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Abstract. We are interested in the simulation and optimization of gas
transport in networks. Different regions of the network may be mod-
elled by different equations. There are three models based on the Euler
equations that describe the gas flow in pipelines qualitatively different:
a nonlinear model, a semilinear model and a stationary also called al-
gebraic model. For the whole network, adequate initial and boundary
values as well as coupling conditions at the junctions are needed. Using
adjoint techniques, one can specify model error estimators for the sim-
plified models. A strategy to adaptively apply the different models in
different regions of the network while maintaining the accuracy of the
solution is presented.
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1 Introduction

During the last years, there has been intense research in the field of simula-
tion and optimization of gas transport in networks [2,3,4,8,9]. The equations
describing the transport of gas in pipelines are based on the Euler equations, a
hyperbolic system of nonlinear partial differential equations, mainly consisting of
the conservation of mass, momentum and energy. The transient flow of gas may
be described appropriately by equations in one space dimension. For the whole
network, adequate initial and boundary values as well as coupling conditions at
the junctions are needed.

Although solving one-dimensional equations does not pose a challenge, the
complexity increases with the size of the network. Thus, we present a hierarchy
of models that describe the flow of gas in pipelines qualitatively different: The
most detailed model we use consists of the isothermal Euler equations (continuity
equation and momentum equation). A common simplification of the momentum
equation leads to a semilinear model, which is only valid if the velocity of the
gas is much less than the speed of sound, that is, |v| � c. Further simplifications
lead to the steady state model. Obviously, simplified models are sufficient in
network regions with low activity in the gas transport, while sophisticated models
should be used to resolve high solution dynamics accurately. Since the whole
network behaviour can change in both space and time, an automatic steering of
the model hierarchy is essential. Existent software packages like SIMONE [11]
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may use stationary as well as transient models for the simulation. However, for
the simulation process one model has to be chosen. The different models are
introduced in Sect. 2. The modelling of the network as well as the boundary and
coupling conditions are presented in Sect. 3.

In order to estimate the model error of the simplified models, that is, of the
semilinear and the steady state model with respect to some quantity of interest,
one has to solve adjoint systems on the network. For the adjoint equations,
appropriate coupling conditions are required, which are introduced in Sect. 4.
There, we also present a strategy, how to decide in which regions of the network
which model has to be used to reduce the complexity of the whole problem,
whereas the accuracy of the solution is maintained. We give numerical examples
of this algorithm in Sect. 5.

2 Model Hierarchy

In this section, we introduce a hierarchy consisting of three different models.
Each model results from the previous one by making further simplifying as-
sumptions [1]. The most complex model is the nonlinear model followed by the
linear model. The most simple model used is the algebraic model (see Fig. 1).

nonlinear model semilinear model algebraic model|v| � c ut = 0

Fig. 1. Model hierarchy

2.1 Nonlinear Model

The isothermal Euler equations, which describe the flow of gas, consist of the
continuity and the momentum equation:

∂ρ
∂t + ∂(ρv)

∂x = 0, ∂(ρv)
∂t + ∂(ρv2)

∂x + ∂p
∂x = −gρh′ − λ

2dρ|v|v (1)

together with the equation of state for real gases ρ = p
z(p,T )RT .

Here, ρ denotes the density, v the velocity of the gas, p the pressure, g the
gravity constant, h′ the slope of the pipe, λ the friction coefficient, d the diameter
of the pipe, R the (special) gas constant, T the temperature of the gas (assumed
to be constant) and z = z(p, T ) the compressibility factor.

For the sake of simplicity, we assume the pipe to be horizontal and the com-
pressibility factor z to be constant. This results in a simplified equation of state
ρ = p

c2 with constant speed of sound c =
√
RT . Since the mass flow M can be

traced back to the flow rate under standard conditions (M = ρvA = ρ0q), the
system can be rewritten in the following way:

pt + ρ0c2

A qx = 0, qt + A
ρ0
px + ρ0c2

A

(
q2

p

)
x

= −λρ0c2|q|q
2dAp . (2)
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Here, ρ0 and q denote density and flow rate under standard conditions (1 atm
air pressure, temperature of 0 ◦C), A the cross-sectional area of the pipe.

