or low rates may be dependent on the health care infants receive. The rates may
correlate with variables such as income or the availability of physicians’ services.
In this study we shall not expect any spatial association.

Table 10.3 gives the values for the standard normal variate of I and G for various
distances.

Results using the G statistic verify the hypothesis that there is no discernible
association among counties with regard to SIDS rates. The values of Z(G) are less
than one. In addition, there seems to be no smooth pattern of Z values as d increases.
The Z(I) results are somewhat contradictory, however. Although none are statisti-
cally significant at the 0.05 level, Z(I) values from 30–50 miles, about the distance
from the center of each county to the center of its contiguous neighboring counties,
are well over one. This represents a tendency toward positive spatial autocorrelation
at those distances. Taking the two results together, one should be cautious before
concluding that a spatial association exists for SIDS among counties in North Car-
olina. Perhaps more light can be shed on the issue by using the Gi(d) and G∗

i (d)
statistics.
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Table 10.3 Spatial association among counties: SIDS rates by county in North Carolina, 1979–
1984

d (miles) Z(G) Z(I)

10 0.82 −0.55

20 0.29 0.99

30 −0.12 1.68

33a 0.40 1.84

40 −0.04 1.32

50 0.60 1.20

60 −0.36 0.48

70 −0.28 −0.45

80 −0.19 −0.13

90 0.11 −0.19

100 0.30 0.18
aAt all distances of this length or longer each district
is connected to at least one other county

Table 10.4 Highest positive and negative standard normal variates by county for G∗
i (d) and

Gi(d): SIDS rates in North Carolina, 1979–1984 (d = 33 miles)

County ZG∗
i (d) County ZG∗

i (d)

Highest Positive
Richmond + 3.34 Richmond + 3.62
Robeson + 3.12 Robeson + 3.09
Scotland + 2.78 Hoke + 1.78
Hoke + 2.12 Northampton + 1.44
Cleveland + 1.78 Moore + 1.39

Highest Negative
Washington −2.63 Washington −2.18
Dare −1.84 Davie −1.92
Davie −1.76 Dare −1.70
Cherokee −1.55 Bertie −1.64
Tyrrell −1.53 Stokes −1.58

Table 10.4 and Fig. 10.2 give the results of an analysis based on the Gi(d) and
G∗

i (d) statistics for a d of 33 miles. This represents the distance to the furthest first-
nearest neighbor county of any county.

The G∗
i (d) statistic identifies five of the one hundred counties of North Carolina

as significantly positively or negatively associated with their neighboring counties
(at the 0.05 level). Four of these, clustered in the central south portion of the state,
display values greater than +1.96, while one county, Washington near Albemarle
Sound, has a Z value of less than 1.96 (see Fig. 10.2). Taking into account values
greater than +1.15 (the 87.5 percentile), it is clear that several small clusters in
addition to the main cluster are widely dispersed in the southern part of the state.
The main cluster of values less than 1.15 (the 12.5 percentile) is in the eastern part
of the state. It is interesting to note that many of the counties in this cluster are in the
sparsely populated swamp lands surrounding the Albemarle and Pamlico Sounds. If
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Fig. 10.2 Z[G∗
i (d = furthest nearest neighbor = 33 miles)] for SIDS rates of counties of North

Carolina, 1979–1984

overall error is fixed at 0.05 and a Bonferroni correction is applied, the cutoff value
for each county is raised to about 3.50. However, such a figure is unduly conservative
given the small numbers of neighbors.

In this case it becomes clear that an overall measure of association such as G(d)
or I(d) can be misleading because it prompts one to dismiss the possibility of sig-
nificant spatial clustering. The Gi(d) statistics, however, are able to identify the
tendency for positive spatial clustering and the location of pockets of high and low
spatial association. It remains for the social scientist or epidemiologist to explain
the subtle patterns shown in Fig. 10.2.

10.7.2 Dwelling Unit Prices in San Diego County
by Zip-Code Area, September 1989

Data published in the Los Angeles Times on October 29, 1989, give the adjusted
average price by zip code for all new and old dwelling units sold by builders, real
estate agents, and homeowners during the month of September 1989 in San Diego
County (see appendix). The data are supplied by TRW Real Estate Information Ser-
vices. One outlier was identified: Rancho Santa Fe, a wealthy suburb of the city of
San Diego, had prices of sold dwelling units that were nearly three times higher than
the next highest district (La Jolla). Since neither statistic is robust enough to be only
marginally affected by such an observation, Rancho Santa Fe was not considered in
the analysis.

Although the city of San Diego has a large and active downtown, San Diego
County is not a monocentric region. One would not expect housing prices to trend
upward from the city center to the suburbs in a uniform way. One would expect,
however, that since the data are for reasonably small sections of the metropolitan
area, that there would be distinct spatial autocorrelation tendencies (see Fig. 10.3).
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Fig. 10.3 San Diego house prices, September 1989
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High positive I values are expected. G(d) values are dependent on the tendencies
for high values or low values to group, if the low cost areas dominate, the G(d)
value is negative. In this case, G(d) is a refinement of the knowledge gained from I .

Table 10.5 shows that there are strong positive values for Z(I) for distances
of 4 miles and greater. Z(G) also shows highly significant values at 4 miles and
beyond, but here the association is negative, that is, low values near low values are
much more influential than are the high values near high values. Moran’s I clearly
indicates that there is significant spatial autocorrelation, but, without knowledge of
G(d), one might conclude that at this scale of analysis, in general, high income
districts are significantly associated with one another.