The characteristic speeds are the eigenvalues of the Jacobian of the system,
which are λ1/2(u) = v ∓ c. Hence, for subsonic flow, the characteristics travel in
opposite directions with characteristic speeds λ1/2 depending on the velocity of
the gas.

2.2 Semilinear Model

If the speed v of the gas is much smaller than the speed of sound, we can neglect
the nonlinear term in the spatial derivative of the momentum equation in (1).
Together with the equation of state as above, this yields a semilinear model

ut + Aux = ψ(u) (3)

with u =
(
p
q

)
, A =

(
0 c2ρ0

A
A
ρ0

0

)
and ψ(u) =

(
0

−λρ0c2|q|q
2dAp

)
.

For this model the characteristic speeds are λ1/2 = ∓c. Thus, information always
travels in both directions with sonic speed.

2.3 Algebraic Model

A further simplification leads to the stationary model: Setting the time deriva-
tives in (3) to zero results in

qx = 0, A
ρ0
px = −λρ0c2|q|q

2dAp . (4)

Thus, q is constant in space and the exact solution for p is

p(x) =
√
p(x0)2 + λρ2

0c2|q|q
dA2 (x0 − x) .

Here, p(x0) denotes the pressure at an arbitrary point x0 ∈ [0, L]. Setting x0 = 0,
that is, p(x0) = p(0) = pin at the inbound of the pipe, and x = L, that is,
p(x) = p(L) = pout at the end of the pipe, yields the algebraic model [10].

For the other two models, we computed characteristic speeds at which
information propagates in different directions. Since this model is stationary,
information given at any place instantaneously influences all other points.

3 Modelling of the Network

We now want to describe the gas flow on networked pipelines. For this purpose,
we model the network as a directed graph G = (J ,V) with edges J (pipes) and
vertices V (nodes, branching points). Each edge j ∈ J is defined as an interval
(xa

j , x
b
j) with a direction from xa

j to xb
j . Of course, all intervals are disjoint.

Then, for any inner node v, we can define two sets of edges. Let the set of
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δ−v2
= {2}

δ+v2
= {4, 5}

Fig. 2. A small network; the ingoing pipes of node v2 are δ−v2 = {2} and the set of
outgoing pipes is δ+

v2 = {4, 5}

ingoing pipes be denoted by δ−v , that is, the set of any edge j ∈ J with endpoint
xb

j being adjacent to v. Then, analogously, δ+v denotes the set of outgoing pipes
(see Fig. 2). Inside each pipe, one of the models described above holds. In order
to obtain a unique solution, we have to pose coupling conditions at the inner
nodes of the network as well as boundary conditions at the sources and sinks.

3.1 Coupling Conditions

A first coupling condition is the conservation of mass at each inner node. Let
v ∈ V be a node with ingoing pipes j ∈ δ−v and outgoing pipes i ∈ δ+v . Then,
Kirchhoff’s law (conservation of mass) yields

∑

j∈δ−
v

q(xb
j , t) =

∑

i∈δ+
v

q(xa
i , t) .

Next, we need further coupling conditions and there are several possibilities.
The most common condition used is the equality of pressure at the node v as
pointed out in [3]: p(xb

i , t) = p(xa
j , t) ∀i ∈ δ+v , j ∈ δ−v .

3.2 Boundary Conditions

Let Jin denote the set of ingoing pipes of the network, i.e. the pipes connecting
the sources with the network and let Jout denote the set of outgoing pipelines
connected with sinks.

Since for subsonic flow the characteristics of the nonlinear model propagate in
different directions and for the semilinear model the characteristics always prop-
agate in reverse directions, one can prescribe the characteristic variables only
on opposing sides of a pipe. Thus, there are some limitations on the boundary
conditions of the edges.

One possibility is to specify the pressure p at one end of the pipe and the flow
rate q at the other. So, we usually prescribe the pressure at xa

j , j ∈ Jin (sources)
and the flow rate at xb

j , j ∈ Jout (sinks).
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3.3 Gas Flow on the Network

We can now describe the flow of gas on the network. With the notations Ω =⋃
j∈J [xa

j , x
b
j ] and Q := Ω × (0, T ), the equations for the nonlinear model read

as follows:

ut + f(u)x = ψ(u) in Q
p(x, 0) = p0(x) in Ω
q(x, 0) = q0(x) in Ω
p(xa

i , t) = wi(t) i ∈ Jin, t ∈ (0, T )
q(xb

i , t) = vi(t) i ∈ Jout, t ∈ (0, T )
p(xb

i , t) = p(xa
j , t) ∀v ∈ V , i ∈ δ−v , j ∈ δ+v , t ∈ (0, T )∑

i∈δ−
v

q(xb
i , t) =

∑
i∈δ+

v

q(xa
i , t) ∀v ∈ V , t ∈ (0, T )

wi(t) > 0 i ∈ Jin, t ∈ (0, T ) .

(5)

For the semilinear and the algebraic model, the equations are analogous to (5)
with the corresponding PDE or algebraic equation in the first line. The bound-
ary conditions p(xa

i , t), i ∈ Jin, t ∈ (0, T ) and q(xb
i , t), i ∈ Jout, t ∈ (0, T ) are

determined by control variables/functions wi(t) and vi(t). Since the flow rate at
the sinks is given by the consumers, the variable that can be controlled by us
will only be the pressure at the sources.

4 Adjoint Equations on the Network

A possibility to achieve a compromise between the accuracy of the model and
the computational costs is to use the more complex model only when necessary.
Using the solution of adjoint equations as done in [5,6], we deduce a model
error estimator to measure the influence of the model on a user-defined output
functional.

Let the functional M be of the form

M(u)=
∫

Q

N(u) dtdx +
∑

i∈Jin

∫ T

0

Nxa
i
(q) dt +

∑
i∈Jout

∫ T

0

Nxb
i
(p) dt +

∫

Ω

NT (u) dx . (6)

As pointed out in [6], we only need to solve the dual problem of the simplified
models in order to obtain a first order error estimator. Let ξ = (ξ1, ξ2)

T be the
solution of the dual problem of the semilinear model (3) or the algebraic model
(4) with respect to the functional M .

For a given solution u∗ = (p∗, q∗)T of the semilinear equations, the adjoint
system on the network reads as follows:

ξt + AT ξx = −∂uψ(u∗)T ξ − ∂uN(u∗)T in Q
ξ(·, T ) = ∂uNT (u∗(·, T ))T in Ω

ξ1(xa
i , t) = − Ai

ρ0c2 ∂qNxa
i
(q∗(xa

i , t)) i ∈ Jin, t ∈ (0, T )
ξ2(xb

i , t) = ρ0
Ai
∂pNxb

i
(p∗(xb

i , t)) i ∈ Jout, t ∈ (0, T ) .

(7)
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The adjoint system for the algebraic equations is similar to that of the semilinear
model, only that the time derivative and the initial conditions vanish. Thus, one
cannot measure the influence of the algebraic model at the final time T , which
means that the last term of 6, i.e.

∫
Ω
NT (u) dx, has to be left out. For the adjoint

systems, one also has to specify coupling conditions. Conservation of mass and
equality of pressure at the node v yield for the adjoint variables:

1
Ai
ξ1(xb

i , t) = 1
Aj
ξ1(xa

j , t), i ∈ δ−v , j ∈ δ+v , t ∈ (0, T ) ,
∑

i∈δ−
v

Aiξ2(xb
i , t) =

∑

j∈δ+
v

Ajξ2(xa
j , t), t ∈ (0, T ) .