By looking at the results of the Gi(d) statistics analysis for d equal to five,
the individual district pattern is unmistakable. The Z(G∗

i (5)) values shown in
Table 10.6 and Fig. 10.4 provide evidence that two coastal districts are positively

Table 10.5 Spatial association among zip code districts: dwelling unit prices in San Diego county,
September 1989

d (miles) Z(G) Z(I)

2 −0.67 0.33
4 −2.36 2.36
5a −2.32 4.13
6 −2.47 4.16
8 −2.80 3.51
10 −2.66 3.57
12 −2.20 3.53
14 −2.34 3.92
16 −2.54 4.27
18 −2.30 3.57
20 −2.25 2.92
a At all distances of this length or longer each district
is connected to at least one other district

Table 10.6 Highest positive and negative standard normal variates by zip code district for G∗
i (d)

and Gi(d): dwelling unit prices in San Diego county, September 1989 (d = 5 miles)

Neighborhood ZG∗
i (d) Neighborhood ZG∗

i (d)

Highest positive
Cardiff +2.27 Cardiff +2.08
Solana Beach +2.02 Solana Beach +1.81
Point Loma +1.93 Mini Mesa +1.56
La Jolla +1.89 Ocean Beach +1.37
Del Mar +1.55 R. Penasquitos +1.33

Highest negative
East San Diego −3.22 East San Diego −2.99
East San Diego −2.74 East San Diego −2.54
East San Diego −2.64 North Park −2.48
North Park −2.56 East San Diego −2.48
Mission Valley −2.38 College −2.19
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Fig. 10.4 Z[Gi
∗(d = furthest nearest neighbor = 5 miles)] for house prices of San Diego county

zip code districts, September 1989
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associated at the 0.05 level of significance while eight central and south central dis-
tricts are negatively associated at the 0.05 level. There is a strong tendency for the
negative values to be higher. It is for this reason that the Z(G) values given above
are so decidedly negative. The districts with high values along the coast have fewer
near neighbors with similar values than do the central city lower value districts. The
cluster of districts with negative Z(G∗) values dominates the pattern. The adjusted
Bonferroni cutoff is about 3.27, but again is overly conservative.

10.8 Conclusions

The G statistics provide researchers with a straightforward way to assess the degree
of spatial association at various levels of spatial refinement in an entire sample or in
relation to a single observation, when used in conjunction with Moran’s I or some
other measure of spatial autocorrelation, they enable us to deepen our understanding
of spatial series. One of the G statistics’ useful features, that of neutralizing the
spatial distribution of the data points, allows for the development of hypotheses
where the pattern of data points will not bias results.

When G statistics are contrasted with Moran’s I , it becomes clear that the two
statistics measure different things. Fortunately, both statistics are evaluated using
normal theory so that a set of standard normal variates taken from tests using each
type of statistic are easily compared and evaluated.

Appendix

San Diego county average house prices for September 1989 by zip-code district

Zip code Principal Coordinates (miles) Price (in thousands)
neighborhood name x y

01 92024 Encinitas 1 39 264
02 92007 Cardiff 2 36 260
03 92075 Solana Beach 3 34 261
04 92014 Del Mar 5 32 309
05 92127 Lake Hodges 10 34 265
06 92129 R. Penasquitos 12 32 194
07 92128 R. Bernardo 15 35 191
08 92064 Poway 17 32 236
09 92131 Scripps Ranch 13 29 270
10 92126 Mira Mesa 8 28 162
11 92037 Lajolla 3 22 398
12 92122 University City 6 23 201
13 92117 Clairemont 6 20 192
14 92109 Beaches 4 18 249

continued



10 The Analysis of Spatial Association by Use of Distance Statistics 145

continued

San Diego county average house prices for September 1989 by zip-code district

Zip code Principal Coordinates (miles) Price (in thousands)
neighborhood name x y

15 92110 Bay Park 6 15 152
16 92111 Kearny Mesa 8 19 138
17 92123 Mission Village 10 19 131
18 92124 Tierrasanta 13 20 221
19 92120 Del Cerro 14 18 187
20 92119 San Carlos 17 19 182
21 92071 Santee 20 22 124
22 92040 Lakeside 23 24 147
23 92021 El Cajon 24 19 151
24 92020 El Cajon 22 17 150
25 92041 La Mesa 18 16 169
26 92115 College 14 16 138
27 92116 Kensington 11 16 192
28 92108 Mission Valley 9 16 89
29 92103 Hillcrest 8 14 225
30 92104 North Park 11 14 152
31 92105 East San Diego 13 14 111
32 92045 Lemon Grove 17 13 137
33 92077 Spring Valley 20 13 150
34 92035 Jamul 24 12 291
35 92002 Bonita 17 8 297
36 92139 Paradise Hills 16 9 117
37 92050 National City 13 8 99
38 92113 Logan Heights 11 10 84
39 92102 East San Diego 12 12 88
40 92101 Downtown 8 12 175
41 92107 Ocean Beach 3 14 229
42 92106 Point Loma 3 12 338
43 92118 Coronado 7 10 374
44 92010 Chula Vista 15 6 165
45 92011 Chula Vista 17 4 184
46 92032 Imperial Beach 11 1 164
47 92154 Otay Mesa 15 2 126
48 92114 East San Diego 15 11 126

Source of Data: Los Angels Times, October 29, 1989, page K15.
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