4.1 Error Estimators

We now use the adjoint equations to assess the simplified models with respect to
the quantity of interest. Let u = (p, q)T be the solution of the nonlinear model
(2) and uh =

(
ph, qh

)T the discretized solution of the semilinear model (3). Then
the difference between the output functional of u, M(u), and M(uh) is

M(u) −M(uh) =
∫

Q

N(u) −N(uh) dt dx +
∑

i∈Jin

∫ T

0

Nxa
i
(q) −Nxa

i
(qh) dt

+
∑

i∈Jout

∫ T

0

Nxb
i
(p) −Nxb

i
(ph) dt +

∫

Ω

NT (u) −NT (uh) dx .

Taylor expansion of first order yields

=
∫

Q

∂uN(uh)(u− uh) dtdx +
∑

i∈Jin

∫ T

0

∂qNxa
i
(qh)(q − qh) dt

+
∑

i∈Jout

∫ T

0

∂pNxb
i
(ph)(p− ph) dt +

∫

Ω

∂uNT (uh)(u − uh) dx +H.O.T.

with H.O.T. being higher order terms. Inserting the solution ξ of the adjoint sys-
tem (7), we get a first order error estimator for the model and the discretization
error respectively as in [6]:

M(u) −M(uh) ≈ ηm + ηh (8)

with the estimators ηm and ηh as follows:

ηnl−sl
m =

∫

Q

−ξT

(
0

ρ0c2(qh)2

Aph

)

x

dxdt (9)

ηnl−sl
h =

∫

Q

ξT
(−uh

t − Auh
x + ψ(uh)

)
dxdt . (10)
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Since the algebraic model can be solved exactly, the discretization error disap-
pears and one only gets an estimator for the model error

ηsl−alg
m =

∫

Q

−ξT

(
p
q

)

t

dxdt (11)

with ξ being the solution of the adjoint equations either of the semilinear model
(7) or of the algebraic model. Here, u = ( p

q ) denotes the solution of the stationary
model (4).

4.2 Adaptive Switching Strategy

With the estimators defined above we may now derive a strategy to switch
adaptively between the models. For this, we divide the time interval (0, T ) into
equal subintervals (Tk−1, Tk), k = 1, . . . , NB, with T0 = 0 and TNB = T . Thus,
we can split up the computational domain Q = Ω × (0, T ) into NB blocks
Qk = Ω × (Tk−1, Tk), k = 1, . . . , NB, of equal size (see Fig. 3(a)).

We start with simulating the first block Q1. Each pipe is assigned to one
of the three models. Then, we solve the corresponding adjoint system in order
to estimate the model error using (9) and (11) respectively. The model error
estimator onQ1 can now be computed for each pipe separately. For the semilinear
case (9) this reads as follows.

ηm =
NB∑
k=1

∫

Qk

−ξT

(
0

ρ0c2(qh)2

Aph

)

x

dxdt

=
NB∑
k=1

∑
j∈J

∫ Tk

Tk−1

∫ xb
j

xa
j

−ξT

(
0

ρ0c2(qh)2

Aph

)

x

dx dt =:
NB∑
k=1

∑
j∈J

ηm(k, j)

with the “local” estimators ηm(k, j).
Given a tolerance TOL, one can decide in which pipe the model used is ap-

propriate and in which it is not. We want to accept the model if the relative
deviation of the simpler model uh from the exact solution of the more complex
model u is below TOL, that is,

∣∣M(u) −M(uh)
∣∣ / ∣∣M(uh)

∣∣ ≤ TOL. Provided that
the discretization error is nonsignificant compared to the model error, we can
approximate

∣∣M(u) −M(uh)
∣∣ by |ηm|, which yields

|ηm| ≤ TOL
∣∣M(uh)

∣∣ . (12)

Just like the error estimator ηm, we can evaluate the target functional M at
every pipe j ∈ J and every time interval (Tk−1, Tk), k = 1, . . . , NB individually,
giving Mk,j , that is, M(uh) =

∑NB

k=1

∑
j∈J Mk,j(uh). Thus, for inequality (12)

to hold, it suffices to claim

|ηm(k, j)| ≤ TOL
∣∣Mk,j(uh)

∣∣ , ∀k ∈ {1, . . . , NB}, j ∈ J . (13)



344 P. Bales, O. Kolb, and J. Lang

Ω
Q1

Q2

Q3

...

QNB−1

QNB

0
T1

T2

T

(a)

t

adjoint-based
decisions

T1

T2

NL LIN

ALG

LIN ALG

ALG

(b)

Fig. 3. (a) Partition of the computational domain; (b) Scheme of the adaptive switching
(ALG = algebraic model, LIN = semilinear model, NL = nonlinear model)

If any of the estimators ηm(k, j) violates (13), the computation of this time
interval has to be repeated and the models used in these pipes have to be ex-
changed by a more complex model. For those pipes of which the estimators fulfil
inequality (13), one can evaluate the estimators “downwards”. If these also fulfil
(13), a more simple model may be used in the next time step. For a scheme of
the switching strategy, see Fig. 3(b).

5 Numerical Results

We give an example of the algorithm for a small network. It consists of nine
pipes Le1 to Le9, one source Qu, four inner nodes M1 to M4 and three sinks Se1
to Se3 (see Fig. 4(a)).

All pipes have a diameter of 1m and a roughness of 5 · 10−5 m. The lengths
of all except two pipes is 10km. The pipes Le4 and Le6 are both 5km long. The
simulation time totals T = 14400 s with time step size Δt = 5 s. The block size
was chosen the size of a time step.

As boundary conditions we use constant pressure at the source Qu and a
constant flow rate at sinks Se2 and Se3. The gas consumption at sink Se1
is chosen time-dependently with initially q(xb

4, t) = 250 m3

s for t ≤ 100 s and
q(xb

4, t) = 300 m3

s for t ≥ 105 s and a linear increase in-between. The ini-
tial conditions are chosen stationary (Fig. 4(b)). The target functional used
is M(p, q) =

∫
Q p dx dt, the “Quantity of Interest” is thus the pressure measured

over the whole network.
In this setting, only two models were used: the semilinear model (3) and the

algebraic model (4). A reference solution was computed using the semilinear
model. The equations were solved using an implicit box scheme [7]. Figure 5
shows the simulation process at times 115 s and 7075 s.

Figure 6 compares the pressure of the adaptive solution with the reference
solution at sink Se1 for two different tolerances.
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62.9

time = 0.000000 seconds

(b)

Fig. 4. (a) A small network; (b) Initial conditions; at every node the pressure p is
given, at the sources and sinks additionally the flow rate q is specified below

ALG

LIN

ALG

LIN

LIN

LIN

LIN

LIN

ALG69.5

750.02

62.5

300.00

62.7

250.00

62.2

250.00

64.4

63.0

63.0

62.9

time = 115.000000 seconds

(a)
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Fig. 5. Two snapshots of the simulation process using the adaptive switching strategy
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Fig. 6. Comparison of the pressure with the reference solution at sink Se1 for different
values of TOL

6 Summary

We introduced a model hierarchy for the simulation of gas transport in networked
pipelines. This hierarchy consists of a nonlinear and a semilinear system of
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hyperbolic partial differential equations and of an algebraic steady state model.
We discussed coupling and boundary conditions for the wellposedness of the
whole system. For the network, adjoint equations as well as adjoint coupling
conditions were given that allow us to valuate the different models with respect
to a quantity of interest. An algorithm was developed that switches adaptively
between the three models using model error estimators deduced from the adjoint
systems. The additional computational effort is approximately that of solving the
original system. In the case of locally restricted dynamical effects we observed
for a test network a significant reduction of complexity, while a certain accuracy
is maintained. As a side result we gain an estimator for the discretization error
for free.

Based on our results we want to proceed in testing the switching strategy for
more complex systems including compressor stations and valves. Furthermore,
an integration into an optimization framework is planned.
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dation (DFG) under the grant LA1372/5-1.
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